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Abstract. Many algorithms exist that exploit the special structure of
Toeplitz matrices for solving linear systems. Nevertheless, these algo-
rithms are difficult to parallelize due to its lower computational cost and
the great dependency of the operations involved that produces a great
communication cost. The foundation of the parallel algorithm presented
in this paper consists of transforming the Toeplitz matrix into a an-
other structured matrix called Cauchy–like. The particular properties of
Cauchy–like matrices are exploited in order to obtain two levels of par-
allelism that makes possible to highly reduce the execution time. The
experimental results were obtained in a cluster of PC’s.

1 Introduction

In this paper, we present a parallel algorithm for the solution of the linear system

Tx = b , (1)

where T ∈ IRn×n is a symmetric Toeplitz matrix T = (tij)
n−1
i,j=0 = (t|i−j|)

n−1
i,j=0

and b, x ∈ IRn are the independent and the solution vector, respectively.

It is difficult to obtain efficient parallel versions of fast algorithms, because
they have a reduced computational cost and they also have many dependencies
among fine–grain operations. These dependencies produce many communica-
tions, which are a critical factor to obtain efficient parallel algorithms, especially
on distributed memory computers. This problem could explain partially the
small number of parallel algorithms implemented so far dealing with Toeplitz
matrices. For instance, it can be found parallel algorithms to solve Toeplitz
systems using systolic arrays [1] or dealing only with positive definite matrices
or with symmetric matrices [2]. There also exist parallel algorithms for shared
memory computers [3–5] and, more recently, several parallel algorithms for dis-
tributed architectures have been proposed [6].

One of our main goals is to offer efficient parallel algorithms for general pur-
pose architectures, especially, clusters of personal computers. Furthermore, the
codes are portable because they are based on standard libraries, both sequential,
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LAPACK [7], and parallel, ScaLAPACK [8]. We are mainly interested in the re-
duction of parallel runtime because one of the main set of applications requires
real time computation of the linear system (1) like digital signal analysis [9].

In the next section, the mathematical background used is summarized. In
Sections 3, 4 and 5 the parallel algorithm is described. Finally, the experimental
results are shown in the last section.

2 Rank Displacement and Cauchy–like Matrices

It is said that a matrix of order n is structured if its displacement representation
has a lower rank regarding n. The displacement representation of a symmetric
Toeplitz matrix T (1) can be defined in several ways depending on the form of
the displacement matrices. A useful form for our purposes is

∇F T = F T − T F = G H GT ; (2)

where F = T (e1), called displacement matrix, is a n × n symmetric Toeplitz
matrix with the second column of the identity matrix as the first column; G ∈
IRn×4 is the generator matrix and H ∈ IR4×4 is a skew–symmetric signature
matrix. The rank of ∇F T is 4, that is, lower than n and independent of n.

It is easy to see that the displacement of T with respect to F is a matrix of a
considerably sparsity from which it is not difficult to obtain an analytical form
of G and H.

A symmetric Cauchy–like matrix C is a structured matrix that can be defined
as the unique solution of the displacement equation

∇ΛC = Λ C − C Λ = Ĝ H ĜT , (3)

being Λ = diag(λ1, . . . , λn), where rank(∇ΛC)� n and independent of n.
Now, we use the normalized Discrete Sine Transformation (DST) S as defined

in [10]. Since S is symmetric, orthogonal and SFS = Λ [11, 12], we obtain

S(FT − TF )S = S(GHGT )S → ΛC − CΛ = ĜHĜT ,

where C = STS and Ĝ = SG. This shows how it can be transformed (2) into (3).

In this paper, we solve the Cauchy–like linear system Cx̂ = b̂, where x̂ = Sx
and b̂ = Sb, by performing the triangular decomposition C = LDLT , being
L unit lower triangular and D diagonal. The solution of (1) is obtained by

computing Ly = b̂, y ← D−1y, LT x̂ = y and x = Sx̂.
Solving a symmetric Toeplitz linear system by transforming it into a sym-

metric Cauchy–like system has an interesting advantage due to the symmetric
Cauchy–like matrix has an important sparsity. Matrix C has the form (x only
denotes non–zero entries),

C =















x 0 x 0 . . .
0 x 0 x . . .
x 0 x 0 . . .
0 x 0 x . . .
...

