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ON WEIGHTED Lp–SPACES OF VECTOR–VALUED ENTIRE

ANALYTIC FUNCTIONS

JOAQUÍN MOTOS, MARÍA JESÚS PLANELLS, AND CÉSAR F. TALAVERA

Dedicated to Prof. Manuel Valdivia

Abstract. The weighted Lp–spaces of entire analytic functions are general-
ized to the vector–valued setting. In particular, it is shown that the dual of

the space LK
p,ρ(E) is isomorphic to L−K

p′,ρ−1(E′) when the function χK is an

Lp,ρ(E)–Fourier multiplier. This result allows us to give some new character-
izations of the so–called UMD–property, and to represent several ultradistri-
bution spaces by means of spaces of vector sequences.

1. Introduction

It is well-known that the spaces LK
p = {f ∈ S′ : supp f̂ ⊂ K , ‖f‖p < ∞}

(0 < p ≤ ∞, K compact subset of Rn) play a crucial role in the theory of function
spaces (cf. [27] and [40]). If 0 < p ≤ q ≤ ∞, K is a compact set in Rn, and α is
an arbitrary multi–index, then there is a constant c > 0 such that ‖∂αf‖q ≤ c ‖f‖p

for all f ∈ LK
p . These are the Plancherel–Polya–Nikol’skij inequalities (cf. [27] for

p ≥ 1, and [40] for 0 < p ≤ ∞). In [38] and [33] these inequalities are extended
to the weighted case by using Beurling’s ultradistributions (for some exponential

weights, e.g. e±|x|β , 0 < β < 1, the theory of the usual tempered distributions
S′(Rn) is inadequate), and the theory of the weighted Lp–spaces of entire analytic
functions is developed.

In this paper the weighted Lp–spaces of entire analytic functions are generalized
to the vector–valued setting and several applications to the geometry of Banach
spaces and to the representation of function spaces are given (cf. also [2], [25],
[32] and [41]). The organization of the paper is as follows. Section 2 contains some
basic facts about vector–valued (Beurling) ultradistributions. In Section 3 we intro-
duce the weighted Lp–spaces of vector–valued entire analytic functions LK

p,ρ(E) (see
Def. 3.1) and we study their basic properties: E–valued maximal inequalities and
Plancherel–Polya–Nikol’skij inequalities, completeness, approximation and density.
Section 4 contains a discussion of the dual of the space LK

p,ρ(E). Here we prove that

the natural mapping N : L−K
p′,ρ−1(E′) →

(
LK

p,ρ(E)
)′

: g → 〈f,Ng〉 =
∫

Rn〈f, g〉dx

becomes an isomorphism when p ∈ (1,∞) and χK is an Lp,ρ(E)–Fourier multi-
plier (Th. 4.6 and Cor. 4.8). As a consequence we give some new characterizations
of the so–called UMD–property (e.g. E ∈ UMD if and only if E is reflexive and

2000 Mathematics Subject Classification. 46E15, 46E40, 46F05, 42B15.
Key words and phrases. Vector–valued Beurling ultradistributions, entire analytic functions,

weighted Lp–spaces, Fourier multipliers, UMD–property.
The first named author is partially supported by DGI (Spain), Grant BFM 2002–04013 and

Grant MTEM2005–08350–C03–03.

1



2 J. MOTOS ET AL.

LQ
p (E) is a complemented subspace of Lp(E), c.f. Cor. 4.7). By using a vector

version of the Shannon sampling theorem (see also [12] and [38]), the inequalities
(3.4) of Theorem 3.2 and the duality studied in Theorem 4.6, we represent weighted
Lp–spaces of vector–valued entire analytic functions by means of spaces of vector
sequences in Section 5. Finally, some other distribution spaces (Hörmander, Besov)
are represented by using sequence spaces also.

Notation. The linear spaces we use are defined over C. Let E and F be locally
convex spaces. Then Lb(E,F ) is the locally convex space of all continuous linear
operators equipped with the bounded convergence topology. The dual of E is
denoted by E′ and is given the strong topology so that E′ = Lb(E,C). E⊗̂εF
(resp. E⊗̂πF ) is the completion of the injective (resp. projective) tensor product
of E and F . E and F are (topologically) isomorphic if there exists a one–to–one
linear operator Φ mapping E onto F and such that Φ and Φ−1 are continuous
operators. We write E →֒ F if E is a linear subspace of F and the canonical

injection is continuous. We replace →֒ by
d
→֒ if E is also dense in F . If (En)∞n=1 is

a sequence of locally convex spaces, E1 ⊕ E2 ⊕ E3 ⊕ · · · (E(N) if En = E for all n)
is the locally convex direct sum of the spaces En. C∞, D, S, D′ and S′ have the
usual meaning. A is the space of entire analytic functions in Cn. In the E–valued
case we write C∞(E), D(E), S(E), D′(E), S′(E) and A(E) (see [14] and [35]). Let
0 < p ≤ ∞, ρ : Rn → (0,∞) a locally integrable function, and E a Banach space.
Then Lp(E) is the set of all Bochner measurable functions f : Rn → E for which

‖f‖p =
(∫

Rn‖f(x)‖p
E dx

)1/p
is finite (with the usual modification when p = ∞).

Lc
∞(E) stands for all functions f ∈ L∞(E) with compact support. Lp,ρ(E) denotes

the set of all Bochner measurable functions f : Rn → E such that ρf ∈ Lp(E).
Putting ‖f‖p,ρ = ‖ρf‖p for f ∈ Lp,ρ(E), Lp,ρ(E) becomes a quasi–Banach space
(Banach space if p ≥ 1) isomorphic to Lp(E). When E is the field C, we simply

write Lp and Lp,ρ. If f ∈ L1(E) the Fourier transform of f , f̂ or Ff , is defined by

f̂(ξ) =
∫

Rn f(x)e−iξxdx. If f is a function on Rn then f̃(x) = f(−x), (τhf)(x) =
f(x− h) for x, h ∈ Rn.

Acknowledgements. The authors would like to express their deep gratitude to O.
Blasco for many valuable discussions and remarks during the preparation of this
paper. Also it is a pleasure for us to thank V. Kolyada and J. L. Torrea for several
very helpful discussions about this subject.

2. Spaces of vector–valued (Beurling) ultradistributions

In this section we collect some basic facts about vector–valued (Beurling) ul-
tradistributions. The results are “elementary” in the sense that the usual “scalar
proofs” carry over to the vector–valued setting by using obvious modifications only.
Comprehensive treatments of the theory of (scalar or vector–valued) ultradistribu-
tions can be found in [3], [15], [19] and [20]. Our notations are based on [3] and
[33, pp. 14–19].

Let M be the set of all functions ω(x) on Rn such that ω(x) = σ(|x|) where σ(t)
is an increasing continuous concave function on [0,∞[ with the following properties:

(i) σ(0) = 0,

(ii)
∫ ∞

0
σ(t)
1+t2 dt <∞ (Beurling’s condition),
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(iii) there exist a real number a and a positive number b such that σ(t) ≥
a+ b log(1 + t) for t ≥ 0.

The assumption (ii) is essentially the Denjoy–Carleman non–quasi–analyticity con-
dition (cf. [3, Sect. 1.5]). If ω ∈ M and E is a Banach space, we denote by
Dω(E) the set of all functions f ∈ L1(E) with compact support such that ‖f‖λ =∫

Rn‖f̂(x)‖E e
λω(x)dx < ∞ for all λ > 0. For each compact subset K of Rn,

Dω(K,E) = {f ∈ Dω(E) : supp f ⊂ K}, equipped with the topology induced by
the family of norms {‖·‖λ : λ > 0}, is a Fréchet space and Dω(E) = ind→

K
Dω(K,E)

becomes a strict (LF)–space. Let Sω(E) be the set of all functions f ∈ L1(E) such

that both f and f̂ are infinitely differentiable functions on Rn with ~pα,λ(f) =

supx∈Rn eλω(x)‖∂αf(x)‖E < ∞ and ~πα,λ(f) = supx∈Rn eλω(x)‖∂α(Ff)(x)‖E < ∞
for all multi–indices α and all positive numbers λ. Sω(E) with the topology in-
duced by the family of seminorms {~pα,λ, ~πα,λ} is a Fréchet space and the Fourier
transformation F is an automorphism of Sω(E). If E = C then Dω(E) and Sω(E)
coincide with the spaces Dω and Sω (cf. [3]). In this case we write pα,λ and πα,λ

instead of ~pα,λ and ~πα,λ. Let us recall that, by Beurling’s condition, the space Dω is
non-trivial and the usual procedure of the partition of unity can be established with

Dω–functions (cf. [3, Th. 1.3.7]). Furthermore, Dω
d
→֒ D (cf. [3, Th. 1.3.18]) and

Dω is nuclear (cf. [42, Cor. 7.5]). On the other hand, Dω = D∩Sω, Dω
d
→֒ Sω

d
→֒ S

(cf. [3, Prop. 1.8.6, Th. 1.8.7]) and Sω is a nuclear space (cf. [15, p. 320]). Us-
ing the above results and [20, Th. 1.12] we can identify Dω(E) with Dω⊗̂εE and
Sω(E) with Sω⊗̂εE. A continuous linear operator from Dω into E is said to be
a (Beurling) ultradistribution with values in E. We write D′

ω(E) for the space of
all E–valued (Beurling) ultradistributions endowed with the bounded convergence
topology, thus D′

ω(E) = Lb(Dω, E) is isomorphic to D′
ω⊗̂εE. A continuous linear

operator from Sω into E is said to be an E–valued tempered ultradistribution.
S′

ω(E) is the space of all E–valued (tempered) ultradistributions equipped with the
bounded convergence topology. Also, S′

ω(E) = Lb(Sω, E) is isomorphic to S′
ω⊗̂εE

and the Fourier transformation F is an automorphism of S′
ω(E).

