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Abstract:  In construction projects, resources 

availability might limit the implementation of ideal 
schedules. Especially, when repetitive activities are 
involved, traditional Resource Constrained Project 
Scheduling Problem (RCPSP) models fail to allocate the 
resource consumption in an efficient manner. Besides, 
actual models only provide local optimal solutions and do 
not incorporate activity acceleration routines. To fulfill this 
gap, partially, a mathematical optimization model, the 
multimode RCPSP for repetitive activities in construction 
projects, is proposed and solved to optimality; it takes into 
account acceleration routines under real construction 
scenarios using spreadsheets. The paper shows a complete 
computational experimentation over a real construction 
project, considering several scenarios of resource 
availabilities and continuity conditions. The model allows 
analyzing the resources efficiency indexes comparing them 
to resource consumptions, continuity of activities and 
objective functions that reveal that fragmented activities do 
not provide better resource efficiency outcomes. 

 
 

1 INTRODUCTION 
 
Increasing construction project efficiency in terms of 

time and cost is one of the most important factors that 
schedulers have in mind each time a new project starts 
(Chakraborty, Roy, Das, Jain, & Abraham, 2009). This 
implies that practitioners and construction schedulers must 
take into account resource availability and its efficient 

consumption, besides the precedence relationships and 
location conditions. The inefficiency represented by 
resources consumption fluctuations is expensive and 
interrupts the workflow (El-Rayes & Jun, 2009; Koulinas & 
Anagnostopoulos, 2013). On the other hand, resource 
availability might limit the implementation of ideal and 
non-restrictive schedules; in particular of construction 
processes, physical resources such as labor force and 
materials are restricted and might limit the scheduling of 
activities and construction processes (Benjaoran, Tabyang, 
& Sooksil, 2015; Hinze, 2002). 

In response to these challenges, literature has classified 
these scheduling problems as Resource Constrained Project 
Scheduling Problem (RCPSP henceforth) and Resource 
Leveling Problem (RLP henceforth) (Harris, 1990; Icmeli, 
1993; Özdamar & Ulusoy, 1995; Herroelen, De Reyck, & 
Demeulemeester, 1998; Neumann & Zimmermann, 1999; 
Kolish & Padman, 2001; Demeulemeester & Herroelen, 
2002; Hinze, 2002; Kim, Kim, & Jee, 2005) 
(Anagnostopoulos & Koulinas, 2010; Benjaoran, Tabyang, 
& Sooksil, 2015; Ponz-Tienda, Salcedo-Bernal, & Pellicer, 
2016; Herroelen & Leus, 2005; Ponz-Tienda, Pellicer, 
Benlloch-Marco, & Andrés-Romano, 2015). Firstly, the 
RCPSP aims to minimize the project makespan (or the 
tardiness in terms of the sum of the finishing time of the 
activities), preserving the precedence constraints between 
activities and the resource availability. Secondly, RLP 
focuses in project’s activity re-scheduling in order to 
minimize the resource consumption fluctuation under a 
non-restrictive resource context without increasing a 
previously prescribed project deadline. 
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RCPSP and RLP belong to the set of NP-hard (non-
polynomic) problems, and consequently are affected by the 
“combinatorial explosion” phenomenon (Ponz-Tienda, 
Salcedo-Bernal, & Pellicer, 2016; Neumann, Schwindt, & 
Zimmermann, 2003; Rieck & Zimmermann, 2015). This 
implies that the universe of solutions arises exponentially as 
the considered number of activities is increased. When a 
large number of activities are involved, the computational 
capacity needed to solve this kind of problems was simply 
unavailable with the current technology. Especially for 
RLP, exact algorithms are only efficient for small projects 
(Ponz-Tienda, Salcedo-Bernal, & Pellicer, 2016).  

Moreover, the problem of scheduling repetitive activities 
in construction projects has been deeply studied since 
1950’s, when organization methods for assembly lines 
where introduced (Nezval, 1958). In practice, there are two 
main models that allow practitioners to understand the 
nature of repetitive activities: Line of Balance (LoB) and 
Linear Scheduling Method (LSM). On the one hand, LoB is 
a mixture between traditional and linear scheduling derived 
from activity-on-row networks, where practitioners can 
observe the delivery rate of finishing of repetitive activities 
(Su & Lucko, 2015). This method has been deeply studied 
since 1970’s (Lumsdem, 1968; O´Brien, 1969). On the 
other hand, LSM is a linear scheduling technique that 
allows practitioners to study production rates through the 
use of work quantity vs. time graphs (Su & Lucko, 2015). 

When LoB and LSM diagrams are used by construction 
schedulers to analyze the results obtained from traditional 
RCPSP models, where only finish-to-start relationships 
between activities were considered, a poor perception of the 
resources allocation over the space-time, even though 
resource availability are constrained, is perceived. 

If resource restrictions per period are considered, RCPSP 
should not only minimize the project makespan, but also 
must help to analyze the efficient resource consumption 
under different scenarios. Nonetheless, the finish-to-start 
relationships considered by the traditional models do not 
allow practitioners to optimize projects taking into account 
repetitive activities relationships, such as activities 
overlapping, continuity between sub-activities, and the 
linear dependences of sub-activities with other activities.  

In order to construct a feasible RCPSP approach for 
repetitive activities in construction projects, several 
heuristic and metaheuristic algorithms have been proposed 
to find local optimal solutions. However, to the best of the 
authors’ knowledge, mathematical models considering 
overlapping, multimode activities execution and linear 
scheduling for repetitive activities still have pending 
solutions in global optimality. Furthermore, existent models 
have not fully integrated the line of balance challenges 
proposed by Arditi (2002), impeding them to achieve 
effectiveness. These challenges include: interdependencies 
among activities, dealing with constraints, non-linear or 

discrete activities, learning curve effect, optimum crew size, 
acceleration routine and cost optimization. 

The acceleration routine challenge proposed by Arditi 
(2002), a common and real problem that engineers face 
with, and MRCPSP mathematical models that solve the 
problem to optimality are still waiting to be solved by the 
researchers’ community in construction scheduling. In 
order to partially fulfill these gaps, the authors propose a 
new mathematical model for construction projects that 
specifically design to schedule repetitive activities. The 
formulation of the proposed model for the Multimode 
Resource Constrained Project Scheduling Problem for 
Repetitive Activities MRCPSP-RA is based on the 
following principles: (a) MRCPSP solved to optimality, (b) 
implementation of realistic construction acceleration 
routines, (c) relationship between activities based on sub-
activities relationships and continuity restrictions, (d) 
discretional activity fragmentation, and (e) serve as an easy 
criterion to implement scheduling problems in interface 
such as Excel, in order to generate global optimum 
solutions.  

