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Abstract 

Today, bridge design seeks not only to minimize cost, but also to minimize adverse 

environmental and social impacts. This multi-criteria decision-making problem is 

subject to variability of the opinions of stakeholders regarding the importance of criteria 

for sustainability. As a result, this paper proposes a method for designing and selecting 

optimally sustainable bridges under the uncertainty of criteria comparison. A Pareto set 

of solutions is obtained using a metamodel-assisted multi-objective optimization. A new 

decision-making technique introduces the uncertainty of the decision-maker’s 

preference through triangular distributions and thereby ranks the sustainable bridge 

designs. The method is illustrated by a case study of a three-span post-tensioned 

concrete box-girder bridge designed according to the embodied energy, overall safety 

and corrosion initiation time. In this particular case, 211 efficient solutions are reduced 

to two preferred solutions which have a probability of being selected of 81.6% and 

18.4%. In addition, a sensitivity analysis validates the influence of the uncertainty 

regarding the decision-making. The approach proposed allows actors involved in the 

bridge design and decision-making to determine the best sustainable design by finding 

the probability of a given design being chosen.  
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1. Introduction 

In the past, construction rules were based on the principle of cost minimization. 

Since the World Commission on Environment and Development (WCED) proposed a 

long-term vision to maintain the resources necessary to provide future needs (Butlin, 

1989), these rules have been changing, and civil structure projects are attempting to 

consider sustainable aspects in the selection of structural materials (Castañón et al., 

2015), to promote low-carbon construction processes (Chen et al., 2010; Wong et al., 

2013) and to select the best design (García-Segura et al., 2014; Yeo and Potra, 2015). 

This is particularly important in the construction sector, since it is one of the main 

sectors generating greenhouse gases (Liu et al., 2013) and using natural resources 

(Lippiatt, 1999). So much so that the United Nations Environment Programme has 

highlighted that, if existing construction industry patterns do not change, the expansion 

of construction will destroy or at least disturb natural habitats and wildlife of more than 

70% of the Earth's surface by 2032 (United Nations Environment Programme, 2002). 

Given that sustainable development is mainly based on meeting the three pillar of 

economic, social and environmental development, each of which has different goals and 

approaches (Penadés-Plà et al., 2016), the difficulty of optimizing a set of objective 

functions from non-predefined bridge solutions requires further study.  

Bridge design selection for sustainable development represents a multi-criteria decision-

making problem (MCDM) (Ardeshir et al., 2014; García-Segura et al., 2017a; Malekly 

et al., 2010). The MCDM problems can be treated as multi-attribute decision-making 

(MADM) or multi-objective optimization, depending on whether the alternatives are 

predefined or defined implicitly through a programming formulation (Singh et al., 



2016). The design of a bridge involves a combinatorial problem of variables which 

focuses on optimizing the objective functions while guaranteeing the structural 

constraints. The multi-objective optimization has the advantage of providing the best 

solutions regarding the objectives studied (Pareto front) while avoiding the previous 

articulation of preferences (García-Segura and Yepes, 2016). However, two main 

problems are detected: the multi-objective optimization is time consuming due to the 

structural analysis and the large number of variables and objectives involved (García-

Segura et al., 2017a), and the large number of solutions forces the selection of one 

solution by an a posteriori MADM process (Karimi et al., 2017; Yepes et al., 2015a) 

whose results might be influenced by the uncertainty of the judgements (Bañuelas and 

Antony, 2007; Chatterjee et al., 2018; Gervásio and Simões da Silva, 2012). Therefore, 

there is a need for addressing a research that studies the techniques to design optimum 

bridges in terms of sustainable criteria and considers the uncertainty associated with the 

importance of the criteria. This paper aims to answer the following research question: 

can sustainable bridges be optimally designed under the uncertainty related to the 

comparison of criteria in the decision-making?,  

2. Literature review 

Metaheuristics are considered as particularly useful algorithms for the multi-

objective optimization of structures, since these techniques allow for problems with 

non-linear, non-differentiable or noisy objectives to be handled, which types of 

problems are common in structural engineering (Zavala et al., 2013). Paya et al. (2008) 

employed a simulated annealing algorithm to optimize reinforced concrete building 

frames based on constructability, economic cost, environmental impact and overall 

safety. Chiu and Lin (2014) applied particle swarm optimization to determine the 

optimum maintenance plan considering life-cycle cost, maintenance times, safety, 



serviceability and rationality. García-Segura and Yepes (2016) presented a multi-

objective harmony search to study the best designs for a bridge based on cost, CO2 

emissions and the overall safety factor. As the algorithm was successfully used to 

optimize the bridge design selection, the algorithm was also used to study the cheapest 

solutions with respect to different safety and durability levels (García-Segura et al., 

2017a).  

Nevertheless, multi-objective optimization of a bridge problem implies a high 

computational cost, required to analyze multiple bridges and check their safety and 

serviceability (García-Segura et al., 2017a). In this sense, metamodels, or surrogate 

models, provide a relationship between the variables representing the response of the 

original simulation model. These models are used to effectively simulate processes in 

the construction sector (García-Segura et al., 2017a; Ozcan-Deniz and Zhu, 2016), 

especially when a large computational time is needed to solve the problem. Despite the 

fact that other surrogate models exist, such as polynomial response surfaces, radial basis 

functions and Kriging models, Artificial Neural Networks (ANN) are considered to be a 

powerful computation tool for complex structure problems (Caglar et al., 2008; Deb and 

Nain, 2007; García-Segura et al., 2017a). ANN is a model instrument based on artificial 

neurons that solves complex and non-linear problems. This instrument learns from 

training examples and approximates non-linear functions to provide a response or 

output.  

