

On Reich type $\lambda - \alpha$ -nonexpansive mapping in Banach spaces with applications to $L_1([0,1])$

Rabah Belbaki a, E. Karapina
r b and Amar Ould-Hammouda a

Communicated by S. Romaguera

Abstract

In this manuscript we introduce a new class of monotone generalized nonexpansive mappings and establish some weak and strong convergence theorems for Krasnoselskii iteration in the setting of a Banach space with partial order. We consider also an application to the space $L_1([0,1])$. Our results generalize and unify the several related results in the literature.

2010 MSC: 46T99; 47H10; 54H25.

Keywords: fixed point; Krasnoselskii iteration; monotone mapping; Reich type $\lambda-\alpha$ -nonexpansive mapping; optial property.

1. Introduction and preliminaries

The study of the existence of fixed point of nonexpansive mappings, initiated in 1965 independently by Browder [5], Göhde [11] and [16], is one of dynamic research subject in nonlinear functional analysis. In [16], Kirk proved that a self-mapping on a nonempty bounded closed and convex subset of a reflexive Banach space possesses a fixed point if it is nonexpansive and the corresponding subset has a normal structure. In 1992, Veeramani obtained a more general result in this direction by introducing the notion of T-regular set [23].

On the other hand, in 1967, Opial introduced in [18] a class of spaces for which the asymptotic center of a weakly convergent sequence coincides with

 $[^]a$ Laboratory of Physics Mathematics and Applications, ENS, P.O.Box 92, 16050 Kouba, Algiers, Algeria (belbakirab@gmail.com,a.ouldhamouda@yahoo.com)

 $[^]b$ Atilim University, Department of Mathematics, Incek, 068630 Ankara, Turkey (erdalkarapinar@yahoo.com)

the weak limit point of the sequence. A Banach space X is said to have the Opial property, if for each weakly convergent sequence $\{x_n\}$ in X with limit z, $\liminf ||x_n - z|| < \liminf ||x_n - y||$ for all $y \in X$ with $y \neq z$. In 1972, Gossey and Lami Dozo noticed in [12] that all the spaces of this class have normal structure. It is well known that Hilbert spaces, finite dimensional Banach spaces and l^p -spaces, (1 , have the Opial property [8]. In 2008,Suzuki introduced in [21] a new class of mappings satisfying the so-called (C)condition which also includes nonexpansive mappings and proved that such mappings on a nonempty weakly compact convex set in a Banach space which satisfies Opial's condition have a fixed point. In 2011, Falset et al. proposed in [8] mappings satisfying (C_{λ}) -condition, $\lambda \in (0,1)$, respectively. In [1] Aoyama and Kohsaka introduced a new class of nonexpansive mappings, and obtained a fixed point result for such mappings. Finally, in 2017, in [19] Shukla et al proposed a new generalization and introduce the deneralized α -nonexpansive mapping and obtained a fixed theorem for such mappings. All the results cited above were obtained, in the weak case, with Opial's condition.

In this report, we propose a generalization of the results of Shukla et al. [19] by introducing a class of $\lambda - \alpha$ -generalized nonexpansive mapping. In addition, we establish some weak and strong convergence theorems for Krasnoselskii iteration in an ordered Banach space with partial order \leq . We also consider an application in the context of $L_1([0,1])$. The presented results in this report, extend, generalize and unify a number of existing results on the the topic in the literature.

Throughout the paper, \mathbb{N} denotes the set of natural numbers and \mathbb{R} the set of the real numbers. For a non-empty K of a real Banach space X, a mapping $T: K \to K$ is said to be nonexpansive if $||T(x) - T(y)|| \le ||x - y||$ for all $x, y \in K$. Moreover, a selfmapping T is called quasinonexpansive [7] if $||T(x)-y|| \le ||x-y||$ for all $x \in K$ and $y \in F(T)$, where F(T) is the set of fixed points of T.

Definition 1.1 ([12, 22]). The norm of a Banach space X is called uniformly convex in every direction, in short, we say that X is UCED, if for $\varepsilon \in (0,2]$ and $z \in X$ with ||z|| = 1, there exists $\delta(\varepsilon, z) > 0$ such that for all $x, y \in X$ with where $||x|| \le 1$, $||y|| \le 1$ and $x - y \in \{tz : t \in [-2, -\varepsilon] \cup [\varepsilon, 2]\}$

$$||x + y|| \le 2(1 - \delta(\varepsilon, z)).$$

Lemma 1.2 ([21]). For a Banach space X, the following are equivalent:

- (i) X is UCED.
- (ii) If $\{x_n\}$ is a bounded sequence in X, then the function f on X defined by $f(x) = \limsup ||x_n - x||$ is strictly quasiconvex, that is, $f(\lambda x + (1-\lambda)y) < \max\{f(x), f(y)\}\$ for all $\lambda \in (0,1)$ and $x, y \in X$ with $x \neq y$.

Lemma 1.3 ([9]). Let (z_n) and (w_n) be bounded sequences in a Banach space X and let λ belongs to (0,1). Suppose that $z_{n+1} = \lambda w_n + (1-\lambda)z_n$ and $||w_{n+1} - v_n|| = \lambda w_n + (1-\lambda)z_n$ $|w_n| \le ||z_{n+1} - z_n||$ for all $n \in \mathbb{N}$. Then $\lim ||w_n - z_n|| = 0$.

