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The influence of losses in double-negative metamaterial slabs recently introduced by Graciá-
Salgado and coworkers [see Phy. Rev. B, 88, 224305 (2013)] is here comprehensively studied.
Viscous and thermal losses are considered in the linearized Navier-Stokes equations with no flow.
Despite of the extremely low thicknesses of boundary layers associated to each type of losses, the
double-negative behavior is totally suppressed for the rigid structures under analysis. In other
words, almost 100% of the transmitted energy into the slab is dissipated by visco-thermal effects,
in agreement with experimental data. Simulations undertaken for larger structures, using scale
factors up to 20 times, show that double-negative behavior is never recovered. The huge dissipation
obtained by these structures leads us to propose them as interesting alternatives to conventional
absorbers for specific situations, e.g. when treating low frequencies or when the excitation is narrow
banded.
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I. INTRODUCTION

The engineering of robust artificial structures, named
acoustic metamaterials [1–4], capable of exhibiting a
negative-index of refraction is still an open task. Nega-
tive refraction can be obtained as a consequence of band
folding effects in periodic structures made of sound scat-
terers [5]. But here we are interested in negative-index
structures based on metamaterials with both the bulk
modulus and the mass density negative. Metamateri-
als exhibiting dynamical mass density with negative val-
ues were first demonstrated using structures of metal-
lic spheres embedded in an epoxy matrix[6]. This ex-
traordinary behavior was explained as a consequence of
the dipole-type resonance excited in the structure by the
propagating wave. After this finding, double negative
metamaterials were proposed[7] based on the possibility
of having scatterers with monopolar resonances, which
were the responsible of showing a negative dynamical
bulk modulus. Metamaterials with negative bulk mod-
ulus were soon demonstrated using a variety of artifi-
cial structures[8–11]. Artificial structures behaving as
double-negative metamaterials have been proposed in the
last decade[7, 12–18], but only a few have been experi-
mentally demonstrated[14, 19, 20]

An important issue regarding the practical function-
ality of negative-index metamaterials based on rigid or
solid structures is the presence of unavoidable viscous
and thermal boundary layers at the solid-fluid interface,
leading to non negligible losses. These losses, not con-
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sidered on the design procedure, might produce the sup-
pression of the negative-index behavior. Recently, a few
papers have investigated boundary layers effects in meta-
materials. For example, Frenzel et al.[21] demonstrate
that losses in labyrinthine metamaterial structures are
very significant, making them as an interesting option
for subwavelength broadband and all angle acoustic ab-
sorbers. Guild et al.[22] have proposed anisotropic meta-
materials broadband absorbers based on the effects of vis-
cous and thermal boundary layers on sonic crystals with
filling fractions much larger than traditional porous ab-
sorbers. More recently, Moleron et al.[23] demonstrated
that visco-thermal losses avoid completely the excitation
of Fabry-Perot resonances. Previously, Theocaris and
coworkers[24] have shown that formation of near-zero
group velocity dispersion bands are hindered by visco-
thermal dissipation. However, in Ref. [22] visco-thermal
losses have been exploited to design specific metamateri-
als with absorption enhancement and showing a strongly
anisotropic dissipation .
In this work we study the influence of visco-thermal

losses in acoustic metamaterials based on rigid structures
with predicted double negative behavior[25, 26]. The ex-
perimental characterization of these structures has shown
that the double-negative structure lost its expected per-
fect transmission feature. This work has the purpose of
clarifying this experimental findings by including in the
theoretical analysis the effects of visco-thermal boundary
layers.
The article is organized as follows. After this introduc-

tion, in Sec. II, we give a brief account of the theoret-
ical design of the structures under study and the mod-
els employed in their simulations: the boundary element
method (BEM) and the finite element method (FEM).
Both are here improved in order to tackle the effect of
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FIG. 1: (a) Top view of the metamaterial sample under study
in this work. It was made in ABS plastic by a 3D printer. An
array of anisotropic scatterers is embedded in a 2D waveguide
with height h. (b) The corresponding BEM mesh version of
the sample. An individual scatterer consists of a structured
cylinder with radius Rb and total length D + h, where D

is the depth of the wells drilled in the 2D waveguide. (c)
Lateral view of the mesh employed in the BEM calculations.
(d) Scheme of the waveguide showing the effective dimension,
Leff , of the metamaterial and the measurement positions (x1,
x2, x3).

