’«% UNIVERSIT/\T _ TELECOM ESCUELA

TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA DE
DE VALENCIA TELECOMUNICACION

Escuela Técnica Superior de Ingenieria de Telecomunicacion
Universitat Politecnica de Valencia

Blockchain technology analysis and

development of a Java implementation.
DISSERTATION

Degree in Telecommunications Technology and Services Engineering

Author: José Blasco Nuriez de Cela
Tutor: Antonio Ledn Fernandez

Year 2017-2018

Thank you to those who helped me.
Family, friends and friends who are like family.

Vires in numeris

Abstract

In this project we will focus on the analysis of the Blockchain technology and develop
a basic implementation in Java, including all the basic components such as transactions,
consensus and a P2P network. Lastly, we will show a use case by developing a Proof of
Existence platform with our own Blockchain.

Key words: Blockchain, Java, P2P, PoE

Resumen

En este proyecto nos centraremos en el andlisis de la tecnologia Blockchain y desa-
rrollaremos una implementacién basica en Java, incluyendo todos los componentes ba-
sicos como transacciones, consenso y la red P2P. Por ultimo, mostraremos un caso de
uso mediante el desarrollo de una plataforma de Prueba de Existencia con nuestra propia
Blockchain.

Palabras clave: Blockchain, Java, P2P, PoE

Resum

En aquest projecte ens centrarem en I'analisi de la tecnologia Blockchain i desenvolupa-
rem una implementacio basica en Java, inclosos tots els components basics com transac-
cions, consens i la xarxa P2P. Finalment, mostrarem un cas d'us mitjangant el desenvolu-
pament d'una plataforma Prova d'existeéncia amb ela nostra propia Blockchain.

Paraules clau: Blockchain, Java, P2P, PoE

N UNIVERSITAT TELECOM ESCUELA

< TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA D
DE VALENCIA TELECOMUNICACION

Contents

Contents iii
List of Figures iv
List of Tables iv
1 Introduction 1
1.1 Goals and distribution of the project 2

2 Blockchain basics 4
271 Whatisablock? 5
2.2 Achieving consensus on cryptocurrencies 7
2.3 Privacy and security on a Blockchainnetwork 8
2371 Whatishashing? 8

2.3.2 Reverse-engineering the hashofablock. 9

233 "S1%attack" 9

2.4 ForksofaBlockchain 10

3 Developing a blockchain in Java 12
3.1 Firstiteration: core of the blockchain 14
3.2 Second iteration: dynamic difficulty, 20
3.3 Thirditeration: SHA-512hash 22
3.4 Fourthiteration:users 23
3.5 Fifthiteration: transactions 29

4 Development of a Proof of Existence platform 33
47 IntroductiontoPoE 34
471717 Howitworks 34

472 Development 36
4271 Registrationof documents 37

4272 Verificationof documents 38

423 Listof registered documents 39

5 Other blockchain applications 40
5.1 Money ..o 41
52 Tokenization 42
53 Supplychain 42
5.4 Content creation monetization 42
5.5 Votingandgovernance 43

6 Conclusions 44
Bibliography 46

iii

List of Figures

1.1 Comparison of traditional vs blockchain transaction. 2
21 Structure of a bitcoinblock. 6
3.1 Structure of broadcast network. 14
3.2 Startwindow. 17
3.3 Managementwindow. 19
3.4 Startdiagram. 19
3.5 Management window with dynamic difficulty 21
3.6 Connection sequence withusers. 25
3.7 Startwindow. 26
3.8 Creatinganew Blockchain. 27
3.9 Joining the network with an existinguser. 27
3.10 Joining the network withanew user. 27
3.11 Management window with save/load options forusers. 28
3.12 Updated managementwindow. 31
3.13 Send transactiontonetwork. 31
3.14 Sendtransactionto anotheruser. L. 32
3.15 Control and verify pending transactions. 32
41 Main window of the PoE platform 36
42 Sendingadocumenttothenetwork 37
4.3 Sendingadocumenttoanotheruser L. 37
4.4 Verification of the same document 38
4.5 Verification of an altered document L. 38
4.6 Verification of a document beforesigning 38
47 Listofusers'transactions 39

List of Tables
11 Taskstoperform 3
2.1 Hashing with an imaginative hashing algorithm 8
2.2 HashingwithMD5. 9

CHAPTER 1
Introduction

N\ UNIVERSITAT _ TELECOM ESCUELA

s TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA D
DE VALENCIA TELECOMUNICACION

'l give you a horse for two pigs."

Trading has been an essential issue during the development of humanity. We started
trading goods for other goods, and then introduced an intermediary step, such as gold and
eventually euros.

This system works just fine, we can buy and sell anything we want as far as we have
enough euros. We can trade Euros to dollars to buy things in the USA, to Pounds to buy in
the UK or to yen to buy in Japan. But this also comes with some issues.

Blockchain technology offers solutions to problems we didn't know that even existed.
With blockchain technology, we can have a decentralised, anonymous, secure network to
store transactions of money, goods and ideas. We can use this secure, future-ready tech-
nology to create a new economic ecosystem, with new currencies and contracts.

Blockchain technology is used to put aside intermediate steps, avoiding having to rely
on banks or even electricity companies, making thus trading more secure and anonymous,
not to mention avoiding extra cost in form of money and time.

ALICE'S
ALICE BANK

BOB

ALICE BOB

BLOCKCHAIN
NETWORK

Figure 1.1: Comparison of traditional vs blockchain transaction.

However, money is not the only thing Blockchain is disrupting. Potentially every single
industry can adapt Blockchain for their own field of work and be part of this revolution.

Industries such as transport, energy, smart cities, law or even supply chains are slowly
exploring this technology and we will use it daily in no longer than five years.

1.1 Goals and distribution of the project

The main goals of this project are to understand how blockchain technology works, and
what can it can offer to the society and business of the future. The project is divided in four
big chapters.

The first one is an introduction to blockchain and some basic concepts in order to under-
stand how the technology work and be able to comprehend the rest of the project. This is
mainly a theoretical part with general concepts that do not relate to any specific blockchain
application.

The second and third chapters are where most of the project itself is explained. On the
second chapter, we will develop a blockchain in Java from the groundup. On different iter-

2

UNIVERSITAT TELECOM ESCUELA
POLITECNICA TECNICA VLE SUPERIOR

NGENIERI

DE VALENCIA TELECOMUNICACION

ations we will introduce new features step by step and testing and comparing the different
versions.

On the third chapter, we will adapt this application to work as a Proof of Existence plat-
form, allowing users to register documents and share them thought the network in a secure
and private way, while assuring the integrity of the document.

On the last chapter, we will analyze other blockchain applications aside from PoE, such
as cryptocurrencies, loT technology, smart cities and others.

Planning and introduction of the project Week 1
Research and introduction to blockchain technology | Weeks 2 & 3
Write chapter ‘blockchain basics'’ Week 4
Preparation and design of the Java implementation | Week 5
First iteration: core of the blockchain Weeks 6 & 7
Second iteration: dynamic difficulty Week 8 (a)
Third iteration: SHA-512 hash Week 8 (b)
Fourth iteration: users Week 9
Fifth iteration: transactions Week 10
Development of a PoE platform Week 11
Other blockchain applications Week 12
Formatting and final changes to the memory Week 13
Preparation of the presentation Week 14

Table 1.1: Tasks to perform

CHAPTER 2
Blockchain basics

UNIVERSITAT TELECOM ESCUEL/

POLITECNICA TECNICAVLE SUPERIOR

DE VALENCIA TELECOMUNICACION

Blockchain is a technology that uses a series of blocks linked between them that can't
be edited after they are chained to the network. These blocks can contain any kind of infor-
mation, but in most of the implementations of this technology, the information stored are
the transactions that happen on the network during the time that the block is being built.
Therefore, the blockchain works as a decentralized distributed database that synchronizes
on every node of the network.

Blockchains can be private (for some business) or public. On private blockchains, the
data can be distributed among several places or can be stored just in the company's servers.
On the other hand, public networks are open for anyone to see, collaborate and maintain.

The main characteristics of a Blockchain [1] are:

+ Itis designed to be distributed and synchronised across networks.

* You can't just do whatever you want to the data. The types of transactions some-
body can carry out are agreed between participants in advance and stored in the
blockchain according to the design of the network.

- Immutability of the data. Once you have agreed on a transaction and recorded it, it
can never be changed. You can subsequently record another transaction about that
asset to change its state, but you can never hide the original transaction.

2.1 What is a block?

Blocks, as the "Blockchain" name indicates, are the core of the blockchain. Each block
contains the information that builds the blockchain. The contents of the block may vary
depending on the implementation of the blockchain and its goal. For instance, on a cryp-
tocurrency blockchain, blocks contain the transactions that happen while that block was
being built.

The first block of a blochchain is called the "genesis" block, and it usually includes some
unimportant info, or a commentary of the developer. Bitcoin's genesis block contained a
headline of a newspaper a month earlier than the creation of the network, " The Times
03/Jan/2009 Chancellor on brink of second bailout for banks"[?]

