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Abstract

We show that any convolution operator induced by a non-constant polynomial that vanishes at zero supports
a hypercyclic algebra. This partially solves a question raised by R. Aron.
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1. Introduction

In 2001 Aron, Garcia and Maestre [1] called the attention to the wide range of examples supporting the
following “principle”: In many different settings one encounters a problem which, at first glance, appears to
have no solution at all. And, in fact, it frequently happens that there is a large linear subspace of solutions
to the problem. This originated growing interest in the study of large algebraic structures within nonlinear
settings, giving rise to the notions of lineability, spaceability and algebrability, to name a few [3].

This has been the case, for instance, in the study of the set of hypercyclic vectors. It is well known that
for any operator T on a topological vector space X, the set

HC(T ) = {f ∈ X : {f, Tf, T 2f, . . . } is dense in X}

of hypercyclic vectors for T is either empty or contains a dense infinite-dimensional linear subspace (but the
origin), see [18]. In fact, when HC(T ) is non-empty it sometimes contains (but zero) a closed and infinite
dimensional linear subspace, while other times the only closed subspaces it contains (but zero) are of finite
dimension [8, 14]; see also [7, Ch. 8] and [15, Ch. 10].
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When X is a topological algebra it is natural to ask whether HC(T ) can contain, or must always contain,
a subalgebra (but the origin) whenever it is non-empty. Both questions have been answered by considering
convolution operators on the space X = H(C) of entire functions on the complex plane C, endowed with
the compact-open topology; that convolution operators (other than scalar multiples of the identity) are
hypercyclic was established by Godefroy and Shapiro [13], see also [10, 16, 2].

Aron et al [4, 5] showed that no translation operator τa

τa(f)(z) = f(z + a) f ∈ H(C), z ∈ C

can support a hypercyclic algebra, in a very strong way: Indeed, for any positive integer p and any f ∈ H(C),
the non-constant elements of the orbit of fp under τa are those entire functions for which the multiplicities
of their zeros are integer multiples of p. In stark contrast with this operator they also showed that the
collection of entire functions f for which every power fn (n = 1, 2, . . . ) is hypercyclic for the operator D of
complex differentiation is residual in H(C).

Later Shkarin [17, Th. 4.1] showed that HC(D) contained both a hypercyclic subspace and a hypercyclic
algebra, and with a different approach Bayart and Matheron [7, Th. 8.26] also showed that the set of
f ∈ H(C) that generate an algebra consisting entirely (but the origin) of hypercyclic vectors for D is
residual in H(C). The abovementioned solutions by Aron et al, Bayart and Matheron, and Shkarin bear the
question of which convolution operators on H(C) support a hypercyclic algebra. In this note we consider
the following question:

Question 1. (Aron) Let Φ be a non-constant polynomial. Does Φ(D) support a hypercyclic algebra?

The purpose of this note is to show that the techniques by Bayart and Matheron provide an affirmative
answer for the case when Φ(0) = 0:

Theorem 1. Let Ω be a simply connected planar domain and H(Ω) the space of holomorphic functions on
Ω endowed with the compact open topology. Let Φ be a non-constant polynomial with Φ(0) = 0. Then the
set of functions f ∈ H(Ω) that generate a hypercyclic algebra for Φ(D) is residual in H(Ω).

2. Proof of Theorem 1

The proof of Theorem 1 follows that of [7, Th. 8.26]. We postpone the proof of Proposition 2 for later.

Proposition 2. Let Φ be a polynomial with Φ(0) = 0. Then for each pair (U, V ) of non-empty open subsets
of H(Ω) and each m ∈ N there exists P ∈ U and q ∈ N so that{

Φ(D)q(P j) = 0 for 0 ≤ j < m,

Φ(D)q(Pm) ∈ V.
(2.1)

Proof of Theorem 1. For any g ∈ H(Ω) and α ∈ Cm, we let gα := α1g+· · ·+αmgm. Let (Vk)k be a countable
local basis of open sets of H(Ω). For each (k, s,m) ∈ N3 we let A(k, s,m) denote the set of f ∈ H(Ω) that
satisfy the following property

∀α ∈ Cmwith αm = 1 and ‖α‖∞ ≤ s, ∃q ∈ N : Φ(D)q(fα) ∈ Vk. (2.2)

Each such A(k, s,m) is open and dense in H(Ω), thanks to Proposition 2. By Baire’s Theorem,

A = ∩k,s,m∈NA(k, s,m)

is residual in H(Ω). Let f ∈ A, and let g be in the algebra generated by f . Since a vector is hypercyclic if
and only if any non-zero scalar multiple of it is hypercyclic, we may assume g = fα = α1f + α2f

2 + · · · +
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αm−1f
m−1 + fm. Then g is clearly hypercyclic for Φ(D). Indeed, given any non-empty open set U of H(Ω),

let k ∈ N so that Vk ⊂ U . Pick s > ‖α‖∞. Then since f ∈ A(k, s,m) we know that there exists q satisfying
(2.2). Hence

Φ(D)qg = Φ(D)q(α1f + α2f
2 + · · ·+ αm−1f

m−1 + fm) ∈ Vk ⊂ U.

