
Universidad Polit\'ecnica de Valencia
Departamento de Sistemas Inform\'aticos y Computaci\'on

Contributions to High-Dimensional
Pattern Recognition

by

Mauricio Villegas Santamar\'{\i}a

Thesis presented at the Universidad Polit\'ecnica de
Valencia in partial fulfillment of the requirements
for the degree of Doctor.

Superviser:
Dr. Roberto Paredes

Revised by:
Prof. Josef Kittler (University of Surrey)
Prof. Mark Girolami (University College London)
Prof. Jordi Vitri\`a (Universitat de Barcelona)

Members of the committee:
Prof. Josef Kittler, President (University of Surrey)
Prof. Enrique Vidal, Secretary (Universidad Polit\'ecnica de Valencia)
Prof. Jordi Vitri\`a (Universitat de Barcelona)
Prof. Francesc J. Ferri (Universitat de Val\`encia)
Dr. Giorgio Fumera (Universit\`a di Cagliari)

Valencia, May 16\mathrm{t}\mathrm{h} 2011

A mi mam\'a,

Abstract / Resumen / Resum

This thesis gathers some contributions to statistical pattern recognition particularly
targeted at problems in which the feature vectors are high-dimensional. Three pattern
recognition scenarios are addressed, namely pattern classification, regression analysis
and score fusion. For each of these, an algorithm for learning a statistical model is
presented. In order to address the difficulty that is encountered when the feature
vectors are high-dimensional, adequate models and objective functions are defined.
The strategy of learning simultaneously a dimensionality reduction function and the
pattern recognition model parameters is shown to be quite effective, making it possible
to learn the model without discarding any discriminative information. Another topic
that is addressed in the thesis is the use of tangent vectors as a way to take better
advantage of the available training data. Using this idea, two popular discriminative
dimensionality reduction techniques are shown to be effectively improved. For each of
the algorithms proposed throughout the thesis, several data sets are used to illustrate
the properties and the performance of the approaches. The empirical results show
that the proposed techniques perform considerably well, and furthermore the models
learned tend to be very computationally efficient.

Esta tesis re\'une varias contribuciones al reconocimiento estad\'{\i}stico de formas
orientadas particularmente a problemas en los que los vectores de caracter\'{\i}sticas son
de una alta dimensionalidad. Tres escenarios de reconocimiento de formas se tratan,
espec\'{\i}ficamente clasificaci\'on de patrones, an\'alisis de regresi\'on y fusi\'on de valores.
Para cada uno de estos, un algoritmo para el aprendizaje de un modelo estad\'{\i}sti-
co es presentado. Para poder abordar las dificultades que se encuentran cuando los
vectores de caracter\'{\i}sticas son de una alta dimensionalidad, modelos y funciones obje-
tivo adecuadas son definidas. La estrategia de aprender simult\'aneamente una funci\'on
de reducci\'on de dimensionalidad y el modelo de reconocimiento se demuestra que es
muy efectiva, haciendo posible aprender el modelo sin desechar nada de informaci\'on
discriminatoria. Otro tema que es tratado en la tesis es el uso de vectores tangen-
tes como una forma para aprovechar mejor los datos de entrenamiento disponibles.
Usando esta idea, dos m\'etodos populares para la reducci\'on de dimensionalidad dis-
criminativa se muestra que efectivamente mejoran. Para cada uno de los algoritmos
propuestos a lo largo de la tesis, varios conjuntos de datos son usados para ilustrar
las propiedades y el desempe\~no de las t\'ecnicas. Los resultados emp\'{\i}ricos muestran que
las t\'ecnicas propuestas tienen un desempe\~no considerablemente bueno, y adem\'as los
modelos aprendidos tienden a ser bastante eficientes computacionalmente.

iv ABSTRACT / RESUMEN / RESUM

Esta tesi reunix diverses contribucions al reconeixement estad\'{\i}stic de formes, les
quals estan orientades particularment a problemes en qu\`e els vectors de caracter\'{\i}sti-
ques s\'on d'una alta dimensionalitat. Espec\'{\i}ficament es tracten tres escenaris del re-
coneixement de formes: classificaci\'o de patrons, an\`alisi de regressi\'o i fusi\'o de valors.
Per a cadascun d'aquests, un algorisme per a l'aprenentatge d'un model estad\'{\i}stic
\'es presentat. Per a poder abordar les dificultats que es troben quan els vectors de
caracter\'{\i}stiques s\'on d'una alta dimensionalitat, models i funcions objectiu adequa-
des s\'on definides. L'estrat\`egia d'aprendre simult\`aniament la funci\'o de reducci\'o de
dimensionalitat i el model de reconeixement demostra ser molt efectiva, fent possible
l'aprenentatge del model sense haver de rebutjar a cap informaci\'o discriminat\`oria. Un
altre tema que \'es tractat en esta tesi \'es l'\'us de vectors tangents com una forma per a
aprofitar millor les dades d'entrenament disponibles. Es mostra que l'aplicaci\'o d'esta
idea a dos m\`etodes populars per a la reducci\'o de dimensionalitat discriminativa efec-
tivament millora els resultats. Per a cadascun dels algorismes proposats al llarg de la
tesi, diversos conjunts de dades s\'on usats per a il\cdot lustrar les propietats i les presta-
cions de les t\`ecniques aplicades. Els resultats emp\'{\i}rics mostren que les dites t\`ecniques
tenen un rendiment excel\cdot lent, i que els models apresos tendixen a ser prou eficients
computacionalment.

Acknowledgments

First of all I would want to express my immense gratitude to the institutions and
grants that have given me the required resources to complete this work. To the Gen-
eralitat Valenciana - Conseller\'{\i}a d'Educaci\'o for granting me an FPI scholarship, and to
the Universidad Polit\'ecnica de Valencia and the Instituto Tecnol\'ogico de Inform\'atica
for being the host for my PhD. Also I would like to acknowledge the support from
several Spanish research grants, which here I mention ordered by decreasing impor-
tance: Consolider Ingenio 2010: MIPRCV (CSD2007-00018), DPI2006-15542-C04,
TIN2008-04571 and DPI2004-08279-C02-02.

My most sincere gratitude to Dr. Roberto Paredes, for being the adviser for this
thesis and for all of the time, help and support you have given me throughout these
years. To Prof. Enrique Vidal, thank you so much for believing in me and supporting
me to join the PRHLT group and the ITI. Finally to my colleagues and friends at the
ITI my most profound gratitude.

To Dr. Norman Poh and Prof. Josef Kittler thank you very much for giving me
the opportunity to visit the CVSSP. It was a very rewarding experience for me, and
I will never forget it. Also, many thanks to my new friends at CVSSP for making my
stay there be a success.

To the people who have spent some of their time to review my work, including
publications, this thesis and very soon the jury for the dissertation, thank you for
your useful suggestions from which I always learn a lot.

Very special thanks to la cosita, for helping me with some figures, designing the
cover, tips for improving my writing and encouraging me throughout the development
of this work. You have been able to cheer me up when I needed it the most. Even
though you do not understand the thesis, know that without you my work would have
been much worse.

To my parents, sister, and close family and friends, thank you all for so much, you
are the reason why I have been able to get here and for the person I have become.

Finally I have to say that there are many other people that I should thank here,
however it would be too extensive to mention every person or I may also forget to
include someone. I guess anyone who reads this which knows that they have helped
me in any way will know that I am very grateful.

Mauricio Villegas Santamar\'{\i}a
Valencia, March 10\mathrm{t}\mathrm{h} 2011

Contents

Abstract / Resumen / Resum iii

Acknowledgments v

Contents vii

List of Figures xi

List of Tables xiii

Notation xv

Abbreviations and Acronyms xvii

1 Introduction 1
1.1 Goals of the Thesis . 3
1.2 Organization of the Thesis . 4

2 Classification Problems and Dimensionality Reduction 5
2.1 Statistical Pattern Classification . 5

2.1.1 Review of Related Work . 6
2.2 Dimensionality Reduction in Classification 8

2.2.1 Review of Related Work . 9

3 Learning Projections and Prototypes for Classification 11
3.1 Estimation of the 1-NN Error Probability 12
3.2 Optimization Approximations . 14
3.3 The LDPP Algorithm . 17
3.4 Discussion . 18
3.5 Using LDPP only for Dimensionality Reduction 19
3.6 Orthonormality Constraint . 20
3.7 Algorithm Convergence and the Sigmoid Slope 21
3.8 Distances Analyzed . 21

3.8.1 Euclidean Distance . 21
3.8.2 Cosine Distance . 23

viii CONTENTS

3.9 Normalization and Learning Factors 24
3.10 Experiments . 26

3.10.1 Data Visualization . 27
3.10.2 UCI and Statlog Corpora . 30
3.10.3 High-Dimensional Data Sets . 33

3.11 Conclusions . 38

4 Modeling Variability Using Tangent Vectors 41
4.1 Overview of the Tangent Vectors . 41

4.1.1 Tangent Distance . 43
4.1.2 Estimation of Tangent Vectors 45

4.2 Principal Component Analysis . 47
4.2.1 Tangent Vectors in PCA . 48

4.3 Linear Discriminant Analysis . 49
4.3.1 Tangent Vectors in LDA . 50

4.4 Spectral Regression Discriminant Analysis 51
4.4.1 Tangent Vectors in SRDA . 53

4.5 LDPP Using the Tangent Distances 54
4.6 Experiments . 56

4.6.1 Gender Recognition . 57
4.6.2 Emotion Recognition . 58
4.6.3 Face Identification . 59
4.6.4 LDPP Using the Tangent Distances 61

4.7 Conclusions . 64

5 Regression Problems and Dimensionality Reduction 65
5.1 Regression Analysis . 65

5.1.1 Review of Related Work . 66
5.2 Dimensionality Reduction in Regression 67

5.2.1 Review of Related Work . 67
5.3 Learning Projections and Prototypes for Regression 68

5.3.1 Normalization and the LDPPR Parameters 72
5.4 Experiments . 73

5.4.1 StatLib and UCI Data Sets . 74
5.4.2 High-Dimensional Data Sets . 76

5.5 Conclusions . 78

6 Ranking Problems and Score Fusion 81
6.1 Review of Related Work . 82
6.2 Score Fusion by Maximizing the AUC 83

6.2.1 Score Normalization . 83
6.2.2 Score Fusion Model . 84
6.2.3 AUC Maximization . 84
6.2.4 Notes on the Implementation of the Algorithm 86
6.2.5 Extensions of the Algorithm . 87

6.3 Biometric Score Fusion . 87

CONTENTS ix

6.4 Estimation of Quality by Fusion . 90
6.4.1 Proposed Quality Features . 91
6.4.2 Quality Fusion Methods for Frame Selection 91
6.4.3 Experimental Results . 92

6.5 Conclusions . 95

7 General Conclusions 97
7.1 Directions for Future Research . 99
7.2 Scientific Publications . 100

A Mathematical Derivations 103
A.1 Chapter 3 . 103

A.1.1 Gradients of the Goal Function in LDPP 103
A.1.2 Gradients of the Euclidean Distance in LDPP 103
A.1.3 Gradients of the Cosine Distance in LDPP 104
A.1.4 Dependence of the LDPP Parameters on the Distance 105
A.1.5 Normalization Compensation 106

A.2 Chapter 4 . 106
A.2.1 The Single Sided Tangent Distance 106
A.2.2 Principal Component Analysis 107
A.2.3 Linear Discriminant Analysis 108
A.2.4 Between Scatter Matrix Accounting for Tangent Vectors 108
A.2.5 Covariance Matrix Accounting for Tangent Vectors 109
A.2.6 Gradients of the Tangent Distance in LDPP 110

A.3 Chapter 5 . 111
A.3.1 Gradients of the Goal Function in LDPPR 111

A.4 Chapter 6 . 112
A.4.1 Gradients of the Goal Function in SFMA 112
A.4.2 Constraints in SFMA . 113

Bibliography 115

List of Figures

1.1 Typical structure of a pattern recognition system. 2
1.2 Typical structure of a pattern recognition system for high-dimensional

problems. 3

3.1 An illustrative example of the problem of the LOO error estimation
for dimensionality reduction learning. Data generated from two high-
dimensional Gaussian distributions which only differ in one component
of their means. Plots for subspaces which (a) do and (b) do not include
the differing component. 13

3.2 Effect of the sigmoid approximation on learning. 16
3.3 Algorithm: Learning Discriminative Projections and Prototypes

(LDPP). 18
3.4 Typical behavior of the goal function as the LDPP algorithm iterates

for different values of \beta . This is for one fold of the gender data set and
E = 16, Mc = 4. 22

3.5 Graph illustrating the relationship of the \beta parameter with the recog-
nition performance and convergence iterations. This is an average of
the 5-fold cross-validation for both the gender and emotion data sets. 22

3.6 Plot of the multi-modal 7 class 3-dimensional helix synthetic data set.
To this data, 3 dimensions of random noise were added. 28

3.7 2-D visualization of a 3-D synthetic helix with 3 additional dimensions
of random noise. The graphs include the prototypes (big points in
black), the corresponding voronoi diagram and the training data (small
points in color). At the left is the initialization (PCA and c-means)
and at the right, the final result after LDPP learning. 29

3.8 2-D visualization of a 3-D synthetic helix with 3 additional dimensions
of random noise for different dimensionality reduction techniques. . . 29

3.9 2-D visualization obtained by LDPP learning of the UCI Multiple Fea-
tures Data Set of handwritten digits. The graph includes the proto-
types (big points in black), the corresponding voronoi diagram and the
training data (small points in color). 31

3.10 2-D visualization of the UCI Multiple Features Data Set of handwritten
digits for different dimensionality reduction techniques. 31

xii LIST OF FIGURES

3.11 2-D visualization after LDPP learning for the six basic emotions and
neutral face for the Cohn-Kanade Database. The graph includes the
prototypes (big points in black), the corresponding voronoi diagram,
the original image for each prototype, and the training data (small
points in color). 37

3.12 Text classification error rates varying the vocabulary size for the 4
Universities WebKb data set. 39

4.1 Top: An illustration of the linear approximation of transformations by
means of tangent vectors. Bottom: An example of an image rotated at
various angles and the corresponding rotation approximations using a
tangent vector. 42

4.2 Illustration of the tangent distance, the single sided tangent distance
and their relationship with the Euclidean distance. 44

4.3 Face identification accuracy on a subset of the FRGC varying the angle
of rotation and the scaling factor for TPCA+TLDA and TSRDA and
their improvement with respect to PCA+LDA and SRDA. 60

4.4 Face identification accuracy on a subset of the FRGC varying the angle
of rotation and the scaling factor for LDPP* using different distances. 63

5.1 Graph of the function tanh(\alpha) and its derivative sech2(\alpha). 69
5.2 Algorithm: Learning Discriminative Projections and Prototypes for

Regression (LDPPR). 71
5.3 Average regression performance for the StatLib and UCI data sets when

a percentage of training samples are mislabeled. 75
5.4 Average regression performance for the StatLib and UCI data sets as

a function of the \beta LDPPR parameter. 76
5.5 Images representing one of the regression models obtained by LDPPR

for the estimation of the age using facial images. (a) The first 16
components (out of 32) of the dimensionality reduction base. (b) The
four prototypes of the ages. 78

5.6 Images representing one of the regression models obtained by LDPPR
for the face pose estimation. (a) The first 4 components (out of 24) of
the dimensionality reduction base. (b) The sixteen prototypes of the
poses. 79

6.1 Expected Performance Curves of the fusion algorithms for XM2VTS
LP1 and BSSR1 Face, top and bottom respectively. 89

6.2 Relationship between the SFMA goal function and the AUC for a sig-
moid slope of \beta = 50. This result is for the Face BSSR1 data set.
. 90

6.3 Face verification results for the BANCA Ua protocol using the LF
algorithm. 94

List of Tables

3.1 Error rates (in \%) for several data sets and different dimensionality
reduction techniques. The last two rows are the average classification
rank and the average speedup relative to k-NN in the original space. 32

3.2 Face gender recognition results for different dimensionality reduction
techniques. 34

3.3 Face emotion recognition results on the Cohn-Kanade database for dif-
ferent dimensionality reduction techniques. 36

3.4 Text classification results for a vocabulary of 500 words on the WebKb
database for different dimensionality reduction techniques. 39

4.1 Comparison of TLDA and TSRDA with different dimensionality re-
duction techniques for the face gender recognition data set. 57

4.2 Comparison of TLDA and TSRDA with different dimensionality re-
duction techniques for the Cohn-Kanade face emotion recognition data
set. 59

4.3 Comparison of TLDA and TSRDA with different dimensionality re-
duction techniques for the face identification data set. 61

4.4 Comparison of LDPP* with different distances used for learning and
some baseline techniques for the face identification data set. 62

5.1 Regression results in MAD for data sets from StatLib and the UCI
Machine Learning Repository. 74

5.2 Face age estimation results for different regression techniques. 77
5.3 Face pose estimation results for different regression techniques. 77

6.1 Summary of biometric score fusion results on different data sets. . . . 88
6.2 Comparison of quality fusion methods. 93

Notation

Throughout the thesis the following notation has been used. Scalars are denoted
in roman italics, generally using lowercase letters if they are variables (x, p, \beta) or
in uppercase if they are constants (N , D, C). Also in roman italics, vectors are
denoted in lowercase boldface (\bfitx , \bfitp , \bfitmu) and matrices in uppercase boldface (\bfitX , \bfitP ,
\bfitB). Random variables are distinguished by using Sans Serif font (\sansx , \sansa , \sansb) and for
random vectors and matrices using boldface lowercase and uppercase respectively (\bfsansx ,
\bfsansp , \bfsansX , \bfsansP). Sets are either uppercase calligraphic (\scrX) or blackboard face for the special
number sets (\BbbR).

The following table serves as a reference to the common symbols, mathematical
operations and functions used throughout the thesis.

Symbol Description

\prime (prime) Used to indicate the derivative of a function or
a different variable.

\^(hat) Used to indicate a normalized vector, orthonor-
malized matrix, optimal value.

\~(tilde) Used to indicate a dimensionally reduced ver-
sion of a vector/matrix/set.

0 A matrix or a vector composed of zeros. The
dimensionality of 0 can be inferred from the
context.

1 A column vector composed of ones. The dimen-
sionality of 1 can be inferred from the context.

\bfitI The identity matrix, ones in the diagonal and
zeros elsewhere.

\bfitA \bullet \bfitB Hadamard or entrywise product between ma-
trices \bfitA and \bfitB .

\bfitA \otimes \bfitB Kronecker product between matrices \bfitA and \bfitB .

xvi NOTATION

\bfitA \ast \bfitB 2-D convolution between matrices \bfitA and \bfitB .

\bfitA \sansT Transpose of matrix \bfitA .

\bfitA - 1 The inverse of square matrix \bfitA .

\sansT \sansr (\bfitA) Trace of matrix \bfitA , i.e. the sum of the elements
on the main diagonal.

a \propto b a is proportional to b.

a \in \scrB a is an element of set \scrB .

\scrA \subset \scrB \scrA is a proper subset of \scrB .

\scrA \not \subseteq \scrB \scrA is not a subset of \scrB .

d(\bfita , \bfitb) A distance function between vectors \bfita and \bfitb .

tanh(z) Hyperbolic Tangent.

sech(z) Hyperbolic Secant.

std(\scrA) Function which gives the standard deviation of
the values in the set \scrA .

auc(\scrA ,\scrB) Function which gives the AUC given the sets
\scrA and \scrB of positive and negative scores respec-
tively.

| a| Number of elements in a set or absolute value
of a scalar.

\| \bfita \| Norm of vector \bfita .

\sansE [\sansa] The expected value of a random variable \sansa .

\sansE [\sansa | \sansb = b] =

\int \infty

 - \infty
\sansa p(\sansa | \sansb = b) d\sansa Conditional expectation of a random variable \sansa

given that \sansb = b.

step(z) =

\left\{ 0 if z < 0
0.5 if z = 0
1 if z > 0

The Heaviside or unit step function.

sgn(z) =

\left\{ - 1 if z < 0
0 if z = 0
1 if z > 0

The signum function.

S\beta (z) =
1

1 + exp(- \beta z)
The sigmoid function with slope \beta .

\nabla
\bfitA
z =

\left(
\partial z

\partial a11

\partial z
\partial a12

. . .
\partial z

\partial a21

\partial z
\partial a22

...
. . .

\right) The gradient operator.

Abbreviations and Acronyms

1-NN One Nearest Neighbor
ATD Average Single Sided Tangent Distance
ANN Artificial Neural Network
AUC Area Under the ROC Curve
DR Dimensionality Reduction
EER Equal Error Rate
FAR False Acceptance Rate
GMM Gaussian Mixture Model
ICA Independent Component Analysis
k-NN k Nearest Neighbors
KKT Karush-Kuhn-Tucker
LDA Linear Discriminant Analysis
LDPP Learning Discriminative Projections and Prototypes
LLD Linear Laplacian Discrimination
LMNN Large Margin Nearest Neighbor
LOO Leave-One-Out
LPP Locality Preserving Projections
LR Likelihood Ratio
LSDA Locality Sensitive Discriminant Analysis
MAD Mean Absolute Deviation
MFA Marginal Fisher Analysis
MLCC Metric Learning by Collapsing Classes
MLP Multilayer Perceptron
MSE Mean Squared Error
NCA Neighborhood Component Analysis
NDA Nonparametric Discriminant Analysis
OTD Observation Single Sided Tangent Distance
PCA Principal Component Analysis
PCR Principal Component Regression
RMSE Rood Mean Squared Error
ROC Receiver Operating Characteristic Curve
RTD Reference Single Sided Tangent Distance
RVM Relevance Vector Machine
SAVE Sliced Average Variance Estimation

xviii ABBREVIATIONS AND ACRONYMS

SFMA Score Fusion by Maximizing the AUC
SIR Sliced Inverse Regression
SLPP Supervised Locality Preserving Projections
SOM Self Organizing Map
SRDA Spectral Regression Discriminant Analysis
STD Single Sided Tangent Distance
SVM Support Vector Machine
SVR Support Vector Regression
TD Tangent Distance
TER Total Error Rate
TLDA Tangent Vector LDA
TPCA Tangent Vector PCA
TSRDA Tangent Vector SRDA
const. Constant
s.t. Subject to

Chapter 1

Introduction

With the increase of the processing power of computers and cheaper means of gather-
ing information, more and more problems can be solved to some extent by means of
software. This tendency can be observed in many areas of human knowledge, being
among them the field of statistical pattern recognition, which is the topic of this the-
sis. Many of the statistical pattern recognition problems that can now be addressed,
are the ones with a high dimensionality, since those are the ones that require more
computational resources. However, with a high dimensionality there is a phenomenon
that affects negatively the statistical methods, and in particular the statistical pat-
tern recognition, which is the so called curse of dimensionality. This phenomenon,
called like this for the first time by Bellman in 1961 [Bellman, 1961], refers to the fact
that the number of samples required to estimate a function of multiple variables to a
certain degree of accuracy, increases exponentially with the number of variables. In
practice, it is very common that given the number of variables of a task, it is very ex-
pensive to obtain the number of samples required to estimate the function adequately.
Nowadays, when one confronts a pattern recognition problem with a high dimension-
ality, it is a common approach to previously use a dimensionality reduction method,
which just as the name suggests, has as objective to reduce the dimensionality of the
data. This somewhat overcomes the curse of dimensionality, and makes it easier to
estimate adequate statistical models with the amount of samples available.

In this context, the objective of the dimensionality reduction method is to reduce
as much as possible the dimensionality of the data in order to overcome the curse
of dimensionality. Ideally all of the discriminatory information should be kept and
all of the sources of noise be removed, however, this is difficult to achieve and with
common dimensionality reduction methods this is not guarantied. Furthermore, the
dimensionality to which the data should be reduced, also known as the intrinsic dimen-
sionality of the task, is not known [Fukunaga and Olsen, 1971]. There are methods to
estimate the intrinsic dimensionality, however, it is not a completely solved problem
and furthermore depending on the form of the dimensionality reduction function, a
dimensionality higher than the intrinsic would be required. Additionally, this dimen-
sionality does not depend only on the data, an assumption that make the majority of
methods, but it also depends on the concrete task. To illustrate this, take as example

2 CHAPTER 1. INTRODUCTION

face images. If the task is to recognize facial expressions, then the facial hair is a
source of noise that bothers the recognition, and ideally the dimensionality reduction
should remove it. However if the task is to detect the presence of facial hair, the roles
are interchanged and the facial expressions are a source of noise.

A statistical pattern recognition system can be defined as a method which for every
given input observation, it assigns an output derived from a previously estimated
statistical model. Depending on which type of output the system gives, the pattern
recognition system is called differently. A few examples of pattern recognition systems
are: regression if the output is a numerical value; classification if the output is the
label of a previously defined set of classes; and ranking if the output is some sort of
ordering assigned to the input. The estimation of the statistical model used by the
system by means of a set of samples is known as learning. Depending on whether the
learning process uses or does not use the output values of the samples, it is referred
to as supervised or unsupervised learning respectively.

Observation o

Preprocessing

Feature Extraction

Recognition Model

f(\bfitx)

\bfitx \in \BbbR D

Figure 1.1. Typical structure of a pattern recognition system.

Supposing that the input can be represented as a feature vector, which is not
always the case, the typical structure that a pattern recognition system has can be
observed in figure 1.1. The system receives as input an observation o which generally
needs some type of preprocessing. Examples of the preprocessing step could be: filter-
ing of an audio signal to remove noise and keep only the audible part, or compensating
for the distortions in an image introduced by the optics. The next step, feature ex-
traction, takes the preprocessed input and extracts the relevant pieces of information
and represents them in a mathematical form that can be modeled statistically, in the
diagram being a feature vector \bfitx \in \BbbR D which is one of the possible representations.
Then the recognition model gives the output of the system. A final step omitted in
the diagram could be some postprocessing required so that the output can be useful
for a specific task.

As mentioned earlier, there are problems which have a high dimensionality and
are difficult to model statistically. By high-dimensional problems it is meant that the
number of features, i.e. D, is relatively high compared to the number of samples that
can be obtained for learning. One possibility to handle better these high-dimensional

1.1. GOALS OF THE THESIS 3

problems is to introduce a dimensionality reduction step, as can be observed in figure
1.2. Throughout the thesis, to distinguish the feature space before and after applying
the dimensionality reduction transformation, they will be referred to as the original
space and the target space respectively.

Observation o

Preprocessing

Feature Extraction

Dim. Reduction

Recognition Model

f(\~\bfitx)

\bfitx \in \BbbR D

r(\bfitx) = \~\bfitx \in \BbbR E , E \ll D

Figure 1.2. Typical structure of a pattern recognition system for high-dimensional prob-
lems.

In several works on pattern recognition, the task of reducing the dimensionality
of feature vectors is considered to be part of the feature extraction process. In this
work, these two steps are considered to be different. The differences rely in that
for high-dimensional problems, despite the efforts that can be made to include only
the relevant information, the feature vectors are still high-dimensional, and that the
dimensionality reduction step always receives as input a feature vector, unlike the
feature extraction.

Another approach to handle high dimensional problems is to use a feature selection
process. This would be that given the feature vector, only a subset of the features are
kept for the recognition. This can be thought of as a special case of dimensionality
reduction, however in this work they are considered to be different.

1.1 Goals of the Thesis

The goal of this thesis is to propose new methods for learning statistical pattern recog-
nition models for tasks which have high-dimensional feature vectors. In the literature,
high-dimensionality problems are usually handled using previously a dimensionality
reduction method and independently afterward the pattern recognition models are
learned. In this work, an alternative methodology is considered, in which the learning
of the dimensionality reduction parameters and the recognition models are simultane-

4 CHAPTER 1. INTRODUCTION

ous. This methodology avoids the problem that when reducing dimensionality, useful
information for recognition can be discarded.

Additionally, the proposed methods are based on a learning criterion adequate
for the specific task that is being addressed. For classification tasks, the objective
should be to minimize the probability of classification error. For ranking tasks, or in
other words, tasks which the order assigned to the data is of importance, an adequate
objective is to maximize the Area Under the ROC curve. Finally, for regression
tasks, an adequate objective is to minimize the Mean Squared Error. Although these
measures are adequate for each type of task, also importance must be given to the
possibility that in the training sets there are outliers and that the models should
generalize well to unseen data.

In order to evaluate the methods proposed, several data sets were used. In some
cases, data sets with a low dimensionality are employed to show that the approach
works and illustrate its properties. For each pattern recognition scenario, different
high-dimensional data sets are used. The data sets for several tasks were chosen so
that it can be observed that the proposed approaches are general pattern recognition
techniques. However, most of the experiments and data sets are related to face recog-
nition and analysis, since it is an area of research which currently has great interest
and with a wide range of applications. So that the reader does not misinterpret the
objective of these experiments, it must be emphasized that the idea is not to com-
pletely solve each of the face recognition tasks. In this sense, this thesis is targeted
at developing learning methods which handle well the high dimensionality. Correctly
addressing each of the tasks would require among other things, face detection, ad-
equate features robust to variabilities such as different illumination conditions and
facial expressions.

1.2 Organization of the Thesis

This thesis is organized as follows. The next chapter discusses the topic of statis-
tical pattern classification and how are the problems with high-dimensional feature
vectors commonly handled. Also, the dimensionality reduction techniques used for
classification more closely related to the work presented in this thesis are reviewed.
Followed by this, chapter 3 presents a proposed algorithm designed to handle well
high-dimensional classification problems. Chapter 4 introduces the use of the tangent
vectors as a method to extract additional information from the training data. Pro-
posals are given to improve a couple of dimensionality techniques and the algorithm
presented in the preceding chapter. The following chapter, discusses the problem of
high-dimensional feature vectors in regression analysis and a proposed algorithm is
presented. Chapter 6 discusses the task of score fusion and presents an algorithm
targeted at this type of tasks. The final chapter gives the general conclusions of the
thesis, states possible directions for future research and the scientific publications de-
rived from the work presented in the thesis are enumerated. For a clear understanding
of all of the mathematics presented in the thesis, the reader is referred to the descrip-
tion of the notation used which is in page xv. Furthermore, detailed mathematical
derivations for each of the results presented are found in appendix A.

Chapter 2

Classification Problems and
Dimensionality Reduction

This chapter serves as an introduction to the following two chapters which treat the
standard classification problem. In the standard classification problem, for a given
input the pattern recognition system assigns it one class from a finite set of previously
defined classes. Examples of this type of problems can be:

\bullet Is an e-mail spam or not?

\bullet Which character of the alphabet is represented in an image?

\bullet What genre of music is a song?

\bullet From which company is the car in a picture?

The basic characteristic of this type of problems is that the objective is to have the
lowest classification error probability, or alternatively have a minimum overall risk
(see section 2.1). Furthermore, the objective of the thesis is to analyze problems in
which the feature vectors are high-dimensional, therefore in this chapter the focus is
on high-dimensional pattern classification problems.

The next section introduces the statistical pattern classification theory that is re-
quired to understand the algorithms presented later in the thesis. Additionally a short
review is given of some of the pattern classification techniques which are related to
the work presented in this thesis. Followed by this, there is a section dedicated to the
problem of dimensionality reduction targeted specifically at classification problems.
Also a review of the most closely related methods found on the literature is given.

2.1 Statistical Pattern Classification

The basic structure of a pattern recognition system was presented in figure 1.1. From
an input signal or observation, which generally needs some type of preprocessing,
a series of measurements or features are extracted and commonly represented as a

6 CHAPTER 2. CLASSIFICATION PROBLEMS AND DIMENSIONALITY REDUCTION

vector \bfitx \in \BbbR D. Given a feature vector \bfitx , the pattern recognition system should
assign it a class from a finite set of previously defined classes \Omega = \{ 1, . . . , C\} . The
classifier is thus characterized by the classification function

f : \BbbR D - \rightarrow \Omega . (2.1)

In general when a classifier incurs in an error, the cost of making that decision can
be different depending on which is the true class and what decision was taken. In
the literature, this is known as the loss function \lambda (\omega | \omega t), which quantifies the cost of
deciding class \omega given that the true class is \omega t. The expected loss of a classifier for
deciding a class \omega given a feature vector \bfitx , known as the conditional risk, is given by

R(\omega | \bfitx) =
\sum
\omega t\in \Omega

\lambda (\omega | \omega t)Pr(\omega t| \bfitx) . (2.2)

In order to obtain an optimal classification function (2.1), one would want to minimize
the overall risk, which would be the expected loss associated with a given decision.
However, since minimizing the conditional risk for each observation \bfitx is sufficient
to minimize the overall risk [Duda et al., 2000, chap. 2], the optimal classification
function is the one which chooses the class whose conditional risk is minimum, known
as the minimum Bayes risk

f(\bfitx) = argmin
\omega \in \Omega

R(\omega | \bfitx) . (2.3)

This equation is quite general and will be considered when describing the proposed
algorithms. Nonetheless, in practice it is common to assume the loss function to be
the one known as the 0--1 loss function, either because it is difficult to estimate the
true loss function or it is a reasonable assumption for the particular problem. This
0--1 loss function is defined as

\lambda (\omega | \omega t) =

\biggl\{
0 if \omega = \omega t

1 otherwise
, (2.4)

With this assumption the risk simplifies to 1 - Pr(\omega | \bfitx), thus the optimal classification
function simplifies to the better known expression

f(\bfitx) = argmax
\omega \in \Omega

Pr(\omega | \bfitx) . (2.5)

If the posterior distributions Pr(\omega | \bfitx) are known, which means that the optimal clas-
sification function is available, then the classifier would have the theoretical minimum
error probability for that task, which is known as the Bayes classifier error rate.

2.1.1 Review of Related Work

The literature on statistical pattern classification is extensive and is beyond the scope
of this thesis to give a complete review. For this, one can refer to well known books
on statistical pattern recognition [Duda et al., 2000; Fukunaga, 1990]. The pattern

2.1. STATISTICAL PATTERN CLASSIFICATION 7

classification methods can be divided into two groups, the parametric and the non-
parametric methods. The parametric methods assume that the data has a particular
distribution, such as having a Gaussian, Multinomial or Bernoulli distribution, or
having a mixture of some basic distribution. For these methods, the problem of
classifier learning reduces to the task of estimating the parameters of the assumed
distribution. For instance, for a Gaussian distribution one has to estimate the mean
and the covariance matrices for each of the classes. The nonparametric pattern clas-
sification methods are all of the other methods for which there is no assumption of
a particular distribution of the data. Among the nonparametric methods there are,
the classifiers based on distances, i.e. k Nearest Neighbor classifier (k-NN), the dis-
criminant functions, the Artificial Neural Networks (ANN) and the Support Vector
Machine (SVM).

In this thesis, the classifier used to compare different dimensionality reduction
techniques and also used for some of the proposed techniques is the k-NN classifier.
This is probably the most intuitive and easy to understand classifier, furthermore it
offers very good recognition performance. The k-NN classifier has been thoroughly
analyzed and many theoretical and practical properties have been established, see for
instance [Duda et al., 2000, chap. 4] and [Fukunaga, 1990, chap. 7].

Another classifier which currently is considered to be the state-of-the-art in pattern
classification is the Support Vector Machine (SVM) [Cortes and Vapnik, 1995]. The
SVM is very popular because of several factors, among them, very good recognition
performance and it handles well high-dimensional problems.

In this work, an emphasis is made on the speed of the classifier. Recently there has
been some works which also target this objective. Worth mentioning are the Sparse
Bayes methods and in particular the Relevance Vector Machine (RVM) [Tipping, 2001]
which uses a model of identical functional form as the SVM. The great advantage of
the RVM is that by being sparse it derives models with typically much fewer basis
functions than a comparable SVM. This difference also makes the RVM much faster in
the classification phase than the SVM. In this same direction of research is the more
recent Sparse Multinomial Logistic Regression (SMLR) [Krishnapuram et al., 2005],
which is a true multiclass method which scales well both in the number of training
samples and the feature dimensionality.

The proposed approaches are also related to the family of pattern recognition
algorithms based on gradient descent optimization, in particular, the neural networks
algorithms [Bishop, 1995] such as the Multilayer Perceptron (MLP) which uses the
Backpropagation algorithm [Rumelhart et al., 1986] for learning. The MLP and the
proposed algorithm both use a sigmoid function, the MLP uses it for handling non-
linear problems while the LDPP algorithm (see chapter 3) introduces it to obtain a
suitable approximation to the 1-NN classification error rate. Another similarity is
that while the number of hidden neurons defines the structural complexity and the
representation capability of the recognizer, the same can be said for the number of
prototypes of the proposed method, as will be explained later in chapter 3.

Very closely related to the approaches presented in this thesis are the methods
Class and Prototype Weight learning algorithm (CPW) [Paredes and Vidal, 2006b]
and Learning Prototypes and Distances algorithm (LPD) [Paredes and Vidal, 2006a].
The former proposes learning a weighted distance optimized for 1-NN classification

8 CHAPTER 2. CLASSIFICATION PROBLEMS AND DIMENSIONALITY REDUCTION

and the latter additionally to the weighted distance it learns a reduced set of pro-
totypes for the classification. Both of these techniques are based on optimizing an
approximation of the 1-NN classification error probability by introducing a sigmoid
function. As will be seen later on, the proposed method is based on the same ideas.

2.2 Dimensionality Reduction in Classification

When dealing with high-dimensional classification problems there are basically two
main approaches that can be followed for obtaining good recognition models. The
first approach is to use very simple classifiers and have some type of regularizer so that
they behave well in the high dimensional spaces, one example of this is the well known
Support Vector Machine (SVM). The other approach is to have a dimensionality
reduction stage prior to the classification model, as was presented in figure 1.2, so
that the curse of dimensionality is avoided. Both of these approaches have their
advantages, and neither of them can be considered better. The latter approach has
been the one followed in this thesis, although comparisons with other methods will
be made.

In general, the problem of dimensionality reduction could be described as follows.
Given a task, in which the objects of interest can be represented by a feature vector
\bfitx \in \BbbR D, with an unknown distribution, one would like to find a transformation
function r which maps this D-dimensional space onto an E-dimensional space in
which the observations are well represented, being the dimensionality E much smaller
than D, i.e. E \ll D,

r : \BbbR D - \rightarrow \BbbR E . (2.6)

Depending on the type of problem, saying that the vectors are well represented can
mean different things. For example, if the objective is to have the least reconstruction
error, in a mean squared error sense, then an adequate dimensionality reduction
scheme would be Principal Component Analysis (PCA). For other tasks with different
objectives, the use of PCA might not be the ideal solution.

If the problem is a classification task, then the input objects belong to one of
C classes, and each class has a particular unknown distribution. In this case, the
objective of a dimensionality reduction scheme would be to find the lowest dimensional
subspace in which the resulting class-conditional distributions keep the classes well
separated. More specifically, the goal is to find a low dimensional subspace, in which
the minimum theoretical classification error rate, i.e. the Bayes classifier error rate,
is not affected. This way, it would be guarantied that no discriminative information
relevant to the problem would be discarded. Furthermore, the lower the target space
dimensionality is, the fewer samples would be required for learning adequate models,
that is why one would want this value to be the lowest possible. This lowest value
is also known as the intrinsic dimensionality of the problem [Fukunaga and Olsen,
1971]. In theory, the intrinsic dimensionality of a classification problem is at most
C - 1, because if the class posteriors are known, using C - 1 of them as features, they
have the sufficient information to construct a classifier with the Bayes classifier error
rate [Fukunaga, 1990, chap. 10].

2.2. DIMENSIONALITY REDUCTION IN CLASSIFICATION 9

Unfortunately the distributions of the classes are unknown, therefore dimension-
ality reduction based on this ideal criterion is not possible, thus approximations must
be made. Minimizing the error rate of a particular, well behaved classifier seems to
be an adequate approximation. Furthermore, in general the dimensionality reduction
transformation could be any function, however, in practice a specific functional form
would need to be chosen. If a very general form is chosen, then a subspace with at
most C - 1 dimensions could be obtained. Nonetheless, a simpler functional form
could be more advantageous giving good enough results, although with a slightly
higher target space dimensionality.

2.2.1 Review of Related Work

The literature on dimensionality reduction is also quite extensive since it is a very
active research area and many papers are published on this every year. Therefore
it is very difficult to cover all of them. In this section we will mention only the
most important ones and specially the ones that have a close relationship with the
proposed approach. For a more in-depth review on this topic the reader is referred
to [Carreira-Perpi\~n\'an, 1997; Fodor, 2002; L.J.P. van der Maaten, 2007; van der Maaten
et al., 2007].

Because of their simplicity and effectiveness, the two most popular dimensionality
reduction techniques, are Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) [Fukunaga, 1990], being the former unsupervised and the latter
supervised. Among their limitations, both of these methods are linear and assume
a Gaussian distribution of the data. Additionally, LDA has an upper limit of C - 1
for the number of components after the mapping, being C the number of classes. To
overcome these and other limitations, subsequent methods have been proposed, where
the non-linear problem is commonly approached by extending the linear algorithms
using the kernel trick, thus there is kernel PCA [Sch\"olkopf et al., 1999] and kernel
LDA [Mika et al., 1999]. More detailed descriptions and proposed improvements of
PCA and LDA will be presented in chapter 4. Also widely known is the Indepen-
dent Component Analysis (ICA) [Comon, 1994], which can be used for dimensionality
reduction, although its main purpose is blind source separation.

Dimensionality reduction methods based on finding the lower dimensional mani-
fold in which the data lies are ISOMAP [Tenenbaum et al., 2000] and Locally Linear
Embedding (LLE) [de Ridder et al., 2003; Roweis and Saul, 2000], which are non-
linear, and Locality Preserving Projections (LPP) [He and Niyogi, 2004], Supervised
Locality Preserving Projections (SLPP) [Zheng et al., 2007], Linear Laplacian Dis-
crimination (LLD) [Zhao et al., 2007] and Locality Sensitive Discriminant Analysis
(LSDA) [Cai et al., 2007a], which are linear. Another work worth mentioning is [Yan
et al., 2007] in which the authors propose the Marginal Fisher Analysis (MFA) and a
Graph Embedding Framework under which all of the methods mentioned so far can
be viewed. A dimensionality reduction method very efficient in the learning phase
is the Spectral Regression Discriminant Analysis (SRDA) [Cai et al., 2008], further-
more it has very good recognition performance thanks to a regularization. A detailed
description of SRDA and an improvement of it will also be given in chapter 4. Also
worth mentioning is the Self Organizing Map (SOM) [Kohonen, 1982], an unsuper-

10 CHAPTER 2. CLASSIFICATION PROBLEMS AND DIMENSIONALITY REDUCTION

vised neural network closely related to these techniques since it aims at producing a
low-dimensional embedding of the data preserving the topological properties of the
input space.

In the present work, the dimensionality reduction mapping is learned by minimiz-
ing a Nearest-Neighbor (1-NN) classification error probability estimation. Therefore
this work is related with other methods in which the optimization is based on trying
to minimize the k-NN classification error probability, among them we can mention
Nonparametric Discriminant Analysis (NDA) [Bressan and Vitri\`a, 2003], Neighbor-
hood Component Analysis (NCA) [Goldberger et al., 2005] and Large Margin Nearest
Neighbor (LMNN) [Weinberger et al., 2006]. The LMNN is actually a metric learning
technique which can be used for learning a dimensionality reduction base. Similar to
this there are other metric learning methods such as Metric Learning by Collapsing
Classes (MLCC) [Globerson and Roweis, 2005].

Chapter 3

Learning Projections and
Prototypes for Classification

The previous chapter introduced the problem of pattern classification and the diffi-
culties that arise when the feature vectors are high-dimensional have been discussed.
The two most common approaches mentioned to handle the high dimensionality both
have their pros and cons. The two approaches are either using very simple classifiers
or previously doing dimensionality reduction. On one hand, a too simple classifier
might not be enough to model accurately the distributions, on the other hand, by first
doing dimensionality reduction it is possible that valuable discriminative information
be discarded. In this chapter, a classifier learning technique is presented, that tries to
take advantage of both of these extremes. The technique is based on dimensionality
reduction, however to avoid loosing information, the classification model is learned
simultaneously. This idea can be considered to be the most important contribution
of this thesis. In this chapter it is used for classification, although in chapters 5 and
6, the same idea is used for regression and score fusion respectively.

Recapping, the learning technique proposed in this chapter is based in the fol-
lowing ideas. In order to overcome the curse of dimensionality, a strategy of doing
dimensionality reduction prior to the pattern classification function is taken. Fur-
thermore, the criterion to optimize is related to the classification error probability of
a particular classifier, therefore the target space dimensionality and the subspace ob-
tained will be adequate for the particular classifier being used. The classifier chosen is
the Nearest-Neighbor (1-NN) which is characterized by its simplicity and good behav-
ior in practical applications, and moreover it is well known that the asymptotic error
probability of the 1-NN is bounded by the Bayes classifier error rate and twice this
value [Duda et al., 2000, chap. 4]. On the other hand, the dimensionality reduction
used is linear and is not limited by the number of classes.

The proposed technique can be seen from two perspectives, the first one as an
algorithm that learns only a dimensional reduction transformation, and the second one
as an algorithm that learns simultaneously a dimensional reduction transformation
and a classifier. The second perspective is quite interesting because it avoids the

12 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

loss of discriminative information by the dimensionality reduction if the classifier is
learned afterward.

From the first perspective, the objective of the algorithm is to learn a projection
base \bfitB \in \BbbR D\times E using as a criterion the minimization of the Nearest-Neighbor (1-NN)
classifier error probability. The projection base defines the dimensionality reduction
transformation as

\~\bfitx = \bfitB \sansT \bfitx , \bfitx \in \BbbR D, \~\bfitx \in \BbbR E . (3.1)

Note that the same symbol (\bfitx) is used for the vector in the original and target
subspaces, being the difference that for the target subspace a tilde is added. This
notation will be used extensively.

Since the objective is to minimize the 1-NN classifier error probability, a method
for estimating it is therefore required.

3.1 Estimation of the 1-NN Error Probability

A popular method of estimation of the error is Leave-One-Out (LOO) [Goldberger
et al., 2005; Paredes and Vidal, 2006b], however, the LOO estimation for a 1-NN
classifier in this context has the problem that the samples tend to form isolated small
groups, producing complex decision boundaries that do not generalize well to unseen
data and giving an optimistic estimate of the error rate. An illustrative example of
this phenomenon can be observed in figure 3.1. In this example, random samples were
generated from two high-dimensional Gaussian distributions, both with the identity
as covariance matrix and means which only differ in a single component. In this
two-class problem there is only one component which is discriminative, therefore
the minimum dimensionality for an optimal subspace is one. The figure shows two
plots of the samples obtained by selecting a couple of components. Only the first
plot 3.1(a) includes the discriminative component, and therefore it is an optimal
subspace. Although the subspace in 3.1(b) does not have discriminative information
and in theory a classifier would have random performance, the LOO error estimation
is lower than for the optimal subspace 3.1(a).

This phenomenon was observed to arise in real data. In general, the higher the
dimensionality of the problem and the fewer samples for training there are available,
the higher the chance there is that there will be a subspace which gives a lower LOO
error estimation than an optimal subspace.

For better estimating the error rate, the number of neighbors k of the k-NN
classifier could be increased. By doing this, the phenomenon is somewhat mitigated,
although still present, being the difference that the samples will form bigger groups.
Another alternative for estimating the error rate would be to use cross-validation or a
hold-out procedure, however other parameters need to be chosen, such as the number
of folds or the number of repetitions.

An alternative way of estimating the error rate which is convenient for dimension-
ality reduction learning and is the one chosen for the proposed technique, is to define
a new set of class labeled prototypes \scrP = \{ \bfitp 1, . . . ,\bfitp M\} \subset \BbbR D, different from and
much smaller than the training set \scrX = \{ \bfitx 1, . . . ,\bfitx N\} \subset \BbbR D, and with at least one
prototype per class, i.e. \scrP \not \subseteq \scrX , C \leq M \ll N . These will be the reference prototypes

3.1. ESTIMATION OF THE 1-NN ERROR PROBABILITY 13

\mathrm{L}\mathrm{O}\mathrm{O} \mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} = 28.1\% \mathrm{L}\mathrm{O}\mathrm{O} \mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} = 18.8\%

(a) (b)

Figure 3.1. An illustrative example of the problem of the LOO error estimation for dimen-
sionality reduction learning. Data generated from two high-dimensional Gaussian distribu-
tions which only differ in one component of their means. Plots for subspaces which (a) do
and (b) do not include the differing component.

used to estimate the 1-NN classification error probability. For simplicity and with-
out loss of generality, all of the classes will have the same number of prototypes, i.e.
Mc = M/C. By having the number of prototypes of the classifier be low, the decision
boundaries become simpler or smoother with a better generalization capability, and
it also helps prevent possible overfitting.

This estimation of the 1-NN error rate for the training set \scrX projected on the
target space using the reference prototypes \scrP can be written as

J\scrX ,\scrP (\bfitB) =
1

N

\sum
\forall \bfitx \in \scrX

step

\biggl(
d(\~\bfitx , \~\bfitp \in)

d(\~\bfitx , \~\bfitp /\in)
 - 1

\biggr)
, (3.2)

where \~\bfitp \in and \~\bfitp /\in are respectively the same-class and different-class nearest prototypes
to \~\bfitx , and the function d(\cdot , \cdot) is the distance used. In the expression, the step function
defined as

step(z) =

\left\{ 0 if z < 0
0.5 if z = 0
1 if z > 0

, (3.3)

simply counts the number of samples for which the different-class nearest prototype
is closer than the same-class nearest prototype, i.e. it is a count of 1-NN classification
errors. The distance function used for selecting the nearest prototypes is defined for
the target space, nonetheless, each of the prototypes \~\bfitp \in and \~\bfitp /\in have a corresponding
vector in the original space, denoted by \bfitp \in and \bfitp /\in respectively. Note that \bfitp \in and \bfitp /\in

are not necessarily the same-class and different-class nearest prototypes to \bfitx in the
original space.

There are several possibilities for obtaining the set of prototypes \scrP aiming at
minimizing the proposed error estimation. A simple approach would be to use a
clustering algorithm on the training set in the original space. This is not an ideal

14 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

solution because the generated clusters in the original space may not represent well the
classes on the target space. Alternatively, the clustering could be done on the target
space, however since the target space is what is being optimized, then the clusters
would change as the parameters are varied. This would make the approach iterative,
each time performing a clustering followed by optimization of the dimensionality
reduction parameters.

The approach taken in this work eludes the need to perform clustering at each
iteration by considering \scrP as additional parameters of the model being learned by the
algorithm. The prototypes are an efficient way of estimating the classification error
probability, however since they are optimized to minimize the classification error, they
could also be used as the final classifier. This is why from another perspective this
algorithm can be seen as a method which learns simultaneously the dimensionality
reduction and the classifier parameters.

The main drawback of this proposed goal function is that because of its complex-
ity (having a step function and the decision of the nearest prototypes \bfitp \in and \bfitp /\in),
it is not possible to derive a closed form solution and only a local optimum can be
attained. As in previous works [Paredes and Vidal, 2006a,b; Villegas and Paredes,
2008], the objective function will be minimized by means of gradient descent opti-
mization. Nonetheless, using gradient descent does have its rewards, among them, it
is simple and relatively fast. Also, it is straightforward for updating already existing
models, useful for model adaptation, incremental learning, etc.

3.2 Optimization Approximations

The gradient descent approach requires to find the gradient of the goal function with
respect to the model parameters \bfitB and \scrP . In order to make the goal function deriv-
able, some approximations are needed. First, the step function will be approximated
using the sigmoid function

S\beta (z) =
1

1 + exp(- \beta z)
. (3.4)

This leaves the goal function as

J\scrX (\bfitB ,\scrP) =
1

N

\sum
\forall \bfitx \in \scrX

S\beta (R\bfitx - 1) , (3.5)

where R\bfitx =
d(\~\bfitx , \~\bfitp \in)

d(\~\bfitx , \~\bfitp /\in)
. (3.6)

The goal function (3.5) would be adequate only if a 0--1 loss function is assumed. The
goal function for a general loss function \lambda would be

J\scrX (\bfitB ,\scrP) =
1

N

\sum
\forall \bfitx \in \scrX

\lambda (\omega /\in | \omega \in) S\beta (R\bfitx - 1) , (3.7)

where \omega \in and \omega /\in are the class labels of prototypes \~\bfitp \in and \~\bfitp /\in respectively.

3.2. OPTIMIZATION APPROXIMATIONS 15

Note that if \beta is large, then the sigmoid approximation is very accurate, i.e.
S\beta (z) \approx step(z),\forall z \in \BbbR . However, as it has been pointed out in [Paredes and Vidal,
2006b], the sigmoid approximation with an adequate \beta may be preferable than the
exact step function. This is because the contribution of each sample to the goal
function J\scrX becomes more or less important depending on the ratio of the distances
R\bfitx . As will be seen later on, the gradients are a sum of the gradient for each training
sample, having as factor R\bfitx S\prime \beta (R\bfitx - 1), where S\prime \beta is the derivative of the sigmoid
function given by

S\prime \beta (z) =
dS\beta (z)

dz
=

\beta exp(- \beta z)

[1 + exp(- \beta z)]2
. (3.8)

These factors weight the importance of each sample in the learning process. In figure
3.2 a graph showing the relationship between the factor and the ratio of the distances
for a sigmoid slope of \beta = 1 is presented. As can be observed in the figure, for values
of the ratio higher than 10, the factor is practically zero, thus the algorithm will not
learn from these samples. This is a desirable property because if the ratio is high, it
means that the sample is faraway from all of the prototypes of its class, and therefore
it could be an outlier. On the other hand, for low values of the ratio, the factor is
also low, thus the algorithm does not learn much from safely well classified samples
(samples classified correctly and faraway from the decision boundaries). In summary
the sigmoid approximation has a smoothing effect capable of ignoring clear outliers
in the data and not learning from safely well classified samples. As the slope of the
sigmoid is increased, the factor tends to an impulse centered at R\bfitx = 1, making
the algorithm learn from samples closer to the decision boundaries. As the slope is
decreased, the maximum factor is shifted towards high values of R\bfitx , thus making the
learning consider more the worse classified samples.

To find the gradients of the goal function, note that J\scrX depends on \bfitB and \scrP
through the distance d(\cdot , \cdot) in two different ways. First, it depends directly through
the projection base and prototypes involved in the definition of d(\cdot , \cdot). The second,
more subtle dependence is due to the fact that for some \~\bfitx \in \~\scrX , the nearest prototypes
\~\bfitp \in and \~\bfitp /\in may change as the parameters are varied. While the derivatives due to
the first dependence can be developed from equation (3.5) or (3.7), the secondary
dependence is non-continuous and is thus more problematic. Therefore a simple
approximation will be followed here, by assuming that the secondary dependence is
not significant as compared with the first one. In other words, it will be assumed
that, for sufficiently small variations of the projection base and prototype positions,
the prototype neighborhood topology remains unchanged. Correspondingly, from
equation (3.5) the following expressions can be derived:

\nabla
\bfitB J\scrX =

1

N

\sum
\forall \bfitx \in \scrX

S\prime \beta (R\bfitx - 1)R\bfitx

d(\~\bfitx , \~\bfitp \in)
\nabla
\bfitB d(\~\bfitx , \~\bfitp \in)

 - 1

N

\sum
\forall \bfitx \in \scrX

S\prime \beta (R\bfitx - 1)R\bfitx

d(\~\bfitx , \~\bfitp /\in)
\nabla
\bfitB d(\~\bfitx , \~\bfitp /\in) , (3.9)

16 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

0.01 0.1 1 10 100

R\bfitx

Possible outliers
Safely well
classified

R\bfitx S\prime \beta =1(R\bfitx - 1)

Figure 3.2. Effect of the sigmoid approximation on learning.

\nabla \bfitp m
J\scrX =

1

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp \in

S\prime \beta (R\bfitx - 1)R\bfitx

d(\~\bfitx , \~\bfitp \in)
\nabla \bfitp m

d(\~\bfitx , \~\bfitp \in)

 - 1

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp /\in

S\prime \beta (R\bfitx - 1)R\bfitx

d(\~\bfitx , \~\bfitp /\in)
\nabla \bfitp m

d(\~\bfitx , \~\bfitp /\in) , (3.10)

where the sub-index m, indicates that it is the m-th prototype of \scrP . The gradi-
ents obtained using the more general goal function (3.7) are omitted since the only
difference is that the loss function is multiplied to the factors of the summation.

In equations (3.9) and (3.10), the gradients have not been completely developed
yet. It still remains to define which distance is going to be used for the 1-NN classifier.
Any distance measure could be used as long as the gradients with respect to the
parameters,

\nabla
\bfitB d(\~\bfitx , \~\bfitp) and \nabla \bfitp d(\~\bfitx , \~\bfitp) , (3.11)

exist or can be approximated. In section 3.8, the formulations that are obtained when
using the Euclidean and cosine distances are presented. Furthermore, in the chapter
on tangent vectors in section 4.5 the formulations obtained for the different versions

3.3. THE LDPP ALGORITHM 17

of the tangent distance are presented. To simplify following equations, the factors in
(3.9) and (3.10) will be denoted by

F\in =
S\prime \beta (R\bfitx - 1)R\bfitx

d(\~\bfitx , \~\bfitp \in)
, and F/\in =

S\prime \beta (R\bfitx - 1)R\bfitx

d(\~\bfitx , \~\bfitp /\in)
. (3.12)

Looking at the gradient equations the update procedure can be summarized as
follows. In every iteration, each vector \bfitx \in \scrX is visited and the projection base and
the prototype positions are updated. The matrix \bfitB is modified so that it projects the
vector \bfitx closer to its same-class nearest prototype in the target space, \~\bfitp \in . Similarly,
\bfitB is also modified so that it projects the vector \bfitx farther away from its different-class
nearest prototype \~\bfitp /\in . Simultaneously, the nearest prototypes in the original space,
\bfitp \in and \bfitp /\in , are modified so that their projections are, respectively, moved towards
and away from \~\bfitx .

3.3 The LDPP Algorithm

An efficient implementation of the algorithm can be achieved if the gradients with
respect to \bfitB and \scrP are simple linear combinations of the training set \scrX and the
prototypes \scrP . This property holds for the three distances that will be discussed later,
and it may hold for other distances as well, although not for all possible distances.

Let the training set and the prototypes be arranged into matrices \bfitX \in \BbbR D\times N and
\bfitP \in \BbbR D\times M , with each column having a vector of the set. Then the gradients can be
expressed as a function of some factor matrices \bfitG \in \BbbR E\times N and \bfitH \in \BbbR E\times M as

\nabla
\bfitB J\scrX = \bfitX \bfitG \sansT + \bfitP \bfitH \sansT , (3.13)

\nabla
\bfitP J\scrX = \bfitB \bfitH . (3.14)

Notice that the factor matrix \bfitH needed to compute the gradient with respect to \bfitP
is also required for the gradient with respect to \bfitB . This is one of the reasons why
it is convenient to treat \bfitP as additional parameters to learn. It is not much more
computationally expensive to update the prototypes by gradient descent, since the
matrix\bfitH has already been computed. An alternative way of obtaining the prototypes
would certainly require more computation.