visco-thermal losses in corrugated structures. Results
of the numerical simulations are presented in Sect. III,
giving a comprehensive discussion about the absorptive
properties of Sample A characterized in Ref. [26]. Em-
phasis is put on the fact that absorptive properties of
Fabry-Perot resonances depend on the symmetry of the
band and on the group velocity. Section IV looks for
the possibility of decreasing the visco-thermal losses by
increasing the dimensions of the structure, showing that
such approach is useless. Finally, the work is summarized
in Sec. V.

II. THEORETICAL DESIGN AND

NUMERICAL MODELING

The double-negative metamaterial under study is
based in a theoretical design introduced in Ref. [25].
In brief, the unit cell consisted of a cylindrical cavity
of depth D and radius Rb that is drilled into a waveg-
uide with height h. In addition, a rigid cylinder of ra-
dius Ra is placed at the center of the cavity and is sur-
rounded by eight rigid fins, which define a metafluid shell
with dynamical mass ρs < ρb and effective sound speed
cs < cb, where ρb and cb are, respectively, the static den-
sity and the phase velocity of the air background. In
this work, the values assigned to these parameters in the
calculations are ρb =1.199 kg/m3 and cb =343.99 m/s,
corresponding to the air with static pressure of 101.325
KPa, temperature of 20oC and humidity of a 50%. For
the practical realization of the metamaterial, the fluid-
like shell was manufactured using an equally partitioned
structure made of eight rigid zones separated by eight air

spacers, as shown in Figs. 1(a)-(c).
With the unit cell described above, the negative bulk

modulus is attained thanks to the cavity drilled in the
waveguide [11]. This cavity plays the same role than
Helmholtz resonators, which have been previously shown
to attain negative effective bulk modulus in a 1D water-
filled waveguide [8]. On the other hand, the structured
shell provides the dipolar resonance necessary to attain
negative density values near resonance[6].
Figure 1(a) is a photo showing a top view of the meta-

material sample A characterized in Ref. [26]. This struc-
ture is here analyzed by two different numerical algo-
rithms that consider the thermal and viscous losses of
this man made structure. The remaining of this section
gives a brief description of their main features.

A. BEM with losses

The Boundary Element Method here employed is
based on the Kirchhoff derivation of the Navier-Stokes
equations [27, 28].

(∆ + k2a)pa = 0 (1)

(∆ + k2h)ph = 0 (2)

(∆ + k2v)~vv = 0, with ∆ · ~vv = 0, (3)

where indexes (a, h, v) define the the acoustic, thermal
and viscous modes, which are treated independently in
the acoustic domain and linked through the boundary
conditions. The time dependence eiωt is assumed, where
ω is the angular frequency.
The acoustic, thermal and viscous wavenumbers ka, kh

and kv are expressed as:

k2a =
k2

1 + ik(ℓv + [γ − 1)ℓh]− k2ℓh(γ − 1)(ℓh − ℓv)
(4)

k2h =
−ik

1− ik(γ − 1)(ℓh − ℓv)
(5)

k2v = − iρ0ck

µ
, (6)

where ρ0 is the static density of air, c is the speed of
sound, k is the adiabatic wavenumber and γ is the ratio of
specific heat at constant pressure and specific heat at con-
stant volume Cp/Cv. The viscous and thermal character-
istic lengths are ℓv = (η+4/3µ)/ρ0c and ℓh = λ/(ρ0cCp),
where λ is the thermal conductivity, µ is the coefficient of
viscosity and η is the bulk viscosity or second viscosity.
The velocity has contributions from the three modes

v = va+vh+vv while the total pressure is the sum of only
the acoustic and thermal components, p = pa + ph (the
viscous mode has no pressure associated). Note that Eqs.
(1)-(3) define a total of five equations with five unknowns;
while Eq. 1 is a wave equation, Eqs. 2 and 3 are diffusion
equations.
The BEM with losses is based on research software

