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Abstract 
Preterm birth (PTB) is one of the most common and serious complications in pregnancy. About 
15 million preterm neonates are born every year, with ratios of 10-15% of total births. In 
industrialized countries, preterm delivery is responsible for 70% of mortality and 75% of 
morbidity in the neonatal period. Diagnostic means for its timely risk assessment are lacking and 
the underlying physiological mechanisms are unclear. Surface recording of the uterine 
myoelectrical activity (electrohysterogram, EHG) has emerged as a better uterine dynamics 
monitoring technique than traditional surface pressure recordings and provides information on 
the condition of uterine muscle in different obstetrical scenarios with emphasis on predicting 
preterm deliveries.  
 
Objective: A comprehensive review of the literature was performed on studies related to the use 
of the electrohysterogram in the PTB context. Approach: This review presents and discusses the 
results according to the different types of parameter (temporal and spectral, non-linear and 
bivariate) used for EHG characterization. Main results: Electrohysterogram analysis reveals that 
the uterine electrophysiological changes that precede spontaneous preterm labor are associated 
with contractions of more intensity, higher frequency content, faster and more organized 
propagated activity and stronger coupling of different uterine areas. Temporal, spectral, non-
linear and bivariate EHG analyses therefore provide useful and complementary information. 
Classificatory techniques of different types and varying complexity have been developed to 
diagnose PTB. The information derived from these different types of EHG parameters, either 
individually or in combination, is able to provide more accurate predictions of PTB than current 
clinical methods. However, in order to extend EHG to clinical applications -the recording set-up 
should be simplified, be less intrusive and more robust – and signal analysis should be automated, 
without requiring much supervision and yield physiologically interpretable results. Significance: 
This review provides a general background to PTB and describes how EHG can be used to better 
understand its underlying physiological mechanisms and improve its prediction. The findings will 
help future research workers to decide the most appropriate EHG features to be used in their 
analyses and facilitate future clinical EHG applications in order to improve PTB prediction. 
 
Keywords: preterm, diagnosis, electrohysterogram, uterine electromyogram, temporal analysis, 
spectral analysis, non-linear analysis, bivariate analysis. 
 
  



1. BACKGROUND 
 
1.1. Relevance of Preterm Birth 
 
1.1.1. Definition. Preterm births (PTB) occur between 20 and 22  weeks of gestation (WG) up 
to 37 (36 +6) WG (ACOG, 2016; Di Renzo et al., 2017). 
The classification of prematurity based upon gestational age (GA) and its prevalence is shown in 
Table 1. 
 
Table 1.- Classification of prematurity based on gestational age and its prevalence in USA in 2013, 
information extracted from (Frey and Klebanoff, 2016). 

Definition Gestational age (weeks) Prevalence absolute (relative) 
Extremely preterm birth < 28 0.7 (6.4%) 
Very preterm birth 28 to < 32 1.2 (10.5%) 
Moderate preterm birth 32 to < 34 1.5 (13%) 
Late preterm birth 34 to < 37 8 (70.1%) 

 
1.1.2. Incidence. PTB is one of the most serious common and serious complications in 
pregnancy. About 15 million preterm neonates are born every year, with the highest rates in Africa 
and North America (Blencowe et al., 2013). More than 450 000 neonates are born prematurely in 
the United States every year (McCabe et al., 2014). In Europe the PTB rate varies between 5–
18%, with only 0.3–0.5% occurring before 28 weeks, obviously with a worse outcome. However, 
it is not the extremely preterm babies that are the highest burden on society, as they are infrequent, 
but the children born between 32 and 36 weeks (Di Renzo et al., 2017). Reducing preterm births 
is a national public health priority all over the world. Despite the development of numerous 
obstetrical interventions to reduce the burden of prematurity-related morbidity (including 
tocolysis, antibiotics to prolong latency for preterm rupture of membranes, and home uterine 
activity monitoring) they have had no apparent effect on reducing the incidence of preterm birth. 
 
1.1.3. Health Consequences. Preterm birth is a leading cause of disability-adjusted life year and 
has both short and long-term consequences. Among the former, in a report from the Eunice 
Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research 
Network, the following complications and their prevalence were seen in 8515 very low birth-
weight (< 1500 g) infants: respiratory distress 93 %, retinopathy of prematurity 59%, patent 
ductus arteriosus 46%, bronchopulmonary dysplasia 42%, late-onset sepsis 36%, necrotizing 
enterocolitis 11%, grade III intraventricular hemorrhage and grade IV IVH – 7 and 9 %, 
periventricular leukomalacia 3% (Stoll et al., 2010). Although the risk of complications decreases 
with increasing GA, even moderately preterm infants are at risk for significant mortality and 
morbidity. As illustrated by a Swedish population-based study of 6674 preterm infants with a GA 
between 30 and 34 weeks born from 2004 to 2008, the following complications and their 
frequencies were as follows: hyperbilirubinemia 59%, acute respiratory disease 28%, 
hypoglycemia 16% and bacterial infection 15% (Altman et al., 2011). In relation to the long term 
consequences, prematurity is associated with about one third of all infant deaths in the United 
States and accounts for approximately 45% of children with cerebral palsy, 35% of children with 
vision impairment and 25% of children with cognitive or hearing impairment (G. Mandy, 2017). 
Moreover, in preterm survivors there is a high rate of: recurrent hospitalizations (Boyle et al., 
2012); long-term neurodevelopment impairment: the risks of medical (cerebral palsy, mental 
retardation, autism spectrum, major disabilities including blindness, low vision, hearing loss, and 
epilepsy, etc.), social disabilities (lower educational attainment, income, social security benefits 
and the establishment of a family) in adulthood increased with decreasing gestational age at birth 
(Moster, Lie and Markestad, 2008); chronic health problems: developmental programming among 
low birth weight infants has been associated with problems including obesity, hypertension, 
insulin resistance, and coronary artery disease. 
 



1.1.4. Economic Consequences. Preterm births also entail economic consequences. A review of 
the literature was carried out in March 2011 in which costs were assessed for different follow-up 
periods (short, medium or long-term), and for different degrees of prematurity (extreme, early, 
moderate and late). The results showed that whatever the follow-up period, costs correlated 
inversely with GA. Despite variations, a global trend of costs was estimated in the short-term 
period using mean costs from four American studies with similar methodologies. Costs stand at 
over US$100,000 for extreme prematurity, between $40,000 and $100,000 for early prematurity, 
between $10,000 and $30,000 for moderate prematurity and below $4500 for late prematurity 
(Soilly et al., 2014). Based on 2006 estimates of the number of preterm births and the cost of 
medical care through the first 18 years of life in England and Wales, the total cost to society was 
estimated to be almost £3 billion (Mangham et al., 2009). The mean incremental cost per child 
was about £23,000 and cost increased with decreasing GA, with the estimated costs for a very 
preterm child of £62,000 and £95,000 for an extremely preterm child. The Italian National Health 
Service estimated at €58,098 the cost for families and social security of infants born under 1500g, 
or 30 weeks, without prematurity-related morbidities up to the age of 18 months (Cavallo et al., 
2015). Although there is evidence that hospital costs represent a considerable portion of the total 
cost, families also suffer direct economic losses, such as those resulting from paying uncovered 
drugs, travelling costs, or reduced earnings (working days lost), increased debt, financial worry, 
unsafe home environment and social isolation. 
Not only true PTB involves significant costs, but also false threated PTB. In fact, fewer than 15% 
of the women with threatened preterm labor will actually deliver prematurely (Palacio et al., 2007; 
Lucovnik, Chambliss and Garfield, 2013). In a study by Lucovnik et al (Lucovnik, Chambliss and 
Garfield, 2013) the mean cost of false threatened PTB was $20,372 per patient. In most countries, 
the identification of preterm labor is based only on subjective clinical data, which increases the 
risk of hospitalization and costs of unnecessary and potentially harmful interventions such as 
tocolysis and prenatal corticosteroids (Di Renzo et al., 2017). Improving PTB diagnosis will 
significantly reduce hospital costs. Van Baeren et al (van Baaren et al., 2013) performed a model-
based cost-effectiveness analysis to evaluate 7 test-treatment strategies in women with threatened 
preterm labor from a health-care system perspective. The most cost-effective test strategy was the 
combination of the cervical length test and fetal fibronectin test. According to this study (van 
Baaren et al., 2013), implementing this strategy could lead to an annual cost saving of between 
€2.8 million and €14.4 million in The Netherlands, where about 180,000 babies are delivered 
annually. 
 
1.2. Pathophysiology, diagnosis and treatment of Preterm Birth 
 
1.2.1. Pathophysiology. Preterm birth is often regarded as a single outcome in clinical practice 
but numerous biological mechanisms that vary between individuals are thought to lead to preterm 
birth. There are multiple well-established risk factors for preterm birth. They include maternal 
characteristics (maternal age, stress, depression, body mass index, etc.), reproductive history 
(prior PTB or stillbirth, induced abortion) and current pregnancy characteristics (multiple 
gestation, vaginal bleeding, short cervical length, etc.). More than twenty of these factors and 
further information can be found in (Frey and Klebanoff, 2016; Julian N Robinson and Norwitz, 
2017). A history of previous spontaneous PTB is the major risk factor for recurrence, and 
recurrences often occur at the same gestational age. The frequency of recurrent spontaneous PTB 
was 15 to 30 percent after one spontaneous PTB and increased after two (Julian N Robinson and 
Norwitz, 2017).The identification of risk factors by clinicians may be useful in guiding the 
counseling and obstetric management of individual women. However, it is important to stress that 
risk is not equivalent to causation. 
Although the proposed disease mechanisms involved in spontaneous preterm labor are different 
in nature (infection, vascular disorders, uterine overdistension, decidual senescence, cervical 
disease, decline in progesterone, breakdown of maternal-fetal tolerance, cervical disease, etc.) 
increased uterine contractility, cervical dilatation, and rupture of the chorioamniotic membranes 
are the common pathway (Romero, Dey and Fisher, 2014). In this context, preterm and term labor 
involve similar clinical events (Romero, Dey and Fisher, 2014). On one hand, the switch of the 



myometrium from a quiescent to a contractile state is associated with a shift in signaling from 
anti-inflammatory to pro-inflammatory pathways, which include chemokines (interleukin-8 (IL-
8), cytokines (IL-1 and -6), and contraction-associated proteins (oxytocin receptor, connexin 43, 
prostaglandin receptors). Progesterone maintains uterine quiescence by repressing the expression 
of these genes. Increased expression of the microRNA-200 family near term can derepress 
contractile genes and promote progesterone catabolism (Renthal, Williams and Mendelson, 
2013). On the other hand, cervical ripening is mediated by changes in extracellular matrix 
proteins, as well as alterations in epithelial barrier and immune surveillance properties. Finally, 
decidual or membrane activation occurs in close proximity to the cervix in preparation for 
membrane rupture and to facilitate separation of the chorioamniotic membranes and placenta from 
the uterus (Romero, Dey and Fisher, 2014). 
 
