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Abstract 

Stainless steel is increasingly popular in construction owing to its corrosion resistance, 
excellent mechanical and physical properties as well as its aesthetic appearance. The 
current paper is concerned with the use of stainless steel in steel-concrete composite beams, 
which is a new application.  Current design codes for steel-concrete composite beams 
neglect strain hardening in the steel. Whilst this is a reasonable assumption for carbon steel, 
stainless steel is a very ductile material which offers significant levels of strain hardening 
prior to failure.  Therefore, when current design provisions are applied to stainless steel 
composite beams, the strength predictions are generally inaccurate. The current study 
presents a simplified analytical solution that takes into consideration the strain hardening 
of stainless steel when bending moment capacity is calculated. A finite element model is 
developed and validated against a number of experimental results for composite beams.  
The validated numerical model is then used to investigate the accuracy of the proposed 
analytical solution. It is concluded that simplified analytical solution is reliable and 
provides a straightforward design tool for practicing engineers who wish to specify this 
novel construction form in appropriate applications. 

Keywords: Stainless steel; composite beams; finite element analysis, analytical analysis; 
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1. Introduction

Composite steel-concrete members are 
widely used in the design and construction of 
modern structures such as bridges and high rise 
buildings. Due to the composite action, a 
significant increase in strength and stiffness can 
be achieved compared with bare steel or concrete 
sections, depending on the degree of shear 
connection between the steel and concrete. This 
results in savings not only in construction depth 
but also in steel and concrete consumption, 
which reduces the environmental impact of the 
structure. 

Stainless steels have been used in structures 
since the 1920s when the main application was 
for building facades. Nowadays, stainless steels 
have become popular in a wide range of 
construction applications due to their excellent 
mechanical properties such as high strength, 

excellent retention of strength and stiffness at 
high temperature [1] as well as their corrosion 
resistance properties. Stainless steels do not 
require protective coatings to prevent corrosion 
and therefore can offer significant cost savings 
compared with carbon steel over the life cycle of 
the structure [2]. In addition to these qualities, 
stainless steels also have greater ductility and 
capacity for work hardening compared to carbon 
steels. A ductile cross-section is necessary for 
plastic design and is highly desirable for design 
in general so that warning is given before 
collapse and for moment redistribution to occur. 

In recent years, as its usage in building 
structures has increased, stainless steel has been 
the subject of intensive research to understand 
their behaviour in load-bearing applications and 
to provide efficient and reliable design guidance. 
The vast majority of research studies have been 
focussed on bare steel elements (e.g. [3-5]) as 
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well as a few studies into concrete-filled 
stainless steel tubular sections (e.g. [6-8]). There 
has been no research, at least not in the public 
domain, into the behaviour of composite beams 
made from stainless steel.  

According to current design codes, the plastic 
bending resistance of composite steel-concrete 
beams is determined by rigid-plastic theory in 
which the effective area of the steel member is 
stressed to its yield strength, neglecting any stain 
hardening in the steel. Although this is a 
reasonable assumption for carbon steel which 
has an elastic response, with a clearly defined 
yield point, followed by a yield plateau and a 
moderate degree of strain hardening, stainless 
steel has significant levels of strain hardening 
prior to failure which should be accounted for. 
Accordingly, utilising the current design codes 
for composite beams, for members made using 
stainless steel, results in incorrect predictions of 
the plastic bending resistance.  

In this context, the current study presents a 
simplified analytical solution for estimating the 
bending moment capacity of stainless steel-
concrete composite beams with a full shear 
connection subjected to sagging moments. The 
proposed solution is an adaptation of the 
continuous strength method (CSM), which has 
been developed and validated extensively in 
recent years for structural steel (e.g. [9]), 
structural stainless steel (e.g. [10]) and, more 
recently, for carbon steel-concrete composite 
beams [11].  Since there are no tests available for 
stainless steel-concrete composite beams, a 
nonlinear finite element model is developed and 
used to investigate the accuracy of the proposed 
analytical solution.  

2. Simplified analytical model for 

stainless steel-concrete composite beams 

with a full shear connection 

The full-range stress-strain relationship for 
stainless steel which has been presented in the 
literature (e.g. [12]) describes strain as an 
explicit function of stress. However, in order to 
use the CSM in conjunction with an accurate 
material law for stainless steel, it is necessary to 
define the stress as an explicit function of strain. 
Abdella [13] proposed an approximate inversion 
relationship with the stress (σ) expressed as an 
explicit function of strain (ε), as follows: 

σ1(ε)=σ0.2
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ε

ε0.2
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where the material parameters are: 

In these expressions, σ0.2 is 0.2% proof strength, 
ε0.2 is the total 0.2% strain corresponding to σ0.2, 
n is a strain hardening coefficient, εu is the 
ultimate tensile strain, A is the stainless steel 
elongation, E2 and Eu are the slope of the stress-
strain curve at ε0.2 and εu, respectively, and r, r2, 

r*, ru, p, p* and m are parameters that need to be 
determined.  

