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Ph.D. Thesis

Towards a Framework for Proving
Termination of Maude Programs

Candidate:

Beatriz Alarcón

Supervisor:

Salvador Lucas

– May 2011 –



This work has been partially supported by the EU (FEDER) and the Spanish
MICINN, under grants TIN2010-21062-C02-02, TIN2007-68093-C02-02, TIN
2004-07943-C04-02 and HA 2006-2007, and the Generalitat Valenciana un-
der grant GVPRE/2008/113. Also it was partially supported by the Spanish
MICINN under FPU grant AP2005-3399.

Author’s address:

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Camino de Vera, s/n
46022 Valencia
España



to Bienve, responsible for my happiness.





Acknowledgments

I would like to thank Salvador Lucas, my scientific father, for being a good
advisor, not only for this thesis but also about life. He was often very strict,
but just did what any good father would do. He has helped me appreciate the
satisfaction of doing things well.

I would also like to thank Maŕıa Alpuente for giving me the first oppor-
tunity to join the elp family. It has been a pleasure to share these five years
with all of them and the mist group: Toni, Tama, Raúl, Rafa, Josep, Gustavo,
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Abstract

Maude is a declarative programming language based on rewriting logic that
incorporates many features that in order to prove certain computational prop-
erties lead to difficulties. The task of proving termination of rewrite systems in
indeed quite hard but applied to real programming languages, becomes more
complicated due to these inherent features. Therefore, methods for proving
termination of such programs require specific techniques and a careful analysis.
Several papers have studied how to prove termination of (a subset of) Maude
programs. However, all of them follow a transformational approach where the
original program is transformed until it reaches a rewrite system that can be
managed with existing techniques and termination tools. In practice, the fact
of transforming the original systems used to complicate the proof of termina-
tion since it introduces new symbols and rules in the system. In this thesis,
we tackle the problem of proving termination of (a subset of) Maude programs
by means of direct methods.

On the one hand, we pay attention to the strategy of Maude. Maude is
an eager language where the arguments of a function are always evaluated
before the application of the function that uses them. This strategy (known
as call by value) can lead to nontermination if programs are not written care-
fully. For this reason, Maude (specifically) incorporates mechanisms to control
the program execution such as syntactic annotations, which are associated
to arguments of symbols. In rewriting, this strategy is known as innermost
context-sensitive rewriting.

On the other hand, Maude also incorporates the possibility of declaring at-
tributes. Semantically, declaring a set of equational attributes for an operator
is equivalent to declaring the corresponding equations for the operator; how-
ever, it avoids termination problems and leads to a more efficient evaluation.
The effect of declaring equational attributes is to compute with equivalence
classes modulo these equations.

The dependency pair framework develops the idea of an incremental appli-
cation of different termination techniques for solving termination problems. It
has shown to be a powerful and efficient way to prove termination of rewriting
automatically. In this thesis, we deal with termination of innermost context-
sensitive rewriting and of rewriting modulo specific axioms by extending the
dependency pair framework.





Resumen

Maude es un lenguaje de programación declarativo basado en la lógica de re-
escritura que incorpora muchas caracteŕısticas que lo hacen muy potente. Sin
embargo, a la hora de probar ciertas propiedades computacionales esto conlle-
va dificultades. La tarea de probar la terminación de sistemas de reesctritura
es de hecho bastante dura, pero aplicada a lenguajes de programación reales
se concierte en más complicada debido a estas caracteŕısticas inherentes. Esto
provoca que métodos para probar la terminación de este tipo de programas
requieran técnicas espećıficas y un análisis cuidadoso. Varios trabajos han in-
tentado probar terminación de (un subconjunto de) programas Maude. Sin
embargo, todos ellos siguen una aproximación transformacional, donde el pro-
grama original es trasformado hasta alcanzar un sistema de reescritura capaz
de ser manejado con las técnicas y herramientas de terminación existentes. En
la práctica, el hecho de transformar los sistemas originales suele complicar la
demostración de la terminación ya que esto introduce nuevos śımbolos y reglas
en el sistema. En esta tesis, llevamos a cabo el problema de probar terminación
de (un subconjunto de) programas Maude mediante métodos directos.

Por un lado, nos centramos en la estrategia de Maude. Maude es un len-
guaje impaciente donde los argumentos de una función son evaluados siempre
antes de la aplicación de la función que los usa. Esta estrategia (conocida co-
mo llamada por valor) puede provocar la no terminación si los programas no
están escritos cuidadosamente. Por esta razón, Maude (en concreto) incorpora
mecanismos para controlar la ejecución de programas como las anotaciones
sintácticas que están asociadas a los argumentos de los śımbolos. En rees-
critura, esta estrategia seŕıa conocida como reescritura sensible al contexto
innermost (RSCI).

Por otro lado, Maude también incorpora la posibilidad de declarar atri-
butos. Semánticamente, declarar un conjunto de atributos ecuacionales para
un operador es equivalente a declarar las ecuaciones correspondientes para el
operador pero evita problemas de terminación y provoca una evaluación más
eficiente. Declarar atributos ecuacionales se corresponde con computar con
clases de equivalencia módulo esas ecuaciones.

El marco de los pares de dependencia desarrolla la idea de una aplicación
incremental de diferentes técnicas de terminación para resolver problemas de
terminación. Se ha mostrado como una manera potente y eficiente de probar



terminación de la reescritura automáticamente. En esta tesis, abordamos la
terminación de la reescritura sensible al contexto innermost y de la reescritura
módulo axiomas espećıficos extendiendo el marco de los pares de dependencia.



Resum

Maude és un llenguatge de programació declaratiu basat en lògica de rees-
criptura que incorpora moltes caracteŕıstiques que ho fan molt potent. No
obstant això, a l’hora de provar certes propietats computacionals este factor
comporta dificultats. La tasca de provar la terminació de sistemes de reescrip-
tura és de fet bastant dura, però aplicada a llenguatges de programació reals
es convert en més complicada a causa de aquestes caracteŕıstiques inherents.
Açò provoca que mètodes per a provar la terminació d’aquest tipus de pro-
grames requerisquen tècniques espećıfiques i una anàlisi exhaustiu. Diversos
treballs han intentat provar terminació de (un subconjunt de) programes Mau-
de. No obstant això, tots ells segueixen una aproximació transformacional, on
el programa original és transformat fins a arribar a un sistema de reescriptura
capaç de ser empleat amb les tècniques i eines de terminació existents. En la
pràctica, el fet de transformar els sistemes originals sol complicar la demostra-
ció de la terminació ja que açò introdueix nous śımbols i regles en el sistema.
En aquesta tesi, abordem el problema de provar terminació de (un subconjunt
de) programes Maude mitjançant mètodes directes.

D’una banda, ens centrem en l’estratègia de Maude. Maude és un llen-
guatge impacient on els arguments d’una funció són avaluats sempre abans de
l’aplicació de la funció que els usa. Aquesta estratègia (coneguda com crida
per valor) pot provocar la no terminació si els programes no estan escrits amb
cura. Per aquesta raó, Maude (en concret) incorpora mecanismes per controlar
l’execució de programes com les anotacions sintàctiques que estan associades
als arguments dels śımbols. En reescriptura, aquesta estratègia es coneix com
reescriptura sensible al context innermost (RSCI).

D’altra banda, Maude també incorpora la possibilitat de declarar atributs.
Semànticament, declarar un conjunt d’atributs equacionals per a un operador
és equivalent a declarar les equacions corresponents per a l’operador però
evita problemes de terminació i provoca una avaluació mes eficient. Declarar
atributs equacionals es correspon amb computar amb classes d’equivalència
mòdul aquestes equacions.

El marc dels parells de dependència desenvolupa la idea d’una aplicació
incremental de diferents tècniques de terminació per a resoldre problemes de
terminació. S’ha mostrat com una manera potent i eficient de provar termina-
ció de la reescriptura automàticament. En aquesta tesi, abordem la terminació



de la reescriptura sensible al context innermost i de la reescriptura mòdul axi-
omes espećıfics estenent el marc dels parells de dependència.
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1
Introduction

Termination is a fundamental property that programs in software systems
must often satisfy and is also a prerequisite for demonstrating other proper-
ties in program verification. A program is terminating if it does not lead
to infinite computations for any given input data. In the last few years,
many studies have been developed to analyze termination of programming
languages, mainly of functional [Gie95, LJB01, Xi02] and logic programming
languages [CLS05, CT99, DD94, DLSS01, DS02, LMS03, Sma04]. In the
case of imperative programming languages, it is becoming important as well
[AAC+08, BMS05, CPR06, CS02, Tiw04]. Since most computational systems
whose operational principle is based on reducing expressions can be described
and analyzed by using notions and techniques that come from the abstract
model of Term Rewriting Systems (TRSs [BN98, TeR03]), in many program-
ming languages like Haskell, Maude, etc., it is possible to reduce the proofs of
termination of the corresponding programs to proofs of termination of (vari-
ants of) TRSs. For this reason, the development of techniques for proving
termination of term rewriting systems becomes especially important since ev-
ery improvement will have a positive impact on program verification for many
programming languages. Following this approach, a number of results, tech-
niques, and implementations have been developed for the aforementioned pro-
gramming languages. With regard to termination of logic programs, several
works can be found: [AM93, KKS98, Mar94, Mar96, SGN09, SGST06]. Ter-
mination of the functional language Haskell [HPW92] has been investigated
quite recently [GRS+10] as well as termination of Java Bytecode [OBEG10].

A Term Rewriting System (TRS) is a pair R = (Σ, R), where R is a set
of rewrite rules and Σ corresponds to a signature. As usual, by a signature,
we mean a set of function symbols f1, f2, . . . together with an arity function
ar : Σ → N which establishes the number of ‘arguments’ associated to each
function symbol. A rewrite rule is an ordered pair (l, r), written l→ r, where
l and r are terms such that l is not a variable, and variables occurring in r
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also occur in l. In general, the termination of term rewriting systems is an un-
decidable property [HL78]: Since it is undecidable (not even semi-decidable)
whether a Turing machine halts uniformly, and Turing machines can be simu-
lated by rewriting systems, termination of rewrite systems is also undecidable
(even for linear one-rule systems [Dau92]). Many techniques have been de-
veloped so far to try to analyze termination of a wide range of systems and,
obviously, there is still major interest if these techniques are fully mechaniz-
able. At the beginning, these techniques focused on finding reduction orders
on terms, that is, (strict) partial orders which are monotonic (closed under
context), stable (closed under substitution) and with no infinite decreasing
sequences [Lan77, Lan79, Der87]. If we find a reduction order such that, for
all rules of the TRS, the left-hand sides are greater than the corresponding
right-hand sides, then the TRS is terminating. There are two main methods
for generating reduction orders on terms [BN98, Ohl02]: The interpretation
method and simplification orders . The interpretation method [MN70] does
not look directly at the terms over the signature Σ. Instead, it considers their
interpretation in a Σ-algebra under a well-founded order. Polynomial interpre-
tations are special well-founded algebras in which function symbols are inter-
preted as polynomials. They were first studied by Lankford [Lan75, Lan79]. It
is also possible to define rewrite orders (monotonic and stable orders) directly
on terms by using simplification orders [Der79], i.e., rewrite orders that satisfy
the subterm property1. Simplification orders represented the basis for auto-
matic proofs of termination of rewriting. They can be classified in three ways:
syntactic, like the lexicographic path order (LPO [KL80]) or the recursive
path order (RPO [Der82]); semantic, like the polynomial simplification orders
[Lan79]; and the ones combining both characteristics like the Knuth-Bendix
order (KBO [KB70]).

Example 1
Consider the following TRS R for integer division of natural numbers [AG00]:

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

This TRS is not compatible with a simplification order because the left-hand
side of the last rule of quot is embedded in its right-hand side if y is instantiated
with s(x). Therefore, these techniques cannot prove termination of this TRS.

1For all terms s, and strict subterms t of s, we have s > t.
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In [AG00], a new technique emerged to solve this problem: the depen-
dency pair (DP) approach. The central idea of this approach is to compare
left-hand sides of rules only with those subterms of the right-hand sides that
may possibly start a new reduction. The motivation for this approach is to
regard TRSs as ‘programs’. Intuitively, such a program is terminating if the
arguments are decreasing in each recursive call. Then, numerous term rewrit-
ing systems where a direct termination proof with simplification orders was
not possible can now use existing simplification orders to prove termination
automatically in combination with the dependency pairs. During the last
decade, the dependency pair method has evolved into a powerful technique for
proving termination of TRSs in practice. Apart from the DP approach, there
also exist quite powerful techniques for proving termination of term rewriting
systems like semantic labeling [Zan95], the monotonic semantic path order
[BFR00], and match-bounds [GHW03, GHWZ07] that were seen as indepen-
dent techniques before the latest developments corresponding to the so-called
dependency pair framework (DP framework [GTS04, GTSF06, Thi07]). From
the already classical Arts and Giesl article [AG00] to now, many new improve-
ments have been introduced (see [GAO02, GTS04, GTS05, HM04, HM05] for
refinements and motivations); now, even these “independent” techniques can
be used inside the DP framework (see for instance [KM09]). Although the
DP approach emphasizes a ‘linear’ procedure for proving termination (at least
theoretically), the DP framework leads to a more powerful mechanization of
termination proofs in an incremental and modular way.

In comparison to direct methods for proving termination of TRSs, sev-
eral approaches have been developed to deal with termination of (variants of)
rewriting by means of transformations. This is the case of context-sensitive
rewriting [Luc96, Zan97, FR99, GM99], innermost context-sensitive rewriting
[GM02a, Luc01a], and order-sorted rewriting [ÖL96, DLM+08, LM09] among
others. However, this approach has been proved to be less powerful than ap-
plying intrinsic methods since it introduces many new symbols and rules to
the original systems, making the proof of termination difficult.

In recent years, we have worked to extend the DP framework to verify
a number of termination properties of (variants of) TRSs: termination of
context-sensitive rewriting [AGL06, AGL07, AGL10], termination of inner-
most context-sensitive rewriting [AL07, AL09], termination of order-sorted
rewriting [LM08], and termination of rewriting modulo specific axioms [ALM10,
AGLM11]. The main reason is because many systems can be nonterminating
if those features are not taken into account when proving termination like



4 1. Introduction

strategy annotations or sorts. Also, other systems can wrongly be proved ter-
minating if some features are not considered like specific axioms associated to
function symbols (eg., associativity, commutativity, etc.).

These features are essential in many programming languages and in Maude
in particular.

1.1 Maude

Maude [CDEL+07] is an executable specification language that is also con-
sidered as a programming language whose precursor is the OBJ3 language
[GWM+00].

Maude is based on rewriting logic [BM03], and its modules are rewrite
theories. Since Maude is based on logic and has an initial model semantics, a
Maude module has a precise mathematical model. This brings the possibility
of using Maude in three ways: as a declarative programming language; as an
executable formal specification language; and as a formal verification system.
Even though Maude’s rewriting logic is quite simple, it is very expressive and
provides good capabilities as a semantic framework [CDEL+07] to formally
represent a wide range of systems. Furthermore, rewriting logic is also an
expressive universal logic. Therefore, many different logics and inference sys-
tems can be represented under its logical framework [CDEL+07]. Three are the
dimensions that Maude tries to maximize: simplicity, expressiveness, and per-
formance. However, the key point in Maude’s language design is to maximize
expressiveness. Maude can express both deterministic computations (which
lead to a unique final result) and concurrent, nondeterministic computations
with equal ease. The first kind refers typically to functional modules in Maude
whereas the second one is handled with system modules. In fact, functional
modules define a functional sublanguage of Maude, which is essentially an
extension of OBJ3. On the other hand, system modules extend the purely
functional semantics of equations (in functional modules) to the concurrent
rewriting semantics of rules. Apart from being able to express both determin-
istic and nondeterministic computations, further expressiveness is gained by:
equational pattern matching; user-definable syntax and data; types, subtypes,
and partiality; generic types and modules; support for objects; and reflection.

Maude is a declarative language, that is, a Maude program is a logi-
cal theory and a Maude computation is logical deduction using the axioms
specified in the theory/program. Since functional modules can be seen as a
special case of system modules, at the mathematical level, this inclusion is
precisely the sublogic inclusion in which membership equational logic (MEL
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[Mes98, BJM00]) (an extension of order-sorted equational logic [GM92]) is
embedded in rewriting logic (RL) [Mes92, BM03]. A functional module spec-
ifies a theory in MEL. Mathematically, we can view such a theory as a pair
(Σ, E ∪ A). Σ is the signature, which specifies the type structure: sorts,
subsorts, kinds, and (overloaded) operators. E is the collection of (possibly
conditional) equations and memberships declared in the functional module,
and A is the collection of equational attributes (associativity, commutativity,
etc.) that is declared for the different operators. In relation to computation,
it is assumed that equations have been given in such a way that they can
be efficiently executed by applying them from left to right. This process is
called equational rewriting or equational simplification because, intuitively,
the expressions get progressively simpler. This is of course a special form of
equational deduction in which equations are used from left to right as simpli-
fication rules. Similarly, a system module specifies a rewrite theory , that is, a
theory in rewriting logic. Mathematically, such a rewrite theory is a 4-tuple
R = (Σ, E ∪ A, φ,R), where (Σ, E ∪ A) is the module’s equational part, φ is
the function specifying the frozen arguments of each operator in Σ, and R is
a collection of (possibly conditional) rewrite rules. Computation is rewriting
logic deduction, in which equational simplification with the axioms E ∪ A is
intermixed with rewriting computation with the rules R. Apart from the ob-
vious inclusion of functional modules into the class of system modules (where
there are no rules and no argument is frozen), Maude also allows the user to
give the desired freezing information for each operator in the signature of a
functional module. Each Maude module not only specifies a theory, but also an
intended mathematical model, the one that the user has intuitively in mind.
For functional modules, these models consist of sets of data and functions
defined on this data known as algebras. Mathematically, the intended model
of a functional module that specifies an equational theory (Σ, E ∪ A), with
Σ the signature defining the sorts, subsorts, and operators, E the equations
and memberships, and A the equational attributes like assoc, comm, and so
on is called the initial algebra of such a theory and is denoted TΣ/E∪A. Sim-
ilarly, a system module that specifies a theory R = (Σ, E ∪ A, φ,R) has an
initial model, which in essence is an algebraic (labeled) transition system. The
states and data of the system are elements of the underlying initial algebra
TΣ/E∪A. The state transitions are the concurrent rewrites by application of
the rules R. Both kinds of models associated with Maude modules fit together
with the computations under the so-called agreement between the mathemati-
cal semantics (the models) and the operational semantics (the computations).
The key idea is that under certain executability conditions required of Maude
modules, both semantics coincide. In the case of functional modules (and in
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the equational part of system modules), the equations, considered as simpli-
fication rules, have to be Church-Rosser2 and terminating. This means that
repeated application of the equations eventually reaches a term to which no
further equations apply, and the result called the canonical form (or more
commonly used in rewriting, normal form), which is the same regardless of
the order of application of the equations. Thus, each equivalence class has a
natural representative, its normal form. However, even though the final result
may be the same, some order of evaluation may be considerably more efficient
than others. In fact, we may lose termination when any evaluation order is
allowed. Therefore, it may be useful to have some way of controlling the order
in which equations are applied by means of strategies. Typically, a functional
language is either eager or lazy and the user has to live with whatever the
language provides. Maude adopts the OBJ3 flexible method of user-specified
evaluation strategies on an operator. For an n-ary operator f , an evaluation
strategy is specified as a list of numbers from 0 to n ending with 0. The
nonzero numbers denote argument positions, and a 0 indicates evaluation at
the top of the given function symbols. Then, the strategy specifies what argu-
ment positions must be simplified before attempting simplification at the top
with the equations and also in which argument positions simplification is not
allowed (the missing argument positions in the strategy list). In Maude, if no
strategy is specified, for an operator f with n argument positions, its default
strategy is (1 2 . . . n 0), that is, the eager evaluation case, what in rewriting
strategies is known as innermost evaluation. The syntax to declare an n-ary
operator with strategy (i1 . . . ik 0), where ij ∈ {0, . . . , n} for j = 1, . . . , k is

op 〈OpName〉 : 〈Sort-1〉 . . . 〈Sort-n〉 -> 〈Sort〉 [strat (i1 ... ik 0)]

For example, an if then else fi operator will typically be evaluated by first
evaluating the first argument, and then the if then else fi operator at the
top.

Therefore, equational specifications in Maude are assumed to be Church-
Rosser and terminating up to the context-sensitive strategy specified by the
evaluation strategies declared for the operators in Σ. More precisely, the
information about the evaluation strategy of each operator can be seen as
the so-called replacement map µ in context-sensitive rewriting (CSR) [Luc98,
Luc02]. Thus, instead of termination, we have to talk about µ-termination
as a requirement for achieving the coincidence of both semantics in Maude
programs. This coincidence is crucial for reasoning about Maude programs
and verifying their correctness.

2A binary reduction relation →⊆ A × A on a set A is Church-Rosser if, for all a, b ∈ A
with a↔∗ b, the elements a and b have a common reduct c, i.e., a→∗ c and b→∗ c.
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Example 2
Consider the following Maude program which defines the addition of natural
numbers in a functional module with Peano notation, so that zero is repre-
sented as the constant 0, and there is a successor function s .

fmod PEANO-NAT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op plus : Nat Nat -> Nat .
vars N M : Nat .
eq plus(0, M) = M .
eq plus(s(N), M) = s(plus(N, M)) .
endfm

In this example, we have the following from the signature of PEANO-NAT:
one sort, Nat, and three operators, 0, s, and plus. Sorts are declared with
the keyword sort, and operators with the keyword op. The three operators
have zero, one, and two arguments, resp., whose sorts are between : and ->.
Operators of zero arguments are also called constants; those of one argument
are called unary, and those of two binary. The result sort appears after ->.

The two equations are properties that these operators should satisfy. More
precisely, any correct implementation of Peano natural numbers should satisfy
them.

There can exist different classes of signatures in Maude:

• Unsorted (or single-sorted) signatures have only one sort and operation
symbols defined on it.

• Many-sorted signatures allow different sorts, such as Int, Bool, List,
etc. and operations defined on them.

• Order-sorted signatures are many-sorted signatures that, in addition,
allow inclusion relations between sorts, such as Natural < Integer.

In general, the same operator name may have different declarations in the
same signature Σ. For example, Maude allows subsort overloading like:

op plus : Nat Nat -> Nat.
op plus : NzNat NzNat -> NzNat.
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having Nznat < Nat and also ad-hoc overloading like:

op plus : Nat Nat -> Nat.
op plus : List List -> List .

where the sorts are not related in the signature Σ.

Example 3
Consider two relevant properties of natural numbers addition, namely, asso-
ciativity and commutativity. These properties are described by the following
equations

eq plus(N, M) = plus(M, N) .

eq plus(N, plus(M, L)) = plus(plus(N, M), L) .

It is easy to see that these equations are not provable by equational deduc-
tion, that is, they do not follow by replacing equals by equals from the two
equations that define the addition function. These equations should not be
written explicitly as equations in the specification since declaring such equa-
tions drastically alters the specification’s operational semantics. For example,
if the commutative equation is used as a simplification rule to the term, say,
plus(s(0),s(s(0))), it would lead to the nonterminating sequence of equa-
tional simplification

plus(s(0),s(s(0))) = plus(s(s(0)),s(0)) = plus(s(0),s(s(0))) = ...

Maude solves this problem by using equational attributes, thus avoiding the
previous loop. Then, Maude simplifies terms modulo the declared equational
attributes, so that the terms plus(s(0),s(s(0))) and plus(s(s(0)),s(0))
would be treated as identical.

Therefore, the way of dealing with operators that satisfy certain properties
like associativity and commutative should be by using Maude’s definition of
equational attributes. In particular, for the addition program, it would have
to be declared by adding

op plus : Nat Nat -> Nat [assoc comm] .

Semantically, declaring a set of equational attributes for an operator is equiva-
lent to declaring the corresponding equations for the operator. Operationally,
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using equational attributes to declare these equations avoids termination prob-
lems and leads to a more efficient evaluation. The effect of declaring equational
attributes is to compute with equivalence classes modulo such equations. Note
that, when equational attributes are declared, equational simplification using
the other equations in the module does not take place at the purely syntactic
level of replacing equals by equals, but it is understood modulo the declared
equational attributes. Therefore, the proper understanding of the notions of
Church-Rosser and termination, and of normal forms have to be considered
modulo the equational attributes.

More information about the wide variety of features that Maude has, its
syntax and everything related to it can be found in [CDEL+07]. Our aim is
to show the importance of proving termination of Maude programs by empha-
sizing the features that we have highlighted in this work.

Obviously, since Maude is a general-purpose declarative programming lan-
guage, in principle there is no limit to the applications that could be developed
using it. To enumerate some diverse application areas of rewriting logic and
Maude (see [CDEL+07] for a more complete list of references):

1. Models of computation like: equational programming, lambda calculi,
labeled transition systems, grammars, Petri nets, π calculus, dataflow,
neural networks, etc.