1.2.2. Diagnosis. The diagnosis of preterm labor is generally based on clinical criteria of regular 
uterine contractions accompanied by a change in cervical dilation, effacement, or both, or initial 
presentation with regular contractions and cervical dilation of at least 2 cm (ACOG. 2016). E.g., 
Uterine contractions (≥4 every 20 minutes or ≥8 in 60 minutes) and Cervical dilation ≥3 cm or 
cervical length (CL) <20 mm on transvaginal ultrasound or CL 20 to 30 mm and positive fetal 
fibronectin (fFN) (Lockwood, 2017). Criteria for the diagnosis of preterm labor lack precision 
because the underlying etiology and sequence of events that precede preterm birth are not 
completely understood. Symptoms such as painful uterine contractions, pelvic pressure, increased 
vaginal discharge and low back pain have been associated with preterm birth (Katz, Goodyear 
and Creasy, 1990; Di Renzo et al., 2017). However, these symptoms can also be common in 
women with normal pregnancies, making the diagnosis of preterm labor even more challenging. 
These challenges often result in overdiagnosis in up to 40% of women with preterm labor 
symptoms (Iams, Johnson and Parker, 1994). Less than 10% of women with the clinical diagnosis 
of preterm labor actually give birth within 7 days of presentation (Fuchs et al., 2004). 
 
1.2.3. Treatment. Historical nonpharmacological treatments aimed at preventing preterm births 
in women with preterm labor have included bed rest, abstention from intercourse and orgasm and 
hydration. Evidence for the effectiveness of these interventions is lacking, and adverse effects 
have been reported (Sosa et al., 2004). Pharmacologic interventions to prolong pregnancy have 
included the use of tocolytic drugs to inhibit uterine contractions as well as antibiotics to treat 
intrauterine bacterial infection. Administration of tocolytic drugs did not result in statistically 
significant reductions in important clinical outcomes, such as neonatal respiratory distress and 
survival (Haas et al., 2012). In a practice bulletin, the American College of Obstetricians and 
Gynecologists (ACOG) opined: "Interventions to reduce the likelihood of delivery should be 
reserved for women with preterm labor at a gestational age at which a delay in delivery will 
provide benefit to the newborn”. Because tocolytic therapy is generally effective for up to 48 
hours, only women with fetuses that would benefit from a 48 hour delay in delivery should receive 
tocolytic treatment (ACOG, 2016). The upper limit for the use of tocolytic agents to prevent 
preterm birth is generally 34 WG. On the other hand, the therapeutic agents currently thought to 
be clearly associated with improved neonatal outcomes include antenatal corticosteroids for 
maturation of fetal lungs and other developing organ systems and the targeted use of magnesium 
sulfate for fetal neuroprotection (ACOG, 2016). 
A Cervical Pessary (a soft and flexible silicone device) has been proposed as a treatment for 
preterm birth prevention in cases of single pregnancies with short cervix and twin pregnancies. 
Since the seminal paper (Goya et al., 2012), in which its use showed a decrease in preterm birth 
before 34 weeks of gestation (OR 0.19; 95% CI 0.12–0.30) and improvement of neonatal outcome 
(RR 0.14; 95% CI 0.04–0.39), it has attracted much attention because of its potential advantages 
over cerclage, non-invasive, cheaper, ease insertion, among others. Nevertheless, the results of 
pessary studies for prevention of preterm birth in various populations, gave conflicting result and 
warrants further study prior to routine use (Boelig and Berghella, 2017) 
Because therapy and supportive care are continuously upgraded and enhanced, the preterm 
infants’ outcomes are ever-evolving. Efforts to minimize injury, preserve growth, and identify 



interventions are being evaluated. Thus, treating and preventing long-term deficits must be 
developed in the context of a "moving target." 
 
1.3. Current methods of predicting Preterm Birth 
One of the biggest challenges in the management of pregnant women with threatened preterm 
labor is differentiating between the 75% of patients who will not actually deliver early and the 
remainder who will deliver preterm (Malone, 2016). In a study of 763 women who had 
unscheduled triage visits for symptoms of preterm labor, only 18% gave birth before 37 WG and 
only 3% gave birth within 2 weeks of having symptoms (Peaceman et al., 1997). The distinction 
between true and false preterm labor is often challenging despite the availability of different tools 
such as digital examination, ultrasound measurement of CL, Bishop score, fFN test, several 
biomarkers and contraction frequency measurements for PTB prediction. The following is a brief 
description of the leading methods. 
 
1.3.1. Cervical Length. CL measurements have proved to be useful in predicting preterm labor. 
A short cervix is significantly associated with an earlier gestational age at delivery and with 
recurrent preterm birth (Romero et al., 2012). In symptomatic singleton gestations with threatened 
preterm labor, there is a significant association between knowledge of transvaginal CL and lower 
incidence of PTB and later gestational age at delivery (Berghella et al., 2017). A sonographic 
short cervix detected in the second trimester was the best predictor of spontaneous PTB in that 
study (Berghella et al., 2017). In fact, the Health technology assessment (Honest et al., 2009), 
systematically reviewed 22 tests of predicting spontaneous PTB and concluded that universal 
provision of high-quality ultrasound machines in labor wards is more strongly indicated for 
predicting spontaneous PTB among symptomatic women than direct management (Honest et al., 
2009), which suggests that ultrasonographic CL measurement is the gold standard in predicting 
spontaneous preterm labor. 
In low risk singleton pregnancies with a mid-pregnancy CL> 35 mm and without any known risk 
factors, the risk of spontaneous preterm birth before 37WG is 13% (RR: 2.35; 95% CI: 1.42 - 
3.89). This risk is inversely proportional to the size of the cervix, with a shorter cervix predicting 
a higher risk. Once the cervix reaches ≤ 25 mm the risk of preterm birth will be more than double 
(RR: 6.19; 95% CI: 3.84 - 9.97) (Iams et al., 1996). Interventions that reduce the risk of 
spontaneous preterm birth based on transvaginal ultrasound cervical length are available and 
effective in appropriately selected patients (cerclage,vaginal progesterone), which makes 
transvaginal ultrasound cervical length an effective screening test. For these reasons, the ACOG 
and the Society for Maternal-Fetal Medicine (SMFM) recommend screening of all women with 
singleton gestation and a history of spontaneous preterm birth (grade 1A evidence), while 
transvaginal ultrasound cervical length screening is reasonable but not mandatory in women 
without prior preterm birth (McIntosh et al., 2016; Feltovich, 2017). Clinical evidence of cervical 
length in women with threatened preterm labor reduced the rate of preterm births compared with 
the absence of this information (22 versus 35 percent; RR 0.64. 95% CI 0.44-0.94; three trials; n 
= 287 participants), (Berghella et al., 2017). Universal cervical length screening of women with 
singleton gestations without a prior spontaneous preterm birth was implemented by over two-
thirds of institutions with SMFM Fellowship Programs, as of January 2015 (Khalifeh, Quist-
Nelson and Berghella, 2017).  
 
1.3.2. Biochemical Markers. Biological fluids (eg, amniotic fluid, urine, cervical mucus, vaginal 
secretions, serum or plasma, or both, and saliva) have been used to assess the value of biomarkers 
for predicting PTB. Biomarkers (fFN, Phosphorylated insulin-like growth factor binding protein-
1, placental alpha macroglobulin-1, IL6, etc.) have been proposed to improve the prediction 
accuracy of imminent spontaneous PTB in symptomatic women (Brik et al., 2010, 2011; Lim, 
Butt and Crane, 2011; Melchor et al., 2017). In a recent study that screened women between 22 
and 30 WG with fFN and CL (Esplin et al., 2017), the AUC with fFN level alone was 0.59 (95% 
CI, 0.56-0.62), for transvaginal cervical length alone was 0.67 (95% CI, 0.64-0.70), and for the 
combination as continuous variables was 0.67 (95% CI, 0.64-0.70). Hezelgrave et al (Hezelgrave, 
Shennan and David, 2015) suggested that a combination of a negative biomarker result and a CL 



greater than 25 mm suggests such a low chance of delivery within 1 week (less than 5%) that such 
patients probably do not require admission and treatment. However, the value of these two tests 
lies mostly in their high negative predictive values, while their positive predictive values are lower 
and do not identify patients who are really going to deliver preterm. Although the results of 
observational studies have suggested that knowledge of fFN status or CL may help health care 
providers to reduce the use of unnecessary resources (Fell et al., 2014; Parisaei et al., 2016), these 
findings have not been confirmed by randomized trials (Grobman, Welshman and Calhoun, 2004; 
Ness et al., 2007), or by reviews or metanalysis (Berghella et al., 2008; Deshpande et al., 2013). 
Recently, Poletteni et al (Polettini et al., 2017) systematically reviewed the biomarkers in maternal 
and fetal compartments to predict PTB and concluded that no single biomarker or combination of 
such could be identified to reliably predict PTB risk and pregnancy outcome. 
 
1.3.3. Contraction Frequency. The presence of regular uterine contraction is commonly used to 
diagnose preterm labor. Iams (Iams, 2003) performed a prospective, blinded observational study 
of uterine contraction frequency to detect and predict preterm labor and birth, respectively. The 
goal of the study was to assess the sensitivity, specificity, and positive and negative predictive 
value of various measures of uterine contraction frequency. Data collected from 306 women 
revealed that this indicator was significantly greater in women who would ultimately deliver 
before rather than after 35WG. However, both the sensitivity and positive predictive value of any 
measure of contraction frequency to predict preterm birth were poor (Uterine contraction 
frequency between 22 to 32 WG, to predict spontaneous birth at < 35 WG sensitivity ranges from 
0 to 28.1%, while the positive predictive values were between 0 and 25%). Contraction frequency 
did not increase significantly within 1 or 2 weeks of an episode of preterm labor. A Cochane 
systematic review on home uterine monitoring for detecting preterm labor (Urquhart et al., 2017), 
including 15 studies (6008 enrolled participants), showed that home uterine monitoring may result 
in fewer admissions to a neonatal intensive care unit but in more unscheduled antenatal visits and 
tocolytic treatment, with no impact on maternal and perinatal outcomes such as perinatal mortality 
or incidence of preterm birth. Unfortunately, in both these studies, and in common medical 
practice, contraction activity is measured by external tocography (TOCO), which has 
disadvantages and limitations; its efficiency depends on the subjectivity of the clinician, and it 
may also fail in obese patients (Schlembach et al., 2009). Tight elastic straps are needed to ensure 
probe pressure and contact, which can cause reflex contractions.  
 