Definition 1.4 ([21]). Let K be a nonempty subset of a Banach space X. We say that a mapping $T: K \to K$ satisfies (C)-condition on K if for $x, y \in K$ we have

$$\frac{1}{2}||x - T(x)|| \le ||x - y|| \Rightarrow ||T(x) - T(y)|| \le ||x - y||.$$

It is clear that each nonexpansive mapping satisfies the condition (C) but the converse is not true. For details and counterexamples see e.g. [10].

Definition 1.5 ([8]). Let K be a nonempty subset of Banach space X and $\lambda \in (0,1)$. We say that a mapping $T: K \to K$ satisfies (C_{λ}) -condition on if for all $x, y \in K$, we have

$$\lambda ||x - T(x)|| \le ||x - y|| \Rightarrow ||T(x) - T(y)|| \le ||x - y||.$$

Note that if $\lambda = \frac{1}{2}$, then (C_{λ}) -condition implies (C)-condition. For more details and examples, see e.g. Falset et al. [8].

Throughout the paper, the pair (X, \leq) will denote an ordered Banach space where X is a Banach space endowed with a partial order " \leq ".

Definition 1.6. A self-mapping T defined on an ordered Banach space (X, \leq) is said to be monotone if for all $x, y \in X$,

$$x \le y \Rightarrow T(x) \le T(y)$$
.

Definition 1.7 ([1]). Let K be a nonempty subset of a Banach space X. A mapping $T: K \to K$ is said to be α -nonexpansive if for all $x, y \in K$ and $\alpha < 1$,

$$||T(x) - T(y)||^2 < \alpha ||T(x) - y||^2 + \alpha ||x - T(y)||^2 + (1 - 2\alpha)||x - y||^2$$

Definition 1.8 ([19]). Let K be a nonempty subset of an ordered Banach space (X, \leq) . A mapping $T: K \to K$ will be called a generalized α -nonexpansive mapping if there exists $\alpha \in (0,1)$ such that

$$\begin{cases} \frac{1}{2} \|x - T(x)\| \le \|x - y\| \ implies \\ \|T(x) - T(y)\| \le \alpha \|T(x) - y\| + \alpha \|T(y) - x\| + (1 - 2\alpha) \|x - y\| \end{cases}$$
 for all $x, y \in K$ with $x < y$.

Remark 1.9. When $\alpha = 0$, a generalized-nonexpansive mapping is reduced to a mapping satisfying (C)-condition. The converse is false. For more details and counterexamples see e.g. [19] and [14, 13].

2. Reich type
$$(\lambda - \alpha)$$
-nonexpansive mappings

Definition 2.1. Let K be a nonempty subset of an ordered Banach space (X, \leq) . A mapping $T: K \to K$ will be called Reich type $(\lambda - \alpha)$ -nonexpansive mappings if there exists $\lambda \in (0,1)$ and $\alpha \in [0,1)$ such that

(2.1)
$$\lambda \|x - T(x)\| \le \|x - y\| \Rightarrow \|T(x) - T(y)\| \le R_T^{\alpha}(x, y),$$
 where

$$R_T^{\alpha}(x,y) := \alpha(\|T(x) - y\| + \|T(y) - x\|) + (1 - 2\alpha)\|x - y\|$$

for all $x, y \in K$ with $x \leq y$. In addition, if the mapping T is monotone, we say that monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping.

Remark 2.2. We point the following special cases:

- (1) When $\alpha = 0$, a Reich type $\lambda \alpha$ -nonexpansive mapping reduced to a mapping satisfying condition (C_{λ}) , see e.g. [8].
- (2) If $\lambda = \frac{1}{2}$, it becomes a generalized α -nonexpansive condition.

Proposition 2.3. Let K be a nonempty subset of an ordered Banach space (X,\leq) and $T:K\to K$ be a Reich type $(\lambda-\alpha)$ -nonexpansive mapping with a fixed point $z \in K$ with $x \leq z$. Then T is quasinonexpansive.

Proof. Since
$$z \in K$$
 fixed point, $0 = \lambda \|z - T(z)\| \le \|z - x\|$, we have $\|z - T(x)\| \le \alpha \|z - T(x)\| + \alpha \|T(z) - x\| + (1 - 2\alpha)\|z - x\| \le \|z - x\|$.

Definition 2.4. Let T be a monotone self-mapping on a nonempty convex subset of an ordered Banach space (X, \leq) . For a fix $\lambda \in (0,1)$ and for an initial point $x_1 \in K$, the Krasnoselskii iteration sequence $\{x_n\} \subset K$ is defined by

(2.2)
$$x_{n+1} = \lambda T(x_n) + (1 - \lambda)x_n , n \ge 1.$$

In the sequel we need the following lemmas.

Lemma 2.5 ([17]). Let $x, y, z \in X$ and $\lambda \in (0,1)$. Suppose p is the point of segment [x, y] which satisfies $||x - p|| = \lambda ||x - y||$, then,

$$(2.3) ||z - p|| < \lambda ||z - y|| + (1 - \lambda)||z - x||$$

Lemma 2.6 ([15]). Let K be convex and $T: K \to K$ be monotone. Assume that $x_1 \in K$, $x_1 \leq T(x_1)$. Then the sequence $\{x_n\}$ defined by (2.2) satisfies:

$$x_n \le x_{n+1} \le T(x_n) \le T(x_{n+1}),$$

for $n \geq 1$. Moreover, if $\{x_n\}$ has two subsequences which converge to y and z, then we must have y = z.