Regarding design criteria, economic structures tend to reduce material 

consumption, and this also contributes to the minimization of emissions (García-Segura 

et al., 2015) and energy use (Martí et al., 2016). In this sense, cost optimization is a 

good approach to achieving an environmentally friendly design (García-Segura and 

Yepes, 2016). However, as the environmental and economic unit costs of construction 



materials do not have a proportional relationship to one another (Yepes et al., 2015b), 

environmental criteria should be considered to achieve sustainable infrastructures 

(Barandica et al., 2013; Zastrow et al., 2017; Zhong and Wu, 2015). Both the CO2 

emissions and the embodied energy have also been selected as interesting objectives for 

environmental optimization (Martí et al., 2016; Yeo and Gabbai, 2011; Yeo and Potra, 

2015). 

Social aspects relating to the sustainability of infrastructures are studied in depth 

in several publications since this is an emerging topic (Penadés-Plà et al., 2016; Sierra 

et al., 2018a; Yu et al., 2017). In bridge planning and design, researchers carry out 

strategies to improve the aesthetic feel (Ohkubo et al., 1998), cultural heritage and 

public perception of the bridge (Ugwu et al., 2006), in addition to vehicle operation 

costs and safety costs (Gervásio and da Silva, 2012), among other factors. Despite 

authors highlighting the lack of unanimity in the social pillar (Penadés-Plà et al., 2016; 

Sierra et al., 2018b), it is important to select the criteria based on the characteristics of 

the case study to achieve the objective sought. Social investments within long-term care 

include those in improving quality of care and quality of life, increasing capacities to 

participate in society and the economy and promoting sustainable and efficient resource 

allocation (Lopes, 2017). In this sense, the design of a bridge must meet the needs for 

which it has been planned and reduce the long-term use of resources. In order to extend 

the service life of structures and to optimize maintenance actions, the durability 

condition and safety criteria should be considered (García-Segura et al., 2017b; Neves 

and Frangopol, 2005). Additionally, the durability condition also has an influence on the 

life-cycle cost, since the maintenance of corroded components represents the greater 

part of the life-cycle costs of long-span coastal bridges (Cheung et al., 2009).  



The multi-objective optimization of sustainable criteria provides a Pareto front of 

efficient solutions which have conflicting objectives. MADM are used to select these 

trade-off solutions based on certain information, experience and judgment. In the 

literature, there are many MADM methods which have been reviewed in a number of 

publications (De Brito and Evers, 2016; Jato-Espino et al., 2014; Vicent Penadés-Plà et 

al., 2016). The multi-criteria optimization and compromise solution (VIKOR, derived 

from the Serbian name Vlse VlseKriterijuska Optimizacija I Komoromisno Resenje) 

(Opricovic, 1998) rank the alternatives according to the distance to the ideal point, 

which is in line with the multi-objective optimization. VIKOR method focuses on 

ranking and selecting a solution from a finite set of feasible alternatives which are in the 

presence of conflicting criteria with different units (Chatterjee and Chakraborty, 2016). 

VIKOR is a helpful tool particularly in a situation where the decision-maker is not able, 

or does not know to express his/her preference at the beginning of system design 

(Opricovic and Tzeng, 2004). Therefore, this method can be combined effectively with 

the multi-objective optimization to select a solution of the Pareto front. As the 

compromise solution will depend on the value that the decision-maker wants to place to 

each criterion, the combined use of the Analytical Hierarchy Process (AHP) and 

VIKOR provides a powerful tool to obtain the closest compromise solution to the ideal 

point from the verbal judgements of the decision-makers (Chatterjee and Kar, 2017; 

Pourebrahim et al., 2014; Singh et al., 2016). AHP is a technique used in the decision-

making process to help decision-makers set priorities among alternatives and make 

better decisions by taking into account qualitative and quantitative aspects of the 

decision (Bañuelas and Antony, 2007). This method has been successfully used in 

facilitating the judgment of complex problems, as decision-makers are not required to 

make numerical guesses as subjective judgments are easily included in the process and 



the judgments can be made entirely in a verbal mode (Korpela et al., 2001). AHP 

method is suitable for problems which can be decomposed into a hierarchy (Güngör et 

al., 2009). In addition, this method can check inconsistencies in the decision-maker’s 

assessments (Saaty, 1987). AHP has been used to select the best bridge construction site 

(Aghdaie et al., 2012; Ardeshir et al., 2014), the type of bridge (Farkas, 2011) and the 

bridge construction method (Pan, 2008), among others. A correspondence analysis 

showed that AHP is centered and located in an intermediate position between the design 

and planning phase, the construction phase and the operation and maintenance phase 

(Penadés-Plà et al., 2016). Consequently, this method can be used in these three life-

cycle phases.  

Despite the fact that AHP facilitates the weight criteria assignment, Abu Dabous 

and Alkass (2008) stated that the relative importance of two elements is difficult to 

define using deterministic numbers due to the uncertainty in the behavior of the 

different elements under consideration. Uncertainty in sustainability can be derived 

from many sources like data uncertainty, model uncertainty and uncertainty in the 

decision-making (Baker and Lepech, 2009; Durbach and Stewart, 2012; Lloyd and Ries, 

2008; Sierra et al., 2018; Webb and Ayyub, 2017). Data uncertainty and model 

uncertainty are commonly related to the evaluations of the performance of sustainability 

criteria. However, uncertainty in the decision-making influences the weighting of the 

conflicting criteria. This paper focuses on this last type of uncertainty, which is also 

considered as internal uncertainty (Stewart, 2005). While external uncertainty refers to 

the lack of knowledge, which may be outside of the control of the decision-maker, the 

internal uncertainties refer to both the structure of the model adopted and the 

judgmental inputs (for instance, the introduction of importance weights (Gervásio and 