Many other methods have been proposed to predict PTB but their results are either poor or have 
not been validated (Paternoster et al., 2009; Brik et al., 2010, 2011; Nikolova et al., 2015), so that 
there is still no currently available reliable PTB prediction technique. 
 
1.4. Electrohysterogram 
1.4.1. Why electrohysterography for predicting preterm birth? Current labor assessment 
methodologies (such as tocodynamometry or intrauterine pressure catheters, fetal fibronectin, 
cervical length measurement and digital cervical examination) have several major drawbacks: 
they only measure the onset of labor indirectly and do not detect cellular changes characteristic 
of true labor, so that their predictive values for term or preterm delivery are poor. Both term and 
preterm births involve activation of the myometrium. Several events in the uterine muscle precede 
labor: cell excitability increases due to changes in transduction mechanisms and synthesis of 
various proteins, including ion channels and receptors for uterotonins (Fuchs et al., 1984; Tezuka 
et al., 1995). At the same time, the factors that inhibit myometrial activity, such as the nitric oxide 
system, are downregulated, leading to withdrawal of uterine relaxation (Garfield et al., 1998). 
Electrical coupling between myometrial cells also increases, and an electrical syncytium allowing 
the propagation of action potentials from cell to cell is formed (Leitich et al., 1999; Honest et al., 
2002). These changes are required for effective contractions that end in the delivery (expulsion) 
of the fetus. 
Since uterine contractions are a result of the electrical activity within the myometrium, the 
external measurement of uterine electrical activity for monitoring and analyzing uterine 
contractility can contribute to a better understanding of labor and preterm labor etiology. This 



technique records non-invasively the electrical activity associated with the contraction of the 
myometrial cells of the uterus from the maternal abdominal wall and is called the uterine 
electromyogram (EMG) or electrohysterogram (EHG) (see Figure 1). It has been shown to 
provide better contraction detectability than TOCO (Alberola-Rubio et al., 2013), especially in 
obese patients (Euliano et al., 2007). In addition, changes in cell excitability and coupling required 
for effective contractions that lead to delivery are reflected in changes in several EHG parameters 
(Lucovnik et al., 2011). Several studies have shown that EHG features are ‘dynamic’ and change 
throughout pregnancy (Devedeux et al., 1993). At early gestational ages uterine electrical activity 
is scarce and poorly coordinated, however as labor approaches it becomes more and more intense 
and synchronized (Devedeux et al., 1993; Garfield and Maner, 2007). Many studies have shown 
that different uterine EMG parameters can indicate myometrial properties that can distinguish 
between true and ‘false’ labor contractions in term and preterm pregnancies (Fele-Zorz et al., 
2008; Schlembach et al., 2009; Sikora et al., 2011). Uterine EMG can help to identify patients in 
true labor better than any other method presently employed in clinics (Lucovnik et al., 2011). 
Furthermore, analysis of EHG signals is non-invasive for both fetus and mother, does not require 
any special facilities or equipment and is relatively low-cost.  

 
Figure 1. Examples of TOCO and EHG records of women with threat of preterm labor delivering at:  >7 
days (left) and <7days (right) after the recording. Bursts of higher amplitude and frequency are observed 
when delivery is approaching. 
 
1.4.2. Signal components. Although the exact electrophysiological mechanisms behind EHG 
generation are still poorly understood, it is well known that they are related to uterine myocyte 
excitability and to propagation activity in the myometrium. These factors are the basic elements 
of the EHG signal components, which are the fast wave (FW) and slow wave (SW). It is believed 
that the SW has no physiological significance, besides the fact that its bandwidth is overlapped 
with the baseline fluctuation commonly related to skin stretching, abdominal and electrode 
movements, which make it difficult to interpret. Most studies perform EHG analyses focusing on 
the FW, which is divided into two components, fast wave low (FWL) and fast wave high (FWH), 
with peak frequencies between [0.13-0.26] Hz and [0.36-0.88] Hz, respectively (Terrien, Marque 
and Karlsson, 2007). However, FWH frequency content is believed to extend to higher 
frequencies, usually up to 3-4 Hz (Fele-Zorz et al., 2008). It is hypothesized that FWL is related 
to the propagation of the EHG signal and FWH to the excitability of the uterine cells (Devedeux 
et al., 1993). 
Nonetheless, surface EHG amplitude is low (between tenths and hundredths of µV) and its 
recording is affected by interference, noise and artifacts, including: drift, maternal respiration, 
maternal ECG, fetal ECG, electromyography noise, power line interference and motion artifacts 
(Batista et al., 2016). As commented above, baseline drift frequency content can overlap that of 
the EHG short wave and is usually discarded. The maternal respiratory frequency typically ranges 
between 12-20 times per minute (0.2-0.33 Hz) and some studies therefore focus on the FWH 
frequency range (Lucovnik. et al., 2011; Smrdel and Jager, 2015). The frequency content of the 
maternal and fetal ECG can be as low as 1 Hz (Maner et al., 2003), so that many studies focus on 



EHG analysis below 1 Hz (Lucovnik. et al., 2011; Smrdel and Jager, 2015). The 
electromyographic interference generated by the abdominal muscles has a dominant frequency 
component at around 30 Hz. This, together with power line interference at 50 or 60 Hz, can be 
easily cancelled by conventional low-pass filtering. Movement artifacts can completely distort 
the recorded signal and its whole frequency content. Signal segments with artifacts are usually 
visually identified and discarded. Efforts are being made to facilitate the automatic identification 
of movement artifacts (Ye-Lin et al., 2014).  
1.4.3. The Term-Preterm EHG Database (TPEHGDB). This is a public database available at 
Physionet (Goldberger et al., 2000; Fele-Zorz et al., 2008) that has been widely used in term vs 
preterm EHG studies. A brief description is of interest to the reader for the possible interpretation 
of the results presented. Records were obtained for this database during regular check-ups either 
around the 22nd week of gestation or around the 32nd week of gestation. It contains 300 uterine 
EMG records of 300 pregnancies, of which 262 delivered at term (143 records <26WG, 119 
records ≥26WG) and 38 ended prematurely (19 record <26WG, 19 records ≥26WG). 4 subgroups 
are therefore usually considered: preterm recorded early, preterm recorded later, term recorded 
early and term recorded later. Figure 2 shows the distribution of the database in terms of time to 
delivery. It should be noted that in most cases recordings were taken ≥4 weeks before labor, not 
only for the “early” groups, but also for most of the “late” group for term delivery. All records of 
pregnancies in which labor was induced or delivery was by Cesarean section were rejected. 
Each record was composed of three bipolar channels from 4 electrodes of 30 minutes duration. 
The first electrode (E1) was placed 3.5 cm to the left and 3.5 cm above the navel; the second 
electrode (E2) 3.5 cm to the right and 3.5 cm above the navel; the third electrode (E3) 3.5 cm to 
the right and 3.5 cm below the navel; and the fourth electrode (E4) at 3.5 cm to the left and 3.5 
cm below the navel. The differences in the electrical potentials of the electrodes were recorded, 
producing 3 data channels: S1 = E2 − E1 (first channel); S2 = E2 − E3 (second channel); and S3 
= E4 − E3 (third channel). Unfiltered signals and signals filtered in the bandwidths: 0.08Hz to 
4Hz, 0.3Hz to 3Hz and 0.3Hz to 4Hz are available. 
Clinical information, such as: pregnancy duration; gestation duration at the time of recording; 
maternal age; number of previous deliveries (parity); previous abortions etc. is also available. 
 

Figure 2. Number of EHG records from the TPEHGDB for different time to delivery intervals. 
 
2. ELECTROHYSTEROGRAPHY FOR DIAGNOSIS OF PRETERM LABOR 
As has been mentioned, labor is preceded by two physiological phenomena: increased excitability 
and increased connectivity among the myometrial cells, changes which are reflected in the EHG. 
Various ways of characterizing the EHG have been proposed for different aims, mainly predicting 
preterm and term delivery (Fele-Zorz et al., 2008), but also to study the uterine 
electrophysiological response to tocolytic agents such as atosiban (Hadar et al., 2013) or 
nifepidine (Vinken et al., 2010) or to labor induction drugs (Aviram et al., 2014; Benalcazar Parra 
et al., 2017), to predict the possible need for labor induction in late term pregnancies (Alberola-
Rubio et al., 2017), or labor arrest (Euliano et al., 2009; Vasak et al., 2013), among others. 



Section 2.1 provides a structured review of the use of EHG for predicting PTB according to the 
different types of parameter used: temporal and spectral, non-linear and bivariate analysis. This 
will help future research groups to decide the appropriate EHG features to be used to configure 
their analyses and thus facilitate future clinical EHG applications. Systematic searches were 
carried out in PubMed and other NCBI electronic data bases. Since here the focus is on predicting 
PTB, unless otherwise noted, the selected studies had to include either EHG records from women 
during spontaneous preterm labor, or from women with a threat of preterm labor, or women who 
delivered preterm. 
 
2.1. Temporal and Spectral Analysis 
It is widely accepted that the changes in uterine muscle that precede labor are reflected in the 
myoelectrical signal, which can be recorded on the abdominal surface. Traditional signal analysis 
techniques use temporal and spectral parameters such as duration, amplitude, peak frequency, etc. 
They are well known by researchers and practitioners and are usually easy to interpret. Numerous 
works using this type of parameter have been published on predicting PTB under different 
recording conditions and analysis. Many of them use EHG records from the TPEHGDB (Fele-
Zorz et al., 2008), which are taken of physiological conditions during regular check-ups; some 
indicate that EHG registers were carried out on women under tocolytic treatment after threat of 
PTB (Lucovnik. et al., 2011; Mas-Cabo et al., 2017); others do not indicate whether the women 
had received tocolytic drugs (Maner and Garfield, 2007; Sikora et al., 2011). Most of the studies 
focus only on the analysis of the EHG-Burst (Maner and Garfield, 2007; Most et al., 2008; Diab, 
Marque and Khalil, 2009; Lucovnik. et al., 2011; Sikora et al., 2011; Horoba et al., 2016) to 
separate term and preterm registers, and some others perform a whole  EHG record analysis (Fele-
Zorz et al., 2008; Smrdel and Jager, 2015). In Table 2 all these features and other relevant 
information are summarized. Although some works study monopolar signals, most focus on 
bipolar signals and last between 10 to 60 minutes. In all the included studies spectral and/or 
temporal parameters are evaluated. The spectral parameters were obtained in bandwidths between 
0 to 100 Hz.  
 