2. Semantics of programming languages and software analysis.

3. Maude as a Metalanguage.

4. Modeling and analysis of networks and distributed systems.

5. Real-Time Systems.

6. Probabilistic Systems.

7. Modeling and analysis of biological systems.

For all these reasons, proving termination of Maude programs is an impor-
tant topic that has been studied in recent years, mainly, by means of trans-
formations as we explain in the next section.

1.2 Proving Termination of Maude Programs by
Transformation

Despite the huge development of the theory of termination of rewriting, its
application to high-level rewriting-based programming languages is quite im-
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mature. In rewriting-based programming languages such as CafeOBJ, ELAN,
or Maude, one is often tempted to map termination problems for programs
in such languages directly into termination problems for TRSs or conditional
TRSs (CTRSs, see [Ohl02] for results in this field) in a quite straightforward
way. However, handling programs in this way can often lead to wrong con-
clusions about their real termination behavior. The main reason is that these
programs make use of additional features whose appropriate consideration
is often essential to prove termination, but which are not captured by the
computational model of pure term rewriting: sorts, subsorts, and operator
overloading; memberships, conditions, evaluation strategies, rewriting mod-
ulo axioms, etc. Over the last few years, different transformation techniques
have been introduced, implemented, and proved useful in proving termination
of these programs (see [DLM09a] for a survey). In [DLM09a] (and in the
papers surveyed there), the termination problem for rewrite theories is inves-
tigated. A number of theory transformations Θ that have been developed are
informally described. These transformations are nontermination preserving.
Thus, a rewrite theory can be mapped into a transformed TRS that can be
proved terminating by using standard termination tools. The different kind of
logics/theories/programs that are transformed are:

• (Sugared) Rewrite theories (RWT). A rewriting logic specification is
called a rewrite theory. It is a tuple R = (Σ, E ∪ A,µ,R, φ) where each
element has the same meaning as the homonym stated in the previous
section.

• Sugared Context-Sensitive Membership Rewrite Theories (SCS-MCTRSs).
By sugared context-sensitive membership rewrite theories [LM09], we
understand a tuple R = (Σ, S,≤, µ,A,R,M) with new elements:

– S is a set of sorts and (S,≤) is a partial order.

– M is a set of conditional memberships. Membership axioms specify
terms as having a given sort.

cmb 〈Term〉 : 〈Sort〉
if 〈EqCondition-1〉 /\ . . . /\〈EqCondition-k〉
[〈StatementAttributes〉] .

• Order-Sorted Rewrite Theories (OS-RWT). It consists of a tuple R =
(Σ, S,≤, E∪A,µ,R, φ) where each element has the same meaning as the
homonym in previous definitions [DLM09a].
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Figure 1.1: Transformations for proving termination of Maude programs

• Conditional and Context-Sensitive TRSs (CTRS/CS-TRS/CS-CTRS).
A conditional TRS (CTRS) is a tripleR = (Σ, A,R). A context-sensitive
CTRS (CS-CTRS) is a pair (R, µ) with R being a conditional TRS
(CTRS) and µ a replacement map that satisfies µ(f) ⊆ {1, . . . , k}, for
each k-ary symbol f in the signature Σ [Luc98, Luc02]. The replacement
map µ discriminates the argument positions µ(f) of function symbols f
where rewritings are allowed in the context-sensitive TRS (CS-TRS)
(R, µ).

The overall family of composable nontermination-preserving transformations
is summarized in Fig. 1.1 (see [DLM09a] for details). We now briefly describe
how some of these transformations proceed.

• Transformation C : from SRWTs to SCS-MCTRSs [DLM08b]. This
simple transformation merges equations E and rules R.

• Transformation A : from SCS-MCTRSs/CS-OS-CTRSs to CS-CTRSs
[DLM+08]. This transformation allows us to deal with sort informa-
tion, subsort declarations, rank declarations for symbols in the signature,
sorted variables, etc. Transformations Uk and U were also discussed
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in [DLM+08] as increasingly simpler lightweight variants of A: Uk ig-
nores kind information, but still encodes sort information as predicates;
whereas U ignores both kind and sort information.

• Transformation OS : from SCS-MCTRSs to CS-OS-CTRSs. The trans-
formation OS is described in detail in [LM09] and maps an SCS-MCTRS
to a CS-OS-CTRS dealing explicitly with memberships. It can also be
used from SRWTs to OS-RWTs.

• Transformation T : from OS-RWTs to CS-OS-CTRSs. This transfor-
mation deals with encoding equational rewriting, providing only a single
rewrite relation. If the rewrite theory R satisfies some conditions, this
transformation can be even simpler; in these cases they are denoted T1

and T2. T2 has the advantage that the transformed theory is always an
unconditional OS-TRS.

• Transformation B : from CS-CTRSs to CS-TRSs [DLM+08]. It general-
izes, to the CS-case, a well-known transformation from CTRSs to TRSs
described in [Ohl02].

• Transformation B′ : from CS-OS-CTRSs to CS-OS-TRSs [LM09]. This
transformation plays a similar role than B for the order-sorted case.

• Transformation Ö-L : from CS-OS-TRSs to CS-TRSs [LM09]. It gen-
eralizes, to the context-sensitive level, a well-known transformation by
Ölveczky and Lysne [ÖL96].

The experiments made with these transformations suggest that they can
be effective in proving termination of a wide range of rewriting logic programs.
However, the authors believe [DLM09a] that these techniques should be com-
bined with more intrinsic techniques to keep some information around and use
it directly in termination proofs rather than encoding it into new conditions
and rules that, sometimes, make the termination proof harder. For instance,
the following specification of the factorial function [LM08]:

fmod FACTORIAL is
sorts Nat NzNat .
subsorts NzNat < Nat .
op 0 : -> Nat .
op s : Nat -> NzNat .
op p : NzNat -> Nat .
op _+_ : Nat Nat -> Nat .
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op _+_ : NzNat Nat -> NzNat .
op _+_ : NzNat NzNat -> NzNat .
op _*_ : Nat Nat -> Nat .
op _*_ : NzNat NzNat -> NzNat .
op fact : Nat -> NzNat .
vars X Y : Nat .
vars X’ : NzNat .
eq X + 0 = X .
eq X + s(Y) = s(X + Y) .
eq X * 0 = 0 .
eq X * s(Y) = X + (X * Y) .
eq fact(0) = s(0) .
eq fact(X’) = X’ * fact(p(X’)) .
eq p(s(X)) = X .

endfm

can be easily proved terminating as an OS-TRS by using the recently in-
troduced order-sorted dependency pair (OS-DP) method [LM08], which is
implemented in the termination tool mu-term [AGLN10, AGIL07, Luc04].
However, it is not possible to obtain an automatic proof of termination using
the existing transformations described in this section which are implemented
in the Maude Termination Tool: MTT3 [DLM08a]. Therefore, there is an
important need to develop direct methods for proving termination of Maude
programs at the different theory levels depicted in Fig. 1.1.

1.3 Dependency Pairs and the DP framework

A TRS R is terminating if there is no infinite rewrite sequence starting from
any term. With regard to proofs of termination of rewriting, the dependency
pair technique focuses on the following idea: the rules that are really able to
produce such infinite sequences are those rules l→ r such that r contains some
defined symbol4 g. Intuitively, we can think of these rules as representing some
possible (direct or indirect) recursive calls. Such recursion paths associated to
each rule l → r are represented as new rules u → v, where u = f ](l1, . . . , lk)
if l = f(l1, . . . , lk), and where v = g](s1, . . . , sm) if s = g(s1, . . . , sm) is a
subterm of r and g is a defined symbol. The notation f ] for a given symbol f
means that f is marked . In practice, we often capitalize f and use F instead

3http://www.lcc.uma.es/~duran/MTT
4A symbol g ∈ Σ is defined in R if there is a rule in R whose left-hand side is of the form

g(l1, . . . , lk).

http://www.lcc.uma.es/~duran/MTT
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of f ] in our examples. For this reason, the dependency pair technique starts
by considering a new TRS DP(R) that contains all these new rules for each
l → r ∈ R. The rules in R and the rules in DP(R) determine the so-called
dependency chains whose finiteness characterize termination of R [AG00]. A
chain of dependency pairs is a sequence ui → vi of dependency pairs together
with a substitution σ such that σ(vi) rewrites to σ(ui+1) for all i ≥ 1.

Theorem 4 [AG00] A TRS R is terminating iff there exists a weakly mono-
tonic quasi-order ≥, where both ≥ and its strict part > are closed under sub-
stitutions, such that > is well-founded and

• l ≥ r for all rules l→ r ∈ R and

• u > v for all rules u→ v ∈ DP(R).

In the DP approach, well-foundedness is not required for the quasi-order ≥
that is used to compare the rules. Furthermore, monotonicity is not required
for the strict and well-founded order > that is used to compare the DPs. This
permits a more flexible use of orders.

Example 5
Continuing with Example 1, we have the following set of dependency pairs
DP(R):

MINUS(s(x), s(y)) → MINUS(x, y)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) → MINUS(x, y)

By means of the following polynomial interpretation, each function symbol is
interpreted as a polynomial over the natural numbers:

[0] = 0 [s](x) = 2x+ 2 [minus](x, y) = x
[quot](x, y) = x [QUOT](x, y) = x+ y [MINUS](x, y) = 2x+ 2y

Then, we have the following:

[minus(x, 0)] = x ≥ x = [x]
[minus(s(x), s(y))] = 2x+ 2 ≥ x = [minus(x, y)]

[quot(0, s(y))] = 0 ≥ 0 = [0]
[quot(s(x), s(y))] = 2x+ 2 ≥ 2x+ 2 = [s(quot(minus(x, y), s(y)))]

[MINUS(s(x), s(y))] = 4x+ 4y + 8 > 2x+ 2y = [MINUS(x, y)]
[QUOT(s(x), s(y))] = 2x+ 2y + 4 > x+ 2y + 2 = [QUOT(minus(x, y), s(y))]
[QUOT(s(x), s(y))] = 2x+ 2y + 4 > 2x+ 2y = [MINUS(x, y)]
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Therefore, the requirements in Theorem 4 are fulfilled and termination of R
can be proved.

The DPs can be presented in a dependency graph, where the infinite chains
are represented by the cycles in the graph. In this dependency graph, we can
decompose the problem of proving termination of a TRS into the problem of
proving the absence of infinite chains of DPs that are part of the cycles in the
graph. This modular decomposition permits the use of different orders with
different cycles [GAO02].

As we have stated, the DP approach emphasizes (at least theoretically) a
‘linear’ procedure for proving termination. In the DP approach, dependency
pairs are considered as components of the chains (or cycles). Since they only
make sense when an underlying TRS is given as the source of the dependency
pairs, transforming DPs is possible (the narrowing transformation is already
described in [AG00]) but only as a final step because, afterwards, they are
no longer dependency pairs of the original TRS. The DP framework solves
these problems in a clear way, leading to a more powerful mechanization of
termination proofs. The crucial feature of the DP framework when dealing
with proofs of termination is to examine a set P of pairs, which are intended
to be (possibly transformed) DPs, together with the rules R to prove the
absence of (minimal) infinite (P,R)-chains. A (P,R)-chain is a sequence
u1 → v1, u2 → v2, . . . of pairs ui → vi ∈ P together with a substitution σ such
that σ(vi) rewrites to σ(ui+1) for all i ≥ 1. In the DP framework, the central
notion regarding termination proofs is that of DP problem : given a TRS R
and a set of pairs P, the goal is to check the absence (or presence) of infinite
(minimal) chains. Termination of a TRS R is addressed as a DP problem
where P = DP(R). The most important notion regarding mechanization of
the proofs is that of processor. A DP processor is a function Proc that takes
a DP problem and returns a (possibly empty) set of (possibly simpler) DP
problems. Here ‘simpler’ usually means that fewer pairs are involved. A
sound processor transforms DP problems in such a way that the existence
of an infinite chain in the original DP problem implies the existence of an
infinite chain in the transformed one. The processor is complete if there is an
infinite minimal chain in the original DP problem if and only if there is an
infinite minimal chain in the transformed problem. Soundness is essential for
proving termination; completeness is required for disproving termination. The
DP framework is formally introduced in the following theorem.
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Theorem 6 (DP Framework [GTSF06, Thi07]) Let R be a TRS. We
construct a tree whose nodes are labeled as DP problems, “yes”, or “no”, and
whose root is labeled with (DP(R),R). For every inner node labeled with τ ,
there is a sound processor Proc that satisfies one of the following conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.

2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.

3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with
the DP problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is terminating. Other-
wise, if there is a leaf labeled with “no” and if all processors used on the path
from the root to this leaf are complete, then R is nonterminating.

Processors are used in a tree to incrementally simplify the original DP problem
as much as possible, possibly decomposing it into smaller pieces which are then
independently treated in the very same way. The trivial case of this iterative
process comes when the set of pairs P becomes empty. In this way, we obtain
a much more flexible framework to mechanize termination proofs and also to
benefit from new future developments which could lead to the introduction of
new processors.

1.4 Innermost Context-Sensitive Rewriting

Most computational systems whose operational principle is based on reduc-
ing expressions can be described and analyzed by using notions and tech-
niques that come from the abstract model of TRSs [BN98, TeR03]. Such
computational systems (e.g., functional, algebraic, and equational program-
ming languages as well as theorem provers based on rewriting techniques)
often incorporate a predefined reduction strategy that is used to break down
the nondeterminism that is inherent to reduction relations. Eventually, this
can create problems, as each kind of strategy only behaves properly (i.e., it
is normalizing, optimal, etc.) for particular classes of programs. One of the
most commonly used strategies is the innermost one, in which only inner-
most redexes are reduced. Here, by an innermost redex, we mean a redex
containing no other redex. The innermost strategy corresponds to call by
value or eager computation, that is, the computational mechanism of several
programming languages where the arguments of a function are always evalu-
ated before the application of the function that uses them. It is well-known,
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however, that programs written in eager programming languages frequently
run into a nonterminating behavior if the programs have not carefully been
written to avoid such problems. For this reason, the designers of these ea-
ger programming languages have also developed some features and language
constructs aimed at giving the user more flexible control of the program execu-
tion. For instance, syntactic annotations (which are associated to arguments
of symbols) have been used in programming languages such as Clean [NSEP92],
Haskell [HPW92], Lisp [McC60], Maude [CDEL+07], OBJ2 [FGJM85], OBJ3
[GWM+00], CafeOBJ [FN97], etc., to improve the termination and efficiency of
computations. Lazy languages (e.g., Haskell, Clean) interpret them as strict-
ness annotations in order to become ‘more eager’ and efficient. Eager lan-
guages (e.g., Lisp, Maude, OBJ2, OBJ3, CafeOBJ) use them as replacement
restrictions to become ‘more lazy’, thus (hopefully) avoiding nontermination.
Context-sensitive rewriting (CSR [Luc98, Luc02]) is a restriction of rewriting
that forbids reductions on some subexpressions and that has proved useful to
model and analyze these programming language features at different levels,
see, e.g., [BM06, DLM+04, DLM+08, GM04, Luc01b, LM09]. Such a restric-
tion of the rewriting computations is formalized at a very simple syntactic
level: that of the arguments of function symbols f in the signature Σ. A
replacement map is a mapping µ : Σ→ ℘(N) satisfying µ(f) ⊆ {1, . . . , k}, for
each k-ary symbol f in the signature Σ [Luc98]. We use them to discriminate
the argument positions on which the rewriting steps are allowed. In CSR, we
only rewrite µ-replacing subterms: every term t (as a whole) is µ-replacing
by definition; and ti (as well as all its µ-replacing subterms) is a µ-replacing
subterm of f(t1, . . . , tk) if i ∈ µ(f). The following example provides an illus-
trative case study involving the most well-known cases where CSR is useful
for avoiding nontermination.

Example 7
The following nonterminating TRS R can be used to compute the list of prime
numbers by using the well-known Erathostenes sieve5 [GM99]:

primes → sieve(from(s(s(0))))

from(x) → x:from(s(x))

head(x:y) → x

tail(x:y) → y

if(true, x, y) → x

5Without appropriate rules for defining symbol div, the TRS has no complete computa-
tional meaning. However, we take it here as given in [GM99] for the purpose of comparing
different techniques for proving (innermost) termination of CSR by transformation.
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if(false, x, y) → y

filter(s(s(x)), y:z) → if(div(s(s(x)), y), filter(s(s(x)), z), y:filter(x, sieve(y))))

sieve(x:y) → x:filter(x, sieve(y))

where µ(:) = {1} disallows reductions on the list part of the list construc-
tor (:), thus making a kind of lazy evaluation of lists possible. Moreover,
the definition of if encodes the expected behavior of conditional expressions:
depending on the outcome (true or false) of the evaluation of the first ar-
gument b in a call if(b, s, t), we would evaluate the second (s) or the third
argument (t) of the call. However, in pure term rewriting, the three arguments
b, s, and t in the call could be evaluated in any order, thus eventually leading
to wasteful computations (for instance, one could evaluate s, t, and finally b!).
In this case, we want if to behave in such a way that we only evaluate the
second and third arguments after the evaluation of the first argument. We
can achieve this behavior with CSR by using a replacement map µ such that
µ(if) = {1}, µ(:) = {1} and µ(f) = {1, . . . , ar(f)} for all f ∈ Σ \ {if, :}.

The replacement map in Example 7 exemplifies one of the most typical ap-
plications of context-sensitive rewriting as a computational mechanism. The
declaration µ(:) = {1} disallows reductions on the list part of the list con-
structor (:), thus making a kind of lazy evaluation of lists possible. The other
typical application is the declaration µ(if) = {1}, which allows us to forbid
reductions on the two alternatives s and t of if-then-else expressions if(b, s, t)
whereas it is still possible to perform reductions on the Boolean part b, as
required to implement the usual semantics of the operator.

Our focus is on termination of innermost context-sensitive rewriting (i.e.,
the variant of CSR where only the deepest µ-replacing redexes are contracted).
Termination of innermost context-sensitive rewriting has been proved useful
for proving termination of programs in programming languages like Maude and
OBJ*, which permit the program execution to be controlled by means of such
context-sensitive annotations [Luc01a, Luc01b]. Techniques for proving termi-
nation of innermost CSR were first investigated in [GM02a, GM02b, Luc01a].
These papers, however, only consider transformational techniques, where the
original CS-TRS (R, µ) is transformed into a TRS RµΘ (where Θ represents
the transformation which has been used) whose innermost termination implies
the innermost termination of CSR for (R, µ).

Example 8
Consider the following system obtained after applying the only correct and
complete existing transformation [GM02a] for proving innermost µ-termination
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to the CS-TRS in Example 7:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(x)) → mark(x:from(s(x)))

active(head(x:y)) → mark(x)
active(tail(x:y)) → mark(y)

active(if(true, x, y)) → mark(x)
active(if(false, x, y)) → mark(y)

active(filter(s(s(x)), y:z)) → mark(if(div(s(s(x)), y), filter(s(s(x)), z),
y:filter(x, sieve(y))))

active(sieve(x:y)) → mark(x:filter(x, sieve(y)))
mark(primes) → active(primes)

mark(sieve(x)) → active(sieve(mark(x)))
mark(from(x)) → active(from(mark(x)))

mark(s(x)) → active(s(mark(x)))
mark(0) → active(0)

mark(x1:x2) → active(mark(x1):x2)
mark(head(x)) → active(head(mark(x)))
mark(tail(x)) → active(tail(mark(x)))

mark(if(x1, x2, x3)) → active(if(mark(x1), x2, x3))
mark(true) → active(true)
mark(false) → active(false)

mark(filter(x1, x2)) → active(filter(mark(x1), mark(x2)))
mark(div(x1, x2)) → active(div(mark(x1), mark(x2)))
sieve(mark(x)) → sieve(x)

sieve(active(x)) → sieve(x)
from(mark(x)) → from(x)

from(active(x)) → from(x)
s(mark(x)) → s(x)

s(active(x)) → s(x)
mark(x1):x2 → x1:x2
x1:mark(x2) → x1:x2

active(x1):x2 → x1:x2
x1:active(x2) → x1:x2
head(mark(x)) → head(x)

head(active(x)) → head(x)
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tail(mark(x)) → tail(x)
tail(active(x)) → tail(x)

if(mark(x1), x2, x3) → if(x1, x2, x3)
if(x1, mark(x2), x3) → if(x1, x2, x3)
if(x1, x2, mark(x3)) → if(x1, x2, x3)

if(active(x1), x2, x3) → if(x1, x2, x3)
if(x1, active(x2), x3) → if(x1, x2, x3)
if(x1, x2, active(x3)) → if(x1, x2, x3)
filter(mark(x1), x2) → filter(x1, x2)
filter(x1, mark(x2)) → filter(x1, x2)

filter(active(x1), x2) → filter(x1, x2)
filter(x1, active(x2)) → filter(x1, x2)

div(mark(x1), x2) → div(x1, x2)
div(x1, mark(x2)) → div(x1, x2)

div(active(x1), x2) → div(x1, x2)
div(x1, active(x2)) → div(x1, x2)

AProVE, which is the most powerful tool for proving innermost termination of
standard rewriting6, fails when trying to prove innermost termination of this
system. Therefore, innermost µ-termination of Example 7 cannot be proven
by using the transformational approach of [GM02a] since the other two correct
existing transformations for proving innermost termination of CSR [GM02a]
also fail.

We started the adaptation of the DP framework to termination of CSR in
[AGL06]. Proving innermost termination of rewriting is often easier than prov-
ing termination of rewriting [AG00] and, for some relevant classes of TRSs,
innermost termination of rewriting is even equivalent to termination of rewrit-
ing [Gra95, Gra96]. In [GM02a, GL02a] it is proved that the equivalence
between termination of innermost CSR and termination of CSR holds in some
interesting cases (e.g., for orthogonal CS-TRSs). From the termination point
of view, Example 7 is interesting because, since its introduction in Giesl and
Middeldorp’s paper [GM99], no automatic proof of (innermost) µ-termination
has been reported by using transformations. In sharp contrast, innermost ter-
mination of CSR for this TRS and replacement map µ is easily proved by using

6See [MZ07, Wal09] for a summary of the results of the Termination Competition in 2007
and 2008.
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the techniques developed in this thesis. In particular, the innermost context-
sensitive dependency graph contains no cycle, thus, innermost µ-termination
can be proved trivially. Moreover, since the system is orthogonal, we can also
conclude that the system is µ-terminating. During the last few years, we have
continued the research about how to prove termination of context-sensitive
rewriting by using dependency pairs, since they have proven to be one of the
most powerful techniques for proving termination of unrestricted rewriting. In
[AGL06, AGL10], we define the notion of context-sensitive dependency pairs
following the approach of [HM04], which consists of considering the structure
of the infinite rewrite sequences starting from minimal nonterminating terms.
This allows us to extend the DP framework to deal with proofs of termination
of CSR and define our context-sensitive dependency pair framework (CSDP
framework [AGL10]), which has also been recently improved in [GL10]. There-
fore, all the advantages and improvements on this research can also be taken
into account in innermost context-sensitive rewriting, improving our previous
results in this field [AL07].

1.5 Rewriting Modulo Equational Theories

Rewriting with rules R modulo axioms E is a widely used technique in both
rule-based programming languages and in automated deduction. Consequently,
termination of rewriting modulo specific equational axioms E (e.g., associativity-
commutativity, AC) has been studied. Methods for proving termination of
rewriting systems modulo AC-axioms are known and even implemented. Sev-
eral works have tried to adapt the DP approach [AG00] to rewriting modulo
associative and commutative theories [KNT06, KT01, Kus00, MU98, MU04].
The corresponding proof methods, however, cannot be applied to commonly
occurring combinations of axioms that fall outside their scope.

Example 9
Consider the (order-sorted) TRS specified in Maude in Figure 1.2. It has four
sorts: Bool, Nat, List, and Set, with Nat included in both List and Set as
a subsort. That is, a natural number n is simultaneously regarded as a list
of length 1 and as a singleton set. The terms of each sort are, respectively,
Booleans, natural numbers (in Peano notation), lists of natural numbers, and
finite sets of natural numbers. The equations in this module then define vari-
ous functions such as _and_ and _or_, a function list2set associating to each
list its corresponding set, the set membership predicate _in_, and an equality
predicate _==_ on lists. Furthermore, the idempotency of set union is specified
by the first equation. All these equations rewrite terms modulo the equational
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fmod LIST&SET is

sorts Bool Nat List Set .

subsorts Nat < List Set .

ops true false : -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _;_ : List List -> List [assoc] .

op null : -> Set .

op __ : Set Set -> Set [assoc comm] .

op _in_ : Nat Set -> Bool .

op _==_ : List List -> Bool [comm] .

op list2set : List -> Set .

var B : Bool . vars N M : Nat .

vars L L’ : List . var S : Set .

eq N N = N .

eq true and B = B . eq false and B = false .

eq true or B = true . eq false or B = B .

eq 0 == s N = false . eq s N == s M = N == M .

eq N ; L == M = false . eq N ; L == M ; L’ = (N == M) and L == L’ .

eq L == L = true .

eq list2set(N) = N . eq list2set(N ; L) = N list2set(L) .

eq N in null = false . eq N in M S = (N == M) or N in S .

endfm

Figure 1.2: Example in Maude syntax [DLM09b]

axioms declared in the module. Specifically, _and_ and _or_ have been de-
clared associative and commutative with the assoc and comm keywords, the
list concatenation operator _;_ has been declared associative using the assoc
keyword; the set union operator __ has been declared associative and commu-
tative using the assoc and comm keywords; and the _==_ equality predicate
has been declared commutative using the comm keyword. The succinctness of
this specification is precisely due to the power of rewriting modulo axioms,
which typically uses considerably fewer rules than standard rewriting.