Simões da Silva, 2012)). The uncertainty in the decision-making occurs due to 



subjective and qualitative judgment of decision-makers (Chatterjee et al., 2018). As 

researchers like Bañuelas and Antony (2007) claimed, real-world interventions such as 

the design concept selection, implicate relationships between people and their 

differential willingness and this affects the capability of reaching consensus and 

complicates the decision-making. The uncertainty in the criteria weighting can be 

appreciated even more clearly in the sustainability context, as firstly the contribution of 

each criterion to the sustainable development is not clear (Yao et al., 2011), and 

secondly, the stakeholders have different interests and opinions (Delgado and Romero, 

2016; Fernández-Sánchez and Rodríguez-López, 2010; Sierra et al., 2018). For this 

reason, researchers (Gervásio and Simões da Silva, 2012; Umer et al., 2016) pointed out 

the importance of considering the uncertainty to achieve a good decision-making 

practice. 

The techniques that handle this type of uncertainty can capture the variability of 

the decision-maker preferences on criteria, which has an impact on the probabilistic 

ranking of the preferred alternatives (Bañuelas and Antony, 2007). Thus, a methodology 

that gives a probabilistic interpretation of the preferred solution provides more precise 

information on the preferred bridge alternative in the context of the sustainable design. 

In this regard, multi-objective fuzzy decision-making approaches have been developed 

to select the best bridge construction site (Ardeshir et al., 2014), the bridge construction 

method (Pan, 2008), the bridge construction project (Chou et al., 2013) and the type of 

bridge (Jakiel and Fabianowski, 2015; Malekly et al., 2010). Generally, triangular or 

trapezoidal fuzzy numbers are used to define the uncertainty (Abu Dabous and Alkass, 

2008). However, the decision-makers do not take part in the definition of their certainty 

relating to the sustainable criteria comparison. 

3. Research gap and research objectives 



Sustainable bridge design requires the consideration of environmental (Yeo and 

Gabbai, 2011; Zastrow et al., 2017; Zhong and Wu, 2015) and long-term criteria 

(Cheung et al., 2009; Neves and Frangopol, 2005). Despite researchers claimed the 

necessity to incorporate the variability of the opinions of stakeholders regarding 

sustainable criteria importance (Bañuelas and Antony, 2007; Bilbao-Terol et al., 2012; 

Gervásio and Simões da Silva, 2012; Umer et al., 2016), particularly in bridge selection 

(Abu Dabous and Alkass, 2008; Ardeshir et al., 2014; Jakiel and Fabianowski, 2015), 

bridge design optimization has not yet integrated the uncertainty in the selection process 

(García-Segura et al., 2017a; García-Segura and Yepes, 2016).  

Based on the research gap, this paper proposes the following research 

objectives: (1) to develop a method to design and select sustainable bridges by taking 

into account the variability of the judgments regarding criteria comparison, (2) to 

analyze the influence of the variability of the opinions of stakeholders on the selection 

of the most sustainable bridge. 

4. Organization of the paper 

The paper is structured as follows: Section 5 presents a method to first define the 

problem, and then to carry out the multi-objective optimization and finally develop the 

decision-making technique. Section 6 illustrates the method using a case study of a 

post-tensioned concrete box-girder bridge and Section 7 carries out a sensitivity analysis 

to validate the method. Finally, Section 8, 9 and 10 presents respectively the 

conclusions, implications and limitations and future research. 

5. Research framework 

In light of the literature analysis, this section proposes a complete method that 

integrates multi-objective optimization and decision-making that overcomes the 



problem of time consumption via the inclusion of the uncertainty relating to the 

sustainable criteria comparison. The framework of the method is divided into three 

sequential steps: problem definition, metamodel-assisted multi-objective optimization 

and decision-making, as shown in Fig. 1. 

 

Fig. 1 Flowchart describing the method for designing and selecting a sustainable bridge 

5.1. First step: problem definition 

Before carrying out the multi-objective optimization, it is important to properly 

establish the problem definition, which consists of selecting the bridge variables, 

parameters and objectives to achieve the sustainable goal. This step demarcates a 

solution space from which the metaheuristic algorithm will find the optimum solutions. 



The multi-objective optimization problem aims to minimize or maximize some 

objective functions Fi while satisfying the constraints Gj. Both the objective functions 

and structural constraints depend on the design variables x1, x2,…, xn and the parameters 

p1, p2,…, pm. Each design variable can adopt discrete values, which range between dk1 

and dkqk.  

,  (1) 

, 
 (2) 

. 
 (3) 

The parameters, together with the variables, define the complete bridge design. 

The parameters are all fixed quantities that do not change during the optimization 

procedure and their choice leads to a particular case study. When varying the 

parameters, the optimum values of the variables and the objective functions change 

accordingly. An optimization algorithm explores the search space to find the best values 

of the variables that optimize the objective functions. These values are discrete in order 

to guarantee that the bridge can be built. The objective functions are determined with 

the aim of achieving the pursued goals. Constraints, in the case of bridge design, verify 

the demands of safety and those relating to the aptitude for service requirement, as well 

as the geometrical and constructability requirements (García-Segura and Yepes, 2016). 

Note that the constraints can be transferred to objective functions for further 

strengthening the solutions that address these objectives.  

