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Resumen
Este trabajo se centra en la implementación de mecanismos de transferencia

de memoria eficientes en un Sistema Heterogneo. La solución propuesta en este
trabajo se desarrolla en el contexto del proyecto Europeo MANGO, que provee
de una plataforma tanto Software como Hardware para el desarrollo de siste-
mas heterogéneos multi-acelerador, para así hacer frente a las demandas de pres-
taciones requeridas actualmente en sistemas HPC. Los logros aquí presentados
mejoran las transferencias de memoria tanto en las aplicaciones que se ejecutan
en el Servidor, como las transferencias que tienen lugar en el sistema Hardware
entre los diferentes aceleradores. Los resultados obtenidos en las diferentes prue-
bas realizadas muestran valores cercanos a los máximos posibles ofrecidos por el
Hardware utilizado. Tambieén se ha desarrollado un sistema de reserva de ancho
de banda para las diferentes transferencias en curso mediante el uso de pesos,
posibilitando la futura implementación de políticas de Calidad de Servicio en las
transferencias de memória.

Este trabajo se ha llevado a término durante una estancia de cinco meses en
la Universitat Politécnica de Valéncia. Esta estancia está vinculada a un acuerdo
entre la Universitat Politécnica de Valéncia y la Universitá degli Studi di Napoli
Federico II.

Palabras clave: Sistema de cómputo heterogéneos; PCI express; Calidad de ser-
vicio

Abstract
This work focuses on the implementation of efficient memory transfers in a

highly heterogeneous system. The proposed solution is developed in the con-
text of the MANGO European project, which provides a software and hardware
framework to support the deployment of custom multi-accelerator systems, as
demanded by the modern HPC performance requirements. The achievements
here presented benefit both the memory transfer efficiency as seen by applica-
tions running on a host computer and by hardware accelerators. The measured
performances show results very close to the ideal ones. Support for weighted
memory transfers is also developed, allowing the future implementation of Qual-
ity of Service policies regarding memory access bandwidth.

This work has been performed during an internship of 5 months. The intern-
ship is linked to an agreement between UPV and UniNa (Universita’ degli Studi
di Napoli Federico II).

Key words: Heterogeneous computing system; PCI express; Quality of Service
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CHAPTER 1

Introduction

The field of computer architecture as a whole has faced several paradigm shifts
in the last decades, lead by the constant goal of achieving higher performance on
specific workloads, while still meeting any possible power constraint.

For many years exploiting the Instruction Level Parallelism (ILP) has been
the main area of research, with the goal of improving processors’ performances.
ILP focuses on trying to identify and reschedule the instructions that could be
executed in parallel, without breaking the sequential semantic upon which the
programmer relies. The goal is to maximize the Instructions Per Clock cycle (IPC)
performance metric, or to minimize its inverse, the Clock cycles Per Instruction
(CPI).

On the other hand, parallel execution of instructions cannot happen if there
are dependencies between them. In particular, the process of translation of a
task into a set of sequential operations can give birth to additional dependencies.
These dependencies reflect the limitations of the underlying hardware (the num-
ber of processor registers, etc...) and are not correlated to the task that is being
processed. An optimal execution should be constrained only by the dependencies
that are intrinsic in the task to execute, and that cannot be overcome. A common
way to identify these dependencies is using a Data Flow Graph (DFG), which is
an abstract representation of the transformations to be applied to the input data.
If the DFG’s transformations are annotated with execution times, the longest path
on the graph is a lower bound on the effective execution time, obtained after the
mapping on a specific hardware platform.

As ILP started to show its limitations, new paradigms emerged, which try
to exploit parallelism at different levels: Thread Level Parallelism and data par-
allelism. Thread Level Parallelism aims to keep a processor’s utilization level
as high as possible, by switching between multiple flows of execution, called
threads, allowing to overcome the limitations shown by ILP on a single flow of
execution. This allows to push further the IPC performances if we consider in-
structions coming from different threads. On the other hand, there are workloads
where the same execution flow should be applied to different input data: in this
case the parallelism should be exploited at the data level and not on the control
flow level. Data parallelism can be easily found in some domain-specific work-
loads like machine learning, physics, finance, etc...

1



2 Introduction

In terms of hardware support, off-the-shelf components nowadays support
a mix of these approaches. Modern CPUs are made of multiple cores, each one
being independent from the other and executing a different instruction stream.
In each core, we can find multiple execution threads, which can again execute
different instruction streams, and compete for the core resources. Each execution
flow is then analyzed and rescheduled to exploit ILP. Data parallelism is usually
exploited through the use of the so-called vector extensions, which provide a vector
register file (opposed to a classic scalar register file) and a set of vector instructions
that operate on multiple registers at once.

GPUs gained a lot of relevance in the computer architecture field. At first
they were meant as mere graphical accelerators, providing specialized hardware
blocks used to solve efficiently rendering problems. However, as rendering work-
loads expose a great amount of parallelism, the same hardware can also be used
to solve efficiently many other computational problems. So the General Pur-
pose computing on GPUs (GPGPU) paradigm started to emerge, where GPUs
are used as general purpose hardware accelerators. This imposed both a software
and hardware architecture shift. Beside the graphical rendering Application Pro-
gramming Interface (API), modern GPU vendors provide a generic programming
model, along with the required tools (compilers, loaders, etc...), to allow a pro-
grammer to launch a compute kernel on the GPU cores. The most notable exam-
ples are the CUDA library provided as a proprietary solution by NVidia, and the
OpenCL API developed as an open standard by the Khronos Group. The inter-
nal architecture of GPU cores evolved more in the direction of a general purpose
multi-core processor, still offering hardware support for data parallel workloads
accompanied by a light control logic. This hardware support results in improved
performances both under the system throughput and power consumption points
of view.

On the other side of this spectrum we find the High Performance Computing
(HPC) subfield. HPC applications distinguish themselves for the huge amount of
computing power they need. Relevant examples are weather forecasting, molecu-
lar modeling, cryptoanalysis, etc... They are usually run on supercomputers, which
are computers targeting the highest levels of performance. Due to the nature of
their workloads, performance is measured in Floating-Point Operations Per Sec-
ond (FLOPS). Supercomputers gained importance for their scientific and political
importance, as a sign of the technological progress of a country. The most pow-
erful computers are listed on the TOP500 [1] ranking, which is published twice a
year and sorts supercomputers by performance. However, building such a huge
computing infrastructure can require an unsustainable amount of energy: it is of
main importance to evaluate performance related to power consumption. One
common metric is called FLOPS per Watt, and takes into account the comput-
ing performance compared to the power cost. TOP500 supercomputers are also
ranked by FLOPS per Watt on the Green500 [2] list.

To account for this aggressive performance requirements, special care must be
given to provide a hardware architecture that is designed around the specific ap-
plication’s needs. For this reason, Field Programmable Gate Arrays (FPGAs) are
getting more and more relevance as reconfigurable platforms in the HPC field.
They allow to implement a fully custom hardware architecture that can be tai-
lored around any domain-specific application, without going through the long
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Figure 1.1: The complete MANGO cluster

design process and the costs needed for custom Application Specific Integrated
Circuit (ASIC) design. As they offer great flexibility while allowing to target
high throughput and power performance, they are currently being deployed in
data centers and HPC scenarios as custom hardware accelerators. Most notably,
the Project Catapult [4] from Microsoft is already using FPGA technology to en-
hanced data center computing power.

However, FPGA programming still requires a significant engineering effort.
Moreover, the high level of flexibility offered doesn’t allow for proper interoper-
ability measures. The MANGO project [3] aims to tackle this issue, by providing a
comprehensive software and hardware framework for the deployment of highly
heterogeneous accelerators on reconfigurable hardware, while still exposing a
standard interface to the hardware designer and to the application programmer.

This thesis is developed in the framework of the MANGO project.

MANGO Project

The MANGO (exploring Manycore Architectures for Next-GeneratiOn HPC systems)
project aims to design and build a cluster of boards, each equipped with sev-
eral FPGAs and memory modules, onto which generic accelerators can be imple-
mented. User applications will then be allowed to launch a compute-intensive
kernel on custom hardware, optimized for the problem at hand. This allows to
target the main HPC challenge: achieving maximum performances while keep-
ing the power consumption under control. The cluster configuration is pictured
in Figure 1.1.



4 Introduction

Figure 1.2: Physical deployment of a MANGO cluster

On the left side we have an HPC server computer. The server’s responsibility
is to manage the resources offered by the cluster, and to offer a clear interface
to the applications that want to access those resources. In particular, a resource
manager should decide how to allocate resources such as accelerators, network
bandwidth and memory bandwidth, taking into account any possible Quality
of Service (QoS) requirement. The physical communication with the cluster is
empowered by an industry-standard high speed PCIe connection.

On the right side we can see the hardware components, by the means of a set
of boards connected with each other, equipped with memory modules offering
different interfaces (DDR3, DDR4, ...) and with a set of reconfigurable hardware
devices, onto which accelerators can be synthesized.

As one of the goals of the project is to explore maximum customizability, each
cluster configuration is identified by an architecture ID. This determines the type
and number of accelerators used, how they are physically deployed in the system,
the type of FPGAs and memory modules used, etc... A resource manager detects
the configuration at runtime and acts accordingly.

The accelerators developed thus far are now briefly introduced, while a phys-
ical deployment of the cluster is reported in Figure 1.2.

PEAK

Partition-Enabled Architecture for Kilocores is a RISC multi-core processor, that can
be used as a general purpose computing unit inside the MANGO system. It im-
plements a large subset of the MIPS R32 instruction set, with support for excep-
tions and interrupts.
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The accelerator features a configurable number of cores, deployed in a mesh,
where each node is called a tile. Each tile has also a private L1 cache bank and a
shared L2 cache, which is part of a bigger distributed L2 cache [5]. A MESI-based
coherence protocol is in place. Also a bank of registers is deployed in each tile, to
allow for runtime configuration and statistics collection. A Network on Chip is
used to implement the communication between the tiles.

Programming is supported by a complete compiler toolchain, which is based
on the LLVM compiler.

nu+

nu+ is a GPU-like accelerator, featuring a multi-core processor based on a mesh
topology, with support for the SIMT paradigm enhanced by vector instructions.
The focus again is on the high level of configurability of the accelerator.

This translate to a mesh composed of a parameterized number of tiles, into
which each core is deployed. Each core then supports multiple threads of execu-
tion, which gets internally scheduled in a round-robin fashion. A vector register
file is in place, with the relative vector manipulation instructions. A Network on
Chip enables the communication between the tiles and with the memory.