Proof of Proposition 2. Let Φ(z) = zr
∑k
j=0 ajz

j , with a0 6= 0 and r ∈ N, and let (A,B) ∈ U × V be
polynomials. Enlarging the degree of B if necessary, we may assume that degree(B) = p ∈ rN and p > m.
It suffices to show the following.

Claim 1. For any large n ∈ rN there exist (c0, . . . , cp) = (c0(n), . . . , cp(n)) ∈ Cp+1 so that{
R := Rn = zn

∑p
j=0 cjz

j and

q := qn = m
r n+ (m− 1)pr

satisfy the following:

(i) Φ(D)q((A+R)j) = 0 for 0 ≤ j < m,

(ii) Φ(D)q((A+R)m) = Φ(D)q(Rm) = B,

(iii) Rn →
n→∞

0 in H(Ω).

To show the claim, notice that for each 0 ≤ ` ≤ m− 1 and each s ∈ N we have the inequality

degree(AsR`) ≤ constant + (m− 1)n < (m− 1)p+mn = rq

for all large n. Hence, since Φ(D)q = (
∑k
`=0 a`D

`)q Drq, it follows that for large n we have

Φ(D)q ((A+R)j) = 0 for 0 ≤ j < m, and

Φ(D)q((A+R)m) = Φ(D)q(Rm).

So (i) holds, as well as the first equality in (ii), regardless of the selection c = (c0, . . . , cp). Next, for each
s ∈ N and multi-index γ = (γ0, . . . , γs) ∈ Ns+1

0 we let

|γ| =
s∑
j=0

γj and γ̂ =

s∑
j=0

jγj =

s∑
j=1

jγj .

Also, for c = (c0, . . . , cs) ∈ (C \ {0})s+1 and |γ| = m, we let

cγ =
s∏
j=0

c
γj
j and

(
m

γ

)
=

m!

γ0!γ1! . . . γs!
.

With this notation we have

Φ(D)q(Rm) =

 ∑
β∈Nk+1

0 :|β|=q

(
q

β

)
aβ Drq+β̂

  ∑
α∈Np+1: |α|=m

(
m

α

)
cα znm+α̂


=

∑
(α,β)∈A

(
m

α

)
cα
(
q

β

)
aβ Drq+β̂znm+α̂

=
∑

(α,β)∈A

(
m

α

)
cα
(
q

β

)
aβ

(nm+ α̂)!

(α̂− β̂ − (m− 1)p)!
zα̂−β̂−(m−1)p
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where

A =
{

(α, β) ∈ Np+1
0 ×Nk+1

0 : |α| = m, |β| = q, and rq + β̂ ≤ nm+ α̂
}

=
{

(α, β) ∈ Np+1
0 ×Nk+1

0 : |α| = m, |β| = q, and mp− p ≤ α̂− β̂
}
.

Thus

Φ(D)q(Rm) =

p∑
i=0

∑
(α,β)∈Ai

(
m

α

)
cα
(
q

β

)
aβ

(nm+ α̂)!

i!
zi

where for each i = 0, . . . p
Ai = {(α, β) ∈ A : α̂− β̂ = i+ (m− 1)p}.

In particular, B =
∑p
i=0 biz

i = Φ(D)q(Rm) if and only if c = (c0, . . . , cp) is a solution of the system

bi =
∑

(α,β)∈Ai

(
m

α

)
cα
(
q

β

)
aβ

(nm+ α̂)!

i!
(0 ≤ i ≤ p). (2.3)

We finish the proof of the claim using the following remark.

Remark 3. For each fixed 0 ≤ ` ≤ p, the following occurs:

(a) Each (α, β) ∈ A` must satisfy α0 = · · · = α`−1 = 0. Otherwise, if αs > 0 with 0 ≤ s ≤ `− 1 we’d have

since |α| = m that pm− (p− `) = `+ (m− 1)p ≤ α̂− β̂ ≤ α̂ ≤ sαs + p(m− αs) = pm− (p− s)αs ≤
pm− (p− s), a contradiction.

(b) If (α, β) ∈ A` satisfies that α` > 0, then β = (q, 0, . . . , 0) and α` = 1, αp = m − 1, and αj = 0

for j 6= `, p. This is forced from (a) and the inequalities pm − (p − `) = α̂ − β̂ ≤ α̂ =
∑p
j=` jαj ≤

`α` + p(m− α`) = pm− (p− `)α`.
(c) Let A′` := A` \ {((0, . . . , 0, 1︸︷︷︸

`th

, 0, . . . , 0,m− 1), (q, 0, . . . , 0))}. Then from (a) and (b) each (α, β) ∈ A′`

satisfies that α0 = · · · = α` = 0.

(d) If β ∈ Nk+1
0 satisfies |β| = q and β̂ ∈ {0, . . . , `}, then

(
q
β

)
≤ q` and |aβ | ≤ (max{|a0|, . . . , |ak|})`.

