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Abstract: The characterization of the microclimatic conditions is fundamental for the preventive
conservation of archaeological sites. In this context, the identification of the factors that influence
the thermo-hygrometric equilibrium is key to determine the causes of cultural heritage deterioration.
In this work, a characterization of the thermo-hygrometric conditions of Casa di Diana (Ostia Antica,
Italy) is carried out analyzing the data of temperature and relative humidity recorded by a system of
sensors with high monitoring frequency. Sensors are installed in parallel, calibrated and synchronized
with a microcontroller. A data set of 793,620 data, arranged in a matrix with 66,135 rows and 12
columns, was used. Furthermore, the influence of human impact (visitors) is evaluated through
a multiple linear regression model and a logistic regression model. The visitors do not affect the
environmental humidity as it is very high and constant all the year. The results show a significant
influence of the visitors in the upset of the thermal balance. When a tourist guide takes place,
the probability that the hourly temperature variation reaches values higher than its monthly average
is 10.64 times higher than it remains equal or less to its monthly average. The analysis of the regression
residuals shows the influence of outdoor climatic variables in the thermal balance, such as solar
radiation or ventilation.

Keywords: visitors; temperature; relative humidity; thermo-hygrometric balance; continuous
monitoring; preventive conservation

1. Introduction

For the last decades, preventive conservation of cultural and archaeological sites has been
understood as the whole control process of the deterioration factors in order to prevent damage
to the cultural heritage (CH) before it occurs and minimize future interventions [1]. It is acknowledged
as important for safeguarding CH, both in terms of preservation and reducing the costs of future
conservation measures [2].

The deterioration process is determined by factors such as the petrographic and chemical
characteristics of the materials, the presence of mineral salts and organic substances on the surfaces,
air pollution, sunlight, temperature, water content of the surface, etc. [3]. Therefore, preventive
conservation requires knowledge of the specific characteristics of a specific CH site (materials,
mineralogical conditions, natural ventilation, tourist campaigns, etc.), as well as the set of parameters
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connected to it, including microclimatic conditions (temperature, humidity, wind, air conditioning,
etc.) [4], among others.

As thermo-hygrometric parameters affect chemical reactions, they appear as one of the most
influential factors of the conservation of a CH site [5]. Microclimatic monitoring studies have been
conducted in churches [6–8] museums [9–12] and archaeological sites [13–16].

CH has survived for many centuries in conditions that must be considered risky but stable
(equilibrium), without avoiding damage to the materials, but resulting from a long adaptation process.
Thus, abrupt changes of microclimate parameters interrupting this equilibrium conditions induce
further damage to material until a new equilibrium is reached [17].

Therefore, it is important to characterize an archaeological site prior to carrying out comparative
studies in the future for preventive conservation, either by regular studies to verify whether the
conditions are constant or occasional ones, when the boundary conditions are altered.

In this vein, the presence of visitors could cause large deviations from the usual conditions [18]
as humans can alter with their presence or behavior the aforementioned parameters, affecting the
conservation of sites with interest in preservation. In addition, many of these variables are normally
controlled for the comfort of visitors, starting then an interesting debate between the prevalence of
preventive conservation and human comfort.

A big problem arises when the microclimate has been planned only for the wellbeing of visitors
disregarding the needs of conservation that requires a constant climate [18]. Hopefully this has
improved in recent decades and the conservation of heritage sites has been prioritized. Therefore, the
management and planning for preserving historical buildings is strictly connected to their use, mainly
for tourism.

There are many works that study the impact of visitors in tourist sites with protection
interests such as Geoparks and other geological sites [19–22], museums [18] and other cultural and
archaeological sites [16,17,23,24].

Casa di Diana (Ostia Antica, Italy) is a complex building, comprised of several rooms, including
a Mithraeum (a place dedicated to the cult of the Persian god Mithra during Roman times). Its
microclimate behaves like a hypogeum (an underground room simulating a cave, used for mithraic
rites—as initiations), despite being structurally comparable to a semi-confined environment and being
defined as such [15,16]. Casa di Diana is accessible to guided tours with advance booking.