Programming is once again supported by a toolchain based on the LLVM com-
piler.

TETRaPOD

Time MultiplExed Fully Pipelined ThRoughput Oriented PrOgrammable Data-path FPGA
Overlay is an hardware overlay designed to exploit the DSP blocks of the under-
lying FPGA.

It features a matrix of interconnected functional units, that form an arbitrarly
deep data path for efficient data manipulation. The functional units are fully
programmable at runtime, so the accelerator reads both its configuration and the
input data from memory at startup.

The configuration data could be generated by a compiler, which after look-
ing at the kernel to execute should extract a DFG and map it on the underlying
hardware.

Goals and Motivations of this Work

The communication infrastructure plays a vital role in the system architecture. As
depicted in Figure 1.3, the accelerators are distributed over a 2D mesh that can be
spread over multiple FPGAs. The infrastructure thus includes all the components
needed to make modules communicate inside the same tile, among different tiles
and even different FPGAs. Moreover, it includes the connection to the HPC server
and to the physical memory modules.
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FPGA
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Figure 1.3: Logical view of a MANGO cluster

The performance of the communication infrastructure determines the system
performance. PEAK and nu+ will fetch from memory the kernels to execute and
the data to work upon. TETRaPOD will fetch a stream of data where configura-
tion settings and data to manipulate are interleaved. Efficiency in these transfers
is critical.

At the same time, user applications have to move big chunks of memory to
and from the system, to quickly move execution informations (instructions in
case of processors, configurations in case of hardware overlays) and data.

Moreover, some critical applications could require a minimum level of perfor-
mance, that is, a quality of service requirement. The infrastructure should be able
to manage the available bandwidth to the cluster and to the memory modules, to
stay in line with QoS constraints.

The goal of this work is to implement the required modifications, both in the
software and in the hardware layers, to allow efficient memory transfers by ex-
ploiting the full performance of the system, as seen by user applications and
hardware accelerators. Moreover, the foundations are laid to effectively imple-
ment QoS policies, adding support for weighted memory accesses, allowing to
split the total memory bandwidth among different transfers.

Structure of the Document

In chapter 2 the existing MANGO infrastructure is described, with a particular
focus on memory access oriented functionalities.
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In chapter 3 an overview of the proposed solution is introduced at the system
level. Then this solution is analyzed in depth, starting from the software changes
in sections Shared Memory API and Data Burst Transfers Management, and con-
tinuing with the hardware architecture changes in sections Hardware Data Chan-
nels and Memory Wrapper Redesign, highlighting all the required modifications.

In chapter 4 performance considerations are reported. The implementation is
then validated by launching a set of weighted memory transfers and analyzing
the resulting measurements. The resources needed to implement the design are
also evaluated.

In chapter 5 the final conclusions are presented, along with some suggestions
on how the results could be further improved.





CHAPTER 2

MANGO Architecture

Hardware Architecture

MANGO hardware components are organized in a mesh topology (Figure 1.3),
where tiles are placed in a bidimensional structure and identified by a set of coor-
dinates. Each tile is equipped with an accelerator, called from now on unit, along
with other peripherals that implement the configuration and communication in-
frastructure.

Tiles can be spread among multiple FPGAs and motherboards according to
the architecture configuration, while still offering a clear abstraction to the soft-
ware and to the units.

Some tiles are connected to the memory modules, thus offering memory ac-
cess to local and remote units. At least one tile should also be connected to an IO
device, to allow access from the server side.

Tile Structure

The internal structure of a tile is depicted in Figure 2.1. All the components but
the unit are here briefly described, grouped by the functionality they provide.

Communication Interface

The communication interface allows modules inside a tile to exchange data among
themselves and with other tiles. The first thing that should be noted is that two
networks are actually implemented in MANGO: the item network is used to route
items through the system, and so it’s just used for configuration and debugging
purposes; the data network is a complex network in charge of routing all the
traffic related to memory accesses from the unit.

Each network is made of two main components: a router and a network inter-
face. The router has the responsibility of sending and receiving messages to and
from other tiles. The network interface abstracts away the interconnection details
from the modules, converting modules’ requests to the correct network format if
they should reach another tile, or forwarding the requests to local modules when
it is needed. In a similar way the network interface converts network messages

9
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Figure 2.1: MANGO tile

in a format that can be understood by the local destination module. An in-depth
description of the two networks is presented later in this chapter.

Configuration Interface

The TILEREG module provides an extensible interface for the configuration of
the peripherals inside a tile. The details of the interface are presented in Fig-
ure 2.2.

It offers the abstraction of a register bank, where each register implements a
specific functionality. The main functionalities provided are the configuration of
local modules, the implementation of synchronization primitives and the collec-
tion of statistics from the local modules for performance analysis.

The registers can be accessed by the server through the item network, or they
can be mapped in a unit’s address space and be accessed through the data net-
work.

Unit Interface

Every unit should adapt to a well-defined interface to interact with the MANGO
system. The details are reported in Figure 2.3.

The interface can be split in two logical parts: the data interface, which allows
the unit to access the memory modules in the system or the memory-mapped
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TILEREG registers, and the control interface, which allows the bidirectional com-
munication between the unit and the server for control related traffic.

The control interface is completely generic and every unit can implement its
own commands. All the control traffic flows on the link between the unit and the
TILEREG: the server can thus send commands to the unit by writing on a specific
TILEREG register.

The data interface offers to the unit a clear abstraction of the memory re-
sources. In particular, the unit should have no knowledge of the physical mem-
ory modules plugged into the system: every unit has a 4 GB address space,
onto which physical memory modules and TILEREG registers can be arbitrar-
ily mapped. For this reason, memory operations flow through the UNIT TO
MANGO and MANGO TO UNIT modules (from now on U2M and M2U) be-
fore reaching the network interface. Those two modules implement a translation
layer: every memory access is associated with the corresponding physical re-
source, and the corresponding request is generated. To do so, the U2M and M2U
modules rely on two additional modules: a TLB and a TABLE module.

The TLB, whose interface is detailed in Figure 2.4, stores the translation infor-
mations needed to map memory addresses to physical resources. Its configura-
tion can be modified at runtime by writing a specific TILEREG register. In this
way the server (in particular the resource manager) is offered maximum flexi-
bility in the mapping of physical memory modules to the unit’s address space.
Moreover, registers from a TILEREG inside the system can be mapped. This is
especially useful for synchronization purposes, as multiple accelerators or even
user applications can share access to the same set of synchronization registers.

The TABLE module, described in Figure 2.5, is used for bookkeeping pur-
poses: when the U2M translates a memory read operation from the virtual ad-
dress space to the physical one, it requests the TABLE module to store the original
informations, also generating a unique ID for the transaction. The ID is sent to the
memory controller and then back, so upon reception of a memory transaction’s
response the M2U module can recover the informations from the table.

Memory Interface

A tile can interact with a memory module through the Memory Controller (from
now on MC). Its presence is not mandatory: it is implemented only in the tiles
connected to a memory. Along each MC comes a DMA module, which allows
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Figure 2.5: TABLE module

to move efficiently blocks of data from the local memory to a unit or to another
memory in the system. The modules involved are depicted in figure Figure 2.6.

Memory controller The structure of the MC is reported in Figure 2.7. It can
receive requests from two sources: the local network interface or the DMA con-
troller. The interface with the network interface allows to request a read or write
on a block, word, halfword or byte granularity. Of great importance for the read
requests is the transaction ID, which will be used by the sender tile to recover
transaction’s informations. The DMA interface is simpler: beside the block ad-
dress to read, the destination field specifies if the data should be kept in the local
tile (and passed to the unit) or to a remote tile (in particular, a remote unit or MC).

On the other hand, the MC uses a well-defined interface to communicate with
the physical memory wrapper, whose details are given in the Memory Wrapper
section. These interface abstracts away the physical memory protocol from the
MC. The only assumption made by the MC, and that should be enforced inside
the memory wrapper, is that the requests must be served in-order. On the inter-
face boundary some decoupling FIFOs are placed: this allows to run the memory
wrapper at an arbitrary clock frequency.

A round robin scheme is used to arbitrate between the network interface and
the DMA. The winning request then flows to the decoupling FIFOs.

In case of a read operation, some transaction informations are stored in a FIFO,
while the read command is sent to the memory wrapper. When responses start to
flow from the memory wrapper, the needed return informations are dequeued:
for this reason it is of main importance that read requests are served in order.
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WORD0 WORD1 WORD2 WORD3
Bit range 31 - 0 31 - 0 31 - 16 15 - 4 3 - 0 31 - 0

Width 32 32 16 12 4 32
Name Read address Write address - Destination Function Blocks

Table 2.1: DMA configuration words

In case of a write operation, no return informations need to be stored. The
write command is sent to the memory wrapper along with the memory block to
be written. In case of sub-block size writes, the necessary padding is added and
alignment is performed.

DMA controller The DMA controller offers a programming interface to the
TILEREG, from which it accepts a sequence of configuration words. The con-
figuration register can be used from the register side, or be mapped into a unit’s
address space. The format of the configuration words is reported in Table 2.1.

The read address field determines the start address for the read requests genera-
tion. The write address field is used when the destination of the transfer is another
memory controller: it determines the address from where the data is written in
the destination memory controller. The destination field determines the destina-
tion tile and component. The function allows to set the DMA working mode:
at the moment just the memory read is supported. The blocks field specifies the
number of memory blocks to be moved.

On the other hand, it offers a completion signal which is used to generate
an interrupt item that gets routed to the server: this notification system allows
applications to know when a transfer gets effectively completed.

As soon as a transfer is programmed, the controller starts to generate requests
to the MC, updating each time the request address until the programmed block
count is reached, raising the completion signal.

Data Network

The MANGO data network is the backbone of the system. It is designed with
flexibility and configurability in mind, offering the required performance while
meeting QoS constraints.

The network can be split in two main parts: the Router, which forwards mes-
sages between the tiles, and the Network Interface, which abstracts away the
network details and adapts to the local tile’s modules interfaces.