Fig. 1 illustrates the strain distribution 
through the depth of the cross-section for 
composite beams with a full shear connection 
together with the corresponding stress 
distribution obtained using the material model 
presented in Eqs. 1 and 2. In this figure, 𝜀𝑠 and
𝜀𝑐 are the strain at the bottom fibre of the
stainless steel beam and top fibre of the concrete 
slab, respectively. It is noteworthy that the actual 
stress distribution in the stainless steel section is 
nonlinear.  
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Fig. 1: (a) Strain and (b) stress distribution diagrams 
for composite beams with full shear connection 

The position of the plastic neutral axis (NA), 
yc, can be obtained by applying horizontal 
equilibrium (i.e. C=T, where C and T are the 
total internal compressive and tensile forces in 
the section, respectively), and the plastic 
moment capacity of the composite section (Mpl) 
can be obtained from Mpl = T*z, where z is the 
lever arm of the internal forces C and T.  

In these expressions, C and T are determined 
from Eqs. 3 and 4, respectively: 

C=0.85fc yc bc (3) 

T=∫ σ(ε)dA 
(4) 

Also, 𝜎(𝜀) is the stress function, calculated 
using Eqs. 1 and 2. 

The lever arm (z) be obtained from Eq. 5: 

z=
y

c

2
+
∫ σ(ε)y dA

T

(5) 

In this expression, y is the distance between a 
fibre of the stainless steel beam and the neutral 
axis (NA). 

In order to calculate the internal force T and 
the lever arm z, direct integration is impossible 
to achieve; therefore, numerical integration is 
required which may not be suitable for a 
straightforward design tool. In order to simplify 
the calculations, the actual stainless steel stress 
block is replaced with an equivalent rectangular 
stainless steel stress block, in the current paper. 
Hence, a stainless steel stress of σt is assumed to 
be distributed over an equivalent tension zone 
bounded by the edges of the cross-section of the 
stainless steel beam, where σt is selected as the 
stress at 60% of the steel beam height, as shown 
in Fig. 2. This concept is similar to that 
employed in the design of concrete cross-
sections, where the parabolic compressive stress 

in the material is idealised as an equivalent 
rectangular stress block. 

The simplified analytical model developed in 
this section is based on the following 
assumptions: 

- The NA is within the concrete slab. 
Hence, the compressive force in the 
concrete is larger than the tensile force 
in the steel element.  

- The slip that occurs between the steel 
section and the concrete slab is assumed 
to be negligible and therefore is ignored. 

- Plane sections before bending remain 
plane after bending. Therefore, the strain 
distribution over the composite cross-
section is linear with constant curvature, 
κ.  

- Any reinforcement in the concrete slab 
is ignored in the calculations. 

Fig. 2: (a) Strain and (b) stress distribution diagrams 
for composite beams with full shear connection 

based on the simplified analytical model 

From the strain distribution diagram shown in 
Fig. 2, the distance between the NA and the 
location where the stress of the stainless steel is 
𝜎𝑡 (i.e. yt) can be determined by:

yt=tc+0.6h-yc (6) 

where yc is the height of compressive area of the 
concrete slab. 

From horizontal equilibrium of the internal 
axial forces: 

C=T → 0.85f
c
 y

c
 bc=As σt

or 

y
c
=

As

0.85 f
c
 bc

σt (7) 

where As is the cross-sectional area of the 
stainless steel member. 

It is assumed that 𝑦𝑡 ≥  𝑦0.2, and therefore:
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σt=σ0.2
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where εt is the strain in the steel section at y
t
 and

κ is the cross-sectional curvature, determined 
from: 

εt=κ y
t
=κ (tc+0.6 h-y

c
) (9) 

κ=min(κc , κa) (10) 

y0.2 is the distance between the NA and the 
location in the cross-section where the strain in 
the stainless steel section is ε0.2, and is found 
from: 

y
0.2

=
ε0.2

κ
(11) 

  κc is the curvature when the strain at the outer 
concrete fibre reaches the ultimate strain of 
concrete, ɛcu , and can be determined from:  

κc= εcu y
c

⁄ (12) 

The nominal ultimate strain of concrete (ɛcu), 
as a percentage, is given in Eurocode 2 [14] as:  

εcu=2.6+35[(98-f
c
)/100]

4

for f
c
≥50 N/mm2,  otherwise  3.5 (13) 

κa is the curvature when the strain at the outer 
stainless steel fibre reaches the ultimate strain of 
the stainless steel, εu, and can be determined 
from: 

κa= εu (H-y
c
)⁄  (14) 

κc and κa define the governing failure mode of 
the composite member: if κc<κa, the composite 
beam fails due to concrete crushing whereas 
steel failure dominates when κc>κa. 

