

Information from Automated Evaluation in an Engineering
School

Serrano, Nicolasa; Blanco, Carmenb; Carias, Franciscoa and Reina, Enriquec
aDepartment of Industrial Management, TECNUN Escuela de Ingenieros, University of
Navarra, Spain, bDepartment of Biomedical Engineering and Science, TECNUN Escuela de
Ingenieros, University of Navarra, Spain, cInformation Systems, TECNUN Escuela de
Ingenieros, University of Navarra, Spain.

Abstract
The paper introduces the need for automated evaluation and presents the
experience of automating all the evaluations of a course in Computer Science
in the sophomore year of an engineering degree.

First, the paper describes the features needed and developed for that course
and the positive results for both professors and students. The main advantage
of automated evaluation is that it allows real continuous grading for all types
of activities: short answers and exercises during the class, homework, short
exercises evaluated every 10 days in class, medium term evaluations and the
final grade for the course.

A significant benefit of this practice is that it allows the professor, from the
very beginning of the course, to monitor how the students perform each task.
The professor can see in real time the marks of an exercise or evaluation, the
global evolution of the class or the status of a specific student. The students
also have immediate feedback from their exercises and the total points
obtained at any given time providing greater involvement in the course.

Keywords: automated evaluation, computer science, grading, self-assessment

4th International Conference on Higher Education Advances (HEAd’18)
Universitat Politècnica de València, València, 2018
DOI: http://dx.doi.org/10.4995/HEAd18.2018.8132

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 987

Information from Automated Evaluation in an Engineering School

1. Introduction

An important element of the education process is the assessment of the students. This is
because assessment is not only the end result for the student, but an indicator of the
efficiency of the learning process (Williamson et al. 2006, Greiff et al. 2017). So, the
sooner, and more frequently, the professor and the students know the value of this indicator,
the quicker and more effectively they can act on the process.

In addition, in Europe, the European Higher Education Area and the Bologna Process
promote a continuous assessment system. This continuous assessment produces an increase
in the professor's workload and, as a result, requires more resources or a decrease in the
number of evaluations done.

To solve this problem, a significant amount of tools have been developed for automated
evaluation of students (Mittal & Devi 2012) (Alta-Mutka 2015). These tools can solve this
problem and provide other benefits, such as immediate feedback for both the student and
the professor.

However, the types of questions provided by such tools are not adequate for the complete
assessment of the students in engineering subjects. For example, few of them allow
introducing and evaluating mathematical expressions or the evaluation of algorithms
written by the students, and there are not tools that include all these elements.

There are also other issues, like the lack or difficulty of connection with the academic
management system and the not simple process to start writing and editing questions and
tests.

The teachers of Computer Science and Mathematics of the School of Engineering of the
University of Navarra wanted to essay a continuous evaluation program of nearly all the
activities of a university course. With the experience of previous academic and teaching
applications (Kaushal and Singh, 2012) (Manev et al. 2009), a system called “Iquest” was
developed for this automated evaluation process by the professor of the course in Tecnun,
the School of Engineering of University of Navarra. This paper studies the use of this
application in a Computer Science course during the sophomore year of an engineering
degree.

2. A tool for automated evaluation

The main goal of the tool was that it must be able to evaluate all the students activities in
the subject. These activities include answering optional questions, programming a
simulated microprocessor, programming in JavaScript and Java, and writing code HTML
and Java programs that create HTML pages.

988

Serrano, N.; Blanco, C.; Carias, F.; Reina, E.

With this purpose in mind the Iquest application was developed with a simple interface that
allowed a quick professor interaction to define new questions or activate and deactivate the
questions for the students.

Figure 1 shows the main window of the application for the professor with a list of the
defined questions. From this list the professor can activate or deactivate a question for the
students (column Active), define if the question must be graded at the time (column Grade),
if the grade must be shown at the time (column Show grade), go to the edition of a specific
question (column Edit), execute of the grade (or regrade a specific question for all the
students) (column Grade), show a preliminary view of the question (column Show) or show
the summary of marks or the answer for a specific question (columns Results).

Figure 1. Management of the course questions.

989

Information from Automated Evaluation in an Engineering School

This is the usual process: the professor creates the questions based on previous available
exercises in the course and enables them for automatic evaluation. In the class the professor
activates the desired questions and can subsequently monitor the results during the test.

The edition of a question is done with the editor shown in figure 2

Figure 2. Edition of a question.

The editor has fields for question management, a rich web editor to type them and fields to
define the answers and the question assessment method.