...
...

...
. . .















.



We define the odd–even permutation matrix Poe as the matrix that, after ap-
plied to a vector, groups the odd entries in the first positions and the even entries

in the last ones, Poe

(

x1 x2 x3 x4 x5 x6 . . .
)T

=
(

x1 x3 x5 . . . x2 x4 x6 . . .
)T

.
Applying transformation Poe(.)P

T
oe to a symmetric Cauchy–like matrix C gives

PoeCP T
oe =

(

C0

C1

)

, (4)

where C0 and C1 are symmetric Cauchy–like matrices of order dn/2e and bn/2c,
respectively. In addition, it can be shown that matrices C0 and C1 have a dis-
placement rank of 2, as opposed to C that has a displacement rank of 4 [5].

The two submatrices arising in (4) have the displacement representation

ΛjCj − CjΛj = GjHjG
T
j , i = 0, 1 , (5)

where

(

Λ0

Λ1

)

= PoeSΛSP T
oe and H0 = H1 =

(

0 1
−1 0

)

. As it is shown in [13],

given vector uT =
(

0 t2 t3 · · · tn−2 tn−1

)T
and the first column of the identity

matrix e0, the generators of (5) can be computed as
(

G0

G1

)

=
√

2PoeS
(

u e0

)

. (6)

The odd–even permutation matrix is used to decouple the symmetric Cauchy–
like matrix arising from a real symmetric Toeplitz matrix into the following two
Cauchy–like systems of linear equations

Cj ˆ̄xj = ˆ̄bj , j = 0, 1 , (7)

where ˆ̄x =
(

ˆ̄x
T
0

ˆ̄x
T
1

)T

= PoeSx and ˆ̄b =
(

ˆ̄b
T

0
ˆ̄b

T

1

)T

= PoeSb.

Each one of both linear systems are of half the size and half the displacement
rank so this yields substantial saving over the non–symmetric forms of the dis-
placement equation. Furthermore, it can be exploited in parallel by solving each
of the two independent sub–systems into two different processors.

3 The Parallel Algorithm

For the parallel solution we used a two dimensional mesh of p/2 × 2 proces-
sors as shown in Fig. 1, where each one of the p processors is denoted by the
corresponding row and column index.

We used the ScaLAPACK tools in order to manage data distribution over this
logical configuration of the processors. Once the symmetric Toeplitz system has
been converted into a symmetric Cauchy–like one, the two subsystems arisen (7)
will be solved independently on each “logical column” of the two–dimensional
processors mesh. This is what the external loop (j = 0, 1) of Algorithm 1 repre-
sents, that is, iteration 0 and 1 are concurrently executed by processors column
0 and 1, respectively.
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Fig. 1. 2D mesh of processors

Algorithm 1 (Parallel Algorithm for the solution of a symmetric–
Toeplitz system with Cauchy–like transformation). Given T ∈ IRn×n

a symmetric Toeplitz matrix and b ∈ IRn an independent vector, this algorithm
returns the solution vector x ∈ IRn of the linear system Tx = b. For each Pi,j ,

1. for j = 0, 1, do
for i = 0, . . . , p/2− 1, do

1.1. “Previous computations”.
1.2. Cj = LjDjL

T
j (4).

1.3. Solution of LjDjL
T
j
ˆ̄xj = ˆ̄bj (7).

end for.
end for.

2. P0,0 computes x = SP T
oe

(

ˆ̄x
T
0

ˆ̄x
T
1

)T

.

Steps 1.1 and 1.2 are explained in the next two sections, respectively. Step 1.3
is performed by ScaLAPACK and PBLAS parallel subroutines. This last step
can be repeated several times for iterative refinement. Finally, processor P0,0

gathers the partial solutions of the two independent Cauchy–like linear systems
and computes the solution of (1).

4 Parallel Triangularization of Symmetric Cauchy–like

Matrices

The workload of the step 1.2 of Algorithm 1 falls in the operation with the n×2
entries of the generators G0 and G1 (6). The logical column of processors Pi,j ,
i = 0, . . . , p/2− 1, performs the triangular decomposition of the corresponding
matrix Cj = LjDjL

T
j , j = 0, 1, where Lj is unit lower triangular and Dj is

diagonal. The parallel algorithm exploits the fact that operations performed by
each column of processors can be carried out independently on each row of Gj .