It is easy to see that by the mimic of the idea used in Lemma 2.6, we get that

$$T(x_{n+1}) < T(x_n) < x_{n+1} < x_n$$

by assuming the initial condition as $T(x_1) \leq x_1$.

Lemma 2.7. Let K be a nonempty convex subset of an ordered Banach space (X, \leq) and $\{x_n\}$ is the iteration sequence defined by (2.2) in K. Let $T: K \to \mathbb{R}$ K be a monotone Reich type $\lambda - \alpha$ -nonexpansive mapping with $\lambda \in (\frac{1}{3}, 1)$ and $\alpha \in [0,1)$. Suppose also that $y_n = T(x_n), n \geq 1$. If, for $x_1 \in K$ with $x_1 \leq y_1 = T(x_1)$ we have

$$(2.4) ||y_n - x_{n+1}|| \le (3\lambda - 1)||y_n - x_n||, \text{ for all } n \in \mathbb{N},$$

then the sequence $\{\|y_n - x_n\|\}$ is decreasing.

Proof. On account of the definition of Krasnoselskii iteration we have

(2.5)
$$x_{n+1} = \lambda y_n + (1 - \lambda)x_n$$
, with $y_n = T(x_n)$.

It means that x_{n+1} belongs to the segment $]x_n, y_n[$, and hence we have

$$||x_n - y_n|| = ||x_n - x_{n+1}|| + ||x_{n+1} - y_n||.$$

Furthermore, (2.7) yields that

$$(2.7) ||x_n - x_{n+1}|| = ||x_n - [\lambda T(x_n) + (1 - \lambda)x_n]|| = \lambda ||x_n - T(x_n)|||.$$

On account of the triangle inequality together with the fact that T is monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping, we derive that

$$||y_{n+1} - x_{n+1}|| \leq ||y_{n+1} - y_n|| + ||y_n - x_{n+1}||$$

$$= ||T(x_{n+1}) - T(x_n)|| + ||y_n - x_{n+1}||$$

$$\leq \alpha (||T(x_n) - x_{n+1}|| + ||T(x_{n+1}) - x_n||)$$

$$+ (1 - 2\alpha)||x_n - x_{n+1}|| + ||y_n - x_{n+1}||$$

$$= (1 + \alpha)||y_n - x_{n+1}|| + \alpha||y_{n+1} - x_n|| + (1 - 2\alpha)||x_n - x_{n+1}||$$

$$= (1 + \alpha)||y_n - x_{n+1}|| + \alpha||y_{n+1} - x_n||$$

$$+ (1 + \alpha)||x_n - x_{n+1}|| - 3\alpha||x_n - x_{n+1}||.$$

On account of (2.6) the left hand side of the inequality of (2.8) turns into

$$(2.9) = (1+\alpha)\|x_n - y_n\| + \alpha\|y_{n+1} - x_n\| - 3\alpha\|x_n - x_{n+1}\|,$$

Taking the inequality (2.7) into account, the expression (2.9) turns into

(2.10)
$$\leq (1+\alpha)\|x_n - y_n\| + \alpha\|y_{n+1} - x_n\| - 3\lambda\alpha\|x_n - y_n\|$$

$$= (1+\alpha - 3\lambda\alpha)\|x_n - y_n\| + \alpha\|y_{n+1} - x_n\|$$

Employing the assumption (2.4) of the lemma, we estimate the expression (2.10) from above as

$$= (1 + \alpha - 3\lambda\alpha) ||x_n - y_n|| + \alpha (3\lambda - 1) ||y_n - x_n||$$

$$= ||x_n - y_n||.$$

By combining (2.8)- (2.11), for each n, we deduce that

$$||y_{n+1} - x_{n+1}|| \le ||x_n - y_n||,$$

which complete the proof.

In the following proposition, we extend the Goebel-Kirk inequality [9] from the class of nonexpansive mappings into the class of monotone generalized (λ – α)-nonexpansive mapping.

Proposition 2.8. Let K be a nonempty convex subset of an ordered Banach space (X, \leq) . Let $T: K \to K$ be a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping with $\lambda \in (\frac{1}{3}, 1)$ and $\alpha \in (0, 1)$. For $x_1 \in K$ with $x_1 \leq T(x_1)$, we set $y_n = T(x_n)$ where $\{x_n\}$ is the iteration sequence defined by (2.2) in K satisfies the assumption (2.4). Then, we have

$$(2.12) ||y_{i+n} - x_i|| \ge (1 - \lambda)^{-n} [||y_{i+n} - x_{i+n}|| - ||y_i - x_i||] + (1 + n\lambda) ||y_i - x_i||,$$
for all $i, n \in \mathbb{N}$.