A packet, before being handled by the network, has to be split in flits. The
flit is the smallest chunk of data that the network routes atomically. In MANGO,
the flit size is set to 64 bits, although the system is fully parameterized and can
support arbitrary flit sizes. The flow control is applied on a flit-basis: this allows
to exploit the full capacity of the network input buffers [6]. Every flit has an
associated flit type field, that is used to identify the first and last flit of a packet.
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The flit size doesn’t necessarily match the network bus size: for this reason,
the concept of phit is introduced, which corresponds to the smallest amount of
data that can be transferred between two routers: in the most general case, a flit
can be composed of an arbitrary number of phits. In the MANGO network a
flit is split into phits, which are 8 bit in size, just on the boundary between two
FPGAs. The reason is the limited amount of IO resources that can be found on an
FPGA: splitting a flit into smaller chunks allows to use less resources, although
special care must be taken to deal with the obvious loss of bandwidth. A common
solution is called pin multiplexing and consists in using a faster clock signal on the
interface between the FPGAs, to balance out the bus width shrinking.

The system has full support for Virtual Networks (or VN), which allow to im-
plement multiple logically separated networks sharing the same physical links.
In particular, in Network on Chip design it is of main importance to guarantee
that no deadlocks can occur at the routing and application protocol level [6] (more
details later). Virtual networks serve the purpose of logically splitting different
packet streams, to guarantee that no deadlock can occur between any two mod-
ules using different virtual networks. For this reason, each virtual network has
its own buffers, with the corresponding flow control signals.

The virtual network in the system are allocated in the following way:

• VN 0: messages that should reach the memory controller are routed through
this VN. They can be read and write operations triggered by units, or mem-
ory transfer operations triggered by the DMA module.

• VN 1: it’s allocated to messages that should reach the units. They are the
reply to a memory or TILEREG read operation.

• VN 2: used for messages that should reach the TILEREG. These are the read
and write operations triggered by units.

As it emerges from the virtual networks allocation scheme, replies are always
sent on a different virtual network than the requests: this, together with the re-
source isolation guaranteed by the virtual network implementation, ensures that
no deadlock can happen between the modules involved in the communication.

As traffic from multiple virtual networks compete for the same physical con-
nection, a proper arbitration policy should be put in place. This arbitration stage
also affects the network bandwidth seen by the modules in the system. To be able
to target different QoS requirements, the MANGO network employs a weighted ar-
bitration scheme. That is, every time the physical link must be allocated to a virtual
network, maximum priority is given to a specific one, or a round-robin fallback
policy is used. This allows to allocate a certain amount of network bandwidth
on the virtual network granularity. The weights are specified by a weight vector,
whose default value can be specified in the architecture file and gets mapped
on a specific TILEREG register: the weights propagate from the TILEREG to the
required modules. This also means that the weight vector can be modified at
runtime by writing on the corresponding register.

Virtual channels are also supported by the network, although not currently
used. Virtual channels are a common technique employed in data networks to
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avoid head-of-line blocking, which occurs when the first flit in the input buffers
cannot proceed, thus blocking the next ones that could potentially be able to leave
the router through another output link.

Network Interface

As stated above, the network interface has the goal of abstracting away the in-
terconnection details from the local tile’s modules. This means that it forwards
the requests to the local modules, or inject them through the data network after
converting them in the appropriate format.

In Figure 2.8 the structure of the module is presented. The INJECT module
has the responsibility of properly injecting flits into the network. It supports a
parameterized number of input ports, each injecting on an arbitrary virtual net-
work. Internally it implements an arbitration stage, which follows the weighted
arbitration described above.

The EJECT module receives flits from the network and rebuilds the original
packet. Depending on the virtual network and on the message format, the ejector
forwards the packet to the correct receiving module.

Both the TILEREG and the MC modules interface with a from net and a to
net module. The TR from net and MC from net modules receive requests from
the ejector in network format, or from the local unit modules. They have the
responsibility of interfacing with the corresponding module, abstracting away
the source of the request. The TR to net and MC to net modules send requests
coming from the corresponding module to the local unit, or to the injector in
case the destination unit is placed in another tile. Once again, the corresponding
module has no knowledge of the interconnection details.

The U2M module forwards messages coming from the unit, and it interfaces
directly with all the possible destinations: the TILEREG (through the TR from net),
the MC (through the MC from net) and the injector. The M2U module works in
the dual way, receiving messages from the TILEREG, the MC or the ejector and
forwarding them to the unit.

Router

The router is the core of the MANGO network, and its interface is described in
Figure 2.9. It features 5 bidirectional communication ports: one for each cardinal
direction, to communicate with other routers in the mesh, and a local one, to
communicate with the local tile’s modules.

The relevant signals for each port are: the flit to transfer, the flit type, the VN
number, the Go signals (one per VN) for flow control implementation and the
Valid signal for handshaking purposes.

It is designed in a pipelined fashion to achieve high performances, with the
pipe stages reported in Figure 2.10 and now described in detail.
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Input Buffer and Routing The input buffering stage is used to store the flits to
be processed. Every input port has its own set of buffers. To guarantee resource
isolation between the virtual networks, a different set of buffers is used for each
one.

The buffer utilization level can thus be used to generate the flow control sig-
nals for the injecting module.

Special care must be taken if the input port size doesn’t match the flit size: in
this case the input buffer receives the phits and rebuilds the corresponding flit,
then it can enqueue it.

The routing phase consists on analyzing the destination tile and, given the
current tile, selecting the correct output port.

Virtual channel allocator The virtual channel allocator stage assigns a virtual
channel to each packet. It is important to stress that virtual channel allocation
is done on a packet basis and not on a flit basis: this is to guarantee that flits
belonging to the same packet get routed on the same virtual channel. For this
reason the VA stage works only on the reception of a header flit.

After this stage, each input virtual channel has a corresponding output virtual
channel assigned.

Currently the MANGO network does not use virtual channels, which means
that every virtual network has only one virtual channel: for this reason, the arbi-
tration always succeeds if the next router is available, assigning the only virtual
channel available to the requestor.

Switch allocator The switch allocator analyzes the virtual channel allocations
and resolves any conflict regarding flits that should leave from the same output
port. In this stage the weighted arbitration takes place: for each output port,
priority is given to the flits coming from a specific VN, as described previously.
The result of this stage is a mapping of input virtual channels onto router’s output
ports: the flit is now ready to reach the corresponding output port.

Output port The output port interfaces with the next router’s input port or with
the ejector, managing the physical connection between the two devices.

In its most basic form, it is just composed of an output buffer. However, the
physical connection size could not match the flit size: it is its responsibility to
generate the corresponding phits from the current flit. In the MANGO network
this happens when traffic reaches the FPGA boundary.

Message Format

In this section the format of the messages routed through the network is described
in detail.

Depending on the message type, the packet is composed of a variable number
of flits. For example, a memory read request is composed of just one flit, while
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the subsequent answer is composed of a header flit plus all the additional flits
needed to carry the memory content requested.

Fields
Bit range 63 - 52 51 - 40 39 - 0

Width 12 (9 + 3) 12 (9 + 3) 40
Name Source (tile + component) Destination (tile + component) -

Table 2.2: MANGO message common fields

Common fields All MANGO messages include the source and destination fields,
as described in Table 2.2. In particular, these two fields are composed of two parts:
the tile ID, which is 9 bits wide, and the component ID, which identifies a module
inside a tile and is 3 bits wide.

It should be noted that the minimum amount of informations needed to cor-
rectly route a message is just the destination field: in this way the router can
correctly allocate the internal resources and forward the message on the right
path.

Fields
Bit range 63 - 40 39 - 38 37 36 - 32 31 - 0

Width 24 2 1 5 32
Name Common 10b - Register Data

Table 2.3: TILEREG write request format

TILEREG write requests The TILEREG write request (Table 2.3) includes the
register address to write, which is 5 bits wide, and the new register contents
which is 32 bits wide.

Fields
Bit range 63 - 40 39 - 38 37 - 36 35 - 32 31 - 5 4 - 0

Width 24 2 2 4 27 5
Name Common 01b - ID - Register

Table 2.4: TILEREG read request format

TILEREG read messages The TILEREG read request (Table 2.4) includes the
request ID, which is the unique ID assigned to the transaction by the sender tile’s
TABLE (see Unit Interface), and the register address, which is 5 bits wide and so
allows to access 32 registers.

The response (Table 2.5) includes the request ID, which is the same value sent
inside the read request, and the register content, which is 32 bits wide.
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Fields
Bit range 63 - 40 39 - 38 37 - 36 35 - 32 31 - 0

Width 24 2 2 4 32
Name Common 11b - ID Data

Table 2.5: TILEREG read response format

Fields
Bit range 63 - 40 39 - 36 35 - 34 33 - 32 31 - 26 25 - 0

Width 24 4 2 2 6 26
Name Common Word offset - Byte offset Command Address

Table 2.6: Memory write request format

Memory write requests The destination module of this type of message (Ta-
ble 2.6) is always a memory controller. The Command field can be one of the
following:

• WB_DATA_TO_MC, if a whole block sent by a unit has to be written to
memory. As a memory block is 512 bits wide, this header is followed by 8
flits with the content to be written to memory.

• WORD_WRITE_TO_MC, HALF_WRITE_TO_MC, BYTE_WRITE_TO_MC,
if respectively a word (32 bits), halfword (16 bits) or byte (8 bits) has to be
written to memory. As a flit is 64 bits wide, this header is followed in all the
cases by 1 flit with the content to be written to memory.

• DMA_MEM_TO_MEM, if a whole block has to be written to memory, and
the request was sent by a DMA attached to another memory in the system.
This header is followed by 8 flits with the content to be written to memory.

Fields
Bit range 63 - 40 39 - 36 35 - 32 31 - 26 25 - 0

Width 24 4 4 6 26
Name Common Word offset ID Command Address

Table 2.7: Memory read response format

Memory read messages This format (Table 2.7) is used to read data from mem-
ory, so the destination module of such a message is always a unit. The Command
field can be one of the following:

• DATA_FROM_MC, if the message is a block read request or response. In
case of the response, the header is followed by 8 flits with the memory block
contents. The word offset field is ignored.

• WORD_READ_FROM_MC, if the message is a word read request. The
word offset is used to identify the word to be accessed, and the response
will come as a DATA_FROM_MC message.
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Item Network

The item network has a simpler structure than the data network. It is used to
route items through the system, which are control and debug related informa-
tions. As debug informations can very easily congest the system, a clock gating
mechanism is in place: when the item network gets congested, the data network
and unit clocks are gated. Then different performance counters are used for each
of the two clock domains; this allows to make accurate performance measures
even when extracting a great amount of debug information.

The format of an item is reported in Table 2.8.

