
Trabajo Final de Grado (TFG)
Escuela tecnica superior de Ingenieros de Telecomunicacion

Implementing and characterising
cryptographic schemes for the Cloud

through a Chrome Extension

Aitor Alvar Navarro Iranzo

Tutor: Luis Guijarro Coloma

Abstract

We analyze the importance of privacy preservation in Cloud environments. Mention
tools that help the user to remain in control of her data, with special focus on
encryption. We also develop a Chrome Extension for analyzing different crypto-
graphic schemes, implementing some of the most used ones on privacy preserving
DB management systems (or Protected Search DBMS), simulating such systems
through the transfer of the encrypted data to a back-end hosted in Amazon Web
Services (AWS). We also provide an in-program characterization of the used scheme.

Resumen

En este proyecto analizamos la importancia de la preservación de la privacidad en
entornos Cloud. Mencionamos las herramientas que ayudan al usuario a mantener
el control sobre la confidencialidad de sus datos, haciendo especial hincapié en
la encriptación. También desarrollamos una extensión de Chrome que permite
analizar distintos esquemas criptográficos, implementando algunos de los más usados
en sistemas de manejo de bases de datos que preservan la privacidad (Protected
Search DBMS). Simulamos dichos sistemas mediante la transmisión de los datos
encriptados a un back-end alojado en una instancia en AWS. Por último, en la
extensión proveemos una caracterización del esquema empleado.

Resum

En aquest projecte analitzem la importància de la preservació de la privacitat en
entorns Cloud. Mencionem les eines que ajuden a l’usuari a mantindre el control de les
seues dades, amb especial atenció a l’encriptació. També desenvolupem una extensió
de chrome que permet analitzar distints esquemes criptogràfics, implementant i
caracteritzant alguns dels més utilitzats a sistemes de maneig de bases de dades
que preserven la privacitat (Protected Search DBMS), simulant aquests sistemas
mitjançant la transmisió de les dades encriptades a un back-end allotjat a AWS.

iii

Motivation

Data is the new oil.

In recent years experts and institutions have tried to convey the growing relevance
of data. While the phrase above and other labels like ”the new commodity” or ”the
new currency” have been deemed inaccurate it is undeniable that, at this late stage
of the Information Age, data has turned to be of supreme importance.

This prevalent role comes from two main factors, the sharp increase in data genera-
tion, and the improvement in the quality of insight we obtain from it, for which the
cloud and cognitive systems (e.g. Machine Learning) are to thank. In fact, more data
has been created during 2017 than in the rest of history combined. While the benefits
of it are evident, we should not forget that it is critical for data to be protected.
According to the International Data Corporation (IDC), by 2020 67% of the data
will require protection, but only 35% will actually be protected. Furthermore, the
boost in Cloud usage, both for storage and computing, vastly increases complexity
in maintaining security and privacy. The attack surface grows and new risks appear.
One of those risks is the loss of privacy on our data, caused by either snoopers or
curious administrators. While nowadays is easy to find commercial solutions that
tackle the former, the tools to avoid the latter are still rather limited.

More personally, the motivation behind this thesis comes primarily from my research
on Data Privacy carried out in Bilkent University on the Spring semester of 2016,
and on the Distributed Systems Group of ETH University from August 2016 until
January this year. This thesis seeks to elaborate on the efforts made by academia
providing a closer look to cryptographic schemes that can enhance data protection.
We aim to provide a tool that allows sending and retrieving data through a chrome
extension that provides client side encryption while retaining operation capabilities.
The extension will allow the user to choose among various modes of operation,
depending on the functionality we want the data to preserve. Specifically, it allows
AES as well as different schemes that preserve keyword search and addition. An
overview of the performance of the scheme will be presented to the user, including
an explanation of the pros and cons.

v

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 2

2 Background 3
2.1 Cloud . 3
2.2 Data Privacy . 4
2.3 Privacy Enhancing Technologies . 5
2.4 Information Security . 6
2.5 Cryptography . 7

2.5.1 Symmetric Cryptography . 8
2.5.2 Asymmetric Cryptography 9
2.5.3 Homomorphic Encryption 10
2.5.4 Functional Encryption . 11
2.5.5 Property-Preserving Encryption 12

3 Related Work 17
3.1 Searchable Encrypted Database Systems 17

3.1.1 CryptDB . 17
3.2 Structured system evaluation and comparison 19

3.2.1 SoK . 19

4 Objectives 21
4.1 Scenario . 21

4.1.1 Threat Model . 21
4.2 Analysis of related work . 22

4.2.1 CryptDB . 22
4.2.2 SoK . 22

5 Design and Implementation 25
5.1 Design goals and system overview 25
5.2 User’s Browser . 26
5.3 Chrome extension . 27

5.3.1 JavaScript and Cryptography 27
5.3.2 Interfaces, Bindings and Transpilers 27
5.3.3 Implementing the Chrome Extension 28

vii

Contents

5.4 Amazon Web Services (AWS) . 28
5.4.1 EC2 Instance . 28
5.4.2 Configuring our instance . 29
5.4.3 Node backend . 29
5.4.4 Additional structures . 29

5.5 Usage Model / Intended operation flow 29

6 Conclusion and future work 31
6.1 Conclusion . 31
6.2 Future work . 31

Bibliography 53

List of Figures 59

List of Abbreviation 61

viii

1 Introduction

As the world transitions into what some already call the ”Data Age”, its dependence
on Cloud Storage and Computing is only increasing. We no longer envision a world
where our data is confined to a single device. Life is now essentially mobile, data is
expected to be readily available on any device and permanently synced among all of
them. This is, precisely, one of the characteristics of the Cloud that has appealed the
most to private users. But while its ubiquity might be the principal advantage for this
type of users, its scalability is what has allowed it to take the business world by storm.

For Small and medium Businesses (SMBs), it has not only brought a substan-
tial saving in IT equipment, but has also allowed instantaneous infrastructure growth
upon demand spikes or rapid business development. Many firms have traditionally
seen data centers and IT infrastructure deployment in general as an expensive
and complex process that slowed down their operations. Thanks to the cloud that
view has shifted and it now facilitates and speeds up virtually every service in the
company. This, however, brings up new concerns. It is no longer enough to deal
with the security of our devices as our information is out there, delocalized. This
heavily increases the attack surface which, in our case, refers to the sum of ways
an attacker could retrieve or inject data. Data breaches have put these concerns
under the spotlight, as they have turned from anecdotal to commonplace, [1] [2].
Institutions have sped up their efforts to provide new legislation that adapt to
the new landscape like the GDPR [3] while cloud users have turned to encryption
to recover their sense of control (amid the actions of cybercriminals and state actors).

There are two main items to take into consideration for any rational encryption
strategy; how the key management will be done and where the actual encryption
process will take place. These decisions are even more relevant when dealing with
cloud settings. We have seen how for common SaaS services like Google Drive
and Dropbox, home users have opted for tools that provide client-side symmetric
encryption on a per file or per folder basis. This approach has the benefit of keeping
your file content unreadable for the SaaS provider but it also has several drawbacks.
Firstly, it lacks granularity (the file is treated as a single unit, and applying the
encryption selectively, for example on a per field basis in a large spreadsheet, is
not possible). The second shortcoming is having to make the passphrase, or master
key, and the application used to encrypt available on every device trying to access
the files in order to be able to decrypt (this diminishes the multi-device approach
SaaS thrives upon). Lastly but equally relevant, it completely prevents cloud-side

1

1 Introduction

functions like file preview.

Another approach we have also seen, overall in the database world, is server-side
data encryption, this is, encryption performed by the cloud provider. While it checks
the box for compliance (storing data in plain text is at odds with, for example the
requirements for health records storage), the provider holds the keys and so, who
and when has access to our data remains out of the user’s control . Bring Your Own
Key (BYOK) has been claimed to be a solution to this matter, but generating your
own key does not suffice [4] when the encryption and decryption is being made by a
third party at its will. [5]

Throughout this thesis we will showcase several tools that allow the user to decide
to which extent privacy preservation is primed in every case.

1.1 Contributions

The aim of this thesis is offering a condensed view of the existing technologies for
privacy preservation in the cloud. For doing so, apart from this document, we
have developed a chrome extension that pretends to act as a one-stop-shop for the
evaluation of different encryption methods. The extension allows the user to apply
an encryption method from among the ones available, which include AES and partial
homomorphic algorithms like Paillier. The encrypted data will then be sent to
our instance in Amazon Web Services (AWS) and once the transfer is completed
the user will be able to see the advantages and disadvantages of each algorithm
implementation. This way the user could have a clear image of the capabilities
preserved and the cost associated. The chosen environment is the browser, since its
the most common tool for interacting with the cloud.

1.2 Outline

In Chapter 2 we provide the necessary background for the complete understanding
of this work. In Chapter 3 we review academic work that is intimately related to
our thesis. In Chapter 4 we explain the scenario of our work. In Chapter 5 we
detail the design and components of our tool. In Chapter 6 we go over the actual
implementation of the extension and how to set up our environment.