The position of the NA (i.e. yc) can be 
determined using Eq. 7 together with Eqs. 8-14 
using a trial and error technique. Finally, the 
plastic bending capacity of the composite beam 
can be calculated as: 

Mpl=σt 𝐴𝑠[H- h 2⁄ - y
c

2⁄ ] (15) 

3. Development of the numerical model

There are no tests available in the literature
on the flexural behaviour of composite stainless 
steel-concrete beams. Therefore, a numerical 

model is developed in the current section to 
examine the proposed analytical model. 
Shamass and Cashell [15] previously developed 
finite element (FE) model using ABAQUS [16] 
for composite concrete-steel beams made from 
either normal or high strength materials. It was 
demonstrated that the numerical model is 
capable of accurately predicting the behaviour of 
composite beams in terms of bending moment 
capacity, initial bending stiffness and interaction 
performance for composite members with full or 
partial shear connection. Therefore, the same 
numerical model is adopted herein to examine 
the proposed analytical solution for stainless 
steel-concrete composite beams.  A brief 
description of the model is included hereafter; a 
more detailed description can be found 
elsewhere [15]. 

The concrete slab and steel beams are 
modelled using shell elements with reduced 
integration, namely the S4R element in 
ABAQUS. The shear studs are modelled using 
Cartesian connectors which connect a node in 
the beams flange with a coincident node in the 
slab at the connector location. The nonlinear 
load-slip relationship of the shear connectors is 
modelled based on the relation proposed by 
Ollgaard et al. [17].  In the current FE model, the 
strength of the shear connection is assumed to 
equal the total compressive normal force in the 
concrete flange divided by the number of shear 
studs in the shear span (i.e. Pstud = C/N where N 
is the number of shear connectors in the shear 
span). 

The point loads on the top surface of the 
composite beam are applied in displacement 
control. A hard contact without friction is used 
to simulate the interaction between the concrete 
slab and the steel beam. The implicit dynamic 
solution method for quasi-static scenarios is 
employed in the model.  

In terms of the material modelling, the 
nonlinear stress-strain relationship of concrete in 
compression is described using Eq. 16, in 
accordance with Eurocode 2 [14]: 

σc=(
k (

εc

εc1
) - (

εc

εc1
)

2

1+(k-2) (
εc

εc1
)
) f

cm
 for 0≤εc≤εcu

(16) 

In this expression, fcm is the ultimate 
compressive strength of  concrete (determined 
as 𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8), 𝑓𝑐𝑘 is the characteristic
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cylinder strength of the concrete,  k is  a 
parameter (found from k=1.05 Ecm

εc1

fcm

), Ecm is the 

elastic modulus of concrete (calculated as 
Ecm(GPa)=22(0.1 f

cm
)

0.3), εc1 is the concrete
strain at the peak stress (given as 
εc1(‰)=0.7(f

cm
)

0.31
≤ 2.8), εcu is the nominal

ultimate strain, which is given 
by εcu(‰)=2.8+27[(98-f

cm
)/100]

4 for fck ≥
50 N/mm2, otherwise it has a value of 3.5%.  
The material model for the stainless steel beam 
is described using the two-stage stress-strain 
relationship proposed Rasmussen [12]. The full 
material model is presented in Eq. (17): 

𝜀 =

{
 
 

 
 

σ

E
+0.002 (

σ

σ0.2

)
n

  for 0≤σ≤σ0.2

ε0.2+
σ-σ0.2

E2

+εup
* (

σ-σ0.2

σu-σ0.2

)
m

 for σ0.2≤σ≤σu

(17) 

where εup
* =εu-ε0.2-

σu-σ0.2

E2
and ε and σ are the 

uniaxial strain and stress, respectively. 

4. Validation of the analytical model

The plastic bending capacity results obtained 
numerically are compared with those predicted 
using simplified analytical analysis proposed in 
Section 2. Two cross-sections are used in the 
validation and their geometries are presented in 
the Table 1.  

Table 1: Geometry of the composite beams used for 
the validation study (all dimensions in mm) 

Name bc tc tw h bf tf 

B1 1200 100 10.
2 

304.8 152.4 18.2 

B2 1500 100 12 400 190 18.2 

Six different grades of stainless steel are used 
in the comparison, and their material properties 
are presented in Table 2 and taken from 
Eurocode 3-Part 1-4 [18]. 