The optimization is performed using the corresponding gradient descent update
equations

\bfitB (t+1) = \bfitB (t) - \gamma \nabla
\bfitB J\scrX , (3.15)

\bfitP (t+1) = \bfitP (t) - \eta \nabla
\bfitP J\scrX , (3.16)

where \gamma and \eta are the learning factors. More detail regarding the learning factors will
be presented in section 3.9. The resulting gradient descent procedure is summarized
in the algorithm Learning Discriminative Projections and Prototypes (LDPP)1, pre-
sented in figure 3.3. From a dimensionality reduction point of view, this algorithm

1A free Matlab/Octave implementation of this algorithm has been left available in http://web.

iti.upv.es/\~mvillegas/research/ldpp.html and also attached to the digital version of this thesis
that the reader can extract if the viewer supports it.

function [bestB, bestP, Plabels, info, other] = ldpp(X, Xlabels, B0, P0, Plabels, varargin)
%
% LDPP: Learning Discriminative Projections and Prototypes for NN Classification
%
% Usage:
% [B, P] = ldpp(X, Xlabels, B0, P0, Plabels, ...)
%
% Usage initialize prototypes:
% [P0, Plabels] = ldpp('initP', X, Xlabels, Npc, B)
%
% Usage cross-validation (PCA & kmeans initialization):
% [B, P, Plabels] = ldpp(X, Xlabels, maxDr, maxNpc, [], ...)
%
% Input:
% X - Data matrix. Each column vector is a data point.
% Xlabels - Data class labels.
% B0 - Initial projection base.
% P0 - Initial prototypes.
% Plabels - Prototype class labels.
% maxDr - Maximum reduced dimensionality.
% maxNpc - Maximum number of prototypes per class.
%
% Output:
% B - Final learned projection base.
% P - Final learned prototypes.
%
% Learning options:
% 'slope',SLOPE - Sigmoid slope (defaul=10)
% 'rateB',RATEB - Projection base learning rate (default=0.1)
% 'rateP',RATEP - Prototypes learning rate (default=0.1)
% 'minI',MINI - Minimum number of iterations (default=100)
% 'maxI',MAXI - Maximum number of iterations (default=1000)
% 'epsilon',EPSILON - Convergence criteria (default=1e-7)
% 'prior',[PRIOR] - A priori probabilities (default=Nc/N)
% 'orthoit',OIT - Orthogonalize every OIT (default=1)
% 'orthonormal',(true|false) - Orthonormal projection base (default=true)
% 'orthogonal',(true|false) - Orthogonal projection base (default=false)
% 'dist',('euclidean'| - 1-NN distance (default=euclidean)
% 'cosine'| cosine
% 'rtangent'| reference single sided tangent
% 'otangent'| observation single sided tangent
% 'atangent') average single sided tangent
%
% Data normalization options:
% 'normalize',(true|false) - Normalize training data (default=true)
% 'linearnorm',(true|false) - Linear normalize training data (default=false)
%
% Stochastic options:
% 'stochastic',(true|false) - Stochastic gradient descend (default=true)
% 'stochsamples',SAMP - Samples per stochastic iteration (default=10)
% 'stocheck',SIT - Stats every SIT stoch. iterations (default=100)
% 'stocheckfull',(true|f... - Stats for whole data set (default=false)
% 'stochfinalexact',(tru... - Final stats for whole data set (default=true)
%
% Verbosity options:
% 'verbose',(true|false) - Verbose (default=true)
% 'stats',STAT - Statistics every STAT (default=10)
% 'logfile',FID - Output log file (default=stderr)
%
% Tangent distances options:
% 'tangtypes' - Tangent types [hvrspdtHV]+[k]K (default='k2')
% h: image horizontal translation
% v: image vertical translation
% r: image rotation
% s: image scaling
% p: image parallel hyperbolic transformation
% d: image diagonal hyperbolic transformation
% t: image trace thickening
% H: image horizontal illumination
% V: image vertical illumination
% k: K nearest neighbors
% 'imSize',[W H] - Image size (default=square)
% 'bw',BW - Tangent derivative gaussian bandwidth (default=0.5)
% 'krh',KRH - Supply tangent derivative kernel, horizontal
% 'krv',KRV - Supply tangent derivative kernel, vertical
%
% Other options:
% 'devel',Y,Ylabels - Set the development set (default=false)
% 'seed',SEED - Random seed (default=system)
%
% Cross-validation options:
% 'crossvalidate',K - Do K-fold cross-validation (default=2)
% 'cv_slope',[SLOPES] - Slopes to try (default=[10])
% 'cv_Npc',[NPCs] - Prototypes per class to try (default=[2.^[0:3]])
% 'cv_Dr',[DRs] - Reduced dimensions to try (default=[2.^[2:5]])
% 'cv_rateB',[RATEBs] - B learning rates to try (default=[10.^[-2:0]])
% 'cv_rateP',[RATEPs] - P learning rates to try (default=[10.^[-2:0]])
% 'cv_save',(true|false) - Save cross-validation results (default=false)
%
%
% Reference:
%
% M. Villegas and R. Paredes. "Simultaneous Learning of a Discriminative
% Projection and Prototypes for Nearest-Neighbor Classification."
% CVPR'2008.
%
%
% $Revision: 139 $
% $Date: 2011-03-03 17:02:23 +0100 (Thu, 03 Mar 2011) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(X,'-v',2),
 unix('echo "$Revision: 139 $* $Date: 2011-03-03 17:02:23 +0100 (Thu, 03 Mar 2011) $*" | sed "s/^:/ldpp: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

if strncmp(X,'initP',5),
 [bestB, bestP] = ldpp_initP(Xlabels, B0, unique(B0), P0, Plabels);
 return;
end

fn='ldpp:';
minargs=5;

%%% Default values %%%
bestB=[];
bestP=[];

slope=10;
rateB=0.1;
rateP=0.1;

epsilon=1e-7;
minI=100;
maxI=1000;
stats=10;
orthoit=1;

devel=false;
stochastic=false;
stochsamples=10;
stocheck=100;
stocheckfull=false;
stochfinalexact=true;
orthonormal=true;
orthogonal=false;
dtype.euclidean=true;
dtype.cosine=false;
dtype.tangent=false;
dtype.rtangent=false;
dtype.otangent=false;
dtype.atangent=false;
tangtypes='k2';
normalize=true;
linearnorm=false;
testJ=false;
crossvalidate=false;
cv_save=false;

logfile=2;
verbose=true;

%%% Input arguments parsing %%%
n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}) || size(varargin,2)<n+1,
 argerr=true;
 elseif strcmp(varargin{n},'probemode'),
 eval([varargin{n},'=varargin{n+1};']);
 n=n+2;
 elseif strcmp(varargin{n},'slope') || ...
 strcmp(varargin{n},'rates') || ...
 strcmp(varargin{n},'rateB') || ...
 strcmp(varargin{n},'rateP') || ...
 strcmp(varargin{n},'epsilon') || ...
 strcmp(varargin{n},'minI') || ...
 strcmp(varargin{n},'maxI') || ...
 strcmp(varargin{n},'stats') || ...
 strcmp(varargin{n},'prior') || ...
 strcmp(varargin{n},'seed') || ...
 strcmp(varargin{n},'stochsamples') || ...
 strcmp(varargin{n},'stocheck') || ...
 strcmp(varargin{n},'orthoit') || ...
 strcmp(varargin{n},'crossvalidate') || ...
 strcmp(varargin{n},'cv_slope') || ...
 strcmp(varargin{n},'cv_Npc') || ...
 strcmp(varargin{n},'cv_Dr') || ...
 strcmp(varargin{n},'cv_rateB') || ...
 strcmp(varargin{n},'cv_rateP') || ...
 strcmp(varargin{n},'imSize') || ...
 strcmp(varargin{n},'bw') || ...
 strcmp(varargin{n},'krh') || ...
 strcmp(varargin{n},'krv') || ...
 strcmp(varargin{n},'logfile'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}) || sum(sum(varargin{n+1}<0))~=0,
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'orthonormal') || ...
 strcmp(varargin{n},'orthogonal') || ...
 strcmp(varargin{n},'normalize') || ...
 strcmp(varargin{n},'linearnorm') || ...
 strcmp(varargin{n},'stochastic') || ...
 strcmp(varargin{n},'stocheckfull') || ...
 strcmp(varargin{n},'stochfinalexact') || ...
 strcmp(varargin{n},'testJ') || ...
 strcmp(varargin{n},'cv_save') || ...
 strcmp(varargin{n},'verbose'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~islogical(varargin{n+1}),
 argerr=true;
 else
 if varargin{n+1}==true,
 if strcmp(varargin{n},'orthonormal'),
 orthogonal=false;
 elseif strcmp(varargin{n},'orthogonal'),
 orthonormal=false;
 elseif strcmp(varargin{n},'normalize'),
 linearnorm=false;
 elseif strcmp(varargin{n},'linearnorm'),
 normalize=false;
 end
 end
 n=n+2;
 end
 elseif strcmp(varargin{n},'tangtypes'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~ischar(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'dist') && (...
 strcmp(varargin{n+1},'euclidean') || ...
 strcmp(varargin{n+1},'rtangent') || ...
 strcmp(varargin{n+1},'otangent') || ...
 strcmp(varargin{n+1},'atangent') || ...
 strcmp(varargin{n+1},'cosine')),
 dtype.euclidean=false;
 dtype.cosine=false;
 dtype.rtangent=false;
 dtype.otangent=false;
 dtype.atangent=false;
 eval(['dtype.',varargin{n+1},'=true;']);
 n=n+2;
 elseif strcmp(varargin{n},'devel'),
 devel=true;
 Y=varargin{n+1};
 Ylabels=varargin{n+2};
 n=n+3;
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

if max(size(Plabels))==0,
 Plabels=unique(Xlabels);
end
C=max(size(unique(Plabels)));
[D,Nx]=size(X);
if devel,
 Ny=size(Y,2);
end

%%% Automatic initial parameters %%%
if ~crossvalidate && max(size(B0))==1 && max(size(P0))==1,
 crossvalidate=2;
end
if max(size(B0))==1,
 if ~crossvalidate,
 Bi=pca(X);
 B0=Bi(:,1:min(B0,D));
 else
 B0=rand(D,min(B0,D));
 end
end
if max(size(P0))==1,
 if ~crossvalidate,
 [P0,Plabels]=ldpp_initP(X,Xlabels,unique(Xlabels),P0,B0);
 else
 Plabels=repmat(unique(Xlabels),P0,1);
 P0=rand(D,C*P0);
 end
end

Dr=size(B0,2);
Np=size(P0,2);

%%% Probe mode %%%
if exist('probemode','var'),
 probevars=fieldnames(probemode);
 for n=1:size(probevars,1),
 eval([probevars{n} '=probemode.' probevars{n} ';']);
 end
 normalize=false;
 verbose=true;
 probemode=true;
else
 probemode=false;
 if crossvalidate,
 if ~exist('cv_slope','var'),
 cv_slope=slope;
 end
 if ~exist('cv_Npc','var'),
 cv_Npc=[2.^[0:3]];
 cv_Npc(cv_Npc>=Np/C)=[];
 cv_Npc=[cv_Npc,Np/C];
 end
 if ~exist('cv_Dr','var'),
 cv_Dr=[2.^[2:5]];
 cv_Dr(cv_Dr>=Dr)=[];
 cv_Dr=[cv_Dr,Dr];
 end
 if ~exist('cv_rateB','var'),
 cv_rateB=[10.^[-2:0]];
 end
 if ~exist('cv_rateP','var'),
 cv_rateP=[10.^[-2:0]];
 end
 end
end

%%% Error detection %%%
if probemode,
elseif argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif size(B0,1)~=D || size(P0,1)~=D,
 fprintf(logfile,'%s error: dimensionality of base, prototypes and data must be the same\n',fn);
 return;
elseif max(size(Xlabels))~=Nx || min(size(Xlabels))~=1 || ...
 max(size(Plabels))~=Np || min(size(Plabels))~=1 || ...
 (devel && (max(size(Ylabels))~=Ny || min(size(Ylabels))~=1)),
 fprintf(logfile,'%s error: labels must have the same size as the number of data points\n',fn);
 return;
elseif max(size(unique(Xlabels)))~=C || ...
 sum(unique(Xlabels)~=unique(Plabels))~=0,
 fprintf(logfile,'%s error: there must be the same classes in labels and at least one prototype per class\n',fn);
 return;
elseif exist('prior','var') && max(size(prior))~=C,
 fprintf(logfile,'%s error: the size of prior must be the same as the number of classes\n',fn);
 return;
end

if ~verbose,
 logfile=fopen('/dev/null');
end

%%% Preprocessing %%%
if ~probemode,
 tic;

 B0=double(B0);
 P0=double(P0);

 if exist('seed','var'),
 rand('state',seed);
 end

 if exist('rates','var'),
 rateB=rates;
 rateP=rates;
 end

 if Dr>1,
 rates=log(exp(slope)+1)/slope;
 else
 rates=0.1;
 end
 rateB=rateB*rates;
 rateP=rateP*rates;

 onesNx=ones(Nx,1);
 onesNp=ones(Np,1);
 onesDr=ones(Dr,1);
 if devel,
 onesNy=ones(Ny,1);
 end

 %%% Normalization %%%
 oX=X;
 if devel,
 oY=Y;
 end
 if normalize || linearnorm,
 xmu=mean(X,2);
 xsd=std(X,1,2);
 xsd=sqrt(D*Dr)*xsd/10;
 if linearnorm,
 xsd=max(xsd)*ones(size(xsd));
 end
 if issparse(X) && ~dtype.cosine,
 xmu=full(xmu);
 xsd=full(xsd);
 X=X./xsd(:,onesNx);
 if devel,
 Y=Y./xsd(:,onesNy);
 end
 P0=P0./xsd(:,onesNp);
 else
 X=(X-xmu(:,onesNx))./xsd(:,onesNx);
 if devel,
 Y=(Y-xmu(:,onesNy))./xsd(:,onesNy);
 end
 P0=(P0-xmu(:,onesNp))./xsd(:,onesNp);
 end
 B0=B0.*xsd(:,onesDr);
 if sum(xsd==0)>0,
 X(xsd==0,:)=[];
 if devel,
 Y(xsd==0,:)=[];
 end
 B0(xsd==0,:)=[];
 P0(xsd==0,:)=[];
 fprintf(logfile,'%s warning: some dimensions have a standard deviation of zero\n',fn);
 end
 end

 %%% Adjusting the labels to be between 1 and C %%%
 clab=unique(Plabels);
 if clab(1)~=1 || clab(end)~=C || max(size(clab))~=C,
 nPlabels=ones(size(Plabels));
 nXlabels=ones(size(Xlabels));
 if devel,
 nYlabels=ones(size(Ylabels));
 end
 for c=2:C,
 nPlabels(Plabels==clab(c))=c;
 nXlabels(Xlabels==clab(c))=c;
 if devel,
 nYlabels(Ylabels==clab(c))=c;
 end
 end
 Plabels=nPlabels;
 Xlabels=nXlabels;
 if devel,
 Ylabels=nYlabels;
 end
 clear nPlabels nXlabels nYlabels;
 end

 if ~exist('prior','var'),
 prior=ones(C,1);
 for c=1:C,
 prior(c)=sum(Xlabels==c)/Nx;
 end
 end

 jfact=1;
 cfact=zeros(Nx,1);
 for c=1:C,
 cfact(Xlabels==c)=prior(c)/sum(Xlabels==c);
 end
 if dtype.euclidean || dtype.rtangent || dtype.otangent || dtype.atangent,
 cfact=2*cfact;
 jfact=0.5;
 end

 %%% Tangent vectors %%%
 if dtype.rtangent || dtype.otangent || dtype.atangent,
 dtype.tangent=true;
 tangcfg.imgtangcfg=struct;
 if exist('imSize','var'),
 tangcfg.imgtangcfg.imSize=imSize;
 end
 if exist('bw','var'),
 tangcfg.imgtangcfg.bw=bw;
 end
 if exist('krh','var'),
 tangcfg.imgtangcfg.krh=krh;
 end
 if exist('krv','var'),
 tangcfg.imgtangcfg.krv=krv;
 end
 tangcfg.imgtangs=false;
 tangcfg.knntangs=false;
 tangcfg.devel=devel;
 tangcfg.dtype=dtype;
 tangcfg.onesNp=onesNp;
 tangcfg.Np=Np;
 tangcfg.D=D;
 tangcfg.Vx=[];
 tangcfg.Vp=[];
 tangcfg.Vy=[];
 %%% k-NN tangents %%%
 if sum(tangtypes=='k')>0,
 idx=find(tangtypes=='k');
 tangcfg.knntangs=str2num(tangtypes(idx+1:end));
 tangcfg.knntypes=tangtypes(idx:end);
 tangtypes=tangtypes(1:idx-1);
 tangcfg.Xlabels=Xlabels;
 tangcfg.Plabels=Plabels;
 if devel,
 tangcfg.Ylabels=Ylabels;
 end
 end
 %%% Image tangents %%%
 if numel(tangtypes)>0,
 tangcfg.imgtangs=numel(tangtypes);
 tangcfg.imgtypes=tangtypes;
 tangcfg.normalize=normalize;
 tangcfg.linearnorm=linearnorm;
 if dtype.rtangent || dtype.atangent,
 if normalize || linearnorm,
 tangcfg.xmu=xmu;
 tangcfg.xsd=xsd;
 end
 if tangcfg.knntangs,
 tangcfg.knntangsp=repmat([false(tangcfg.imgtangs,1);true(tangcfg.knntangs,1)],1,Np);
 tangcfg.knntangsp=tangcfg.knntangsp(:);
 tangcfg.Vp=zeros(Dr,numel(tangcfg.knntangsp));
 end
 end
 if dtype.otangent || dtype.atangent,
 tangcfg.oVx=tangVects(oX,tangcfg.imgtypes,tangcfg.imgtangcfg);
 if normalize || linearnorm,
 tangcfg.oVx=(tangcfg.oVx-xmu(:,ones(size(tangcfg.oVx,2),1)))./xsd(:,ones(size(tangcfg.oVx,2),1));
 if sum(xsd==0)>0,
 tangcfg.oVx(xsd==0,:)=[];
 end
 end
 if tangcfg.knntangs,
 tangcfg.knntangsx=repmat([false(tangcfg.imgtangs,1);true(tangcfg.knntangs,1)],1,Nx);
 tangcfg.knntangsx=tangcfg.knntangsx(:);
 tangcfg.Vx=zeros(Dr,numel(tangcfg.knntangsx));
 end
 if devel,
 tangcfg.oVy=tangVects(oY,tangcfg.imgtypes,tangcfg.imgtangcfg);
 if normalize || linearnorm,
 tangcfg.oVy=(tangcfg.oVy-xmu(:,ones(size(tangcfg.oVy,2),1)))./xsd(:,ones(size(tangcfg.oVy,2),1));
 if sum(xsd==0)>0,
 tangcfg.oVy(xsd==0,:)=[];
 end
 end
 if tangcfg.knntangs,
 tangcfg.knntangsy=repmat([false(tangcfg.imgtangs,1);true(tangcfg.knntangs,1)],1,Ny);
 tangcfg.knntangsy=tangcfg.knntangsy(:);
 tangcfg.Vy=zeros(Dr,numel(tangcfg.knntangsy));
 end
 end
 end
 end
 tangcfg.L=tangcfg.knntangs+tangcfg.imgtangs;
 end

 %%% Stochastic preprocessing %%%
 if stochastic,
 [Xlabels,srt]=sort(Xlabels);
 X=X(:,srt);
 clear srt;
 cumprior=cumsum(prior);
 nc=zeros(C,1);
 cnc=zeros(C,1);
 nc(1)=sum(Xlabels==1);
 for c=2:C,
 nc(c)=sum(Xlabels==c);
 cnc(c)=cnc(c-1)+nc(c-1);
 end
 orthoit=orthoit*stocheck;
 minI=minI*stocheck;
 maxI=maxI*stocheck;
 stats=stats*stocheck;
 onesC=ones(C,1);
 end

 %%% Initial parameter constraints %%%
 if orthonormal,
 B0=orthonorm(B0);
 elseif orthogonal,
 B0=orthounit(B0);
 end

 %%% Constant data structures %%%
 work.sel=Plabels(:,onesNx)'==Xlabels(:,onesNp);
 work.slope=slope;
 work.onesDr=onesDr;
 work.onesNp=onesNp;
 work.onesNx=onesNx;
 work.Np=Np;
 work.Nx=Nx;
 work.C=C;
 work.Dr=Dr;
 work.dtype=dtype;
 work.cfact=cfact;
 work.jfact=jfact;
 work.prior=prior;
 if dtype.tangent,
 work.L=tangcfg.L;
 if dtype.otangent || dtype.atangent,
 work.tidx=repmat([1:Nx],work.L,1);
 work.tidx=work.tidx(:);
 end
 end

 if stochastic,
 swork=work;
 onesS=ones(stochsamples,1);
 swork.onesNx=onesS;
 swork.overNx=1/stochsamples;
 swork.onesNp=onesNp;
 swork.Nx=stochsamples;
 end

 if devel,
 dwork=work;
 dwork.sel=Plabels(:,onesNy)'==Ylabels(:,onesNp);
 dwork.Nx=Ny;
 dwork.onesNx=onesNy;
 if dtype.tangent,
 dwork.L=tangcfg.L;
 if dtype.otangent || dtype.atangent,
 dwork.tidx=repmat([1:Ny],work.L,1);
 dwork.tidx=dwork.tidx(:);
 end
 end
 end

 tm=toc;
 info.time=tm;
 fprintf(logfile,'%s total preprocessing time (s): %f\n',fn,tm);
end

%%% Cross-validaton %%%
if crossvalidate,
 tic;

 cv_Ny=floor(Nx/crossvalidate);
 cv_Nx=cv_Ny*(crossvalidate-1);

 %%% Generate cross-validation partitions %%%
 cv_rparts=100;
 cv_badrpart=true;
 while cv_badrpart,
 if cv_rparts<=0,
 fprintf(logfile,'%s error: unable to find adequate cross-validation partitions\n',fn);
 return;
 end
 cv_badrpart=false;
 [v,cv_rnd]=sort(rand(Nx,1));
 cv_rnd=cv_rnd(1:cv_Ny*crossvalidate);
 for v=1:crossvalidate,
 cv_Xrnd=cv_rnd;
 cv_Xrnd((v-1)*cv_Ny+1:v*cv_Ny)=[];
 if numel(unique(Xlabels(cv_Xrnd)))~=C,
 cv_badrpart=true;
 break;
 end
 end
 cv_rparts=cv_rparts-1;
 end

 Bi=pca(X);
 Bi=Bi(:,1:min(D,32));

 %%% Constant data structures %%%
 cv_onesNx=ones(cv_Nx,1);
 cv_onesNy=ones(cv_Ny,1);

 cv_wk=work;
 cv_wk.Nx=cv_Nx;
 cv_wk.onesNx=cv_onesNx;

 cv_dwk=work;
 cv_dwk.Nx=cv_Ny;
 cv_dwk.onesNx=cv_onesNy;

 if stochastic,
 cv_swk=swork;
 end

 if dtype.tangent,
 if dtype.otangent || dtype.atangent,
 cv_wk.tidx=repmat([1:cv_Nx],work.L,1);
 cv_wk.tidx=cv_wk.tidx(:);
 cv_dwk.tidx=repmat([1:cv_Ny],work.L,1);
 cv_dwk.tidx=cv_dwk.tidx(:);
 end
 end

 cv_cfg.minI=minI;
 cv_cfg.maxI=maxI;
 cv_cfg.epsilon=epsilon;
 cv_cfg.stats=maxI+1;
 cv_cfg.orthoit=orthoit;
 cv_cfg.orthonormal=orthonormal;
 cv_cfg.orthogonal=orthogonal;
 cv_cfg.dtype=dtype;
 if dtype.tangent,
 cv_cfg.tangcfg=tangcfg;
 cv_cfg.tangcfg.devel=true;
 end
 cv_cfg.testJ=testJ;
 cv_cfg.stochastic=stochastic;
 cv_cfg.devel=true;
 if stochastic,
 cv_cfg.onesC=onesC;
 cv_cfg.onesS=onesS;
 cv_cfg.cumprior=cumprior;
 cv_cfg.stochsamples=stochsamples;
 cv_cfg.stocheck=stocheck;
 cv_cfg.stocheckfull=stocheckfull;
 cv_cfg.stochfinalexact=stochfinalexact;
 end
 cv_cfg.logfile=fopen('/dev/null');

 Nparam=numel(cv_slope)*numel(cv_Npc)*numel(cv_Dr)*numel(cv_rateB)*numel(cv_rateP);
 cv_E=zeros(Nparam,1);
 cv_I=zeros(Nparam,1);

 %%% Perform cross-validation %%%
 for v=1:crossvalidate,
 cv_Xrnd=cv_rnd;
 cv_Xrnd((v-1)*cv_Ny+1:v*cv_Ny)=[];
 cv_Xrnd=sort(cv_Xrnd);
 cv_Yrnd=cv_rnd((v-1)*cv_Ny+1:v*cv_Ny);
 cv_Yrnd=sort(cv_Yrnd);
 cv_X=X(:,cv_Xrnd);
 cv_Xlabels=Xlabels(cv_Xrnd);

 cv_cfg.Y=X(:,cv_Yrnd);
 cv_cfg.Ylabels=Xlabels(cv_Yrnd);

 if dtype.tangent,
 if dtype.otangent || dtype.atangent,
 sel=(repmat((cv_Xrnd-1)*work.L+1,1,work.L)+repmat([0:work.L-1],cv_Nx,1))';
 cv_cfg.tangcfg.oVx=tangcfg.oVx(:,sel(:));
 sel=(repmat((cv_Yrnd-1)*work.L+1,1,work.L)+repmat([0:work.L-1],cv_Ny,1))';
 cv_cfg.tangcfg.oVy=tangcfg.oVx(:,sel(:));
 end
 end

 cv_cfact=zeros(C,1);
 for c=1:C,
 cv_cfact(c)=prior(c)/sum(cv_Xlabels==c);
 end
 if dtype.euclidean || dtype.tangent,
 cv_cfact=2*cv_cfact;
 end
 cv_wk.cfact=cv_cfact(cv_Xlabels);

 if stochastic,
 cv_nc=zeros(C,1);
 cv_cnc=zeros(C,1);
 cv_nc(1)=sum(cv_Xlabels==1);
 for c=2:C,
 cv_nc(c)=sum(cv_Xlabels==c);
 cv_cnc(c)=cv_cnc(c-1)+cv_nc(c-1);
 end
 cv_cfg.nc=cv_nc;
 cv_cfg.cnc=cv_cnc;
 end

 %%% Vary the slope %%%
 param=1;
 for slope=cv_slope,
 cv_wk.slope=slope;
 cv_dwk.slope=slope;
 if stochastic,
 cv_swk.slope=slope;
 end

 %%% Vary the number of prototypes %%%
 for Np=cv_Npc,
 Np=C*Np;
 onesNp=ones(Np,1);

 [P0,Plabels]=ldpp_initP(cv_X,cv_Xlabels,[1:C]',Np/C,Bi);
 cv_wk.sel=Plabels(:,cv_onesNx)'==cv_Xlabels(:,onesNp);
 cv_dwk.sel=Plabels(:,cv_onesNy)'==cv_cfg.Ylabels(:,onesNp);
 cv_wk.onesNp=onesNp;
 cv_dwk.onesNp=onesNp;
 cv_wk.Np=Np;
 cv_dwk.Np=Np;

 if stochastic,
 cv_swk.Np=Np;
 cv_swk.onesNp=onesNp;
 end

 %%% Vary the reduced dimensionality %%%
 for Dr=cv_Dr,
 B0=Bi(:,1:Dr);
 onesDr=ones(Dr,1);
 cv_cfg.onesDr=onesDr;

 cv_wk.Dr=Dr;
 cv_wk.onesDr=onesDr;
 cv_dwk.Dr=Dr;
 cv_dwk.onesDr=onesDr;
 cv_cfg.work=cv_wk;
 cv_cfg.dwork=cv_dwk;
 if stochastic,
 cv_swk.Dr=Dr;
 cv_swk.onesDr=onesDr;
 cv_cfg.swork=cv_swk;
 end

 fprintf(logfile,'%s cv %d: slope=%g Np=%d Dr=%d ',fn,v,slope,Np,Dr);

 %%% Vary learning rates %%%
 for rateB=cv_rateB,
 cv_cfg.rateB=rateB;
 for rateP=cv_rateP,
 cv_cfg.rateP=rateP;

 [I,E]=ldpp(cv_X,cv_Xlabels,B0,P0,Plabels,'probemode',cv_cfg);
 cv_E(param)=cv_E(param)+E;
 cv_I(param)=cv_I(param)+I;
 cv_param{param}.slope=slope;
 cv_param{param}.Np=Np;
 cv_param{param}.Dr=Dr;
 cv_param{param}.rateB=rateB;
 cv_param{param}.rateP=rateP;
 param=param+1;
 fprintf(logfile,'.');
 end
 end
 fprintf(logfile,'\n');
 end
 end
 end
 end

 cv_E=cv_E./crossvalidate;
 cv_I=cv_I./crossvalidate;
 param=find(min(cv_E)==cv_E,1);
 if cv_save,
 save('ldpp_cv.mat','cv_E','cv_I','cv_param');
 end
 info.cv_E=cv_E;
 info.cv_impI=cv_I;
 info.cv_param=cv_param;

 %%% Get best cross-validaton parameters %%%
 slope=cv_param{param}.slope;
 Np=cv_param{param}.Np;
 Dr=cv_param{param}.Dr;
 rateB=cv_param{param}.rateB;
 rateP=cv_param{param}.rateP;
 onesDr=ones(Dr,1);
 onesNp=ones(Np,1);

 B0=Bi(:,1:Dr);
 [P0,Plabels]=ldpp_initP(X,Xlabels,[1:C]',Np/C,Bi);
 work.sel=Plabels(:,onesNx)'==Xlabels(:,onesNp);

 work.slope=slope;
 work.onesDr=onesDr;
 work.onesNp=onesNp;
 work.Np=Np;
 work.Dr=Dr;
 if stochastic,
 swork.slope=slope;
 swork.onesDr=onesDr;
 swork.onesNp=onesNp;
 swork.Np=Np;
 swork.Dr=Dr;
 end
 if devel,
 dwork.sel=Plabels(:,onesNy)'==Ylabels(:,onesNp);
 dwork.slope=slope;
 dwork.onesDr=onesDr;
 dwork.onesNp=onesNp;
 dwork.Np=Np;
 dwork.Dr=Dr;
 end

 cv_test='E';
 if testJ,
 cv_test='J';
 end

 tm=toc;
 info.time=info.time+tm;
 fprintf(logfile,'%s cv best statistics: %s=%g impI=%g\n',fn,cv_test,cv_E(param),cv_I(param));
 fprintf(logfile,'%s cv best parameters: slope=%g Np=%d Dr=%d rateB=%g rateP=%g\n',fn,slope,Np,Dr,rateB,rateP);
 fprintf(logfile,'%s total cross-validation time (s): %f\n',fn,tm);

 fclose(cv_cfg.logfile);
 clear cv_*;
end

Bi=B0;
Pi=P0;
bestB=B0;
bestP=P0;
bestIJE=[0 1 1 -1];

J00=1;
J0=1;
I=0;

if ~probemode,
 fprintf(logfile,'%s Nx=%d C=%d D=%d Dr=%d Np=%d\n',fn,Nx,C,D,Dr,Np);
 fprintf(logfile,'%s output: iteration | J | delta(J) | E\n',fn);
 tic;
end

%%% Batch gradient descent %%%
if ~stochastic,

 while true,

 %%% Compute statistics %%%
 rP=Bi'*Pi;
 rX=double(Bi'*X);
 if devel,
 rY=double(Bi'*Y);
 end
 if dtype.tangent,
 tangcfg.rP=rP;
 tangcfg.rX=rX;
 if devel,
 tangcfg.rY=rY;
 end
 tangcfg=comptangs(Bi,Pi,tangcfg);
 work.Vx=tangcfg.Vx;
 work.Vp=tangcfg.Vp;
 if devel,
 dwork.Vx=tangcfg.Vy;
 dwork.Vp=tangcfg.Vp;
 end
 end
 [E,J,fX,fP]=ldpp_index(rP,Plabels,rX,Xlabels,work);
 if devel,
 E=ldpp_index(rP,Plabels,rY,Ylabels,dwork);
 end

 %%% Determine if there was improvement %%%
 mark='';
 if (testJ && (J<bestIJE(2)||(J==bestIJE(2)&&E<=bestIJE(3)))) || ...
 (~testJ && (E<bestIJE(3)||(E==bestIJE(3)&&J<=bestIJE(2)))),
 bestB=Bi;
 bestP=Pi;
 bestIJE=[I J E bestIJE(4)+1];
 mark=' *';
 end

 %%% Print statistics %%%
 if mod(I,stats)==0,
 fprintf(logfile,'%d\t%.8f\t%.8f\t%.8f%s\n',I,J,J-J00,E,mark);
 J00=J;
 end

 %%% Determine if algorithm has to be stopped %%%
 if I>=maxI || ~isfinite(J) || ~isfinite(E) || (I>=minI && abs(J-J0)<epsilon),
 fprintf(logfile,'%s stopped iterating, ',fn);
 if I>=maxI,
 fprintf(logfile,'reached maximum number of iterations\n');
 elseif ~isfinite(J) || ~isfinite(E),
 fprintf(logfile,'reached unstable state\n');
 else
 fprintf(logfile,'index has stabilized\n');
 end
 break;
 end

 J0=J;
 I=I+1;

 %%% Update parameters %%%
 %G=X*fX'+Pi*fP';
 %Bi=Bi-rateB.*(G-Bi*(G'*Bi));
 %Bi=Bi+((rateB^2)/2).*(Bi*(G'*Bi)-G*(G'*Bi)-Bi*(G'*G)+Bi*((G'*Bi)*(G'*Bi)));
 Bi=Bi-rateB.*(X*fX'+Pi*fP');
 Pi=Pi-rateP.*(Bi*fP);

 %%% Parameter constraints %%%
 if mod(I,orthoit)==0,
 if orthonormal,
 Bi=orthonorm(Bi);
 elseif orthogonal,
 Bi=orthounit(Bi);
 end
 end

 end % while true

%%% Stochasitc gradient descent %%%
else

 prevJ=1;
 prevE=1;

 while true,

 %%% Compute statistics %%%
 if mod(I,stocheck)==0 && stocheckfull,
 rP=Bi'*Pi;
 [E,J]=ldpp_index(rP,Plabels,Bi'*X,Xlabels,work);
 if devel,
 E=ldpp_index(rP,Plabels,Bi'*Y,Ylabels,dwork);
 end
 end

 %%% Select random samples %%%
 rands=rand(1,stochsamples);
 randc=(sum(rands(onesC,:)>cumprior(:,onesS))+1)';
 randn=cnc(randc)+round((nc(randc)-1).*rand(stochsamples,1))+1;
 sX=X(:,randn);

 %%% Compute statistics %%%
 if work.dtype.tangent,
 fprintf(logfile,'%s error: stochastic for tangent distances not implemented\n',fn);
 return;
 end
 [Ei,Ji,fX,fP]=ldpp_sindex(Bi'*Pi,Plabels,Bi'*sX,randc,swork);
 if ~stocheckfull,
 J=0.5*(prevJ+Ji);
 prevJ=J;
 if ~devel,
 E=0.5*(prevE+Ei);
 prevE=E;
 end
 end

 if mod(I,stocheck)==0,
 if ~stocheckfull && devel,
 E=ldpp_index(Bi'*Pi,Plabels,Bi'*Y,Ylabels,dwork);
 end

 %%% Determine if there was improvement %%%
 mark='';
 if (testJ && (J<bestIJE(2)||(J==bestIJE(2)&&E<=bestIJE(3)))) || ...
 (~testJ && (E<bestIJE(3)||(E==bestIJE(3)&&J<=bestIJE(2)))),
 bestB=Bi;
 bestP=Pi;
 bestIJE=[I J E bestIJE(4)+1];
 mark=' *';
 end

 %%% Print statistics %%%
 if mod(I,stats)==0,
 fprintf(logfile,'%d\t%.8f\t%.8f\t%.8f%s\n',I,J,J-J00,E,mark);
 J00=J;
 end

 %%% Determine if algorithm has to be stopped %%%
 if I>=maxI || ~isfinite(J) || ~isfinite(E) || (I>=minI && abs(J-J0)<epsilon),
 fprintf(logfile,'%s stopped iterating, ',fn);
 if I>=maxI,
 fprintf(logfile,'reached maximum number of iterations\n');
 elseif ~isfinite(J) || ~isfinite(E),
 fprintf(logfile,'reached unstable state\n');
 else
 fprintf(logfile,'index has stabilized\n');
 end
 break;
 end

 J0=J;
 end % if mod(I,stocheck)==0

 I=I+1;

 %%% Update parameters %%%
 Bi=Bi-rateB.*(sX*fX'+Pi*fP');
 Pi=Pi-rateP.*(Bi*fP);

 %%% Parameter constraints %%%
 if mod(I,orthoit)==0,
 if orthonormal,
 Bi=orthonorm(Bi);
 elseif orthogonal,
 Bi=orthounit(Bi);
 end
 end

 end % while true

 %%% Parameter constraints %%%
 if orthonormal,
 bestB=orthonorm(bestB);
 elseif orthogonal,
 bestB=orthounit(bestB);
 end

 %%% Compute final statistics %%%
 if stochfinalexact && ~stocheckfull,
 [E,J]=ldpp_index(bestB'*bestP,Plabels,bestB'*X,Xlabels,work);
 if devel,
 E=ldpp_index(bestB'*bestP,Plabels,bestB'*Y,Ylabels,dwork);
 end

 fprintf(logfile,'%s best iteration approx: I=%d J=%f E=%f\n',fn,bestIJE(1),bestIJE(2),bestIJE(3));
 bestIJE(2)=J;
 bestIJE(3)=E;
 end % if stochfinalexact

end

if ~probemode,
 tm=toc;
 info.time=info.time+tm;
 info.E=bestIJE(3);
 info.J=bestIJE(2);
 info.I=bestIJE(1);
 info.impI=bestIJE(4)/max(I,1);
 fprintf(logfile,'%s best iteration: I=%d J=%f E=%f\n',fn,bestIJE(1),bestIJE(2),bestIJE(3));
 fprintf(logfile,'%s amount of improvement iterations: %f\n',fn,bestIJE(4)/max(I,1));
 fprintf(logfile,'%s average iteration time (ms): %f\n',fn,1000*tm/(I+0.5));
 fprintf(logfile,'%s total iteration time (s): %f\n',fn,tm);
end

if ~verbose,
 fclose(logfile);
end

if probemode,
 bestB=bestIJE(4)/max(I,1); % amount of improvement iterations
 if testJ,
 bestP=bestIJE(2); % optimization index
 else
 bestP=bestIJE(3); % error rate
 end
 return;
end

if nargout>2,
 Plabels=clab(Plabels);
end

if nargout>4,
 other=struct;
 if dtype.tangent,
 tangcfg.rX=bestB'*X;
 tangcfg=comptangs(bestB,bestP,tangcfg);
 if dtype.otangent || dtype.atangent,
 other.Vx=tangcfg.Vx;
 if devel,
 other.Vy=tangcfg.Vy;
 end
 end
 if dtype.rtangent || dtype.atangent,
 other.Vp=tangcfg.Vp;
 end
 end
end

%%% Compensate for normalization in the final parameters %%%
if normalize || linearnorm,
 if issparse(X) && ~dtype.cosine,
 bestP=bestP.*xsd(xsd~=0,onesNp);
 else
 bestP=bestP.*xsd(xsd~=0,onesNp)+xmu(xsd~=0,onesNp);
 end
 bestB=bestB./xsd(xsd~=0,onesDr);
 if sum(xsd==0)>0,
 P=bestP;
 B=bestB;
 bestP=zeros(D,Np);
 bestP(xsd~=0,:)=P;
 bestB=zeros(D,Dr);
 bestB(xsd~=0,:)=B;
 end
end

%%%
%%% Helper functions %%%
%%%

%%%
function [E, J, fX, fP] = ldpp_index(P, Plabels, X, Xlabels, work)

 Dr=work.Dr;
 Np=work.Np;
 Nx=work.Nx;
 onesDr=work.onesDr;
 sel=work.sel;
 prior=work.prior;

 %%% Compute distances %%%
 if work.dtype.euclidean,
 x2=sum((X.^2),1)';
 p2=sum((P.^2),1);
 ds=X'*P;
 ds=x2(:,work.onesNp)+p2(work.onesNx,:)-ds-ds;
 elseif work.dtype.cosine,
 psd=sqrt(sum(P.*P,1));
 P=P./psd(onesDr,:);
 xsd=sqrt(sum(X.*X,1));
 X=X./xsd(onesDr,:);
 ds=1-X'*P;
 elseif work.dtype.rtangent,
 ds=zeros(Nx,Np);
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(work.onesNx));
 VdXP=work.Vp(:,nlp:nlp+work.L-1)'*dXP;
 ds(:,np)=(sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1))';
 nlp=nlp+work.L;
 end
 elseif work.dtype.otangent,
 ds=zeros(Nx,Np);
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(work.onesNp))-P;
 VdXP=work.Vx(:,nlx:nlx+work.L-1)'*dXP;
 ds(nx,:)=sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1);
 nlx=nlx+work.L;
 end
 elseif work.dtype.atangent,
 ds=zeros(Nx,Np);
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(work.onesNx));
 VdXP=work.Vp(:,nlp:nlp+work.L-1)'*dXP;
 ds(:,np)=(sum(dXP.*dXP,1)-0.5*sum(VdXP.*VdXP,1))';
 nlp=nlp+work.L;
 end
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(work.onesNp))-P;
 VdXP=work.Vx(:,nlx:nlx+work.L-1)'*dXP;
 ds(nx,:)=ds(nx,:)-0.5*sum(VdXP.*VdXP,1);
 nlx=nlx+work.L;
 end
 end

 dd=ds;
 ds(~sel)=inf;
 dd(sel)=inf;
 [ds,is]=min(ds,[],2);
 [dd,id]=min(dd,[],2);
 ds(ds<eps)=eps;
 dd(dd<eps)=eps;

 %%% Compute statistics %%%
 E=0;
 for c=1:work.C,
 E=E+prior(c)*sum(dd(Xlabels==c)<ds(Xlabels==c))/sum(Xlabels==c);
 end
 if nargout>1,
 ratio=ds./dd;
 expon=exp(work.slope*(1-ratio));
 sigm=1./(1+expon);
 J=work.jfact*sum(work.cfact.*sigm);
 if ~isfinite(J),
 E=1;
 end
 end

 %%% Compute gradient %%%
 if nargout>2,
 dsigm=work.slope.*expon./((1+expon).*(1+expon));
 ratio=work.cfact.*ratio;
 dfact=ratio.*dsigm;
 sfact=dfact./ds;
 dfact=dfact./dd;

 fP=zeros(Dr,Np);

 if work.dtype.euclidean,
 Xs=(X-P(:,is)).*sfact(:,onesDr)';
 Xd=(X-P(:,id)).*dfact(:,onesDr)';
 fX=Xs-Xd;
 for m=1:Np,
 fP(:,m)=-sum(Xs(:,is==m),2)+sum(Xd(:,id==m),2);
 end
 elseif work.dtype.cosine,
 %Xs=X.*sfact(:,onesDr)';
 %Xd=X.*dfact(:,onesDr)';
 %fX=P(:,id).*dfact(:,onesDr)'-P(:,is).*sfact(:,onesDr)';
 %for m=1:Np,
 % fP(:,m)=-sum(Xs(:,is==m),2)+sum(Xd(:,id==m),2);
 %end
 elseif work.dtype.rtangent,
 Xs=(X-P(:,is)).*sfact(:,onesDr)';
 Xd=(X-P(:,id)).*dfact(:,onesDr)';
 ml=1;
 for m=1:Np,
 Vp=work.Vp(:,ml:ml+work.L-1);
 ml=ml+work.L;
 sel=is==m;
 Xs(:,sel)=Xs(:,sel)-Vp*(Vp'*Xs(:,sel));
 sel=id==m;
 Xd(:,sel)=Xd(:,sel)-Vp*(Vp'*Xd(:,sel));
 end
 fX=Xs-Xd;
 for m=1:Np,
 fP(:,m)=-sum(Xs(:,is==m),2)+sum(Xd(:,id==m),2);
 end
 elseif work.dtype.otangent,
 Xs=(X-P(:,is)).*sfact(:,onesDr)';
 Xd=(X-P(:,id)).*dfact(:,onesDr)';
 %nl=1;
 %for n=1:Nx,
 % Vx=work.Vx(:,nl:nl+work.L-1);
 % nl=nl+work.L;
 % Xs(:,n)=Xs(:,n)-Vx*(Vx'*Xs(:,n));
 % Xd(:,n)=Xd(:,n)-Vx*(Vx'*Xd(:,n));
 %end
 tXs=sum(work.Vx.*Xs(:,work.tidx));
 tXd=sum(work.Vx.*Xd(:,work.tidx));
 Xs=Xs-permute(sum(reshape(work.Vx.*tXs(onesDr,:),Dr,work.L,Nx),2),[1 3 2]);
 Xd=Xd-permute(sum(reshape(work.Vx.*tXd(onesDr,:),Dr,work.L,Nx),2),[1 3 2]);
 fX=Xs-Xd;
 for m=1:Np,
 fP(:,m)=-sum(Xs(:,is==m),2)+sum(Xd(:,id==m),2);
 end
 elseif work.dtype.atangent,
 Xs=(X-P(:,is)).*sfact(:,onesDr)';
 Xd=(X-P(:,id)).*dfact(:,onesDr)';
 oXs=Xs;
 oXd=Xd;
 ml=1;
 for m=1:Np,
 Vp=work.Vp(:,ml:ml+work.L-1);
 ml=ml+work.L;
 sel=is==m;
 Xs(:,sel)=Xs(:,sel)-0.5*Vp*(Vp'*oXs(:,sel));
 sel=id==m;
 Xd(:,sel)=Xd(:,sel)-0.5*Vp*(Vp'*oXd(:,sel));
 end
 %nl=1;
 %for n=1:Nx,
 % Vx=work.Vx(:,nl:nl+work.L-1);
 % nl=nl+work.L;
 % Xs(:,n)=Xs(:,n)-0.5*Vx*(Vx'*oXs(:,n));
 % Xd(:,n)=Xd(:,n)-0.5*Vx*(Vx'*oXd(:,n));
 %end
 tXs=sum(work.Vx.*oXs(:,work.tidx));
 tXd=sum(work.Vx.*oXd(:,work.tidx));
 Xs=Xs-0.5*permute(sum(reshape(work.Vx.*tXs(onesDr,:),Dr,work.L,Nx),2),[1 3 2]);
 Xd=Xd-0.5*permute(sum(reshape(work.Vx.*tXd(onesDr,:),Dr,work.L,Nx),2),[1 3 2]);
 fX=Xs-Xd;
 for m=1:Np,
 fP(:,m)=-sum(Xs(:,is==m),2)+sum(Xd(:,id==m),2);
 end
 end
 end

%%%
function [E, J, fX, fP] = ldpp_sindex(P, Plabels, X, Xlabels, work)

 Dr=work.Dr;
 Np=work.Np;
 Nx=work.Nx;
 onesDr=work.onesDr;
 overNx=work.overNx;

 %%% Compute distances %%%
 if work.dtype.euclidean,
 x2=sum((X.^2),1)';
 p2=sum((P.^2),1);
 ds=X'*P;
 ds=x2(:,work.onesNp)+p2(work.onesNx,:)-ds-ds;
 elseif work.dtype.cosine,
 psd=sqrt(sum(P.*P,1));
 P=P./psd(onesDr,:);
 xsd=sqrt(sum(X.*X,1));
 X=X./xsd(onesDr,:);
 ds=1-X'*P;
 end

 dd=ds;
 ssel=Plabels(:,work.onesNx)'==Xlabels(:,work.onesNp);
 ds(~ssel)=inf;
 dd(ssel)=inf;
 [ds,is]=min(ds,[],2);
 [dd,id]=min(dd,[],2);
 ds(ds<eps)=eps;
 dd(dd<eps)=eps;
 ratio=ds./dd;
 expon=exp(work.slope*(1-ratio));
 sigm=1./(1+expon);

 %%% Compute statistics %%%
 J=overNx*sum(sigm);
 E=overNx*sum(dd<ds);

 %%% Compute gradient %%%
 dsigm=work.slope.*expon./((1+expon).*(1+expon));
 ratio=overNx.*ratio;
 dfact=ratio.*dsigm;
 sfact=dfact./ds;
 dfact=dfact./dd;

 fP=zeros(Dr,Np);

 if work.dtype.euclidean,
 Xs=(X-P(:,is)).*sfact(:,onesDr)';
 Xd=(X-P(:,id)).*dfact(:,onesDr)';
 fX=Xs-Xd;
 for m=1:Np,
 fP(:,m)=-sum(Xs(:,is==m),2)+sum(Xd(:,id==m),2);
 end
 elseif work.dtype.cosine,
 Xs=X.*sfact(:,onesDr)';
 Xd=X.*dfact(:,onesDr)';
 fX=P(:,id).*dfact(:,onesDr)'-P(:,is).*sfact(:,onesDr)';
 for m=1:Np,
 fP(:,m)=-sum(Xs(:,is==m),2)+sum(Xd(:,id==m),2);
 end
 end

%%%
function [mu, ind] = kmeans(X, K)
 maxI=100;
 N=size(X,2);
 onesN=ones(N,1);
 onesK=ones(K,1);
 [k,pind]=sort(rand(N,1));
 mu=X(:,pind(1:K));

 I=0;
 while true,
 x2=sum((X.^2),1)';
 mu2=sum((mu.^2),1);
 dist=X'*mu;
 dist=x2(:,onesK)+mu2(onesN,:)-dist-dist;
 [dist,ind]=min(dist,[],2);

 if I==maxI || sum(ind~=pind)==0,
 break;
 end

 kk=unique(ind);
 if size(kk,1)~=K,
 for k=1:K,
 if sum(kk==k)==0,
 mu(:,k)=X(:,round((N-1)*rand)+1);
 end
 end
 end

 for k=kk',
 mu(:,k)=mean(X(:,ind==k),2);
 end

 pind=ind;
 I=I+1;
 end

%%%
function X = orthonorm(X)
 [X,dummy]=qr(X,0);

%%%
function X = orthounit(X)
 [onX,dummy]=qr(X,0);
 X=onX.*repmat(sum(onX'*X,1),size(X,1),1);
 X=sqrt(size(X,2)).*X./sqrt(sum(diag(X'*X)));

%%%
function X = orthotangs(X,N)
 for n=N:N:size(X,2),
 [XX,dummy]=qr(X(:,n-N+1:n),0);
 X(:,n-N+1:n)=XX;
 end

%%%
function cfg = comptangs(B,P,cfg)
 %%% X tangents %%%
 if cfg.dtype.otangent || cfg.dtype.atangent,
 if cfg.knntangs && cfg.imgtangs,
 cfg.Vx(:,cfg.knntangsx)=tangVects(cfg.rX,cfg.knntypes,'Xlabels',cfg.Xlabels);
 cfg.Vx(:,~cfg.knntangsx)=B'*cfg.oVx;
 if cfg.devel,
 cfg.Vy(:,cfg.knntangsy)=tangVects(cfg.rY,cfg.knntypes,'Xlabels',cfg.Ylabels);
 cfg.Vy(:,~cfg.knntangsy)=B'*cfg.oVy;
 end
 elseif cfg.knntangs,
 cfg.Vx=tangVects(cfg.rX,cfg.knntypes,'Xlabels',cfg.Xlabels);
 if cfg.devel,
 cfg.Vy=tangVects(cfg.rY,cfg.knntypes,'Xlabels',cfg.Ylabels);
 end
 elseif cfg.imgtangs,
 cfg.Vx=B'*cfg.oVx;
 if cfg.devel,
 cfg.Vy=B'*cfg.oVy;
 end
 end
 cfg.Vx=orthotangs(cfg.Vx,cfg.L);
 if cfg.devel,
 cfg.Vy=orthotangs(cfg.Vy,cfg.L);
 end
 end
 %%% P tangents %%%
 if cfg.dtype.rtangent || cfg.dtype.atangent,
 if cfg.imgtangs,
 if cfg.normalize || cfg.linearnorm,
 P=P.*cfg.xsd(cfg.xsd~=0,cfg.onesNp)+cfg.xmu(cfg.xsd~=0,cfg.onesNp);
 if sum(cfg.xsd==0)>0,
 oP=P;
 P=cfg.xmu(:,cfg.onesNp);
 P(cfg.xsd~=0,:)=oP;
 end
 end
 imgVp=tangVects(P,cfg.imgtypes,cfg.imgtangcfg);
 onesNivp=ones(size(imgVp,2),1);
 if cfg.normalize || cfg.linearnorm,
 imgVp=(imgVp-cfg.xmu(:,onesNivp))./cfg.xsd(:,onesNivp);
 if sum(cfg.xsd==0)>0,
 imgVp(cfg.xsd==0,:)=[];
 end
 end
 end
 if cfg.knntangs && cfg.imgtangs,
 cfg.Vp(:,cfg.knntangsp)=tangVects(cfg.rP,cfg.knntypes,'Xlabels',cfg.Plabels,'knnprotos',cfg.rX,cfg.Xlabels);
 cfg.Vp(:,~cfg.knntangsp)=B'*imgVp;
 elseif cfg.knntangs,
 cfg.Vp=tangVects(cfg.rP,cfg.knntypes,'Xlabels',cfg.Plabels,'knnprotos',cfg.rX,cfg.Xlabels);
 elseif cfg.imgtangs,
 cfg.Vp=B'*imgVp;
 end
 cfg.Vp=orthotangs(cfg.Vp,cfg.L);
 end

%%%
function [P0, Plabels] = ldpp_initP(X, Xlabels, Clabels, Npc, B)
 D=size(X,1);
 CxNpc=numel(Clabels)*Npc;
 P0=zeros(D,CxNpc);
 Plabels=zeros(CxNpc,1);
 n=1;
 if Npc>1,
 for c=Clabels',
 Xc=X(:,Xlabels==c);
 rXc=B'*Xc;
 [mu,ind]=kmeans(rXc,Npc);
 for k=1:Npc,
 P0(:,n)=mean(Xc(:,ind==k),2);
 Plabels(n)=c;
 n=n+1;
 end
 end
 else
 for c=Clabels',
 P0(:,n)=mean(X(:,Xlabels==c),2);
 Plabels(n)=c;
 n=n+1;
 end
 end

Mauricio Villegas Santamaria

function [E, A, S, d] = classify_knn(P, Plabels, K, X, Xlabels, varargin)
%
% CLASSIFY_KNN: Classify using K Nearest Neighbor
%
% Usage:
% [E, A, S, dists] = classify_knn(P, Plabels, K, X, Xlabels, ...)
%
% Input:
% P - Prototypes data matrix. Each column vector is a data point.
% Plabels - Prototypes labels.
% K - K neighbors.
% X - Testing data matrix. Each column vector is a data point.
% Xlabels - Testing data class labels.
%
% Input (optional):
% 'perclass',(true|false) - Compute error/score for each class (default=false)
% 'euclidean' - Euclidean distance (default=true)
% 'cosine' - Cosine distance (default=false)
% 'tangent' - Tangent distance (default=false)
% 'rtangent' - Ref. tangent distance (default=false)
% 'otangent' - Obs. tangent distance (default=false)
% 'atangent' - Avg. tangent distance (default=false)
% 'tangVp',tangVp - Tangent bases of prototypes
% 'tangVx',tangVx - Tangent bases of testing data
%
% Output:
% E - Classification error
% A - Assigned Class
% S - Classification score
% dists - Pairwise distances
%
% $Revision: 122 $
% $Date: 2010-09-10 14:20:07 +0200 (Fri, 10 Sep 2010) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(P,'-v',2),
 unix('echo "$Revision: 122 $* $Date: 2010-09-10 14:20:07 +0200 (Fri, 10 Sep 2010) $*" | sed "s/^:/classify_knn: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

if K==1,
 [E,A,S,dist]=classify_nn(P,Plabels,X,Xlabels,varargin{:});
 return;
end

fn='classify_knn:';
minargs=5;

E=[];
A=[];
S=[];

[D,Np]=size(P);
K=min(Np,K);
Nx=size(X,2);
if size(Plabels,1)<size(Plabels,2),
 Plabels=Plabels';
end
if size(Xlabels,1)<size(Xlabels,2),
 Xlabels=Xlabels';
end

perclass=false;
torthonorm=false;

dtype.euclidean=true;
dtype.cosine=false;
dtype.tangent=false;
dtype.rtangent=false;
dtype.otangent=false;
dtype.atangent=false;

logfile=2;

n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}),
 argerr=true;
 elseif strcmp(varargin{n},'perclass') || ...
 strcmp(varargin{n},'torthonorm'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~islogical(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'euclidean') || ...
 strcmp(varargin{n},'tangent') || ...
 strcmp(varargin{n},'rtangent') || ...
 strcmp(varargin{n},'otangent') || ...
 strcmp(varargin{n},'atangent') || ...
 strcmp(varargin{n},'cosine'),
 dtype.euclidean=false;
 dtype.cosine=false;
 dtype.tangent=false;
 dtype.rtangent=false;
 dtype.otangent=false;
 dtype.atangent=false;
 eval(['dtype.',varargin{n},'=true;']);
 n=n+1;
 elseif strcmp(varargin{n},'tangVp') || ...
 strcmp(varargin{n},'tangVx'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

if argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif size(X,1)~=D,
 fprintf(logfile,'%s error: dimensionality prototypes and data must be the same\n',fn);
 return;
elseif size(Plabels,1)~=Np || size(Plabels,2)~=1 || ...
 (sum(size(Xlabels))~=0&&(size(Xlabels,1)~=Nx || size(Xlabels,2)~=1)),
 fprintf(logfile,'%s error: labels must have the same size as the number of data points\n',fn);
 return;
elseif ~exist('tangVp','var') && (dtype.tangent || dtype.atangent || dtype.rtangent),
 fprintf(logfile,'%s error: tangents of prototypes should be given\n',fn);
 return;
elseif ~exist('tangVx','var') && (dtype.tangent || dtype.atangent || dtype.otangent),
 fprintf(logfile,'%s error: tangents of testing data should be given\n',fn);
 return;
elseif (exist('tangVp','var') && mod(size(tangVp,2),Np)~=0) || ...
 (exist('tangVx','var') && mod(size(tangVx,2),Nx)~=0),
 fprintf(logfile,'%s error: number of tangents should be a multiple of the number of samples\n',fn);
 return;
end

onesNp=ones(Np,1);
onesNx=ones(Nx,1);
onesD=ones(D,1);

if exist('tangVp','var') && (dtype.rtangent || dtype.atangent || dtype.tangent),
 Lp=size(tangVp,2)/Np;
 if torthonorm || sum(sum(eye(Lp)-round(1000*tangVp(:,1:Lp)'*tangVp(:,1:Lp))./1000))~=0,
 if ~torthonorm,
 fprintf(logfile,'%s warning: tangVp not orthonormal, orthonormalizing ...\n',fn);
 end
 for nlp=1:Lp:size(tangVp,2),
 %tangVp(:,nlp:nlp+Lp-1)=orthonorm(tangVp(:,nlp:nlp+Lp-1));
 [orthoVp,dummy]=qr(tangVp(:,nlp:nlp+Lp-1),0);
 tangVp(:,nlp:nlp+Lp-1)=orthoVp;
 end
 end
end
if exist('tangVx','var') && (dtype.otangent || dtype.atangent || dtype.tangent),
 Lx=size(tangVx,2)/Nx;
 if torthonorm || sum(sum(eye(Lx)-round(1000*tangVx(:,1:Lx)'*tangVx(:,1:Lx))./1000))~=0,
 if ~torthonorm,
 fprintf(logfile,'%s warning: tangVx not orthonormal, orthonormalizing ...\n',fn);
 end
 for nlx=1:Lx:size(tangVx,2),
 %tangVx(:,nlx:nlx+Lx-1)=orthonorm(tangVx(:,nlx:nlx+Lx-1));
 [orthoVx,dummy]=qr(tangVx(:,nlx:nlx+Lx-1),0);
 tangVx(:,nlx:nlx+Lx-1)=orthoVx;
 end
 end
end

% euclidean distance
if dtype.euclidean,
 x2=sum((X.^2),1)';
 p2=sum((P.^2),1);
 d=X'*P;
 d=x2(:,onesNp)+p2(onesNx,:)-d-d;
% cosine distance
elseif dtype.cosine,
 psd=sqrt(sum(P.*P,1));
 P=P./psd(onesD,:);
 xsd=sqrt(sum(X.*X,1));
 X=X./xsd(onesD,:);
 d=1-X'*P;
% reference single sided tangent distance
elseif dtype.rtangent,
 d=zeros(Nx,Np);
 Lp=size(tangVp,2)/Np;
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(onesNx));
 VdXP=tangVp(:,nlp:nlp+Lp-1)'*dXP;
 d(:,np)=(sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1))';
 nlp=nlp+Lp;
 end
% observation single sided tangent distance
elseif dtype.otangent,
 d=zeros(Nx,Np);
 Lx=size(tangVx,2)/Nx;
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(onesNp))-P;
 VdXP=tangVx(:,nlx:nlx+Lx-1)'*dXP;
 d(nx,:)=sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1);
 nlx=nlx+Lx;
 end
% average single sided tangent distance
elseif dtype.atangent,
 d=zeros(Nx,Np);
 Lp=size(tangVp,2)/Np;
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(onesNx));
 VdXP=tangVp(:,nlp:nlp+Lp-1)'*dXP;
 d(:,np)=(sum(dXP.*dXP,1)-0.5*sum(VdXP.*VdXP,1))';
 nlp=nlp+Lp;
 end
 Lx=size(tangVx,2)/Nx;
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(onesNp))-P;
 VdXP=tangVx(:,nlx:nlx+Lx-1)'*dXP;
 d(nx,:)=d(nx,:)-0.5*sum(VdXP.*VdXP,1);
 nlx=nlx+Lx;
 end
% tangent distance
elseif dtype.tangent,
 d=zeros(Nx,Np);
 Lp=size(tangVp,2)/Np;
 Lx=size(tangVx,2)/Nx;
 tangVpp=zeros(Lp,Lp*Np);
 itangVpp=zeros(Lp,Lp*Np);
 tangVxx=zeros(Lx,Lx*Nx);
 itangVxx=zeros(Lx,Lx*Nx);
 nlp=1;
 for np=1:Np,
 sel=nlp:nlp+Lp-1;
 Vp=tangVp(:,sel);
 tangVpp(:,sel)=Vp'*Vp;
 itangVpp(:,sel)=inv(tangVpp(:,sel));
 nlp=nlp+Lp;
 end
 nlx=1;
 for nx=1:Nx,
 sel=nlx:nlx+Lx-1;
 Vx=tangVx(:,sel);
 tangVxx(:,sel)=Vx'*Vx;
 itangVxx(:,sel)=inv(tangVxx(:,sel));
 nlx=nlx+Lx;
 end
 nlx=1;
 for nx=1:Nx,
 sel=nlx:nlx+Lx-1;
 nlx=nlx+Lx;
 Vx=tangVx(:,sel);
 Vxx=tangVxx(:,sel);
 iVxx=itangVxx(:,sel);
 x=X(:,nx);
 nlp=1;
 for np=1:Np,
 sel=nlp:nlp+Lp-1;
 nlp=nlp+Lp;
 Vp=tangVp(:,sel);
 Vpp=tangVpp(:,sel);
 iVpp=itangVpp(:,sel);
 p=P(:,np);
 Vpx=Vp'*Vx;
 Alp=(Vpx*iVxx*Vx'-Vp')*(x-p);
 Arp=Vpx*iVxx*Vpx'-Vpp;
 Alx=(Vpx'*iVpp*Vp'-Vx')*(x-p);
 Arx=Vxx-Vpx'*iVpp*Vpx;
 ap=Arp\Alp;
 ax=Arx\Alx;
 xx=x+Vx*ax;
 pp=p+Vp*ap;
 d(nx,np)=(xx-pp)'*(xx-pp);
 end
 end
end

Clabels=unique(Plabels)';
Cp=max(size(Clabels));

[idist,idx]=sort(d,2);
idist(idist==0)=realmin;
idist=1./idist;

nPlabels=ones(size(Plabels));
for c=2:Cp,
 nPlabels(Plabels==Clabels(c))=c;
end
lab=nPlabels(idx);

A=zeros(Nx,K);
cnt=zeros(Nx,Cp);
dst=zeros(Nx,Cp);
for k=1:K,
 labk=lab(:,k);
 for c=1:Cp,
 sel=labk==c;
 cnt(sel,c)=cnt(sel,c)+1;
 dst(sel,c)=dst(sel,c)+idist(sel,k);
 end
 sel=cnt+dst./repmat(sum(dst,2),1,Cp);
 [labk,A(:,k)]=max(sel,[],2);
 if nargout>2,
 if perclass,
 S(:,:,k)=((sel-0.5)./(k+1-0.5*repmat(sum(cnt~=0,2),1,Cp))).*(cnt~=0);
 else
 S(:,k)=(sel((A(:,k)-1)*Nx+[1:Nx]')-0.5)./(k+1-0.5*sum(cnt~=0,2));
 end
 end
end

if sum(size(Xlabels))~=0,
 if perclass,
 E=zeros(Cp,K);
 c=1;
 for label=Clabels,
 sel=Xlabels==label;
 for k=1:K,
 E(c,k)=sum(Clabels(A(sel,k))'~=label)/sum(sel);
 end
 c=c+1;
 end
 else
 E=zeros(1,K);
 for k=1:K,
 E(k)=sum(Clabels(A(:,k))'~=Xlabels)/Nx;
 end
 end
end

if nargout>1,
 A=Clabels(A);
end

Mauricio Villegas Santamaria

function [E, A, S, d] = classify_nn(P, Plabels, X, Xlabels, varargin)
%
% CLASSIFY_NN: Classify using Nearest Neighbor
%
% Usage:
% [E, A, S, dists] = classify_nn(P, Plabels, X, Xlabels, ...)
%
% Input:
% P - Prototypes data matrix. Each column vector is a data point.
% Plabels - Prototypes labels.
% X - Testing data matrix. Each column vector is a data point.
% Xlabels - Testing data class labels.
%
% Input (optional):
% 'perclass',(true|false) - Compute error/score for each class (default=false)
% 'euclidean' - Euclidean distance (default=true)
% 'cosine' - Cosine distance (default=false)
% 'tangent' - Tangent distance (default=false)
% 'rtangent' - Ref. tangent distance (default=false)
% 'otangent' - Obs. tangent distance (default=false)
% 'atangent' - Avg. tangent distance (default=false)
% 'tangVp',tangVp - Tangent bases of prototypes
% 'tangVx',tangVx - Tangent bases of testing data
%
% Output:
% E - Classification error
% A - Assigned Class
% S - Classification score
% dists - Pairwise distances
%
% $Revision: 123 $
% $Date: 2010-09-12 00:36:50 +0200 (Sun, 12 Sep 2010) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(P,'-v',2),
 unix('echo "$Revision: 123 $* $Date: 2010-09-12 00:36:50 +0200 (Sun, 12 Sep 2010) $*" | sed "s/^:/classify_nn: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

fn='classify_nn:';
minargs=4;

E=[];
A=[];
S=[];

[D,Np]=size(P);
Nx=size(X,2);
if size(Plabels,1)<size(Plabels,2),
 Plabels=Plabels';
end
if size(Xlabels,1)<size(Xlabels,2),
 Xlabels=Xlabels';
end

perclass=false;
torthonorm=false;

dtype.euclidean=true;
dtype.cosine=false;
dtype.tangent=false;
dtype.rtangent=false;
dtype.otangent=false;
dtype.atangent=false;

logfile=2;

n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}),
 argerr=true;
 elseif strcmp(varargin{n},'perclass') || ...
 strcmp(varargin{n},'torthonorm'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~islogical(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'euclidean') || ...
 strcmp(varargin{n},'tangent') || ...
 strcmp(varargin{n},'rtangent') || ...
 strcmp(varargin{n},'otangent') || ...
 strcmp(varargin{n},'atangent') || ...
 strcmp(varargin{n},'cosine'),
 dtype.euclidean=false;
 dtype.cosine=false;
 dtype.tangent=false;
 dtype.rtangent=false;
 dtype.otangent=false;
 dtype.atangent=false;
 eval(['dtype.',varargin{n},'=true;']);
 n=n+1;
 elseif strcmp(varargin{n},'tangVp') || ...
 strcmp(varargin{n},'tangVx'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

if argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif size(X,1)~=D,
 fprintf(logfile,'%s error: dimensionality prototypes and data must be the same\n',fn);
 return;
elseif size(Plabels,1)~=Np || size(Plabels,2)~=1 || ...
 (sum(size(Xlabels))~=0&&(size(Xlabels,1)~=Nx || size(Xlabels,2)~=1)),
 fprintf(logfile,'%s error: labels must have the same size as the number of data points\n',fn);
 return;
elseif ~exist('tangVp','var') && (dtype.tangent || dtype.atangent || dtype.rtangent),
 fprintf(logfile,'%s error: tangents of prototypes should be given\n',fn);
 return;
elseif ~exist('tangVx','var') && (dtype.tangent || dtype.atangent || dtype.otangent),
 fprintf(logfile,'%s error: tangents of testing data should be given\n',fn);
 return;
elseif (exist('tangVp','var') && mod(size(tangVp,2),Np)~=0) || ...
 (exist('tangVx','var') && mod(size(tangVx,2),Nx)~=0),
 fprintf(logfile,'%s error: number of tangents should be a multiple of the number of samples\n',fn);
 return;
end

onesNp=ones(Np,1);
onesNx=ones(Nx,1);
onesD=ones(D,1);

if exist('tangVp','var') && (dtype.rtangent || dtype.atangent || dtype.tangent),
 Lp=size(tangVp,2)/Np;
 if torthonorm || sum(sum(eye(Lp)-round(1000*tangVp(:,1:Lp)'*tangVp(:,1:Lp))./1000))~=0,
 if ~torthonorm,
 fprintf(logfile,'%s warning: tangVp not orthonormal, orthonormalizing ...\n',fn);
 end
 for nlp=1:Lp:size(tangVp,2),
 %tangVp(:,nlp:nlp+Lp-1)=orthonorm(tangVp(:,nlp:nlp+Lp-1));
 [orthoVp,dummy]=qr(tangVp(:,nlp:nlp+Lp-1),0);
 tangVp(:,nlp:nlp+Lp-1)=orthoVp;
 end
 end
end
if exist('tangVx','var') && (dtype.otangent || dtype.atangent || dtype.tangent),
 Lx=size(tangVx,2)/Nx;
 if torthonorm || sum(sum(eye(Lx)-round(1000*tangVx(:,1:Lx)'*tangVx(:,1:Lx))./1000))~=0,
 if ~torthonorm,
 fprintf(logfile,'%s warning: tangVx not orthonormal, orthonormalizing ...\n',fn);
 end
 for nlx=1:Lx:size(tangVx,2),
 %tangVx(:,nlx:nlx+Lx-1)=orthonorm(tangVx(:,nlx:nlx+Lx-1));
 [orthoVx,dummy]=qr(tangVx(:,nlx:nlx+Lx-1),0);
 tangVx(:,nlx:nlx+Lx-1)=orthoVx;
 end
 end
end

% euclidean distance
if dtype.euclidean,
 x2=sum((X.^2),1)';
 p2=sum((P.^2),1);
 d=X'*P;
 d=x2(:,onesNp)+p2(onesNx,:)-d-d;
% cosine distance
elseif dtype.cosine,
 psd=sqrt(sum(P.*P,1));
 P=P./psd(onesD,:);
 xsd=sqrt(sum(X.*X,1));
 X=X./xsd(onesD,:);
 d=1-X'*P;
% reference single sided tangent distance
elseif dtype.rtangent,
 d=zeros(Nx,Np);
 Lp=size(tangVp,2)/Np;
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(onesNx));
 VdXP=tangVp(:,nlp:nlp+Lp-1)'*dXP;
 d(:,np)=(sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1))';
 nlp=nlp+Lp;
 end
% observation single sided tangent distance
elseif dtype.otangent,
 d=zeros(Nx,Np);
 Lx=size(tangVx,2)/Nx;
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(onesNp))-P;
 VdXP=tangVx(:,nlx:nlx+Lx-1)'*dXP;
 d(nx,:)=sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1);
 nlx=nlx+Lx;
 end
% average single sided tangent distance
elseif dtype.atangent,
 d=zeros(Nx,Np);
 Lp=size(tangVp,2)/Np;
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(onesNx));
 VdXP=tangVp(:,nlp:nlp+Lp-1)'*dXP;
 d(:,np)=(sum(dXP.*dXP,1)-0.5*sum(VdXP.*VdXP,1))';
 nlp=nlp+Lp;
 end
 Lx=size(tangVx,2)/Nx;
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(onesNp))-P;
 VdXP=tangVx(:,nlx:nlx+Lx-1)'*dXP;
 d(nx,:)=d(nx,:)-0.5*sum(VdXP.*VdXP,1);
 nlx=nlx+Lx;
 end
% tangent distance
elseif dtype.tangent,
 d=zeros(Nx,Np);
 Lp=size(tangVp,2)/Np;
 Lx=size(tangVx,2)/Nx;
 tangVpp=zeros(Lp,Lp*Np);
 itangVpp=zeros(Lp,Lp*Np);
 tangVxx=zeros(Lx,Lx*Nx);
 itangVxx=zeros(Lx,Lx*Nx);
 nlp=1;
 for np=1:Np,
 sel=nlp:nlp+Lp-1;
 Vp=tangVp(:,sel);
 tangVpp(:,sel)=Vp'*Vp;
 itangVpp(:,sel)=inv(tangVpp(:,sel));
 nlp=nlp+Lp;
 end
 nlx=1;
 for nx=1:Nx,
 sel=nlx:nlx+Lx-1;
 Vx=tangVx(:,sel);
 tangVxx(:,sel)=Vx'*Vx;
 itangVxx(:,sel)=inv(tangVxx(:,sel));
 nlx=nlx+Lx;
 end
 nlx=1;
 for nx=1:Nx,
 sel=nlx:nlx+Lx-1;
 nlx=nlx+Lx;
 Vx=tangVx(:,sel);
 Vxx=tangVxx(:,sel);
 iVxx=itangVxx(:,sel);
 x=X(:,nx);
 nlp=1;
 for np=1:Np,
 sel=nlp:nlp+Lp-1;
 nlp=nlp+Lp;
 Vp=tangVp(:,sel);
 Vpp=tangVpp(:,sel);
 iVpp=itangVpp(:,sel);
 p=P(:,np);
 Vpx=Vp'*Vx;
 Alp=(Vpx*iVxx*Vx'-Vp')*(x-p);
 Arp=Vpx*iVxx*Vpx'-Vpp;
 Alx=(Vpx'*iVpp*Vp'-Vx')*(x-p);
 Arx=Vxx-Vpx'*iVpp*Vpx;
 ap=Arp\Alp;
 ax=Arx\Alx;
 xx=x+Vx*ax;
 pp=p+Vp*ap;
 d(nx,np)=(xx-pp)'*(xx-pp);
 end
 end
end

Clabels=unique(Plabels)';
Cp=max(size(Clabels));

dist=zeros(Nx,Cp);
c=1;
for label=Clabels,
 csel=Plabels==label;
 dist(:,c)=min(d(:,csel),[],2);
 c=c+1;
end

[idist,A]=min(dist,[],2);

if nargout>2,
 idist=dist;
 idist(idist==0)=realmin;
 idist=1./idist;
 if perclass,
 S=idist./repmat(sum(idist,2),1,Cp);
 else
 S=idist(Nx*(A-1)+[1:Nx]')./sum(idist,2);
 end
end

if sum(size(Xlabels))~=0,
 if perclass,
 E=zeros(Cp,1);
 c=1;
 for label=Clabels,
 sel=Xlabels==label;
 E(c)=sum(Clabels(A(sel))'~=label)/sum(sel);
 c=c+1;
 end
 else
 E=sum(Clabels(A)'~=Xlabels)/Nx;
 end
end

if nargout>1,
 A=Clabels(A)';
end

Mauricio Villegas Santamaria

http://web.iti.upv.es/~mvillegas/research/ldpp.html
http://web.iti.upv.es/~mvillegas/research/ldpp.html

18 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

can be categorized as being linear, supervised and non-parametric. There are several
possibilities for the initial parameters of \bfitB and \bfitP . Using PCA and per class c-means
for initialization generally gives an adequate behavior of the algorithm. The actual
computation of the matrices \bfitG and \bfitH depends on which distance is being used.
Specific expressions for each case will be presented later on.

