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Abstract In this paper, the geometry of single-walled car-
bon nanotubes without any external loading is analyzed via
an energy procedure. The nanotube is assumed to be in-
scribed into a perfect cylinder of unknown diameter, which
is estimated by minimizing the total interatomic potentialin-
volved into a basic cell with several carbon atoms and their
corresponding bonds. In this step, two interatomic potentials
have been adopted in order to compare their influence on the
obtained results. Our calculations show that the widely used
conformal mapping is not the most suitable option to repro-
duce the geometry of single-walled nanotubes in absence of
external loading. Likewise, a more accurate method to esti-
mate the initial diameter of the nanotube is developed, yield-
ing higher differences with smaller nanotubes in comparison
with other published works .

The present analysis can be useful in the framework of
Molecular Mechanics or continuum models as an alternative
way to introduce initial stresses (due to the curvature of the
cylinder) in the mechanical analysis, against other involved
methods.

Keywords Carbon nanotubes· Molecular mechanics·
Energy minimization· Prestressed state

1 Introduction

Carbon nanotubes (CNTs) have been a remarkable centre of
attention into the scientific and research community over the
past two decades, due to their outstanding mechanical and
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electrical properties [7]. For instance, CNTs show a singular
coupling between mechanical strain and electrical conduc-
tivity [21, 22], becoming ideal candidates for making nano-
sensors and nano electro-mechanical systems (NEMS), with
promising applications in robotics and biomechanics.

Regarding Materials Science and Engineering, nanotube
reinforced composites and polymers have shown a wide field
of potential applications, specially where a high strength-
to-weight ratio is needed (e.g. aircraft industry). The main
structural properties are their extreme longitudinal stiffness
[8] (Young’s modulus≃ 1 TPa) and tensile strength [3]
(σy ≃ 50 GPa).

The present work is focused on single-walled carbon
nanotubes (SWCNTs), which may be conceptualized as the
result of rolling up a graphene sheet into a cylinder. Into each
graphene sheet, Carbon atoms are arranged in a covalent-
bonded honeycomb lattice.

Prior to the practical application of nanotubes in man-
ufacturing composites (as well as other structural applica-
tions), a high understanding of their mechanical behavior
is needed. However, to date, there is no experimental work
about individual SWCNTs because their extremely small
size makes difficult to handle these nanomolecules. There-
fore, theoretical work is required in order to analyze the me-
chanical response of SWCNTs.

The existing analytical or numerical methods applied to
the mechanical behavior of nanotubes, can be roughly clas-
sified in two main categories: atomistic scale and continuum
scale methods. The atomistic methods, for instance Molecu-
lar Dynamics (MD), ab initio or tight-binding, can success-
fully reproduce physical phenomena as buckling [12,29] and
estimate elastic parameters of CNTs [21], but they have the
disadvantage of being limited at a relatively low number of
atoms (about 109 according to [27]) because of their high
computational cost.
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Otherwise, continuum methods are capable of analyze
longer systems, but the equivalence with the atomistic level
is not clear. In fact, the wall thickness adopted to repro-
duce the nanotube mechanical response through an equiv-
alent beam or shell model ranges fromt = 0.066 nm [29] to
the usual value of 0.34 nm [14], which corresponds to the
inter-planar distance in graphite. Even some authors deem
CNTs as solid cylinders [27]. In addition, continuum meth-
ods can not reflect the atomistic detail which may have an
important influence on the final response of CNTs.

As a compromise between both groups of models, Molec-
ular Structural Mechanics (MSM) models are reasonable in
terms of computational expense whereas atomistic scale is
correctly displayed. Some previous works [10, 11, 30] con-
sidered CNTs as a frame system with carbon atoms located
at nodes and rigid bars (provided with axial, flexural and
torsional stiffnesses) representing covalent bonds. Different
layers in multi-walled carbon nanotubes (MWCNTs) were
connected by several truss rods between neighboring atoms.
Alternatively, [19] modeled the graphene sheet as a 2D truss
model with additional rods through the unit hexagonal cell.

Included in the MSM models, the ‘stick-spiral’ model
introduced by [5] reproduces covalent bonds by axial springs
and the three-body interaction by three spiral springs on
each node. Since that work, several studies [17, 18, 26, 28]
tackled the determination of mechanical parameters of SWC-
NTs through the ‘stick-spiral’ model, but taking advantage
of the axisymmetry of ZigZag and Armchair nanotubes and
limiting their analysis to a small unit cell involving only a
few atoms. Although [6] generalized the work in [5] to Chi-
ral SWCNTs, the study is also restricted to representative
cell which reproduces the geometry of Chiral nanotubes by
means of theirhelicoidal symmetry.

From a more general point of view, [14] investigated the
longitudinal behavior of SWCNTs (even with Chiral nan-
otubes) by implementing the ‘stick-spiral’ model in the com-
mercial code ANSYSr, but including the whole geometry
of the nanotube in their simulations. In this line, [15] de-
veloped a general formulation for the same model able to
reproduce any loading and supporting distribution, oriented
to obtain the mechanical parameters of SWCNTs. Further-
more, in [16] the same authors extended the formulation to
calculate buckling strains under several loading schemes.

A specially important issue, mainly in atomistic models
is thepreenergy, defined as the excess of strain energy from
an infinite planar graphene sheet to the nanotube [9,29]. As-
sociated with this variation of strain energy, a system of in-
ternal stresses and strains in the nanotube will appear, lead-
ing to a stabilization effect into its cross-sectional area. In
fact, [25] studied the influence of the radius on the transver-
sal deformation due to the Van der Waals (VDW) interaction
in a set of SWCNTs and concluded that the flattening of the
cross-section increased with the radius. However, for nan-

otubes smaller in diameter (R < 10Å), where the preenergy
is determining compared with the VDW interaction, SWC-
NTs kept their cylindrical geometry. Likewise, [8, 20, 23]
have shown that the preenergy is proportional to the curva-
ture of the wall 1/R2 (where R is the tube radius).