In the case of hypogea environments, characterized by a great stability (constant humidity
and temperature) [25] and the abundance of nutrients providing a suitable niche for phototrophic
microorganisms when combined with artificial illumination [15,24] visitors can be considered as a
possible factor breaking that equilibrium state.

The results of [24] in the hypogeum of San Callixtus Catacombs (Rome) indicate that a sharp
temperature increase was due to the automatic ignition of lamps when people passed along the
corridors, as well as other effects on air temperature due to human body heat and in CO2 due
to breathing.

A monitoring campaign of indoor CO2 concentration was conducted in Casa di Diana with the
aim of evaluate its effects on biological colonization [26,27], determining that the growth of vegetation
is concentrated in the lowest area of the podiae (seats for the Romans that assisted the sacrificial ritual
of killing the bull), which also corresponds to the path followed by visitors.

The CH is conserved in order to be disclosed, contemplated and admired by the visitors being
these who maintain it but, nevertheless, they can contribute to its deterioration. It is necessary to reach
a consensus of disclosure of our CH in a sustainable manner. This paper deals with a mathematical
modeling in order to quantify the influence that visitors can produce in our CH. Considering the
thermo-hygrometric conditions of Casa de Diana as a case study.

A monitoring system, able to record and store large amounts of data (monitoring frequency of
1 data point per minute) was installed [11,28]. The system was comprised of 29 probes, including
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temperature and relative humidity sensors installed in parallel, calibrated and synchronized with
a microcontroller.

As far as we know, this is the first time that a quantitative study is carried out with the aim
of modelling the influence of visitors on the upset of the thermo-hygrometric equilibrium of an
archaeological site. The methodology proposed in this paper may serve as a reference for other
CH sites.

The paper is organized as follows: after the Introduction, a description of the Mithraeum of Casa
di Diana, the monitoring system, a description of the sample and the analysis procedure are presented
in Section 2. Section 3 deals with the mathematical modelling of the impact of the visitors in the upset
of the thermal balance. Finally, the Conclusions section summarizes the main remarks.

2. Materials and Methods

2.1. The Archaeological Site: “Casa di Diana” Mithraeum

The Casa di Diana Region I, Insula III, is a Roman building (130 CE) part of the famous
archaeological site of Ostia Antica, located at 23 km from the center of Rome. The building, comprised
of tabernae (a single room shop covered by a barrel vault within great indoor markets of ancient Rome;
normally with overhead lighting openings) and cenacula (dining rooms), presents a very characteristic
microclimate, especially inside two intercommunicating rooms (the Mithraeum and pre-Mithraeum).
The principal building materials are bricks and pozzolanic mortar aligned with the opus caementicium
(Roman concrete, based on a hydraulic-setting cement, was a material used in construction during
the late Roman Republic until the fading of the Roman Empire) technique [25,26]. The two rooms are
characterized by different heights due to the presence at the sides of podium [26].

The ventilation is natural and comes from several openings. No mechanical ventilation systems
are installed. The rooms are covered by a roof and protected against the rain, but small areas are
directly exposed to sunlight and outer air due to the openings [16].

The Casa di Diana is visited, one or two days a week, normally at 10:30 a.m., with a mean duration
of about 30 min (only 10 min in the Mithraeum’s rooms).

2.2. Monitoring System

The sensors consist of probes that contain an 8-pin small-outline integrated circuit (SOIC), model
DS2438 [29] (Maxim Integrated Products, Inc., Sunnyvale, CA, USA) that incorporates a temperature
(T) sensor with an accuracy of ±2 ◦C as well as an analogue-to-digital voltage (A/D) converter
which measures the output voltage of a relative humidity (RH) sensor (HIH-4000 [30], Honeywell
International, Inc., Minneapolis, MN, USA). The sensor has repeatability between measures allowing
to detect small variations [11,14]. Three electric wires come out from each probe: one wire for +5 V DC
power supply, one for ground and another for data transfer.

Because each DS2438 [29] has a unique silicon serial number, multiple DS2438s [29] can exist on
the same data bus. This allows multiple sensors that can be used in the system simultaneously with
only one data line (1-wire communication protocol). The sensors, with this communication protocol,
are installed in parallel between the data line and ground, allowing a simple and robust wiring.