Each block is linked to the previous and next one. This is done usually by including
the hash of the previous block as part of the current one, therefore if the previous one is
modified, it can be detected. This creates a robust system where no one can edit previous
blocks in their advantage. New transactions are constantly being processed by miners into
new blocks which are added to the end of the chain and can never be changed or removed
once accepted by the network.

An example of a bitcoin block structure[3] is the following. We will get into more detail
in the bitcoin specific section of the project.

UNIVERSITAT TELECOM
POLITECNICA VLC
DE VALENCIA

Magic Number (4) : Block Size (4) i i
Version (4) i I Previous Block Hash (32) =
T S ——— . —— e s sl et e et o AR =i
I I I I I I I
------ it e e e i e ®
I I I I I I I T
------ e e | 8
______ Al T s o e oo 1 1 ! =
I I I Merkle Root(s2)t 1 | -
T T T T I 1 m
------ e | o
| | | | 1 1 1 o
—————— e e e e e i o ity m
I I I I 1 1 1]
______ T e e N] TS M = T T
I I I Timestamp (4) | 1
Difficulty Target (4) ! Nonce (4) ! ! _—
Transaction Counter (variable : 1-9) ! J J
ITransaction List (variable : Upto 1 MB)l_ J
| 11— 1) | I~ " 1
I I I I i] I
—————— e e e e e e e e e e e e e e e e s ey
I I I I i i i

Figure 2.1: Structure of a bitcoin block.

UNIVERSITAT TELECOM ESCUELA
POLITECNICA N A TEE AUFERIOR
DE VALENCIA TELECOMUNICACION

2.2 Achieving consensus on cryptocurrencies

Every cryptocurrency has its own public blockchain to store all the transactions that oc-
curred. A proof of work and proof of stake algorithm[4] are different methods (or algo-
rithms) to achieve consensus on which block will be added next to the blockchain.

Proof of work (PoW) requires proof that work of some kind has occurred. In the case of
Bitcoin, miners are required to do this work before any of their blocks is accepted by others.
In POW you are as powerful as your hardware is, with respect to the network.

Proof of stake (PoS) requires users that have a high stake at the currency (i.e. hold
a lot of coins) to determine the next block. This has a high risk of some party achieving
monopoly of the currency but there are several methods to prevent that (we will analyze it
later on the project). If you have 5% of the total amount of coins in the network, you will
receive 5% of the new tokens created.

The main difference could be summarized in that proof of work requires burning an
external resource (mining hardware with a lot of computational power) while proof of stake
does not. Proof of work could be criticized that if the profitability (earnings with respect
to investment) drops then less people will have incentives to mine thus the security of the
system is reduced. Proof of stake could be criticized that since it is free to stake/add new
blocks to the blockchain you could use it to stake several similar coins at the same time
without any additional effort.

There is a third, less used technology called Proof of Importance (Pol)[5]. This tech-
nology aims to solve the problems mentioned above, by giving more importance to those
who are more valuable to the network, mainly by being more active and trustful, therefore
loyal to the network. The first cryptocurrency that used this technology was NEM(XEM).

Examples:

+ Bitcoin, Litecoin and many others use the PoW method.
« NXT, BitShares and others use the PoS method.
+ Ethereum uses PoW but is scheduled to change to PoS.

+ Peercoin uses a combination of PoW and PoS.

This process of achieving consensus is also known as "'mining". Mining is the operation
of collaborating on the maintenance of the network by confirming transactions and closing
blocks that are chained to the network. Mining takes a lot of different forms depending on
the consensus technology the network is using.

In PoW, a "miner" (person who mines) uses computational power in order to find a hash
of the current block with a defined goal. Usually, this goal is set by the difficulty by defining
the hash to start with a number of ‘0's. To do so, the miner adds a random string to the
block in order to change the outcome of the hash. The difficulty is dynamically changed to
maintain a consistent time between blocks. The more computational power there is on the
network, the more difficult the process is (more ‘0’s at the beginning of the hash).

For example, in an imaginative hashing algorithm, the following hashes occur:

UNIVERSITAT TELECOM ESCUEL/

POLITECNICA TECNICAVLE SUPERIOR

DE VALENCIA TELECOMUNICACION

INPUT HASH OUTPUT
TX1TX2 TX3 abcdefghijk1234567
TX1 TX2 TX3 | 00Imnopqrstu987654
random text

Table 2.1: Hashing with an imaginative hashing algorithm

If the target was to get a hash that starts with "00xxxx..." the second input would meet
the difficulty and close the block. With this method, the more computing power you have,
the more rewards you get.

On PoS, instead of "wasting" energy and computing power on mining, the network closes
the blocks automatically every given time (defined by the network) and rewards the miners
who host the nodes of the blockchain with a proportional amount of coins with respect of
how much they have in their wallets. This way, the more coins you have, the more rewards
you get.

As you might have guess, mining is not viable if your resources are small, since you
will probably get no reward in PoW and very little in PoS. That's why people join each other
in mining pools. A mining pool is a conglomerate of miners that work together to mine
the coins, and split the rewards among them. Even though on the long term the rewards
a miner gets are similar to what they would earn doing solo-mining, they will get rewards
asidually.

2.3 Privacy and security on a Blockchain network

One of the key features of the blockchain technology is the robustness and privacy it offers.
This relies in two main ideas, first of all, users are identified by an address and not a name,
and secondly by the inherent property of the blockchain to be regulated and protected by
its users.

Each user has to be identified on the network, and this is done using addresses. The for-
mat of this address is irrelevant, and can take many forms. The important thing is the pur-
pose of the address, sending and receiving transactions inside the blockchain. Addresses
are unigue and secure. If we had to compare it, we would think this is the equivalent of an
IBAN number. However, these addresses are not assigned by any central authority.

Every Blockchain implementation has its own way of designing addresses, but the ba-
sic idea is having an address, a public key and a private key. We will get into the details of
some cryptocurrencies technology in the next chapter. On private blockchains, each imple-
mentation has its own characteristics, so we can't get into details.

Something all implementations of the blockchain have is that they use hashing to se-
cure the blockchain.

2.3.1. What is hashing?

In simple terms, hashing means taking an input string of any length and giving out an output
of a fixed length. This means that whether you try to "hash" a single character or a full
document, the output of this operation will be a string with the same length. For example,
using MD5 (a basic algorithm that is in currently in disuse) we will get the following results.

Every cryptographic hash function has four properties that makes it secure.

UNIVERSITAT TELECOM ESCUEL/

POLITECNICA TECNICAVLE SUPERIOR

DE VALENCIA TELECOMUNICACION

INPUT MD5 HASH OUTPUT

HI 49f68a5c8493ec2¢c0bf489821c21fc3b
JOSE BLASCO | 0a41ed1c3ffd435766021e68ef7409¢1

TEXT123 T1baab40ab8f2dfe291122dfc56ac9eT

Table 2.2: Hashing with MD5

1. Fast: The hash function is quick enough to perform the operation a lot of times per
second.

2. Deterministic: Every time you perform the operation on the input, the output will be
the same.

3. Collision resistant: Two different inputs cant have the same output. This is some-
times difficult to accomplish because the hashing output is a fixed length string.

4. Pre-image resistance: This means that doing the operation is quick in one way, but
unfeasible to do in the other way.

2.3.2. Reverse-engineering the hash of a block

When choosing a hashing algorithm for a blockchain, one of the most important charac-
teristics is the "collision resistance".

This characteristic avoids anyone from creating a fraudulent block and spoof it into the
network. Imagine my block A has the following contents:

Block A
Transactions:

A sent 50 tokens to B
C sent 2 tokens to A
Hash: abcdefghijklmnopgrstuvwz

Block A’
Transactions:

A sent 5000 tokens to BAD PERSON
B sent 150 tokens to BAD PERSON

[random contents to get hash]
Hash: abcdefghijklmnopgrstuvwz

Now imagine someone finds a way to achieve the block A" with the same hash. Since
the blockchain is verified using that hash, the attacker can introduce this block into the
network after some time and every node will accept it as valid, faking the transaction and
hacking the network.

2.3.3. "51% attack"

On public blockchains, whether or not a block is accepted as part of the chain is achieved
by consensus as we have already seen. But when consensus is manipulated, a so-called
51% attack happens.

UNIVERSITAT TELECOM ESCUELA
POLITECNICA TECNICA VLC SUPERIOR

NGENIERIA D

DE VALENCIA TELECOMUNICACION

It does not matter if you are using PoW, PoS or any other technology, if a person or a
group of people gets control of more than 50% of the power, they can approve or deny the
acceptance of any block they want. Imagine that Alice (A) is in control of the blockchain,
and Bob (B) wants to send 10 tokens to Alice in order to pay for a bottle of water. Alice can
now say that Bob has only paid 5 tokens and refuse to give him the bottle, while taking the
10 tokens. Or even worse, Alice can say that Charlie (C) has transferred to her 500 tokens
even if Charlie is unaware of this.

Blockchain networks are aware of this, and even those who could make profit out of it
decide not to, since the community would notice and abandon the blockchain, making it
useless and the attackers would not get any profit. This was the case of Ghash.io, which
briefly exceed 50% of the bitcoin network’s computing power in 2014. The pool voluntarily
reduced its share and promised to never again reach 40% of the total mining power [6].