Methods for proving termination of AC-theories could not be applied to
prove termination of the TRS in Figure 1.2 (we would not care about sort in-
formation here), where we have an arbitrary combination of associative and/or
commutative axioms which we call an A∨C-rewrite theory [ALM10].

Giesl and Kapur generalized the previous works on AC-termination with
dependency pairs to deal with more general kinds of equational theories E
satisfying some restrictions [GK01]. In principle, the A∨C-theories that we
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investigate here fit the main outlines of Giesl and Kapur’s approach. However,
[GK01] did not provide any definition of minimal chain, which is needed for
further developments in the DP framework. In this thesis, we address this
problem and provide an appropriate notion of minimal nonterminating term
and of chain for A∨C-theories which is used to develop an A∨C-dependency
pair framework for proving termination of A∨C-rewrite theories.

1.6 Plan of the Thesis

This PhD thesis has been developed under the “publications format” that has
recently been adopted for the presentation of PhD thesis in Spanish univer-
sities7. According to this format, a PhD thesis can consist of a collection of
papers that have previously been published in relevant venues, together with
an extended summary of the research performed. In the first part of this PhD
thesis, we present the summary itself which is divided into two parts that in-
dependently treat two important problems related to proving termination of
Maude programs. Part I contains the development of techniques for proving
termination of innermost context-sensitive rewriting, and Part II deals with
proving termination of rewriting modulo associative and/or commutative ax-
ioms. Both extend the DP framework to automate proofs of termination of
each domain. After the summary of the research, the list of publications that
develop the material in this thesis is presented, accompanied by the full text
for each of them as originally published.

In Chapter 2, we present some preliminary definitions and results, which
are used in the main text of the thesis and also in the attached papers.

• The material in Part I, Termination of Innermost Context-Sensitive
Rewriting, is structured as follows:

– In Chapter 3, we investigate the structure of infinite innermost
context-sensitive rewrite sequences. This analysis is essential in
order to provide an appropriate definition of innermost context-
sensitive dependency pair, and the related notions of innermost
µ-chains, graph, etc. We provide appropriate notions of minimal
innermost non-µ-terminating terms and introduce the main prop-
erties of these terms. As in CSR, this analysis leads to the notion

7Article 21 from “Real Decreto 1393/2007” and Item 4 from “Normativa por la que se
establece el procedimiento regulador para la elaboración y defensa de las tesis doctorales en
la Universidad Politécnica de Valencia (Aprobada en Comisión de Doctorado de fecha 23 de
octubre de 2008)”
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of hidden term, which is essential for the appropriate treatment of
our dependency pairs.

– In Chapter 4, we define the notions of innermost context-sensitive
dependency pair (ICSDP) and innermost context-sensitive chain of
pairs and show how to use them to characterize innermost termi-
nation of CSR.

– Chapter 5 introduces the general framework to compute and use
innermost context-sensitive dependency pairs for proving innermost
termination of CSR. It provides an adaptation of the DP framework
to innermost CSR by defining appropriate notions of CS problem
and CS processor, which rely on the notions and results previously
investigated. We also relate innermost termination of CSR with
µ-termination as well as with full rewriting.

– Chapter 6 introduces several processors to be used in our ICSDP
framework. It includes the innermost context-sensitive (depen-
dency) graph, use of reduction pairs (with and without usable rules
and usable arguments), narrowing, etc.

Part I ends with an experimental evaluation of our techniques in Chapter
7. Chapter 8 relates this work to previous work and summarizes the main
contributions.

• The material in Part II, Termination of A∨C-Rewriting, is structured
as follows:

– Chapter 9 investigates the drawbacks of previous notions of min-
imal E-nonterminating term when modeling infinite A∨C-rewrite
sequences. Then, we introduce the notion of stably minimal E-
nonterminating term, which is the basis of our development, and
we investigate the structure of infinite A∨C-sequences starting from
such stably minimal terms.

– Chapter 10 uses these results to formalize our notions of A∨C-
dependency pairs and of minimal chains and shows how to use
them to characterize termination of A∨C-rewrite theories.

– Chapter 11 extends the DP framework to A∨C-termination by
defining appropriate notions of A∨C problem and A∨C processor
that rely on the results previously obtained.

– Chapter 12 develops several specific processors to be used in our
A∨C framework, including the use of usable rules and equations
together with reduction orders.
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Part II ends with an experimental evaluation of our techniques in Chap-
ter 13. Chapter 14 relates this work to previous work and summarizes
the main contributions.

Finally, Chapter 15 briefly explains some details about our termination tool
mu-term and the Maude termination tool MTT that proves termination of
Maude programs by transformation. Chapter 16 concludes the thesis.

The publications associated with this thesis are the following (in chrono-
logical order):

1. B. Alarcón, R. Gutiérrez, and S. Lucas. Context-Sensitive Dependency
Pairs. In S. Arun-Kumar and N. Garg, editors, Proc. of XXVI Confer-
ence on Foundations of Software Technology and Theoretical Computer Sci-
ence, FST&TCS’06, volume 4337 of Lecture Notes in Computer Science, pages
297–308. Springer-Verlag, 2006.

2. B. Alarcón, R. Gutiérrez, and S. Lucas. Improving the Context-Sensitive
Dependency Graph. Electronic Notes in Theoretical Computer Science,
188:91–103, 2007. Selected papers from the 6th Spanish Conference on Pro-
gramming and Languages, PROLE’06.

3. B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving Termination
of Context-Sensitive Rewriting with mu-term. Electronic Notes in The-
oretical Computer Science, 188:105–115, 2007. Selected papers from the 6th
Spanish Conference on Programming and Languages, PROLE’06.

4. B. Alarcón and S. Lucas. Termination of Innermost Context-Sensitive
Rewriting Using Dependency Pairs. In B. Konev and F. Wolter, editors,
Proc. of 6th International Symposium on Frontiers of Combining Systems, Fro-
CoS’07, volume 4720 of Lecture Notes in Artificial Intelligence, pages 73–87,
Springer-Verlag, 2007.

5. B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas, P. Schneider
-Kamp, and R. Thiemann. Improving Context-Sensitive Dependency
Pairs. In I. Cervesato, H. Veith, and A. Voronkov, editors, Proc. of XV
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, LPAR’08, volume 5330 of Lecture Notes in Computer Science, pages
636–651. Springer-Verlag, 2008.

6. B. Alarcón, and S. Lucas. Using Context-Sensitive Rewriting for Prov-
ing Innermost Termination of Rewriting. Electronic Notes in Theoretical
Computer Science, 248:3-17, 2009. Selected papers from the 8th Spanish Con-
ference on Programming and Languages, PROLE’08.

7. B. Alarcón, R. Gutiérrez, and S. Lucas. Context-Sensitive Dependency
Pairs. Information and Computation, 208:922–968, 2010.
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8. B. Alarcón, S. Lucas and J. Meseguer. A Dependency Pair Framework
for A∨C-Termination. In P. Ölveczky, editor, Proc. of 8th International
Workshop on Rewriting Logic and its Applications, WRLA’10, volume 6381 of
Lecture Notes in Computer Science, pages 35–51. Springer-Verlag, 2010.

9. B. Alarcón, R. Gutiérrez, S. Lucas, and R. Navarro-Marset. Proving Termi-
nation Properties with mu-term. In M. Johnson and D. Pavlovic, editors,
Proc. of 13th International Conference on Algebraic Methodology and Software
Technology, AMAST’10, volume 6486 of Lecture Notes in Computer Science,
pages 201–208. Springer-Verlag, 2010.

10. B. Alarcón, and S. Lucas. Innermost Termination of Context-Sensitive
Rewriting. Technical Report, http://hdl.handle.net/10251/10796, DSIC-
ELP, UPV, 2011.

11. B. Alarcón, R. Gutiérrez, S. Lucas, and J. Meseguer. A Dependency
Pair Framework for A∨C-Termination. Technical Report, http://hdl.
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2
Preliminaries

This chapter presents a number of definitions and notations about term rewrit-
ing that are used in this thesis and also in the reference papers that are
attached at the end. More details and missing notions can be found in
[BN98, Ohl02, TeR03].

2.1 Abstract Reduction Systems

Let A be a set and R ⊆ A×A be a binary relation on A. An abstract reduction
system is a pair (A,R). If a, b ∈ A, we write a R b and say that a reduces to b
in one step, instead of (a, b) ∈ R. An R-reduction sequence is a finite or infinite
sequence a0 R a1 R a2 R a3 R · · · . We denote the transitive closure of R by R+,
its reflexive closure by R=, and its reflexive and transitive closure by R∗. An
element a ∈ A is called an R-normal form if there exists no b such that a R b.
We say that R is terminating (also known as strongly normalizing , well-founded
, or noetherian ) if there is no infinite reduction sequence a1 R a2 R a3 · · · . A
reflexive and transitive relation R is a quasi-order .

2.2 Signatures, Terms, and Positions

A signature Σ is a countable set of function symbols {f, g, if, from, true . . .},
each having a fixed number of arguments called arity and given by a mapping
ar : Σ → N. We often write Σk to refer to the symbols of Σ whose arity
is k. Function symbols with arity 0 are called constants. And X denotes a
countable set of variables. The set of terms T (Σ,X ), built from Σ and X , is
inductively defined as follows:

• x ∈ T (Σ,X ) if x ∈ X , and

• f(t1, . . . , tk) ∈ T (Σ,X ) if t1, . . . , tk ∈ T (Σ,X ), f ∈ Σ and ar(f) = k.
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The set of variables of a term t ∈ T (Σ,X ) is denoted as Var(t). A term t
is ground if it contains no variable. A term is said to be linear if it has no
multiple occurrences of the same variable.

Labelled trees provide a natural way of representing terms. Leaves are
labelled with variables from X or constant symbols from Σ0. Inner nodes are
labelled with function symbols f ∈ Σ \Σ0 and with ar(f) subtrees. Positions
p, q, . . . are chains of positive natural numbers that are used to address sub-
terms of t. The root position, referring to the whole term, corresponds to an
empty chain and is denoted by Λ. Given positions p, q, their concatenation
is denoted as p.q. Positions are ordered by the standard prefix order: p ≤ q
if ∃q′ such that q = p.q′. If p is a position, and Q is a set of positions, then
p.Q = {p.q | q ∈ Q} is the set of positions obtained from Q by adding a prefix
p to each position q ∈ Q. The set of positions of a term t is Pos(t). Given a
signature Σ and a set of variables X , the set of positions of nonvariable sym-
bols occurring in t is denoted as PosΣ(t), and PosX (t) is the set of positions
of variable occurrences in t. The subterm at position p of t is denoted as t|p
and t[s]p is the term t with the subterm at position p replaced by s.

A context is a term C[ ] ∈ T (Σ ∪ {�},X ) with zero or more ‘holes’. A hole
� is a fresh constant symbol. We write C[ ]p to denote that there is a hole �
at position p of C[ ]. Generally, C[ ] is written to denote an arbitrary context;
we make the position of the hole explicit only if necessary. C[ ] = � is called
the empty context.

We write s D t to denote that t is a subterm of s, i.e. t = s|p for some
p ∈ Pos(s); we write s B t if s D t and s 6= t (i.e., t is a strict subterm of s).
We write s 4 t and s 7 t to negate the corresponding properties. The symbol
labeling the root of t is denoted as root(t).

2.3 Substitutions, Renamings, and Unifiers

A substitution is a mapping σ : X → T (Σ,X ) where the set Dom(σ) = {x ∈
X | σ(x) 6= x} is called the domain of σ. In this thesis, we do not impose that
the domain of the substitutions be finite. A substitution can be extended to a
function from terms to terms by σ(f(t1, . . . , tk)) = f(σ(t1), . . . , σ(tk)) for each
k-ary function symbol f ∈ Σ and terms t1, . . . , tk ∈ T (Σ,X ).

We say that term t matches s, if s is an instance of t, i.e., there is a
substitution σ such that σ(t) = s. A renaming is an injective substitution ρ
such that ρ(x) ∈ X for all x ∈ X .

A substitution σ such that σ(s) = σ(t) for two terms s, t ∈ T (Σ,X ) is
called a unifier of s and t; it is also said that s and t unify (with substitution
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σ). If two terms s and t unify, then there is a unique (up to renaming of
variables) most general unifier (mgu) θ such that, for every other unifier τ ,
there is a substitution σ such that θ ◦ τ = σ.

2.4 Binary Relations over Terms

A relation R ⊆ T (Σ,X )×T (Σ,X ) on terms is stable under substitutions if for
all terms s, t ∈ T (Σ,X ), and substitutions σ, we have σ(s) R σ(t) whenever
s R t.

A relation R ⊆ T (Σ,X ) × T (Σ,X ) on terms is monotonic (also called
stable under contexts) if for all terms s, t ∈ T (Σ,X ) and context C[ ], we have
C[s] R C[t] whenever s R t.

Monotonicity can also be expressed in the following way: a relation R ⊆
T (Σ,X )×T (Σ,X ) on terms is monotonic if for all symbols f ∈ Σ, arguments
i, 1 ≤ i ≤ k, and terms s, t, t1, . . . , tk ∈ T (Σ,X ), we have

f(t1, . . . , ti−1, s, ti+1, . . . , tk) R f(t1, . . . , ti−1, t, ti+1, . . . , tk)

whenever s R t.

2.5 Rewrite Systems and Term Rewriting

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (Σ,X ),
l 6∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l, and
the right-hand side (rhs) of the rule is r. A rewrite rule l → r is said to be
collapsing if r ∈ X . A term rewriting system (TRS) is a pair R = (Σ, R),
where R is a set of rewrite rules. Given TRSs R = (Σ, R) and R′ = (Σ′, R′),
we let R ∪ R′ be the TRS (Σ ∪ Σ′, R ∪ R′). An instance σ(l) of a lhs l of a
rule is called a redex . Given R = (Σ, R), we consider Σ as the disjoint union
Σ = C ] D of symbols c ∈ C (called constructors) and symbols f ∈ D (called
defined functions), where D = {root(l) | l → r ∈ R} and C = Σ \ D. For
simplicity, we often write l → r ∈ R instead of l → r ∈ R to express that the
rule l→ r is a rule of R.

A term s ∈ T (Σ,X ) rewrites to t (at position p), written s
p→R t (or just

s →R t, or s → t), if s|p = σ(l) and t = s[σ(r)]p, for some rule l → r ∈ R,
p ∈ Pos(s), and substitution σ. We write s

>p→R t if s
q→R t for some q > p. A

TRS R is terminating if its one step rewrite relation →R is terminating.



30 2. Preliminaries

2.6 Innermost Rewriting

A term is a normal form if it contains no redex. A substitution σ is normalized
if σ(x) is a normal form for all x ∈ Dom(σ). A term f(t1, . . . , tk) is argument
normalized if ti is a normal form for all 1 ≤ i ≤ n. An innermost redex is an
argument normalized redex. A term s rewrites innermost to t, written s→i t,
if s→ t at position p and s|p is an innermost redex. Let R be a TRS. For any
symbol f let Rls(R, f) be the set of rules l → r defining f and such that the
left-hand sides l are argument normalized. For any term t the set of usable
rules U(R, t) is as follows:

U(R, x) = ∅
U(R, f(t1, . . . , tn)) = Rls(R, f) ∪ ⋃

i∈ar(f)

U(R′, ti) ∪
⋃

l→r∈Rls(R,f)

U(R′, r)

where R′= R−Rls(R, f).

2.7 (Innermost) Context-Sensitive Rewriting

A mapping µ : Σ→ ℘(N) is a replacement map (or Σ-map) if for all symbols
f ∈ Σ, µ(f) ⊆ {1, . . . , ar(f)} [Luc98]. Let MΣ be the set of all Σ-maps (or
MR for the Σ-maps of a TRS R = (Σ, R)). Let µ> be the replacement map
given by µ>(f) = {1, . . . , ar(f)} for all f ∈ Σ (i.e., no replacement restrictions
are specified).

A binary relation R on terms is µ-monotonic if for all symbols f ∈ Σ,
arguments i ∈ µ(f), and terms s, t, t1, . . . , tk ∈ T (Σ,X ), we have

f(t1, . . . , ti−1, s, ti+1 . . . , tk) R f(t1, . . . , ti−1, t, ti+1 . . . , tk)

whenever s R t.
The set of µ-replacing positions Posµ(t) of t ∈ T (Σ,X ) is: Posµ(t) = {Λ},

if t ∈ X and Posµ(t) = {Λ} ∪ ⋃i∈µ(root(t)) i.Posµ(t|i), if t 6∈ X . When no
replacement map is made explicit, the µ-replacing positions are often called
active; and the non-µ-replacing ones are often called frozen. The µ-replacing
subterm relation Dµ is given by s Dµ t if there is p ∈ Posµ(s) such that
t = s|p. We write s Bµ t and say that t is a strict µ-replacing subterm of
s if s Dµ t and s 6= t. We write s B

�µ
t if t is a non-µ-replacing (hence,

strict) subterm of s, i.e., there is p ∈ Pos(s) \ Posµ(s) such that t = s|p.
The set of µ-replacing variables of a term t, i.e., variables occurring at some
µ-replacing position in t, is Varµ(t) = {x ∈ Var(t) | t Dµ x}. The set of
non-µ-replacing variables of t, i.e., variables occurring at some frozen position
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in t, is Var�µ(t) = {x ∈ Var(t) | t B
�µ
x}. Note that Varµ(t) and Var�µ(t) do

not need to be disjoint.
A pair (R, µ) where R is a TRS and µ ∈ MR is often called a CS-TRS

. In context-sensitive rewriting, (only) µ-replacing redexes are contracted: s
µ-rewrites to t, written s

p
↪→R,µ t (or s ↪→R,µ t, s ↪→µ t, and even s ↪→ t), if

s
p→R t and p ∈ Posµ(t).

Example 10
Consider R and µ as in Example 7. Then, we have:

from(0) ↪→µ 0:from(s(0)) 6↪→µ 0:(s(0):from(s(s(0))))

since the second argument of (:) is not µ-replacing, 2 6∈ Posµ(0:from(s(0))),
and the redex from(s(0)) cannot be µ-rewritten.

A term t is µ-terminating (or (R, µ)-terminating), if we want to explicitly refer
to the involved TRS R) if there is no infinite µ-rewrite sequence t = t1 ↪→R,µ
t2 ↪→R,µ · · · ↪→R,µ tn ↪→R,µ · · · starting from t. A TRS R is µ-terminating if
↪→µ is terminating.

A µ-normal form is a term which cannot be µ-rewritten. Let NFµ(R)
(or just NFµ if no confusion arises) be the set of µ-normal forms of a CS-
TRS (R, µ). A substitution σ is µ-normalized if σ(x) is a µ-normal form for
all x ∈ Dom(σ). A term t = f(t1, . . . , tk) is argument µ-normalized if ti is
a µ-normal form for all i ∈ µ(f). A µ-innermost redex is an argument µ-
normalized redex, i.e., t = σ(l) for some substitution σ and rule l → r ∈ R
and for all p ∈ Posµ(t − Λ), t|p ∈ NFµ. A term s innermost µ-rewrites to t,
written s ↪→i t, if s

p→R t, p ∈ Posµ(s), and s|p is a µ-innermost redex. Let

innermost µ-rewriting below the root be
>Λ
↪−→i = (

>Λ
↪−→ ∩ ↪→i). Termination of

CSR is fully captured by the so-called µ-reduction orders, i.e., well-founded,
stable orders A which are µ-monotonic. A TRS R is innermost µ-terminating

if ↪→µ,i is terminating. We write s
!
↪→R,µ,i t if s ↪→∗R,µ,i t and t ∈ NFµ.

2.8 Narrowing

Narrowing combines rewriting with unification. Given a TRS R = (Σ, R),
a term s narrows to a term t (written s

p R,θ t, s  R,θ t, or s  θ t), if
there is a nonvariable position p ∈ PosΣ(s) and a rule l → r ∈ R (sharing no
variable with s) such that s|p and l unify with the most general unifier θ and
t = θ(s[r]p). A term s µ-narrows to a term t (written s

p R,µ,θ t, s  R,µ,θ t,
or s µ,θ t), if s

p R,θ t and p ∈ PosµΣ(s).
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2.9 Rewriting Modulo Equational Theories

Given a set of equations E, we write s
p

àE t (a single ‘equational step’) if
there is a position p ∈ Pos(s), an equation u = v ∈ E and a substitution σ
such that s|p = σ(u) and t|p = σ(v), or s|p = σ(v) and t|p = σ(u) (we write
s àE t if position p is not relevant). Note that àE is a symmetric relation.
Then, ∼E is the reflexive and transitive closure of àE ; we have the following
equivalence that will be useful in our development:

∼E = à∗E = (
Λ
àE ∪

>Λ
àE)∗.

We also write s >Λ∼ E t iff s = f(s1, . . . , sk), t = f(t1, . . . , tk) and si ∼E ti for
all i, 1 ≤ i ≤ k. We define s Λ∼E t as the reflexive and transitive closure of
Λ
àE .

Given a rewrite theory R = (Σ, E,R), where R is a set of rewrite rules and
E is a set of equational axioms, we write s→R/E t if there exist u, v such that
s ∼E u, u →R v, and v ∼E t.We say that a rewrite theory R = (Σ, E,R) is
E-terminating , iff →R/E is terminating. In general, given terms s and t, the
problem of checking whether s→R/E t holds is undecidable: in order to check
whether s→R/E t we have to search through the possibly infinite equivalence
classes [s]E and [t]E to see whether a matching is found for a subterm of some
u ∈ [s]E and the result of rewriting u belongs to the equivalence class [t]E . For
this reason, a much simpler relation→R,E is defined, which becomes decidable
if an E-matching algorithm exists. For any terms s, t, s→R,E t holds iff there
is a position p in s, a rule l→ r in R, and a substitution σ such that s|p ∼E σ(l)
and t = s[σ(r)]p (see [PS81]). This relation only allows applying rules from R
in redexes at positions equal or above of positions of terms where equations
from E have been applied. We say that a rewrite theory R = (Σ, E,R) is
(R,E)-terminating, if →R,E is terminating. In the following, we assume that
E and R are finite sets of equations and rules, respectively. This requirement
is needed, for instance, to ensure that the interpretation used when dealing
with usable rules and equations is well-defined (see [AGLM11]).



Part I

Termination of Innermost
Context-Sensitive Rewriting





3
Infinite Innermost

Context-Sensitive Rewrite
Sequences

In the following, we show how to adapt our results about the structure of in-
finite context-sensitive rewrite sequences [AGL10, Section 3] to the innermost
setting. As for context-sensitive rewriting, we analyze the structure of infinite
sequences starting from minimal terms. Most results are only slightly different
from the ones obtained for context-sensitive rewriting, and, therefore, we com-
ment on the differences only (for full details see [AL11] and [AGL10]). Major
differences come from particularities of reductions under an innermost strat-
egy. In the innermost (context-sentive) setting, matching substitutions are
always (µ)-normalized. In some cases, they bring us some advantages over the
case of ‘free’ reductions. In standard rewriting, given a TRS R = (C ] D, R),
the minimal nonterminating terms associated to R are nonterminating terms t
whose proper subterms u (i.e., tBu) are terminating; T∞ is the set of minimal
nonterminating terms associated to R [HM04, HM07]. Minimal nonterminat-
ing terms have two important properties:

1. Every nonterminating term s contains a minimal nonterminating term
t ∈ T∞ (i.e., sD t), and

2. minimal nonterminating terms t are always rooted by a defined symbol
f ∈ D: ∀t ∈ T∞, root(t) ∈ D.

Considering the structure of the infinite rewrite sequences starting from a
minimal nonterminating term t = f(t1, . . . , tk) ∈ T∞ is helpful to come to the
notion of dependency pair.

Proposition 11 [HM04, Lemma 1] Let R = (C ] D, R) be a TRS. For all
t ∈ T∞, there exist l → r ∈ R, a substitution σ and a term u ∈ T∞ such that
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root(u) ∈ D, t >Λ−→∗ σ(l) Λ→ σ(r)D u and there is a nonvariable subterm v of
r, r D v, such that u = σ(v).

According to the discussion in [AGL10] and [AL11], we introduce the following:

Definition 12 ((Strongly) Minimal Innermost Non-µ-Terminating Term)
Let M∞,µ,i be the set of minimal innermost non-µ-terminating terms in the
following sense: t belongs to M∞,µ,i if t is not innermost µ-terminating and
every strict µ-replacing subterm s of t (i.e., tBµs) is innermost µ-terminating.
Let T∞,µ,i be the set of strongly minimal innermost non-µ-terminating terms
in the following sense: t belongs to T∞,µ,i if t is not innermost µ-terminating
and every strict subterm u (i.e., t B u) is innermost µ-terminating. It is
obvious that root(t) ∈ D for all t ∈ T∞,µ,i and t ∈M∞,µ,i.
Note that T∞,µ,i ⊆ M∞,µ,i. Before starting our discussion about minimal
innermost non-µ-terminating terms, we introduce some auxiliary results about
innermost µ-terminating terms (see [AGL10, Lemmata 1,2,3,4]).