The HIH-4000 [30] RH sensors, with an accuracy of ±3.5%, were calibrated in the laboratory with
a saturated solution of salt [11,14]. The voltage output of the HIH-4000 [30] sensors is measured by
one of the four analogs to digital A/D converters of the DS2438 [29]. As specified by the manufacturer,
the voltage output is proportional to voltage supply. The exact value of the voltage supply is measured
for each probe by another A/D of the DS2438 [29] and applied in the calibration curves each time
a humidity data is measured. Sensors are synchronized and their data recorded by an ATMega328
microcontroller (Microchip Technology Inc., Chandler, AZ, USA) as described in [11].
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2.3. Sensors Location

A total of 29 probes were installed, 28 in the interior of the Mithraeum and pre-Mithraeum of Casa
di Diana (Figure 1a), and one additional probe placed on the sill of a window as an outdoor climate
control (Figure 1b). The coordinate locations (xyz) for sensors along the walls are described in Table 1,
as it has been drawn on wall B (Figure 1, fuchsia). The origin started at the left corner of the wall and
at the pedestrian height. The coordinate x indicates the horizontal distance to the origin, coordinate y
indicates the vertical distance to the origin, coordinate z indicates the distance to the walls surface only
for two sensors (#72, #73) that are not placed along the wall.
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Figure 1. (a) Sensor locations (numbered triangles); (b) Sensor #85 (yellow triangle), outdoor climate
control. Each sensor has a different color due to wall belonging. Each wall has a reference system
(xyz) to individuate the sensor’s position (coordinate allocation is expressed in Table 1). Legend: pink
color corresponds to wall A, fuchsia color corresponds to wall B, azure corresponds to wall C, blue
corresponds to wall D, yellow corresponds to wall E, red corresponds to wall F, green corresponds to
wall G and violet corresponds to wall H.

Table 1. Sensors description and coordinated allocation.

Reference System Sensors N. x (cm) y (cm) z (cm)

BLUE

45 70 102 0
72 424 0 94
73 400 80 116
74 512 140 0

PINK

46 372 192 0
47 372 89 0
48 197 142 0
49 196 304 0

FUCHSIA
75 126 163 0
76 176 302 0
77 294 93 0
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Table 1. Cont.

Reference System Sensors N. x (cm) y (cm) z (cm)

AZURE

50 504 146 0
51 425 201 0
78 88 139 0
79 174 148 0
80 190 197 0

GREEN
70 226 217 0
86 560 136 0

YELLOW

83 330 90 0
84 245 120 0
85 164 204 0
88 32 169 0

RED
66 7 70 0
68 242 154 0
69 205 280 0

VIOLET

67 532 164 0
71 290 106 0
81 84 −12 0
82 86 80 0

2.4. Database

The continuous monitoring campaign system was started on 29 June 2014 and finished on 21 May
2015. The records of March 2015 were completely missing. In order to avoid possible abnormal
measurements, data after 31 January 2015 were disregarded for the analysis.

The system records data with a frequency of 60 data points per hour (1 data per minute) being
capable of recording 43.200 data points per month (30 days × 24 h/day × 60 data points/h). In this
study we have a data base of 23,302,080 data, composing a data matrix of 401.760 rows (279 days ×
24 h × 60 min) and 58 columns (29 sensors T + 29 sensors RH). Note that, sensors T#81-88 did not
work during the month of August. On the other hand, sensor RH#77 was completely discarded due to
instrument anomalies, during the entire data recording. Data were stored in Burrito software [31].

2.5. Data Analysis

The methodological procedure of the paper is as follows. First, an exploratory analysis of the
thermo-hygrometric data is carried out to characterize the archaeological site. The starting hypothesis
is coincident with [17], where events that contribute to upsetting the microclimatic balance considered
the main source of damage. After, we select a subsample of sensors that present the ideal characteristics
to model the hourly variation.

With this subsample, a multiple linear regression analysis and a logistic regression analysis are
performed to assess the possible influence of the visitors in the upset of the microclimatic equilibrium.

Principal Component Analysis (PCA) was performed using Unscrambler version 9.7 (a
chemometric software package from Camo, Woodbridge, NJ, USA), with a cross validation method.
Other analyses were performed with the software packages OriginPro 8.5.1 (OriginLab, Northampton,
MA, USA) and SPSS 22 (IBM, North Castle, NY, USA).

