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Set-Valued Chaos in Linear Dynamics

N. C. Bernardes Jr., A. Peris and F. Rodenas

Abstract. We study several notions of chaos for hyperspace dynamics
associated to continuous linear operators. More precisely, we consider a
continuous linear operator T : X → X on a topological vector space X,

and the natural hyperspace extensions T and T̃ of T to the spaces K(X)
of compact subsets of X and C(X) of convex compact subsets of X, re-
spectively, endowed with the Vietoris topology. We show that, when X
is a complete locally convex space (respectively, a locally convex space),
then Devaney chaos (respectively, topological ergodicity) is equivalent

for the maps T , T and T̃ . Also, under very general conditions, we ob-
tain analogous equivalences for Li-Yorke chaos. Finally, some remarks
concerning the topological transitivity and weak mixing properties are
included, extending results in [1] and [30].

Mathematics Subject Classification (2010). Primary 47A16; Secondary
37B99.

Keywords. Hyperspace dynamics, linear dynamics, Devaney chaos, Li-
Yorke chaos, mixing properties.

1. Introduction

An interesting topic in the area of dynamical systems is the comparison
between individual dynamics (the action of the system on points of the phase
space) and collective dynamics (the action of the system on subsets of the
phase space). Consider the action of a continuous map f : X → X on a
topological space X. The most usual context for collective dynamics is that
of the induced map f on the hyperspace of all nonempty compact subsets of
X endowed with the Vietoris topology. The first study about the connection
between dynamical properties of the dynamical system generated by the map
f and the induced system generated by f on the hyperspace was given by
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Bauer and Sigmund [2] in 1975. Since this work, the subject of hyperspace
dynamical systems has attracted the attention of many researchers.

Román-Flores [32] and Fedeli [12] studied the relation of chaos for dis-
crete dynamical systems with the corresponding hyperspace version. Banks [1],
Liao, Wang and Zhang [27], and Peris [30] solved independently the main
problem proposed in [32, 12] by giving a characterization of topological tran-
sitivity for collective dynamics in terms of the weak mixing property for
individual dynamics. Several recent results in this topic can be found in, e.g.,
[25, 36, 18, 28, 37, 24, 13, 19, 29, 7, 26, 39].

In the context of linear dynamics (see the books [4, 17] for a thorough
study of this topic), the interest on collective dynamics was initiated by Her-
zog and Lemmert [20] in 1998, who obtained a sufficient condition for the
existence of a dense orbit under the induced map. Further results were ob-
tained by Peris [30] in 2005 in connection to the Hypercyclicity Criterion. In
[38] Wu, Xue and Ji studied the hyperspace linear dynamics for connected
compact sets. Our goal here is to continue this line of investigation by study-
ing several notions of chaotic behaviour, including Devaney chaos, Li-Yorke
chaos, topological ergodicity and mixing properties.

Let us now recall some basic definitions and notations for hyperspace
dynamics. Given a topological space X, we denote by K(X) the hyperspace
of all nonempty compact subsets of X endowed with the Vietoris topology,
that is, the topology whose basic open sets are the sets of the form

V(U1, . . . , Ur) :=
{
K ∈ K(X) : K ⊂

r⋃
i=1

Ui and K ∩ Ui 6= ∅, i = 1, . . . , r
}
,

where r ≥ 1 and U1, . . . , Ur are nonempty open subsets of X. When the
topology of X is induced by a metric d, the topology of K(X) is induced by
the Hausdorff metric associated to d, namely

dH(K1,K2) := max
{

max
x1∈K1

d(x1,K2), max
x2∈K2

d(x2,K1)
}
.

If T : X → X is a continuous map, then T : K(X) → K(X) denotes the
induced map defined by

T (K) := T (K) for K ∈ K(X),

where T (K) := {Tx : x ∈ K} as usual. Note that T is also continuous. We
refer the reader to the book [23] for a detailed study of hyperspaces.

