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Abstract 
This paper presents an efficient computer method for large deflection distributed 
plasticity analysis of 3D semi-rigid composite steel-concrete frameworks. A novel 
second-order inelastic flexibility-based element has been developed by combining the 
Maxwell-Mohr rule and the second-order force based functions for computation of the 
generalized displacements. The proposed model allows explicit and efficient modeling of 
the combined effects of nonlinear geometrical effects, gradual spread-of-plasticity, partial 
shear connection of composite beams, finite-size joints and joint flexibility by using only 
one 2-noded beam-column element per physical member. For composite beams, based on 
elasto-plastic cross-sectional analyses the model is able to take into account the effects of 
partial composite action between the concrete slab and the steel beam. At the cross-
sectional level the proposed method addresses computational efficiency through the use 
of path integral approach to numerical integration of the cross-sectional nonlinear 
characteristics and residual stresses, enabling in this way the accurate geometrical 
specifications and precise modeling of cross-sections. The proposed nonlinear analysis 
formulation has been implemented in a general nonlinear static purpose computer 
program, NEFCAD. Several computational examples are given to validate the accuracy 
and efficiency of the proposed method. 
Keywords: Nonlinear inelastic analysis; flexibility-based element; distributed plasticity; 
partial composite action; advanced analysis. 

 
 

1. Introduction 
     In recent years, have witnessed significant 
advances in nonlinear inelastic analysis 
methods for composite steel-concrete beams 
and framed structures and integrate them into 
the new and more rational advanced analysis 
and design procedures [1, 2]. Currently the 
available tools for such analysis are general 
purpose FE programs that require extensive 
calibration and mesh generation studies and still 
possess huge demands on the most powerful of 
available computers and represents unpractical 
tasks for structural engineer. The present work 
attempts to develop accurate yet computational 
efficient tools for the nonlinear inelastic 
analysis of partially connected composite steel-

concrete frameworks fulfilling the practical and 
advanced analysis requirements. 

2. Mathematical formulation 
    In this paper, the following general 
assumptions are adopted in the formulation of 
analytical model for inelastic analysis of 
composite beams: (1) Plane sections remain 
plane for entire cross-section after flexural 
deformation; throughout the depth of the cross-
section, the strain distribution is linear, but a 
discontinuity exists at the concrete slab-steel 
beam interface due to slip, frictional effects and 
uplift are neglected, the interface slip is small; 
(2) The vertical displacement and the curvature 
of the different subcomponents (concrete slab 
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and structural steel) are assumed to be the same; 
(3) Discretely located interlayer connectors 
with uniform spacing are regarded as 
continuous and ductile with an nonlinear 
elastic-plastic behavior. In the formulation of 
the inelastic behavior of composite columns full 
composite action between concrete matrix and 
steel profile is assumed. Small strains but large 
displacements and rotations can be considered. 
Transverse shear deformations, associated to 
the transverse shear forces are neglected in the 
plastic constitutive relationships. The model 
suggested by the CEB-FIB Model Code 90, is 
adopted in the present paper to model the 
concrete under compression and tension. Multi-
linear elastic-plastic stress-strain relationships, 
both in tension and in compression, are 
assumed for the structural steel and the 
conventional reinforcing bars. Gradual yielding 
of cross-sections and elasto-plastic tangent 
flexural and axial rigidities, for composite steel-
concrete columns with arbitrary shape, when 
full shear connection is assumed, is described 
through basic equilibrium, compatibility and 
material nonlinear constitutive equations 
following the procedure described in [2] where 
the discussions concerning the numerical 
integration of stresses and stiffnesses over cross 
sections and inclusion of residual stresses for 
structural steel are also addressed. Therefore, 
this paper is focused on partial composite action 
effect over inelastic response of beam cross-
sections. As will be briefly described in the 
following sections, the incremental force-
displacement relationships at the element level 
are derived by applying the Maxwell-Mohr rule 
for computation of generalized displacements in 
the second-order geometrically nonlinear 
analysis and using an updated Lagrangian 
formulation the nonlinear global geometrical 
effects are considered updating the element 
forces and geometry configurations at each load 
increment [3]. 