Since the honeycomb lattice of Carbon atoms in the nan-
otube has a complex behavior, it is inaccurate to state that
the initial equilibrium configuration of SWCNTs is a per-
fect cylinder. In fact, some authors [4, 13] have proved by
means of nonlocal continuum models, that SWCNTs sub-
jected to tensile stresses or electromechanically actuated,
present end effects which separates the nanotube geometry
from the cylindrical shape. Within atomistic simulations,the
approach to the equilibrium geometry is often introduced
[1, 9, 12, 24, 29] by decomposing the loading process into
multiple stages and minimizing the total energy into each
stage by means of some numerical algorithm (e.g. dynamic
relaxation). Nevertheless, taking into account MSM models
are rather deterministic regarding the geometry, in [15] the
preenergy is introduced as a system of initial strains which
produces a ‘prestressed state’ previous to the action of ex-
ternal loads. As the structural system is statically undeter-
mined, there are many possible sets of initial strains and
stresses in equilibrium without external loads. To overcome
this hurdle, the usually proposed conformal mapping (see
e.g. [5, 7, 14, 28]) was adopted in such a way that Carbon
atoms are kept on the cylindrical surface involving the nan-
otube, while covalent bonds are located along secants among
two covalent-bonded atoms. In this sense, the estimation of
initial stresses is closely related to the choice of the specific
mapping adopted to reproduce the geometry of SWCNTs.

The main reason to use the conformal mapping from the
planar graphene sheet to a cylinder is the simplicity of its
analytical formulation. Therefore, some accuracy is missing
in order to approach the problem in a straightforward man-
ner. Nonetheless, in this paper a better approach to the initial
geometry of the nanotube is studied by means of an energy
minimization procedure. It is expected that initial stresses in
this improved geometry will be lower in comparison with
those obtained from the conformal mapping. In particular,
if stresses are small enough, the formulation of the ‘stick-
spiral’ model in [15] may be simplified by neglecting the
terms corresponding to the preenergy leading to a simpler
numerical implementation. In addition, a more accurate ob-
tention of the initial geometry of SWCNTs hopefully pro-
vides more reliable results of stresses, strains and buckling
patterns once external loads are applied.

In this work, the nanotube is assumed to be inscribed
into a perfect cylinder. Thus, our modeling of the geometry
does not incorporate the aforementioned end effects, since
they are considered to be locally concentrated in small re-
gions around both ends in long nanotubes. The obtention
of the initial geometry may be tackled in two steps. First,
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the diameter of the cylinder should be obtained, which is
worked out in the present paper. Secondly, a new analyti-
cal mapping is required to determine the location of Carbon
atoms on the cylinder, which will be treated in further re-
search.

In this paper, the main objective is calculating the di-
ameter for the unstressed geometry (assuming it is a perfect
cylinder) of ZigZag, Armchair and Chiral SWCNTs by us-
ing a energy approach, and comparing results between AM-
BER1 and Morse interatomic potentials (a detailed descrip-
tion is given in [15]). A method has been developed for this
purpose, in which analytical expressions have been derived
and numerically implemented. The present work improves
the theoretical approach to the initial geometry of the nan-
otube provided by the widely used conformal mapping.

As has been mentioned before, if the conformal mapping
is strictly employed, a set of initial forces between atoms
(and initial moments among neighboring bonds) should be
considered due to this mapping modifies the interatomic dis-
tances (and angles between bonds) with respect to their cor-
responding values in the planar graphene sheet. Such effect
has been evaluated in [15]. This study may be regarded as
a first step oriented to establish an alternative to the direct
estimation of initial strains and stresses, which hopefully
may simplify the numerical formulation of the ‘stick-spiral’
model.

The comparison of the obtained diameters with those
provided by the conformal mapping allows to study the ac-
curacy of the latter against the size of the nanotube.

The paper is organized as follows: in section 2, the main
assumptions and a brief description of the interatomic po-
tentials are provided. From section 3 to section 5, the main
equations and results of the energy approach are developed
for ZigZag, Armchair and Chiral nanotubes, respectively.
Finally, concluding remarks are addressed in section 6. As
additional content, in appendix A the validation of the ap-
proximate mapping adopted in Chiral nanotubes is included.
In appendix B estimation of error between AMBER and
Morse potentials into the energy approach is justified.

2 Initial assumptions and interatomic potentials

In order to find the diameter of unstressed nanotubes, the
following assumptions have been made:

1. The initial geometry of the nanotube is such that the
atoms are contained into a perfect infinite cylinder of
diameterd0.

2. There is no external load acting on the nanotube.

1 Assisted Model Building with Energy Refinement, force field
well-known in biomolecular simulation.

3. The total energy of the system is defined by the inter-
atomic potential under small strains assumption. There-
fore, terms related to electrostatic, VDW, torsion and in-
version interactions are neglected.

4. Since the longitudinal stiffness of covalent bonds is sig-
nificantly higher than angular stiffness between two neigh-
boring covalent bonds, the lengthening of covalent bonds
from the planar graphene sheet to the nanotube has been
neglected. Therefore, in the equilibrium state all bonds
area0 = 0.142 nm in length [7].

The basic procedure to calculate initial diameters will
be to minimize the total energy of the system, taking into
account two different interatomic potentials. Regarding as-
sumption 3, the AMBER potential (see e.g. [5], Eq. 8) can
be expressed as:

U = ∑Ur +∑Uθ = ∑
i

1
2

kr(∆ri)
2+∑

j

1
2

kθ (∆θ j)
2, (1)

where
∆ri lengthening of the bond i
∆θ j change in angle between two neighboring

covalent bonds involving the angle j
kr,kθ force constants to the longitudinal and

angular variations respectively

Following [10,17,19,26,30], the next values are adopted:

kr = 652
nN
nm

, kθ = 0.876
nN ·nm

rad
. (2)

Taking into account assumption 4, Eq. (1) can be simplified
as:

U = ∑
j

1
2

kθ (∆θ j)
2. (3)

Hence, the force constantkr is not involved in our cal-
culations. However, its value is included in (5) to complete
definition (1).

On the other hand, the Morse potential can be written as:

U = ∑
i

De{[1− e−β (∆ ri)]2−1}+

+∑
j

1
2

kθ (∆θ j)
2[1+ ks(∆θ j)

4], (4)

where the parameters involved have been taken from table 1
in [3], namely:

De =0.2895nN ·nm, β = 38.43nm−1,

kθ =0.8998nN ·nm, ks = 0.754rad−4, (5)

and regarding assumption 4, Eq. (4) can be simplified as:

U =−∑
i

De +∑
j

1
2

kθ (∆θ j)
2[1+ ks(∆θ j)

4]. (6)
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As the angular distortion∆θ j can be expressed as a function
of the nanotube diameterd, Eqs (3) and (6) adopt the form
U = U(d). Therefore, the diameterd0 corresponding to the
initial equilibrium geometry should verify the total energy
minimum condition:
[

∂U(d)
∂d

]

d0

= 0. (7)

In the following sections, Eq. (7) is developed and solved
for each chirality.