2

2 Background

2.1 Cloud

The Cloud is one of the protagonist of the decade. By allowing to obtain the services
that come with having an IT infrastructure without having to undertake the purchase
and deployment, it has brought an enormous benefit to virtually every business sector.

The main idea behind the cloud is letting the client make use of the equipment of the
provider as if it was her own. The client might seek only storage or also computing
power. The provider can provision that storage or computing power for the client
on demand, bringing scalability to a level previously unknown.

Generally speaking, there are three different ways cloud services can be classi-
fied.1

The type of function it is destined to. It could be only storage, where we
can mainly find Database as a Service (DBaaS) and applications like Dropbox.
Alternatively the client could be seeking also computing power, either to speed up
an application or process you are already running or one exclusively offered by the
either the provider or a third party. An example of it are some analytics services,
where the storage is a subset of it.

The type of ownership of the cloud. Three models have been traditionally dis-
tinguished; public, private and hybrid cloud. In public cloud settings the providers
were the actual owners of every machine. In a private cloud setting the software
was provided and potentially the whole network managed by a third party but the
client had to own the hardware. A hybrid setting meant the presence of both models
within our organizations. Nowadays however the distinction is not that clear, some
public cloud providers offer dedicated hardware being the multi-tenancy no longer a
requirement. This and other options have now blurred the lines that separated the
different settings.

The level of transparency to the user/developer. If what the provider of-
fers us is the provision of the building blocks, like processing, hardware maintenance
and networks it will be offering what is called Infrastructure as a Service (IaaS).

1Some organizations like NIST devise only two ways, by the type of services or the type of
deployment (http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf)

3

2 Background

At a higher abstraction level we find Platform as a Service (PaaS) where you are not
only provided the hardware but also the software tools (e.g. libraries, frameworks)
required to get an app running, either proprietary or purchased. Finally there is
Software as a Service (SaaS) where everything is transparent for the user, that
simply obtains access to an application that is reality running somewhere else and
then accessed, for example, from the user’s browser.

2.2 Data Privacy

Even before the advent of computers, certain data was considered sensitive and
hence expected to remain private. Some record types like those related to health-care
or judicial procedures were already required to be placed under physical safeguards.
However, this traditional view of privacy protection started to be insufficient when
the information abandoned its physical form with the widespread use of computers,
and became almost obsolete with the adoption of the Internet. As the network
of networks grew in popularity, the complexity of privacy preservation augmented
drastically, requiring even the introduction of new, more specialized terminology like
digital privacy/online privacy/internet privacy [6].

But, not only controlling the access to the data became more complex, also new
kinds of data were generated, like browser usage. New targets like smartphones have
also emerged and these new central driver for info exposure, can be often overlooked,
failing to realize the amount of services it aggregates. Consequently, users have
been forced to analyze further where they put their trust [7] and widen the set of in-
formation they consider sensitive, no longer being limited to health or court records. 2

The usage of the cloud maximizes the complexity of privacy preservation and
adds several concerns on its own [8]. While the academia has acknowledged this
fact and worked to assess and solve these new problems, [9] users are not fully
aware of it. 3 Unlike specific items users mention when asked/surveyed, like not
being observed while you surf the Internet and keeping private which webs you
visit, it is difficult to exactly pinpoint the threat associated with cloud computing.
This is probably to blame for the little understanding of how big the exposure can be.

From what can be observed from papers and surveys on the topic, there seems to be
consensus that the challenges in privacy in the cloud steam from the lack of control

2In ”Privacy in the digital world”, based on a survey by Waveston, the answer Having control
over who can get information about you ranked first when the participants were asked to define
privacy in today’s world

3In the same report, we find explicitly stated that ”technologies which provide citizens with the
ability to choose the data they share, such as connected objects or Cloud services storing private
information, are considered less risky in terms of privacy”

4

2.3 Privacy Enhancing Technologies

a cloud user has [10] [11]. That lack of control can expose the user to a misuse
of the data (resale or use for secondary purposes), to unknown replication of the
data (for efficient and convenient delivery) [12]. As well as issues derived form those,
like unawareness of contractors that might tangle up liability or data residing in
several jurisdictions. The most common element to ensure those concerns did not
materialize keeps on being the contracts signed with the service provider, usually in
the form of Service Level Agreement. However, they are not the only way to tackle
this matter, a set of tools and approaches exist [13] [14], aiming at achieving privacy
by default and by design [15] [16].

2.3 Privacy Enhancing Technologies

This set of technologies, often referred to as PETs, is defined as ”...technologies that
are enforcing privacy principles in order to protect and enhance the privacy of users
of information technology (IT) and/or of individuals about whom personal data are
processed (the so-called data subjects)”

We can find pages listing several of the PETs available, [17] but due to its broad
definition, there is no absolute list of the tools it encompasses. In fact, even grouping
them in categories can be done under many different criteria. A popular approach is
using Solove’s privacy taxonomy [18], which outlines the types of privacy problems a
user can face. The tools are put together depending on which of those threats they
tackle. The categorization can also be done according to the technology the tools
make use of. Bobby Vellanki distinguishes the following four categories.

1. Anonymity tools Their main aim is to avoid the user to be identified and/or
linked to a certain action (e.g. accessing certain file in a database, visiting
a specific website, sending a message to a precise recipient). Some of the
solutions leveraged by tools under this section are:

• Proxies: The proxy server relays the requests send by the user, so that the
server in the receiving end cannot see where the request was originated.
When a Trusted Third Party (TTP) is not an option, the user should
perform a minimum set of checks (e.g. whether HTTPS is allowed) to
ensure the proxy does not pose a threat.

• PIR and ORAM: Private Information Retrieval and Oblivious Random
Access Machines are two families of protocols that employ diverse methods
to access files in a database without this one learning the item accessed
or the path followed to reach it.ORAMs also allow writing .

• Mixing Networks: Hides sender and recipient of a message by aggregating
senders and recipients (from 1-to-1 to n-to-m). The messages can be
batched and then delivered at specific times to obscure timings.

• Dummy traffic: Randomly generated packets get mixed with genuine
messages to make traffic snooping more difficult .

5

2 Background

2. Filters The common mission for all these tools is trying to protect the user
from unperceived dangers. Some examples of them are firewalls, ad-blockers,
cookie-cutters, anti tracking, spam filters and spyware detectors.

3. Policy tools The building block for this type of tools are the privacy pol-
icy languages. As an example, the Platform for Privacy Preferences (P3P),
developed by the World Wide Web Consortium (W3C) external informative,
allows the websites to specify their privacy policy using XML. In the same
manner it allows users to set their privacy preferences and thus see whether a
site aligns with them. This is a so called ”external” language, and it is useful
for description but only ”internal”(i.e. the ones that define the preferences
within a organization) languages can be normative and therefore have support
for enforcement.

4. Encryption Allows data to be transformed into a compendium of seemingly
random characters. It is the Swiss knife of privacy preservation, it can help us
secure data in its three states. Securing the channel through SSH or TLS gives
us security for data in transit. Ensuring the data is encrypted when stored
(e.g. in a database) provides us with secure data at rest. Utilizing the data
in its encrypted form instead of its original form brings guarantees to data in
use. On top of that, it can be also employed for enhancing solutions described
above, for example when coupling layered encryption with the concept of
mixing networks we obtain onion routing which also allows us remain private
in the eyes of the proxies.

2.4 Information Security

Often referred to as InfoSec, Information Security is responsible for the protection of
information and information systems against unauthorized access or modification of
information, whether in storage, processing, or transit, and against denial of service
to authorized users [19]. These goals are encompassed by the CIA triad, this is,
Confidentiality (the information only gets to intended recipients), Integrity (the
information remains unaltered) and Availability (the information can be accessed
upon request from authorized parties).

The first step towards achieving Information Security is usually performing a risk
assessment. The items to analyze at said assessment are the following:

• What threats/adversaries exist?

• What tools/capabilities can they use?

• How attractive is the target? (goal/intent/likelihood)

• What impact would the attack have?

6

2.5 Cryptography

• What safeguards can be deployed to minimize exposure?

In particular, the types of adversaries, their capabilities and the role of safeguards
are of special relevance to this thesis.

Honest-But-Curious Adversary [20]. The honest-but-curious (HBC) adver-
sary is a legitimate participant in a communication protocol who will not deviate
from the defined protocol but will attempt to learn all possible information from
legitimately received messages. This attacker, also called semihonest can be formal-
ized [20]. This adversary will be the base for the curious administrator we use in
our work. However, for us a constructive definition of the adversary’s capabilities
will suffice. This model also covers the possibility of another tenant gaining access
to our resources in a public cloud.

The most common safeguards for preserving confidentiality and integrity are cryp-
tosystems. Encryption schemes aim to achieve Semantical Security meaning What-
ever is efficiently computable about the cleartext given the ciphertext, is also efficiently
computable without the ciphertext [21].