2.1. Elasto-plastic analysis of beam cross-
sections 
      The elastic and inelastic behavior of steel-
concrete composite beams is quite complex 
because the shear connectors generally permit 
the development of only partial composite 
action between the individual components of 
the member, and their analysis requires the 
consideration of the interlayer slip between the 

subcomponents. Usually, for a given composite 
beam, the full shear connection is defined as the 
least number of shear connectors (nf) such that 
the bending resistance of the beam would not 
be affected if more shear connectors are 
provided, whereas partial shear connection 
occurs when the number of connectors (n) used 
in a beam is lower than (nf). In order to analyze 
and design the composite beams, simplified 
methods are very useful and such methods are 
proposed in international literature and in some 
codes. For instance in the Eurocode 4 the 
concept of the degree of shear connection η = 
n/nf is used and the ultimate bending strength 
capacity of cross-section is evaluated by simple 
equilibrium of stresses with a prescribed 
compressive axial force in the concrete slab Nc 
= nPsc, where n<nf represents the number of 
shear connectors and Psc is the connector 
strength. The composite beam cross-section 
considered here consists of a concrete solid slab 
connected to a steel beam as presented in Fig 1. 
 

 

 

Fig. 1. Composite beam: a. full composite action 
b. partial composite action. 

Let us consider the cross-section subjected to 
the action of the external bending moment (M), 
and axial force (N) as shown in Fig. 1a. The 
resultant strain distribution corresponding to the 
curvature  and the axial strain u can be 
expressed, in full composite action, throughout 
the depth of cross-section in a linear form as: 

yu    (1) 

The equilibrium is satisfied when the external 
forces (N, M) are equal to the internal ones. 
These conditions can be represented 
mathematically in terms of the nonlinear system 
of equations as in Eq. (2). The surface integrals 
in Eq. (2) are extended over steel (As) and 
concrete areas (Ac), the contribution of slab 

a. 

b. 
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reinforcement is explicitly considered, Arsi 
(i=1,Nrs) denotes the resisting cross-section 
area of the i-th bar located at iy distance about 
the reference axis (z), Nrs denotes the total 
number of conventional steel reinforcements. 

 

(2) 

The above system can be solved numerically 
using the Newton iterative method and taking 
into account the fact that the stresses are 
implicit functions of the axial strain and 
curvature through the resultant strain 
distribution given by Eq. (1). In this way, for 
given bending moment and axial force we can 
obtain the strain and stress distribution 
throughout the cross-section and then the axial 
and flexural rigidity of the cross-section can be 
computed. In this way the internal axial force in 
concrete ( cfN ) in which the contribution of the 
conventional steel reinforcements is included, 
can be evaluated [4]. Let us consider now the 
cross-section, in partial composite action, 
subjected to the action of the external bending 
moment (M), and axial force (N) as shown in 
Fig. 1b. Under the above assumptions, the 
resultant strain distribution, corresponding to 
the curvature  and the axial strains uc and us 
evaluated at the centroid of concrete slab and 
structural steel respectively, can be expressed in 
a linear form as: 

)( ryucc   ; yuss    (3) 

where εc and εs represents the strains in concrete 
slab and steel beam respectively and r 
represents the distance from the central axis of 
the concrete slab to that of the steel beam. The 
equilibrium is satisfied when the external forces 
are equal to the internal ones: 

 

(4) 

in which uc, us and  represent the unknowns. In 
order to solve the above nonlinear system, the 
internal axial force in the concrete slab (Nc

int), 
under partial composite action, is assumed to be 
a fraction of the axial force in the concrete slab 
under full composite action (Ncf) and the 
amount is defined by a function of the degree of 
composite action γeff as in Fig. 1b: 

 (5) 

where Ncf represents the internal axial force in 
the concrete slab of the cross-section subjected 
to the same external bending moment M and 
axial force N but under the assumption of full 
composite action between the steel beam and 
concrete slab, f(γeff) represents a function of the 
effective degree of composite action [4]. Thus, 
the nonlinear system (5) becomes: 

 

(6) 

The above system can be solved numerically 
using, the Newton iterative method. The 
incremental relationships between incremental 
efforts and incremental deformations can be 
expressed as: 