The student view is simpler. When the student logs in, the application shows the available
activated questions for the course and can introduce the answer and check the results.

990

Serrano, N.; Blanco, C.; Carias, F.; Reina, E.

Figure 3 shows a view with an active question where the student must introduce a program
written in a pseudo assembly language. When the student saves the answer, the system
evaluates the program by running a specific script for this type of question and comparing
the expected solution with the result of executing the student’s code, and then shows the
mark to the student. The student can test it again, clicking the edit button and introducing a
new answer while the question is still active.

Figure 3. Student view and evaluation of a question.

The student also has another view to see previous questions and their marks.

The platform can also evaluate Mathematical expressions, JavaScript programs, HTML
pages, and Java applications. A typical problem with evaluating programming applications
is the presence of syntax errors and runtime errors of infinite loops. This application can
solve these problems with an architecture based on threads. The thread can be stopped if it
doesn't respond after some tenths of a second.

991

Information from Automated Evaluation in an Engineering School

3. Information output from the tool

The use of the platform generates many data. The information is provided to the professors
and students through several graphs.

Figure 4 shows partial information of the complete status of the class. Each row
corresponds to a student and each column to a question. The different sizes and colors
represent the different values and marks.

Figure 4. Global information of all students and all evaluated items

With this image, the professor can read in a row the status of a specific student (references
have been deleted in the image), in one column appears the difficulty of a specific question
and in a group of columns the difficulty and performance of a set of activities or a test.

The tool provides information about the evolution of an exam while the students are doing
it. Figure 5 shows the evolution of a three question exam until the minute 52 (horizontal
axis shows minutes from the beginning of the test). Each graph corresponds to a question
and each blue block to the student's answer. The height of the block represents the mark
obtained. When the mouse hovers over one block, the system shows in green all the blocks
corresponding to the same student. The figure shows a student who answered the first
question at minute 12, the second at minute 30 and the third at minute 32. This graph can
also be used to see the performance of the students with their homework or to see all the
activities done during the course, as the horizontal axis can be scaled to adequate units
(minutes, hours or days).

992

Serrano, N.; Blanco, C.; Carias, F.; Reina, E.

Figure 5. Information during tests.

Additional information of interest is the graph status for a specific student. Professors can
see the overall performance with the graph in figure 6. Each block corresponds to a
question presented to the student. Blue shows the points obtained by the student in this
question and grey the points the student missed.

Figure 6. Overall performance of a student.

993

Information from Automated Evaluation in an Engineering School

4. Conclusion

The tool has been used for a complete semester evaluating all the activities of the Computer
Science course. These include short answers and exercises during the class, homework
exercises and self-assessment, short exercises evaluated every 10 days in class (typically in
the first 30 minutes of class), medium term exam and the final exam of the course.

The initial goal of the project was to automate the evaluation to have a continuous
evaluation system without an overload of work. The use of the system has proved to be
feasible for some courses of engineering, but the main advantage of the system is the
information that it provides to both the professor and the student. The professor can see
from the first days of the course if the students follow the subject seeing their homework
results and evaluations in class. The professor can modify the time invested in each area,
reinforcing some points or providing more exercises. The students have an objective
measure of their development which works as a kind of gamification in which all activities,
when possible, receive a number of points. The result has been quite satisfactory for
professors and students alike and it is currently being applied to additional courses.

References

Alta-Mutka, K.M., (2015) A Survey of Automated Assessment Approaches for
Programming Assignments. Computer science education, 15(2), 83-102.

Greiffa, S., Schererb, R., & Kirschner, P.A. (2017) Some critical reflections on the special
issue: Current innovations in computer-based assessments, Computers in Human
Behavior, 76 715-718

Mittal, H., & Devi, M.S. (2012) Review of Computerized Evaluation Tools in Education.
International Journal of Artificial Intelligence and Computational Research, 4(2), 111–
117

Kaushal, R., & Singh, A. (2012) Automated evaluation of programming assignments.
Conference: Engineering Education: Innovative Practices and Future Trends
(AICERA), IEEE

Manev, K. N., Sredkov, M., & Bogdanov, T. (2009) Grading Systems for Competitions in
Programming, Proceedings of the Thirty Eighth Spring Conference of the Union of
Bulgarian Mathematicians, Borovetz, April 1- 5, 2009

Williamson, D. M., Mislevy, R. J., & Bejar, I. I. (2006). Automated scoring of complex
tasks in computer-based testing. Mahwah: Erlbaum

994