For real applications we deal with an equivalent,but easier to prove, version of
this notion, the so-called Ciphertext Indistinguishablility. It implies that for any
two messages m0, m1 the probability of the adversary guessing which message a
ciphertext c encodes is ≤ 0.5 + ε, where ε is negligible. This property is typically
measured through games that attempt to establish how well the scheme copes with
specific threats. In those games, the adversary is given certain capabilities, and if the
system/protocol is able to retain the condition above, it succeeds. For example, if
the adversary can obtain the ciphertext for a certain input known by her, it performs
a chosen plaintext attack (CPA). Shall our system succeed under this assumption, it
will be deemed IND-CPA, Indistinguishable under Chosen Plaintext Attack.4 These
security notions are the standard way of analyzing Cryptographic Systems.

2.5 Cryptography

Cryptography, from Greek krypto (hidden) and graphos (something drawn or written)
is the science that studies secret communication. Encryption, mentioned in previous
paragraphs, is thus to make some information secret or hidden. The encryption
process makes use of an algorithm, known as cipher, a message (plaintext) and a key.
The output of it known as ciphertext. To decrypt one starts with the ciphertext and
using the cipher and key the original message or plaintext is obtained. Depending
on whether it takes two different keys to encrypt and decrypt or it can be done with
the same key, we will talk about asymmetric or symmetric encryption respectively.

4For more on adversaries and notions of security : courses.cs.washington.edu/courses/cse599b/06wi/lecture10.pdf

7

2 Background

2.5.1 Symmetric Cryptography

As we have highlighted in the previous paragraph, the main idea behind this type of
encryption is that there is only one key, the same key to encrypt and decrypt the
data. This symmetric key can be used with block ciphers or stream ciphers.
A stream cipher takes the key and generates a pseudo-random (seemingly random

Figure 2.1: Depiction of a symmetric key operation

but not entirely so) keystream from it, that keystream is XORed with the plaintext.
This is a bitwise operation, therefore the message, the keystream bits used and
the ciphertext will all be of the same length. XORing is a pretty fundamental
way of obtaining of a 1:1 map, this bijective relationship is the definition of low
difussion [22] and makes it suffer from malleability (transformation of ciphertext
provokes substantial transformation of plaintext). However, it also means that if we
were to XOR the ciphertext with the same keystream we would directly obtain the
original plaintext. Block ciphers on the other hand operate, as its name indicates,
block by block. Apart from satisfying difussion principles it also adds confusion,
which means the relation between the key and the ciphertext has been obscured [22].
The reason why block ciphers present this characteristic/s is tightly knit with the way
they function. A block of fixed length from the message is taken along with the key
(or a subkey) and subjected to an iteration of rounds in which they undergo a series
of processes, they are permuted, swapped, added, etc. The specific processes depend
on, for example whether the cipher is based on Feistel Networks * or Substitution
Permutation Networks, but the important concept and common characteristic is
that we do not need a separate decription algorithm, we can go from plaintext to
ciphertext and vice versa with just one. [23]. And this particularity holds true for
all symmetric crypto, whether stream or block ciphers.

8

2.5 Cryptography

2.5.2 Asymmetric Cryptography

Symmetric Cryptography has however an inherent problem. When the encryption
involves two different parties, sender and receiver, the key has to be present on
both ends and it is not easy to find a secure channel for key distribution. In
the early 70s, mathematicians from the GCHQ (a branch of British intelligence),
started to work on encryption models that were not conditioned by the premise
that cryptography needed a shared secret key to be applied at both, encryption and
decryption times. [24]. While laying the foundations of it, another advantage could
be observed, managing large quantities of key material was cumbersome (overall
in the intelligence agencies’ sphere), and the proposed model implied the existence
of only one secret per user. [25] An actual implementation of the model was first
designed in 1973 [26] but the first time concept reached the public community was
in 1976 [27]. With implementations of public key cryptosystems published shortly
after [28] [29].

Figure 2.2: Depiction of an asymmetric key operation

In a nutshell, certain mathematical systems/fields like modular arithmetic have
some special characteristics that make possible to obtain two keys that despite being
different were able to cancel out each other. Yet, the mere fact that this can be done
implies that both keys are related, which brings up questions about the feasibility of
deriving one key from the other. The algebraic nature of public key cryptograhpy
is what provides the assurance that this (the derivation) cannot be done, or at
least not in a timely efficient manner. For example, the key A generated through
the RSA algorithm cannot be calculated from the key B, since an attacker trying to
do so would be facing the factoring problem. This is, it is easy to take two (very

9

2 Background

large) prime numbers and multiply them, while it is extremely hard to find the
prime factors given the big number. These essential, hard to solve mathematical
problems are called hardness assumptions [30].

2.5.3 Homomorphic Encryption

The possibility of key duality was nonetheless not the only mathematical particularity
the RSA algorithm exhibited, a structure-preserving map between two algebraic
structures could also be observed. This particularity was acknowledged just a year
after RSA was first published and called privacy homomorphisms [31]. The homo-
morphism the RSA algorithm evinces is formally defined as follows:

Let < Zp;×p;≡p> be the system of integers modulo p with the functions of multipli-
cation and test for equality. And n = p · q , where q is a large prime and n is difficult
to factor. We may take φ−1(x) = xe(modn) as the encryption function. Since
(xe)(ye) = (xy)e we have φ−1(x× y) = (x× y)emodn = (x)emodn× (y)emodn =
φ−1(x)× φ−1(y)

Figure 2.3: Depiction of an homomorphism between two fields

In 2.3 we see a graphic representation of it. Homomorphic encryption can thus
be defined as cryptographic constructions that allow to perform certain operations
directly on encrypted data, without having to decrypt first and hence keeping the
result secret. In particular, the textbook implementation of RSA seen above al-
lows to perform multiplications, we say it exhibits multiplicative homomorphism, is
multiplicatively homomorphic or homomorphic under multiplication. Other schemes
are additively homomorphic, like Paillier [32]. ElGamal [33] has also an additive
version despite the original scheme being multiplicative. All the aforementioned
cryptosystems have a key characteristic in common, only one type of operation can
be performed over the encrypted data. This characteristic makes them fall under the
category of Partially Homomorphic Encryption (PHE). PHE schemes are
able to perform an unlimited number of operations with ciphertexts that correspond
to an unlimited number of additions or multiplications with plaintexts.

10

2.5 Cryptography

In 2005 Boneh, Goh, and Nissim (BGN) devised a scheme [34] able to perform
both, multiplication and addition. The BGN scheme can perform an unlimited
number of additions but only one multiplication [35]. These type of schemes provide
Somewhat Homomorphic Encryption (SWHE), defined as systems that can
only deal with a limited number of addition and multiplications before decryption
fails [36]. This limitation is more formally expressed as a C-evaluation scheme
(Gen,Enc,Eval,Dec) that has correct decryption and correct evaluation [37], where C
is the set of boolean circuits that can be computed. In the case of BGN, this allows
performing functions of polynomial order 2.

Seeking the scheme that allowed unbounded additions and multiplications became
of supreme importance, since it could perform any kind of operations. This is called
Fully Homomorphic Encryption (FHE) and the first plausible implementation
of it came in 2009 by Craig Gentry [38]. His approach was starting with a SWHE
scheme that added noise on every operation and develop a method that allowed
reducing that noise before the ciphertext became irrecoverable (bootstraping). This
was not only a breakthrough that encouraged further development of FHE systems
[39] [40] [41] but also inspired methods like the developed by Catalano et al. [42]
that applied to the typical PHE increases the number of operations that can be
performed. However, despite the constant refinement of FHE schemes, it is still too
slow for practical implementations.

2.5.4 Functional Encryption

One of the most important premises of Homomorphic Encryption is that the party
performing the computation does not learn the output of it, since it remains ecnrypted.
However sometimes it might be desirable for the server to be able to read certain
outputs (e.g. spam filter over encrypted e-mail). Furthermore, an operation’s
performance could be negatively affected by the FHE constrains, for example, binary
search benefits from knowing the data structures.

Functional Encryption (FE) is the name given to the family of cryptosystems
that allow a receiver to obtain the result of applying a function on an encrypted input,
without revealing any other information about the input. This type of encryption
was first mentioned in 2008 [43] by Waters and formally defined in 2011 by Boneh,
Sahai and Waters [44]. Having its origin on the concept of Public Key Cryptography,
FE is actually a generalization of Identity-Based Encryption (IBE) [45], Attribute-
Based Encryption(ABE) [46] and Predicate Encryption (PE) [47]. FE relies of four
algorithms, Setup, KeyGen, Enc and Dec. In general, three parties are present in
the process; the owner of the message (Alice), the receiver that wants to learn the
outcome of a certain function (Bob) and Master Authority that grants control over
what functions can be applied to the data, issuing keys for appropriated functions.
Figure 2.4 provides an overview of how FE operates.

11

2 Background

Figure 2.4: Depiction of the parties and algorithms involved

There are several possible constructions of FE schemes. The main variations among
them are the underlying assumption they use (e.g. multi-linear maps) and the
function to be computed (e.g. inner products). Later in the thesis we will look
at systems that implement Symmetric Searchable Encryption (SSE) which is a
particular PE.