Fields
Bit range 31 - 26 25 - 14 13 - 8 7 - 0

Width 6 12 6 8
Name - Destination Command Payload

Table 2.8: Item format

An item is represented on a 32 bits word, although just 26 are used. The des-
tination field includes the tile and the component ID: the former is used to route
the item through the network, while the latter is used to identify the destination
module. The command and data fields contain the real request which gets ana-
lyzed by the corresponding module.

The item network is once again divided in two parts: the network interface
used by local modules to interact with the network, and the router used to for-
ward items to the adjacent tiles.

The network interface is responsible for the communication with the local
modules. The interface is synchronous with the unit clock, so internally the net-
work interface brings the items into the item network’s clock domain, then in-
jecting them through the network. To keep the structure as simple as possible,
during the ejection phase the items are broadcasted to the local modules, which
check the destination field and decide whether to ignore or process the request.

The router has the same implementation as the one used in the data network,
thanks to its high level of configurability. In the item network the flits are 32
bits wide, so each item corresponds to a flit, and only one virtual network is
implemented.

Memory Wrapper

The memory wrapper abstracts the physical memory architecture from the rest
of the system. In principle multiple memory types could be plugged into the sys-
tem, as long as there is a memory wrapper capable to handle its interface. At the
moment the MANGO system supports DDR3 and DDR4 memory modules. Sup-
port for an FPGA block RAM-based memory implementation is also provided,
mostly for simulation and development purposes.

Regardless of the memory type, the only requirement posed on the memory
wrapper is that it should serve the read requests in-order. The memory controller,
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Figure 2.11: Memory wrapper architecture

which interfaces with the memory wrapper, relies on this assumption for proper
read requests handling.

The general architecture of the memory wrappers implemented is reported in
Figure 2.11. The interface is composed of a command bus, which encodes the
request type together with the target address, and a data bus in both directions,
which moves memory blocks from and to the memory.

The internal structure of the memory wrapper is derived from the example
designs provided by Xilinx. The traffic generator adapts the interface with the
MC to the AMBA AXI interface, which is supported by all the physical memory
controllers.

The traffic generator submits requests in order, waiting for the current re-
quest’s completion before submitting a new one. This implementation guaran-
tees the ordering requirement on read requests, although it carries a big perfor-
mance penalty, preventing any type of optimization that could be exploited by
reordering the requests inside the physical memory controller.

The physical memory controller is the Memory Interface Generator (MIG) [7]
provided by Xilinx, which can support DDR3 and DDR4 memories. In the case
of the block RAM-based memory, the physical memory controller is a bank of 16
block RAM IP cores from Xilinx.
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Software Architecture

The MANGO software architecture has the responsibility of offering a low-level
API to interact with the cluster. This interface can be used directly by an applica-
tion, in case it needs low-level access to the system, although a resource manager
is being developed as an additional software layer. The resource manager would
be in charge of satisfying the application’s requests, by allocating accelerators
and bandwidth to the corresponding application. The overall architecture is de-
scribed in Figure 2.12.

HN Library

The HN library implements the low-level API offered to the applications or to the
resource manager. It is written in the C language and compiled as a shared library,
so applications can link against it and interact with the cluster via function calls.

The main responsibility of the HN library is to translate requests to a format
that can be understood by the HN daemon. For this reason every function call to
the API generates one or more requests on the daemon side.

The HN library communicates with the daemon using a UNIX socket, which
is a common API used on UNIX-based systems for inter-process communication.
For this reason a serialization step is required before sending the request, to con-
vert it in a format that can be sent over such a communication channel. The
corresponding deserialization step is performed on the daemon side when the
request is received.

The main functionalities offered by the API are here briefly summarized.

• Reset and architecture identification functions
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• Configuration registers and performance counters access functions

• Accelerator interface functions (querying for which accelerator is present in
a given tile, sending commands to it, etc...)

• Low-performance memory access functions, for reading and writing mem-
ory at block, word, halfword or byte granularity

Moreover, every accelerator adds some functions in the API, which are depen-
dent on the specific accelerator and so aren’t analyzed here further.

HN Daemon

The HN daemon manages all the communications between the HN library and the
cluster.

After starting up it runs in background, initializing the hardware architecture
and opening a UNIX socket to receive requests from applications. At the same
time it waits for the cluster to send data to the host. All the commands to and
from the cluster get encoded into items, which are described in detail in Item
Network.

The internal structure of the daemon is depicted in Figure 2.13. The duties of
the daemon are distributed among a set of loosely coupled threads that commu-
nicate with each other through software FIFOs.

• The master thread is responsible of handling the server socket and listening
to incoming connections, then generating a new slave thread for each client.

• The slave thread handles the communication between the daemon and a
specific client. The incoming requests, which have been properly serialized
by the HN library, are parsed and converted to items, then sent to the col-
lector thread.

• The collector thread handles the requests coming from the clients and con-
vertes them into items. If needed, it generates any additional item needed,
and sends them to the cluster through the backend thread, or to the dis-
patcher thread in case a reply must be forwarded to the application.

• The dispatcher thread reads items coming from the cluster and from the
collector, and handles them accordingly, generating any required notifica-
tion and sending it to the client application through the slave thread.

• The two backend threads handle the low-level communication with the
cluster. They send and receive data through FIFOs and they interface with
the PCIe driver.
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Figure 2.13: HN daemon structure
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Conclusions

In this chapter we described the current architecture developed within MANGO.
As shown, the system doesn’t provision mechanism for proper memory transfer
achievements nor any provision for effective bandwidth reservation policies.

It is the goal of this thesis to provide such support by analysing a strategy,
deploying it and validating it. We describe it in the next chapter.



CHAPTER 3

Implementation of E�cient

Memory Transfers

As the main objective in this thesis we need to implemented efficient memory
transfers on top of the architecture previously described. As the architecture is
highly complex, we need to break down the effort and modifications in several
parts. One important aspect is to allow multiple applications concurrently trans-
ferring big amounts of data between the host and the memories located on the
FPGA, and the fact that those transfers need to be weighted (each application
may reserve different amounts of bandwidth).

Taking this into account, the following changes are identified:

Changes are required on every layer of the system:

• the application needs an API to send big chunk of memories and the ma-
nipulation of the QoS policies

• the HN library needs an efficient way to send the data to the daemon

• the HN daemon has to handle multiple transfers, potentially coming from
multiple applications, guaranteeing the QoS requirements

• the hardware architecture has to apply the same QoS policies adapted by
the daemon, offering efficient access to the memory modules

• the built-in network and the IO module need to be modified in order to
support concurrent transfers of data

An overview of the proposed solution is depicted in Figure 3.1. The figure
shows both, the software side running on the host, and the hardware system on
the FPGA side. The following modifications are suggested:

• applications will define and use shared memory segments instead of pipe
communication channels to send and receive data. This will remove a first
bottleneck for efficient transmission between applications and the HN dae-
mon;

• the HN daemon will be modified in order to support concurrent transmis-
sions, multiplexing them into the PCIe connection and following the QoS
policies set by applications;

29
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Figure 3.1: Hardware and software architecture of the proposed solution
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• the IO module will be modified in order to support multiple concurrent
transmissions (in both directions). This will be mainly provided by the in-
stantiation of different queues, one for each transmission. We refer to this
as data channels;

• the built-in network will be also adopted to support concurrent data chan-
nels by using more virtual networks. Indeed, one new virtual networks will
be instantiated for each data channel;

• specific modules will be implemented to support data channels transmis-
sion in the network interface modules;

• the DMA device will be modified in order to support also concurrent data
transfers. Currently, DMA supports only one data transfer;

• accesses to the memory controller need to be adapted as well in order to
support weighted accesses;

• memory access will be also optimized in order to reach maximum band-
width on DDR3 and DDR4 memories.

In the next sections, every part of the system is analyzed in depth.

Shared Memory API

The UNIX socket channel is not meant to move efficiently big chunks of data.
Sending data over a socket requires the kernel to make at least one copy of the
data, with a relevant additional overhead.

In the proposed solution, the data to transfer flows through the software lay-
ers in the form of a shared memory. A shared memory can be conceptually seen as
a memory segment which is shared among two different applications for inter-
process communication purposes. The kernel can easily implement this by map-
ping this memory segment in the address space of the involved processes. The
setup only requires a modification in the page table of the processes, and then al-
lows shared access to the data without incurring a data copy overhead. However,
the operations to handle the shared memory segments are still sent through the
UNIX socket, and is handled by the daemon like every other command.

The HN library implements the following functions to offer shared memory
creation and destruction.

1 uint32_t hn_shm_malloc(uint32_t size , void **ptr)

2 uint32_t hn_shm_free(void *ptr)

The hn_shm_malloc function allows an application to request the allocation
of a shared memory segment of the given size. The second parameter is actually
used to return the address of the shared memory segment in the application’s ad-
dress space. The underlying implementation relies on the POSIX shared memory
objects API and its main steps are described below.
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1 hn_shm_malloc(uint32_t size , void **ptr ) {

2 prepare allocation request of size bytes

3 send request to daemon over socket

4

5 read response from socket

6 extract shared memory ID from response

7 map shared memory in local address space using the given ID

8 set ptr to the local shared memory address

9 add shared memory informations to list of open shared memory

segments

10 }

The memory isn’t allocated in the HN library: it sends an allocation request to
the daemon and uses the returned handle to map the memory area into the ap-
plication address space. Then the address is returned to the application. A list of
active memory segments is kept for bookkeeping purposes.

The steps taken by the daemon upon the reception of such a request are re-
ported below.

1 on shared memory allocation request reception {

2 extract the size of the shared memory from request

3 allocate requested buffer

4 assign a unique name to it through the shared memory POSIX API

5 add buffer address to shared memory buffers list

6 send the name back to the application

7 }

The daemon, after receiving the allocation request, allocates the memory buffer
and maps it on a shared memory object, associating a unique name to it. This
name is then transferred to the user application, that using the same API can
access the shared object through its name and map it in its own address space.

The hn_shm_free function destroys a shared memory segment. On the appli-
cation side, the buffer is unmapped from the address space and removed from
the shared memory segments list. Then, a deallocation request is sent to the dae-
mon, which unmaps the shared memory object through the POSIX API, removes
it from the active memory segments list and frees the resources.

To send a memory chunk to the cluster, the following functions are provided.