Next we recall the definition of R(ω) given in [38, Def. 1.3.1]. If ω ∈ M, then
R(ω) denotes the collection of all Borel–measurable real functions ρ(x) on Rn such
that there exists a positive constant c with 0 < ρ(x) ≤ c eω(x−y)ρ(y) for all x, y ∈
Rn. If ρ ∈ R(ω), then c1 e

−ω(x) ≤ ρ(x) ≤ c2 e
ω(x) for all x ∈ Rn (here c1 and

c2 are appropriate positive numbers). Two very interesting examples are ρ(x) =

(1 + |x|)d ∈ R(log(1 + |x|)d), d > 0, and ρ(x) = ed|x|β ∈ R(|x|β), d ∈ R r {0},
0 < β < 1. If u ∈ Lloc

1 and
∫

Rn ϕ(x)u(x)dx = 0 for all ϕ ∈ Dω, then u = 0 a.e.
(see [3]). This result, the Hahn–Banach theorem and [9, Cor. II.27] prove that if
ρ ∈ R(ω) and p ∈ [1,∞] we can identify f ∈ Lp,ρ(E) with the E–valued tempered
ultradistribution ϕ→ 〈ϕ, f〉 =

∫
Rn ϕ(x)f(x)dx, ϕ ∈ Sω. Summarizing, we have the

embeddings

Dω(E)
� � d //

� _

d

��

Sω(E)
� � d //

� _

d

��

S′
ω(E)

� � d // D′
ω(E)

D(E) � � d // S(E) � � d // S′(E) � � d //
?�

d

OO

D′(E)
?�

d

OO
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(commutative diagrams) and, when 1 ≤ p <∞,

Sω(E)
� � d // Lp,ρ(E) � � d // S′

ω(E) .

For ϕ ∈ Sω, T ∈ S′
ω(E) and ψ ∈ Sω, we define 〈ψ, ϕT 〉 = 〈ψϕ, T 〉. The “point–

wise multiplication” Sω × S′
ω(E) → S′

ω(E) : (ϕ, T ) 7→ ϕT is an hypocontinuous
bilinear mapping (by [15, p. 320] and [34, p. 424]). If ϕ ∈ Sω and T ∈ S′

ω(E), we
define ϕ ∗ T (x) = 〈τxϕ̃, T 〉, x ∈ Rn. The function ϕ ∗ T : Rn → E is called the
convolution of ϕ and T . ϕ ∗ T ∈ C∞(E) and, for every multi–index α, there exist
positive constants Cα and Λα such that ‖∂α(ϕ ∗ T )(x)‖E = ‖(∂αϕ) ∗ T (x)‖E ≤
Cα e

Λαω(x) for all x ∈ Rn. Thus, we can identify ϕ∗T with the E–valued tempered
ultradistribution ψ → 〈ψ, ϕ ∗ T 〉 =

∫
Rn ψ(x)(ϕ ∗ T )(x) dx, ψ ∈ Sω. The bilinear

mapping Sω ×S′
ω(E) → S′

ω(E) : (ϕ, T ) 7→ ϕ∗T is hypocontinuous also ([15, p. 320]
and [34, p. 424]). One easily checks that

〈ψ, ϕ ∗ T 〉 = 〈ϕ̃ ∗ ψ, T 〉 , (ϕ ∗ T )∧ = ϕ̂ T̂ , (ϕT )∧ = (2π)−n(ϕ̂ ∗ T̂ ) ,

for all ϕ, ψ ∈ Sω and all T ∈ S′
ω(E).

We now state the vector–valued version of the Paley–Wiener–Schwartz theorem
(cf. [3, Th. 1.8.14], [19, Th. 1.1] and [33, pp. 18–19] for the scalar case) that we shall

use: If T ∈ S′
ω(E) and supp T̂ ⊂ B̄b then there exist an E–valued entire analytic

function U(ζ) and a real number λ such that for any ε > 0

‖U(ξ + iη)‖E ≤ Cε e
(b+ε)|η|+λω(ξ)

holds for all ζ = ξ + iη where Cε depends on ε but not on ζ (U(ζ) is called an
E–valued entire function of exponential type) and such that U represents T , i.e.,
such that 〈ϕ, T 〉 =

∫
Rn ϕ(x)U(x)dx for all ϕ ∈ Sω.

3. Weighted Lp–spaces of vector–valued entire analytic functions.
Basic properties

In this section we introduce the weighted Lp–spaces of vector–valued entire an-
alytic functions LK

p,ρ(E) (see Def. 3.1) and we study some of their basic proper-
ties: E–valued maximal inequalities and Plancherel–Polya–Nikol’skij inequalities,
completeness, approximation, density, . . . In order to extend scalar assertions to
vector–valued ones we follow [38, Ch. I], [33, Ch. I] and [41, Sect. 15, Ch. III].

We begin with the vector–valued counterpart of [38, Def. 1.4.1] and [33, Def.
1.5.1,p. 35].

Definition 3.1. Let ω ∈ M, ρ ∈ R(ω), 0 < p ≤ ∞. Let K be a compact set in
Rn. Let E be a Banach space. Then

LK
p,ρ(E) = {f | f ∈ S′

ω(E) , suppFf ⊂ K , ‖f‖LK
p,ρ(E) = ‖f‖p,ρ <∞} .

(LK
p,ρ(E) , ‖ · ‖LK

p,ρ(E)) is a quasi–normed (normed if p ≥ 1) linear space.

Remark. We shall write LK
p,ρ instead of LK

p,ρ(C). It is immediate to verify that if

f ∈ LK
p,ρ(E) and e′ ∈ E′ then e′ ◦ f ∈ LK

p,ρ. If ρ(x) ≡ 1, then we put LK
p,1(E) =

LK
p (E). We shall denote by SK

ω (E) (SK
ω if E = C) the collection of all f ∈ Sω(E)

such that supp f̂ ⊂ K.

Theorem 3.2. Let ω ∈ M, ρ ∈ R(ω) and 0 < p ≤ ∞. Let K be a compact set in
Rn. Let E be a Banach space.
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(i) Let 0 < r <∞. Then there exist two positive numbers c1 and c2 such that
for all f ∈ LK

p,ρ(E) and for all x ∈ Rn

(3.1) sup
z∈Rn

ρ(x− z)
‖∇f(x− z)‖E

1 + |z|n/r
≤ c1 sup

z∈Rn

ρ(x− z)
‖f(x− z)‖E

1 + |z|n/r
≤

≤ c2 [(M‖ρf‖r
E) (x)]1/r .

(ii) Let 0 < r < p. Then there exists a positive number c such that

(3.2)

∥∥∥∥ sup
z∈Rn

ρ(· − z)
‖f(· − z)‖E

1 + |z|n/r

∥∥∥∥
p

≤ c ‖f‖p,ρ

holds for all f ∈ LK
p,ρ(E).

(iii) (Plancherel–Polya–Nikol’skij inequalities). Let p ≤ q ≤ ∞ and let α be a
multi–index. Then there exists a positive number c such that

(3.3) ‖∂αf‖q,ρ ≤ c ‖f‖p,ρ

holds for all f ∈ LK
p,ρ(E).

(iv) There exist three positive numbers h0, c1, c2 such that

(3.4) c1 ‖(ρ(xk)f(xk))‖lp(Zn,E) ≤ h−n/p‖f‖p,ρ ≤

≤ c2 ‖(ρ(xk)f(xk))‖lp(Zn,E)

holds for all h with 0 < h ≤ h0, all sets {xk}k∈Zn with xk ∈ Qh
k =∏n

j=1[hkj , h(kj + 1)[ and all f ∈ LK
p,ρ(E).

(v) If p ≤ q ≤ ∞ we have the topological embeddings
SK

ω →֒ LK
p,ρ(E) →֒ LK

q,ρ(E) →֒ S′
ω(E).

(vi) LK
p,ρ(E) is a quasi–Banach (Banach if p ≥ 1) space.

(vii) Translations and differentiations generate continuous linear operators in
LK

p,ρ(E).

(viii) The mapping Sω × LK
p,ρ(E) −→ LK

p,ρ(E): (ϕ, f) → ϕ ∗ f is well–defined
and is bilinear and continuous.

Proof. (i) Let ϕ ∈ Sω with ϕ(0) = 1 and supp ϕ̂ ⊂ B̄1. Given f ∈ LK
p,ρ(E), we

consider the functions fε(x) = ϕ(εx)f(x) for 0 < ε ≤ 1. Obviously for ε → 0+,

‖fε(x) − f(x)‖E → 0 for every x. Moreover, for every e′ ∈ E′, ê′ ◦ f = e′ ◦ f̂ has

compact support, so e′ ◦ fε = ϕ(ε·)(e′ ◦ f) ∈ Sω ([33, p. 17]). Since supp ê′ ◦ fε ⊂

supp ϕ̂(ε·) + supp ê′ ◦ f ⊂ B̄ε + K = Kε it follows that e′ ◦ fε ⊂ SKε
ω (thus fε ∈

SKε
ω (E)). On the other hand, there exists a constant c > 0 such that

sup
z∈Rn

ρ(x− z)
|φ(x− z)|

1 + |z|n/r
≤ c [(M |ρφ|r) (x)]

1/r

for all φ ∈ SK1
ω and for all x ∈ Rn (see [33, Th. 1.4.2]). By using this maximal

inequality and the Hahn–Banach theorem, we get for x ∈ Rn and 0 < ε ≤ 1

sup
z∈Rn

ρ(x− z)
‖fε(x− z)‖E

1 + |z|n/r
= sup

‖e′‖≤1

(
sup
z∈Rn

ρ(x − z)
|(e′ ◦ fε)(x− z)|

1 + |z|n/r

)
≤

≤ c sup
‖e′‖≤1

[(
M |ρ (e′ ◦ fε)|

r)
(x)

]1/r
≤ c [(M‖ρfε‖

r
E) (x)]

1/r ≤

≤ c [(M‖ρf‖r
E) (x)]

1/r
.
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Finally, passing to the limit as ε → 0+ we obtain the right–side of (3.1). The
first inequality of (3.1) is shown in a similar way by using the corresponding scalar
inequality ([33, Th. 1.4.2]).

(ii) (3.2) is a consequence of the right–side of (3.1) and the Hardy–Littlewood
maximal inequality (since p/r > 1).

(iii) Following the scalar case (see [33, Prop. 1.4.3]) and using the maximal in-
equalities (3.1) one can show the inequalities (3.3) for arbitrary functions of SK

ω (E).
Then, using the approximation procedure in (i) and Fatou’s lemma one obtains (3.3)
for all f ∈ LK

p,ρ(E).
(iv) Let Λ be a bounded open set with Λ ⊃ K. Reasoning as in the scalar case

(see [33, Prop. 1.4.4]) and using (3.1) and (3.3) one can find constants h0, c1, c2 > 0

such that (3.4) holds for all h ∈]0, h0], all sets {xk} with xk ∈ Qh
k and all f ∈ SΛ̄

ω (E).