2.5.5 Property-Preserving Encryption

Applying encryption to a plaintext can result in a ciphertext that does not resemble
the original message at all, not only in terms intelligibility, but also in its format.
While the former can be solved by removing the randomness, the alphabets might
still be different(numbers do not necessary map to numbers) and this can have a
significant negative impact on Database systems. This problem was first addressed
by Brightwell et al. [48] who aimed at maintaining the datatype despite encrypting.
The foundations of Format-Preserving Encryption (FPE) were laid by Black
and Rogaway in 2002 [49]. It is worth mentioning that block ciphers exhibit indeed
this preservation, they map K ×X → X . This however is limited to binary domains
of the form X = {0, 1}n being n one of the predefined sizes available for the block
cipher. The goal is then preserving the format for an arbitrary domain X .

There are various FPE constructions for X = ZN . It is possible to use a block cipher
whose block size is close to the size of the domain we want to encrypt and then do
cycle-walking.5 Another method is using a Feistel network, the message m ∈M is
decomposed into two numbers a, b and used as inputs of the network. As we can
observe in the part a) of figure 2.5, the classical Feistel has binary strings as input
and output, so cycle-walking might still be needed. To circumvent the inconvenience,

5Let M = [0, 106]. Then n = 20. Suppose we have a 20-bit block cipher on the set T = [0, 220− 1]
We wish to encipher the point m = 314159; we compute c1 = EK(314159) which yields some
number in T , say 1040401. Since c1 /∈M, we iterate by computing c2 = EK(1040401) which
is, say, 1729. Since c2 ∈M,we output 1729 as CyK(314159). For efficiency we seek |T | ' |M|

12

2.5 Cryptography

one can directly partition the decimal number and use it as an input as in b) .

Figure 2.5: Feistel Networks for even inputs

Constructions a) and b) only work for even inputs. For odd inputs, we count
with two alternatives, unbalanced networks and alternating networks. The former
”borrows” digits from left to right or viceversa depending on the round number, the
latter applies expanding or contracting functions alternatively, also depending on the
round number. They are c) and d) of the figure 2.6 respectively. The aforementioned
functions are usually some flavour of AES or similar, therefore they will output bit
strings. The solution adopted for obtaining a string of decimals instead is to take
the last d bits of the output modulo 10m, the number d will depend on how many
decimals m our construction requires (e.g. for 2 ≤ m ≤ 9 we will take d = 64 bits).
We must also note that the XOR present on classical Feistel does not make sense
outside a binary domain, instead we must use some other operator. For decimal
alphabet we might use characterwise addition. This means that, character by charac-
ter, we add up, modulo 10, the corresponding characters of the equal-length strings
L and F 1

K(R) (carries are ignored). The second possibility is blockwise addition.

These schemes satisfy the requirements for decimals, albeit not random domains. In
2009, Bellare et. al [50], revisited this concept and apart from providing FPE with a
formal definition, they made two crucial additions. First, they introduced tweaks
(distinct, publicly known inputs) in the constructions. 6 And second, they suggested

6The importance of tweaks can be observed when applying FPE to credit card numbers(CCNs).
For CCNs, the first six digits and the last four need to be available to the application, so only
six digits are encrypted. Given that FPE schemes are deterministic, if we were not to add the

13

2 Background

Figure 2.6: Feistel Networks for odd inputs

a method for using the Feistel-based schemes as building blocks for achieving FPE
on any arbitraty domain F . They named the approach Rank-then-Encipher (RtE)
and as its name suggests it is based in mapping the elements of F into [N] (a form
of indexing) so that FPE on integers can be applied. Although highly relevant, the
RtE method only gave an abstract idea on an actual implementation and it was
proven inefficient and insecure for Weiss et al. [51]. As of today, two designs based
on RtE are truly generic and thought to be secure, LibFTE [52] and GFPE [51].
Both of them use the NIST-recommended methods [53] for int-FPE.

Order-Preserving Encryption (OPE) is another property-preserving scheme
often sought after for its convenience. Under OPE, the order of the plaintexts is pre-
served after encryption. Formally, for m1 < m2 we have c1 < c2 where c1 = Enc(m1)
and c2 = Enc(m2). A trivial approach one might take towards OPE is simply
selecting a constant K and adding it to every plaintext such that ci = pi + K.
While this does indeed preserve order it is obviously inherently insecure. Bebek et
al. [54] gave this idea a twist, suggesting a system where ci =

∑pi
j=0Rj where Rj is

the output of a random function. This system presents important drawbacks, it is
computationally expensive and reveals the distribution of the plaintexts. Gultekin
et al. [55] based their scheme in a polynomial whose coefficients were derived from
a secret key but revealing the distributions was still a problem. As Aggraw et al.
mention in their paper [56], the intuition one might have to tackle this recurrent

tweak we would only have 106 possible encryptions. This means that in a large database we
would have different CCNs having the same ciphertext, something to be avoided.

14

2.5 Cryptography

distribution problem could go along these lines: Generating |P | unique values from
a user-specified target distribution and sorting them into a table T . The encrypted
value ci of pi is then given by ci = T [i].The decryption of ci requires a lookup
into a reverse map. Here T is the encryption key that must be kept secret.This
simple scheme, while instructive, has the following shortcomings for it to be used
for encrypting large databases: The size of encryption key is twice as large as the
number of unique values in the database. Updates are problematic. When adding
a new value p, where pi < p < pi + 1, we will need to re-encrypt all pj, j > i. The
approach in [56] is more complex, it requires first analyzing the input distribution,
then dividing in in sections (buckets)and using a mapping function to make it flat
(uniformly distributed). They also select a target distribution and do the process
backwards. Bucketize the target distribution, flatten it into a uniform distribution
and then reconcile the sections of both flattened distributions, scaling them in such
a way that their widths become equal. Their system is designed for a setting where
users know all data in advance. Hence, the encryption algorithm must take all the
plaintexts as input.

The first provable security analysis for OPE was performed by Boldryeva et al. [57]
where they also present an alternative scheme. Their scheme is based in the Hyper-
geometric (HG) distribution. In the papers is noted that any order-preserving
function (OPF) f from {1, ...,M} to {1, ..., N} can be uniquely represented by a set
S, a combination of M out of N ordered items. Hence, by mapping each i ∈ [M]
to the ith smallest element in S, an OPF is constructed. For their construction,
they use what is called ”lazy sampling”. Given i ∈ [M] the algorithm starts by
dividing the target space (range R) by half and calling this point y. Then the HG
distribution outputs the domain gap, an x ≤ y that describes the number of points
of OPF less than y. Since the ith element of the OPF is the ciphertext of i, if i < x
we need to recur on the points of the domainless than or equal to y. If x < i, we
recur on the points of the domain greater than y. When our domain only has one
point remaining, the range will be a set of points in which our ciphertext can reside,
the algorithm will simply select one and output it.
There exist a number of OPE protocols that are interactive and rely on common
indexing structures. Specific mention to them is ommited from this chapter as they
will be analyzed in more depth in coming chapters.

15

3 Related Work

In this chapter, we give a closer look to work on academia that is specially relevant
to this thesis, namely at the field of computing over encrypted data. In particular,
we analyze two lines of work. First, systems that allow a considerable number of
operations over encrypted databases, and we take CryptDB as the most representative.
And second at the efforts of researchers for providing a somewhat standardized way
of characterizing and analyzing such systems.

3.1 Searchable Encrypted Database Systems

Propelled by the database (DB) community, searching over encrypted data has
became a recurrent research topic for many universities. This subject, which builds
upon some of the crypto primitives we have outlined in the background section,
has yielded efficient and optimized indexing and flexible query support (e.g. for
numerical range, comparison, or aggregation queries) which in turn have allowed the
emergence of encrypted DB constructions that preserve all that functionality.

3.1.1 CryptDB

One of the best examples of such systems is the construction form Popa et al [58].
CryptDB has been wildly successful because it can execute a wide range of SQL
queries over encrypted data. It leverages the fact that most SQL queries use a small
set of operators, supported over encrypted data in their system.

Figure 3.1: Encryption layers in CryptDB [58]

Two concepts are key to understand CryptDB, the layered encryption (in an onion
fashion, see figure 3.1) and the role of the proxy that handles the query re-writing

17

3 Related Work

process. Using layers of encryption ensures that, while the number of schemes
present allows the system to perform a large amount of operations, the exposure
only depends on the amount of functionality required by the queries.

It uses AES or Blowfish (for integers) block ciphers in CBC mode for the Random
(RND) layer. The same block ciphers but in CMC mode for the Deterministic (DET)
layer. For the Order preserving (OPE) layer they use the scheme by Boldryeva et.
al in their first implementation and the mOPE [59] they developed is their releases
after that. The Paillier algorithm is used for the Homomorphic (HOM) layer. A
scheme of their invention is used for the JOIN layer and the method by Song. et al
for the SEARCH layer. Having all this schemes available means that the DBMS
(Database Management System) can answer queries to the encrypted database like
the ones making use of: GROUP BY, COUNT, DISTINCT, (=)?, GROUP BY,
COUNT, DISTINCT, RANGEQUERIES, SUM, (+),LIKE (wordseach).