2.5.1. Dimension Reduction Techniques: PCA and Correspondence Analysis

PCA is a dimension reduction technique. It is an exploratory method whose objective is to
summarize a large amount of data in a small number of dimensions, with the least possible loss of
information. PCA looks for the projection according to which the data are best represented in terms
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of least squares, converting a set of observations of possibly correlated variables in a set of variable
values without linear correlation called principal components.

This linear transformation is constructed through the covariance matrix or matrix of correlation
coefficients. Due to the symmetry of this matrix, there is a complete set of eigenvectors and eigenvalues
that lead to the transformation of the old coordinates into the coordinates of the new base.

The Correspondence Analysis is a statistical technique that is used to analyze, from a graphical
point of view, the dependency relations of a set of categorical variables from data of a contingency
table. Its objective is similar to that of PCA, but applied on categorical variables. Inertial matrices
for columns and rows are calculated and diagonalized, obtaining their eigenvalues and eigenvectors,
defining a space formed by the dimensions and the projection of the categories on it.

2.5.2. Multiple Linear Regression and Logistic Regression Models

The multiple linear regression considers that the values of the dependent variable (Y) have been
generated by a linear combination of the values of k explanatory (independent) variables (x) and a
random term (error or residual, u):

Y = β0 + β1x1 + β2x2 + . . . + βkxk + u (1)

The coefficients are estimated minimizing the residual variance. Balance is understood as the
stability of microclimatic conditions. The hourly variation of temperature represents the deviation
from the balance conditions and, therefore, possible source of deterioration [17]. Thus, in our study,
the hourly variation of temperature is selected as the variable of interest.

The independent variables considered in the linear regression analysis are the continuous variable
visitors (taking values from 0 to 60), and the dichotomous variable visit, which takes the value 1 on
the day and time that a guided visit takes place in Casa di Diana. In addition, the control variable
considered in the model are the sensor variable, the dummy variables month (July, September, October,
November, December, taking January as a reference), the difference between the outdoors temperature
and the monthly moving average of the outdoors temperature (EXT85_MA) and the dichotomous
variable EXT85d which is equal to 1 when the hourly variation of the outdoors sensor exceeds the
mean hourly variation of the outdoors sensors for that month, considering a moving average.

According to the characterization of Casa di Diana, a subsample of sensors of temperature is
selected, since it is intended to observe variations in the temperature that in principle are not derived
from the architectural characteristics of the place (see Sections 3.1 and 3.2). Finally, for the linear
regression analysis a sample of 793,620 data, arranged in a matrix with 66,135 rows and 12 columns,
is considered.

Note, that the models are replicated for the case in which the variable visitors are considered as
quantitative variable. As worse adjustment results are obtained only the final model are presented
in the section of results. The interaction of the variables month and visit, and the triple interaction of
the variables month, visit and cluster are also considered. However, the adjustment of the models is
not modified and, according to the parsimony principle, the simplest model is selected. On the other
hand, logistic regression models the outcome of a categorical variable as a function of the independent
variables. The logistic regression analysis is framed within the set of Generalized Linear Models (GLM)
that uses the logit function as a link function. The model takes the following form:

p =
1

1 + e−(β0+β1x1+β2x2+...+βkxk+u)
(2)

The odds ratio is a measure of how much higher/lower is the probability that an event will
happen than the probability that it will not occur. It is calculated as:

p
1 − p

= eβ0+β1x1+β2x2+...+βkxk+u. (3)
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In Section 3.3, a logistic regression mathematical model is developed to determine the effect of
visitors on the probability that the hourly variation represents a deviation from the equilibrium
conditions; that is, when it presents a value higher than the monthly average value. The
dummy variable HV_largerMHV (hourly variation larger than mean hourly variation) is defined.
HV_largerMHV will take the value 1 when the hourly variation is larger than the monthly average of
the hourly variation of the sensor, considering a monthly moving average, and the value 0 otherwise.
It is understood that hourly variations larger than the monthly average hourly variation are likely to
be considered upset of thermal balance.