Then, using the approximation procedure in (i) (if f ∈ LK
p,ρ(E) then fε ∈ SΛ̄

ω (E)

when ε→ 0+) one obtains (3.4) for all f ∈ LK
p,ρ(E).

(v) is an immediate consequence of the Plancherel–Polya–Nikol’skij inequalities
(3.3) and of the topological embeddings Sω(E) →֒ Lp,ρ(E) (0 < p ≤ ∞) and
Lp,ρ(E) →֒ S′

ω(E) (1 ≤ p ≤ ∞).
(vi) Let (fj) be a Cauchy sequence in LK

p,ρ(E). Since Lp,ρ(E) is complete there
exists an f ∈ Lp,ρ(E) such that fj → f in Lp,ρ(E). Passing to a subsequence, if
necessary, we can suppose that fj → f a.e. By (3.3) and the estimate 1/ρ(x) ≤

ceω(x) for all x ∈ Rn, we have sup
x∈Rn

{e−ω(x)‖fj(x)‖E : j = 1, 2, . . . } < ∞. Then,

using Fatou’s lemma and the E–valued dominated convergence theorem, we obtain

that f ∈ S′
ω(E) and fj → f in S′

ω(E). Thus, f̂j → f̂ in S′
ω(E), supp f̂ ⊂ K,

f ∈ LK
p,ρ(E) and fj → f in LK

p,ρ(E).

(vii) Let h ∈ Rn. Then τh is a continuous linear operator in LK
p,ρ(E) by virtue

of the estimate ρ(x + h) ≤ c eω(h)ρ(x), x ∈ Rn, and of the formula τ̂hf = e−ih(·)f̂ ,
f ∈ S′

ω(E). By the Plancherel–Polya–Nikol’skij inequalities ∂α is a continuous
linear operator in LK

p,ρ(E) for all multi–indices α.

(viii) Let ϕ ∈ Sω and let f ∈ LK
p,ρ(E). Then ϕ ∗ f ∈ S′

ω(E) and ϕ̂ ∗ f = ϕ̂ f̂ .

Thus supp ϕ̂ ∗ f ⊂ K and so, by the Paley–Wiener–Schwartz theorem for E–valued
ultradistributions, ϕ∗f(x) = 〈τxϕ̃, f〉 =

∫
Rn ϕ(x−y)f(y) dy becomes the restriction

to Rn of an E–valued entire function of exponential type. On the other hand, it
follows from the proof of the Proposition in [38, p. 40], that there exist positive
constants c and Λ such that for any φ ∈ Sω and g ∈ LK

p,ρ

ρ(x− z)
|φ ∗ g(x− z)|

1 + |z|n/r
≤ c p0,Λ(φ) sup

ξ∈Rn

ρ(x− ξ)
|g(x− ξ)|

1 + |ξ|n/r

with 0 < r < p. Then, by using the Hahn–Banach theorem, we get

ρ(x− z)
‖ϕ ∗ f(x− z)‖E

1 + |z|n/r
≤ c p0,Λ(ϕ) sup

ξ∈Rn

ρ(x− ξ)
‖f(x− ξ)‖E

1 + |z|n/r

for all x, z ∈ Rn. Finally, the estimate (3.2) yields

‖ϕ ∗ f‖p,ρ ≤ c p0,Λ(ϕ)‖f‖p,ρ

which completes the proof.
�
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Remark 3.3. 1. The constants which appear in the inequalities (3.1), (3.2), (3.3)
and (3.4) and the constant h0 in (iv) are independent of the Banach space E.

2. Observe that the study of the spaces LK
p,ρ(E) is not reduced to the study

of the spaces LK
p,ρ⊗̂εE (resp. LK

p,ρ⊗̂πE): Let us assume 1 < p < ∞, ρ(x) ≡ 1,
◦

K 6= ∅ and that E is reflexive and contains a copy of lr (resp. has a quotient
isomorphic to lr) with p′ ≤ r <∞ (resp. with p ≤ r′ <∞). Let Q ⊂ K be a cube
with sides parallel to the axes. As is well known, χQ is a Fourier multiplier in Lp

(see [39, Lemma 2.2.4]), thus LQ
p is a complemented subspace of LK

p and LQ
p ≃ lp

(see [39, Th. 2.11.2]). By using these results and properties of the tensor products
of Banach spaces (see [9, Chapter VIII]), we have that LK

p ⊗̂εE (resp. LK
p ⊗̂πE)

contains a copy (resp. has a quotient isomorphic to) of lp⊗̂εlr (resp. lp⊗̂πlr). Since

lp⊗̂εlr (p′ ≤ r <∞) and lp⊗̂πlr (p ≤ r′ <∞) are not reflexive (see [16]), it follows

that neither LK
p ⊗̂εE nor LK

p ⊗̂πE are reflexive (see [43, p. 31]). However, E being

reflexive, LK
p (E) is reflexive. Consequently, LK

p (E) is not isomorphic to LK
p ⊗̂εE

(resp. to LK
p ⊗̂πE).

However, we should point out that the topology that LK
p,ρ(E) induces on LK

p,ρ⊗E
is always finer than the ε–topology and coarser than the π–topology (for any ρ ∈
R(ω), 1 ≤ p ≤ ∞, K compact and E Banach space).

Now we shall prove that SK
ω ⊗ E is dense in LK

p,ρ(E). In general this is not the

case. For example, if 0 < p ≤ ∞ and 0 < β < 1, the space L
{0}

p,e−|x|β
is infinite–

dimensional but S
{0}

|x|β
contains only the function ϕ(x) ≡ 0 (see [38, Remark 1.4.3]);

on the other hand, p must be < ∞ since, e.g., if K is uncountable then LK
∞ is not

separable ({eik(·) : k ∈ K} ⊂ LK
∞ and ‖eik(·) − eik′(·)‖∞ = 2 when k 6= k′) but SK

(as subspace of S) is separable, thus SK is not dense in LK
∞.

Let us recall that a bounded open Ω in Rn has the segment property if there
exist open balls Vj and vectors yj ∈ Rn, j = 1, . . . , N , such that Ω̄ ⊂ ∪N

j=1Vj and

(Ω̄ ∩ Vj) + tyj ⊂ Ω for 0 < t < 1 and j = 1, . . . , N . For instance, if Ω is convex or
if ∂Ω ∈ C0,1 then Ω has the segment property.

Theorem 3.4. Let ω ∈ M, ρ ∈ R(ω) and let K be the closure of a bounded open
Ω in Rn. Let E be a Banach space. If 0 < p <∞ and Ω has the segment property,
then SK

ω (E) and SK
ω ⊗ E are dense in LK

p,ρ(E).

Proof. Let ε0 > 0 such that K + B̄ε0 ⊂ ∪N
j=1Vj . Then we can find ψj ∈ Dω(Vj) so

that ψj ≥ 0 and
∑N

j=1 ψj = 1 in K+B̄ε0 (cf. [3]). Put ϕj = F−1ψj ∈ S
Vj
ω . Then by

Theorem 3.2 (viii) the convolution operators Φjf = ϕj ∗ f are bounded in LK
p,ρ(E).

Besides,
∑N

j=1 Φjf = f for all f ∈ LK
p,ρ(E). Next, reasoning as in the scalar case

(see [38, Prop. 1.4.4]) and using the approximation procedure in Theorem 3.2 (i), it
is possible to approximate every Φjf by functions of SK

ω (E). Consequently, SK
ω (E)

is dense in LK
p,ρ(E). Finally, since SK

ω (E) →֒ LK
p,ρ(E) and SK

ω ⊗E is dense in SK
ω (E)

(see the next lemma) the proof is complete. �

Lemma 3.5. Let ω ∈ M and let K be a compact set in Rn. Let E be a Banach
space. Then SK

ω ⊗̂εE = SK
ω (E).
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Proof. Firstly, reasoning as in the classical case (i.e., when ω(x) = log(1 + |x|); see,
e.g., [34]), one proves that Sω(E) coincides with the set of all f : Rn → E such
that e′ ◦ f ∈ Sω for any e′ ∈ E′. Therefore, SK

ω (E) coincides with the collection of
all f : Rn → E such that e′ ◦ f ∈ SK

ω . Next, since Sω is a nuclear Fréchet space
(see [15]), the subspace SK

ω also is a nuclear Fréchet space (see, e.g., [36, p. 514]).
Then, by using [20, Th. 1.12, p. 666], we see that the mapping

Φ : Lb

((
SK

ω

)′
, E

)
→ SK

ω (E)

T → f(x) = T (δx)

is an algebraic isomorphism. Finally, since the graph of Φ is closed and SK
ω (E) and

Lb

((
SK

ω

)′
, E

)
(= SK

ω ⊗̂εE, see, e.g., [36, p. 525]) are Fréchet spaces, the closed

graph theorem shows that Φ becomes a topological isomorphism. Consequently,
SK

ω ⊗̂εE coincides algebraic and topologically with SK
ω (E). �

Remark 3.6. 1. Theorem 3.4 generalizes the Proposition in [38, p. 40] tho the
E–valued case.

2. Let 0 < p < ∞, K a compact set in Rn and let E be a Banach space.
Then the canonical injection jE : LK

p (E) → A(E) is continuous (we suppose A(E)
equipped with the topology of uniform convergence on compact subsets of Cn). In
fact, let 1 ≤ p < ∞ and K = {x : |xj | ≤ bj , j = 1, . . . , n}. Let LK

p ⊗p E be the

space LK
p ⊗ E equipped with the topology induced by LK

p (E). By Remark 3.3/2

the identity mapping id : LK
p ⊗p E → LK

p ⊗ε E is continuous, thus it may be

extended to a continuous linear mapping îd : LK
p (E) → LK

p ⊗̂εE since LK
p (E) is

the completion of LK
p ⊗p E by Theorem 3.2/(vi) and Theorem 3.4. On the other

hand, as a consequence of a compactness theorem by Nikol’skij [27, p. 127], the
canonical injection j : LK

p → A is also continuous. Furthermore, it is well–known

that A(E) = A⊗̂εE (see, e.g., [14, Ch. II, p. 81]). Finally, since the diagram

LK
p (E)

jE //

bid ""E
E

E
E

E
E

E
E

A(E) = A⊗̂εE

LK
p ⊗̂εE

j b⊗εidE

99sssssssssss

is commutative, it follows that jE is continuous. In the general case, i.e., when
0 < p <∞ and K is any compact set in Rn, we use this result and the Plancherel–
Polya–Nikol’skij inequalities.