For the nature of this paper, accelerations routines are 
conceived as controlled variations of the execution modes 
within an activity. Mainly, they are implemented to speed 
up the construction process. The authors’ intention is to 
provide a model that allows different execution modes in 
each sub-activity of particular activity without incurring in 
any inefficient hiring and firing conditions. Furthermore, 
global optimization of the MRCPSP-RA is achieved using 
Gurobi software engine, which uses linear programming 
algorithms, such as simplex and interior point-methods 
algorithms, to explore all the feasible solutions of the linear 
optimization problem. Following this train of thought, the 
authors propose a mathematical model that consists on 
linear objective function and restrictions, which are solved 
through linear programming optimization.  

To expose this proposal properly, this research is 
organized as follow: First, a literature review of the state-
of-knowledge of the resource allocation and resource 
constrained problems for repetitive activities in construction 
projects is shown.  Section 3 details the proposed model for 
multimode resource constrained problem for repetitive 
activity scheduling (MRCPSP-RA). In Section 4, a real 
residential building construction project is used as example 
of implementation to evaluate the functionality of the 
model. Four scenarios, with a total of 60 instances, are 
considered and solved in the computational experimentation 
for different resource availability and continuity conditions. 
Finally, conclusions, limitations and further research are 
drawn. 
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2 LITERATURE REVIEW 
 
Several studies have been proposed in order to solve the 

problems surrounding the resource allocation in repetitive 
construction projects. These models were built in order to 
find the optimum starting time for all activities and sub-
activities in order to minimize a specific objective function. 
It is important to note that authors understand sub-activities 
as the fundamental unit of a repetitive activity; for example, 
a 12-story building, that has 12 identical floors, has 12 
identical sub-activities that compose the complete painting 
activity. Selinger (1980) formulated a one-state variable 
multi-mode model for repetitive construction based on 
continuous activity execution. The word “multi-mode” 
means the model conceived various possible mode of 
executions per activity. Each mode of execution has 
different crew size and subsequently, different execution 
durations and cost. Russel & Caselton (1988) improved the 
Selinger proposal considering a two state variable model 
allowing activity fragmentation through the implementation 
of predetermined interruption vectors. Lately, to face the 
inefficiency produced by interruptions, Moselhi and El-
Rayes (2001) proposed a dynamic multi-mode algorithm 
for scheduling of repetitive activities that considers, as part 
of the optimization process, the automatization of 
interruption options during the activity execution. 

 Adeli & Karim (1997) proposed a neural dynamics 
optimization non-lineal model (CONSCOM) to 
successfully schedule repetitive and non-repetitive activities 
in construction projects. The resource allocation problem 
contemplates sub activity fragmentation, continuity 
condition, multiple crew-strategies and effects of varying 
jobs conditions. Further, Adeli & Senouci (2001) proposed 
a neural dynamic model for resource scheduling 
considering precedence relationships, multiple crew-
strategies, and time cost trade-off. The model is mainly 
focused on the total project cost minimization that provides 
nearly optimal solutions applying artificial intelligence 
techniques. It considers, in a simultaneous way, cost and 
project levelling besides resource constraints. The novelty 
of Adeli & Senouci (2001) proposal consists on the 
inclusion of the additional features such as total cost-
optimization, resource-constrained scheduling, and resource 
leveling, which outperform CPM. Hegazy (2006) and 
Hegazy & Kamarah (2008) developed scheduling 
computerized models to solve the problem of repetitive 
activities optimum scheduling in infrastructure 
maintenance/repair programs and high-rise construction. In 
particular, efficient repetitive scheduling for high-rise 
construction was achieved through the implementation of a 
cost-based genetic algorithm, which successfully 
incorporate logical floor relationships, work continuity and 
crew synchronization, productivity factors, work 
interruptions and resource constraints. 

Liu & Wang (2012) improved existent models enabling 
multiple execution modes for sub-activities and their 
discretional fragmentation. Zhang & Zou (2015) 
restructured the Liu & Wang resource allocation model in 
order to consider simultaneously generalized relationships 
for the sub-activities, activity fragmentation and one 
execution mode per activity. Due to the great number of 
decision variables that can be involved in the application of 
these models in a real construction context, heuristic and 
metaheuristic algorithms have been simultaneously 
proposed by Liu & Wang (2012) and by Zhang & Zou 
(2015) to find local optimum solutions instead of global 
optimal solutions. More recently, Su & Lucko (2016) 
proposed the use of singularity functions to enhance linear 
scheduling resource allocation by suggesting a new 
approach that can unify the linear shceduling method 
(LSM) and the line of balance technique (LoB).  

RCPSP and RLP have also been studied by several 
different authors in the context of repetitive construction 
projects with real variables (Leu & Hwang, 2001; Hsie, 
Chang, Yang, & Huang, 2009; Zhang & Zou, 2015) and 
with integer variables by Ponz-Tienda et al (2013; 2017). 
Metaheuristic models, built in order to face with multiple 
intensity execution modes for the activities under resource 
availability restrictions (MRCPSP henceforth), have 
partially incorporated the previously exposed Arditi 
challenges (2002). Leu & Hwang (2001) proposed a 
metaheuristic algorithm to establish an optimal resource-
constrained sequence based on activity continuity and only 
one optimum crew size per activity.  Hsie et al. (2009) 
proposed an evolutionary algorithm that contemplates 
continuity restrictions, coexistence of multiple modes of 
execution in the same activity and finish-to-start precedence 
relationships. In the Hsie et al. (2009) proposal, the 
execution mode shifting is not allowed at the finishing of 
each LoB segment but at the end of the time periods. Zhang 
& Zou (2015) incorporated the conditioned activity 
fragmentation, generalized precedence relationship 
constraints and the coexistence of multiple execution 
modes; these authors (Zhang & Zou, 2015) returned to the 
original conception for shifting mode, in such way that they 
should be allowed only when LoB length segments (viewed 
as sub-activities) are finished. Biruk & Jaskowski (2017), 
proposed a mixed linear mathematical model for the 
MRSCSP in repetitive construction projects that guarantee 
work continuity and optimal crew formation. Lastly, Tang , 
et al. (2017), ultimate proposed a constraint programming 
model based on logical relationships to taggle the schedule 
optimization of linear projects. The model shows great 
adaptability and flexibility to different optimization 
scenarios, including resource allocation problems, RLP and 
MRCPSP. 

In spite of all the advances to face the challenges 
proposed by Arditi (2002), none of these models provide an 
holistic and global optimal solution for the MRCPSP in 



García-Nieves et al. 4 

repetitive scheduling construction projects (MRCPSP-RA), 
considering activity fragmentation, activity acceleration 
routines, controlled coexistence of multiple execution 
modes in a same activity and sub-activity interdependence 
with all nature of relationships for real and complex 
construction projects. 

 
 

 
3 THE PROPOSED MRCPSP FOR REPETITIVE 

ACTIVITIES SCHEDULING IN CONSTRUCTION 
PROJECTS 

 
The proposed model considers 𝑃𝑃 number of activities in 

which identical amounts of 𝑁𝑁 repetitive sub-activities are 
executed in 𝑀𝑀𝑞𝑞  different executions modes (different crew 
size). In this manner, the optimization model is developed 
to be applicable in repetitive constructive projects such as 
residential building projects, were activities like structure, 
facilities, architectural finishes and mechanics fixings must 
be executed repetitively in each story.  