1 uint32_t hn_shm_write_memory(void *ptr , uint32_t size , uint32_t

address_dst , uint32_t tile_dst , uint32_t blocking_transfer)

2 uint32_t hn_shm_read_memory(void *ptr , uint32_t size , uint32_t

address_src , uint32_t tile_src , uint32_t blocking_transfer)

The hn_shm_write_memory and hn_shm_read_memory functions have very
similar prototypes. They require a pointer to the memory area to send, together
with its size. Then the source/destination tile and address should be provided.
The last flag allows the application to choose between a synchronous or an asyn-
chronous transfer: the former requires the transfer to be completed before re-
turning the control to the application, while the latter allows the application to
continue its execution. The implementation of these functions relies on a set of
functions provided by the daemon called data burst API, which is documented in
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the section Data Burst Transfers Management. Here the main steps taken by these
functions are reported.

1 hn_shm_write_memory(void *ptr , uint32_t size , uint32_t address ,

uint32_t tile , uint32_t blocking_transfer) /

2 hn_shm_read_memory (void *ptr , uint32_t size , uint32_t address ,

uint32_t tile , uint32_t blocking_transfer) {

3 for each registered shared memory segments shm {

4 if ptr inside shm address range {

5 calculate offset = ptr - shm base address

6 format data burst request

7 send data burst request to daemon

8

9 wait response from socket

10

11 break

12 }

13 }

14 }

Both functions allow the application to send just a portion of the mapped mem-
ory. For this reason, the pointer could be placed anywhere inside a shared mem-
ory segment. The HN library uses the list of the active shared memory areas to
check if the given pointer and buffer size are within the bounds of a mapped seg-
ment. It then converts the pointer to an offset relative to the shared memory base
address: this offset is passed on the daemon side to identify the start of the chunk
of data to be sent.

Weights API

A weight management function has been added to the HN library. It allows to
change the weight vector at runtime, thus giving maximum flexibility to a re-
source manager in terms of network and memory bandwidth allocation.

The prototype is here reported.

1 uint32_t hn_set_vn_weights(uint32_t *weights , uint32_t

num_weights)

The function takes as arguments the weight vector and the number of valid
weights in the vector. The pseudocode of the implementation is then reported.

1 uint32_t hn_set_vn_weights(uint32_t *weights , uint32_t

num_weights) {

2 pack weights into a bit vector

3

4 for each tile t in the system {

5 generate tilereg write request on weight vector register at

tile t

6 send request to daemon

7 }

8

9 generate daemon backend weights update request

10 send request to daemon

11 }
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A TILEREG write request with the new vector is generated for every tile in the
system and sent to the daemon. This allows to propagate the weights on the
hardware side. Then, a special request is sent to the daemon, that instructs it
to update the weights inside the backend. In this way, both the hardware and
software arbiters are properly updated.

It should be noted that applications are not meant to use this function directly,
even if they could. In fact the application, that can only access memory transfers
through the shared memory API, has no way to ask the daemon for a transfer to
be assigned to a specific data channel.

Bandwidth management is resource manager’s responsibility. Some future
work might consist in adding an API to allow a resource manager to handle the
channel assignment among the applications. With the current implementation,
channels are assigned in a round-robin fashion among the incoming requests.
More details are provided in the next section.

Data Burst Transfers Management

The HN daemon needs to be restructured, to account for the shared memory and
burst transfers API offered to the HN library, and for the data channels imple-
mented on hardware. Moreover, the arbitration scheme between the data chan-
nels should be implemented to account for QoS requirements. In Figure 3.2 the
daemon’s structure is presented again, with all the required changes clearly high-
lighted.

The collector thread reads clients’ requests from the corresponding output
FIFO. It is thus the first thread to receive shared memory of data burst transfer
requests. It has the goal of decoding the request, and forwarding every additional
request to the other threads.

The backend threads share a common data structure named shm_running_transfers_table,
used for bookkeeping purposes, and summarized in Figure 3.3. The table tracks,
for each channel, the list of active downstream and upstream data transfers. By
querying and updating the table, the two threads advance the execution of the
transfers up to their completion. In case of downstream transfers, the dispatcher
thread is in charge of receiving the completion notification from the FPGA. When
the transfer is completed, a notification is generated for the client, if the transfer
was blocking. In any case the table slot associated with the transfer gets marked
as free.

Item Collector

The item collector thread must read and process requests coming from clients.

For the scope of the proposed modifications, two kind of requests are relevant:
shared memory and data burst transfer requests. As the former have been already
analyzed previously, only the latter are considered here. The collector thread,
upon the reception of a data burst transfer request, after validating the request
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Figure 3.2: New HN daemon structure
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shm_running_transfers_table

....

channel 0

transfer entry

status

 - free

 - num_pending_acks

 - total_counter

 - chunk_counter

 - start_�me

memory transfer info

 - client_id

 - type

 - base_addr

 - �le

 - system_addr

 - size

 - blocking

channel N

Figure 3.3: shm_running_transfers_table data structure

parameters, sends it to the appropriate backend thread, depending on whether
the operation is a read or a write. The steps of the algorithm are here reported.

1 on data burst transfer request reception {

2 extract shared memory ID from request

3

4 for each registered shared memory segments shm {

5 if shm matches ID {

6 extract shm base address

7 extract start offset from request

8 calculate transfer start address as shm base address +

offset

9

10 if transfer is downstream {

11 send transfer info to downstream commands queue

12 } else if transfer is upstream {

13 send transfer info to upstream commands queue

14 }

15

16 break

17 }

18 }

19 }

Backend to FPGA Thread

The backend to FPGA thread has the role of sending the data to a memory module
in the system. At a given time, multiple transfers could be active on different
data channels. This thread interleaves those transfers on the single physical PCIe
channel, implementing a weighted arbitration scheme that allows to meet the de-
sired QoS levels. For this reason, a write operation that is seen as a whole on the
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application layer gets split into many smaller data burst transfers on the back-
end layer. All the necessary bookkeeping is done through the shared memory
transfers table, and abstracted away from the upper software layers. The smaller
transfers size can be fine-tuned by modifying a macro inside the daemon source
code. The number of smaller transfers also determines the number of completion
notifications that are received by the cluster: the dispatcher thread is aware of the
expected number of notifications and detect when the transfer as a whole can be
considered completed. More details are provided in the Item Dispatcher Thread
section. The main steps of the algorithm are here reported.

1 if item FIFO to send not empty {

2 dequeue and send the items to the FPGA

3 }

4

5 for each channel taken in weighted order {

6 if pending transfers on this channel {

7 send sub -transfer header and data to the FPGA

8 update transfer info

9 break

10 }

11 }

12

13 while shared memory command FIFO not empty {

14 dequeue command

15 pick a channel in a round -robin fashion

16 add the transfer to the shared memory transfers table on the

selected channel

17 }

Backend from FPGA Thread

The backend from FPGA thread receives data chunks and items from the cluster.

Every hardware data channel is equipped with a FIFO, so in case of multiple
running transfers, the thread must pick data in a way that preserves the band-
width allocation requirements. For this reason, a weighted arbitration is used
to pick among the upstream FIFOs. The main steps of the algorithm are here
reported.

1 if item FIFO to receive not empty {

2 read items and send them to dispatcher thread

3 }

4

5 for each channel taken in weighted order {

6 if channel hardware FIFO not empty {

7 read chunk of data from FIFO

8 update transfer info

9

10 if we got all expected data {

11 mark transfer as completed

12

13 if tranfer is blocking {

14 notify completion to client application

15 }

16 }
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17

18 break

19 }

20 }

21

22 while shared memory command FIFO not empty {

23 dequeue command

24 pick a channel in a round -robin fashion

25 add the transfer to the shared memory transfers table on the

selected channel

26 launch the hardware DMA transfer on the selected channel

27 }

Item Dispatcher Thread

The item dispatcher thread processes the items coming from the cluster. It plays
an important role in the downstream transfers management, as it is in charge
of receiving and handling the transfer completion notifications coming from the
cluster. In fact, the only way for the daemon to be sure that all the data has been
sent, is to wait for all the notifications to be received by the dispatcher. Every
notification carries the channel ID: the dispatcher thus uses it to access the shared
memory transfers table and update the corresponding transfer status. In case all
the notifications are received, the transfer is marked as completed, and a notifica-
tion is forwarded to the client if the transfer was marked as blocking.

The relevant algorithm steps are here reported.

1 on interrupt reception {

2 if interrupt is downstream data burst completion {

3 extract channel ID from the notification

4 update shared memory transfers table

5

6 if we got all expected notifications {

7 mark transfer as completed

8

9 if transfer was blocking {

10 notify completion to client application

11 }

12 }

13 }

14 }

Hardware Data Channels

Data channels are logic lanes onto which data transfers flow. They are indepen-
dent from one another, meaning that they share no physical resources. It should
be noted that to communicate with other tiles various data channels may need ac-
cess to the router. To guarantee resource isolation, each data channel is mapped
on a different virtual network (the first data channel to VN3, and so on...).

As data reaches the cluster through a single PCIe physical connection, the IO
device is in charge of demultiplexing the traffic toward the correct data channel. It
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Figure 3.4: IO module

thus abstracts away from the mesh the details about how channels are generated
and fed with data.

The channels enter the system from the tile where the IO device is plugged:
from there they reach every tile in the system. A data channel can thus target
every memory module inside the cluster.

On the other hand, multiple data channels could be targeting the same mem-
ory controller. For this reason, an arbitration stage is put in place. For down-
stream transfers, the arbitration is done as late as possible, inside the MC from net
module, just before reaching the memory controller. For upstream transfers data
is generated using the DMA channels: for this reason an arbitration stage is put
just inside the memory controller, before the DMA read requests get sent to the
physical memory module. When data from the memory module is ready, the MC
to net receives and demultiplexes it among the various channels.

IO Module

The IO module is in charge of communicating with the server on one side, and
with the mesh of tiles on the other. In particular, it receives the physical PCIe
signals from the corresponding connector, and it extracts from there the commu-
nication data to inject into the cluster. The structure of the module is reported in
Figure 3.4.

The low level communication is handled by a set of IP cores provided by
ProDesign. They are clocked at a higher clock frequency to meet the required
performance level.
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First we have the physical PCIe module. It converts the PCIe interface into an
MMI64 interface, which is a communication protocol once again developed by
ProDesign. Then the data gets to an MMI64 router, which has a set of peripherals
connected to it. The server, through a specific API, can query the router inside
the cluster to report the amount and the type of modules connected to it. Each
MMI64 module instance has an associated identifier and an address. Through
this addressing feature, the server can send data messages to a specific peripheral.
A light MMI64 header is added to the sent payload, that allows the router to
forward the message to the correct peripheral, working as a demultiplexer among
the various channels.