Proof. Inspired the techniques used in [9], we shall use the method of the induction to prove our assertion. It is evident that (2.12) is trivially true for all i if n = 0. We assume that the inequality (2.12) holds for a given n and for all i. By replacing i by i + 1 in (2.12), we get

$$(2.13) ||y_{i+n+1} - x_{i+1}|| \ge (1 - \lambda)^{-n} [||y_{i+n+1} - x_{i+n+1}|| - ||y_{i+1} - x_{i+1}||] + (1 + n\lambda) ||y_{i+1} - x_{i+1}||.$$

On the other hand, due to Krasnoselskii iteration, we have $x_{n+1} = \lambda y_n + (1 - 1)y_n + (1 \lambda x_n$ with $y_n = T(x_n)$ and also

$$(2.14) ||x_{i+1} - x_i|| = ||\lambda y_i + (1 - \lambda)x_i - x_i|| = \lambda ||y_i - x_i||.$$

The observation in (2.14) provide to apply Lemma 2.5 that yields

$$||y_{i+n+1} - x_{i+1}|| \le \lambda ||y_{i+n+1} - y_i|| + (1 - \lambda)||y_{i+n+1} - x_i||.$$

Regarding that T is a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping, we

$$||y_{i+n+1} - x_{i+1}|| \leq (1 - \lambda)||y_{i+n+1} - x_i|| + \lambda \sum_{k=0}^{n} ||y_{i+k+1} - y_{i+k}||$$

$$\leq (1 - \lambda)||y_{i+n+1} - x_i||$$

$$+ \lambda \sum_{k=0}^{n} (\alpha ||x_{i+k+1} - y_{i+k}|| + \alpha ||y_{i+k+1} - x_{i+k}||)$$

$$+ (1 - 2\alpha)||x_{i+k+1} - x_{i+k}||)$$

So, we derive that

(2.15)
$$||y_{i+n+1} - x_i|| \ge (1 - \lambda)^{-1} ||y_{i+n+1} - x_{i+1}|| - (1 - \lambda)^{-1} \lambda \alpha B_{in} - (1 - \lambda)^{-1} \lambda (1 - 2\alpha) A_{in},$$

where

$$A_{in} = \sum_{k=0}^{n} \|x_{i+k+1} - x_{i+k}\|$$

and

$$B_{in} = \sum_{k=0}^{n} [\|x_{i+k+1} - y_{i+k}\| + \|y_{i+k+1} - x_{i+k}\|].$$

Taking the assumption (2.4) and (2.14) into account, we derive that

$$||y_{i+k+1} - x_{i+k}|| + ||y_{i+k} - x_{i+k}|| \le (3\lambda - 1)||y_{i+k} - x_{i+k}|| + ||y_{i+k} - x_{i+k}||$$
$$= 3\lambda ||y_{i+k} - x_{i+k}|| = 3||x_{i+k} - x_{i+k+1}||,$$

for all $k \in 0, 1, ..., n$. Regarding the definition of Krasnoselskii iteration we have $x_{i+k+1} = \lambda y_{i+k} + (1-\lambda)x_{i+k}$, with $y_{i+k} = T(x_{i+k})$. In other words, $x_{i+k} \le x_{i+k+1} \le y_{i+k}$ and we have

$$(2.17) ||x_{i+k} - y_{i+k}|| = ||x_{i+k+1} - x_{n+1}|| + ||x_{i+k+1} - y_{i+k}||.$$

Now, by revisiting the inequality (2.16) by keeping the equality (2.17) in mind, we find

(2.18)

$$||y_{i+k+1} - x_{i+k}|| + ||x_{i+k+1} - y_{i+k}|| = ||y_{i+k+1} - x_{i+k}|| + ||y_{i+k} - x_{i+k}|| - ||x_{i+k} - x_{i+k+1}|| \le 2||x_{i+k} - x_{i+k+1}||$$

which implies $B_{in} \leq 2A_{in}$. Accordingly, the inequality (2.15) becomes

$$(2.19) ||y_{i+n+1} - x_i|| \ge (1 - \lambda)^{-1} ||y_{i+n+1} - x_{i+1}|| - \lambda (1 - \lambda)^{-1} A_{in}.$$

Employing the inequality (2.13) in (2.19), we find that

$$||y_{i+n+1} - x_i|| \ge (1 - \lambda)^{-(n+1)} [||y_{i+n+1} - x_{i+n+1}|| - ||y_{i+1} - x_{i+1}||] + (1 - \lambda)^{-1} (1 + n\lambda) ||y_{i+1} - x_{i+1}|| - \lambda (1 - \lambda)^{-1} A_{in}.$$

On account of (2.14), the estimation above turns into

$$(2.20) ||y_{i+n+1} - x_i|| \ge (1 - \lambda)^{-(n+1)} [||y_{i+n+1} - x_{i+n+1}|| - ||y_{i+1} - x_{i+1}||] + (1 - \lambda)^{-1} (1 + n\lambda) ||y_{i+1} - x_{i+1}|| - \lambda^2 (1 - \lambda)^{-1} C_{in},$$

where $C_{in} := \sum_{k=0}^{n} ||y_{i+k} - x_{i+k}||$. By bearing, Lemma 2.7, in mind, we find that

$$C_{in} := \sum_{k=0}^{n} \|y_{i+k} - x_{i+k}\| \le (n+1)\|y_i - x_i\|.$$

Consequently, (2.20) can be estimated above as

(2.21)

$$||y_{i+n+1} - x_i|| \ge (1 - \lambda)^{-(n+1)} [||y_{i+n+1} - x_{i+n+1}|| - ||y_{i+1} - x_{i+1}||]$$

$$+ (1 - \lambda)^{-1} (1 + n\lambda) ||y_{i+1} - x_{i+1}|| - \lambda^2 (1 - \lambda)^{-1} (n+1) ||y_i - x_i||$$

$$= (1 - \lambda)^{-(n+1)} [||y_{i+n+1} - x_{i+n+1}|| - ||y_i - x_i||]$$

$$+ [(1 - \lambda)^{-1} (1 + n\lambda) - (1 - \lambda)^{-(n+1)}]||y_{i+1} - x_{i+1}||$$