 

(7) 

where the coefficients of the tangent stiffness 
matrix kij can be evaluated as in [4]. We define 
the tangent flexural rigidity of cross-section as a 
ratio between incremental bending moment and 
incremental curvature while keeping constant 
the axial force (∆N=0) as: 

 (8) 

Solving the system given by Eq. (7) and taking 
into account Eq. (8), the tangent flexural 
rigidity of the cross section with partial 
composite action can be developed as: 

 (9) 
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(10) 

where ∆Ncf represents the incremental axial 
force in the concrete slab under the assumption 
of full composite action computed as a 
difference between the axial force in the 
concrete slab associated at given value of the 
bending moment M and the axial force 
associated at an incremented bending moment 
M+∆M [4]. The value of effective degree of 
composite action defined in [4] is assumed to 
be constant over the length of the member and 
is updated at each loading step according with 
the existing state of stress [4].  

 
Fig. 2. Nonlinear constitutive law for the shear 

connection. 

Need to be mentioned that for shear forces (P) 
less than 50% of Psc a constant value for the 
shear connection stiffness (k50%) is considered 
(Fig. 2), assuming a secant connector stiffness 
corresponding to 50% of Psc while for shear 
forces greater than50% of Psc, a secant value for 
the shear connection stiffness (ksec) is 
considered (Fig. 2) [4]. As already mentioned 
above the approach discussed in this paper 
assume for the entire member length a constant 
value for the function used to introduce the 
partial composite action f(γeff)=constant. Hence 
the effects of non-uniform distribution of the 
shear connectors can not be taken into account 
and also the accuracy in detecting stress 
distribution along the member length can be 
only determined in a approximately manner. A 
more efficient approach able to overcome the 
above mentioned drawbacks is currently under 
development. Such an approach implies an 
explicit solution of the second-order differential 
equilibrium equation of the composite beam 
with partial composite action in which the axial 
force in the concrete slab represents  the main 
unknown. This axial force, the solution of the 
differential equilibrium equation, can be 
expressed in function of the axial force under 
the assumption of the full composite action 

multiplied with a function of the degree of 
composite action which include also the exact 
distribution of the bending moment along the 
member length. Moreover, by simply dividing 
the beam according with the variable 
distribution of shear connectors and solving the 
second-order differential equilibrium equations 
for each segment considered as beams with 
uniform distribution of shear connectors, and 
then imposing the boundary and continuity 
conditions could represents a direct and simple 
way to extend the proposed approach to the 
cases of non-uniform distribution of shear 
connection along the beam length. In this way 
both uniform and non-uniform distribution of 
the shear connectors can be efficiently 
considered in the proposed formulation but this 
issues requires further investigations and 
calibrations and will be treated in a future work. 

2.2. Second-order flexibility-based element 
      Flexibility-based method is used to 
formulate the distributed plasticity model of a 
3D frame element (12 DOF) (Fig.3). The spread 
of inelastic zones within an element is captured 
considering the variable section flexural EIy and 
EIz and axial EA rigidity along the member 
length, depending on the bending moments and 
axial force level, cross-sectional shape and 
nonlinear constitutive relationships as already 
described. 

 

Fig. 3. Beam-column element with 12 DOF    
(a) beam element; (b) column element. 

The basic incremental force-displacement 
relationships are determined considering the 
element represented in natural coordinate 
system with rigid body modes removed [3]. The 
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element incremental flexibility matrix fr which 
relates the end displacements to the actions ∆sr 
can be derived by applying Maxwell-Mohr 
theorem for computation of generalized 
displacements.  