4. Lp,ρ(E)–Fourier multipliers. Duality

In this section we shall calculate the dual of the space LK
p,ρ(E). In fact, we shall

show that the natural mapping N : L−K
p′,ρ−1(E′) →

(
LK

p,ρ(E)
)′

: g → 〈f,Ng〉 =∫
Rn〈f(x), g(x)〉dx becomes an isomorphism when p ∈ (1,∞) and χK is an Lp,ρ(E)–

Fourier multiplier (see Theorem 4.6 and Corollary 4.8). Some new characterizations
of the so–called UMD–property will also be given. These results will be used in the
next section in order to represent several distribution spaces by means of spaces of
vector sequences.
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Definition 4.1. Let ω ∈ M, ρ ∈ R(ω), 1 ≤ p < ∞ and E be a Banach space. A
function m ∈ L∞ is said to be an Lp,ρ(E)–Fourier multiplier if there is a constant
C such that for all f ∈ Sω(E) we have

(4.1) ‖F−1(mFf)‖p,ρ ≤ C‖f‖p,ρ .

The set of all Lp,ρ(E)–Fourier multipliers will be denoted by Mp,ρ(E) and the
smallest constant C such that (4.1) holds by ‖m‖Mp,ρ(E). For an Lp,ρ(E)–Fourier

multiplier m the operator f → F−1(mFf) extends uniquely to a bounded operator
on Lp,ρ(E) which will be denoted by Tm.

Remark. If ρ(x) ≡ 1 then we put Mp,1(E) = Mp(E) (Mp if E = C). We shall write
Mp,ρ instead of Mp,ρ(C). If m ∈Mp,ρ the corresponding operator on Lp,ρ will also
be denoted by Tm. If m ∈ Mp,ρ(E) then m ∈ Mp,ρ but, in general, the converse
does not hold. For example, if Q is a cube with sides parallel to the axes, p ∈ (1,∞)
and E 6∈ UMD, then χQ ∈Mp but χQ 6∈Mp(E) (see Corollary 4.7).

Lemma 4.2. Let ω ∈ M, ρ ∈ R(ω), p ∈ (1,∞) and E be a Banach space. If
m ∈Mp,ρ(E), then m̃ ∈Mp′,ρ−1(E′).

Proof. Since m ∈Mp,ρ and the identity

(4.2)

∫

Rn

ϕ(x)F−1(mψ̂)(x) dx =

∫

Rn

ψ(x)F−1(m̃ϕ̂)(x) dx

holds for all ϕ, ψ ∈ L2, a duality argument proves that m̃ ∈ Mp′,ρ−1 . Let us now
consider the following diagram

(Lp,ρ(E))
′ T ′

m // (Lp,ρ(E))
′

Lp′,ρ−1(E′)

I

OO

Lp′,ρ−1(E′)

I

OO

Sω ⊗p′,ρ−1 E′

i

eeKKKKKKKKKK Z

99s
s

s
s

s

where T ′
m is the adjoint of the operator Tm associated with the Lp,ρ(E)–Fourier

multiplier m, I is the isometric embedding 〈f, I(g)〉 =
∫

Rn〈f, g〉dx for f ∈ Lp,ρ(E)
and g ∈ Lp′,ρ−1(E′), Sω ⊗p′,ρ−1 E′ is the space Sω ⊗E′ equipped with the topology
induced by Lp′,ρ−1(E′), i is the natural injection and Z is the map defined by

Z
(∑

ϕj ⊗ e′j
)

=
∑

(T emϕj)⊗ e′j for
∑
ϕj ⊗ e

′
j ∈ Sω ⊗E′. By virtue of (4.2) we get

〈ψ ⊗ e, I (Z(ϕ⊗ e′))〉 =

∫

Rn

〈ψ(x)e, T emϕ(x)e′〉dx =

=

∫

Rn

ψ(x)F−1(m̃ϕ̂)(x) dx 〈e, e′〉 =

∫

Rn

ϕ(x)F−1(mψ̂)(x) dx 〈e, e′〉 =

=

∫

Rn

〈F−1(mψ̂)(x)e, ϕ(x)e′〉dx = 〈Tm (ψ ⊗ e) , I (ϕ⊗ e′)〉 =

= 〈ψ ⊗ e, T ′
m (I (i(ϕ⊗ e′)))〉

for all ϕ, ψ ∈ Sω, e ∈ E and e′ ∈ E′. Since Sω ⊗ E is dense in Lp,ρ(E) we
conclude that the diagram is commutative. Therefore I ◦ Z is bounded and, since
I is isometric, Z is also bounded. Consequently, m̃ ∈Mp′,ρ−1(E′). �
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We shall omit the proof of the following simple result.

Lemma 4.3. Let ω ∈ M, ρ ∈ R(ω), 1 ≤ p < ∞ and E a Banach space. If
f ∈ Lp,ρ(E) has compact support, then there exists a sequence (hj)∞1 ⊂ Dω(E)
such that hj → f in Lp,ρ(E) as j → ∞ and, for all j, supphj ⊂ K where K is
some fixed compact neighborhood of supp f .

The next lemma is a simple consequence of some results in [10, Ch. II]. We shall
give the proof for the sake of completeness. We shall employ the following notation
(see [10, Ch. II]): Let ω ∈ M, ρ ∈ R(ω), 1 < p < ∞ and let E be a Banach space.

Let Σ be the ring of measurable subsets A ⊂ Rn such that
∫

A ρ
−p′

(x) dx < ∞. A
Σ–partition π of Rn is any finite disjoint collection {Aj} ⊂ Σ. Then

Vp′,ρ−1(E′) = {m |m : Σ → E′ , m finitely additive,

m(A) = 0 if Voln(A) = 0 , |m|p′,ρ−1 <∞}

where |m|p′,ρ−1 = sup
{(∑

π

‖m(A)‖p′

E′

(
R

A
ρ−p′dx)p′−1

)1/p′

: π = Σ–partition of Rn
}

. With

the norm |·|p′,ρ−1 , Vp′,ρ−1(E′) is a Banach space, and the mapping Vp′,ρ−1(E′) →

(Lp,ρ(E))′ : m→
∫

Rn(·)ρp′

(x) dm(x) is an isomorphism (isometric).

Lemma 4.4. Let ω ∈ M, ρ ∈ R(ω), 1 < p < ∞ and E be a Banach space. Let U
be a continuous map from Rn into E′ such that sup{|

∫
Rn〈f, U〉dx| : ‖f‖p,ρ ≤ 1 , f ∈

Lc
∞(E)} = C <∞. Then U ∈ Lp′,ρ−1(E′) and ‖U‖p′,ρ−1 = C.

Proof. Putting I(f) =
∫

Rn〈f(x), U(x)〉dx, f ∈ Lc
∞(E), and using the hypothesis

we see that I(f) becomes a continuous linear form on Lc
∞(E) equipped with the

topology induced by Lp,ρ(E). Let Ī be the continuous extension of I to Lp,ρ(E)

and let m ∈ Vp′,ρ−1(E′) be such that Ī(f) =
∫

Rn ρ
p′

(x)f(x) dm(x), f ∈ Lp,ρ(E),

and ‖Ī‖ = ‖I‖ = C = |m|p′,ρ−1 [10, Th. 1, p. 259]. Then
∫

Rn〈f(x), U(x)〉dx =∫
Rn ρ

p′

(x)f(x) dm(x) for all f ∈ Lc
∞(E) and therefore, taking f = ρ−p′

χA ⊗ e with

e ∈ E and A measurable and bounded in Rn, we obtain 〈e,
∫

A ρ
−p′

(x)U(x) dx〉 =

〈e,m(A)〉. Hence it follows that m(A) =
∫

A ρ
−p′

(x)U(x) dx for all measurable and
bounded A. On the other hand, for any compact K in Rn, we have

(∫

K

‖U(x)‖p′

ρ−p′

(x) dx

)1/p′

=

= sup
{(∑

π

‖mK
U (B)‖p′

E′(∫
B ρ

−p′dx
)p′−1

)1/p′

: π = B(K)–partition of K
}

where mK
U (B) =

∫
B U(x)ρ−p′

(x) dx for all B ∈ B(K) (see [10, Ch. II]). Since

mK
U (B) = m(B) for B ∈ B(K), it results that

(∫

K

‖U(x)‖p′

ρ−p′

(x) dx

)1/p′

≤ |m|p′,ρ−1 = C .

Varying K we get U ∈ Lp′,ρ−1(E′) and ‖U‖p′,ρ−1 ≤ C. By using now the isometric

embedding Lp′,ρ−1(E′) →֒ Vp′,ρ−1(E′) : g → mg(A) =
∫

A
g ρ−p′

dx for all A ⊂ Σ,
it follows that ‖U‖p′,ρ−1 = |mU |p′,ρ−1 (see again [10, Ch. II]). Finally, since U ∈
Lp′,ρ−1(E′), it is easy to see that Ī(f) =

∫
〈f(x), U(x)〉dx for all f ∈ Lp,ρ(E); hence

it follows that m = mU which completes the proof. �
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Lemma 4.5. Let ω ∈ M, ρ ∈ R(ω), p ∈ (1,∞) and K be a compact set in Rn such

that
◦

K 6= ∅ and Voln(∂K) = 0. Assume that ρ = ρ̃ and that LK
p,ρ is an invariantly

complemented subspace of Lp,ρ. Then χK ∈Mp,ρ.