Let
(

Λ0

Λ1

)

C − C

(

Λ0

Λ1

)

=

(

G0

G1

)

H

(

G0

G1

)T

, (8)



be the displacement representation of a given symmetric Cauchy–like matrix

C =

(

C00 C01

C10 C11

)

, then the Schur complement Csc of C11 regarding C00 is also

structured for any partition of C [14] so

Λ1 Csc − Csc Λ1 = G′
1 HG′T

1 . (9)

The parallel algorithm uses a sequential algorithm that, given the generator, the
displacement matrix and the diagonal of C in equation (8) as entries, returns
G′T

1 , the diagonal of Csc of equation (9) and the factorization C00 = L00D00L
T
00.

Let mj denotes the size of Cj (4), j = 0, 1, respectively. Each generator
Gj (5) is partitioned in mj/ν blocks of size ν × 2 for a given integer ν, 1 ≤
ν ≤ (mj/p), and cyclically distributed onto the respective column of processors
Pk,j , for k = 0, . . . , p/2− 1, in such a way that block Gi,j , i = 0, . . . , mj/ν − 1,
belongs to processor P mod(i,p),j . For simplicity in the exposition we will assume
in the next that (mj mod ν) = 0. The unit lower triangular factor Lj obtained
by the algorithm is partitioned in a two dimensional array of (mj/ν) × (mj/ν)

square blocks of order ν, where each square block Lj
i,l, for l = 0, . . . , i, belongs to

processor P mod(i,p),j as the generators blocks. The diagonal matrix Dj is stored
in the diagonal entries of Lj since all diagonal entries of Lj are implicitly one. In
Fig. 2 it can be seen an example of distribution of both Gj and Lj in the logical
column j = 0, 1 formed of three processors.

P0,j G0,j L
j

0,0

P1,j G1,j L
j

1,0 L
j

1,1

P2,j G2,j L
j

2,0 L
j

2,1 L
j

2,2

P0,j G3,j L
j

3,0 L
j

3,1 L
j

3,2 L
j

3,3

P1,j G4,j L
j

4,0 L
j

4,1 L
j

4,2 L
j

4,3 L
j

4,4

...
...

...
...

...
...

...
. . .

Fig. 2. Example of data distribution in a mesh of 3 × 2 processors

In each iteration k, k = 0, . . . , (mj/ν−1), the processor containing block Gk,j

computes Lj
k,k by means of the sequential algorithm described at the beginning of

this section and broadcasts the suitable information to the rest of the processors
of the column that compute Lj

i,k and update the Gi,j , for i > k.

5 Previous Computations

Step 1.1 of Algorithm 1, called “previous computations”, involves four different
tasks, denoted as Task00, Task10, Task01 and Task11, respectively, in which is
divided the computation of G0 and G1 (6), the computation of the displace-
ment matrices Λ0 and Λ1 (5), the computation of the diagonal of C [5] and the

computations of ˆ̄b0 and ˆ̄b1 (7).



If there are only two processors (p = 2), P0,0 computes Taski0 while P0,1

computes Taski1, for i = 0, 1. For p ≥ 4, processor Pi,j computes Taskij. After
the computation of the tasks, all processors perform two communication steps:
1. A multicast of the results obtained by the tasks within each column; 2. A data
interchange between pairs of processors in each row of the processors mesh.

Several a DST’s are carried out in step 1.1 of Algorithm 1. There exist algo-
rithms related with the DFT that involves O(n log n) operations to perform the
DST. But the performance of these algorithms highly depends on the size of the
greatest prime number of the primes decomposition of (n+1). In our algorithms,
we used a method to avoid this dependency by applying several power of 2 of
order DFT’s using the Chirp-z factorization described in [10].

6 Experimental Results

All experimental analysed were carried out in a cluster with 20 nodes connected
by a SCI network with a topology of a 4×5 torus. Each node is a two–processor
board with two Intel Xeon at 2 GHz. and 1 Gb. of RAM memory per node.