5.2.  Second step: metamodel-assisted multi-objective optimization 

The second step aims to reduce the solution space to a feasible and optimal set. To 

this end, a metamodel-assisted multi-objective optimization is proposed. Multi-



objective optimization (MOO) of bridges requires a large computational time due to the 

existence of many decision variables and objective functions, as well as the use of 

finite-element analysis (García-Segura et al., 2017a). For this reason, García-Segura et 

al. (García-Segura et al., 2017a)  proposed an approximate model to reduce the bridge 

response evaluations. The model uses ANNs to learn from training examples, and then 

predicts the structural behavior of a bridge design. As mentioned in Section 1.2.1, 

despite the fact that there are other surrogate models, ANN is considered to be a 

powerful computational tool for complex structure problems (Caglar et al., 2008; Deb 

and Nain, 2007; García-Segura et al., 2017a). ANNs are integrated into the constraint 

module of the multi-objective optimization, which model provides an approximate 

Pareto front that stabilizes near the true Pareto front. The metamodel-assisted multi-

objective optimization is divided into the following four stages (see Fig. 1): 

1. ANN training uses a Levenberg-Marquardt backpropagation algorithm to learn 

from the data and adjusts the weights associated with the neurons. The data are 

divided into training, validation and test sets with respective percentages of 

70%, 15%, 15%. The multilayer feedforward network consists of one hidden 

layer of sigmoid neurons followed by an output layer of a linear neuron. The 

input and output variables refer, respectively, to the variables and the safety 

factors associated with the limit states.  

2. The multi-objective optimization is combined with ANN to obtain an 

approximate Pareto set. As mentioned previously, ANN is used to obtain the 

safety factors from the design variables and based on these values, nine 

predictions for each output are carried out and the average value is obtained. The 

constraints check the bridge response based on the limit states predicted and the 

objective evaluation verifies the Pareto condition. The multi-objective harmony 



search algorithm is employed to find the design variables that optimize the 

objective functions. The termination criterion of this step is set based on the 

hypervolume stabilization.  

3. The Pareto set is updated through an exact method. Each bridge design is 

evaluated by a finite-element analysis and a limit state verification. The feasible 

and optimum solutions constitute the updated Pareto front. 

Last stage departs from the updated Pareto front and carries out a finer multi-

objective optimization. The multi-objective harmony search generates new solutions 

that are analyzed through a finite-element analysis and then verified. The optimization 

process finishes when the difference in the hypervolume value is less than 0.0005.  

5.3.  Third step: decision-making 

The final step conducts a decision-making process using a hybrid MADM 

method that reduces the large number of solutions of the multi-objective optimization 

and makes the preferences between sustainable criteria more flexible. AHP is employed 

to provide the weights for the criteria and VIKOR to rank the alternatives according to 

their proximity to the ideal solution (Chatterjee and Kar, 2017; Pourebrahim et al., 

2014; Singh et al., 2016). This method extends the AHP method by proposing 

probabilistic distributions to represent the uncertainty in the decision-maker’s 

preferences.  

AHP is a decision analysis technique that incorporates expert preferences 

through pairwise comparisons using Saaty´s fundamental scale (Saaty, 1987). This is an 

appropriate method to study sustainability of bridge design as it uses a hierarchical 

model. The elements are compared based on their degree of contribution to the next 

higher level. In this regard, criteria are compared based on their importance in order to 

achieve a sustainable bridge design. Table 1 shows the numerical scale assignment 



associated with each verbal scale of importance. These values are transferred to a 

reciprocal matrix of the order of (mxm), where m is the number of criteria. This matrix is 

considered to be of acceptable consistency when the consistency ratio (CR) is less than 

0.1. In this case, the criteria weights (wj) are obtained by the eigenvector method, so that 

this method guarantees consistency of judgments.  

Table 1. Saaty’s fundamental scale (Saaty, 1987) 

Numerical 

scale (P) 

Verbal scale Explanation 

1 Same importance 

The two elements make a similar 

contribution to the criterion 

3 

One item moderately 

more important than 

another 

Judgment and earlier experience favor one 

element over another 

5 

One item significantly 

more important than 

another 

Judgment and earlier experience strongly 

favor one element over another 

7 

One item much more 

important than another 

One element dominates strongly. Its 

domination is proven in practice 

9 

One item very much more 

important than another 

One element dominates the other with the 

greatest order or magnitude possible 

 

As the relative importance between two elements is difficult to define with 

deterministic numbers due to the uncertainty in their behavior (Abu Dabous and Alkass, 



2008), this paper proposes a modified AHP that takes into account the uncertainty 

associated with the criteria comparison. A triangular distribution is defined for each 

pairwise comparison value of the AHP matrix. The distribution is then defined by the 

most likely value (P) and the low and high limits (A, B). The conventional AHP 

provides the P value (see Table 1) and the A and B values symbolize the range of 

variability of the relative importance of each pair of criteria. These values are 

determined through the uncertainty value (UV), which represents one side of the 

symmetric triangular distribution. Table 2 defines the UV according to each verbal scale 

of uncertainty. Note that the scale of values should be consistent with the reciprocal 

comparison matrix. In this sense, A and B follow the scale of values (1/9, 1/8, 1/7, 1/6, 

1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9). As an example, Fig. 2 shows the triangular 

distribution of the random variables that correspond to an extreme case of judgment 

“Experts are very uncertain that Criterion 1 has the same importance as Criterion 2”. In 

this case, the high limit considers that Criterion 1 is very much more important than 

Criterion 2 (B=9) and the low limit considers that Criterion 2 is very much more 

important than Criterion 1 (A=1/9). The UV (equal to 8) determines the steps between 

the high limit B and the most likely value (P) (equal to 1). However, the random 

variables that lie within the A-P range should be transformed to the scale of values 

previously mentioned following these equations: 

Table 2. Uncertainty values 

Numerical   

scale (UV) 

Verbal scale Explanation 

 

Very certain 

The expert is very certain that the 

assessment is correct 



 

Certain 

The expert is certain that the assessment is 

correct 

 

Fairly certain 

The expert is fairly certain that the 

assessment is correct 

 