Proposition 13 Let R = (Σ, R) be a TRS, µ ∈MΣ, and s, t ∈ T (Σ,X ).

1. If s is innermost µ-terminating and sDµ t or s ↪→∗R,µ,i t then t is inner-
most µ-terminating.

2. If s is not innermost µ-terminating, then there is a subterm t of s (sD t)
such that t ∈ T∞,µ,i. Furthermore, there is a µ-replacing subterm t of s
(sDµ t) such that t ∈M∞,µ,i.

3. If t ∈ M∞,µ,i, t
>Λ
↪−→∗i u and u is not innermost µ-terminating, then

u ∈M∞,µ,i.

The following result is the innermost context-sensitive version of Lemma 1 in
[HM04] (i.e., Proposition 11), which uses the results in Proposition 13. Propo-
sition 14 below establishes that, given a minimal innermost non-µ-terminating
term t ∈ M∞,µ,i, there are only two ways for an infinite innermost µ-rewrite
sequence to proceed. The first one is by using ‘visible’ parts of the rules that
correspond to µ-replacing nonvariable subterms in the right-hand sides which
are rooted by a defined symbol. This corresponds to the straightforward exten-
sion of the original result but taking into account the replacement restrictions.
The second one is by showing up ‘hidden’ innermost non-µ-terminating sub-
terms that are activated by migrating variables in a rule l → r, i.e., variables
x ∈ Varµ(r) \ Varµ(l) that are not µ-replacing in the left-hand side l but
become µ-replacing in the right-hand side r.
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Proposition 14 [AL11] Let R = (Σ, R) = (C ] D, R) be a TRS and µ ∈
MΣ. Then for all t ∈ M∞,µ,i, there exist l → r ∈ R, a substitution σ
such that σ(l) is argument µ-normalized and a term u ∈ M∞,µ,i such that

t
>Λ
↪−→∗i σ(l)

Λ
↪→i σ(r) Dµ u and either

1. there is a nonvariable µ-replacing subterm s of r, r Dµ s, such that u =
σ(s) and σ(x) ∈ NFµ(R) for all x ∈ Var(s) ∩ Varµ(l), or

2. there is x ∈ Varµ(r)\Varµ(l) such that σ(x)Dµ u, that is, σ(x) = C[u]p
for some context C[]p with p ∈ Posµ(C[]p).

Proposition 14 entails the following result, which establishes some properties of
infinite sequences starting from minimal innermost non-µ-terminating terms.

Corollary 15 [AL11] Let R = (Σ, R) be a TRS and µ ∈ MΣ. For all t ∈
M∞,µ,i, there is an infinite sequence

t
>Λ

↪−→∗i σ1(l1)
Λ
↪→i σ1(r1) Dµ t1

>Λ

↪−→∗i σ2(l2)
Λ
↪→i σ2(r2) Dµ t2

>Λ

↪−→∗i · · ·

where, for all i ≥ 1, li → ri ∈ R are rewrite rules, σi are substitutions, σi(li)
is argument µ-normalized, and terms ti ∈M∞,µ,i are minimal innermost non-
µ-terminating terms such that either

1. ti = σi(si) for some nonvariable subterm si of ri such that ri Dµ si and
σ(x) ∈ NFµ(R) for all x ∈ Var(si) ∩ Varµ(li), or

2. σi(xi)Dµ ti, i.e., σi(xi) = C[ti]pi for some xi ∈ Varµ(ri) \ Varµ(li) and
context C[ ]pi with pi ∈ Posµ(C[ ]pi).

Now we address item 2 of Proposition 14. To analyze in depth infinite se-
quences starting from minimal innermost non-µ-terminating terms, we need
to go inside the instantiation of the migrating variable, σ(x). Since in (inner-
most) context-sensitive rewriting, function calls can be delayed, terms that are
(innermost) µ-terminating can generate future (innermost) non-µ-terminating
subterms. By Proposition 13, we know that innermost µ-termination is pre-
served under µ-rewritings and extraction of µ-replacing subterms. Therefore,
these innermost non-µ-terminating subterms introduced by applying inner-
most µ-rewriting steps can only occur at frozen positions in the reducts. This
is captured by the notion of hidden term.
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Definition 16 (Hidden Term [AGL10]) Let R = (Σ, R) be a TRS and
µ ∈ MΣ. We say that t ∈ T (Σ,X ) − X is a hidden term if there is a rule
l → r ∈ R such that r B

�µ
t. Let HT (R, µ) (or just HT , if R and µ are clear

from the context) be the set of all hidden terms in (R, µ). We say that f ∈ Σ
is a hidden symbol if it occurs in a hidden term. Let H(R, µ) (or just H) be
the set of all hidden symbols in (R, µ). We also use

DHT (R, µ) = {t ∈ HT | root(t) ∈ D}

for the set of hidden terms which are rooted by a defined symbol.

Example 17
In Example 7, the hidden terms are from(s(x)), s(x), filter(s(s(x)), z),
s(s(x)), y:filter(x, sieve(y)), filter(x, sieve(y)) and sieve(y). The hid-
den symbols are from, s, filter, (:) and sieve. Finally, DHT (R, µ) =
{from(s(x)), filter(s(s(x)), z), filter(x, sieve(y)), sieve(y)}.

Innermost non-µ-terminating terms at frozen positions can be activated by
some specific contexts. In Proposition 14-(2), the intended role of hidden terms
in the binding of the migrating variable σ(x) = C[u]p is that there is always a
hidden term u′ such that θ(u′) = u for some substitution θ. This context can
only be composed by symbols f contained in hidden terms f(. . . , ri, . . .) such
that r′ B

�µ
f(. . . , ri, . . .)Dµ ri for a rule l′ → r′ ∈ R satisfying that:

• ri is a nonvariable term and σ(ri) = u, or

• ri is a variable at a frozen position in both, l and r.

These symbols conform what is called as hiding context .

Definition 18 (Hiding Context [GL10]) Let R be a TRS and µ ∈ MR.
A function symbol f hides position i ∈ µ(f) in the rule l → r ∈ R if r B

�µ
f(r1, . . . , rn) for some terms r1, . . . , rn, and ri contains a µ-replacing defined
symbol (i.e., PosµD(ri) 6= ∅) or a variable x ∈ (Var�µ(l)∩Var�µ(r))\ (Varµ(l)∪
Varµ(r)) which is µ-replacing in ri (i.e., x ∈ Varµ(ri)). We say that f hides
position i in R if there is a rule l → r such that f hides position i in l → r.
A context C[�] is hiding if

1. C[�] = �, or

2. C[�] = f(t1, . . . , ti−1, C
′[�], ti+1, . . . , tk), where f hides position i and

C ′[�] is a hiding context.
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Since we are dealing with innermost µ-rewriting and all µ-replacing vari-
ables of the instantiated left-hand sides of the rules applied in an innermost
µ-rewrite sequence are in µ-normal form, they cannot start any reduction even
if they come from a frozen position on the right-hand side. In [GL10], this
refinement also was done since, in a µ-rewrite sequence, these variables could
start a reduction; however, due to minimality, these reductions would be finite.

In the following, we consider a function Renµ [AGL06, AGL10] that inde-
pendently renames all occurrences of µ-replacing variables within a term t by
using fresh variables that are not in Var(t). Note that Renµ(t) keeps variables
at non-µ-replacing positions untouched.

Proposition 19 [AGL10] Let R = (Σ, R) = (C ] D, R) be a TRS and µ ∈
MΣ. Let t ∈ T (Σ,X ) − X be a nonvariable term and σ be a substitution.

If σ(t)
>Λ
↪−→∗i σ(l) for some (renamed) rule l → r ∈ R, then Renµ(t) is µ-

narrowable.

Corollary 20 [AGL10] Let R = (Σ, R) be a TRS and µ ∈ MΣ. Let t ∈
T (Σ,X ) − X be a nonvariable term and σ be a substitution such that σ(t) ∈
M∞,µ,i. Then, Renµ(t) is µ-narrowable.

In the following, we write Narrµ(t) [AGL10] to indicate that t is µ-narrowable
(w.r.t. the intended TRS R). We also let

NHT (R, µ) = {t ∈ DHT | Narrµ(Renµ(t))}

be the set of hidden terms which are rooted by a defined symbol, and that, after
applying Renµ, become µ-narrowable. These notions are used and combined
to model infinite innermost µ-rewrite sequences starting from strongly minimal
innermost non-µ-terminating terms. See Example 25 for an example of use.

As a consequence of the previous results, we have the following.

Theorem 21 (Minimal Innermost µ-Sequence [AL11]) Let R be a TRS
and µ ∈MR. For all t ∈ T∞,µ,i, there is an infinite sequence

t = t0
>Λ

↪−→∗i σ1(l1)
Λ
↪→i σ1(r1) Dµ t1

>Λ

↪−→∗i σ2(l2)
Λ
↪→i σ2(r2) Dµ t2

>Λ

↪−→∗i · · ·

where, for all i ≥ 1, li → ri ∈ R, σi is a substitution, σi(li) is argument µ-
normalized, and ti ∈ M∞,µ,i is a minimal innermost non-µ-terminating term
such that either

1. ti = σi(si) for some nonvariable term si such that ri Dµ si, or
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2. σi(xi) = θi(Ci[t′i]) and ti = θi(t′i) for some variable xi ∈ Varµ(ri) \
Varµ(li), t′i ∈ NHT (R, µ), hiding context Ci[�], and substitution θi.

In Chapter 4, we explain the relevance of these results and how to use them to
define an appropriate notion of innermost context-sensitive dependency pairs
and of innermost µ-chain.



4
Innermost Context-Sensitive

Dependency Pairs and Chains

According to Theorem 21, an infinite minimal innermost µ-rewriting sequence
whose starting term t is strongly minimal has the following form:

t = t0
>Λ

↪−→∗i σ1(l1)
Λ
↪→i σ1(r1) Dµ t1

>Λ

↪−→∗i σ2(l2)
Λ
↪→i σ2(r2) Dµ t2

>Λ

↪−→∗i · · ·

where ti are minimal innermost non-µ-terminating terms, for all i ≥ 1. Then,
we proceed by first performing some innermost µ-rewriting steps below the root

of ti−1 to obtain a term σi(li) (i.e., ti−1

>Λ
↪−→∗i σi(li)) such that σi(li) is argument

µ-normalized and then applying a rule li → ri at the topmost position for some
matching substitution σi. The application of such a rule either

1. introduces a new minimal innermost non-µ-terminating subterm ti =
σi(si), where si is a µ-replacing nonvariable subterm of ri which is rooted
by a defined symbol (i.e., ri Dµ si and root(si) ∈ D), or

2. takes a minimal innermost non-µ-terminating and non-µ-replacing sub-
term ti from σi(li) (i.e., σi(li)B�µ

ti) and

(a) brings it up to an active position by means of the binding σi(xi)
for some migrating variable xi in li → ri, σ(xi) = θ(Ci[t′i]) for some
xi ∈ Varµ(ri) \ Varµ(li) and a context Ci[�] with a µ-replacing
hole.

(b) At this point, we know that σ(xi) = θ(Ci[t′i]), where t′i is rooted by
a defined symbol due to ti ∈M∞,µ,i. Furthermore, ti is an instance
of the µ-narrowable hidden term t′i ∈ NHT (i.e. ti = θ(t′i)) and
Ci[�] is an instance of a hiding context.
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Afterwards, further inner µ-rewritings on ti lead to match the left-hand-side

li+1 of a new rule li+1 → ri+1, i.e., ti
>Λ
↪−→∗i σi+1(li+1) for some substitution,

and everything starts again. This process is abstracted in the definition of
innermost context-sensitive dependency pairs and innermost context-sensitive
dependency chain.

Definition 22 (Innermost Context-Sensitive Dependency Pairs [AL11])
Let R = (Σ, R) = (C ] D, R) be a TRS and µ ∈ MΣ. We define iDP(R, µ) =
iDPΣ(R, µ) ∪ iDPX (R, µ) to be the set of innermost context-sensitive depen-
dency pairs (ICSDPs) where:

iDPΣ(R, µ) = {l] → s] | l→ r ∈ R, l] ∈ NFµ(R), r Dµ s, root(s) ∈ D, l 6Bµ s,Narrµ(Renµ(s))}
iDPX (R, µ) = {l] → x | l→ r ∈ R, l] ∈ NFµ(R), x ∈ Varµ(r) \ Varµ(l)}

We extend µ ∈ MΣ into µ] ∈ MΣ∪D] by µ](f) = µ(f) if f ∈ Σ, and µ](f ]) =
µ(f) if f ∈ D.

As in [HM04] (which follows Dershowitz’s proposal in [Der04]), we require
that subterms s of the right-hand sides r of the rules l→ r, which are used to
build the ICSDPs l] → s], not be µ-replacing subterms of the left-hand side
(i.e., l 7µ s). Also, as in [LM08], we require ‘µ-narrowability’ of Renµ(s):
Narrµ(Renµ(s)). This condition removes pairs that cannot generate infinite
sequences. The ICSDPs u → v ∈ iDPX (R, µ) in Definition 22, consisting of
collapsing rules only, are called the collapsing ICSDPs. A rule l→ r of a TRS
R is µ-conservative if Varµ(r) ⊆ Varµ(l), i.e., it does not contain migrating
variables; R is µ-conservative if all its rules are (see [Luc96, Luc06]).

Clearly, if R is µ-conservative, then iDP(R, µ) = iDPΣ(R, µ). Therefore,
in order to deal with µ-conservative TRSs R we only need to consider the
‘classical’ dependency pairs in iDPΣ(R, µ) (having into account the replace-
ment restrictions). If the TRS R contains non-µ-conservative rules, then we
also need to consider dependency pairs with variables in the right-hand side.

Example 23
Consider Example 7. The set iDP(R, µ) consists of the following pairs:

IF(true, x, y) → x (4.1)
IF(true, x, y) → y (4.2)

PRIMES → FROM(s(s(0))) (4.3)
PRIMES → SIEVE(from(s(s(0)))) (4.4)

TAIL(x:y) → y (4.5)
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Note that pairs (4.3) and (4.4) represent the possible direct ‘recursive’ calls
in the very same sense of original DPs whereas pairs (4.1), (4.2) and (4.5)
are collapsing pairs and represent the activation of delayed function calls by
migrating variables.

To deal with the information corresponding to hidden terms and hiding
contexts when trying to characterize innermost µ-termination with ICSDPs,
we use an unhiding TRS unh(R, µ). This unhiding TRS captures the situation
described in Theorem 21 when managing migrating variables. According to
this, we have to remove the (instance of the) hiding context Ci[] to extract the
delayed call ti and then connect this delayed call, which is an instance θ(t′i)
of a hidden term t′i with the next pair in the innermost µ-chain. We perform
these two actions by using two kinds of rewrite rules:

• If θ(Ci[t′i]) = θ(f(t1, . . . , ti−1, C
′
i[t
′
i], ti+1, . . . , tk)) then, since Ci[] is a hid-

ing context, f hides position i and C ′i[] is a hiding context as well. Then,
we can extract θ(C ′i[t

′
i]) from θ(Ci[t′i]) by using the following projection

rule: f(x1, . . . , xi−1, xi, xi+1, . . . , xk)→ xi

• Once ti has been reached, we know that it is an instance ti = θ(t′i) of a
nonvariable hidden term t′i ∈ NHT (R, µ) and we have to connect ti with
the next innermost context-sensitive dependency pair. Since the root of
the innermost context-sensitive dependency pair is a marked symbol, we
can do it by using a rule that just changes the root symbol by its marked
version in the following way: t′i → t′]i

Definition 24 (Unhiding TRS [GL10]) Let R be a TRS and µ ∈ MR.
We define unh(R, µ) as the TRS consisting of the following rules:

1. f(x1, . . . , xi, . . . , xk)→ xi for all function symbols f of arity k, distinct
variables x1, . . . , xk, and 1 ≤ i ≤ k such that f hides position i in
l→ r ∈ R, and

2. t→ t] for every t ∈ NHT (R, µ).

Example 25
Continuing with Example 7, we have that filter hides position 2 and sieve
hides position 1. Therefore, the following rules have to be added to the un-
hiding TRS unh(R, µ).
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filter(x, y) → y
sieve(x) → x

They fit the requirements in Definition 24-(1). Moreover, NHT (R, µ) =
{filter(s(s(x)), z), filter(x, sieve(y)), sieve(x), from(s(x))}. Therefore,
we also have to add the following rules:

filter(s(s(x)), z) → FILTER(s(s(x)), z)
filter(x, sieve(y)) → FILTER(x, sieve(y))

sieve(x) → SIEVE(x)
from(s(x)) → FROM(s(x))

These rules refer to Definition 24-(2) and complete the unhiding TRS unh(R, µ).

Definitions 22 and 24 lead to a suitable notion of chain which captures infinite
minimal innermost µ-rewrite sequences according to the description in Theo-
rem 21. In the following, given a CS-TRS S, we let SBµ be the rules from S
of the form s→ t ∈ S and sBµ t (cf. Definition 24-(1)); and S] = S \ SBµ(cf.
Definition 24-(2)).

In innermost CSR, we only perform reduction steps on innermost µ-
replacing redexes. Therefore, we have to restrict the definition of chains in
order to obtain an appropriate notion corresponding to innermost CSR, which,
obviously, is an adaptation of the one for standard CSR (see [AGL10, GL10]).
Regarding innermost reductions, arguments of a redex should be in normal
form before the redex is contracted; regarding CSR, the redex to be con-
tracted has to be in a µ-replacing position. As in the DP framework where
the procedence of pairs does not matter, we instead think of another TRS P
that is used together with R to build the chains. Once this more abstract
notion of chain is introduced, it can be particularized for use with ICSDPs,
by just taking P = iDP(R, µ).

Definition 26 ((Minimal) Innermost µ-Chain of Pairs [AL11]) Let R,
P and S be TRSs and µ ∈ MR∪P∪S . An innermost (P,R,S, µ, i)-chain is a
finite or infinite sequence of pairs ui → vi ∈ P, together with a substitution σ
satisfying that, for all i ≥ 1, σ(ui) ∈ NFµ(R) and :

1. if vi /∈ Var(ui) \ Varµ(ui), then σ(vi) = ti
!
↪→R,µ,i σ(ui+1), and
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2. if vi ∈ Var(ui) \ Varµ(ui), then σ(vi)
Λ
↪−→∗SBµ ,µ

◦ Λ
↪→S],µ ti

!
↪→R,µ,i σ(ui+1).

An innermost (P,R,S, µ, i)-chain is called minimal if for all i ≥ 1, ti is
innermost (R, µ)-terminating.

Note that the condition vi ∈ Var(ui) \ Varµ(ui) in Definition 26 implies
that vi is a variable. Furthermore, since each ui → vi ∈ P is a rewrite rule
(i.e., Var(vi) ⊆ Var(ui)), vi is a migrating variable in the rule ui → vi.

An essential property of the dependency pair method is that it provides a
characterization of termination of TRSs R as the absence of infinite (minimal)
chains of dependency pairs [AG00, GTSF06]. As we prove here, this is also
true for innermost CSR. The notions of ICSDP and unhiding TRS give rise
to a sound and complete characterization of innermost termination of CSR
where the set P corresponds to the ICSDPs, the set R to the rules of the
system and the set S corresponds to the unhiding TRS.

Theorem 27 (Characterization of Innermost µ-Termination [AL11])
Let R be a TRS and µ ∈ MR. Let P = iDP(R, µ) and S = unh(R, µ).
Then, R is innermost µ-terminating if and only if there is no infinite minimal
(P,R,S, µ], i)-chain.

Example 28
Consider the following TRS R:

b → c(b)
f(c(x), x) → f(x, x)

together with µ(f) = {1, 2} and µ(c) = ∅. There is only one ICSDP:

F(c(x), x) → F(x, x)

Since µ](F) = {1, 2}, if a substitution σ satisfies σ(F(c(x), x)) ∈ NFµ(R), then
σ(x) = s is in µ-normal form. Assume that the dependency pair is part of an
innermost µ-chain. Since there is no way to µ-rewrite F (s, s), there must be
F (s, s) = F (c(t), t) for some term t, which means that s = t and c(t) = s, i.e.,
t = c(t), which is not possible. Thus, there is no infinite innermost chain of
ICSDPs for R, which is proved innermost terminating by Theorem 27.

Of course, ad-hoc reasonings like in Example 28 do not lead to automation.
In the following chapters we discuss how to prove termination of innermost
CSR automatically.
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5
Innermost Context-Sensitive
Dependency Pair Framework

The dependency pair approach emphasizes (at least theoretically) a ‘linear’
(although somehow modular, see [GAO02]) procedure for proving termina-
tion. In this sense, the treatment of strongly connected components of the
graph (SCCs) instead of cycles, as suggested by Hirokawa and Middeldorp
[HM04, HM05], brought an important improvement in its practical use be-
cause it provides a way to make the proofs more incremental without running
out of the basic DP approach. In the DP approach, dependency pairs are con-
sidered as components of the chains (or cycles). Since they only make sense
when an underlying TRS is given as the source of the dependency pairs, trans-
forming DPs is possible (the narrowing transformation is already described in
[AG00]) but only as a final step because, afterwards, they are not dependency
pairs of the original TRS anymore. The dependency pair framework solves
these problems in a clean way, leading to a more powerful mechanization of
termination proofs. First, we recall the definition of minimal µ-chain to define
a more general notion of CS problem.

Definition 29 ((Minimal) µ-Chain of Pairs [GL10]) Let R, P and S be
TRSs and µ ∈MR∪P∪S . A (P,R,S, µ, t)-chain is a finite or infinite sequence
of pairs ui → vi ∈ P, together with a substitution σ satisfying that, for all
i ≥ 1,

1. if vi /∈ Var(ui) \ Varµ(ui), then σ(vi) = ti ↪→∗R,µ σ(ui+1), and

2. if vi ∈ Var(ui)\Varµ(ui), then σ(vi)
Λ

↪−→∗SBµ ,µ
◦ Λ
↪→S],µ ti ↪→∗R,µ σ(ui+1).

A (P,R,S, µ, t)-chain is called minimal if for all i ≥ 1, ti is (R, µ)-terminating.
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Definition 30 (CS Problem) A CS problem τ is a tuple τ = (P,R,S, µ, e),
where R, P and S are TRSs, µ ∈ MR∪P∪S , and e ∈ {t, i} is a flag that
stands for termination or innermost termination of CSR. The CS problem
(P,R,S, µ, e) is finite if there is no infinite minimal (P,R,S, µ, e)-chain. The
CS problem (P,R,S, µ, e) is infinite if R is non-µ-terminating (for e = t)
or innermost non-µ-terminating (for e = i) or there is an infinite minimal
(P,R,S, µ, e)-chain.

Definition 31 (CS Processor) A CS processor Proc is a mapping from CS
problems into sets of CS problems. Alternatively, it can also return “no”. A
CS processor Proc is

• sound if for all CS problems τ , τ is finite whenever Proc(τ) 6= no and
∀τ ′ ∈ Proc(τ), τ ′ is finite.

• complete if for all CS problems τ , τ is infinite whenever Proc(τ) = no
or ∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.

Now we have the following result which extends the framework in [GL10] to
innermost CSR.

Theorem 32 (CSDP Framework [AL11]) Let R be a TRS and µ ∈MR.
We construct a tree whose nodes are labeled with CS problems or “yes” or “no”,
and whose root is labeled with (P,R, unh(R, µ), µ], e), where P = DP(R, µ) if
e = t and P = iDP(R, µ) if e = i. For every inner node labeled with τ , there
is a sound processor Proc satisfying one of the following conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.

2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.

3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with
the CS problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is (innermost) µ-
terminating if e = t (resp. i). Otherwise, if there is a leaf labeled with “no”
and if all processors used on the path from the root to this leaf are complete,
then R is not (innermost) µ-terminating.

Of course, the termination problems that we treat here are undecidable (in
general), thus “don’t know” answers can also be generated (for instance, by a
timeout system that interrupts the usually complex search processes that are
involved in the proofs).
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Remark 33 According to Theorem 27, we can say now that a TRSR is inner-
most µ-terminating if and only if the CS problem (iDP(R, µ),R, unh(R, µ), µ], i)
is finite.

Example 34
Continuing with Example 7, in order to prove innermost termination of (R, µ),
we start with the following CS problem:

τ = (iDP(R, µ),R, unh(R, µ), µ], i)

where iDP(R, µ) is obtained in Example 23 and unh(R, µ) is obtained in Ex-
ample 25.

In the following chapters we describe a number of sound and (mostly) complete
CS processors for proving termination of innermost CSR. First, we are going
to comment on some interesting points that relate innermost termination of
CSR to µ-termination.