2.1.1. Temporal Parameters. Amplitude is one of the basic parameters traditionally used to 
characterize EHG. Contractions of more intensity, and therefore higher EHG amplitude, can be 
expected as delivery approaches. Nonetheless, the results and potential use of amplitude 
parameters for preterm labor prediction have been controversial. Fele-Žorž et al. analyzed the 
root-mean-square (RMS) value of the whole EHG recording (approximately 30 minutes) of the 4 
different TPEHGDB subgroups, in its three predefined EHG bandwiths (Fele-Zorz et al., 2008). 
They reported that RMS values did not give clear results on separating preterm and term groups. 
Horoba et al calculated the RMS values of the EHG-Bursts on the same TPEHGDB and the same 
bandwidths (0.08 – 4 Hz, 0.3 – 4 Hz, 0.3 – 3Hz) and reported similar findings i.e. there are no 
great differences between term and preterm deliveries (Horoba et al., 2016). This contrasts with 
the findings of other authors and could be due to the long interval between the recording day and 
that of delivery (see Figure 2) of most of the cases in the TPEHGDB. For example, recent EHG 
recordings on 26 women threatened with preterm labor showed signficant differences in the 
amplitude of whole EHG-recordings from women who delivered preterm and from those that did 
so at term (Mas-Cabo et al., 2017). However, these differences were only statiscally significant 
in signals recorded by a bipolar concentric electrode and not in bipolar records with conventional 
disc electrodes. On the other hand, in studies focused on the EHG-Burst in non TPEHGDB 
databases, Most et al found significant differences in threatened preterm labor women when 
separating women who delivered in less than 14 days (499 ± 96 μV) vs those who gave birth in 
more than 14 (340 ± 142 μV)(Most et al., 2008). However the EHG analyses were taken from a 
broader bandwidth (1 – 1500 Hz) than those commonly used, which discard components at 
frequencies higher than 4 Hz. Verdenik et al (Verdenik, Pajntar and Leskosek, 2001) performed 
an EHG-Burst analysis which included 17 preterm women and 30 term women between the 25th 
and 35th week of gestation and obtained significantly (p <0.05) higher preterm EHG-Burst RMS 
values (17.5 ± 7.78 µV) among term EHG-Burst RMS (12.2 ± 6.25 µV). Other studies also 
calculated the EHG-Burst peak-to-peak amplitude (Sikora et al., 2011). They classified the 



women into three groups: Group I composed of 27 women in physiological pregnancy, Group II 
which included 21 women with symptoms of preterm labor and Group III formed by 14 women 
in their first labor period. They found higher amplitude values for the threatened preterm women 
(62.2 ± 72.3 μV) than for women in physiological pregnancies (33.8 ± 53.6 μV). However 
(Horoba et al., 2016) did not find any significant differences between term and preterm amplitude 
values, but again this study employed TPEHGDB. They also used the area under the EHG-Burst 
envelope to characterize the EHG signals, but no significant differences were obtained when 
comparing all term with all preterm registers. The median value of these areas worked for the S2 
channel in the 0.08 – 4 Hz bandwidth, to separate early term (459.5 μV*s) and early preterm 
records (607 μV*s). However, it did not show any other significant differences, and presented 
inconsistent trends between channels when comparing the same groups. They also studied 
contraction intensity, which refers to a number of spikes within the EHG-Bursts, to separate 
preterm and term EHG registers. However, no significant differences were found (Horoba et al., 
2016). The autocorrelation zero-crossing, defined as the first zero-crossing starting at the peak in 
the autocorrelation of the EHG signal, did not give promising results for separating term and 
preterm records and its effectiveness strongly depended on the selected bandwidth (Fele-Zorz et 
al., 2008; Horoba et al., 2016). 
Other temporal parameters related to EHG features such as duration or standard deviation of the 
EHG-Burst duration have been analyzed (Maner and Garfield, 2007) and obtained significantly 
lower EHG-Burst duration standard deviation values for term labor registers than term non-labor 
records. The same trend was found for preterm labor vs. non-labor records. Nevertheless, no 
significant differences were obtained between groups in either the mean burst duration or the 
number of bursts in a given time. The same parameters and mean inter-Burst interval were 
computed from women who delivered within 7 days and those who gave birth after 7 days, with 
no significant differences between the groups (Lucovnik. et al., 2011). 
 
2.1.2. Spectral Parameters. Unlike EHG signal amplitude-related parameters, frequency-
related parameters are expected to be more comparable from one subject to another and less 
sensitive to sensor position (Vinken et al., 2009). They are usually calculated from EHG burst 
windows or from windows that include intercontractile periods. One of the most frequently used 
spectral parameters is the peak frequency of the power spectrum (PS) of EHG burst, which shifts 
to higher frequencies when labor is close (Devedeux et al., 1993; Schlembach et al., 2009). It has 
also been reported that the percentage of time that the uterus shows high frequency activity 
increases from 10% -20% when far from delivery to about 80% -90% within 24 hours of delivery 
in term women (Garfield et al., 2005).  
For preterm deliveries, Lucovnik et al observed that the PS peak frequencies were significantly 
higher (p <0.05) in women who delivered within 7 days (0.56 ± 0.15 Hz) than in those who gave 
birth in more than 7 days (0.44 ± 0.07 Hz) (Lucovnik. et al., 2011). The PS peak frequency values 
obtained by Sikora et al (Sikora et al., 2011) were higher for preterm threatened women (0.32 ± 
0.29 Hz) than for non-threatened ones (0.25 ± 0.18 Hz). Again, it should be highlighted that these 
results were obtained on analog filtered signals between 0.5 Hz and 100 Hz. In another study with 
a more comprehensive database, the peak frequency, in the range 0.34 – 1 Hz, of the PS of the 
EHG-Bursts signals was computed (Maner and Garfield, 2007). They included 134 term and 31 
preterm EHG records and separated them into four groups: term labor, term non-labor, preterm 
labor and preterm non-labor. The average peak frequency was significantly higher (p <0.05) for 
term labor registers (0.437 ± 0.045 Hz) than term non-labor ones (0.392 ± 0.022 Hz) and also for 
preterm labor registers (0.471 ± 0.046 Hz) against the preterm non-labor records (0.398 ± 0.023 
Hz). Also, the ratio of the average peak frequency divided by the average standard deviation of 
burst duration was significantly higher (p <0.05) for term labor records (0.0505 ± 0.0275 Hz/s) 
than term non-labor ones (0.0226 ± 0.0108 Hz/s) and also for preterm labor registers (0.0328 ± 
0.0195 Hz/s) against preterm non-labor ones (0.0145 ± 0.00624 Hz/s).  
Peak frequency has been computed and analyzed not only for the contractile events but also for 
whole EHG recordings. Smrdel and Jager (Smrdel and Jager, 2015) studied the spectral content 
of a 30-minute window of EHG signals from TPEHGDB in the ranges 0.34 – 1 Hz and 0.3 – 4 
Hz by using autoregressive methods (AR). They reported that the PS of term delivery records 



showed peaks at higher frequencies than the PS of the preterm ones. Fele-Zorz et al also analyzed 
the whole EHG recording and reported that the peak frequency only worked in the ranges 0.3 - 4 
Hz and 0.3 – 3 Hz for separating all registers recorded early vs all registers recorded late (Fele-
Zorz et al., 2008). However, in the same study the median frequency of whole EHG records 
showed significant differences with separate all term vs all preterm delivery records in the ranges 
0.3 - 4 Hz and 0.3 – 3 Hz, but not for the 0.08 – 4 Hz range (Fele-Zorz et al., 2008). According 
to (Smrdel and Jager, 2015), the median frequency worked also in the range 0.3 – 4 Hz for 
separating term from preterm registers in both early and late records. However, the authors 
conclude that for the term delivery records the median frequency drops throughout pregnancy and 
hardly changes for preterm deliveries.  
Several studies have also used the median frequency of the PS of EHG-burst but the results were 
not as good as when computed from whole EHG records. No significant differences were found 
between women who delivered preterm (0.36 ± 0.06 Hz) and those at term (0.37 ± 0.04 Hz) 
(Verdenik, Pajntar and Leskosek, 2001). Neither were significant differences found between 
women delivering preterm in <7days and  >7days (Lucovnik. et al., 2011). Nonetheless, the mean 
value of the median frequency was smaller when delivery was closer (0.64 ± 0.12 Hz vs 0.68 ± 
0.05 Hz). On the other hand (Sikora et al., 2011) reported higher PS median frequency values for 
the preterm threatened women’s group (0.35 ± 0.10 Hz) of women in physiological pregnancies 
(0.30 ± 0.12 Hz), however again no significant differences were observed.  
Other spectral parameters, such as the PS mean frequency of the EHG bursts and HF power 
band/LF power band ratio, have also been studied. However, none provides information that could 
be used to discriminate between term and preterm registers (Horoba et al., 2016; Mas-Cabo et al., 
2017). 
 



Table 2.-Features taken from studies that used temporal and spectral EHG parameters in a PTB context. 
 

Author (Year) Data Base 
(nºwomen) 

No. Channels Registers 
duration(minutes) 

Analysed 
bandwidth 

(Hz) 

Spectral 
estimator 

Window of 
analysis 

Drugs 
admin. 

Preterm Term Monopolar Bipolar 

Verdenik (2011) 30 17 0 2 30 0.1 – 4 FFT EHG-Burst Yes 
Maner (2007) 51 134 0 2 30 0.34 - 1 FFT EHG-Burst unknown 

Fele-Zorz(2008) 38 262 4 3 30 
0.08 – 4 
0.3 – 4 
0.3 - 3 

FFT Whole EHG 
record No 

Most(2008) 87 7 9 0 30 1 - 1500 Not indicated EHG-Burst No 

Sikora (2011) 
21 threat of PTB 

27 phys. pregnancy 
14 labor 

0 2 10 - 60 0.5 - 100 Not indicated EHG-Burst No 

Lucovnik (2011) 88 28 0 2 30 0.34 - 1 FFT EHG-Burst Yes 

Smrdel (2015) 38 262 4 3 30 0.34 – 1 
0.3 - 4 AR Whole EHG 

record No 

Horoba (2016) 38 262 4 3 30 
0.08 – 4 
0.3 – 4 
0.3 - 3 

FFT EHG-Burst No 

Mas-Cabo (2017) 50 0 0 1 30 - 60 0.1 – 4 FFT Whole EHG 
record Yes 

 
 
 



 
2.2. Non-linear Analysis 
It is well known that the underlying physiological mechanisms of biological systems are non-
linear processes that change with time, and hence can be modeled as a non-linear dynamical 
system. The non-linearity can be attributed to the coupling between the billions of intricately 
interconnected cells and inherent complex feedback networks. Nagarajan et al. used a hierarchy 
of surrogate algorithms to determine the nature of the process generating the contractions during 
labor and found that uterine contractions are generated by non-linear processes (Nagarajan et al., 
2003). Other authors used the z-score to quantify the difference of the scaling exponents of 
detrended fluctuation analysis between original data and surrogate data (Moslem et al., 2011). 
They found not only the nonlinearity of non-invasively recorded uterine EHG, but also that 
contractions recorded during labor have a much stronger nonlinear character than those recorded 
during pregnancy. Non-linear signal processing techniques could thus provide additional 
information on physiological changes during pregnancy and close to labor than linear techniques. 
Although a considerable number of studies used non-linear EHG parameters to discriminate labor 
from pregnancy contractions in women who all delivered at term (Maner et al., 2006; Hassan et 
al., 2011; Alamedine, Khalil and Marque, 2013; Diab et al., 2014), this section focuses on studies 
directly associated with PTB. 
 