3 Initial diameter for ZigZag nanotubes

Zig-zag nanotubes (denoted herein as ZZ(m,0)) are com-
posed bym cells in the transversal direction and possess ax-
ial symmetry. An infinite SWCNT of this type can be gener-
ated by repeating in the axial direction the elemental system
depicted in figure 1. Thus, the energy minimization (7) can
be carried out over such system without loss of generality.

Since all bond lengths area0 in the equilibrium position
(no lengthening), we can write:

l = a0cosα, (8a)

l
2
= Rsin

( π
2m

)

, (8b)

where:
l projection of the bond length on the cross section of

the nanotube
α angle included from each oblique bond and the

transversal plane
Removingl from eq. (8), the next relation is reached:

d0 = 2R =
a0cosα
sin

( π
2m

) . (9)

For the sake of simplicity, we adoptα as independent pa-
rameter in the minimization process.

From figure 1, can be observed that there are only two
different sets of bond angles into our elemental system. The
first of them, included between bonds a-c and b-c, has a
value of:

θ1 = α +
π
2
. (10)

The second angleθ2 is the one formed by two consecutive
bonds a-b. The next diagrams (including three neighboring
atoms) depicted in figure 2 show this angle.

As can be seen, the coordinate system adopted in fig-
ure 2(b) includes the bond A-B in its{yz}-plane. Thus, the
following auxiliary vectors may be introduced:

v1 =
−→
AB = {0,−a0cosα,a0sinα}T , (11a)

v2 =
−→
AB′ =

{

−a0cosα sin
(π

m

)

,a0cosα cos
(π

m

)

,a0sinα
}T

,

(11b)

Fig. 1 Representative cell for Zig-zag nanotubes

obtaining the angleθ2 from their dot product:

cosθ2 = sin2 α
(

1+ cos
π
m

)

− cos
π
m
. (12)

Since in the planar graphene sheet all angles between bonds
are equal to2π

3 , from equations (10) and (12), the angular
distortions from the plane configuration can be expressed
as:

∆θ1 = α − π
6
, (13a)

∆θ2 = arccos[sin2 α(1+Cm)−Cm]−
2π
3
, (13b)

where:

Cm = cos
(π

m

)

. (14)

3.1 Energy minimization with AMBER potential

Applying the AMBER potential function (3) to our elemen-
tary system (see figure 1), which includes 4m angles of type
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(a) Cross section

(b) Perspective

Fig. 2 Diagrams to obtainθ2

θ1 and 2m angles of typeθ2, the next expression is reached:

U = mkθ (∆θ2)
2+2mkθ (∆θ1)

2. (15)

Forcing the minimum condition (7) into (15)

mkθ

(

2∆θ2
∂∆θ2

∂α
+4∆θ1

∂∆θ1

∂α

)

= 0, (16)

introducing (13) in (16) and operating, leads to:

−
{

arccos[sin2 α(1+Cm)−Cm]−
2π
3

}

·

· (1+Cm)sinα cosα
√

1− [sin2 α(1+Cm)−Cm]2
+
(

α − π
6

)

= 0. (17)

The latter expression is a nonlinear equation ofα, which
was solved numerically by the Newton method. Onceα is
obtained and substituting in (9), the values of diameterd0

outlined in table 1 are obtained fora0 = 0.142 nm. Likewise,
the diametersDt calculated with the conformal mapping [7]
and the relative error takingd0 as the reference solution are
included to get an insight into the difference.

As has been shown in table 1, our obtained diametersd0

are slightly higher than those obtained from the conformal
mapping. This difference is probably related to the stabiliza-
tion effect of the preenergy, which tend to expand transver-
sally the nanotube. The smaller the diameter is, the higher

m α (rad) d0 (nm) Dt (nm) ε(%)
ZZ(4,0) 4 0.4406 0.3356 0.3132 6.6746
ZZ(5,0) 5 0.4685 0.4100 0.3914 4.5366
ZZ(6,0) 6 0.4848 0.4854 0.4697 3.2344
ZZ(10,0) 10 0.5094 0.7925 0.7829 1.2114
ZZ(15,0) 15 0.5173 1.1808 1.1743 0.5505
ZZ(20,0) 20 0.5200 1.5706 1.5658 0.3056

Table 1 Initial diameters ZigZag, AMBER.Dt is the diameter associ-
ated to the conformal mapping,d0 is the obtained diameter from the
minimization procedure andε(%) represents the relative error taking
d0 as the reference solution

effect of the preenergy is found. Following [8, 20, 23], a
curve of the formε = k/R2 can be fitted by imposing it
passes through the first point (k = 0.1879 is obtained). Plot-
ting the obtained relative error and the fitted curve against
the diameter in figure 3, almost full agreement is found.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

d
0
 (nm)

ε 
(%

)

 

 

ZZ AMBER
Fitted curve

Fig. 3 Relative error against diameter (ZigZag, AMBER)

From figure 3, it may be remarked that a set of initial
forces and moments should be explicitly included (mainly
in MSM models) for smaller diameters when the conformal
mapping is adopted, specially for diameters below 0.8 nm
(ε > 1%).

3.2 Energy minimization with Morse potential

The expression (6) of Morse potential reduced to the ele-
mentary system in figure 1 can be written:

U =−4mDe+mkθ (∆θ2)
2[1+ ks(∆θ2)

4]+

+2mkθ (∆θ1)
2[1+ ks(∆θ1)

4] . (18)
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Forcing the minimum condition (7) into (18), the next equa-
tion is reached:

−∆θ2
[

1+3ks(∆θ2)
4] (1+Cm)sinα cosα

√

1− [sin2 α(1+Cm)−Cm]2
+

+∆θ1
[

1+3ks(∆θ1)
4]= 0, (19)

where∆θ1, ∆θ2 are functions ofα through (13). Thus, (19)
is an implicit equation ofα. Solving it numerically by the
Newton method fora0 = 0.142 nm and substituting in (9),
the initial diameter without external loading is rendered.The
obtained values ofd0 (not reproduced herein) were the same
as those in table 1, because the absolute error in the mini-
mum condition (7) between AMBER and Morse potentials
is lower than the accuracy (±10−4) adopted ford0 (see ap-
pendix B, table 6). Hence, it can be concluded that the ini-
tial diameter of ZigZag nanotubes is not influenced by the
choice of interatomic potential.