5.1 Innermost Termination and Termination of CSR

Our definition of ICSDPs coincides (in the most important points) with the
standard one for proving termination of innermost rewriting if no replace-
ment restrictions are considered (equivalently, if the top replacement map
µ>(f) = {1, . . . , ar(f)} for all f ∈ Σ is used). Of course, when proving
µ-termination of a TRS, we are also proving innermost µ-termination (the
converse does not hold). For this reason, although many standard techniques
that we have developed for proving termination of CSR are not mentioned here
(see [AGL10]), they can also be used for proving innermost µ-termination (as
in full rewriting). However, the other direction is more interesting, since prov-
ing innermost termination usually offers simpler proofs. Something similar
happens with CSR.

5.1.1 Switching to Innermost Termination of CSR

In standard rewriting, Gramlich showed that termination and innermost ter-
mination coincide for locally confluent overlay TRSs R [Gra95, Theorem 3.23].
Thus, his result allows us to prove termination of such TRSs R by proving
innermost termination of R. Although local confluence is undecidable, every
nonoverlapping rewrite system is also a locally confluent overlay system; there-
fore, this approximation is commonly adopted. However, for context-sensitive
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rewriting this is not enough. This fact was noticed by Lucas [Luc01c], showing
the following example:

Example 35
Consider the following TRS R:

f(x, x) → b
f(x, g(x)) → f(x, x)

c → g(c)

together with µ(f) = {1, 2} and µ(g) = ∅. This system is nonoverlap-
ping and innermost µ-terminating, but not µ-terminating since f(c, c) ↪→µ

f(c, g(c)) ↪→µ f(c, c) ↪→µ · · ·

Later, in [GL02b, GM02a] it is proved that the equivalence between termi-
nation of innermost CSR and termination of CSR holds in some interesting
cases. Thanks to this, the following result was formulated:

Theorem 36 [GM02a] Let R = (Σ, R) be an orthogonal TRS and µ ∈ MΣ.
R is µ-terminating if and only if it is innermost µ-terminating.

If R is orthogonal, the innermost µ-rewriting relation is locally confluent and
therefore, every innermost µ-terminating term has a unique normal form. A
similar result can be found in [GL02b]. First, we need the following definition:

Definition 37 [Luc98, Definition 5] Let R = (Σ, R) be a TRS and µ ∈MR.
R has left-homogeneous replacing variables (LHRV for short) if, for every µ-
replacing variable x in the left-hand side l of a rule l→ r ∈ R, all occurrences
of x are replacing in both l and r.

Theorem 38 [GL02b, Theorem 7] Let R = (Σ, R) be a TRS and µ ∈ MR
such that R is a locally confluent overlay system satisfying LHRV. If R is
innermost µ-terminating, then it is also µ-terminating.

So, whenever it is possible, we switch to innermost µ-termination since
proofs are often easier due to the fact that, when considering an innermost
rewriting step, we know that every possible subterm of our redex is in normal
form with respect to our rewriting relation. For instance, this is shown when
estimating the graph.

On the other hand, we have developed many processors for proving termi-
nation of CSR [AGL10, GL10] and it is also interesting to use them in proofs
of innermost termination of CSR.
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Theorem 39 (Commuting Processors [AL11]) Let τ = (P,R,S, µ, i) be
a CS problem such that

1. (R∪ P ∪ S) is nonoverlapping and satisfies LHRV , or

2. (R∪ P ∪ S) is orthogonal.

Then, the processors Proct→i and Proci→t given by

Proct→i(P,R,S, µ, t) =
{
{(P,R,S, µ, i)} if (1) or (2)
{(P,R,S, µ, t)} otherwise

Proci→t(P,R,S, µ, i) =
{
{(P,R,S, µ, t)} if (1) or (2)
{(P,R,S, µ, i)} otherwise

are sound and Proct→i is also complete.

Soundness of Proci→t needs to impose the requirements about equiva-
lence between innermost µ-termination and µ-termination since we are dealing
with minimal chains. Obviously, it is always possible to prove innermost µ-
termination of a TRS by proving µ-termination without taking into account
any additional condition but this cannot be done when managing minimality.

Now we show that our framework coincides with the standard one for
proving full (innermost) termination when no replacement map is considered.

5.1.2 ICSDPs and IDPs

Given a TRS R and a replacement map µ, if no replacement restrictions are
imposed, i.e., µ(f) = {1, . . . , ar(f)} for all f ∈ Σ, then no collapsing pair is
possible, and we would have iDP(R, µ) = iDPΣ(R, µ).

Regarding the pairs in iDPΣ(R, µ), Definition 22 differs from the stan-
dard definition of dependency pair (e.g., [AG00, GTSF06]) in three additional
requirements:

1. As in [HM04], which follows Dershowitz’s proposal in [Der04], we require
that subterms s of the right-hand sides r of the rules l → r which are
considered to build the dependency pairs l] → s] are not subterms of
the left-hand side (i.e., l 6Bµs).

2. As in [LM08], we require ‘narrowability’ of the (appropriately renamed)
term s: Narrµ(Renµ(s)).
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3. We explicitly require that the left-hand side l of a rule l→ r is argument
µ-normalized when considering the dependency pair l] → s] (or l] → x),
that is, l] ∈ NFµ(R). In the standard definition, this is exploited when
building the graph but, in our definition, we avoid the introduction of
spurious pairs from the beginning.

Except for these provisos, we could say that Definition 22 boils down to the
definition of dependency pair when no replacement restrictions are imposed.

Regarding the definition of (minimal) chain (Definition 26), the correspon-
dence is exact: if µ imposes no replacement restriction, then →R,i = ↪→R,µ,i
and our definition coincides with the standard one (see, e.g., [GTSF06, Defi-
nition 3]): again, since all variables are µ-replacing now, item (2) in Definition
26 does not apply. Due to the absence of replacement restrictions, we have
Varµ(u) = Var(u), hence Var(u) \ Varµ(u) = ∅ for all u→ v ∈ P. Then, the
condition v 6∈ Var(u)\Varµ(u) vacuously holds and all pairs in P satisfy item
(1) of Definition 26.
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The following proposition establishes some important ‘basic’ cases of (absence
of) infinite innermost context-sensitive chains of pairs. With slight differences
they were presented in [AGL10] for CSR. In the following, given a CS-TRS
(P, µ) where P = (G, P ), we let PX be the pairs u → v ∈ P such that
v ∈ Var(u) \ Varµ(u); and PG = P \ PX .

Proposition 40 [AL11] Let R = (Σ, R), P = (G, P ), and S = (H, S) be
TRSs and µ ∈MR∪P∪S .

1. If P = ∅, then there is no (P,R,S, µ, i)-chain.

2. If R = ∅, then there is no infinite (PX ,R,S, µ, i)-chain.

3. Let u→ v ∈ PG be such that v′ = θ(u) for some substitution θ such that
θ(u) ∈ NFµ(R) and renamed version v′ of v. Then, there is an infinite
innermost (P,R,S, µ, i)-chain.

According to Proposition 40, for some specific CS problems it is easy to say
whether they are finite or not.
Theorem 41 (Basic Innermost CS Processors) Let R = (Σ, R), P =
(G, P ), and S = (H, S) be TRSs and µ ∈ MR∪P∪S . Then, the processors
ProcFin and ProcInf given by

ProcFin (P,R,S, µ, i) =


∅ if P = ∅ ∨ (R = ∅ ∧ P = PX ); and
{(P,R,S, µ, i)} otherwise

ProcInf (P,R,S, µ, i) =

8
<
:

no if v = θ(u) and θ(u) ∈ NFµ(R)
for some u→ v ∈ PG and substitution θ; and

{(P,R,S, µ, i)} otherwise

are sound and complete.

The CS problems in Theorem 41 provide the necessary base cases for our
proofs of innermost termination of CSR. In the following sections we are going
to show some powerful specific techniques to deal with proofs of innermost
termination of CSR.
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6.1 Innermost Context-Sensitive Dependency Graph

In general, an infinite sequence S = a1, a2, . . . , an, . . . of objects ai belonging to
a set A can be represented as a path in a graph G whose nodes are the objects
in A, and whose arcs among them are appropriately established to represent
S (in particular, an arc from ai to ai+1 should be established if we want to be
able to capture the sequence above). Actually, if A is finite, then the infinite
sequence S defines at least one cycle in G: since there is a finite number of
different objects ai ∈ A in S, there is an infinite tail S′ = am, am+1, . . . of S
where all objects ai occur infinitely many times for all i ≥ m. This clearly
corresponds to a cycle in G.

Given a CS problem (P,R,S, µ, e), the analysis of the cycles in the graph
build from pairs in P is useful to investigate the existence of infinite (minimal)
chains of pairs.

Definition 42 (Innermost Context-Sensitive Graph of Pairs [AL11])
Let R, P and S be TRSs and µ ∈MR∪P∪S . The innermost context-sensitive
graph IG(P,R,S, µ) has P as the set of nodes. Given u → v, u′ → v′ ∈ P,
there is an arc from u → v to u′ → v′ if u → v, u′ → v′ is a minimal
(P,R,S, µ, i)-chain for some substitution σ.

In termination proofs, we are concerned with the analysis of SCCs . An
SCC in a graph is a maximal cycle, i.e., a cycle which is not contained in
any other cycle. The following result justifies the use of SCCs for proving the
absence of infinite minimal (P,R,S, µ, i)-chains.

Theorem 43 (SCC Processor [GL10]) Let R, P, and S be TRSs and µ ∈
MR∪P∪S . Then, the processor ProcSCC given by

ProcSCC (P,R,S, µ, i) = {(Q,R,SQ, µ, i) | Q contains the pairs of an SCC in IG(P,R,S, µ)}

(where SQ are the rules from S involving a possible (Q,R,S, µ, i)-chain) is
sound and complete.

As a consequence of this theorem, we can separately work with the strongly
connected components of IG(P,R,S, µ), disregarding other parts of the graph.

Now we can use these notions to introduce the innermost context-sensitive
dependency graph, i.e., the graph whose nodes instead of being arbitrary pairs
are the ICSDPs (P = iDP(R, µ)).
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Definition 44 (Innermost Context-Sensitive Dependency Graph [AL11])
Let R = (Σ, R) be a TRS and µ ∈ MΣ. The innermost context-sensitive de-
pendency graph (ICS-DG) associated to R and µ is

IDG(R, µ) = IG(iDP(R, µ),R, unh(R, µ), µ])

6.1.1 Estimating the Innermost Context-Sensitive Graph

In general, the graph of a CS problem is not computable. It involves reachabil-
ity of two pairs using (innermost) CSR; as in the unrestricted case, the reach-
ability problem for innermost CSR is undecidable. So, we need to use some
approximation of it. In [AGL10], we have adapted to the context-sensitive
setting the approximation for standard rewriting of [GTS05]. The idea is
to obtain the maximal prefix context C[�] of s (i.e., s = C[s1, . . . , sk] for
some terms s1, . . . , sk) that we know (without any ‘look-ahead’ for applicable
rules) cannot be changed by any reduction starting from s. Furthermore, the
above terms s1, . . . , sk must be rooted by defined symbols. Now, we replace
those subterms si that are at µ-replacing positions (i.e., si = s|pi for some
pi ∈ Posµ(s)) by fresh variables x, and we leave the non-µ-replacing ones
untouched.

Definition 45 [AGL10] Given a TRS R and a replacement map µ, we let
TCapµR be as follows:

TCapµR(x) = y if x is a variable, and

TCapµR(f(t1, . . . , tk)) =





f([t1]f1 , . . . , [tk]fk) if f([t1]f1 , . . . , [tk]fk) does not unify
with l for any l→ r in R

y otherwise

where y is intended to be a new, fresh variable that has not yet been used and
given a term s, [s]fi = TCapµR(s) if i ∈ µ(f) and [s]fi = s if i 6∈ µ(f). We
assume that l shares no variable with f([t1]f1 , . . . , [tk]

f
k) when the unification is

attempted.

Function TCapµR is intended to provide a suitable approximation of the afore-
mentioned (R, µ)-reachability problems by means of unification.

In contrast to standard (µ-)rewriting, in the innermost setting it is not
necessary to rename multiple occurrences of variables since all variables are
always instantiated to (µ-)normal forms and cannot be reduced. However,
in innermost CSR we have to replace by fresh variables those ones that are
µ-replacing in the right-hand side v of the pair, but not in the left-hand side,
u, since they are not guaranteed to be µ-normalized. Moreover we need to
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substitute every µ-replacing subterm with a defined root symbol by fresh vari-
ables only if the term is not equal to a µ-replacing subterm of u or it unifies
with the left-hand side of some rule in R.

We define a new version of the function, iTCapµR,u, which is able to ap-
proximate the ICS graph by taking into account these particularities of inner-
most CSR.

Definition 46 [AL11] Given a TRS R, a replacement map µ and a term u,
we let iTCapµR,u be as follows:

iTCap
µ
R,u(x) =


y if x ∈ X and x /∈ Varµ(u)
x otherwise

iTCap
µ
R,u(f(t1, . . . , tk)) =

8
<
:

f([t1]
f
1 , . . . , [tk]

f
k

) if f([t1]
f
1 , . . . , [tk]

f
k

) does not unify with l for any
l→ r in R or it is equal to a µ-replacing subterm of u

y otherwise

where y is intended to be a new, fresh variable that has not yet been used and
given a term s, [s]fi = iTCapµR,u(s) if i ∈ µ(f) and [s]fi = s if i 6∈ µ(f). We

assume that l shares no variable with f([t1]f1 , . . . , [tk]
f
k) when the unification is

attempted.

Since when connecting in a chain collapsing pairs we deal with rules in
S] instead of pairs in PG , we cannot look at the left-hand sides of the pairs.
Therefore, for dealing with pairs in PX , we have to approximate their arcs in
the same way as for CSR since we do not store information about left-hand
sides of the pairs from which the hidden terms are obtained. So, we have the
following:

Definition 47 (Estimated ICS-Graph of Pairs [AL11]) Let R = (Σ, R),
P = (G, P ), and S = (H, S) be TRSs and µ ∈ MR∪P∪S . The estimated ICS-
graph associated to R, P, and S (denoted EIG(P,R,S, µ)) has P as the set of
nodes and arcs which connect them as follows:

1. There is an arc from u → v ∈ PG to u′ → v′ ∈ P if iTCapµR,u(v) and
u′ unify by some mgu σ such that σ(u), σ(u′) ∈ NFµ(R).

2. There is an arc from u→ v ∈ PX to u′ → v′ ∈ P if there is s→ t ∈ S]
such that TCapµR(t) and u′ unify by some mgu σ such that σ(u′) ∈
NFµ(R).

Proposition 48 (Characterization of the ICS-Graph of Pairs [AL11])
Let R = (Σ, R), P = (G, P ), and S = (H, S) be TRSs and µ ∈MR∪P∪S . The
estimated ICS-graph associated to R, P, and S (denoted EIG(P,R,S, µ)) has
P as the set of nodes and arcs which connect them as follows:
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1. If there is an arc from u → v ∈ PG to u′ → v′ ∈ P and substi-

tutions θ and θ′ such that θ(v)
!
↪→R,µ,i θ′(u′), θ(u), θ′(u′) ∈ NFµ(R),

then iTCapµR,u(v) and u′ unify by some mgu σ such that σ(u), σ(u′) ∈
NFµ(R).

2. If there is an arc from u → v ∈ PX to u′ → v′ ∈ P and there is
s ∈ NHT (R, µ) such that θ(s]) = θ(t) = t′ and substitutions θ and θ′

such that θ(v)
Λ

↪−→∗SBµ ,µ
◦ Λ
↪→S],µ t′

!
↪→R,µ,i θ′(u′), θ′(u′) ∈ NFµ(R), then

there is s → t ∈ S] such that TCapµR(t) and u′ unify by some mgu σ
such that σ(u′) ∈ NFµ(R).

Therefore, the estimated CS graph EIG(P,R,S, µ) contains the ICS graph
IG(P,R,S, µ).

According to Definition 44, we would have the corresponding one for the
estimated ICS-DG: EIDG(R, µ) = EIG(iDP(R, µ),R, unh(R, µ), µ]).

Since for approximating the ICS graph of a set of pairs, we use function
TCapµR for connecting pairs in PX as done in the context-sensitive case, we can
also use the following processor instead, which allows a better approximation
of the SCCs. This is because if the SCC has no collapsing pairs, the set S
has no sense and if it has, some pairs from S] can be removed: those that are
not involved in the unification process. Therefore, we will always compute the
SCCs by applying the following processor:

Theorem 49 (SCC Processor using TCapµR [GL10]) Let τ = (P,R,S, µ, i)
be a CS problem. The CS processor ProcSCC given by

ProcSCC (τ) = {(Q,R,SQ, µ, i) | Q contains the pairs of an SCC in EIG(P,R,S, µ)}

where

• SQ = ∅ if QX = ∅.

• SQ = SBµ ∪ {s → t | s → t ∈ S],TCapµR(t) and u′ unify for some
u′ → v′ ∈ Q by some mgu σ such that σ(u′) ∈ NFµ(R)} if QX 6= ∅.

is sound and complete.

Example 50
Consider the following TRS R [Zan97, Example 4]:
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f(x) → cons(x, f(g(x)))
g(0) → s(0)

g(s(x)) → s(s(g(x)))
sel(0, cons(x, y)) → x

sel(s(x), cons(y, z)) → sel(x, z)

with µ(0) = ∅, µ(f) = µ(g) = µ(s) = µ(cons) = {1}, and µ(sel) = {1, 2}.
Then, iDP(R, µ) consists of the following pairs:

G(s(x))→ G(x) (6.1)
SEL(s(x), cons(y, z))→ SEL(x, z) (6.2)
SEL(s(x), cons(y, z))→ z (6.3)

and the unhiding rules are:

unhBµ(R, µ) = {f(x)→ x}

unh](R, µ) = {f(g(x))→ F(g(x)), g(x)→ G(x)}

Regarding pairs (6.1) and (6.2) in iDPΣ(R, µ), there is an arc from (6.1) to
itself and another one from (6.2) to itself. Regarding the only collapsing pair
(6.3), we have TCapµR(F(g(x))) = F(y) and TCapµR(G(x)) = G(y). Since
F(y) does not unify with the left-hand side of any pair, and G(y) unifies with
the left-hand side G(s(x)) of (6.1) and G(s(x)) is in µ-normal form, there
is an arc from (6.3) to (6.1), see Figure 6.1. Thus, for the initial problem
τ = (iDP(R, µ),R, unh(R, µ), µ], i) we have

ProcSCC (τ) = {({6.1},R,∅, µ], i), ({6.2},R,∅, µ], i)}

(6.1)
��

(6.2)
��

(6.3)

QQ

Figure 6.1: Innermost CS-dependency graph for Example 50
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Example 51
Continuing with Example 7, we have started with the initial problem shown
in Example 34:

τ = (iDP(R, µ),R, unh(R, µ), µ], i)

If we apply the SCC processor, we get

ProcSCC (τ) = {(∅,R,∅, µ], i)}
Then, applying the basic processor ProcFin , since the set of pairs is empty, we
can trivially conclude the innermost µ-termination of R.

The following example shows that using iTCapµR,u provides a better approx-
imation of the ICS-DG than using TCapµR for noncollapsing pairs.

Example 52
Consider the following TRS R:

f(a, b, x) → f(x, x, x)
c → a
c → b

together with µ(f) = {1, 2}. There are two ICS-dependency pairs:

F(a, b, x) → F(x, x, x)
F(a, b, x) → x

R is not innermost µ-terminating:

F(c, c, c) ↪→R,µ],i F(a, c, c) ↪→R,µ],i F(a, b, c) ↪→iDP(R,µ,i),µ] F(c, c, c) ↪→R,µ],i · · ·
In order to build the ICS-DG, since there are no hidden terms and therefore
S] is empty, we only have to check if

iTCapµR,u(F(x, x, x)) = iTCapµR,F(a,b,x)(F(x, x, x)) = F(x′′′, x′′, x)

unifies with F(a, b, y) so, we get a cycle and the same conclusion would be ob-
tained with TCapµR(F(x, x, x)). However, if we use µ(f) = {1, 3}, the system
now is innermost µ-terminating (the collapsing pair now disappears) but if we
use the TCapµR we get TCapµR(F(x, x, x)) = F(x′′′, x′′, x), which again unifies
with F(a, b, x) and we obtain a spurious cycle. By using iTCapµR,u, we obtain
iTCapµR,F(a,b,x)(F(x, x, x)) = F(x, x, x) (since there are no migrating variables

now) which does not unify with F(a, b, y). Now, innermost µ-termination can
be easily proved since there are no cycles in the ICS-DG.
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After showing that iTCapµR,u provides a better approximation of the ICS-
DG for noncollapsing pairs, we are going to show that for the collapsing pairs
this is not true since we may get an underestimation of the graph and conclude
a false result.

Example 53
Consider the following TRS R which is a variant of Example 52:

f(a, b, x) → g(f(x, x, x))
g(x) → x

c → a
c → b

together with µ(f) = {1, 2} and µ(g) = ∅. There are two ICS-dependency
pairs:

F(a, b, x) → G(f(x, x, x)) (6.4)
G(x) → x (6.5)

R is not innermost µ-terminating:

F(c, c, c) ↪→R,µ],i F(a, c, c) ↪→R,µ],i F(a, b, c) ↪→iDP(R,µ),µ],i G(f(c, c, c))
↪→iDP(R,µ),µ],i F(c, c, c) ↪→R,µ],i · · ·

We have S] = {f(x, x, x)→ F(x, x, x)}. For the pair (6.4) ∈ iDPΣ(R, µ), there
is an obvious arc from (6.4) to (6.5). With the only collapsing pair (6.5), since
we do not have any information in S] about migrating variables, we have to use
TCapµR. In this way, we have that TCapµR(F(x, x, x)) = F(x′′, x′, x) unifies
with F(a, b, y) and we obtain an arc from (6.5) to (6.4), thus obtaining the
existing cycle {(6.5)-(6.4)}. With iTCapµR,u, no variable would be renamed
and we would not obtain the arc.

Example 54
Continuing with Example 28, since iTCapµR,F(c(x),x)(F(x, x)) = F(x, x) and
F(c(y), y) do not unify we conclude that the ICS-dependency graph for the
CS-TRS (R, µ) in Example 28 contains no cycles.

Example 55
Consider the following orthogonal TRS R which is a variant of an example in
[Bor03]:

from(x) → cons(x, from(s(x)))
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sel(0, cons(x, xs)) → x

sel(s(y), cons(x, xs)) → sel(y, xs)
minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
zWquot(nil, nil) → nil

zWquot(cons(x, xs), nil) → nil

zWquot(nil, cons(x, xs)) → nil

zWquot(cons(x, xs), cons(y, ys)) → cons(quot(x, y), zWquot(xs, ys))

together with µ(cons) = {1} and µ(f) = {1, . . . , ar(f)} for all other sym-
bols f . According to [GM02b], innermost µ-termination of R implies its µ-
termination as well. The set iDP(R, µ) is:

MINUS(s(x), s(y)) → MINUS(x, y) (6.6)
QUOT(s(x), s(y)) → MINUS(x, y) (6.7)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y)) (6.8)

SEL(s(y), cons(x, xs)) → SEL(y, xs) (6.9)
SEL(s(y), cons(x, xs)) → xs (6.10)

ZWQUOT(cons(x, xs), cons(y, ys)) → QUOT(x, y) (6.11)

The unhiding TRS unh(R, µ) consists of:

from(s(x)) → FROM(s(x)) (6.12)
zWquot(x, y) → ZWQUOT(x, y) (6.13)
zWquot(x, y) → x (6.14)
zWquot(x, y) → y (6.15)

We can define the following initial CS problem:

τ0 = (iDP(R, µ),R, unh(R, µ), µ], i)

The EIDG(R, µ) = EIG(iDP(R, µ),R, unh(R, µ), µ]) of the CS problem τ0 is
shown in Figure 6.2. If now we apply the SCC processor we get the following
CS subproblems:

ProcSCC (τ0) = {({6.6},R,∅, µ], i), ({6.8},R,∅, µ], i), ({6.9},R,∅, µ], i)}
We will continue with these subproblems in Example 61.



62 6. ICS Processors

(6.7) // (6.6)
��

(6.10) // (6.11)

77nnnnn
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(6.8)
SS

(6.9)
SS

Figure 6.2: Estimated innermost CS-dependency graph for Example 55

6.2 Usable Rules

An interesting feature in the treatment of innermost termination problems
using the DP approach is that, since the variables in the right-hand side of the
dependency pairs are in normal form, the rules that can be used to connect
consecutive dependency pairs are usually a proper subset of the rules in the
TRS. This leads to the notion of usable rules [AG00, Definition 32], which
simplifies the proofs of innermost termination of rewriting. We adapt this
notion to the context-sensitive setting.

Definition 56 (Basic Usable CS-Rules [AL07]) Let R be a TRS and µ ∈
MR. For any symbol f let Rules(R, f) be the set of rules of R defining f and
such that the left-hand side l has no proper µ-replacing R-redex. For any term
t, the set of basic usable CS-rules U0(R, µ, t) is as follows:

U0(R, µ, x) = ∅
U0(R, µ, f(t1, . . . , tn)) = Rules(R, f) ∪ S

i∈µ(f)

U0(R′, µ, ti) ∪
S

l→r∈Rules(R,f)

U0(R′, µ, r)

where R′= R−Rules(R, f). Consider now another TRS P. Then, U0(R, µ,P)
=

⋃
l→r∈P

U0(R, µ, r). Obviously, U0(R, µ,P) ⊆ R for all TRSs P and R.