Figure 3.2: a)CryptDB’s transformation and encryption of the database b) query
flow showing onion adjustments. Ciphertexts denoted by “x. . . ” [58]

At the very beggining the proxy encrypts the database with the ”onions” (one or
more per data item) leaving them in their strongest encryption layer (see figure
3.1 for reference). Upon receiving SQL queries from the application, the proxy
intercepts it and rewrites it. It anonymizes table and column names, and encrypts
the constants in the query. Some operations are replaced with User-defined functions
(UDFs). Then, it evaluates in which layer the specific column or columns targeted by
the query is. If the current layer of the column is not already at an onion layer that
allows the predicate, the proxy sends an UPDATE query at the DBMS server, which
invokes a UDF to ”peel” it to the necessary layer. Once the layer is adjusted the
encrypted query is sent to the server and executed. Lastly, the proxy will decrypt
the result of the query and return it to the application. This system flow can be
observed in figure 3.2.

18

3.2 Structured system evaluation and comparison

3.2 Structured system evaluation and comparison

Evaluation is a part of high importance for publications in computer science. Looking
at the security your system provides and the performance it has is even more vital
in the field of the computation over encrypted data, given the difficulty of balancing
security, performance, functionality and usability . While evaluation is present in
almost every publication, the comparison tends to be done with the works in their
very specific subset(like the comparative tables in some papers on SSE [60] [61] or
OPE [59]).This tendency is in great measure caused by the difficulty of comparing
works which might not have the same background or target but unfortunately this
comparison are not enough to properly characterize a system like the one we have
described in the previous section and also makes hard to get the bigger picture.

3.2.1 SoK

The so-called SoK (Systematization Of Knowledge) is a line of research originated
at the IEEE Symposium on Security and Privacy (“Oakland” conference) in 2010.
It is indicated for fields whose body of research has grown to a size where a system-
atization of it is necessary for a better general understanding. In particular, the
recent SoK paper [62] on cryptographically protected database search is specially
useful for the purposes of our thesis, since it provides clear analysis parameters. It
characterizes protected database systems (umbrella term for both SSE and PPE)
and their underlying cryptographic tools through a structured, well-defined analysis1.

We go through some of the components of such analysis. Like the strictly defined
leakage profiles, which define the following objects within a protected search system
as vulnerable to leakage:

• Data items, and any indexing data structures.

• Queries.

• Records returned in response to queries, or other relationships between the
data items and the queries.

• Access control rules and the results of their application.

And the information that can be leaked from those objects listed in increasing
damage:

1. Structure: properties of an object only concealable via padding, such as the
length of a string, the cardinality of a set, or the circuit or tree representation
of an object.

1They restrict the analysis to protected database search systems that provide formally defined
security guarantees based upon the strength of their underlying cryptographic primitives

19

3 Related Work

2. Identifiers: pointers to objects so that their past/future accesses are identifiable.

3. Predicates: identifiers plus additional information on objects. Examples include
“matches the intersection of 2 clauses within a query” and “within a common
(known)range.”

4. Equalities: which objects have the same value

5. Order (or more): numerical or lexicographic ordering of objects, or perhaps
even partial plaintext data

They provide a classification of the cryptographic schemes said systems rely on,
distinguishing as categories and subcategories:

1. The Legacy Index : Can be used with plain normal DB, it just modifies the
data inserted and the queries.

2. Custom Index : special-purpose protected indices and customized protocols
that enable the querier and server to traverse the indices together (less leakage)

• Custom Inverted Index

• Custom Tree Traversal Index

• Other Custom Indices

3. Oblivious Index : Custom index but also hides repeted retrieval of same
record/object. This schemes typically hide data identifiers across queries by
re-encrypting and moving data around in a data structure.

Performance and usability are described along three dimensions:

• The scale of updates and queries that each scheme has been shown to support.

• The type and amount of cryptography required to support updates and queries.

• the network latency and bandwidth characteristics.

We also find useful the mention of the benefit every scheme provides. Expressed
though query primitive they allow (Equality, Range, etc).

20

4 Objectives

This chapter further develops the scenario considered in this thesis and the threat
model for it. We also explain how our work seeks improving the privacy and security
of cloud users, and we analyze our approach in the context of the related work we
have presented in the previous chapter.

4.1 Scenario

We contemplate a very common setting for cloud services users as our scenario,
the two-party setting. In this setting the User will be the one uploading the data
to the (Cloud) Provider and that same User will, at a later time, send queries to
the Provider and get some data back. This is a fairly simple model that can be
schematized like at the figure figure 4.1.

Figure 4.1: Generalization of our scenario

4.1.1 Threat Model

Looking at the diagram above, we can observe how it is necessary to worry about
the data in its three states:

• Data in transit/motion 1: If the communication User-Provider is done over an
insecure channel, an attacker could gain access to our data by just sniffing the
(data) traffic. This is easily solvable by securing the channel through SSH or
TLS (HTTPS).

1While commonly understood as the same thing, there is a growing trend in the security sector
to reserve the term data in motion to the data in preparation leading up to transmission and
breakdown after transmission [63]. It is more accurate then, to say data in motion only when,
for example, the data is being read from the disk by the application.

21

4 Objectives

• Data at rest: If once the data has arrived to the provider it is stored in its
plaintext form, any access (potentially a breach) to the Provider’s database
would expose our data. This is solved by storing the data encrypted.

• Data in use: Even if the two previous states of the data are protected, when
the Provider’s DBMS needs to perform any operation (e.g. adding the value
of two records) it will typically* perform it over the unencrypted data. Any
vulnerability on the Provider’s system will mean our data can be at risk.

When considering an external attacker, it seems like just the data in use is at risk.
Secure channels have been thoroughly studied and efficiently implemented so as long
as we use the solutions described we are not to worry. In the same manner, the
Provider encrypting and decrypting records in the database is an easy and efficient
process. However, since we will be working with the HBC adversary model, the
Provider is not trusted and therefore both the second and third states must be
addressed. In order to keep the confidenciality of our data in this scenario we must
ensure that the Provider only sees our data in its encrypted form at all moments.

4.2 Analysis of related work

In the previous chapter we have seen highly relevant work for implementing and
methodically analyzing protected database systems. In this section we will detail
why their work could not be directly used to meet our goal. In our use case, a person
interested in this field (who is not necessarily a researcher) wants to deepen her
knowledge on protected search. 2

4.2.1 CryptDB

There are two main reasons why CryptDB is not well suited for our use case. First,
while CryptDB is not specially hard to deploy (in Ubuntu), it is aimed at providing
functionality and not information about its inner components. And second, even
after considering the additional information that can be obtained from their paper
(which we summarize in Chapter 3), the reader would only obtain a general idea of
a scheme of each kind, you could not compare different approaches to some of the
primitives.(Not able to put them in context).

4.2.2 SoK

Despite providing a great set of definitions that allow to analyze the schemes in this
field in a more objective and structured way, the major part of tools characterized
in their paper was assessed by analyzing the data given by they authors themselves.

2All the systems really revolve around the same key elements, a type of encryption that allows you
do keyword search, one that lets you sort,etc so by getting to know about these core elements
one would acquire a good understanding of the field.

22

4.2 Analysis of related work

A subset of them was actually implemented and tested through a web interface in a
pilot study. That testing interface is no longer available. We also need to mention
that the purpose behind their testing was determining whether those schemes were
already fit for industrial application. We intend to be provide a much simpler
tool (as few intertwined files/dependencies as possible), that ideally allows the user
”plugging” some other future, novel schemes and have them alongside the ones we
analyze now for an easier side-to-side comparison.

23

5 Design and Implementation

In this chapter, we elaborate on our tool’s design, address its components and how
to implement them. First we will state our goal and provide a more detailed diagram
of our system/scenario. Then we will analyze the elements on the user’s site, the
ones on the left-hand side of the diagram. We will provide a reasoned discussion
behind the platform choice and the particularities of such platform. After that, we
will give an overview of the cloud environment where our database will reside and we
will end the chapter explaining the extension’s usage model we had in mind during
our design process.

5.1 Design goals and system overview

As we have mentioned in the previous chapter, the purpose of our tool is not pro-
viding an analysis as exhaustive and complete as the one mentioned in the SoK
paper [62]. We rather seek providing the users a better understanding of the building
blocks of the protected search technology, so they can better approach and assess
both, systems from the academia and commercial systems.

To do so, our work must meet the following goals:

Portability and ease of deployment Getting our system up and running should
require minimal effort. The deployment of the back-end should reside in a Cloud
Provider (to better showcase the intended usage of the technologies) and therefore
some configuration will be needed. For that reason the part of the tool the user
faces should be as compact as possible and operate transparently.

Modularity The tool should be as little convoluted as possible, reducing this way
the effort a user would have to do in order to plug-in and test other schemes (either
newly published or not implemented by us).

Ease of comparison The different types of schemes should be analyzed according
to the same parameters so that the user can easily compare two different schemes
even if these belong to different categories.

Impact The web environment has experienced a rapid development. The browser
is now the most important player in everything internet sphere and the emergence
of companies like sync and pCloud who provide encrypted cloud and do actually

25

5 Design and Implementation

all the process on the browser proves it. Although not a goal per se, we like to
think it is possible that our tool helps making this special (searchable) crypto more
approachable and this can lead to it being rolled out on the browser. Ideally helping
them to come up with more complete/more efficient/ more secure products.