2.2.1. Entropy Parameters.The start of labor is likely related to altered levels of myometrial cell 
connectivity that induce changes in the regularity of the measured EHG signal. For patients with 
threatened preterm labor symptoms between 24 and 34 WG, a significant increase in approximate 
entropy computed in the bandwidth 0.24-4 Hz was found in patients who gave premature birth 
within 7 days, suggesting that the EHG signal becomes more complex as labor approaches 
(Lemancewicz et al., 2016). However, as the estimator of approximate entropy has been shown 
to be biased and highly sensitive to the number of signal samples (Ferrario et al., 2006), most 
authors prefer to use sample entropy, which is more independent of recording length and behaves 
more consistently, to characterize EHG signals (Fele-Zorz et al., 2008; Radomski et al., 2008; 
Garcia-Gonzalez et al., 2013; Di Marco et al., 2014; Horoba et al., 2016). Nevertheless, 
controversial results have been obtained for sample entropy estimated from EHG recordings. 
Fele-Zorz et al. computed sample entropy in different bandwidths (0.08-4, 0.3-3Hz and 0.3-4 Hz) 
from whole EHG records from the TPEHGDB for discriminating term and preterm delivery (Fele-
Zorz et al., 2008). Sample entropy computed in the 0.3-3 Hz bandwidth has been shown to 
decrease with gestation time, indicating the higher predictability of EHG signals as delivery 
approaches. Statistically significant differences were obtained for sample entropy between term 
and preterm delivery records recorded before the 26th GA and between all term and all preterm 
delivery records (Fele-Zorz et al., 2008). This result was consistent with the findings of other 
studies, which reported that sample entropy estimated from stationary motion and labor 
contraction-free intervals in EHG signals using the same database was lower for preterm delivery 
records than term delivery records (Di Marco et al., 2014). However, when sample entropy was 
computed for EHG-bursts from the same database, no statistically significant difference was 
found between preterm and term delivery records (Horoba et al., 2016). Controversially, sample 
entropy from EHG bursts recorded during preterm labor (20 women) was significantly higher 
than during term labors (26 women) (Radomski et al., 2008). In another study that analyzed 
sample entropy values computed from EHG-bursts during the active phase of labor in women at 
term, a significantly higher value was obtained for patients who had a vaginal delivery than for 
those who had a caesarean section (Garcia-Gonzalez et al., 2013). From these results it can be 
inferred that sample entropy of EHG bursts would be better at discriminating between different 
scenarios during labor than predicting PTB. 
The use of entropy parameters has been a matter of discussion; firstly, the nonstationary nature 
of the EHG signal may affect nonlinearity measures (Hassan et al., 2011) and the wider the 
window used in the analysis, the harder the assumption of stationarity. Also, entropy parameters 
can be highly sensitive to sampling frequency, bandwidth of analysis and to length, m, and 
margin, r, parameters (Fele-Zorz et al., 2008; Diab et al., 2013, 2014). According to Diab et al 
(Diab et al., 2014), the best area under the curve (AUC) of the receiver operator characteristic 



(ROC) of sample entropy for predicting labor was obtained for the 0.1-3 Hz bandwidth. However, 
Fele-Zorz found that the optimal bandwidth of sample entropy for discriminating between term 
and preterm delivery records was 0.3-3 Hz (Fele-Zorz et al., 2008). Moreover, EHG signal 
complexity changes throughout pregnancy and does not necessarily show a monotonous trend, so 
that GA and time to delivery when recording the records in the database used could also influence 
the analysis outcome. Indeed, sample entropy values estimated from EHG-bursts were analyzed 
for different GA intervals from 32 WG to 39 WG and the latent phase of normally progressing 
labor (Vrhovec and Macek, 2012). They found that this parameter remained constant from 32 to 
35 WG, significantly dropped at 36-37 WG, slightly increased at 38 WG and dropped again at 39 
WG, while the onset of labor is characterized by relatively high sample entropy values (Vrhovec 
and Macek, 2012). The presence of large amplitude fluctuations and spikes, typical of EHG 
signals, may affect the estimated approximate and sample entropy more than signal regularity 
(Mischi et al., 2017). Mischi et al (Mischi et al., 2017) recently proposed a modification of the 
original distance metrics aiming at limiting the tolerance dependency on large amplitude 
fluctuations and spikes. The modified approximate and sample entropy in the 0.3-0.8 Hz 
bandwidth was performed only in contraction periods from a dataset containing 4 monopolar EHG 
measurements on patients (34 delivering preterm) with preterm contractions. Thirty-nine out of 
120 women were discarded due to technical failures and only 58 women (34 delivering preterm) 
met the contraction inclusion criteria. While conventional entropy parameters and time 
reversibility did not show significant differences between term and preterm deliveries, modified 
entropy parameters showed p-values <0.02. The results of this work suggest that signs related to 
the risk of preterm labor are independent of the signal amplitude and are mainly related to the 
regularity of the normalized EHG time series. 
 
2.2.2. Other non-linear parameters. Correlation dimension and maximal Lyapunov exponent 
and other parameters computed from whole EHG records in different bandwidths (0.08-4, 0.3-
3Hz and 0.3-4 Hz) were proposed to distinguish term and preterm delivery records from the 
TPEHGDB (Fele-Zorz et al., 2008). No statistically significant differences were obtained for 
maximal Lyapunov exponent between term and preterm delivery records. Nevertheless, they 
found that the correlation dimension in the 0.08-4Hz bandwidth presented statically significant 
differences between term and preterm delivery records recorded before the 26th GA, while no 
significant differences were found between all term and preterm delivery records (Fele-Zorz et 
al., 2008). 
Other authors analyzed the recurring patterns in stationary motion and labor contraction-free 
intervals in uterine EMG signals of the TPEHG DB (Di Marco et al., 2014). In comparison to 
term delivery records, recurrence indices such as percentage recurrence, percentage determinism 
and entropy and maximum length were higher in preterm delivery records, the individual 
predictors AUC of preterm birth being around 0.65. The recurrence indices increased with 
decreasing time to delivery, suggesting regular and recurring patterns with gestation progression 
(Di Marco et al., 2014).  
Lempel-Ziv complexity has also been proposed to characterize EHG signal recorded from 60 
patients with threatened preterm labor symptoms between 24 and 34 WG (Lemancewicz et al., 
2016). A significant increase of this index was observed for patients who delivered preterm before 
completing 7 days, suggesting that the EHG signal becomes more complex as labor approaches 
(Lemancewicz et al., 2016). On the other hand, other studies have found that Lempel-Ziv 
complexity did not show specific trends in the course of normally progressing labor (Vrhovec and 
Macek, 2012). Further studies are needed to determine the utility of Lempel-Ziv complexity for 
predicting preterm labor.  
Other parameters have been computed for estimating complexity and order in EHG signals, such 
as variance entropy, timer reversibility, detrended fluctuation analysis or the Hurst exponent, 
fractal dimension or fuzzy entropy. However, the capacity of each parameter to differentiate 
between preterm or term delivery has not been evaluated in most of these parameters, but is used 
as a predictor input parameter, along with other temporal, spectral and non-linear parameters, 
which will be dealt with below. 
 



2.3. Propagation and coupling analysis 
As previously mentioned, uterine activity is scarce and uncoordinated throughout pregnancy, 
ensuring fetal nourishment and development (Garfield and Maner, 2007). As labor approaches, 
uterine contractility increases until strong, propagated and synchronous contractions expel the 
fetus. Uterine contractility is known to hinge on both the excitability of uterine cells and the 
propagation of the electrical activity in the uterine muscle (Devedeux et al., 1993). However, 
most studies on predicting PTB by EHG have traditionally focused on analyzing local uterine 
excitability, working out univariate parameters from surface EHG recordings. Taking into 
account the outstanding role of electrical uterine activity propagation on the efficiency of the 
uterine contractions, bivariate analysis has emerged as a technique that can improve the capacity 
of EHG to predict the labor horizon (term and preterm). Studies on estimating conduction 
velocity, propagation patterns, synchronization degree and coupling of EHG recordings at 
different sites on the abdomen have significantly increased in the last decade.  
 
2.3.1. Conduction Velocity.  
 
The velocity at which an action potential propagates along a fiber or a tissue is referred to as the 
conduction (or propagation) velocity (CV) (Rabotti and Mischi, 2014). There are numerous 
studies in the literature on the estimation of CV, both in in vitro and in vivo experiments, by 
invasive or non-invasive EHG recordings in pregnant animals. In fact, a review was published 
regarding the estimation of the CV speed, direction and patterns of the uterine electrical activity 
(Rabotti and Mischi, 2014). CV has been worked out not only for single spikes within an EHG-
burst but also for whole EHG-bursts of uterine electrical activity, due to the fact that these two 
measures could be biased by different physiological phenomena (Rabotti et al., 2011; de Lau et 
al., 2013). In the present review, only those studies analyzing the ability of CV values to 
differentiate human term and preterm deliveries will be mentioned. 
Regarding single spike propagation, Lucovnik et al evaluated the CV of selected action potentials 
considering 2 pairs of bipolar recordings from 2 electrodes at a 2.5 cm interelectrode distance 
(Lucovnik. et al., 2011). EHG signals were recorded in 116 patients (22-term labor, 6-term 
nonlabor, 20 preterm labor, 68 preterm nonlabor). The CV parameter reached higher values as 
labor approached in both term and preterm pregnancies. Significant differences were obtained 
between CV values for preterm patients delivering within 7 days from the recording session vs 
those delivering more than 7 days after (p < 0.001), as well as in CV values for term patients 
delivering within 7 days and more than 7 days. No significant CV differences were found for term 
and preterm patients who delivered within 7 days from the recording. Notably high CV values 
(52.56 ± 33.94 cm/s were found in women delivering within 7 days after recording vs 11.11 ± 
5.13 cm/s for women delivering in more than 7 days after recording) in this study compared to 
that obtained from noninvasive recordings in pregnant and in-labor women found in previous 
studies. In de Lau et al, CV values of uterine contractions in labor <24h (7 term women, 2 preterm 
women) were also higher than for labor >24h (8 term women, 5 preterm women). However, the 
CV values were 8.65-± 1.90 cm s-1 and 5.30 ± 1.47 cm s-1s, respectively, which are significantly 
lower than those reported by Lucovnik et al (Lucovnik. et al., 2011). It should also be noted that 
a 2x2 (2.5cmx2.5cm) grid of electrodes was used in the former study and a 8x8 (28 mmx 28mm) 
grid of small electrodes in the latter. Some authors argue that Lucovnik’s high values were due to 
the CV being worked out with only two electrodes, so that only the component of the velocity 
vector in the direction of the line connection the two electrodes was considered (Rabotti et al., 
2011; Rabotti and Mischi, 2014). 
CV calculation entails several drawbacks and limitations; in the study by Lucovnik et al, it 
required visual identification of EHG-bursts and their action potentials, which is a major 
limitation for its use in clinical practice. De Lau et al (de Lau et al., 2013) proposed an automatic 
technique to calculate CV by using the maximum likelihood approach and choosing a weighted 
cost function with the best estimation accuracy (Rabotti et al., 2010; de Lau et al., 2013). Factors 
that could limit the clinical application of the proposed automatic technique include the entangled 
acquisition systems required in extensive multichannel recordings. Although automatic EHG-
burst identification in EHG recordings was obtained by working out TOCO-like signals from the 