We will test this attack on our own cryptocurrency later in the project.

2.4 Forks of a Blockchain

Blockchain is a technology, and every technology evolves. Every implementation is differ-
ent, they have a different design and a different approach when they are implemented, and
every user accepts and works on this design.

Thisis what gives a blockchain the robustness that we have already explained. Everyone
works together on the same way with the same goal and the same parameters, but what
happens when someone thinks the network needs a change?

This change can be anything: changing the name, the size of a block, the hashing algo-
rithm... and this is where the problem appears, as some of the users might be against this
change.

Forking is the process where a person or a group "clones" the code and technology
and develops and implements the technology independently of the original implementation.
There are three main types of forks [7]:

1. Hard fork.

A hard fork is a software upgrade that introduces a new rule to the network that isn't
backwards-compatible. Hard forks are something like an expansion of the rules. For
example, changing block size from 2 MB to 10 MB, since blocks of 5MB are not al-
lowed in the initial version and the transactions on that block would be marked as
invalid.

In this case, if part of the community does not change, a new network must be created
separately.

2. Soft fork.

A soft fork, by contrast, is any change that's backward compatible. Say, instead of 2
MB blocks, a new rule might only allow 1 MB blocks.

Non-upgraded nodes will still see the new transactions as valid (500k is less than 1
MB in this example). However, if non-upgraded nodes continue to mine blocks, the
blocks they mine will be rejected by the upgraded nodes. This is why soft forks need
a majority of hash power in the network.

What can go wrong? When a soft fork is supported by only a minority of hash power
in the network, it could become the shortest chain and get orphaned by the network.
Or, it can act like a hard fork, and one chain can splinter off.

10

UNIVERSITAT TELECOM ESCUELA

< TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA D
DE VALENCIA TELECOMUNICACION

3. User-activated soft fork.

A user-activated soft fork (UASF) is a theoretical idea that explores how a blockchain
might add an upgrade that is not supported by those who provide the network’s hash-
ing power, for instance to be forced by wallets, exchanges or other network partici-
pants.

Currently this idea is theoretical and has not been implemented.

11

CHAPTER 3
Developing a blockchain in Java

12

UNIVERSITAT _TELECOM ESCUELA

POLITECNICA TECNICA VLE SUPERIOR
DE VALENCIA TELECOMUNICACION

One of the goals of this dissertation is to discover how a blockchain works, and there is
no better way to do so than creating one from scratch. We will start with a simple network
to put text into a blockchain, this will allow anyone on the network to place whatever text
they want and ensure that it will not be modified while anyone has access to it. Then we
will develop different implementations in order to achieve different goals, such as identify-
ing who added the text, or adding transactions, automatically change mining difficulty and
implement different clients (host of a blockchain, miner, user...).

Among every programming language there is, Java is probably not the ideal one, but
it allows us to apply everything we have learned through the degree, which is one of the
key objectives of every dissertation. We aim to use object programming to implement the
blockchain, and sockets to communicate among the devices on the network.

The code for every iteration is available on the different branches of the Github reposi-
tory:

https://github.com/pepebndc/Blockchain-JAVA

13

https://github.com/pepebndc/Blockchain-JAVA

N\ UNIVERSITAT TELECOM ESCUELA

< TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA D
DE VALENCIA TELECOMUNICACION

3.1 First iteration: core of the blockchain

A blockchain, by definition, is a big P2P network. We design our network based on this
principle. With every event, the information is broadcasted through the network. Therefore,
every node must have information on every other node. In this iteration, the information
stored is the IP address of every node. For now, we are only capable to connect nodes on
the same local area network, although if all the clients had a public IP address, the network
would work.

The goal of this iteration is to create the foundation for future developments. Therefore,
functions such as consensus between the nodes or dynamic changes on the difficulty are
not yet implemented. The code for this iteration can be found in:

https://github.com/pepebndc/Blockchain-JAVA/tree/vi1-core

0100101010
CLIENT 0010010
/ 001101001
00010
x RECEIVER
0100101010
\ 101010010
0010010

l \ RECEIVER

0100101010 0100101010

101010010 101010010
0010010 0010010

001101001 001101001
00010 00010

RECEIVER RECEIVER

Figure 3.1: Structure of broadcast network.

Since this is the first iteration, and the base for future iterations, we are going to explain
the structure of the program.

We are using the following custom objects to perform the operations:

BlockChain Object

The object BlockChain is the biggest object in our program, and contains all the information
of the network. It contains:

1. Name: The name of the blockchain. It's only used to show it to the user
Difficulty (diff): The difficulty of the blockchain used to mine the blocks

A list of Blocks: A list of every block of the blockchain and its contents

> W™

Current mining contents: The contents that are currently being mined and waiting to
be included into a block

5. Alist of hosts: A list containing all the IP addresses of the nodes currently connected
to the network

It also has the method validateChain, which checks if the contents of the blockchain
have been modified, by comparing the hashes of the blocks sequentially.

14

https://github.com/pepebndc/Blockchain-JAVA/tree/v1--core

UNIVERSITAT TELECOM ESCUELA

s TECNICA VLC SUPERIOR
POLITECNICA)E INGENIERIA DE
DE VALENCIA TELECOMUNICACION

public boolean validateChain() throws NoSuchAlgorithmException,
UnsupportedEncodingException {
String[] hashes = new String[this.getChain().size()];
int length = this.getChain() .size();

Iterator<Block> iterator = this.getChain().iterator();
while (iterator.hasNext()) {
Block b = iterator.next();

String hash = b.getHash();

int index = b.getIndex();

String hashPreviousBlock = b.getLastHash();
long time = b.getTime();

String data = b.getData();

int nonce = b.getNonce();

hashes[index] = hash;
String newHash = Block.computeHash(index, time, data, hashPreviousBlock,
nonce) ;

if (index !'= 0) {
if (index !'= 1) {
if (index < (length - 1)) {
if ('hash.equals(newHash)) {
System.out.println("Different recomputed hash in block " +
(index - 1));
return false;

3

if ('hashPreviousBlock.equals(hashes[(index - 1)]1)) {
System.out.println("Different previous hash in block " +
(index - 1));
return false;

3

return true;

15

D UNIVERSITAT TELECOM ESCUELA
POLITECNICA N A TEE AUFERIOR
DE VALENCIA FELECOMUNICACION

Block Object

A block contains the information of a single block of the chain, including:
1. Index: Number of the block in the chain
. Time: Current time when the block was mined
. Data: Contents of the block

2
3
4. Last Hash: Hash of the previous block. It is used to verify integrity of the blockchain
5. Hash: The hash of the block, stored for informational purposes

6

. Nonce: Random number that helps getting the hash below a defined value

It also implements the methods mineBlock and computeHash. computeHash provides
the MD5 hash of the contents we want to include in the hash of the block (index, time,
data, lastHash and nonce), while mineBlock performs the mining operations by continu-
ously computing the hash and increasing the nonce until the hash matches the difficulty.

CommandMessage Object

We have designed the whole protocol from scratch, and decided that the best way to trans-
mit information among hosts in the network is to send custom objects filled with the infor-
mation we share. This object consists of:

1. Command: This is the command sent. We will explain the different commands in the
next section

Address: A string used to send the IP address when needed
Blockchain: A BlockChain object in order to send the whole chain and it's information

Block: To send a block when needed

a bk~ W N

Contents: Used to send other information such as difficulty

List of commands

In this first iteration, the commands are sent using sockets and sending the CommandMes-
sage Object with the information needed in each case. When a command has to be sent to
all the host in the network, we use an iterator to recursively fetch the different IPs and send
the information. The different commands are:

1. NEW HOST CONNECT: This message is sent by a new host who wants to connect
to the network. The new host can connect to any member of the network with this
message, the member will notify the rest of the network of this new host sending a
NEW HOST ADD message and responding to the new member with the contents of
the Blockchain (NEW HOST ACCEPTED).

2. NEW HOST ACCEPTED: This message is sent to the new host and contains the infor-
mation of the blockchain. This host places the BlockChain received into its Blockchain
object.

16

N\ UNIVERSITAT TELECOM ESCUELA

P TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA DI

DE VALENCIA TELECOMUNICACION

3. NEW HOST ADD: This message is sent to the rest of the members of the network to
notify the addition of a new member. This message contains the IP address of the
new host and the receiver of the command has to add this IP to its host list.

4. ADD CONTENT: Message containing the new contents to be mined. When received,
the host updates the mining contents.

5. DIFF: Message containing the new difficulty of the network. When received, the host
updates the difficulty.

6. NEW BLOCK: When a new block is mined, this message transmits it through the net-
work and the other hosts add it to their chain.

7. DISCONNECT: When a host disconnects, it sends a signal to the rest of the network
and the other nodes take it out of the hosts list.

Executing the program

- O X

Mame of the Blockchain

CREATE A BLOCKCHAIN |

JOIN A NETWORK IP of a network node

manage

192.168.1.140

Pepe Blasco - ETSIT UPY

Figure 3.2: Start window.