In the present work we are interested in the case where X is a topological
vector space and T : X → X is a continuous linear operator. In this context,
we also consider the set C(X) of all convex elements ofK(X) endowed with the

topology induced by that of K(X) and the continuous map T̃ : C(X)→ C(X)
obtained by restricting T to C(X). Additionally, we will need the following
auxiliary families of compact subsets of X: the set F(X) of all finite subsets
of X and the set FC(X) of all finite-dimensional elements of C(X). It is clear
that T (F(X)) ⊂ F(X) and T (FC(X)) ⊂ FC(X). It is worthwhile to point
out that, although the dynamics of linear operators is mainly studied when
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the phase space X is a metrizable, complete and separable topological vector
space, several of our results are stated and valid for operators on more general
topological vector spaces, which also deserve attention (see, e.g., [10, 35] and
Chapter 12 in [17]).

The paper is organized as follows: Devaney chaos (respectively, topolog-
ical ergodicity) is analyzed in Section 2 for hyperspace dynamics associated to
operators on complete locally convex spaces (respectively, on locally convex

spaces), obtaining the corresponding equivalences for the maps T , T and T̃ .
We also consider the general framework of A-transitivity for a proper filter
A. In Section 3, under very general conditions, we obtain analogous equiva-
lences for Li-Yorke chaos. This result is illustrated for the particular case of
weighted shifts. Section 4 contains some remarks on topological transitivity

and weak mixing properties of T , T and T̃ , extending results in [1] and [30].

2. Devaney chaos and topological ergodicity

The main result in this section is the equivalence of Devaney chaos for a

single operator T and its associated hyperspace maps T and T̃ . We should
emphasize that the corresponding equivalence does not hold in general for
the non-linear setting.

First, let us recall some definitions. Given a topological space X and a
continuous map T : X → X, recall that T is said to be topologically transitive
(respectively, mixing) if, for any pair U, V ⊂ X of nonempty open sets, there
exists n ≥ 0 (respectively, n0 ≥ 0) such that Tn(U)∩V 6= ∅ (respectively, for
all n ≥ n0). Moreover, T is said to be weakly mixing if T ×T is topologically
transitive on X ×X. If, given U, V ⊂ X, we set

NT (U, V ) := {n ∈ Z+ : Tn(U) ∩ V 6= ∅},

then transitivity (respectively, mixing) is equivalent to the property that
NT (U, V ) is nonempty (respectively, co-finite) for each pair of nonempty
open sets U, V ⊂ X. The weak mixing property means that NT (U1, V1) ∩
NT (U2, V2) 6= ∅ for any nonempty open sets U1, V1, U2, V2 ⊂ X.

In the case X is a topological vector space and T : X → X is a contin-
uous linear operator, recall that T is said to be hypercyclic if there exists a
vector x ∈ X whose T -orbit Orb(x, T ) := {x, Tx, T 2x, . . .} is dense in X. In
general, hypercyclicity is a stronger notion than topological transitivity, but
these two notions coincide for operators on separable F -spaces by Birkhoff’s
transitivity theorem (see [17], Theorem 1.16). We also recall that an opera-
tor T is said to be Devaney chaotic if T is topologically transitive and has a
dense set of periodic points. In the sequel, Per(T ) will denote the set of all
periodic points of T .

The following lemma will be a useful tool in the paper. It is partially
inspired by an argument in [20]. We recall that the closed convex hull of a set
A ⊂ X is the closure of the set of all convex combinations of finite families of
elements in A, and it is denoted by co(A). If A is finite, then co(A) is compact
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and finite-dimensional. If X is a complete locally convex space, then co(K)
is compact whenever K ⊂ X is compact ([33], Theorem 3.20(c)).

Lemma 2.1. Let T be a continuous linear operator on a locally convex space
X, and let S : K(X) → 2X be defined as S(K) := co(K), K ∈ K(X).
Then S|F(X) : F(X) → C(X) is a continuous map with dense range and

S|F(X) ◦ T |F(X) = T̃ ◦ S|F(X). Moreover, if X is complete, then S : K(X)→
C(X) is a continuous surjection and S ◦ T = T̃ ◦ S.