Algorithm LDPP (\bfitX ,\bfitB ,\bfitP , \beta , \gamma , \eta , \varepsilon) \{
// \bfitX : training data; \bfitB , \bfitP : initial parameters;

// \beta : sigmoid slope; \gamma , \eta : learning factors; \varepsilon : small constant;

\lambda \prime = \infty ; \lambda = J\scrX (\bfitB ,\bfitP);
while(| \lambda \prime - \lambda | > \varepsilon) \{

\lambda \prime = \lambda ; \bfitB \prime = \bfitB ; \bfitP \prime = \bfitP ;
compute \bfitG and \bfitH ;
\bfitP = \bfitP \prime - \eta \bfitB \prime \bfitH ;
\bfitB = \bfitB \prime - \gamma (\bfitX \bfitG \sansT + \bfitP \prime \bfitH \sansT);
\lambda = J\scrX (\bfitB ,\bfitP);

\}
return(\bfitB ,\bfitP);

\}

Figure 3.3. Algorithm: Learning Discriminative Projections and Prototypes (LDPP).

3.4 Discussion

The algorithm has several interesting properties. The goal function being minimized is
directly related with the 1-NN classification error rate, and therefore it is expected to
find an adequate subspace for NN-based classification. The update steps are weighted
by the distance ratio R\bfitx and windowed by the derivative of the sigmoid function as
was illustrated in figure 3.2. This way, only the training vectors which are close to the
decision boundaries actually contribute to the update of the parameters. A suitable
\beta value of the sigmoid function should allow the proposed algorithm to learn from the
samples that lay near the class decision boundaries, moreover, the windowing effect
of the sigmoid derivative should prevent learning from outliers whose R\bfitx value is too
large and also should prevent learning from those vectors that are well classified and
far away from the decision boundaries.

The proposed algorithm also condenses the training set into a very compact clas-
sifier, and this added to the fact that it is linear, makes the classifier extremely fast.
In this sense the learned classifier is also expected to generalize well to unseen data
thanks to the condensation of the data (which results in smoother decision bound-
aries and less parameters to estimate) and the effect of the derivative of the sigmoid
function just mentioned.

If the data distributions are naturally non-linear, using a linear projection could
be inadequate. However, because of the non-parametric nature of the approach and

3.5. USING LDPP ONLY FOR DIMENSIONALITY REDUCTION 19

the possibility of having multiple prototypes per class, data sets with complex distri-
butions, such as being multi-modal, can be actually handled.

Note that LDPP is an iterative gradient descent method. In general all the meth-
ods based on gradient descent optimization have the same properties. They are easy
to implement, only require to optimize a differentiable objective function and are eas-
ily tuned by means of controlling the learning factors. On the other hand, they may
converge to any local minimum on the objective function surface. The local minimum
reached will depend on the initialization of the algorithm. For the LDPP algorithm
it has been observed that using PCA and c-means for initialization, generally leads
to a fast convergence and very good results as the experiments in section 3.10 show.

Overall, the algorithm has five parameters that can be tuned: the target space
dimensionality E, the number of prototypes M , the sigmoid slope \beta , and the learning
factors \gamma and \eta . The normalization that will be presented in section 3.9, simplifies
greatly the task of selecting the learning factors, since they become unrelated to many
characteristics of the data and the other parameters of the algorithm. Furthermore,
a way of adjusting the learning factors which generally has given us good results is
explained in the experiments section 3.10. Both of the learning factors could be set
to have the same value, i.e. \gamma = \eta , and good results are obtained, however it has
been observed that better results can be achieved if they are different. This can be
understood since this gives more or less importance on learning either the projection
base or the prototypes.

The effect of the \beta parameter will be discussed later in subsection 3.7. The re-
maining two parameters are the dimensionality E and number of prototypes M , both
of which are discrete values. The dimensionality E can only be a value between one
and the original dimensionality, however, since the objective is to significantly reduce
the dimensions, then its value should be low. On the other hand, the number of
prototypes must be at least one per class and less than the number of samples in the
training set. However, the number of prototypes should also be low, compared to the
number of training samples; otherwise, the estimated error probability would be too
optimistic and not adequate for learning. Even though there is a large number of
possibilities for these two parameters, it is enough to sample them logarithmically as
it is done in the experiments presented in section 3.10. On the other hand the dimen-
sionality and the number of prototypes defines completely the speed of the classifier,
therefore depending on the application these parameters can be further limited.

3.5 Using LDPP only for Dimensionality Reduction

The prototypes are used as an effective way of estimating the error rate of the 1-NN
classifier on the target space. These prototypes are learned along with the projection
base, and are optimized for 1-NN classification. Thus, these prototypes define the
classifier to be used, the 1-NN. But in some cases it seems reasonable to discard these
prototypes and assume that the dimensionality reduction obtained is generally good
from a classification point of view. The practitioners could train and use their own
classifiers using the whole training set on the reduced space \~\scrX . A particular case of
this issue is to use the k-NN classifier over the whole training set projected on the

20 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

target space. We will refer to this approach as LDPP*. Clearly this approach is
slower since the whole training set is used instead of the reduced set of prototypes \~\scrP .

3.6 Orthonormality Constraint

Up to now, the algorithm does not force the projection base \bfitB to be an orthonormal
basis, unlike other approaches found on the literature. This can be a good property,
because it gives the model the freedom to find a better solution. However, it could
be desired that the projection base be orthonormal. For example, restricting the
solution can be seen as a regularization that may help to improve the generalization
capability of the model obtained. In order to ensure the learned projection base is
orthonormal, one alternative is to use a Gram-Schmidt process to orthonormalize the
base after every gradient descent update. This approach has given us satisfactory
results, and in most cases better recognition rates. This can be observed in the
experiments presented in section 3.10. Most of the results presented are using this
orthonormalization procedure because it gave better results. Also with some data
sets a comparison is made with and without the orthonormalization.

Even though the Gram-Schmidt process gives satisfactory results, it is not the
theoretically correct way of obtaining an optimized orthonormal matrix. There are
several works on optimization under the orthonormality constraint. A good review
is presented in [Abrudan et al., 2008], and a very important paper worth mentioning
is [Edelman et al., 1998], in which a geometrical framework is presented which helps
in understanding this type of problems.

A very convenient way of optimizing a cost function by means of gradient descent
such that a matrix is orthonormal, is to use a multiplicative update and only perform
rotations [Abrudan et al., 2008]. That is, the update equation is the following

\bfitB (t+1) = \bfitR (t)\bfitB (t) , (3.17)

where\bfitR (t) \in \BbbR D\times D is a rotation matrix. Since a rotation matrix has the characteristic

that \bfitR \sansT
(t)\bfitR (t) = \bfitR (t)\bfitR

\sansT
(t) = \bfitI , then it can easily be observed that \bfitB \sansT

(t+1)\bfitB (t+1) = \bfitI .
As proposed in [Abrudan et al., 2008] the rotation matrix is given by

\bfitR (t) = exp (- \gamma \bfitA) . (3.18)

where \gamma is the learning factor and \bfitA = \bfitG (t)\bfitB
\sansT
(t) - \bfitB (t)\bfitG

\sansT
(t) being \bfitG = \nabla

\bfitB J(\bfitB). The
exponential function of a matrix can be expressed using the Taylor series, therefore
the rotation matrix is given by

exp (- \gamma \bfitA) =

\infty \sum
k=0

(- 1)k\gamma k

k!
\bfitA k , (3.19)

= \bfitI - \gamma \bfitA +
\gamma 2

2
\bfitA 2 - \gamma 3

6
\bfitA 3 +

\gamma 4

24
\bfitA 4 (3.20)

Depending on the quantization errors and up to what accuracy the exponential is
approximated, as the matrix is updated every iteration, it will deviate from being

3.7. ALGORITHM CONVERGENCE AND THE SIGMOID SLOPE 21

orthonormal more or less rapidly. In [Abrudan et al., 2008] a closed form expression for
the expected deviation is given. For high-dimensional matrices, the deviation increases
faster, then depending on the problem it still might be advisable to orthonormalize
the matrix every certain number of iterations.

This method of handling the orthonormal optimization was evaluated for LDPP.
However, the results obtained are not better than the solutions obtained using the
Gram-Schmidt process. Furthermore, the exponential in (3.19) increases significantly
the computational cost of the algorithm. Since no real benefit was observed using
this approach, the experimental results presented are all using the Gram-Schmidt
orthonormalization.

3.7 Algorithm Convergence and the Sigmoid Slope

Even though it is not theoretically evident, the convergence of the algorithm is very
stable for a wide range of values of the parameter \beta of the sigmoid function, see
figures 3.4 and 3.5. For low values of \beta the goal function starts and stays close to
0.5 for all the parameter space (\bfitB ,\scrP). In this case the convergence becomes very
slow and is hard to judge when to stop iterating. Moreover low values of \beta entail
a significant divergence between the goal function and the 1-NN error rate. This
divergence is reduced using high values of \beta but then it becomes more likely that the
algorithm converges to a local minima due to the roughness of the goal function along
the parameter space. This behavior is observed in figure 3.4, where it can be seen that
for values of \beta > 20 the rate of decrease of the goal function fluctuates significantly.
Figure 3.5 presents a graph showing the relationship of the error rate, the goal function
and the convergence iterations for different values of \beta . For these data sets, the value
of \beta = 10 seems to be the point where the best error rate performance is achieved.
This optimal value does not change much for different data sets, this is why for the
experiments presented in section 3.10 the results shown are only for values of \beta = 10.
Better performance could be achieved if \beta is further adjusted, but still with this value
fixed a consistent competitive recognition performance is obtained.

3.8 Distances Analyzed

3.8.1 Euclidean Distance

The Euclidean distance is the most common dissimilarity measure used for the k-NN
classifier. From a nearest neighbor point of view, there is no difference between the
Euclidean or the squared Euclidean distance. Therefore, to simplify somewhat the
gradients, the squared Euclidean distance is preferred, which is given by

d(\bfita , \bfitb) = \| \bfita - \bfitb \| 2 = (\bfita - \bfitb)\sansT (\bfita - \bfitb) . (3.21)

The corresponding gradients of the distance with respect to the parameters are:

\nabla
\bfitB d(\~\bfitx , \~\bfitp) = 2(\bfitx - \bfitp)(\~\bfitx - \~\bfitp)\sansT , (3.22)

\nabla \bfitp d(\~\bfitx , \~\bfitp) = - 2\bfitB (\~\bfitx - \~\bfitp) . (3.23)

22 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000

G
o
al

F
u
n
ct
io
n
V
al
u
e
J

Iteration

\beta = 0.1

\beta = 1

\beta = 6

\beta = 10

\beta = 20

\beta = 40

Figure 3.4. Typical behavior of the goal function as the LDPP algorithm iterates for
different values of \beta . This is for one fold of the gender data set and E = 16, Mc = 4.

0

10

20

30

40

50

1 10

E
rr
or

R
at
e
(\%

)
/
G
o
al

F
u
n
ct
io
n
J
(\%

)

\beta parameter

Final Goal Function Value J

Train Error Rate

Test Error Rate

Figure 3.5. Graph illustrating the relationship of the \beta parameter with the recognition
performance and convergence iterations. This is an average of the 5-fold cross-validation for
both the gender and emotion data sets.

3.8. DISTANCES ANALYZED 23

Replacing into the gradient equations (3.9) and (3.10), the expressions obtained for
the n-th and m-th columns, \bfitg n and \bfith m, of the factor matrices \bfitG and \bfitH are:

\bfitg n =
2

N
F\in n(\~\bfitx n - \~\bfitp \in n) -

2

N
F/\in n(\~\bfitx n - \~\bfitp /\in n) , (3.24)

\bfith m = - 2

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp \in

F\in (\~\bfitx - \~\bfitp \in) +
2

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp /\in

F/\in (\~\bfitx - \~\bfitp /\in) . (3.25)

Using this approach, the time complexity of the algorithm is \scrO (DEN) per iter-
ation. This computational cost is higher than some dimensionality reduction tech-
niques, although it is linear with respect to the number of samples which is much
better than methods based on the kernel trick which are \scrO (N2). On the other hand,
the time complexity for the classification phase, which is required an unlimited num-
ber of times, using the learned transformation and prototypes is \scrO (DE+EM), which
is considerably fast compared to other classification approaches which normally are
\scrO (DE + EN) being M \ll N .

3.8.2 Cosine Distance

The cosine distance is a dissimilarity measure of the angle between a pair of vectors.
Although not as popular as the Euclidean, this distance has been successfully used
in some pattern recognition problems, being an example face recognition [Poh et al.,
2009, 2010], therefore it is worth mentioning. The cosine distance is given by

d(\bfita , \bfitb) = 1 - \bfita \sansT \bfitb

\| \bfita \| \| \bfitb \|
. (3.26)

Once again, the corresponding gradients of this distance with respect to the parame-
ters are:

\nabla
\bfitB d(\~\bfitx , \~\bfitp) = \bfitx \| \~\bfitx \| - 1

\Bigl(
\^\~\bfitx \sansT \^\~\bfitp \^\~\bfitx - \^\~\bfitp

\Bigr) \sansT
+ \bfitp \| \~\bfitp \| - 1

\Bigl(
\^\~\bfitx \sansT \^\~\bfitp \^\~\bfitp - \^\~\bfitx

\Bigr) \sansT
, (3.27)

\nabla \bfitp d(\~\bfitx , \~\bfitp) = \bfitB \| \~\bfitp \| - 1
\Bigl(
\^\~\bfitx \sansT \^\~\bfitp \^\~\bfitp - \^\~\bfitx

\Bigr)
. (3.28)

where the hat indicates that the magnitude of the vector has been normalized to
unity. Finally, replacing into (3.9) and (3.10), the following equations for the columns
of the factor matrices \bfitG and \bfitH are obtained:

\bfitg n = - 1

N
F\in n\| \~\bfitx n\| - 1

\Bigl(
\^\~\bfitx \sansT
n
\^\~\bfitp \in n

\^\~\bfitx n - \^\~\bfitp \in n

\Bigr)
+

1

N
F/\in n\| \~\bfitx n\| - 1

\Bigl(
\^\~\bfitx \sansT
n
\^\~\bfitp /\in n

\^\~\bfitx n - \^\~\bfitp /\in n

\Bigr)
,

(3.29)

\bfith m = - 1

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp \in

F\in \| \~\bfitp \in \| - 1
\Bigl(
\^\~\bfitx \sansT \^\~\bfitp \in

\^\~\bfitp \in - \^\~\bfitx
\Bigr)
+

1

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp /\in

F/\in \| \~\bfitp /\in \| - 1
\Bigl(
\^\~\bfitx \sansT \^\~\bfitp /\in

\^\~\bfitp /\in - \^\~\bfitx
\Bigr)

.

(3.30)

Regarding the time complexity of the algorithm, for the cosine distance it is asymp-
totically the same as for the Euclidean, both for the training and the testing phases.

24 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

3.9 Normalization and Learning Factors

A common practice in pattern recognition is the preprocessing of the training data
so that it is better suited for the algorithms used for learning. Depending on the
particular learning technique, the motivations for normalizing the data varies, an
example being better numerical precision and stability, among others. The algorithms
proposed in this thesis do not suffer much by numerical precision or stability. However,
an adequate normalization can be very useful to make the learning factors of the
gradient descent optimization be somewhat independent of the characteristics of the
data and the parameters of the algorithm. The objective is that adequate values
for the learning factors should not depend on characteristics of the data, i.e. the
dimensionality and the range of the features, or the parameters of the algorithm, i.e.
target space dimensionality and number of prototypes. This way as the parameters
of the algorithm are adjusted, there is no unwanted effect on the learning factors.

The method proposed for making the learning factors more stable is based on a
simple idea. Since the goal function depends on the value of a distance, if the data is
normalized in such a way that the the distance has a fixed range irrespectively of the
training data or the parameters of the algorithm, then the gradients will be adequately
scaled. Normalizing the data so that the expected distance between vectors have
a specific range obviously depends on which is the distance measure in question.
Therefore, each distance has to be analyzed independently. There are some distances
which actually do not depend on the characteristics of the data. One example of this
is the cosine distance, which always has a value between zero and one irrespectively of
the dimensionality or the range of the vectors. In this section the Euclidean distance
will be analyzed and an adequate normalization will be derived for it. Because of
their intimate relationship, the same normalization that works for the Euclidean can
also be used for the tangent distance presented in section 4.5.

The proposed normalization method is based on the well known zero mean and
unit variance [Jain et al., 2005]. The mean value \bfitmu and the variance per dimension
\bfitsigma 2 of a random vector \bfsansx are defined as

\bfitmu = \sansE [\bfsansx] , (3.31)

\bfitsigma 2 = \sansE
\bigl[
(\bfsansx - \sansE [\bfsansx]) \bullet (\bfsansx - \sansE [\bfsansx])

\bigr]
. (3.32)

Empirically these can be estimated from a data set \scrX as

\bfitmu \approx 1

| \scrX |
\sum

\forall \bfitx \in \scrX

\bfitx , (3.33)

\bfitsigma 2 \approx 1

| \scrX |
\sum

\forall \bfitx \in \scrX

(\bfitx - \bfitmu) \bullet (\bfitx - \bfitmu) . (3.34)

The zero mean and unit variance normalization of a vector \bfitx is then given by

\^\bfitx = \bfitsigma - 1 \bullet (\bfitx - \bfitmu) , (3.35)

where the inversion of \bfitsigma is entrywise. The squared Euclidean distance between nor-
malized vectors \^\bfitp and \^\bfitq in a subspace defined by matrix \bfitB \in \BbbR D\times E , is given by

d(\^\~\bfitp , \^\~\bfitq) = \| \bfitB \sansT (\^\bfitp - \^\bfitq)\| 2 . (3.36)

3.9. NORMALIZATION AND LEARNING FACTORS 25

In order to make range of the distance fixed, two conditions must be satisfied. The
first condition is that there must be a restriction of the possible values that matrix \bfitB
can have. Even though this limits the possible subspaces, it is necessary, otherwise
no further analysis on the range of the distance can be done. Furthermore, restricting
the base also works as a regularizer with can lead to models which generalize better,
as was mentioned in section 3.3. The most straightforward restriction for matrix \bfitB
is that it should be orthonormal, i.e.

\bfitB \sansT \bfitB = \bfitI . (3.37)

Alternatively, another restriction which gives additional freedom to the subspace, is
that matrix \bfitB must be orthogonal and scaled such that \bfitB \sansT \bfitB is a diagonal matrix
whose trace is equal to target space dimensionality E, i.e.

\sansT \sansr (\bfitB \sansT \bfitB) = 1\sansT \bfitB \sansT \bfitB 1 = E , (3.38)

where \sansT \sansr (\cdot) is the trace of the matrix, and 1\sansT \cdot 1 is a way of denoting the sum all entries
of the matrix. As can be observed, equation (3.38) also holds for \bfitB orthonormal, thus
it is more general.

It can be shown (see appendix A.1.4) that for an orthonormal \bfitB the expected
range of the distance in the target space is proportional to the original and target
space dimensionalities, i.e.

\sansE [d(\^\bfitp , \^\bfitq)] \propto DE . (3.39)

This shows that with the zero mean and unit variance normalization, the expected
distance is dependent on D and E. To remove the dependencies of the distance with
these parameters, the following modified normalization can be used

\^\bfitx = (
\surd
DE\bfitsigma) - 1 \bullet (\bfitx - \bfitmu) . (3.40)

Although there can be other normalizations of the data that can achieve this same
result, this is a very simple one and easy to understand. Furthermore, this normal-
ization has a very convenient property, which is that it can be applied transparently
without requiring additional effort from the user of the algorithm and in the testing
phase the feature vectors are actually handled in their original range. To do this,
before the gradient descent optimization starts, the data is normalized using (3.40)
and at the end the final model is compensated for the normalization by using

\bfitB = (
\surd
DE\bfitsigma) - 11\sansT \bullet \^\bfitB , (3.41)

\bfitP =
\surd
DE\bfitsigma 1\sansT \bullet \^\bfitP + \bfitmu 1\sansT , (3.42)

where \^\bfitB and \^\bfitP are the model parameters obtained with the normalization (see ap-
pendix A.1.5). The compensated model can then be used without any normalization
of the input vectors.

One final note regarding the normalization should be given. Since the LDPP
algorithm is based on differences between vectors, then in all of the equations the
mean values of the normalization \bfitmu cancel out. Therefore they are not required to

26 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

be subtracted in the normalization. More importantly, if the training data happens
to be sparse, the subtraction of the mean would make the data dense. Therefore if
the data is sparse, the mean should not be subtracted so that the advantage of the
sparseness is kept.

3.10 Experiments

The proposed approach has been assessed with a wide variety of problems. First,
some results are presented on data visualization. After this, we show classification
results for several data sets with a great variety in size of the corpus, the number
of classes, and dimensionality. Followed by this, some results are presented using
high-dimensional data sets, for which the algorithm is mainly intended.

The proposed approach was compared with similar techniques, i.e. linear and
supervised, namely LDA, MFA, LSDA, SLPP, SRDA, NDA, NCA and LMNN, all
of them with and without a PCA preprocessing. For LDA our own implementation
was used, however for MFA, LSDA, SLPP and SRDA we used the freely available
Matlab implementations written by D. Cai [Cai et al., 2007b]. For NDA we used
the implementation from the authors of [Bressan and Vitri\`a, 2003], for NCA the
implementation of Charles C. Fowlkes [Fowlkes et al., 2007] and finally for LMNN the
implementation of the authors of [Weinberger et al., 2006]. For each of the baseline
methods, the corresponding algorithm parameters were properly adjusted, and only
the best result obtained in each case is shown. A k-NN classifier was used for all
these dimensionality reduction techniques. The k parameter of the classifier was also
varied and the best result is the one presented.

Although the Support Vector Machine (SVM) is not a dimensionality reduction
method, it can be considered the state-of-the-art in pattern classification, for this
reason in some of the experiments a comparison was also made with SVM. For this,
we used the multi-class LIBSVM [Chang and Lin, 2001] implementation. In each
experiment, the linear, polynomial and RBF kernels were tried, and for each one,
the penalty and kernel parameters were varied to obtain the best result. Similar
to the SVM is the Relevance Vector Machine (RVM) which is a Bayesian approach
that favors models with few basis vectors. The RVM generally gives models with
much fewer vectors than the number of support vectors in SVM. Due to this reduced
classifier complexity it is faster and it is worth comparing with the proposed LDPP.
For RVM we used Tipping's Matlab implementation [Tipping and Faul, 2003] which is
available only for two class problems. For this reason, RVM results are only presented
in the gender recognition experiment. For RVM we tried without a kernel, and with
the linear and RBF kernels.

For LDPP, the results can be, either using the learned prototypes and a 1-NN
classifier, or using the whole training set and a k-NN classifier distinguished LDPP*.
The initialization used for the LDPP algorithm in all of the experiments was a class-
dependent c-means for the prototypes \scrP and PCA for the projection base \bfitB . It has
been observed that this simple initialization is good enough to obtain good conver-
gence behavior and recognition results. Other initializations considered were random
for \bfitB and \scrP , and LDA for \bfitB . The random initialization also works well, although

3.10. EXPERIMENTS 27

makes the algorithm take longer to converge. The LDA initialization is not good, first
it can not be used for all data sets or parameters (i.e. E > C - 1, N < D), and the
algorithm may start at a local minima, thus not improving.

To adjust the learning factors of the LDPP gradient descent, the following pro-
cedure was employed. For a predefined range of values of the learning factors (i.e.
10 - 2, 10 - 1, 100), the algorithm was executed for a few iterations observing the be-
havior of the goal function. The selected factors were the ones that, gave the most
stable learning, judged by the number of improvement iterations, which had the lowest
value of the goal function. With the selected values, the algorithm was then executed
until convergence. Notice that a development set is not required for adjusting the
learning factors or for stopping the algorithm. In comparison to the results presented
in [Villegas and Paredes, 2008] in these experiments, the training data was previously
normalized. Furthermore, the leaned projection bases have been restricted to being
orthonormal. It was observed that the these modifications helped to make the learn-
ing factors more stable across different data sets, and thus making more narrow the
range of values of the learning factors to explore.

Given the fact that LDPP is capable of learning a very compact and fast classifier,
in the results we have also included what we call the speedup. This is a measure of
how many times faster is the testing phase of the method compared to what it takes
using a k-NN classifier in the original space. This relative measure has been estimated
using the time complexity of the algorithms.

3.10.1 Data Visualization

One of the possible applications of dimensionality reduction is data visualization. In
this application one has some data with a dimensionality higher than 2 and wishes to
project it onto a 2-dimensional space so that it can be plotted and better visualized.
For this application the proposed approach has very interesting properties, first, the
target space dimensionality is chosen at will, and for this dimensionality the projection
base is optimized. Another interesting property of the approach is that by learning
a set of prototypes, these can also be plotted along with their corresponding voronoi
diagram which define the class boundaries. This gives a much richer visualization of
the data.

The proposed approach is limited to a linear projection, therefore if the data is
highly non-linear then there may not be a possible satisfactory result. Nonetheless, as
mentioned before, because of the non-parametric nature of the approach and the pos-
sibility of having multiple prototypes per class, data sets with complex distributions,
such as being multi-modal, can be actually handled.

Synthetic Data

This experiment was designed to illustrate some of the properties of the proposed
algorithm. A 7 class 6-dimensional data set was used. Three of the dimensions
conform a 3-dimensional helix generated using the tool mentioned in [L.J.P. van der
Maaten, 2007]. The helix was divided into 10 segments and labeled as one of the
seven classes. Some of the classes are multi-modal and therefore the result obtained

28 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

Figure 3.6. Plot of the multi-modal 7 class 3-dimensional helix synthetic data set. To this
data, 3 dimensions of random noise were added.

by classical techniques such as LDA gives an overlap between the classes. This helix
can be observed in figure 3.6. The other three dimensions are random noise having a
variance slightly higher than the variance of the helix.

The LDPP algorithm was used to learn a 2-dimensional projection base varying
the number of prototypes. The best result obtained was when having two prototypes
per class, which is understandable since the classes have at most 2 clusters. This
result is presented in figure 3.7. The figure first shows the plot by projecting with
PCA and two prototypes per class obtained by c-means. This PCA projection and
c-means were the initialization to the LDPP algorithm. The second plot shows the
result obtained after LDPP learning.

As can be observed in the figure, the projection learned completely removes the
noise and the reference prototypes are positioned so that they classify very well the
data. Although this is a very ideal synthetic data set, it illustrates how the algo-
rithm works. If we would have chosen only one prototype per class it would have
been impossible for the prototypes to classify well the data, although not necessarily
the projection would have been bad. Nonetheless, in a real data set the number of
prototypes needs to be varied and the best result will be the one that gives a low error
rate with the least number of prototypes. The results obtained with other techniques
are presented in figure 3.8. Among the methods tried, only LSDA is also capable of
handling the multi-modal data set. Also the figure shows the result of LDPP with
only one prototype per class which gives a similar result to LDA.

Handwritten Digits

As a second example for data visualization we have used a real high-dimensional data
set. It is the UCI Multiple Features Data Set [Asuncion and Newman, 2007] which
is a data set of features of handwritten digits (`0'--`9') extracted from a collection
of Dutch utility maps. This data set comprises 200 binary images per class (for a

3.10. EXPERIMENTS 29

Initialization (PCA, c-means) LDPP

C1
C2

C2

C3

C4

C4

C5C5

C6

C7

Figure 3.7. 2-D visualization of a 3-D synthetic helix with 3 additional dimensions of
random noise. The graphs include the prototypes (big points in black), the corresponding
voronoi diagram and the training data (small points in color). At the left is the initialization
(PCA and c-means) and at the right, the final result after LDPP learning.

MFA LDA SLPP

LSDA SRDA LDPP\bfM =\bfone

Figure 3.8. 2-D visualization of a 3-D synthetic helix with 3 additional dimensions of
random noise for different dimensionality reduction techniques.

30 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

total of 2,000 images). Each image is represented by a 649-dimensional vector that
includes: 76 Fourier coefficients of the character shapes; 216 profile correlations; 64
Karhunen-Love coefficients; 240 pixel averages in 2\times 3 windows; 47 Zernike moments;
and 6 morphological features.

Similar to the previous example, figure 3.9 shows the 2-dimensional LDPP visual-
ization for this data set. The figure plots the best result achieved, which was obtained
by using only one prototype per class. The initialization was PCA and class means
which is presented in figure 3.10. With this data set the projection and prototypes
learned nicely discriminate each of the classes. Also interesting is to see how the
classes which are near to each other actually reflect the similarities that exist between
handwritten digits.

Although hard to observe in the figure, there are several misclassified samples.
In this example the algorithm completely converged, that is, if the algorithm was
further iterated the classification error does not decrease. This might be considered
a local minimum, although it might also mean that there is no better projection and
prototypes which give a lower value for the goal function. In this sense the misclassified
samples illustrate how the algorithm is able to deal with possible outliers, a very
important property in order to obtain a good generalization of the learned classifiers.

For comparison, results obtained with other techniques are presented in figure
3.10. Other results on the same data can also be found in [Goldberger et al., 2005; He
and Niyogi, 2004; Perez-Jimenez and Perez-Cortes, 2006]. Also on the next subsection
on table 3.1, the row for MFeat, the estimated error rate for this data set is compared
with other dimensionality reduction techniques.

3.10.2 UCI and Statlog Corpora

Although the proposed approach has been developed for high-dimensional tasks, it is
still a classifier learning technique that works with an arbitrary vector valued classifi-
cation problem. In this section we present some results for several data sets form the
UCI Machine Learning Repository [Asuncion and Newman, 2007], most of which are
low-dimensional. As can be observed in table 3.1, the selected data sets have a wide
variety in the number of samples, number of classes and feature dimensionality.

To estimate the error rates, a special S-fold cross-validation procedure was em-
ployed. In this procedure the data set is randomly divided into S subsets, S - 2
subsets are used for training, one subset is used as development for adjusting the
learning parameters of all the methods applied, and the final subset is used for test.
The experiments are repeated each time using a different subset for test and the re-
sults are averaged. For each technique being compared the model parameters are
varied and the estimation of the error rate is the error of the test set for which the
development set gives the lowest error rate. This way the estimated error rates also
take into account the generalization to unseen data.

Table 3.1 shows the results obtained by a 20 time repeated 5-fold cross-validation,
as explained previously. Other techniques tested which performed worse are not in-
cluded in the table. The last two rows of the table are a summary of the results for
all of the data sets. First, the average rank indicates how good is the classifier in
comparison to the other techniques. And second, the speedup tells how fast is the

3.10. EXPERIMENTS 31

’0’

’1’

’2’

’3’

’4’
’5’

’6’

’7’

’8’

’9’

Figure 3.9. 2-D visualization obtained by LDPP learning of the UCI Multiple Features
Data Set of handwritten digits. The graph includes the prototypes (big points in black), the
corresponding voronoi diagram and the training data (small points in color).

PCA LDA SLPP

LSDA SRDA MFA

Figure 3.10. 2-D visualization of the UCI Multiple Features Data Set of handwritten digits
for different dimensionality reduction techniques.

32 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

T
a
b
le

3
.1
.
E
rro

r
ra
tes

(in
\%
)
fo
r
sev

era
l
d
a
ta

sets
a
n
d
d
iff
eren

t
d
im

en
sio

n
a
lity

red
u
ctio

n
tech

n
iq
u
es.

T
h
e
la
st

tw
o
row

s
a
re

th
e
av
era

g
e

cla
ssifi

ca
tio

n
ra
n
k
a
n
d
th
e
av
era

g
e
sp

eed
u
p
rela

tiv
e
to

k
-N

N
in

th
e
o
rig

in
a
l
sp
a
ce.

T
a
sk

S
ta

tistic
s

O
rig

.
S
.

S
L
P
P

S
R
D
A

N
D
A

N
C
A

L
M

N
N

L
D
P
P

L
D
P
P
*

N
C

D
(k

-\mathrm{N}
\mathrm{N}
,

\~\scrX
)

(k
-\mathrm{N}

\mathrm{N}
,

\~\scrX
)

(k
-\mathrm{N}

\mathrm{N}
,

\~\scrX
)

(k
-\mathrm{N}

\mathrm{N}
,

\~\scrX
)

(k
-\mathrm{N}

\mathrm{N}
,

\~\scrX
)

(k
-\mathrm{N}

\mathrm{N}
,

\~\scrX
)

(1
-\mathrm{N}

\mathrm{N}
,
\~\scrP
)

(k
-\mathrm{N}

\mathrm{N}
,

\~\scrX
)

A
u
stra

lian
69
0

2
42

32.53
14.61

13
.8
7

1
3
.9
2

3
1
.4
5

2
6
.6
5

1
3
.3
4

14.04
B
a
la
n
ce

62
5

3
4

13.47
10.30

9
.9
0

8
.7
0

5
.0
0

1
0
.0
5

8.89
10.02

C
an

cer
68
3

2
9

3.44
3.34

3
.1
5

3
.2
5

4
.5
7

3
.4
3

3.40
3.68

D
ia
b
etes

76
8

2
8

26.30
24.13

2
3
.7
4

2
5
.2
2

2
6
.3
0

2
5
.7
2

23.85
25.28

G
erm

a
n

1
000

2
24

29.54
24.25

23
.6
9

2
5
.9
6

2
9
.5
1

2
8
.2
1

2
3
.3
7

24.54
G
lass

21
4

6
9

3
2
.6
6

44.20
33
.8
9

3
4
.3
8

3
4
.3
4

3
3
.5
4

37.49
35.21

H
eart

27
0

2
25

33.63
17.00

1
5
.7
4

2
0
.5
9

3
3
.5
6

2
1
.8
5

17.37
18.11

Io
n
o
sp
h
ere

35
1

2
34

14.61
14.27

13
.5
6

1
1
.3
4

1
1
.8
0

1
2
.2
7

13.36
11.74

L
iver

34
5

2
6

33.22
35.16

34
.4
6

3
1
.5
7

3
3
.9
1

3
3
.8
3

3
0
.9
9

34.67
M
F
eat

2
000

10
649

4.80
1.05

0.9
5

0
.8
0

4
.9
5

4
.9
5

0.95
0
.8
0

P
h
o
n
em

e
5
404

2
5

1
2
.9
5

23.49
23
.2
3

1
4
.6
3

1
4
.6
2

1
4
.9
6

16.48
14.93

S
eg
m
en

2
310

7
19

5.09
3.54

3.3
4

3
.4
2

5
.0
9

3
.2
5

4.77
3.50

S
o
n
a
r

20
8

2
60

24.51
31.03

29
.0
9

2
3
.6
4

2
3
.5
4

2
4
.2
4

28.04
24.37

V
eh
icle

84
6

4
18

35.81
27.32

36
.3
9

1
9
.8
7

3
5
.8
2

2
2
.4
7

20.21
20.96

V
ote

43
5

2
16

7.87
5.69

6.1
3

5
.0
3

5
.8
6

5
.9
2

5.49
6.91

W
aveform

5
000

3
40

15.38
14.46

1
3
.0
6

1
3
.4
4

1
4
.0
9

1
3
.2
5

13.33
13.48

W
in
e

17
8

3
13

28.35
2.40

2
.2
2

3
.5
5

2
8
.3
5

4
.3
5

3.58
3.07

A
v
g
.
R
a
n
k

6.18
5.24

3.6
5

2
.8
8

5
.5
3

4
.5
9

3.53
4.41

S
p
e
e
d
u
p

1
17

17
7

3
5

8
8

4

3.10. EXPERIMENTS 33

algorithm, as was explained in the beginning of the section. For LDPP, depending on
the data set, using the learned prototypes instead of the whole training set, LDPP*,
does or does not improve the recognition. Although on average it is better to use
the learned prototypes. In comparison with the baseline techniques, on average the
proposed approach performs very well, having a lower error rate than all of the tech-
niques except for NDA and SRDA. What is even more encouraging is that when using
the prototypes the classification is much faster than the other techniques.

3.10.3 High-Dimensional Data Sets

Gender Recognition

The first high-dimensional problem we have considered is human face gender recog-
nition. This task has as input an image of a face and the objective is to determine
if the image is of a man or a woman. An interesting characteristic of this task in
the context of dimensionality reduction is that it is a two class problem. Several of
the discriminative dimensionality reduction techniques in the literature have C - 1 as
an upper limit for the target space dimensionality, and thus for these techniques the
output dimensionality is only 1. This is an important limitation which can severely
affect the recognition results. However because the proposed approach does not have
this restriction a better performance is expected.

Although in the literature there are several works on gender recognition [Bres-
san and Vitri\`a, 2003; Buchala et al., 2004; Graf and Wichmann, 2002; Masip and
Vitri\`a, 2006], there is no standard data set or protocol for experimentation in this
task. For our experiments we have taken a set of 1892 images2 (946 males and 946
females) from many databases. From each database we took only the first frontal
image of each subject, however because all of the databases have more male sub-
jects than female, we only took as many male images as there were females. Images
from the following databases have been used: AR Face Database [Martinez and Be-
navente, 1998], BANCA Database [Bailly-Bailli\'ere et al., 2003], Caltech Frontal Face
Database [Weber, 1999], Essex Collection of Facial Images [Spacek, 1996], FERET
Database [Phillips et al., 2000], FRGC version 2 Database [Phillips et al., 2005], Geor-
gia Tech Face Database [Nefian and Hayes, 2000] and the XM2VTS Database [Messer
et al., 1999].

The preprocessing done to the images was as follows. Using manually selected eye
coordinates, the faces were cropped and resized to 32\times 40. Afterward, the images were
converted to gray-scale and histogram equalized in order to somewhat compensate for
global illumination changes. This gives a 1280-dimensional vector representation of
each image which was what we used for the experiments. With the same procedure
than the experiment on section 3.10.2, a single 5-fold cross-validation was used to
estimate the results.

Table 3.2 compares the results obtained for LDPP with the baseline techniques.
For LDPP the projection base was restricted to being orthonormal, the target space
dimensionality was varied logarithmically between 1 and 48 and the number of proto-
types per class was varied between 1 and 24 also logarithmically. The beta parameter

2This data set is freely available in http://web.iti.upv.es/\~mvillegas/research/datasets

http://web.iti.upv.es/~mvillegas/research/datasets

34 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

Table 3.2. Face gender recognition results for different dimensionality reduction techniques.

Approach
Error Rate (\%)

Dim. Speedup
[95\% conf. int.]

Orig. Space 19.6 [17.6 -- 21.6] 1,280 1
PCA 17.7 [15.8 -- 19.7] 64 9
RVM 9.9 [8.9 -- 11.0] N/A 15
SVM 8.6 [7.3 -- 9.8] N/A 2
LSDA 35.7 [33.0 -- 38.3] 2 301
MFA 35.7 [33.2 -- 38.2] 6 100
SLPP 34.0 [31.0 -- 36.9] 1 601
NDA 29.6 [27.4 -- 31.9] 24 25
SRDA 10.4 [9.9 -- 11.0] 1 601
PCA+LDA 47.1 [44.9 -- 49.3] 1 601
PCA+MFA 19.5 [17.7 -- 21.2] 16 38
PCA+NCA 18.3 [16.8 -- 19.8] 24 25
PCA+LSDA 12.3 [10.7 -- 13.8] 24 25
PCA+SRDA 11.2 [9.9 -- 12.5] 1 601
PCA+NDA 11.1 [9.3 -- 12.8] 12 50
PCA+SLPP 11.1 [9.8 -- 12.3] 1 601
PCA+LMNN 10.4 [8.6 -- 12.2] 16 38
LDPP(Mc=1) 11.5 [10.4 -- 12.6] 1 1,132
LDPP(Mc=16) 8.5 [7.3 -- 9.8] 24 46
LDPP(Mc=16,\mathrm{n}\mathrm{o}\mathrm{t} \mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{o}.) 9.9 [9.1 -- 10.8] 24 46
LDPP* 9.2 [7.5 -- 11.0] 12 50

3.10. EXPERIMENTS 35

was kept fixed at 10 and the learning rates were adjusted as explained in the beginning
of the section. For the other techniques the parameters were also varied adequately.
Some baseline methods are not presented without PCA preprocessing, in the case of
LDA because the within scatter matrix is singular and thus there is no solution, and
in the case of LMNN and NCA because it is simply too expensive to compute for such
a high dimensionality.

Interestingly the results for LDPP for all the parameters tried gave competitive
error rates. In the table we only show a few representative results. The first result
is when reducing to only one dimension, included so that it can be compared with
the other techniques that have the same dimensionality. The error rate is comparable
with other techniques, however it is a much more compact and fast classifier. The
second result presented is for the best error rate obtained. This result is statistically
significantly better than all the baseline techniques, except for SVM. However LDPP
still gives a much faster classifier than SVM. As expected, RVM produces a faster
model than SVM, nonetheless the performance and the speed is worse than for LDPP.
For comparison, the result obtained with LDPP when the base is not restricted to
being orthonormal is also presented. As can be observed it has a worse performance.
The final result presented is for LDPP*, that is, the best one obtained when discarding
the learned prototypes. This result is slightly worse than the best one, suggesting
that for this problem the learned set of prototypes is capable of further improving the
recognition rates.

Notice that the baseline techniques only work well when combined with PCA.
This questions how well do these techniques work with high-dimensional data. On
the other hand, LDPP is capable of handling the data in the original high-dimensional
space.

Emotion Recognition

A similar recognition task to the one presented previously is the recognition of human
emotions based on an image of the face. There are several works on facial emotion
recognition [Buenaposada et al., 2008; Pantic and Rothkrantz, 2000], most of which
use image sequences and temporal information for identifying the emotions. However
in the present experiment the input to the recognition system is a single face image.
The main difference with the gender experiment is that the number of classes is
higher. Ekman in his work [Donato et al., 1999] identified six universal facial emotional
expressions, referred to as basic emotions: happiness, sadness, surprise, fear, anger,
and disgust. In the present experiment the objective has been to classify the facial
expression into one of the six basic emotions or being a neutral expression. That is,
in total there are seven classes.

Possibly the most widely used facial database for emotion recognition research is
the Cohn-Kanade database [Kanade et al., 2000], which was the one we used. This
database consist of 488 image sequences of 97 university students. The sequences
start with the subject having a neutral face and end at the apex of an expression they
were asked to perform. The last frame of the sequences is labeled using the FACS
coding which describes the facial expression. These FACS codes can be translated
into emotions, although ambiguously. We have used 348 of the sequences for which

36 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

the emotion labels are publicly available [Buenaposada et al., 2008]. For each of these
sequences we have taken the last frame with the corresponding emotion label, and
also the first frame labeled as neutral. Using manually selected eye coordinates, the
face images were cropped and resized to 32\times 32, and afterward histogram equalized.
This gives a 1024-dimensional vector representation of each image which was what
we used for the experiments. A 5-fold cross-validation procedure was employed to
estimate the error rates. The parameters of the algorithms were varied the same as
for the previous experiment.

Table 3.3. Face emotion recognition results on the Cohn-Kanade database for different
dimensionality reduction techniques.

Approach
Error Rate (\%)

Dim. Speedup
[95\% conf. int.]

Orig. Space 30.8 [28.3 -- 33.3] 1,024 1
PCA 29.4 [27.6 -- 31.1] 16 23
SVM 13.2 [12.3 -- 14.2] N/A 2
LSDA 50.2 [48.4 -- 52.1] 24 15
NDA 24.7 [22.7 -- 26.8] 48 8
SLPP 19.9 [17.0 -- 22.7] 6 60
MFA 17.0 [15.3 -- 18.7] 12 30
SRDA 15.4 [14.0 -- 16.6] 6 60
PCA+NCA 29.4 [27.6 -- 31.1] 16 23
PCA+MFA 18.4 [16.9 -- 19.9] 6 60
PCA+LMNN 17.4 [16.9 -- 17.9] 24 15
PCA+NDA 15.7 [13.5 -- 17.8] 16 23
PCA+LDA 14.2 [13.2 -- 15.3] 6 60
PCA+SLPP 14.2 [13.2 -- 15.3] 6 60
PCA+SRDA 14.0 [13.2 -- 15.3] 6 60
PCA+LSDA 12.5 [11.7 -- 13.4] 8 45
LDPP(Mc=1) 11.5 [10.6 -- 12.4] 16 35
LDPP(Mc=1,\mathrm{n}\mathrm{o}\mathrm{t} \mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{o}.) 12.1 [10.6 -- 13.5] 16 35
LDPP* 12.1 [11.2 -- 13.0] 32 11

The results, presented in table 3.3, are similar to the ones obtained in the previ-
ous experiment. The baseline techniques tend to work better when combined with
PCA, and LDPP still performs better than the baseline techniques. Three results are
presented for LDPP, the best ones obtained with and without the learned prototypes
and when the base is not restricted to being orthonormal. In this case, the prototypes
also improve the recognition rate and the orthonormalization is helpful. Here again,
for LDA, LMNN and NCA, the results without PCA preprocessing are not presented
because of the inability to compute them.

For this experiment we also present the 2-dimensional visualization of the data
set for one prototype per class, see figure 3.11. The prototypes in the original space
represented as an image is also included. It is interesting to see that the neutral

3.10. EXPERIMENTS 37

Figure 3.11. 2-D visualization after LDPP learning for the six basic emotions and neutral
face for the Cohn-Kanade Database. The graph includes the prototypes (big points in black),
the corresponding voronoi diagram, the original image for each prototype, and the training
data (small points in color).

38 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

expression is located in the center and the various emotions surround it, which is
what intuitively one could expect.

Text Classification

A classification task which can be very high-dimensional and sparse is text classi-
fication. The standard way of representing a document in order to perform text
classification is to count the number of times each word of a given vocabulary ap-
pears. This means that the dimensionality of the feature vectors is given by the size
of the vocabulary, a value which generally needs to be high in order to achieve a low
error rate.

We carried out a few experiments on text classification using the data set known
as the 4 Universities WebKb. The WebKb data set [Craven et al., 1998] contains web
pages gathered from university computer science departments. The pages are divided
into seven categories: student, faculty, staff, course, project, department and other.
In the present work, as in most works carried out on this corpus [Vilar et al., 2004],
we have focused on the four most populous entity-representing categories: student,
faculty, course and project, all together containing 4,199 documents. Also as usual
practice on other works for this data set, we have estimated the error rates by each
time taking the documents from one university as the testing set and using the rest
of the data for training. The results presented are the average values of the four
experiments.

Table 3.4 shows the comparative results for the WebKb task for a vocabulary of
500 which is where most of the techniques obtain a minimum. For our approach the
best results were obtained using the LDPP*. Although the result of standard LDPP
with the reduced set of prototypes (9.1\%) is still competitive compared to the other
methods and with an important speedup factor. The dimensionality of the target
space was varied logarithmically from 2 to 32 and the number of prototypes per class
was varied logarithmically between 1 and 32. The LDPP* approach is significantly
better, and it reaches a minimum with a smaller vocabulary than the rest of the
methods. In this experiment it is also observed how LDPP works well without the
need to previously reduce dimensionality with PCA.

Figure 3.12 shows a graph of the estimated error rates for different vocabulary
sizes. Only the best performing subset of the baseline techniques are presented.
Among them, three of them require a PCA preprocessing and these perform quite
badly specially when the vocabulary increases. The only baseline dimensionality
reduction method which behaves well with high dimensionality is SRDA, nonetheless
LDPP obtains a statistically significant better result and this with a much smaller
vocabulary.

3.11 Conclusions

In this chapter we have presented the LDPP algorithm. This algorithm learns simul-
taneously a linear projection and a reduced set of prototypes that define adequately
the class distributions on the target space. It can be used either to learn a linear

3.11. CONCLUSIONS 39

Table 3.4. Text classification results for a vocabulary of 500 words on the WebKb database
for different dimensionality reduction techniques.

Approach
Error Rate (\%)

Dim. Speedup
[95\% conf. int.]

Orig. Space 22.3 [18.5 -- 26.1] 500 1
PCA 21.6 [17.0 -- 26.3] 256 1
SVM 10.5 [5.7 -- 15.2] N/A 2
MFA 47.1 [38.4 -- 55.8] 3 17
SLPP 15.6 [12.7 -- 18.6] 3 17
LSDA 14.2 [11.9 -- 16.6] 24 2
NDA 13.9 [10.3 -- 17.6] 32 2
SRDA 11.4 [9.5 -- 13.2] 3 17
PCA+MFA 31.0 [25.2 -- 36.8] 3 17
PCA+SRDA 24.9 [21.6 -- 28.3] 3 17
PCA+NCA 23.7 [21.1 -- 26.7] 24 2
PCA+LDA 12.8 [10.1 -- 15.4] 3 17
PCA+SLPP 12.4 [10.7 -- 14.1] 3 17
PCA+NDA 11.6 [9.0 -- 14.1] 16 3
PCA+LSDA 10.9 [8.7 -- 13.1] 12 4
PCA+LMNN 10.2 [7.3 -- 13.0] 4 13
LDPP(Mc=16) 9.1 [7.6 -- 10.7] 32 41
LDPP* 8.9 [6.8 -- 11.0] 32 2

10

15

20

25

30

10 100 1000 10000

E
rr
or

R
at
e
(\%

)

Vocabulary Size

Orig. Space
SVM

PCA+LDA
PCA+SLPP
PCA+LSDA

SRDA
LDPP*

Figure 3.12. Text classification error rates varying the vocabulary size for the 4 Universities
WebKb data set.

40 CHAPTER 3. LEARNING PROJECTIONS AND PROTOTYPES FOR CLASSIFICATION

projection base and a set of prototypes for 1-NN classification or only keep the pro-
jection base and be used as a general dimensionality reduction method. The algorithm
was formulated in such a way that makes it simpler to extend the approach to other
distances. Moreover this formulation leads to an efficient and easily parallelizable
implementation. The algorithm does not necessarily learn an orthonormal projec-
tion base, although with a simple Gram-Schmidt process it can be ensured to be
orthonormal, and furthermore, in the experimental results it was observed that this
modification works as a regularizer producing recognition models which generalize
better to unseen data.

The parameter selection problem is also discussed. A normalization method is
proposed which makes the learning factors independent of the parameters of the al-
gorithm and the data, and thus making narrower the range of possible values the
learning factors can have. Furthermore a simple methodology for adjusting the learn-
ing factors of the algorithm which does not require a development set is presented.
This methodology used in the experiments has given a consistent good behavior. This
eases the use of the algorithm, alleviating the burden of having to choose the learning
factors manually. The sigma slope parameter \beta was also analyzed, and it was ob-
served that its optimal value does not change much for different data sets, and using
a value of \beta = 10 generally gives good recognition performance. Furthermore, with
\beta = 10 the goal function decreases smoothly suggesting that the algorithm is not
greatly affected by local minima.

From the experiments we can conclude that the LDPP approach behaves con-
siderably well for a wide range of problems achieving very competitive results for
discriminative dimensionality reduction, comparable to state-of-the-art techniques.
The results on high-dimensional problems show that unlike other techniques, LDPP
can be applied directly to this type of problems without having to resort to a PCA
preprocessing. This has the advantage that no information is ignored during the dis-
criminative learning. On the other hand, the technique additionally learns a small
set of prototypes optimized for 1-NN classification, which in conjunction to the linear
dimensionality reduction, gives an extremely fast classifier when compared with other
classification approaches.

Several directions for future research remain. Even though the algorithm can
handle complex data distributions, for certain problems it could be important to have
a nonlinear dimensionality reduction mapping. One possibility could be to use the
kernel trick to extend the LDPP to be nonlinear. On the other hand, even though
trying different possibilities for the target space dimensionality and the number of
prototypes is necessary to obtain the best recognition results, a method could be
developed in which the number of prototypes and the dimensionality is modified
during the optimization. Another possible direction of future work is to extend LDPP
to be semi-supervised to be used in problems where it is expensive to label all of the
training data. As a final direction of future research, it is worth mentioning that in
this moment there is a great interest in classification problems where there are millions
of training samples available. The proposed approach does not scale to corpora of
this magnitude, therefore future work could be focused on this direction as well.

Chapter 4

Modeling Variability Using
Tangent Vectors

In the area of pattern recognition it is very common that when confronted with a
task, there are few samples available for learning adequately the models. However in
some applications, apart from the actual samples, there is other information which is
known a priori and ideally it could be used to obtain better models. One example of
this are some known transformations that a sample can have which do not modify the
class membership. Consider for instance the rotation and scaling that a facial image
can have because of an imperfect face alignment. These variations are expected to
appear, moreover it is known that they do not change the identity of the person that
appears in the image. A way to model approximately these transformations, is to
use what is known as the tangent vectors. The concept of the tangent vectors was
introduced in [Simard et al., 1993], where a distance measure is proposed which is
locally invariant to a set of transformations defined by the tangent vectors. This is
the so called tangent distance.

In this chapter, the tangent vectors are introduced and discussed, modifications
of PCA, LDA and SRDA which use the tangent vector information are proposed and
finally the use of the tangent distance is presented for the LDPP algorithm.

4.1 Overview of the Tangent Vectors

Suppose we have a point \bfitx \in \BbbR D generated from an underling distribution and
that the possible transformations or manifold of \bfitx can be obtained by \^\bfitt (\bfitx ,\bfitalpha) which
depends on a parameter vector \bfitalpha \in \BbbR L with the characteristic that \^\bfitt (\bfitx ,0) = \bfitx .
For example \bfitx could be the pixel values of an image representing a character of a
particular font and the parameters \bfitalpha are possible variations of the character, which
could be for instance the size of the font. The dimensionality of \bfitalpha is essentially the
degrees of freedom of possible variations that \bfitx can have. In real applications the
manifold \^\bfitt (\bfitx ,\bfitalpha) is highly non-linear, however for values close to \bfitalpha = 0 it can be
reasonable to approximate it by a linear subspace. This can also be interpreted as

42 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

representing the manifold by its Taylor series expansion evaluated at \bfitalpha = 0, and
discarding the second and higher order terms [Simard et al., 1998], i.e.

\^\bfitt (\bfitx ,\bfitalpha) = \^\bfitt (\bfitx ,\bfitalpha) +

L\sum
l=0

\alpha l
\partial \^\bfitt (\bfitx ,\bfitalpha)

\partial \alpha l
+\scrO (\bfitalpha \otimes \bfitalpha) +\scrO (\bfitalpha \otimes \bfitalpha \otimes \bfitalpha) + . . .

\bigm| \bigm| \bigm| \bigm| \bigm|
\bfitalpha =0

(4.1)

\approx \bfitt (\bfitx ,\bfitalpha) = \bfitx +

L\sum
l=0

\alpha l\bfitv l , (4.2)

where \scrO (\cdot) simply indicates that there are higher order terms although the explicit
expressions are not given. The partial derivatives \bfitv l = \partial \^\bfitt /\partial \alpha l are known as the
tangent vectors, since they are tangent to the transformation manifold \^\bfitt at point \bfitx .

The concept of the tangent vector approximation is illustrated in figure 4.1 for
a single direction of variability. The figure also includes an example for an image
representing the character ``E"". The image is shown rotated at various angles along
with the approximated rotation using a tangent vector. As can be observed in the
figure, the approximation can be quite good for small values of \| \bfitalpha \| , however as the
norm \| \bfitalpha \| increases, the deviation from the true manifold \^\bfitt is expected to increase.

\^\bfitt (\bfitx ,\bfitalpha)

\bfitt (\bfitx ,\bfitalpha) = \bfitx +
\sum L

l=1 \alpha l\bfitv l

\bfitv l

\bfitx
\alpha l=0

\alpha l= - 1

\alpha l=1

 - 8 \circ - 2 \circ 0 \circ +2 \circ +8 \circ

\alpha = - 2.8 \alpha = - 0.7 \bfitx \alpha = +0.7 \alpha = +2.8 \bfitv

Figure 4.1. Top: An illustration of the linear approximation of transformations by means
of tangent vectors. Bottom: An example of an image rotated at various angles and the
corresponding rotation approximations using a tangent vector.