Proof. Let P be a translation invariant bounded projection in Lp,ρ such that ImP =
LK

p,ρ. By [33, Lemma 5.1.3] we may assume, without loss of generality, that ρ(0) =

1 and ρ ∈ C∞. Then, we can find an m ∈ L∞ such that P̂ϕ = mϕ̂ for all
ϕ ∈ D (see [23]). Since D is dense in the space L2 ∩ Lp,ρ equipped with the norm

‖·‖∩ = max(‖·‖2, ‖·‖p,ρ), we also have that P̂ f = mf̂ for any f ∈ L2 ∩ Lp,ρ. In
fact, if f ∈ L2 ∩ Lp,ρ and the sequence (ϕj) ⊂ D satisfies ‖ϕj − f‖∩ → 0, then

by Plancherel’s theorem ‖mϕ̂j − mf̂‖2 → 0 and thus mϕ̂j → mf̂ in S′
ω; also

‖Pϕj − Pf‖p,ρ → 0 and therefore Pϕj → Pf in S′
ω and P̂ϕj → P̂ f in S′

ω. Since

P̂ϕj = mϕ̂j it results that P̂ f = mf̂ as we required. Applying this property we
see that

mf̂ = P̂ f = P̂ 2f = P̂ (Pf) = mP̂f = m2f̂

for any f ∈ L2 ∩ Lp,ρ. Hence it follows that m2 = m a.e. and so m = χA a.e.

where A = {x : m(x) = 1}. Since suppχAf̂ ⊂ K for any f ∈ L2 ∩ Lp,ρ, we get

Voln(ArK) = 0. On the other hand, χA = 1 in
◦

K a.e. (for any x ∈
◦

K there exists

ϕx ∈ Dω(
◦

K) such that ϕx = 1 in a neighborhood of x, then if fx = F−1ϕx we see

that ϕx = f̂x = P̂ fx = χAf̂x = χAϕx and so χA = 1 in a neighborhood of x), that

is, Voln(
◦

K rA) = 0. In consequence χA = χK a.e. and so χK ∈Mp,ρ. �

Theorem 4.6. Let ω ∈ M, ρ ∈ R(ω) and p ∈ (1,∞). Let K be the closure of
a bounded open in Rn with the segment property and let E be a Banach space. If

χK ∈ Mp,ρ(E), then the mapping N : L−K
p′,ρ−1(E′) →

(
LK

p,ρ(E)
)′

: g → 〈f,Ng〉 =∫
Rn〈f(x), g(x)〉dx becomes an isomorphism. Conversely, if the former mapping N

is an isomorphism, ρ = ρ̃ and Voln(∂K) = 0, then χK ∈Mp,ρ(E).

Proof. (=⇒) Denote by SK the operator associated with the Lp,ρ(E)–Fourier mul-
tiplier χK . Since LK

p,ρ(E) is complete (see Theorem 3.2/(vi)) and SK
ω (E) is dense in

LK
p,ρ(E) (Theorem 3.4) it is easy to check that ImSK = LK

p,ρ(E), SK is a projection

and Lp,ρ(E) = LK
p,ρ(E) ⊕ kerSK . Analogously, we get Lp′,ρ−1(E′) = L−K

p′,ρ−1(E′) ⊕

kerS−K where S−K is the operator associated with the Lp′,ρ−1(E′)–Fourier multi-
plier χ−K (see Lemma 4.2). Furthermore, from the proof of Lemma 4.2, it results
that the identity

(4.3)

∫

Rn

〈SKf(x), g(x)〉dx =

∫

Rn

〈f(x), S−Kg(x)〉dx

holds for all f ∈ Lp,ρ(E) and for all g ∈ Lp′,ρ−1(E′).
Now study the properties of the mapping N . By Hölder’s inequality N is well–

defined and it is linear and continuous. Let us see that it is injective. Suppose
Ng = 0, i.e.,

∫
Rn〈f(x), g(x)〉dx = 0 for all f ∈ LK

p,ρ(E). Then, if f ∈ Lp,ρ(E) and
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f = f1 + f2 with f1 ∈ LK
p,ρ(E) and f2 ∈ kerSK , we obtain, from the identity (4.3),

∫

Rn

〈f(x), g(x)〉dx =

∫

Rn

〈f1(x), g(x)〉dx +

∫

Rn

〈f2(x), g(x)〉dx =

=

∫

Rn

〈f2(x), S−Kg(x)〉dx =

∫

Rn

〈SKf2(x), g(x)〉dx = 0 .

But since the mapping Lp′,ρ−1(E′) → (Lp,ρ(E))
′

: h→
∫

Rn〈·, h(x)〉dx is an isomet-
ric embedding, it follows that g ≡ 0 as we required.

Next we prove that ImN =
(
LK

p,ρ(E)
)′

. For this we consider the diagram

(
LK

p,ρ(E)
)′ S′

K−→ (Lp,ρ(E))
′ j′

−→ (Sω(E))
′ Φ
−→ S′

ω(E′)

where S′
K is the adjoint of SK , j′ is the adjoint of the natural injection Sω

j
→֒

Lp,ρ(E) and Φ is the operator defined by 〈e, 〈ϕ,Φ(v)〉〉 = 〈ϕ ⊗ e, v〉 for all v ∈
(Sω(E))

′
, ϕ ∈ Sω and e ∈ E (as is well–known, see [36, p. 524], Φ is a topological

isomorphism since Sω is nuclear [15]). Put Λ = Φ ◦ j′ ◦ S′
K . Let u ∈

(
LK

p,ρ(E)
)′

. If

ϕ ∈ Dω(∁(−K)) and e ∈ E, we have

〈e, 〈ϕ, Λ̂u〉〉 = 〈e, 〈ϕ̂,Λu〉〉 = 〈e, 〈ϕ̂,Φ(j′(S′
K(u)))〉〉 = 〈SK(ϕ̂⊗ e), u〉 =

= 〈F−1(χK
ˆ̂ϕ) ⊗ e, u〉 = (2π)n〈F−1(χK ϕ̃) ⊗ e, u〉 = 0

since χK ϕ̃ = 0. Hence it follows that supp Λ̂u ⊂ −K. Then the Paley–Wiener–
Schwartz theorem for E′–valued ultradistributions shows that there exists an E′–
valued entire function of exponential type U such that 〈ϕ,Λu〉 =

∫
Rn ϕ(x)U(x) dx

for all ϕ ∈ Sω. This implies that 〈SKf, u〉 =
∫

Rn〈f, U〉dx for all f ∈ Sω ⊗ E and
since SK is a bounded operator, Sω ⊗E is dense in Sω(E) and there exist constants
C > 0, λ ∈ R such that ‖U(x)‖E′ ≤ Ceλω(x) for any x ∈ Rn, it is clear that this
identity also holds for all f ∈ Sω(E). By using Lemma 4.3 we also get

〈SKf, u〉 =

∫

Rn

〈f(x), U(x)〉dx

for all f ∈ Lc
∞(E), therefore

sup

{∣∣∣∣
∫

Rn

〈f(x), U(x)〉dx

∣∣∣∣ : ‖f‖p,ρ ≤ 1 , f ∈ Lc
∞(E)

}
≤

≤ ‖m‖Mp,ρ(E)
‖u‖(LK

p,ρ(E))
′ <∞ .

Hence an application of Lemma 4.4 gives U ∈ Lp′,ρ−1(E′) and thus Λu ∈ L−K
p′,ρ−1(E′).

Furthermore, since SK
ω (E) is dense in LK

p,ρ(E) and for all f ∈ SK
ω (E) we have

〈f,N(Λu)〉 =

∫

Rn

〈f(x), U(x)〉dx = 〈SKf, u〉 = 〈f, u〉 ,

it follows that N(Λu) = u. To complete the proof we apply the open mapping
theorem.

(⇐=) Consider the diagram

Lp′,ρ−1(E′)
I

−→ (Lp,ρ(E))′
R

−→
(
LK

p,ρ(E)
)′ N

−→ L−K
p′,ρ−1(E′)

where I is the natural isometric embedding, R is the restriction operator and N is
the given topological isomorphism. Putting P = N−1◦R◦I, it is easy to see that P is
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a translation invariant bounded projection in Lp′,ρ−1(E′) with ImP = L−K
p′,ρ−1(E′).

Hence it follows that the mapping Pee′ : Lp′,ρ−1 → L−K
p′,ρ−1 : g → e◦P (g⊗e′)/〈e, e′〉

is a translation invariant bounded projection in Lp′,ρ−1 such that ImPee′ = L−K
p′,ρ−1

provided 〈e, e′〉 6= 0. By Lemma 4.5 it results that χ−K ∈ Mp′,ρ−1 (and Pee′ =
S−K = the operator associated with the Lp′,ρ−1–Fourier multiplier χ−K). There-
fore, the mapping Sω ⊗p′,ρ−1E′ → Lp′,ρ−1(E′) :

∑
ϕj ⊗ e′j →

∑
(S−Kϕj) ⊗ e′j is

well–defined and it is bounded (since it coincides with P |Sω⊗E′), that is, χ−K ∈
Mp′,ρ−1(E′). Then, by Lemma 4.2, χK ∈Mp,ρ(E′′) and so χK ∈Mp,ρ(E). �

As a consequence of this theorem we can give some characterizations of the so–
called UMD–property (cf. [30], [8]). Let us recall that a Banach space E is UMD
provided that for 1 < p < ∞ martingale difference sequences d = (d1, d2, . . . ) in
Lp([0, 1], E) are unconditional, i.e. ‖ε1d1 + ε2d2 + · · ·‖p ≤ Cp(E)‖d1 + d2 + · · ·‖p

whenever ε1, ε2, . . . are numbers in {−1, 1}. This property is also equivalent to the
boundedness of the Hilbert transform on Lp(R, E) (see [4], [5]).

Corollary 4.7. Let E be a Banach space and Q the cube [−1, 1]n. Then for all
p ∈ (1,∞) the following statements are equivalent:

(i) E ∈ UMD.
(ii) χQ ∈Mp(E).

(iii) LQ
p′(E′) and

(
LQ

p (E)
)′

are isomorphic via the natural mapping.

(iv) LQ
p (E) is an invariantly complemented subspace of Lp(E).

(v) E is reflexive and LQ
p (E) is a complemented subspace of Lp(E).