The MMI64 router acts as a serialization point: from now on downstream
traffic flows through parallel channels up to the MC from net modules, and the
upstream traffic coming from the parallel channels gets serialized and sent to the
server. In a similar fashion items flow through the item network interface. Even if
they are supported by the IO module, the mesh instantiates just one item channel,
as item traffic is usually composed of low priority debug informations, so more
resources are left available for data channels.

Each channel is composed of a pair of peripherals: a REGister InterFace, used
for downstream traffic, and an UPSTReam InterFace, used for upstream traffic.

Both modules interact with an asynchronous FIFO: this allows to bring the
data from the MMI64 clock domain to the system clock domain, which is used by
the system modules to read from the FIFOs.

Two types of channels are supported: item channels and data channels. They
are differentiated on the hardware level because of the different interface with the
mesh: items are 32 bits wide, while data words are 64 bits wide. For this reason,
the FIFOs at the system boundary have different bus width. The clock signal
used to read from the FIFOs is also different, as the item network and the data
network are run by two different clock domains. The IDs used by the peripherals
belonging to the two channel types are in different ranges: in this way the HN
daemon can differentiate between them, and know how many channels of each
type are present in the system.

Network Interface

The data coming from the IO device gets read by the mesh. The IO device can
be seen logically connected to a specific tile into the mesh: this is the point where
data enters the system and gets moved to the other tiles, if needed.

Inside the tile, the data is read by the module responsible for the communi-
cation: the network interface. The updated structure of the network interface is
reported in Figure 3.5. The new modules and wirings are marked in bordeaux.

Additional ports are placed in the network interface to account for the data
channels, each interacting with a pair of modules called EXT to net and EXT from
net.

In case of a downstream transfer, data enters from one of the iodev_data_i ports,
thus reaching the corresponding EXT to net module. The EXT to net module for-
wards the traffic from the IO module to the MC from net or to the injector, de-
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Figure 3.5: Network interface changes
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Figure 3.6: EXT TO NET module

pending on whether the destination memory controller is a local or remote one.
For remote transfers, data is injected on the virtual network corresponding to the
data channel. In the destination tile, the ejector forwards the data to the MC from
net module, which once again provides a port for each data channel. This mod-
ule arbitrates between the various data channels, generating a request sequence
to the memory controller that takes into account the weights specified by the ap-
plication.

For upstream transfers, the DMA generates the memory read requests re-
quired to generate the data flow coming from the memory controller. This traffic
enters the network interface from the MC to net module. It analyzes the desti-
nation field of the message to determine if it should be delivered to a local or
remote IO device. In case the destination is the local IO device, the memory block
gets forwarded to the EXT from net module, otherwise it is injected on the vir-
tual network associated with the data channel. In the destination tile, the ejector
forwards the contents to the corresponding EXT from net.

The injector has thus to support an additional number of input ports that
equals the number of data channels, to allow the various EXT to net modules
to inject independently from each other. In the same way, the ejector has to sup-
port one output port per data channel, which are used to feed the EXT from net or
MC from net modules.

EXT to net

The goal of this module is to identify the destination of a downstream trans-
fer, thus forwarding the data to the local memory controller or to a remote one
through the network. The structure of the module is depicted in Figure 3.6.

The incoming data gets enqueued in a FIFO and its output evolves the state
machine inside the module. Although the data word size is 64 bits (8 bytes), data
burst transfers have memory block granularity, which are 512 bits (64 bytes). On
the other hand, network flits are 64 bits wide. For this reason, the two output
ports of the module are asymmetric: if data has to reach the local memory con-
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Fields
Bit range 97 - 66 65 - 62 61 - 50 49 - 18 17 - 6 5 - 0

Width 32 4 12 32 12 6
Name Start address - Sender Size Destination Command

Table 3.1: Downstream burst transfer header block

on �rst word received

on full header received

if tx for remote �le

on full header received

if tx for local �le

on header injected

INJECT_HEADER

HEADERIDLE

DATA

on transfer completed

Figure 3.7: EXT TO NET control logic

troller, memory blocks are rebuilt with a deserializer; otherwise data flows as-is
to the inject interface.

To determine the destination of a downstream transfer, the module looks at
the first incoming block, from now on called burst header (not to be confused with
the network header). This block contains informations about the incoming data
burst and not data meant to be written to memory. It is used by the modules that
are aware of the memory transfer, the EXT to net and MC from net, to handle it
correctly. The format of the burst header is reported in Table 3.1.

The header and then the whole burst are processed by a control logic imple-
mented as a finite state machine, whose details are provided in figure Figure 3.7.
The first word that is received (that is, the lower part of the burst header) contains
the destination tile. From this, the control logic knows where to forward the data.

For local transfers the burst header, and then the burst data, can proceed di-
rectly to the deserializer. It should be noted that the burst header is also passed
along to the next module, which is the MC from net. The reasons are explained in
the next section.

For remote transfers, the control logic has to first generate a network header
flit for resource allocation inside the router. The format used is the one reported
previously in Table 2.6, where the command field has the value EXT_TO_MEM.
It should be noted that the header flit cannot be generated after the reception
of the burst header’s first word. In fact the destination address, that should be
included in the network message, is placed in the burst header’s second word.
Thus the burst header is first rebuilt into an internal buffer, then the network
header is generated and injected, followed by the buffered burst header. This
introduces a small overhead (to be precise, an 8 clock cycles overhead needed to
buffer the burst header), which becomes negligible when compared to the length
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Figure 3.8: MC FROM NET module

of the burst transfer. The virtual network associated to the module is set by the
network interface at design time.

The burst header is also used to extract the size of the burst. The EXT to net
is thus able to detect the end of a transfer and generate the appropriate transfer
completion signal. It is routed up to the item network interface, where an inter-
rupt item is built and sent upstream. In case of remote transfers, the last flit must
also be marked as a tail flit: this allows the routers along the path to release the
resource allocated for this virtual network.

MC from net

The MC from net already provided memory access to the unit. The required mod-
ifications are depicted in Figure 3.8. New ports are added to account for burst
transfers, which can come from the network or from the local tile.

The first block received on a data channel is always a burst header, with the
format described previously. The header’s field of interest is the destination ad-
dress. The MC from net saves and updates it on every received block, thus al-
lowing to save the bandwidth required to send the address for every block. It
decrements the transfer size until it reaches 0, which means that the burst trans-
fer is finished.

An arbitration stage decides which data channel is allowed to write to mem-
ory. The weight should be here enforced to guarantee the required write band-
width to each data channel.
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Figure 3.9: EXT FROM NET module

EXT from net

This module has the responsibility of sending to the IO device the data, which
can come from a local or remote memory controller. The structure of the module
is depicted in Figure 3.9.

The bus with the IO device is 64 bits wide, thus requiring a deserialization
stage if data is coming from the local memory controller. In the other case, data
can be directly forwarded to the IO device.

MC to net

The MC to net module delivers memory blocks coming from the local memory
controller to the destination module, injecting it through the network if needed.
The structure is reported in 3.10.

In the case of an upstream burst transfer, the DMA module submits the read
requests to the memory. As a DMA channel is implemented for each data chan-
nel, if multiple upstream transfers are targeting the same memory the channels
compete for memory access. Then the MC to net module receives the read results,
and has to extract informations to understand if it is an upstream burst transfer,
and from which DMA channel the request came.

The transaction information returned by the memory controller are used to
detect burst transfers. In particular, the destination field of the transaction is used
to detect if the memory block is meant to be delivered to an EXT module. The
ID field of the transaction, which is used to identify memory reads when they
are generated from a unit module, is used to save the DMA channel from which
the request was made. The MC to net module thus analyzes those fields and acts
accordingly.

If the data is meant for a local EXT module, the memory block is forwarded
as-is. If the block has to be injected, it is first deserialized into flits. For each
memory block a header flit is generated with the transaction information. The
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virtual network is chosen accordingly to the DMA channel that generated the
request.

Injector

The injector supports a parametrised number of input sources, where each input
source can inject on a different virtual network. The internal structure is depicted
in Figure 3.11.

Both these functionalities are exploited for data burst transfers. For down-
stream transfers, a variable number of EXT to net modules are connected to the
injector, each injecting on the virtual network associated to its own data channel.
For upstream transfers, the MC to net module receives and injects data coming
from the local memory controller, where each block can be the result of differ-
ent DMA channels’ requests, and thus has to be injected on a different virtual
network.

To guarantee that the bandwidth reservation requirements are preserved, a
weighted arbitration scheme is implemented inside the switch allocator.

Ejector

The ejector should forward the network messages to the corresponding local
module. The structure of the module is reported in Figure 3.12. It is built of
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parallel lanes, one for each virtual network, and each lane forwards messages to
one or more local modules.

The first lane, associated with virtual network 0, receives and rebuilds re-
quests for the local memory controller. The deserialization process produces a
572 bits wide request, which is forwarded to the MC from net module.

The second lane, associated with virtual network 1, receives messages for the
local unit. The messages meant for the unit are passed first through the MANGO
TO UNIT module, which can receive the raw flits coming from the network. So
the ejector just forwards the flits to the next module.

The third lane, associated with virtual network 2, receives messages for the
local TILEREG. Raw flits are passed to the TR from net module.

Then there is a lane for each additional virtual network supported, which
means one lane per data channel. After reception on one of these channels, the
transfer type should be identified: downstream traffic has to be forwarded to the
MC from net, while upstream traffic has to go to the EXT from net module. The
demultiplexing is done analyzing the command field of the header flit. Then the
channel is assigned to a specific output module until the tail flit is received and
the assignment gets lost. A deserializer is also used on the downstream path to re-
build blocks meant for the local memory controller, while raw flits are forwarded
through the upstream path.

DMA

The DMA module is modified to provide a convenient way to move memory
segments, which is accessible both to the units and to the server applications.
The target of a DMA transfer can be another memory in the system, a unit, or
an IO device. To support several concurrent transfers, the DMA implements a
number of DMA channels which are fully independent and that inject requests
to the memory controller in parallel. It is the memory controller’s responsibility
to implement an arbitration policy. The structure of the module is reported in
Figure 3.13.

The DMA programming interface is meant to be used through the TILEREG
module. It accepts a series of configuration words coming from a 32 bits wide
port, which matches the size of a TILEREG register. The configuration words in-
clude information about the channel to be selected, the source address, the desti-
nation address if data is transferred to another memory module, the transfer des-
tination module (unit, memory controller, IO device) and the number of blocks to
move. Once the last configuration word is received, the channel starts to gener-
ate requests. In a similar way, an availability signal is generated for each channel,
and they are mapped on another TILEREG register.