4 Initial diameters for Armchair nanotubes

The elemental system (including 2m cells in the transversal
direction) which generates an Armchair nanotube (named
herein as AC(m,m)) by repetition in the axial direction, is
represented in figure 4. In this section, the initial equilibrium
geometry of an Armchair SWCNT is studied by minimizing
the total potential energy of such a system.

From figure 4 and the diagram in figure 5(a), the next
relations may be established:

l = a0sinα, (20a)

a0

d0
= sin

θ
2
,

√

1−
(

a0

d0

)2

= cos
θ
2
, (20b)

l
d0

= sin
ϕ
2
,

√

1−
(

l
d0

)2

= cos
ϕ
2
. (20c)

In order to relate the nanotube diameterd0 to the angle
α (see fig. 5(b)), we can write:

sin

(

θ
2
+

ϕ
2

)

=sin
θ
2

cos
ϕ
2
+ sin

ϕ
2

cos
θ
2
= sin

π
2m

, (21)

cos

(

θ
2
+

ϕ
2

)

=cos
θ
2

cos
ϕ
2
− sin

ϕ
2

sin
θ
2
= cos

π
2m

. (22)

Squaring (21) and substituting (22), next expression is
reached:

sin2 θ
2

cos2
ϕ
2
+ cos2

θ
2

sin2 ϕ
2
+2sin2 θ

2
sin2 ϕ

2
+

+2sin
θ
2

sin
ϕ
2

cos
π

2m
= sin2 π

2m
. (23)

Fig. 4 Representative cells for Armchair nanotubes

Substituting (20) into (23) and operating

d0 =
a0

S2m

√

1+ sin2 α +2sinαC2m, (24)

where:

S2m = sin
π

2m
, C2m = cos

π
2m

. (25)

Similarly to the case of ZZ nanotubes, the angleα is adopted
as independent parameter in the minimization process for
Armchair SWCNTs. Therefore, relations of the angular dis-
tortions ∆θ1, ∆θ2 as functions ofα are needed. For this
purpose, figure 5(b) is useful to define the next auxiliary vec-
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(a) Cross section

(b) Perspective

Fig. 5 Diagrams to obtainθ1, θ2

tors:

w1 =
−→
BB = {a0,0,0}T , (26a)

w2 =
−→
BA = {−a0sinαC2m,a0sinαS2m,a0cosα}T , (26b)

w3 =
−→
BA′ = {−a0sinαC2m,a0sinαS2m,−a0cosα}T .

(26c)

The dot productswT
1 w2 and wT

2 w3 allow to calculate, re-
spectively

cosθ1 =−C2m sinα, (27a)

cosθ2 =−cos2α. (27b)

From (27b), it followsθ2 = π − 2α. Thereby, the required
angular distortions for AC nanotubes are written:

∆θ1 = arccos[−C2m sinα]− 2π
3
, (28a)

∆θ2 =
π
3
−2α. (28b)

4.1 Energy minimization with AMBER potential

As can be deduced from figure 4, the elemental system rep-
resenting an Armchair nanotube includes 4m angles referred

to as 2 and 8m angles noted as 2. Thus, the expression (3)
for AMBER potential is converted into:

U = 2mkθ (∆θ2)
2+4mkθ (∆θ1)

2 = 2mkθ (∆θ 2
2 +2∆θ 2

1 ).

(29)

Applying the minimum condition (7) to (29) and introducing
the angular distortions (28), the next implicit equation ofα
is achieved:

(

arccos[−C2m sinα]− 2π
3

)

C2m cosα
√

1− (C2m sinα)2
−

−
(π

3
−2α

)

= 0. (30)

The equation (30) is solved by using the Newton method
and the optimized diameterd0 computed by means of (24)
for a0 = 0.142 nm. An outline of the obtained values in com-
parison with the corresponding to the conformal mappingDt

is included in table 2. As can be expected, our values ofd0

for AC nanotubes are slightly higher than those calculated
from the conformal mapping.

m α (rad) d0 (nm) Dt (nm) ε(%)
AC(3,3) 3 0.5470 0.4185 0.4068 2.7957
AC(4,4) 4 0.5375 0.5514 0.5424 1.6322
AC(5,5) 5 0.5327 0.6853 0.6780 1.0652
AC(10,10) 10 0.5260 1.3597 1.3560 0.2721
AC(15,15) 15 0.5246 2.0365 2.0340 0.1228
AC(20,20) 20 0.5242 2.7139 2.7120 0.0700

Table 2 Initial diameters Armchair, AMBER.Dt is the diameter asso-
ciated to the conformal mapping,d0 is the obtained diameter from the
minimization procedure andε(%) represents the relative error taking
d0 as the reference solution

Takingd0 as the reference solution, relative errors in the
last column of table 2 have been obtained. As has been done
for ZigZag nanotubes, a curve proportional to 1/R2 can be
fitted [8,20,23] to the relative errors for Armchair nanotubes,
renderingε = 0.2091/R2. Both curves are quite similar, as
can be shown in figure 6.

4.2 Energy minimization with Morse potential

The expression (6) of Morse potential reduced to the ele-
mental system of figure 4 takes a form:

U =−12mDe+2mkθ(∆θ2)
2[1+ ks(∆θ2)

4]+

+4mkθ (∆θ1)
2[1+ ks(∆θ1)

4] . (31)
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Fig. 6 Relative error against diameter (Armchair, AMBER)

Applying the minimum condition (7) to (31) and using (28),
we achieve:

∆θ1
[

1+3ks(∆θ1)
4] C2m cosα

√

1− (C2m sinα)2
−

−∆θ2
[

1+3ks(∆θ2)
4]= 0, (32)

where∆θ1, ∆θ2 are related toα through (28). Therefore,
α is the unique unknown in equation (32), which has been
solved numerically fora0 = 0.142 nm. Substituting the ob-
tained value ofα in (24), the diameterd0 is obtained. As in
the case for Zig-zag nanotubes, the values ofd0 with Morse
potential are the same as those in table 2 due to the same
cause (see appendix B, table 7). Therefore, it is shown that
Morse potential does not introduce any difference in the ob-
tention of the initial diameter for Armchair SWCNTs.