𝛥𝛿𝑖,𝛥𝑃 = ∫
𝜕𝛥𝑀𝑦(𝑧)

𝐼 (𝑥)

𝜕𝛥𝑃

𝐿

0

∙
𝜕𝛥𝑀𝑦(𝑧)

𝐼𝐼 (𝑥)

𝐸𝐼𝑡𝑦(𝑧)
𝑑𝑥 + 

                   bending moment component 

     + ∫
𝜕𝛥𝑇𝑧(𝑦)

𝐼 (𝑥)

𝜕𝛥𝑃

𝐿

0

∙
𝜕𝛥𝑇𝑧(𝑦)

𝐼𝐼 (𝑥)

𝐺𝐴𝑦(𝑧)
𝑑𝑥 

                      shear force component 

(11) 

Assuming elastic behavior within a load 
increment, and no coupling of axial and flexural 
responses at the section level, the generalized 
displacement in point i of the member produced 
by the force ∆P (∆Miy(z),∆Mjy(z),∆Tiy(z),∆Tjy(z)) 
could be expressed as in Eq. (12) where with 
superior indices (I) and (II) represent the first 
order and second order efforts respectively. The 
second term in Eq. (12) introduces the 
additional effect of shear deformations. In this 
respect, for composite beams with partial 
composite action, equivalent transverse shear 
stiffness has been derived by using the energy 
relations [4]. For column cross-sections 
equivalent transverse shear stiffness is assumed 
to be computed taken into account only the 
contribution of the steel component. The second 
order bending moments and shear forces can be 
evaluated in function of the nodal bending 
moments and uniform distributed loads as 
described in [3] and then the relationship 
between nodal displacements (∆ur) and the 
nodal efforts (∆sr) could be further expressed by 
defining the element flexibility matrix (fr) and 
nodal displacements given by the uniform 
distributed loads (δr) as: 

rrrr δsfu   (12) 

The detailed expressions for fr, δr can be found 
in [3]. To produce the deformational-stiffness 
relation, the Eq. (13) is inverted, obtaining the 
following deformational-stiffness equation: 

rrrrrrr δkqquks  ;  (13) 

where the vector ∆qr is the incremental 
equivalent load vector, whereas kr represents 
the instantaneous element stiffness matrix of 
the beam-column element without rigid body 
modes, determined by matrix inversion of the 
flexural matrix fr. If the state of forces at any 
cross-section along the beam column element 
equals or exceeds the plastic section capacity, 
the flexural stiffness at the respective location 

approaches zero. Once the member forces get to 
the full plastic surface they are assumed to 
move on the plastic surface. Considering the 
member in Fig. 3 and that at the end of the 
member at node i the forces (N, My, Mz) get to 
the full plastic surface the incremental bending 
moments iyM , izM and the incremental axial 
force N  can be linearly related as (Fig. 4): 

NcN
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where **
,

* ; NNNMMM totptottotp
  and 

in which *
,totpM represents the ultimate total 

bending moment associated to given value of 
axial force N and N* represents the ultimate 
axial force for given value of total bending 
moment 21 tgMM ztot  . The ultimate 
efforts ( *

,totpM  and N*) are determined as 
follows. Let us consider that at the current 
loading step in a specified location the forces 
exceed the plastic surface. 

   
Fig. 4. Interaction diagram for given bending 

moment’s ratio. The plastic surface requirements. 

For given value of axial force N the iterative 
procedure described in [2] is applied in order to 
determine the ultimate bending moments (Myp

*, 
Mzp

*) for a given bending moment ratio (tan = 
Mz/ My) and then 2** 1 tgMM zptotp  . 
Similarly, for given values of the bending 
moments My, Mz the axial resistance N* 
associated with a failure criterion is evaluated.  
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Consequently the basic nodal element forces for 
the beam column element can be expressed in 
matrix form as in Eq. (15) or symbolically in 
condensed matrix form: 

)14()45()15( ˆ xxcxr sTs   (16) 

where the transformation matrix Tc introduces 
the correlation between nodal forces such that 
the plastic strength surface requirement at 
section “i” is not violated by the change of 
member forces after the full plastic strength of 
cross-section is reached (Fig. 4). Denoting rs ,

u and rq as finite changes in the force vector, 
displacement vector and fixed-end force vector, 
respectively, the incremental force-
displacement relationship for the element 
including the equivalent nodal loads can be 
expressed as: 

    rr
T

ccr
T

cc
T

ccr
T

ccr qfTTfTTuTTfTTs 
 11   (17) 

or symbolically in condensed matrix form: 
rpeprr quks  ,  (18) 

where epr,k and rpq represents the stiffness 
matrix and equivalent nodal loads vector for the 
element when a full plastified cross section 
forms at the i-th end of the element: 

  T
ccr

T
ccepr TTfTTk

1
,


  (19) 

  rr
T

ccr
T

ccrp qfTTfTTq 
1  (20) 

Following a similar approach we can obtain the 
elasto-plastic stiffness matrix and equivalent 
nodal loads for the cases when a full plastified 
sections forms at j-th end of the member or at 
both ends. 