This proposal implies the use of binary variables denoted 
as 𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞, based on Pritsker, Waiters, & W 

olfe (1969) formulation, in such way that 𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = 1 if a 
sub-activity 𝑗𝑗 executed in mode 𝑚𝑚 of an activity 𝑞𝑞 is 
finished in the period 𝑡𝑡, and 𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = 0 otherwise. 
Additionally, dummy binary variables denoted as 𝜆𝜆𝑞𝑞 are 
used to indicate whether the execution of all the sub-
activities, that derive from an activity 𝑞𝑞, must be executed 
in a continuous way. Even though the use of integer 
variables is more natural than with binary ones, the use of 
binary decision variables is justified by the time-resource 
tradeoff nature of the RCPSP problems. 

The general formulation of the mathematical model 
considers the following parameters: 

 
𝑃𝑃 Number of activities of the project  
𝑁𝑁 Number of sub − activities in each activity  
𝑀𝑀𝑞𝑞 Number of execution modes in each activity q  
𝜆𝜆𝑞𝑞 ∈ {0,1} �= 1 if an activity 𝑞𝑞 must be executed in a continuos way

= 0 otherwise
 

𝑑𝑑𝑞𝑞𝑞𝑞 Duration of the sub − activities in activity 𝑞𝑞 executed 
in mode 𝑚𝑚

 
𝛾𝛾𝑝𝑝𝑖𝑖𝑞𝑞𝑗𝑗 Lag between two subactivities 𝑖𝑖 and 𝑗𝑗, of activities 𝑝𝑝 and 𝑞𝑞   
𝐾𝐾 Number of renovables resources of the project  
𝑎𝑎𝑞𝑞𝑞𝑞𝑞𝑞 Consumption of resource 𝑘𝑘 in the activity 𝑞𝑞 executed 

in mode 𝑚𝑚
 

𝑢𝑢𝑞𝑞 Availability of resource 𝑘𝑘 per period 𝑡𝑡 
𝑈𝑈𝑈𝑈 Known project 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑈𝑈 𝑈𝑈𝐵𝐵𝑢𝑢𝐵𝐵𝑑𝑑 𝑚𝑚𝑎𝑎𝑘𝑘𝑈𝑈𝑚𝑚𝑝𝑝𝑎𝑎𝐵𝐵  

 
Moreover, the model decision variables are:  

    𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 �
= 1 if a sub − activity 𝑗𝑗 of an activity 𝑞𝑞 finishes 

in period 𝑡𝑡 in mode 𝑚𝑚
= 0 otherwise

 

 
Two different objective functions are taken into account 

in this model in order to optimize the construction schedule: 
the project makespan, computed as the finishing period of 

the latest sub-activity in the latest activity; and the project 
tardiness, as the sum of the starting times of all the sub-
activities of the project (Eq. 1). Both objective functions 
represent the project duration. On one hand, the project 
makespan directly expresses the project duration. On the 
other hand, the project tardiness indirectly express the 
project duration in such way that, a larger tardiness, 
indicates that some sub-activities starting times have been 
postponed. This implicitly suggest that project duration or 
makespan should stay the same or increase (this 
relationship between the makespan and the tardiness 
depend on the activities and sub activities relationships).  

 

min

⎩
⎪⎪
⎨

⎪⎪
⎧𝑚𝑚𝑎𝑎𝑘𝑘𝑈𝑈𝑚𝑚𝑝𝑝𝑎𝑎𝐵𝐵��𝑋𝑋𝑃𝑃𝑃𝑃𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑀𝑀𝑃𝑃

𝑞𝑞=1

𝑇𝑇𝑎𝑎𝑈𝑈𝑑𝑑𝑖𝑖𝐵𝐵𝑈𝑈𝑚𝑚𝑚𝑚�����𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡 −
𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑑𝑑𝑞𝑞𝑞𝑞 ∙�𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�
𝑃𝑃

𝑞𝑞=1

𝑃𝑃

𝑞𝑞=1

𝑀𝑀𝑞𝑞

𝑞𝑞=1

 (1) 

   Moreover, six restrictions must be added to the model in 
order to consider real construction conditions. Firstly, sub-
activities precedence relationships in the same activity must 
be kept. In this manner, equation 2 limits that a sub-activity 
𝑗𝑗 + 1 in an activity 𝑞𝑞 cannot start until the sub-activity 𝑗𝑗 in 
the same activity is completely finished (Figure 1). 

 

���𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

≤ � ���𝑋𝑋𝑞𝑞,𝑞𝑞+1,𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑞𝑞𝑞𝑞�𝑋𝑋𝑞𝑞,𝑞𝑞+1,𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1
∀ 𝑞𝑞 ∈ {1, … ,𝑃𝑃},∀ 𝑗𝑗 ∈ {1, … ,𝑁𝑁}

 (2) 

 
Thirdly, the activity precedence between sub-activities of 

two interdependent activities is stated in equation 3, in such 
way that a sub-activity 𝑗𝑗 in an activity 𝑞𝑞, cannot start, until 
a sub-activity 𝑖𝑖 located in a predecessor activity 𝑝𝑝 is 
completely finished. Additionally, a lag time between these 
two related sub-activities, described as 𝛾𝛾𝑝𝑝𝑖𝑖𝑞𝑞𝑗𝑗, is included 
(Figure 1).  

 

���𝑋𝑋𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑝𝑝

𝑞𝑞=1

+ 𝛾𝛾𝑝𝑝𝑖𝑖𝑞𝑞𝑗𝑗 ≤ � ���𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑞𝑞𝑞𝑞 ∙�𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

� 

𝑀𝑀𝑞𝑞

𝑞𝑞=1

  

∀ 𝑖𝑖 𝑝𝑝𝑈𝑈𝑈𝑈𝑑𝑑𝑈𝑈𝑝𝑝𝑈𝑈𝑚𝑚𝐵𝐵𝑈𝑈 𝐵𝐵𝑜𝑜 𝑗𝑗 
 

(3
) 

 
Equation 3 can be adjusted to deal with all nature of 

relationships as start-to-start, start-to-finish and finish-to-
finish. These modifications are exposed in equations 3a, 3b 
and 3c respectively (Figure 1). 