5 Initial diameter for Chiral nanotubes

In this section, the obtention of the initial diameterd0 for
Chiral nanotubes (referred to as CH(n,m)) is tackled from
a different point of view. It is worth noting that CH nan-
otubes do not present the property of axisymmetry (contrary
to ZZ and AC nanotubes) and the procedure becomes no-
ticeably more complicated. On the basis of this observation,
the unstressed geometry of Chiral SWCNTs from the planar
graphene sheet is conceptualized in two main steps: Firstly,
a fictitiousdeformation pattern equivalent to an increment in
diameter is imposed on the planar graphene sheet. Secondly,
an aproximate mapping is applied to thedeformed grid to
configure the geometry of a Chiral nanotube, on which the
minimization prodecure will be applied.

The parameters used in the calculations for CH nan-
otubes are defined in figures 7 and 8.

The main assumptions related to thedeformation proce-
dure of the hexagonal grid are:

Fig. 7 Bond directions for the elemental system in CH nanotubes

Fig. 8 Bond labels for the elemental system in CH nanotubes

1. Thedeformation pattern corresponds to a stretching of
the grid in the circumferential direction OA of the nan-
otube.

2. Bonds labeled as c (orthogonal to the ZigZag line) keep
their direction in thedeformation process.

3. Angle β has been chosen as independent parameter in
the energy minimization.

4. All bonds keep their length in thedeformation process
(as assumed for ZZ and AC nanotubes).

5. The energy minimization is developed over the elemen-
tal strip represented in figure 8, which can generate the
whole geometry by periodicity in the longitudinal direc-
tion of the SWCNT.

Regarding assumptions 1, 2 and 4, we represent in figure 9
the deformation of an hexagonal unit cell produced by an
imposed displacementu in the OA direction.

In order to relate angleβ to η , the next compatibility
equations in P are established:

a0cosβ + a0cosη = 2a0

√
3

2
+ δx, (33a)

a0sinβ − a0sinη =−δy. (33b)
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Fig. 9 Deformation pattern of an hexagonal unit cell

Dividing eqs.(33) bya0 and writingδx,δy in terms of the
displacementu:

cosβ + cosη =
√

3+
ucosθ

a0
, (34a)

sinβ − sinη =−usinθ
a0

. (34b)

Removing the parameteru from (34)

sin(θ +β )+ sin(θ −η) =
√

3sinθ , (35)

which yields

η = θ −arcsin
[√

3sinθ − sin(θ +β )
]

. (36)

Furthermore, angles comprised between neighboring bonds
should be related to the angleβ (assumption 3). For this
purpose, the diagrams depicted in figure 10 and 11 are used.
Aimed to convert the planar distorted grid into the nanotube
geometry, an approximate mapping that keeps the relative
orientations of bonds with respect to the axial and secant2

direction of the cylinder has been assumed.
Projecting the bonds in figure 10 onto the cross section

(figure 11), the next relations should be verified:

da = a0cos(θ +β ), (37a)

db = a0cos(η −θ ), (37b)

dc = a0sinθ . (37c)

Moreover, applying the theorem of sine over each triangle
in figure 11

di = d0sin
(ϕi

2

)

, i = a,b,c. (38)

2 It results from the projection of the bond AB (or BP) on the cross
section of the cylinder that involves the nanotube

Fig. 10 Vectorial diagram of bonds CH, perspective

Fig. 11 Geometry diagram of bonds CH, cross section

We introduce now the following auxiliary vectors between
atoms:

Z1 =
−→
PA =

{

−da sin
(ϕa

2

)

,da cos
(ϕa

2

)

,a0sin(θ +β )
}T

,

(39a)

Z2 =
−→
PB =

{

−db sin
(ϕb

2

)

,−db cos
(ϕb

2

)

,a0sin(η −θ )
}T

,

(39b)

Z3 =
−→
PC =

{

−dc sin
(ϕc

2

)

,dc cos
(ϕc

2

)

,−a0sinθ
}T

,

(39c)
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whose dot products let us find out the required angles:

cosθab =

(

a0

d0

)2

cos2(θ +β )cos2(η −θ )−

− cos(θ +β )cos(η −θ )

√

1−
(

a0

d0

)2

cos2(θ +β )·

·

√

1−
(

a0

d0

)2

cos2(η −θ )+ sin(θ +β )sin(η −θ ),

(40)

cosθac =

(

a0

d0

)2

sin2 θ cos2(θ +β )+

+ sinθ cos(θ +β )

√

1−
(

a0

d0

)2

sin2 θ ·

·

√

1−
(

a0

d0

)2

cos2(θ +β )− cosθ sin(θ +β ), (41)

cosθbc =

(

a0

d0

)2

sin2 θ cos2(η −θ )−

− sinθ cos(η −θ )

√

1−
(

a0

d0

)2

sin2 θ ·

·

√

1−
(

a0

d0

)2

cos2(η −θ )− cosθ sin(η −θ ). (42)

Regarding the relation (36), expressions (40) to (42) can be
written as functions ofβ . Therefore, the angular variations
from the graphene sheet (involved in the interatomic poten-
tial) adopt the form:

∆θab = arccosθab(β )−
2π
3
, (43a)

∆θac = arccosθac(β )−
2π
3
, (43b)

∆θbc = arccosθbc(β )−
2π
3
. (43c)

In addition, the expression of the diameterd0 written as a
function of the angleβ is needed. From fig. 8, if we project
the bonds included in the elemental strip over the OA direc-
tion, it yields for a CH(n,m):

n segments of lengthdb,
n segments of lengthda,
m segments of lengthdb,
m segments of lengthdc.

Thus, for the whole circumference can be established:

nϕa +(n+m)ϕb+mϕc = 2π ,

n
ϕa

2
+m

ϕc

2
= π − (n+m)

ϕb

2
. (44)

Taking cosines in (44) and rearranging terms

cos
nϕa

2
cos

mϕc

2
+ cos(n+m)

ϕb

2
= sin

nϕa

2
sin

mϕc

2
, (45)

relation that can be expressed in terms of the Chebyshev
polynomials of the first kind as:

Tn

(

cos
ϕa

2

)

Tm

(

cos
ϕc

2

)

+Tn+m

(

cos
ϕb

2

)

=

=
T ′

n

(

cosϕa
2

)

T ′
m

(

cosϕc
2

)

nm
sin

ϕa

2
sin

ϕc

2
. (46)

It should be noted that equation (46) connects the angles
ϕi, which can be expressed as functions of the lengthsdi

through (38). Thesedi, in turn, can be related to the orienta-
tionsβ andη by means of (37). Substituting then (36), there
are only two parametersβ andd0 left to be determined. Fi-
nally, the minimum condition corresponding to each poten-
tial provides the additional equation required to solve the
problem.