Uncertain 

The expert is uncertain that the assessment 

is correct 

 

Very uncertain 

The expert is very uncertain that AHP 

assessment is correct 

 

 

Fig. 2 Example of triangular probability distribution 
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Once the triangular distributions are defined, the values are obtained through 

Monte Carlo simulations. The simulation selects random values from the triangular 

distribution and uses these values to complete the reciprocal matrix. Next, the weights 

corresponding to consistent matrices are saved and applied to each criterion. The 

VIKOR method (Opricovic, 1998) is then used to select the closest alternative to the 

ideal point. The ideal solution contains the best values of each criterion from the set of 

solutions. In contrast, the negative-ideal solution is obtained as the worst values for each 

criterion. This method evaluates the Lp-metric distance from any point to the ideal 

vector in the p norm as:  

 , (7)   

      p=1,2… , (8)  

L= = , (9) 

where zj(x), j = 1, …, q are the criteria considered in the problem, z* = 

(z1
*,…,zq

*) is the ideal solution, z- = (z1
-,…,zq

-) is the negative-ideal solution, λj (j = 1, 

…, q) are the normalized weights associated with the criteria and wj (j = 1, …, q) are the 

weights obtained from the AHP method. This method considers the Manhattan (L1) and 

Chebyshev (L∞) metrics, also called the S and R metric, respectively. Finally, the values 

Qj associated with each solution j are obtained as: 

, (10) 



where ν is introduced as the weight of the strategy of the maximum group utility, 

S* and R* are the best values and S- and R- are the worst values of the Manhattan and 

Chebyshev metrics. This paper considers ν =0.5. 

6.  Case study 

6.1. Problem definition 

The case study involves a three-span post-tensioned concrete box-girder bridge 

located in a coastal region. The width of the deck (11.8 m) and the length (114.4 m) are 

parameters of the problem. The bridge design uses 34 variables that define the concrete 

strength, the cross-sectional dimensions, passive and post-tensioning steel. Nine 

variables define the geometry and the reinforcing steel is specified by 21 variables, 

which describe the diameter of the longitudinal and the transverse reinforcing steel, the 

number of bars per meter of the longitudinal reinforcing and the spacing of all of the 

transverse reinforcing. The amount of post-tensioning steel and the parabolic layout are 

determined by three variables: the eccentricity in the external span, the point of 

inflection and the number of strands. 

The criteria are selected to be consistent with the sustainable approach from the 

design perspective. In this regard, this paper proposes the embodied energy, the overall 

safety and the corrosion initiation time as objective functions. In view of the discussion 

of Section 1.2.2, the embodied energy can be selected as an interesting objective for the 

environmental optimization (Martí et al., 2016; Yeo and Gabbai, 2011). The corrosion 

initiation time and safety objective functions are considered with the aim of designing 

for longevity and reduced long-term impacts (García-Segura et al., 2017b; Neves and 

Frangopol, 2005). The multi-objective optimization will allow for the discovery of 

useful knowledge regarding the best bridge designs to reduce the embodied energy and 

increase bridge durability and safety.   



The embodied energy is evaluated as the energy of material production, 

transport and placement where construction units considered are concrete, post-

tensioning steel, reinforcing steel and formwork. Each construction unit includes raw 

material extraction, manufacture, transportation and placement. The embodied energy 

(E) is calculated according to the unit energy of concrete (Eco), the volume of concrete 

(Vco), the unit energy of reinforcing steel (Ers), the weight of reinforcement steel (Wrs), 

the unit energy of prestressed steel (Eps), the weight of prestressed steel (Wps), the unit 

energy of formwork (Ef) and the area of the formwork (Af). Unit energies, shown in 

Table 3, are obtained from the Institute of Construction Technology of Catalonia 

(ITEC) database (BEDEC). 

. 
  (11) 

Table 3. Embodied energy related to construction units 

Unit measurements Energy 

(kWh/meas

ure) 

Square meter of formwork 8.7 

Kilogram of steel (B-500-S) 10.44 

Kilogram of prestressed steel (Y1860-S7) 12.99 

Cubic meter of concrete 35 MPa 612.22 

Cubic meter of concrete 40 MPa 646.61 

Cubic meter of concrete 45 MPa 681.00 

Cubic meter of concrete 50 MPa 715.39 

Cubic meter of concrete 55 MPa 749.77 

Cubic meter of concrete 60 MPa 784.16 

Cubic meter of concrete 70 MPa 852.94 

Cubic meter of concrete 80 MPa 921.72 

Cubic meter of concrete 90 MPa 990.49 

Cubic meter of concrete 100 MPa 1059.27 

 

The overall safety factor (S) is evaluated as the minimum overall safety factor 

for the torsion, flexure, transverse flexure and shear limit states. The overall safety 

factor corresponds to the ratio between the ultimate resistance of the structural response 



and the ultimate load effect of actions for each limit state. These limit states are based 

on the safety approach proposed in the structural codes (European Committee for 

Standardisation, 2005; Fomento, 2008) which consider partial safety factors for loads 

and material strengths to guarantee a reliable structure.  It is worth noting that an overall 

safety factor of one implies strict compliance.  

The corrosion initiation time (tcorr) is the time required to achieve a critical 

threshold value (Cr) on the surface of the reinforcing steel due to chloride attack. The 

model used to evaluate this period  is based on Fick´s second law, which depends on the 

surface content (Co), the apparent diffusion coefficient (D) and the error function (erf). 