EHG, this automatic identification was supervised by experts to avoid artifacts and interference 
being present in the recordings. Some authors do not agree with measuring propagation velocity, 
due to the assumption of the occurrence of linear electrical propagation in the myometrium 
(Duchene, Marque and Planque, 1990; Devedeux et al., 1993). However, there seems to be some 
consensus on the use of this hypothesis with small interelectrode distances, although the optimal 
distances have still not been established (Rabotti and Mischi, 2014). 
 
As regards uterine electrical activity propagation patterns, we did not find any studies on CV and 
direction of propagation for PTB prediction using EHG surface recordings. When analyzing CV 
and direction of propagation in term pregnancies, single spikes within an EHG-burst do not 
usually show a preferential direction in the uterus associated with the imminence of labor, but 
unpredictable and complex propagation patterns. By contrast, whole EHG-burst propagation 
patterns are less erratic, with both upward and downward patterns as labor approaches (Lange et 
al., 2014). These results support the hypothesis that uterine contractions can start in many 
different areas of the myometrium, but are in disagreement with previous theories supporting 
preferential downward propagation during labor, with pacemaker regions located on the fundus 
during active labor (Planes et al., 1984).  
 
2.3.2. Coupling & multivariate analysis. As regards coupling and synchronization parameters, 
studies on uterine signals mainly focus on the difference between pregnancy and labor 
contractions or analyze the evolution of the parameters towards delivery by dividing pregnancy 
contractions into different term groups. Although these studies have rarely been performed on 
recordings from women who delivered preterm, it is believed that preterm and term labor involves 
the same mechanisms, the main difference being the GA at which labor occurs. Therefore, 
although the following studies were on women who delivered at term, they can be considered 
potentially good indicators for the prediction of preterm delivery. 
It should be noted that most of these studies were carried out by a French group at the Université 
de Technologie Compiègne (UTC) using a 4x4 (2.1 cm inter electrode distance) matrix of 
monopolar electrodes placed on the abdomen. These studies usually involve the computation of 
connectivity matrixes among EHG channels using different synchronization parameters. In some 
cases the information is summarized by the mean or median value of elements in the matrix 
(Hassan et al., 2013). On the other hand , graph theory analysis has also been proposed to delve 
into the study of the activation regions associated with different situations of uterine activity 
(labor/nonlabor or evolution of uterine activity during pregnancy), precisely characterize the 
correlation matrix, and quantify the corresponding connectivity (Nader et al., 2016). This consists 
of representing a set of nodes (electrodes) interconnected by edges (connectivity values between 
electrodes). Nader et al evaluate the performance of five methods: Granger causality (GC), 
nonlinear regression (h2), general synchronization (H), the imaginary part of the coherence (Icoh) 
and mean phase coherence (MPC) to estimate the connectivity on a realistic EHG model. The 
results revealed high performance for H, Icoh and h2. Subsequently, Nader carried out 
synchronization studies on real EHG signals recorded from a 4x4 matrix of electrodes on the 
abdomen, considering 183 labor (at term) and 247 pregnancy EHG bursts at different WG. The 
EHG bursts were grouped according to the weeks before labor (WBL) from the recording session: 
labor, 1WBL, 2 WBL, 3 WBL, 4 WBL and 6 WBL. The imaginary part of the coherence (Icoh) 
was worked out to obtain connectivity matrices. To transform the connectivity matrix into a graph, 
the strength of each node Strength(Icoh) was calculated. The results revealed that the pregnancy 
groups do not present clear differences, whereas significant differences were observed between 
1WBL and Labor groups. Furthermore, the electrodes placed on the uterine median vertical axis 
experience greater variations in Strength(Icoh) values 
As already mentioned, although EHG-burst synchronization parameters seem to give promising 
results for distinguishing between pregnancy contractions and labor contractions at term, it has 
rarely been studied in women who delivered preterm. This is probably because it requires a 
considerable effort to generate a database of these signals due to the prevalence of PTB and that 
the current setup for a large number of multichannel recordings should be more clinically friendly, 
especially when recording women with threatened PTB.  



 
2.4. Classificatory performance of EHG in preterm birth diagnosis 
As a step beyond the analysis of possible trends and significant differences in some EHG 
parameters, the potential accuracy of the use of EHG has been tested to discriminate preterm vs 
term labor and preterm labor vs preterm non-labor. Different classificatory strategies have been 
applied, from the use of simple thresholds to complex machine learning techniques. Here follows 
a summary of the most relevant results reported. Table 3 shows a summary of the most important 
features of the cited studies. 
 
2.4.1. Temporal and spectral EHG features. Maner and Garfield implemented an unsupervised 
artificial neural network (ANN) which classifies every register into one of the four groups defined 
in their study (preterm labor, preterm non-labor, term labor and term non-labor) (Maner and 
Garfield, 2007). From all the included EHG records (134 term and 31 preterm) they employed 
50% of their data base to train the ANN and set apart the remaining 50% in order to test the 
clasiffier. When the peak frequency, the standard deviation of the burst duration and the ratio 
were used as input features for the ANN, combining the results of training and test classification, 
59/75 (79%) of all term labor women, 12/13 (92%) of all preterm labor women, 51/59 (86%) of 
all term non-labor women, and 27/38 (71%) of all preterm non-labor women were correctly 
classified.  
On the other hand, Marque et al (Marque et al., 2007) also employed an ANN to classify the 111 
EHG recordings included in their study into preterm (1/3 of the total) or term (2/3 of the total) 
delivery. They analyzed the EHG signals, acquired in different positions with respect to the 
placenta (anterior, posterior), in the (0.05 – 16 Hz) bandwidth and performed an EHG-Burst-
focused analysis. 257 Bursts were used as learning data and 139 as test data to evaluate the ANN 
performance. The ANN was fed with the fast wave high and fast wave low components of each 
EHG-Burst obtained by using the wavelet transform. Two different algorithms were used to train 
the neural networks: the back propagation momentum (BPM) and the Levenberg-Marquardt 
algorithm (LM). The results showed that the BPM and the LM provided different results for the 
three groups considered according to gestational age; the smallest misclassification rate for the 
BPM (18%) was for the group composed by woman in gestational ages of between (27WG– 
28WG). However, the LM algorithm achieved a lower misclassification rate (11%) for the (33WG 
-37WG) group. The BPM provided better sensitivity (Posterior: 0.85; Anterior: 0.90 for BPM 
against Posterior: 0.82; Anterior: 0.79 for LM) and specificity values (Posterior: 0.93; Anterior: 
0.91 for BPM against Posterior: 0.88; Anterior: 0.87 for LM) than the LM, regardless of electrode 
position with respect to the placenta.  
In another study with a smaller database (7 term women and 18 preterm women) (Diab, Marque 
and Khalil, 2009), wavelet decomposition was also used to decompose each EHG-Burst into 5 
levels. The variance of each detail was used as input features for two unsupervised classification 
algorithms: the unsupervised statistical classification method (USCM) and competitive neural 
network (CNNM). They distinguished between women registered in the 29 WG who gave birth 
at different GA (G1: 33 WG, G2: 31 WG, G3: 36 WG). A 9.5% misclassification error was 
obtained by applying the USCM, and 14.2% by applying CNNM to distinguish between G1 and 
G2. For discriminating G2 from G3 a classification error of 2.3% was obtained for the USCM 
and 7.1% by applying the CNNM. This greater classification accuracy was due to all the groups 
being registered in the same gestational ages and G2 and G3 presenting a bigger difference in the 
weeks of gestational birth than G1 and G2, so that a greater difference in the frequency content 
of the two types of EHG-Bursts could be expected. 
Sikora et al. also performed a classification by using a Lagrangian Support Vector Machine 
(LSVM). Features of EHG Bursts such as amplitude, mean frequency and peak frequency were 
used to separate Groups I (physiological pregnancy) and II (women with preterm labor 
symptoms), obtaining an AUC of 0.690, 0.700 and 0.628, respectively(Sikora et al., 2011). 
More recently Fergus et al (Fergus et al., 2016) performed a term/preterm classification on the 
TPEHGDB. They included several temporal and spectral EHG features computed on whole EHG 
records. The following 12 features were included: integrated EHG, mean absolute value of the 
EHG, the simple square integral, wavelet length of the signal, Log, RMS, variance, difference 



absolute standard deviation of the EHG signal, maximum fractal length, average amplitude 
change, peak frequency and the median frequency. Some clinical data were available to feed the 
models. The discriminating capacity of all the features was evaluated by different methods. Seven 
different ANN were then used to classify these records: back-propagation trained feed-forward 
neural network classifier, Levenberg–Marquardt trained feed-forward neural network classifier, 
the perceptron linear classifier, radial basis function neural network classifier, random neural 
network classifier, the voted perceptron classifier and the discriminative restricted Boltzmann 
achine classifier. Given that the TPEHGDB is unbalanced (262 term cases against 38 preterm 
records) they performed the synthetic minority over-sampling technique (SMOTE) in order to 
obtain 262 term and 262 preterm registers. The best results were obtained for the oversampled 
data set including the clinical data by the combination of the Levenberg–Marquardt trained Feed-
Forward Neural Network, Radial Basis Function Neural Network and the Random Neural 
Network classifiers, with 91% for sensitivity, 84% for specificity, 94% for the AUC and 12% for 
the mean error rate. 
 