4.1. OVERVIEW OF THE TANGENT VECTORS 43

4.1.1 Tangent Distance

In the context of pattern recognition, the tangent vectors can be very useful for
comparing vectors while taking into account their possible directions of variability.
This is known as the tangent distance. Suppose we have two samples \bfitx a and \bfitx b both of
which have a corresponding manifold, \^\bfitt a and \^\bfitt b, describing their possible variations.
To compare the samples, ideally we could use the minimum distance between the
manifolds \^\bfitt a and \^\bfitt b, however they do not have a simple analytical expression in
general, and estimating the distance between them becomes a difficult optimization
problem [Simard et al., 1998]. As an alternative it was proposed to use the minimum
distance between the subspaces spanned by the tangent vectors of the samples. This
distance can be better explained with help of figure 4.2. In the figure, the manifolds
\^\bfitt a and \^\bfitt b are represented by a couple of curves, and along them the samples \bfitx a and \bfitx b

are located. At each of those points there are a series of tangent vectors conforming
the two tangent subspaces \scrV a and \scrV b, in the figure represented as simple lines. Then
the tangent distance is the minimum distance between both of the tangent subspaces,
or more formally it is

d(\bfitx a,\bfitx b) = min
\bfitt a\in \scrV a, \bfitt b\in \scrV b

\| \bfitt a - \bfitt b\| 2 . (4.3)

To actually compute the tangent distance it results in solving two systems of linear
equations for finding \bfitalpha a and \bfitalpha b [Simard et al., 1998], which are

(\bfitV ba\bfitV
 - 1
aa \bfitV \sansT

a - \bfitV \sansT
b)(\bfitx a - \bfitx b) = (\bfitV ba\bfitV

 - 1
aa \bfitV ab - \bfitV bb)\bfitalpha a , (4.4)

(\bfitV ab\bfitV
 - 1
bb \bfitV \sansT

b - \bfitV \sansT
a)(\bfitx a - \bfitx b) = (\bfitV aa - \bfitV ab\bfitV

 - 1
bb \bfitV ba)\bfitalpha b , (4.5)

where \bfitV \{ a,b\} \in \BbbR D\times L\{ a,b\} are matrices containing in its columns the tangent vectors

of \bfitx a and \bfitx b respectively, and \bfitV aa = \bfitV \sansT
a \bfitV a, \bfitV bb = \bfitV \sansT

b \bfitV b, \bfitV ab = \bfitV \sansT
a \bfitV b, \bfitV ba = \bfitV \sansT

ab.
Once \bfitalpha a and \bfitalpha b are computed, the tangent distance is obtained by substituting them
into equation (4.2) followed by (4.3).

The tangent distance is somewhat expensive to compute and is sometimes difficult
to use in more advanced algorithms. An alternative dissimilarity measure which is
simpler and cheaper to compute, results from considering only one of the tangent
subspaces. Then the distance is the minimum distance between one of the points
and the tangent subspace of the other point, see figure 4.2. This is known as the
single sided tangent distance [Dahmen et al., 2001; Keysers et al., 2004], and for
clarity the original tangent distance is sometimes referred to as double sided. In the
context of a classification task, the tangent subspace can be either of the reference
vector (from the classification model) or the observation vector, consequently the two
single sided tangent distances can be easily distinguished as the reference single sided
tangent distance (RTD) and the observation single sided tangent distance (OTD)
respectively.

Since the possible transformations from only one point is considered, the single
sided tangent distance is somewhat inferior, and it has been observed in some appli-
cations that it does have a worse performance, see for instance the results in section
4.6.3. On the other hand, the double sided tangent distance has the inconvenience

44 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

\^\bfitt a

\^\bfitt b

\bfitt a

\bfitt b

\bfitx a

\bfitx b

Euclidean Distance

Single Sided Tan-
gent Distance

Tangent Distance

Figure 4.2. Illustration of the tangent distance, the single sided tangent distance and their
relationship with the Euclidean distance.

that the minimum distance between the subspaces could be for high values of \| \bfitalpha a\|
and \| \bfitalpha b\| , or in other words be faraway from the original points \bfitx a and \bfitx b, which
is an unwanted side effect of the linear approximation. There is a modified version
of the tangent distance that overcomes this, although it has been pointed out that
this problem does not arise much in practice [Simard et al., 1993], anyhow, the single
sided distance by having one of the points fixed it is inherently less affected by this.

The most important advantages of the single sided tangent distance are that it
can be obtained directly without having to explicitly find \bfitalpha and also it is much more
efficient to compute [Duda et al., 2000, chap. 4 prob. 21], [Dahmen et al., 2001]. A
simple expression for it is (see appendix A.2.1)

d(\bfitx a,\bfitx b) = | | \bfitx a - \bfitx b| | 2 - (\bfitx a - \bfitx b)
\sansT \^\bfitV \{ a,b\} \^\bfitV

\sansT

\{ a,b\} (\bfitx a - \bfitx \bfitb) , (4.6)

where \^\bfitV \{ a,b\} \in \BbbR D\times L\{ a,b\} is a basis of the tangent subspace either of \bfitx a or \bfitx b. As
can be noted, if the points \bfitx a and \bfitx b are interchanged, then the distance is different,
which means that it does not satisfy symmetry condition, i.e. d(\bfitx a,\bfitx b) \not = d(\bfitx b,\bfitx a),
therefore (4.6) is not strictly a metric. An alternative which does agree with all the
properties of a metric would be the average single sided tangent distance (ATD),
proposed in this thesis, which is computed as

d(\bfitx a,\bfitx b) = | | \bfitx a - \bfitx b| | 2 -
1

2
(\bfitx a - \bfitx b)

\sansT
\Bigl(
\^\bfitV a

\^\bfitV
\sansT

a + \^\bfitV b
\^\bfitV

\sansT

b

\Bigr)
(\bfitx a - \bfitx \bfitb) . (4.7)

It is important to note that the number of tangent vectors must always be lower
than the dimensionality of the points. If there are the same number of tangents as
the dimensionality, any point in space will intersect with the tangent subspace, and
therefore all the distances are zero. This can be easily observed in equation (4.6),

4.1. OVERVIEW OF THE TANGENT VECTORS 45

if there are the same number of tangents as the dimensionality, the tangent basis
becomes the identity \^\bfitV \{ a,b\} = \bfitI and the distance is zero for any input vectors.

4.1.2 Estimation of Tangent Vectors

There are several methods to estimate the tangent vectors. The most intuitive method
is, if it is possible to generate a transformation of a sample, e.g. for an image, it is
quite simple to rotate it or scale it, then the tangent vector is simply the difference
between the sample and its transformation [Duda et al., 2000, sec. 4.6]. The main
challenges that this method has are, first, that for the tangent approximation to be
accurate the transformation should be small, and there is no easy way of judging
how small to make it. Second, the tangent should also work for negative values
of \alpha , and this method only considers the positive direction. This can be resolved
by using as tangent the difference between a transformation in one direction and a
transformation in the other direction. Finally, this method requires that there must
be a way of computing a transformation of a sample, which is not true for every
problem, therefore this method cannot be applied for every task.

Another method of estimating the tangent vectors is to consider the k nearest
neighbors (k-NN). The possible variations of a point conforms a manifold, then if we
have available enough samples of the manifold, the directions to the nearest neigh-
bors of a point does approximate the tangent vectors at that point of the manifold.
However, generally there are not enough samples available of the manifold for the esti-
mated tangents to be considered accurate, specially for the high-dimensional problems
that are considered in this thesis. On the other hand, this method is more general
and can be applied in any task. Although if these tangents are used for a tangent
distance based k-NN classifier, it would not make much sense to estimate the tangents
of an observation using the same reference vectors as the ones used in the classifier.
Furthermore, the neighbors should be from the same class as the point, and for an
observation its class is unknown. Therefore only the tangent vectors of the references
are adequate to be used, and this limits the classifier to the reference single sided
tangent distance.

Another method of obtaining the tangent vectors which can be applied to any
task, is by means of a maximum likelihood estimation [Keysers et al., 2004]. With
this approach and assuming a Gaussian distribution, it can be shown that the tangent
vectors of class c are the eigenvectors corresponding to the L highest eigenvalues of
\Sigma - 1/2\Sigma c(\Sigma

 - 1/2)\sansT , where \Sigma and \Sigma c are the global and class-conditional covariance
matrices respectively. One main difference of this method of estimation with the
previously mentioned ones, is that the estimated tangent vectors are the same for
all the samples of class c. This is a harsh assumption, however in practice they can
provide better performance than without using the tangents [Keysers et al., 2004].
The same as for the previous method, for an observation the class is unknown and
therefore it is not known which are the corresponding tangents.

The method of estimation of the tangents that has been mostly used in this work
is the one proposed by Simard et al. [Simard et al., 1998]. These tangents are only

46 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

applicable to image based problems in which certain transformations to images do
represent possible transformations of the object. In this method, the image is fil-
tered using a two dimensional Gaussian to overcome the discrete nature of the digital
image and make it possible to obtain the respective derivative. Instead of taking
the derivative after the image filtering, using Lie algebra, the same result can be
obtained by filtering the image using the derivative of the Gaussian. With this ap-
proach, the tangents for several common image transformations can be obtained. The
two-dimensional Gaussian function is given by

g\sigma (x, y) = exp

\biggl(
 - x2 + y2

2\sigma 2

\biggr)
, (4.8)

where x and y are the horizontal and vertical image coordinates respectively, and \sigma is
the bandwidth of the Gaussian which controls the locality of the transformation. The
horizontal and vertical derivatives of the Gaussian (\partial g\sigma /\partial x and \partial g\sigma /\partial y) are easily
obtained. Now, let the convolutions of an image I(x, y) with the previous derivatives
be given by

IH(x\prime , y\prime) = I(x, y) \ast \partial g\sigma (x, y)

\partial x

\bigm| \bigm| \bigm| \bigm|
x=x\prime ,y=y\prime

, (4.9)

IV (x
\prime , y\prime) = I(x, y) \ast \partial g\sigma (x, y)

\partial y

\bigm| \bigm| \bigm| \bigm|
x=x\prime ,y=y\prime

. (4.10)

Using these, the following tangent vectors can be estimated:

horizontal translation: v(x, y) = IH(x, y) , (4.11)

vertical translation: v(x, y) = IV (x, y) , (4.12)

rotation: v(x, y) = yIH(x, y) - xIV (x, y) , (4.13)

scaling: v(x, y) = xIH(x, y) + yIV (x, y) , (4.14)

parallel hyperbolic: v(x, y) = xIH(x, y) - yIV (x, y) , (4.15)

diagonal hyperbolic: v(x, y) = yIH(x, y) + xIV (x, y) , (4.16)

trace thickening: v(x, y) =
\sqrt{}
I2H(x, y) + I2V (x, y) , (4.17)

where each element of a tangent vector \bfitv is given by each pixel position (x, y) in the
image. These tangent vectors were initially developed for optical character recognition
(OCR), a task in which all of the corresponding image transformations are applicable.
For other image recognition tasks, some of these tangent vectors are not useful, take
for instance facial images for which parallel and diagonal hyperbolic transformations
and thickening do not correspond to possible variations of the image. For further
detail on this method of tangent vector estimation, refer to [Simard et al., 1998].

A very interesting characteristic of the first method mentioned and Simard's
method for estimating tangent vectors is that from each sample, a unique set of
tangent vectors is obtained and are not linearly dependent with the training samples.
This indicates that more information about the underlying distribution is obtained

4.2. PRINCIPAL COMPONENT ANALYSIS 47

than what the original training samples had. This is particularly important for learn-
ing dimensionality reduction, as will be observed in following subsections, because the
algorithms generally struggle when the dimensionality is higher than the number of
training samples. With this additional information, the algorithms are able to handle
data with few samples available when compared to the dimensionality.

What can be observed from this short review of methods for estimating tangent
vectors is that some methods are generic while others are very specific to the task
being addressed. The task specific methods have the potential of providing additional
information about the underlying distributions, and thus are expected to help to learn
better models. Given some particular task, it is definitely worth the effort to develop
very specific methods which provide a good estimation of the tangent vectors. Using
as an example facial images, techniques can be developed that given an image, they
are capable of synthesizing a new face image with a different illumination, expression,
age, etc. Some of these techniques already exist, see for instance [Lanitis et al., 2002;
Zhang et al., 2005, 2006], and they could provide tangent vector estimates that model
variabilities specific to face images. Nonetheless, in this thesis the objective is not
to target a very specific task. Apart from the tangent vectors mentioned previously,
two other ones that were used are a very rudimentary method to model illumination
variations of facial images. These tangents simply increase the pixel values in one
side of the image while decreasing the pixel values of the other side, and are given by

horizontal illumination: v(x, y) = xI(x, y) , (4.18)

vertical illumination: v(x, y) = yI(x, y) . (4.19)

This concludes the review of the tangent vectors and the tangent distance. The
following subsections present the use of this theory to propose improvements to PCA,
LDA, SRDA and LDPP.

4.2 Principal Component Analysis

Principal component analysis (PCA) is probably the most well known and widely used
dimensionality reduction technique. Even though the main focus of the current thesis
is on supervised learning techniques, and PCA is not one of them, many supervised
techniques benefit considerably if PCA is used as a preprocessing step. Then for
sake of completeness it will be described here. In PCA, the objective is to find
the main uncorrelated directions (i.e. the principal components) in which the data
has the most variance. This objective is the same as saying that we would want the
covariance matrix of the data to be diagonal, so that the components are uncorrelated.
Furthermore, variances in the diagonal should be sorted from largest to smallest so
that they are ordered by importance.

The covariance matrix of a random vector \bfsansx \in \BbbR D is given by

cov(\bfsansx) = \Sigma \bfsansx = \sansE
\bigl[
(\bfsansx - \sansE [\bfsansx])(\bfsansx - \sansE [\bfsansx])\sansT

\bigr]
. (4.20)

In PCA we would like to find an orthonormal matrix\bfitB \in \BbbR D\times D so that the covariance
of \bfsansy = \bfitB \sansT \bfsansx is diagonalized. Then it can be deduced that (see appendix A.2.2)

\Sigma \bfsansx \bfitB = \bfitB \Lambda , (4.21)

48 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

where \Lambda = cov(\bfsansy) is the resulting covariance matrix of \bfsansy which has to be diagonal.
It can easily be recognized that (4.21) is the eigenvalue decomposition of \Sigma \bfsansx , being
the columns of matrix \bfitB the eigenvectors and the elements in the diagonal of \Lambda the
eigenvalues. The eigenvalues actually correspond to the variances of each component
of \bfsansy , thus the principal components are the eigenvectors associated to the highest
eigenvalues.

4.2.1 Tangent Vectors in PCA

Considering that PCA is based solely on the use of the covariance matrix, therefore
when a data set is given say \scrX , an empirical estimation of the covariance matrix must
be obtained. The standard estimation of the covariance matrix is given by

\Sigma \scrX =
1

| \scrX |
\sum

\forall \bfitx \in \scrX

(\bfitx - \bfitmu)(\bfitx - \bfitmu)\sansT , (4.22)

where \bfitmu is the empirical mean given by

\bfitmu =
1

| \scrX |
\sum

\forall \bfitx \in \scrX

\bfitx . (4.23)

However, if adequate tangent vectors can be obtained for the data set, the covariance
matrix can be better estimated [Keysers et al., 2004]. Suppose that the problem is
represented by a random vector \bfsansx t which can be decomposed as

\bfsansx t = \bfsansx +
L\sum

l=1

\alpha l\bfsansv l . (4.24)

where \bfsansv 1, . . . , \bfsansv L are the L tangent vectors of \bfsansx as mentioned earlier in this chapter.
The hypothesis is that this new tangent representation can be used to better esti-
mate the covariance matrix if there are few samples available, because they can give
additional information about the distributions. This new estimation is given by (see
appendix A.2.5)

\Sigma \scrX \cup \scrV = \Sigma \scrX +
1

L

L\sum
l=1

\gamma 2
l

| \scrV l|
\sum

\forall \bfitv l\in \scrV l

\bfitv l\bfitv
\sansT
l , (4.25)

where \scrV l is the set including all of the tangent vectors of type l, and \gamma 1, . . . , \gamma L are
constants that depend on the distributions p(\alpha 1), . . . , p(\alpha L) and weight the impor-
tance of the tangent vectors in the estimation of the covariance matrix. With this
hopefully better estimation of the covariance matrix, the estimation of the principal
components will also be better. To distinguish this improved version of PCA, from
here onwards it will be referred to as Tangent Vector PCA (TPCA). The main draw-
back of TPCA is that new parameters are introduced \gamma 1, . . . , \gamma L. To simplify things,
they could be assumed to be the same for all tangent types, i.e. \gamma = \gamma 1 = . . . = \gamma L,
nonetheless it is still a parameter that needs to be estimated for instance using cross
validation.

4.3. LINEAR DISCRIMINANT ANALYSIS 49

4.3 Linear Discriminant Analysis

The most well known supervised dimensionality reduction technique is the Linear
Discriminant Analysis (LDA) or also known as the Fisher Linear Discriminant. In
LDA, the objective is to maximize the separability of the classes by simultaneously
maximizing the distances between the class centers and minimizing the distances
within each class. An assumption that is made by LDA in order to do the optimization
is that the class-conditional distributions are Gaussian, which in general is not true,
although it works considerably well in practice.

The derivation of LDA is the following. Two scatter matrices are defined, the first
one called the between-class scatter matrix is computed as

\bfitS b =

C\sum
c=1

Nc(\bfitmu - \bfitmu c)(\bfitmu - \bfitmu c)
\sansT , (4.26)

where C is the total number of classes, Nc is the number of samples of class c, and
the vectors \bfitmu c and \bfitmu are the mean of class c and the global mean respectively, both
of them computed as

\bfitmu c =
1

Nc

\sum
\bfitx \in \scrX c

\bfitx , (4.27)

\bfitmu =

C\sum
c=1

Nc

N
\bfitmu c , (4.28)

being N = N1 + N2 + . . . + NC the total number of samples. The second scatter
matrix called the within-class scatter matrix is computed as

\bfitS w =

C\sum
c=1

\sum
\bfitx \in \scrX c

(\bfitx - \bfitmu c)(\bfitx - \bfitmu c)
\sansT . (4.29)

Assuming that the dimensionality reduction transformation is linear and defined by
the matrix \bfitB \in \BbbR D\times E , the scatter matrices in the target space can be obtained from
the previous ones as \bfitB \sansT \bfitS b\bfitB and \bfitB \sansT \bfitS w\bfitB . From these scatter matrices a measure
of class separability in the target space is then defined to be used as the criteria to be
optimized. One of the possible optimization functions is given by [Fukunaga, 1990,
chap. 10]

\bfitB \ast = argmax
\bfitB

\sansT \sansr (\bfitB \sansT \bfitS b\bfitB)

\sansT \sansr (\bfitB \sansT \bfitS w\bfitB)
. (4.30)

In this previous equation, the numerator measures the separation between the classes
which should be maximized, and the denominator measures the compactness of the
classes which should be minimized. This equation in mathematical physics is the well
known generalized Rayleigh quotient, which can be shown to be equivalent to the
generalized eigenvalue problem (see appendix A.2.3)

\bfitS b\bfitB = \bfitS w\bfitB \Lambda , (4.31)

50 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

where the columns of \bfitB are the generalized eigenvectors, and \Lambda is a diagonal matrix
with the generalized eigenvalues in the diagonal, and for convenience assumed to
be in decreasing order. Since \bfitS b has rank C because it is computed from the C
class means, the matrix \bfitB has only C - 1 columns. This restricts the target space
dimensionality to be at most C - 1, i.e. E \leq C - 1, which is theoretically the
maximum intrinsic dimensionality of a classification problem [Fukunaga, 1990, chap.
10], however considering that the transformation is linear, this dimensionality might
be too low for tasks with few classes. Another shortcoming of LDA is that if the
dimensionality is higher than the number of samples available, then \bfitS w is singular
and there is no unique solution to the problem.

4.3.1 Tangent Vectors in LDA

Similar to what was presented for PCA, LDA can be modified to include the tan-
gent vectors as additional information for learning the projection base. The scatter
matrices used in LDA can be redefined to be in terms of random vectors, although
with a scaling factor (1/N) so that the scatter matrices do not depend on the number
of samples. This factor does not affect the solution of LDA since in the quotient of
(4.30) they cancel out. This new definition of the scatter matrices is then

\bfitS b =

C\sum
c=1

Pr(c)(\sansE [\bfsansx] - \sansE [\bfsansx c])(\sansE [\bfsansx] - \sansE [\bfsansx c])
\sansT , (4.32)

\bfitS w =

C\sum
c=1

Pr(c) cov(\bfsansx c) , (4.33)

where cov(\bfsansx c) is the covariance matrix of class c given by equation (4.20).
This redefinition of the scatter matrices does not change anything of LDA, however

it makes it possible to include the tangent vectors in the optimization. As shown in
appendix A.2.4 the between-class scatter matrix is not modified by the tangent vectors
under the assumption that the distributions p(\alpha 1), . . . , p(\alpha L) are symmetrical, and
intuitively it makes sense because the tangent vectors give information of how a sample
might vary and not about the other classes. On the other hand, similar to PCA, the
within-class scatter matrix (4.33) can be shown to be

\bfitS w =

C\sum
c=1

Pr(c)

\Biggl(
cov(\bfsansx c) +

L\sum
l=1

\gamma 2
l \sansE [\bfsansv cl\bfsansv

\sansT
cl]

\Biggr)
, (4.34)

where \gamma 1, . . . , \gamma L are constants that depend on the distributions p(\alpha 1), . . . , p(\alpha L) and
weight the importance of the tangent vectors in the estimation of the covariance
matrix. For simplicity these constants are assumed to be the same for all tangent
vectors \gamma = \gamma 1 = . . . = \gamma L. A detailed deduction of this equation is presented in
appendix A.2.5. The empirical estimation of the within-class scatter matrix, although

4.4. SPECTRAL REGRESSION DISCRIMINANT ANALYSIS 51

multiplying it by the number of samples N to be consistent with the original LDA,
is given by

\bfitS w =

C\sum
c=1

\sum
\bfitx \in \scrX c

(\bfitx - \bfitmu c)(\bfitx - \bfitmu c)
\sansT + \gamma 2

L\sum
l=1

\bfitv \bfitx l\bfitv
\sansT
\bfitx l . (4.35)

One of the shorthands of LDA is that for a high-dimensional task and few training
samples available, the within-class scatter matrix \bfitS w is singular and therefore there
is no unique solution to the generalized eigenvalue problem. With the new estimation
of \bfitS w, depending on how the tangent vectors are obtained (see section 4.1.2), the
rank of \bfitS w goes from N to N(L + 1), which can drastically reduce the number of
samples that are necessary so that \bfitS w is not singular.

This new proposed LDA, which shall be referred to as Tangent Vector LDA
(TLDA)1, is theoretically quite interesting. However, it does not resolve all of the
shortcomings of LDA. First, it still has a limitation of C - 1 dimensions for the target
space. A possibility to overcome this limitation is to use a nonparametric \bfitS b like
in Nonparametric Discriminant Analysis (NDA) [Bressan and Vitri\`a, 2003]. On the
other hand, in the literature there are many proposed improvements to LDA and there
are several which solve the problem of the singular \bfitS w [Cai et al., 2008; Howland and
Park, 2004; Kim et al., 2007; Li and Yuan, 2005; Zhang and Sim, 2007]. Furthermore,
the singular \bfitS w problem is alleviated in TLDA only if for the particular problem
there is an adequate method for estimating the tangent vectors which are lineally
independent of the training set. On the other hand, since the within scatter matrix
is better estimated, TLDA can improve the recognition accuracy for some problems,
as can be observed the experiments presented in section 4.6.

4.4 Spectral Regression Discriminant Analysis

In the literature there are many works targeted at improving LDA, each resolving
to some extent its deficiencies, among which some examples are [Cai et al., 2008;
Howland and Park, 2004; Kim et al., 2007; Li and Yuan, 2005; Zhang and Sim, 2007].
Analyzing each of these so that they can be improved using the tangent vectors would
be too extensive to be included in this thesis. Therefore we have chosen the method
known as Spectral Regression Discriminant Analysis (SRDA) [Cai et al., 2008]. This
method has two very interesting properties, first it is very efficient to compute and
second, it includes a regularizer which helps to give good results when the number of
samples is lower than the dimensionality.

In the LDA optimization function (4.30), if in the denominator, the total scatter
matrix \bfitS t = \bfitS w +\bfitS b is used instead of \bfitS w, the solution is the generalized eigenvalue
problem

\bfitS b\bfitB = \bfitS t\bfitB \Lambda , (4.36)

1A free Matlab/Octave implementation of this algorithm has been left available in http://web.

iti.upv.es/\~mvillegas/research/code and also attached to the digital version of this thesis that
the reader can extract if the viewer supports it.

function [B, V] = lda(X, Xlabels, varargin)
%
% LDA: Linear Discriminant Analysis
%
% Usage:
% [B, V] = lda(X, Xlabels, ...)
%
% Input:
% X - Data matrix. Each column vector is a data point.
% Xlabels - Data class labels.
%
% Input (optional):
% 'dopca',DIM - Perform PCA before LDA (default=false)
% 'pcab',PCAB - Supply the PCA basis
% 'tang',XTANGS - Do tangent vector LDA (default=false)
% 'tfact',TFACT - Importance of tangents (default=0.1)
% 'ptfact',PTFACT - Importance of each tangent type (default=1)
% 'nda',(true|alpha) - Use nonparametric between scatter (default=false)
%
% Output:
% B - Computed LDA basis
% V - Computed LDA eigenvalues
%
% $Revision: 128 $
% $Date: 2010-09-20 13:24:57 +0200 (Mon, 20 Sep 2010) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(X,'-v',2),
 unix('echo "$Revision: 128 $* $Date: 2010-09-20 13:24:57 +0200 (Mon, 20 Sep 2010) $*" | sed "s/^:/lda: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

fn='lda:';
minargs=2;

%%% Default values %%%
B=[];
V=[];

dopca=false;
tfact=0.1;
nda=false;

logfile=2;

%%% Input arguments parsing %%%
n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}),
 argerr=true;
 elseif strcmp(varargin{n},'tfact') || ...
 strcmp(varargin{n},'ptfact') || ...
 strcmp(varargin{n},'dopca') || ...
 strcmp(varargin{n},'pcab') || ...
 strcmp(varargin{n},'nda') || ...
 strcmp(varargin{n},'tang'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

[D,N]=size(X);

%%% Error detection %%%
if argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif max(size(Xlabels))~=N || min(size(Xlabels))~=1,
 fprintf(logfile,'%s error: labels must have the same size as the number of data points\n',fn);
 return;
elseif exist('tang','var') && mod(size(tang,2),N)~=0,
 fprintf(logfile,'%s error: number of tangents should be a multiple of the number of samples\n',fn);
 return;
elseif exist('tang','var') && exist('ptfact','var') && ...
 (numel(ptfact)~=size(tang,2)/N || size(ptfact,1)~=1),
 fprintf(logfile,'%s error: ptfact should be a row vector with the same number of elements as tangent types\n',fn);
 return;
end

if exist('tang','var') && exist('ptfact','var'),
 tang=tang.*repmat(ptfact,D,N);
end

if exist('pcab','var') && ~dopca,
 dopca=size(pcab,2);
end
if dopca;
 if ~exist('pcab','var'),
 if ~exist('tang','var'),
 pcab=pca(X);
 else
 pcab=pca(X,'tang',tang,'tfact',tfact);
 end
 end
 if dopca>size(pcab,2) || dopca<1,
 fprintf(logfile,'%s error: inconsistent dimensions in PCA base\n',fn);
 return;
 end
 pcab=pcab(:,1:dopca);
 mu=mean(X,2);
 X=X-repmat(mu,1,N);
 X=pcab'*X;
 D=dopca;
 if exist('tang','var');
 tang=tang-repmat(mu,1,size(tang,2));
 tang=pcab'*tang;
 end
end

Clabels=unique(Xlabels)';
C=size(Clabels,2);

if exist('tang','var');
 L=size(tang,2)/N;
 tSW=zeros(D);
end

mu=mean(X,2);
SB=zeros(D);
SW=zeros(D);

if nda || ~islogical(nda),
 onesN=ones(N,1);
 X2=sum((X.^2),1);
 dd=X'*X;
 dd=X2(onesN,:)+X2(onesN,:)'-dd-dd;
 dd([0:N-1].*N+[1:N])=inf;
 sel=Xlabels(:,onesN)'==Xlabels(:,onesN);
 ds=dd;
 dd(sel)=inf;
 [dd,id]=min(dd,[],2);
 Xd=X-X(:,id);
 if ~islogical(nda),
 ds(~sel)=inf;
 [ds,is]=min(ds,[],2);
 ds=sqrt(ds).^nda;
 dd=sqrt(dd).^nda;
 w=sqrt((min(dd,ds)./(dd+ds)))';
 Xd=Xd.*w(ones(D,1),:);
 end
 SB=Xd*Xd';
 nda=true;
end

for c=Clabels,
 sel=Xlabels==c;
 Xc=X(:,sel);
 Nc=size(Xc,2);
 muc=mean(Xc,2);
 Xc=Xc-repmat(muc,1,Nc);
 SW=SW+Xc*Xc';
 if ~nda,
 muc=muc-mu;
 SB=SB+Nc.*muc*muc';
 end
end
if exist('tang','var'),
 tSW=(1/L).*(tang*tang');
 tfact=tfact*trace(SW)/trace(tSW);
 SW=(1/N).*(SW+tfact.*tSW);
else
 SW=(1/N).*SW;
end
SB=(1/N).*SB;

%[B,V]=eig(inv(SW)*SB);
[B,V]=eig(SB,SW);
V=real(diag(V));
[srt,idx]=sort(-1*V);
if ~nda,
 idx=idx(1:min([D,C-1]));
end
V=V(idx);
B=B(:,idx);
B=B.*repmat(1./sqrt(sum(B.*B,1)),D,1);

if dopca,
 B=pcab*B;
end

if sum(isinf(V))>0,
 fprintf(logfile,'%s warning: infinite generalized eigenvalues\n',fn);
end

Mauricio Villegas Santamaria

function [B, V] = pca(X, varargin)
%
% PCA: Principal Component Analysis
%
% Usage:
% [B, V] = pca(X, ...)
%
% Input:
% X - Data matrix. Each column vector is a data point.
%
% Input (optional):
% 'auto' - Choose algorithm automatically (default=true)
% 'cova' - Use covariance matrix algorithm (default=false)
% 'grma' - Use gram matrix algorithm (default=false)
% 'svda' - Use SVD algorithm (default=false)
% 'tang',XTANGS - Do tangent vector PCA (default=false)
% 'tfact',TFACT - Importance of tangents (default=0.1)
% 'ptfact',PTFACT - Importance of each tangent type (default=1)
%
% Output:
% B - Computed PCA basis
% V - Computed PCA eigenvalues
%
% $Revision: 126 $
% $Date: 2010-09-16 08:14:27 +0200 (Thu, 16 Sep 2010) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(X,'-v',2),
 unix('echo "$Revision: 126 $* $Date: 2010-09-16 08:14:27 +0200 (Thu, 16 Sep 2010) $*" | sed "s/^:/pca: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

fn='pca:';
minargs=1;

%%% Default values %%%
B=[];
V=[];

auto=true;
cova=false;
grma=false;
svda=false;
tfact=0.1;

logfile=2;

%%% Input arguments parsing %%%
n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}),
 argerr=true;
 elseif strcmp(varargin{n},'tfact') || ...
 strcmp(varargin{n},'ptfact') || ...
 strcmp(varargin{n},'tang'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'auto') || ...
 strcmp(varargin{n},'cova') || ...
 strcmp(varargin{n},'grma') || ...
 strcmp(varargin{n},'svda'),
 auto=false;
 cova=false;
 grma=false;
 svda=false;
 eval([varargin{n},'=true;']);
 n=n+1;
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

[D,N]=size(X);

if auto,
 if N>=D || exist('tang','var'),
 cova=true;
 else
 grma=true;
 end
end

%%% Error detection %%%
if argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif exist('tang','var') && mod(size(tang,2),N)~=0,
 fprintf(logfile,'%s error: number of tangents should be a multiple of the number of samples\n',fn);
 return;
elseif exist('tang','var') && exist('ptfact','var') && ...
 (numel(ptfact)~=size(tang,2)/N || size(ptfact,1)~=1),
 fprintf(logfile,'%s error: ptfact should be a row vector with the same number of elements as tangent types\n',fn);
 return;
end

if exist('tang','var') && ~cova,
 fprintf(logfile,'%s warning: using covariance algorithm, tangent vector PCA only possible with covariance algorithm\n',fn);
 cova=true;
end

mu=mean(X,2);
X=X-repmat(mu,1,N);

if cova,
 cov=(1/N)*(X*X');
 if exist('tang','var'),
 L=size(tang,2)/N;
 if exist('ptfact','var'),
 tang=tang.*repmat(ptfact,D,N);
 end
 tcov=(1/(L*N))*(tang*tang');
 tfact=tfact*trace(cov)/trace(tcov);
 cov=cov+tfact.*tcov;
 end
 [B,V]=eig(cov);
 V=real(diag(V));
 [srt,idx]=sort(-1*V);
 V=V(idx);
 B=B(:,idx);

elseif grma,
 grm=(1/N)*(X'*X);
 [A,V]=eig(grm);
 V=real(diag(V));
 [srt,idx]=sort(-1*V);
 V=[V(idx);zeros(D-N,1)];
 A=A(:,idx);
 if sum(V<=eps)>0,
 s=V(V<=eps);
 i=find(V==s(1));
 V(i:N)=0;
 R=i-1;
 else
 R=N;
 end
 for n=1:R,
 A(:,n)=(1/sqrt(N*V(n))).*A(:,n);
 end
 B=X*A;

elseif svda,
 [A,V,B]=svd(X');
 V=real(diag(V));
 [srt,idx]=sort(-1*V);
 V=V(idx);
 V=(1/N).*(V.*V);
 B=B(:,idx);

end

Mauricio Villegas Santamaria

function [V, Vidx] = tangVects(X, types, varargin)
%
% TANGVECTS: Compute Tangent Vectors from Data
%
% Usage:
% [V, Vidx] = tangVects(X, types, ...)
%
% Input:
% X - Input Data. Each column is an image.
% types - Tangent types [hvrspdtHV]+[k]K.
% h: image horizontal translation
% v: image vertical translation
% r: image rotation
% s: image scaling
% p: image parallel hyperbolic transformation
% d: image diagonal hyperbolic transformation
% t: image trace thickening
% H: image horizontal illumination
% V: image vertical illumination
% k: K nearest neighbors
%
% Input (optional):
% 'imSize',[W H] - Image size (default=square)
% 'bw',BW - Tangent derivative gaussian bandwidth (default=0.5)
% 'krh',KRH - Supply tangent derivative kernel, horizontal
% 'krv',KRV - Supply tangent derivative kernel, vertical
% 'basis',(true|false) - Compute tangent basis (default=false)
% 'Xlabels',XLABELS - Data class labels for kNN tangents
% 'knnprotos',P,PLABELS - Prototypes for kNN tangents
% 'pmu',PMU - Mean value to substract (default=mean(P))
% 'projb',PROJB - Project tangents using PROJB (default=false)
%
% Output:
% V - Tangent Vectors.
% Vidx - Indexes to the vectors in X from which the tangents correspond.
%
% $Revision: 138 $
% $Date: 2010-11-27 11:04:20 +0100 (Sat, 27 Nov 2010) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(X,'-v',2),
 unix('echo "$Revision: 138 $* $Date: 2010-11-27 11:04:20 +0100 (Sat, 27 Nov 2010) $*" | sed "s/^:/tangVects: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

fn='tangVects:';
minargs=2;

%%% Default values %%%
V=[];
Vidx=[];

bw=0.5;
basis=false;
knnprotos=false;

logfile=2;

%%% Input arguments parsing %%%
n=1;
argerr=false;
while size(varargin,2)>0,
 if isstruct(varargin{n}),
 cfgvars=fieldnames(varargin{n});
 for m=1:size(cfgvars,1),
 eval([cfgvars{m} '=varargin{n}.' cfgvars{m} ';']);
 end
 n=n+1;
 elseif ~ischar(varargin{n}) || size(varargin,2)<n+1,
 argerr=true;
 elseif strcmp(varargin{n},'imSize') || ...
 strcmp(varargin{n},'bw') || ...
 strcmp(varargin{n},'Xlabels') || ...
 strcmp(varargin{n},'projb') || ...
 strcmp(varargin{n},'pmu') || ...
 strcmp(varargin{n},'krh') || ...
 strcmp(varargin{n},'krv'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'basis'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~islogical(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'knnprotos'),
 knnprotos=true;
 P=varargin{n+1};
 if sum(size(varargin{n+2}))>0,
 Plabels=varargin{n+2};
 end
 n=n+3;
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

[D,Nx]=size(X);

%%% Error detection %%%
if argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif ~ischar(types),
 fprintf(logfile,'%s error: types should be a string\n',fn);
 return;
elseif (exist('Xlabels','var') && (max(size(Xlabels))~=Nx || min(size(Xlabels))~=1)) || ...
 (exist('Plabels','var') && (max(size(Plabels))~=size(P,2) || min(size(Plabels))~=1)),
 fprintf(logfile,'%s error: labels must have the same size as the number of data points\n',fn);
 return;
end

imgtangs=false;
knntangs=false;
L=0;
n=1;
while n<=numel(types),
 if types(n)=='h' || types(n)=='v' || types(n)=='r' || types(n)=='s' || ...
 types(n)=='p' || types(n)=='d' || types(n)=='t' || ...
 types(n)=='H' || types(n)=='V',
 imgtangs=true;
 L=L+1;
 n=n+1;
 elseif types(n)=='k' || types(n)=='K',
 if types(n)=='K',
 rmtangs=true;
 end
 n=n+1;
 knntangs=str2num(types(n:end));
 types(n:end)=[];
 L=L+knntangs;
 if sum(size(knntangs))==0 || knntangs<1,
 fprintf(logfile,'%s error: type k should be the last one and be followed by the number of neighbors\n',fn);
 return;
 end
 if (~exist('Plabels','var') && ...
 exist('Xlabels','var') && knntangs>=min(hist(Xlabels,unique(Xlabels)))) || ...
 (exist('Plabels','var') && knntangs>=min(hist(Plabels,unique(Plabels)))),
 fprintf(logfile,'%s error: not enough samples for %d nearest neighbors\n',fn,knntangs);
 return;
 end
 else
 fprintf(logfile,'%s error: types should be among [hvrspdtkHV]\n',fn);
 return;
 end
end

if numel(types)~=numel(unique(types)),
 fprintf(logfile,'%s error: types should not be repeated\n',fn);
 return;
end

uselabels=false;
if exist('Xlabels','var') || exist('Plabels','var'),
 uselabels=true;
end

if ~knnprotos,
 P=X;
 Np=Nx;
 if uselabels,
 Plabels=Xlabels;
 end
end

Dr=D;
project=false;
if exist('projb','var'),
 project=true;
 Dr=size(projb,2);
 if ~exist('pmu','var'),
 pmu=mean(P,2);
 end
end

if imgtangs,
 if ~exist('imSize','var'),
 imW=round(sqrt(D));
 imH=D/imW;
 imSize=[imW imH];
 if imH~=imW,
 fprintf(logfile,'%s error: if image is not square the size should be specified\n',fn);
 return;
 end
 end
 if ~exist('krv','var') || ~exist('krh','var'),
 krW=floor(16*bw);
 if krW<3,
 krW=3;
 end
 krH=krW;
 [krh,krv]=imgDervKern(krW,krH,bw);
 end

 xmin=-ceil(imSize(1)/2);
 ymin=-ceil(imSize(2)/2);

 x=[xmin:imSize(1)+xmin-1]';
 x=x(:,ones(imSize(2),1));
 y=[ymin:imSize(2)+ymin-1];
 y=y(ones(imSize(1),1),:);
end

if knntangs,
 if ~knnprotos,
 if project,
 rX=projb'*X;
 x2=sum((rX.^2),1);
 d=rX'*rX;
 else
 x2=sum((X.^2),1);
 d=X'*X;
 end
 d=x2(ones(Nx,1),:)'+x2(ones(Nx,1),:)-d-d;
 d([0:Nx-1]*Nx+[1:Nx])=inf;
 else
 Np=size(P,2);
 if project,
 rX=projb'*X;
 rP=projb'*P;
 x2=sum((rX.^2),1)';
 p2=sum((rP.^2),1);
 d=rX'*rP;
 else
 x2=sum((X.^2),1)';
 p2=sum((P.^2),1);
 d=X'*P;
 end
 d=x2(:,ones(Np,1))+p2(ones(Nx,1),:)-d-d;
 d(d==0)=inf;
 end
 onesK=ones(knntangs,1);
end

if exist('rmtangs','var'),
 rmtangs=false(Nx*L,1);
end

V=zeros(Dr,Nx*L);
Vidx=repmat([1:Nx],L,1);
Vidx=Vidx(:);

for n=1:Nx,
 if imgtangs,
 im=reshape(X(:,n),imSize(1),imSize(2));
 derh=conv2(im,krh,'same');
 derv=conv2(im,krv,'same');

 mh=sum(sum(derh.*derh));
 mv=sum(sum(derv.*derv));
 mag=0.5*(sqrt(mh)+sqrt(mv));
 end

 v=zeros(D,L);
 nl=1;
 for l=1:numel(types),
 switch types(l)
 case 'h'
 v(:,nl)=derh(:);
 case 'v'
 v(:,nl)=derv(:);
 case 'r'
 v(:,nl)=reshape(-y.*derh-x.*derv,D,1);
 case 's'
 v(:,nl)=reshape(x.*derh-y.*derv,D,1);
 case 'p'
 v(:,nl)=reshape(x.*derh+y.*derv,D,1);
 case 'd'
 v(:,nl)=reshape(-y.*derh+x.*derv,D,1);
 case 't'
 v(:,nl)=derh(:).*derh(:)+derv(:).*derv(:);
 case 'H'
 v(:,nl)=reshape(x.*im,D,1);
 case 'V'
 v(:,nl)=reshape(y.*im,D,1);
 end

 if types(l)=='k',
 if uselabels,
 sd=d(n,:);
 sd(Plabels~=Xlabels(n))=inf;
 [sd,idx]=sort(sd);
 else
 [sd,idx]=sort(d(n,:));
 end
 v(:,nl:nl+knntangs-1)=P(:,idx(1:knntangs))-X(:,n(onesK));
 nl=nl+knntangs;
 elseif types(l)=='K',
 [sd,idx]=sort(d(n,:));
 sf=find(Plabels(idx)~=Xlabels(n));
 kn=min(knntangs,sf(1)-1);
 v(:,nl:nl+kn-1)=P(:,idx(1:kn))-X(:,n(ones(kn,1)));
 v(:,nl+kn:nl+knntangs-1)=[];
 rmtangs((n-1)*L+nl+kn:n*L)=true;
 nl=nl+kn;
 else
 v(:,l)=v(:,l).*(mag/sqrt(sum(v(:,l).*v(:,l))));
 if types(l)>='A' && types(l)<='Z',
 v(:,l)=10*v(:,l);
 end
 if project,
 v(:,l)=v(:,l)-pmu;
 end
 nl=nl+1;
 end
 end

 if project,
 v=projb'*v;
 end

 if basis,
 [v,dummy]=qr(v,0);
 end

 V(:,(n-1)*L+1:(n-1)*L+size(v,2))=v;
end

if exist('rmtangs','var'),
 V(:,rmtangs)=[];
 Vidx(rmtangs)=[];
end

%%
function [krh, krv] = imgDervKern(krW, krH, bandwidth)
%
% IMGDERVKERN: Compute Image Derivative Kernel
%
% Usage:
% [krh, krv] = imgDervKern(krW, krH, bandwidth)
%
% Input:
% krW - Kernel Width.
% krH - Kernel Height.
% bandwidth - Bandwidth.
%
% Output:
% krh - Horizontal Kernel.
% hrv - Vertical Kernel.
%

xmin=-floor(krW/2);
ymin=-floor(krH/2);

x=xmin:xmin+krW-1;
x=x(ones(krH,1),:);
y=(ymin:ymin+krH-1)';
y=y(:,ones(krW,1));

bandwidth=bandwidth*bandwidth;

e=exp(-(x.*x+y.*y)./(2*bandwidth))/bandwidth;

krh=-x.*e;
krv=y.*e;

krh=(krh./sqrt(sum(sum(krh.*krh))))';
krv=(krv./sqrt(sum(sum(krv.*krv))))';

Mauricio Villegas Santamaria

http://web.iti.upv.es/~mvillegas/research/code
http://web.iti.upv.es/~mvillegas/research/code

52 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

which actually gives the same solution for \bfitB as (4.30), although it has different
eigenvalues \Lambda . The advantage of using this alternative but equivalent solution is that
it can be expressed as

\=\bfitX \bfitW \=\bfitX
\sansT
\bfitB = \=\bfitX \=\bfitX

\sansT
\bfitB \Lambda , (4.37)

where \=\bfitX \in \BbbR D\times N is the centered data matrix, which for simplicity in following
equations is assumed to be ordered by classes, i.e. \=\bfitX = [\bfitx

1,1
 - \bfitmu , . . . ,\bfitx

C,NC
 - \bfitmu], and

the weight matrix \bfitW \in \BbbR N\times N is given by

\bfitW =

\left[
\bfitW 1 0 \cdot \cdot \cdot 0
0 \bfitW 2 \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot \bfitW C

\right] , (4.38)

where \bfitW c \in \BbbR Nc\times Nc for c = 1, . . . , C, are matrices with all elements equal to N - 1
c ,

being Nc the number of samples of class c. As can be easily deduced, matrix \bfitW
has exactly C nonzero eigenvalues and they are all equal to one. Obtaining the
eigenvectors of \bfitW is trivial, in fact for each class c there is an eigenvector with

elements equal to N
 - 1/2
c in the positions of the samples of class c and zeros for all

other elements. Since all of the eigenvalues of \bfitW are repeated, any linear combination
of these C eigenvectors is also an eigenvector.

Let \bfitY \in \BbbR N\times C - 1 be a matrix whose columns are eigenvectors of \bfitW , i.e. \bfitW \bfitY =

\bfitY \Lambda . If there exist C - 1 eigenvectors of \bfitW such that \bfitY = \=\bfitX
\sansT
\bfitB , then the eigenvalues

of \bfitW corresponding to these eigenvectors are the same as the eigenvalues in (4.37),
as shown below

\=\bfitX \bfitW \=\bfitX
\sansT
\bfitB = \=\bfitX \bfitW \bfitY (4.39)

= \=\bfitX \bfitY \Lambda (4.40)

= \=\bfitX \=\bfitX
\sansT
\bfitB \Lambda (4.41)

Since \bfitY = \=\bfitX
\sansT
\bfitB , then the columns of \bfitY must be in the space spanned by the rows

of \=\bfitX . The columns of \=\bfitX have zero mean, therefore \=\bfitX 1 = 0, which tells us that the
vector of ones must be orthogonal to the columns of \bfitY . As suggested in [Cai et al.,
2008], to obtain the required \bfitY , it is as simple as orthonormalizing the eigenvectors of
\bfitW with respect to the vector of ones. Since the vector of ones is also an eigenvector
of \bfitW , this produces exactly C - 1 linearly independent vectors which conform the
columns of \bfitY . Having the matrix \bfitY , finding the projection base \bfitB reduces to solving

the system of linear equations \bfitY = \=\bfitX
\sansT
\bfitB . However, this system may not have a

solution, therefore it was proposed to find the \bfitB which best fits the equation in the
least squares sense. Furthermore, for the case in which the dimensionality is higher
than the number of samples, there would be an infinite number of solutions, for this it
was proposed to use the regularized least squares, or also known as ridge regression.
The optimization function of SRDA is then given by

\bfitB \ast = argmin
\bfitB

\sansT \sansr
\Bigl[
(\=\bfitX

\sansT
\bfitB - \bfitY)\sansT (\=\bfitX

\sansT
\bfitB - \bfitY) + \rho \bfitB \sansT \bfitB

\Bigr]
. (4.42)

4.4. SPECTRAL REGRESSION DISCRIMINANT ANALYSIS 53

The SRDA is considerably interesting since it avoids the need to do an eigenvalue
decomposition, and relies on solving systems of linear equations, which is much faster.
However, this technique has a few weaknesses. First, it is not equivalent to LDA (even
though it says so in [Cai et al., 2008]) because as was noted, all of the eigenvalues of
\bfitW are one, therefore there is no matrix \bfitY for which \bfitW \bfitY = \bfitY \Lambda , being \Lambda the same
eigenvalues as in equation (4.37). Furthermore, because of the repeated eigenvalues,
there are many possibilities for the matrix \bfitY which are orthonormal to the vector of
ones. For each different \bfitY , the solution to (4.42) will be different, thus there are many
solutions. Nonetheless, this technique gives considerably good results in practice.

4.4.1 Tangent Vectors in SRDA

The idea of improving SRDA using the tangent vector information is in essence the
same as presented for LDA in section 4.3.1. The tangent vectors are helpful in this
case for better estimating the total scatter matrix \bfitS t. However, this improvement
should be done in a way so that the problem can still be solved as systems of linear
equations, thus retaining the advantages of the SRDA.

The empirical estimation of the total scatter matrix using the tangent vectors is
given by

\bfitS t =
\sum
\bfitx \in \scrX

(\bfitx - \bfitmu)(\bfitx - \bfitmu)\sansT + \gamma 2
L\sum

l=1

\bfitv \bfitx l\bfitv
\sansT
\bfitx l . (4.43)

Using matrix notation, it can be shown that the total scatter matrix can be more
conveniently computed as

\bfitS t = \=\bfitX \=\bfitX
\sansT
+ \gamma 2\bfitV \scrX \bfitV \sansT

\scrX , (4.44)

where the columns of matrix \bfitV \scrX \in \BbbR D\times NL are all the tangent vectors of the training
samples in \scrX , and \=\bfitX is the centered data matrix. With a few manipulations it can
be shown that, including the tangent vectors, the generalized eigenvalue problem can
be expressed as

\bfitZ \bfitW \prime \bfitZ \sansT \bfitB = \bfitZ \bfitZ \sansT \bfitB \Lambda , (4.45)

where \bfitZ = [\=\bfitX \gamma \bfitV \scrX], and the new weight matrix \bfitW \prime is the same as \bfitW (4.38) although
padded withNL rows and columns of zeros to the bottom and to the right respectively.
The eigenvalues of \bfitW \prime are also only C all equal to one, and the eigenvectors are the
same as for \bfitW although padded with NL zeros at the bottom. The final optimization
function for SRDA including the tangent vector information is then given by

\bfitB \ast = argmin
\bfitB

\sansT \sansr
\Bigl[
(\bfitZ \sansT \bfitB - \bfitY \prime)\sansT (\bfitZ \sansT \bfitB - \bfitY \prime) + \rho \bfitB \sansT \bfitB

\Bigr]
, (4.46)

where the columns of matrix \bfitY \prime are C - 1 eigenvectors of \bfitW \prime which are orthonormal
to the vector composed of ones for the first N elements and zeros for the remaining
NL elements.

54 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

The optimization function for the Tangent Vector SRDA (TSRDA)2 is basically
the same as for the original SRDA. However, since the matrix \bfitZ is rank N(L + 1)
instead of N for \=\bfitX (supposing that the tangent vectors are linearly independent of
\bfitX), then less training samples are required for a given dimensionality without having
to resort to the regularization parameter \rho .

4.5 LDPP Using the Tangent Distances

This section presents the formulations that are obtained for the LDPP algorithm
introduced in chapter 3 when using the tangent distance. As was presented earlier
in this chapter, the computation of the double sided tangent distance (4.3) requires
a minimization. This makes it hard for obtaining the gradients of the distance with
respect to the parameters, \nabla

\bfitB d(\~\bfitx , \~\bfitp) and \nabla \bfitp d(\~\bfitx , \~\bfitp) (3.11), which are needed for the
LDPP algorithm. On the other hand, the reference, observation and average single
sided tangent distances (RTD, OTD and ATD), can be easily incorporated into the
LDPP algorithm as can be observed in the following.

For the observation tangent distance, obtaining the gradient with respect to the
parameters is straightforward, however for the reference tangent distance, obtaining
the exact gradient with respect to the prototypes becomes a bit more complicated.
The trouble comes from the fact that the tangent subspace of a prototype \^\bfitV \~\bfitp ob-
viously depends on the prototype \bfitp . Furthermore, this relationship depends on the
types of tangent vectors used (e.g. rotation, illumination, etc.), which makes every-
thing considerable complex. Therefore for convenience, a simple approximation is
considered. It is assumed that the tangent subspace does not change for small varia-
tions of the prototype, which seems to be a reasonable assumption since by using a
gradient descent approach, only small steps are taken. Furthermore, each time the
prototypes are updated, the corresponding tangent subspace can be recalculated so
as to take into account the update.

With the approximation just mentioned, the gradients with respect to\bfitB and \scrP for
both the reference and observation tangent distances are very similar. The gradients
are given by

\nabla
\bfitB d\{ \mathrm{O}\mathrm{T}\mathrm{D},\mathrm{R}\mathrm{T}\mathrm{D}\} (\~\bfitx , \~\bfitp) = 2(\bfitx - \bfitp)

\Bigl[\Bigl(
\bfitI - \^\bfitV \{ \~\bfitx ,\~\bfitp \} \^\bfitV

\sansT

\{ \~\bfitx ,\~\bfitp \}

\Bigr)
(\~\bfitx - \~\bfitp)

\Bigr] \sansT
, (4.47)

\nabla \bfitp d\{ \mathrm{O}\mathrm{T}\mathrm{D},\mathrm{R}\mathrm{T}\mathrm{D}\} (\~\bfitx , \~\bfitp) = - 2\bfitB
\Bigl(
\bfitI - \^\bfitV \{ \~\bfitx ,\~\bfitp \} \^\bfitV

\sansT

\{ \~\bfitx ,\~\bfitp \}

\Bigr)
(\~\bfitx - \~\bfitp) , (4.48)

2A free Matlab/Octave implementation of this algorithm has been left available in http://web.

iti.upv.es/\~mvillegas/research/code and also attached to the digital version of this thesis that
the reader can extract if the viewer supports it.

function [B, V] = srda(X, Xlabels, varargin)
%
% SRDA: Spectral Regression Discriminant Analysis
%
% Usage:
% [B, V] = srda(X, Xlabels, ...)
%
% Input:
% X - Data matrix. Each column vector is a data point.
% Xlabels - Data class labels.
%
% Input (optional):
% 'dopca',DIM - Perform PCA before SRDA (default=false)
% 'pcab',PCAB - Supply the PCA basis
% 'regu',REGU - Regularization factor (default=0.5)
% 'tang',XTANGS - Do tangent vector SRDA (default=false)
% 'tfact',TFACT - Importance of tangents (default=0.01)
%
% Output:
% B - Computed SRDA basis
% V - Computed SRDA eigenvalues
%
% $Revision: 119 $
% $Date: 2010-08-31 13:43:26 +0200 (Tue, 31 Aug 2010) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(X,'-v',2),
 unix('echo "$Revision: 119 $* $Date: 2010-08-31 13:43:26 +0200 (Tue, 31 Aug 2010) $*" | sed "s/^:/srda: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

fn='srda:';
minargs=2;

%%% Default values %%%
B=[];
V=[];

brute=false;
dopca=false;
tfact=0.01;
regu=0.5;

logfile=2;

%%% Input arguments parsing %%%
n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}),
 argerr=true;
 elseif strcmp(varargin{n},'tfact') || ...
 strcmp(varargin{n},'brute') || ...
 strcmp(varargin{n},'regu') || ...
 strcmp(varargin{n},'dopca') || ...
 strcmp(varargin{n},'pcab') || ...
 strcmp(varargin{n},'tang'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

[D,N]=size(X);

%%% Error detection %%%
if argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif max(size(Xlabels))~=N || min(size(Xlabels))~=1,
 fprintf(logfile,'%s error: there must be the same number of labels as data points\n',fn);
 return;
elseif exist('tang','var') && mod(size(tang,2),N)~=0,
 fprintf(logfile,'%s error: number of tangents should be a multiple of the number of samples\n',fn);
 return;
end

if exist('pcab','var') && ~dopca,
 dopca=size(pcab,2);
end
if dopca;
 if ~exist('pcab','var'),
 if ~exist('tang','var'),
 pcab=pca(X);
 else
 pcab=pca(X,'tang',tang,'tfact',tfact);
 end
 end
 if dopca>size(pcab,2) || dopca<1,
 fprintf(logfile,'%s error: inconsistent dimensions in PCA base\n',fn);
 return;
 end
 pcab=pcab(:,1:dopca);
 mu=mean(X,2);
 X=X-repmat(mu,1,N);
 X=pcab'*X;
 D=dopca;
 if exist('tang','var');
 tang=tang-repmat(mu,1,size(tang,2));
 tang=pcab'*tang;
 end
end

if size(Xlabels,2)~=1,
 Xlabels=Xlabels';
end
Clabels=unique(Xlabels)';
C=size(Clabels,2);
oXlabels=Xlabels;
Xlabels=ones(N,1);
for c=2:C,
 Xlabels(oXlabels==Clabels(c))=c;
end

mu=mean(X,2);
Xo=X-repmat(mu,1,N);

%compW=false;
%if compW,
% [Xlabels,idx]=sort(Xlabels);
% X=X(:,idx);

% Nc=hist(Xlabels,[1:C]);
% Sc=cumsum(Nc);
% Sc=[0,Sc(1:end-1)];

% if exist('tang','var'),
% W=zeros(N+N*L,N+N*L);
% else
% W=zeros(N,N);
% end
% for c=1:C,
% W(Sc(c)+1:Sc(c)+Nc(c),Sc(c)+1:Sc(c)+Nc(c))=1/Nc(c);
% end
%end

%randeig=true;
randeig=false;
if ~randeig, % from d.cai paper

 Nc=hist(Xlabels,[1:C]);
 Y=zeros(C);
 Y([0:C-1]*C+[1:C])=Nc.^(-1/2);
 [Y,Nc]=qr([ones(N,1) Y(Xlabels,:)],0);
 Y(:,1)=[];
 Y(:,end)=[];

else % from d.cai code

 rand('state',0);
 %rand('state',12345678);
 Y=rand(C,C);
 Z=zeros(N,C);
 for c=1:C,
 idx=find(Xlabels==c);
 Z(idx,:)=repmat(Y(c,:),length(idx),1);
 end
 Z(1:N,1)=ones(N,1);
 [Y,R]=qr(Z,0);
 Y(:,1)=[];

end

if exist('tang','var'),
 L=size(tang,2)/N;
 tang=sqrt(tfact/L)*tang;
 Xo=[Xo tang];
 Y=[Y; zeros(N*L,C-1)];
end

if brute,
 %fprintf(logfile,'%s brute force mode\n',fn);

 %ST=Xo*Xo';
 ST=(1/N)*(Xo*Xo');
 %ST=ST+regu*eye(D);
 ST=ST+regu*trace(ST)*eye(D);
 SB=zeros(D);
 for c=1:C,
 sel=Xlabels==c;
 muc=mean(Xo(:,sel),2);
 %SB=SB+sum(sel).*muc*muc';
 SB=SB+(sum(sel)/N).*muc*muc';
 end

 [B,V]=eig(SB,ST);
 V=real(diag(V));
 [srt,idx]=sort(-1*V);
 idx=idx(1:min([D,C-1]));
 V=V(idx);
 B=B(:,idx);
 B=B.*repmat(1./sqrt(sum(B.*B,1)),D,1);

elseif (~exist('tang','var') && D>N) || ...
 (exist('tang','var') && D>N*L),
 %fprintf(logfile,'%s inner product mode\n',fn);

 %S=Xo'*Xo;
 S=(1/N)*(Xo'*Xo);
 %S([0:N-1]*N+[1:N])=S([0:N-1]*N+[1:N])+regu;
 %S([0:N-1]*N+[1:N])=S([0:N-1]*N+[1:N])+regu*trace(S); % this is wrong? trace increases proportional to N instead of D
 S([0:N-1]*N+[1:N])=S([0:N-1]*N+[1:N])+(D/N)*regu*trace(S);
 R=chol(S);

 B=Xo*(R\(R'\Y));

else
 %fprintf(logfile,'%s outer product mode\n',fn);

 %S=Xo*Xo';
 S=(1/N)*(Xo*Xo');
 %S([0:D-1]*D+[1:D])=S([0:D-1]*D+[1:D])+regu;
 S([0:D-1]*D+[1:D])=S([0:D-1]*D+[1:D])+regu*trace(S);
 R=chol(S);

 B=R\(R'\(Xo*Y));

end

if ~brute,
 V=sqrt(sum(B.*B,1))';
 B=B.*repmat(1./V',D,1);

 if nargout>1,
 Xo=B'*(X-repmat(mu,1,N));
 ST=(1/N)*(Xo*Xo');
 SB=zeros(size(B,2));
 for c=1:C,
 sel=Xlabels==c;
 muc=mean(Xo(:,sel),2);
 SB=SB+(sum(sel)/N).*muc*muc';
 end
 V=diag(SB)./diag(ST);
 end

 [srt,idx]=sort(-1*V);
 V=V(idx);
 B=B(:,idx);
end

if dopca,
 B=pcab*B;
end

Mauricio Villegas Santamaria

http://web.iti.upv.es/~mvillegas/research/code
http://web.iti.upv.es/~mvillegas/research/code

4.5. LDPP USING THE TANGENT DISTANCES 55

where the options in the braces indicate that it is either for the OTD or RTD. Also
using the same approximation, the gradients with respect to the parameters for the
average tangent distance is given by

\nabla
\bfitB d\mathrm{A}\mathrm{T}\mathrm{D}(\~\bfitx , \~\bfitp) = (\bfitx - \bfitp)

\Bigl[\Bigl(
2\bfitI - \^\bfitV \~\bfitx

\^\bfitV
\sansT

\~\bfitx - \^\bfitV \~\bfitp
\^\bfitV

\sansT

\~\bfitp

\Bigr)
(\~\bfitx - \~\bfitp)

\Bigr] \sansT
, (4.49)

\nabla \bfitp d\mathrm{A}\mathrm{T}\mathrm{D}(\~\bfitx , \~\bfitp) = - \bfitB
\Bigl(
2\bfitI - \^\bfitV \~\bfitx

\^\bfitV
\sansT

\~\bfitx - \^\bfitV \~\bfitp
\^\bfitV

\sansT

\~\bfitp

\Bigr)
(\~\bfitx - \~\bfitp) . (4.50)

For the RTD, after replacing into (3.9) and (3.10), the following equations for the
columns of the factor matrices \bfitG and \bfitH are obtained:

\bfitg n =
2

N
F\in n

(\bfitI - \^\bfitV \in n
\^\bfitV

\sansT

\in n
)(\~\bfitx n - \~\bfitp \in n

)

 - 2

N
F/\in n

(\bfitI - \^\bfitV /\in n
\^\bfitV

\sansT

/\in n
)(\~\bfitx n - \~\bfitp /\in n

) , (4.51)

\bfith m = - 2

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp \in

F\in (\bfitI - \^\bfitV \in
\^\bfitV

\sansT

\in)(\~\bfitx - \~\bfitp \in)

+
2

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp /\in

F/\in (\bfitI - \^\bfitV /\in
\^\bfitV

\sansT

/\in)(\~\bfitx - \~\bfitp /\in) . (4.52)

where the matrices \^\bfitV \in , \^\bfitV /\in \in \BbbR E\times L are the orthonormal bases of the tangent subspaces
of \~\bfitp \in and \~\bfitp /\in respectively, L is the number of tangent vectors, and F\in and F\in are the
factors defined in (3.12).