[29]. The calculation obtains the acoustic component of
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FIG. 2: (a) Transmittance spectra obtained from FEM simu-
lations. Results obtained with no-losses (continuous lines) are
compared with those including visco-thermal losses (dashed
lines). (b) Transmittance spectra obtained from BEM simu-
lations. Results obtained with no-losses (continuous lines) are
compared with those considering visco-thermal losses (dashed
lines). The symbols in both plots represents the experimental
data.

the pressure, pa in Eq. (1), on the boundary. From
this result, the remaining magnitudes are deduced using
extended visco-thermal boundary conditions [30]. The
final step is the calculation on domain points away from
the boundary, such as those where the sound pressure is
sampled in the waveguide, (x1, x2, x3) in Fig. 1

The calculation here performed has been improved
with respect to that reported in Ref. [31]. The Boundary
Element mesh is obtained using the Gmsh grid genera-
tor [32]. The mesh describing the metamaterial, which is
shown in Fig. 1(b) and 1(c), contains 9616 nodes in 4810
quadratic 6-node triangular surface elements. A total
of 210 frequencies per setup were calculated in the range
1000 to 5000 Hz, with a spacing that varies from 2.5 Hz in
relevant frequency zones, such as Fabry-Perot modes and
bulk modulus resonances, to 100 Hz over slowly varying
frequency regions.

B. FEM with losses

Corresponding FEM simulations are performed using
the commercial software COMSOL. The full linearized
Navier-Stokes description is employed. The equations
solved are the momentum, continuity and energy equa-
tions [33].
The geometry of the structure to be solved is shown

schematically in Fig. 1(d), where dark areas at both
ends of the waveguide represent Perfectly Matched Lay-
ers (PML). Excitation of the waveguide is done though a
body force with a small gap of air followed by a PML in
order to guarantee full absorption at the inlet of waves
reflected back from the metamaterial. A second PML is
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FIG. 3: Acoustic band structure obtained from the Fabry-
Perot peaks (symbols). The dispersion relation is represented
along the propagation direction; that is, along the direction
ΓJ of the hexagonal lattice. It is displayed using the scheme
of extended zone. Breaks are used in order to visualize the
narrow double negative band. The shadow regions define the
bandgaps with single negative behavior.

set at the receiving end to simulate an infinite waveguide.

The FEM calculation is computationally very demand-
ing [31], and is only used in this work as a verification.
Most of the calculations are performed using BEM.

III. RESULTS AND DISCUSSION

The parameter dimensions of the double-negative
structure analyzed correspond to that of sample A in
Ref. [26]; that is, Rb =9.2 mm; Ra =4.6 mm; L =31.5
mm; and a =21 mm. The three-point technique has
been here employed to obtain the complex transmittance
and reflectance of the metamaterial slab. Figure 1(d)
shows a schematic view of the experimental setup in-
side the waveguide; xi defines the positions of micro-
phones and the dashed circles represent the metamaterial
units defining the slab, with effective length Leff . This
length defines the separation between surfaces of the slab.
Since the surface of the metamaterial is not well defined,
we have employed the criteria applied in semiconductor
physics and successfully applied to sonic crystal slabs
(see, for example, Ref. [34]). Thus, we have considered
that the metamaterial surface is located at one half of the
separation between consecutive layers in the slab. The
sample shown in Fig. 1(a) consists of seven layers with

layer separation of a
√
3/2. Therefore, Leff = a3.5

√
3,

which is equal to 12.73 cm for the lattice constant a =21
mm. The origin of coordinates, x =0, along the propaga-
tion direction defines the position of the slab left surface
in Fig. 1(d). With this origin, the positions of the three
sample points (x1, x2, x3) are respectively -4.18 cm, -3.84
cm and 16.91 cm. The rectangular waveguide is termi-
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nated with ρc acoustic impedance at both ends in order
to avoid reflections and simulate an infinite length. The
excitation end is a piston termination with a velocity am-
plitude (ρc)−1, so that the undisturbed progressive plane
wave can have a pressure amplitude of one.
The frequency dependent reflection and transmission

factors are, respectively:

r(ω) =
P2e

−ik0x1 − P1e
−ik0x2

P1eik0x2 − P2eik0x2

(7)

t(ω) =
P3

P2

.
e−ik0x2 + r(ω)eik0x2

e−ik0x3

e−ik0Leff , (8)

where P1, P2 and P3 are the pressure values obtained at
the three sample points xi.