  

����𝑋𝑋𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑝𝑝𝑞𝑞 ∙�𝑋𝑋𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑝𝑝

𝑞𝑞=1

+ 𝛾𝛾𝑝𝑝𝑖𝑖𝑞𝑞𝑗𝑗 ≤ 

����𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑞𝑞𝑞𝑞 ∙�𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

 

∀ 𝑖𝑖 𝑝𝑝𝑈𝑈𝑈𝑈𝑑𝑑𝑈𝑈𝑝𝑝𝑈𝑈𝑚𝑚𝐵𝐵𝑈𝑈 𝐵𝐵𝑜𝑜 𝑗𝑗 

(3a) 
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����𝑋𝑋𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑝𝑝𝑞𝑞 ∙�𝑋𝑋𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑝𝑝

𝑞𝑞=1

+ 𝛾𝛾𝑝𝑝𝑖𝑖𝑞𝑞𝑗𝑗 ≤ 

���𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

 

∀ 𝑖𝑖 𝑝𝑝𝑈𝑈𝑈𝑈𝑑𝑑𝑈𝑈𝑝𝑝𝑈𝑈𝑚𝑚𝐵𝐵𝑈𝑈 𝐵𝐵𝑜𝑜 𝑗𝑗 

(3b) 

���𝑋𝑋𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑝𝑝

𝑞𝑞=1

+ 𝛾𝛾𝑝𝑝𝑖𝑖𝑞𝑞𝑗𝑗 ≤ � ��𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

 

∀ 𝑖𝑖 𝑝𝑝𝑈𝑈𝑈𝑈𝑑𝑑𝑈𝑈𝑝𝑝𝑈𝑈𝑚𝑚𝐵𝐵𝑈𝑈 𝐵𝐵𝑜𝑜 𝑗𝑗 

(3c) 
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Figure 1 Graphical representation of equations 4 to 4c 
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Figure 2 LSM relationships with Lag and continuity implications. 

 
To ensure that activities can be executed discretionally in 

a fragmented way or must be executed in a continuous way, 
one dummy variable per activity (𝜆𝜆𝑞𝑞) is used. If an activity 
𝑞𝑞 must be executed in a continuous way, 𝜆𝜆𝑞𝑞 = 1, and 
otherwise,  𝜆𝜆𝑞𝑞 = 0. In equation 4, a discretional constant 
value of 𝛿𝛿 is included to guarantee that the restriction is 
always true (i.e.  𝛿𝛿 = −1𝑈𝑈6).  Figure 2 illustrates the 
activity relationships constraints without continuity 
restriction (left hand side) and under the continuity 
restriction in the activity execution (right hand side). This 
restriction force the sub activities to be executed one after 
the other (continuous activity execution) or not (fragmented 
activity execution). 

 

���𝑋𝑋𝑞𝑞1𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑞𝑞𝑞𝑞 ∙�𝑋𝑋𝑞𝑞𝑝𝑝𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

+ 𝛿𝛿 ∙  𝜆𝜆𝑞𝑞 ≥ 

���𝑋𝑋𝑞𝑞N𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

− �����𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

∙ 𝑑𝑑𝑞𝑞𝑞𝑞�
𝑃𝑃

𝑞𝑞=1

𝑀𝑀𝑞𝑞

𝑞𝑞=1

+ 𝛿𝛿 

∀ 𝑞𝑞 ∈ {1, … ,𝑃𝑃} 

(4) 

 

Equation 5 guarantees that each sub-activity is only 
executed in one construction mode. 

 

��𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑀𝑀𝑞𝑞

𝑞𝑞=1

= 1    ∀ q ∈ {1, … ,𝑃𝑃},∀ 𝑗𝑗 ∈ {1, … ,𝑁𝑁} (5) 

 
Then, as denoted by equation 6, the resource 

consumption of the whole project in one period cannot 
exceed the resource availability per period (𝑢𝑢𝑞𝑞). 

 

�  ��𝑎𝑎𝑞𝑞𝑞𝑞𝑞𝑞 ∙ � �𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑃𝑃

𝑞𝑞=1

𝑞𝑞+𝑑𝑑𝑞𝑞𝑞𝑞−1

𝑞𝑞=𝑞𝑞

� 

𝑀𝑀𝑞𝑞

𝑞𝑞=1

𝑃𝑃

𝑞𝑞=1

≤ 𝑢𝑢𝑞𝑞  ∀ 𝑡𝑡 ∈ {1, … ,𝑈𝑈𝑈𝑈} (6) 

 
Finally, in order to enhance the realistic and practical 

approach of the model, equation 7 ensures that controlled 
acceleration routines are implemented. Controlled 
acceleration routine is understood as execution mode 
changes between sub-activities that correspond to forward 
shifts crew size changes. This concept emerges to eliminate 
random mode of execution implementation in each sub 
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activity of an activity, which can result in inefficient hiring 
and firing conditions. It is important to note that the 
accelerations conceived by the proposed model are only due 
to crew size increase. The inclusion of acceleration due to 
learning is still a challenge that should be considered in 
further research. 

 

𝑗𝑗 ∗ ��𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑀𝑀𝑞𝑞

𝑞𝑞=𝑞𝑞

−��𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑞𝑞

𝑞𝑞=1

≥ 0 

∀ 𝑞𝑞 ∈ {1, … ,𝑃𝑃},∀ 𝑗𝑗 ∈ {1, … ,𝑁𝑁},∀ 𝑚𝑚 ∈ {2, … ,𝑀𝑀} 

(7) 

 
The complete formulation for the mathematical model is 

stated as follows:  

min 𝑜𝑜(𝑥𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑚𝑚𝑎𝑎𝑘𝑘𝑈𝑈𝑚𝑚𝑝𝑝𝑎𝑎𝐵𝐵 ��𝑋𝑋𝑃𝑃𝑃𝑃𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑀𝑀𝑃𝑃

𝑞𝑞=1

𝑇𝑇𝑎𝑎𝑈𝑈𝑑𝑑𝑖𝑖𝐵𝐵𝑈𝑈𝑚𝑚𝑚𝑚 �����𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡 −
𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑑𝑑𝑞𝑞𝑞𝑞 ∙�𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�
𝑃𝑃

𝑞𝑞=1

𝑃𝑃

𝑞𝑞=1

𝑀𝑀𝑞𝑞

𝑞𝑞=1

 

 
Subject to: 

���𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

≤ � ���𝑋𝑋𝑞𝑞,𝑞𝑞+1,𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑞𝑞𝑞𝑞 ∙�𝑋𝑋𝑞𝑞,𝑞𝑞+1,𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

∀ 𝑞𝑞 ∈ {1, … ,𝑃𝑃},∀ 𝑗𝑗 ∈ {1, … ,𝑁𝑁} 

���𝑋𝑋𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑝𝑝

𝑞𝑞=1

+ 𝛾𝛾𝑝𝑝𝑖𝑖𝑞𝑞𝑗𝑗 ≤ � ���𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑝𝑝𝑞𝑞 ∙�𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

∀ 𝑖𝑖 𝑝𝑝𝑈𝑈𝑈𝑈𝑑𝑑𝑈𝑈𝑝𝑝𝑈𝑈𝑚𝑚𝐵𝐵𝑈𝑈 𝐵𝐵𝑜𝑜 𝑗𝑗  

���𝑋𝑋𝑞𝑞1𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

− 𝑑𝑑𝑞𝑞𝑞𝑞 ∙�𝑋𝑋𝑞𝑞𝑝𝑝𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

+ 𝛿𝛿 ∙  𝜆𝜆𝑞𝑞 ≥ � ��𝑋𝑋𝑞𝑞N𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡
𝑈𝑈𝑈𝑈