The expressions for the OTD are very similar to (4.51) and (4.52). The only

difference is that \^\bfitV \in and \^\bfitV /\in are replaced with \^\bfitV \~\bfitx , which is the orthonormal basis
of the tangent subspace of \~\bfitx . In the case that the ATD is used, the columns of the
factor matrices \bfitG and \bfitH are given by

\bfitg n =
1

N
F\in n

(2\bfitI - \^\bfitV \~\bfitx n
\^\bfitV

\sansT

\~\bfitx n
 - \^\bfitV \in n

\^\bfitV
\sansT

\in n
)(\~\bfitx n - \~\bfitp \in n

)

 - 1

N
F/\in n(2\bfitI - \^\bfitV \~\bfitx n

\^\bfitV
\sansT

\~\bfitx n
 - \^\bfitV /\in n

\^\bfitV
\sansT

/\in n
)(\~\bfitx n - \~\bfitp /\in n) , (4.53)

\bfith m = - 1

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp \in

F\in (2\bfitI - \^\bfitV \~\bfitx
\^\bfitV

\sansT

\~\bfitx - \^\bfitV \in
\^\bfitV

\sansT

\in)(\~\bfitx - \~\bfitp \in)

+
1

N

\sum
\forall \bfitx \in \scrX :
\~\bfitp m=\~\bfitp /\in

F/\in (2\bfitI - \^\bfitV \~\bfitx
\^\bfitV

\sansT

\~\bfitx - \^\bfitV /\in
\^\bfitV

\sansT

/\in)(\~\bfitx - \~\bfitp /\in) . (4.54)

The TD imposes the restriction that, the dimensionality of the target space must
be higher than the number of tangent vectors, that is, E > L. If the dimensionality
is lower, then the TD between any pair of vectors will always be zero. Keep in mind

56 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

that this restriction is not a limitation of the algorithm, it is only a requirement that
the distance being used has.

The TD inevitably makes the algorithm require more resources. Unfortunately, the
complexity of the algorithm depends on how the tangents are obtained, and there are
several methods for this. Nonetheless, the algorithm complexities additional to what
is required for the Euclidean distance, without taking into account the computation
of the tangents, are the following. The additional time complexity for learning per
iteration is \scrO (ELNM + E2LN), for the three distances RTD, OTD and ATD. On
the other hand, the additional time complexity for the classification phase using the
learned prototypes is \scrO (ELM), also for the three single sided tangent distances. If
the computation of the tangents are taken into account, the learning for the RTD is
expected to be slower because the tangents of the prototypes need to be estimated
every iteration. However, in the test phase, the OTD would be slower, because
the tangents are computed for every vector to classify, unlike the tangents of the
prototypes which can be precomputed. In both cases, the ATD is slower, since it is a
combination of the RTD and OTD.

If the LDPP algorithm is used with a tangent distance, the distance used in the
testing phase should be the same one. However, because of the close relationship of
the tangent distance and the Euclidean, learning with tangents and testing without
them can still give good recognition performance. The main difference is that the
projection base will take into account directions of variability that might not be
represented by the training set alone, a similar effect as the one obtained for TLDA and
TSRDA. Without the additional tangent vector information, the learned projection
base could discard those directions of variability and therefore the model will have
worse generalization.

4.6 Experiments

The proposed approaches have been assessed with three facial image recognition tasks,
gender recognition, emotion recognition and identification. The first two tasks are
used to show the improvement that is obtained by using the additional tangent vector
information. As a classifier a k-NN with the Euclidean distance was used. For the
face identification data for the k-NN classifier additionally to the Euclidean distance,
the tangent distances were also tested. This shows that the tangent distances can be
applied in a discriminative subspace with a further improvement of the recognition
performance. The face identification data set was also used to evaluate the LDPP
algorithm learning with the tangent distances.

For TLDA and TSRDA, subspaces were learned using the image tangents, the
nearest neighbor tangents and both combined. In the results, to indicate which tan-
gent types were used for learning, to the method acronym a sub-index is added show-
ing either ``hvrs"" if the horizontal, vertical, rotation and scaling image tangents were
used, or ``kN"" if N nearest neighbors were used for estimating the tangents. The \gamma
parameter was set to be the same for all tangent types, it was varied and adjusted by
means of cross-validation. This \gamma parameter was varied as being a factor of the trace

4.6. EXPERIMENTS 57

of the respective scatter or covariance matrix, this way the adjustment of the tangent
vectors is in the range specific of the data set.

The proposed approaches were compared with other linear and supervised di-
mensionality reduction techniques, namely LDA, MFA, LSDA, SLPP, SRDA, NDA,
NCA and LMNN, all of them with and without a PCA preprocessing. For MFA,
LSDA, SLPP and SRDA we used the freely available Matlab implementations writ-
ten by D. Cai [Cai et al., 2007b]. For NDA we used the implementation from the
authors of [Bressan and Vitri\`a, 2003], for NCA the implementation of Charles C.
Fowlkes [Fowlkes et al., 2007] and finally for LMNN the implementation of the au-
thors of [Weinberger et al., 2006]. For each of the baseline methods, the corresponding
algorithm parameters were properly adjusted, and only the best result obtained in
each case is shown. A k-NN classifier was used for all these dimensionality reduction
techniques. The k parameter of the classifier was also varied and the best result is
the one presented.

4.6.1 Gender Recognition

The gender recognition data set used in this subsection is the same as the one used
in chapter 3. Please refer to section 3.10.3 for complete details of this data set. This
task has as input an image of a face and the objective is to determine if the image
is of a man or a woman. It is a two class problem and the feature vectors are of a
dimensionality of 1280.

The results of the experiments are presented in table 4.1. For the baseline tech-
niques, when applied to the original 1280-dimensional space, they perform consid-
erably bad and much worse than with a PCA preprocessing, the only exception is
SRDA. This suggests that these supervised dimensionality reduction techniques do
not handle well very high dimensionalities.

Table 4.1. Comparison of TLDA and TSRDA with different dimensionality reduction
techniques for the face gender recognition data set.

Approach
Error Rate (\%)
[95\% conf. int.]

Orig. Space 19.6 [17.6 -- 21.6]

PCA 17.7 [15.8 -- 19.7]

LDA 48.4 [46.0 -- 50.7]

LSDA 35.7 [33.0 -- 38.3]

MFA 35.7 [33.2 -- 38.2]

SLPP 34.0 [31.0 -- 36.9]

NDA 29.6 [27.4 -- 31.9]

SRDA 10.4 [9.9 -- 11.0]

TLDA\mathrm{k}4 50.7 [49.0 -- 52.5]

TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}4 15.3 [13.2 -- 17.5]

TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 13.3 [11.5 -- 15.2]

TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 10.5 [9.8 -- 11.2]

TSRDA\mathrm{k}8 10.3 [9.5 -- 11.1]

TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}8 10.2 [9.5 -- 10.9]

Approach
Error Rate (\%)
[95\% conf. int.]

PCA+LDA 47.1 [44.9 -- 49.3]

PCA+MFA 19.5 [17.7 -- 21.2]

PCA+NCA 18.3 [16.8 -- 19.8]

PCA+LSDA 12.3 [10.7 -- 13.8]

PCA+SRDA 11.2 [9.9 -- 12.5]

PCA+NDA 11.1 [9.3 -- 12.8]

PCA+SLPP 11.1 [9.8 -- 12.3]

PCA+LMNN 10.4 [8.6 -- 12.2]

TPCA+TLDA\mathrm{k}16 11.3 [10.0 -- 12.6]

TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}4 11.0 [9.9 -- 12.1]

TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 10.6 [9.7 -- 11.5]

TPCA+TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 11.0 [9.7 -- 12.2]

TPCA+TSRDA\mathrm{k}8 10.8 [9.4 -- 12.3]

TPCA+TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}8 10.8 [10.1 -- 11.5]

58 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

In particular, the problem of LDA is that the within scatter matrix is singular,
and even though the implementation using the generalized eigenvalue decomposition
is capable of giving a result (some eigenvalues are infinite valued), the recognition
performance is close to random. The modification of LDA, tangent LDA (TLDA)
presented in this chapter was targeted at this type of situations. In order to have a
non-singular scatter matrix it is required that the tangents be linearly independent
of the training set. This explains why for TLDA\mathrm{k}4 which uses nearest neighbors for
tangent estimation, the performance is also random. The other results for TLDA are
relatively good, in fact they are comparable to other baseline techniques when using
PCA preprocessing.

On the other hand, with this data set SRDA does handle well the high dimensional
feature vectors. However as can be observed in the table, when using the tangent
vectors (TSRDA) the performance improves. Using nearest neighbors for tangent
estimation also improves the recognition, therefore this indicates that the nearest
neighbor tangents can in fact help in estimating better the scatter matrices, it does
not matter that they are linearly dependent with the training data.

Regarding the combination of different types of tangents, i.e. hvrs and kN , it
is not observed that when using more tangent vectors, the performance improves
further. Possibly the reason for this was the assumption that the \gamma parameter be the
same for all tangent vectors, i.e. \gamma = \gamma 1 = . . . = \gamma L. The problem of using different
factors for each tangent type and automatically obtaining them is a topic that needs
further research.

4.6.2 Emotion Recognition

The emotion recognition data set used in this subsection is the one presented in
chapter 3. Refer to subsection 3.10.3 for complete details of this data set. This task
has as input an image of a face and the objective is to determine the expressed facial
emotion. It is a seven class problem and the feature vectors are of a dimensionality
of 1024.

The results are presented in a similar fashion as for the previous experiment,
see table 4.2. With this data set the same behavior is observed for the baseline
techniques, better performance is obtained when using PCA preprocessing. However
for some methods the difference is not as much as for the gender data set.

Here again it can be observed that the tangents help considerably LDA since the
within scatter matrix is also singular. When combined with TPCA the results for
TLDA is significantly better than most of the baseline techniques. The relative im-
provement of TPCA+TLDA with respect to PCA+LDA is around 15\%. For SRDA
when using the tangent vectors, the results are considerable improved, having a rel-
ative improvement of around 19\% when comparing SRDA and TSRDA. However
TSRDA when combined with TPCA there is no further improvement, nonetheless
this is not necessarily a bad thing. Ideally the supervised dimensionality reduction
should be done in the original feature space so that no discriminative information is
discarded. If the method works well with high-dimensional data, it is not expected
to get be better results when using PCA preprocessing.

4.6. EXPERIMENTS 59

Table 4.2. Comparison of TLDA and TSRDA with different dimensionality reduction
techniques for the Cohn-Kanade face emotion recognition data set.

Approach
Error Rate (\%)
[95\% conf. int.]

Orig. Space 30.8 [28.3 -- 33.3]

PCA 29.4 [27.6 -- 31.1]

LDA 74.7 [69.7 -- 79.6]

LSDA 50.2 [48.4 -- 52.1]

NDA 24.7 [22.7 -- 26.8]

SLPP 19.9 [17.0 -- 22.7]

MFA 17.0 [15.3 -- 18.7]

SRDA 15.4 [14.0 -- 16.6]

TLDA\mathrm{k}4 75.3 [69.8 -- 80.7]

TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}4 17.0 [14.1 -- 19.8]

TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 16.3 [13.4 -- 19.2]

TSRDA\mathrm{k}8 12.7 [11.7 -- 13.6]

TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}8 12.7 [12.2 -- 13.3]

TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 12.5 [11.9 -- 13.2]

Approach
Error Rate (\%)
[95\% conf. int.]

PCA+NCA 29.4 [27.6 -- 31.1]

PCA+MFA 18.4 [16.9 -- 19.9]

PCA+LMNN 17.4 [16.9 -- 17.9]

PCA+NDA 15.7 [13.5 -- 17.8]

PCA+LDA 14.2 [13.2 -- 15.3]

PCA+SLPP 14.2 [13.2 -- 15.3]

PCA+SRDA 14.0 [13.2 -- 15.3]

PCA+LSDA 12.5 [11.7 -- 13.4]

TPCA+TLDA\mathrm{k}4 13.7 [12.6 -- 14.7]

TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}4 12.4 [11.9 -- 12.8]

TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 12.1 [10.6 -- 13.5]

TPCA+TSRDA\mathrm{k}8 12.7 [12.0 -- 13.3]

TPCA+TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s}\mathrm{k}8 12.7 [11.8 -- 13.5]

TPCA+TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s} 12.7 [11.7 -- 13.6]

4.6.3 Face Identification

For the face identification task we have used a subset of the facial data in experiment
4 of the FRGC version 2 [Phillips et al., 2005]. There are in total 316 subjects, each
one having ten images. All the images from 116 subjects are used for learning the
projection base. The other 200 subjects are used for the test phase, leaving the first
five images of each subject as the reference prototypes and the remaining images for
test3. The face images were cropped, aided by manually selected eye coordinates, and
resized to 32 \times 40. The images were also converted to gray-scale and there was no
illumination normalization. The protocol and data set are the same as the one found
in the work of [Zhao et al., 2007], and for comparison the results presented in that
paper are also included here.

For this experiment, a projection base was learned using four image tangents
(horizontal and vertical translation, rotation and scaling). The results are presented
for TPCA+TLDA, since PCA is necessary to obtain competitive results, and for
TSRDA. The results of the experiment are presented in table 4.3 showing the error
rates for the proposed methods using different distances for the k-NN classifier. As
can be observed, a very competitive recognition rates are achieved, both with TLDA
and TSRDA, even though a simple pixel based representation is used in comparison
to the Local Binary Pattern (LBP) which is known to be a better representation for
face recognition [Ahonen et al., 2006]. It is interesting to see that for TLDA the
ATD is better than both the RTD and the OTD. This tells us that depending on
the problem the ATD might provide a better performance, therefore the additional
complexity with respect to the other single sided tangent distances might be worth
the effort.

3This data set is freely available in http://web.iti.upv.es/\~mvillegas/research/datasets

http://web.iti.upv.es/~mvillegas/research/datasets

60 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

0

20

40

60

80

100

120

140

-10 -5 0 5 10
50

60

70

80

90

100

Im
p
ro
ve
m
en
t
(\%

)

A
cc
u
ra
cy

(\%
)

Rotation Angle (degrees)

Improvement due to tangents
Accuracy

PCA+LDA
TPCA+TLDA

SRDA
TSRDA

0

10

20

30

40

50

-15 -10 -5 0 5 10 15
50

60

70

80

90

100

Im
p
ro
ve
m
en
t
(\%

)

A
cc
u
ra
cy

(\%
)

Scale Factor (\%)

Improvement due to tangents
Accuracy

PCA+LDA
TPCA+TLDA

SRDA
TSRDA

Figure 4.3. Face identification accuracy on a subset of the FRGC varying the angle of
rotation and the scaling factor for TPCA+TLDA and TSRDA and their improvement with
respect to PCA+LDA and SRDA.

4.6. EXPERIMENTS 61

Table 4.3. Comparison of TLDA and TSRDA with different dimensionality reduction
techniques for the face identification data set.

Approach
Error Rate (\%)

Dim.
[95\% conf. int.]

Laplacianfaces 15.0 [12.8 -- 17.2] 100
L-Fisherfaces 9.5 [7.7 -- 11.3] 140
LBP + Dual LLD 7.4 [5.8 -- 9.0] 500
PCA+LDA\mathrm{e}\mathrm{u}\mathrm{c}. 6.1 [4.6 -- 7.6] 64
TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{e}\mathrm{u}\mathrm{c}. 6.3 [4.8 -- 7.8] 64
TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{T}\mathrm{D} 6.1 [4.6 -- 7.6] 64
TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{O}\mathrm{T}\mathrm{D} 5.9 [4.4 -- 7.4] 64
TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{R}\mathrm{T}\mathrm{D} 5.9 [4.4 -- 7.4] 64
TPCA+TLDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{A}\mathrm{T}\mathrm{D} 5.5 [4.1 -- 6.9] 64
SRDA\mathrm{e}\mathrm{u}\mathrm{c}. 7.3 [5.7 -- 8.9] 115
TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{e}\mathrm{u}\mathrm{c}. 6.9 [5.3 -- 8.5] 115
TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{T}\mathrm{D} 5.1 [3.7 -- 6.5] 115
TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{O}\mathrm{T}\mathrm{D} 6.3 [4.8 -- 7.8] 115
TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{R}\mathrm{T}\mathrm{D} 6.3 [4.8 -- 7.8] 115
TSRDA\mathrm{h}\mathrm{v}\mathrm{r}\mathrm{s},\mathrm{A}\mathrm{T}\mathrm{D} 6.3 [4.8 -- 7.8] 115

Using this data set, a very interesting property of the proposed methods is il-
lustrated. Figure 4.3 shows plots of the recognition accuracy for the test set as the
images are either rotated or scaled, including curves for PCA+LDA, TPCA+TLDA,
SRDA and TSRDA. All of these results are for a 1-NN classifier using the Euclidean
distance. Also included in the plots are curves showing the relative improvement that
is achieved when using or not using the tangents for the subspace learning.

As can be observed in the figure, as the transformation of the images is greater,
when using the tangents (TPCA+TLDA and TSRDA) the performance is better than
without them (PCA+LDA and SRDA). This shows that the subspaces learned with
the tangents are more robust to these transformations. This is observed even though
the Euclidean distance is not invariant to these transformations. The additional in-
formation from the tangent vectors not only can make the algorithms more stable and
with better performance. They also make the learned projection base be somewhat
invariant to the transformations of the tangent vectors that were used. This effect
can be explained by the fact that if the tangents are not used, then those directions of
variability are not taken into account and might be removed by the learned projection
base.

4.6.4 LDPP Using the Tangent Distances

All of the experiments presented in chapter 3 for the LDPP algorithm were using the
Euclidean distance, however any distance can be employed as long as the derivatives
with respect to the model parameters exist. Here we present an experiment in which

62 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

the tangent distances have been applied. The same face identification data set as the
one in the previous experiment has been used.

Table 4.4. Comparison of LDPP* with different distances used for learning and some
baseline techniques for the face identification data set.

Approach
Error Rate (\%)

Dim.
[95\% conf. int.]

Laplacianfaces 15.0 [12.8 -- 17.2] 100
L-Fisherfaces 9.5 [7.7 -- 11.3] 140
LBP + Dual LLD 7.4 [5.8 -- 9.0] 500
LDPP*\mathrm{e}\mathrm{u}\mathrm{c}. 5.1 [3.7 -- 6.5] 64
LDPP*\mathrm{O}\mathrm{T}\mathrm{D} 5.8 [4.4 -- 7.2] 64
LDPP*\mathrm{A}\mathrm{T}\mathrm{D} 6.0 [4.5 -- 7.5] 64
LDPP*\mathrm{R}\mathrm{T}\mathrm{D} 6.4 [4.9 -- 7.9] 64

In this experiment we used two tangent vectors, one for modeling rotation, and
another for modeling scaling. To compute the tangents given an image we have used
the same procedure as in the work of Simard et al. [Simard et al., 1998] with the Gaus-
sian function having a standard deviation of one. Dimensionality reduction bases were
learned using the LDPP with the RTD, OTD and the ATD distances as was explained
in section 4.5. The target space dimensionality was varied and the results obtained
are similar to LDPP with the Euclidean distance. The higher the dimensionality,
the lower the error rate is, however it stabilizes at about 64 dimensions [Villegas and
Paredes, 2008]. The best result obtained was for the OTD, however it did not result
in having a better recognition rate than LDPP using the Euclidean distance, nonethe-
less all of the results have their confidence intervals overlapping, see table 4.4. It was
somewhat expected that the best result using the tangents was for the OTD because
with the OTD additional information for each training sample is obtained. Since the
ATD did not improve further the results it seems that the tangents of the prototypes
are not very helpful during learning.

Figure 4.4 presents two graphs illustrating the transformation invariances for the
learned subspaces. The first plot shows how the recognition accuracy is affected as the
images in the test set are rotated. The other plot shows how the accuracy is affected
when the test set images are scaled. The results in the original space are included
to observe the improvement that is obtained with the learned subspace and that the
tangent distances do help in this task. For LDPP*, four curves are shown, using the
Euclidean, the RTD, the OTD and the ATD distances, both during learning and for
the 1-NN classifier. Even though that without any transformation, the Euclidean
distance performs best, all of the tangent distances are considerably more robust to
the transformations. It is also better than the results obtained for TLDA and TSRDA
in the previous subsection. In both graphs, the OTD seems to be the best, an accuracy
over 80\% is achieved for rotations of about 8 degrees and for scaling factors from -8\%
to +10\%.

We were expecting better results for the ATD since it used both the observation
and reference tangent vectors. However it seems that the tangents of the prototypes

4.6. EXPERIMENTS 63

50

60

70

80

90

100

-10 -5 0 5 10

A
cc
u
ra
cy

(\%
)

Rotation Angle (degrees)

Subspace: Orig. S.
Subspace: LDPP*

Dist: Euc.
Dist: RTD
Dist: OTD
Dist: ATD

50

60

70

80

90

100

-10 -5 0 5 10 15

A
cc
u
ra
cy

(\%
)

Scale Factor (\%)

Subspace: Orig. S.
Subspace: LDPP*

Dist: Euc.
Dist: RTD
Dist: OTD
Dist: ATD

Figure 4.4. Face identification accuracy on a subset of the FRGC varying the angle of
rotation and the scaling factor for LDPP* using different distances.

64 CHAPTER 4. MODELING VARIABILITY USING TANGENT VECTORS

are not as useful. A possible reason for this could be that since the prototypes are
like smooth averages of samples, the method of estimating the tangent vectors is not
adequate. Another possible reason is that the assumption that the gradient of the
prototypes does not depend on the tangent vectors has a noticeable negative effect.

4.7 Conclusions

In this chapter, the variabilities of the data known a priori have been discussed and
how these can be modeled approximately using the tangent vectors has been intro-
duced. Furthermore, two very useful supervised dimensionality reduction techniques,
which are Linear Discriminant Analysis (LDA) and Spectral Regression Discriminant
Analysis (SRDA) have been carefully analyzed and modifications of them which use
the tangent vector information have been proposed. Finally, the LDPP algorithm was
extended for learning a subspace and prototypes optimized for the tangent distances.

Experiments were conducted using three facial image recognition tasks: gender
recognition, emotion recognition and identification. In the experimental results it is
observed that the tangent vector information can effectively be used to improve exist-
ing dimensionality reduction methods so that they can handle better high-dimensional
data and also improve the recognition performance. Both of the proposed methods
TLDA and TSRDA obtain better recognition performance and furthermore the sub-
spaces learned tend to be more robust to the tangent vector transformations that
were used during learning. In the case of LDA the singularity of the within scatter
matrix due to the limited number of training samples is avoided. The experiments
also show that the tangent distances can be applied in a discriminative subspace
and still have the beneficial effect of being even more invariant to the corresponding
transformations.

For simplicity in the experiments, the parameters \gamma 1, . . . , \gamma L which weight the im-
portance that is given to each the tangent type (e.g. rotation, scaling, nearest neigh-
bor) in the modification of the scatter matrix, was assumed to be the same for all the
tangent types. This is an unfounded assumption and for this reason when combining
tangent types the performance decreased. The gamma parameters \gamma 1, . . . , \gamma L could
be set to be different for each tangent type and adjusted using cross-validation. Bet-
ter results would be expected, however adjusting the parameters becomes intractable
since the number of possible values for these parameters is exponential. A future di-
rection of research is developing a better method to find the adequate values of these
parameters.

The LDPP algorithm derived for the different tangent distances does not have the
inconvenience of needing to estimate a factor for each tangent type. Furthermore, all
of the tangent distances help making the classifier significantly more robust to the
used tangent vector transformations. However, it becomes clear that the OTD is the
best choice since it contains more information useful for learning.

Chapter 5

Regression Problems and
Dimensionality Reduction

The regression analysis techniques are all of the statistical methods that model the
relationship there is between one or more input variables and an output variable. The
objective of these techniques is to be able to predict the output variable when given
a sample of the input variables. In the literature depending on the field, there are are
several names used for the input and output variables. In this thesis, the input and
output variables will be mostly referred to simply as features and response variables
respectively.

This chapter presents a proposed algorithm for learning regression models which
is able to handle well high-dimensional feature vectors. Before the algorithm is pre-
sented, the following two subsections present some theory and related work found in
the literature for regression analysis and dimensionality reduction in regression.

5.1 Regression Analysis

A regression system is very similar to a classification system. In fact classification
can be seen as a special case of regression, by considering the response variables to
be discrete values which somehow encode the class labels. For instance this is what
is done when artificial neural networks are used for classification. The present work
is not concerned with solving classification problems by means of regression analysis.
The objective is considering pattern recognition problems in which the response is a
continuous variable. Examples of this type of problems can be:

\bullet In which direction is a person in an image looking at?

\bullet What is the angle of inclination of the text in a scanned document?

\bullet What will be the average temperature for next year?

In a regression system, an input signal or observation is received, which is then
preprocessed, some features are extracted and finally a recognition model gives an

66 CHAPTER 5. REGRESSION PROBLEMS AND DIMENSIONALITY REDUCTION

output. This process is the same as any general pattern recognition system, see
figure 1.1. The peculiarity of a regression system is that the output is a numerical
value, thus the system is characterized by the function

f : \BbbR D - \rightarrow \BbbR . (5.1)

The only difference with the classification system presented in section 2.1, is that the
output f(\bfitx) is in the real space instead of being a discrete class label. The output or
response of the system could also be multidimensional, in which case there are several
regression functions, each one giving a corresponding response variable.

The objective of regression analysis it to be able to predict with the least error as
possible an output y when given as input the feature vector \bfitx . In order to minimize
the prediction error it is common to use as a measure the expected mean squared
error (MSE), thus

e(\sansy , f(\bfsansx)) = (\sansE [\sansy - f(\bfsansx)])2 , (5.2)

which is minimized by choosing the function f(\bfitx) be the conditional expectation of
\sansy given that \bfsansx = \bfitx [Bishop, 2006, sec. 1.5.5]

f(\bfitx) = \sansE [\sansy | \bfsansx = \bfitx] . (5.3)

In practice, in order to do the regression analysis, a function which depends on a set
of parameters \theta must be chosen, i.e. f(\bfitx) = f\theta (\bfitx). The task of the regression analysis
is then to estimate the parameters \theta which minimize an error function for a certain
data set.

5.1.1 Review of Related Work

In the area of regression analysis currently there is also a great interest in handling
problems with high-dimensional feature vectors, see for instance the recent special
issue on this subject [Banks et al., 2009]. The most simple and well known regression
technique is multiple regression, or also known as linear regression where the term
multiple is used when there is more than one input feature. As the name suggests,
in linear regression it is assumed that the relationship between the features and the
response variable is linear. The generalized linear model is the extension of linear
regression to the nonlinear case by means of introducing a link function. Other well
known regression methods are the artificial neural networks [Bishop, 1995] such as
the multilayer perceptron (MLP).

In regression analysis it is common to fit the parameters of the model by ordi-
nary least squares (OLS), although there are several other possibilities, for instance
least absolute deviation. One possibility to obtain good performance with high-
dimensional data is to estimate the parameters of the model by using a penalized
or regularized criterion. Examples of this are ridge regression [Hoerl et al., 1985] and
least absolute shrinkage selection operator (LASSO) [Tibshirani, 1996]. Other meth-
ods which handle well high-dimensional vectors are multivariate adaptive regression
splines (MARS) [Friedman, 1991], support vector regression (SVR) [Drucker et al.,
1996] and the relevance vector machine (RVM) [Tipping, 2001].

5.2. DIMENSIONALITY REDUCTION IN REGRESSION 67

5.2 Dimensionality Reduction in Regression

Reliably estimating the parameters of a regression model becomes difficult when the
feature vectors are high-dimensional. As mentioned in the previous section, some
regression techniques have been proposed which handle well high-dimensional data,
such as MARS and LASSO. Nonetheless, it is frequent to find methods which first
do a dimensionality reduction and then they do the regression, as was presented in
figure 1.2. In this case the objective is to find the parameters of the model \theta which
minimize the error of predicting \bfity when given r(\bfitx).

The problem of dimensionality reduction is basically the same as described in sec-
tion 2.2. Given a task, in which the objects of interest can be represented by a feature
vector \bfsansx \in \BbbR D, with an unknown distribution, one would like to find a transforma-
tion function r which maps this D-dimensional space onto an E-dimensional space in
which the observations are well represented, being E \ll D, i.e.

r : \BbbR D - \rightarrow \BbbR E . (5.4)

In the case of regression analysis, the feature vectors are well represented in the
target space if all of the original information which helps in predicting the response
variable is kept. As in the classification case, there can be many lower dimensional
subspaces which keep all of the relevant information, however the objective is to find
among these a subspace with the lowest dimensionality possible. This way, better
models can be attained using the limited available data. In the context of regression
analysis this is known as sufficient dimension reduction [Adragni and Cook, 2009].
The most popular methods for dimensionality reduction in regression, which are SIR
and SAVE (see section 5.2.1), are based on the inverse reduction. What is interesting
of inverse reduction is that it is based on estimating \bfsansx from \sansy , which overcomes the
curse dimensionality because generally the response is low-dimensional.

5.2.1 Review of Related Work

In the regression analysis literature there are several methods which handle high-
dimensional data by applying a dimensionality reduction process prior to the regres-
sion model. An example of this is what is known as principal component regression
(PCR), which refers to doing regression on the features obtained by principal compo-
nent analysis (PCA). Although extensively used, PCR has the problem that impor-
tant information could be discarded if only the directions corresponding to the highest
eigenvalues are kept [Jolliffe, 1982]. The two most popular discriminative dimension-
ality reduction methods used in regression are the sliced inverse regression (SIR) [Li,
1991] and the sliced average variance estimation (SAVE) [Cook, 2000]. Both of these
methods are based on slicing the range of the response variable into a number of
discrete bins, thus becoming similar to dimensionality reduction in a classification
problem. Using this approach, other classification dimensionality reduction methods
could also be applied. A more recent method for dimensionality reduction in regres-
sion worth mentioning which is not based in discretizing the responses is the Kernel
Dimensionality Reduction [Fukumizu et al., 2004]. Good overviews of the topic of

68 CHAPTER 5. REGRESSION PROBLEMS AND DIMENSIONALITY REDUCTION

dimensionality reduction in regression can be found in [Cook, 2007] and [Adragni and
Cook, 2009].

5.3 Learning Projections and Prototypes for Re-
gression

In this section we propose a regression analysis method which handles well feature
vectors with a high dimensionality and furthermore it learns very compact and efficient
regressors. The method is very similar to the one presented for classification problems
in chapter 3. It simultaneously learns a linear dimensionality reduction base and a
set of prototypes which provide the regression function. The method is based on the
forward sufficient reduction idea [Adragni and Cook, 2009], trying to model directly
\sansy | \bfsansx , although it is not just a dimension reduction technique since it also learns the
regressor. Since this method is considerably similar to LDPP presented in chapter 3,
a much briefer description will be given here, and several details will be referenced to
previous chapters.

Let there be a regression problem with C response variables \bfitf (\bfitx) \in \BbbR C , that
depend on D features \bfitx \in \BbbR D. Having a training set \scrX = \{ \bfitx 1, . . . ,\bfitx N\} \subset \BbbR D with
its corresponding output variables \scrF \scrX = \{ \bfitf \bfitx 1

, . . . ,\bfitf \bfitx N
\} \subset \BbbR C , one would like to

find a parametrized function \bfitf \theta (\bfitx) which predicts with the least error as possible the
unknown true function \bfitf (\bfitx).

In the present work, it is proposed to use a low-dimensional representation of the
feature vector \bfitx obtained via a projection matrix \bfitB \in \BbbR D\times E . This low-dimensional
representation, which will denoted by having a tilde, is given by

\~\bfitx = \bfitB \sansT \bfitx . (5.5)

The regression function will be approximated by a weighted sum of M prototypes,
the weight of which is defined by a certain distance in the low-dimensional space,
between an observation and the feature vector of the prototype. The type of distance
could be chosen depending on the problem at hand, therefore as a start the Euclidean
distance can be used, although the tangent distances presented in previous chapters
could also be useful in this case. Formally, the regression function is given by

\bfitf \theta (\bfitx) =

M\sum
m=1

wm\bfitf \bfitp m
, (5.6)

and the weights are

wm =
d - 1(\~\bfitx , \~\bfitp m)\sum M

m\prime =1 d
 - 1(\~\bfitx , \~\bfitp m\prime)

, (5.7)

where \scrP = \{ \bfitp 1, . . . ,\bfitp M\} \subset \BbbR D is a set of prototypes with corresponding known
outputs \scrF \scrP = \{ \bfitf \bfitp 1

, . . . ,\bfitf \bfitp M
\} \subset \BbbR C . Some important characteristics of the prototype

set \scrP are that it should be much smaller than the training set and not necessarily a
subset of it, i.e. M \ll N , \scrP \not \subseteq \scrX .

5.3. LEARNING PROJECTIONS AND PROTOTYPES FOR REGRESSION 69

In all, the function \bfitf \theta (\bfitx) has as parameters to be learned the projection base
and the prototypes, i.e. \theta = \{ \bfitB ,\scrP ,\scrF \scrP \} . In order to optimize these parameters,
an objective function is required. A popular criterion to optimize in the context of
regression problems is the Mean Squared Error (MSE). However, one of the known
weaknesses of the MSE is that it is highly sensitive to outliers. Therefore in order to
address this weakness and inspired by previous research [Paredes and Vidal, 2006b;
Villegas and Paredes, 2008], we propose to minimize the following objective function

J\scrX (\theta) =
1

N

\sum
\forall \bfitx \in \scrX

tanh
\bigl(
\beta \| \bfitf \bfitx - \bfitf \theta (\bfitx)\| 2

\bigr)
. (5.8)

One of the parameters of the above function is \beta , which serves a similar purpose
as the sigmoid slope parameter in the LDPP algorithm. The value of \beta should be
positive so that the argument to the hyperbolic tangent function (tanh) stays positive.
For positive values, the hyperbolic tangent is an increasing function which starts
at zero and increases rapidly to almost one, although only reaching it at infinity,
see figure 5.1. This behavior has the effect that the contribution to the objective
function (5.8) becomes similar for all samples whose norm \| \bfitf \bfitx - \bfitf \theta (\bfitx)\| is high
enough. Furthermore, as the value of the norm increases, the derivative of tanh tends
to zero, thus making the gradient with respect to the parameters also close to zero.
This gives the optimization the ability to ignore clear outliers, since their norm is
expected to be high.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

\alpha

tanh(\alpha)

sech2(\alpha)

Figure 5.1. Graph of the function tanh(\alpha) and its derivative sech2(\alpha).

70 CHAPTER 5. REGRESSION PROBLEMS AND DIMENSIONALITY REDUCTION

The lower the value of the parameter \beta is, the more similar the optimization
function becomes to the MSE. Therefore an adequate value of \beta must be obtained
which gives a compromise between the minimization of the MSE and the ability of
ignoring outliers.

Taking a gradient descent approach for the proposed optimization function, the
corresponding update equations would be

\bfitB (t+1) = \bfitB (t) - \gamma \nabla
\bfitB J , (5.9)

\bfitp (t+1)
m = \bfitp (t)

m - \eta \nabla \bfitp m
J , (5.10)

\bfitf (t+1)
\bfitp m

= \bfitf (t)
\bfitp m

 - \kappa \nabla
\bfitf \bfitp m

J , (5.11)

where the sub-index m is the prototype number, and \{ \gamma , \eta , \kappa \} are the learning factors.
From equation (5.8) the following expressions for the gradients can be derived

\nabla
\bfitB J = - 2\beta

N

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfitp \in \scrP

sech2(\beta \| \bfitdelta \bfitx \| 2)
d2(\~\bfitx , \~\bfitp) \cdot S

\Biggl(
C\sum

c=1

\delta c,\bfitx \delta c,\bfitp

\Biggr)
\nabla
\bfitB d(\~\bfitx , \~\bfitp) , (5.12)

\nabla \bfitp m
J = - 2\beta

N

\sum
\forall \bfitx \in \scrX

sech2(\beta \| \bfitdelta \bfitx \| 2)
d2(\~\bfitx , \~\bfitp m) \cdot S

\Biggl(
C\sum

c=1

\delta c,\bfitx \delta c,\bfitp m

\Biggr)
\nabla \bfitp \bfitm

d(\~\bfitx , \~\bfitp m) , (5.13)

\nabla
fc,\bfitp m

J = - 2\beta

N

\sum
\forall \bfitx \in \scrX

sech2(\beta \| \bfitdelta \bfitx \| 2)
d2(\~\bfitx , \~\bfitp m) \cdot S

C\sum
c=1

\delta c,\bfitx , (5.14)

where the sub-index m indicates the prototype number, the sub-index c indicates that
it is the c-th output variable, and the following expressions correspond to

S =
\sum
\forall \bfitp \in \scrP

d
 - 1(\~\bfitx , \~\bfitp) , (5.15)

\bfitdelta \bfitx = \bfitf \bfitx - \bfitf \theta (\bfitx) , (5.16)

\delta c,\bfitx = fc,\bfitx - fc\theta (\bfitx) , (5.17)

\delta c,\bfitp = fc,\bfitp - fc\theta (\bfitx) . (5.18)

As can be observed in equation (5.14), the gradients for all of the response variables
are the same. This limits considerably the possible values that the response variables
can have, thus it is an unwanted effect of considering all of the response variables
jointly. For optimizing the response variables, it can be better to consider each one
independently, using the following gradient

\nabla
fc,\bfitp m

J = - 2\beta

N

\sum
\forall \bfitx \in \scrX

sech2(\beta \| \bfitdelta \bfitx \| 2)
d2(\~\bfitx , \~\bfitp m) \cdot S

\delta c,\bfitx . (5.19)

When optimizing using (5.19), the projection base\bfitB and the prototype feature vectors
\scrP can still be common to all of the response variables.

As mentioned before the distance function used by the prototypes to weight the
prototype responses can be chosen depending on the problem. In order to do the

5.3. LEARNING PROJECTIONS AND PROTOTYPES FOR REGRESSION 71

optimization, one only has to find the gradients of the distance with respect to \bfitB
and \scrP . This is exactly the same as for the LDPP algorithm, for which the gradients
obtained for the Euclidean, cosine and tangent distances was presented in sections
3.8 and 4.5.

The same efficient implementation as for the LDPP algorithm can be used here,
as long as the gradients with respect to \bfitB and \scrP are simple linear combinations of
the training set \scrX and the prototypes \scrP . In such a case the gradients of the distance
with respect to \bfitB and \bfitP can be expressed as

\nabla
\bfitB J = \bfitX \bfitG \sansT + \bfitP \bfitH \sansT , (5.20)

\nabla
\bfitP J = \bfitB \bfitH . (5.21)

where \bfitX \in \BbbR D\times N and \bfitP \in \BbbR D\times M are matrices whose columns are the feature
vectors in sets \scrP and \scrX respectively, and \bfitG \in \BbbR E\times N and \bfitH \in \BbbR E\times M are some factor
matrices which vary depending on which distance measure is used. The resulting
gradient descent procedure is summarized in the algorithm Learning Discriminative
Projections and Prototypes for Regression (LDPPR)1, presented in figure 5.2.

Algorithm LDPPR (\bfitX , \theta = \{ \bfitB ,\bfitP ,\bfitF \bfitP \} , \beta , \gamma , \eta , \kappa , \varepsilon) \{
// \bfitX : training data; \theta : initial parameters;

// \beta : tanh slope; \gamma , \eta , \kappa : learning factors; \varepsilon : small constant;

\lambda \prime = \infty ; \lambda = J\scrX (\theta);
while(| \lambda \prime - \lambda | > \varepsilon) \{

\lambda \prime = \lambda ; \bfitB \prime = \bfitB ; \bfitP \prime = \bfitP ; \bfitF \prime
\bfitP = \bfitF \bfitP

compute \bfitG and \bfitH ;
\bfitP = \bfitP \prime - \eta \bfitB \prime \bfitH ;
\bfitF \bfitP = \bfitF \prime

\bfitP - \kappa \nabla
\bfitF \bfitP

J;

\bfitB = \bfitB \prime - \gamma (\bfitX \bfitG \sansT + \bfitP \prime \bfitH \sansT);
\lambda = J\scrX (\theta);

\}
return(\bfitB ,\bfitP ,\bfitF \bfitP);

\}

Figure 5.2. Algorithm: Learning Discriminative Projections and Prototypes for Regression
(LDPPR).

The same as for the LDPP algorithm presented in chapter 3, the projection base
\bfitB can either be forced to orthonormal or not. Nonetheless, in this case it was also
observed that the orthonormalization serves as a regularizer which helps to handle
better high-dimensional representations and obtain better results.

In the LDPPR algorithm, it is also required to have some initial values for the
projection base \bfitB and the prototypes \{ \scrP ,\scrF \scrP \} . For the projection base, a simple

1A free Matlab/Octave implementation of this algorithm has been left available in http://web.

iti.upv.es/\~mvillegas/research/code and also attached to the digital version of this thesis that
the reader can extract if the viewer supports it.

function [bestB, bestP, bestPP, info, other] = ldppr(X, XX, B0, P0, PP0, varargin)
%
% LDPPR: Learning Discriminative Projections and Prototypes for Regression
%
% Usage:
% [B, P, PP] = ldppr(X, XX, B0, P0, PP0, ...)
%
% Usage initialize prototypes:
% [P0, PP0] = ldppr('initP', X, XX, Np)
%
% Usage cross-validation (PCA & kmeans initialization):
% [B, P, PP] = ldppr(X, XX, maxDr, maxNp, [], ...)
%
% Input:
% X - Independent training data. Each column vector is a data point.
% XX - Dependent training data.
% B0 - Initial projection base.
% P0 - Initial independent prototype data.
% PP0 - Initial dependent prototype data.
% maxDr - Maximum reduced dimensionality.
% maxNp - Maximum number of prototypes.
%
% Output:
% B - Final learned projection base.
% P - Final learned independent prototype data.
% PP - Final learned dependent prototype data.
%
% Learning options:
% 'slope',SLOPE - Tanh slope (default=1)
% 'rateB',RATEB - Projection base learning rate (default=0.1)
% 'rateP',RATEP - Ind. Prototypes learning rate (default=0.1)
% 'ratePP',RATEPP - Dep. Prototypes learning rate (default=0)
% 'minI',MINI - Minimum number of iterations (default=100)
% 'maxI',MAXI - Maximum number of iterations (default=1000)
% 'epsilon',EPSILON - Convergence criteria (default=1e-7)
% 'orthoit',OIT - Orthogonalize every OIT (default=1)
% 'orthonormal',(true|false) - Orthonormal projection base (default=true)
% 'orthogonal',(true|false) - Orthogonal projection base (default=false)
% 'dist',('euclidean'| - Distance (default=euclidean)
% 'cosine'| cosine
% 'rtangent'| reference single sided tangent
% 'otangent'| observation single sided tangent
% 'atangent') average single sided tangent
%
% Data normalization options:
% 'normalize',(true|false) - Normalize training data (default=true)
% 'linearnorm',(true|false) - Linear normalize training data (default=false)
%
% Stochastic options:
% 'stochastic',(true|false) - Stochastic gradient descend (default=true)
% 'stochsamples',SAMP - Samples per stochastic iteration (default=10)
% 'stocheck',SIT - Stats every SIT stoch. iterations (default=100)
% 'stocheckfull',(true|f... - Stats for whole data set (default=false)
% 'stochfinalexact',(tru... - Final stats for whole data set (default=true)
%
% Verbosity options:
% 'verbose',(true|false) - Verbose (default=true)
% 'stats',STAT - Statistics every STAT (default=10)
% 'logfile',FID - Output log file (default=stderr)
%
% Tangent distances options:
% 'tangtypes' - Tangent types [hvrspdtHV]+[k]K (default='k2')
% h: image horizontal translation
% v: image vertical translation
% r: image rotation
% s: image scaling
% p: image parallel hyperbolic transformation
% d: image diagonal hyperbolic transformation
% t: image trace thickening
% H: image horizontal illumination
% V: image vertical illumination
% k: K nearest neighbors
% 'imSize',[W H] - Image size (default=square)
% 'bw',BW - Tangent derivative gaussian bandwidth (default=0.5)
% 'krh',KRH - Supply tangent derivative kernel, horizontal
% 'krv',KRV - Supply tangent derivative kernel, vertical
%
% Other options:
% 'devel',Y,YY - Set the development set (default=false)
% 'seed',SEED - Random seed (default=system)
%
% Cross-validation options:
% 'crossvalidate',K - Do K-fold cross-validation (default=2)
% 'cv_slope',[SLOPES] - Slopes to try (default=[10])
% 'cv_Np',[NPs] - Prototypes to try (default=[2.^[1:4]])
% 'cv_Dr',[DRs] - Reduced dimensions to try (default=[2.^[2:5]])
% 'cv_rateB',[RATEBs] - B learning rates to try (default=[10.^[-2:0]])
% 'cv_rateP',[RATEPs] - P learning rates to try (default=[10.^[-2:0]])
% 'cv_ratePP',[RATEPPs] - PP learning rates to try (default=[0])
% 'cv_save',(true|false) - Save cross-validation results (default=false)
%
%
% $Revision: 139 $
% $Date: 2011-03-03 17:02:23 +0100 (Thu, 03 Mar 2011) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(X,'-v',2),
 unix('echo "$Revision: 139 $* $Date: 2011-03-03 17:02:23 +0100 (Thu, 03 Mar 2011) $*" | sed "s/^:/ldppr: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

if strncmp(X,'initP',5),
 if ~exist('PP0','var'),
 [bestB, bestP] = ldppr_initP(XX, B0, P0);
 else
 [bestB, bestP] = ldppr_initP(XX, B0, P0, PP0, varargin{:});
 end
 return;
end

fn='ldppr:';
minargs=5;

%%% Default values %%%
bestB=[];
bestP=[];
bestPP=[];

slope=1;
rateB=0.1;
rateP=0.1;
ratePP=0;

epsilon=1e-7;
minI=100;
maxI=1000;
stats=10;
orthoit=1;

devel=false;
stochastic=false;
stochsamples=10;
stocheck=100;
stocheckfull=false;
stochfinalexact=true;
orthonormal=true;
orthogonal=false;
dtype.euclidean=true;
dtype.cosine=false;
dtype.tangent=false;
dtype.rtangent=false;
dtype.otangent=false;
dtype.atangent=false;
tangtypes='k2';
normalize=true;
linearnorm=false;
testJ=false;
indepPP=true;
MAD=false;
crossvalidate=false;
cv_save=false;

logfile=2;
verbose=true;

%%% Input arguments parsing %%%
n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}) || size(varargin,2)<n+1,
 argerr=true;
 elseif strcmp(varargin{n},'probemode'),
 eval([varargin{n},'=varargin{n+1};']);
 n=n+2;
 elseif strcmp(varargin{n},'slope') || ...
 strcmp(varargin{n},'rates') || ...
 strcmp(varargin{n},'rateB') || ...
 strcmp(varargin{n},'rateP') || ...
 strcmp(varargin{n},'ratePP') || ...
 strcmp(varargin{n},'epsilon') || ...
 strcmp(varargin{n},'minI') || ...
 strcmp(varargin{n},'maxI') || ...
 strcmp(varargin{n},'stats') || ...
 strcmp(varargin{n},'seed') || ...
 strcmp(varargin{n},'stochsamples') || ...
 strcmp(varargin{n},'stocheck') || ...
 strcmp(varargin{n},'orthoit') || ...
 strcmp(varargin{n},'crossvalidate') || ...
 strcmp(varargin{n},'cv_slope') || ...
 strcmp(varargin{n},'cv_Np') || ...
 strcmp(varargin{n},'cv_Dr') || ...
 strcmp(varargin{n},'cv_rateB') || ...
 strcmp(varargin{n},'cv_rateP') || ...
 strcmp(varargin{n},'cv_ratePP') || ...
 strcmp(varargin{n},'imSize') || ...
 strcmp(varargin{n},'bw') || ...
 strcmp(varargin{n},'krh') || ...
 strcmp(varargin{n},'krv') || ...
 strcmp(varargin{n},'logfile'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}) || sum(sum(varargin{n+1}<0))~=0,
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'orthonormal') || ...
 strcmp(varargin{n},'orthogonal') || ...
 strcmp(varargin{n},'normalize') || ...
 strcmp(varargin{n},'linearnorm') || ...
 strcmp(varargin{n},'stochastic') || ...
 strcmp(varargin{n},'stocheckfull') || ...
 strcmp(varargin{n},'stochfinalexact') || ...
 strcmp(varargin{n},'testJ') || ...
 strcmp(varargin{n},'cv_save') || ...
 strcmp(varargin{n},'indepPP') || ...
 strcmp(varargin{n},'MAD') || ...
 strcmp(varargin{n},'verbose'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~islogical(varargin{n+1}),
 argerr=true;
 else
 if varargin{n+1}==true,
 if strcmp(varargin{n},'orthonormal'),
 orthogonal=false;
 elseif strcmp(varargin{n},'orthogonal'),
 orthonormal=false;
 elseif strcmp(varargin{n},'normalize'),
 linearnorm=false;
 elseif strcmp(varargin{n},'linearnorm'),
 normalize=false;
 end
 end
 n=n+2;
 end
 elseif strcmp(varargin{n},'tangtypes'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~ischar(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'dist') && (...
 strcmp(varargin{n+1},'euclidean') || ...
 strcmp(varargin{n+1},'rtangent') || ...
 strcmp(varargin{n+1},'otangent') || ...
 strcmp(varargin{n+1},'atangent') || ...
 strcmp(varargin{n+1},'cosine')),
 dtype.euclidean=false;
 dtype.cosine=false;
 dtype.rtangent=false;
 dtype.otangent=false;
 dtype.atangent=false;
 eval(['dtype.',varargin{n+1},'=true;']);
 n=n+2;
 elseif strcmp(varargin{n},'devel'),
 devel=true;
 Y=varargin{n+1};
 YY=varargin{n+2};
 n=n+3;
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

DD=size(XX,1);
[D,Nx]=size(X);
if devel,
 Ny=size(Y,2);
end

%%% Automatic initial parameters %%%
if ~crossvalidate && max(size(B0))==1 && max(size(P0))==1,
 crossvalidate=2;
end
if max(size(B0))==1,
 if ~crossvalidate,
 Bi=pca(X);
 B0=Bi(:,1:min(B0,D));
 else
 B0=rand(D,min(B0,D));
 end
end
if max(size(P0))==1,
 if ~crossvalidate,
 [P0,PP0]=ldppr_initP(X,XX,P0);
 else
 PP0=zeros(DD,P0);
 P0=rand(D,P0);
 end
end

Dr=size(B0,2);
Np=size(P0,2);

%%% Probe mode %%%
if exist('probemode','var'),
 probevars=fieldnames(probemode);
 for n=1:size(probevars,1),
 eval([probevars{n} '=probemode.' probevars{n} ';']);
 end
 normalize=false;
 verbose=true;
 probemode=true;
 xxsd=ones(DD,1);
else
 probemode=false;
 if crossvalidate,
 if ~exist('cv_slope','var'),
 cv_slope=slope;
 end
 if ~exist('cv_Np','var'),
 cv_Np=[2.^[1:4]];
 cv_Np(cv_Np>=Np)=[];
 cv_Np=[cv_Np,Np];
 end
 if ~exist('cv_Dr','var'),
 cv_Dr=[2.^[2:5]];
 cv_Dr(cv_Dr>=Dr)=[];
 cv_Dr=[cv_Dr,Dr];
 end
 if ~exist('cv_rateB','var'),
 cv_rateB=[10.^[-2:0]];
 end
 if ~exist('cv_rateP','var'),
 cv_rateP=[10.^[-2:0]];
 end
 if ~exist('cv_ratePP','var'),
 cv_ratePP=ratePP;
 end
 end
end

%%% Error detection %%%
if probemode,
elseif argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif size(B0,1)~=D || size(P0,1)~=D,
 fprintf(logfile,'%s error: dimensionality of base, prototypes and data must be the same\n',fn);
 return;
elseif size(XX,2)~=Nx || size(PP0,2)~=Np,
 fprintf(logfile,'%s error: the number of vectors in the dependent and independent data must be the same\n',fn);
 return;
elseif size(PP0,1)~=DD,
 fprintf(logfile,'%s error: the dimensionality of the dependent variables for the data and the prototypes must be the same\n',fn);
 return;
end

if ~verbose,
 logfile=fopen('/dev/null');
end

%%% Preprocessing %%%
if ~probemode,
 tic;

 B0=double(B0);
 P0=double(P0);

 if exist('seed','var'),
 rand('state',seed);
 end

 if exist('rates','var'),
 rateB=rates;
 rateP=rates;
 end

 onesNx=ones(Nx,1);
 onesNp=ones(Np,1);
 onesDr=ones(Dr,1);
 onesDD=ones(DD,1);
 if devel,
 onesNy=ones(Ny,1);
 end

 %%% Normalization %%%
 oX=X;
 if devel,
 oY=Y;
 end
 if normalize || linearnorm,
 xmu=mean(X,2);
 xsd=std(X,1,2);
 % xsd=sqrt(D*Dr)*xsd/10;
 xsd=Dr*xsd; % this needs to be tested !!!
 if linearnorm,
 xsd=max(xsd)*ones(size(xsd));
 end
 if issparse(X) && ~dtype.cosine,
 xmu=full(xmu);
 xsd=full(xsd);
 X=X./xsd(:,onesNx);
 if devel,
 Y=Y./xsd(:,onesNy);
 end
 P0=P0./xsd(:,onesNp);
 else
 X=(X-xmu(:,onesNx))./xsd(:,onesNx);
 if devel,
 Y=(Y-xmu(:,onesNy))./xsd(:,onesNy);
 end
 P0=(P0-xmu(:,onesNp))./xsd(:,onesNp);
 end
 B0=B0.*xsd(:,onesDr);
 if sum(xsd==0)>0,
 X(xsd==0,:)=[];
 if devel,
 Y(xsd==0,:)=[];
 end
 B0(xsd==0,:)=[];
 P0(xsd==0,:)=[];
 fprintf(logfile,'%s warning: some dimensions have a standard deviation of zero\n',fn);
 end
 end

 xxmu=mean(XX,2);
 xxsd=std(XX,1,2);
 xxsd=DD*xxsd;
 XX=(XX-xxmu(:,onesNx))./xxsd(:,onesNx);
 if devel,
 YY=(YY-xxmu(:,onesNy))./xxsd(:,onesNy);
 end
 PP0=(PP0-xxmu(:,onesNp))./xxsd(:,onesNp);
 if ~MAD,
 xxsd=xxsd.*xxsd;
 end

 %%% Tangent vectors %%%
 if dtype.rtangent || dtype.otangent || dtype.atangent,
 dtype.tangent=true;
 tangcfg.imgtangcfg=struct;
 if exist('imSize','var'),
 tangcfg.imgtangcfg.imSize=imSize;
 end
 if exist('bw','var'),
 tangcfg.imgtangcfg.bw=bw;
 end
 if exist('krh','var'),
 tangcfg.imgtangcfg.krh=krh;
 end
 if exist('krv','var'),
 tangcfg.imgtangcfg.krv=krv;
 end
 tangcfg.imgtangs=false;
 tangcfg.knntangs=false;
 tangcfg.devel=devel;
 tangcfg.dtype=dtype;
 tangcfg.onesNp=onesNp;
 tangcfg.Np=Np;
 tangcfg.D=D;
 tangcfg.Vx=[];
 tangcfg.Vp=[];
 tangcfg.Vy=[];
 %%% k-NN tangents %%%
 if sum(tangtypes=='k')>0,
 idx=find(tangtypes=='k');
 tangcfg.knntangs=str2num(tangtypes(idx+1:end));
 tangcfg.knntypes=tangtypes(idx:end);
 tangtypes=tangtypes(1:idx-1);
 %tangcfg.Xlabels=Xlabels;
 %tangcfg.Plabels=Plabels;
 %if devel,
 % tangcfg.Ylabels=Ylabels;
 %end
 end
 %%% Image tangents %%%
 if numel(tangtypes)>0,
 tangcfg.imgtangs=numel(tangtypes);
 tangcfg.imgtypes=tangtypes;
 tangcfg.normalize=normalize;
 tangcfg.linearnorm=linearnorm;
 if dtype.rtangent || dtype.atangent,
 if normalize || linearnorm,
 tangcfg.xmu=xmu;
 tangcfg.xsd=xsd;
 end
 if tangcfg.knntangs,
 tangcfg.knntangsp=repmat([false(tangcfg.imgtangs,1);true(tangcfg.knntangs,1)],1,Np);
 tangcfg.knntangsp=tangcfg.knntangsp(:);
 tangcfg.Vp=zeros(Dr,numel(tangcfg.knntangsp));
 end
 end
 if dtype.otangent || dtype.atangent,
 tangcfg.oVx=tangVects(oX,tangcfg.imgtypes,tangcfg.imgtangcfg);
 if normalize || linearnorm,
 tangcfg.oVx=(tangcfg.oVx-xmu(:,ones(size(tangcfg.oVx,2),1)))./xsd(:,ones(size(tangcfg.oVx,2),1));
 if sum(xsd==0)>0,
 tangcfg.oVx(xsd==0,:)=[];
 end
 end
 if tangcfg.knntangs,
 tangcfg.knntangsx=repmat([false(tangcfg.imgtangs,1);true(tangcfg.knntangs,1)],1,Nx);
 tangcfg.knntangsx=tangcfg.knntangsx(:);
 tangcfg.Vx=zeros(Dr,numel(tangcfg.knntangsx));
 end
 if devel,
 tangcfg.oVy=tangVects(oY,tangcfg.imgtypes,tangcfg.imgtangcfg);
 if normalize || linearnorm,
 tangcfg.oVy=(tangcfg.oVy-xmu(:,ones(size(tangcfg.oVy,2),1)))./xsd(:,ones(size(tangcfg.oVy,2),1));
 if sum(xsd==0)>0,
 tangcfg.oVy(xsd==0,:)=[];
 end
 end
 if tangcfg.knntangs,
 tangcfg.knntangsy=repmat([false(tangcfg.imgtangs,1);true(tangcfg.knntangs,1)],1,Ny);
 tangcfg.knntangsy=tangcfg.knntangsy(:);
 tangcfg.Vy=zeros(Dr,numel(tangcfg.knntangsy));
 end
 end
 end
 end
 tangcfg.L=tangcfg.knntangs+tangcfg.imgtangs;
 end

 %%% Stochastic preprocessing %%%
 if stochastic,
 orthoit=orthoit*stocheck;
 minI=minI*stocheck;
 maxI=maxI*stocheck;
 stats=stats*stocheck;
 end

 %%% Initial parameter constraints %%%
 if orthonormal,
 B0=orthonorm(B0);
 elseif orthogonal,
 B0=orthounit(B0);
 end

 %%% Constant data structures %%%
 [work.ind1,work.ind2]=comp_ind(DD,Np,Nx,onesNx);
 work.slope=slope;
 work.onesDr=onesDr;
 work.onesNp=onesNp;
 work.onesNx=onesNx;
 work.onesDD=onesDD;
 work.xxsd=xxsd;
 work.Np=Np;
 work.Nx=Nx;
 work.DD=DD;
 work.Dr=Dr;
 work.dtype=dtype;
 work.indepPP=indepPP;
 work.MAD=MAD;
 if dtype.tangent,
 work.L=tangcfg.L;
 if dtype.otangent || dtype.atangent,
 work.tidx=repmat([1:Nx],work.L,1);
 work.tidx=work.tidx(:);
 end
 end

 if stochastic,
 swork=work;
 onesS=ones(stochsamples,1);
 [swork.ind1,swork.ind2]=comp_ind(DD,Np,stochsamples,onesS);
 swork.onesNx=onesS;
 swork.onesNp=onesNp;
 swork.Nx=stochsamples;
 end

 if devel,
 dwork=work;
 [dwork.ind1,dwork.ind2]=comp_ind(DD,Np,Ny,onesNy);
 dwork.Nx=Ny;
 dwork.onesNx=onesNy;
 if dtype.tangent,
 dwork.L=tangcfg.L;
 if dtype.otangent || dtype.atangent,
 dwork.tidx=repmat([1:Ny],work.L,1);
 dwork.tidx=dwork.tidx(:);
 end
 end
 end

 etype='RMSE';
 if MAD,
 etype='MAD';
 end

 tm=toc;
 info.time=tm;
 fprintf(logfile,'%s total preprocessing time (s): %f\n',fn,tm);
end

%%% Cross-validaton %%%
if crossvalidate,
 tic;

 cv_Ny=floor(Nx/crossvalidate);
 cv_Nx=cv_Ny*(crossvalidate-1);

 %%% Generate cross-validation partitions %%%
 [v,cv_rnd]=sort(rand(Nx,1));
 cv_rnd=cv_rnd(1:cv_Ny*crossvalidate);

 Bi=pca(X);
 Bi=Bi(:,1:min(D,32));

 %%% Constant data structures %%%
 cv_onesNx=ones(cv_Nx,1);
 cv_onesNy=ones(cv_Ny,1);

 cv_wk=work;
 cv_wk.Nx=cv_Nx;
 cv_wk.onesNx=cv_onesNx;

 cv_dwk=work;
 cv_dwk.Nx=cv_Ny;
 cv_dwk.onesNx=cv_onesNy;

 if stochastic,
 cv_swk=swork;
 end

 if dtype.tangent,
 if dtype.otangent || dtype.atangent,
 cv_wk.tidx=repmat([1:cv_Nx],work.L,1);
 cv_wk.tidx=cv_wk.tidx(:);
 cv_dwk.tidx=repmat([1:cv_Ny],work.L,1);
 cv_dwk.tidx=cv_dwk.tidx(:);
 end
 end

 cv_cfg.minI=minI;
 cv_cfg.maxI=maxI;
 cv_cfg.epsilon=epsilon;
 cv_cfg.stats=maxI+1;
 cv_cfg.orthoit=orthoit;
 cv_cfg.orthonormal=orthonormal;
 cv_cfg.orthogonal=orthogonal;
 cv_cfg.dtype=dtype;
 if dtype.tangent,
 cv_cfg.tangcfg=tangcfg;
 cv_cfg.tangcfg.devel=true;
 end
 cv_cfg.testJ=testJ;
 cv_cfg.stochastic=stochastic;
 cv_cfg.devel=true;
 cv_cfg.onesDD=onesDD;
 if stochastic,
 cv_cfg.stochsamples=stochsamples;
 cv_cfg.stocheck=stocheck;
 cv_cfg.stocheckfull=stocheckfull;
 cv_cfg.stochfinalexact=stochfinalexact;
 end
 cv_cfg.logfile=fopen('/dev/null');

 Nparam=numel(cv_slope)*numel(cv_Np)*numel(cv_Dr)*numel(cv_rateB)*numel(cv_rateP)*numel(cv_ratePP);
 cv_E=zeros(Nparam,1);
 cv_I=zeros(Nparam,1);

 %%% Perform cross-validation %%%
 for v=1:crossvalidate,
 cv_Xrnd=cv_rnd;
 cv_Xrnd((v-1)*cv_Ny+1:v*cv_Ny)=[];
 cv_Xrnd=sort(cv_Xrnd);
 cv_Yrnd=cv_rnd((v-1)*cv_Ny+1:v*cv_Ny);
 cv_Yrnd=sort(cv_Yrnd);
 cv_X=X(:,cv_Xrnd);
 cv_XX=XX(:,cv_Xrnd);

 cv_cfg.Y=X(:,cv_Yrnd);
 cv_cfg.YY=XX(:,cv_Yrnd);

 if dtype.tangent,
 if dtype.otangent || dtype.atangent,
 sel=(repmat((cv_Xrnd-1)*work.L+1,1,work.L)+repmat([0:work.L-1],cv_Nx,1))';
 cv_cfg.tangcfg.oVx=tangcfg.oVx(:,sel(:));
 sel=(repmat((cv_Yrnd-1)*work.L+1,1,work.L)+repmat([0:work.L-1],cv_Ny,1))';
 cv_cfg.tangcfg.oVy=tangcfg.oVx(:,sel(:));
 end
 end