When launching the program, the user has the option to create a new blockchain net-
work or to join a running one. The buttons are disabled until the user places an input in the
corresponding text fields. When creating a blockchain, you need to name it, whereas when
connecting to an existing one, you have to place the IP of a host already in the network.
After performing one of these actions, the management window is opened (automatically
when creating a blockchain, and when clicking on "manage" when connecting to one).

The execution consists of two main components: the mining process and the TCP
server.

The mining process is a thread where the program is continuously computing the hash
of the block and comparing it to the difficulty (number of '0’s at the beginning of the hash).
Once it matches, the block is added to the blockchain and the network is notified with the
NEW BLOCK command. This thread also has a "stop" switch built-in, although it is not yet
possible to trigger it on the managing window.

On the other hand, the TCP server is a thread continuously listening to port 4001 to
commands, and managing the reaction to those commands. The serverManager creates
up to 256 sessions so that it can handle several clients at once. When sending messages to
other hosts, we use the TCP client where every CommandMessage is created in methods
where the only input is the IP of the destination (end point). An example of an outgoing
connection is the following:

17

UNIVERSITAT TELECOM ESCUELA
POLITECNICA N A TEE AUFERIOR
DE VALENCIA TELECOMUNICACION

public static void sendNewContent(String endPoint) {
try {

ObjectOutputStream oo = null;
Socket so = null;
try {
so = new Socket(endPoint, 4001);
oo = new ObjectOutputStream(so.getOutputStream());
} catch (IOException e) {
System.out.println("Problems conecting on TCP");
System.out.println(e);

3

String com = "ADD CONTENT";

String a = null;

BlockChain bc = null;

Block b = null;

String c¢ = main.TFG.getCurrentMiningContents() ;

CommandMessaje command = new CommandMessaje(com, a, bc, b, c);

oo.writeObject (command) ;

oo.flush();

oo.close();

so.close();

System.out.println("new contents messaje sent to " + endPoint+" - "+c);
} catch (IOException ex) {

Logger.getLogger (TCPclient.class.getName()) .log(Level.SEVERE, null, ex);
}

Once the Blockchain is connected, you can enter the managing window, where you can
interact with the Blockchain and the network. On this window you can see the name of the
Blockchain you are connected to at the top, and then the following options are displayed
from top to bottom:

1. ADD NEW CONTENT: When you enter text on the text field and click ADD, the contents
of the field are added to the currentMiningContents and sent to the rest of the network.
This way, the text you insert will be mined and added to the next block.

2. VALIDATE: Pressing this button displays a text indicating whether or not the blockchain
is valid.

3. CHANGE DIFF: It changes the current mining difficulty to the number in the text next
to it and broadcasts the change to the network so that everyone has the same diffi-
culty on the next block.

4. SEE / CHANGE CONTENTS: Entering a block number shows the contents of that
block in the Blockchain, you can then edit those contents and when clicking CHANGE
CONTENTS the new text will be placed into the contents of the block and the hash
will be recomputed.

This action will not broadcast the changes to the network for safety purposes and
will invalidate the blockchain (when clicking on VALIDATE it will say "not valid").

Lastly, when the user closes the window, the system automatically sends the DISCON-
NECT message to all the other nodes.

18

N UNIVERSITAT _ TELECOM ESCUELA

POLITECNICA TECNICA VLC SUPERIOR
< DE INGENIERIA DE
DE VALENCIA TELECOMUNICACION

BLOCKCHAIN: "DISSERTATION"

ADD NEW CONTENT | ADD | |

[VALIDATE] | | [CHAMGE DIFF] |5 |

SEE / CHANGE CONTENTS

Block number
CHANGE CONTENTS

[SHOW CURREMNT BLOCK]

Figure 3.3: Management window.

- Create Genesis block.
- Create Host list.
ewW - Start TCP server.

el
real - Start mining.

C

"/0/'0
- Start TCP server.
- Send request to join.
- User opens manage windows.

Figure 3.4: Start diagram.

19

UNIVERSITAT TELECOM ESCUELA
POLITECNICA TECNIC VLF“{"(RIOR
DE VALENCIA TELECOMUNICACION

3.2 Second iteration: dynamic difficulty

On this second iteration, we use the code from the first one and add the capacity to dynam-
ically change the difficulty depending on the mining rate. The code can be found in:

https://github.com/pepebndc/Blockchain-JAVA/tree/v2-dynamic-diff

As a design key, we want to have a block every minute (more or less). This makes the
blockchain fast enough that we can easily and quickly check new contents, while avoiding
a flooding in blocks (making a lot).

Difficulty will be dynamically changed each time a node finds a valid hash for a block
with an index multiple of 10 (10, 20, 30...). This avoids everyone to be checking the difficulty
continuously and possible missunderstandings between the nodes.

In order to do this in a reliable way, we must adapt first some of the code we previously
created. In each block, the current time will be saved in milliseconds from epoch using the
System.currentTimeMillis(); Java method.

We choose to check with the previous 10 blocks to avoid changes when a single block is
mined too fast or too slow, and if on average, a block took + 15s to be mined, the difficulty
is adjusted by 1. This way, if a block takes on average 30 s, the difficulty is increased and
the average mining time will be increased.

if (length % 10 == 0) {
long thisTime = Long.valueOf (mined[2]);
long prevBlockTime = main.TFG.getChain().get((length - 10)).getTime();
long difference = thisTime - prevBlockTime;
int differenceInSeconds = (int) difference / 1000;
System.out.println("difference in seconds: " + differenceInSeconds);

int newDiff = main.TFG.getDiff();;
if (differencelInSeconds > 750) {

newDiff = main.TFG.getDiff() - 1;
}

if (differencelnSeconds < 450) {
newDiff = main.TFG.getDiff() + 1;
}

System.out.println("new diff after comprobation: " + newDiff);
main.TFG.setDiff (newDiff);

Iterator<String> it = main.TFG.getHosts () .iterator();
while (it.hasNext()) {
String host = it.next();
try {
if ('host.equals(InetAddress.getLocalHost () .getHostAddress())) {
TCPclient.sendNewDiff (host) ;
}
} catch (UnknownHostException ex) {
Logger.getLogger (manage.class.getName()) .log(Level.SEVERE, null, ex);
}

20

https://github.com/pepebndc/Blockchain-JAVA/tree/v2-dynamic-diff

UNIVERSITAT _ TELECOM ESCUELA
POLITECNICA TECNICA VLC SUPERIOR

< DE INGENIERIA DE
DE VALENCIA TELECOMUNICACION

We also need to adapt the GUI in order to let the user see the current difficulty. For now,
the user will still be able to manually change the difficulty of all the network, but will not be

able to stop the dynamic changes (when the blockchain gets to a block multiple of 10, the
difficulty will adjust). The result will be this:

BLOCKCHAIN: "Dynamic difficulty”

ADD NEW CONTENT | ADD

VALIDATE CHANGE DIFF 7 Wiew current

SEE / CHANGE CONTENTS

Block number

CHANGE CONTENTS

| sHow CURRENTBLOCK |

Figure 3.5: Management window with dynamic difficulty

21

UNIVERSITAT TELECOM ESCUELA
POLITECNICA TECNIC VLF“{"(RIOR
DE VALENCIA TELECOMUNICACION

3.3 Third iteration: SHA-512 hash

Currently, the hashing algorithm we are using is MD5. This algorithm is known for being
insecure and easily breakable, but it was easy to implement for the early stages of develop-
ment. Now, before we start implementing more security on the blockchain, we are going to
change to SHA-512. Without getting into much detail on the specifics of this hashing algo-
rithm, this technology is considered secure and even "overkill" on most of the implementa-
tions. Even Bitcoin uses a less secure hashing algorithm (SHA-256), so our blockchain will
be properly secured.

The only change in the code is in the computeHash method and it can be found in:
https://github.com/pepebndc/Blockchain-JAVA/tree/v3-sha512-hash

static String computeHash(int index, long time, String data, String lastHash,
int noncelInt) throws NoSuchAlgorithmException, UnsupportedEncodingException {
String plaintext="";

String hashtext="";

plaintext = index + time + data + lastHash + Integer.toString(noncelnt);

try {
MessageDigest md = MessageDigest.getInstance("SHA-512");
byte[] bytes = md.digest(plaintext.getBytes("UTF-8"));
StringBuilder sb = new StringBuilder();
for(int i=0; i< bytes.length ;i++){
sb.append (Integer.toString((bytes[i] & Oxff) + 0x100, 16).substring(1));
}
hashtext = sb.toString();
}
catch (NoSuchAlgorithmException e){
e.printStackTrace() ;
}

return hashtext;

This will create a 128-character hash for each block. Computing SHA-256 hashes is
more computationally demanding than MD5, so we change our concept of difficulty. Now,
instead of the number of '0’s at the beginning of the hash, we will introduce intermediate
steps in order to make more viable achieving the T-minute-per-block goal.

Each character on a SHA-512 hash can take any hexadecimal value (0-9 and A-F), for a
total of 16 different characters.

This security is needed in order to prevent possible attacks where the attacker knows
the hash (it is public) and reverse-engineers the contents of the block and fakes those con-
tents, as we explained in the blockchain basics chapter (2.3.2).