$$+ [(1 - \lambda)^{-(n+1)} - \lambda^2 (1 - \lambda)^{-1} (n+1)]||y_i - x_i||.$$

by adding and substraction the same term $(1-\lambda)^{-(n+1)}||y_{i+1}-x_{i+1}||$. Notice that $(1-\lambda)^{-1}(1+n\lambda)-(1-\lambda)^{-(n+1)}\leq 0$. Thus, regarding this observation together with Lemma 2.7, the inequality (2.21) changed into

$$||y_{i+n+1} - x_i|| \ge (1 - \lambda)^{-(n+1)} [||y_{i+n+1} - x_{i+n+1}|| - ||y_i - x_i||]$$

$$+ [(1 - \lambda)^{-1} (1 + n\lambda) - (1 - \lambda)^{-(n+1)}] ||y_i - x_i||$$

$$+ [(1 - \lambda)^{-(n+1)} - \lambda^2 (1 - \lambda)^{-1} (n+1)] ||y_i - x_i||$$

$$= (1 - \lambda)^{-(n+1)} [||y_{i+n+1} - x_{i+n+1}|| - ||y_i - x_i||] + (1 + (n+1)\lambda) ||y_i - x_i||$$

which completes the proof of Proposition 2.8.

Theorem 2.9. Let K be a nonempty, convex and compact subset of an ordered Banach space (X, \leq) . Let $T: K \to K$ be a monotone Reich type $\lambda - \alpha$ nonexpansive mapping with $\lambda \in (\frac{1}{3}, 1)$. For $x_1 \in K$ with $x_1 \leq T(x_1)$, we set $y_n = T(x_n)$ where $\{x_n\}$ is the iteration sequence defined by (2.2) in K satisfies the assumption (2.4). Then $\{x_n\}$ converges to some $x \in K$ with $x_n \leq x$ and,

(2.22)
$$\lim_{n} ||x_n - T(x_n)|| = 0$$

Proof. We shall divide the proof in two cases: $\alpha = 0$ and $\alpha \in (0,1)$. Suppose, first, that $\alpha = 0$. Due to the definition (2.2) of the sequence $\{x_n\}$, we have

$$\lambda ||x_n - y_n|| = ||x_n - x_{n+1}||$$
, for all $n \ge 1$.

On account of Lemma 2.6, we have $x_n \leq x_{n+1}$, for all $n \geq 1$. Therefore condition (2.1) implies that,

$$||T(x_n) - T(x_{n+1})|| = ||y_n - y_{n+1}|| \le R_T^{\alpha}(x_n, x_{n+1}) = ||x_n - x_{n+1}||,$$

since $\alpha = 0$. Employing Lemma 1.3, the inequality above yields that

$$\lim_{n} ||x_n - T(x_n)|| = 0.$$

In the following, we shall consider the second case $\alpha \in (0,1)$. The proof of this case mainly adopted from the proof of Theorem 3.1 in [15]. Since Kis compact, there exists a subsequence of $\{x_n\}$ which converges to $x \in K$. On account of Lemma 2.6, the sequence $\{x_n\}$ converges to x and $x_n \leq x$, for $n \geq 1$. To show our assertion (2.22), suppose, on the contrary, that

$$\lim_{n} ||x_n - T(x_n)|| = R > 0.$$

As $x_1 \leq x_n \leq x$, we then have

$$||x_n - x_1|| \le ||x - x_1|| \text{ for all } n \ge 1.$$

Due to triangle inequality we have

$$||y_{i+n} - x_i|| = ||T(x_{i+n}) - x_i|| \le ||T(x_{i+n}) - x_{i+n}|| + ||x_{i+n} - x_1|| + ||x_1 - x_i||$$

$$\le ||T(x_1) - x_1|| + 2||x - x_1||$$

for any $i, n \ge 1$, due to (2.23) and Lemma 2.7. Since all conditions are satisfied in Proposition 2.8, we have (2.12). Letting $i \to \infty$ in the inequality (2.12), we derive that

(2.25)
$$\lim_{i \to \infty} ||y_{i+n} - x_i|| \ge (1 + n\lambda)R,$$

where we used that

$$\lim_{i \to \infty} (\|T(x_i) - x_i\| - \|T(x_{i+n}) - x_{i+n}\|) = R - R = 0,$$

for any $n \ge 1$. Combining (2.24) and (2.25), we find

$$(1+n\lambda)R \le \lim_{i \to \infty} ||y_{i+n} - x_i|| \le ||T(x_1) - x_1|| + 2||x - x_1||$$

Thus, the inequality can be fulfilled only if R=0 which yields the inequality (2.22).

Lemma 2.10. Let K be a nonempty subset of an ordered Banach space (X, \leq) and $T: K \to K$ be a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping with $\lambda \in]0, \frac{1}{2}]$. Then for each $x, y \in K$ with $x \leq y$:

- (i) $||T(x) T^2(x)|| < ||x T(x)||$
- (ii) either $\lambda ||x T(x)|| \le ||x y||$ or $\lambda ||T(x) T^2(x)|| \le ||T(x) y||$
- (iii) either $||T(x) T(y)|| \le \alpha ||T(x) y|| + \alpha ||x T(y)|| + (1 2\alpha) ||x y||$

or
$$||T^2(x) - T(y)|| \le \alpha ||T(x) - T(y)|| + \alpha ||T^2(x) - y|| + (1 - 2\alpha)||T(x) - y||$$

(i) Since we have $\lambda \|x - T(x)\| \le \|x - T(x)\|$ for all $\lambda \in]0, \frac{1}{2}]$, by Proof. the definition of Reich type $(\lambda - \alpha)$ -nonexpansive mapping we get the desired results. Indeed.

$$||T(x) - T^{2}(x)|| \le \alpha ||x - T^{2}(x)|| + (1 - 2\alpha)||x - T(x)||.$$

Thus (i) hold for $\alpha = 0$.