The first analysis concerns the block size ν. At the light of the experiments,
it can be concluded that there exist a wide range of values for that minimize
the execution time. But, none of these values must be selected close to 1 (this
implies too many communications) or close to n/p (this implies not enough con-
currency between communications and computations). The best value obtained
by experimental tuning is a fixed size of ν = 20 that is only hardware dependent.

The second experimental analysis deals with the weight of each step of Al-
gorithm 1 on its total cost. Table 1 shows the time spent on each step. It can be
observed that the time spent in Step 1.1 grows with the problem size. The Chirp-
z factorization used to perform the DST makes the cost of this step independent
of the size of the prime numbers in which (n + 1) is decomposed. The weight of
this first step is ≈ 25% of the total computational cost of the algorithm. The
most costly step is the second one in which is performed the factorization of one
of the two Cauchy–like matrices (C0 or C1). The weight of this step is ≈ 60% of
the total cost of the algorithm. The third step involves ≈ 15% of the total time.

As it was explained in Section 5, the first step is divided in four tasks, each
of one is carried out concurrently so it can be obtained a reduction in time in
this step using up to 4 processors (Table 2).

Table 1. Execution time in seconds of Algorithm 1 in one processor

n Step 1.1 Step 1.2 Step 1.3 total

4000 0.11 0.24 0.05 0.39
6000 0.25 0.51 0.12 0.87
8000 0.35 0.88 0.20 1.42

10000 0.60 1.35 0.35 2.28
12000 0.75 1.93 0.47 3.13
14000 0.95 2.59 0.63 4.14
16000 1.17 3.36 0.81 5.28
18000 1.71 4.21 1.09 6.96
20000 1.96 5.18 1.30 8.37



Table 2. Execution time in seconds and efficiency of Step 1.1

1 processor 2 processors 4 processors

n time time efficiency time efficiency

4000 0.11 0.06 92% 0.04 69%
6000 0.25 0.14 89% 0.10 63%
8000 0.35 0.19 92% 0.13 67%

10000 0.60 0.33 91% 0.22 68%
12000 0.75 0.41 91% 0.27 69%
14000 0.95 0.53 90% 0.35 68%
16000 1.17 0.66 89% 0.43 68%
18000 1.71 0.91 94% 0.60 71%
20000 1.96 1.07 92% 0.70 70%

In Table 3 it can be seen the execution time and the efficiency of Step 1.2.
The important effort performed in the parallelization of the triangularization
process gives a good efficiency even with 10 processors. The low time obtained
with the most costly step using several processors lets to obtain a low total time.
This result, although it cannot be as efficient as it was desirable, it can be very
useful in applications with real time constraints like digital signal processing.

We note that the efficiency obtained with 2 processors is quite good mainly
due to the triangular decomposition of the two independent Cauchy–like matrices
over two independent processors.

Table 3. Execution time in seconds and efficiency of Step 1.2

1 proc. 2 procs. 4 procs. 6 procs. 8 procs. 10 procs.
n time time effi. time effi. time effi. time effi. time effi.

4000 0.24 0.13 92% 0.09 67% 0.07 57% 0.06 50% 0.05 48%
6000 0.51 0.27 94% 0.16 80% 0.13 65% 0.11 58% 0.10 51%
8000 0.88 0.48 92% 0.28 79% 0.20 73% 0.18 61% 0.16 55%

10000 1.35 0.73 92% 0.39 87% 0.30 75% 0.25 68% 0.23 59%
12000 1.93 1.03 94% 0.54 89% 0.41 78% 0.34 71% 0.30 64%
14000 2.59 1.39 93% 0.76 85% 0.53 81% 0.45 72% 0.39 66%
16000 3.36 1.80 93% 0.91 92% 0.67 84% 0.56 75% 0.49 69%
18000 4.21 2.25 94% 1.21 87% 0.83 85% 0.69 76% 0.60 70%
20000 5.18 2.71 96% 1.48 88% 1.00 86% 0.83 78% 0.71 73%

Finally, we analyze the execution time of the parallel algorithm. In Fig. 3,
it can be seen that the time decreases with the increment of the number of
processors. This reduction in time is more significant if the problem size increases.
The algorithm also reduces its execution time with more than four processors
although Step 1.1 does not exploit more processors in parallel than this quantity.
We emphasize the reduction in time regarding the scalability of the parallel
algorithm by its utility in applications with real time constraints.
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