Proof. We first show the continuity of S : K(X)→ C(X) in the case that X
is a complete locally convex space. The completeness is only needed in order
to ensure that S(K(X)) ⊂ C(X). Let K ⊂ X be a compact subset and let
V(U1, . . . , Ur) be an open neighbourhood of S(K). We select a sufficiently
small absolutely convex 0-neighbourhood W such that

S(K) +W ⊂
r⋃

i=1

Ui and ∃xi ∈ co(K) with xi +W ⊂ Ui, i = 1, . . . , r.

By compactness, we find a finite collection {y1, . . . , ym} ⊂ K such that

K ⊂
m⋃
j=1

Vj , where Vj := yj +
1

2
W, j = 1, . . . ,m.

Certainly, V := V(V1, . . . , Vm) is a neighbourhood of K. If K ′ ∈ V then we
have that S(K ′) ⊂ S(K) +W ⊂

⋃r
i=1 Ui. Moreover, given i ∈ {1, . . . , r}, we

find a finite family F = {z1, . . . , zn} ⊂ K such that xi is a convex combination
of elements in F . In particular, since for each l ∈ {1, . . . , n} there are jl ∈
{1, . . . ,m}, y′jl ∈ K ′, and wl, w

′
l ∈ W such that zl = yjl + 1

2wl and y′jl =

yjl + 1
2w
′
l, we obtain that zl ∈ K ′ + W , l = 1, . . . , n. This means that xi ∈

S(K ′) + W , that is, S(K ′) ∩ Ui ⊃ S(K ′) ∩ (xi + W ) 6= ∅, which shows the
continuity of S. S : K(X) → C(X) is trivially surjective, and the equality

S ◦ T = T̃ ◦S follows from the linearity and continuity of T . If X is a locally
convex space, not necessarily complete, then we easily have that S|F(X) :
F(X)→ C(X) has dense range. �

Theorem 2.2. If T is a continuous linear operator on a complete locally convex
space X, then the following assertions are equivalent:

(i) T is Devaney chaotic;
(ii) T is Devaney chaotic;

(iii) T̃ is Devaney chaotic.

Proof. (i)⇒ (ii): Since T is Devaney chaotic, T is weakly mixing ([16], Corol-
lary 3). Hence, by [1, 27, 30], T is topologically transitive. Moreover, it is easy
to check that the set{

{x1, . . . , xk} : k ≥ 1 and x1, . . . , xk ∈ Per(T )
}

is dense in K(X) (because Per(T ) is dense in X) and it is contained in Per(T ).
(ii) ⇒ (iii): It is a direct application of Lemma 2.1.
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(iii)⇒ (i): We easily see that T is topologically transitive. Indeed, let U, V ⊂
X be nonempty open sets and consider the basic (non-empty) open sets

U ′ := V(U) ∩ C(X) and V ′ := V(V ) ∩ C(X)

in C(X). Since T̃ is topologically transitive, there are n ≥ 0 and K ′ ∈ U ′

so that T̃n(K ′) ∈ V ′. Hence, there is x ∈ K ′ ⊂ U such that Tnx ∈ V . To
show the density of the set of periodic points, by hypothesis there is K ∈ U ′
which is periodic for T̃ , i.e., T̃n(K) = K for a certain n ≥ 1. Since K is
nonempty, convex and compact, the Schauder-Tychonoff fixed point theorem
([33], Theorem 5.28) gives us a point y ∈ U ∩ Per(T ). �

Remark 2.3. In the previous proof, the only implication where we used the
fact that X is complete was (ii) ⇒ (iii). The implication (i) ⇒ (ii) holds on
an arbitrary topological vector space and the equivalence (i)⇔ (iii) holds on
an arbitrary locally convex space.

Let us also mention that both implications

“T Devaney chaotic ⇒ T Devaney chaotic”

and
“T Devaney chaotic ⇒ T Devaney chaotic”

are false (in general) in the context of nonlinear dynamics, that is, dynamics of
continuous maps on compact metric spaces. See Remark 13 and Theorem 14
in [18].