2.4.2. Non-linear features. The discriminating capacity of different classifiers has been reported 
with nonlinear input features, in contrast to or together with linear features, estimated from EHG 
recording so as to differentiate uterine EMG records of term and preterm deliveries using the 
TPEHGDB, predominantly performing the analysis on the whole EHG record rather than on 
signal burst segments. 
Sample entropy computed from whole EHG recording in the 0.3-4 Hz bandwidth was compared 
to the PS median frequency (linear feature) estimated by the adaptive autoregressive method for 
predicting term and preterm delivery records by different classification methods: k-nearest 
neighbors, linear and quadratic discriminant analysis, support vector machine (SVM) and 
decision tree (Smrdel and Jager, 2015). Using median frequency and additional clinical 
information in an oversampled database (SMOTE), quadratic discriminant analysis classifier 
obtained the best results with a classification accuracy of 86% (SE: 75%; SP:98%) for all records, 
regardless of the time of recording. For the sample entropy, the best classifier was obtained by 
the SVM, achieving an accuracy of 87% (SE: 96%; SP:79%) (Smrdel and Jager, 2015). Naeem 
et al. compared the discriminating ability of a set of linear features and a set of non-linear ones 
for predicting preterm delivery using three different ANN: Kohonen network, feed-forward back 
propagation network and trainable cascade-forward back propagation network (Naeem, Seddik 
and Eldosoky, 2014). The linear features included the mean power frequency, the root mean 
square (RMS) value of the signal, the frequency peak, median frequency of the signal power 
spectrum and the autocorrelation zero-crossing while the non-linear features used were: time 
reversibility, approximate entropy, Lyapunov exponent, correlation dimension, adjusted 
amplitude Fourier transform, sample entropy, derivative phase space reconstruction and phase 
space reconstruction based on the singular spectrum approach. ANN using non-linear features 
achieved better classification results than linear ones, obtaining an accuracy of 92.3%. The 
trainable cascade-forward back propagation network achieved the best classification accuracy and 
the Kohonen network obtained the worst classification results, regardless of the linear or nonlinear 
features (Naeem, Seddik and Eldosoky, 2014). 
Other authors combined linear and non-linear features in the inputs of the classifiers: Fergus et al 
proposed the combination of sample entropy with other temporal and spectral features (root mean 
square, peak frequency and median frequency) computed from whole EHG recording in the 
bandwidth 0.34-1Hz for predicting term and preterm delivery records (Fergus et al., 2013). 
Different classification methods were tested: Linear and quadratic analysis, uncorrelated normal 
density based classifier, polynomial classifier (PC), logistic classifier, k-nearest neighbors 
algorithm, decision tree classifier and Parzen classifier. Using the SMOTE technique, the decision 
tree classifier obtained the best classification performance, achieving an accuracy of 89% (SE: 
90.4%; SP: 82.7%). Including clinical information together with the EHG feature obtained a 
classification accuracy of 95% using the PC, sensitivity and specificity being 96.7% and 90%, 
respectively.  
The empirical mode decomposition technique has also been applied to EHG signals, computing 
characteristic features from the intrinsic mode function (IMF) resulting from the decomposition 



process. Ren et al used the ratios between the Shannon entropy values of both instantaneous 
amplitude and instantaneous frequency of the first ten IMF components of the whole EHG records 
(Ren et al., 2015). Six classifiers were tested to discriminate term and preterm delivery records 
using the SMOTE technique for data balancing: SVM, random forests, multilayer perception, 
AdaBoost, Bayesian network, simple logistic regression. The best classifier AUC was achieved 
using the AdaBoost classifier, obtaining an AUC of 0.986. On the other hand, Acharya et al first 
decomposed EHG signal in the 0.3-3 Hz bandwidth into 11 IMFs and then wavelet packet 
decomposition was implemented up to 6 levels on each IMF (Acharya et al., 2017). Then eight 
different features were computed for each wavelet coefficient: interquartile range, mean absolute 
deviation, mean energy, mean Teager-Kaise energy, standard deviation, fractal dimension, fuzzy 
entropy and sample entropy. Term and preterm delivery records were balanced using the adaptive 
synthetic sampling approach (ADASYN), an extension of SMOTE. The ten most significant 
features were selected using the particle swarm optimization technique and the Bhattecharyya 
method. The SVM classifier with radial basis kernel function was then proposed to differentiate 
preterm and term delivery records and achieved a classification accuracy of 96.25%, sensitivity 
and specificity being 95.08% and 97.33%, respectively. These results are remarkable but may be 
biased due to the unbalanced original database and over-learning could also have affected the 
results obtained. 
All the papers described so far in this section used TPEHGDB records obtained during regular 
checkups. The previously described work by Mischi et al (Mischi et al., 2017) studied 
classification ability for the diagnosis of preterm birth from a different database with women 
admitted to hospital for preterm contractions. The classification ability of ‘conventional’ and 
‘modified’ versions of approximate and sample entropy and of time reversibility was tested for 
each feature. The best results were an average AUC of 0.728 and a corresponding average 
accuracy of 73% obtained for the modified approximate entropy for separating Preterm/Term 
groups. 
 
2.4.3. Propagation and coupling features. Lucovnik compared the ability of temporal and 
spectral features worked out from the EHG-burst (Duration, PS peak frequency, median 
frequency and amplitude) and action potential CV to differentiate preterm labor within 1, 2, 4, 7 
and 14 days after recording (Lucovnik. et al., 2011). AUC values were always greater for CV 
than that of the best temporal and spectral feature (PS peak frequency), ranging from 0.89 to 0.96. 
These AUC values were similar to those obtained when combining CV and PS peak frequencies, 
reaching 0.96. 
A multivariate multiscale fuzzy entropy algorithm and multivariate multiscale entropy have also 
been applied to 3-channel EHG signals from the TPEHGDB to assess its capability to predict 
whether delivery will be at term or preterm (Ahmed et al., 2017). Whole 30-minute EHG 
recordings were analyzed, which was a great advantage, since EHG-burst segmentation was not 
required. The ADASYN technique was applied to solve the problem related to the unbalanced 
database. A total of 23 supervised classifiers were implemented: discriminant analysis, logistic 
regression, SVM, decision trees, nearest neighbor and ensemble classifiers. Using 9 element 
feature vectors extracted from multivariate multiscale fuzzy entropy analysis an AUC of 99% and 
an accuracy of 95% was achieved in differentiating term and preterm delivery records, regardless 
of the time of recording. These results are good but may be biased due to the unbalanced original 
database and may also be affected by over-learning. 
Finally, the use of other bivariate features to develop classifiers that discriminate term labor from 
non-labor contractions has also been reported. Hassan et al analyzed and compared the ability of 
the nonlinear correlation coefficient (h2) and the traditional spectral features PS peak frequency 
(PF) and median frequency to differentiate between pregnancy and labor contractions (Hassan et 
al., 2013). Forty-nine women were enrolled in the study (36 recorded during pregnancy at 
different gestational ages and 13 in labor -within 24h of recording- giving 174 pregnancy 
contractions and 115 labor contractions). ROC curves indicated considerably better performance 
of the nonlinear correlation coefficient (AUCh2 = 0.85) than the classical frequency features 
(AUCPF = 0.76 and AUCMed.Freq=0.66) in distinguishing labor contractions from pregnancy 
contractions. The ability of other features, estimating the degree of synchronization or coupling, 



working out the imaginary part of the coherence have also been tested; as is the case of 
Strength(Icoh), Assortativity, Clustering coefficient or Local Efficiency (Nader et al., 2015). 
Strength (Icoh) presented greater AUC when separating 247 pregnancy EHG-bursts and 83 of 
term labor (AUC = 0.801). Radomski tested the performance of multivariate sample entropy, 
generalized Spearman’s correlation coefficient and the combination of both to discriminate 
between labor and non-labor contractions (Radomski, 2015). Four-channel EHG recording 
sessions were carried out in three groups of women: 15 women in 2nd period of unifetal labor, 15 
pregnant women in their 3rd trimester, and 14 unpregnant women in the follicular phase of a 
menstrual cycle. All the proposed features were able to differentiate uterine unpregnant activity 
from labor activity. The combined index yielded the best AUC values in discriminating these 
groups: unpregnant vs pregnant nonlabor 0.87±0.07, unpregnant vs labor 0.94±0.05, pregnant 
nonlabor vs labor 0.94±0.04. 
 
 
  



 

Table 3.- Features taken from studies that used EHG parameters in PTB diagnosis. 
 

Author 
(Year) 

Data Base (Nº women) Computed 
Parameters 

Window of 
analysis 

Classifier 
type Defined classes Best 

performance 
Oversampling 

technique Preterm Term 

Maner 
(2007) 51 134 Temporal & 

Spectral EHG-Burst ANN 

Preterm labor 
Preterm non-labor 

Term labor 
Term non-labor 

Acc: 92% 
(preterm 

labor) 
None 

Marque 
(2007) 37 74 Spectral EHG-Burst ANN Preterm 

Term Acc: 82% None 

Diab 
(2009) 18 7 Temporal & 

Spectral EHG-Burst CNNM 
G1: 33 WG 
G2: 31 WG 
G3: 36 WG 

Acc: 97.7% 
(G2 vs G3) None 

Sikora 
(2011) 

21 threat of PTB 
27 phys. pregnancy 

14 labor 

Temporal & 
Spectral EHG-Burst LSVM 

G1: Physiological 
pregnancy 

G2: Preterm labor 
symptoms 

AUC: 0.70 None 

Fergus 
(2016) 38 262 Temporal & 

Spectral 
Whole EHG 

record ANN Preterm labor 
Term labor 

AUC: 0.94 
Acc: 88% SMOTE 

Smrdel 
(2015) 38 262 Non-linear Whole EHG 

record SVM Preterm labor 
Term labor Acc: 87% SMOTE 

Naeem 
(2014) 38 262 Non-linear Not 

indicated ANN Preterm labor 
Term labor Acc: 92.3% None 

Fergus 
(2013) 38 262 

Temporal & 
Spectral 

Non-linear 
Clinical data 

Whole EHG 
record PC Preterm labor 

Term labor Acc: 95% SMOTE 



Author 
(Year) 

Data Base (Nº women) Computed 
Parameters 

Window of 
analysis 

Classifier 
type Defined classes Best 

performance 
Oversampling 

technique Preterm Term 

Ren 
(2015) 38 262 

Temporal & 
Spectral 

Non-linear 

Whole EHG 
record AdaBoost Preterm labor 

Term labor AUC: 0.986 SMOTE 

Acharya 
(2017) 38 262 

Temporal & 
Spectral 

Non-linear 

Whole EHG 
record SVM Preterm labor 

Term labor Acc: 96.27% ADASYN 

Mischi 
(2017) 34 24 Non-linear EHG-Burst Statistical 

Class. 