(ii) Suppose, on the contrary, that $\lambda ||x - T(x)|| > ||x - y||$ and ||T(x) - y|| > ||x - y|| $|T^2(x)|| > ||T(x) - y||$. Then, by triangle inequality together with the assumption (i), we find that

$$||x - T(x)|| \le ||x - y|| + ||T(x) - y|| < \lambda ||x - T(x)|| + \lambda ||T(x) - T^{2}(x)||$$

$$\le 2\lambda ||x - T(x)||.$$

Since $\lambda \leq \frac{1}{2}$ we obtain ||x-T(x)|| < ||x-T(x)|| which is a contradiction. Thus, we obtain the desired result.

(iii) The proof of (iii) follows from (ii). We skip the details.

Lemma 2.11. Let K be a nonempty subset of an ordered Banach space (X, \leq) and $T: K \to K$ be a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping with $\lambda \in (0, \frac{1}{2}]$. Then for each $x, y \in K$ with $x \leq y$,

$$||x - T(y)|| \le (\frac{3+\alpha}{1-\alpha})||x - T(x)|| + ||x - y||.$$

Proof. It is the mimic of the proof of Lemma 3.8 of [19]. So, we skip the details. П

Using the above two lemmas, we can prove the following.

Theorem 2.12. Let K be a nonempty convex and a compact subset of an ordered Banach space (X, \leq) and be $T: K \to K$ a monotone Reich type $(\lambda - \alpha)$ nonexpansive mapping with $\lambda \in (\frac{1}{3}, \frac{1}{2}]$. Select $x_1 \in K$ such that $x_1 \leq T(x_1)$, and for $n \geq 1$, denote $y_n = T(x_n)$ where $\{x_n\}$ is the iteration sequence defined by (2.2) in K satisfying, for all $n \in \mathbb{N}$, the assumption (2.4). Then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. By Theorem 2.9, we have

$$\lim_{n} ||x_n - T(x_n)|| = 0.$$

Since K is compact, there exist a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $z \in K$ such that $\{x_{n_k}\}$ converges to z. Employing Lemma 2.11, we have,

$$||x_{n_k} - T(z)|| \le \left(\frac{3+\alpha}{1-\alpha}\right)||x_{n_k} - T(x_{n_k})|| + ||x_{n_k} - z||$$

for all $k \in \mathbb{N}$. Thus, the sequence $\{x_{n_k}\}$ converges to T(z) and hence T(z) = z. Since z is a fixed point of T, by Proposition 2.3, we find that

$$||x_{n+1} - z|| \le \lambda ||T(x_n) - z|| + (1 - \lambda)||x_n - z|| \le ||x_n - z||$$

for all $n \in \mathbb{N}$. Therefore $\{x_n\}$ converges to z.

We say that a Banach space X has the Opial property [18] if for every weakly convergent sequence $\{x_n\}$ in X with a limit z, fulfils

$$\liminf_{n \to \infty} ||x_n - z|| < \liminf_{n \to \infty} ||x_n - y||,$$

for all $y \in X$ with $y \neq z$. It is a very rich class, for examples, all Hilbert spaces, sequence spaces ℓ_p , (1 , and finite dimensional Banach spaces havethe Opial property. Unexpectedly, $L_p[0,2\pi], (p \neq 2)$ do not have the Opial property [9],[10].

Proposition 2.13. Let K be a nonempty subset of an ordered Banach space (X,\leq) with the Opial property and $T:K\to K$ be a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping with $\lambda \in (\frac{1}{3}, \frac{1}{2}]$. If $\{x_n\}$ converges weakly to z and

$$\lim_{n} ||x_n - T(x_n)|| = 0,$$

then T(z) = z.

Proof. By Lemma 2.11, we have,

$$||x_n - T(z)|| \le (\frac{3+\alpha}{1-\alpha})||x_n - T(x_n)|| + ||x_n - z||$$

for $n \in \mathbb{N}$ and hence,

$$\liminf_{n} ||x_n - T(z)|| \le \liminf_{n} ||x_n - z||$$

We claim that T(z) = z. Indeed, if $T(z) \neq z$, the Opial property implies,

$$\liminf_{n} \|x_n - z\| < \liminf_{n} \|x_n - T(z)\|$$

which is a contradiction with inequality (2.22).

Theorem 2.14. Let K be a nonempty convex and weakly compact subset of an ordered Banach space (X, \leq) with the Opial property and $T: K \to K$ be a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping with $\lambda \in (\frac{1}{3}, \frac{1}{2}]$. Select $x_1 \in K$ such that $x_1 \leq T(x_1)$, and for $n \geq 1$, denote $y_n = T(x_n)$ where $\{x_n\}$ is the iteration sequence defined by (2.2) in K satisfying, for all $n \in \mathbb{N}$, the assumption (2.4). Then $\{x_n\}$ converges weakly to a fixed point of T.