The server can thus use the DMA interface by sending a write command to the
TILEREG through the item network, targeting the DMA programming register.
In a similar way, this register can be mapped in a unit’s address space, allowing
the unit to access it like a memory mapped peripheral.
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Figure 3.14: Proposed memory controller architecture

A transfer completion signal is provided on a per-channel basis. It is routed
up to the item network interface, where an interrupt item is generated and sent
to the server.

The memory controller annotates the channel number of each request, and
forwards this information to the network interface. If the data should reach an
IO device, that is, if the DMA requests are part of an upstream burst transfer,
the DMA channel number determines the data channel onto which data is sent.
For this reason a one to one mapping exists between DMA channels and data
channels.

Memory Controller

The memory controller collects and serves memory access requests coming from
two sources: the network interface and the DMA. Its interface has been already
described previously; here only the required modifications are discussed. In Fig-
ure 3.14 the new module structure is reported.

Support is added for multiple DMA channels. A weighted arbitration stage
grants access to one channel at a time, ensuring that the bandwidth allocation
requirements are met. The winning channel then competes with the network
interface for memory access: here a round-robin policy is applied. It should be
noted that in case of parallel downstream and upstream transfers, the round robin
stage distorts the applied weights, leading to a violation of the QoS constraints. A
possible solution, although not implemented, would be to move the downstream
transfers arbitration from the network interface to the memory controller: here
downstream and upstream requests would be grouped by channel, and the ar-
bitration stage could be properly applied on a channel basis, thus weighting the
memory accesses among different channels and meeting the QoS constraints.
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The winning DMA channel number is saved into the transaction information
FIFO. When data comes from the memory wrapper, transaction details are de-
queued from the FIFO and sent to the network interface. The channel number
is sent in the transaction ID field, which is just used for unit memory access and
would otherwise be not used in DMA memory transfers.

Memory Wrapper Redesign

The memory wrapper, already described previously has been redesigned to aim
for performance improvements. The old implementation relied on a traffic gen-
erator module provided by Xilinx connected through an AXI bus to the MIG IP
core, who handled the physical connection with the memory. The traffic gener-
ator waits for the current memory access completion before submitting the next
one.

The MIG module provided by Xilinx can apply various optimizations to the
memory access pattern to ensure better performance. In particular, memory ac-
cess reordering can significantly improve DDR memory bandwidth. But the traf-
fic generator behaviour prevents any optimization from being applied.

The memory wrapper is thus redesigned as depicted in figure Figure 3.15.
The traffic generator together with the AXI wrapper around the MIG module
have been removed. The MIG module thus offers what is called the native inter-
face, which allows to exploit the maximum performance offered by the memory
module. A light adapter logic is placed between the memory wrapper interface
and the MIG interface, that doesn’t introduce any clock cycle latency. The overall
structure is thus simpler while allowing to achieve higher levels of performance,
as analyzed in the next chapter.
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CHAPTER 4

Performance Analysis

The lead design goal in the implementation of the documented changes has been
to exploit the full system bandwidth of the MANGO platform. For this reason
every module involved in memory transfer operations underwent an in-depth
analysis to ensure that maximum throughput is achieved. As the system is com-
pletely parametrisable, the maximum reachable bandwidth depends on the de-
tails of the specific architecture being implemented.

The hardware and software tunable parameters that affect the transfer perfor-
mance are now listed:

• clock frequency. The clock frequency used inside the mesh determines the
throughput of the system. As the architecture is implemented on FPGAs,
the clock speed mostly depends on the complexity of the hardware being
implemented compared to the available physical resources;

• relative position of the IO device and the memory controller. If the data
flowing through the IO device has to cross the network to reach another tile,
the bandwidth could be reduced, also depending on the transfer type. More
details are discussed further;

• downstream transfer chunk size. A downstream transfer gets split inside
the HN daemon into smaller transfers, to allow them to be properly time
multiplexed on the single PCIe link. As every PCIe transfer has an initial
setup latency, the goal should be to minimize the amount of transfers that
are launched. At the same time, setting a bigger chunk size could affect the
performance of smaller transfers. An optimal trade-off can only be found
by analyzing the specific application workload.

In the next sections performance is evaluated, both in case of a single running
transfer and of multiple running transfers with bandwidth reservation require-
ments.

For the purposes of this tests, four hardware architectures have been synthe-
sized, which differ in the placement of the memory module, the number of imple-
mented data channels and the clock frequency. Besides that, all the architectures
share the remaining configuration. They are composed of two tiles, with no unit
module inside. The tiles are implemented on the same FPGA, which is a Xilinx

53
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Figure 4.1: Hardware architectures for performance evaluation

Virtex-7 2000 with PCI express support and a 2 GB DDR3 memory attached. The
weight vector, used for bandwidth allocation, is composed of ten elements. This
allows to allocate the bandwidth with a 10% resolution. The various hardware
configurations are depicted in Figure 4.1, where the dashed lines represent data
channels. To account for the physical hardware limitations, when two data chan-
nels are implemented, the clock frequency must be lowered to meet the timing
constraints of the design.

The data flows between the IO module and the mesh. The bandwidth on this
interface, called from now on IO bandwidth, is an upper bound on the achievable
bandwidth for a burst transfer. The interface is clocked with the system clock,
and the bus width is 8 bytes (64 bits). We can deduce the following formula to
calculate it.

IO Bandwidth = Clock Frequency ∗ 8 B/s

Then also the network bandwidth could lower the efficiency of a memory trans-
fer that has to reach a remote tile. However, as the flit size is also 8 bytes and the
network clock speed is the same, the IO bandwidth and the network bandwidth
are the same. From now on they are referred to as system bandwidth. Depending
on the data path structure, additional latencies can be introduced, which lower
the effective bandwidth. In the next sections the downstream and upstream trans-
fers data path are analyzed in-depth to identify the possible source of latency.

The transfer bandwidth is reported as perceived from the HN daemon, calcu-
lated as the size of a memory transfer divided by the time elapsed between the
reception of the request and its completion. The completion of a downstream
transfer is notified with an interrupt item, while an upstream transfer is consid-
ered complete when all the data has been received by the daemon.

Downstream Memory Bandwidth

Downstream transfer bandwidth is evaluated for local and remote transfers with
just one data channel implemented. So architectures L1 and R1 are used. As the
clock frequency is 100 MHz, the system bandwidth is equal to 800 MB/s.

The transfer bandwidth is affected by additional software and hardware over-
heads introduced between the time when the transfer is requested and the time
when the hardware notifies the transfer completion. The list of relevant opera-
tions that are executed after receiving a downstream data burst request is here
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reported. To minimize the overhead related to the PCIe transfer setup, the trans-
fer is sent as a whole and not split into smaller chunks.

1. The first free channel is assigned in a round robin fashion (in this case the
only one implemented);

2. the shared memory transfers table is updated;

3. the start time is registered;

4. the weighted arbiter selects the next transfer to process (in this case we have
just one transfer);

5. the burst header and then the whole data are sent and the transfer is marked
as finished;

6. when the dispatcher thread receives the completion notification, the end time
is registered;

7. the bandwidth gets calculated as the size of the transfer divided by the dif-
ference between the two registered times.

The most noticable overheads are expected to be present on step 5 and step 6.
In the first case, the PCIe transfer should be initialized. The PCIe driver could add
a non negligible latency to the transfer setup. In the second case, the notification
travels through the item network, then gets enqueued in the IO module until a
PCIe transfer is started on the hardware side and the notification is sent to the
daemon.

Moreover, for the reasons explained in section 3.3.2, an 8 clock cycles latency
is introduced when a remote transfer is started. Also, for both remote and local
transfer the burst header is sent as the first data block, incurring an additional
8 clock cycles penalty. However, this overhead is negligible compared to the
amount of data blocks transferred.

In Figure 4.2 the measured bandwidth is reported. The dashed line represents
the system bandwidth, that is, the upper bound on the achievable bandwidth.
The measurements show that there is almost no dependency between the transfer
size and the transfer bandwidth, which amounts to approximately the 97.5 % of
the system bandwidth.

The downstream data path doesn’t offer much room for improvements. A
refactoring of the burst header format can allow to save the 8 clock cycles latency
for remote transfers, but still the impact would be negligible. The PCIe trans-
fer setup latency cannot be overcome in the existing architecture as the physical
communication is handled by a set of proprietary IP cores. The IRQ transmission
time represents a price that must be payed to be sure that data has reached the
destination memory and is not still inside some buffers along the communication
data path.
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Figure 4.2: Downstream memory bandwidth per architecture

Upstream Memory Bandwidth

Upstream transfer bandwidth is also evaluated on architectures L1 and R1, that
offer a system bandwidth of 800 MB/s.

The list of operations that are executed after receiving an upstream data burst
request is here reported:

1. the first free channel is assigned in a round robin fashion (in this case the
only one implemented);

2. the shared memory transfers table is updated;

3. the start time is registered;

4. the DMA transfer is configured on hardware;

5. the daemon start to receive the data from the cluster, writing it into the
shared memory;

6. when the daemon receives all the requested data, the transfer is marked as
finished and the end time is registered;

7. the bandwidth gets calculated as the size of the transfer divided by the dif-
ference between the two registered times.

The main source of latency is introduced in step 4. In fact, to program a DMA
transfer some items need to be sent to the cluster over the low-performance item
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Figure 4.3: Upstream memory bandwidth per architecture

network. Once the items reach the destination tile, the DMA transfer is started
and data start to flow from the memory controller. This is expected to impact
significantly on the bandwidth perceived by the daemon. However, as this la-
tency doesn’t depend on the transfer size, the bandwidth should improve as the
transfer size increases.

For remote transfers, another significant overhead is introduced. In fact, as
described in section 3.3.2, a header flit is sent to the network for every memory
block transferred, which means paying 1 flit every 8 flits of useful data. For this
limitation, the maximum bandwidth that can be reached with a remote transfer
is 88.8 % of the system bandwidth.

In Figure 4.3 the measured bandwidth is reported. The red line represents
the system bandwidth, while the blue one identifies the 88.8 % threshold of the
system bandwidth. As expected, a strong dependency is observed between the
transfer bandwidth perceived by the daemon and the transfer size. The impact of
the DMA transfer setup gets smoothed as the duration of the transfer increases.
The remote transfer performances approach the maximum value, while the local
transfer performances amount to 91.2 % of the system bandwidth.