 %%% Vary the slope %%%
 param=1;
 for slope=cv_slope,
 cv_wk.slope=slope;
 cv_dwk.slope=slope;
 if stochastic,
 cv_swk.slope=slope;
 end

 %%% Vary the number of prototypes %%%
 for Np=cv_Np,

 [P0,PP0]=ldppr_initP(cv_X,cv_XX,Np);
 [cv_wk.ind1,cv_wk.ind2]=comp_ind(DD,Np,cv_Nx,cv_onesNx);
 [cv_dwk.ind1,cv_dwk.ind2]=comp_ind(DD,Np,cv_Nx,cv_onesNy);
 cv_wk.onesNp=onesNp;
 cv_dwk.onesNp=onesNp;
 cv_wk.Np=Np;
 cv_dwk.Np=Np;

 if stochastic,
 [cv_swk.ind1,cv_swk.ind2]=comp_ind(DD,Np,stochsamples,onesS);
 cv_swk.Np=Np;
 cv_swk.onesNp=onesNp;
 end

 %%% Vary the reduced dimensionality %%%
 for Dr=cv_Dr,
 B0=Bi(:,1:Dr);
 onesDr=ones(Dr,1);
 cv_cfg.onesDr=onesDr;

 cv_wk.Dr=Dr;
 cv_wk.onesDr=onesDr;
 cv_dwk.Dr=Dr;
 cv_dwk.onesDr=onesDr;
 cv_cfg.work=cv_wk;
 cv_cfg.dwork=cv_dwk;
 if stochastic,
 cv_swk.Dr=Dr;
 cv_swk.onesDr=onesDr;
 cv_cfg.swork=cv_swk;
 end

 fprintf(logfile,'%s cv %d: slope=%g Np=%d Dr=%d ',fn,v,slope,Np,Dr);

 %%% Vary learning rates %%%
 for rateB=cv_rateB,
 cv_cfg.rateB=rateB;
 for rateP=cv_rateP,
 cv_cfg.rateP=rateP;
 for ratePP=cv_ratePP,
 cv_cfg.ratePP=ratePP;

 [I,E]=ldppr(cv_X,cv_XX,B0,P0,PP0,'probemode',cv_cfg);
 cv_E(param)=cv_E(param)+E;
 cv_I(param)=cv_I(param)+I;
 cv_param{param}.slope=slope;
 cv_param{param}.Np=Np;
 cv_param{param}.Dr=Dr;
 cv_param{param}.rateB=rateB;
 cv_param{param}.rateP=rateP;
 cv_param{param}.ratePP=ratePP;
 param=param+1;
 fprintf(logfile,'.');
 end
 end
 end
 fprintf(logfile,'\n');
 end
 end
 end
 end

 cv_E=cv_E./crossvalidate;
 cv_I=cv_I./crossvalidate;
 param=find(min(cv_E)==cv_E,1);
 if cv_save,
 save('ldppr_cv.mat','cv_E','cv_I','cv_param');
 end
 info.cv_E=cv_E;
 info.cv_impI=cv_I;
 info.cv_param=cv_param;

 %%% Get best cross-validaton parameters %%%
 slope=cv_param{param}.slope;
 Np=cv_param{param}.Np;
 Dr=cv_param{param}.Dr;
 rateB=cv_param{param}.rateB;
 rateP=cv_param{param}.rateP;
 ratePP=cv_param{param}.ratePP;
 onesDr=ones(Dr,1);
 onesNp=ones(Np,1);

 B0=Bi(:,1:Dr);
 [P0,PP0]=ldppr_initP(X,XX,Np);
 [work.ind1,work.ind2]=comp_ind(DD,Np,Nx,ones(Nx,1));

 work.slope=slope;
 work.onesDr=onesDr;
 work.onesNp=onesNp;
 work.Np=Np;
 work.Dr=Dr;
 if stochastic,
 [swork.ind1,swork.ind2]=comp_ind(DD,Np,stochsamples,onesS);
 swork.slope=slope;
 swork.onesDr=onesDr;
 swork.onesNp=onesNp;
 swork.Np=Np;
 swork.Dr=Dr;
 end
 if devel,
 [dwork.ind1,dwork.ind2]=comp_ind(DD,Np,Ny,ones(Ny,1));
 dwork.slope=slope;
 dwork.onesDr=onesDr;
 dwork.onesNp=onesNp;
 dwork.Np=Np;
 dwork.Dr=Dr;
 end

 cv_test='E';
 if testJ,
 cv_test='J';
 end

 tm=toc;
 info.time=info.time+tm;
 fprintf(logfile,'%s cv best statistics: %s=%g impI=%g\n',fn,cv_test,cv_E(param),cv_I(param));
 fprintf(logfile,'%s cv best parameters: slope=%g Np=%d Dr=%d rateB=%g rateP=%g ratePP=%g\n',fn,slope,Np,Dr,rateB,rateP,ratePP);
 fprintf(logfile,'%s total cross-validation time (s): %f\n',fn,tm);

 fclose(cv_cfg.logfile);
 clear cv_*;
end

if dtype.euclidean,
 rateB=2*rateB;
 rateP=2*rateP;
 ratePP=2*ratePP;
end
slope=slope/DD;
rateB=2*rateB*slope/Nx;
rateP=2*rateP*slope/Nx;
ratePP=2*ratePP*slope/Nx;

Bi=B0;
Pi=P0;
PPi=PP0;
bestB=B0;
bestP=P0;
bestPP=PP0;
bestIJE=[0 1 Inf -1];

J00=1;
J0=1;
I=0;

if ~probemode,
 fprintf(logfile,'%s Nx=%d Dx=%d Dxx=%d Dr=%d Np=%d\n',fn,Nx,D,DD,Dr,Np);
 fprintf(logfile,'%s output: iteration | J | delta(J) | %s\n',fn,etype);
 tic;
end

%%% Batch gradient descent %%%
if ~stochastic,

 while true,

 %%% Compute statistics %%%
 if work.dtype.tangent,
 fprintf(logfile,'%s error: tangent distances not implemented\n',fn);
 return;
 end
 rP=Bi'*Pi;
 rX=double(Bi'*X);
 if devel,
 rY=double(Bi'*Y);
 end
 if dtype.tangent,
 tangcfg.rP=rP;
 tangcfg.rX=rX;
 if devel,
 tangcfg.rY=rY;
 end
 tangcfg=comptangs(Bi,Pi,tangcfg);
 work.Vx=tangcfg.Vx;
 work.Vp=tangcfg.Vp;
 if devel,
 dwork.Vx=tangcfg.Vy;
 dwork.Vp=tangcfg.Vp;
 end
 end
 [E,J,fX,fP,fPP]=ldppr_index(rP,PPi,rX,XX,work);
 if devel,
 E=ldppr_index(rP,PPi,rY,YY,dwork);
 end

 %%% Determine if there was improvement %%%
 mark='';
 if (testJ && (J<bestIJE(2)||(J==bestIJE(2)&&E<=bestIJE(3)))) || ...
 (~testJ && (E<bestIJE(3)||(E==bestIJE(3)&&J<=bestIJE(2)))),
 bestB=Bi;
 bestP=Pi;
 bestPP=PPi;
 bestIJE=[I J E bestIJE(4)+1];
 mark=' *';
 end

 %%% Print statistics %%%
 if mod(I,stats)==0,
 fprintf(logfile,'%d\t%.8f\t%.8f\t%.8f%s\n',I,J,J-J00,E,mark);
 J00=J;
 end

 %%% Determine if algorithm has to be stopped %%%
 if I>=maxI || ~isfinite(J) || ~isfinite(E) || (I>=minI && abs(J-J0)<epsilon),
 fprintf(logfile,'%s stopped iterating, ',fn);
 if I>=maxI,
 fprintf(logfile,'reached maximum number of iterations\n');
 elseif ~isfinite(J) || ~isfinite(E),
 fprintf(logfile,'reached unstable state\n');
 else
 fprintf(logfile,'index has stabilized\n');
 end
 break;
 end

 J0=J;
 I=I+1;

 %%% Update parameters %%%
 Bi=Bi-rateB.*(X*fX'+Pi*fP');
 Pi=Pi-rateP.*(Bi*fP);
 if indepPP,
 PPi=PPi-ratePP.*fPP;
 else
 PPi=PPi-ratePP.*fPP(onesDD,:);
 end

 %%% Parameter constraints %%%
 if mod(I,orthoit)==0,
 if orthonormal,
 Bi=orthonorm(Bi);
 elseif orthogonal,
 Bi=orthounit(Bi);
 end
 end

 end % while true

%%% Stochasitc gradient descent %%%
else

 prevJ=1;
 if devel,
 prevE=ldppr_index(Bi'*Pi,PPi,Bi'*Y,YY,dwork);
 else
 prevE=ldppr_index(Bi'*Pi,PPi,Bi'*X,XX,work);
 end

 while true,

 %%% Compute statistics %%%
 if mod(I,stocheck)==0 && stocheckfull,
 rP=Bi'*Pi;
 [E,J]=ldppr_index(rP,PPi,Bi'*X,XX,work);
 if devel,
 E=ldppr_index(rP,PPi,Bi'*Y,YY,dwork);
 end
 end

 %%% Select random samples %%%
 randn=round((Nx-1).*rand(stochsamples,1))+1; % modify for no repetitions
 sX=X(:,randn);

 %%% Compute statistics %%%
 if work.dtype.tangent,
 fprintf(logfile,'%s error: stochastic for tangent distances not implemented\n',fn);
 return;
 end
 [Ei,Ji,fX,fP,fPP]=ldppr_sindex(Bi'*Pi,PPi,Bi'*sX,XX(:,randn),swork);
 if ~stocheckfull,
 J=0.5*(prevJ+Ji);
 prevJ=J;
 if ~devel,
 E=0.5*(prevE+Ei);
 prevE=E;
 end
 end

 if mod(I,stocheck)==0,
 if ~stocheckfull && devel,
 E=ldppr_index(Bi'*Pi,PPi,Bi'*Y,YY,dwork);
 end

 %%% Determine if there was improvement %%%
 mark='';
 if (testJ && (J<bestIJE(2)||(J==bestIJE(2)&&E<=bestIJE(3)))) || ...
 (~testJ && (E<bestIJE(3)||(E==bestIJE(3)&&J<=bestIJE(2)))),
 bestB=Bi;
 bestP=Pi;
 bestPP=PPi;
 bestIJE=[I J E bestIJE(4)+1];
 mark=' *';
 end

 %%% Print statistics %%%
 if mod(I,stats)==0,
 fprintf(logfile,'%d\t%.8f\t%.8f\t%.8f%s\n',I,J,J-J00,E,mark);
 J00=J;
 end

 %%% Determine if algorithm has to be stopped %%%
 if I>=maxI || ~isfinite(J) || ~isfinite(E) || (I>=minI && abs(J-J0)<epsilon),
 fprintf(logfile,'%s stopped iterating, ',fn);
 if I>=maxI,
 fprintf(logfile,'reached maximum number of iterations\n');
 elseif ~isfinite(J) || ~isfinite(E),
 fprintf(logfile,'reached unstable state\n');
 else
 fprintf(logfile,'index has stabilized\n');
 end
 break;
 end

 J0=J;
 end % if mod(I,stocheck)==0

 I=I+1;

 %%% Update parameters %%%
 Bi=Bi-rateB.*(sX*fX'+Pi*fP');
 Pi=Pi-rateP.*(Bi*fP);
 if indepPP,
 PPi=PPi-ratePP.*fPP;
 else
 PPi=PPi-ratePP.*fPP(onesDD,:);
 end

 %%% Parameter constraints %%%
 if mod(I,orthoit)==0,
 if orthonormal,
 Bi=orthonorm(Bi);
 elseif orthogonal,
 Bi=orthounit(Bi);
 end
 end

 end % while true

 %%% Parameter constraints %%%
 if orthonormal,
 bestB=orthonorm(bestB);
 elseif orthogonal,
 bestB=orthounit(bestB);
 end

 %%% Compute final statistics %%%
 if stochfinalexact && ~stocheckfull,
 [E,J]=ldppr_index(bestB'*bestP,bestPP,bestB'*X,XX,work);
 if devel,
 E=ldppr_index(bestB'*bestP,bestPP,bestB'*Y,YY,dwork);
 end

 fprintf(logfile,'%s best iteration approx: I=%d J=%f E=%f\n',fn,bestIJE(1),bestIJE(2),bestIJE(3));
 bestIJE(2)=J;
 bestIJE(3)=E;
 end % if stochfinalexact

end

if ~probemode,
 tm=toc;
 info.time=info.time+tm;
 info.E=bestIJE(3);
 info.J=bestIJE(2);
 info.I=bestIJE(1);
 info.impI=bestIJE(4)/max(I,1);
 fprintf(logfile,'%s best iteration: I=%d J=%f E=%f\n',fn,bestIJE(1),bestIJE(2),bestIJE(3));
 fprintf(logfile,'%s amount of improvement iterations: %f\n',fn,bestIJE(4)/max(I,1));
 fprintf(logfile,'%s average iteration time (ms): %f\n',fn,1000*tm/(I+0.5));
 fprintf(logfile,'%s total iteration time (s): %f\n',fn,tm);
end

if ~verbose,
 fclose(logfile);
end

if probemode,
 bestB=bestIJE(4)/max(I,1); % amount of improvement iterations
 if testJ,
 bestP=bestIJE(2); % optimization index
 else
 bestP=bestIJE(3); % error rate
 end
 return;
end

if nargout>4,
 other=struct;
 if dtype.tangent,
 tangcfg.rX=bestB'*X;
 tangcfg=comptangs(bestB,bestP,tangcfg);
 if dtype.otangent || dtype.atangent,
 other.Vx=tangcfg.Vx;
 if devel,
 other.Vy=tangcfg.Vy;
 end
 end
 if dtype.rtangent || dtype.atangent,
 other.Vp=tangcfg.Vp;
 end
 end
end

%%% Compensate for normalization in the final parameters %%%
if ~MAD,
 xxsd=sqrt(xxsd);
end
bestPP=bestPP.*xxsd(:,onesNp)+xxmu(:,onesNp);
if normalize || linearnorm,
 if issparse(X) && ~dtype.cosine,
 bestP=bestP.*xsd(xsd~=0,onesNp);
 else
 bestP=bestP.*xsd(xsd~=0,onesNp)+xmu(xsd~=0,onesNp);
 end
 bestB=bestB./xsd(xsd~=0,onesDr);
 if sum(xsd==0)>0,
 P=bestP;
 B=bestB;
 bestP=zeros(D,Np);
 bestP(xsd~=0,:)=P;
 bestB=zeros(D,Dr);
 bestB(xsd~=0,:)=B;
 end
end

%%%
%%% Helper functions %%%
%%%

%%%
function [E, J, fX, fP, fPP] = ldppr_index(P, PP, X, XX, work)

 Dr=work.Dr;
 DD=work.DD;
 Np=work.Np;
 Nx=work.Nx;
 onesDr=work.onesDr;
 onesDD=work.onesDD;
 ind1=work.ind1;
 ind2=work.ind2;

 %%% Compute distances %%%
 if work.dtype.euclidean,
 x2=sum((X.^2),1)';
 p2=sum((P.^2),1);
 dist=X'*P;
 dist=x2(:,work.onesNp)+p2(work.onesNx,:)-dist-dist;
 elseif work.dtype.cosine,
 psd=sqrt(sum(P.*P,1));
 P=P./psd(onesDr,:);
 xsd=sqrt(sum(X.*X,1));
 X=X./xsd(onesDr,:);
 dist=1-X'*P;
 elseif work.dtype.rtangent,
 dist=zeros(Nx,Np);
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(work.onesNx));
 VdXP=work.Vp(:,nlp:nlp+work.L-1)'*dXP;
 dist(:,np)=(sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1))';
 nlp=nlp+work.L;
 end
 elseif work.dtype.otangent,
 dist=zeros(Nx,Np);
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(work.onesNp))-P;
 VdXP=work.Vx(:,nlx:nlx+work.L-1)'*dXP;
 dist(nx,:)=sum(dXP.*dXP,1)-sum(VdXP.*VdXP,1);
 nlx=nlx+work.L;
 end
 elseif work.dtype.atangent,
 dist=zeros(Nx,Np);
 nlp=1;
 for np=1:Np,
 dXP=X-P(:,np(work.onesNx));
 VdXP=work.Vp(:,nlp:nlp+work.L-1)'*dXP;
 dist(:,np)=(sum(dXP.*dXP,1)-0.5*sum(VdXP.*VdXP,1))';
 nlp=nlp+work.L;
 end
 nlx=1;
 for nx=1:Nx,
 dXP=X(:,nx(work.onesNp))-P;
 VdXP=work.Vx(:,nlx:nlx+work.L-1)'*dXP;
 dist(nx,:)=dist(nx,:)-0.5*sum(VdXP.*VdXP,1);
 nlx=nlx+work.L;
 end
 end

 md=dist<eps;
 if sum(md(:))>0,
 dist(md)=0.1*min(dist(~md));
 end
 dist=1./dist;

 S=sum(dist,2);
 mXX=(reshape(sum(repmat(dist,DD,1).*PP(ind2,:),2),Nx,DD)./S(:,onesDD))';
 dXX=mXX-XX;

 %%% Compute statistics %%%
 if work.MAD;
 E=sum(sum(abs(dXX),2).*work.xxsd)/(Nx*DD);
 else
 E=sqrt(sum(sum(dXX.*dXX,2).*work.xxsd)/(Nx*DD));
 end
 if nargout>1,
 tanhXX=tanh(work.slope*sum(dXX.*dXX,1))';
 J=sum(tanhXX)/Nx;
 if ~isfinite(J),
 E=1;
 end
 end

 %%% Compute gradient %%%
 if nargout>2,
 dist=dist.*dist;
 fact=repmat((1-tanhXX.*tanhXX)./S,Np,1).*dist(:);
 if work.indepPP,
 fPP=permute(sum(reshape(fact(:,onesDD).*repmat(dXX,1,Np)',Nx,Np,DD)),[3 2 1]);
 else
 fPP=sum(reshape(fact.*sum(repmat(dXX,1,Np),1)',Nx,Np),1);
 end
 fact=fact.*sum(repmat(dXX,1,Np).*(repmat(mXX,1,Np)-PP(:,ind1)),1)';

 if work.dtype.euclidean,
 fact=reshape(fact(:,onesDr)'.*(repmat(X,1,Np)-P(:,ind1)),[Dr Nx Np]);
 fP=-permute(sum(fact,2),[1 3 2]);
 fX=sum(fact,3);
 elseif work.dtype.cosine,
 %fP=-permute(sum(reshape(fact(:,onesDr)'.*repmat(X,1,Np),[Dr Nx Np]),2),[1 3 2]);
 %fX=-sum(reshape(fact(:,onesDr)'.*P(:,ind1),[Dr Nx Np]),3);
 elseif work.dtype.rtangent,
 elseif work.dtype.otangent,
 elseif work.dtype.atangent,
 end
 end

%%%
function [E, J, fX, fP, fPP] = ldppr_sindex(P, PP, X, XX, work)

 Dr=work.Dr;
 DD=work.DD;
 Np=work.Np;
 Nx=work.Nx;
 onesDr=work.onesDr;
 onesDD=work.onesDD;
 ind1=work.ind1;
 ind2=work.ind2;

 %%% Compute distances %%%
 if work.dtype.euclidean,
 x2=sum((X.^2),1)';
 p2=sum((P.^2),1);
 dist=X'*P;
 dist=x2(:,work.onesNp)+p2(work.onesNx,:)-dist-dist;
 elseif work.dtype.cosine,
 psd=sqrt(sum(P.*P,1));
 P=P./psd(onesDr,:);
 xsd=sqrt(sum(X.*X,1));
 X=X./xsd(onesDr,:);
 dist=1-X'*P;
 end

 md=dist<eps;
 if sum(md(:))>0,
 dist(md)=0.1*min(dist(~md));
 end
 dist=1./dist;

 S=sum(dist,2);
 mXX=(reshape(sum(repmat(dist,DD,1).*PP(ind2,:),2),Nx,DD)./S(:,onesDD))';
 dXX=mXX-XX;
 tanhXX=tanh(work.slope*sum(dXX.*dXX,1))';

 %%% Compute statistics %%%
 if work.MAD;
 E=sum(sum(abs(dXX),2).*work.xxsd)/(Nx*DD);
 else
 E=sqrt(sum(sum(dXX.*dXX,2).*work.xxsd)/(Nx*DD));
 end
 J=sum(tanhXX)/Nx;

 %%% Compute gradient %%%
 dist=dist.*dist;
 fact=repmat((1-tanhXX.*tanhXX)./S,Np,1).*dist(:);
 if work.indepPP,
 fPP=permute(sum(reshape(fact(:,onesDD).*repmat(dXX,1,Np)',Nx,Np,DD)),[3 2 1]);
 else
 fPP=sum(reshape(fact.*sum(repmat(dXX,1,Np),1)',Nx,Np),1);
 end
 fact=fact.*sum(repmat(dXX,1,Np).*(repmat(mXX,1,Np)-PP(:,ind1)),1)';

 if work.dtype.euclidean,
 fact=reshape(fact(:,onesDr)'.*(repmat(X,1,Np)-P(:,ind1)),[Dr Nx Np]);
 fP=-permute(sum(fact,2),[1 3 2]);
 fX=sum(fact,3);
 elseif work.dtype.cosine,
 fP=-permute(sum(reshape(fact(:,onesDr)'.*repmat(X,1,Np),[Dr Nx Np]),2),[1 3 2]);
 fX=-sum(reshape(fact(:,onesDr)'.*P(:,ind1),[Dr Nx Np]),3);
 end

%%%
function [mu, ind] = kmeans(X, K)
 maxI=100;
 N=size(X,2);

 if K==1,
 mu=mean(X,2);
 if nargout>1,
 ind=ones(N,1);
 end
 return;
 elseif K==N,
 mu=X;
 if nargout>1,
 ind=[1:N]';
 end
 return;
 end

 onesN=ones(N,1);
 onesK=ones(K,1);
 [k,pind]=sort(rand(N,1));
 mu=X(:,pind(1:K));

 I=0;
 while true,
 x2=sum((X.^2),1)';
 mu2=sum((mu.^2),1);
 dist=X'*mu;
 dist=x2(:,onesK)+mu2(onesN,:)-dist-dist;
 [dist,ind]=min(dist,[],2);

 if I==maxI || sum(ind~=pind)==0,
 break;
 end

 kk=unique(ind);
 if size(kk,1)~=K,
 for k=1:K,
 if sum(kk==k)==0,
 mu(:,k)=X(:,round((N-1)*rand)+1);
 end
 end
 end

 for k=kk',
 mu(:,k)=mean(X(:,ind==k),2);
 end

 pind=ind;
 I=I+1;
 end

%%%
function [ind1, ind2] = comp_ind(DD, Np, Nx, onesNx)
 if max(size(onesNx))==0,
 onesNx=ones(Nx,1);
 end

 ind1=1:Np;
 ind1=ind1(onesNx,:);
 ind1=ind1(:);

 ind2=1:DD;
 ind2=ind2(onesNx,:);
 ind2=ind2(:);

%%%
function X = orthonorm(X)
 [X,dummy]=qr(X,0);

%%%
function X = orthounit(X)
 [onX,dummy]=qr(X,0);
 X=onX.*repmat(sum(onX'*X,1),size(X,1),1);
 X=sqrt(size(X,2)).*X./sqrt(sum(diag(X'*X)));

%%%
function X = orthotangs(X,N)
 for n=N:N:size(X,2),
 [XX,dummy]=qr(X(:,n-N+1:n),0);
 X(:,n-N+1:n)=XX;
 end

%%%
function cfg = comptangs(B,P,cfg)
 %%% X tangents %%%
 if cfg.dtype.otangent || cfg.dtype.atangent,
 if cfg.knntangs && cfg.imgtangs,
 %cfg.Vx(:,cfg.knntangsx)=tangVects(cfg.rX,cfg.knntypes,'Xlabels',cfg.Xlabels);
 cfg.Vx(:,cfg.knntangsx)=tangVects(cfg.rX,cfg.knntypes);
 cfg.Vx(:,~cfg.knntangsx)=B'*cfg.oVx;
 if cfg.devel,
 %cfg.Vy(:,cfg.knntangsy)=tangVects(cfg.rY,cfg.knntypes,'Xlabels',cfg.Ylabels);
 cfg.Vy(:,cfg.knntangsy)=tangVects(cfg.rY,cfg.knntypes);
 cfg.Vy(:,~cfg.knntangsy)=B'*cfg.oVy;
 end
 elseif cfg.knntangs,
 %cfg.Vx=tangVects(cfg.rX,cfg.knntypes,'Xlabels',cfg.Xlabels);
 cfg.Vx=tangVects(cfg.rX,cfg.knntypes);
 if cfg.devel,
 %cfg.Vy=tangVects(cfg.rY,cfg.knntypes,'Xlabels',cfg.Ylabels);
 cfg.Vy=tangVects(cfg.rY,cfg.knntypes);
 end
 elseif cfg.imgtangs,
 cfg.Vx=B'*cfg.oVx;
 if cfg.devel,
 cfg.Vy=B'*cfg.oVy;
 end
 end
 cfg.Vx=orthotangs(cfg.Vx,cfg.L);
 if cfg.devel,
 cfg.Vy=orthotangs(cfg.Vy,cfg.L);
 end
 end
 %%% P tangents %%%
 if cfg.dtype.rtangent || cfg.dtype.atangent,
 if cfg.imgtangs,
 if cfg.normalize || cfg.linearnorm,
 P=P.*cfg.xsd(cfg.xsd~=0,cfg.onesNp)+cfg.xmu(cfg.xsd~=0,cfg.onesNp);
 if sum(cfg.xsd==0)>0,
 oP=P;
 P=cfg.xmu(:,cfg.onesNp);
 P(cfg.xsd~=0,:)=oP;
 end
 end
 imgVp=tangVects(P,cfg.imgtypes,cfg.imgtangcfg);
 onesNivp=ones(size(imgVp,2),1);
 if cfg.normalize || cfg.linearnorm,
 imgVp=(imgVp-cfg.xmu(:,onesNivp))./cfg.xsd(:,onesNivp);
 if sum(cfg.xsd==0)>0,
 imgVp(cfg.xsd==0,:)=[];
 end
 end
 end
 if cfg.knntangs && cfg.imgtangs,
 %cfg.Vp(:,cfg.knntangsp)=tangVects(cfg.rP,cfg.knntypes,'Xlabels',cfg.Plabels,'knnprotos',cfg.rX,cfg.Xlabels);
 cfg.Vp(:,cfg.knntangsp)=tangVects(cfg.rP,cfg.knntypes,'knnprotos',cfg.rX,[]);
 cfg.Vp(:,~cfg.knntangsp)=B'*imgVp;
 elseif cfg.knntangs,
 %cfg.Vp=tangVects(cfg.rP,cfg.knntypes,'Xlabels',cfg.Plabels,'knnprotos',cfg.rX,cfg.Xlabels);
 cfg.Vp=tangVects(cfg.rP,cfg.knntypes,'knnprotos',cfg.rX,[]);
 elseif cfg.imgtangs,
 cfg.Vp=B'*imgVp;
 end
 cfg.Vp=orthotangs(cfg.Vp,cfg.L);
 end

%%%
function [P0, PP0] = ldppr_initP(X, XX, M, varargin)
%
% LDPPR_INITP: Initialize Prototypes for LDPPR
%
% [P0, PP0] = ldppr_initP(X, XX, M)
%
% Input:
% X - Independent data matrix. Each column vector is a data point.
% XX - Dependent data matrix.
% M - Number of prototypes.
%
% Input (optional):
% 'extra',EXTRA - Extrapolate EXTRA from extreme values (defaul=false)
% 'multi',MULT - Multimodal prototypes, MULT-means (defaul=false)
% 'seed',SEED - Random seed (default=system)
%
% Output:
% P0 - Initialized prototypes. Independent data.
% PP0 - Initialized prototypes. Dependent data.
%

fn='ldppr_initP:';
minargs=3;

P0=[];
PP0=[];

seed=rand('state');

logfile=2;

n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}) || size(varargin,2)<n+1,
 argerr=true;
 elseif strcmp(varargin{n},'extra') || ...
 strcmp(varargin{n},'seed') || ...
 strcmp(varargin{n},'multi'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}) || sum(varargin{n+1}<0),
 argerr=true;
 else
 n=n+2;
 end
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

if argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif exist('multi','var') && mod(M,multi)~=0,
 fprintf(logfile,'%s error: the number of prototypes should be a multiple of MULT\n',fn);
 return;
end

DD=size(XX,1);

mx=max(XX');
mn=min(XX');

if exist('extra','var'),
 omx=mx;
 omn=mn;
 mx=omx+extra.*(omx-omn);
 mn=omn-extra.*(omx-omn);
end

if ~exist('multi','var'),
 multi=1;
else
 M=M/multi;
end

rand('state',seed);

if DD==1,

 d=(mx-mn)/(M-1);

 for m=mn:d:mx,
 s=XX>=m-d/2 & XX<m+d/2;
 if sum(s)>multi,
 P0=[P0,kmeans(X(:,s),multi)];
 seed=rand('state');
 else
 [mdist,idx]=sort(abs(XX-m));
 P0=[P0,X(:,idx(1:multi))];
 end
 PP0=[PP0,m*ones(1,multi)];
 end

elseif DD==2,

 M=round(sqrt(M));
 d=(mx-mn)/(M-1);

 Nx=size(XX,2);
 onesNx=ones(Nx,1);

 for m=mn(1):d(1):mx(1),
 sm=XX(1,:)>=m-d(1)/2 & XX(1,:)<m+d(1)/2;
 for n=mn(2):d(2):mx(2),
 sn=XX(2,:)>=n-d(2)/2 & XX(2,:)<n+d(2)/2;
 s=sm&sn;
 if sum(s)>multi,
 P0=[P0,kmeans(X(:,s),multi)];
 seed=rand('state');
 else
 mu=[m;n];
 mdist=sum((XX-mu(:,onesNx)).^2,1);
 [mdist,idx]=sort(mdist);
 P0=[P0,X(:,idx(1:multi))];
 end
 PP0=[PP0,[m;n]*ones(1,multi)];
 end
 end

else
 fprintf(logfile,'%s error: dimensionality of dependent data higher than two not supported\n',fn);
end

Mauricio Villegas Santamaria

function XX = regress_knn(P, PP, K, X, varargin)
%
% REGRESS_KNN: K-NN regression
%
% XX = regress_knn(P, PP, K, X, ...)
%
% Input:
% P - Regression model independent variables.
% PP - Regression model dependent variables.
% K - Number of neighbors for the K-NN.
% X - Data independent variables.
%
% Input (optional):
% 'distance',('euclidean'| - NN distance (default='euclidean')
% 'cosine')
%
% Output:
% XX - Regression
%
%
% Version: 1.00 -- Sep/2009
%

%
% Copyright (C) 2008 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

[D,M]=size(P);
DD=size(PP,1);
N=size(X,2);

distance='euclidean';

n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}) || size(varargin,2)<n+1,
 argerr=true;
 elseif strcmp(varargin{n},'distance'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~ischar(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

if argerr,
 fprintf(2,'regress_knn: error: incorrect input argument (%d-%d)\n',varargin{n},varargin{n+1});
elseif nargin-size(varargin,2)~=4,
 fprintf(2,'regress_knn: error: not enough input arguments\n');
elseif size(PP,2)~=M,
 fprintf(2,'regress_knn: error: the number of vectors in the dependent and independent data must be the same\n');
elseif size(X,1)~=D,
 fprintf(2,'regress_knn: error: dimensionality of the model and evaluation data must be the same\n');
elseif ~(strcmp(distance,'euclidean') || strcmp(distance,'cosine')),
 fprintf(2,'regress_knn: error: invalid distance\n');
else

 euclidean=true;
 if strcmp(distance,'cosine'),
 euclidean=false;
 end

 if euclidean,

 ind=1:M;
 ind=ind(ones(N,1),:);
 ind=ind(:);

 ind2=1:DD;
 ind2=ind2(ones(N,1),:);
 ind2=ind2(:);

 mindist=100*sqrt(1/realmax); %%% g(d)=1/d

 %dist=reshape(exp(-sum(power(repmat(X,1,M)-P(:,ind),2),1)),N,M); %%% g(d)=exp(-d)
 dist=sum(power(repmat(X,1,M)-P(:,ind),2),1); dist(dist<mindist)=mindist; dist=reshape(1./dist,N,M); %%% g(d)=1/d

 if K==0,
 S=sum(dist,2);
 XX=(reshape(sum(repmat(dist,DD,1).*PP(ind2,:),2),N,DD)./S(:,ones(DD,1)))';
 else
 [dist,idx]=sort(dist',1);
 dist=dist(1:K,:);
 S=sum(dist,1)';
 tPP=PP(ind2,:)';
 ind3=M*[0:DD*N-1];
 ind3=ind3(ones(M,1),:);
 tPP=tPP(repmat(idx,1,DD)+ind3);
 tPP=tPP(1:K,:);
 XX=(reshape(sum(repmat(dist',DD,1).*tPP',2),N,DD)./S(:,ones(DD,1)))';
 end

 end

end

Mauricio Villegas Santamaria

http://web.iti.upv.es/~mvillegas/research/code
http://web.iti.upv.es/~mvillegas/research/code

72 CHAPTER 5. REGRESSION PROBLEMS AND DIMENSIONALITY REDUCTION

and effective initialization is to use PCA. For the prototypes the, initialization is a
bit more complicated. The most straightforward approach is to assign prototypes
evenly distributed along the range of the response variables. The initial value of a
prototype in the original space is then the mean value of the training samples that
fall inside the given response slice. However, it can be argued that this distribution
of prototypes is not necessarily the correct one for every task. Some parts of the
response range could require more densely distributed prototypes to give a more
accurate prediction. However, this is not a critical problem since the optimization
will take care of moving the prototypes to the right positions so that the regression
function is modeled correctly. What really is important is to choose the right amount
of prototypes M . Another factor to consider in the initialization of the prototypes
is the possibility of multimodality. For example if the task is to estimate the age of
a person given an image of the face, for a given age there are many possibilities for
a face image, e.g. male or female, different facial expressions, illuminations. Then
instead of using only one prototype for a given range slice, multiple prototypes are
used and initialized for instance using c-means.

If the Euclidean distance is employed for the regression function, when using the
gradients of the distance with respect to the parameters, equations (3.22) and (3.23),
the expressions obtained for the n-th and m-th columns, \bfitg n and \bfith m, of the factor
matrices \bfitG and \bfitH are:

\bfitg n = - 4\beta

N

M\sum
m=1

Fn,m(\~\bfitx n - \~\bfitp m) , (5.22)

\bfith m =
4\beta

N

N\sum
n=1

Fn,m(\~\bfitx n - \~\bfitp m) , (5.23)

where the values of Fn,m are given by

Fn,m =
sech2(\beta \| \bfitdelta \bfitx n

\| 2)
d2(\~\bfitx n, \~\bfitp m) \cdot S

. (5.24)

Similarly, expressions for the other distances, the cosine and the tangent, can be easily
derived using the respective derivatives of the distance with respect to the parameters.

5.3.1 Normalization and the LDPPR Parameters

The problem of choosing adequate values for the learning factors in the LDPPR
algorithm may seem overwhelming. Nonetheless, similar to what was proposed for
LDPP in chapter 3, their value can be made somewhat independent of the task
being considered, by applying a normalization to the feature vectors which makes the
distance between them be in a similar range for any task. A normalization which
conforms to this idea is the one presented in section 3.9. What is convenient about
this normalization is that it can be transparent for the user of the algorithm. After
learning, the regressor will handle the feature vectors in their original range, without
having to do any normalization. In the section presenting the experimental results,
normal values that should be considered for the learning factors will be mentioned.

5.4. EXPERIMENTS 73

Another parameter that can benefit from normalization in the LDPPR algorithm
is \beta . As can be observed in the goal function (5.8), \beta multiplies directly the squared
difference of the prediction and the real value. Therefore the argument to the hyper-
bolic tangent depends on the dimensionality and range of the responses. So that the
value of \beta is independent of these two characteristics, before learning the response
variables can be normalized so that they have a zero mean and C - 1 standard devi-
ation. After learning, this normalization is compensated for in the responses of the
prototypes so that model predictions are in the adequate range.

5.4 Experiments

The proposed approach has been assessed first with some data sets form the StatLib
[Meyer, 1989] and the UCI Machine Learning [Asuncion and Newman, 2007] repos-
itories. These data sets have the characteristic of being relatively low-dimensional.
The objective of this first round of experiments is to illustrate some of the properties
of the proposed technique and the relationship with the parameters of the algorithm.
Afterward, the algorithm is assessed with two high-dimensional data sets, tasks for
which the algorithm is mainly intended.

To estimate the performance for each of the methods and data sets, a special 5-fold
cross-validation procedure was employed. In this procedure the data set is randomly
divided into S subsets, S - 2 subsets are used for training, one subset is used as
development for adjusting the learning parameters of all the methods applied, and the
final subset is used for test. The experiments are repeated each time using a different
subset for test and the results are averaged. For each technique being compared the
respective model parameters are varied. Finally the estimated performance is the one
of the test set for which the development set gave the best performance. This way
the estimation also takes into account the generalization to unseen data.

The performance is reported using the Mean Absolute Deviation (MAD), which
can be computed as

MAD =
1

N

N\sum
n=1

| \bfitf \bfitx n
 - \bfitf \theta (\bfitx n)| . (5.25)

The main advantage of the proposed technique is that it is capable of learning very
compact models and being fast to compute the regression function. To this end,
results are also shown for the time complexity of the regression function of each
method, relative to the complexity of linear regression so that the comparison can be
made easier. For all of the methods, the space and time complexities are very similar,
therefore presenting only the time complexity gives an indication of both their speed
and memory requirements.

For the initialization of the LDPPR algorithm, the strategy described in the pre-
vious section was used. The projection base \bfitB is initialized using the first E compo-
nents of PCA. And the prototypes are initialized by distributing them evenly along
the range of the response variables, and varying the number of prototypes. The mul-
timodal initialization of the prototypes was also tried, however in none of the data
sets used the results were better than using the unimodal approach.

74 CHAPTER 5. REGRESSION PROBLEMS AND DIMENSIONALITY REDUCTION

For comparison, the performance is also reported for the following regression tech-
niques: Polynomial Regression, Multilayer Perceptron (MLP) using the Torch 3 ma-
chine learning library [Collobert et al., 2002], Support Vector Regression (\varepsilon -SVR)
using the LIBSVM [Chang and Lin, 2001], and the Relevance Vector Machine (RVM)
using Tipping's Matlab implementation [Tipping and Faul, 2003]. For the SIR and
SAVE techniques we used the dr library [Weisberg, 2009] for the R statistical com-
puter environment [R Development Core Team, 2010].

5.4.1 StatLib and UCI Data Sets

For this first round of experiments, we have used the abalon, concrete and triazines
data sets from the UCI Machine Learning Repository [Asuncion and Newman, 2007],
and bodyfat and housing data sets from StatLib [Meyer, 1989]. All of them have a
single response variable, although their dimensionality and number of samples varies,
see table 5.1. They all have a relatively low dimensionality, nonetheless the objective
of the experiments is to analyze a few aspects of the proposed approach.

The performance for each data set and regression approach is presented in table
5.1. There is no clear indication which method performs best, although it can be
observed that LDPPR consistently obtains good results. Furthermore, even though
LDPPR does not guarantee a globally optimal solution, the resulting regressors per-
form considerably well.

Table 5.1. Regression results in MAD for data sets from StatLib and the UCI Machine
Learning Repository.

Approach abalone bodyfat concrete housing triazines
E[\bfitf (\bfitx)] 2.36 0.0156 13.50 6.67 0.118
Linear Reg. 1.59 0.0012 8.32 3.41 0.129
Quad. Reg. 1.53 0.0017 6.25 2.81 0.180
Cubic Reg. 1.58 0.0031 5.54 3.42 0.683
MLP 1.60 0.0053 5.93 3.37 0.119
RVM 1.51 0.0165 4.66 2.57 0.117
\varepsilon -SVR 1.46 0.0006 5.80 2.61 0.107
LDPPR 1.49 0.0011 5.56 2.51 0.101

Data Statistics
Dimensionality 8 14 8 13 60
Samples 4177 252 1030 506 186

In order to show the ability of the proposed approach to ignore outliers, the fol-
lowing experiment was devised. For the best parameters of each method and data
set, the regression models where relearned, each time having a percentage of misla-
beled training samples. The mislabeling was just randomly assigning a label from
another training sample. A graph of the average performance for all the data sets is
presented in figure 5.3. In order to average the results, the MAD values of each data
set were rescaled to be between zero and one. As expected, the performance of all
of the methods degrades as the number of mislabeled samples increases. However,

5.4. EXPERIMENTS 75

it can be observed that for most of the methods, this increase is practically linear,
on the other hand the ability to handle outliers is visible for LDPPR and \varepsilon -SVR. It
was unexpected to observe that \varepsilon -SVR performed so well in the presence of outliers,
much better than the proposed approach. Unlike LDPPR, the handling of outliers
for \varepsilon -SVR is based on a hard decision, and basically depends on finding the adequate
value of \varepsilon . This could be the reason for the better performance of \varepsilon -SVR.

0 10 20 30 40 50

M
A
D

(n
o
rm

a
li
ze
d
)

Mislabeled training samples (\%)

Linear Reg.

MLP

\varepsilon -SVR

RVM

LDPPR

Figure 5.3. Average regression performance for the StatLib and UCI data sets when a
percentage of training samples are mislabeled.

The ability of the proposed technique to handle outliers depends on the \beta param-
eter of the optimization function (5.8). From the results of the experiments using
mislabeled samples it was observed that the normalization mentioned in section 5.3
does effectively keep the value of this parameter in the same range for a variety of
problems. The optimal values for \beta were always in the range between 0.1 and 1.0,
and having a tendency to be higher if there are more mislabelled samples. The graph
in figure 5.4 shows the relationship between regression performance for LDPPR and
the \beta parameter. As can be observed a minimum is achieved at around \beta = 0.3.

The final experiment done using these five data sets, was for analyzing what values
the learning factors should have so that the algorithm has a stable learning. It was
observed that if the data is not normalized, the values of the learning factors highly
depend on the dimensionality of the feature vectors and the number of prototypes.
However, if the normalization proposed in section 3.9 is used, the best solutions
obtained with these data sets are when having learning factors of \{ \gamma , \eta , \kappa \} = 0.1.

76 CHAPTER 5. REGRESSION PROBLEMS AND DIMENSIONALITY REDUCTION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.001 0.01 0.1 1 10

M
A
D

(n
o
rm

al
iz
ed

)

\beta parameter

Figure 5.4. Average regression performance for the StatLib and UCI data sets as a function
of the \beta LDPPR parameter.

5.4.2 High-Dimensional Data Sets

This section reports the experiments on high-dimensional data, the very purpose for
which the proposed method was designed. The algorithm was tested on two tasks:
the estimation of the age of a person, and head pose estimation, both of them using
facial images.

For the task of age estimation, the FG-NET aging database was employed [FG-
NET consortium, 2004]. With help of manually selected eye coordinates, the face im-
ages were cropped and rescaled to a size of 32\times 32 pixels. As feature vectors, the pixel
values were used directly, therefore the dimensionality of the problem is 1024. Similar
to the previous experiments, a 5-fold cross-validation was employed for estimating
the results. Table 5.2 summarizes the results obtained for the proposed technique
and the other methods used for comparison. Additional to presenting the MAD, the
table also includes the complexity for the test phase relative to linear regression. This
value gives an indication of how much memory and processing resources are required
by each of the methods. For this task, the proposed method obtained considerably
good results. Not only it has the lowest error, keeping the same confidence interval as
other methods, but also it has a much lower complexity. Approximately the proposed
method is 10 times faster and requiring a tenth of the memory than the other methods
with a comparable error.

The task of face pose estimation was done using a database of 3D face models that
is available at the Centre for Vision, Speech and Signal Processing (CVSSP) [Tena,

5.4. EXPERIMENTS 77

Table 5.2. Face age estimation results for different regression techniques.

Approach
MAD (years) Complexity
[95\% conf. int.] (Rel. to Lin. Reg.)

E[\bfitf (\bfitx)] 10.3 [9.9 -- 10.6] -
Linear Reg. 51.3 [42.9 -- 59.7] 1
MLP (nhu=12) 9.7 [9.4 -- 10.1] 12
PCA (64) + Lin. Reg. 7.8 [7.7 -- 8.0] 64
PCA (128) + SIR (1) + Cub. Reg. 7.5 [7.3 -- 7.7] 1
PCA (64) + SAVE (64) + Lin. Reg. 7.8 [7.7 -- 8.0] 64
\varepsilon -SVR (linear) 7.1 [6.8 -- 7.3] 435
RVM (rbf) 7.2 [7.0 -- 7.4] 298
LDPPR (E=32 M=4) 7.1 [6.8 -- 7.5] 32

2007]. With the 3D models, synthetic images were generated in which the orientation
of the faces was in different directions, from -90 \circ to 90 \circ in horizontal (azimuth) and
from -60 \circ to 60 \circ in vertical (elevation) [Wong et al., 2010]. The size of the generated
images was 32\times 40 pixels. The same as for the age estimation, as feature vectors
the pixels were used directly, leaving the dimensionality of the problem at 1280. As
for the other experiments, a 5-fold cross-validation was employed. The results are
presented in table 5.3. For this task, the results in terms of error for the proposed
method were not as good as the ones of the previous experiment. Both \varepsilon -SVR and
RVM obtain a MAD which is significantly better than LDPPR. However, in relation
to the complexity the method is even better, in this case being more than 100 times
faster and requiring one hundredth of the memory with respect to the other methods.
In real terms, the proposed method would require about 31kB of memory compared
to 3.2MB for RVM.

Table 5.3. Face pose estimation results for different regression techniques.

Approach
MAD (deg.) Complexity

[95\% conf. int.] (Rel. to Lin. Reg.)

E[\bfitf (\bfitx)] 38.7 [38.6 -- 38.8] -
Linear Reg. 21.6 [21.0 -- 22.2] 1
MLP (nhu=40) 18.4 [17.9 -- 18.9] 20
PCA (128) + Quad. Reg. 14.6 [14.2 -- 14.9] 64
PCA (128) + SIR (64) + Cub. Reg. 14.5 [14.2 -- 14.8] 32
PCA (64) + SAVE (64) + Cub. Reg. 14.3 [14.0 -- 14.6] 32
\varepsilon -SVR (rbf) 9.6 [9.3 -- 10.0] 2528
RVM (rbf) 8.3 [7.9 -- 8.6] 1253
LDPPR (E=24 M=25) 11.1 [10.5 -- 11.6] 12

Since the proposed model has a clear geometrical interpretation specially when
dealing with images, the models can also be represented as images, thus giving the
possibility of observing certain characteristics. In the figures 5.5 and 5.6, examples

78 CHAPTER 5. REGRESSION PROBLEMS AND DIMENSIONALITY REDUCTION

of learned models are presented for age and pose estimation respectively. Comparing
these two figures, it can be observed that for the age model, the projection base has
more importance and it tries to model all of the possible variations, like expressions,
illumination, etc. On the other hand, the prototypes of ages were only 4 and the two
first ones are very similar suggesting that the same result could be achieved with only
3 prototypes. This tells us that in the subspace learned, the regression is almost linear,
or linear by parts. Regarding the model for pose estimation, the projection base is
very difficult to interpret, it even seems to be random. The prototypes show clearly
the different orientations that a face could have. These figures show how complex
these problems are. It is difficult to understand how such complex phenomena can be
modeled so compactly.

(a) (b)

Figure 5.5. Images representing one of the regression models obtained by LDPPR for the
estimation of the age using facial images. (a) The first 16 components (out of 32) of the
dimensionality reduction base. (b) The four prototypes of the ages.

5.5 Conclusions

In this chapter we have discussed the problem of regression analysis when having high
dimensional feature vectors. The LDPPR algorithm was proposed which is shown to
handle well the high-dimensionality and additionally learns very computationally effi-
cient regressors. This algorithm is very similar to LDPP for classification proposed in
chapter 3, it learns simultaneously a linear projection and a reduced set of prototypes
that define the regression function.

The experimental results show several properties of the algorithm. The data nor-
malization proposed is shown to effectively keep the adjustable parameters in a small
range, independent of characteristics of the data or other parameters. This simplifies
considerably the task of adjusting the learning factors of the gradient descent and the

5.5. CONCLUSIONS 79

(a) (b)

Figure 5.6. Images representing one of the regression models obtained by LDPPR for the
face pose estimation. (a) The first 4 components (out of 24) of the dimensionality reduction
base. (b) The sixteen prototypes of the poses.

slope parameter of the tanh function. The regression performance of the proposed ap-
proach is comparable to other techniques for most of the data sets evaluated. However,
the most interesting property of the approach is that for high-dimensional problems,
the learned regressors are significantly much faster than the other techniques with a
comparable performance.

For future research, there are several questions that remain open. The tanh func-
tion used during learning in LDPPR effectively accounts for possible outliers in the
data. However, \varepsilon -SVR seems to ignore outliers better, therefore it might be worth
considering a different optimization function, such as one based on the hinge loss
function. Another direction of research which should be followed is to consider other
types of regressor, not based on prototypes and distances. Better regression perfor-
mance was expected of the proposed LDPPR, and possibly better results could be
obtained with a simpler regressor, such as a polynomial or using splines. Finally, other
methods which handle well high dimensional problems gain their strength by the use
of a regularization technique. Even though the tanh function and the projection base
orthonormalization of LDPPR work as regularizers, the technique could benefit from
a stronger regularization method.

Chapter 6

Ranking Problems and Score
Fusion

In previous chapters, two types pattern recognition problems have been discussed,
which are classification and regression. The characteristics of each of these is that in
the former it is required to have a minimum classification error, and in the latter it is
required to have a minimum prediction error. However, there are pattern recognition
problems in which neither of these criterions are the desired objective. A type of
pattern recognition problem in which the objective is different is the one known as
ranking. In a ranking system, for a given input the output is an ordering assigned to
it. One well known example of this is a web search engine, in which a user inputs a
phrase and the system presents a list of documents ordered by relevance to the given
input.

Among the ranking problems, there is one in which the inputs belong to one of
two classes, although it is not known which one. The objective is to sort the inputs so
that the ones that belong to the first class are ranked higher than the ones that belong
to the second class. This objective is equivalent to maximizing the Area Under the
ROC curve (AUC). In this chapter, an algorithm is presented for learning a statistical
model based on this criterion. The algorithm takes as input a feature vector, and the
output is a single real value which gives the rank of the input. Since this problem can
be seen as having some input scores, and the output is a global score, in this thesis
this problem is referred to as score fusion.

In this chapter two applications of score fusion are analyzed. The first application
is one related to biometrics. By biometrics it is meant the automatic identification
of a person by means of an anatomical or behavior characteristic. The characteristic
used is known as the modality, and in the literature there are many biometric modal-
ities that have been proposed [Vielhauer, 2006, chap. 3], being a facial image or a
fingerprint a couple of examples. If the objective of the biometric system is to decide
whether the identity of a person is the one claimed, it is known as biometric verifica-
tion. In such a case, the system can either receive a biometric sample from a client,
because the claimed identity is the true one, or the sample comes from an impostor. A

82 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

known method for improving the performance of biometric verification systems is to
use information from several sources, which could be different modalities or different
techniques for the same modality. This information can be fused at different levels,
either at the sensor, feature, match score or decision levels. The topic addressed here
is fusion at a match score level, in which it is assumed that for each modality and
technique we only have available the score that is assigned to each biometric sample.
Then the objective of the fusion technique is to take the all scores of each sample and
generate a new one which gives a better performance than any of the individual ones.

The second type of score fusion problem analyzed in this chapter is the one con-
cerned with the estimation of a quality measure. More specifically, the problem is
that in a pattern recognition system if there are several observations available, and
for computational reasons or any other reason, only a few of them should be selected
for recognition. One of the possible ways of doing this selection is by estimating the
quality for each of the samples, this way the selected samples are the ones that have
the highest quality. The estimation of an adequate quality is not an easy task, how-
ever supposing we have available several measures which have some relationship with
the true quality, these could be fused together in hope of getting a better estimation.

6.1 Review of Related Work

In the literature numerous score fusion approaches have been proposed. These can
be categorized into two groups, which are the non-training based methods and the
training based methods [Toh et al., 2008]. The non-training methods assume that
the output of the individual scores are the posterior probabilities that the pattern
belongs to the positive class. Because this assumption is not generally true, a previous
normalization step is required [Jain et al., 2005]. The training based methods as the
name suggest requires a training step. Among these are all of the methods which
treat the fusion as a classification problem [Gutschoven and Verlinde, 2000; Ma et al.,
2005; Maurer and Baker, 2008]. Other fusion techniques are the ones based on the
likelihood ratio for which the distributions of positive and negative scores need to be
estimated [Nandakumar et al., 2008].

A significant drawback that the classification approach to score fusion has, is that
these methods tend to minimize the classification error. However, the standard way of
comparing biometric systems is by using a ROC curve. This way it is not necessary
to specify which are the client and impostor priors or what are the costs for each
of the possible errors of the system, values which are difficult to estimate and vary
depending on the application. From this perspective, minimizing the classification
error may not improve the performance in practice. The Area Under the ROC Curve
(AUC) summarizes the ROC curve, and this can be a better measure for assessing
biometric systems without having to specify the priors or costs [Ling et al., 2003].
Motivated by this idea, in this work we propose to learn the parameters of a score
fusion model by maximizing the AUC. In the case of the quality estimation, if for each
sample it can be decided if it is of good or bad quality, this problem can also be seen
as a positive and negative class problem, similar to biometric fusion. What is more,

6.2. SCORE FUSION BY MAXIMIZING THE AUC 83

because the good quality samples should be ranked better than the bad quality ones,
the correct criterion to optimize in this case is also the maximization of the AUC.

There are a some works in the literature regarding the maximization of the AUC.
In the work of [Yan et al., 2003], it is shown that minimizing the cross entropy
or the mean squared error does not necessarily maximize the AUC. Furthermore,
they propose to directly optimize an approximation to the Wilcoxon-Mann-Whitney
statistic, which is equivalent to the AUC. In [Marrocco et al., 2006], the authors
propose a method for linearly combining dichotomizers (two-class classifiers) such
that the AUC is maximized. Their optimization technique reduces to a simple linear
search. This method is refined and presented in [Marrocco et al., 2006] for learning a
nonparametric linear classifier based on pairwise feature combination.

6.2 Score Fusion by Maximizing the AUC

As was explained previously, the AUC is an adequate measure to assess the quality
of a biometric system without having to specify the client and impostor priors or the
costs for the different errors. Also, the estimation of a quality measure based on a good
versus bad quality labeling ideally should have the highest AUC possible. Motivated
by this evidence, we propose to derive an algorithm that learns the parameters of a
score fusion model by maximizing the AUC. In order to do this we have to address two
tasks, the first one is to define a model that fuses scores according to some parameters,
and second is to optimize the parameters of the model so that the AUC is maximized.

To choose the model for score fusion we have taken into account the following
criteria. The model should be capable of weighting the different scores giving more
or less importance to each of them. Also, the model should be able to handle scores
with arbitrary input ranges. Finally the model should have few parameters so that
they can be well estimated evading the small sample size problem and the curse of
dimensionality. A simple method that fulfills the previous requirements is to first
normalize the scores so that they are all in a common range and afterward combine
linearly the normalized scores.

6.2.1 Score Normalization

In the literature several methods for score normalization can be found, for a review of
the ones most used in biometric fusion refer to [Jain et al., 2005]. The normalization
we have chosen is based on the tanh-estimators which is somewhat insensitive to the
presence of outliers [Jain et al., 2005]. This normalization is a nonlinear transfor-
mation of the score using a sigmoid function and it depends on two parameters, the
sigmoid slope and its displacement. The slope determines how fast is the transition
from zero to one, and the displacement indicates at what value the sigmoid is in the
midpoint of the transition. The sigmoid normalization is given by

\phi u,v(z) =
1

1 + exp[u(v - z)]
, (6.1)

where u and v are the slope and the displacement of the sigmoid respectively and z
is the score being normalized.

84 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

6.2.2 Score Fusion Model

To be able to represent the model mathematically, first we need to state some defini-
tions. Let \bfitz be an M -dimensional vector composed of the M scores we want to fuse
z1, . . . , zM . Furthermore let \bfitphi \bfitu ,\bfitv (\bfitz) be a vector composed of the normalized scores
\phi u1,v1(z1), . . . , \phi uM ,vM

(zM) and the vectors \bfitu and \bfitv be a more compact representa-
tion of the sigmoid slopes u1, . . . , uM and displacements v1, . . . , vM . As mentioned
earlier, the model is a linear combination of the normalized scores, then we denote
the score weights by w1, . . . , wM which are also represented more compactly by the
vector \bfitw .

The input scores can be either similarity or distance measures, however the sig-
moid normalization can transform all of the scores to be similarity measures by hav-
ing a positive or negative slope. Given that all the normalized scores are similarity
measures, if they contain discriminative information, then they should have a posi-
tive contribution to the final score, otherwise they should not have any contribution.
Therefore without any loss of generality we can restrict the weights to being positive,
i.e. wm \geq 0 for m = 1 . . .M . On the other hand, scaling the fused score does not
have any effect on its discrimination ability, thus we can further restrict the weights so
that their sum equals the unity,

\sum M
m=1 wm = 1. Note that given the two restrictions,

the fused score has the nice property of being a value between zero and one.
Finally, the score fusion model is given by

f\bfitu ,\bfitv ,\bfitw (\bfitz) = \bfitw \sansT \bfitphi \bfitu ,\bfitv (\bfitz) . (6.2)

The parameters of the model are \bfitu , \bfitv , \bfitw \in \BbbR M , which means that in total there are
3M parameters that need to be estimated.

6.2.3 AUC Maximization

Although there are few parameters to be estimated in the score fusion model (6.2),
it can be highly computationally expensive to obtain an adequate estimation and
clearly brute force is not advisable. Therefore our aim is a goal function that is
directly related to the AUC and use an optimization procedure to maximize it.

Among the different alternatives to compute the AUC the one that lends itself for
the simplest optimization process is the one known as the Wilcoxon-Mann-Whitney
statistic, which is given by

1

PN

P\sum
p=1

N\sum
n=1

step(xp - yn) , (6.3)

where P and N are the number of positive and negative samples respectively, and
step() is the Heaviside step function defined as

step(z) =

\left\{ 0 if z < 0 ,
0.5 if z = 0 ,
1 if z > 0 .

(6.4)

6.2. SCORE FUSION BY MAXIMIZING THE AUC 85

The expression in equation (6.3) is not differentiable, therefore inspired on the
same ideas as for LDPP presented in previous chapters, the Heaviside step function
can be approximated using a sigmoid function. Doing this approximation and using
the score fusion model (6.2), leads to the following goal function

J\scrX ,\scrY (\bfitu ,\bfitv ,\bfitw) =
1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\beta

\biggl(
\bfitw \sansT
\bigl(
\^\bfitx - \^\bfity

\bigr) \biggr)
, (6.5)

where \scrX = \{ \bfitx 1, . . . ,\bfitx P \} \subset \BbbR M and \scrY = \{ \bfity 1, . . . ,\bfity N\} \subset \BbbR M are sets composed of
the training vectors of positive and negative scores respectively, the hat indicates that
the sore is normalized, i.e. \^\bfitx = \bfitphi \bfitu ,\bfitv (\bfitx) and \^\bfity = \bfitphi \bfitu ,\bfitv (\bfity), and the sigmoid function
is defined by

S\beta (z) =
1

1 + exp(- \beta z)
. (6.6)

Care must be taken not to confuse this sigmoid function, which is used for AUC
maximization, with the sigmoid used for score normalization from equation (6.1).