The apparent diffusion coefficient model, suggested by Vu and Stewart (2000) and also 

proposed by Papadakis et al. (1996), depends on the chloride diffusion coefficient in an 

infinite solution (DH20 = 1.6 × 10-5 cm2/s for NaCl), the mass density of cement (ρc is 

considered to be 3.16 g/cm3), the mass density of the aggregates (ρa is considered to be 

2.6 g/cm3), the aggregate-cement ratio (a/c) and the water-cement ratio (w/c). The 

model considers the uncertainties in the apparent diffusion coefficient (normal function, 

µ = 1, COV = 0.2), chloride concentration on the surface (log-normal function, µ = 

2.95, COV = 0.3), concrete cover (normal function, µ = cc, COV = 0.25) and the critical 

threshold value (uniform function, min=0.6, max=1.2). These values were proposed by 

Vu and Stewart (2000). The corrosion initiation time distribution is obtained by Monte 

Carlo simulation. The mean value of the lognormal distribution is given as the 

representative value (García-Segura et al., 2017a). 

, 

(12) 



. 
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6.2. Metamodel-assisted multi-objective optimization  

This multi-objective optimization considers the embodied energy, the overall 

safety factor and the corrosion initiation time as objectives to achieve the sustainability 

goal. The constraints check all the serviceability limit states (SLSs) and the ultimate 

limit states (ULSs) that the structure must satisfy. These limit states are specified in the 

Spanish code (Fomento, 2011, 2008), based on the Eurocode (European Committee for 

Standardisation, 2005, 2003). The constructability requirements are also checked. 

The neural network is trained using 4500 data points. Each datum comprises 34 

input variables and one output variable. The input variables are those mentioned in 

Section 3.1 and the output variables correspond to the safety factors associated with the 

limit states. To predict the 17 limit states, the process is carried out 17 times and the 

number of neurons is adjusted to provide the best performance, avoiding overfitting and 

poor generalization ability for other data. In this case, the ANN was calibrated with 10 

neurons. More details regarding the multi-objective optimization problem can be found 

in the study of García-Segura et al. (2017a). Figure 3 illustrates the results of the multi-

objective optimization problem. 

The Pareto front provides a set of optimum bridge solutions taking account of 

the embodied energy, the overall safety factor and the corrosion initiation time. Results 

show the increment in the embodied energy as the demands on durability and safety 

increase. While a safety improvement leads to a high increment in embodied energy, 

this is not so for durability improvement. Figure 3 shows the parabolic relationship 

between the embodied energy and the overall safety factor. A similar trend was obtained 



by Paya et al. (2008) when comparing the cost versus overall safety. The Pareto front 

provides a set of trade-off solutions from which the designer must select the most 

desirable one. Solutions with higher safety and durability require higher amounts of 

materials and concrete of a higher strength, but the lifetime extension would also reduce 

future maintenance requirements.  

 

Fig. 3. Pareto front of solutions 

6.3. Decision-making 

For this case study, the AHP under uncertainty method is used to obtain the 

weights for the energy, corrosion initiation and overall safety criteria. Experts provide 

their judgments regarding the relative importance of the criteria and the uncertainty 

related to these opinions. Note that an overall safety factor of one implies a strict 

compliance with the code. As all of the solutions have an overall safety factor greater 

than one, the minimum safety level required by the code is guaranteed. Based on this, 

the overall safety and the other criteria are compared. 

This case study proposes the following judgments:  

- Experts are certain that the energy is much more important than the 

overall safety factor. This leads to P1=7, UV1=1/2, A1=6.5, B1=7.5. 



- Experts are certain that the initiation of corrosion is significantly more important than 

the overall safety factor. This leads to P2=5, UV2=1, A2=4, B2=6. 

- Experts are fairly certain that the energy is equally as important as the 

initiation of corrosion. This leads to P3=1, UV3=4, A3=1/5, B3=5. 

The following matrix contains the values of the triangular function [A,P,B]. 

Random values are obtained based on each distribution by applying the Monte Carlo 

method. It is worth noting that 10,000 consistent matrices are obtained to generate a 

histogram of the weight of each criterion. AHP matrices which are not consistent are not 

considered. Note that some ranges of values may lead to inconsistent matrices. 

Therefore, it may be that increasing the uncertainty range does not change the results.  

 

 

  Energy Overall 

safety 

Corrosion 

initiation 

 

Energy   1 [6.5,7,7.5] [1/5,1,5]   

Overall safety   [1/7.5,1/7,1/6.5] 1 [1/6,1/5,1/4]   

Corrosion initiation   [1/5,1,5] [4,5,6] 1   

 

Figures 4, 5 and 6 show the histograms of energy, corrosion initiation and 

overall safety weights. The histograms show a good approximation to a normal 

distribution function. Both energy and corrosion initiation have higher AHP values with 

respect to the overall safety. Consequently, the energy and corrosion initiation weights 

are much higher than the weight for the overall safety. The histogram of the energy 

weight (Fig. 4) has minimum and maximum values of 0.45 and 0.641, where the median 

is 0.548. The histogram of initiation corrosion weight (Fig. 5) has minimum and 



maximum values of 0.285 and 0.477, where the median is 0.375. Figure 6 shows the 

overall safety weight histogram. In this case, the minimum and maximum values are 

0.068 and 0.085, and the median is 0.076. As experts consider overall safety factor to be 

less important than the other criteria, the weight associated with this criterion is smaller.  

 

Fig. 4. Histogram of energy weight 

 

Fig. 5. Histogram of corrosion initiation weight 



 

Fig. 6. Histogram of overall safety factor weight 

The histograms provide decision-makers with a range of weights that can be 

assigned to the criteria according to their preferences, ensuring consistency between the 

criteria. In this case study, 211 bridge alternatives form a set of solutions of the Pareto 

front obtained by the multi-objective optimization (see Fig. 3). These alternatives are 

feasible and optimal. The experts must select one alternative from this set to obtain the 

best bridge design. As the set of solutions is very large, it is necessary to reduce the 

number of solutions, which is achieved by prioritization with a distance-based method 

called VIKOR that uses the weights obtained by the AHP under uncertainty method. 