Proof. By the results in [4] and [5], (i) is equivalent to (ii). The equivalence between
(ii) and (iii) is a consequence of Theorem 4.6. The operator SQ associated with
the Lp(E)–Fourier multiplier χQ is a translation invariant bounded projection in
Lp(E) and ImSQ = LQ

p (E) (see the proof of Theorem 4.6), thus (ii) implies (iv).
Conversely, if P is a translation invariant bounded projection in Lp(E) such that
ImP = LQ

p (E) then reasoning as we did in the part (⇐=) of Theorem 4.6 we get
χQ ∈Mp(E), so (iv) implies (ii). From [1] (cf. also [30]), we know that UMD implies
reflexivity (actually, super–reflexivity), therefore (iv) (⇔ (i)) implies (v). We now
show that (v) implies (iv). Since E is reflexive, Lp(E) becomes a reflexive space
(cf., e.g., [9]) and then we can apply [29, A6, p. 80] and argue exactly as in [29,
Lemma 3.1, p. 59]. Thus LQ

p (E) becomes an invariantly complemented subspace of
Lp(E). �

Let us now recall the definition of Ap functions. A positive, locally integrable
function ω on Rn is in A∗

p provided, for 1 < p <∞,

A∗
p(ω) = sup

R

(
1

|R|

∫

R

ω dx

) (
1

|R|

∫

R

ω−p′/pdx

)p/p′

<∞ ,

where R runs over all bounded n–dimensional intervals. If R runs over all cubes in
Rn then ω is in Ap and the corresponding supremum is denoted by Ap(ω). Ap is
the class of Muckenhoupt. The basic properties of these functions can be found in
[26], [7] and [13, Ch. IV].

Corollary 4.8. Let ω ∈ M, 1 < p <∞, ρ ∈ R(ω), ρp ∈ A∗
p and let E be a Banach

space with the UMD–property. Then
(
LI

p,ρ(E)
)′

and L−I
p′,ρ−1(E′) are isomorphic,

via the natural mapping, for all compact n–dimensional intervals I.
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Proof. By the next theorem, χI ∈Mp,ρ(E) for any compact n–dimensional interval
I. The corollary now follows from Theorem 4.6. �

Remark. The former corollary extends the theorem in [38, p. 43] (see also [38, p. 24]
and [38, p. 40]).

If ω is a positive, locally integrable function on Rn and 1 < p < ∞, then the
partial sum operators SI are uniformly bounded (for all n–dimensional intervals I)
in Lp(ω dx) if and only if ω ∈ A∗

p (see [13, Th. 6.2, p. 453]). In the next theorem,
this result is partially extended to the vector–valued setting. The extension is
essentially a consequence of Burkholder’s theorem [5] and Theorem 1.3 in [31].

Theorem 4.9. If ω is in A∗
p (1 < p < ∞) and the Banach space E is in UMD,

then the partial sum operators SI (SI = F−1(χI f̂) for f ∈ S(E)) are uniformly
bounded (for all n–dimensional intervals I) in Lp(ω dx,E).

Proof. Case n = 1. By [13, Th. 2.6, p. 399], there is ε > 0 such that ω ∈ Ap−ε.
Let β = p

p−ε and q = r′ = β (r′ is the conjugate exponent of r). Then, p >

β, the L(E)–valued Hilbert kernel K (K(x, y)(e) = e
π(x−y) , x, y ∈ R, x 6= y,

e ∈ E) satisfies (D′
1) and (D′

r) of [31, Def. 1.1, p. 30], and the Hilbert trans-
form H is a bounded linear operator on Lq(E) (cf. [5]). Therefore, H satisfies
the conditions of Theorem 1.3 of [31] and so H becomes a bounded linear oper-
ator on Lp(ω dx,E). Finally, by using the relationship between SI and H (e.g.,

S(a,b)f = i
2

[
eia(·)H(e−ia(·)f) − eib(·)H(e−ib(·)f)

]
for f ∈ S⊗E, −∞ < a < b <∞)

and the denseness of S ⊗ E in Lp(ω dx,E) (ω is in Ap), it results that

sup
I
‖SI‖L(Lp(ω dx,E)) ≤ 1.5 + ‖H‖L(Lp(ω dx,E)) <∞ .

Case n > 1. We shall assume n = 2 since this case contains all the essential
difficulties of the general situation. By [13, p. 464] there is ε > 0 such that ω ∈ A∗

p−ε,
and by [13, Th. 6.2, p. 453] there exist measurable null sets N1, N2 ⊂ R such that
ω(x1, ·) ∈ Ap−ε for all x1 ∈ R rN1, ω(·, x2) ∈ Ap−ε for all x2 ∈ R rN2 and

(4.4) sup
x1∈RrN1

Ap−ε(ω(x1, ·)) , sup
x2∈RrN2

Ap−ε(ω(·, x2)) ≤ A∗
p−ε(ω) .

Then, reasoning as we did in the case n = 1, analyzing in detail the constants which
appear throughout the proof of Theorem 1.3 of [31], and using (4.4) we obtain a
constant C, independent of x1 ∈ R rN1 and of x2 ∈ R rN2, such that

∫ ∞

−∞

‖Hf(x1)‖p
Eω(x1, x2)dx1 ≤ Cp

∫ ∞

−∞

‖f(x1)‖p
Eω(x1, x2)dx1

for all f ∈ Lp(ω(x1, x2)dx1, E) and for all x2 ∈ R rN2, and such that
∫ ∞

−∞

‖Hf(x2)‖p
Eω(x1, x2)dx2 ≤ Cp

∫ ∞

−∞

‖f(x2)‖p
Eω(x1, x2)dx2

for any f ∈ Lp(ω(x1, x2)dx2, E) and for any x1 ∈ R rN1. Hence it follows that

(4.5) ‖SI1‖L(Lp(ω(x1,x2)dx1,E)) , ‖SI2‖L(Lp(ω(x1,x2)dx2,E)) ≤ 1.5 + C

for all intervals I1, I2 ⊂ R, for all x2 ∈ R rN2 and for all x1 ∈ R rN1.
Next, let I1 be an interval of the x1–axis and let S1

I1
be the mapping

S1
I1

: S ⊗ S ⊗ E[Lp(ω dx1dx2, E)] → Lp(ω dx1dx2, E)
f → S1

I1
f(x1, x2) = SI1f(·, x2)(x1) .
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Then, by Fubini’s theorem and (4.5) we get
∫

R2

‖S1
I1f(x1, x2)‖p

E ω(x1, x2)dx1dx2 =

=

∫

RrN2

[∫ ∞

−∞

‖SI1f(·, x2)(x1)‖p
E ω(x1, x2)dx1

]
dx2 ≤

≤ kp

∫

RrN2

‖f(·, x2)‖p
Lp(ω(x1,x2)dx1,E)dx2 =

= kp

∫

RrN2

[∫ ∞

−∞

‖f(x1, x2)‖p
E ω(x1, x2)dx1

]
dx2 = kp‖f‖p

Lp(ω dx1dx2,E)

for any f ∈ S⊗S⊗E (being k = 1.5+C). Since S⊗S⊗E is dense in Lp(ω dx1dx2, E)
it follows that S1

I1
becomes a bounded linear operator on Lp(ω dx1dx2, E) with norm

independent of I1. Analogously, it is shown that S2
I2

becomes a bounded linear
operator on Lp(ω dx1dx2, E) with norm independent of I2. Finally, if I = I1 × I2
is a 2–dimensional interval, we have SI1×I2 = S1

I1
◦S2

I2
. This remark completes the

proof of the theorem. �

Remark 4.10. 1. The examples 1 and 2 and the theorem in [38, 1.4.5, pp. 41–46]
led us to Theorem 4.9.

2. In [11], C. Fefferman showed that the characteristic function of a euclidean
ball in Rn is not an Lp–Fourier multiplier when p ∈ (1,∞) r {2} and n > 1.
Mitiagin in [24] extended this result to compact sets K in Rn which have at least
one point of strict convexity (x ∈ ∂K is a point of strict convexity of K if for some
ε > 0 the set K ∩ Bε(x) is convex and at each point of ∂K ∩ Bε/2(x) there exists
only one hyperplane supporting ∂K ∩ Bε/2(x)). By using this result it is easily

seen that L−K
p′ (E′) and

(
LK

p (E)
)′

are not topologically isomorphic (via the natural

mapping) if K is a compact in Rn with any point of strict convexity, K = Ω̄ (Ω
open set with segment property), Voln(∂K) = 0, p ∈ (1,∞) r {2}, n > 1 and E is
any Banach space (cf. [38, pp. 45–46] and Theorem 4.6).

3. Taking into account that any translation invariant bounded projection on L∞

comes from a Borel measure on Rn [17], it is easy to check that L−K
∞ and

(
LK

1

)′
are not topologically isomorphic (again via the natural mapping) for any compact
set K in Rn.

5. Isomorphism properties

In this section we represent weighted Lp–spaces of vector-valued entire analytic
functions by means of spaces of vector sequences. Some other distribution spaces
are represented by using sequence spaces also. The basic tools used are a vector
version of the Shannon sampling theorem, the inequalities (3.4) of Theorem 3.2 and
the duality studied in Theorem 4.6.

We begin with an extension of the Shannon theorem (see also [12, pp. 55–56],
[38, p. 30]):

Theorem 5.1. Let ω ∈ M, ρ ∈ R(ω), p ∈ [1,∞) and Qb the cube [−b, b]n. Let E
be a Banach space. Suppose f ∈ SQb

ω (E), g ∈ S′
ω and supp ĝ ⊂ Qb. Then, for all

x ∈ Rn, we have

(5.1) f ∗ g(x) =
∑

k∈Zn

(π
b

)n

f(
π

b
k)g(x−

π

b
k)
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(absolute convergence) and if g ∈ LQb
p,ρ then (5.1) also holds in the norm of LQb

p,ρ(E).

In particular, if g(x) =
(

b
π

)n ∏n
j=1

sin bxj

bxj
, we get the representation

(5.2) f(x) =
∑

k∈Zn

f(
π

b
k)

n∏

j=1

sin(bxj − kjπ)

bxj − kjπ

for all x ∈ Rn (absolute convergence) and if χQb
∈ Mp,ρ (⇒ g ∈ LQb

p,ρ) then (5.2)

also holds in the norm of LQb
p,ρ(E).