In order to maximize the goal function (6.5) we propose to use a gradient ascend
procedure. To this end, we take the partial derivatives of the goal function with
respect to the parameters obtaining

\nabla \bfitu J =\bfitw \bullet 1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\prime \beta

\biggl(
\bfitw \sansT
\bigl(
\^\bfitx - \^\bfity

\bigr) \biggr)
\bullet
\biggl(
(\bfitx - \bfitv) \bullet \bfitphi \prime (\bfitx) - (\bfity - \bfitv) \bullet \bfitphi \prime (\bfity)

\biggr)
,

(6.7)

\nabla \bfitv J =\bfitw \bullet \bfitu \bullet 1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\prime \beta

\biggl(
\bfitw \sansT
\bigl(
\^\bfitx - \^\bfity

\bigr) \biggr)
\bullet
\biggl(
\bfitphi \prime (\bfity) - \bfitphi \prime (\bfitx)

\biggr)
, (6.8)

\nabla \bfitw J =
1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\prime \beta

\biggl(
\bfitw \sansT
\bigl(
\^\bfitx - \^\bfity

\bigr) \biggr) \biggl(
\^\bfitx - \^\bfity

\biggr)
, (6.9)

where the dot \bullet indicates a Hadamard or entry-wise product, S\prime \beta () is the derivative of

the sigmoid function (6.6) and the elements of the vectors \bfitphi \prime (\bfitx) and \bfitphi \prime (\bfity) are given
by the following

\phi \prime (z) =
exp[u(v - z)]

(1 + exp[u(v - z)])2
. (6.10)

Finally the corresponding gradient ascend update equation is

\bfittheta (t+1) = \bfittheta (t) + \gamma \nabla
\bfittheta J

(t) , (6.11)

where \bfittheta = \{ \bfitu ,\bfitv ,\bfitw \} and \gamma is the learning rate. This algorithm has been named
Score Fusion by Maximizing the AUC (SFMA)1. After each iteration the weights are
renormalized so that the restrictions of being positive and sum to unity are met. The

1A free Matlab/Octave implementation of this algorithm has been left available in http://web.

iti.upv.es/\~mvillegas/research/code and also attached to the digital version of this thesis that
the reader can extract if the viewer supports it.

function [bestW, bestU, bestV] = sfma(POS, NEG, W0, U0, V0, varargin)
%
% SFMA: Score Fusion by Maximizing the AUC
%
% Usage:
% [W, U, V] = sfma(POS, NEG, W0, U0, V0, ...)
%
% Usage (fuse scores):
% FSCORES = sfma('fuse',SCORES,W,U,V)
%
% Input:
% POS - Positive scores matrix
% NEG - Negative scores matrix
% W0 - Initial score weights
% U0 - Initial sigmoid normalization slopes
% V0 - Initial sigmoid normalization displacements
%
% Input (optional):
% 'slope',SLOPE - Sigmoid slope (defaul=10)
% 'rateW',RATEW - Weights learning rate (default=0.1)
% 'rateU',RATEU - Slopes learning rate (default=0.1)
% 'rateV',RATEV - Displacements learning rate (default=0.1)
% 'epsilon',EPSILON - Convergence criteria (default=1e-7)
% 'minI',MINI - Minimum number of iterations (default=100)
% 'maxI',MAXI - Maximum number of iterations (default=1000)
% 'stats',STAT - Statistics every STAT (default=1)
% 'probe',PROBE - Probe learning rates (default=false)
% 'probeI',PROBEI - Iterations for probing (default=100)
% 'autoprobe',(true|false) - Automatic probing (default=false)
% 'adaptrates',(true|false) - Adapt learning rates (default=false)
% 'adaptrate',RATE - Adaptation rate (default=false)
% 'adaptdecay',DECAY - Adaptation decay (default=false)
% 'devel',dPOS,dNEG - Set the development set (default=false)
% 'seed',SEED - Random seed (default=system)
% 'stochastic',(true|false) - Stochastic gradient descend (default=true)
% 'stochsamples',SAMP - Samples per stochastic iteration (default=1)
% 'stocheck',SIT - Stats every SIT stoch. iterations (default=100)
% 'stocheckfull',(true|f... - Stats for whole data set (default=false)
% 'stochfinalexact',(tru... - Final stats for whole data set (default=true)
% 'logfile',FID - Output log file (default=stderr)
% 'verbose',(true|false) - Verbose (default=true)
%
% Output:
% W - Final learned score weights
% U - Final learned sigmoid slopes
% V - Final learned sigmoid displacements
%
% References:
%
% M. Villegas and R. Paredes. "Score Fusion by Maximizing the Area
% Under the ROC Curve." IbPria 2009.
%
% M. Villegas and R. Paredes. "Fusion of Qualities for Frame Selection
% in Video Face Verification" ICPR 2010.
%
% $Revision: 138 $
% $Date: 2010-11-27 11:04:20 +0100 (Sat, 27 Nov 2010) $
%

%
% Copyright (C) 2008-2010 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

if strncmp(POS,'-v',2),
 unix('echo "$Revision: 138 $* $Date: 2010-11-27 11:04:20 +0100 (Sat, 27 Nov 2010) $*" | sed "s/^:/sfma: revision/g; s/ : /[/g; s/ (.*)/]/g;"');
 return;
end

fn='sfma:';
minargs=5;

%%% Default values %%%
bestW=[];
bestU=[];
bestV=[];

slope=10;
rateW=0.1;
rateU=0.1;
rateV=0.1;

probeI=100;
probeunstable=0.2;
autoprobe=false;

adaptrates=false;
adaptrate=0.1;
adaptdecay=0.9;

epsilon=1e-7;
minI=100;
maxI=1000;
stats=1;

devel=false;

stochastic=false;
stochsamples=1;
stocheck=100;
stocheckfull=false;
stochfinalexact=true;
testJ=false;
altrange=false;

logfile=2;
verbose=true;

%%% Input arguments parsing %%%
n=1;
argerr=false;
while size(varargin,2)>0,
 if ~ischar(varargin{n}) || size(varargin,2)<n+1,
 argerr=true;
 elseif strcmp(varargin{n},'probemode'),
 eval([varargin{n},'=varargin{n+1};']);
 n=n+2;
 elseif strcmp(varargin{n},'slope') || ...
 strcmp(varargin{n},'rates') || ...
 strcmp(varargin{n},'rateW') || ...
 strcmp(varargin{n},'rateU') || ...
 strcmp(varargin{n},'rateV') || ...
 strcmp(varargin{n},'epsilon') || ...
 strcmp(varargin{n},'minI') || ...
 strcmp(varargin{n},'maxI') || ...
 strcmp(varargin{n},'stats') || ...
 strcmp(varargin{n},'probe') || ...
 strcmp(varargin{n},'probeI') || ...
 strcmp(varargin{n},'adaptrate') || ...
 strcmp(varargin{n},'adaptdecay') || ...
 strcmp(varargin{n},'seed') || ...
 strcmp(varargin{n},'stochsamples') || ...
 strcmp(varargin{n},'stocheck') || ...
 strcmp(varargin{n},'logfile'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~isnumeric(varargin{n+1}) || sum(sum(varargin{n+1}<0))~=0,
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'adaptrates') || ...
 strcmp(varargin{n},'stochastic') || ...
 strcmp(varargin{n},'stocheckfull') || ...
 strcmp(varargin{n},'stochfinalexact') || ...
 strcmp(varargin{n},'autoprobe') || ...
 strcmp(varargin{n},'testJ') || ...
 strcmp(varargin{n},'altrange') || ...
 strcmp(varargin{n},'verbose'),
 eval([varargin{n},'=varargin{n+1};']);
 if ~islogical(varargin{n+1}),
 argerr=true;
 else
 n=n+2;
 end
 elseif strcmp(varargin{n},'devel'),
 devel=true;
 devPOS=varargin{n+1};
 devNEG=varargin{n+2};
 n=n+3;
 else
 argerr=true;
 end
 if argerr || n>size(varargin,2),
 break;
 end
end

if exist('probemode','var'),
 rateW=probemode.rateW;
 rateU=probemode.rateU;
 rateV=probemode.rateV;
 minI=probemode.minI;
 maxI=probemode.maxI;
 probeunstable=minI;
 stats=probemode.stats;
 orthoit=probemode.orthoit;
 stochastic=probemode.stochastic;
 devel=probemode.devel;
 work=probemode.work;
 if devel,
 dwork=probemode.dwork;
 devPOS=probemode.devPOS;
 devNEG=probemode.devNEG;
 end
 verbose=false;
 epsilon=0;
 probemode=true;
else
 probemode=false;
end

[P,D]=size(POS);
N=size(NEG,1);

if strncmp(POS,'fuse',4),
 bestW=1./(1+exp(U0(ones(N,1),:).*(V(ones(N,1),:)-NEG)));
 bestW=bestW*W0';
 return;
end

%%% Error detection %%%
if probemode,
elseif argerr,
 fprintf(logfile,'%s error: incorrect input argument %d (%s,%g)\n',fn,n+minargs,varargin{n},varargin{n+1});
 return;
elseif nargin-size(varargin,2)~=minargs,
 fprintf(logfile,'%s error: not enough input arguments\n',fn);
 return;
elseif (sum(size(W0))~=0 && (size(W0,1)~=1 || size(W0,2)~=D)) || ...
 (sum(size(U0))~=0 && (size(U0,1)~=1 || size(U0,2)~=D)) || ...
 (sum(size(V0))~=0 && (size(V0,1)~=1 || size(V0,2)~=D)),
 fprintf(logfile,'%s error: W0, U0 and V0 must be row vectors and have the same dimensionality\n',fn);
 return;
elseif size(POS,2)~=D || size(NEG,2)~=D,
 fprintf(logfile,'%s error: POS and NEG must have the same number of columns\n',fn);
 return;
end

if ~verbose,
 logfile=fopen('/dev/null');
end

%%% Preprocessing %%%
if ~probemode,
 tic;

 if exist('rates','var'),
 rateW=rates;
 rateU=rates;
 rateV=rates;
 end

 onesP=ones(P,1);
 onesN=ones(N,1);
 overPN=1/(P*N);
 label=[false(N,1);true(P,1)];
 adjsA=0.5*P*(P+1);
 slope2=slope*slope;

 sd=std(POS,1,1)+std(NEG,1,1)+std([mean(POS);mean(NEG)],1,1);

 if sum(size(W0))==0,
 W0=exp(20.*(auc(POS,NEG)-0.5))-1;
 end
 if sum(size(U0))==0,
 U0=3./sd;
 sinv=mean(POS)<mean(NEG);
 U0(sinv)=-U0(sinv);
 end
 if sum(size(V0))==0,
 V0=0.5.*(mean(POS)+mean(NEG));
 end

 if sum(sd==0)>0,
 D=sum(sd~=0);
 W0(sd==0)=[];
 U0(sd==0)=[];
 V0(sd==0)=[];
 POS(:,sd==0)=[];
 NEG(:,sd==0)=[];
 if devel,
 devPOS(:,sd==0)=[];
 devNEG(:,sd==0)=[];
 end
 fprintf(logfile,'% warning: some dimensions have a standard deviation of zero\n',fn);
 end

 if stochastic,
 if exist('seed','var'),
 rand('state',seed);
 end
 minI=minI*stocheck;
 maxI=maxI*stocheck;
 stats=stats*stocheck;
 onesS=ones(stochsamples,1);
 overS=1/stochsamples;
 end

 work.onesP=onesP;
 work.onesN=onesN;
 work.overPN=overPN;
 work.label=label;
 work.adjsA=adjsA;
 work.altrange=altrange;
 work.slope=slope;

 if devel,
 dP=size(devPOS,1);
 dN=size(devNEG,1);
 dwork.onesP=ones(dP,1);
 dwork.onesN=ones(dN,1);
 dwork.overPN=1/(dP*dN);
 dwork.label=[false(dN,1);true(dP,1)];
 dwork.adjsA=0.5*dP*(dP+1);
 dwork.altrange=altrange;
 end

 fprintf(logfile,'%s total preprocessing time (s): %f\n',fn,toc);
end

if autoprobe,
 probe=[zeros(2,1),10.^[-4:4;-4:4;-4:4]];
end
if exist('probe','var'),
 tic;
 probecfg.minI=round(probeunstable*probeI);
 probecfg.maxI=probeI;
 probecfg.stats=stats;
 probecfg.stochastic=stochastic;
 probecfg.devel=devel;
 probecfg.work=work;
 if devel,
 probecfg.dwork=dwork;
 probecfg.devPOS=devPOS;
 probecfg.devNEG=devNEG;
 end
 bestIJA=[0,0];
 ratesW=unique(probe(1,probe(1,:)>=0));
 ratesU=unique(probe(2,probe(2,:)>=0));
 ratesV=unique(probe(2,probe(2,:)>=0));
 nW=1;
 while nW<=size(ratesW,2),
 nU=1;
 while nU<=size(ratesU,2),
 nV=1;
 while nV<=size(ratesV,2),
 if ~(ratesW(nW)==0 && ratesU(nU)==0 && ratesV(nV)==0),
 probecfg.rateW=ratesW(nW);
 probecfg.rateU=ratesU(nU);
 probecfg.rateV=ratesV(nV);
 [I,J]=sfma_new(POS,NEG,W0,U0,V0,'probemode',probecfg);
 mark='';
 if I>bestIJA(1) || (I==bestIJA(1) && J>bestIJA(2)),
 bestIJA=[I,J];
 rateW=ratesW(nW);
 rateU=ratesU(nU);
 rateV=ratesV(nV);
 mark=' +';
 end
 if I<probeunstable*probeI,
 if nV==1,
 if nU==1,
 nW=size(ratesB,2)+1;
 end
 nU=size(ratesP,2)+1;
 end
 break;
 end
 fprintf(logfile,'%s rates={%.2E %.2E %.2E} => impI=%.2f J=%.4f%s\n',fn,ratesW(nW),ratesU(nU),ratesV(nV),I/probeI,J,mark);
 end
 nV=nV+1;
 end
 nU=nU+1;
 end
 nW=nW+1;
 end
 fprintf(logfile,'%s total probe time (s): %f\n',fn,toc);
 fprintf(logfile,'%s selected rates={%.2E %.2E %.2E} impI=%.2f J=%.4f\n',fn,rateW,rateU,rateV,bestIJA(1)/probeI,bestIJA(2));
end

W0(W0<0)=0;
W0=W0./sum(W0);

Wi=W0;
Ui=U0;
Vi=V0;
bestWUV=[W0;U0;V0];
bestIJA=[0 0 0 -1];

J00=0;
J0=0;
I=0;

if adaptrates,
 rateW=rateW*ones(size(W0));
 rateU=rateU*ones(size(U0));
 rateV=rateV*ones(size(V0));
 Wv=zeros(size(W0));
 Uv=zeros(size(U0));
 Vv=zeros(size(V0));
 prevW=Wi;
end

fprintf(logfile,'%s D=%d P=%d N=%d\n',fn,D,P,N);
fprintf(logfile,'%s output: iteration | J | delta(J) | AUC\n',fn);

if ~probemode,
 tic;
end

%%% Batch gradient descent %%%
if ~stochastic,

 while true,

 %%% Compute statistics %%%
 expPOS=exp(Ui(onesP,:).*(Vi(onesP,:)-POS));
 nPOS=1./(1+expPOS);
 fPOS=nPOS*Wi';
 expNEG=exp(Ui(onesN,:).*(Vi(onesN,:)-NEG));
 nNEG=1./(1+expNEG);
 fNEG=nNEG*Wi';

 [A,ind]=sort([fNEG;fPOS]);
 A=overPN*(sum(find(label(ind)))-adjsA);

 fPOS=exp(-slope*fPOS);
 fNEG=exp(slope*fNEG);

 J=0;
 cPOS=zeros(P,1);
 cNEG=zeros(N,1);
 for p=1:P,
 fact=fNEG.*fPOS(p);
 J=J+sum(1./(1+fact));
 fact=slope.*fact./((1+fact).^2);
 cPOS(p)=cPOS(p)+sum(fact);
 cNEG=cNEG+fact;
 end
 J=overPN*J;

 if altrange,
 A=100^A;
 J=100^J;
 end

 if devel,
 A=sfma_index(devPOS,devNEG,Wi,Ui,Vi,dwork);
 end

 %%% Determine if there was improvement %%%
 mark='';
 if isfinite(J) && isfinite(A) && (...
 (testJ && (J>bestIJA(2)||(J==bestIJA(2)&&A>=bestIJA(3)))) || ...
 (~testJ && (A>bestIJA(3)||(A==bestIJA(3)&&J>=bestIJA(2))))),
 bestWUV=[Wi;Ui;Vi];
 bestIJA=[I J A bestIJA(4)+1];
 mark=' *';
 end

 %%% Print statistics %%%
 if mod(I,stats)==0,
 fprintf(logfile,'%d\t%.8f\t%.8f\t%.8f%s\n',I,J,J-J00,A,mark);
 J00=J;
 end

 %%% Determine if algorithm has to be stopped %%%
 if probemode,
 if bestIJA(4)+(maxI-I)<probeunstable,
 break;
 end
 end
 if I>=maxI || ~isfinite(J) || ~isfinite(A) || (I>=minI && abs(J-J0)<epsilon),
 fprintf(logfile,'%s stopped iterating, ',fn);
 if I>=maxI,
 fprintf(logfile,'reached maximum number of iterations\n');
 elseif ~isfinite(J) || ~isfinite(A),
 fprintf(logfile,'reached unstable state\n');
 else
 fprintf(logfile,'index has stabilized\n');
 end
 break;
 end

 J0=J;
 I=I+1;

 %%% Compute gradient %%%
 W0=cPOS'*nPOS-cNEG'*nNEG;
 dnPOS=expPOS./((1+expPOS).^2);
 dnNEG=expNEG./((1+expNEG).^2);
 U0=Wi.*(cPOS'*((POS-Vi(onesP,:)).*dnPOS)-cNEG'*((NEG-Vi(onesN,:)).*dnNEG));
 V0=Wi.*Ui.*(cNEG'*dnNEG-cPOS'*dnPOS);

 W0=overPN.*W0;
 U0=overPN.*U0;
 V0=overPN.*V0;

 %%% Update parameters %%%
 if adaptrates,
 rateW=rateW.*max(0.5,1+adaptrate*Wv.*W0);
 rateU=rateU.*max(0.5,1+adaptrate*Uv.*U0);
 rateV=rateV.*max(0.5,1+adaptrate*Vv.*V0);
 end
 Wi=Wi+rateW.*W0;
 Ui=Ui+rateU.*U0;
 Vi=Vi+rateV.*V0;

 %%% Parameter constraints %%%
 sel=Wi>=0;
 Wi(~sel)=0;
 Wi(sel)=Wi(sel)+(1-sum(Wi(sel)))./sum(sel);
 %Wi=Wi./sum(Wi);

 %%% Adapt rates %%%
 if adaptrates,
 ccPOS=zeros(P,1);
 ccNEG=zeros(N,1);
 cW=zeros(1,D);
 cU=zeros(1,D);
 cV=zeros(1,D);
 POSmV=POS-Vi(onesP,:);
 NEGmV=NEG-Vi(onesN,:);
 for p=1:P,
 fact=fNEG.*fPOS(p);
 fact=slope2.*fact.*(fact-1)./((fact+1).^3);
 ccPOS(p)=ccPOS(p)+sum(fact);
 ccNEG=ccNEG+fact;
 nPOSp=nPOS(p,:);
 dnPOSp=dnPOS(p,:);
 POSmVp=POSmV(p,:);
 cW=cW+fact'*(nNEG.*nPOSp(onesN,:));
 cV=cV+fact'*(dnNEG.*dnPOSp(onesN,:));
 cU=cU+fact'*(dnNEG.*dnPOSp(onesN,:).*NEGmV.*POSmVp(onesN,:));
 end

 ddnPOS=(dnPOS.^2).*(1./dnPOS-expPOS-expPOS-2);
 ddnNEG=(dnNEG.^2).*(1./dnNEG-expNEG-expNEG-2);

 HWv=Wv.*(ccPOS'*(nPOS.^2)+ccNEG'*(nNEG.^2)-2*cW);
 HUv=Uv.*Wi.*(cPOS'*((POSmV.^2).*ddnPOS)-cNEG'*((NEGmV.^2).*ddnNEG) ...
 +Wi.*(ccPOS'*((POSmV.*dnPOS).^2)+ccNEG'*((NEGmV.*dnNEG).^2)) ...
 -2*Wi.*cU);
 HVv=Vv.*Wi.*(Ui.^2).*(cPOS'*ddnPOS-cNEG'*ddnNEG ...
 +Wi.*(ccPOS'*(dnPOS.^2)+ccNEG'*(dnNEG.^2)) ...
 -2*Wi.*cV);

 HWv=overPN.*HWv;
 HUv=overPN.*HUv;
 HVv=overPN.*HVv;

 W0=(Wi-prevW)./rateW;

 Wv=adaptdecay*Wv+rateW.*(W0-adaptdecay.*HWv);
 Uv=adaptdecay*Uv+rateU.*(U0-adaptdecay.*HUv);
 Vv=adaptdecay*Vv+rateV.*(V0-adaptdecay.*HVv);

 prevW=Wi;
 end

 end % while true

%%% Stochasitc gradient descent %%%
else

 prevJ=1;
 prevA=1;

 while true,
 %%% Compute statistics %%%
 if mod(I,stocheck)==0 && stocheckfull,
 nPOS=1./(1+exp(Ui(onesP,:).*(Vi(onesP,:)-POS)));
 fPOS=nPOS*Wi';
 nNEG=1./(1+exp(Ui(onesN,:).*(Vi(onesN,:)-NEG)));
 fNEG=nNEG*Wi';

 [A,ind]=sort([fNEG;fPOS]);
 A=overPN*(sum(find(label(ind)))-adjsA);

 fPOS=exp(-slope*fPOS);
 fNEG=exp(slope*fNEG);

 J=0;
 for p=1:P,
 J=J+sum(1./(1+fPOS(p).*fNEG));
 end
 J=overPN*J;

 if altrange,
 A=100^A;
 J=100^J;
 end

 if devel,
 A=sfma_index(devPOS,devNEG,Wi,Ui,Vi,dwork);
 end
 end

 %%% Select random samples %%%
 sPOS=POS(1+round((P-1)*rand(stochsamples,1)),:);
 sNEG=NEG(1+round((N-1)*rand(stochsamples,1)),:);

 %%% Compute statistics %%%
 POSmV=sPOS-Vi(onesS,:);
 NEGmV=sNEG-Vi(onesS,:);

 expPOS=exp(-Ui(onesS,:).*POSmV);
 nPOS=1./(1+expPOS);
 fPOS=nPOS*Wi';
 expNEG=exp(-Ui(onesS,:).*NEGmV);
 nNEG=1./(1+expNEG);
 fNEG=nNEG*Wi';

 Ai=overS*(sum(fPOS>fNEG)+0.5*sum(fPOS==fNEG));

 expon=exp(slope*(fNEG-fPOS));
 Ji=overS*sum(1./(1+expon));

 if altrange,
 Ai=100^Ai;
 Ji=100^Ji;
 end

 if ~stocheckfull,
 J=0.5*(prevJ+Ji);
 prevJ=J;
 if ~devel,
 A=0.5*(prevA+Ai);
 prevA=A;
 end
 end

 if mod(I,stocheck)==0,
 if ~stocheckfull && devel,
 A=sfma_index(devPOS,devNEG,Wi,Ui,Vi,dwork);
 end

 %%% Determine if there was improvement %%%
 mark='';
 if isfinite(J) && isfinite(A) && (...
 (testJ && (J>bestIJA(2)||(J==bestIJA(2)&&A>=bestIJA(3)))) || ...
 (~testJ && (A>bestIJA(3)||(A==bestIJA(3)&&J>=bestIJA(2))))),
 bestWUV=[Wi;Ui;Vi];
 bestIJA=[I J A bestIJA(4)+1];
 mark=' *';
 end

 %%% Print statistics %%%
 if mod(I,stats)==0,
 fprintf(logfile,'%d\t%.8f\t%.8f\t%.8f%s\n',I,J,J-J00,A,mark);
 J00=J;
 end

 %%% Determine if algorithm has to be stopped %%%
 if probemode,
 if bestIJA(4)+(maxI-I)<probeunstable,
 break;
 end
 end
 if I>=maxI || ~isfinite(J) || ~isfinite(A) || (I>=minI && abs(J-J0)<epsilon),
 fprintf(logfile,'%s stopped iterating, ',fn);
 if I>=maxI,
 fprintf(logfile,'reached maximum number of iterations\n');
 elseif ~isfinite(J) || ~isfinite(A),
 fprintf(logfile,'reached unstable state\n');
 else
 fprintf(logfile,'index has stabilized\n');
 end
 break;
 end

 J0=J;
 end % if mod(I,stocheck)==0

 I=I+1;

 %%% Compute gradient %%%
 dsigm=slope.*expon./((1+expon).^2);

 dnPOS=expPOS./((1+expPOS).^2);
 dnNEG=expNEG./((1+expNEG).^2);

 W0=dsigm'*(nPOS-nNEG);
 U0=Wi.*(dsigm'*(POSmV.*dnPOS-NEGmV.*dnNEG));
 V0=Wi.*Ui.*(dsigm'*(dnNEG-dnPOS));

 W0=overS.*W0;
 U0=overS.*U0;
 V0=overS.*V0;

 %%% Update parameters %%%
 if adaptrates,
 rateW=rateW.*max(0.5,1+adaptrate*Wv.*W0);
 rateU=rateU.*max(0.5,1+adaptrate*Uv.*U0);
 rateV=rateV.*max(0.5,1+adaptrate*Vv.*V0);
 end
 Wi=Wi+rateW.*W0;
 Ui=Ui+rateU.*U0;
 Vi=Vi+rateV.*V0;

 %%% Parameter constraints %%%
 sel=Wi>=0;
 Wi(~sel)=0;
 Wi(sel)=Wi(sel)+(1-sum(Wi(sel)))./sum(sel);
 %Wi=Wi./sum(Wi);

 %%% Adapt rates %%%
 if adaptrates,
 ddsigm=slope2.*expon.*(expon-1)./((expon+1).^3);

 ddnPOS=(dnPOS.^2).*(1./dnPOS-expPOS-expPOS-2);
 ddnNEG=(dnNEG.^2).*(1./dnNEG-expNEG-expNEG-2);

 HWv=Wv.*(ddsigm'*((nPOS-nNEG).^2));
 HUv=Uv.*Wi.*(dsigm'*((POSmV.^2).*ddnPOS-(NEGmV.^2).*ddnNEG) ...
 +Wi.*(ddsigm'*((POSmV.*dnPOS-NEGmV.*dnNEG).^2)));
 HVv=Vv.*Wi.*(Ui.^2).*(dsigm'*(ddnPOS-ddnNEG) ...
 +Wi.*(ddsigm'*((dnNEG-dnPOS).^2)));

 HWv=overS.*HWv;
 HUv=overS.*HUv;
 HVv=overS.*HVv;

 W0=(Wi-prevW)./rateW;

 Wv=adaptdecay*Wv+rateW.*(W0-adaptdecay.*HWv);
 Uv=adaptdecay*Uv+rateU.*(U0-adaptdecay.*HUv);
 Vv=adaptdecay*Vv+rateV.*(V0-adaptdecay.*HVv);

 prevW=Wi;
 end

 end % while true

 %%% Compute final statistics %%%
 if stochfinalexact && ~stocheckfull,
 Wi=bestWUV(1,:);
 Ui=bestWUV(2,:);
 Vi=bestWUV(3,:);
 [A,J]=sfma_index(POS,NEG,Wi,Ui,Vi,work);
 if devel,
 A=sfma_index(devPOS,devNEG,Wi,Ui,Vi,dwork);
 end

 fprintf(logfile,'%s best iteration approx: I=%d J=%f A=%f\n',fn,bestIJA(1),bestIJA(2),bestIJA(3));
 bestIJA(2)=J;
 bestIJA(3)=A;
 end

 bestIJA(4)=bestIJA(4)*stocheck;
end

if ~probemode,
 tm=toc;
 fprintf(logfile,'%s best iteration: I=%d J=%f A=%f\n',fn,bestIJA(1),bestIJA(2),bestIJA(3));
 fprintf(logfile,'%s amount of improvement iterations: %f\n',fn,bestIJA(4)/max(I,1));
 fprintf(logfile,'%s average iteration time (ms): %f\n',fn,1000*tm/(I+0.5));
 fprintf(logfile,'%s total iteration time (s): %f\n',fn,tm);
end

if ~verbose,
 fclose(logfile);
end

if probemode,
 bestW=bestIJA(4);
 bestU=bestIJA(2);
 return;
end

if exist('sd','var'),
 if sum(sd==0)>0,
 WUV=bestWUV;
 D=size(sd,2);
 bestWUV=zeros(3,D);
 bestWUV(:,sd~=0)=WUV;
 end
end

bestW=bestWUV(1,:);
bestU=bestWUV(2,:);
bestV=bestWUV(3,:);

%%%
%%% Helper functions %%%
%%%

%%
function [A, J] = sfma_index(POS, NEG, W, U, V, work)

 P=size(POS,1);
 N=size(NEG,1);
 onesP=work.onesP;
 onesN=work.onesN;
 overPN=work.overPN;
 label=work.label;
 adjsA=work.adjsA;
 altrange=work.altrange;

 %%% Compute fused scores %%%
 nPOS=1./(1+exp(U(onesP,:).*(V(onesP,:)-POS)));
 fPOS=nPOS*W';
 nNEG=1./(1+exp(U(onesN,:).*(V(onesN,:)-NEG)));
 fNEG=nNEG*W';

 %%% Compute AUC %%%
 [A,ind]=sort([fNEG;fPOS]);
 A=overPN*(sum(find(label(ind)))-adjsA);
 if altrange,
 A=100^A;
 end

 %%% Compute index %%%
 if nargout>1,
 slope=work.slope;

 fPOS=exp(-slope*fPOS);
 fNEG=exp(slope*fNEG);

 J=0;
 cPOS=zeros(P,1);
 cNEG=zeros(N,1);
 for p=1:P,
 fact=fNEG.*fPOS(p);
 J=J+sum(1./(1+fact));
 fact=slope.*fact./((1+fact).^2);
 cPOS(p)=cPOS(p)+sum(fact);
 cNEG=cNEG+fact;
 end
 J=overPN*J;
 if altrange,
 J=100^J;
 end
 end

Mauricio Villegas Santamaria

function A = auc(POS, NEG)
%
% AUC: Compute the area under the ROC curve
%
% A = auc(POS, NEG)
%
% Input:
% POS - Positive scores
% NEG - Negative scores
%
% Output:
% A - Area under ROC
%
%
% Version: 1.01 -- Sep/2008
%

%
% Copyright (C) 2008 Mauricio Villegas (mvillegas AT iti.upv.es)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%

D=size(POS,2);
NP=size(POS,1);
NN=size(NEG,1);
label=[false(NN,1);true(NP,1)];

if D>1,

 A=zeros(1,D);
 for d=1:D,
 [sc,ind]=sort([NEG(:,d);POS(:,d)]);
 A(d)=(sum(find(label(ind)))-0.5*NP*(NP+1))./(NP*NN);
 end

else

 [sc,ind]=sort([NEG;POS]);
 A=(sum(find(label(ind)))-0.5*NP*(NP+1))./(NP*NN);

end

Mauricio Villegas Santamaria

http://web.iti.upv.es/~mvillegas/research/code
http://web.iti.upv.es/~mvillegas/research/code

86 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

renormalization of the weights after updating using equation (6.9), is exactly the same
as optimizing subject to the mentioned constraints, i.e.

max
\bfitw

J\scrX ,\scrY (\bfitw) s.t.

M\sum
m=1

wm = 1, wm \geq 0 : m = 1, . . . ,M . (6.12)

It is presented like this here for simplicity. For a detailed deduction using the con-
straints see appendix A.4.2.

Since the algorithm is based on gradient ascend, it is required to have some initial
values for the model parameters. A method for choosing them which in this work
was observed to give good results, and most importantly initialize the algorithm in a
stable region, are the following:

u(0)
m =

3 sgn(\=ym - \=xm)

std(\scrX m) + std(\scrY m) + std(\scrX m \cup \scrY m)
, (6.13)

v(0)m =
1

2
(\=xm + \=ym) , (6.14)

w(0)
m = exp

\biggl(
20

\biggl[
auc(\scrX m,\scrY m) - 1

2

\biggr] \biggr)
 - 1 , (6.15)

where \scrX m and \scrY m are sets composed of the m-th scores of the positive and negative
samples respectively, \=xm and \=ym are the mean values of them-th positive and negative
scores respectively, the function std gives the standard deviation of a set of numbers,
the function auc gives the AUC for an input positive and negative score set and the
function sgn is the signum function.

This approach to maximization of the AUC has been previously mentioned in the
work of [Yan et al., 2003], however they report having significant numerical problems
for values of \beta > 2, in which case the sigmoid function is a poor estimate of the step
function. Our experience differs completely from this notion, being the optimization
quite stable for higher values of \beta on several data sets and effectively observing a direct
relationship between the goal function and the AUC obtained. This relationship has
been analyzed in this work and is presented in section 6.3.

6.2.4 Notes on the Implementation of the Algorithm

This algorithm has a very high computational cost in the learning phase, since it
is order \scrO (PN), which makes it unpractical for large data sets. However there are
several approaches that can be used to speed up the computation without sacrificing
performance. One alternative takes advantage of the fact that for most of the positive
and negative score pairs the derivative of the sigmoid function is practically zero.
Therefore in each iteration a large amount of pairs can be discarded depending on
their relative difference.

Another approach to speedup the algorithm is to use stochastic gradient ascend
instead of the batch. It is known that the stochastic gradient ascend can significantly
reduce the amount of iterations that the algorithm needs to converge. Furthermore,
in the stochastic version, the algorithm simply chooses pairs of positive and negative

6.3. BIOMETRIC SCORE FUSION 87

samples, thus making the cost of the algorithm dependent on the number of iterations
and not on the number of samples in the training set. For the two applications con-
sidered to evaluate the proposed approach, biometric fusion and quality estimation,
for the former the batch gradient ascend was used, and for the latter the stochastic
gradient ascend. The reason for this was entirely due to the size of the corpus.

6.2.5 Extensions of the Algorithm

An initial clarification must be made. Although in this work a score fusion model is
defined and optimized, the maximization by AUC is a general approach which can be
applied to other models and other problems different from score fusion. Furthermore
the proposed score fusion model is very simple, therefore it is unable to handle complex
distributions. Depending on the problem, improvements to the model must be made.

Up to this point, the proposed model has very few parameters, and it is a simple
linear combination of normalized scores. The algorithm can be extended to be non-
linear, for instance it could be extended to a polynomial by adding new virtual scores
which are a powers of the originals. Another approach could be to use the kernel trick
which is a very popular technique for handling nonlinear problems.

Along with the research on biometric score fusion there is another related topic.
This topic is the use of quality measures to determine how confident a biometric score
is. This information can greatly improve the recognition accuracy of the systems if
they are taken into account during the fusion. An approach to integrate the quality
measures into the proposed model could be to include these values as if they were
other scores like it is done in [Nandakumar et al., 2008]. However the quality values
can mean different things under different circumstances [Maurer and Baker, 2008],
making this approach unsatisfactory. A simple and better approach would be to
include the quality measures as scores but removing the restriction of the weight
being positive. This way the quality can reward or penalize the final score depending
on the circumstance.

6.3 Biometric Score Fusion

The proposed approach was evaluated using three publicly available data sets for
biometric score fusion. The first data set was the LP1 set of scores obtained from
the XM2VTS face and voice multimodal database [Poh and Bengio, 2006]. This data
set includes eight biometric scores per claim, five for face images and the remaining
three for speech. The experimentation protocol for this data set is clearly defined,
first there is an evaluation set, which is used to optimize the fusion parameters, and
then there is a test set which is used to assess the performance [Luettin and Ma\^{\i}tre,
1998]. In total the evaluation set has 600 client and 40k impostor claims, and the test
set has 400 client and around 112k impostor claims.

The other two data sets used in the experiments were the Multimodal and the
Face data sets from the NIST Biometric Scores Set - Release 1 (BSSR1) [National
Institute of Standards and Technology, 2004]. The Multimodal data set is composed
of four scores per claim, two correspond to face matchers and the other two to the

88 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

right and left index fingerprints for the same matcher. This data set has 517 client and
around 267k impostor claims. Finally the Face data set is composed of two scores per
claim, each one for a different face matcher. In this case there are 6k client and 1.8M
impostor claims. For these data sets there is no experimentation protocol defined.
In our experiments we did a repeated hold-out procedure using half of the data for
training and the other half for test, and repeated 20 times.

The results of the experiments for the test sets are summarized in table 6.1. For
each data set three results are presented. The first one is for the single matcher which
obtained the best result without doing score fusion. The second result is the best one
obtained by trying among several baseline techniques. The baseline techniques tried
were the sum, product, min and max rules, each one either with z-score or maxmin
normalization. The final result is for the proposed technique (SFMA). For each data
set and method the table presents three performance measures, the AUC given as a
percentage of the total area, the Equal Error Rate (EER) and the Total Error Rate at
a False Acceptance Rate of 0.01\% (TER@FAR=0.01\%). The 95\% confidence intervals
are included for the BSSR1 data sets.

Table 6.1. Summary of biometric score fusion results on different data sets.

Data set Method
AUC EER TER@
(\%) (\%) FAR=0.01\%

(\%)

XM2VTS
(\mathrm{L}\mathrm{P}1)

Best Matcher 99.917 1.14 15.0
Sum Rule/z-score 99.973 0.56 3.0
SFMA 99.997 0.28 1.0

BSSR1
(\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{a}\mathrm{l})

Best Matcher 98.84 \pm 0.10 4.67 \pm 0.23 26.8 \pm 1.07
Sum Rule/z-score 99.99 \pm 0.00 0.50 \pm 0.07 3.2 \pm 0.41
SFMA 99.99 \pm 0.00 0.50 \pm 0.18 1.5 \pm 0.25

BSSR1
(\mathrm{F}\mathrm{a}\mathrm{c}\mathrm{e})

Best Matcher 65.39 \pm 1.07 5.26 \pm 0.05 28.9 \pm 0.27
Sum Rule/z-score 98.62 \pm 0.03 5.09 \pm 0.03 24.2 \pm 0.31
SFMA 99.07 \pm 0.03 4.25 \pm 0.05 25.3 \pm 0.33

On biometric research papers it is common to plot either a ROC or a DET curve
to compare various systems. Nonetheless these curves do not take into account how
the thresholds are selected, making the comparison of systems somewhat unreliable.
In this thesis we have opted to use the Expected Performance Curves (EPC) [Bengio

et al., 2005], which plots the HTER using a threshold (\^\theta \alpha) obtained on a development
set by argmin(\theta \alpha) = \alpha FAR+ (1 - \alpha)FRR. The parameter \alpha is a value between zero
and one which weights the importance of the errors. The EPC curves for two of the
data sets are presented in figure 6.1.

In these experiments, the sigmoid slope \beta was varied in order to find which was an
adequate value for learning. It was observed that the algorithm is stable for a wide
range of values of \beta which is quite interesting since in the work of [Yan et al., 2003]
they report having numerical problems for values of \beta > 2. In the experiments it was
also observed that for low values of \beta even though the goal function (6.5) increases,
the AUC of the training set could decrease. For this reason, higher values of \beta gave

6.3. BIOMETRIC SCORE FUSION 89

1

2

3

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
al
f
T
ot
al

E
rr
or

R
at
e
(\%

)

\alpha

1

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
al
f
T
ot
al

E
rr
or

R
at
e
(\%

)

\alpha

Best Matcher

Sum Rule/z-score

SFMA

Figure 6.1. Expected Performance Curves of the fusion algorithms for XM2VTS LP1 and
BSSR1 Face, top and bottom respectively.

90 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

better performance. The the results presented in this section are for a sigmoid slope
of \beta = 50. In figure 6.2 there is a plot of the typical behavior of the goal function and
the AUC as the SFMA algorithm iterates.

98.6

98.7

98.8

98.9

99

99.1

0 20 40 60 80 100
84.8

85

85.2

85.4

85.6

A
U
C

(\%
)

J
\scrX
,\scrY
(\bfitu

,\bfitv
,\bfitw

)
(\%

)

Iteration

J\scrX ,\scrY (\bfitu ,\bfitv ,\bfitw)

AUC Train

AUC Test

Figure 6.2. Relationship between the SFMA goal function and the AUC for a sigmoid
slope of \beta = 50. This result is for the Face BSSR1 data set.

The results for the proposed technique are very promising. In all of the data sets
SFMA improves the AUC even though the maximization was done on the training
set, this suggests that the technique has good generalization capability. Only the
TER@FAR=0.01\% for the BSSR1 Face data set is slightly worse than Sum Rule with
z-score, however this is an extreme operating point. For this data set the improvement
is significant for a wide range of operating thresholds as can be observed on its EPC
curve.

6.4 Estimation of Quality by Fusion

This work on the estimation of quality by fusion has been motivated mainly by the
need of reducing the computational cost of face recognition algorithms [Villegas and
Paredes, 2010a]. Among the different biometric modalities, facial images are popular
because of being unobtrusive and well tolerated by users. Although the recognition
performance is not as good as other modalities, such as fingerprint or iris, there is
a wide range of applications that are more conveniently handled by the use of face
recognition. This can be specially observed for mobile devices, such as mobile phones
and laptops, in which the inclusion of built-in cameras is becoming a standard. This

6.4. ESTIMATION OF QUALITY BY FUSION 91

has motivated the current interest in optimizing face recognition systems for mobile
environments.

In recent years the research on improving face recognition has been divided into
different alternatives. Some examples can be infrared, 3D, high-resolution and video
[Phillips et al., 2009, 2005; Poh et al., 2009]. In general, most of these techniques
require special hardware, which makes them inadequate if the objective is targeting
mobile devices. However, the use of video is a feasible option in those cases. Nonethe-
less, a considerable drawback of video is that it can be computationally expensive.
Ideally all frames of a video segment should be used for improving the recognition
accuracy, however this can be prohibitive for resource constrained devices.

In order to reduce the computational load, the selection of a few frames seems to
be an appropriate solution. The most straightforward approach for selecting frames
is by means of a quality measure [Poh et al., 2009]. However, it is common to have
available several measures that can be used as quality, such as face detector confidence,
face resolution, face frontalness, etc., and there is no simple way for selecting which
one of them to use. A function that gives an overall quality measure derived from the
original ones following a regression approach could be learned, unfortunately the true
or ideal overall quality is unknown. As an alternative, we propose to label the frames
of the training set videos as being good or bad following a classification approach.

6.4.1 Proposed Quality Features

As was mentioned before, there are many quality measures that could be used for
frame selection. Most of these measures are obtained from a single frame [Poh et al.,
2009], however temporal information can also give some insight about the quality.
Since the quality measures come from a sequence of images, a significant variation
between contiguous frames is an interesting feature to consider. For this reason, we
propose to use as additional quality features the first and second time derivatives for
each of the original quality measures. The same argument can be given about the
position of the face. If the position of the face changes too much, it can mean that
there is a high variability in the face detection or that there is actual movement, both
of which can affect recognition performance. Based on this argument we also propose
to use the first and second derivatives of the center and tilt of the face.

6.4.2 Quality Fusion Methods for Frame Selection

There is a large number of methods that could be used for fusing the quality measures.
In fact, this problem could be seen as a two-class classification problem, therefore any
classifier would suffice. On the other hand, there are several methods for fusing multi-
modal biometrics that can be considered as well. In this thesis only four alternatives
are presented that have been chosen based on reasons for expecting good results.
Among the methods tried which are not included are logistic regression and the max,
min, sum and product fusion rules, combined with different normalization schemes
commonly used in biometric score fusion.

The first method being compared is Likelihood Ratio (LR). This method is very
successful when applied to biometric score fusion [Nandakumar et al., 2008]. Theo-

92 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

retically the LR gives an optimal combination of scores, however, this depends on the
correct estimation of the positive and negative score densities. As mentioned above,
standard classifiers can be used as quality fusion methods, in this sense we have con-
sidered two well known classifiers: SVM and k-NN. The last method being compared
is the proposed one SFMA [Villegas and Paredes, 2009], in this case using stochastic
gradient ascend.

For the baseline classification methods, the way the fused scores were defined was
the following. For the SVM, the fused score is given by

f\mathrm{S}\mathrm{V}\mathrm{M}(\bfitz) =
1

2

\biggl(
1 +

d\mathrm{S}\mathrm{V}
1 + | d\mathrm{S}\mathrm{V} |

\biggr)
, (6.16)

where d\mathrm{S}\mathrm{V} is the distance between the input vector \bfitz and the SVM decision boundary,
being this distance positive if it is in the side of the positive scores, otherwise it is
negative. For the 1-NN the fused score is given by

f1-\mathrm{N}\mathrm{N}(\bfitz) =
d - 1(\bfitz , \bfitz \{ 1-\mathrm{N}\mathrm{N}\} P

)

d - 1(\bfitz , \bfitz \{ 1-\mathrm{N}\mathrm{N}\} P
) + d - 1(\bfitz , \bfitz \{ 1-\mathrm{N}\mathrm{N}\} N

)
, (6.17)

where \bfitz \{ 1-\mathrm{N}\mathrm{N}\} P
and \bfitz \{ 1-\mathrm{N}\mathrm{N}\} N

are the nearest neighbors to the training positive and
negative scores respectively. Finally for the k-NN, for the cases that k > 1, the fused
scores are given by

fk-\mathrm{N}\mathrm{N}(\bfitz) =

\left\{
kP - 0.5 +

\sum
\forall \bfitz \prime \in \{ k-\mathrm{N}\mathrm{N}\} P d

 - 1(\bfitz , \bfitz \prime)\sum
\forall \bfitz \prime \prime \in \{ k-\mathrm{N}\mathrm{N}\} d

 - 1(\bfitz , \bfitz \prime \prime)

k - 0.5Nc + 1
if \{ k-NN\} P \not = \{ \emptyset \} ,

0 otherwise .

(6.18)

where \{ k-NN\} P and \{ k-NN\} N are sets composed of the k-NNs belonging to the
positive and negative classes respectively, kP is the number of positive neighbors and
Nc is either Nc = 1 if among the k-NNs there are only positive or negative samples,
or Nc = 2 if there are both positive or negative samples.

6.4.3 Experimental Results

Data set

In order to assess the performance of frame selection by means of quality measures,
we have opted to use the publicly available BANCA database [Bailly-Bailli\'ere et al.,
2003]. This database is a collection of face and voice biometric traits for 260 persons
in 5 different languages, but only the English subset is used here. The latter contains
a total of 52 persons, used for assessing the verification performance, and also contains
an additional 30 subjects known as the world model data set, which is used for learning
the universal background model and estimating global parameters. Therefore for the
current purpose, the adequate approach is to only use the world model data set, which
in total has over 33k samples.

The BANCA database originally does not have any quality measures. However,
for the ICB 2009 Face Verification Competition, a set of quality measures and the face

6.4. ESTIMATION OF QUALITY BY FUSION 93

eye coordinates obtained with the OmniPerception SDK has been made available [Poh
et al., 2009]. Some of the quality measures are dependent of the face detection and
the others are generic ones specified by the MPEG standards. The quality measures
included are the following: 1) Overall reliability, this is the output of a classifier that
has been trained to give an overall quality measure given the other quality values;
2) Brightness; 3) Contrast; 4) Focus; 5) Bits per pixel; 6) Face spatial resolution;
7) Illumination; 8) Background uniformity; 9) Background brightness; 10) Specular
reflection; 11) Presence of glasses; 12) In-plane rotation; 13) In-depth rotation; and
14) Face frontalness. Including the proposed features in section 6.4.1, the data set
has in total 46 quality values per frame.

The frame labeling into the two possible classes, good and bad, was obtained
by means of classification with three different face recognition algorithms, namely
eigenfaces [Turk and Pentland, 1991], fisherfaces [Belhumeur et al., 1997] and Local
Features [Villegas et al., 2008]. For this labeling, as reference we used a single man-
ually selected and cropped image for each of the 30 subjects of the BANCA world
model and also included an additional 104 subjects to make the identification a bit
harder. The frames for which the three algorithms made a correct classification were
labeled as good frames and the others as bad. In the end, about 18k good and 15k
bad frames were obtained.

So that the research community can develop better quality-based frame selection
techniques and compare them with the ones presented in this thesis, this data set has
been left available on the Internet2.

Results

The objective of the task is that given a number of frames, the fused quality should
rank better the good frames than the bad ones. This way good frames will be con-
sidered for the verification process. Based on this, the comparison of the methods is
presented using the probability of ranking a good frame better than a bad one, which
is equivalent to the Area Under the ROC Curve (AUC).

Table 6.2. Comparison of quality fusion methods.

Approach
AUC (\%)

[95\% conf. int.]

Reliability (baseline) 82.4 [81.0 -- 83.8]

LR 83.3 [81.3 -- 85.4]

k-NN 85.5 [83.1 -- 87.8]

SVM 86.6 [84.5 -- 88.7]

SFMA 87.4 [85.5 -- 89.3]

Using the data set presented previously, an experiment was conducted using a 10
time repeated hold-out procedure. For each repetition, approximately three fifths of
the data was used for training, one fifth for development and the remaining for test.
Care was taken so that each video segment was only included in either the training,

2This data set is freely available in http://web.iti.upv.es/\~mvillegas/research/datasets

http://web.iti.upv.es/~mvillegas/research/datasets

94 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

the development or the test sets. Table 6.2 presents the results obtained for each of
the methods being compared. Also included are the corresponding 95\% confidence
intervals estimated using the standard deviation derived from the hold-out procedure.
For the LR method, the GMM fitting software from the authors of [Figueiredo and
Jain, 2002] was used. The data was normalized to zero mean and unit standard
deviation, without this normalization the results were considerably worse. For SVM,
the LIBSVM software package was used [Chang and Lin, 2001], and for normalizing
the data, the included svm-scale tool was employed. Because of resource constraints,
only the linear and the Gaussian kernels were tested, and since the results for both
kernels were similar, we only present them for the linear. As a baseline, the best
single quality is used, which was the Overall Reliability.

As can be observed in the table, the four methods presented give better results than
the baseline. The best method is SFMA, although analyzing the confidence intervals
it can be said that it is not significantly better than SVM or k-NN. Nonetheless, a
great advantage of SFMA is that it requires much less computational resources. The
models learned with SVM on average had 5156 support vectors, compared to the 138
parameter models from SFMA.

91

92

93

94

95

1 10 20 30 40 50

A
U
C

(\%
)

Frame Rank

Random

Reliability

LR

SVM

SFMA

k-NN

Figure 6.3. Face verification results for the BANCA Ua protocol using the LF algorithm.

Even though the results in table 6.2 show that the fused qualities obtained are
better, it still remains to confirm that the use of these qualities for frame selection
indeed improve face verification performance. In order to do this, we propose a new
type of curve which is able to show this improvement with the very important property
that it is independent of how many frames are selected or the method employed for

6.5. CONCLUSIONS 95

obtaining the overall biometric score. The curve relates the performance of using
only the i-th ranked frame when sorted by a particular quality measure. A random
selection of frames is represented by a horizontal line, which can be considered to be
the basic baseline. A good fused quality measure should perform better than random
for the first ranked frames and worse for the last, and the more frames there are above
random, the better the fused quality measure is.

Figure 6.3 shows the curves for the fusion methods presented previously. The
Unmatched Adverse configuration (Ua) of the BANCA protocol [Bailly-Bailli\'ere et al.,
2003] was used, the same way as in the ICB 2009 competition [Poh et al., 2009]
where each video segment is composed of 50 frames. As defined by the BANCA
protocol these results are for a 2-fold cross-validation procedure. Although only the
verification AUC for the LF algorithm is presented, similar results are obtained for
other algorithms and measures such as the EER or the WER. The AUC was preferred
since it summarizes all of the ROC curve and not a particular operating point.

Two different analyzes of these results can be done. First analyzing the static
behavior, the first ranked frame of each method is compared with the random selec-
tion. The SFMA, SVM and k-NN methods improve the random baseline, while the
Reliability and the LR fuser do not. Second, the dynamic behavior of the different
methods. In this sense we can analyze the evolution of the performance along the
ranking, comparing it to the ideal case. In the ideal case, the result of the first ranked
frame should be the best, while the performance should monotonically decrease as the
worse frames are selected. This behavior is mainly followed by almost all the methods
but is more remarkable for the SVM, k-NN and SFMA again. The behavior of the LR
algorithm is almost flat showing that this method does not provide a good ranking
in average. These results are quite encouraging, not only the fused qualities improve
the performance of the verification, but also given the fact that these results are for
data not seen during training, it can be noted that the fusion of qualities generalizes
well to unseen data.

It is important to clarify that the results shown in the graph is using only a single
frame. For SVM and SFMA about half of the frames that perform better than a
random selection would be selected first. A further improvement can be obtained
when several frames are used, which depends on how many frames are considered
and how the final verification score is obtained. In this complementary direction of
research there are several works, among them [Argones R\'ua et al., 2008; Bendris et al.,
2009; Stallkamp et al., 2007].

6.5 Conclusions

This chapter presented a novel method for optimizing the parameters of a score fusion
model based on maximizing a goal function related to the Area Under the ROC Curve
(AUC). A score fusion model based on a linear combination of normalized scores was
chosen and the AUC optimization procedure was derived for it.

The proposed algorithm was empirically evaluated using two fusion tasks, the
first one being biometric score fusion and the second one the estimation of quality
for selection of samples. For biometric fusion, three publicly available data sets were

96 CHAPTER 6. RANKING PROBLEMS AND SCORE FUSION

used, the XM2VTS LP1, the BSSR1 Multimodal and the BSSR1 Face. The results
show that the technique works as expected. The AUC is iteratively improved by the
algorithm and the result generalizes well to new data. Also, by maximizing the AUC,
specific operating points on the ROC curve also improve without having to choose
which one will be used in the final system.

For the estimation of quality, the method was evaluated for the fusion of quality
measures such that the resulting quality improves the performance of frame selection
for video face verification. In order to fuse the quality measures, a classification
approach based on an automatic good and bad frame labeling was proposed, and a
comparison of some fusion techniques following this approach was presented. Also
a new type of curve was proposed which effectively shows that the fused quality
measures improve the frame selection performance, this being independent of the
how many frames would be selected or the subsequent biometric fusion employed. The
proposed method SFMA has the interesting property that it is based on a small and
simple model which can be fast to compute and therefore it is adequate for resource
constrained devices. Also in this chapter some quality features specific for face video
were proposed which were observed to have useful information for estimating the
overall quality. Comparing the fusion methods with the ideal case it seems that
there is room for improvement, better quality fusion methods should be developed.
A direction for future research is considering more advanced methods for selecting
frames not just using a quality measure. For instance, the selected frames could be
such that they have a high quality and are not too highly correlated.

Chapter 7

General Conclusions

The work presented in this thesis focused on the topic of learning pattern recognition
models particularly when the feature vectors are high-dimensional. The difficulties
that arise when the feature vectors are high-dimensional were discussed, and different
algorithms were proposed which are designed to work well with a high dimensionality.
Each of the proposed algorithms is targeted at a specific pattern recognition scenario,
namely pattern classification, regression and score fusion have been considered.

In chapter 3, the Learning Discriminative Projections and Prototypes (LDPP) al-
gorithm is presented. This algorithm learns a pattern classification model composed
of a projection base, which is used for dimensionality reduction, and a set of proto-
types optimized for Nearest Neighbor (1-NN) classification. Both the projection base
and prototypes are learned simultaneously so that no discriminative information is
lost by the dimensionality reduction. The empirical results presented show that the
algorithm works considerably well, obtaining comparable or better recognition per-
formance than state-of-the-art techniques. Furthermore, the learned models tend to
be quite computationally efficient.

The topic of extracting additional information from the training data by taking
advantage of possible transformations in the data that are known a priori is covered in
chapter 4. Using tangent vector approximations of these variabilities, it is shown how
additional information can be taken into account for two dimensionality reduction
techniques, Linear Discriminant Analysis (LDA) and Spectral Regression Discrimi-
nant Analysis (SRDA). Experimental results confirm that the additional information
helps considerably, specially in the case when there are few training samples available
in comparison to the dimensionality. Also, it is observed that the obtained dimen-
sionality reduction bases tend to be more robust to the transformations used during
learning. In this chapter also the LDPP algorithm is derived for the tangent distance.
The experimental results also show good transformation invariance properties.

An algorithm similar to the LDPP, although targeted at regression problems,
hence referred to as LDPPR, is presented in chapter 5. This algorithm also simul-
taneously learns a dimensionality reduction base and a set of prototypes, however
the prototypes define a regression function and the optimization is based on a func-
tion related to the mean squared error. For this algorithm, the empirical results are

98 CHAPTER 7. GENERAL CONCLUSIONS

also encouraging, behaving well with high-dimensional feature vectors. The most in-
teresting characteristic is that the learned models tend to be very computationally
efficient.

In chapter 6 the score fusion problem is considered and the Score Fusion by Max-
imizing the AUC (SFMA) algorithm is presented. As the name suggests, the op-
timization is based on maximizing the Area Under the ROC curve (AUC), which is
adequate for several score fusion applications. The algorithm was evaluated using two
applications, biometric score fusion and the fusion of quality measures. In both ap-
plications the results are positive, observing that the AUC improves and generalizing
well to new data. The second application is the most interesting since in practice it
can be high-dimensional. The results show how the algorithm is capable of extracting
the important information from the available features.

As a general comment about all of the algorithms proposed, the following can be
said. All of the algorithms are based on gradient descent, this is particularly due to the
choice of using optimization functions which make it difficult to obtain a closed form
solution or even a globally optimal solution. Nonetheless, it is observed that the use of
each particular optimization function is worth it, since very competitive performance
can be achieved. In this work only simple gradient descent is employed, no more
advanced techniques are used such as quasi-Newton methods, or improvements of
gradient descent such as momentum, annealing, etc. As future work, improvements
of this sort could be considered, however these will mostly speedup the learning phase.
Better recognition performance is not expected, for this reason gradient descent was
enough for optimization. Furthermore, the proposed optimization functions have been
observed to behave well with simple gradient descent, not being common to get stuck
at bad performing local minima.

Summarizing, the main contributions of the thesis are the following:

\bullet It has been shown that simultaneously learning a dimensionality reduction func-
tion and a pattern recognition model with an adequate objective function is a
good strategy for handling high-dimensional tasks.

\bullet The LDPP algorithm which simultaneously learns a linear dimensionality re-
duction base and a small set of prototypes optimized for Nearest Neighbor
classification. This algorithm is capable of giving a low classification error and
a fast classifier in high-dimensional tasks.

\bullet Improved versions of the dimensionality reduction algorithms LDA and SRDA,
which use tangent vectors. These modifications make better use of the available
training data.

\bullet The LDPPR algorithm which simultaneously learns a linear dimensionality re-
duction base and a small set of prototypes optimized for regression. For high-
dimensional tasks a performance comparable to other techniques can be achieved
and also produces very efficient regressors.

\bullet The SFMA algorithm which learns a normalization for each score and a linear
feature combination of the features useful for score fusion. The algorithm maxi-

7.1. DIRECTIONS FOR FUTURE RESEARCH 99

mizes a goal function related to AUC, therefore it is adequate for tasks in which
the AUC is an adequate measure to optimize.

7.1 Directions for Future Research

From the work presented in this thesis, there are several topics which can or should be
further explored. On the other hand, there are also new lines of research that could
be started. This section describes some of these possible lines of future research.

Regarding the LDPP algorithm presented in chapter 3, there are some improve-
ments that can be developed. One interesting improvement could be to device a
method to automatically adjust the target space dimensionality and the number of
prototypes as the algorithm iterates. This would significantly ease the use of the al-
gorithm since it would avoid the need to manually adjust these parameters. Another
modification that could be done to LDPP is for it to use a nonlinear dimensionality
reduction mapping, so that even more complex distributions can be handled. Other
improvements could be to make the algorithm semi-supervised to be used with par-
tially labeled data and to improve the computational complexity of learning so that
it scales better to the number of training samples and dimensionality. On the other
hand, other algorithms targeted at classification problems could be developed using
the same idea of learning the dimensionality reduction function and the classification
model simultaneously. The work would be in the choice of the dimension reduction
function, classification model type and optimization function. For instance, the di-
mensionality reduction could be kernel based, the classification model be a Gaussian
mixture and the goal be the maximization of the AUC.

The results obtained using the tangent vectors presented in chapter 4, are quite
encouraging since more information is obtained without requiring additional training
data. Adequate values for the \gamma parameters that weight each tangent type in the
proposed modifications to LDA and SRDA could potentially lead to better results.
Furthermore, as more tangent types are used, more information is taken into account.
Therefore a method that automatically obtains adequate values for these parameters is
greatly desired. On the other hand, the best tangent vectors available at the moment
are only defined for image tasks. Developing methods to estimate tangent vectors for
other types of problems could also be an interesting line of future research.

The directions for future research related to the LDPPR algorithm presented in
chapter 5, are very similar to the ones proposed for LDPP. Most importantly, work is
needed to find a better regression function and an optimization function so that the
algorithm achieves performance comparable to other state-of-the-art techniques. The
SFMA algorithm presented in chapter 6 is slightly different to LDPP and LDPPR,
nonetheless the possible improvements are also similar. In order for the algorithm
to handle more complex data distributions, the fusion model must be modified. A
simple linear combination of scores is not enough for more difficult problems. Another
improvement could be to have a model that takes into account a quality measure
associated to each of the scores. Not directly related to the algorithm, future work
could be done for the task of selecting a few frames for video face verification. For

100 CHAPTER 7. GENERAL CONCLUSIONS

instance, the selected frames could be such that they have a high quality and are not
too highly correlated.

7.2 Scientific Publications

Several parts of the work presented in this thesis has been published in international
conferences and journals. In this section, we enumerate these publications pointing
out their relation with the thesis.

The LDPP algorithm presented in chapter 3 was first published in a very presti-
gious international conference. Also, a paper with more details of this algorithm has
been recently published in an international journal. These publications are:

\bullet Villegas, M. and Paredes, R. (2008). Simultaneous learning of a discriminative
projection and prototypes for nearest-neighbor classification. Computer Vision
and Pattern Recognition, 2008. CVPR '08. IEEE Computer Society Conference
on, pages 1--8.

\bullet Villegas, M. and Paredes, R. (2011). Dimensionality Reduction by Minimizing
Nearest-Neighbor Classification Error. Pattern Recognition Letters, 32(4):633--
639.

Regarding the SFMA algorithm presented in chapter 6, two papers were published
in international conferences. The first publication describes the algorithm and was
evaluated with biometric score fusion tasks. In the second publication, the algorithm
is used for the task of video frames selection for face verification. These publications
are the following:

\bullet Villegas, M. and Paredes, R. (2009). Score Fusion by Maximizing the Area
Under the ROC Curve. In 4th Iberian Conference on Pattern Recognition and
Image Analysis, volume 5524 of LNCS, pages 473--480. Springer, P\'ovoa de
Varzim, (Portugal).

\bullet Villegas, M. and Paredes, R. (2010). Fusion of qualities for frame selection
in video face verification. In Pattern Recognition, 2010. ICPR 2010. 20th
International Conference on, pages 1302--1305.

During the realization of the thesis, we participated in two international compe-
titions, both of them on the topic of face verification using video. The submitted
systems used the LDPP and the SFMA algorithms. In both of the competitions,
the results were very positive. In the first competition, the system submitted was
characterized for being among the three best in verification performance, while being
the fastest. In the second competition, the submitted system was the third best in
verification performance. These competitions yielded two publications in conferences
and one in a journal:

\bullet Poh, N., Chan, C. H., Kittler, J., Marcel, S., McCool, C., R\'ua, E. A., Castro, J.
L. A., Villegas, M., Paredes, R., \v Struc, V., Pave\v si\'c, N., Salah, A. A., Fang, H.,
and Costen, N. (2009). Face video competition. In 3rd International Conference
on Biometrics (ICB), volume 5558 of LNCS, pages 715--724. Springer, Alghero,
(Italy).

7.2. SCIENTIFIC PUBLICATIONS 101

\bullet Poh, N., Chan, C. H., Kittler, J., Marcel, S., McCool, C., R\'ua, E. A., Castro,
J. L. A., Villegas, M., Paredes, R., \v Struc, V., Pave\v si\'c, N., Salah, A. A., Fang,
H., and Costen, N. (2010). An evaluation of video-to-video face verification.
Information Forensics and Security, IEEE Transactions on, 5(4):781--801.

\bullet Marcel, S., McCool, C., Mat\v ejka, P., Ahonen, T., \v Cernock\'y, J., Chakraborty,
S., Balasubramanian, V., Panchanathan, S., Chan, C. H., Kittler, J., Poh, N.,
Fauve, B., Glembek, O., Plchot, O., Jan\v c\'{\i}k, Z., Larcher, A., L\'evy, C., Matrouf,
D., Bonastre, J.-F., Lee, P.-H., Hung, J.-Y., Wu, S.-W., Hung, Y.-P., Machlica,
L., Mason, J., Mau, S., Sanderson, C., Monzo, D., Albiol, A., Albiol, A., Nguyen,
H., Li, B., Wang, Y., Niskanen, M., Turtinen, M., Nolazco-Flores, J. A., Garcia-
Perera, L. P., Aceves-Lopez, R., Villegas, M., and Paredes, R. (2010). On the
Results of the First Mobile Biometry (MOBIO) Face and Speaker Verification
Evaluation. In Recognizing Patterns in Signals, Speech, Images, and Videos.
ICPR 2010 Contents, volume 6388 of LNCS, pages 210--225. Springer, Istanbul,
(Turkey).

Other publications obtained during the realization of the thesis describe different
aspects of the face verifications systems submitted to the previously mentioned com-
petitions. Although they are not directly related to the work presented in this thesis,
they are still worth mentioning:

\bullet Villegas, M. and Paredes, R. (2005). Comparison of illumination normaliza-
tion methods for face recognition. In Aladdin Ariyaeeinia, M. F. and Paoloni,
A., editors, Third COST 275 Workshop - Biometrics on the Internet, pages
27--30, University of Hertfordshire, UK. OPOCE.

\bullet Villegas, M. and Paredes, R. (2007). Face Recognition in Color Using Com-
plex and Hypercomplex Representations. In 3rd Iberian Conference on Pat-
tern Recognition and Image Analysis, volume 4477 of LNCS, pages 217--224.
Springer, Girona (Spain).

\bullet Villegas, M. and Paredes, R. (2007). Illumination Invariance for Local Feature
Face Recognition. In 1st Spanish Workshop on Biometrics, pages 1--8, Girona
(Spain). -.

\bullet Villegas, M., Paredes, R., Juan, A., and Vidal, E. (2008). Face verification on
color images using local features. In Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on, pages
1--6, Anchorage, AK, USA. IEEE Computer Society.

\bullet Villegas, M. and Paredes, R. (2010). On optimizing local feature face recog-
nition for mobile devices. In Alfonso Ortega, A. M. and Lleida, E., editors, V
Jornadas de Reconocimiento Biom\'etrico de Personas, pages 177--186, Parque
Tecnol\'ogico WALQA, Huesca, Spain.

Finally, we should mention that other parts of the thesis, namely what is presented
in chapters 4 and 5, will be published in the near future.