𝑞𝑞=1

�

𝑀𝑀𝑞𝑞

𝑞𝑞=1

− �����𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞�
𝑈𝑈𝑈𝑈

𝑞𝑞=1

∙ 𝑑𝑑𝑞𝑞𝑞𝑞�
𝑃𝑃

𝑞𝑞=1

𝑀𝑀𝑞𝑞

𝑞𝑞=1

+ 𝛿𝛿 ∀ 𝑞𝑞 ∈ {1, … P} 

��𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑀𝑀

𝑞𝑞=1

= 1    ∀ q ∈ {1, … ,𝑃𝑃},∀ 𝑗𝑗 ∈ {1, … ,𝑁𝑁} 

�  ��𝑎𝑎𝑞𝑞𝑞𝑞𝑞𝑞 ∙ � �𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑃𝑃

𝑞𝑞=1

𝑞𝑞+𝑑𝑑𝑞𝑞𝑞𝑞−1

𝑞𝑞=𝑞𝑞

� 

𝑀𝑀𝑞𝑞

𝑞𝑞=1

𝑃𝑃

𝑞𝑞=1

≤ 𝑢𝑢𝑞𝑞  ∀ 𝑡𝑡 ∈ {1, … ,𝑈𝑈𝑈𝑈} 

𝑗𝑗 ∗ ��𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑀𝑀𝑞𝑞

𝑞𝑞=𝑞𝑞

−��𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑈𝑈𝑈𝑈

𝑞𝑞=1

𝑞𝑞

𝑞𝑞=1

≥ 0  ∀ 𝑞𝑞 ∈ {1, … ,𝑃𝑃},∀ 𝑗𝑗 ∈ {1, … ,𝑁𝑁},∀ 𝑚𝑚 ∈ {2, … ,𝑀𝑀} 

(9) 

Note that objective function 𝐦𝐦𝐦𝐦𝐦𝐦𝒇𝒇(𝒙𝒙) is adjusted for 
finish-to-start relationships, being necessary to include a 
dummy finishing activity 𝐏𝐏 to include start-to-finish and 
start-to-start relationships. This activity has a duration of 
zero and it has as predecessor activities all the activities of 
the project. In the following case of study, the real state 
delivery serves as a dummy variable even though its 
duration is not cero. 

 
 

3 EXAMPLE OF IMPLEMENTATION 
 
A real construction project was analyzed as an example 

of implementation in order to illustrate the versatility and 
applicability of the proposed MRCPSP algorithm. The 
project consists of four identical residential buildings. Each 
building has 12 stories; it is scheduled considering seven 
activities composed of 12 identical sub-activities for a total 
of 84 work units. The activities considered are Structure, 
Facilities, Masonries, Carpentry & Painting, Equipment, 
Finishing, and Commissioning. For simplicity, the paper 
only focuses on one of the building’s construction schedule. 
The building project is shown in Figure 3. 

The model requires 42000 binary decision variables, 
considering an upper bound of 250 labor days. It has been 
implemented in Excel 2016, using Open Solver Optimizer 

V.2.8.6 and Gurobi Optimization Software V.7.0.2 
(Academic License), requiring a computing time between 2 
to 5,443 seconds. The computer used to solve the 
optimization model was a HP Z640 desktop, with an Intel 
Xeon E5-2637v4 3.5 2400 processor and a 32GB DDR4-
2400 (4x8GB) 2CPU RegRAM. 

All the relationships between sub-activities of the same 
activities or dependent activities are finish-to-start 
relationships. Two construction modes (velocities) are 
proposed for sub-activities belonging to each activity and 
only one construction acceleration routine per activity is 
accepted. Each mode will include the renewable resource 
consumption per period, expressed in normalized monetary 
units, and its duration. Also, activities can be restricted to 
be executed continuously or fragmentally (as considered by 
the different scenarios analyzed). Furthermore, the project 
scheduling calendar and LSM is developed in term of labor 
days based on the Colombian labor calendar. 

The precedence relationships and lag between activities, 
periodical resource consumption and duration per mode of 
execution, and the continuity conditions are defined by the 
practitioner depending on the desired scenarios. Table 1 
displays the precedence relationships and resource 
consumption conditions of the project. As an example, 
continuous execution in all activities of the project is also 
proposed. As mentioned in the model description, each 
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activity has a name, an assigned number 𝑞𝑞𝑞𝑞, and a 
predecessor 𝑝𝑝𝑝𝑝. Column 𝑝𝑝𝑝𝑝𝑞𝑞𝑞𝑞stands for the number of the 

sub-activity 𝑖𝑖, in the predecessor activity 𝑝𝑝, that must be 
executed before sub-activity 𝑗𝑗 in activity 𝑞𝑞 starts.  

 

 
Figure 3 BIM model of the Example of Implementation. 

 
Table 1 

Conceptual data model representation for the example of implementation 

 
 
In Figure 4, the obtained result for an instance of the 

optimization problem for the example of implementation is 
displayed considering a resource availability of 37 
monetary units per period, continuous activity execution 
and the makespan as objective function. In the upper side of 
the figure, the optimized LSM project schedule combining 
different execution modes and acceleration routines is 
presented. In the middle, a summary table presenting the 
values of 𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 is displayed; in the lower side a Gantt 
diagram synthesizing daily resource consumption per 
activity is shown. The complete computational 
experimentation and quantitative results in Excel files can 
be downloaded from https://goo.gl/isjKMc. 

To test the MRCPSP model proposed by the authors, four 
scenarios for the building construction scheduling are 

evaluated. The scenarios considered are: (1) Minimization 
of project makespan with activity continuity restriction (2) 
minimization of project makespan with allowed activity 
fragmentation; (3) minimization of project tardiness with 
continuity restriction; and (4) minimization of project 
tardiness with allowed activity fragmentation. Each 
scenario is evaluated under 15 different resource 
availability instances, from 31 to 45 resource units per 
period, yielding 60 solved instances.  

Additionally, the resource efficiency consumption of the 
obtained schedules is measured throughout seven 
indicators: The sum of squares (SSQR) (Burguess & 
Killebrew, 1962), Sum of Differences of Consecutive Daily 
Resources (SCDCR) (Florez, Castro-Lacouture, & 
Medaglia, 2012), the Sum of Squares of Differences of 
Consecutive Daily Resources (SSDCDR) (Ponz-Tienda J. , 

https://goo.gl/isjKMc


García-Nieves et al. 8 

Salcedo-Bernal, Pellicer, & Benlloch-Marco, 2017), the 
Resource Improvement Coefficient (RIC) (Harris, 
Precedence and Arrow Networking Techniques for 
Construction, 1978), the Resource Idle Days (RID) (El-

Rayes & Jun, 2009), and two new efficiency indexes 
developed by the authors: the Resource Surplus-
Consumption Ratio (RSCR), and the Resource 
Consumption-Availability Ratio (RCAR). 