Proof. Case E = C. Suppose first that g ∈ SQb
ω . Then, from the classical case

(see [12, p. 55]) we obtain (5.1). Suppose now that g ∈ S′
ω and supp ĝ ⊂

◦

Qb. For
ε > 0 let gε(x) = ϕ(εx)g(x), where ϕ ∈ Sω satisfies ϕ(0) = 1 and supp ϕ̂ ⊂ B̄1. By

[33, Prop. 2, p. 17], gε ∈ S
◦
Qb
ω for each sufficiently small ε > 0. Thus f ∗ gε(x) =∑

k∈Zn

(
π
b

)n
f(π

b k)gε(x− π
b k). Furthermore, since there exist positive constants c,

Λ such that |g(x)| ≤ ceΛω(x) for all x ∈ Rn (g is an entire function of exponential
type by the Paley–Wiener–Schwartz theorem), the sum

∑
k∈Zn |f(π

b k)||g(x− π
b k)| is

finite. Then, taking the limit as ε tends to 0, and using the dominated convergence
theorem we get that (5.1) holds for each x ∈ Rn.

Next, suppose that g ∈ S′
ω and supp ĝ ⊂ Qb. We first show that there exist a

family {gt : 0 < t < 1} ⊂ S′
ω and positive numbers c, λ such that supp ĝt ⊂

◦

Qb

for t ∈ (0, 1), |gt(x)| ≤ ceλω(x) for x ∈ Rn and t ∈ (0, 1), and gt(x) → g(x), as t
tends to 0, for each x ∈ Rn. For this we argue as in [38, p. 40]: Since Qb has the
segment property there exist open balls Vj and vectors yj, j = 1, . . . , N , such that

Qb ⊂ ∪N
j=1Vj and (Qb ∩ Vj) + tyj ⊂

◦

Qb for 0 < t < 1 and j = 1, . . . , N . Let ε0 > 0

such that Qb + B̄ε0 ⊂ ∪N
1 Vj and let ψj ∈ D(Vj) so that ψj ≥ 0 and

∑N
1 ψj = 1

in Qb + B̄ε0 . Put ϕj = F−1ψj ∈ S
Vj
ω . Then it is easily seen that the functions

gt =
∑N

j=1 e
ityj(·)(ϕj ∗ g) satisfy the required conditions. Consequently, we get

f ∗ gt(x) =
∑

k∈Zn

(π
b

)n

f(
π

b
k)gt(x−

π

b
k) .

Taking the limit as t tends to 0 and by using the dominated convergence theorem
again we obtain (5.1). If E is any Banach space, it suffices to notice that the sum∑

k∈Zn‖f(π
b k)‖E |g(x − π

b k)| is finite and then to make use of the Hahn–Banach
theorem.

Finally, if g ∈ LQb
p,ρ we get

∑

k∈Zn

‖g(· −
π

b
k) ⊗ f(

π

b
k)‖p,ρ ≤ c‖g‖p,ρ

∑

k∈Zn

eω( π
b k)‖f(

π

b
k)‖E <∞

c being the constant of the estimate ρ(x + y) ≤ c eω(x)ρ(y). Hence it follows,
taking into account the completeness of LQb

p,ρ(E) and the topological embedding

LQb
p,ρ(E) →֒ LQb

∞,ρ(E) (Theorem 3.2), that (5.1) also holds in the norm of LQb
p,ρ(E)

and the proof of the theorem is complete. �

Theorem 5.2. Let ω ∈ M, ρ ∈ R(ω), p ∈ (1,∞), Qb = [−b, b]n and let E be a
Banach space. If χQb

∈Mp,ρ(E), then the mapping Φ : LQb
p,ρ(E) → lp(Zn, E) : f →(

ρ(π
b k)f(π

b k)
)
k∈Zn is an isomorphism.
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Proof. By virtue of Theorem 3.2/(iv), we can find positive numbers h(≤ π/b), c1
such that

(5.3) c1‖(ρ(xm)f(xm))‖lp(Zn,E) ≤ h−n/p‖f‖p,ρ

(resp. c1‖
(
ρ−1(xm)g(xm)

)
‖lp′(Zn,E′) ≤ h−n/p′

‖g‖p′,ρ−1) holds for all sets {xm :

m ∈ Zn} with xm ∈ Qh
m =

∏n
j=1[hmj , h(mj + 1)[ and for all f ∈ LQb

p,ρ(E) (resp.

g ∈ LQb

p′,ρ−1(E′)). Since for each k ∈ Zn there exists a unique m ∈ Zn such that π
b k ∈

Qh
m, it follows from (5.3) that ‖Φ(f)‖lp(Zn,E) ≤ h−n/p

c1
‖f‖p,ρ for all f ∈ LQb

p,ρ(E).

So Φ becomes a bounded linear operator. Now put gk(x) =
∏n

j=1
sin(bxj−kjπ)

bxj−kjπ

and observe that χQb
∈ Mp,ρ ∩Mp′,ρ−1 . Then, by Theorem 3.4 and Theorem 5.1,

the closed linear span of the set {gk ⊗ e : k ∈ Zn, e ∈ E} (resp. {gk ⊗ e′ : k ∈

Zn, e′ ∈ E′}) is LQb
p,ρ(E) (resp. LQb

p′,ρ−1(E′)). Consequently, in order to show that

the estimate ‖f‖p,ρ ≤ C ‖Φ(f)‖lp(Zn,E), where C is a constant, holds in LQb
p,ρ(E),

it will be enough to consider functions f in the span {gk ⊗ e}. Let f be such

a function and let c2 such that ‖g‖p′,ρ−1 ≤ c2‖Ng‖ for all g ∈ LQb

p′,ρ−1(E′) (here

N : LQb

p′,ρ−1(E′) →
(
LQb

p,ρ(E)
)′

is the natural isomorphism, see Theorem 4.6). Then,

we have

‖f‖p,ρ = sup
{
|Tf | : T ∈

(
LQb

p,ρ(E)
)′
, ‖T ‖ ≤ 1

}
≤

≤ sup
{∣∣∣

∫

Rn

〈f, g〉dx
∣∣∣ : g ∈ LQb

p′,ρ−1(E′) , ‖g‖p′,ρ−1 ≤ c2
}

=

= sup
{∣∣∣

∫

Rn

〈f, g〉dx
∣∣∣ : g ∈ span{gk ⊗ e′} , ‖g‖p′,ρ−1 ≤ c2

}
.

Fix now g ∈ span{gk ⊗ e′} such that ‖g‖p′,ρ−1 ≤ c2. We can suppose, without loss
of generality, that f =

∑
|k|≤N gk ⊗ ek and g =

∑
|k|≤N gk ⊗ e′k for any positive

integer N . Then, taking into account (5.3) and that {gk : k ∈ Zn} is an orthogonal
system in L2, we get

∣∣∣
∫

Rn

〈f, g〉dx
∣∣∣ =

∣∣∣
∑

|k|,|l|≤N

∫

Rn

gkgl dx 〈ek, e
′
l〉

∣∣∣ =

= (2b)n
∣∣∣

∑

|k|≤N

〈ek, e
′
k〉

∣∣∣ ≤ (2b)n
∑

|k|≤N

‖ek‖E ‖e′k‖E′ =

= (2b)n
∑

|k|≤N

‖ρ(
π

b
k)f(

π

b
k)‖E ‖ρ−1(

π

b
k)g(

π

b
k)‖E′ ≤

≤ (2b)n
∥∥∥
(
ρ(
π

b
k)f(

π

b
k)

)∥∥∥
lp(Zn,E)

∥∥∥
(
ρ−1(

π

b
k)g(

π

b
k)

)∥∥∥
lp′(Zn,E′)

≤

≤ (2b)nh
−n/p′

c1
‖g‖p′,ρ−1‖Φ(f)‖lp(Zn,E) ≤

≤ (2b)nh
−n/p′

c1
c2‖Φ(f)‖lp(Zn,E) = c3‖Φ(f)‖lp(Zn,E) .

In consequence, ‖f‖p,ρ ≤ c3‖Φ(f)‖lp(Zn,E) as was required. We complete the proof
by showing that Φ is surjective. Let (vk)k∈Zn ∈ lp(Zn, E). Let F(Zn) be the family
of all finite subsets of Zn and for each J in F(Zn) let sJ =

∑
k∈J ρ

−1(π
b k)gk ⊗ vk.
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Then the net {sJ : J ∈ F(Zn),⊃} is a Cauchy net in LQb
p,ρ(E) since for J,K ∈ F(Zn)

we have

‖sJ − sK‖p,ρ =
∥∥∥

∑

k∈JrK

(·) −
∑

k∈KrJ

(·)
∥∥∥

p,ρ
≤

≤ c3

∥∥∥
∑

k∈JrK

Φ(·) −
∑

k∈KrJ

Φ(·)
∥∥∥

lp(Zn,E)
= c3

( ∑

k∈J∆K

‖vk‖
p
E

)1/p

where J∆K is the symmetric difference of J and K. Since LQb
p,ρ(E) is complete,

that net converges and its limit f satisfies f(π
b k) = ρ−1(π

b k)vk for all k ∈ Zn, thus
Φ(f) = (vk)k∈Zn . �

Remark 5.3. 1. Theorem 5.2 extends some results in [38, 1.4.6] (cf. also [33, p. 42])
to the E–valued case.

2. It is easy to check that if χ[−1,1]n ∈ Mp,ρ(E) then χQ ∈ Mp,ρ(E) for every
cube Q in Rn. Under these conditions, by using Theorem 5.2, we easily get that
the spaces LQ

p,ρ(E) are isomorphic to lp(Zn, E).

In the next corollaries the following well-known isomorphisms will be used:
lp(Zn, E) ≃ lp(E) and Lp,ρ(E) ≃ Lp([0, 1], E).

Corollary 5.4. Let ω ∈ M, ρ ∈ R(ω) and p ∈ (1,∞). Let K be the closure of a
bounded open set in Rn with the segment property. Let E be a Banach space. If
χ[−1,1]n , χK ∈Mp,ρ(E), then the space LK

p,ρ(E) is isomorphic to lp(E).

Proof. Let Q(1) and Q(2) two cubes such that Q(1) ⊂ K ⊂ Q(2). By the hypoth-

esis, LQ(i)

p,ρ (E) (i = 1, 2) and LK
p,ρ(E) are complemented subspaces of Lp,ρ(E) (see

the proof of Theorem 4.6) and, by the previous remark, the spaces LQ(i)

p,ρ (E) are

isomorphic to lp(E). Therefore, LK
p,ρ(E) is isomorphic to a complemented subspace

of lp(E) and lp(E) is isomorphic to a complemented subspace of LK
p,ρ(E). Since

lp(lp(E)) ≃ lp(E), we are in a position to apply Pe lczyński’s decomposition method
to conclude that LK

p,ρ(E) ≃ lp(E). �

Corollary 5.5. Let ω ∈ M, ρ ∈ R(ω) and p ∈ (1,∞). Let E be a Banach
space with a symmetric basis and such that lp(E) is not isomorphic to Lp(E). If
χ[−1,1]n ∈ Mp,ρ(E), then the space kerSQ (SQ is the operator associated with the
Lp,ρ(E)–Fourier multiplier χQ) is isomorphic to Lp(E) for every cube Q in Rn.