Appendix A

Mathematical Derivations

A.1 Chapter 3

A.1.1 Gradients of the Goal Function in LDPP

For the LDPP algorithm the gradients of the goal function (3.5) with respect to the
model parameters \bfitB and \scrP are derived as follows

\nabla \{ \bfitB ,\bfitp \} J\scrX =
1

N

\sum
\forall \bfitx \in \scrX

\nabla \{ \bfitB ,\bfitp \} S\beta (R\bfitx - 1) , (A.1)

=
1

N

\sum
\forall \bfitx \in \scrX

S\prime \beta (R\bfitx - 1)\nabla \{ \bfitB ,\bfitp \} R\bfitx , (A.2)

=
1

N

\sum
\forall \bfitx \in \scrX

S\prime \beta (R\bfitx - 1)

\Biggl(
d(\~\bfitx , \~\bfitp /\in)\nabla \{ \bfitB ,\bfitp \} d(\~\bfitx , \~\bfitp \in) - d(\~\bfitx , \~\bfitp \in)\nabla \{ \bfitB ,\bfitp \} d(\~\bfitx , \~\bfitp /\in)

d2(\~\bfitx , \~\bfitp /\in)

\Biggr)
,

(A.3)

=
1

N

\sum
\forall \bfitx \in \scrX

S\prime \beta (R\bfitx - 1)R\bfitx

\Biggl(
\nabla \{ \bfitB ,\bfitp \} d(\~\bfitx , \~\bfitp \in)

d(\~\bfitx , \~\bfitp \in)
 -

\nabla \{ \bfitB ,\bfitp \} d(\~\bfitx , \~\bfitp /\in)

d(\~\bfitx , \~\bfitp /\in)

\Biggr)
. (A.4)

For the prototypes, the gradients with respect to the distance are different from zero
only in the cases that \bfitp = \bfitp \in and \bfitp = \bfitp /\in . Based on this, the final gradient per
prototype obtained is the one presented in (3.10).

A.1.2 Gradients of the Euclidean Distance in LDPP

The squared Euclidean distance in a subspace defined by \bfitB D\times E for a pair of vectors
can be expressed as

d(\~\bfitx , \~\bfitp) = (\bfitx - \bfitp)\sansT \bfitB \bfitB \sansT (\bfitx - \bfitp) , (A.5)

= \sansT \sansr
\Bigl[
\bfitB \sansT (\bfitx - \bfitp)(\bfitx - \bfitp)\sansT \bfitB

\Bigr]
. (A.6)

104 APPENDIX A. MATHEMATICAL DERIVATIONS

Using equation (100) from [Petersen and Pedersen, 2008], and applying it to (A.6),
the gradient of the distance with respect to \bfitB is

\nabla
\bfitB d(\~\bfitx , \~\bfitp) = (\bfitx - \bfitp)(\bfitx - \bfitp)\sansT \bfitB + [(\bfitx - \bfitp)(\bfitx - \bfitp)\sansT]\sansT \bfitB , (A.7)

= 2(\bfitx - \bfitp)(\bfitx - \bfitp)\sansT \bfitB , (A.8)

= 2(\bfitx - \bfitp)(\~\bfitx - \~\bfitp)\sansT . (A.9)

Now, using equation (73) from [Petersen and Pedersen, 2008], and applying it to
(A.5), the gradient of the distance with respect to \bfitp is

\nabla \bfitp d(\~\bfitx , \~\bfitp) = [\bfitB \bfitB \sansT + (\bfitB \bfitB \sansT)\sansT](\bfitx - \bfitp)\sansT]\sansT \nabla \bfitp (\bfitx - \bfitp) , (A.10)

= - 2\bfitB \bfitB \sansT (\bfitx - \bfitp) , (A.11)

= - 2\bfitB (\~\bfitx - \~\bfitp)\sansT . (A.12)

A.1.3 Gradients of the Cosine Distance in LDPP

The cosine distance in a subspace defined by \bfitB D\times E for a pair of vectors can be
expressed as

d(\~\bfitx , \~\bfitp) = 1 - \bfitx \sansT \bfitB \bfitB \sansT \bfitp

\| \bfitB \sansT \bfitx \| \| \bfitB \sansT \bfitp \|
, (A.13)

= 1 - (\~\bfitx \sansT \~\bfitp)(\~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp) - 1/2 . (A.14)

The gradients of the distance with respect to \bfitB and \bfitp are given by

\nabla d(\~\bfitx , \~\bfitp) = - (\~\bfitx \sansT \~\bfitp)
\Bigl[
\nabla (\~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp) - 1/2

\Bigr]
 -
\Bigl[
\nabla \~\bfitx \sansT \~\bfitp

\Bigr]
(\~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp) - 1/2 , (A.15)

= - (\~\bfitx \sansT \~\bfitp)
\Bigl[
 - 1

2 (\~\bfitx
\sansT \~\bfitx \~\bfitp \sansT \~\bfitp) - 3/2\nabla \~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp

\Bigr]
 -
\Bigl[
\nabla \~\bfitx \sansT \~\bfitp

\Bigr]
(\~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp)1/2 , (A.16)

=

1
2
\~\bfitx \sansT \~\bfitp

\Bigl[
\nabla \~\bfitx \sansT \~\bfitx

\~\bfitx \sansT \~\bfitx
+

\nabla \~\bfitp \sansT \~\bfitp

\~\bfitp \sansT \~\bfitp

\Bigr]
 - \nabla \~\bfitx \sansT \~\bfitp

(\~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp)1/2
. (A.17)

Using equation (74) from [Petersen and Pedersen, 2008] it can be deduced that

\nabla
\bfitB
\~\bfitx \sansT \~\bfitp = \bfitx \~\bfitp \sansT + \bfitp \~\bfitx \sansT , (A.18)

\nabla
\bfitB
\~\bfitx \sansT \~\bfitx = 2\bfitx \~\bfitx \sansT , (A.19)

\nabla
\bfitB
\~\bfitp \sansT \~\bfitp = 2\bfitp \~\bfitp \sansT , (A.20)

A.1. CHAPTER 3 105

then, the gradient of the distance with respect to \bfitB can be developed further from
(A.17) to be

\nabla
\bfitB d(\~\bfitx , \~\bfitp) =

1
2
\~\bfitx \sansT \~\bfitp

\Bigl[
2\bfitx \~\bfitx \sansT

\~\bfitx \sansT \~\bfitx
+ 2\bfitp \~\bfitp \sansT

\~\bfitp \sansT \~\bfitp

\Bigr]
 - (\bfitx \~\bfitp \sansT + \bfitp \~\bfitx \sansT)

(\~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp)1/2
, (A.21)

=
\bfitx
\Bigl(

\~\bfitx \sansT \~\bfitp
\| \~\bfitx \| 2 \~\bfitx - \~\bfitp

\Bigr) \sansT
+ \bfitp

\Bigl(
\~\bfitx \sansT \~\bfitp
\| \~\bfitp \| 2 \~\bfitp - \~\bfitx

\Bigr) \sansT
\| \~\bfitx \| \| \~\bfitp \|

, (A.22)

= \bfitx \| \~\bfitx \| - 1
\Bigl(
\^\~\bfitx \sansT \^\~\bfitp \^\~\bfitx - \^\~\bfitp

\Bigr) \sansT
+ \bfitp \| \~\bfitp \| - 1

\Bigl(
\^\~\bfitx \sansT \^\~\bfitp \^\~\bfitp - \^\~\bfitx

\Bigr) \sansT
, (A.23)

where the hat indicates that the magnitude of the vector has been normalized to
unity. With help of equations (61) and (73) from [Petersen and Pedersen, 2008] it
can be deduced that

\nabla \bfitp \~\bfitx
\sansT \~\bfitp = \bfitB \~\bfitx , (A.24)

\nabla \bfitp \~\bfitx
\sansT \~\bfitx = 0 , (A.25)

\nabla \bfitp \~\bfitp
\sansT \~\bfitp = 2\bfitB \~\bfitp , (A.26)

then, the gradient of the distance with respect to \bfitp can be developed further from
(A.17) to be

\nabla \bfitp d(\~\bfitx , \~\bfitp) =

1
2
\~\bfitx \sansT \~\bfitp

\Bigl[
2\bfitB \~\bfitp
\~\bfitp \sansT \~\bfitp

\Bigr]
 - (\bfitB \~\bfitx)

(\~\bfitx \sansT \~\bfitx \~\bfitp \sansT \~\bfitp)1/2
, (A.27)

= \bfitB

\~\bfitx \sansT \~\bfitp
\| \~\bfitp \| 2 \~\bfitp - \~\bfitx

\| \~\bfitx \| \| \~\bfitp \|
, (A.28)

= \bfitB \| \~\bfitp \| - 1
\Bigl(
\^\~\bfitx \sansT \^\~\bfitp \^\~\bfitp - \^\~\bfitx

\Bigr)
. (A.29)

A.1.4 Dependence of the LDPP Parameters on the Distance

Given a couple random vectors \bfsansx ,\bfsansp \in \BbbR D, we want to find a normalization for them
such that the range of the Euclidean distance between these vectors projected by a
matrix \bfitB D\times E : \bfitB \sansT \bfitB = \bfitI , does not depend on the original or target space dimen-
sionalities D and E. If the difference between the normalized vectors in the target
space is given by \^\~\bfita = \bfitB \sansT (\^\bfitx - \^\bfitp), then the objective is that

\sansE
\Bigl[
\^\~\bfita \sansT \^\~\bfita

\Bigr]
\propto const. . (A.30)

106 APPENDIX A. MATHEMATICAL DERIVATIONS

Assuming that the vectors have been previously normalized to have a zero mean and
unit variance, the following can be deduced

\sansE

\Biggl[
E\sum

e=1

\^\~a2e

\Biggr]
\propto const. , (A.31)

E\sum
e=1

\sansE
\Bigl[
(\bfitb \sansT e \^\bfita)

2
\Bigr]
\propto const. , (A.32)

E\sum
e=1

FeD \propto const. , (A.33)

FDE \propto const. , (A.34)

F =
1

DE
. (A.35)

A.1.5 Normalization Compensation

If for the LDPP algorithm the data is normalized using equation (3.40), this normal-
ization can be made transparent to the user by compensating for it in the model. For
the prototypes it is as simple as doing the inverse of the normalization, i.e.

\bfitP =
\surd
DE\bfitsigma 1\sansT \bullet \^\bfitP + \bfitmu 1\sansT . (A.36)

On the other hand, for the projection base the following can be deduced

\~\bfitx = \^\bfitB
\sansT
\^\bfitx , (A.37)

= \^\bfitB
\sansT
\Bigl[
(
\surd
DE\bfitsigma) - 1 \bullet (\bfitx - \bfitmu)

\Bigr]
, (A.38)

= \^\bfitB
\sansT
\Bigl[
(
\surd
DE\bfitsigma) - 1 \bullet \bfitx

\Bigr]
 - \~\bfitmu , (A.39)

=
\Bigl(
(
\surd
DE\bfitsigma) - 11\sansT \bullet \^\bfitB

\Bigr) \sansT
\bfitx - \~\bfitmu , (A.40)

= \bfitB \sansT \bfitx - \~\bfitmu , (A.41)

\bfitB = (
\surd
DE\bfitsigma) - 11\sansT \bullet \^\bfitB . (A.42)

A.2 Chapter 4

A.2.1 The Single Sided Tangent Distance

Suppose that one wants to compute the single sided tangent distance between vectors
\bfita \in \BbbR D and \bfitb \in \BbbR D, having the tangent vectors \bfitV \bfita \in \BbbR D\times L of vector \bfita . In order to
obtain an efficient implementation, the tangent vectors are orthonormalized, in which

case \^\bfitV
\sansT

\bfita
\^\bfitV \bfita = \bfitI .

A.2. CHAPTER 4 107

The single sided tangent distance is given by

d\mathrm{S}\mathrm{T}\mathrm{D}(\bfita , \bfitb) = min
\bfitalpha

d\bfitalpha (\bfita , \bfitb) , (A.43)

d\bfitalpha (\bfita , \bfitb) = \| (\bfita + \^\bfitV \bfita \bfitalpha) - \bfitb \| 2 . (A.44)

Expanding the expressions, we get

d\bfitalpha (\bfita , \bfitb) = \| (\bfita + \^\bfitV \bfita \bfitalpha) - \bfitb \| 2 , (A.45)

= (\bfita + \^\bfitV \bfita \bfitalpha - \bfitb)\sansT (\bfita + \^\bfitV \bfita \bfitalpha - \bfitb) , (A.46)

= (\bfita - \bfitb)\sansT (\bfita - \bfitb) + 2\bfitalpha \sansT \^\bfitV
\sansT

\bfita (\bfita - \bfitb) +\bfitalpha \sansT
�
��
�* \bfitI

\^\bfitV
\sansT

\bfita
\^\bfitV \bfita \bfitalpha . (A.47)

In order to find the minimum, we take the gradient with respect to \bfitalpha and set it equal
to zero, thus obtaining

\nabla \bfitalpha d\bfitalpha (\bfita , \bfitb) = 2 \^\bfitV
\sansT

\bfita (\bfita - \bfitb) + 2\bfitalpha = 0 , (A.48)

\bfitalpha = - \^\bfitV
\sansT

\bfita (\bfita - \bfitb) , (A.49)

which gives us the value of \bfitalpha that presumably minimizes the distance d\bfitalpha (\bfita , \bfitb). Taking
the gradient once more, thus obtaining the laplacian, we find that

\nabla 2
\bfitalpha d\bfitalpha (\bfita , \bfitb) = 2\bfitI , (A.50)

which is positive definite, therefore the solution is a minimum. Finally replacing back
into the expression of the distance we get

d\mathrm{S}\mathrm{T}\mathrm{D}(\bfita , \bfitb) = (\bfita - \bfitb)\sansT (\bfita - \bfitb) - (\bfita - \bfitb)\sansT \^\bfitV \bfita
\^\bfitV

\sansT

\bfita (\bfita - \bfitb) . (A.51)

A.2.2 Principal Component Analysis

In principal component analysis (PCA), the objective is find a matrix \bfitB \in \BbbR D\times D

which diagonalizes the covariance matrix of a random vector \bfsansx . Starting from the
expression for the covariance matrix \Sigma \bfsansy = \Lambda of \bfsansy = \bfitB \sansT \bfsansx , it can be observed that

\Lambda = \sansE
\bigl[
(\bfsansy - \sansE [\bfsansy])(\bfsansy - \sansE [\bfsansy])\sansT

\bigr]
, (A.52)

= \sansE
\Bigl[
(\bfitB \sansT \bfsansx - \sansE [\bfitB

\sansT \bfsansx])(\bfitB \sansT \bfsansx - \sansE [\bfitB
\sansT \bfsansx])\sansT

\Bigr]
, (A.53)

= \sansE
\Bigl[
\bfitB \sansT (\bfsansx - \sansE [\bfsansx])(\bfsansx - \sansE [\bfsansx])\sansT \bfitB

\Bigr]
, (A.54)

= \bfitB \sansT \Sigma \bfsansx \bfitB . (A.55)

Since matrix \bfitB is an orthonormal basis, therefore \bfitB \bfitB \sansT = \bfitI , which leads us to

\Sigma \bfsansx \bfitB = \bfitB \Lambda . (A.56)

108 APPENDIX A. MATHEMATICAL DERIVATIONS

A.2.3 Linear Discriminant Analysis

In linear discriminant analysis, the objective is to find a matrix \bfitB \in \BbbR D\times E which
maximizes the separation between the classes and minimizes the scatter within the
class. One of the possible criterions to achieve this is by

max
\bfitB

J(\bfitB) =
\sansT \sansr (\bfitB \sansT \bfitS b\bfitB)

\sansT \sansr (\bfitB \sansT \bfitS w\bfitB)
. (A.57)

By restricting the solution such that \sansT \sansr (\bfitB \sansT \bfitS w\bfitB) = const., the above optimization
objective can be reformulated using Lagrange multipliers in the following way

min
\bfitB

\scrL \mathrm{J}(\bfitB) = - \sansT \sansr (\bfitB \sansT \bfitS b\bfitB) + \sansT \sansr (\bfitB \sansT \bfitS w\bfitB \Lambda - \Lambda) , (A.58)

where \Lambda is a diagonal matrix with the Lagrange multipliers in the diagonal. In order
to find the minimum, we take the gradient with respect to \bfitB and set it equal to zero,
thus obtaining

\nabla
\bfitB
\scrL \mathrm{J}(\bfitB) = - 2\bfitS b\bfitB + 2\bfitS w\bfitB \Lambda = 0 , (A.59)

\bfitS b\bfitB = \bfitS w\bfitB \Lambda . (A.60)

A.2.4 Between Scatter Matrix Accounting for Tangent Vec-
tors

Suppose we have a random vector \bfsansx , for which if given a sample, the possible transfor-
mations that it could have can be locally approximated by means of tangent vectors
as

\bfsansx t = \bfsansx +
L\sum

l=1

\alpha l\bfsansv l . (A.61)

To find the expected value of a tangent transformed vector, one can use the expecta-
tion operator and integrate over \alpha 1, . . . , \alpha L as follows

\sansE [\bfsansx t] =

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)\sansE [\bfsansx +

L\sum
l=1

\alpha l\bfsansv l]d\alpha 1 . . . d\alpha L , (A.62)

where p(\alpha 1), . . . , p(\alpha L) are the distributions of \alpha 1, . . . , \alpha L. For a given sample of \bfsansx
it can be assumed that as the value of | \alpha l| increases, the distribution tends to zero,
since it is known that the tangent approximation will be less accurate. In the lack
of more information it might be reasonable to also assume that the distributions
p(\alpha 1), . . . , p(\alpha L) are symmetric, in such a case the expected value becomes

\sansE [\bfsansx t] =\sansE [\bfsansx] +

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)

L\sum
l=1

\alpha l \sansE [\bfsansv l]d\alpha 1 . . . d\alpha L\underbrace{} \underbrace{}
=0 \mathrm{o}\mathrm{d}\mathrm{d} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

, (A.63)

=\sansE [\bfsansx] (A.64)

A.2. CHAPTER 4 109

which says that the expected value is not modified by the tangent vectors, a result
which is also quite intuitive.

Since the between scatter matrix in LDA depends only on the expected value
of random vectors, see equation (4.32), then the tangent vectors do not give any
additional information for better estimating it.

A.2.5 Covariance Matrix Accounting for Tangent Vectors

Suppose we have a random vector \bfsansx , for which if given a sample, the possible transfor-
mations that it could have can be locally approximated by means of tangent vectors
as in (A.61). In order to find a better estimation of the covariance matrix, one can
use the expectation operator and integrate over \alpha 1, . . . , \alpha L as follows

cov(\bfsansx t) =

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)\sansE

\bigl[
(\bfsansx t - \sansE [\bfsansx t])(\bfsansx t - \sansE [\bfsansx t])

\sansT
\bigr]
d\alpha 1 . . . d\alpha L , (A.65)

=

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)\sansE

\bigl[
(\bfsansx +

L\sum
l=1

\alpha l\bfsansv l - \sansE [\bfsansx +
L\sum

l=1

\alpha l\bfsansv l])\underbrace{} \underbrace{}
\bfsansy

\bfsansy \sansT
\bigr]
d\alpha 1 . . . d\alpha L .

(A.66)

Assuming that the distributions p(\alpha 1), . . . , p(\alpha L) are symmetrical as in A.2.4, the
previous expression can be simplified as follows

cov(\bfsansx t) = cov(\bfsansx) +

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)\sansE

\bigl[
(

L\sum
l=1

\alpha l\bfsansv l)(
L\sum

l=1

\alpha l\bfsansv l)
\sansT
\bigr]
d\alpha 1 . . . d\alpha L

+

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)

L\sum
l=1

\alpha l \sansE [\bfsansx \bfsansv
\sansT
l + \bfsansv l\bfsansx

\sansT - \bfitmu \bfsansv \sansT l - \bfsansv l\bfitmu
\sansT]d\alpha 1 . . . d\alpha L\underbrace{} \underbrace{}

=0 \mathrm{o}\mathrm{d}\mathrm{d} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

,

(A.67)

= cov(\bfsansx) +

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)

L\sum
l=1

\alpha 2
l \sansE [\bfsansv l\bfsansv

\sansT
l]d\alpha 1 . . . d\alpha L

+

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)

L\sum
l=1

\alpha lf(\bfsansv l, \alpha 1, . . . , \alpha l - 1, \alpha l+1, . . . , \alpha L)d\alpha 1 . . . d\alpha L\underbrace{} \underbrace{}
=0 \mathrm{o}\mathrm{d}\mathrm{d} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

,

(A.68)

= cov(\bfsansx) +
L\sum

l=1

\sansE [\bfsansv l\bfsansv
\sansT
l]

\int \infty

 - \infty
\cdot \cdot \cdot
\int \infty

 - \infty
p(\alpha 1) . . . p(\alpha L)\alpha

2
l d\alpha 1 . . . d\alpha L . (A.69)

110 APPENDIX A. MATHEMATICAL DERIVATIONS

The integration over \alpha 1, . . . , \alpha L simply gives a series of positive constants \gamma 2
1 , . . . , \gamma

2
L

which weight each tangent vector type, thus finally it is obtained

cov(\bfsansx t) = cov(\bfsansx) +
L\sum

l=1

\gamma 2
l \sansE [\bfsansv l\bfsansv

\sansT
l] . (A.70)

A.2.6 Gradients of the Tangent Distance in LDPP

The squared single sided tangent distance in a subspace defined by \bfitB D\times E for a pair
of vectors can be expressed as

d(\~\bfitx , \~\bfitp) = (\bfitx - \bfitp)\sansT
\Bigl(
\bfitB \bfitB \sansT - \bfitB \^\bfitV \^\bfitV

\sansT
\bfitB \sansT
\Bigr)
(\bfitx - \bfitp) , (A.71)

= \sansT \sansr
\Bigl[
\bfitB \sansT (\bfitx - \bfitp)(\bfitx - \bfitp)\sansT \bfitB - \^\bfitV

\sansT
\bfitB \sansT (\bfitx - \bfitp)(\bfitx - \bfitp)\sansT \bfitB \^\bfitV

\Bigr]
. (A.72)

With the help of equation (105) from [Petersen and Pedersen, 2008], and applying it
to (A.72), the gradient of the distance with respect to \bfitB is

\nabla
\bfitB d(\~\bfitx , \~\bfitp) = 2(\bfitx - \bfitp)(\bfitx - \bfitp)\sansT \bfitB - 2(\bfitx - \bfitp)(\bfitx - \bfitp)\sansT \bfitB \^\bfitV \^\bfitV

\sansT
, (A.73)

= 2(\bfitx - \bfitp)(\~\bfitx - \~\bfitp)\sansT
\Bigl(
\bfitI - \^\bfitV \^\bfitV

\sansT
\Bigr)

, (A.74)

= 2(\bfitx - \bfitp)
\Bigl[\Bigl(

\bfitI - \^\bfitV \^\bfitV
\sansT
\Bigr)
(\~\bfitx - \~\bfitp)

\Bigr]
. (A.75)

Now, using equation (73) from [Petersen and Pedersen, 2008], and applying it to
(A.71), the gradient of the distance with respect to \bfitp is

\nabla \bfitp d(\~\bfitx , \~\bfitp) = - 2
\Bigl(
\bfitB \bfitB \sansT - \bfitB \^\bfitV \^\bfitV

\sansT
\bfitB \sansT
\Bigr)
(\bfitx - \bfitp) , (A.76)

= - 2\bfitB
\Bigl(
\bfitI - \^\bfitV \^\bfitV

\sansT
\Bigr)
(\~\bfitx - \~\bfitp) , (A.77)

= - 2\bfitB
\Bigl(
(\~\bfitx - \~\bfitp) - \^\bfitV

\Bigl[
\^\bfitV

\sansT
(\~\bfitx - \~\bfitp)

\Bigr] \Bigr)
. (A.78)

This gradient is exact if the tangent vectors are for the sample vector \bfitx , however if
the tangent are for the prototype \bfitp , then this gradient can only be considered an
approximation since the relationship between \^\bfitV and \bfitp has been disregarded.

To obtain the gradients for the average single sided tangent distance, the procedure
is very similar, and it has been omitted in order to avoid redundancy.

A.3. CHAPTER 5 111

A.3 Chapter 5

A.3.1 Gradients of the Goal Function in LDPPR

For the LDPPR algorithm the gradients of the goal function (5.8) with respect to the
model parameters \theta = \{ \bfitB ,\scrP ,\scrF \scrP \} and are derived as follows

\nabla
\theta J =

1

N

\sum
\forall \bfitx \in \scrX

\nabla
\theta
tanh

\bigl(
\beta \| \bfitf \bfitx - \bfitf \theta (\bfitx)\| 2

\bigr)
, (A.79)

=
1

N

\sum
\forall \bfitx \in \scrX

sech2
\bigl(
\beta \| \bfitdelta \bfitx \| 2

\bigr)
\nabla
\theta
\beta \| \bfitdelta \bfitx \| 2 , (A.80)

=
2\beta

N

\sum
\forall \bfitx \in \scrX

sech2
\bigl(
\beta \| \bfitdelta \bfitx \| 2

\bigr) C\sum
c=1

\delta c,\bfitx
\bigl(
 - \nabla

\theta
fc\theta (\bfitx)

\bigr)
. (A.81)

This result is general for all of the model parameters \theta . The gradients of the regression
function \bfitf \theta (\bfitx) with respect to the parameters \bfitB and \scrP are given by

\nabla
\theta
fc\theta (\bfitx) =

M\sum
m=1

\nabla
\theta

d - 1(\~\bfitx , \~\bfitp m)fc,\bfitp m

S
, (A.82)

=

M\sum
m=1

S\nabla
\theta d

 - 1(\~\bfitx , \~\bfitp m)fc,\bfitp m
 - d - 1(\~\bfitx , \~\bfitp m)fc,\bfitp m

\nabla
\theta
S

S2
, (A.83)

=
1

S2

M\sum
m=1

M\sum
m\prime =1

S\nabla
\theta d

 - 1(\~\bfitx , \~\bfitp m)fc,\bfitp m
 - d

 - 1(\~\bfitx , \~\bfitp m)fc,\bfitp m
\nabla
\theta d

 - 1(\~\bfitx , \~\bfitp m\prime) ,

(A.84)

=
1

S2

M\sum
m=1

M\sum
m\prime =1

S\nabla
\theta d

 - 1(\~\bfitx , \~\bfitp m)fc,\bfitp m
 - d

 - 1(\~\bfitx , \~\bfitp m\prime)fc,\bfitp m\prime \nabla \theta d
 - 1(\~\bfitx , \~\bfitp m) ,

(A.85)

=
1

S

M\sum
m=1

\Biggl(
fc,\bfitp m

 -
M\sum

m\prime =1

d - 1(\~\bfitx , \~\bfitp m\prime)fc,\bfitp m\prime

S

\Biggr)
\nabla
\theta d

 - 1(\~\bfitx , \~\bfitp m) , (A.86)

=
1

S

M\sum
m=1

fc,\bfitp m
 - fc\theta (\bfitx)

d2(\~\bfitx , \~\bfitp m)
\nabla
\theta d(\~\bfitx , \~\bfitp m) , (A.87)

=
1

S

M\sum
m=1

\delta c,\bfitp m

d2(\~\bfitx , \~\bfitp m)
\nabla
\theta d(\~\bfitx , \~\bfitp m) . (A.88)

Then substituting into (A.81) leaves the gradients of the goal function as

\nabla \{ \bfitB ,\bfitp \} J = - 2\beta

N

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfitp \in \scrP

sech2(\beta \| \bfitdelta \bfitx \| 2)
d2(\~\bfitx , \~\bfitp) \cdot S

\Biggl(
C\sum

c=1

\delta c,\bfitx \delta c,\bfitp

\Biggr)
\nabla \{ \bfitB ,\bfitp \} d(\~\bfitx , \~\bfitp) , (A.89)

112 APPENDIX A. MATHEMATICAL DERIVATIONS

On the other hand, the gradient of the regression function with respect to \scrF \scrP is given
by

\nabla
\bfitf c,\bfitp m

fc\theta (\bfitx) =

M\sum
m\prime =1

\nabla
\bfitf c,\bfitp

d - 1(\~\bfitx , \~\bfitp m\prime)fc,\bfitp m\prime

S
, (A.90)

=
d - 1(\~\bfitx , \~\bfitp m)

S
, (A.91)

(A.92)

which as can be observed is the same for all c in fc,\bfitp m
. Alternatively, so that the

gradient with respect to fc,\bfitp m
is specific for each c we can consider separately the

optimization function for each c in fc,\bfitp m
. By doing this we obtain the gradient of the

goal function as

\nabla
fc,\bfitp m

J = - 2\beta

N

\sum
\forall \bfitx \in \scrX

sech2(\beta \| \bfitdelta \bfitx \| 2)
d2(\~\bfitx , \~\bfitp m) \cdot S

\delta c,\bfitx . (A.93)

A.4 Chapter 6

A.4.1 Gradients of the Goal Function in SFMA

For the SFMA algorithm the gradients of the goal function (6.5) with respect to the
model parameters \theta = \{ \bfitu ,\bfitv ,\bfitw \} are derived as follows

\nabla
\theta J\scrX ,\scrY =

1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

\nabla
\theta
S\beta
\bigl(
\bfitw \sansT (\^\bfitx - \^\bfity)

\bigr)
, (A.94)

=
1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\prime \beta
\bigl(
\bfitw \sansT (\^\bfitx - \^\bfity)

\bigr)
\nabla
\theta
\bfitw \sansT (\^\bfitx - \^\bfity) . (A.95)

From equation (A.95), it is trivial to obtain the gradient with respect to \bfitw , which
turns out to be

\nabla \bfitw J\scrX ,\scrY =
1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\prime \beta
\bigl[
\bfitw \sansT (\^\bfitx - \^\bfity)

\bigr]
(\^\bfitx - \^\bfity) . (A.96)

In the case of \bfitu it can be deduced that

\nabla um
\bfitw \sansT \bfitphi (\bfitz) = - wm(vm - zm) exp (um(vm - zm)) [1 + exp (um(vm - zm))]

 - 2
,

(A.97)

= - wm(vm - zm)\phi \prime
m(\bfitz) , (A.98)

\nabla \bfitu \bfitw
\sansT \bfitphi (\bfitz) = \bfitw \bullet (\bfitz - \bfitv) \bullet \bfitphi \prime (\bfitz) , (A.99)

and in the case of \bfitv it can be deduced that

\nabla vm
\bfitw \sansT \bfitphi (\bfitz) = - wmum exp (um(vm - zm)) [1 + exp (um(vm - zm))]

 - 2
, (A.100)

= - wmum\phi \prime
m(\bfitz) , (A.101)

\nabla \bfitv \bfitw
\sansT \bfitphi (\bfitz) = \bfitw \bullet \bfitu \bullet (\bfitz - \bfitv) \bullet \bfitphi \prime (\bfitz) , (A.102)

A.4. CHAPTER 6 113

then after substituting in equation (A.95), it is found that the gradients of the goal
function with respect to \bfitu and \bfitv are given respectively by

\nabla \bfitu J\scrX ,\scrY = \bfitw \bullet 1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\prime \beta
\bigl(
\bfitw \sansT (\^\bfitx - \^\bfity)

\bigr)
\bullet
\bigl[
(\bfitx - \bfitv) \bullet \bfitphi \prime (\bfitx) - (\bfity - \bfitv) \bullet \bfitphi \prime (\bfity)

\bigr]
,

(A.103)

\nabla \bfitv J\scrX ,\scrY = \bfitw \bullet \bfitu \bullet 1

PN

\sum
\forall \bfitx \in \scrX

\sum
\forall \bfity \in \scrY

S\prime \beta
\bigl(
\bfitw \sansT (\^\bfitx - \^\bfity)

\bigr)
\bullet
\bigl[
\bfitphi \prime (\bfity) - \bfitphi \prime (\bfitx)

\bigr]
. (A.104)

A.4.2 Constraints in SFMA

Formally, the maximization of a cost function J(\bfitw) under the particular constraints

that
\sum M

m=1 wm = 1 and wm \geq 0 : m = 1, . . . ,M , can be stated as follows

\bfitw \ast = max
\bfitw

J(\bfitw) = f(\bfitw) s.t. \bfitw \sansT 1 = 1, wm \geq 0 : m = 1, . . . ,M . (A.105)

This optimization problem is equivalent to

\bfitw \ast = max
\bfitw

\scrL \mathrm{J}(\bfitw) = f(\bfitw) +
\bigl(
\bfitw \sansT 1 - 1

\bigr)
\lambda 0 +\bfitw \sansT \bfitlambda , (A.106)

where \bfitlambda \sansT = [\lambda 1, . . . , \lambda M] and \lambda m > 0 : m = 1, . . . ,M . The Karush-Kuhn-Tucker
(KKT) conditions are (\bfitw \sansT 1 - 1)\lambda 0 = 0 and wm\lambda m = 0 : m = 1, . . . ,M . Taking the
gradient of \scrL \mathrm{J}(\bfitw) with respect to \bfitw , we obtain

\nabla \bfitw \scrL \mathrm{J}(\bfitw) = \nabla \bfitw f(\bfitw) + 1\lambda 0 + \bfitlambda . (A.107)

When optimizing \bfitw with gradient ascend, the update equation is given by

\bfitw (t+1) = \bfitw (t) + \gamma (\nabla \bfitw f(\bfitw) + 1\lambda 0 + \bfitlambda) . (A.108)

Since wm\lambda m = 0, it is deduced that for all the weights that w
(t+1)
m > 0 we get \lambda m = 0.

For the other weights, that is when w
(t+1)
m = 0, we obtain

\lambda m = - \gamma - 1wm - gm - \lambda 0 , (A.109)

where \gamma is the learning factor and gm is the m-th element of \bfitg = \nabla \bfitw f(\bfitw). Now the
sum of all of the weights we should be equal to one, i.e. 1\sansT \bfitw (t+1) = 1, then after
substituting \bfitlambda and solving for \lambda 0 we get

\lambda 0 = - 1

N\gamma

\left(1 -
\sum

\forall n:w(t+1)
n >0

(wn + \gamma gn)

\right) , (A.110)

114 APPENDIX A. MATHEMATICAL DERIVATIONS

where N is the number of weights grater than zero w
(t+1)
m > 0. Finally replacing back

into the update equation we obtain

w(t+1)
m =

\left\{
w(t)

m + \gamma gm +
1

N

\left(1 -
\sum

\forall n:w(t)
n +\gamma gn>0

(w(t)
n + \gamma gn)

\right) if w
(t)
m + \gamma gm > 0 ,

0 otherwise .

(A.111)

As can be observed, using the constraints is the same as optimizing without the
constraints and after each update setting all the negative weights to zero and adding
a constant to all positive weights so that their sum is equal to one.

Bibliography

Abrudan, T., Eriksson, J., and Koivunen, V. (2008). Steepest descent algorithms for
optimization under unitary matrix constraint. Signal Processing, IEEE Transac-
tions on, 56(3):1134 --1147. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 20 \mathrm{a}\mathrm{n}\mathrm{d} 21)

Adragni, K. P. and Cook, R. D. (2009). Sufficient dimension reduction and prediction
in regression. Philosophical Transactions of the Royal Society of London, Series A:
Mathematical, Physical and Engineering Sciences, 367(1906):4385--4405. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 67 \mathrm{a}\mathrm{n}\mathrm{d} 68)

Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face description with local binary
patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
28(12):2037--2041. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 59)

Argones R\'ua, E., Alba Castro, J. L., and Garc\'{\i}a Mateo, C. (2008). Quality-based
score normalization and frame selection for video-based person authentication. In
Biometrics and Identity Management: First European Workshop, BIOID 2008,
Roskilde, Denmark, May 7-9, 2008. Revised Selected Papers, pages 1--9, Berlin,
Heidelberg. Springer-Verlag. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 95)

Asuncion, A. and Newman, D. (2007). UCI machine learning repository. http://

www.ics.uci.edu/\~mlearn/MLRepository.html. University of California, Irvine,
School of Information and Computer Sciences. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 28, 30, 73, \mathrm{a}\mathrm{n}\mathrm{d} 74)

Bailly-Bailli\'ere, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mari\'ethoz, J.,
Matas, J., Messer, K., Popovici, V., Por\'ee, F., Ru\'{\i}z, B., and Thiran, J.-P. (2003).
The BANCA database and evaluation protocol. In AVBPA, pages 625--638. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 33, 92, \mathrm{a}\mathrm{n}\mathrm{d} 95)

Banks, D. L., Bickel, P. J., Johnstone, I. M., and Titterington, D. M. (2009). Statis-
tical challenges of high-dimensional data. Philosophical Transactions of the Royal
Society of London, Series A: Mathematical, Physical and Engineering Sciences,
367(1906):4235--4470. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

Belhumeur, P., Hespanha, J., and Kriegman, D. (Jul 1997). Eigenfaces vs. fisherfaces:
recognition using class specific linear projection. Transactions on Pattern Analysis
and Machine Intelligence, 19(7):711--720. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 93)

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

116 BIBLIOGRAPHY

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University
Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 1)

Bendris, M., Charlet, D., and Chollet, G. (2009). Introduction of quality measures
in audio-visual identity verification. In Acoustics, Speech and Signal Processing.
ICASSP'09. IEEE International Conference on, pages 1913--1916. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 95)

Bengio, S., Mari\'ethoz, J., and Keller, M. (2005). The expected performance curve.
In Proceedings of the Second Workshop on ROC Analysis in ML, pages 9--16. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 88)

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University
Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 7 \mathrm{a}\mathrm{n}\mathrm{d} 66)

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

Bressan, M. and Vitri\`a, J. (2003). Nonparametric discriminant analysis and nearest
neighbor classification. Pattern Recognition Letters, 24(15):2743--2749. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 10, 26, 33, 51, \mathrm{a}\mathrm{n}\mathrm{d} 57)

Buchala, S., Davey, N., Frank, R., and Gale, T. (22-24 June 2004). Dimensionality
reduction of face images for gender classification. Intelligent Systems, 2004. Pro-
ceedings. 2004 2nd International IEEE Conference, 1:88--93 Vol.1. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Buenaposada, J., M. Mu\~noz, E., and Baumela, L. (2008). Recognising facial ex-
pressions in video sequences. Pattern Anal. Appl., 11(1):101--116. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 35

\mathrm{a}\mathrm{n}\mathrm{d} 36)

Cai, D., He, X., and Han, J. (2008). Srda: An efficient algorithm for large-scale
discriminant analysis. IEEE Trans. on Knowl. and Data Eng., 20(1):1--12. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 9, 51, 52, \mathrm{a}\mathrm{n}\mathrm{d} 53)

Cai, D., He, X., Hu, Y., Han, J., and Huang, T. (2007a). Learning a spatially smooth
subspace for face recognition. Computer Vision and Pattern Recognition, 2007.
CVPR '07. IEEE Conference on, pages 1--7. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Cai, D., He, X., Zhou, K., Han, J., and Bao, H. (2007b). Locality sensitive discrimi-
nant analysis. In IJCAI, pages 708--713. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 26 \mathrm{a}\mathrm{n}\mathrm{d} 57)

Carreira-Perpi\~n\'an, M. A. (1997). A review of dimension reduction techniques. Tech-
nical report cs 96 09, University of Sheffield. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/\~cjlin/libsvm. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 26, 74, \mathrm{a}\mathrm{n}\mathrm{d} 94)

Collobert, R., Bengio, S., and Mari\'ethoz, J. (2002). Torch: a modular machine
learning software library. Technical Report IDIAP-RR 02-46, IDIAP. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 74)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 117

Comon, P. (1994). Independent component analysis, a new concept? Signal Process.,
36:287--314. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Cook, R. D. (2000). Save: a method for dimension reduction and graphics in regres-
sion. Communications in Statistics - Theory and Methods, 29(9):2109--2121. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 67)

Cook, R. D. (2007). Fisher lecture: Dimension reduction in regression. Statist. Sci.,
22(1):1--26. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 68)

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273--297. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 7)

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K.,
and Slattery, S. (1998). Learning to extract symbolic knowledge from the world
wide web. In AAAI '98/IAAI '98: Proceedings of the fifteenth national/tenth con-
ference on Artificial intelligence/Innovative applications of artificial intelligence,
pages 509--516, Menlo Park, CA, USA. American Association for Artificial Intelli-
gence. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 38)

Dahmen, J., Keysers, D., Ney, H., and G\"uld, M. O. (2001). Statistical image object
recognition using mixture densities. J. Math. Imaging Vis., 14(3):285--296. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 43 \mathrm{a}\mathrm{n}\mathrm{d} 44)

de Ridder, D., Kouropteva, O., Okun, O., Pietik\"ainen, M., and Duin, R. P. W. (2003).
Supervised locally linear embedding. In ICANN, pages 333--341. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Donato, G., Bartlett, M., Hager, J., Ekman, P., and Sejnowski, T. (Oct 1999). Clas-
sifying facial actions. Transactions on Pattern Analysis and Machine Intelligence,
21(10):974--989. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 35)

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., and Vapnik, V. (1996).
Support vector regression machines. In Advances in Neural Information Processing
Systems 9, NIPS, pages 155--161. MIT Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification. Wiley-
Interscience, 2nd edition. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 6, 7, 11, 44, \mathrm{a}\mathrm{n}\mathrm{d} 45)

Edelman, A., Arias, T. A., Smith, S. T., As, T., Arias, A., Steven, and Smith, T.
(1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix
Anal. Appl, 20:303--353. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 20)

FG-NET consortium (2004). The FG-NET aging database. Published Online, http:
//www.fgnet.rsunit.com. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 76)

Figueiredo, M. and Jain, A. (2002). Unsupervised learning of finite mixture models.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(3):381--396.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 94)

Fodor, I. (2002). A survey of dimension reduction techniques. Technical report, Center
for Applied Scientific Computing. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

http://www.fgnet.rsunit.com
http://www.fgnet.rsunit.com

118 BIBLIOGRAPHY

Fowlkes, C. C., Martin, D. R., and Malik, J. (2007). Local figure-ground cues are
valid for natural images. Journal of Vision, 7(8). (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 26 \mathrm{a}\mathrm{n}\mathrm{d} 57)

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of
Statistics, 19(1):1--67. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality reduction for
supervised learning with reproducing kernel hilbert spaces. Journal of Machine
Learning Research, 5:73--99. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 67)

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic Press,
2nd edition. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 6, 7, 8, 9, 49, \mathrm{a}\mathrm{n}\mathrm{d} 50)

Fukunaga, K. and Olsen, D. R. (1971). An algorithm for finding intrinsic dimension-
ality of data. IEEE Trans. Comput., 20(2):176--183. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 1 \mathrm{a}\mathrm{n}\mathrm{d} 8)

Globerson, A. and Roweis, S. T. (2005). Metric learning by collapsing classes. In
NIPS. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 10)

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2005). Neighbourhood
components analysis. In Saul, L. K., Weiss, Y., and Bottou, L., editors, Advances in
Neural Information Processing Systems 17, pages 513--520. MIT Press, Cambridge,
MA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 10, 12, \mathrm{a}\mathrm{n}\mathrm{d} 30)

Graf, A. B. A. and Wichmann, F. A. (2002). Gender classification of human faces.
In BMCV '02: Proceedings of the Second International Workshop on Biologically
Motivated Computer Vision, pages 491--500, London, UK. Springer-Verlag. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Gutschoven, B. and Verlinde, P. (2000). Multi-modal identity verification using sup-
port vector machines (svm). Information Fusion, 2000. FUSION 2000. Proceedings
of the Third International Conference on, 2:THB3/3--THB3/8 vol.2. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 82)

He, X. and Niyogi, P. (2004). Locality preserving projections. In Thrun, S., Saul, L.,
and Sch\"olkopf, B., editors, Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge, MA. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 9 \mathrm{a}\mathrm{n}\mathrm{d} 30)

Hoerl, A. E., Kennard, R. W., and Hoerl, R. W. (1985). Practical use of ridge
regression: a challenge met. Applied Statistics, 34(2):114--120. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

Howland, P. and Park, H. (Aug. 2004). Generalizing discriminant analysis using the
generalized singular value decomposition. Transactions on Pattern Analysis and
Machine Intelligence, 26(8):995--1006. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

Jain, A., Nandakumar, K., and Ross, A. (2005). Score normalization in multimodal
biometric systems. Pattern Recognition, 38(12):2270--2285. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 24, 82,

\mathrm{a}\mathrm{n}\mathrm{d} 83)

Jolliffe, I. T. (1982). A note on the use of principal components in regression. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 31(3). (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 67)

BIBLIOGRAPHY 119

Kanade, T., Tian, Y., and Cohn, J. F. (2000). Comprehensive database for facial
expression analysis. In FG '00: Proceedings of the Fourth IEEE International
Conference on Automatic Face and Gesture Recognition 2000, page 46, Washington,
DC, USA. IEEE Computer Society. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 35)

Keysers, D., Macherey, W., Ney, H., and Dahmen, J. (2004). Adaptation in sta-
tistical pattern recognition using tangent vectors. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(2):269--274. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 43, 45, \mathrm{a}\mathrm{n}\mathrm{d} 48)

Kim, H., Drake, B. L., and Park, H. (2007). Multiclass classifiers based on dimension
reduction with generalized lda. Pattern Recogn., 40(11):2939--2945. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43(1):59--69. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Krishnapuram, B., Carin, L., Figueiredo, M., and Hartemink, A. (2005). Sparse
multinomial logistic regression: fast algorithms and generalization bounds. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 27(6):957--968. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 7)

Lanitis, A., Taylor, C., and Cootes, T. (2002). Toward automatic simulation of
aging effects on face images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(4):442 --455. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 47)

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association, 86(414):316--327. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 67)

Li, M. and Yuan, B. (2005). 2d-lda: A statistical linear discriminant analysis for
image matrix. Pattern Recognition Letters, 26(5):527--532. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

Ling, C. X., Huang, J., and Zhang, H. (2003). Auc: a statistically consistent and
more discriminating measure than accuracy. In Proc. of IJCAI 2003, pages 519--
524. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 82)

L.J.P. van der Maaten (2007). An introduction to dimensionality reduction using
matlab. Technical report micc 07-07, Maastricht University. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 9 \mathrm{a}\mathrm{n}\mathrm{d} 27)

Luettin, J. and Ma\^{\i}tre, G. (1998). Evaluation Protocol for the extended M2VTS
Database (XM2VTSDB). IDIAP-COM 05, IDIAP. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 87)

Ma, Y., Cukic, B., and Singh, H. (2005). A classification approach to multi-biometric
score fusion. In AVBPA, pages 484--493. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 82)

Marcel, S., McCool, C., Mat\v ejka, P., Ahonen, T., \v Cernock\'y, J., Chakraborty, S., Bal-
asubramanian, V., Panchanathan, S., Chan, C. H., Kittler, J., Poh, N., Fauve, B.,
Glembek, O., Plchot, O., Jan\v c\'{\i}k, Z., Larcher, A., L\'evy, C., Matrouf, D., Bonastre,
J.-F., Lee, P.-H., Hung, J.-Y., Wu, S.-W., Hung, Y.-P., Machlica, L., Mason, J.,
Mau, S., Sanderson, C., Monzo, D., Albiol, A., Albiol, A., Nguyen, H., Li, B.,
Wang, Y., Niskanen, M., Turtinen, M., Nolazco-Flores, J. A., Garcia-Perera, L. P.,
Aceves-Lopez, R., Villegas, M., and Paredes, R. (2010). On the Results of the First

120 BIBLIOGRAPHY

Mobile Biometry (MOBIO) Face and Speaker Verification Evaluation. In Recogniz-
ing Patterns in Signals, Speech, Images, and Videos. ICPR 2010 Contents, volume
6388 of LNCS, pages 210--225. Springer Berlin / Heidelberg, Istanbul, (Turkey).
(\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Marrocco, C., Molinara, M., and Tortorella, F. (2006). Exploiting auc for optimal
linear combinations of dichotomizers. Pattern Recognition Letters, 27(8):900--907.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 83)

Martinez, A. and Benavente, R. (1998). The AR face database. CVC technical report
\#24. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Masip, D. and Vitri\`a, J. (2006). Boosted discriminant projections for nearest neighbor
classification. Pattern Recognition, 39(2):164--170. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Maurer, D. E. and Baker, J. P. (2008). Fusing multimodal biometrics with quality
estimates via a bayesian belief network. Pattern Recognition, 41(3):821--832. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 82 \mathrm{a}\mathrm{n}\mathrm{d} 87)

Messer, K., Matas, J., Kittler, J., Luettin, J., and Maitre, G. (1999). XM2VTSDB:
The extended M2VTS database. In Chellapa, R., editor, Second International
Conference on Audio and Video-based Biometric Person Authentication, pages 72--
77, Washington, USA. University of Maryland. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Meyer, M. (1989). StatLib. http://lib.stat.cmu.edu/datasets. Department of
Statistics, Carnegie Mellon University. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 73 \mathrm{a}\mathrm{n}\mathrm{d} 74)

Mika, S., R\"atsch, G., Weston, J., Sch\"olkopf, B., and M\"uller, K.-R. (1999). Fisher dis-
criminant analysis with kernels. In Hu, Y.-H., Larsen, J., Wilson, E., and Douglas,
S., editors, Neural Networks for Signal Processing IX, pages 41--48. IEEE. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Nandakumar, K., Chen, Y., Dass, S. C., and Jain, A. (Feb. 2008). Likelihood ratio-
based biometric score fusion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 30(2):342--347. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 82, 87, \mathrm{a}\mathrm{n}\mathrm{d} 91)

National Institute of Standards and Technology (2004). NIST Biometric Scores Set -
Release 1 (BSSR1). http://www.itl.nist.gov/iad/894.03/biometricscores/.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 87)

Nefian, A. V. and Hayes, M. H. (2000). Maximum likelihood training of the embedded
hmm for face detection and recognition. In Image Processing, 2000. Proceedings.
2000 International Conference on, volume 1, pages 33--36. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Pantic, M. and Rothkrantz, L. (Dec 2000). Automatic analysis of facial expressions:
the state of the art. Transactions on Pattern Analysis and Machine Intelligence,
22(12):1424--1445. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 35)

Paredes, R. and Vidal, E. (2006a). Learning prototypes and distances: a prototype
reduction technique based on nearest neighbor error minimization. Pattern Recog-
nition, 39(2):180--188. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 7 \mathrm{a}\mathrm{n}\mathrm{d} 14)

http://lib.stat.cmu.edu/datasets
http://www.itl.nist.gov/iad/894.03/biometricscores/

BIBLIOGRAPHY 121

Paredes, R. and Vidal, E. (2006b). Learning weighted metrics to minimize nearest-
neighbor classification error. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(7):1100--1110. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 7, 12, 14, 15, \mathrm{a}\mathrm{n}\mathrm{d} 69)

Perez-Jimenez, A. J. and Perez-Cortes, J. C. (2006). Genetic algorithms for linear
feature extraction. Pattern Recognition Letters, 27(13):1508--1514. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 30)

Petersen, K. B. and Pedersen, M. S. (2008). The matrix cookbook. Version 20081110.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 104, 105, \mathrm{a}\mathrm{n}\mathrm{d} 110)

Phillips, P. J., Flynn, P. J., Beveridge, J. R., Scruggs, W. T., O'Toole, A. J., Bolme,
D. S., Bowyer, K. W., Draper, B. A., Givens, G. H., Lui, Y. M., Sahibzada, H.,
Scallan, J. A., and Weimer, S. (2009). Overview of the multiple biometrics grand
challenge. In ICB, volume 5558 of Lecture Notes in Computer Science, pages 705--
714. Springer. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 91)

Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K.,
Marques, J., Min, J., and Worek, W. (2005). Overview of the face recognition
grand challenge. In CVPR '05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1,
pages 947--954, Washington, DC, USA. IEEE Computer Society. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 33,

59, \mathrm{a}\mathrm{n}\mathrm{d} 91)

Phillips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J. (2000). The FERET evalu-
ation methodology for face-recognition algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(10):1090--1104. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Poh, N. and Bengio, S. (2006). Database, protocols and tools for evaluating score-level
fusion algorithms in biometric authentication. Pattern Recognition, 39(2):223--233.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 87)

Poh, N., Chan, C. H., Kittler, J., Marcel, S., McCool, C., R\'ua, E. A., Castro, J.
L. A., Villegas, M., Paredes, R., \v Struc, V., Pave\v si\'c, N., Salah, A. A., Fang, H.,
and Costen, N. (2009). Face video competition. In 3rd International Conference on
Biometrics (ICB), volume 5558 of LNCS, pages 715--724. Springer, Alghero, (Italy).
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 23, 91, 93, \mathrm{a}\mathrm{n}\mathrm{d} 95)

Poh, N., Chan, C. H., Kittler, J., Marcel, S., McCool, C., R\'ua, E. A., Castro, J.
L. A., Villegas, M., Paredes, R., \v Struc, V., Pave\v si\'c, N., Salah, A. A., Fang, H., and
Costen, N. (2010). An evaluation of video-to-video face verification. Information
Forensics and Security, IEEE Transactions on, 5(4):781--801. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 23)

R Development Core Team (2010). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 74)

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500):2323--2326. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

122 BIBLIOGRAPHY

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal rep-
resentations by error propagation. In Rumelhart, D. E. and McClelland, J. L.,
editors, Parallel Distributed Processing: Explorations in the Microstructure of Cog-
nition, volume 1, pages 318--362. MIT Press, Cambridge. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 7)

Sch\"olkopf, B., Smola, A. J., and M\"uller, K.-R. (1999). Kernel principal component
analysis. Advances in kernel methods: support vector learning, pages 327--352. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Simard, P., LeCun, Y., and Denker, J. (1993). Efficient pattern recognition using a
new transformation distance. In Advances in Neural Information Processing Sys-
tems 5, pages 50--58, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 41 \mathrm{a}\mathrm{n}\mathrm{d} 44)

Simard, P., LeCun, Y., Denker, J. S., and Victorri, B. (1998). Transformation invari-
ance in pattern recognition-tangent distance and tangent propagation. In Neural
Networks: Tricks of the Trade, this book is an outgrowth of a 1996 NIPS workshop,
pages 239--27, London, UK. Springer-Verlag. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 42, 43, 45, 46, \mathrm{a}\mathrm{n}\mathrm{d} 62)

Spacek, L. (1996). Essex collection of facial images. http://cswww.essex.ac.uk/

mv/allfaces/index.html. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Stallkamp, J., Ekenel, H., and Stiefelhagen, R. (2007). Video-based face recogni-
tion on real-world data. In Computer Vision. ICCV'07. IEEE 11th International
Conference on, pages 1--8. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 95)

Tena, J. R. (2007). 3D Face Modelling for 2D+3D Face Recognition. PhD thesis,
University of Surrey. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 76)

Tenenbaum, J. B., de Silva, V., , and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319--2323. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society (Series B), 58:267--288. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 66)

Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine.
J. Mach. Learn. Res., 1:211--244. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 7 \mathrm{a}\mathrm{n}\mathrm{d} 66)

Tipping, M. E. and Faul, A. (2003). Fast marginal likelihood maximisation for sparse
bayesian models. In Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, pages 3--6. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 26 \mathrm{a}\mathrm{n}\mathrm{d} 74)

Toh, K.-A., Kim, J., and Lee, S. (2008). Maximizing area under roc curve for biometric
scores fusion. Pattern Recogn., 41(11):3373--3392. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 82)

Turk, M. and Pentland, A. (3-6 Jun 1991). Face recognition using eigenfaces. Com-
puter Vision and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Com-
puter Society Conference on, pages 586--591. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 93)

http://cswww.essex.ac.uk/mv/allfaces/index.html
http://cswww.essex.ac.uk/mv/allfaces/index.html

BIBLIOGRAPHY 123

van der Maaten, L. J. P., Postma, E. O., and van den Herik, H. J. (2007). Dimen-
sionality reduction: A comparative review. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Vielhauer, C. (2006). Biometric User Authentication for IT Security: From Funda-
mentals to Handwriting (Advances in Information Security), volume 18. Springer.
(\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 81)

Vilar, D., Ney, H., Juan, A., and Vidal, E. (2004). Effect of Feature Smoothing Meth-
ods in Text Classification Tasks. In International Workshop on Pattern Recognition
in Information Systems, pages 108--117, Porto, Portugal. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 38)

Villegas, M. and Paredes, R. (2005). Comparison of illumination normalization meth-
ods for face recognition. In Aladdin Ariyaeeinia, M. F. and Paoloni, A., editors,
Third COST 275 Workshop - Biometrics on the Internet, pages 27--30, University
of Hertfordshire, UK. OPOCE. (\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Villegas, M. and Paredes, R. (2007a). Face Recognition in Color Using Complex
and Hypercomplex Representations. In 3rd Iberian Conference on Pattern Recog-
nition and Image Analysis, volume 4477 of LNCS, pages 217--224. Springer, Girona
(Spain). (\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Villegas, M. and Paredes, R. (2007b). Illumination Invariance for Local Feature Face
Recognition. In 1st Spanish Workshop on Biometrics, pages 1--8, Girona (Spain).
-. (\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Villegas, M. and Paredes, R. (2008). Simultaneous learning of a discriminative pro-
jection and prototypes for nearest-neighbor classification. Computer Vision and
Pattern Recognition, 2008. CVPR '08. IEEE Computer Society Conference on,
pages 1--8. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 14, 27, 62, \mathrm{a}\mathrm{n}\mathrm{d} 69)

Villegas, M. and Paredes, R. (2009). Score Fusion by Maximizing the Area Under the
ROC Curve. In 4th Iberian Conference on Pattern Recognition and Image Analysis,
volume 5524 of LNCS, pages 473--480. Springer, P\'ovoa de Varzim, (Portugal). (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d}

\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 92)

Villegas, M. and Paredes, R. (2010a). Fusion of qualities for frame selection in video
face verification. In Pattern Recognition, 2010. ICPR 2010. 20th International
Conference on, pages 1302--1305. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 90)

Villegas, M. and Paredes, R. (2010b). On optimizing local feature face recognition
for mobile devices. In Alfonso Ortega, A. M. and Lleida, E., editors, V Jornadas
de Reconocimiento Biom\'etrico de Personas, pages 177--186, Parque Tecnol\'ogico
WALQA, Huesca, Spain. (\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Villegas, M. and Paredes, R. (2011). Dimensionality reduction by minimizing nearest-
neighbor classification error. Pattern Recognition Letters, 32(4):633--639. (\mathrm{N}\mathrm{o}\mathrm{t} \mathrm{c}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d})

Villegas, M., Paredes, R., Juan, A., and Vidal, E. (2008). Face verification on color im-
ages using local features. In Computer Vision and Pattern Recognition Workshops,
2008. CVPRW '08. IEEE Computer Society Conference on, pages 1--6, Anchorage,
AK, USA. IEEE Computer Society. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 93)

124 BIBLIOGRAPHY

Weber, M. (1999). Caltech frontal face database. http://www.vision.caltech.edu/
html-files/archive.html. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 33)

Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2006). Distance metric learning for
large margin nearest neighbor classification. In NIPS, pages 1473--1480. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 10, 26, \mathrm{a}\mathrm{n}\mathrm{d} 57)

Weisberg, S. (2009). dr: Methods for dimension reduction for regression. R package
version 3.0.4. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 74)

Wong, R., Poh, N., Kittler, J., and Frohlich, D. (2010). Interactive quality-driven
feedback for biometric systems. In Biometrics: Theory Applications and Systems
(BTAS), 2010 Fourth IEEE International Conference on, pages 1 --7. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 77)

Yan, L., Dodier, R. H., Mozer, M., and Wolniewicz, R. H. (2003). Optimizing classi-
fier performance via an approximation to the wilcoxon-mann-whitney statistic. In
Machine Learning, Proceedings of the Twentieth International Conference (ICML
2003), pages 848--855, Washington, DC, USA. AAAI Press. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 83, 86,

\mathrm{a}\mathrm{n}\mathrm{d} 88)

Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., and Lin, S. (2007). Graph embed-
ding and extensions: A general framework for dimensionality reduction. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 29(1):40--51. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

Zhang, L., Wang, S., and Samaras, D. (2005). Face synthesis and recognition from
a single image under arbitrary unknown lighting using a spherical harmonic basis
morphable model. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 2, pages 209 -- 216 vol. 2. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}

\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 47)

Zhang, Q., Liu, Z., Quo, G., Terzopoulos, D., and Shum, H.-Y. (2006). Geometry-
driven photorealistic facial expression synthesis. Visualization and Computer
Graphics, IEEE Transactions on, 12(1):48--60. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 47)

Zhang, S. and Sim, T. (Oct. 2007). Discriminant subspace analysis: A fukunaga-
koontz approach. Transactions on Pattern Analysis and Machine Intelligence,
29(10):1732--1745. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 51)

Zhao, D., Lin, Z., Xiao, R., and Tang, X. (2007). Linear laplacian discrimination for
feature extraction. In CVPR07, pages 1--7. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{s} 9 \mathrm{a}\mathrm{n}\mathrm{d} 59)

Zheng, Z., Yang, F., Tan, W., Jia, J., and Yang, J. (2007). Gabor feature-based
face recognition using supervised locality preserving projection. Signal Processing,
87(10):2473 -- 2483. Special Section: Total Least Squares and Errors-in-Variables
Modeling. (\mathrm{C}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n} \mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e} 9)

http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html

	Abstract / Resumen / Resum
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Notation
	Abbreviations and Acronyms
	Introduction
	Goals of the Thesis
	Organization of the Thesis

	Classification Problems and Dimensionality Reduction
	Statistical Pattern Classification
	Review of Related Work

	Dimensionality Reduction in Classification
	Review of Related Work

	Learning Projections and Prototypes for Classification
	Estimation of the 1-NN Error Probability
	Optimization Approximations
	The LDPP Algorithm
	Discussion
	Using LDPP only for Dimensionality Reduction
	Orthonormality Constraint
	Algorithm Convergence and the Sigmoid Slope
	Distances Analyzed
	Euclidean Distance
	Cosine Distance

	Normalization and Learning Factors
	Experiments
	Data Visualization
	UCI and Statlog Corpora
	High-Dimensional Data Sets

	Conclusions

	Modeling Variability Using Tangent Vectors
	Overview of the Tangent Vectors
	Tangent Distance
	Estimation of Tangent Vectors

	Principal Component Analysis
	Tangent Vectors in PCA

	Linear Discriminant Analysis
	Tangent Vectors in LDA

	Spectral Regression Discriminant Analysis
	Tangent Vectors in SRDA

	LDPP Using the Tangent Distances
	Experiments
	Gender Recognition
	Emotion Recognition
	Face Identification
	LDPP Using the Tangent Distances

	Conclusions

	Regression Problems and Dimensionality Reduction
	Regression Analysis
	Review of Related Work

	Dimensionality Reduction in Regression
	Review of Related Work

	Learning Projections and Prototypes for Regression
	Normalization and the LDPPR Parameters

	Experiments
	StatLib and UCI Data Sets
	High-Dimensional Data Sets

	Conclusions

	Ranking Problems and Score Fusion
	Review of Related Work
	Score Fusion by Maximizing the AUC
	Score Normalization
	Score Fusion Model
	AUC Maximization
	Notes on the Implementation of the Algorithm
	Extensions of the Algorithm

	Biometric Score Fusion
	Estimation of Quality by Fusion
	Proposed Quality Features
	Quality Fusion Methods for Frame Selection
	Experimental Results

	Conclusions

	General Conclusions
	Directions for Future Research
	Scientific Publications

	Mathematical Derivations
	Chapter 3
	Gradients of the Goal Function in LDPP
	Gradients of the Euclidean Distance in LDPP
	Gradients of the Cosine Distance in LDPP
	Dependence of the LDPP Parameters on the Distance
	Normalization Compensation

	Chapter 4
	The Single Sided Tangent Distance
	Principal Component Analysis
	Linear Discriminant Analysis
	Between Scatter Matrix Accounting for Tangent Vectors
	Covariance Matrix Accounting for Tangent Vectors
	Gradients of the Tangent Distance in LDPP

	Chapter 5
	Gradients of the Goal Function in LDPPR

	Chapter 6
	Gradients of the Goal Function in SFMA
	Constraints in SFMA

	Bibliography