In absence of any type of losses, energy conservation
implies that the sum of power transmittance, T (ω) =
|t(ω)|2, and reflectance, R(ω) = |r(ω)|2, should be unity
for any frequency. This condition has been used as a mea-
sure of the accuracy of the calculation method. It was
found that the best method for obtaining the pressure
at the prescribed xi positions is a mean of the pressures
calculated over a x−constant plane inside the waveguide.
Three 2×5 grids of regularly spaced field points were
used to this purpose. With this method, the deviation
from the expected sum of transmittance and reflectance
was below 2×10−3 in most of the frequency range, only
reaching 2×10−2 to 0.8×10−2 at the Fabry-Perot reso-
nances. These values are considered rather satisfactory,
given that transmittance and reflectance vary in a range
between 0 and 1.
In the presence of viscous and thermal losses, the dis-

sipated energy (absorptance) is calculated from,

A(ω) = 1−R(ω)− T (ω) (9)

Figures 2(a) and 2(b) report the power transmittance,
using the FEM and BEM algorithms. The continuous
lines represent the spectra obtained without considering
losses, while the dotted lines correspond to results ob-
tained including losses. The peaks in the spectra repre-
sent Fabry-Perot (FP) resonances which appear due to
the finite size of the sample. In addition, the calculated
spectra corresponding to the case with losses included
are in excellent agreement with the measured profiles,
represented as symbols in Figs. 2(a) and 2(b). Both
algorithms predict the suppression of the narrow band
associated to double-negative behavior. Finally, Fig. 2
supports the equivalence between both numerical algo-
rithms, both giving results with the same accuracy and
reproducing the experimental data when visco-thermal
losses are included.

1. lossless case

For the case of no losses included (continuous lines),
both algorithms predict the existence of a narrow band
between 2.33 kHz and 2.44kHz, corresponding to the
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FIG. 4: (Color online) Frequency dependence of the effective
parameters of the metamaterial, bulk modulus (Bm) and den-
sity (ρm), respectively. They are obtained using the procedure
described in Ref. [35].

presence of double-negative behavior. Unity transmission
is obtained at frequencies corresponding to FP peaks,
where the thickness of the sample is commensurate with
an integer number m of half wavelength; i.e., at f ≈
mcb/(2Leff ).
It is well known that frequencies of FP modes can be

employed to reconstruct the acoustic bands along the
propagation direction[34], the ΓJ direction of the hexag-
onal lattice in this case. Regarding the spectrum be-
low 2.05 kHz, the band edge of the first pass band, Fig.
2 shows that FP modes produce peaks with decreasing
bandwidth; i.e., a FP peak closer to the upper band edge
exhibits narrower bandwidth than that with lower fre-
quency. Moreover, the distance between peaks also de-
creases near the band edge. Since both effects are di-
rectly related to the band dispersion relation, it is ex-
pected that the acoustic band has a strong curvature
near the edge. However, Fig. 2 shows that for the trans-
mission band corresponding to double negative behav-
ior (2.33kHz < f < 2.44 kHz) the associated FP modes
have almost the same bandwidth and equal separation
between them, indicating that the associate band should
be almost flat. For the third transmission band (above
3.7 kHz) we observe again that the modes near the edges
are narrower than in the central region of the band.
Figure 3 shows the acoustic bands reconstructed from

the FP peaks using the extended zone scheme. The sym-
bols represent the FP peaks in the different pass-band
regions and the lines represent the fitted dispersion rela-
tion of the bands.