5.1 Energy minimization with AMBER potential

Let nv be the total number of nodes (atoms) contained in the
elemental strip represented in figure 8, it is easy to show that
the number of anglesθab,θac,θbc of each kind included in
the strip is the same and equal tonv = 2n+2m. Therefore,
the expression (3) of the AMBER potential reduced to the
elementary system is:

U =
nv

2
kθ (∆θ 2

ab +∆θ 2
ac +∆θ 2

bc). (47)

Applying equation (7) to (47) with respect to the param-
eter β and introducing (43), the corresponding minimum
condition can be expressed in terms of the unknownsβ and
d0. The aforementioned equation along with eq. (46) form
a nonlinear system, which can be solved trough the iterative
procedure in fig. 12.

For the sake of completeness, the next remarks are con-
venient:

1. For the first step, the diameterd0
0 = Dt defined from the

conformal mapping andβ 0 = π/6 corresponding to the
planar (undistorted) graphene sheet are adopted as initial
assumption.

2. The solution of each step is adopted as initial value for
the Newton-like methods in the following iteration.

3. The maximum error adopted to accept the convergence
is ε = 10−7 and for the Newton methodsε = 10−6.

The obtained results for different values of the integers
(n,m) compared to those diametersDt from the conformal
mapping, along with the relative error takingd0 as exact so-
lution, are outlined in table 3.

As done in the previous cases, a curve proportional to
1/R2 can be fitted to the relative errors, renderingε = 0.1290/R2.
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Fig. 12 Iterative procedure to solved0

n m β (rad) d0 (nm) Dt (nm) ε(%)
CH(4,2) 4 2 0.4864 0.4267 0.4143 2.9060
CH(5,3) 5 3 0.5037 0.5568 0.5480 1.5805
CH(6,3) 6 3 0.5061 0.6299 0.6214 1.3494
CH(6,4) 6 4 0.5116 0.6892 0.6825 0.9721
CH(7,4) 7 4 0.5125 0.7616 0.7550 0.8666
CH(8,4) 8 4 0.5136 0.8350 0.8285 0.7784

Table 3 Initial diameters Chiral, AMBER.Dt is the diameter associ-
ated to the conformal mapping,d0 is the obtained diameter from the
minimization procedure andε(%) represents the relative error taking
d0 as the reference solution

For Chiral nanotubes, both curves are in reasonable agree-
ment (figure 13), although some deviations are observed.
This effect may be due to the lack of axisymmetry of CH
nanotubes, which causes that the assumption of cylindrical
geometry in absence of external loading is not as accurate
as in ZigZag and Armchair cases. Moreover, the simplified
mapping adopted in this section which keeps the relative
orientations) introduces some error, mainly in nanotubes of
small diameter.
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Fig. 13 Relative error against diameter (Chiral, AMBER)

5.2 Energy minimization with Morse potential

Reducing the expression (6) for the Morse potential to the
elemental strip represented in figure 8, it can be written:

U =−3nv

2
De +

nvkθ
2

(∆θab)
2[1+ ks(∆θab)

4]+

+
nvkθ

2
(∆θac)

2[1+ks(∆θac)
4]+

nvkθ
2

(∆θbc)
2[1+ks(∆θbc)

4].

(48)

Applying equation (7) to (48) with respect toβ and substi-
tuting (43), the parametersβ andd0 remain to be solved in
the minimum condition for Morse potential. Analogously to
the AMBER case, the nonlinear system formed by such min-
imum condition and eq. (46) can be solved through a similar
iterative procedure to that in figure 12. Also for CH nan-
otubes, the obtained values ofd0 from Morse potential are
the same as those from AMBER in table 3 (see appendix B
for further details). Therefore, the relative error represented
in figure 13 and the conclusions for AMBER potential can
be extended to this case.

6 Concluding remarks

In this paper, the geometry of single-walled carbon nan-
otubes in absence of any external load is studied via an en-
ergy approach. The initial geometry of nanotubes is assumed
to be inscribed into a perfect cylinder of unknown diame-
ter, which is determined by minimizing the interatomic po-
tential. Two interatomic potential functions (AMBER and
Morse) have been adopted for contrasting their influence in
the final results. Our work is focused on developing a pro-
cedure able to estimate the more reasonable diameter, which
can be decomposed in the following steps: firstly, the diam-
eter of the nanotube is expressed as a function of several
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parameters describing the location of atoms into the cylin-
drical grid; secondly, these main parameters are reduced to
one chosen as linearly independent; thirdly, the total energy
contained in a representative system of the SWCNT is writ-
ten as a function of the independent parameter; finally, the
minimum condition of the total energy (eq. (7)) leads to the
desired diameter.

Since the initial diameter is closely related to thepreen-
ergy and taking into account that strictly using the confor-
mal mapping requires the introduction of a system of ex-
plicit internal forces (e.g. in MSM models as thestick-spiral,
see [15]), the present method can be regarded as an alterna-
tive way to include the effect of these initial forces without
evaluating them.

Finally, the main conclusions of this study are summa-
rized next:

1. Our approach shows that the initial diameters of single-
walled nanotubes (with no external loading) are higher
than those associated to the usually adopted conformal
mapping (see e.g. [5, 7, 14, 28]). This effect is more im-
portant in nanotubes with smaller diameters.

2. The obtained results show that the differences in nan-
otube diameter between the conformal mapping and those
obtained from our minimization process are dependent
on the diameter itself. The higher the nanotube diameter
is, the lower difference is found. This conclusion is in
agreement with other mechanically-justified size effects
reported in the literature, as the increase in the Young
modulus to an asymptotic value [8, 13–15], or the anal-
ogous decrease of the preenergy with increasing diame-
ters [8,20,23].