22

https://github.com/pepebndc/Blockchain-JAVA/tree/v3-sha512-hash

UNIVERSITAT TELECOM ESCUELA
POLITECNICA TECNIC ‘\‘ILC ERIOR

DE VALENCIA TELECOMUNICACION

3.4 Fourth iteration: users

Contents on a Blockchain are immutable, but identifying who created a certain transaction
or added specific information is crucial to the correct operation of the network. On the next
two iterations we will approach this issue and modify the project accordingly. On this fourth
iteration, we will be adding basic users and identifying those users through the network,
while on the fifth iteration we will redesign how data is stored in blocks and how users
"sign" those blocks. As usual, all the code corresponding to this iteration can be found in:

https://github.com/pepebndc/Blockchain-JAVA/tree/v4-Users

But first, let's start with the users. In a blockchain network, users are usually identi-
fled by an unique address inside the network. In our network, an address is a 50 charac-
ter long String with randomly generated characters in it, including lowercase and capital
letters, as well as numbers. With a 50-character-long random address, there are in total
62°0 = 4.16 + 10% different addresses, effectively making it impossible for two users to
generate the same address. Addresses can't be created sequentially since this will create
two problems:

1. The first issue is a security issue. If addresses are created sequentially, you will cer-
tainly know that the previous address to you does exist, and every combination pre-
vious to you is linked to an existing user, therefore opening the gates for a possible
attack.

With random addresses, sequential attacks can't be performed, although anyone con-
nected to the network knows the address of all the users.

2. The second problem is a logistic problem. As we will see later on the section, users
are created before connecting to the network, and you can't know what addresses
are being used and which onces aren't.

On this design, we will use asymmetric cryptography (RSA 1024) to identify and validate
users on the network. Asymmetric cryptography systems work providing a public and a
private key to each user. The public key is supposed to be known by everyone while private
key must remain secret. This mechanism allows the implantation of many things, but we
will be focused on two of them:

1. When you encrypt a content with your Private key, anyone can decrypt it using your
publicly available Public key. This allows anyone to certify that the content was sent
by you and only you, since no one else has access to your Private key.

2. On the other hand, when someone encrypts a content with your Public key, you and
only you can decrypt it and know the original contents. This is used to privately send
data that only the designated receiver can read.

Once we have some base knowledge, we can further explain how we have implemented
it on our project. We have created two new objects: User and LocalUser. LocalUser
contains the Name, Address, Public Key and Private Key of a user, and also implements
a method to create a new LocalUser.

23

https://github.com/pepebndc/Blockchain-JAVA/tree/v4-Users

UNIVERSITAT ‘ TE'F\ECO;‘L;HPM"nf
POLITECNICA ﬁmvwxyfﬁ RIOR

DE VALENCIA TELECOMUNICACION

public static LocalUser create(String newName) throws NoSuchAlgorithmException {

String newAddress = "";
KeyPairGenerator keyGen;
KeyPair pair;

PrivateKey newPrivate;
PublicKey newPublic;

char[] chars =
"abcdefghijklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789"
.toCharArray () ;
StringBuilder sb = new StringBuilder();
Random random = new Random() ;
for (int i = 0; i < 50; i++) {
char ¢ = chars[random.nextInt(chars.length)];
sb.append(c) ;
}
newAddress = sb.toString();

keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(1024);

pair = keyGen.generateKeyPair();

newPrivate = pair.getPrivate();

newPublic = pair.getPublic();

return new LocalUser (newName, newAddress, newPublic, newPrivate);

User is an object that contains the same information as LocalUser excluding the private
Key. This object is designed in order to store through the network the information of each
user.

Once the users are created, we have to modify some of the operations on the blockchain
and the management console.

Joining the network

Now that users can be identified, we have to make sure they are who they say they are
when joining the network. This mainly means corroborating that their public and private
keys match. In order to do this, we have to modify the connection process.

Previously, users simply had to send a request to join, and they would be accepted. Now,
users are sent a 'challenge” they have to solve and prove their keys are in order.

This challenge is simply a random string encrypted with the public key of the new user
and sent in bytes in order to be decrypted by the user. Once the decryption happens, the
user sends the solution and if it matches the original challenge, the user is admitted in the
network.

24

e UNIVERSITAT _TELECOM ESCUELA

s(POLITECNICA TECNICA VLE SUPERIOR
Sl < DE INGENIERIA DE
law DE VALENCIA TELECOMUNICACION

CONNECTING NETWORK
USER NODE

NEW HOST ADD
NEW USER ADD

Figure 3.6: Connection sequence with users.

25

UNIVERSITAT _TELECOM ESCUELA

s TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA D
DE VALENCIA TELECOMUNICACION

PublicKey pubKey = command.getPubKey() ;

Cipher encrypt = Cipher.getInstance("RSA/ECB/PKCS1Padding");

encrypt.init (Cipher.ENCRYPT_MODE, pubKey) ;

byte[] encryptedMessage = encrypt.doFinal(plainTextChallenge.getBytes());
System.out.println("I have created a challenge, encrypted: " + encryptedMessage);
TCPclient.sendChallenge(ClientIP, encryptedMessage);

This process works the same way either if itis a new user or an existing one who is trying
to connect. Existing users have to load their credentials before connecting (explained on
the next subsection).

Since now there are two different categories in the network (users and hosts), we have
to check if those are already on the network before notifying the rest of the hosts. A host
is a node of the network and is identified by its IP address. Hosts are removed from the list
when they disconnect, while users are saved forever.

Managing users

When using a service, users expect to be able to log in from different hosts or locations,
as well as going "offline" and then connecting again. When using a password-based ser-
vice, the user simply has to remember the password and they will be able to log in from
anywhere. On this asymmetric credential-based system, users must save their credentials
(name, address, public and private key) somewhere safe, since it's almost impossible for
anyone to remember all those data.

In order to solve this issue, we can save and load credentials from a file. This file con-
tains a LocalUser object and has an extension.BCpepe and can be loaded from our project.

Minor changes
We have also changed the way data is inserted in the chain. Now it's a String with the

address of the sender and the data, instead of just the data. This is a minor step and a
guide to the next iteration of the project, where transactions are completely redesigned.

Redesigned windows
Implementing users force some changes in the windows of the program.

- O X
BLOCKCHAIN

l CREATE A NEW BLOCKCHAIN J

EXISTING USER
JOIN AN EXISTING
NETWORK NEW USER

Pepe Blasco - ETSIT UPY 201718

Figure 3.7: Start window.

26

UNIVERSITAT _ TELECOM ESCUELA

Y POLITECNICA TECNICA VLC SUPERIOR
i . DE INGENIERIA DE
DE VALENCIA TELECOMUNICACION

CREATE A NEW BLOCKCHAIN

MName of the Blockchain: ||

Your new User

MName:

Save the data that will be shown in the next windows in a safe place,

 CREATE |

Pepe Blasco - ETSIT UPY 2017118

Figure 3.8: Creating a new Blockchain.

JOIN A NETWORK

IP of a node inside the network: ||

Your credentials: Select credentials

CONNECT MANAGE

Pepe Blasco - ETSIT UPV 201718

Figure 3.9: Joining the network with an existing user.

JOIN A NETWORK

IP of a node inside the network: 192.‘168.1.‘140|

Your name:

CONNECT MAMNAGE |

Pepe Blasco - ETSIT UPV 2017118

Figure 3.10: Joining the network with a new user.

27

UNIVERSITAT _ TELECOM ESCUELA

9 POLITECNICA TECNICA VLC SUPERIOR
. DE INGENIERIA DE
DE VALENCIA TELECOMUNICACION

BLOCKCHAIN: "TEST"

ADD NEW CONTENT | ADD

[vauDATE | | | | cHancEDIFF | 5 | View current |

SEE / CHANGE CONTENTS

Block number

CHANGE CONTENTS .

| sHow CURRENT BLOCK |

YOUR INFORMATION: l Save credentials J [Load credentials J

Blockchain Address: "0VFQPx)k1pBOeot6PoTkAmMaETmjlO5YJtnmllexPPDzYT0eHWC™

IF Address: "192.168.1.1407

Pepe Blasco - ETSIT UPV 201718

Figure 3.11: Management window with save/load options for users.

28

UNIVERSITAT TELECOM ESCUELA
POLITECNICA \ \ ‘\‘ILC ERIOR

DE VALENCIA TELECOMUNICACION

3.5 Fifth iteration: transactions

In this iteration, we are changing the basic design of our blockchain network. We used to
add simple strings to the blockchain as contents and now we are going to include trans-
actions. A transaction is an interaction of a user with the blockchain and it includes the
contents the user wants to include (which are encrypted, more on that later), as well as the
date it was created at and the users who interact with it. The code for this iteration can be
found in:

https://github.com/pepebndc/Blockchain-JAVA/tree/v5-Transactions

There are two essential types of transaction, those which are saved into the blockchain
by only one user, and those agreed by two or more users.

Before we take a deep look on transactions, in this iteration we have added an option to
start / stop mining, since some users might want to control the CPU use of their computer.
This is possible due to an introduction of a "kill switch" on the mining thread.

Now, focusing on transactions, we have to maintain the idea that the blockchain is a
concatenation of blocks, and each block stores information sent by the users to the net-
work. With this redesign, that information is now a list of transactions created by users.