We recall that a family A ⊂ 2Z+ is a collection of sets such that, if
A ∈ A, B ⊂ Z+, and A ⊂ B, then B ∈ A. A family A is a filter if, in
addition, given any A,B ∈ A, we have that A∩B ∈ A. A family A is proper
if ∅ 6∈ A (equivalently, A 6= 2Z+). For a dynamical system (X,T ) a relevant
family is

NT := {A ⊂ Z+ : ∃U, V ⊂ X open and non-empty with NT (U, V ) ⊂ A}.
With this terminology, (X,T ) is topologically transitive if and only if NT

is a proper family, and the weak mixing property is equivalent to the fact
that NT is a proper filter by a classical result of Furstenberg [14]. Given a
family A, we say that a dynamical system is A-transitive if NT ⊂ A (that
is, if NT (U, V ) ∈ A for each pair of nonempty open sets U, V ⊂ X). A
trivial observation is that, given two families A and B such that A ⊂ B, if a
dynamical system (X,T ) is A-transitive, then it is B-transitive. A thorough
recent study of A-transitivity in linear dynamics for several families A can be
found in [8]. In this section we are interested in dynamical systems that are,
at least, weakly mixing, in order to pass properties from the system to the
corresponding hyperspace. Thus, by Furstenberg’s result mentioned above,
weakly mixing systems that are A-transitive for a certain family A turn out
to satisfy that A contains the proper filter NT . This is the reason why, for the
rest of the section, we will concentrate on A-transitivity for a proper filter A.
The equivalence of properties (i) and (ii) in the following theorem was given
in [13] for general dynamical systems, using the arguments of [1, 27, 30].
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Theorem 2.4. If A is a proper filter and T is a continuous linear operator on
a locally convex space X, then the following assertions are equivalent:

(i) T is A-transitive;
(ii) T is A-transitive;

(iii) T̃ is A-transitive.

Proof. (i) ⇒ (iii): We know that T |F(X) is A-transitive (see [13]) and, by

Lemma 2.1, we obtain that T̃ is A-transitive.

(iii) ⇒ (i): Let U, V ⊂ X be nonempty open sets. Then, U ′ := V(U) ∩ C(X)
and V ′ := V(V ) ∩ C(X) are nonempty open sets in C(X). By hypothe-
sis, NT̃ (U ′, V ′) ∈ A, which implies that NT (U, V ) ∈ A since NT (U, V ) ⊃
NT̃ (U ′, V ′). �

We recall that a strictly increasing sequence (nj)j∈N of positive integers
is syndetic if it has bounded gaps, that is,

sup
j∈N

(nj+1 − nj) <∞.

A dynamical system (X,T ) is said to be topologically ergodic if for any pair
U, V ⊂ X of nonempty open sets, there is a syndetic sequence (nj) in N such
that Tnj (U) ∩ V 6= ∅ for all j ∈ N. A subset A ⊂ Z+ is thickly syndetic if,
for each N ∈ N, the set {j ∈ Z+ : {j, j + 1, . . . , j + N} ⊂ A} is syndetic.
Let us denote by Ats the family of thickly syndetic sets, which is clearly a
proper filter. Also, Acf is the (proper) filter of co-finite subsets of Z+. For a
general dynamical system (X,T ), Acf -transitivity is equivalent to the mixing
property. We also know (see the exercises in [17, Chapter 2]) that topologically
ergodic operators are Ats-transitive. In particular, if T1 is a topologically
ergodic operator and T2 is a weakly mixing operator, then T1 × T2 is weakly
mixing (see [15, 31]). Thus we immediately deduce the following result from
Theorem 2.4.

Corollary 2.5. If T is a continuous linear operator on a locally convex space
X, then the following assertions are equivalent:

(i) T is topologically ergodic (respectively, mixing);
(ii) T is topologically ergodic (respectively, mixing);

(iii) T̃ is topologically ergodic (respectively, mixing).

Remark 2.6. The implication (i) ⇒ (ii) in the above result for topological
ergodicity is not always true in the case T is a continuous map on a compact
metric space X. Indeed, if (ii) holds, then T is topologically transitive, and
so T is necessarily weakly mixing. Thus, if T is topologically ergodic but is
not weakly mixing, then (i) holds but (ii) does not. Examples of such maps
are irrational rotations on the unit circle.



Set-Valued Chaos in Linear Dynamics 7

3. Li-Yorke chaos

Given a metric space X and a continuous map T : X → X, a pair
(x, y) ∈ X ×X is called a Li-Yorke pair for T if

lim inf
n→∞

d(Tnx, Tny) = 0 and lim sup
n→∞

d(Tnx, Tny) > 0.