Proof. By the hypothesis, we have Lp,ρ(E) = LQ
p,ρ(E) ⊕ kerSQ. Since Lp,ρ(E) ≃

Lp([0, 1], E), it follows from [6] that Lp,ρ(E) is a primary space and so either LQ
p,ρ(E)

or kerSQ is isomorphic to Lp,ρ(E). But, by Remark 5.3/2, LQ
p,ρ(E) ≃ lp(E) and

since Lp(E) and lp(E) are not isomorphic, we conclude that kerSQ ≃ Lp,ρ(E) ≃
Lp(E). �

Remark. Let us mention some particular cases of Corollary 5.5: Let ω, ρ and p as
in Corollary 4.8 and let Q be a cube. Assume E = l2 and p 6= 2. By [21, p. 316],
Lp([0, 1], l2) ≃ Lp and lp(l2) is not isomorphic to Lp. Thus, by Corollary 5.5, the
space kerSQ is isomorphic to Lp. If E = lp and p 6= 2, kerSQ is isomorphic to
L2(lp) since l2(lp) is not an Lp–space (cf. [21, p. 317]). Finally, if E = lp then
kerSQ is isomorphic to Lp(lp).
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We consider now the spaces of Hörmander Bc
p,k(Ω, E) =

⋃
{Bp,k(E)∩E ′(K,E) :

K compact subset of Ω}. Here Ω is an open set in Rn, p ∈ [1,∞], k is a tem-
perate weight function on Rn [18, Def. 10.1.1], E is a Banach space, Bp,k(E) =

{T ∈ S′(E) : T̂ ∈ Lp,k(E)} and E ′(K,E) = {T ∈ D′(E) : suppT ⊂ K}. Bp,k(E)

becomes a Banach space with the norm ‖T ‖Bp,k(E) = ‖T̂‖p,k and Bc
p,k(Ω, E) is

equipped with the inductive linear topology defined by the Banach spaces
(
Bp,k(E)∩

E ′(K,E) , ‖·‖Bp,k(E)

)
, that is, Bc

p,k(Ω, E) = ind→
K

[Bp,k(E) ∩ E ′(K,E)]. For defini-

tions, notation and elementary facts about these spaces see [18, Ch. X] (see also

[25]). In [42] Vogt obtains the representation Bc
1,k(Ω) ≃ l

(N)
1 (here Bc

1,k(Ω) =

Bc
1,k(Ω,C)). We shall prove next that Bc

p,k(Ω, E) ≃ (lp(E))(N) for p ∈ (1,∞). The
following elementary fact will be used: “Let F = ind→

j
Fj be the strict inductive

limit of a properly increasing sequence F1 ⊂ F2 ⊂ · · · of Banach spaces. Assume
that every Fj is a complemented subspace of Fj+1 and we put Fj+1 = Fj ⊕ Gj .
Then, the mapping F1 ⊕G1 ⊕G2 ⊕ · · · → F = (f1, g1, g2, . . . ) → f1 + g1 + g2 + · · ·
is an isomorphism.”

Corollary 5.6. Let Ω be an open set in Rn, p ∈ (1,∞) and k a temperate weight
function on Rn with kp ∈ A∗

p. Suppose that dimE < ∞, E = l2 or E = lp. Then

the space Bc
p,k(Ω, E) is isomorphic to l

(N)
p if dimE <∞ or E = lp, and to (lp(l2))

(N)

if p 6= 2 and E = l2.

Proof. Let (Kj) be a covering of Ω consisting of compact sets such that Kj ⊂
◦

Kj+1,

Kj =
◦

Kj and
◦

Kj has the segment property (we may also assume, w.l.o.g., that
each Kj is a finite union of n–dimensional compact intervals) and suppose that
E = l2 and p 6= 2. Then, Bc

p,k(Ω, l2) = ind→
j

[Bp,k(l2) ∩ E ′(Kj , l2)]. In this induc-

tive limit, the step Bp,k(l2)∩E ′(Kj , l2) is isomorphic (via the Fourier transform) to

L
−Kj

p,k (l2) and this space is isomorphic, by Corollary 4.8 and Corollary 5.4, to lp(l2).

Furthermore, L
−Kj

p,k (l2) is a complemented subspace of L
−Kj+1

p,k (l2): L
−Kj

p,k (l2) ⊕[
kerS−Kj ∩ L

−Kj+1

p,k (l2)
]

= L
−Kj+1

p,k (l2). Thus, the spaceGj = kerS−Kj∩L
−Kj+1

p,k (l2)

is isomorphic to an infinite–dimensional complemented subspace of lp(l2). Then, by
a result of Odell [28], Gj must be isomorphic to lp, l2, lp ⊕ l2 or lp(l2). But Gj con-
tains a complemented copy of lp(l2) (if Q is a cube such that Q ⊂ Kj+1 r(Kj +B̄ε),

for a sufficiently small ε > 0, then Gj ⊃ LQ
p,k(l2)) and so Gj cannot be isomorphic

to either lp or l2. If Gj were isomorphic to lp⊕ l2 then, since l1(lp ⊕ l2) ≃ lp⊕ l2, we
could apply Pe lczyński’s decomposition method and conclude that lp(l2) ≃ lp ⊕ l2,
but this is false by [21, Ex. 8.2]. Therefore, necessarily Gj ≃ lp(l2). In consequence,

taking into account that Bc
p,k(Ω, l2) ≃ L−K1

p,k (l2) ⊕ G1 ⊕ G2 ⊕ · · · , it results that

Bc
p,k(Ω, l2) ≃ (lp(l2))(N). If dimE < ∞ or E = lp, one can reason in a similar way

(recalling that the space lp is prime [22, Th. 2.a.3]) and obtain the isomorphism

Bc
p,k(Ω, E) ≃ l

(N)
p . �

It is well-known that the Besov spaces Bs
p,q (= Bs

p,q(Rn)) are isomorphic to lq(lp)
(cf. [37] and [39]). Following Triebel’s approach [39, Sect. 2.11.2], we shall show next
the vector–valued counterpart of this result: Bs

p,q(E) (= Bs
p,q(Rn, E)) is isomorphic
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to lq(lp(E)). For definitions, notation and basic results about vector–valued Besov
spaces see [32] and [2].

Corollary 5.7. Let 1 < p <∞, 1 ≤ q ≤ ∞, −∞ < s <∞ and let E be a Banach
space with the UMD–property. Then Bs

p,q(E) is isomorphic to lq(lp(E)).

Proof. By the “lifting theorem” for vector–valued Besov spaces (cf. [2, Th. 6.1])
we may assume that s > 0. Let qj = [−2j, 2j ]n, j = 0, 1, 2, . . . and Q0 = q0,

Qj = qj r
◦
qj−1 for j = 1, 2, . . . By [5] (see also Corollary 4.7), the characteristic

function χj of Qj is an Lp(E)–Fourier multiplier and so, if Pj denotes the operator
associated with χj , a homogeneity argument shows that there exists a number c
independent of j = 0, 1, 2, . . . such that

(5.4) ‖Pjf‖p ≤ c‖f‖p , f ∈ Lp(E) .

Let (ϕj)∞j=0 a dyadic resolution of unity in the sense of Definition p. 24 in [32].

Then, by [32, (36) p. 29], (5.4) is also valid for ϕj instead of χj , that is, also

(5.5) ‖F−1ϕj ∗ f‖p ≤ c‖f‖p , f ∈ Lp(E) .

By using (5.4) and (5.5) we can proceed as in the scalar case (see [39]) and prove
that

(5.6) Bs
p,q(E) =

{
f ∈ Lp(E) : ‖f‖∗Bs

p,q(E) = ‖(Pjf)‖lsq(Lp(E)) <∞
}

and that ‖f‖Bs
p,q(E) = ‖(F−1ϕj ∗ f)‖lsq(Lp(E)) and ‖f‖∗Bs

p,q(E) are equivalent norms

in the space Bs
p,q(E) (we omit the details). Then, the mapping

A : Bs
p,q(E) →

(∑∞
j=0 ⊕L

Qj
p (E)

)
q

f →
(
2sjPjf

)∞
j=0

is well–defined and it is linear, injective and continuous. Furthermore, if (fj)∞j=0 ∈(∑∞
j=0 ⊕L

Qj
p (E)

)
q

then f =
∑∞

j=0 2−sjfj ∈ Bs
p,q(E) and Af = (fj)∞j=0. In

fact, obviously
∑∞

j=0 2−sjfj converges in Lp(E). Put f =
∑∞

j=0 2−sjfj . Since

Pk ◦ Pj = 0 if j 6= k (if f ∈ Lp(E) then Pjf ∈ L
Qj
p (E) and so, by The-

orem 3.4, we can find a sequence (gν)∞ν=0 ⊂ SQj (E) such that gν → Pjf in
Lp(E), thus Pkgν = F−1(χkFgν) →

ν
Pk(Pjf) and so Pk(Pjf) = 0) we see that

Pkf =
∑∞

j=0 2−sjPkfj =
∑∞

j=0 2−sjPk(Pjf) = 2−skfk. Hence, it follows that

f ∈ Bs
p,q(E) and that Af = (fj). Therefore, A is an isomorphism. This completes

the proof since by Corollary 5.4 each space L
Qj
p (E) is isomorphic to lp(E). �
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[17] L. Hörmander, Estimates for translation invariant operators on Lp spaces, Acta Math. 104

(1960), 93–139.
[18] , The analysis of linear partial differential operators II, Grundlehren, no. 257,

Springer, Berlin–Heidelberg–New York–Tokyo, 1983.
[19] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci.

Univ. Tokyo. Sect. IA Math. 20 (1973), 25–105.
[20] , Ultradistributions III. Vector–valued ultradistributions and the theory of kernels, J.

Fac. Sci. Univ. Tokyo. Sect. IA Math. 29 (1982), 653–718.
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