 
Figure 4 Example of LSM, decision variables and temporal diagram 

 
Graphical representation and analysis of the efficiency 

indexes SSQR, SCDCR and SSCDCR are not developed 
because these indexes calculation equations are biased by 
the project makespan. In this order, they may provide 
erroneous information to practitioners when comparing two 
or more project schedules (Generally these indexes are only 
useful when the comparable schedules have the same 
project duration). Contrary, index RIC, RID, RSCR and 
RCAR truly allows authors to compare the efficiency 
associated with resource leveling and consumption in 
different projects.  

The formulas to compute the previously mentioned 
efficiency indexes are shown in equations 10 to 16, 
respectively. Note that in these equations, variable 𝜀𝜀𝑞𝑞𝑞𝑞 
refers to the project consumption of the resource 𝑘𝑘 in a 
particular period of time 𝑡𝑡. The computation of 𝜀𝜀𝑞𝑞𝑞𝑞 based on 

the binary formulation used by the proposed model, is 
exposed in equation 17.  

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞𝑞 = � 𝜀𝜀𝑞𝑞𝑞𝑞2
𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚

𝑞𝑞=1

  (10) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞𝑞 = 𝜀𝜀𝑞𝑞𝑞𝑞 + � �𝜀𝜀𝑞𝑞𝑞𝑞 − 𝜀𝜀𝑞𝑞+1,𝑞𝑞�
𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚−1

𝑞𝑞=1

+ 𝜀𝜀𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚,𝑞𝑞 (11) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞𝑞 = 𝜀𝜀𝑞𝑞𝑞𝑞2 + � �𝜀𝜀𝑞𝑞𝑞𝑞 − 𝜀𝜀𝑞𝑞+1,𝑞𝑞�
2

𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚−1

𝑞𝑞=1

+ 𝜀𝜀𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚,𝑞𝑞
2 (12) 

𝑆𝑆𝑅𝑅𝑆𝑆𝑞𝑞 =
𝑀𝑀𝑎𝑎𝑘𝑘𝑈𝑈𝑚𝑚𝑝𝑝𝑎𝑎𝐵𝐵 ∗ ∑ 𝜀𝜀𝑞𝑞𝑞𝑞2

𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚
𝑞𝑞=1

�∑ 𝜀𝜀𝑞𝑞𝑞𝑞
𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚
𝑞𝑞=1 �

2  (13) 

𝑆𝑆𝑅𝑅𝑆𝑆𝑞𝑞 = 

�𝑚𝑚𝑖𝑖𝐵𝐵�𝑚𝑚𝑎𝑎𝑥𝑥(𝜀𝜀1𝑞𝑞 , . . , 𝜀𝜀𝑞𝑞𝑞𝑞)𝑚𝑚𝑎𝑎𝑥𝑥�𝜀𝜀𝑞𝑞𝑞𝑞 , . , 𝜀𝜀𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚,𝑞𝑞�� − 𝜀𝜀𝑞𝑞𝑞𝑞

𝑞𝑞𝑚𝑚𝑞𝑞

𝑞𝑞=1

 (14) 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞𝑞 =
𝑇𝑇𝐵𝐵𝑡𝑡𝑎𝑎𝑇𝑇 𝑈𝑈𝑈𝑈𝑚𝑚𝐵𝐵𝑢𝑢𝑈𝑈𝑝𝑝𝑈𝑈 𝑘𝑘 𝑚𝑚𝑢𝑢𝑈𝑈𝑝𝑝𝑇𝑇𝑢𝑢𝑚𝑚𝑚𝑚 

𝑇𝑇𝐵𝐵𝑡𝑡𝑎𝑎𝑇𝑇 𝑈𝑈𝑈𝑈𝑚𝑚𝐵𝐵𝑢𝑢𝑈𝑈𝑝𝑝𝑈𝑈 𝑘𝑘 𝑝𝑝𝐵𝐵𝐵𝐵𝑚𝑚𝑢𝑢𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝐵𝐵𝐵𝐵 
 

=
∑ 𝑢𝑢𝑞𝑞 − 𝜀𝜀𝑞𝑞𝑞𝑞
𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚
𝑞𝑞=1

∑ 𝜀𝜀𝑞𝑞𝑞𝑞
𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚
𝑞𝑞=1

 
(15) 

𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑞𝑞 =
𝑇𝑇𝐵𝐵𝑡𝑡𝑎𝑎𝑇𝑇 𝑈𝑈𝑈𝑈𝑚𝑚𝐵𝐵𝑢𝑢𝑈𝑈𝑝𝑝𝑈𝑈 𝑘𝑘 𝑝𝑝𝐵𝐵𝐵𝐵𝑚𝑚𝑢𝑢𝑚𝑚𝑝𝑝𝑡𝑡𝑖𝑖𝐵𝐵𝐵𝐵 
𝑇𝑇𝐵𝐵𝑡𝑡𝑎𝑎𝑇𝑇 𝑈𝑈𝑈𝑈𝑚𝑚𝐵𝐵𝑢𝑢𝑈𝑈𝑝𝑝𝑈𝑈 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑇𝑇𝑎𝑎𝑎𝑎𝑖𝑖𝑇𝑇𝑖𝑖𝑡𝑡𝑎𝑎

 

=
∑ 𝜀𝜀𝑞𝑞𝑞𝑞
𝑞𝑞𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚
𝑞𝑞=1

𝑀𝑀𝑎𝑎𝑘𝑘𝑈𝑈𝑚𝑚𝑝𝑝𝑎𝑎𝐵𝐵 ∗ 𝑢𝑢𝑞𝑞
 

(16) 

𝜀𝜀𝑞𝑞𝑞𝑞 = ���𝑎𝑎𝑞𝑞𝑞𝑞𝑞𝑞 ∙ � �𝑋𝑋𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑃𝑃

𝑞𝑞=1

𝑞𝑞+𝑑𝑑𝑞𝑞−1

𝑞𝑞=𝑞𝑞

� 
𝑃𝑃

𝑞𝑞=1

𝑀𝑀

𝑞𝑞=1

 (17) 

The information regarding the project schedule tardiness, 
makespan in labor days and resource efficiency 
consumption is registered for each instance and scenario of 
the computational experimentation. The scheduling results 

obtained after running the mathematical model under the 
four scenarios are shown in Tables 2 to 5. Table 2 shows 
the values for the makespan minimization as objective 
function with allowed activity fragmentation. The third 
column corresponds to the tardiness for the obtained 
makespan. Additionally, columns four to nine displays the 
efficiency indexes for each one of the instances. Table 3 is 
similar to the second with the difference that all the 
activities are executed in a continuous way. Tables 4 and 5 
show the same information as Tables 2 and 3 with the 
difference that tardiness is selected as the objective 
function. 

 

 

Table 2. 
Minimization of objective function: Makespan with allowed activity fragmentation. 