3. Results and Discussion

3.1. Characterization of “Casa di Diana”

A PCA is performed on the original data in order to characterize the archaeological site.
The dataset was previously auto scaled and a model with two principal components (T), explaining
the 100% of the total variance (Figure 2a), and two principal components (RH), explaining the 89% of
the total variance (Figure 2b), is selected to fit the data.Sensors 2018, 18, x FOR PEER REVIEW  7 of 14 
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Figure 2. PCA Bi-plot (scores and loadings). (a) Tempera–ture PC1-PC2; (b) Relative Humidity
PC1-PC2. Legend: blue color (scores), red color (loadings), X-expl refers to the percentage of variability
of each sensor (X) explained by components 1 (PC1) and 2 (PC2), respectively.

Regarding temperature (Figure 2a), two clear groups are identified. One group is comprised by 8
sensors (#68, #81–#88) that were situated between the south west pre-Mithraeum wall and the north
pre-Mithraeum wall (Figure 1a—yellow and orange triangles). This is the more ventilated area due
to the window and main entrance. All the rest of the sensors (#45–#80) follow the same behavior.
There is not found a particular relationship between wall and season (except for October, that seems
to have an own trend). Regarding RH (Figure 2b), more data variability is found and two groups
are identified. One group is composed by sensors with different behaviors and located in a more
ventilated area. The other group comprises sensors located along the more protected walls, away from
openings, windows and frontal walls, where the outdoor exchanges are frequent, and present very
similar behavior between them.

In order to understand the thermo-hygrometric behavior during the year, Multi-Curve plots for
the daily mean temperature (Tdaym) and RH (RHdaym) are represented for each sensor (Figure 3).
In general, Tdaym remains stable between July and at the end of October (26.6–20.7 ◦C). The higher
amplitude is present during the winter season (17.7–3 ◦C, Figure 3a). Regarding RHdaym, it remains
stable along the entire monitoring campaign with values between 99–84% (Figure 3b). Note that during
the autumn-winter, the RH values are closed to saturation (97–99%) (Figure 3b).
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Figure 1.

Taking into account the walls behavior, the sensors are grouped by wall belonging and the
maximum and minimum daily values for T and RH are calculated (Tmax/Tmin and RHmax/RHmin,
respectively).

Regarding Tmax (Figure 4a), it remains stable along the walls. Sensors in wall “e” seem to have
less variability than sensors on the other walls. RHmax has more variability; sensors in walls “a, c, d, f,
h” have less data variability than sensors in walls “b, e, g”. The difference between those two groups
is in accordance with the presence or absence of air flow, as the first group (more data variability) was
directly exposed to air flow (Figure 4c).
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The minimum values of T and RH corroborate the main results addressed by the maximum
values. In addition to the previously considered factors, high levels of RH (rising damp, presence of
probably seeping water) and wall temperature lower than air temperature induce surface condensation.
Temperature sensors installed in previous monitoring campaigns and different materials indicated
that the temperature of rock and mortars was always lower than air temperature, subsequently
inducing water condensation on the surfaces of the material surfaces, as well as efflorescence and
sub-efflorescence [15,16].

3.2. Modelling the Impact of Visitors on the Hourly Variation

According to the characterization, the data of the sensors #45–#80, excluding sensor #68, are taken,
since it is intended to observe variations in the temperature that in principle are not derived from the
architectural characteristics of the place. The HR data has been disregarded since it has been very
constant during the whole monitoring campaign. Furthermore, the hours when there was no data for
the outdoors sensor (#85) have been eliminated from the sample.

The hourly variation of temperature is selected as dependent variable. The independent variables
considered in the analysis are variable visitors, visit, month (July, September, October, November,
December), EXT85_MA and the dichotomous variable EXT85d.

A first stepwise regression analysis results in an adjusted R2 of 39.2%. The model is significant
with p-value < 0.001 and the coefficients of the significant variables appear in Table 2. The visits
increase the hourly variation, with an aggravating effect when the outdoors hourly variation is also
higher than its expected monthly average. Note that when a visit takes place the hourly variation
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increases by 0.106 ◦C; when the hourly variation is also higher than its expected monthly average and
a visit takes place, it results in an increase of 0.17 ◦C (0.106 + 0.064).