Labor within 1 
week 

Non-labor 
Preterm labor 

Term labor 

AUC: 0.731 
Acc: 73% 
(Term vs 
Preterm)  

None 

Lucovnik 
(2011) 88 28 

Temporal & 
Spectral 

CV 
EHG-Burst Statistical 

Class. 
Labor in 1, 2, 4, 7 

and 14 days AUC: 0.96 None 

Ahmed 
(2017) 38 262 Non-linear 

Multivariate 
Whole EHG 

record SVM Preterm labor 
Term labor 

AUC: 0.99 
Acc: 95.4% ADASYN 

Hassan 
(2013)  

36 
nonlabor 
13 labor 

Spectral 
Bivariate EHG-Burst Statistical 

Class. 
Term labor 

Term nonlabor AUC: 0.85 None 

Nader 
(2015) 

247 bursts non-labor 
183 bursts labor Bivariate EHG-Burst Statistical 

Class. 
Labor 

Nonlabor AUC: 0.801 None 

Radomski 
(2015) 

14 
Unpregnant 

15, 2nd trim 
15, 3rd trim 

Non-linear 
Bivariate 

Whole EHG 
record 

Statistical 
Class. 

Unpregnant 
Pregnant non-labor 

Labor 
AUC: 0.94 None 

 



 
3. CONCLUSIONS 
 
3.1. Background 
The present incidence and consequences of PTB make it not only a major issue in obstetrics, but 
also a health priority all over the world. Current methods of diagnosis based on CL, Bishop score, 
frequency of contractions and biomarkers on uterine secretions, as well as its treatment have room 
for improvement. It is believed that the events associated with the activation of the myometrium 
that precede labor are reflected in the characteristics of the surface recording of its myoelectrical 
activity. Surface EHG recording and analysis has emerged as a tool for improving PTB prediction, 
showing very promising results at the research level. In the present review the many different 
approaches used are organized according to the type of parameters used i.e. temporal, spectral, 
non-linear and, most recently, bivariate. 
 
3.2. Temporal and Spectral Analysis 
It could be expected that, apart for the proximity of labor, the amplitude parameters could be 
influenced by: the composition or thickness of abdominal layers of the subject being recorded, 
the size and type of electrodes used, and the interelectrode distance and contact impedance with 
the skin, among other factors, which limit the robustness of this type of parameter. Nonetheless, 
several studies reported a significant increase in the EHG amplitude parameters of labor vs non-
labor recordings up to two weeks before labor both in term and preterm delivery women. 
However, if labor occurs more than two weeks after the recording, other factors could mask the 
changes of signal amplitude at origin and the differences are not significant. On the other hand, 
the contraction duration parameters did not give good results. 
Despite the lack of consensus on the frequency bandwidth to be used for spectral parameters, the 
peak frequency of EHG burst has shown promising results in discriminating labor vs pregnancy 
contraction in term and preterm deliveries. It also seems to be a more robust indicator than 
amplitude parameters, while the median frequency of the EHG burst was a worse indicator. When 
computed from whole EHG recordings the opposite behavior is obtained; i.e. the peak frequency 
discrimination ability is poorer and median frequency seems to be a better indicator in these cases.  
 
3.3. Non-linear Analysis 
It seems that there is no clear trend in the values of non-linear parameters as pregnancy progresses 
and labor approaches. However, most studies suggest increasingly regular and recurring patterns 
with gestation progression and higher predictability of the EHG signals as delivery approaches. 
Parameters such as sample entropy, when computed from whole EHG recording or long segments 
that include not only EHG bursts but also intercontractile periods, proved to be good predictors 
of PTB. In contrast, when computed from EHG bursts, traditional entropy parameters seem to be 
more useful in discriminating between different labor scenarios, e.g. labor recordings at term vs 
preterm, rather than in predicting PTB. On the other hand, modified entropy from EHG bursts 
produces good results for discriminating term and preterm delivery although results were poorer 
in estimating delivery time.  
 
3.4. Propagation and Coupling Analysis 
In recent years, a significant number of papers have studied the changes in signal propagation, 
synchronization and coupling between the myoelectrical activity recorded at different sites of the 
abdomen by means of bivariate parameters. Electrical coupling between myometrial cells 
intensifies as pregnancy progresses, so that velocity parameters such as CV increase as delivery 
approaches. In fact, CV individually or together with peak frequency has proven to be a good 
indicator of labor proximity, discriminating between the contractions of women who gave birth 
in more or less than 7 days after the recording, both in term and preterm deliveries. In addition, 
CV was similar for contractions in less than 7 days for both term and preterm delivery, suggesting 
that, in this respect, the difference only lies in the gestational age at which labor occurs. 
On the other hand, synchronization and coupling parameters do not show clear trends in the 
evolution of synchronization parameters when large term intervals (up to 7WBL) to term labor 



are considered. Nonetheless, good discrimination is usually obtained between pregnancy and 
labor records, with better performance when recorded at least one or two WBL.  
 
3.5. Classificatory performance of EHG in preterm birth diagnosis 
As regards classifiers that aim to discriminate women who will deliver at term from those who 
deliver preterm, machine learning techniques with temporal and spectral input features have given 
very promising results and proved the potential superiority of classification tools from EHG 
features over the currently used clinical methods such as CL, biomarkers, etc. The use of non-
linear features or CV provides even better results and complementary information than those of 
temporal and spectral analysis i.e. results are improved when EHG features of different kinds are 
combined.  
Although coupling analysis has been little used on patients who delivered preterm, everything 
indicates that it could be useful for predicting PTB and further research in this area will be carried 
out in the coming years. 
 
3.6. General Conclusions 
All in all, it seems that the uterine electrophysiological changes that precede spontaneous labor 
are associated with contractions of more intensity, higher frequency content, faster propagation 
and more organized activity and stronger coupling of different uterine areas. Temporal, spectral, 
non-linear and bivariate analyses of the EHG therefore provide useful and complementary 
information that should be appropriately combined with clinical information of the subject. In this 
regard, it should be remembered that despite an enhancement of discriminatory ability when EHG 
features are combined with clinical information (e.g. WG, Bishop score, CL, age, parity etc.), in 
term-preterm analysis and in other scenarios such as labor induction, this strategy has not yet been 
extended. We consider that EHG parameters in the specific context of the subject under study can 
help to improve the understanding of the underlying mechanisms during pregnancy and labor and 
enhance PTB prediction. Further studies should explore the best ways of combining all the 
available information.  
One of the main challenges in the field is to obtain surface signals of good quality. Signal 
amplitude is low, especially earlier in pregnancy, and recordings can be corrupted by motion 
artifacts during movement and contraction, cardiac and respiratory interference and low 
frequency drifts. In many studies, a preliminary screening of the records should be carried out, 
discarding those of poor quality. There is still some way to go along this line, developing tools 
that can identify and cancel these unwanted components that can lead to an erroneous 
interpretation of results. In addition, the analysis often requires pre-segmentation of the records 
to focus on the signal segments during contraction. The robustness of the automated identification 
of the EHG-burst is another challenge that still needs to be addressed. 
Ever more complicated signal processing techniques and classification methods are being applied 
to EHG in the context of PTB prediction. This firstly allows more information to be extracted 
from EHG signals and provides better results on the specific conditions of each database. 
However, it also complicates the physiological interpretation of the parameters and the 
generalization capacity of the technique. The development of new methods of analysis and signal 
classification in order to obtain the best discriminating numerical results should not forget that 
the signal characteristics to be assessed must have a physical interpretation in order not to be 
rejected by clinical staff. Keeping this in mind, there is still a need to further simplify signal 
analysis from the final user’s standpoint. These should be accurate and require minimal user 
interaction.  
This may be one of the issues that currently affect clinicians' perception of EHG and its analysis, 
and limit its application in the hospital setting. A ‘keep it simple’ strategy regarding not only EHG 
analysis but also its recording could help to build bridges towards its clinical use. In this latter 
regard, the number of electrodes, size and wiring of signal conditioning and acquisition equipment 
should be minimized and recording preparation should be simplified and made less time-
consuming. New commercial devices have now been released for wireless EHG recording and 
monitoring. Some are medical products such as the Novii wireless patch system from Monica 
Healthcare and General Electric or PUREtrace from Nemo Healthcare, and some meant for the 



consumer market such as the Bloomlife smart pregnancy wearable from Bloomlife Inc. These 
allow comfortable and wearable signal acquisition and facilitate clinical and home monitoring. 
However, they currently lack integrated tools for additional functionalities such as automatic 
identification of artifacts and contractions, or decision support systems to help to discriminate 
between labor and non-labor, predicting PTB, induction success, or labor arrest, etc. The 
integration of advanced signal analysis techniques such as those described in this paper would 
encourage the clinical use of EHG in obstetrics in general and enhance the prediction and 
management of PTB in particular.  
  



ACRONYMS: 
 
ACOG  American College of Obstetricians and Gynecologists 
ADASYN adaptive synthetic sampling approach 
ANN  artificial neural network 
AR  autoregressive methods 
AUC  area under curve 
BPM  back propagation momentum 
CL  cervical length 
CNNM  competitive neural network 
CV  Conduction velocity 
E1  first electrode of TPEHGDB 
E2  second electrode of TPEHGDB 
E3  third electrode of TPEHGDB 
E4  fourth electrode of TPEHGDB 
ECG  electrocardiogram 
EHG  electrohysterogram 
EMG  electromyogram 
fFN  fetal fibronectin 
FW  fast wave 
FWH  fast wave high 
FWL  fast wave low 
GA  gestational age 
GC  Granger causality 
H  general synchronization index 
h2  Nonlinear correlation coefficient 
IMF  intrinsic mode function 
IVH  intraventricular hemorrhage 
LM  Levenberg-Marquardt algorithm 
LSVM  Lagrangian support vector machine 
PC  polynomial classifier 
PF  peak frequency 
PS  power spectrum 
PTB  preterm birth 
RMS  root-mean-square 
ROC  receiver operator characteristic 
S1  first channel of TPEHGDB 
S2  second channel of TPEHGDB 
S3  third channel of TPEHGDB 
SMOTE synthetic minority over-sampling technique  
SVM  support vector machine 
SW  slow wave 
TOCO  tocography 
TPEHGDB term-preterm EHG Database 
USCM  unsupervised statistical classification method 
WBL  weeks before labor 
WG  weeks of gestation 
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