 

 

Fig. 5. Incorporation of finite joint size and semi-
rigid connections. 

Although the present study concerns mainly on 
frames with rigid joints and the effect of the 
floor slab action is ignored, in the proposed 
approach can be easily implemented the effects 
of the nonlinear behaviour of semi-rigid 

connections, with proper nonlinear moment-
relative rotation models for composite 
connections, and the floor slab action. For 
instance the mathematical model described in 
[3] can be useful to include the effects of the 
semi-rigidity and the penalty element method 
can be used to include the effect of the rigid 
floor diaphragm action. Alternatively, the floor 
slab may be modelled as flat shell elements 
(with 6 DOF’s per node) and coupled in this 
way with the beam-column element developed 
in this paper. The member is assumed to consist 
of three zones as shown in Fig. 5. The first zone 
is the rigid block zone (finite-size joint) located 
at each end of the member. The second zone is 
the semi-rigid connection assumed to have zero 
length, and the remaining part of the member 
represents the beam-column element. The 
incremental change in the displacements and 
nodal forces for the semi-rigid beam-column 
element, considered without finite joint size 
(rigid block), may be symbolically expressed 
as: 

rrrr quks   (21) 

in which kr and rq represents the stiffness 
matrix and equivalent nodal loads vector for the 
semi-rigid beam-column element, including the 
effects of material and geometric nonlinearity 
sources as described in the earlier sections, and 
in which the rows and columns corresponding 
to axial and torsional deformations have been 
removed, ru represents the end element 
rotation vector (Fig. 5): 

 Tzjbzibyjbyibr ,,,,  u  (22) 

and rs represents the incremental nodal 
bending moments about the cross-sectional axes 
y and z acting at ends i and j of the element: 

 Tzjziyjyir MMMM s  (23) 

Let us assume that the element nodal rotations 
are collected in the vector u whereas the 
incremental nodal bending moments about the 
cross-sectional axes y and z acting at ends 1 and 
2 of the element are collected in the vector s : 

 Tzzyy 2121  u  

 Tzzyy MMMM 2121 s  
(24) 

From geometry and assuming small rotations 
during each load increment the relationships 
between rotations at the ends (i and j) of the 
semi-rigid beam-column element, and the same 
quantities at the element nodes (1 and 2) can be 
explicitly expressed in matrix form as: 
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 (25) 

in which l represents updated length of the 
element computed during each load increment, 
and a, b represents the sizes of the rigid blocks 
located at each end of the member. 
Symbolically uLu  r in which the matrix L 
introduces the effect of finite joint sizes. 
Substituting Eq. (30) for ru into Eq. (24) 
gives: 

rrr quLks   (26) 

Hence, the basic equation which define the 
incremental change in the rotations and nodal 
bending moments at the nodes 1 and 2 of the 
element can be expressed as: 

eqquks  ; LkLk  r
T ; r

T
eq qLq     (27) 

in which k and eqq represents the stiffness 
matrix and equivalent nodal loads vector for the 
semi-rigid beam-column element including the 
effects of finite-sizes of the nodes. The resulting 
stiffness matrix is a 4x4 matrix, and does not 
include torsional and axial degrees of freedom. 
Torsional and axial stiffness components are 
then added to result in the required 6x6 stiffness 
matrix. To include rigid body modes, the 
stiffness matrix is pre- and post multiplied by a 
transformation matrix to result in the required 
12 x12 matrix [3]. It should be noted that panel 
zones are not necessarily rigid components as 
assumed in the proposed approach and high 
shear forces and deformations in panel zones 
may have a pronounced effect on the stiffness 
and ultimate strength of frame structures.  