Resourc
e 

 

 Makes
pan 

Tardine
ss SSQR SCD

CR 
SSDC
DR 

RI
C RID RSC

R 
RCA
R 

31  110 5,559 69,125 114 1,051 1,
 

72 28% 78% 
32  108 5,407 70,658 227 1,940 1,

 
160 30% 77% 

33  108 5,407 70,658 227 1,940 1,
 

160 34% 75% 
34  107 5,319 71,831 244 1,772 1,

 
215 37% 73% 

35  106 5,241 72,997 241 1,963 1,
 

197 39% 72% 
36  105 5,232 73,767 211 1,556 1,

 
183 42% 70% 

37  105 5,232 73,767 211 1,556 1,
 

183 46% 69% 
38  103 5,069 77,041 272 3,507 1,

 
249 47% 68% 

39  102 5,035 77,461 220 1,675 1,
 

199 49% 67% 
40  102 5,035 77,461 220 1,675 1,

 
199 53% 65% 

41  102 5,018 78,376 220 2,314 1,
 

218 57% 64% 
42  102 5,018 78,376 220 2,314 1,

 
218 61% 62% 

43  102 5,018 78,376 220 2,314 1,
 

218 65% 61% 
44  102 5,018 78,376 220 2,314 1,

 
218 68% 59% 

45  100 4,953 81.839 281 3,317 1,
 

348 69% 59% 
 

Table 3. 
Minimization of objective function: Makespan with activities continuously executed. 

Resourc
e 

 

 Makes
pan 

Tardine
ss SSQR SCD

CR 
SSDC
DR 

RI
C RID RSC

R 
RCA
R 

31  117 5,925 65,027 85 852 1,
 

102 36% 73% 
32  115 5,775 66,244 91 783 1,

 
205 38% 72% 

33  115 5,767 66,207 92 832 1,
 

230 42% 70% 
34  115 5,814 66,766 102 947 1,

 
223 47% 68% 

35  111 5,611 69,415 118 1,138 1,
 

176 46% 69% 
36  111 5,611 69,415 118 1,138 1,

 
176 50% 67% 

37  111 5,611 69,415 118 1,138 1,
 

176 56% 65% 
38  104 5,229 76,751 97 994 1,

 
103 48% 67% 

39  104 5,229 76,751 97 994 1,
 

103 52% 66% 
40  104 5,241 76,760 83 816 1,

 
96 56% 64% 

41  104 5,241 76,760 83 816 1,
 

96 60% 62% 
42  104 5,241 76,760 83 816 1,

 
96 64% 61% 

43  104 5,241 76,760 83 816 1,
 

96 68% 60% 
44  104 5,179 77,273 103 1,078 1,

 
73 72% 58% 

45  100 5,103 81,934 109 1,162 1,
 

161 69% 59% 
Figure 5 shows that activity fragmentation, under all the 

studied scenarios, provides schedules with shorter 
makespan than the obtained when all activities are executed 
continuously. Also, under some resource availability 
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conditions, the project makespan obtained after minimizing 
both objective functions under the same conditions are not 
equal. Makespan as objective function has shown that the 
optimized schedules obtained have equal or shorter 
makespan in comparison with the optimized schedules 
generated when tardiness is minimized. 

Similarly, Figure 6 shows that activity fragmentation, 
under all the scenarios studied, also provides schedules with 
shorter tardiness. As well, the project tardiness obtained, 

after minimizing both objective functions, is not equal 
under continuous and discontinuous conditions. Tardiness 
objective function has shown that the schedules obtained 
have equal or shorter tardiness in comparison with the 
schedules generated when the makespan is minimized. 
Figure 5 and Figure 6 indicate that minimizing the project 
makespan is not equal to minimizing the tardiness as the 
sum of the activities starting times.  

 
 

Table 4. 
Minimization of objective function: Tardiness with allowed activity fragmentation. 

Resourc
e 

 

 Makes
pan 

Tardine
ss SSQR SCD

CR 
SSDC
DR 

RI
C RID RSC

R 
RCA
R 

31  110 5,458 69,097 151 1,012 1,
 

93 28% 78% 
32  108 5,294 70,992 221 1,758 1,

 
142 30% 77% 

33  108 5,290 71,006 229 1,784 1,
 

159 34% 75% 
34  108 5,258 71,361 247 1,784 1,

 
208 38% 73% 

35  107 5,204 72,563 277 2,256 1,
 

200 41% 71% 
36  105 5,185 73,881 253 1,896 1,

 
175 42% 70% 

37  105 5,185 73,881 253 1,896 1,
 

175 46% 69% 
38  103 4,987 76,996 250 1,942 1,

 
204 47% 68% 

39  102 4,981 77,800 272 2,187 1,
 

226 49% 67% 
40  102 4,979 77,820 282 2,235 1,

 
232 53% 65% 

41  102 5,018 78,376 220 2,314 1,
 

218 57% 64% 
42  102 4,978 77,864 288 2,363 1,

 
243 61% 62% 

43  102 4,978 77,864 288 2,363 1,
 

243 65% 61% 
44  102 4,974 78,475 362 3,173 1,

 
382 68% 59% 

45  100 4,906 81,070 340 2,889 1,
 

331 69% 59% 
 

Table 5. 
Minimization of objective function: Makespan with activities continuously executed. 

Resourc
e 

 

 Makes
pan 

Tardine
ss SSQR SCD

CR 
SSDC
DR 

RI
C RID RSC

R 
RCA
R 

31  117 5,925 65,027 85 852 1,
 

102 36% 73% 
32  115 5,667 66,767 85 863 1,

 
121 38% 72% 

33  115 5,667 66,767 85 863 1,
 

121 42% 70% 
34  115 5,667 66,767 85 863 1,

 
121 47% 68% 

35  111 5,605 69,650 129 1,351 1,
 

192 46% 69% 
36  111 5,605 69,650 129 1,351 1,

 
192 50% 67% 

37  111 5,605 69,650 129 1,351 1,
 

192 54% 65% 
38  104 5,229 76,751 97 994 1,

 
103 48% 67% 

39  104 5,229 76,751 97 994 1,
 

103 52% 66% 
40  104 5,229 76,751 97 994 1,

 
103 56% 64% 

41  104 5,226 76,949 109 1,144 1,
 

115 60% 62% 
42  104 5,226 76,949 109 1,144 1,

 
115 64% 61% 

43  104 5,226 76,949 109 1,144 1,
 

115 68% 60% 
44  104 5,157 77,778 109 1,162 1,

 
63 72% 58% 

45  100 5,067 82,056 109 1,162 1,
 

156 69% 59% 
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Figure 5. Project makespan vs. resource consumption under activity continuity and fragmented conditions. 

 

 
Figure 6 Project tardiness vs. resource consumption under activity continuity and fragmented conditions. 

 
With the aim to analyze the correlation between the use 

of a specific objective function and the project´s resource 
consumption efficiency, the authors have displayed 
valuable information in Figure 7 to 10. Figure 7 shows that, 
when activity fragmentation is allowed, there is no 
correlation that can state that the use of a specific objective 
function provides a better resource consumption efficiency. 