Table 2. Estimated coefficients of the independent variables (first multiple linear regression model).

Parameter Coefficient Significance Parameter Coefficient Significance

Constant −0.084 0.000 June −0.042 0.000
EXT85d 0.217 0.000 July −0.023 0.000

EXT85_MA 0.001 0.003 September −0.006 0.003
VISIT 0.106 0.000 December −0.017 0.000

EXT85d * VISIT 0.064 0.000

It can be deduced from the analysis of the residuals that there are four clearly identifiable data
clusters with a different regression line (Figure 5). A cluster analysis of the residuals is performed and
the conglomerates (hereinafter, clusters of residuals) have the characteristics specified in Table 3.Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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Table 3. Characteristics and compositions of the clusters of residuals.

Cluster Number of Cases % Cases Center

1 19,349 29.26 −0.13525
2 38 0.06 −2.00502
3 5,863 8.87 −0.2594
4 40,885 61.82 0.02867

Total 66,135 100.00

A priori it seems reasonable that these groups of observations with a particular relationship with
the dependent variable may correspond to sets of sensors with common temperature characteristics
(average and variability) caused by their placement in the archaeological site, despite the fact that
the sample consists of the sensors with more similar behavior. However, a correspondence analysis
for the variable cluster of residuals and the categorical variable sensor does not seem to reveal any
direct relationship between the categories of both variables. In addition, to analyze this possibility, a
regression analysis is performed, including as categorical variables the groups of sensors that seem to
have a similar behavior according to the perceptual map of correspondence analysis. None of these
variables is significant, so the influence of the sensor variable is discarded.

Therefore, it can be deduced that the clusters of residuals are related to specific observations
(independent of the sensor) with the influence of variables not considered in the model, such as
ventilation or solar radiation, for example.
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The aim of the work is to evaluate the influence of visits on the upset of the thermal equilibrium
of the archaeological site, so it was decided to carry out a second regression model including the
clusters of residuals that allows evaluating the differences between these subgroups. Future research
will be necessary to characterize these clusters so that prevention measures can be designed in the
most appropriate way. A Computational Fluid Dynamics study is being developed. Air sensors have
been installed and, in the future, the recorded data will allow improving the evaluation of the model
residuals [32].

With the introduction of three dummy variables that allow modeling the four clusters of residuals,
and all their interactions with the rest of the independent variables, a model with an adjusted R2 of
85.4% is obtained, which represents a great improvement in the predictive capacity with respect to
the first model. The model is significant with p-value < 0.001 and the coefficients of the variables
introduced in the final model appear in Table 4.

Table 4. Estimated coefficients of the independent variables (second multiple linear regression model).

Parameter Coefficient Significance Parameter Coefficient Significance

Constant −0.214 0.000 cl4 0.161 0.000
EXT85-Mont_av 0.002 0.000 cl3 * VISIT 0.075 0.000

EXT85d 0.217 0.000 cl4 * VISIT 0.066 0.000
VISIT 0.031 0.000 cl3 * EXT85d 0.031 0.000

EXT85d * VISIT 0.087 0.000 cl2 * November −1.155 0.000
June −0.045 0.000 cl3 * June −0.088 0.000
July −0.036 0.000 cl3 * July −0.044 0.000

September −0.011 0.000 cl3 * September −0.068 0.000
October −0.01 0.000 cl3 * October −0.036 0.000

December −0.016 0.000 cl3 * December −0.069 0.000
cl2 −1.232 0.000 cl4 * July 0.009 0.000
cl3 0.407 0.000 cl4 * September −0.005 0.027

The hourly variation depends on the month as stated by the parameters of the variables July,
September, October, November, December. As these parameters are negative, January is the month
historically presenting the larger hourly variations in temperature. Depending on the cluster, the effect
of the month is increased or reduced.

The visits always increase the hourly variation, with an aggravating effect when the outdoors
hourly variation is also higher than its expected monthly average. Note that when a visit takes place
the hourly variation increases by 0.031 ◦C for observations belonging to cluster 1; when the hourly
variation is also higher than its expected monthly average and a visit takes place, it results in an
increase of 0.118 ◦C for cluster 1. Furthermore, observations of clusters 3 and 4 present a greater
sensitivity to visits. When a visit takes place, the hourly variation increases of 0.106 ◦C and 0.097 ◦C for
observations belonging to cluster 3 and 4, respectively. This significant effect of visits on the thermal
upset is in line with the findings of the study of CO2 [26,27].