3. Computational examples 
The accuracy of the analytic procedure and the 
computer program (NEFCAD) developed here 
has been evaluated using several benchmark 
problems. In the present approach, one element 
has been used to model each column and beam 
in all computational examples and the advanced 
numerical simulation is conducted by using the 
specialized software for nonlinear analysis of 
structures, ABAQUS as described in [4]. 

3.1. Simply supported composite beam with 
partial shear connection 
       The proposed numerical model is validated 
by comparisons against Chapman and 
Balakrishnan [5] experimental tests on E1 
simply supported composite beam, as well as 
against the results predicted by ABAQUS 
software and those published by other authors. 
Details about geometry and material properties 
can be found in [4, 5]. 

Fig. 6. Load-deflection curve for E1 composite 
beam a. experiment b. degrees of connection. 

The mid-span deflection vs. applied load 
comparative curves is plotted in Fig. 6a. As it 
can be seen the behavior of the composite beam 
predicted by the proposed analysis procedure 
(k50%=2028N/mm2, γ=11.34) and the advanced 
finite element model developed in Abaqus is in 
close agreement with that of experimental test. 
The effectiveness of the proposed procedure is 
further assessed by varying the degree of shear 
connection (by means of varying the number of 
shear connectors-partial shear connection) and 
comparing the predicted curves with those 
obtained with more complex finite element 
analysis, as shown in Fig. 6b. By comparing the 
curves depicted in Fig. 6b, it can be observed, 
that the proposed method (Nefcad) predicts 
fairly well the nonlinear behavior and ultimate 
load capacity of the system when different 
levels (ranging from 47% to 136%) of shear 
connection are considered. 
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3.2. Six-story composite frame 
       The geometry loading conditions of 
Vogel’s six-story two-bay frame are reported in 
[4]. The yield strength of all steel members is 
235 MPa while Young and shear Modulus are 
E=20500 MPa and G=7885 MPa.  

Fig. 7. Load-deflection curve for six-story 
composite frame. 

The compressive yield strength of concrete for 
columns is fc=26MPa and for concrete slab 
fc=16MPa. In order to evaluate the effects of the 
finite size of the joints and to make possible 
comparisons with more advanced nonlinear 
FEM solutions (Abaqus), in the proposed 
approach (Nefcad) the frame has been modelled 
considering member end offsets and assuming 
effective rigid joint size of one-half the true size 
of the joint. In this study a value of Psc=64.34 
kN was considered for the shear connector 
capacity. The parameters that describe the 
shape of the studs constitutive law have been 
selected as proposed by Ollgaard: β=1 and 
α=0.558, obtaining in this way a value of 94375 
N/mm for the connector stiffness corresponding 
to 50% of Psc, namely K50% (see Fig. 2). The 
values of shear connection stiffness, k50%, are 
evaluated based on the number of shear 
connectors corresponding to the desired degree 
of shear connection [4]. Fig. 7a presents the 
comparative load-deflection curves obtained by 
the proposed approach when full composite 
action is assumed and those obtained with the 
advanced FEM model considering different 
levels of shear connection, ranging from 100% 
to 300%. It can be observed that, as expected, 
increasing the level of shear connection the 
system became more rigid with increased 

strength and stiffness and the inelastic behavior 
becomes similar with the response predicted by 
the proposed approach (full composite action). 
The effectiveness of the proposed procedure is 
further assessed by varying the degree of shear 
connection and comparing the predicted curves 
with those obtained with more complex finite 
element analysis, as shown in Fig. 7b. 

4. Conclusions 
     A reliable and robust nonlinear inelastic 
analysis method for composite steel-concrete 
frames with partial composite action has been 
developed. The proposed formulation has been 
found to be effective in predicting the global 
behavior of composite beams and frames with 
partial shear connection, both in elastic and 
post-elastic field and, the numerical results 
agrees fairly well with the experimental results 
and those obtained by advanced nonlinear FEM 
approaches but with much less computational 
effort. The proposed formulation takes 
advantage of using only one 2-noded beam-
column element and features, in this way, the 
ability to be used for practical applications by 
combining modeling benefits, computational 
efficiency and reasonable accuracy and may 
circumvent some of the difficulties that may 
arise enforcing the compatibility conditions at 
the semi-rigid composite connections. 
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