The VIKOR method obtains the closest alternative to the ideal point. This 

solution depends on the weights assigned to each criterion and the set of solutions 

studied. In this case, 10,000 random AHP matrices are obtained based on the triangular 

distributions. Each matrix leads to one set of weights. These weights modify the 

distances from the Pareto solutions to the ideal one and the VIKOR method ranks these 

solutions based on Eq. (10) to select the best one. After 10,000 iterations, the set of the 

Pareto front is reduced to a set of preferred solutions.   



In this case, the 211 solutions that represented the Pareto front have been 

reduced to two alternatives (Alternatives A and B). Table 4 shows the criteria values of 

these preferred solutions. The percentage of times in which these solutions have been 

selected is 81.6% and 18.4% for Alternatives A and B, respectively. Thus, Alternative 

A is more likely to be selected. Results of the conventional AHP-VIKOR also give 

Alternative A as the preferred solution. Therefore, results show that even where there is 

uncertainty regarding the importance of the different criteria, the probability of selecting 

this preferred solution is very large.  

Table 4. Preferred alternatives obtained after applying AHP-VIKOR under uncertainty 

method 

Alternative 
Energy 

(kWh) 
Overall safety 

Corrosion 

initiation (years) 

A 21,52,404 1.139 500 

B 2,214,495 1.221 500 

C 2,246,406 1.295 500 

D 2,260,262 1.340 500 

 

The values for the energy, overall safety factor and corrosion initiation time of 

the Pareto front range between 1,910,862 and 6,015,223 kWh, 1.03 and 1.73 and 9.9 

and 500 years, respectively. Both of the preferred alternatives have the highest value of 

corrosion initiation time. The results suggest that the increment in durability, evaluated 

as the initiation of corrosion, does not entail large energy differences and therefore, the 

solutions with higher durability are preferred. Comparing Alternative A and the solution 



with the lowest embodied energy, Alternative A consumes 13% more energy but 

increases the safety and the corrosion time by 10% and 4,935%. The Alternative B 

consumes 16% more energy, but improves the safety by 18%. These results are 

compared to those of García-Segura et al. (2017b) in which study a lifetime 

maintenance optimization was carried out for the bridge Pareto solutions regarding cost, 

corrosion initiation time and overall safety. The results coincidentally showed that 

alternatives that maximize the corrosion initiation time have the lowest life-cycle 

impacts. Thus, it is of fundamental importance to take into account the durability 

criterion for the sustainable approach.   

This tool provides a rational technique to help engineers and decision-makers to 

design and select preferred solutions based on conflicting criteria. This methodology 

facilitates the design of trade-off solutions and the complex decision-making in the 

context of sustainability by providing judgments with a degree of uncertainty. 

7. Sensitivity analysis 

A sensitivity analysis is carried out to validate the method and this section aims 

to analyze the influence of the inherent uncertainty in the criteria comparison on the 

decision-making results. To this end, the uncertainty value is varied while the most 

likely value is kept constant. In the previous case study, experts were fairly certain 

about the energy and initiation of corrosion comparison, certain about the energy and 

the overall safety factor comparison and certain about the overall safety factor and the 

initiation of corrosion comparison. To examine the effect of the level of uncertainty on 

the solution selection, 27 experiments are analyzed for the sensitivity analysis. These 

experiments cover all of the combinations of uncertainty values related to very certain 

(VC), fairly certain (FC) and very uncertain (VU) comparisons. Results of the 

sensitivity analysis are summarized in Tables 4 and 5. Table 4 shows the criteria values 



for the four preferred alternatives (Alt. A-D) obtained in all of the experiments. Table 5 

shows the level of uncertainty for each criteria comparison and the percentage of times 

each alternative has been selected.  

Table 5. Experiments for the sensitivity analysis 

 Uncertainty 

energy vs. 

overall 

safety factor 

Uncertainty 

initiation of 

corrosion vs. 

overall safety 

factor 

Uncertainty 

energy vs. 

initiation of 

corrosion 

Alt.  

A 

(%) 

Alt. 

B 

 (%) 

Alt. 

C 

(%) 

Alt.

D 

(%) 

Exp 1 VC VC VC 100.0 0.0 0.0 0.0 

Exp 2 VC VC FC 82.8 17.2 0.0 0.0 

Exp 3 VC VC VU 83.1 16.9 0.0 0.0 

Exp 4 VC FC VC 70.8 29.2 0.0 0.0 

Exp 5 VC FC FC 84.5 15.5 0.0 0.0 

Exp 6 VC FC VU 85.4 14.6 0.0 0.0 

Exp 7 VC VU VC 71.3 28.7 0.0 0.0 

Exp 8 VC VU FC 82.0 18.0 0.0 0.0 

Exp 9 VC VU VU 85.8 14.2 0.0 0.0 

Exp 10 FC VC VC 60.5 39.5 0.0 0.0 

Exp 11 FC VC FC 77.8 22.2 0.0 0.0 

Exp 12 FC VC VU 82.7 17.3 0.0 0.0 

Exp 13 FC FC VC 56.2 43.8 0.0 0.0 

Exp 14 FC FC FC 78.9 21.1 0.0 0.0 

Exp 15 FC FC VU 79.1 20.9 0.0 0.0 

Exp 16 FC VU VC 64.0 35.8 0.2 0.0 

Exp 17 FC VU FC 79.5 20.3 0.2 0.0 

Exp 18 FC VU VU 81.2 18.5 0.3 0.0 

Exp 19 VU VC VC 56.8 39.6 3.6 0.0 

Exp 20 VU VC FC 69.0 27.0 4.0 0.0 

Exp 21 VU VC VU 70.9 25.3 3.8 0.0 

Exp 22 VU FC VC 52.5 43.8 3.7 0.0 

Exp 23 VU FC FC 67.4 29.4 3.2 0.0 

Exp 24 VU FC VU 72.2 24.0 3.8 0.0 

Exp 25 VU VU VC 55.0 38.6 6.3 0.1 

Exp 26 VU VU FC 65.2 29.9 4.8 0.1 

Exp 27 VU VU VU 72.8 22.6 4.5 0.1 

 



 

Fig.7. Results of sensitivity analysis 

The outcomes reveal that the higher probability remains Alternative A. 