Proof. By Theorem 2.9, we have

$$\lim_{n} ||x_n - T(x_n)|| = 0.$$

Since K is weakly compact, there exist a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $z \in K$ such that $\{x_{n_k}\}$ converges weakly to z . By Proposition 2.13, we deduce that z is a fixed point of T. As in the proof of Theorem 2.12, we can prove that $\{||x_n-z||\}$ is a nonincreasing sequence. We prove our assertion by reduction de absurdum. Suppose, on the contrary, that $\{x_n\}$ does not converge to z. Then there exist a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges weakly to ω and $\omega \neq z$. We note that $T(\omega) = \omega$. From the Opial property,

$$\lim_{n} \|x_{n} - z\| = \lim_{k} \|x_{n_{k}} - z\| < \lim_{k} \|x_{n_{k}} - \omega\| = \lim_{n} \|x_{n} - \omega\|$$
$$= \lim_{j} \|x_{n_{j}} - \omega\| < \lim_{j} \|x_{n_{j}} - z\| = \lim_{n} \|x_{n} - z\|,$$

a contradiction that complete the proof.

The following theorem directly follows from Theorems 2.12 and 2.14. So, to avoid the repetition, we skip the details.

Theorem 2.15. Let K be a convex subset of an ordered Banach space (X, \leq) , and $T: K \to K$ be a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping with $\lambda \in (\frac{1}{3}, \frac{1}{2}]$. Assume that either of the following holds:

- (i) K is compact;
- (ii) K is weakly compact and X has the Opial property.

Then T has a fixed point.

Finally, we will give a generalization of a fixed point theorem due to Browder [5], Göhde [11] and Suzuki [21].

Theorem 2.16. Let K be a convex and weakly compact subset of a UCED ordered Banach space (X, \leq) . Let $T: K \to K$ be a monotone Reich type $(\lambda - \alpha)$ -nonexpansive mapping with $\lambda \in (\frac{1}{3}, \frac{1}{2}]$. Then T has a fixed point.

Proof. We construct an iterative sequence $\{x_n\}$ in K by starting $x_1 \in K$ as

$$x_{n+1} = \frac{1}{2}(T(x_n) + x_n)$$
 with $||T(x_{n+1}) - x_n|| \le ||T(x_n) - x_n||$,

for all $n \in \mathbb{N}$. Then by Theorem 2.9, we have

$$\lim_{n} ||x_n - T(x_n)|| = 0$$

holds. Define a continuous convex function f from K to $[0, +\infty)$ by

$$f(x) = \limsup_{n} ||x_n - x||$$

for all $x \in K$. Since K is weakly compact and f is weakly lower semicontinuous, there exists $z \in K$, such that

$$f(z) = \min\{f(x) : x \in K\}$$

Since, by Lemma 2.11:

$$||x_n - T(z)|| \le \left(\frac{3+\alpha}{1-\alpha}\right)||x_n - T(x_n)|| + ||x_n - z||,$$

we then have, $f(T(z)) \leq f(z)$. Since f(z) is the minimum, f(T(z)) = f(z)holds. If $T(z) \neq z$, then since f is strictly quasiconvex (Lemma 1.2) we have,

$$f(z) \le f(\frac{z + f(z)}{2}) < \max\{f(z), f(T(z))\} = f(z).$$

which is a contradiction. Hence T(z) = z.

3. Application to $L_1([0,1])$

As an application, we consider $L_1([0,1])$ the Banach space of real valued functions defined on [0,1] with absolute value Lebesgue integrable, i.e., $\int_0^1 |f(x)| dx < \infty.$ We recall some definitions which can be found in e.g. [3]. As usual, f=0 if

and only if the set $\{x \in [0,1]: f(x)=0\}$ has Lebesgue measure 0, then, we say f=0 almost everywhere. An element of $L_1([0,1])$ is therefore seen as a class of functions. The norm of any $f \in L_1([0,1])$ is given by

$$||f|| = \int_0^1 |f(x)| dx$$

From now on, we will write L_1 instead of $L_1([0,1])$. Recall that $f \leq g$ if and only if $f(x) \leq g(x)$ almost everywhere, for any $f, g \in L_1$. We adopt the convention $f \leq g$ if and only if $g \leq f$. We remark that order intervals are closed for convergence almost everywhere and convex. Recall that an order interval is a subset of the form

$$[f, \to) = \{g \in L_1 : f \le g\} \text{ or } (\leftarrow, f] = \{g \in L_1 : g \le f\},$$

for any $f \in L_1$.

As a direct consequence of this, the subset

$$[f,g] = \{h \in L_1 : f \le h \le g\} = [f,\to) \cap (\leftarrow,g]$$

is closed and convex, for any $f, g \in L_1$.

Let K be a nonempty subset of L_1 which is equipped with a vector order relation \leq . A map $T: K \to K$ is called monotone if for all $f \leq g$ we have $T(f) \leq T(g)$.

Remark 3.1. Since $L_1([0,1])$ fails to be uniformly convex, Theorem 2.12 can't not be used to get a fixed point result for monotone generalized $\lambda - \alpha$ nonexpansive mappings in $L_1([0,1])$. As an alternative, we will use an interesting property for the convergence almost everywhere contained in the following

Lemma 3.2 ([4]). If (f_n) is a sequence of uniformly L^p -bounded functions on a measure space, and if $f_n \to f$ almost everywhere, then

$$\liminf_{n} ||f_n||_p^p = \liminf_{n} ||f_n - f||_p^p + ||f||_p^p$$

for all 0 .