An analysis of the residuals of the model (Figure 6) shows that new clusters appear. Despite this,
we have been able to identify the influence of visitors, which is the main objective of the paper. An
individualized analysis per sensor has discarded the possibility of autocorrelation of residuals. In
addition, abnormal residuals are present in all sensors, which surely must coincide with some of the
identified clusters reinforcing the idea that these clusters are related to some external variables not
considered in the model. Sensor #69 has the largest residuals variance (Figure 7).
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3.3. Modelling the Impact of Visitors on the Upset of the Thermal Balance

In this section, a logistic regression mathematical model is developed to determine the effect
of visitors on the probability that the hourly variation represents a deviation from the equilibrium
conditions. HV_largerMHV is the dependent variable; the independent variables considered in the
analysis are the dichotomous variable visit, EXT85_MA and the dichotomous variable EXT85d.

The Hosmer Lemeshow test tests the null hypothesis that the fitted model is correct, therefore as
p-value > 0.05 so there is lack of evidence against the null hypothesis. The model has a Cox and Snell’s
R2 equal to 0.418 and a Nagelkerke’s R2 equal to 0.567. Variable EXT85_MA resulted non-significant.

The model takes the following form:

odds =
p

1 − p
= e−2.105+3.538EXT85d+2.635VISIT−0.569EXT85d×VISIT (4)

Thus, when a visit takes place the probability that the hourly variation reaches values higher than
its monthly average is 10.64 times the probability that the balance is maintained, when the rest of the
variables remain constant.
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The classification table (Table 5) shows the number of cases that have been classified (predicted) by
the model as 0 or 1 and compares with the original classification (observed) for each case (observation).
In the classification table (Table 5) we can verify that our model has a high specificity (87.4%) and a
remarkable sensitivity (83.6%). T default limit point of the calculated Y probability is set to 50% (0.5).
It has been tested that, despite decreasing the limit point, the classification is maintained.

Table 5. Classification table of the logistic regression model.

Observed Predicted

0 1 Percentage

HV_largerMHV 0 35,078 5066 87.4

1 4275 21,716 83.6

total 39,353 26,782 85.9

Note that no improvement of the model is achieved when including the variable visitors as
quantitative variable.

4. Conclusions

The innovative of the sensors technology—high memory of data storing (10 years and more) and
high frequency of data recording (1 data/min)—allow us obtaining a big database and modelling, for
the first time, the influence of visitors in the microclimate of an archaeological site.

A prior exploratory analysis of the data allowed to individuate the more humid walls, the walls
more protected to air flow, as well as individuating differences into the single building (between the
Mithraeum and pre-Mithraeum).

Exploratory analyzes have shown that Casa de Diana has a stable microclimate in terms of RH
and that the largest variations occur in temperature and during autumn-winter. This paper is based
on the idea that the main cause of damage in cultural heritage sites is the upset of the balance of
microclimatic conditions. For the first time, the upset of equilibrium is mathematically modeled both
in terms of hourly variations and in terms of the probability of significant changes.

The multiple linear regression model stated the influence of the visits on an increase in the
hourly variation of the temperature. However, the residuals of the model determined the existence of
observations with linearly differentiated behaviors. Therefore, more research is needed including other
variables such as ventilation and solar radiation, with the purpose of identifying and characterizing
the observations included in these clusters.

The logistic regression model assessed that when a visit takes place the probability of the upset of
the thermal balance is 10.64 times larger than the probability that the balance is maintained.

Due to the high humidity of the archaeological site, the visitors did not influence this parameter;
however, they affect the temperature despite having open windows to the outdoors and no mechanism
of temperature control.

Note that the main goal of the study is proposing a monitoring system and a mathematical
modelling methodology for the evaluation of the significant influence of visitors, more than the
quantification of the damage, serving as a guide for other CH sites. In order to quantify the damages
produced by the visitors, a second study without visitors should be carried out in the future.
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