The map T is said to be Li-Yorke chaotic if there exists an uncountable set
S (a scrambled set for T ) such that (x, y) is a Li-Yorke pair for T whenever
x and y are distinct points in S.

For studies of this notion of chaos in the context of continuous linear
operators on Fréchet spaces, we refer the reader to the recent works [5, 6, 21,
22].

If a continuous linear operator T on a Fréchet space X is Li-Yorke

chaotic, then so are T and T̃ , simply because the dynamical system (X,T )
can be regarded as a subsystem of the dynamical systems (K(X), T ) and

(C(X), T̃ ) by means of the isometric embedding

x ∈ X 7→ {x} ∈ C(X) ⊂ K(X).

A partial converse will be obtained below.

Lemma 3.1. Let T be a continuous linear operator on a Fréchet space X.
If T has a Li-Yorke pair, then there is a residual subset Z of X such that
Orb(x, T ) is unbounded for every x ∈ Z.

Proof. In view of the Banach-Steinhaus theorem, it is enough to prove that
the sequence (Tn) is not equicontinuous. By hypothesis, there is a Li-Yorke
pair (A,B) for T . By definition, there is an increasing sequence (pk) of positive
integers such that

dH
(
T pk(A), T pk(B)

)
→ 0 as k →∞, (3.1)

and there are an ε > 0 and an increasing sequence (qk) of positive integers
such that

dH
(
T qk(A), T qk(B)

)
≥ ε for all k ∈ N. (3.2)

Fix δ > 0. It is enough to prove that there are x ∈ X and m ∈ N such that

d(x, 0) < δ and d(Tmx, 0) ≥ ε.

By (3.1), we may find j ∈ N such that

dH
(
T pj (A), T pj (B)

)
< δ. (3.3)

We select k ∈ N such that qk > pj . By (3.2), we may assume without loss of
generality that there exists a ∈ A such that

d
(
T qka, T qk(B)

)
≥ ε. (3.4)

By (3.3), d
(
T pja, T pj (B)

)
< δ, and so there exists b ∈ B with d(T pja, T pj b) <

δ. Put x := T pj (a− b) and m := qk − pj . Then

d(x, 0) = d(T pja, T pj b) < δ.
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Moreover, by (3.4), d(T qka, T qkb) ≥ ε, and therefore

d(Tmx, 0) = d(T qk−pjT pj (a− b), 0) ≥ ε.

�

Theorem 3.2. Let T be a continuous linear operator on a Fréchet space X
and define

NS(T ) := {x ∈ X : (Tnx)n∈Z+
has a subsequence converging to 0}.

If span(NS(T )) is dense in X, then the following assertions are equivalent:

(i) T is Li-Yorke chaotic;
(ii) T is Li-Yorke chaotic;
(iii) T has a Li-Yorke pair;

(iv) T̃ is Li-Yorke chaotic;

(v) T̃ has a Li-Yorke pair.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) and (i) ⇒ (iv) ⇒ (v) ⇒ (iii) are
trivial. Let us prove that (iii) ⇒ (i). By the Li-Yorke Chaos Criterion [6,
Theorem 15], we need to show the existence of a bounded sequence (an)

in span(NS(T )) such that the sequence (Tnan) is unbounded. By (iii) and
Lemma 3.1, we may take a vector a ∈ X such that Orb(a, T ) is unbounded.

Since span(NS(T )) is dense in X, a ∈ span(NS(T )). Hence, it is enough to
put an := a for all n ∈ Z+. �

Corollary 3.3. Let X be a Fréchet sequence space in which (en)n∈Z+ is a basis
([17], Section 4.1). Suppose that the unilateral weighted backward shift

Bw(x1, x2, x3, . . .) := (w2x2, w3x3, w4x4, . . .)

is an operator on X. Then the following assertions are equivalent:

(i) Bw is Li-Yorke chaotic;
(ii) Bw is Li-Yorke chaotic;

(iii) Bw has a Li-Yorke pair;

(iv) B̃w is Li-Yorke chaotic;

(v) B̃w has a Li-Yorke pair.