2. visco-thermal effects

When visco-thermal effects are included, numerical
simulations shown in Fig. 2 (short dashed lines) in-
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the visco-thermal effects are considered. The shadowed zones
define the regions where the metamaterial is single negative
according to results shown in Fig. 2.

dicate that, at any frequency, transmittance values are
much lower than those obtained without losses (contin-
uous lines). It is observed that FP peaks in the bands
below 2 kHz and above 3.8 kHz strongly decrease and
their frequencies are downshifted as a consequence of
losses. Moreover, FP peaks in the miniband associated
to double-negative behavior (see the insets) are com-
pletely suppressed due to visco-thermal effects. The ex-
cellent agreement observed between measurements (sym-
bols) and simulations supports the conclusion that visco-
thermal dissipation is the leading mechanism controlling
the propagation features through the metamaterial sam-
ple. To further support this conclusion, we have cal-
culated the effective bulk modulus and density compo-
nents, which have been extracted from simulations on
this metamaterial using the reflection/transmission (RT)
method[35]. Figure 4 shows the extracted metamaterial
parameters, Bm and ρm, which are complex due to the
losses. Note that the real component of bulk modulus,
B′

m, is negative for frequencies between 2.45 kHz and 3.6
kHz. On the other hand, the real component of the mass
density, ρ′m, is negative for frequencies between 2.05 and
2.45 kHz. Therefore, when visco-thermal effects are con-
sidered, the RT method is unable to give a frequency re-
gion where both effective parameters are simultaneously
negative.
When density and bulk modulus are complex, the

phase velocity vp becomes complex.

vp =

√

Bm

ρm
=

√

ρ′mB′
m +B′′

mρ′′m − i(ρ′′mB′
m − ρ′mB′′

m)

ρ′2m + ρ′′2m

= v′p + iv′′p (10)

Single prime in this equation denote real components and
double primes denote imaginary components. In addi-
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FIG. 6: (a) Frequency dependence of the power loss (Ab-
sorptance) for the double-negative metamaterial under study.
(b) The corresponding behavior for the Reflectance and the
Transmittance. The shadowed zones define the regions where
the metamaterial is single negative according to results shown
in Fig. 2.

tion, the components of the group velocity can be ob-
tained from vp through the following relationship,

vg = vp[1−
ω

vp

dvp
dω

] = v′g + iv′′g (11)

The components of both velocities are shown in Figs.
5(a) and 5(b), respectively. First, Fig. 5(a) shows that
the real component of the phase velocity, v′p, is positive
in the frequency region between 2.2 and 2.45kHz, corre-
sponding to the region where double-negative behavior is
expected (see Figs. 2 and 3). This property for v′p leads
us to conclude that the real component of the effective
refractive index is positive (n′ > 0). In addition, the
imaginary component, v′′p , in the same frequency region
is not negligible, implying a damping of the propagat-
ing wave due to visco-thermal losses. In the regions with
single-negative behavior, the existence of imaginary com-
ponents causes phase distortion of evanescent waves. Re-
garding vg, Fig. 5(b) indicates that the real component,
v′g takes extremely low values in the double negative re-
gion, which is consistent with the flat band observed in
Fig. 3.
The decreasing of the transmittance profile can be ex-