Now, thanks to Remark 3 the system (2.3) is upper triangular and thus solvable, and any solution to
(2.3) satisfies (ii) for sufficiently large n. To see (iii), it suffices to show that there exists w > 1 so that for
each ` = 0, 1, . . . , p we have

cp−` = O

(
wn

[(mn+mp)!]
1
m

)
as n→∞. (2.4)

Condition (2.4) ensures that Rn →
n→∞

0 in H(Ω) as for each M > 0 we have Mn+i|ci| →
n→∞

0. Indeed, by

(2.4) and Stirling’s formula

(
Mn+i|ci|

)m ≤ M (n+i)mwmn

(mn+mp)!

= o

(
(Mw)mn+mp

(mn+mpe )mn+mp

)

= O

(
eMw

mn+mp

)mn+mp
→

n→∞
0.

4



So we finish by proving (2.4) by induction on `. Taking i = p in (2.3) we get -since in this case (α, β) ∈
Ap ⇔ α = (0, . . . , 0,m) and β = (q, 0, . . . , 0)- that

p!bp =
∑

(α,β)∈Ap

(
m

α

)(
q

β

)
aαcβ(nm+ α̂)!

=

(
m

(0, . . . , 0,m)

) (
q

(q, 0, . . . , 0)

)
aq0 c

m
p (nm+mp)!

Thus

cmp =
p!bp

aq0 (nm+mp)!
(2.5)

and (2.4) holds for ` = 0. Inductively, suppose there exists w`−1 > 1 so that

cp−j = O

(
wn`−1

[(mn+mp)!]
1
m

)
(n→∞)

for each j = 0, . . . , `− 1. We want to show that for some w > 1

cp−` = O

(
wn

[(mn+mp)!]
1
m

)
(n→∞). (2.6)

Now, taking i = p− ` in (2.3) we have by Remark 3(b) and (c) that

(p− `)! bp−` =
∑

(α,β)∈Ap−`

(
m

α

)(
q

β

)
aβcα(nm+ α̂)!

= mcp−`c
m−1
p (nm+mp− `)! aq0 +Kn,

(2.7)

where Kn =
∑

(α,β)∈A′p−`

(
m
α

)(
q
β

)
aβcα(nm+ α̂)!. Also, thanks to (2.5) we have that

cm−1p (nm+mp− `)! =
(p!bp)

1− 1
m [(nm+mp)!]

1
m

(a
1− 1

m
0 )q

∏`−1
j=0(nm+mp− j)

∼ [(nm+mp)!]
1
m

(a
1− 1

m
0 )q n`

(n→∞).

(2.8)

Now, let (α, β) ∈ A′p−` be fixed. Notice that (α̂, β̂) ∈ {(mp− j, j) : j = 0, . . . , `}, and thus by Remark 3(d)

that
(
q
β

)
≤ q` and |aβ | ≤ ‖a‖`∞. Moreover, thanks to Remark 3(c) and our inductive hypothesis we also have

|cα| = |cαp−`+1

p−`+1 · · · c
αp
p | = O

((
wn`−1

[(nm+mp)!]
1
m

)αp−`+1+···+αp
)

= O

(
wnm`−1

(nm+mp)!

)
.

Hence ∣∣∣∣∣∣
∑

(α,β)∈A′p−`

(
m

α

)(
q

β

)
aβcα(nm+ α̂)!

∣∣∣∣∣∣ = O
(
n`wmn`−1

)
(n→∞). (2.9)

5



So by (2.7), (2.8) and (2.9) we have

cp−` = O

(
n2`wmn`−1

[(nm+mp)!]
1
m a

q
m
0

)
(n→∞)

Thus any w > wm`−1a
− 1

r
0 satisfies (2.6), and Claim 1 holds. The proof of Proposition 2 is now complete.

We conclude this note with the following natural questions:

Question 2. Can we eliminate the assumption Φ(0) = 0 in Theorem 1?

It is also natural to ask for examples of algebras generated by bigger sets. In fact, the simplest case of
the existence of algebras generated by two functions is still open.

Question 3. (Seoane-Sepúlveda) Does there exist a pair of algebraically independent hypercyclic func-
tions f, g ∈ H(C) that altogether generate an algebra consisting entirely (but the origin) of hypercyclic
vectors for D on H(C)?

Finally, we may also ask about the existence of algebras of frequently hypercyclic vectors (respectively,
of upper frequently hypercyclic vectors) for convolution operators on H(C). We note that every convolution
operator Φ(D) that is not a scalar multiple of the identity is frequently hypercyclic [11]. Indeed, Φ(D) has
a frequently hypercyclic subspace whenever Φ ∈ H(C) is transcendental [12], but when Φ is a non-constant
polynomial the operator Φ(D) has an upper frequently hypercycic subspace but has no frequently hypercyclic
subspace [6, 9].

Question 4. Which convolution operators support an algebra of frequently hypercyclic (respectively, of
upper frequently hypercyclic) vectors?
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