Table 2: Material properties of stainless steel [18] 

Grade 𝛔𝟎.𝟐

(MPa) 

𝛔𝐮

(MPa) 

n A      

(%) 

1.4003 280 450 7 51 

1.4016 260 450 6 38 

1.4512 210 380 9 44 

1.4571 220 520 7 40 

1.4406 280 580 8 40 

1.4362 400 630 5 20 

Tables 3 and 4 present the results from the 
analysis including the bending moment 
capacities obtained from the numerical analysis 
(MFE) and the simplified analytical method 
(Manalytical). Also included in the tables is the ratio 
of MFE to MEC4, which is the bending moment 
capacity obtained using Eurocode 4 [19] 
assuming that the stainless steel cross-section is 
stressed to σ0.2 and strain hardening of the 
stainless steel is neglected. It is observed that a 
very good agreement is achieved between results 
obtained numerically with those obtained from 
simplified analytical expression. For beam B1, 
the analytical model slightly underestimates the 
bending moment capacity in all cases but the 
error is within 5%. On the other hand, for B2, the 
analytical model generally underestimates the 
capacity (in all cases except one) but only by up 
to 2.5%. Therefore, it can be deduced that the 
proposed analytical solution provides a reliable 
and accurate prediction of the bending moment 
capacity of stainless steel-concrete composite 
beams with full shear connection. Additionally it 
is noteworthy that the bending moment capacity 
predicted when strain hardening is ignored 
provides very conservative results and hence 
uneconomical design, highlighting that current 
design provisions are not appropriate or efficient 
for composite beams made using stainless steel.  
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Table 3: Comparison between the numerical and 
analytical bending moment capacities for beam B1 

Stainless 

steel 

grade 

Concrete 

grade 

Manalytical

MFE 

(%) 

MEC4

MFE 

(%) 

1.4003 C40 -3.7 -14 
1.4016 C40 -4.4 -16.8 
1.4512 C40 -4.6 -18.5 
1.4571 C50 -5 -24.7 
1.4406 C50 -4.8 -19.7 
1.4362 C50 -2.2 -12.8 

Table 4: Comparison between the numerical and 
analytical bending moment capacities for beam B2 

Stainless 

steel grade 

Concrete 

grade 

Manalytical

MFE 

 (%) 

MEC4

MFE 

(%) 

1.4003 C40 -0.2 -12 
1.4016 C40 -0.5 -14.5 
1.4512 C40 -1.8 -17.1 
1.4571 C50 -2.3 -23.8 
1.4406 C50 -1.05 -17.8 
1.4362 C50 1.2 -11 

In the following analysis, the simplified 
analytical model is used to investigate the effect 
of different stainless steel and concrete 
properties on the bending moment capacity of 
stainless steel-concrete composite beams. In this 
investigation, composite beam B1 is used to 
illustrate the behaviour. The reference bending 
moment (Manalytical

ref ) is obtained for stainless 
steel with σ0.2=200 MPa, σu=500 MPa, n=5 and 
A=0.4, and C30 concrete. The bending moment 
capacity determined using thee simplified 
analytical model (Manalytical) is calculated for a 
wide range of material properties, as shown in 
Table 5. 

Table 5: Range of material parameters used in the 
comparison 

n σ0.2 (MPa) σu (MPa) fc (MPa) 

5-21 200-350 500-700 30-50 

Fig. 3 presents the variation in predicted 
bending moment capacity as a function of (a) n, 
(b) σ0.2, (c) σu and (d) fc. It is noteworthy that the 
bending moment capacity of stainless steel-
concrete composite beams reduces with an 

increase of the strain hardening coefficient n. 
Furthermore, the bending moment capacity 
significantly increases with the increase of the 
proof stress σ0.2 and slightly increases for 
relatively larger values of ultimate stress σu. 

(a) 

(b) 

(c) 

(d) 

Fig. 3: Variation in the bending moment capacity as 
a function of (a) n, (b) σ0.2, (c) σu and (d) fc 
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5. Conclusions

Current design codes for steel-concrete 
composite beams neglect strain hardening of the 
steel member in design strength calculations. 
Although this is a reasonable assumption for 
carbon steel, stainless steel is a very ductile 
material which demonstrates significant levels of 
strain hardening. Moreover, although stainless 
steel offers a number of significant advantages 
compared with carbon steel (e.g. corrosion 
resistance, ductility, etc.), it is an expensive 
material in terms of the initial cost and therefore, 
it is important to adopt an efficient design 
procedure in order to minimise the material 
requirements. In the current paper, a simplified 
analytical solution for calculating the bending 
moment capacity of stainless steel-concrete 
composite beams full shear connection is 
proposed. The model is validated using 
numerical results obtained from a finite element 
model, developed in ABAQUS. It is concluded 
that the simplified analytical solution is reliable 
and provides a straight-forward design tool for 
practical engineers. It is also concluded that the 
ultimate stress of stainless steel has a negligible 
effect on the bending moment capacity of 
stainless steel-concrete composite beams, 
whereas other material parameters such as the 
nonlinear parameter, n, and the yield stress are 
more influential. 
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