It is important to be aware that one of the key functions of a blockchain is security. Se-
curity is implemented in different ways, and in this blockchain several techniques combine
to create one of the most (if not the most) secure method of storing data. In our blockchain,
security takes place when hashing the blocks with SHA-512 and connecting the blocks be-
tween them so that they can not be edited without invalidating the whole chain.

When we created the users, we went one step forward and forgot about traditional pass-
words and implemented an RSA-based system with public and private keys. Those keys
are used to certify that the user is who they say they are, avoiding identity thefts.

Now, with transactions, we take a giant leap forward ensuring that the content that is
included by the users is stored securely and every user on the network can certify who
created that transaction.

Each transactionis identified by a 75-character-long String and the contents of the trans-
actions are secured by an encryption process combining RSA and SHA. RSA, as we ex-
plained in the previous section, is an asymmetric encryption algorithm where each user
has a private and public key. On the other hand, SHA allows for a secure hash of contents.
Both of these processes are secure on their own, but combined are almost impossible to
hack while being able to create a beautiful and optimized encryption process.

Depending on the type of transaction it is (sent to the network or to other users), the
process differs a bit. When a user wants to send a transaction directly to the network, the
user hashes the content of the transaction, and then encrypts it with his private RSA key.
This way, anyone with the public RSA key would be able to decrypt the hash and compare
with the hash of the content he received and verify its integrity

If the transaction is created by two or more users (agreed transaction), the first user
(creator) performs the same process as before but instead of sending the transaction into
the network for mining, it is stored in a pending-transactions list. Then, the second user
(receiver) can see this pending transaction and read the contents. He hashes the contents
and compare it to the signed hash from the creator, if he agrees to it then he signs the hash
with his private RSA key.

29

https://github.com/pepebndc/Blockchain-JAVA/tree/v5-Transactions

UNIVERSITAT TELECOM ESCUEL/

POLITECNICA TECNICAVLE SUPERIOR

DE VALENCIA TELECOMUNICACION

int count = receivingAddresses.length() -
receivingAddresses.replace(";", "").length();

String[] address = receivingAddresses.split(";");

String myHashedContents = main.findHash(contents);

byte[] mySignature = Transaction.encryptSHA (myHashedContents.getBytes
(Charset.forName ("UTF-8")), null,
main.getLocalUser() .getPrivateKey()) ;

char[] chars =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
.toCharArray() ;

StringBuilder sb = new StringBuilder();

Random random = new Random();

for (int i = 0; 1 < 75; i++) {
char ¢ = chars[random.nextInt(chars.length)];
sb.append(c) ;

}

String transactionID = sb.toString();

List<String> newUserList = new ArrayList<>();
newUserList.add(main.getLocalUser() .getAddress());

List<byte[]> newSignaturelList = new ArrayList<>();
newSignaturelList.add(mySignature) ;
for(int a=0; a<l+count; a++){

newUserList.add(address([al);
newSignaturelist.add(null);

Transaction t = new Transaction(transactionID, newUserList, contents,
newSignaturelist, System.currentTimeMillis(), 1);

In this scenario, if someone wants to read the contents of a transaction and verify that
everyone involve agreed, he hashes the contents and compares them to the signed hash of
the creator, checking that the content he is seeing is what the creator and the rest of users
agreed on.

The graphic interface has changed and adapted to this new structure. Now, when users
search for the contents of a block, they get a list of transactions that were included in the
block. Then, they can search for the contents of a specific transaction in a new designated
area.

Every user can see all the transactions on the network once they have been signed by
every user. Transactions that are pending to verify will only be visible on the user interface

30

UNIVERSITAT

_ TELECOM ESCUELA
POLITECNICA TECNICA VLC SUPERIOR
DE VALENCIA DE INGENIERIA DE

TELECOMUNICACION

of those who are part of it. This version will be the base for future development and will be
used for implementing a proof of existence platform.

-] m]
BLOCKCHAIN: "Example"] Gurrentyy mining
YOUR INFORMATION: | save credentials | | Load credentials |
Blockchain Address: 3dSaxbQWWICQTohBJTAGIlanmu1YrBLns dvNAgDF3LvZCwoRyS
IP Address: "192.162.1.140"
ADD NEW TRANSACTION

| PUBLISH TO THE NETWORK | | SENDTOANOTHER USER | | REVIEW PENDING TRANSAGTIONS |

VAUDATE | | vaD ‘ | cHanceEDIFF | 5 | view current |

SEE TRANSACTIONS OF A BLOCK

List of transactions

Blocknumber 3 4ybpGdV3GSxQHPXge2HkOEfL eQIPOCVSKcOUHDWJyoMBkbZ7asiVHpXTIm7YICqgewjesEPgG

‘SHOW CURRENT BLOGK.

SEE INFORMATION OF A TRANSACTION

4ybpGdV3GSxQHPXge2HTkOEMLeQIPOCYSKcOUHDMW.IyoMBkbZ7asiVHpXTImTYICgewjes EF‘QG‘

Autor: 3dSzbQyWICQTohBITAG Ianmu1YrELnsdviNAGDF3LVZCwoRyS (pepe)
Type: To the netwark

Date: Thu Dec 07 12:09:04 CET 2017

Contents

This is atest

Pepe Blasco - ETSIT UPV 201718

Figure 3.12: Updated management window.

SEND TRANSACTION TO THE NETWORK

Blockchain Address: "3dSzxbQyWICQTohBJTAG lanmu1YrELnsdvNAgDF3LvZCwoRyS™

This is a tes]

(oo | (GeeEED

FPepe Blasco - ETSIT UPV 201718

Figure 3.13: Send transaction to network.

31

UNIVERSITAT _ TELECOM ESCUELA
POLITECNICA

TECNICA VLC SUPERIOR
< DE INGENIERIA DE
DE VALENCIA

TELECOMUNICACION

SEND TRANSACTION TO ANOTHER USER

Recelving Addrass: | OUHDWJyoMBKDZT asIVHPXTIMTYICqewjesEPHH| |

This is atestto anotheruser

(oo | (EEEED

Pepe Blasco - ETSIT UPV 2017118

Figure 3.14: Send transaction to another user.

YOUR PENDING TRANSACTIONS

Your pending transactions:

Transactions sended that are waiting to be verified by the other user:
—~Mo senttransactions pending to verify—

Transactions received waiting for verification:

UZ292YYKTb435bgb1KCajTpphaO5sH2Gwrke LBDY O 1xBgkYXGONED3thhOPCETPoLHIDIsZZSqTKZ

Verify a transaction: | ibgb1KCajTpphaOsH2GwrkeLBDYO1xBakYXGOMNED3thhOPCETPo LHIDiszZSqTKZ] |

Autor: Q0wWVLSppgxUtot81TaAcbhyklm41YVvE4CukdOTicSW14tdPaA (surface)
Type: To another user

Receiver User KWvD3tkGnj9si0wEjolgDkDOTEXYp8wA2Ogetqft08Lon1dg8
Date: Thu Dec 07 12:13:32 CET 2017
Contents:

This is a test of a transaction sent from another user

Pepe Blasco - ETSIT UPV 2017118

Figure 3.15: Control and verify pending transactions.

32

CHAPTER 4

Development of a Proof of Existence
platform

33

UNIVERSITAT TELECOM ESCUELA
POLITECNICA \ \ ‘\‘ILC ERIOR

DE VALENCIA TELECOMUNICACION

4.1 Introduction to PoE

Proof of Existence[3], or PoE for short, is the digital equivalent of sealing an envelope and
securing it in a trustful place.

However, doing this in a traditional way is very complicated and involves a lot of risks.
For instance, you have to completely trust a single point of failure, such as a notary or a
bank. Also, once it has been tampered, you have no information on who, when and where
interacted with this document.

Digital computers revolutionized this by storing a secure copy of the hash of a docu-
ment and checking whether or not the hash was the same when you wanted to verify this
document, but you still had the issue of the centred point of failure.

However, in blockchain, as we saw in the introduction of this project, there is no single
point of failure, since the information is safely stored on every node in the network, therefore
having redundancy and not a single point of failure.

Proving the existence of data at a certain point in time can be very useful for many
people, such as entrepeneurs, universities and even attorneys. Timestamping data in an
unalterable state while maintaining confidentiality is perfect for legal applications. Attor-
neys (or clients) can use it to prove the existence of many documents including a will, deed,
power of attorney, health care directive and so on without disclosing the contents of the
document. A person can use the blockchain to prove that a document, such as a will, that
will be presented in court in the future is the same unaltered document that was presented
to the blockchain at a prior point in time.

Other applications and uses for PoE are timestamping a document to prove that the
document existed in a certain point in time (for example, for bachelor’s thesis and master’s
thesis).

It is also possible to use this kind of platforms to perform fair public contest between
companies that apply for a certain project. Currently, if company A turns in their offer and
the public register is corrupted, company B might get their hands on As offer, therefore
modifying theirs and having a better deal. This can be avoided by registering the documents
in a blockchain-based PoE platform that stores the hash and the timestamp in a secure way,
and once after the deadline for the project is met, companies would present the full offer
and the verification that the offer matches the one registered on the blockchain.