Performances of the remote upstream data path could be further enhanced.
The header flit could be sent just when the transfer is started, as it happens on
the downstream data path. This would allow to remove the 88.8 % bandwidth
limitation. The other main source of latency, the DMA transfer setup, is a price
that cannot be avoided.
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Figure 4.4: Downstream bandwidth reservation per architecture

Bandwidth Reservation

Bandwidth reservation is evaluated on architectures L2 and R2, which imple-
ment two data channels thus allowing to run two concurrent transfers, in this
case reaching the same memory module, whose position change between the two
architectures.

The presence of two data channels forces to lower the clock frequency com-
pared to the one channel implementation. Architectures L2 and R2 support a 50
MHz clock signal, thus offering a 400 MB/s system bandwidth.

The downstream chunk size has been set to 50 MB: the concurrent transfers
are split into sub-transfers of 50 MB each and time multiplexed on the physical
PCIe channel.

As the weight vector supports 10 elements, the bandwidth can be assigned to
channels with a 10 % granularity. In the tests here reported, the 2 GB memory
plugged into the system is fully written by two transfers. The sizes of the trans-
fers are chosen in a way that, given a specific bandwidth reservation, should
allow them to finish at the same time. This means that the size of each transfer is
proportional to the corresponding channel’s bandwidth, and the sum of the two
is equal to 2 GB.

The result of the downstream tests are reported in Figure 4.4. The dashed line
plots the expected performance. The measured performances are then plotted.
Corresponding to the 30 - 70 % split, the maximum distance between the two
curves is observed. In particular, the local transfer is 3.7 % far from the expected
performances, while the value for the remote transfer differs of a 4 % from the
ideal curve.

The result of the upstream tests are reported in Figure 4.5. Once again, the
dashed line plots the expected performance. The measured performances are
extremely close to the ideal ones.
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Figure 4.5: Upstream bandwidth reservation per architecture
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Figure 4.6: Measurement samples for a 20 - 80 % split

The bandwidth reservation measurements are affected by a great amount of
dispersion. A few measurement samples, taken with a 20 - 80 % downstream
split are reported in Figure 4.6. For some readings, the sum of the measured
bandwidth for the two transfers is greater than the total bandwidth of the system.
The cause of this can be traced back to the asynchrony between the transfers start
time. As the transfers are launched by different applications (or different threads
inside the same application), the difference between the transfer start times can
be non-negligible and non-predictable.

An artificial example is reported in Figure 4.7. The example scenario assumes
a total transfer bandwidth of 100 MB/s onto which a 20 - 80 % split should be
applied. The two transfers are meant to run for a total of 10 seconds, so they
are moving respectively 200 and 800 MB. When a latency is added between the
start times of the two transfers, we can see that the bandwidth perceived by the



60 Performance Analysis

0

20

40

60

80

100

120

140

0 2 4 6 8 10

C
H

0
re

q CH0 transfer time

C
H

1
re

q CH1 transfer time

Ba
nd

w
id

th
(M

B/
s)

Time (s)

CH1
CH0

Figure 4.7: Effective downstream bandwidth for a 20 - 80 % split

Configuration Elapsed time (ns) Bandwidth (MB/s)
Old 1643420 297.11
New 44865 10883.34

Table 4.1: Memory wrapper performance on a 500 KB read transaction

application gets distorted. In particular, the application sending on Channel 0 is
moving 200 MB in 6 seconds, with a corresponding bandwidth of 33.3 MB/s, or 33
% of the total bandwidth. In a similar way, the application allocated on Channel
1 perceives a bandwidth of 88.8 MB/s, or 88.8 % of the total bandwidth. The
sum of the two bandwidths, which equals to 122.1 MB/s, also exceeds the total
link bandwidth. This phenomenon does not pose any problem on the bandwidth
reservation goal. In fact, both applications’ QoS requirements are fulfilled.

Memory Wrapper Bandwidth

The performance of the proposed memory wrapper are here evaluated. The mod-
ule is isolated from the rest of the MANGO system, which would otherwise limit
the achievable bandwidth. The module is tested with an ad-hoc testbench, where
a sequential memory access pattern is requested. The simulated memory model
is a DDR3 memory with a 64 bit data bus clocked at 800 MHz, thus offering up to
11.92 GB/s of memory access bandwidth.

The simulation consists of a sequential memory read access pattern, moving in
total 500 KB of data. The bandwidth is then measured as the difference between
the time the first request is sent to the memory wrapper and the time when the
last chunk of data is returned. The results of the simulations are summarized
in Table 4.1. The new configuration offers approximately a X36 speedup on the
bandwidth offered by the memory wrapper.
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IO NI MC DMA MW
Data channels LUTs FFs LUTs FFs LUTs FFs LUTs FFs LUTs FFs

Old architecture 2894 2939 1811 4621 2756 1770 147 123 374 671
1 3186 3378 4933 8772 2699 1857 131 149 70 0
2 4608 4993 9622 1875 2734 1860 253 263 - -
3 5753 6595 12723 4959 2752 1862 377 377 - -
4 7035 8205 16896 8037 2799 1864 494 491 - -

Table 4.2: Area utilization per module
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Figure 4.8: Look-Up Table utilization per module

Area Utilization

As the target hardware platform of the design is an FPGA, resource utilization is
a factor that should be carefully evaluated, to allow the design to keep meeting
the design and timing constraints. On FPGA digital components are synthesized
using Look-Up Tables (LUTs) and Flip-Flops (FFs), grouped in logical cells called
slices: they thus represent the main source of resource starvation. LUT and FFs
utilization is reported in Table 4.2 for all the components that have been modified,
while Figure 4.8 plots the number of LUT against the number of data channels for
an easy visual analysis.

The internal structure of the modules is pretty regular: each data channel in-
stantiation requires approximately the same amount of resources. For this reason
the LUT utilization growth is linear. The network interface shows a growth of
a factor of 2.7 in resource utilization between the old architecture and the single
data channel configuration, and in the four data channels case the growth factor
amounts to 9, 3 compared to the old architecture. Indeed, the network interface
is where most of the changes are placed.

The IO module shows a weaker dependency on the number of data chan-
nels. The most resource demanding parts of the IO module are the physical PCIe
adapter and the MMI64 router, then for each data channel a register interface and
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a upstream interface modules are instantiated, which give a smaller contribute to
area utilization.

The DMA controller’s resource utilization has a very smooth and clear de-
pendency on the number of data channels. In fact, the number of data channels
determines the number of implemented DMA channels. Then the control logic is
barely unmodified in presence of more DMA channels: it just receives the control
words from the TILEREG and forwards them to the selected channel.

On the other hand, the memory controller area utilization shows almost no de-
pendency on the number of data channels. Indeed, the memory controller inter-
nal structure is mostly unchanged when multiple data channels are implemented.
The only difference would be the number of ports offered to the DMA controller,
and the complexity of the arbitration stage that grants access to a specific DMA
channel.

At last the memory wrapper area occupancy is reported. The resources oc-
cupied by the MIG IP core have been removed. Thus the numbers shown take
into account just the adapter logic between the mesh and the MIG module. It can
be seen that the amount of resources has been reduced drastically: has explained
before, the old design, which included a complex finite state machine to handle
memory transactions and adapt them to the AXI standard, has been replaced by a
simple combinatorial logic that adapts the mesh interface with the native MIG in-
terface. It should also be noted that the structure of this module does not depend
on the number of data channels, and so do the occupied resources.



CHAPTER 5

Conclusions

In this thesis efficient memory accesses in an heterogeneous system have been im-
plemented. The proposed solution allows to get very close to the ideal maximum
performance achievable, estimated after taking into account all the physical lim-
itations. Related to this, better results could still be achieved. In the Performance
Analysis chapter various future developments have been proposed, in particular
regarding the upstream transfer efficiency.

Memory bandwidth reservation mechanisms have also been implemented
and validated. This work has taken in consideration only bandwidth reserva-
tion among transfers of the same type, being downstream or upstream. In case
of mixed transfers, further modifications are required to meet the desired perfor-
mance. A possible solution has been briefly discussed in the Memory Controller
section.

On top of this, an additional software layer acting as a resource manager could
be developed. This would make the applications able to request the desired QoS
level, in terms of bandwidth toward a specific memory controller. The resource
manager would thus be in charge to assign a data channel to the application and
fine tune the weight given to each channel to meet the QoS requirements, if pos-
sible.

63





Bibliography

[1] TOP500. https://www.top500.org/.

[2] GREEN500. https://www.top500.org/green500/.

[3] MANGO project. http://www.mango-project.eu/.

[4] D. Chiou. The microsoft catapult project. 2017 IEEE International Symposium
on Workload Characterization (IISWC), Seattle, WA, 2017, pp. 124-124.

[5] Daniel J. Sorin, Mark D. Hill, David A. Wood. A Primer on Memory Con-
sistency and Cache Coherence. Synthesis Lectures on Computer Architecture,
November 2011, Vol. 6, No. 3, pp. 1-212

[6] Natalie Enright Jerger, Tushar Krishna, Li-Shiuan Peh. On-Chip Networks,
Second Edition. Synthesis Lectures on Computer Architecture, June 2017, Vol.
12, No. 3, pp. 1-210

[7] Xilinx Memory Interface. https://www.xilinx.com/products/

intellectual-property/mig.html.

65

https://www.top500.org/
https://www.top500.org/green500/
http://www.mango-project.eu/
https://www.xilinx.com/products/intellectual-property/mig.html
https://www.xilinx.com/products/intellectual-property/mig.html



	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	MANGO Project
	PEAK
	nu+
	TETRaPOD

	Goals and Motivations of this Work
	Structure of the Document

	MANGO Architecture
	Hardware Architecture
	Tile Structure
	Data Network
	Item Network
	Memory Wrapper

	Software Architecture
	HN Library
	HN Daemon

	Conclusions

	Implementation of Efficient Memory Transfers
	Shared Memory API
	Weights API

	Data Burst Transfers Management
	Item Collector
	Backend to FPGA Thread
	Backend from FPGA Thread
	Item Dispatcher Thread

	Hardware Data Channels
	IO Module
	Network Interface
	DMA
	Memory Controller

	Memory Wrapper Redesign

	Performance Analysis
	Downstream Memory Bandwidth
	Upstream Memory Bandwidth
	Bandwidth Reservation
	Memory Wrapper Bandwidth
	Area Utilization

	Conclusions
	Bibliography