plained from the results obtained for the calculated dis-
sipated energy and reflectance, which are shown in Figs.
6(a) and 6(b), respectively. On the one hand, in the
region with expected negative refractive index, it is ob-
served that around a 30% of the impinging energy is
reflected while a 70% is absorbed; in other words, the
transmitted energy into the metamaterial slab is totality
dissipated by visco-thermal effects. On the other hand,
in the passbands regions (i.e., below 2 kHz and above 3.6
kHz) it is observed that maximum absorption is produced
at the frequencies of the FP resonances.
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The effects of visco-thermal losses on Fabry-Perot res-
onances has been already discussed by Moleron and
coworkers[23] on metamaterial structures made of peri-
odic slits, where they demonstrate that the resonance
peaks exhibit a strong attenuation as the effective length
of the metamaterial increases. In this work, employing a
metamaterial with fixed length Leff , we have concluded
that the strength of visco-thermal effects depends on the
symmetry of the FP modes together with the value of
the group velocity at the frequency of the FP resonance.
This effect is shown in Fig. 7, which presents the absorp-
tance (hollow symbols) at the FP frequencies. The peaks
in the first passband (squares) and the double-negative
band (circles) are shown as a function of the recipro-
cal of the group velocity vg. The full symbols represent
the addition of absorptance peaks and reflectance deeps
observed in Fig. 6. For the FP resonances within the
first pass-band (hollow squares), its is observed that the
absorptance is almost linearly dependent on the recip-
rocal of vg. In addition, the reflectance (double arrow)
is larger for lower vg. The latter effect is a consequence
of the larger mismatch of impedance between the meta-
material and the air background when vg decreases. For
the FP resonances corresponding to the double-negative
band, the absorptance is extraordinary, leading to the to-
tal suppression of the transmitted signal; i.e., A+R ≈1,
corresponding to almost a 100% absorption of the signal
transmitted into the metamaterial slab. The key differ-
ence between both dissipative phenomena arises from the
differences in the symmetry of the propagating modes.
The modes propagating in the first pass band have plane
wavefronts, the corresponding FP resonances are stand-
ing waves whose nodes are planes perpendicular to the
propagating direction. On the contrary, the modes be-
longing to the double-negative narrow band are obtained
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FIG. 8: Snapshots of the calculated pressure (real part) at
1675 kHz. Pressure values (in Pascals) are shown along the
waveguide for a wave traveling from left to right, and for the
two cases of interest: (a) without losses, and (b) with losses.
The upper panels show the pressure patterns calculated at
the top surface of the waveguide (z =0) while the lower pan-
els plot the pressure values along the x−axis. The yellow
region defines the boundaries of the metameterial slab. The
horizontal dashed lines are guides for the eye. For animations
of the instantaneous fields, see Video 1 and Video 2

from linear combinations of monopolar and dipolar reso-
nances. So, large oscillations of the pressure amplitudes
are achieved at the position of the metamaterial building
units, where the dissipation is strongly enhanced due to
the extraordinarily low vg.
In order to get a better physical insight of the phe-

nomena discussed above we have conducted a series of
BEM simulations at several frequencies, corresponding
to FP resonances: inside the first pass band and inside
the double-negative band. In what follows we discuss two
representative examples.
The behavior of a propagating wave with frequency of

1.675 kHz, within the first pass band, is shown in Figs.
8(a) and 8(b) for the cases without losses and with losses,
respectively. This frequency corresponds to the FP peak
indicated by the left arrow in Fig. 6. The calculated
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FIG. 9: Snapshots of the calculated pressure (real part) at
2380 kHz. Pressure values (in Pascals) are shown along the
waveguide for a wave traveling from the left to the right, and
for the two cases of interest here: (a) without losses, and (b)
with losses. The frequency corresponds to the third Fabry-
Perot peak obtained inside the double-negative band. The
upper panels show the pressure patterns calculated at the top
surface of the waveguide (z =0) while the lower panels plot
the pressure values along the x−axis. The yellow region de-
fines the boundaries of the metameterial slab. The horizontal
dashed lines are guides for the eye. For animations of the
instantaneous fields, see Video 3 and Video 4

values are displayed in two different manners. The upper
panels represent the pressure patterns obtained at the
top surface of the waveguide (i.e., at z = 0); it is a sur-
face plot where the values are given in a color scale. The
lower panels give the pressure obtained along the x−axis,
the black dots represent values obtained at different (y, z)
positions in the structure. Results corresponding to the
lossless case are given in Figs. 8(a), where the surface
plot indicates that the propagating wave has plane wave-
fronts in which the pressure amplitude oscillates between
-2 and +2. The plot representing real P along x−axis can
be understood as a combination of values corresponding
to points inside the waveguide (i.e., for −h < z < 0 and
−a/2 ≤ y ≤ +a/2), and values associated to points in-

side the air cavities of the metamaterial units (i.e. at
positions where −h ≤ z ≤ −h+D). When visco-thermal
losses are included, panels in Fig. 8(b) show that the
previous behavior is basically maintained, the main dif-
ference being just a uniform decreasing of the pressure
values along the metamaterial slab. So, the impinging
signal finally arrives at the opposite end with an energy
attenuated by an amount of around 65% (see Fig. 6). In
both figures, the horizontal dashed lines define the max-
imum values taken by the pressure inside the waveguide.
Motion pictures showing the time evolution of the cal-
culated pressure amplitude along the waveguide at the
frequency of 1.675 kHz are presented in Videos 1 and 2.
Results obtained for a wave with frequency 2.38 kHz,