Interestingly, although our definition is a straightforward extension of the clas-
sical one (which just takes into account that µ-rewritings are possible only on
µ-replacing subterms), some subtleties arise due to the presence of non-µ-
conservative rules, i.e., rules with migrating variables.

Basic usable rules U0(R, µ,P) in Definition 56 can be used instead of R
when dealing with innermost (P,R,S, µ, i)-chains associated to µ-conservative
TRSs P provided that U0(R, µ,P) is also µ-conservative. This is proved in
Theorem 58 below which uses µ-reduction pairs.

A reduction pair (&,A) consists of a stable and monotonic quasi-order &,
and a stable and well-founded order A satisfying either & ◦ A⊆A or A ◦ &⊆A
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[KNT99]. We say that (&,A) is monotonic if A is monotonic. Reduction
pairs are used in the DP approach to witness the absence of infinite chains
of (dependency) pairs by finding a reduction pair (&,A) that is compatible
with the rules and the pairs: l & r for all rewrite rules l → r and u A v for
all pairs u → v. In the DP framework [GTS04, GTSF06, Thi07] (but also
in [GAO02, HM04, HM05, HM07]), they are used to obtain smaller sets of
pairs P ′ ⊂ P by removing the strict pairs, i.e., those pairs u → v ∈ P such
that u A v (in this case, all other pairs u → v that are not strict must be
compatible with the quasi-order &, i.e., u & v must hold).

Stability is required both for & and A because, although we only check the
left- and right-hand sides of the rewrite rules l→ r (with &) and pairs u→ v
(with & or A), the chains of pairs involve instances σ(l), σ(r), σ(u), and σ(v)
of rules and pairs, and we aim at concluding that σ(l) & σ(r) and also that
σ(u) & σ(v) or σ(u) A σ(v).

Monotonicity is required for & to deal with the application of rules l→ r to
an arbitrary depth in terms. Since the pairs are ‘applied’ only at the root level,
no monotonicity is required for A (but, for this reason, we cannot compare
the rules in R using A).

In our setting, since we are interested in µ-rewriting steps only, we can
relax the monotonicity requirements as follows.

Definition 57 (µ-Reduction Pair [AGL06]) Let Σ be a signature and µ ∈
MΣ. A µ-reduction pair (&,A) consists of a stable and µ-monotonic quasi-
order & and a well-founded stable relation A on terms in T (Σ,X ) which are
compatible, i.e., & ◦ A⊆A or A ◦ &⊆A.

The following theorem formalizes a processor to remove pairs from P by
using µ-reduction pairs and usable CS-rules.

Theorem 58 (Reduction Pair Processor with Usable Rules [AL11])
Let τ = (P,R,S, µ, i) be a CS problem. Let (&,A) be a µ-reduction pair such
that

1. P and U0(R, µ,P) are µ-conservative,

2. U0(R, µ,P) ⊆& and P ⊆& ∪ A,

Let PA = {u→ v ∈ P | u A v}. Then, the processor ProcUR given by

ProcUR(τ) =
{
{(P \ PA,U0(R, µ,P),∅, µ, i)} if (1) and (2) hold
{(P,R,S, µ, i)} otherwise

is sound.
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Note that the processor is only sound because we refine the result to be
applied only to the set of usable rules instead of over the whole set of rules
as in standard rewriting [GTSF06] or even for context-sensitive rewriting in
[AEF+08, GL10]. In this way, (i.e. by taking all the rules in R), the processor
would also be complete, that is:

ProcUR(τ) =
{
{(P \ PA,R,∅, µ, i)} if (1) and (2) hold
{(P,R,S, µ, i)} otherwise

is sound and complete. However, since complete processors are useful for
disproving termination, we pay more attention to being more precise with the
soundness.

Unfortunately, dealing with non-µ-conservative pairs, considering the basic
usable CS-rules does not ensure a correct approach.

Example 59
Consider again the TRS R:

b → c(b)
f(c(x), x) → f(x, x)

together with µ(f) = {1} and µ(c) = ∅. There are two non-µ-conservative
ICSDPs (note that µ](F) = µ(f) = {1}):

F(c(x), x) → F(x, x)
F(c(x), x) → x

and only one cycle in the ICS-DG:

{F(c(x), x) → F(x, x)}

Note that U0(R, µ, F(x, x)) = ∅. Since this ICSDP is strictly compatible with,
e.g., an LPO, we would conclude the innermost µ-termination of R. However,
this system is not innermost µ-terminating:

f(b, b) ↪→i f(c(b), b) ↪→i f(b, b) ↪→i · · ·

The problem is that we have to take into account the special status of variables
in the right-hand side of a non-µ-conservative ICSDP. Instances of such vari-
ables are not guaranteed to be µ-normal forms. Furthermore, µ-conservativeness
of U0(R, µ,P) cannot be dropped either since we could infer an incorrect result
as shown by the following example.
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Example 60
Consider the TRS R:

b → c(b)
f(c(x), x) → f(g(x), x)

g(x) → x

together with µ(f) = {1} and µ(g) = µ(c) = ∅. There is only one µ-
conservative cycle:

{F(c(x), x)→ F(g(x), x)}
having only one usable (but non-µ-conservative!) rule g(x) → x. This is
compatible with the µ-reduction pair induced by the following polynomial
interpretation:

[f](x, y) = 0 [c](x) = x+ 1 [g](x) = x [F](x, y) = x

However the system is not innermost µ-terminating:

f(c(b),b) ↪→i f(g(b),b) ↪→i f(b,b) ↪→i f(c(b),b) ↪→i · · ·

Nevertheless, Theorem 58 is useful to improve the proofs of termination of
innermost CSR as the following example shows.

Example 61
Consider again the TRS R in Example 55. As we have seen, the initial CS
problem can be decomposed in the following three:

τ1 = ({6.6},R,∅, µ], i) (6.16)
τ2 = ({6.8},R,∅, µ], i) (6.17)
τ3 = ({6.9},R,∅, µ], i) (6.18)

Problems τ1 and τ3 can be solved by using the subterm processor (see [GL10]).
However, without the notion of usable rules, τ2 is difficult to solve. The pair
(6.8) is µ-conservative and the obtained usable rules

{minus(x, 0)→ x, minus(s(x), s(y))→ minus(x, y)}

are also µ-conservative. According to Theorem 58, we can apply the usable
rules processor ProcUR(τ2) and get the following problem:

τ4 = (∅, {minus(x, 0)→ x, minus(s(x), s(y))→ minus(x, y)},∅, µ], i)
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by using this polynomial interpretation:

[minus](x, y) = x [0] = 0
[s](x) = x+ 1 [QUOT](x, y) = x

Then, by applying ProcFin(τ4), since the set of pairs is empty, we can conclude
the innermost µ-termination of Example 55. Furthermore, since the system is
orthogonal, we have also concluded its µ-termination.

6.3 Usable Arguments for CSR

Since in innermost reductions, matching substitutions are always normalized,
in an innermost sequence t1

p1→i t2
p2→i · · · pn→i tn+1 starting at root position

(i.e., p1 = Λ), every redex tj |pj for j > 1 comes from a defined symbol intro-
duced after applying a rule lk → rk in a previous step k < j. Hence the set of
arguments which are reduced can be handled by looking for defined symbols
in right-hand sides of the involved rules l→ r.

In [Fer05], Fernández defines the notion of usable arguments for a function
symbol when proving innermost termination. The idea is that, in innermost
sequences, some arguments are not relevant for proving termination.

Example 62
Consider the following TRS R:

f(s(x), s(x)) → f(x, g(x))
g(s(x)) → g(x)

No innermost sequence starting at root position takes into account the
first argument of f nor the argument of g in the rhs. The reason is that, since
an innermost redex is an argument normalized redex, that means that all
variables (e.g. x) of the applied rule are normalized and cannot be reduced.
Only the second argument g(x) of f in the right-hand side of the first rule
could be innermost reduced after applying it.

Taking these usable arguments into consideration might be helpful in
proofs of innermost termination, since they impose weaker monotonicity re-
quirements. For instance, when using polynomial orders, we can use even
negative or rational coefficients to interpret the symbols that do not need to
be monotonic.
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As Fernández noted, the set of usable arguments can be seen as a re-
placement map that specifies the arguments to be reduced. In her approach,
proving the µ-termination of a TRS R implies the innermost termination of
R if µ(f)=UA(f,R, R) for all f ∈ Σ where R only contains rules such that
all left-hand sides are argument normalized and UA(f,R, R) corresponds to
the usable arguments.

Following Fernández’s ideas, in the innermost context-sensitive setting (for
a given replacement map µ), we could relax µ-monotonicity requirements by
taking into account that reductions only take place on µ-replacing positions
of the right-hand sides of the rules that are rooted by a defined symbol.

We have adapted Fernández’s ideas to CSR in [AL09]. In sharp contrast
to the unrestricted case, we need to take into account that, in innermost
CSR, a redex does not need to be argument normalized. Only argument µ-
normalization can be assumed. Thus, non-µ-replacing subterms may contain
redexes that can be reduced later on if they come to a µ-replacing position.
The following result is an obvious fact inherent in the innermost strategy for
CSR.

Proposition 63 [AL09] A CS-TRS (R, µ) is innermost µ-terminating iff R′
is innermost µ-terminating, where R′ ⊆ R contains all rules l → r ∈ R such
that l is argument µ-normalized.

In the following, we assume that all CS-TRS (R, µ) are argument µ-
normalized, i.e., for all rules l → r in R, l is argument µ-normalized. Propo-
sition 63 ensures that this entails no lack of generality regarding our research
on innermost termination of CSR.

The straightforward adaptation of Fernandez’s criterion to CSR yields the
following definition: the usable CS-arguments for a function symbol f ∈ Σ
are those arguments with a µ-replacing subterm rooted by a defined symbol
in some right-hand side of a pair or usable rule.

Definition 64 (Basic Usable CS-Arguments [AL09]) Let (R, µ) = ((C]
D, R), µ) be a CS-TRS and P be a set of pairs of terms s.t. for all u→ v ∈ P,
u is argument µ-normalized. The basic usable CS-arguments for a func-
tion symbol f ∈ Σ are defined as UAµ(f,R,P) = {i ∈ µ(f) | ∃u → v ∈
P ∪U0(R, µ,P), ∃p, p′ ∈ Posµ(v) s.t. root(v|p′) = f , root(v|p) ∈ D , p′.i 6 p,
u 7µ v|p}.

Note that the replacement map given by µ′(f) = UAµ(f,R,P) for all
f ∈ Σ is more restrictive than µ: µ′(f) ⊆ µ(f) for all f ∈ Σ.
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Innermost µ-termination can be proved as innermost µ′-termination for µ′

given by µ′(f) = UAµ(f,R,P) for all f ∈ Σ whenever R is µ-conservative.

Theorem 65 [AL09] Let R be a µ-conservative TRS for µ ∈ MR. Let µ′

be given by µ′(f) = UAµ(f,R, R) for every f ∈ Σ. If R is innermost µ′-
terminating, then R is innermost µ-terminating.

The following example shows the need of restricting the attention to µ-
conservative TRSs.

Example 66
Consider the CS-TRS R:

f(a, b, x) → f(x, x, x)
c → a
c → b

together with µ(f) = {1, 2}. If we try to apply Theorem 65 to prove innermost
µ-termination of R, we obtain µ′(f) = ∅ and the ICS-dependency graph has
no cycle thus concluding the innermost µ-termination of R. However, R is
not innermost µ-terminating:

f(a,b,c) ↪→i f(c,c,c) ↪→i f(a,c,c) ↪→i f(a,b,c) ↪→i · · ·
Note that the first rule of R is not µ-conservative.

We can adapt the use of usable CS-arguments to be applied in proofs of
innermost µ-termination in our CSDP framework. We do that by providing a
new processor.

Theorem 67 (RP Processor with Usable Rules and Arguments [AL11])
Let R = (Σ, R), P = (G, P ), and S = (H, S) be TRSs, µ ∈ MR∪P∪S ,
and τ = (P,R,S, µ, i) be a CS problem. Let µA(f) = UAµ(f,R,P) for
all f ∈ Σ ∪ G and (&,A) be a µA-reduction pair such that

1. P and U0(R, µ,P) are µ-conservative,

2. U0(R, µ,P) ⊆& and P ⊆& ∪ A,

Let PA = {u→ v ∈ P | u A v}. Then, the processor ProcFer given by

ProcFer (τ) =
{
{(P \ PA,U0(R, µ,P),∅, µA, i)} if (1) and (2) hold
{(P,R,S, µ, i)} otherwise

is sound.
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Note that, as in Theorem 58, the use of usable CS-rules avoids completeness
of the processor.

Now, for a given CS-TRS (R, µ) that satisfies the conditions of Theorem
67, we can prove its innermost µ-termination by relaxing µ-monotonicity re-
quirements.

6.4 Narrowing Transformation

Although the use of function TCap leads to a good approximation of the
graph, it can lead to overestimate the arcs that connect two dependency
pairs. As already observed by Arts and Giesl for the standard innermost
case [AG00], in our setting the overestimation comes when a (noncollapsing)
pair ui → vi is followed in a chain by a second one ui+1 → vi+1 and vi and
ui+1 are not directly unifiable, i.e., at least one (innermost) µ-rewriting step
is needed to (innermost) µ-reduce σ(vi) to σ(ui+1). Then, the (innermost) µ-
reduction from σ(vi) to σ(ui+1) requires at least one step, i.e., we always have
σ(vi) ↪→R,µ] σ(v′i) ↪→∗R,µ] σ(ui+1). Furthermore, we could discover that vi has
no µ-narrowings. In this case, we know that no (innermost) µ-chain starts
from σ(vi). A restriction that has to be taken into account when µ-narrowing
a noncollapsing pair u→ v is that the µ-replacing variables in v have to be µ-
replacing in u as well (this corresponds with the notion of µ-conservativeness),
but furthermore, they cannot be both µ-replacing and non-µ-replacing at the
same time. This corresponds to the following definition.

Definition 68 (Strongly µ-conservative [GLU08]) Let R be a TRS and
µ ∈ MR. A rule l → r is strongly µ-conservative if it is µ-conservative and
Varµ(l) ∩ Var�µ(l) = Varµ(r) ∩ Var�µ(r) = ∅.

In [AGL10], we define the following µ-narrowing processor.

Theorem 69 (µ-Narrowing Processor) Let τ = (P,R,S, µ, t) be a CS
problem. Let u→ v ∈ P be such that

1. v is linear, and

2. for all u′ → v′ ∈ P (with possibly renamed variables), v and u′ do not
unify.

Let Q = (P − {u → v}) ∪ {u′ → v′ | u′ → v′ is a µ-narrowing of u →
v w.r.t. R}. Then, the processor Procnarr given by

Procnarr (P,R,S, µ, t) =
{
{(Q,R,S, µ, t)} if (1) and (2) hold
{(P,R,S, µ, t)} otherwise
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is

1. sound whenever u→ v is strongly µ-conservative, and

2. complete in all cases.

Of course, µ-narrowing can also be used in proofs of innermost termination
of CSR. In the standard setting, when using narrowing for proving innermost
termination, we do not require the right-hand side of the dependency pair
to be narrowed to be linear since the involved substitution σ is normalized.
However, in the context-sensitive setting, if the pair to be µ-narrowed is not
strongly µ-conservative, we cannot ensure that the variables on the right-hand
side are µ-normalized, so we also have to demand linearity. When dealing with
innermost narrowing in context-sensitive rewriting, we can drop the linearity
condition if the pair to be µ-narrowed is strongly µ-conservative since all µ-
replacing variables in the right-hand side of a pair are instantiated to µ-normal
form and µ-reductions cannot take place on them.

Theorem 70 (Innermost µ-Narrowing Processor [AL11]) Let τ =
(P,R,S, µ, i) be a CS problem. Let u→ v ∈ P be such that

1. for all u′ → v′ ∈ P (with possibly renamed variables), v and u′ do not
unify or they unify by some mgu θ such that one of the terms θ(u) or
θ(u′) is not a µ-normal form.

Let Q = (P − {u → v}) ∪ {u′ → v′ | u′ → v′ is a µ-narrowing of u →
v w.r.t. R}. Then, the processor ProcInarr given by

ProcInarr (P,R,S, µ, i) =
{
{(Q,R,S, µ, i)} if (1) holds
{(P,R,S, µ, i)} otherwise

is

1. sound whenever u→ v is strongly µ-conservative, and

2. complete in all cases.

Example 71
Consider the following example:

f(s(x)) → f(p(s(x)))
p(s(x)) → x

together with µ(f) = µ(s) = {1} and µ(p) = ∅.
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The only ICSDP that could generate a cycle is F(s(x))→ F(p(s(x))). How-
ever since the right-hand side F(p(s(x))) does not unify with any (renamed)
left-hand side (including itself) and the pair is strongly µ-conservative, we
can apply innermost µ-narrowing. Therefore, the pair can be µ-narrowed at
position 1 (notice that µ(f) = µ(F) = {1}) by using the rule p(s(x)) → x.
Then, the pair is transformed into the pair F(s(y))→ F(y) that can be easily
disregarded by using the subterm criterion1.

1Instead of using in the proof a polynomial interpretation with rationals, like mu-term
or matrix interpretations like AProVE.
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7
Experiments on ICS Rewriting

We have implemented the techniques described in the previous chapters as
part of the tool mu-term [AGLN10, AGIL07, Luc04], which is a tool that can
be used to verify a number of termination properties of (variants of) TRSs.
In order to evaluate the techniques that are reported in this part, we have
made some benchmarks. We have considered the examples in the Termination
Problem Data Base1 (TPDB) .

7.1 Direct Techniques vs. Transformations

Although there is no special TPDB category for innermost termination of CSR
(yet), we have considered the examples that are collected in the CSR category
in order to test our techniques for proving termination of innermost CSR. The
TPDB v7.0.2 contains 109 examples of CS-TRSs. In order to compare our
direct techniques with the transformational approach (see [GM02b, GM02a]
for a survey on this topic) where termination of innermost CSR for a CS-TRS
(R, µ) is proved by proving innermost termination of a transformed TRS RµΘ,
where Θ specifies a particular transformation, we have transformed the set of
examples by using Giesl and Middeldorp’s correct transformations for proving
termination of innermost CSR (see [GM02a]) although we use the ‘authors-
based’ notation introduced in [Luc06]:

• GM and C for transformations 1 and 2 for proving termination of CSR
introduced in [GM04], and

• iGM for the specific transformation for proving termination of innermost
CSR introduced in [GM02a].

1http://www.termination-portal.org/wiki/TPDB

http://www.termination-portal.org/wiki/TPDB
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ICSDPs Transformations
YES score 95/109 60/109

YES average time 0.7 sec. 1.5 sec.

Table 7.1: Comparison in proofs of termination of innermost CSR

C GM iGM
YES score 33 57 42

Table 7.2: Comparing transformations for proving termination of innermost
CSR

Then, we have proved innermost termination of the set of examples with
AProVE [GST06], which is able to prove innermost termination of standard
rewriting2. The results are summarized in Tables 7.1 and 7.2. Further details
can be found here:

http://www.dsic.upv.es/~balarcon/iCSR/benchmarks.html

These are the first known benchmarks that compare transformational tech-
niques vs. direct (DP-based) techniques as well as the existing correct trans-
formations for proving innermost termination of CSR among them. From the
results in Table 7.1, we can conclude that the use of ICSDPs dramatically im-
proves the performance of previous transformational approaches. Moreover,
the results in Table 7.2 show that, quite surprisingly, the iGM transformation
(which is in principle the more suitable one for proving innermost termination
of CSR, according to the theoretical results in [GM02a]) obtains worse results
than GM (on average).

Previously, in [AL07], we obtained 70 out of 90 successful proofs versus 44
for transformations (at this time the TPDB v3.2 was used). Without a doubt,
the use of ICSDPs were imposed to prove innermost termination of CSR. With
the recent developments of mu-term embracing the DP framework, mu-term
would solve 77 out of the 90 examples of the previous version of the TPDB.
Furthermore, all the examples that can be solved by using transformations,
before and now, can be solved by ICSDPs.

2Nowadays, AProVE is the best tool for proving termination of innermost rewriting
according to the benchmarks obtained in the last termination competition, see http:

//termcomp.uibk.ac.at

http://www.dsic.upv.es/~balarcon/iCSR/benchmarks.html
http://termcomp.uibk.ac.at
http://termcomp.uibk.ac.at
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Therefore, from the results in Table 7.1, it is clear that the ICSDP frame-
work is the right choice for proving innermost termination of CSR instead of
using transformations. The complete set of benchmarks can be also consulted
in Appendix A (Chapter 19).

7.2 Relaxing Monotonicity Requirements

We have used the set of examples mentioned in Section 7.1 for our experiments
on proving termination of innermost CSR by means of a new replacement map
that imposes less monotonicity requirements.

We have implemented the use of Theorem 67 to deal with non-µ-conservative
systems (but µ-conservative cycles). mu-term tries to solve each µ-conservative
cycle (with associated µ-conservative usable rules) by using usable CS-arguments
as the new replacement map. This implementation of mu-term succeeds in
the same 95 examples, the same number of examples that we had already
solved using ICSDPs. The average time rate does not exhibit substantial
differences. Further details can be found here:

http://www.dsic.upv.es/~balarcon/iCSR_UA/benchmarks.html

Although no improvement over the practical use of ICSDPs explained in
Section 7.1 is shown, we expect that, in the near future, when we implement
nonmonotonic orders in our termination tool mu-term, we will be able to take
advantage of this technique.

Moreover, we have implemented the use of Corollary 11 in [Fer05] to prove
innermost termination of TRSs by proving µ-termination of the CS-TRS ob-
tained after using the usable arguments as replacement map (this was one of
the main results in Fernández’s paper). The relevance of this result in prac-
tice had not yet been tested as no implementation of Fernández’s results was
available (to our knowledge). In order to evaluate it, we have considered the
examples from the TPDB used in the innermost category. There are 358 ex-
amples. Using usable arguments (we call this tool mu-term UA), mu-term
succeeds in 158 examples. However, we have also implemented the use of
(standard) dependency pairs for proving innermost termination (according to
[AG00, Theorem 37]) together with the narrowing refinement (we call this tool
mu-term iDPs) and we are able to prove 199 examples, including all examples
solved with Fernández’s criterion.

Therefore, it seems that using her result to prove innermost termination
of rewriting is not a good idea (at least with the considered set of examples)
since we lose some examples and the average time is worse. The results are
summarized in Table 7.3. Further details can be found in:

http://www.dsic.upv.es/~balarcon/iCSR_UA/benchmarks.html
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mu-term UA mu-term iDPs
YES score 158 199

YES average time 4.87 sec. 3.31 sec.

Table 7.3: Benchmarks for innermost termination of rewriting

http://www.dsic.upv.es/~balarcon/UA/benchmarks.html

All this shows that we do not obtain any real improvement over the basic
technique of dependency pairs for proving innermost termination at least for
the set of considered examples.

7.3 Transforming CS-dependency Pairs

We have also implemented (innermost) µ-narrowing in mu-term. Due to
the possibility of performing an unbounded number of narrowing steps, the
µ-narrowing transformation could be infinite (this also occurs in the stan-
dard approach). In order to implement the transformation, we have chosen
to use one-step µ-narrowing only if the obtained innermost context-sensitive
dependency graph has less cycles and arcs than the original one. Practically,
although several examples can be solved by using narrowing, they can also
be solved by using other techniques that mu-term implements. Therefore,
it is one of the last techniques that mu-term tries when proving (innermost)
µ-termination. The greatest advantage of using µ-narrowing lies in the possi-
bility of dismissing some CSDPs if they have no µ-narrowings, thus simplifying
the proof of termination.