Proof. In this case, the set NS(Bw) contains a dense subspace of X, namely
the set of all sequences of finite support. Hence, the corollary follows from
the theorem. �

Classical Banach sequence spaces are `p, 1 ≤ p < ∞, and c0. In these
particular cases, it was proved in [5] that Bw is Li-Yorke chaotic if and only
if

sup{|wn · . . . · wm| : n ∈ Z+,m > n} =∞.
Therefore, we can offer a full characterization in terms of the weight sequence
in this context.
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Corollary 3.4. Let X := `p (1 ≤ p < ∞) or X := c0, and let w = (wn)n∈Z+

be a bounded sequence of weights. Then properties (i)–(v) in Corollary 3.3
are also equivalent to:

(vi) sup{|wn · . . . · wm| : n ∈ Z+,m > n} =∞.

We now turn our attention to bilateral weighted forward shifts.

Corollary 3.5. Let X be a Fréchet sequence space over Z in which (en)n∈Z is
a basis ([17], Section 4.1). Suppose that the bilateral weighted forward shift

Fw

(
(xn)n∈Z

)
:= (wnxn−1)n∈Z

is an operator on X. Then the following assertions are equivalent:

(i) Fw is Li-Yorke chaotic;
(ii) Fw is Li-Yorke chaotic;
(iii) Fw has a Li-Yorke pair;

(iv) F̃w is Li-Yorke chaotic;

(v) F̃w has a Li-Yorke pair.

Proof. It is enough to prove that (iii) ⇒ (i). So, assume that there is a Li-
Yorke pair (A,B) for Fw. We claim that

(w1 · . . . · wnen)n∈Z+
has a subsequence converging to zero. (3.5)

Indeed, suppose that this is false. Without loss of generality, we may assume
that there exists x ∈ B such that x 6∈ A. Since (A,B) is a Li-Yorke pair for
Fw, there are an increasing sequence (nk) in Z+ and a sequence (x(k)) in A
such that

(Fw)nk(x(k) − x)→ 0 as k →∞. (3.6)

By passing to a subsequence, if necessary, we may assume that (x(k)) con-
verges to a certain y ∈ A. Since the coordinate functionals are continuous,
(3.6) implies that

(x(k)m − xm)(wm+1 · . . . · wm+nk
)em+nk

→ 0 as k →∞,
for every m ∈ Z. Since we are assuming that (3.5) is false, this implies that

x(k)m → xm as k →∞,
for every m ∈ Z. Thus, x = y ∈ A, a contradiction. This proves that (3.5)
holds. Since (3.5) implies that en ∈ NS(Fw) for all n ∈ Z, Theorem 3.2
guarantees that Fw is Li-Yorke chaotic. �

4. Remarks on topological transitivity and mixing properties

We conclude the paper by generalizing some results on transitivity and
weak mixing properties for hyperspace linear dynamics.

Banks [1], Liao, Wang and Zhang [27], and Peris [30] independently
proved that the equivalences of the first three properties in the following
theorem are true in the case T is any continuous map and X is any topological
space (the equivalence (i) ⇔ (ii) was first proved by Bauer and Sigmund [2]
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in the case X is a compact metric space). The fact that (ii)⇒ (iv) was shown
by Herzog and Lemmert for Banach spaces in [20]. The implication (v)⇒ (i)
was provided in [30]. For the sake of completeness we will include a proof of
the equivalence of property (i) with properties (iv) and (v) for locally convex
spaces.

Theorem 4.1. If T is a continuous linear operator on a topological vector
space X, then the following assertions are equivalent:

(i) T is weakly mixing;
(ii) T is weakly mixing;
(iii) T is topologically transitive.

If, in addition, X is locally convex, then these assertions are also equivalent
to the following:

(iv) T̃ is weakly mixing;

(v) T̃ is topologically transitive.