within the narrow band with double negative behavior,
are shown in Figs. 9(a) and 9(b) for the case without and
with losses, respectively. This frequency corresponds to
the FP resonance indicated by the right arrow in Fig. 6.
In comparison with results obtained for the FP inside the
first passband, we observe two main differences. For the
case without losses, the upper panel in Fig. 9(a) shows
that the pressure pattern does not represent a wave with
plane wavefronts. Instead, the pressure variations appear
around the building units. In addition, the variation of
the pressure significantly increases within the unit cavi-
ties, as it is shown in the plot (Real P) versus x. As in the
lower panels of Fig. 8, the horizontal dashed lines define
the maximum values taken by the pressure in the waveg-
uide. When the viscous and thermal losses are included,
Figs. 9(b) show that the traveling wave is strongly at-
tenuated in just a few rows of the metamaterial slab;
the pressure being negligible after the third row. This
behavior can be explained in terms of the strong dissi-
pation taking place locally, in the individual units along
the metamaterial, a phenomenon which is enhanced due
to the fact that the group velocity of modes in this band
is extraordinarily low (see Fig. 5(b)). Motion pictures
showing the time evolution of the calculated pressure am-
plitude along the waveguide at the frequency of 2.38 kHz
are presented in Videos 3 and 4.

IV. SCALING OF THE METAMATERIAL

The viscous boundary layer has a characteristic length

δv =
√

2ν
ωρ0

, where ν is the coefficient of shear viscos-

ity and ρ0 the air density. Simultaneously, the ther-
mal boundary layer formed as a consequence of the heat
transfer between the air and the rigid walls in the struc-

ture has a characteristic length δκ ≈
√

2κ
cpρ0ω

, where κ

is the thermal conductivity and cp is the specific heat
at constant pressure [27]. For the measurement tem-
perature and the operational frequency of 2.38 kHz, the
thicknesses of viscous and thermal boundary layers are
calculated to be 42 microns and 49 microns, respectively.
These values are less than 2% of the minimum separation,
d, between building units in the metamaterial lattice;
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FIG. 10: Behavior of reflectance (R), transmittance (T) and
absorptance (A) as a function of the scale factor for frequen-
cies corresponding to Fabry-Perot peaks at the first band
(black thin lines) and at the double-negative band (red thick
lines).

d = 2Rext−a. This value is lower than the ≈ 5% thresh-
old that was recently demonstrated to impact acoustic
performance in small channels[36]. Regarding the sepa-
ration between walls inside a building unit, the minimum
distance is given by 2πRa/16. The values δv and δκ are
only a 2.3% and a 2.7%, respectively, of this minimum
separation (1.8 mm).

Taking into account that δv/d = 2.2 × 10−3/
√
a, we

have further reduced the percentage of the boundary lay-
ers in relation to the smallest separation between scat-
terers by just applying a scale factor to all dimensions of
the metamaterial. Results for metamaterial slabs with
effective lengths from Leff =127.5 mm, until Leff =2.55
m, corresponding to scale factors from 1 to 20, are here
presented and discussed. For the lossless case, BEM sim-
ulations show that transmittance spectra are the same
but frequency shifted by the corresponding scale factor.
Instead, when visco-thermal losses are included, the spec-
tra do not scale in the same way since the thicknesses of
the viscous and thermal boundary layers are inversely
proportional to

√
f . Moreover, viscous losses strongly

depend on the incident angle.