To talk about our design more in detail we need also a more detailed diagram. The
figure 5.1 found below, shows the same scenario as in the previous chapter but
including the components of our system1.

Figure 5.1: A more detailed depiction of our scenario

5.2 User’s Browser

Using a browser is the way most people access the web and that makes them an
extremely popular piece of software. That popularity makes any tool based on
them have a great availability which effectively benefit its impact. On top of that,
browsers could to some extent be considered OS independent. This fact completely
aligns with our goal of portability and ease of deployment.

While some years ago would sound impossible to run any mildly resource intensive
application on a browser, they have become more and more powerful and it is
currently feasible. The negative side of this transformation is that the increase in
complexity has exposed browsers to many security threats. In response, it has been
tried to preserve web security by tightening the rules on matters like same origin
policies or cache control for the websites.

1Common, necessary elements of the extension like the UI and server communication are part of
our tool but not the focus of this thesis and therefore not depicted

26

5.3 Chrome extension

5.3 Chrome extension

Those restrictions can affect websites (and therefore WebApps), whereas extensions
have remained pretty unconstrained. Other benefits from using a extension are the
access to special resources within the browser(chrome APIs) and minimizing the
infrastructure needed. When not distributed directly through Google’s platform,
extensions can bundle together all their elements and that bundle (i.e. unpacked
extension) can be directly added by the user to her browser. Integrating thus the tool
within a program she is already familiar with and hence facilitating its usage. The
reason why we have chosen Chrome extensions in particular is mainly its popularity.
Chrome is the most used browser with a 55% market share cross-platform and a 65%
share for Desktops. We should also point out that it is feasible porting a chrome
extension to other browsers like Firefox 2. The extension contains both, the User
Interface (UI) and the logic of the application.

5.3.1 JavaScript and Cryptography

Javascript crypto has been deemed insecure and even harmful [64], with some experts
emphasizing its vulnerabilities and how they could potentially lead to attacks [65].
This has caused certain a reluctance to doing cryptography in Javascript (JS), and
therefore on the browser/node environment. This rejection started to decay with
the integration in browsers of WebCrypto API among other advances, and since,
we have seen interesting developments in this area like the ones mentioned at the
beginning of this chapter (Sync and pCloud). Despite the fact that those concerns
are in general no longer valid [66], they are specially not applicable to our work. This
is mainly due to us trusting the crypto libraries we implement, since our purpose is
specifically testing them.

5.3.2 Interfaces, Bindings and Transpilers

There are numerous programming languages available for developers and each of
them have its strengths and weaknesses. However, at the browser we are pretty
much obliged to using Javascript, which, due to its untyped nature [?] is not par-
ticularly suited from heavy computational tasks. Unfortunately, cryptography is
notorious for being computationally intensive which makes JS implementations of
some algorithms very slow. The WebCrypto API we have mentioned few lines above
vastly enhances the performance for common crypto algorithms [67], this is done by
implementing this functions directly within the browser logic and exposing the high
level functions to the JS code. Developers are able to obtain this interface thanks
to a binding [68] between the inner language of the browser (C) and Javascript. But
not many functions requiring heavy computation have been added to the browser
engine, and even the algorithms provided by the aforementioned API have taken a

2https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Porting˙a˙Google˙Chrome˙extension

27

5 Design and Implementation

long time to be widely offered by the major browsers.

Although a developer can choose to include a library in a different language and
create a wrapper of her own that binds it with JS it is certainly not a trivial task.
Avoiding having to do so is one of the main motivations behind transpilers, a
transpiler takes the desired library as an input and outputs its equivalent code on the
target language. In our work we will be using transpilers not just for performance
reasons but because many of the algorithms we want to be tested in the future are
novel approaches, just implemented in one language (which often is not JS).

5.3.3 Implementing the Chrome Extension

As mentioned couple paragraphs above, an extension requires of a UI. Just like in
a webpage it is composed of html files that provide the content to be shown, css
files that add styling to the content and javascript files that allow the content and
styling to become dynamic. To increase the usability and the ease of development
we use a UI Theme that gives us ready-to-use styling and dynamism. This way
we have mainly had to create the html files for our extension. These html files are
depicted in an appendix at the end of this document.

Despite the importance of the UI for usability, the actual purpose of this project
is the functionality provided by the logic of the extension. Everything happening
on the extension is orchestrated in the script.js javascript file. The dependencies
script.js requires in order to operate successfully are depicted in a diagram in the
appendix. Most of the functioning of the file is also explained at the appendix,
however, the explanation of how script.js communicates with the Server is omitted
since we have made use of the AJAX method of the well-known library jQuery. The
AJAX (Asynchronous Javascript XML) method is just a more completet yet simpler
to use version of html’s XMLHttpRequest, with the advantage of being handled
asynchronously.

5.4 Amazon Web Services (AWS)

We deploy our back-end in an AWS instance. We have chosen working in an IaaS
environment since, as explained in the background section, it provides us with the
necessary resources and a great freedom of implementation.

5.4.1 EC2 Instance

We have chosen our instance (virtual machine) to run on Amazon’s version of Linux,
Amazon Linux AMI. Since we access the instance from Windows, we need to use a
program to establish the connection to our instance. We have chosen to use Putty
as it allows us to connect using SSH (Secure Shell) in an easy and effective way

28

5.5 Usage Model / Intended operation flow

with the keypair generated during the set-up process. In this instance we deploy the
server-side part of our application (implemented in Node).

5.4.2 Configuring our instance

Once we have created our AWS account and gone through the instance type selection
wizard, our instance gets prepared and goes online automatically . By default, only
the SSH port is open. We change that in the tab Security Groups inside the Network
and Security options. We open the port 8081 because we have programmed our
Node application to listen to it for the file transfer and the port 80 to allow serving
HTTP. The IP address allocation for our instance is dynamic, which means that
if we were to stop the instance and start irt again, we would potentially have a
different IP address. This can be avoided by assigning a so-called Elastic IP which
is simply an static IP address pointing to the instance. We do not require it since
we do not stop our instance.

5.4.3 Node backend

For continuity and also due to being already familiar with Javascript, we choose
Node for our back-end. Since this part of our application is meant to emulate the
Cloud Provider in our scenario, we keep the logic very simple, handling almost
exclusively the connection and data transfer with the client and the data storage
and retrieval on its local relational database.

For that emulation to take place, we need to make our node app reside in our AWS
instance. Since Windows does not natively support the secure copy (SCP) protocol
for file transfer, again we are in the need for a dedicated program to transfer it and
we again resort to the solution by Putty, PSCP.

5.4.4 Additional structures

Although ideally the extension’s client code would be self-contained, some of the
experimental systems require from extra parts like an oracle or additional structures
(e.g. B-trees). For implementing those systems (see Future Work) we should allocate
those in the EC2 as well, opening this way the system also to schemes that require
them.

5.5 Usage Model / Intended operation flow

The standard user usage we have considered when designing our extension can be
summarized through the following points:

1. The user goes to Settings and adds the IP of the back-end server

29

5 Design and Implementation

2. The user goes to Encrypt and select one of the schemes. Each scheme has
some files previously prepared for it, the user selects one of those and clicks
Encrypt and Send. (The Extension’s logic detects which scheme has been
requested and reacts accordingly, it prompts an error if the wrong file has been
selected and creates the necessary additional structure if needed, after that
it encrypts the file/data according to that scheme and sends it to the server
where it is stored in the DB). A ”successful” message is displayed if everything
went ok.

3. The user goes to Evaluate, there she sees a list of the files successfully sent and
the characteristics of it (size, time and scheme used) as well as an analysis link.
When clicking that link stats, assurances and graphs showing the performance
are displayed.

We make our model more explicit through the use case [69] in the figure below3,
these use cases are a comon tool in software development and normally modelled
using UML (Unified Modelling Language) [70].

Figure 5.2: UML model of our use case.

3This UML model is just from a user’s prespective and hence some processes that are transparent
to the user do not appear here.

30

6 Conclusion and future work

6.1 Conclusion

Javascript environments are no longer hostile to cryptography , the paradigm
has shifted and we even see some companies that base their client-side crypto in
frameworks like angular. With our project we have shown that it could be taken
a step further and benefit from the added functionality of special cryptography
like partially homomorphic, while still basing the client entirely on the browser
and without trusted third parties required. Further developments by the industry
could result in services that respect the privacy of the user without the functionality
handicap and yet, are very accessible. The fact that our project shows the contrasts
between different types of schemes also helps creating a more crypto-savvy community,
which in turn increases the awareness of the risks of traditional cloud storage services.

6.2 Future work

We distinguish two lines of work that could help spur the benefits we have acknowl-
edged in our conclusion:

1. Evaluation : If we wished to explore more in depth the educational aspect of
the encryption, we should focus on providing a more comprehensive analysis of
the schemes. A very promising path to achieving this could be the integration
of parts of the SPARTA [71] suite, that has already being used to evaluate
research prototypes for secure and private information retrieval systems.

2. New schemes : For future development more geared towards maximizing the
impact of our tool in the creation of more complex commercial solutions the
focus should be adding other schemes. Specially new schemes that offer more
advanced functionality, this would help them make a faster transition from
the academia to the companies and hence the general public. A good example
of an addition of recent schemes could be some Order Preserving schemes like
POPE [72].