4.1.1. How it works

Storing data in a blockchain is expensive, so we need to find a way to reduce the number of
bytes stored in order to make things go faster and cheaper while maintaining the security
and unigueness we need.

This is why we use, once again, hashes. Hashing a document creates a unique hash
that works as an "ID" to that document. If the document is changed in any way, the hash
will be different, therefore allowing us to detect modifications of a registered document.

The process of registering a document into a PoE platform consists in uploading the
document to the platform, where the hash will be computed and stored into the blockchain.
Then, when you want to verify the integrity of the document, you have to recompute the
hash and compare it with the one which was initially stored. If the document was modified
in any way, the hash will not be the same.

It is worth mentioning that some file formats change over time, for instance a Word
document is different every time you open it, therefore the verification would always be

34

_ TELECOM ESCUELA

UNIVERSITAT)
TECNICAVLC SUPERIOR
DE INGENIERIA DE

POLITECNICA
DE VALENCIA TELECOMUNICACION

wrong. This is why it's highly recommended to verify persistent documents such as PDF,

images or plain text notes.

35

UNIVERSITAT _ TELECOM ESCUELA
S TECNICA VLC SUPERIOR
POLITECNICA)

INGENIERIA DI
DE VALENCIA TELECOMUNICACION

4.2 Development

In order to create our own Proof of Existence platform, we will adapt our previous work to
match the requirements we need. All the code can be found in:

https://github.com/pepebndc/Blockchain-JAVA/tree/ve-PoE

First of all, we need to plan how we will transfer and register the hashes. After analyzing
our previous work, it is trivial that by simply introducing the hash into the "contents" field
in our transaction object, the network will behave correctly and all the requirements will be
matched.

On the other hand, we need to adapt our user interface to allow users to upload files
and send the hash to other users, while also allowing the receiving user to check if the
document they are verifying matches the one they own.

In order to do this, the main interface has been adapted to correctly show all the options
regarding the documents.

o
PROOF OF EXISTENCE: "poe™ (J curtenty mining
YOUR INFORMATION: Save credentials Load credentials

Blockchain Address: IsDUpFxH3ricDM3TgV0NobhKVVE7 bnnYU8wrgCRiatqdXGwisa

IP Address: “10.35.106°

ADD NEW DOCUMENT | PUBLISH TO THE NETWORK | | sEnp To ANOTHER USER | REVIEW PENDING DOCUMENTS.

| vALIDATE THE BLOCKCHAIN | | cranceDIFF | 5 | view currenT oiFFicULTY |

SEE DOCUMENTS OF A BLOCK

Block number

SHOW CURRENT BLOCK

SEE YOUR REGISTERED DOCUMENTS.

SEE INFORMATION OF A DOCUMENT

File HASH;
SelectFile
(selecta documentto compare batn)

Pepe Blasco - ETSIT UPV 2017118

Figure 4.1: Main window of the PoE platform

36

https://github.com/pepebndc/Blockchain-JAVA/tree/v6-PoE

UNIVERSITAT _ TELECOM ESCUELA
POLITECNICA TECNICA VLC SUPERIOR

< DE INGENIERIA DE
DE VALENCIA TELECOMUNICACION

4.2.1. Registration of documents

When adding a new document, the user is presented with a user-friendly menu where they

can upload a file from their computer.

| 2] - O
SEND DOCUMENT TO THE NETWORK

Blockchain Address: “IsDupFxH3rjcDm3TgV0nobhKWE7bnnYlJ8wrgCPfatgdXGwhsa™

File Path: "C:\Users\pepebiDeskiop\aa.bd”™

File HASH:"41562d4afb77154eb6a68aa7b55bd6 806356330097 ¢574cc0d1e3b2a27 ce 802"

SelectFile

s | (5D

Pepe Blasco - ETSIT UPY 2017/18

Figure 4.2: Sending a document to the network

SEND DOCUMENT TO ANOTHER USER

Receiving Addresses: (separate using ')

File path

File HASH:

SelectFile

o | (1688

Pepe Blasco - ETSIT UPV 2017118

Figure 4.3: Sending a document to another user

37

UNIVERSITAT _ TELECOM ESCUELA
POLITECNICA

TECNICAVLC SUPERIOR
< DE INGENIERIA DE
DE VALENCIA

TELECOMUNICACION

4.2.2. \Verification of documents

As we can see, the user has now all the options to send, publish and verify documents in

the network, with the addition of the option to compare a registered document with one of
their own at the bottom of the window.

SEE INFORMATION OF A DOCUMENT KngaACKPRK2209x0riu@2JFcTntWeH1VUPQRiyyGBUBVLIoNo 3 1Kee3 167)CWaUhv1IBJglaRIU

Autor: IsDupFxH3(jcDm3TgV0nobhKW87bnnYJJBWrgCPTatg dXGwisa (user1)
Type: Tothe network

Date: Mon Jun 18 11:15:50 CEST 2018

Hash ofthe document

415624af7

File HASH;
SelectFile
I5 the same? —>TRUE

4cc0d 630 2

Pepe Blasco - ETSIT UPV 2017/18

Figure 4.4: Verification of the same document

SEE INFORMATION OF A DOCUMENT Kn8aACKPRI2e09xbriug2.JF cTnti/pH1VUpOpjyyGBUBVLIBN03 1Kee3 1e7)CWalv1I8JgtoRIU

Autor: ISDUpFXH3(cDM3TgV0NobhKWB7 brnYJJgwigCPfalgdGuisa (usert)
Type: Tothe network

Date: Mon Jun 18 11:15:50 CEST 2018

Hash ofthe document:

4156204aM07 56330097C574

0d1e3D: or2

File HASH™D 1 3123268
Select File
IS the same? —>FALSE

Pepe Blasco - ETSIT UPV 2017/18

Figure 4.5: Verification of an altered document

When a second user needs to verify a document that a first user has sent, he is also
presented the option to verify the document before signing the transaction.

YOUR PENDING DOCUMENTS

Your pending documents:

Transactions sended that are waiting to be verified by the otheruser:
—MNo senttransactions pending to verify—

Transactions received waiting for verification:
—Mo received transactions pending to verify—

Verify 2 document:

Upload a document to compare

SelectFile File HASH:

(select a document to compare both) VERIFY CLOSE

Pepe Blasco - ETSIT UPV 201718

Figure 4.6: Verification of a document before signing

38

UNIVERSITAT TELECOM ESCUELA

< TECNICA VLC SUPERIOR
POLITECNICA DE INGENIERIA D¥
DE VALENCIA TELECOMUNICACION

4.2.3. List of registered documents

The user needs a way to list all of their documents. This is why it is implemented a method
to export to a plain text file all the documents he has registered. The exported file it is
includes the transaction hash, the document hash, the block in which the transaction was
included and the type of transaction it was.

With this information, the user can go to the main interface of the platform and look for
the transaction hash they are interested in, which will give them more information including
a timestamp and other user’s info.

R LIST OF DOCUMENTS SAVED BY —————————

2 1sDupFxH3rjcDm3TgV0nobhKW87bnnYJJ8wrgCPfatqdXGwNsa
R DATE: Mon Jun 18 11:36:24 CEST 2018 —-—-—-—
4

5 LIST:

8 Transaction in block 2

9 Transaction hash: Kn8aACKPRk2e09xbriu92JFcTntWpH1VUpOp]yyGeuBvLtbho31lKcc3le7CHaUhv118JgtIRIU
10 Document hash: 41562d4afb77£54eb6a68aa7b55bd6e06356330d97c574cc0dle3b2a27ce89E2
11 Type:To the network.
12

14 Transaction in block 29

15 Transaction hash: NeR62ST9udyGvbBxVArz1l1AUSaNHDGQTX1JYVNJLCEICkQO]6LEv2MAEO7QZzOXHMWiV4i92mIxHE
¢ Document hash: d4£a09bd70£70c5eea28£46001c161975bd9775dcd85aad3£d5b5Eb2e82e79c9

Type:To the network.

M

Transaction in block 29

Transaction hash: BSMjyvEkbFVmbrKvB6cpMLoNmOpsBtD2WOnFHGAK8IY8aa03A2h704SB04YCE7iVzqdlDvUSpIh
Document hash: 3211ad849a7480ddaefad19c8742bblfdee9f689216£c097£5£036d6d0c4cILE

Type:To the network.

Transaction in block 29

Transaction hash: OCmbZEodAcoHgtdgu9nQsHPepmVAcQ1d8SitXwvuImXdSOkamp80HxTE1tbVhBt1ADbDfWCcPuQeb
} Document hash: 388363d36852582a32d3e0e79f7e3£0a091ceca2cb8aled496cd4Te952c51a3b

29 Type:To the network.

Figure 4.7: List of users’ transactions

39

CHAPTER 5
Other blockchain applications

40

UNIVERSITAT TELECOM ESCUEL/

POLITECNICA TECNICAVLE SUPERIOR

DE VALENCIA TELECOMUNICACION

As we have seen, blockchain is not only able to transform the technological part of
business, but it also transforms the business part of business. With blockchain technology
new paradigms and opportunities are arising across industries. [O][10][11][12]

In this chapter, we will collect different use cases that are being redefined by blockchain
so that we can get a real sense of the broad range of opportunities this technology offers.