Similarly, Figure 8 shows that, when activity continuity 
execution is guaranteed, there is also no correlation that can 
state that the use of a specific objective function provides 
better efficiency in the resource consumption. 
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Figure 7. Resource consumption efficiency indexes under different optimization objective functions (tardiness, makespan) 

for continuous activities. 
 
Additionally, Figure 9 (makespan as objective function) 

and Figure 10 (tardiness as objective function), indexes 
RSCR and RCAR, suggest that less monetary resource 
surplus is left behind when activities are allowed to 
fragmentize. Additionally, RIC index graphs propose there 
is no evidence that can state that fragmented activity 
conditions provide a better resource leveling shape in terms 
of uniform resource consumption. Finally, RID index 
suggests that fragmentation conditions result in a better 
resource leveling conditions in terms of idle days, when soft 

resource availability restrictions are imposed. As resource 
availability is hardened, both continuity activity conditions 
tend to provide a very similar RID index. In general, as it 
can be observed in Figure 9 and 10, the index behavior in 
relation with the resource availability is very similar using 
makespan or tardiness as objective function.  

As partial conclusion, Figure 7 to 10 suggest that the 
decreasing of resource availability provides project 
schedules with a more efficient consume of resources. 
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Figure 8. Resource availability vs. resource consumption efficiency indexes under different optimization objective functions 

(tardiness, makespan) for non-continuous activities. 
. 

 
Figure 9. Resource availability vs. Resource consumption efficiency indexes under two activity execution conditions 

(Fragmented, Continuous) for makespan objective function. 
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Figure 10. Resource availability vs. resource consumption efficiency indexes under two activity execution conditions 

(fragmented, continuous) for tardiness objective function.  
 
Regarding the acceleration routine implementation, the 

authors also registered   the number of activities that 
applied an acceleration routine during the activity execution 
in each scenario. Table 6 shows that in all scenarios, the 
scheduling optimization have applied acceleration routines 
to activities execution in order minimize the project 
makespan or tardiness.  

Despite of the correlation coefficients between resource 
availability and the number of activities with acceleration 
routines have achieved values up to -0.49, there is not a 
clear linear correlation between these variables. It seems 
that the number of accelerated activities vary depending the 
particular needs of a specific project, the schedule 
conditions and the optimization needs.  

 
Table 6. 

Number of activities that applied acceleration routines in each scenario test. 

Resource availability 
 Makespan  Tardiness 
 Fragmented Continuous  Fragmented Continuous 

31  2 3  2 3 
32  2 4  2 3 
33  2 4  2 3 
34  3 4  3 3 
35  4 5  4 5 
36  4 5  4 5 
37  4 5  4 5 
38  2 3  2 3 
39  3 3  2 3 
40  3 3  2 3 
41  4 3  4 4 
42  4 3  2 4 
43  4 3  2 4 
44  4 4  2 3 
45  1 2  1 2 

Correlation Coefficient  0.25 -0.49  -0.27 -0.12 
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4 CONCLUSIONS, LIMITATIONS AND 

RECOMMENDATIONS FOR FUTURE RESEARCH 
 
Creating efficient construction projects schedules is one 

of the main priorities that every construction has during its 
planning stage. In many occasions, practitioners have to 
build efficient schedules in order to battle inefficient 
resource consumption fluctuations or restrictive resource 
availability.  

In the case of construction projects that involve repetitive 
activities, practitioners and researchers have noticed that 
traditional RCPSP models failed to allocate in an efficient 
manner the resource consumption considering activity 
overlapping, fragmentation, multiple activity execution 
modes, and sub-activities precedence relationships. To 
fulfill this gap, several authors have developed heuristic and 
metaheuristic models especially shaped to overcome the 
challenges that emerged with repetitive activities 
scheduling. However, the literature review has exposed that 
the incorporation of activity acceleration routines, a 
common and real problem that engineers face with, seems 
to be missed.  

Currently, advanced MRCPSP models for repetitive 
activities in construction have achieved makespan 
minimization considering the optimum execution of crews 
and starting times for all sub-activities. Nonetheless, wild 
fluctuations on crew sizes within a same activity may result 
in inefficient, problematic or unrealistic construction 
schedules.  

For this reason, the authors consider that the best way to 
simultaneously implement multiple execution modes in a 
same activity, is throughout the use of unidirectional 
changes of optimum crew size throughout an activity 
execution, which are denoted as acceleration routines. 
Therefore, with the aim to build a more realistic MRCPSP 
model for repetitive activity scheduling, this article presents 
a holistic approach to the MRSCP-RA. This model allows 
practitioners to obtain optimal schedules based in project 
duration objective functions, which simultaneously 
provides a realistic approach of the MRCPSP through the 
implementation of acceleration routines.  

The proposal computes the times and execution modes 
for all sub-activities involved in the project, based on 
continuity restrictions, precedence relationships, optimum 
crew size and activities acceleration routines. This article 
contributes to the body of knowledge of construction 
project scheduling in several ways: 
• It provides a more realistic MRCPSP model for 

Repetitive Activities that better fits to real construction 
projects. 

• MRCPSP for repetitive activities solve to optimality. 
• Controlled activity acceleration routines are 

incorporated to the MRCPSP-RA model.  

• It introduces an easy criterion to implement scheduling 
problems in spreadsheets to generate global optimum 
schedule solutions, proposing a compact representation 
based on matrix that requires less information for the 
input variables than traditional models. 

• It shows a complete computational experimentation 
over a real construction project, considering several 
scenarios of resource availabilities and continuity 
conditions. 

• It analyzes the resources efficiency indexes comparing 
them to resource consumptions, continuity of activities 
and objective functions that reveal that fragmented 
activities do not provide better resource efficiency 
profiles. 

The model can benefit current industrial construction 
processes such as bridge and high-rise building construction 
among others. The case of study is a real example of how, 
the mathematical model proposed, can be used to schedule 
activities in high-rise housing complexes in low 
socioeconomic districts. The scope of this type of projects 
and the industrial process used to build the infrastructure, 
largely promote the occurrence of repetitive activities that 
can be scheduled with the proposed mathematical model.   

Finally, the authors identify eight model limitations that 
open space to future research. First, the mathematical model 
proposed does not consider soft logic scheduling 
optimization.  Second, even though the model can be 
adjusted to contemplate non-repetitive activities, it does not 
consider them. Third, only identical sub-activity units are 
considered from a practical point of view, but this issue can 
be included easily. Fourth, negative acceleration routines 
(deceleration) are not allowed by the mathematical model 
restrictions. Fifth, sub-activity segments are assumed to be 
linear and non-interruptible. Sixth, only minimal SS, FS, 
FS, FF relations are allowed. Seventh, calendar effect on 
the scheduling process is not allowed. Last, a larger number 
of activities and execution modes can result in a high 
computational effort that may limit the model application. 
This limitation can be partially solved applying parallel 
computing to improve the computational cost. In addition, 
metaheuristic models based in the proposed model can be 
developed in order to overcome computational limitation. 
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