Figure 10 shows the behavior of reflectance, transmit-
tance and absorptance corresponding to FP peaks in the
first passband (black thin lines) and one belonging to the
DN band (blue thick lines). They are obtained at four
frequencies (indicated in the figure) that are divided by
the scale factor as the sample is scaled up. Two types of
behavior are clearly observed. For the FP peaks emerg-
ing from the first passband, the absorptance strongly de-
creases with increasing scale factors; maximum absorp-
tion is obtained for the FP peak at 1675 Hz, the one
with lower group velocity. For this structure the scale
factor has a relevant contribution to decrease the visco-
thermal losses or, equivalently, to enhance the transmit-

ted power. However, for the FP peak inside the DN band,
it is observed that an increase of the dimensions by a fac-
tor of 20 produces a decreasing of the absorptance of a
merely 9%; it goes from 71% to 60%. Curves also show
that practically a 100% of the acoustic energy entering
into the metamaterial slab is absorbed almost indepen-
dently of the scale. From these simulations we conclude
that acoustic energy transmitted at frequencies within
the DN band is totally absorbed by the metamaterial
slab. This conclusion forbids the use of these metama-
terials for designing any device in which the properties
of double-negativity are required. Instead, they can be
employed in developing structures for total absorption at
the frequencies where DN behavior is expected without
losses.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented a comprehensive study
of viscous-thermal effects in quasi-2D artificial structures
like the ones introduced in Ref. [26], which were de-
signed to exhibit double-negative behavior. The build-
ing units consist of structured cylinders made of a rigid
material having air cavities penetrating deeply in the
waveguide. The reported experimental characterization
of these type of metamaterial was unable to demonstrate
any feature confirming double-negative effects. We have
performed extensive numerical simulations based on the
Boundary Element Method, which has been improved
and adapted to tackle viscous-thermal losses in these
metamaterial structures. We conclude that these struc-
tures are very efficient in absorbing the energy of acoustic
waves traveling trough them. After studying a metama-
terial slab of seven layers we arrive to several conclu-
sions. On the one hand, for frequencies within the first
passband, the absorbed energy reaches values as high
as 80%, the amount of absorptance being directly pro-
portional to the reciprocal of the group velocity in the
band. However, for waves with frequencies within the
double-negative region, the impinging wave is totally ab-
sorbed in the first few layers of the metamaterial slab
as a consequence of the visco-thermal losses, which are
enhanced due to the extremely low value of the group
velocity inside this narrow band region. Finally, we have
explored the possibility of reducing the relevance of losses
by applying a scaling factor to the dimensions of the ini-
tial samples. Unfortunately, our results show that this
approach is not able to restore the extraordinary fea-
tures associated to double-negativity. So, the present
study leads us to conclude that fin-based metamaterials
structures are not able to exhibit the predicted double-
negative behavior because of the strong dissipation asso-
ciated to visco-thermal losses. A large amount of losses
has also been reported in other rigid-based structures
with embedded resonances [15, 20], where the lack of a
significant signal in the transmitted energy made them
unfeasible to develop practical devices. These results
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may indicate that visco-thermal losses are relevant to any
rigid-based double-negative metamaterials. Though fur-
ther theoretical analysis should be performed in order to
support this general conclusion, we speculate that rigid-
based metamaterials structures could become interesting
alternatives to conventional absorbers in particular situ-
ations, e.g. when treating low frequencies or when the
excitation is narrow-banded, such as mufflers and low-
frequency resonances in room acoustics.
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Appendix

The temporal variation of the pressure field for a
metamaterial slab showing double-negative behavior is

demonstrated by Videos 1 to 4, which show sequences of
snapshots taken along one period.
VIDEO 1. Motion pictures showing the behavior of

total instantaneous pressure (real part) along the waveg-
uide for the case of a wave with frequency 1.675 kHz,
within the first passband. No losses are included in the
calculation.
VIDEO 2. Motion pictures showing the behavior of the

total instantaneous pressure (real part) along the waveg-
uide for the case of a wave with frequency 1.675 kHz,
within the first passband. Viscous-thermal losses are in-
cluded in the calculation.
VIDEO 3. Motion pictures showing the behavior of

the total instantaneous pressure (real part) along the
waveguide for the case of a wave with frequency 2.38
kHz, within the double-negative passband. No losses are
included in the calculation.
VIDEO 4. Motion pictures showing the behavior of the

total instantaneous pressure (real part) along the waveg-
uide for the case of a wave with frequency 2.38 kHz,
within the double negative passband. Viscous-thermal
losses are included in the calculation. Note that the im-
pinging wave is completely absorbed by losses in just a
few layers.
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