Alternative B acquires a higher percentage in some experiments compared to the case 

study analyzed in Section 3; however, the probability of selecting Alternative A is 

higher than the probability of selecting Alternative B in all of the experiments. The 

maximum selection rates of Alternatives B, C and D are 43.8%, 6.3% and 0.1%, 

respectively. Figure 7 clearly illustrates the percentage of Alternatives A, B and C. 

Results show a tendency to decrease the percentage of selecting Alternative A as the 

uncertainty of the relative importance between the energy and overall safety factor 

increases. Alternative A has the lowest embodied energy compared to Alternatives B, C 

and D. Thus, when this uncertainty increases, the decision-maker selects solutions 

which have higher energy but are safer. This indicates that the uncertainty of this 

criteria comparison influences the results.  

Looking at the experiments which have the same uncertainty between the energy 

and overall safety factor, results also reveal that for cases in which there is high 



certainty that energy has the same importance as the corrosion initiation time, 

Alternative B acquires greater importance and Alternative A obtains the lowest values. 

Experiment 27, which corresponds to the case of high uncertainty for every comparison, 

has been analyzed in order to examine this question in more detail (see Fig. 8). In this 

case, the relative importance of energy and corrosion initiation cannot take values 

between 1/3 and 1/9, since this would lead to inconsistent matrices. Thus, corrosion 

initiation cannot have significantly more importance than energy to be consistent with 

other judgements and, consequently, only when there is great certainty regarding this 

comparison, can the decision-making process accept solutions with higher energy as 

preferred solutions. 

Therefore, the sensitivity analysis shows that the inherent uncertainty of the 

criteria comparison has an influence on the decision-making results. The method 

proposed is robust as it coincides with the conventional AHP-VIKOR approach to the 

preferred alternative. However, other alternatives are selected with lower percentages. 

The percentage associated with a given design depends on the degree of uncertainty and 

the criterion dominance. A high level of dominance of one criterion reduces the 

probability of selecting an alternative to the one preferred. Besides, results show that an 

optimized solution that improves greatly one criterion without worsening the other 

criteria significantly is more likely to be selected even when there is uncertainty in the 

criteria comparison. Therefore, the multi-objective optimization phase provides an 

effective prior selection that reduces the variability of the preferred solution.  



 

Fig. 8. Triangular distributions of Experiment 27 

8. Conclusions 

This paper proposes a metamodel-assisted multi-objective optimization for 

designing optimum trade-off solutions and a new decision-making technique under 

uncertainty. Artificial neural networks are integrated into the multi-objective 

optimization to predict the structural response. This metamodel reduces the solution 

space to a feasible and optimal set. From this point, a decision-making method 

integrates AHP and VIKOR and considers the uncertainty in the paiwise comparisons. 

This method modifies AHP by including triangular distributions to represent the 

variability in the perspective of the decision-makers. The methodology gives a 

probabilistic interpretation of the preferred solution. This method has been applied to a 

post-tensioned concrete box-girder bridge regarding energy, corrosion initiation time 

and the overall safety factor. The objective functions are selected for further identifying 

the solutions that reduce the embodied energy and guarantee a long service life through 

durability and safety improvement. In this case study, solutions with higher durability 

are preferred, as durable bridges are also sustainable in terms of embodied energy and 



safety. The sensitivity analysis shows that the variability of the opinions of stakeholders 

has an influence on the decision-making results. However, a high level of dominance of 

one criterion reduces the probability of selecting an alternative to the one preferred. 

Besides, the multi-objective optimization phase provides an effective prior selection that 

reduces the variability of the preferred solution even when there is uncertainty in the 

criteria comparison. 

9. Academic and managerial implications 

The methodology proposed facilitates the design of trade-off solutions and 

complex decision-making in the context of sustainability by providing judgments with a 

degree of uncertainty. This implies that decision-makers will not have to reach 

consensus regarding the importance of each criterion for the sustainable selection. 

Instead, the decision-making technique captures this variability to find the probability of 

a given design being chosen. This approach overcomes a barrier to sustainable 

development as it gives flexibility by considering different perspectives simultaneously. 

Besides, the multi-objective optimization provides the optimal trade-off solutions, 

guaranteeing an effective prior selection from a solution space. The methodology 

proposed can be applied to other decision-making processes in the context of 

sustainability when alternatives can be defined implicitly through an optimization 

problem formulation. In this case, the problem characteristics (variables, parameters and 

objectives) and the judgments with a degree of uncertainty should be defined to achieve 

a sustainable selection. Results will inform about the characteristic of the sustainable 

alternative. It is worth mentioning that the method is open to any constraint that the 

decision-maker considers important. For example, a threshold can be proposed to any 

criterion in order to avoid high or low values. 

10. Limitations and future research 



There is a significant number of criteria that can be studied for sustainability. 

This study is limited to the embodied energy, corrosion initiation time and the overall 

safety factor. However, future research is needed to study other sustainability criteria 

and to analyze how these criteria influence sustainable bridge design.  
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