From money to law, including smart cities and car rental, disrupting digital identity and
audits, blockchain technology has proven to be useful in many more contexts than what
we could initially imagine. As we analyse on the beginning of this document, the key points
of blockchain technology are:

- Decentralisation: Data is stored on different nodes and information does not depend
of a single central identity.

+ Trustless: Consensus mechanisms are applied, therefore trusting the network code
rather than a single set of identities.

+ Persistent. Transactions are inmutable and timestamped by concatenating hashes
and invalidating any modification on the network.

With this three base points, we are now able to identify and analyse some of the most
common use cases for this technology. This analysis will be rather short and concise since
we are not implementing them, just identifying them for future development of this tech-
nology.

5.1 Money

Money is, and probably will always be, the key gear on our society. Although money is now
centralised on banks, it has not always been that way. People used to trade directly among
them with the goods they had, society used to be a (very rudimentary) P2P network that
shifted to central banks for many reasons.

However, money is now returning to a P2P model. Blockchain has proven to be a secure,
fast and reliable enough technology to send and receive money. Currently, a big part of
blockchain implementations are related to money.

Projects like Bitcoin, Litecoin, Monero and many more allow their users to transfer value
among them in a decentralised way, allowing anyone to participate and validate every move
performed on the network, therefore avoiding the complications and administrative delays
and issues central banks could introduce.

Advantages:

- Secure. Transactions are secure and will never be erased, assuring that once you
receive some money, it will not magically disappear.

+ Trustless. Users avoid the need to trust an external organisation such as a bank,
instead they can actively participate on the network.

Disadvantages:
+ Throughput. Current implementations of blockchain technology offer a low volume

of transactions per second, making it difficult to implement a global network with the
required volume of millions per second.

41

UNIVERSITAT TELECOM ESCUEL/

POLITECNICA TECNICAVLE SUPERIOR
DE VALENCIA DE INGENIERIADE,

Examples:
* https://bitcoin.org/

* https://litecoin.org

5.2 Tokenization

On our lives, everything is a token we can change for another token (in most of the cases,
a token named "eura"). For instance, we change a token of "banana" for a token of "euro'".

So, what if we digitalize those tokens and allow users to buy, sell and trade them? There
are many standars on tokenized assets (ERC20, ERC 721...) that allow platforms to tokenize
almost everything. You have a house, you can tokenize it. You have a kilogram of paper,
you can tokenize it. You have "one hour worth of energy", you can tokenize it.

Virtually everything is tokenizable, therefore allowing for an easy trade and verification
of authenticity, owneability and usage.

You could buy a token of "one hour of driving a Tesla car" when you go to another city
and need to rent a car for only one hour. The system will know when and where you picked
up the car and when and where you left it, the recharge cost and maintenance fee will be
calculated and the value of the token "one hour of driving a Tesla car" will vary accordingly.

Examples:

* https://www.cryptokitties.co/

* https://crypto20.com/en/

5.3 Supply chain

When you go to a sushi restaurant, you trust the restaurant to buy and preserve good quality
fish so that you don't get any disease. The same thing happens when you buy a diamond
and want to know where it came from.

Blockchain allows companies to create a global, trustless network where everything
is tracked and verified. When you get to the sushi restaurant, you could get a QR code
next to your nigiri identifying when the fish was caught, the temperature of the ship while
transporting and whether or not the cold chain was preserved.

5.4 Content creation monetization

Some of the biggest problems on the content creation industry is transparency, royalty dis-
tribution and ownership rights. With blockchain and smart contracts anyone could create
a decentralized, comprehensive and accurate database of music rights.

Using that network, | could play a song on my Youtube video and part of my benefits
would go directly to the artist. That artist could also have setup an smart contract that
divides the benefits of the group among the members of the group.

Examples:

* https://musicoin.org/

* https://opus.audio/

42

https://bitcoin.org/
https://litecoin.org
https://www.cryptokitties.co/
https://crypto20.com/en/
https://musicoin.org/
https://opus.audio/

UNIVERSITAT TELECOM ESCUELA
POLITECNICA \ \ ‘\‘ILC ERIOR

DE VALENCIA TELECOMUNICACION

5.5 Voting and governance

In many of the countries in the world, there are democracies as political systems. In those
systems, citizens cast a vote to decide on who should rule the country and what rules
should be implemented.

However, this is not a very effective method as it is currently being done (at least in
Spain), since we can only express our opinion once every four years and we can't change
our opinion in the meantime. Wouldn't it be great if we could create an Smart-Contract
which could verify the identity of everyone on Spain, allowing them to vote not only every 4
years, but maybe even every day for each separate proposed rule?

This way, everything would be truly democratic and we could cut a huge part of the
cost of democracy (salaries and a huge waste of paper every election). This might sound
like a crazy idea that is far away in time, but it has been already implemented in places like
Sierra Leone [13] and many cities and companies are working on projects to make this idea
a reality.

43

CHAPTER 6
Conclusions

44

UNIVERSITAT _TELECOM ESCUELA

POLITECNICA LJM‘N\‘IL’C‘ [,:,\,m,\,

DE VALENCIA TELECOMUNICACION

In this project we have seen how Blockchain technology is a reality and is disrupting
some of the biggest parts of how we currently see the world. After completing this disser-
tation both the student and the reader have a broad understanding of what Blockchain is
and how it works.

We have developed our own Blockchain using Java and the knowledge acquired during
the degree regarding cryptography and networking. We structured the project in a clear and
organized way that allowed us to develop step by step a complete blockchain and modify
it for a demonstration of a very interesting use case as is the verification of documents.

The implementation of our blockchain is completed, but could be improved in a further
revision by increasing the security of the P2P network and adding other methods to interact
with the network, such as a server or an API.

At the end of this project, the biggest thing we can conclude is that Blockchain is not
only money and that the potential of this technology of future developments will disrupt
and improve our lives, and | hope to be part of that revolution.

45

Bibliography

[1] 4 characteristics that set blockchain apart. https://ibm. com.

[2] Genesis block. https://en.bitcoin.it/wiki/Genesis_block

[3] Block. https://en.bitcoin.it/wiki/Block.

[4] The difference between PoW, PoS and Pol algorithms. https://steemit.com.

[5] NEM Technical Reference Introduces Reputation-Enhanced ‘Proof of Importance’.
https://cointelegraph.com.

[6] The Bitcoin Mining Arms Race: GHash.io and the 51% Issue. https://www.coindesk.
com.

[7] A Short Guide to Bitcoin Forks. https://www.coindesk. com.
[8] Proof of Existence. https://www.newsbtc.com/proof-of-existence/

[9] 17 Blockchain applications that are transforming society. https://blockgeeks . com/
guides/blockchain-applications/

[10] 8 Blockchain Applications That Could Help Your Small
Business. https://www.upwork.com/hiring/for-clients/
8-blockchain-applications-help-small-business/

[11] What Are the Applications and Use Cases of Blockchains? https://www.coindesk.
com/information/applications-use-cases-blockchains/

[12] Popular Use Cases of Blockchain Technology You Need to Know https://
hackernoon.com/popular-use-cases-of-blockchain-technology-you-need-to-know-df4e1905d37

[13] https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-

based-election/?guccounter=1 https://techcrunch.com/2018/03/14/
sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=
1

46

https://ibm.com
https://en.bitcoin.it/wiki/Genesis_block
https://en.bitcoin.it/wiki/Block
https://steemit.com
https://cointelegraph.com
https://www.coindesk.com
https://www.coindesk.com
https://www.coindesk.com
https://www.newsbtc.com/proof-of-existence/
https://blockgeeks.com/guides/blockchain-applications/
https://blockgeeks.com/guides/blockchain-applications/
https://www.upwork.com/hiring/for-clients/8-blockchain-applications-help-small-business/
https://www.upwork.com/hiring/for-clients/8-blockchain-applications-help-small-business/
https://www.coindesk.com/information/applications-use-cases-blockchains/
https://www.coindesk.com/information/applications-use-cases-blockchains/
https://hackernoon.com/popular-use-cases-of-blockchain-technology-you-need-to-know-df4e1905d373
https://hackernoon.com/popular-use-cases-of-blockchain-technology-you-need-to-know-df4e1905d373
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=1
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=1
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=1

	Contents
	List of Figures
	List of Tables
	Introduction
	Goals and distribution of the project

	Blockchain basics
	What is a block?
	Achieving consensus on cryptocurrencies
	Privacy and security on a Blockchain network
	What is hashing?
	Reverse-engineering the hash of a block
	"51% attack"

	Forks of a Blockchain

	Developing a blockchain in Java
	First iteration: core of the blockchain
	Second iteration: dynamic difficulty
	Third iteration: SHA-512 hash
	Fourth iteration: users
	Fifth iteration: transactions

	Development of a Proof of Existence platform
	Introduction to PoE
	How it works

	Development
	Registration of documents
	Verification of documents
	List of registered documents

	Other blockchain applications
	Money
	Tokenization
	Supply chain
	Content creation monetization
	Voting and governance

	Conclusions
	Bibliography