3. The current minimization procedure yields a more rea-
sonable approach to initial diameters of SWCNTs than
other estimative calculations. This issue can be validated
with theories of higher accuracy as tight-binding molec-
ular dynamics. For instance, in table 1 of [2] the diame-
ter for a ZZ(15,0) is reported to be 1.2 nm, closer to our
value of 1.1802 nm (see table 1) than the value of 1.1743
nm from the conformal mapping. Likewise, in table 1
of [8] a diameter of 0.791 nm is reported for a ZZ(10,0),
closer to our value of 0.7925 nm than the value of 0.7829
nm from the conformal mapping.

4. The relative error from the conformal mapping to our
calculations is proportional to 1/R2, as has been shown
in the paper for each chirality. This difference is related
to the stabilization effect of the preenergy, which tends
to transversally expand the nanotube. The smaller the
diameter is, the higher effect of the preenergy is found,
in agreement with [8,20,23].

5. The adoption of AMBER or Morse potentials is almost
inconsequential in the initial diameters, due to both func-
tions having similar rigidities in the closeness of the equi-

librium length of covalent bonds (accepted in the planar
graphene sheet).

6. Although the fitting functions (they are of the formε =

k/R2) for the relative error are not identical for each chi-
rality, they yield values ofk with the same order of mag-
nitude. Therefore, the chirality does not have a remark-
able influence on the initial diameters.

7. The comparison of obtained values in section A is useful
for validating the assumptions made in the approximate
mapping adopted for Chiral nanotubes. By taking the
Chiral formulation to the ZigZag and Armchair cases,
it is shown that (within the present minimization proce-
dure) there is no significant influence of the particular
mapping over the final results. The detailed study of the
most physically reasonable mapping function has been
deferred for further research.

Appendix A Remarks on the coherence of the
formulation

In order to validate the assumptions adopted in the formula-
tion for Chiral nanotubes, we compare the expressions and
obtained results for Chiral SWCNTs (section 5) with those
for ZigZag (section 3) and Armchair (section 4) nanotubes.

A.1 Comparison Chiral-ZigZag

ZZ(n,0) nanotubes are defined by an orientation of the Chi-
ral vectorθ = 0 and for the second integerm = 0 in the base
of the hexagonal grid. Ifθ vanishes in (35), it renders:

sinη = sinβ ,
η = β . (49)

Introducing (49) in equations (40) to (42) and operating:

cosθab =2

(

a0

d0

)2

cos4 β − cos2 β + sin2 β , (50a)

cosθac =− sinβ , (50b)

cosθbc =− sinη . (50c)

As expected, it resultsθac = θbc = θ1 in a coherent way with
figure 1. Besides, regarding definitions ofα, β andη , it is
obvious thatα = β = η . Therefore, from (9), it follows:

a0

d0
cosβ = sin

( π
2n

)

. (51)

Substituting (51) into (50a) and operating:

cosθab = sin2 β
(

1+ cos
π
n

)

− cos
π
n
. (52)

The latter expression is completely equivalent to (12), there-
foreθab = θ2.
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Aimed to relate the diameter toβ , we stateda = db and
dc = 0 in (38), namely

ϕa = ϕb, ϕc = 0, (53)

along withm = 0, reduce (44) to:

ϕa

2
=

π
2n

. (54)

Taking sines in (54) and using (51):

sin
ϕa

2
= sin

( π
2n

)

=
a0

d0
cosβ , (55)

achieving

d0 =
a0cosβ
sin

( π
2n

) , (56)

formally identical to (9).
Consequently, it has been shown that the general formu-

lation for Chiral nanotubes reduced to the case ZigZag is
equivalent to that developed in section 3. Furthermore, some
values from each formulation and the relative error between
them (taking the direct formulation for ZZ nanotubes as a
reference) are outlined in table 4.

ZZ AMBER CH AMBER
n d0 (nm) d0 (nm) εd (%)

ZZ(4,0) 4 0.3356 0.3345 0.3504
ZZ(5,0) 5 0.4100 0.4095 0.1332
ZZ(6,0) 6 0.4854 0.4851 0.0610
ZZ(10,0) 10 0.7925 0.7924 0.0072
ZZ(15,0) 15 1.1807 1.1807 0.0017
ZZ(20,0) 20 1.5706 1.5706 0.0000

Table 4 Comparison of obtained diameters Chiral-ZigZag, AMBER.
ε(%) is the relative error taking the direct formulation for ZZ nan-
otubes as a reference

Taking into account that Morse potential does not in-
troduce any difference in the obtained diameters, the cor-
responding results has not been included here.

The relative error can be attributed to: the accuracy of the
iterative procedure (and in the Newton methods), the simpli-
fication of the mapping and the assumption of initial cylin-
drical geometry for Chiral nanotubes. However, from table
4 a good agreement between the two approaches has been
shown.

A.2 Comparison Chiral-Armchair

In order to facilitate the comparison, the parameters defined
on the hexagonal grid for both formulations (Chiral and Arm-
chair) are represented together in figure 14.

Fig. 14 Parameters definition, Chiral and Armchair formulations

An Armchair nanotube is defined byn = m, verifying
the next angular relations:

η = θ , (57a)

β +θ =
π
2
−α, (57b)

which substituted in (35) lead to:

cosα =
√

3sinθ . (58)

In fact, (37) converts into:

da = a0sinα, (59a)

db = a0, (59b)

dc =
a0cosα√

3
. (59c)

It is easy to show that figure 11 transformed into the
cross section of an AC nanotube, would verifyda = dc. Nev-
ertheless, from the Chiral formulation this condition is not
verified in general, unlessα = π/6 in (59). This value con-
tradicts the target and the results of our formulation.

Consequently, both formulations are not identical regard-
ing the final orientation of bonds into thedistorted and mapped
grid on the cylinder. In particular, the AC formulation keeps
the orientation of bonds b (transversal direction) and CH for-
mulation keeps the orientation of bonds c orthogonal to the
ZZ line. If thedeformation approached for CH nanotubes is
converted to the AC case, two consecutive bonds b (perpen-
dicular to the nanotube axis) are shifted a certain value along
the axial direction of the nanotube.

Despite of that, projecting bonds a and b (thick line in
figure 14) on the transversal direction of the nanotube up to
complete the circumference, we can write:

2nϕa +2nϕb = 2π , (60)
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equivalent to the relation obtained by imposingn = m
andϕa = ϕc (axisymmetry) in (44).