31

Appendix (in the coming pages)

33

Native JS Library

Browser interface

*based on Charles Engelke
Fluent 2016 talk

NOTE: Libraries necessary for basic functionality like
jQuery are not explicitly mentioned

JS Wrapper

script.js
WebCrypto*

Aitor Navarro |

AES (CryptoJS)

PaillierWASM

Window.crypto.sublte
(WebCryptoAPI)

PaillierJS

WebAssembly
Module**

Paillier.cpp

**generated with Emscriptem

jsbn

sjcl

Chrome Extension

For the overall UI we use the Inspinia Admin theme.

Main script
In the main script, we toggle, hide and show the elements of out html files by calling our step
function with different values.

Many basic functions like, URL regex checking, unit matching and event listening are necessary
and therefore present. However, the most relevant functions for our work are the following :

● secureUpload:
○ We check we have a url pointing to our server and append the upload directory.
○ We generate an AJAX request with our encrypted file and its metadata.

● readFile:
○ We identify the scheme that has been selected.
○ We read from the file system in the format that best fits our scheme.
○ We call the specific library to perform the encryption of the file.

● prepAndSend (inside readFile):
○ We take the encrypted data in base64 format.
○ We generate an object with that data and the file’s metadata and call

secureUpload with that object.
● myFileList:

○ We generate an AJAX request for the file list.
○ We arrange the list obtained from the server within our UI, giving the user the

options to decrypt and erase any of the files present.

WebCryptoAPI Wrapper

As we have explained, the introduction of the WebCrypto API is a highly significant advance
for doing cryptography on the browser. However, due to the intense usage of complex
Javascript resources lime promises among others, using it results in highly convoluted code.

For that reason we have developed a small wrapper that allows our main code to access the
AES-related methods of the API with relatively easy and brief calls.

Below we are gonna include the code of our simplifying functions for key generation,
encryption and decryption.

● Key Generation:

 this.getKeyFromPassphrase = function(passphrase) {
 var iterations = 100000; //Could be more but that suffices and it's quick
 var salt = "Smthg as rndmd as pssbl,:*3u4813u58hadjifjiekf"
 var saltInBuffer = new TextEncoder().encode(salt);
 var passphraseInBuffer = new TextEncoder().encode(passphrase);
 //now we create the base key directly from the user's input and use that base key to derive a good one
 return window.crypto.subtle.importKey("raw", passphraseInBuffer, {"name": "PBKDF2"}, false, ["deriveKey"]
).then(function (baseKey){
 return window.crypto.subtle.deriveKey({"name" : "PBKDF2", "salt" : saltInBuffer, iterations,
 "hash" : "SHA-1" }, baseKey, {"name": "AES-CBC", "length": 256}, false, ["encrypt", "decrypt"]
);

 console.log(baseKey);
 }).catch(function (err) {
 console.log ("Could not generate a valid key from passphrase: " + passphrase + " because: " + err);
 });

 }

● Encryption:

 this.encrypt = function(data, key) {
 var initializationVector = new Uint8Array(ivLen);
 crypto.getRandomValues(initializationVector);
 return crypto.subtle.encrypt({"name": 'AES-CBC', iv: initializationVector}, key,data
).then(function(encrypted) {
 var ciphered = _me.joinIvAndData(initializationVector, new Uint8Array(encrypted))
 var base64 = StrFunc.bufferToBase64(ciphered).replace(/\-/g, '+').replace(/_/g, '\/');
 while (base64.length % 4) {
 base64 += '=';
 }

 return base64;
 });

 };

● Decryption:

 this.decrypt = function(buf, key) {
 var parts = this.separateIvFromData(buf);
 return crypto.subtle.decrypt({
 name: 'AES-CBC',
 iv: parts.iv
 }, key, parts.data).then(function(decrypted) {
 var base64 = StrFunc.bufferToBase64(new Uint8Array(decrypted)).replace(/\-/g, '+').replace(/_/g, '\/');
 while (base64.length % 4) {
 base64 += '=';
 }

 return base64;
 });

 };

To show how these functions actually simplify the code of our main script we show now how
the functions are actually used in our extension:

 if(window.scheme === "AESWC"){

 reader.onload = function(e){
 var ArrBufferView = new Uint8Array(e.target.result);
 console.log(ArrBufferView);
 webcrypto.getKeyFromPassphrase(pkey).then(function(key) {
 return webcrypto.encrypt(ArrBufferView, key)
 }).then(base64 => {prepAndSend(base64)}).catch(function(e) {
 console.log("ERROR: " + e);
 toastr.error('Failed to encrypt ' + file.name + '! Please try again.');
 });

 }

As we can see, the asynchronous character of WebCryptoAPI implies that, even with the
wrapper, operating with the API results in slightly convoluted code (lines highlighted in green).

Bibliography

[1] The biggest data breaches ever. http://money.cnn.com/2017/09/07/

technology/business/biggest-breaches-ever/index.html.

[2] The 16 biggest data breaches of the 21st century.
https://www.csoonline.com/article/2130877/data-breach/

the-16-biggest-data-breaches-of-the-21st-century.html.

[3] Rules for the protection of personal data inside and outside the eu. https:

//ec.europa.eu/info/law/law-topic/data-protection_en.

[4] Cloud encryption: Bring your own key is no longer
enough. https://www.globalbankingandfinance.com/

cloud-encryption-bring-your-own-key-is-no-longer-enough. Accessed:
2017-06-30.

[5] Does byok mean ‘barely your own keys’? https://ciphercloud.com/

does-byok-mean-bring-your-own-keys.

[6] Usage in time of new privacy terminology. https://books.google.

com/ngrams/graph?content=digital+privacy%2Conline+privacy%

2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=

2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%

20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%

3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%

3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%

3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%

3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%

3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%

3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0.

[7] Daniel Osterwalder. Trust through evaluation and certification? Social Science
Computer Review, 19(1):32–46, 2001.

[8] Robert Gellman. Privacy in the clouds: risks to privacy and confidentiality
from cloud computing. In Proceedings of the World privacy forum,, 2012.

[9] Dawei Sun, Guiran Chang, Lina Sun, and Xingwei Wang. Surveying and
analyzing security, privacy and trust issues in cloud computing environments.
Procedia Engineering, 15:2852–2856, 2011.

39

http://money.cnn.com/2017/09/07/technology/business/biggest-breaches-ever/index.html
http://money.cnn.com/2017/09/07/technology/business/biggest-breaches-ever/index.html
https://www.csoonline.com/article/2130877/data-breach/the-16-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/data-breach/the-16-biggest-data-breaches-of-the-21st-century.html
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://www.globalbankingandfinance.com/cloud-encryption-bring-your-own-key-is-no-longer-enough
https://www.globalbankingandfinance.com/cloud-encryption-bring-your-own-key-is-no-longer-enough
https://ciphercloud.com/does-byok-mean-bring-your-own-keys
https://ciphercloud.com/does-byok-mean-bring-your-own-keys
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0
https://books.google.com/ngrams/graph?content=digital+privacy%2Conline+privacy%2Cinternet+privacy&case_insensitive=on&year_start=1957&year_end=2000&corpus=15&smoothing=0&share=&direct_url=t4%3B%2Cdigital%20privacy%3B%2Cc0%3B%2Cs0%3B%3BDigital%20Privacy%3B%2Cc0%3B%3Bdigital%20privacy%3B%2Cc0%3B.t4%3B%2Conline%20privacy%3B%2Cc0%3B%2Cs0%3B%3BOnline%20Privacy%3B%2Cc0%3B%3Bonline%20privacy%3B%2Cc0%3B%3BOnline%20privacy%3B%2Cc0%3B%3BONLINE%20PRIVACY%3B%2Cc0%3B.t4%3B%2Cinternet%20privacy%3B%2Cc0%3B%2Cs0%3B%3BInternet%20Privacy%3B%2Cc0%3B%3BInternet%20privacy%3B%2Cc0%3B%3BINTERNET%20PRIVACY%3B%2Cc0%3B%3Binternet%20privacy%3B%2Cc0

Bibliography

[10] Siani Pearson and Azzedine Benameur. Privacy, security and trust issues
arising from cloud computing. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on, pages 693–702.
IEEE, 2010.

[11] Siani Pearson. Taking account of privacy when designing cloud computing
services. In Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pages 44–52. IEEE Computer Society, 2009.

[12] Karyn Benson, Rafael Dowsley, and Hovav Shacham. Do you know where your
cloud files are? In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pages 73–82. ACM, 2011.

[13] Siani Pearson, Yun Shen, and Miranda Mowbray. A privacy manager for cloud
computing. In IEEE International Conference on Cloud Computing, pages
90–106. Springer, 2009.

[14] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving
public auditing for data storage security in cloud computing. In Infocom, 2010
proceedings ieee, pages 1–9. Ieee, 2010.

[15] Ke Zeng and Ann Cavoukian. Modelling cloud computing architecture without
compromising privacy: A privacy by design approach. Information and Privacy
Commissioner of Ontario, 2010.