Proof. Let us assume that X is a locally convex space.
(i) ⇒ (iv): We know that T |F(X) is weakly mixing and, by Lemma 2.1,

we obtain that T̃ is weakly mixing too, since S|F(X) : F(X) → C(X) is a

continuous map with dense range and S|F(X) ◦ T |F(X) = T̃ ◦ S|F(X).
(iv) ⇒ (v): Obvious.
(v) ⇒ (i): Let U, V1, V2 ⊂ X be nonempty open sets. It is enough to prove
that there exists n ≥ 0 such that

Tn(U) ∩ V1 6= ∅ and Tn(U) ∩ V2 6= ∅
([17], Proposition 1.52). For this purpose, consider the basic open sets

U ′ := V(U) ∩ C(X) and V ′ := V(V1, V2, X) ∩ C(X)

in C(X). U ′ is clearly nonempty, and so is V ′ since any segment joining a point

in V1 with a point in V2 belongs to V ′. Since T̃ is topologically transitive, there

are n ≥ 0 and K ∈ U ′ so that T̃n(K) ∈ V ′. Hence, there are x1, x2 ∈ K ⊂ U
such that Tnx1 ∈ V1 and Tnx2 ∈ V2. �

De la Rosa and Read [11] solved a fundamental problem in linear dy-
namics by constructing hypercyclic operators on certain Banach spaces which
are not weakly mixing. By modifying their construction, Bayart and Math-
eron [3] were able to construct such operators on classical Banach spaces,
like `p (1 ≤ p < ∞) and c0. In view of Theorem 4.1, such an operator T is

topologically transitive but T and T̃ are not.
If X is a separable F -space, it follows from well-known properties of

hyperspaces that K(X) is a separable completely metrizable space without
isolated points. Therefore, by Birkhoff’s transitivity theorem, the topological
transitivity of a continuous map S : K(X) → K(X) is equivalent to the
existence of a point (or a residual set of points) with dense orbit under S.
Moreover, in the case X is a separable Fréchet space, the same is true for the
space C(X). Indeed, the separability of C(X) follows immediately from the
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separability of K(X). Since C(X) is readily seen to be closed in K(X), C(X) is
also completely metrizable. In order to show that C(X) has no isolated point,
fix K ∈ C(X) and let U ′ := V(U1, . . . , Ur)∩C(X) be a basic neighborhood of
K in C(X). Let W be an open convex neighborhood of 0 in X such that

K +W ⊂ U1 ∪ . . . ∪ Ur.

Since K 6= K + W , we may choose vectors xi ∈ (K + W ) ∩ Ui, for i ∈
{1, . . . , r}, so that at least one of the xi’s does not belong to K. Hence, the
set co({x1, . . . , xr}) belongs to U ′ and is different from K. By combining
these remarks with Theorem 4.1, we obtain:

Corollary 4.2. If T is a continuous linear operator on a separable F -space X,
then the following assertions are equivalent:

(i) T is weakly mixing;
(ii) T has a point (a residual set of points) with dense orbit.

Moreover, if X is a separable Fréchet space, then these assertions are also
equivalent to

(iii) T̃ has a point (a residual set of points) with dense orbit.

Herzog and Lemmert [20] considered continuous linear operators T :
X → X with the following property:

. (P) For any increasing sequence (nk) of natural numbers, there exists

x ∈ X such that {x, Tn1x, Tn2x. . . .} = X.

They proved that property (P) implies properties (ii) and (iii) in Corollary 4.2
in the case X is a separable Banach space. On the other hand, a result due
to Bès and Peris [9] tells us that the following properties are equivalent in
the case X is a separable F -space:

. (a) T is weakly mixing;

. (b) There is an increasing sequence (mk) of natural numbers such that
for any subsequence (nk) of (mk), there exists x ∈ X with

{x, Tn1x, Tn2x. . . .} = X.

. (c) T satisfies the Hypercyclicity Criterion.

The Hypercyclicity Criterion is a very useful sufficient condition for hyper-
cyclicity (see [17], Chapter 3). Obviously, property (P) implies property (b),
so that it implies property (i) in Corollary 4.2. However, (P) is strictly
stronger than (i) even in Hilbert spaces (see Salas [34]). Later, Peris [30]
improved the result of Herzog and Lemmert by establishing the equivalence
of conditions (i), (iii) and (v) in Theorem 4.1, and the Hypercyclicity Crite-
rion, in the case X is a separable Fréchet space.
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