In particular, this result holds when p = 1.

On account of Lemma 2.11 and Lemma 3.2, we shall prove the following.

Theorem 3.3. Let $K \subset L_1$ be nonempty, convex and compact for the convergence almost everywhere. Let $T: K \to K$ be a monotone Reich type $(\lambda - \alpha)$ nonexpansive mapping with $\alpha \in]\frac{1}{3}, \frac{1}{2}]$. Select $f_1 \in K$ such that $f_1 \leq T(f_1)$,, and for $n \geq 1$, denote $g_n = T(f_n)$ where (f_n) is the iteration sequence defined by (2.2) in K satisfying, for all $n \in \mathbb{N}$, the assumption (2.4). Then the sequence (f_n) converges almost everywhere to some $f \in K$ which is a fixed point of T, i.e., T(f) = f. Moreover, $f_1 \leq f$.

Proof. Theorem 2.9 implies that (f_n) converges almost everywhere to some $f \in K$ where $f_n \to f$, for any $n \ge 1$. Since (f_n) is uniformly bounded, lemma **3.2** [4] implies

$$\liminf_{n} \|f_n - T(f)\| = \liminf_{n} \|f_n - f\| + \|f - T(f)\|$$

Theorem 2.9 implies

$$\liminf_{n} ||f_n - T(f_n)|| = 0.$$

Therefore we get

$$\liminf_{n} ||f_n - T(f)|| = \liminf_{n} ||f_n - f|| + ||f - T(f)||$$

On the other hand, we know that each $f_n \leq f$ for each $n \geq 1$, so, by assumption (2.1), we have,

$$\liminf_{n} \|f_n - f\| + \|f - T(f)\| \le \liminf_{n} (\alpha \|f_n - T(f)\| + \alpha \|T(f_n) - f\| + (1 - 2\alpha)\|f_n - f\|)$$

And, by Lemma 2.11, we have,

$$\liminf_{n} \|f_n - f\| + \|f - T(f)\| \le \liminf_{n} (\alpha \frac{3 + \alpha}{1 - \alpha} \|f_n - T(f)\| + \alpha \|T(f_n) - f\| + (1 - 2\alpha) \|f_n - f\|)$$

Again, by application of the Theorem 2.9, we obtain,

$$\liminf_{n} \|f_n - f\| + \|f - T(f)\| \le \liminf_{n} (1 - \alpha) \|f_n - T(f)\| + \alpha \|T(f_n) - f\|$$

And like,

$$\liminf_{n} ||f_n - f|| = ||T(f_n) - f||$$

we then have,

$$\liminf_{n} ||f_n - f|| + ||f - T(f)|| \le \liminf_{n} ||f_n - T(f)||,$$

that implies

$$||f - T(f)|| = 0$$

or

$$T(f) = f$$
.

ACKNOWLEDGEMENTS. The authors thanks to anonymous referees for their remarkable comments, suggestion and ideas that helps to improve this paper.

References

- [1] K. Aoyama and F. Kohsaka, Fixed point theorem for α -nonexpansive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 4387-4391.
- [2] J.-B. Baillon, Quelques aspects de la thÚorie des points fixes dans les espaces de Banach. I, II. In: Séminaire d'analyse fonctionnelle (1978-1979), pp. 7-8. Ecole Polytech., Palaiseau (1979).
- [3] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland, Amsterdam (1985).
- [4] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88, no. 3 (1983), 486-490.
- [5] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965) 1041-1044.
- [6] F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA 53 (1965), 1272-1276.
- J. B. Diaz and F. T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Am. Math. Soc.73 (1967), 516-519.
- [8] J. G. Falset, E. L. Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185–195.
- K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115–123.
- [10] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28, p.244. Cambridge University Press (1990).
- [11] D. Gohde, Zum prinzip der dertraktiven abbildung, Math. Nachr. 30 (1965), 251–258.

- [12] J. P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573.
- [13] E. Karapinar, Remarks on Suzuki (C)-condition, dynamical systems and methods, Springer-Verlag New York, 2012, Part 2, 227–243.
- [14] E. Karapınar and K. Tas, Generalized (C)-conditions and related fixed point theorems, Comput. Math. Appl. 61, no. 11 (2011), 3370–3380.
- [15] M. A. Khamsi, and A. R. Khan, On monotone nonexpansive mappings in $L_1[0,1]$. Fixed point theory Appl. 2015, Article ID 94 (2015).
- [16] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Mon. 72 (1965), 1004-1006.
- [17] W. A. Kirk, Krasnoselskii's iteration process in hyperbolic space, Numer. Func. Anal. Opt. 4, no. 4 (1982), 371-381.
- [18] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [19] R. Shukla, R. Pant and M. De la Sen, Generalized α -nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications (2017) 2017:4.
- [20] Y. Song, K. Promluang, P. Kuman and Y. Je Cho, Some convergence theorems of the Mann iteration for monotone α -nonexpansive mappings, Appl. Math. Comput. 287/288 (2016), 74-82.
- [21] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340, no. 2 (2008), 1088–1095.
- [22] D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. 25 (1982), 139-144.
- [23] P. Veeramani, On some fixed point theorems on uniformly convex Banach spaces, J. Math. Anal. Appl. 167 (1992), 160-166.