[16] Peter Schaar. Privacy by design. Identity in the Information Society, 3(2):267–
274, 2010.

[17] Cis pet wiki. https://cyberlaw.stanford.edu/wiki/index.php/PET.

[18] Daniel J. Solove. A taxonomy of privacy. University of Pennsylvania Law
Review, 2006.

[19] Intelligence and Information Policy for National Security: Key Terms and
Concepts. Rowman and Littlefield, 2016.

[20] AJ Paverd, Andrew Martin, and Ian Brown. Modelling and automatically
analysing privacy properties for honest-but-curious adversaries.

[21] ”Shafi Goldwasser and Silvio Micali”. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270 – 299, 1984.

[22] Claude E Shannon. Communication theory of secrecy systems. Bell Labs
Technical Journal, 28(4):656–715, 1949.

[23] Fauzan Mirza. Block ciphers and cryptanalysis. Royal Holloway University of
London, Department of Mathematics, England, 1998.

40

https://cyberlaw.stanford.edu/wiki/index.php/PET

Bibliography

[24] James H Ellis. The history of non-secret encryption. Cryptologia, 23(3):267–273,
1999.

[25] James H Ellis. The possibility of non-secret encryption. In British
Communications-Electronics Security Group (CESG. Citeseer, 1970.

[26] Clifford C Cocks. A note on non-secret encryption. CESG Memo, 1973.

[27] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976.

[28] M.E. Hellman, B.W. Diffie, and R.C. Merkle. Cryptographic apparatus and
method, April 29 1977. US Patent 4,200,770.

[29] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[30] ECRYPT II. Final report on main computational assumptions in cryptography.
ECRYPT 2013.

[31] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180,
1978.

[32] Pascal Paillier et al. Public-key cryptosystems based on composite degree
residuosity classes. In Eurocrypt, volume 99, pages 223–238. Springer, 1999.

[33] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–472,
1985.

[34] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on
ciphertexts. In TCC, volume 3378, pages 325–341. Springer, 2005.

[35] David Mandell Freeman. Homomorphic encryption and the bgn cryptosystem.
2011.

[36] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. On cca-
secure somewhat homomorphic encryption. In Selected Areas in Cryptography,
volume 7118, pages 55–72. Springer.

[37] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela
Jäschke, Christian A Reuter, and Martin Strand. A guide to fully homomorphic
encryption.

[38] Craig Gentry. A fully homomorphic encryption scheme. Stanford University,
2009.

41

Bibliography

[39] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 24–43.
Springer, 2010.

[40] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Annual cryptology
conference, pages 505–524. Springer, 2011.

[41] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1219–1234. ACM, 2012.

[42] Dario Catalano and Dario Fiore. Using linearly-homomorphic encryption to
evaluate degree-2 functions on encrypted data. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pages
1518–1529. ACM, 2015.

[43] Protect Private Data. Functional encryption: beyond public key cryptography.
2008.

[44] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. Theory of Cryptography, pages 253–273, 2011.

[45] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.
In Advances in Cryptology—CRYPTO 2001, pages 213–229. Springer, 2001.

[46] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of
the 13th ACM conference on Computer and communications security, pages
89–98. Acm, 2006.

[47] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. Advances in Cryptology–
EUROCRYPT 2008, pages 146–162, 2008.

[48] Michael Brightwell and H Smith. Using datatype-preserving encryption to
enhance data warehouse security. In 20th National Information Systems Security
Conference Proceedings (NISSC), pages 141–149, 1997.

[49] John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In
Cryptographers’ Track at the RSA Conference, pages 114–130. Springer, 2002.

[50] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-
preserving encryption. In Selected Areas in Cryptography, volume 5867, pages
295–312. Springer, 2009.

42

Bibliography

[51] Mor Weiss, Boris Rozenberg, and Muhammad Barham. Practical solutions for
format-preserving encryption. arXiv preprint arXiv:1506.04113, 2015.

[52] Daniel Luchaup, Kevin P Dyer, Somesh Jha, Thomas Ristenpart, and Thomas
Shrimpton. Libfte: A toolkit for constructing practical, format-abiding encryp-
tion schemes. In USENIX Security Symposium, pages 877–891, 2014.

[53] Morris Dworkin. Recommendation for block cipher modes of operation: methods
for formatpreserving encryption. NIST Special Publication, 800:38G.

[54] Gürkan Bebek. Anti-tamper database research: Inference control techniques.
Technical Report EECS 433 Final Report, 2002.

[55] Gultekin Özsoyoglu, David A Singer, and Sun S Chung. Anti-tamper databases:
Querying encrypted databases. In DBSec, pages 133–146, 2003.

[56] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order
preserving encryption for numeric data. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, pages 563–574.
ACM, 2004.

[57] Alexandra Boldyreva, Nathan Chenette, Younho Lee, Adam O’neill, et al.
Order-preserving symmetric encryption. In Eurocrypt, volume 5479, pages
224–241. Springer, 2009.

[58] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. Cryptdb: protecting confidentiality with encrypted query processing.
In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 85–100. ACM, 2011.

[59] Raluca Ada Popa, Frank H Li, and Nickolai Zeldovich. An ideal-security
protocol for order-preserving encoding. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 463–477. IEEE, 2013.

[60] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. Journal
of Computer Security, 19(5):895–934, 2011.

[61] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David
Evans. Efficient dynamic searchable encryption with forward privacy. Proceed-
ings on Privacy Enhancing Technologies, 2018(1):5–20, 2018.

[62] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel
Hamlin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K
Cunningham. Sok: Cryptographically protected database search. In Security
and Privacy (SP), 2017 IEEE Symposium on, pages 172–191. IEEE, 2017.

43

Bibliography

[63] Mark Houpt. Is there a difference between data in transit and data in motion?
Web, September 2016.

[64] Thomas Ptacek. “javascript cryptography considered harmful, 2011.

[65] T Arcieri. Whats wrong with in-browser cryptography, 2013.

[66] Brendan McMillion. A criticism of javascript cryptography, 2017.

[67] Comparing performance of javascript cryptog-
raphy libraries. https://medium.com/@encryb/

comparing-performance-of-javascript-cryptography-libraries-42fb138116f3,
June 2015.

[68] Language binding. https://en.wikipedia.org/wiki/Language_binding,
October 2005.

[69] Language binding. https://en.wikipedia.org/wiki/Use_case_diagram,
February 2012.

[70] Use case diagram. https://msdn.microsoft.com/en-us/library/dd409432.
aspx, 2010.

[71] Spar(security and privacy assurance research) testing and assessment framework.
https://github.com/mit-ll/SPARTA, 2015.

[72] Daniel S Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.
Pope: Partial order preserving encoding. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 1131–
1142. ACM, 2016.

44

https://medium.com/@encryb/comparing-performance-of-javascript-cryptography-libraries-42fb138116f3
https://medium.com/@encryb/comparing-performance-of-javascript-cryptography-libraries-42fb138116f3
https://en.wikipedia.org/wiki/Language_binding
https://en.wikipedia.org/wiki/Use_case_diagram
https://msdn.microsoft.com/en-us/library/dd409432.aspx
https://msdn.microsoft.com/en-us/library/dd409432.aspx
https://github.com/mit-ll/SPARTA

List of Figures

2.1 Depiction of a symmetric key operation 8
2.2 Depiction of an asymmetric key operation 9
2.3 Depiction of an homomorphism between two fields 10
2.4 Depiction of the parties and algorithms involved 12
2.5 Feistel Networks for even inputs . 13
2.6 Feistel Networks for odd inputs . 14

3.1 Encryption layers in CryptDB [58] 17
3.2 a)CryptDB’s transformation and encryption of the database b) query

flow showing onion adjustments. Ciphertexts denoted by “x. . . ” [58] 18

4.1 Generalization of our scenario . 21

5.1 A more detailed depiction of our scenario 26
5.2 UML model of our use case. 30

45

	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Cloud
	2.2 Data Privacy
	2.3 Privacy Enhancing Technologies
	2.4 Information Security
	2.5 Cryptography
	2.5.1 Symmetric Cryptography
	2.5.2 Asymmetric Cryptography
	2.5.3 Homomorphic Encryption
	2.5.4 Functional Encryption
	2.5.5 Property-Preserving Encryption

	3 Related Work
	3.1 Searchable Encrypted Database Systems
	3.1.1 CryptDB

	3.2 Structured system evaluation and comparison
	3.2.1 SoK

	4 Objectives
	4.1 Scenario
	4.1.1 Threat Model

	4.2 Analysis of related work
	4.2.1 CryptDB
	4.2.2 SoK

	5 Design and Implementation
	5.1 Design goals and system overview
	5.2 User's Browser
	5.3 Chrome extension
	5.3.1 JavaScript and Cryptography
	5.3.2 Interfaces, Bindings and Transpilers
	5.3.3 Implementing the Chrome Extension

	5.4 Amazon Web Services (AWS)
	5.4.1 EC2 Instance
	5.4.2 Configuring our instance
	5.4.3 Node backend
	5.4.4 Additional structures

	5.5 Usage Model / Intended operation flow

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	Bibliography
	List of Figures
	List of Abbreviation