7.4 Termination Competition

Thanks to the developments reported in this thesis and in [AGL10, GL10],
mu-term 5.07 has proven to be the most powerful tool for proving termi-
nation of CSR in the context-sensitive subcategory of the 2007, 2009, and
2010 editions of the International Competition of Termination Tools3. The

3See http://www.lri.fr/~marche/termination-competition/2007/, where only
AProVE and mu-term participated, and http://termcomp.uibk.ac.at/termcomp/ where
there were three more tools in the competition: AProVE, Jambox, and VMTL [SG09].
AProVE and mu-term solved the same number of examples, but mu-term was much faster.
The same situation occurred in 2010 (but without Jambox’s participation). See Table 7.4
for details.

http://www.dsic.upv.es/~balarcon/UA/benchmarks.html
http://www.lri.fr/~marche/termination-competition/2007/
http://termcomp.uibk.ac.at/termcomp/
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summarized results are in Table 7.4.

mu-term AProVE Jambox VMTL
YES (av. time) YES (av. time) YES (av. time) YES (av. time)

2007 68/90 (2.87s) 64/90 (6.90s) - -

2009 34/37 (1.27s) 34/37 (3.84s) 28/37 (2.29s) 29/37 (6.71s)

2010 33/37 (0.37s) 33/37 (1.64s) - 28/37 (4.78s)

Table 7.4: International Termination Competition results on CSR

As we showed in Section 5.1, under certain conditions, termination of CSR
and termination of innermost CSR coincide. For this reason, one of the most
important aspects of innermost CSR is its use for proving termination of CSR
as part of the CSDP framework. We switch from termination of CSR to
termination of innermost CSR whenever termination is equivalent, for which
we can apply the existing processors more successfully. Actually, we pro-
ceed in this way in around 50% of the CSR termination problems which are
proved by mu-term 5.0. More precisely, out of the 95 examples that can be
proved µ-terminating by mu-term, 43 of them are orthogonal and, thus, its
µ-termination is proved by proving innermost µ-termination instead.
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8
Related Work and Contributions

8.1 Related work

The first work that tried to prove innermost termination of context-sensitive
rewriting [Luc01a] analysed the existing transformations for proving termina-
tion of context-sensitive rewriting [Luc96, Zan97, GM99] applied to the in-
nermost setting. Only the two transformations of [GM99] were shown correct
for that. Later, the first specific transformation for dealing with innermost
termination of CSR [GM02a] was developed. As we have stated, [AL07] pio-
neered the development of direct methods for proving termination of innermost
context-sensitive rewriting. We extended the context-sensitive dependency
pair method of [AGL06] to the innermost CSR setting. Since then, many
improvements have been introduced. For instance, the definition of inner-
most CSDP has been improved by introducing the µ-narrowability condition
of [LM08].

Example 72
Consider the following CS-TRS R in [GM02b]:

f(g(b)) → f(g(a))
f(a) → f(a)

a → b

together with µ(f) = {1} and µ(g) = ∅. Then the set of dependency pairs in
[AL07] for proving innermost µ-termination of R was:

F(g(b)) → F(g(a))

and µ](F) = {1}. Now, with the new definition of iDP(R, µ), we do not
obtain any pair since it does not have the µ-narrowability condition. So, now,
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iDP(R, µ) = ∅.

Moreover, thanks to the developments in [GL10] the definition of innermost
µ-chain has been improved as well.

Definition 73 (Innermost µ-Chain [AL07]) Given a CS-TRS (P, µ]) of
CSDPs associated to a CS-TRS (R, µ), an innermost (R,P, µ])-chain is a
sequence of pairs uj → vj ∈ P such that there is a substitution σ such that
σ(uj)∈ NFµ(R) and for all j ≥ 1,

1. σ(vj)
!
↪→R,µ],i σ(uj+1), if uj → vj ∈ DPF (R, µ), and

2. if uj → vj = uj → xj ∈ DPX (R, µ), then there is some sj ∈ T (F ,X )

such that σ(xj)Dµ sj and s]j
!
↪→R,µ],i σ(uj+1).

As usual we assume that different occurrences of dependency pairs do not share
any variables (if necessary renamings are used). An innermost (R,P, µ])-
chain is minimal if for all uj → vj ∈ P and j ≥ 1, σ(vj) is innermost
µ-terminating (whenever uj → vj ∈ DPF (R, µ)) and s]j is innermost µ-
terminating (whenever uj → vj ∈ DPX (R, µ)).

• In [AL07], the subterm condition and the marking are part of the notion
of chain and parametrized by R.

• Now, following [GL10], the subterm condition and the marking are en-
coded by the unhiding TRS and are explicitly isolated by means of the
rules in S (see Definition 26).

Note that if rules f(x1, . . . , xk) → xi for all f ∈ D and i ∈ µ(f) (where
x1, . . . , xk are variables) are used in Definition 24-(1), and rules f(x1, . . . , xk)→
f ](x1, . . . , xk) for all f ∈ D are used in Definition 24-(2), then we have the
original notion of innermost chain in [AL07]. Thus, the new definition covers
the previous one.

Another important difference is that [AL07] was the adaptation of the
DP approach [AG00] to innermost CSR: now we have a DP framework in
which proof techniques are handled and incorporated to the whole proof as
CS processors in an incremental way, improving the performance of [AL07] in
practice as we have seen in the previous chapter.

With respect to the graph, several estimations of the dependency graph
were investigated in [AG00, HM05, GTS05, Mid01, Mid02]. The first one,
which was introduced in [AG00] and which used functions Cap and Ren, was
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adapted to CSR in [AGL06]. Following this approximation, [AL07] adapted
it to the innermost context-sensitive setting. In [AGL10, Subsection 8.2],
we adapted Giesl et al.’s TCap to CSR to obtain our latest approximation
of the Cap function, TCapµR . We also use it for innermost CSR in the
case of connecting collapsing pairs and we have also defined an innermost
version iTCapµR to be used with noncollapsing pairs. Moreover, we can take
advantage of the developments we have made in CSR: The estimated CS graph
of pairs has evolved over time and has been improved thanks to the notions
of hidden symbols, hidden terms, and hiding context and therefore, also the
ICS graph.

8.2 Contributions

The results of this part of the thesis are revised and extended versions of the
results published in [AL07, AL09], taking into account all the improvements
made in the CSDP framework in [AGL10, GL10].

Theoretical Contributions. We have investigated the structure of infinite
innermost context-sensitive rewrite sequences starting from (strongly) mini-
mal innermost non-µ-terminating terms (Theorem 21). This knowledge has
been used to provide an appropriate definition of innermost context-sensitive
dependency pair (Definition 22), and the related notion of innermost chain
(Definition 26). We have proved that it can be used to characterize innermost
µ-termination (Theorem 27). We have provided a suitable adaptation of Giesl
et al.’s dependency pair framework to innermost CSR by defining appropriate
notions of CS problem (Definition 30) and CS processor (Definition 31). We
have described the connection between innermost CSR and CSR and we have
developed a CS processor (Theorem 39) that allows us to switch from one
framework to another under some conditions, increasing the power of both
frameworks. We have described a number of sound and (most of them) com-
plete CS processors, which can be used in any practical implementation of
the ICSDP framework. In particular, we have introduced the notion of (es-
timated) innermost context-sensitive (dependency) graph (Definitions 42 and
47) by using functions to approximate it (Definition 46) and the associated
CS processor showing how to automatically prove innermost µ-termination
by means of the ICS dependency graph (Theorem 49). We have formulated
the notion of basic usable rules showing how to use them in proofs of inner-
most termination of CSR (Definition 56, Theorem 58). We have also shown
how to relax monotonicity requirements for proving innermost termination of
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context-sensitive rewriting. We have adapted Fernández’s approach [Fer05] to
be used for proving innermost termination of context-sensitive rewriting as a
CS processor (Theorem 67). Narrowing has also been investigated in proofs
of innermost CSR. It can also be helpful to simplify or restructure the ICS
dependency graph and eventually simplify the proof (Theorem 70).

Applications and Practical Impact. We have implemented these ideas
as part of the termination tool mu-term [AGLN10, AGIL07, Luc04]. The
implementation and practical use of the developed techniques yield a novel
and powerful framework that improves the current state-of-the-art of methods
for proving innermost termination of CSR. Actually, ICSDPs were an essential
ingredient for mu-term in winning the context-sensitive subcategory of the
2007, 2009, and 2010 competitions of termination tools.

Up to our contributions, no direct method has been proposed to prove
termination of innermost CSR. We have extended the DP framework to prove
innermost termination of CSR. Our benchmarks show that the use of ICSDPs
dramatically improves the performance of existing (transformational) methods
for proving termination of innermost CSR.

As remarked in the introduction, our goal is to apply all these developments
in order to deal with termination of Maude programs. Since its computational
mechanism can be thought of as a kind of “context-sensitive call by value”,
we believe that our research is an essential contribution to the development of
tools for proving termination of Maude programs.
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9
Infinite A∨C-Rewrite Sequences

Several works have tried to adapt the DP approach [AG00] to rewriting mod-
ulo associative and commutative (AC) theories [KNT06, KT01, Kus00, MU98,
MU04]. The corresponding proof methods, though, cannot be applied to com-
monly occurring combinations of axioms that fall outside their scope. Re-
garding E-termination analysis (for a given set of equational axioms E) us-
ing dependency pairs, Kusakari and Toyama observed that there is no simple
extension of DPs to directly deal with →R/E-computations [KT01, Kus00].
In contrast, several approaches have been developed for →R,E-computations
[GK01, KT01, MU98]. Since →R,E ⊆ →R/E (but the opposite inclusion
does not hold, in general), E-termination cannot be concluded from (R,E)-
termination. Actually, Marché and Urbain showed that there are (R,E)-
terminating rewrite theories R which are not E-terminating.

Example 74
Consider the following rewrite theory R = (Σ, E,R), where ‘+’ is an AC
symbol [MU98]:

a+ b→ a+ (b+ c).

Note that t = a+ (b+ c) is an →R,E-normal form (hence (R,E)-terminating).
However, t ∼AC (a+ b) + c which is E-nonterminating.

Giesl and Kapur [GK01] proved the equivalence of both notions of termination
with respect to a notion of extension completion ExtE(R) (see below) of a
rewrite theory R = (Σ, E,R) for E regular (i.e., Var(u) = Var(v) for all
u = v in E), and linear (neither u nor v have repeated variables). For E being
a set containing associative or commutative axioms, this notion of extension
goes back to Peterson and Stickel [PS81].
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Theorem 75 [GK01, Theorem 11] Let R = (Σ, E,R) be a rewrite theory with
E a regular and linear equational theory and t ∈ T (Σ,X ). Then, t starts an
infinite→R/E-reduction if and only if t starts an infinite→ExtE(R),E-reduction.
Therefore, R is E-terminating if and only if →ExtE(R),E is terminating.

9.1 Combination of Associative and Commutative
Theories

Let E be a set of equations that has the modular decomposition E =
⋃
f∈ΣEf ,

where if k = ar(f) 6= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf},
where:

• Af is the associativity axiom f(f(x, y), z) = f(x, f(y, z)),

• Cf is the commutativity axiom f(x, y) = f(y, x).

We also define Σ = ΣA ] ΣC ] ΣAC ] Σ∅ where f ∈ ΣA ⇔ Ef = {Af},
f ∈ ΣC ⇔ Ef = {Cf}, f ∈ ΣAC ⇔ Ef = {Af , Cf}, f ∈ Σ∅ ⇔ Ef = ∅. In
the following, we often say that a symbol f ∈ Σ is associative iff f ∈ ΣA∪ΣAC .

Definition 76 (A∨C-Rewrite Theory [ALM10]) An equational theory
E =

⋃
f∈ΣEf , where if k = ar(f) 6= 2, then Ef = ∅, and if k = 2, then

Ef ⊆ {Af , Cf} is called an A∨C-theory. A rewrite theory R = (Σ, E,R) such
that E is an A∨C-theory, is called an A∨C-rewrite theory.

To deal with rewriting modulo A∨C-theories by using (R,E)-rewriting we
have to extend R by following [PS81, Definition 10.4]:

ExtAC(R) = R ∪ {f(l, w)→ f(r, w) | l→ r ∈ R, f = root(l) ∈ ΣAC}
ExtA(R) = R ∪ {f(l, w)→ f(r, w), f(w, l)→ f(w, r), f(z, f(l, w))→ f(z, f(r, w))

| l→ r ∈ R, f = root(l) ∈ ΣA}
ExtC(R) = R

where w and z are fresh variables which do not occur in the original rule of
R. Therefore, given an A∨C-theory E, we let:

ExtE(R) = ExtAC(R) ∪ ExtA(R) ∪ ExtC(R).

Note that R ⊆ ExtE(R).

Example 77
Consider the following TRS R:

f(x, x) → f(0, 0)
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where f ∈ ΣAC . Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, 0), y)

Proposition 78 (E-Termination Preserved under E-Equivalence [ALM10])
Let R = (Σ, E,R) be a rewrite theory and t, s ∈ T (Σ,X ). If t ∼E s, then t is
E-terminating if and only if s is E-terminating.

Proposition 78 does not hold if we change E-termination by (R,E)-termination
(see Example 74). However, as a consequence of Theorem 75 and Proposition
78, we have:

Corollary 79 [ALM10] Let R = (Σ, E,R) be a rewrite theory such that E is
a set of regular and linear equations and t, s ∈ T (Σ,X ). If t ∼E s, then t is
(ExtE(R), E)-terminating if and only if s is (ExtE(R), E)-terminating.

As a corollary of Theorem 75, we have the following.

Corollary 80 [ALM10] Let R = (Σ, E,R) be an A∨C-rewrite theory and
t ∈ T (Σ,X ). Then, t is E-terminating if and only if it is (ExtE(R), E)-
terminating.

In the following, we begin the analysis of infinite E-rewrite sequences ac-
cording to the schema of [HM04] as we have made in Part I for infinite inner-
most context-sensitive sequences. We aim at providing an appropriate notion
of minimal E-nonterminating term (for A∨C-theories E) which allows us to
reach a result similar to Proposition 11.

9.2 Minimal E-nonterminating Terms

The following notion of minimal E-nonterminating term is implicit in [GK01,
proof of Theorem 16]. Similar definitions can be found in [KNT06, KT01,
Kus00, MU04].

Definition 81 (Minimal E-Nonterminating Term [GK01]) Let R =
(Σ, E,R) be a rewrite theory. An E-nonterminating term t ∈ T (Σ,X ) is
said to be minimal (written t ∈ T∞,R,E) if every strict subterm s of t (i.e.,
tB s) is (ExtE(R), E)-terminating.
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Remark 82 In Definition 81, if we assume that E is linear and regular (like
A∨C-theories), then, by Theorem 75, we could equivalently start by saying
that t is (ExtE(R), E)-nonterminating. This leads to a more symmetric defi-
nition, which we often use in the following without further comment.

Every E-nonterminating term s contains a minimal E-nonterminating subterm
t ∈ T∞,R,E (this is stated without proof in [GK01, proof of Theorem 16]).
Moreover, Giesl and Kapur’s minimality of terms is preserved under inner
→ExtE(R),E-reductions.

Note that, if E is an A∨C-equational theory, then root(t) ∈ D whenever
t ∈ T∞,R,E . As remarked by Giesl and Kapur (see also Example 90 below)
this is not true for arbitrary equational theories. The problem with Giesl and
Kapur’s Definition 81 is that minimality is not preserved under E-equivalence.

Example 83
Consider again the TRS R in Example 77.
Following [GK01], the term f(f(1, 0), 0) ∈ T∞,R,E since it is AC-nonterminating

f(f(1, 0), 0) ∼AC f(1, f(0, 0)) ∼AC f(f(0, 0), 1) Λ→R f(f(0, 0), 1) · · ·

but its strict subterms f(1, 0), 1 and 0 are AC-terminating. However, the root
step with σ(l) = σ(f(f(x, x), y) = f(f(0, 0), 1) shows that σ(l) /∈ T∞,R,E since
f(0, 0) is AC-nonterminating.

Example 84
Consider the following TRS R:

f(x, x) → f(0, f(1, 2)) (9.1)

where f ∈ ΣAC . Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, f(1, 2)), y) (9.2)

Note that t = f(f(0, 1), f(0, f(1, 2))) is (ExtAC(R), AC)-nonterminating:

f(f(0, 1), f(0, f(1, 2))) ∼A f(0, f(1, f(0, f(1, 2))))
∼A f(0, f(f(1, 0), f(1, 2)))
∼C f(0, f(f(0, 1), f(1, 2)))
∼A f(0, f(0, f(1, f(1, 2))))
∼A f(f(0, 0), f(1, f(1, 2)))

Λ→ExtAC(R) f(f(0, f(1, 2)), f(1, f(1, 2)))
→ExtAC(R),AC · · ·
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Since f(0, 1) and f(0, f(1, 2)) are in (ExtAC(R), AC)-normal form, we have
that t ∈ T∞,R,AC . However, t′ = f(f(0, 0), f(1, f(1, 2))), which isAC-equivalent
to t (i.e., t ∼AC t′), is AC-nonterminating, but it is not minimal because its
strict subterm f(1, f(1, 2))) is (ExtAC(R), AC)-nonterminating:

f(1, f(1, 2)) ∼A f(f(1, 1), 2)
Λ→ExtAC(R) f(f(0, f(1, 2)), 2)

∼A f(0, f(f(1, 2), 2))
∼A f(0, f(1, f(2, 2)))
∼A f(f(0, 1), f(2, 2))
∼C f(f(2, 2), f(0, 1))

Λ→ExtAC(R) f(f(0, f(1, 2)), f(0, 1))
∼A f(f(f(0, 1), 2)), f(0, 1))
∼C f(f(0, 1), f(f(0, 1), 2)))
∼A f(f(0, 1), f(0, f(1, 2)))

→ExtAC(R),AC · · ·

Example 84 shows that an essential property of minimal terms when considered
as part of infinite (ExtE(R), E)-rewriting sequences for A∨C-theories E gets
lost: the application of (ExtE(R), E)-rewrite steps at the root of a minimal
term s by means of a rule l → r (i.e., s ∼AC σ(l) Λ→ExtE(R)σ(r)) does not
guarantee that there is a nonvariable subterm v of the right-hand side r which
is a prefix of the ‘next’ minimal term in the infinite sequence. The problem
illustrated in Example 84 is due to the application of associative steps at the
root of a minimal term.

Example 85
Term t in Example 84 can be rewritten at the root only by rule (9.2) of
ExtAC(R). We can apply this rule to t′ in Example 84 (for instance) to ob-
tain s′ = σ(r) = f(f(0, f(1, 2)), f(1, f(1, 2))) (where r = f(f(0, f(1, 2)), y)),
which is (ExtAC(R), AC)-nonterminating. Note that s′ contains a minimal
term u ∈ T∞,R,E . Since s′|2 = f(1, f(1, 2)) is (ExtAC(R), AC)-nonterminating,
it follows that s′ is not minimal. Since s′|1 = f(0, f(1, 2)) is (ExtAC(R), AC)-
terminating, the only possibility is that u occurs in s′|2. Actually, s′|2 is
minimal already; hence, u = s′|2. But note the absence of any nonvariable
position p ∈ Pos(r) in the right-hand side of the considered rule such that
σ(r|p) = u = f(1, f(1, 2)).
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This is in sharp contrast with the situation of the DP approach for ordinary
rewriting. Furthermore, it is not difficult to see that for all t′′ ∼AC t such that
t′′ = σ′(l) for some substitution σ′, we have a similar situation. Thus, the
problem illustrated here cannot be solved by using a different ∼AC sequence
before performing the ExtAC(R)-root-step.

In the following we introduce a new notion of minimality which solves these
problems.

9.3 A New Notion of Minimal E-Nonterminating
Terms

The following definition solves the problems discussed above by explicitly re-
quiring that the condition defining minimality is preserved under E-equivalence.

Definition 86 (Stably Minimal E-Nonterminating Term [ALM10])
Let R = (Σ, E,R) be a rewrite theory. Let M∞,R,E be the set of stably min-
imal E-nonterminating terms in the following sense: t ∈ T (Σ,X ) belongs
to M∞,R,E iff t is E-nonterminating, and for all t′ ∼E t and every proper
subterm s′ of t′ (i.e., t′ B s′), s′ is (ExtE(R), E)-terminating.

We have the following useful characterization of minimality.

Proposition 87 (Characterization of Stably Minimal Terms [ALM10])
Let R = (Σ, R,E) be a rewrite theory and t ∈ T (Σ,X ). Then, t ∈ M∞,R,E if
and only if [t]E ⊆ T∞,R,E. Therefore,

M∞,R,E = {t ∈ T (Σ,X ) | [t]E ⊆ T∞,R,E}

The problem in Example 84 disappears now: t is not (stably) minimal accord-
ing to Definition 86. The same situation happens with the problem in Exam-
ple83: f(f(1, 0), 0) ∈ T∞,R,E but f(f(1, 0), 0) /∈M∞,R,E since f(f(1, 0), 0) ∼E

f(f(0, 0), 1) and f(0, 0) is E-nonterminating. In fact, f(0, 0) ∈M∞,R,E .
The following result shows how to find stably minimal E-nonterminating

terms associated to a given E-nonterminating term. This is essential in our
development. A set of equations E is size-preserving if and only if for each
equation u = v the length of u and v are the same, i.e. |u| = |v| and the
multiset of the variables in u coincides with the multiset of the variables in v
[Ohl02].
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Proposition 88 [ALM10] Let R = (Σ, E,R) be a rewrite theory such that
E is regular and size-preserving. Let s ∈ T (Σ,X ). If s is E-nonterminating,
then there is a subterm t of some s′ ∼E s (i.e., s′ D t) such that t ∈M∞,R,E.

Clearly, Proposition 88 holds whenever R is an A∨C-rewrite theory.

Example 89
Consider the term t in Example 84. Although t ∈ T∞,R,E , t /∈ M∞,R,E :
the term t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent to t, contains a
subterm u = f(1, f(1, 2)) which is E-nonterminating. It is not difficult to see
that actually u ∈M∞,R,E .

In general, Proposition 88 does not hold for arbitrary sets of equations E.

Example 90
Consider the following example [GK01, Example 13]:

R : f(x) → x E : f(a) = a

Note that a ∈ T∞,R,E . However, a is not stably minimal because a ∼E f(a)
but f(a) 6∈ T∞,R,E . Thus, Proposition 88 does not hold.

Since M∞,R,E ⊆ T∞,R,E , for A∨C-rewrite theories E we have the following
corollary.

Corollary 91 Let R = (Σ, E,R) be an A∨C-rewrite theory and s ∈M∞,R,E.

If s >Λ−→∗ExtE(R),E t and t is E-nonterminating, then t ∈ T∞,R,E.

In general, Corollary 91 does not hold if we require that t ∈M∞,R,E .

Example 92
Term u = f(f(1, 1), 2) in Example 85 is stably minimal: u ∈ M∞,R,E . We

have that f(f(1, 1), 2) >Λ−→R f(f(0, f(1, 2)), 2). Note that f(f(0, f(1, 2)), 2) /∈
M∞,R,E . We have

f(f(0, f(1, 2)), 2) ∼A f(0, f(f(1, 2), 2)) ∼A f(0, f(1, f(2, 2)))

where f(0, f(1, f(2, 2))) contains a subterm f(1, f(2, 2)) which is (ExtE(R), E)-
nonterminating.
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The problem arises when s ∈ M∞,R,E is such that root(s) includes associa-
tivity among its axioms, that is, Af ∈ Ef .
Now we provide a more precise result about where we can find stably minimal
subterms within an E-nonterminating term for A∨C-rewrite theories R =
(Σ, E,R). In the following theorem, given a term s and a symbol f , by an
f -subterm t of s (written s Df t) we mean a subterm t of s such that t = s|p
and for all q < p, root(s|q) = f . We also write sBf t if sDf t and s 6= t.

Theorem 93 [ALM10] Let R = (Σ, E,R) be an A∨C-rewrite theory. If s is
E-nonterminating, then there is a subterm t ∈ T∞,R,E of s (sD t) and

1. If (1) Aroot(t) /∈ Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and
root(t2) 6= f , then t ∈M∞,R,E.

2. If t = f(t1, t2), Af ∈ Ef , and root(t1) = f or root(t2) = f , and t 6∈
M∞,R,E, then there is s′ ∼E t and a strict f -subterm u of s′ (i.e.,
s′ Bf u) such that root(u) = f and u ∈M∞,R,E.

The following result is just a convenient reformulation of the previous one.

Corollary 94 [ALM10] Let R = (Σ, E,R) be an A∨C-rewrite theory. If s
is E-nonterminating, then either there is a subterm t ∈ M∞,R,E of s (sD t),
or there is a subterm t ∈ T∞,R,E of s satisfying that t = f(t1, t2), Af ∈ Ef ,
and root(t1) = f or root(t2) = f , and such that there is s′ ∼E t and a strict
f -subterm u of s′ (s′ Bf u) such that root(u) = f and u ∈M∞,R,E.

9.4 Structure of (Stably) Minimal Infinite
A∨C-Rewrite Sequences

Now we analyze A∨C-rewrite sequences starting from stably minimal A∨C-
nonterminating terms. First we consider a restricted case.

Proposition 95 [ALM10] Let R = (Σ, E,R) = (C ] D, E,R) be an A∨C-
rewrite theory. Let s ∈M∞,R,E be such that f = root(s) and either (1) Af /∈
Ef , or (2) s = f(s1, s2), Af ∈ Ef , and root(s1), root(s2) ∈ C. Assume that
for all l→ r ∈ R such that root(l) = f and all subterms v of r (rDv) such that
v = g(v1, v2) for some associative symbol g, we have that root(v1), root(v2) /∈
X ∪{g}. Then, there exist l→ r ∈ R, a substitution σ and terms t ∈ T (Σ,X )
and u ∈M∞,R,E such that

s
>Λ−→∗ExtE(R),E t ∼E σ(l) Λ→R σ(r)D u

and there is a nonvariable subterm v of r, r D v, such that u = σ(v).
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Unfortunately, stable minimality of (arbitrary) E-nonterminating terms s for
A∨C-theories E is not preserved under inner (ExtE(R), E)-rewritings (see Ex-
ample 92). The problem arises when s is rewritten into a term like, e.g.,
t = f(f(t1, t2), t3) on which associative steps can be issued to rearrange t and
possibly introducing an E-nonterminating term below the root, thus losing
stable minimality.