Dividing (60) by 4n and taking trigonometric functions:

sin
(ϕa

2
+

ϕb

2

)

=sin
ϕa

2
cos

ϕb

2
+ sin

ϕb

2
cos

ϕa

2
= sin

π
2n

,

(61)

cos
(ϕa

2
+

ϕb

2

)

=cos
ϕa

2
cos

ϕb

2
− sin

ϕb

2
sin

ϕa

2
= cos

π
2n

.

(62)

Squaring (61) and substituting (62) leads to:

sin2 ϕa

2
cos2

ϕb

2
+ cos2

ϕa

2
sin2 ϕb

2
+2sin2 ϕa

2
sin2 ϕb

2
+

+2sin
ϕa

2
sin

ϕb

2
cos

π
2n

= sin2 π
2n

. (63)

Introducing now (59a) and (59b) in (38), we reach:

sin
ϕa

2
=

a0sinα
d0

, (64a)

sin
ϕb

2
=

a0

d0
. (64b)

Using (64) in (63) along with (25) and operating, it can be
obtained:

d0 =
a0

S2n

√

1+ sin2 α +2sinαC2n, (65)

identical to (24). Therefore, in spite of the aforemen-
tioned differences regarding the orientation of bonds, theob-
tained diameter must be the same from both procedures. For
checking this issue, several diameters with AMBER poten-
tial by using each formulation and the relative error taking
the direct formulation of AC nanotubes as a reference, are
included in table 5.

AC AMBER CH AMBER
n=m d0 (nm) d0 (nm) εd (%)

AC(3,3) 3 0.4185 0.4154 0.7407
AC(4,4) 4 0.5514 0.5489 0.4534
AC(5,5) 5 0.6853 0.6833 0.2918
AC(10,10) 10 1.3597 1.3586 0.0809
AC(15,15) 15 2.0365 2.0358 0.0344

Table 5 Comparison of obtained diameters Chiral-Armchair, AM-
BER. ε(%) is the relative error taking the direct formulation for AC
nanotubes as a reference

Since Morse potential produces nearly the same values
of diameters, only results for AMBER potential has been
included here.

The relative error can be associated to the accuracy of
the numerical process and the adopted mapping for Chiral
nanotubes, similarly to the comparison Chiral-ZigZag. Also
in this case, a good agreement has been shown from table 5.

As has been proved in this section, different mappings
and distortions of the hexagonal grid can produce nearly
the same diameters in absence of external loading. There-
fore, both specificdeformation pattern and mapping can be
assumed without loss of generality. The study of the physi-
cally more reasonable mapping has been deferred for further
research.

Appendix B Error estimation between potentials into
the minimum condition

Aimed to clarify the independency of our formulation on the
adopted interatomic potential, an error estimation is worked
out on the basis of Taylor expansion for both potentials.
Thus, the Taylor expansion of order two for AMBER po-
tential (Ua) is the own eq. (3) and the analogous expansion
for Morse potential can be written from eq. (6) as:

Um =Um,0+∑
j

1
2

kθ (∆θ j)
2+∑

j
Em j,2, (66)

where
Um,0 =−∑

i
De Constant term,

Em j,2 =
1
2kθ ks(∆θ j)

6 Remainder of the Taylor
expansion.

Applying the minimum condition (7) to AMBER poten-
tial with respect to a generic independent parameterξ and
introducing a functionalφa(Ua,ξ ), it yields:

φa = ∑
j

∆θ j
∂ (∆θ j)

∂ξ
= 0. (67)

As shown, the minimum condition does not depend onkθ .
Likewise, applying condition (7) to (66) for Morse potential
and defining a new functionalφm(Um,ξ ), we reach:

φm = ∑
j

∆θ j
∂ (∆θ j)

∂ξ
+∑

j
3ks(∆θ j)

5 ∂ (∆θ j)

∂ξ
= 0. (68)

Subtracting (67) from (68), the absolute error in the mini-
mum condition between both potentials can be defined by:

εφ = |φm −φa|= 3ks

∣

∣

∣

∣

∣

∑
j
(∆θ j)

5 ∂ (∆θ j)

∂ξ

∣

∣

∣

∣

∣

. (69)

For Zig-zag nanotubes, the angleα (see fig. 1) was taken
as independent parameter, namelyξ = α. Hence, evaluating
∆θ j and its partial derivatives from eqs. (13), the next values
of the absolute errorεφ are obtained:

For Armchair nanotubes, the angleα defined in fig. 4
was chosen as independent parameter. Therefore, computing
∆θ j and its partial derivatives from eqs. (28), the absolute
errorεφ renders:
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m α (rad) εφ (nN·nm/rad)
ZZ(4,0) 4 0.4406 3.965·10−4

ZZ(5,0) 5 0.4685 2.988·10−5

ZZ(6,0) 6 0.4848 3.679·10−6

ZZ(10,0) 10 0.5094 1.148·10−8

ZZ(15,0) 15 0.5173 1.255·10−10

ZZ(20,0) 20 0.5200 5.118·10−12

Table 6 Absolute error in the minimum condition for ZZ nanotubes

m α (rad) εφ (nN·nm/rad)
AC(3,3) 3 0.5470 1.355·10−5

AC(4,4) 4 0.5375 6.263·10−7

AC(5,5) 5 0.5327 5.573·10−8

AC(10,10) 10 0.5260 2.848·10−11

AC(15,15) 15 0.5246 3.692·10−12

AC(20,20) 20 0.5242 1.304·10−14

Table 7 Absolute error in the minimum condition for AC nanotubes

n m β (rad) εφ (nN·nm/rad)
CH(4,2) 4 2 0.4864 6.965·10−6

CH(5,3) 5 3 0.5037 6.239·10−7

CH(6,3) 6 3 0.5061 7.380·10−8

CH(6,4) 6 4 0.5116 1.850·10−7

CH(7,4) 7 4 0.5125 4.422·10−8

CH(8,4) 8 4 0.5136 1.152·10−8

Table 8 Absolute error in the minimum condition for CH nanotubes

Finally, the angleβ defined in fig. 7 was adopted as inde-
pendent parameter for Chiral nanotubes and employing (43)
in (69), the next values ofεφ were calculated:

As shown in tables 6 to 8, almost the whole values of
the absolute error verifyεφ < 10−4 nN·nm/rad (except for
ZZ(4,0)), which was the accuracy adopted in the obtained
diameters in this paper. Therefore, the obtained diameters
with AMBER and Morse potentials were almost identical
for each chirality, regarding four significant digits.
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