However, as a consequence of previous results, the following theorem es-
tablishes the desired property for stable minimal A∨C-nonterminating terms.

Theorem 96 [AGLM11] Let R = (Σ, E,R) be an A∨C-rewrite theory. For
all s ∈M∞,R,E, there exist l→ r ∈ ExtE(R) and a substitution σ such that

s
>Λ−→∗ExtE(R),E t ∼E t′ Df t′′ ∼E σ(l) Λ→ExtE(R) σ(r)

t′′ ∈ M∞,R,E and there is a nonvariable subterm v of r (r D v), such that
either

1. v = f(v1, v2) for some associative symbol f , root(v1) ∈ X ∪ {f} or
root(v2) ∈ X ∪ {f}, root(σ(v1)) = f or root(σ(v2)) = f , σ(v) ∈
T∞,R,E and there is a term t′ ∼E σ(v) containing a strict f -subterm
u = f(u1, u2) (t′ Bf u) such that u ∈M∞,R,E, or

2. σ(v) ∈M∞,R,E otherwise.

Example 84 shows that Theorem 96 does not hold for Giesl and Kapur’s
minimal terms s ∈ T∞,R,E .
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10
A∨C-Dependency Pairs and

Chains

Propositions 88 and 95 together with Theorems 93 and 96 are the basis for
our definition of A∨C-dependency pairs and the corresponding chains. To-
gether, they show that given an A∨C-rewrite theory R = (Σ, E,R), every
E-nonterminating term s has an associated infinite (ExtE(R), E)-rewrite se-
quence starting from a stably minimal subterm t ∈M∞,R,E . Such a sequence
proceeds as described in Proposition 95 and Theorem 96, depending on the
shape of t.

This process is abstracted in the following definition of A∨C-dependency
pairs (Definition 97) and in the definition of chain below (Definition 99).

Definition 97 (A∨C-Dependency Pairs [AGLM11]) Let R = (Σ, E,R)
= (C ] D, E,R) be an A∨C-rewrite theory. Then, DPE(R) = {l] → s] | l →
r ∈ ExtE(R), r D s, root(s) ∈ D, l 7 v ∼E s} is the set of A∨C-dependency
pairs (A∨C-DPs) of R.

Requiring l 7 v ∼E s for DPE(R) in Definition 97 follows Dershowitz’s criteria
[Der04] extended to A∨C-rewrite theories. In general, due to the use of Der-
showitz’s criteria, the set of A∨C-DPs which is obtained from Definition 97
is a subset of those which are obtained by particularizing Giesl and Kapur’s
definitions to the A∨C case.

Example 98
Consider the A∨C-rewrite theory R = (Σ, E,R) in Example 84. The set
DPE(R) consists of the following pairs:

F (x, x) → F (0, f(1, 2)) (10.1)
F (x, x) → F (1, 2) (10.2)
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F (f(x, x), y) → F (f(0, f(1, 2)), y) (10.3)
F (f(x, x), y) → F (0, f(1, 2)) (10.4)
F (f(x, x), y) → F (1, 2) (10.5)

If we want to characterize termination of A∨C-rewrite theories as the absence
of infinite (minimal) chains of A∨C-dependency pairs, we have to introduce
a suitable notion of chain which can be used with A∨C-DPs. As in the DP
framework, where the origin of pairs does not matter, we should rather think
of another rewrite theory P = (G, F, P ) which is used together with R to build
the chains.

In the following, given sets of equations E and F , we let lF,E = (
Λ
àF

∪
>Λ
àE)∗. Moreover, we define Λ−→∗Sf as the application of rules l → r ∈ S

such that root(l) = f .

Definition 99 ((Minimal) A∨C-Chain of Pairs [AGLM11]) Let P =
(G, F, P ) be a rewrite theory, R = (Σ, E,R) be an A∨C-rewrite theory, and
S = (H, S) be a TRS. An (F, P,E,R, S)-chain is a finite or infinite sequence
of pairs ui → vi ∈ P , together with substitutions σ and θi satisfying that, for
all i ≥ 1:

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E ◦ Λ−→∗Sfi ti →
∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

2. and σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), otherwise.

An (F, P,E,R, S)-chain is called minimal if for all i ≥ 1, and t′i lF,E ti, t′i is
(ExtE(R), E)-terminating.

As usual, in Definition 99 we assume that different occurrences of dependency
pairs do not share any variable (renaming substitutions are used if necessary).
Note that the definition derives directly from Theorem 96: First we have to
look for the minimal term of σ(vi), i.e. ti, (see Theorem 93) which can be
rewritten by using >Λ−→ ∗ExtE(R),E and again, since minimality can be lost we
have to apply again Theorem 93 to connect with the next pair in the chain.
This more abstract notion of chain can be particularized to be used with
A∨C-DPs, by just taking
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1. P = DPE(R),

2. F = E], where E] = {s] = t] | s = t ∈ E}, and

3. S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA∪ΣAC}.

The following propositions interconnect the remaining details between infinite
A∨C-rewrite sequences starting by stable minimal A∨C-nonterminating terms
as shown in Theorem 96 and infinite minimal A∨C-chains in Definition 99.

Proposition 100 [AGLM11] Let Σ be a signature and E be a set of noncol-
lapsing equations over Σ. Let s, t ∈ T (Σ,X ). Then, s ∼E t if and only if
s] lE],E t].

Proposition 101 [AGLM11] Let Σ be a signature, f ∈ Σ, and s, t ∈ T (Σ,X ).
Then, sDf t if and only if s] Λ−→∗Sf t

].

Now, we can give the desired result.

Theorem 102 (Characterization of A∨C-Termination [AL11, ALM10])
Let R = (Σ, E,R) be an A∨C-rewrite theory. Let S = (Σ ∪ D], S) be a
TRS such that S = {f ](f(x, y), z) → f ](x, y), f ](x, f(y, z)) → f ](y, z) | f ∈
ΣA ∪ ΣAC}. Then, R is (ExtE(R), E)-terminating if and only if there is no
infinite minimal (E],DPE(R), E,R,S)-chain.
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11
A∨C-Dependency Pair

Framework

In the following, we extend Giesl et al.’s DP framework to provide a suitable
framework for mechanizing proofs of A∨C-termination using A∨C-DPs as we
have made in Part I for innermost CSR.

Definition 103 (A∨C Problem [ALM10]) An A∨C problem τ is a tuple
τ = (F, P,E,R, S), where R = (Σ, E,R) is an A∨C-rewrite theory, P =
(G, F, P ) is a rewrite theory, and S = (H, S) is a TRS. An A∨C problem
is finite if there is no infinite minimal (F, P,E,R, S)-chain. An A∨C prob-
lem τ is infinite if R is E-nonterminating or there is an infinite minimal
(F, P,E,R, S)-chain.

The following definition extends the notion of DP processor to prove ter-
mination of A∨C-rewrite theories.

Definition 104 (A∨C Processor [ALM10]) An A∨C processor Proc is a
mapping from A∨C problems into sets of A∨C problems. Alternatively, it can
also return “no”. An A∨C processor Proc is

• sound if for all A∨C problems τ , τ is finite whenever Proc(τ) 6= no and
∀τ ′ ∈ Proc(τ), τ ′ is finite.

• complete if for all A∨C problems τ , τ is infinite whenever Proc(τ) = no
or ∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.

Similar to [GTSF06] for the DP framework, we construct a tree whose
nodes are labeled with A∨C problems or “yes” or “no”, and whose root is
labeled with (E],DPE(R), E,R, S). Now we have the following result which
extends [GTSF06, Corollary 5] to A∨C-rewrite theories.
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Theorem 105 (A∨C-DP Framework [ALM10]) Let R = (Σ, E,R) be an
A∨C-rewrite theory. We construct a tree whose nodes are labeled with A∨C
problems or “yes” or “no”, and whose root is labeled with (E],DPE(R), E,R, S),
where S = {f ](f(x, y), z) → f ](x, y), f ](x, f(y, z)) → f ](y, z) | f ∈ ΣA ∪
ΣAC}. For every inner node labeled with τ , there is a sound processor Proc
satisfying one of the following conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.

2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.

3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with
the A∨C problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is E-terminating. Oth-
erwise, if there is a leaf labeled with “no” and if all processors used on the path
from the root to this leaf are complete, then R is not E-terminating.
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In this chapter, we present several techniques that we have developed to deal
with proofs of A∨C-termination in the A∨C-DP framework.

12.1 Preprocessing

A simple technique that can be useful when dealing with proofs of termination
in the DP framework is to try to remove rules from the original system before
building the DP problem. In this way, we will start the proof with less rules
and therefore less pairs, which can simplify the proof of termination. We
extend its use for proving E-termination. Here, ∼ is the stable, reflexive,
transitive, and symmetric equivalence induced by &, i.e., ∼ =& ∩ ..

Proposition 106 (Removing strict rewrite rules [AGLM11]) Let R =
(Σ, E,R) be a rewrite theory. Let (&,A) be a monotonic reduction pair such
that l (& ∪ A) r for all l → r ∈ R and u ∼ v for all u = v ∈ E. Let
RA = {l → r ∈ R | l A r} and R′ = R − RA. Then, R is E-terminating if
and only if R′ = (Σ, E,R′) is E-terminating.

Example 107
Consider the following A∨C-rewrite theory:

f(g(f(h(a), a)), a) → f(h(a), f(a, a))

where f ∈ ΣAC .
We can find a monotonic reduction pair such that f(g(f(h(a), a)), a) A

f(h(a), f(a, a)) and u ∼ v for all u = v ∈ A∨C with the following polynomial
interpretation:

[f](x, y) = x+ y [a] = 0 [g](x) = x+ 2 [h](x) = x+ 2
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Therefore, we can remove the only rule in the system and therefore, con-
clude trivially its A∨C-termination since there are no pairs and therefore, no
infinite minimal A∨C-chain.

After presenting this technique for simplifying proofs of A∨C-termination, we
introduce specific A∨C processors.

12.2 A∨C-Dependency Graph

A∨C problems focus our attention on the analysis of infinite minimal A∨C-
chains. Our aim here is to obtain a notion of graph which is able to represent
all infinite minimal A∨C-chains of pairs as given in Definition 99.

Definition 108 (A∨C-Graph of Pairs [ALM10]) Let P = (G, F, P ) be a
rewrite theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (H, S) be
a TRS. The A∨C-graph associated to them (denoted G(F, P,E,R, S)) has P
as the set of nodes, and there is an arc from u → v ∈ P to u′ → v′ ∈ P if
u→ v, u′ → v′ is an (F, P,E,R, S)-chain.

Now we can use these notions to introduce the A∨C-dependency graph,
i.e., the A∨C-graph whose nodes are the A∨C-DPs instead of an arbitrary set
of pairs.

Definition 109 (A∨C-Dependency Graph [ALM10]) Let R = (Σ, E,R)
be an A∨C-rewrite theory with Σ = C ]D. Let S = (Σ∪D], S) be a TRS such
that S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.
The A∨C-dependency graph (A∨C-DG) associated to R is:

DG(R) = G(E],DPE(R), E,R, S)

12.3 Estimating the A∨C-Dependency Graph

As in standard rewriting, the A∨C-dependency graph of an A∨C-rewrite the-
ory is in general not computable. So, we need to use some approximation of
it. For any term t ∈ T (Σ,X ) and set ∆ (which is intended to represent the
set of defined symbols in R) let Cap∆(t) result from replacing all subterms
in t which are rooted by a symbol in ∆ by fresh variables. Given a term t,
we let Ren(t) be the term which is obtained by independently renaming all
occurrences of variables in t by using fresh variables [AG00].
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As usual, we should not talk about an mgu when dealing with rewriting
modulo equations. Instead, the appropriate notion is that of complete set of
E-unifiers. The set of all E-unifiers of a given E-uniflcation problem is usually
infinite. For equational unification, a single E-unifier is not always sufficient
to represent all unifiers [BN98]. Fortunately, for approximating reachability
we only need to check the existence of one.

Now, we are ready to provide a correct estimation of our graph of pairs.

Definition 110 (Estimated A∨C-Graph of Pairs) Let P = (G, F, P ) be
a rewrite theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (H, S) be a
TRS. The estimatedA∨C-graph associated to them (denoted EG(F, P,E,R, S))
has P as the set of nodes and arcs which connect them as follows:

1. If v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2)
and s1 /∈ X or s2 /∈ X , then, there is an arc from u → v ∈ P to
u′ → v′ ∈ P if root(u′) = f .

2. Otherwise, there is an arc from u→ v ∈ P to u′ → v′ ∈ P if Ren(Cap∆(v))
and u′ (F ∪ E)-unify (where equations in F can only be applied at root
position).

According to Definition 108, we would have the following definition of
estimated A∨C-DG: EDG(R) = EG(E],DPE(R), E,R, S), where again

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

In the following result, given two sets of rules S and Q, we let SQ be the
least subset of S satisfying that whenever there is a rule u→ v ∈ Q, such that
v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2) and
s1 /∈ X or s2 /∈ X , then Sf ⊆ SQ.

Theorem 111 (SCC Processor [ALM10]) Let P = (G, F, P ) be a rewrite
theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (H, S) be a TRS.
Then, the processor ProcSCC given by

ProcSCC (F, P,E,R, S) = {(F,Q,E,R, SQ) | Q are the pairs of an SCC in EG(F, P,E,R, S)}

is sound and complete.

As a consequence, we can separately work with the SCCs of EG(F, P,E,R, S),
disregarding other parts of the graph.
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Example 112
For the A∨C-rewrite theory in Example 9 (see page 21), the set DPE(R) is1:

LIST2SET(cons(N,L)) → UNION(N, list2set(L)) (12.1)
LIST2SET(cons(N,L)) → LIST2SET(L) (12.2)

IN(N, union(M,S)) → EQ(N,M) (12.3)
IN(N, union(M,S)) → OR(eq(N,M), in(N,S)) (12.4)
IN(N, union(M,S)) → IN(N,S) (12.5)

UNION(union(N,N), Z) → UNION(N,Z) (12.6)
AND(and(true, B), Z) → AND(B,Z) (12.7)

AND(and(false, B), Z) → AND(false, Z) (12.8)
OR(or(true, B), Z) → OR(true, Z) (12.9)
OR(or(false, B), Z) → OR(B,Z) (12.10)

EQ(s(N), s(M)) → EQ(N,M) (12.11)
EQ(cons(N,L), cons(M,L′)) → EQ(N,M) (12.12)
EQ(cons(N,L), cons(M,L′)) → EQ(L,L′) (12.13)
EQ(cons(N,L), cons(M,L′)) → AND(eq(N,M), eq(L,L′)) (12.14)

The (estimated) A∨C-DG is:
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By using Theorem 111 we transform the A∨C problem (E],DP(R), E,R, S)

1We have introduced new ‘prefix’ symbols eq, cons, and union instead of the original
‘infix’ ones == , ; , .
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into a set of A∨C problems ProcSCC (E],DP(R), E,R, S) given by

{(E], {(12.2)}, E,R,∅), (E], {(12.5)}, E,R,∅), (E], {(12.6)}, E,R, Sunion),
(E], {(12.7), (12.8)}, E,R, Sand), (E], {(12.9), (12.10)}, E,R, Sor),
(E], {(12.11), (12.12), (12.13)}, E,R,∅)}

which contains six new (but simpler) A∨C problems.

12.4 F Usable Equations Processor

Many times, the set of F axioms can be reduced to those equations that are
really involved in minimal A∨C-chains. The following processor shows a trivial
method to eliminate them.

Theorem 113 (F Usable Equations Processor [AGLM11]) Let P =
(G, F, P ) be a rewrite theory, R = (Σ, E,R) be an A∨C-rewrite theory, and
S = (H, S) be a TRS such that

1. root(u), root(v) ∈ G − Σ for all u→ v ∈ P ,

2. root(s) = root(t) ∈ G − Σ for all s = t ∈ F , and

3. root(l) = root(r) ∈ G − Σ for all l→ r ∈ S, and

Let F̂ = {s = t ∈ F | root(s) = root(u) or root(s) = root(v) for some u→ v ∈ P}

Then, the processor ProcFUEq given by

ProcFUEq(F, P,E,R, S) = {(F̂ , P, E,R, S)}

is sound and complete.

Example 114
With respect to Example 112, we have τ0 = (E],DP(R), E,R, S). By applying
the SCC processor, we obtain ProcSCC (τ0) = {τ1, τ2, τ3, τ4, τ5, τ6}, where

• τ1 = (E], {(12.2)}, E,R,∅),

• τ2 = (E], {(12.5)}, E,R,∅),

• τ3 = (E], {(12.6)}, E,R, Sunion),
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• τ4 = (E], {(12.7), (12.8)}, E,R, Sand),

• τ5 = (E], {(12.9), (12.10)}, E,R, Sor) and

• τ6 = (E], {(12.11), (12.12), (12.13)}, E,R,∅).

We can apply ProcFUEq to all these A∨C problems:

• For τ1, we have ProcFUEq(τ1) = (∅, {(12.2)}, E,R,∅),

• For τ2, we have ProcFUEq(τ2) = (∅, {(12.5)}, E,R,∅),

• For τ3, we have ProcFUEq(τ3) = (E]union, {(12.6)}, E,R, Sunion),

• For τ4, we have ProcFUEq(τ4) = (E]and, {(12.7), (12.8)}, E,R, Sand),

• For τ5, we have ProcFUEq(τ5) = (E]or, {(12.9), (12.10)}, E,R, Sor) and

• For τ6, we have ProcFUEq(τ6) = (E]eq, {(12.11), (12.12), (12.13)}, E,R,∅).

12.5 Use of Reduction Pairs

In the dependency pair framework reduction pairs are used to obtain smaller
sets of pairs P ′ ⊆ P by removing the strict pairs, i.e., those pairs u→ v ∈ P
such that u A v. Dealing with associative and/or commutative axioms, we will
compare them with the equivalence relation defined by the stable, reflexive,
transitive, and symmetric equivalence ∼ induced by &, i.e., ∼ =& ∩ ., since
we need to impose compatibility with the equational theories E and F . The
following theorem formalizes a generic processor to remove pairs from P by
using reduction pairs.

Theorem 115 (Reduction Pair Processor [AGLM11]) Let P = (G, F, P )
be a rewrite theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (H, S)
be a TRS. Let (&,A) be a reduction pair such that

1. R ⊆&,

2. P ∪ S ⊆& ∪ A, and

3. E ∪ F ⊆∼.
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Let PA = {u → v ∈ P | u A v} and SA = {s → t ∈ S | s A t}. Then, the
processor ProcRP given by

ProcRP (F, P,E,R, S) =
{
{(F, P − PA, E,R, S − SA)} if (1), (2), and (3) hold
{(F, P,E,R, S)} otherwise

is sound and complete.

12.5.1 Usable Rules and Equations for A∨C Problems

Usable rules are widely used in the DP framework to improve the power of DP
processors. We show how to obtain the set of usable rules and usable equations
for a given A∨C problem and how to use them to define a new reduction
pair processor. We follow the approach and techniques developed in [HM04,
TGS04]. Our first intuition was to define a proper notion of dependency
that not only takes into account the symbols occurring in the rules, but also
the symbols occurring in the equations; but, since A∨C equations do not
introduce new symbols in their left- and right-hand sides, we can use the
standard notion of dependency that only considers symbols occurring in the
rules. We use some auxiliary definitions. Let RlsR(f) = {l → r ∈ R |
root(l) = f}, EqsE(f) = {u = v ∈ E | root(u) = f ∨ root(v) = f}. Let
Fun(t) = {f | ∃p ∈ PosF (t), f = root(t|p)}.

Definition 116 (Dependency [Urb04]) Let R = (Σ, R) be a TRS. We say
that f ∈ Σ has a dependency on h ∈ Σ (written f .R h) if f = h or there is a
function symbol g with g .R h and a rule l→ r ∈ RlsR(f) with g ∈ Fun(r).

To obtain the correct notions of usable rule and equation, we have to look
at the structure of the chains. We have two possible ways to proceed in an
(F, P,E,R, S)-chain. Given ui → vi ∈ P either

σ(vi) lF,E ◦ Λ−→∗Sfi ti →
∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

or
σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1)

Then, to obtain the set of usable rules and also usable equations we have to
look for usable symbols not only in P , but also in F and S.

Definition 117 (A∨C-Usable Rules and Equations [AGLM11]) Let τ
be an A∨C problem such that τ = (F, P,E,R, S) where R = (Σ, E,R) is
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an A∨C-rewrite theory, P = (G, F, P ) is a rewrite theory, and S = (H, S) is
a TRS. The set UR(τ) of A∨C-usable rules of τ is

UR(τ) =
⋃

s→t ∈ P,f ∈ Fun(t),f.Rg

RlsR(g) ∪
⋃

u=v ∈ F, f ∈ Fun(u) ∪ Fun(v),f.Rg

RlsR(g) ∪
⋃

l→r ∈ S, f ∈ Fun(r),f.Rg

RlsR(g)

The set UE(τ) of A∨C-usable equations of τ is

UE(τ) =
⋃

s→t ∈ P, f ∈ Fun(t),f.Rg

EqsE(g) ∪
⋃

u=v ∈ F, f ∈ Fun(u) ∪ Fun(v),f.Rg

EqsE(g) ∪
⋃

l→r ∈ S,f ∈ Fun(r),f.Rg

EqsE(g)

Note that, if the rules from S are of the form f ](f(x, y), z) → f ](x, y) or
f ](x, f(y, z))→ f ](y, z), then they do not introduce new rules as usable.

A TRS R is Cε-terminating if R]Cε is terminating, where Cε = {c(x, y)→
x, c(x, y) → y} (and c is not in the signature of R). A relation & is Cε-
compatible iff c(x, y) & x and c(x, y) & y. We need these notions to define
the following important result.

Theorem 118 (RP Processor with A∨C-Usable Rules and Equations [AGLM11])

Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is an A∨C-
rewrite theory, P = (G, F, P ) is a rewrite theory, and S = (H, S) is a TRS.
Let (&,A) be a reduction pair such that & is Cε-compatible and

1. UR(τ) ⊆&,

2. P ∪ S ⊆& ∪ A, and

3. F ∪ UE(τ) ⊆∼.

Let PA = {u → v ∈ P | u A v} and SA = {s → t ∈ S | s A t}. Then, the
processor ProcUR given by

ProcUR(F, P,E,R, S) =
{
{(F, P − PA, E,R, S − SA)} if (1), (2), and (3) hold
{(F, P,E,R, S)} otherwise

is sound and complete.
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Example 119
For the A∨C-rewrite theory in Example 9, we have the following rules in R
(with prefix symbols again):

list2set(N) → N (12.15)
list2set(cons(N,L)) → union(N, list2set(L)) (12.16)

in(N, null) → false (12.17)
in(N, union(M,S)) → or(eq(N,M), in(N,S)) (12.18)

union(N,N) → N (12.19)
and(true, B) → B (12.20)
and(false, B) → false (12.21)
or(true, B) → true (12.22)
or(false, B) → B (12.23)
eq(0, s(N)) → false (12.24)

eq(s(N), s(M)) → eq(N,M) (12.25)
eq(cons(N,L),M) → false (12.26)

eq(cons(N,L), cons(M,L′)) → and(eq(N,M), eq(L,L′)) (12.27)
eq(L,L) → true (12.28)

In Example 114, we had the following A∨C problems:

• τ ′1 = (∅, {(12.2)}, E,R,∅),

• τ ′2 = (∅, {(12.5)}, E,R,∅),

• τ ′3 = (E]union, {(12.6)}, E,R, Sunion),

• τ ′4 = (E]and, {(12.7), (12.8)}, E,R, Sand),

• τ ′5 = (E]or, {(12.9), (12.10)}, E,R, Sor) and

• τ ′6 = (E]eq, {(12.11), (12.12), (12.13)}, E,R,∅).

We can apply ProcUR to all these A∨C problems:

• In the case of τ ′1 we have:
UR(τ ′1) = ∅, UE(τ ′1) = ∅ and the following polynomial interpretation2

[LIST2SET](x) = x ∗ x+ x [cons](x, y) = y + 1

2The quasi-orders & induced by a polynomial interpretation can always be made Cε-
compatible with the rules of the TRS Cε, i.e., Cε ⊆&.



110 12. A∨C Processors

to conclude finiteness of τ ′1.

• For τ ′2 we have:
UR(τ ′2) = ∅, UE(τ ′2) = ∅ and the following polynomial interpretation:

[IN](x, y) = x ∗ y + y [union](x, y) = y + 1

to conclude finiteness of τ ′2.

• For τ ′3 we have:
UR(τ ′3) = {(12.19)}, UE(τ ′3) = {(Eunion)} and the following polynomial
interpretation:

[UNION](x, y) = x+ y + 1 [union](x, y) = x+ y

to conclude finiteness of τ ′3.

• For τ ′4 we have:
UR(τ ′4) = {(12.20), (12.21)}, UE(τ ′4) = {(Eand)} and the following poly-
nomial interpretation:

[AND](x, y) = x+ y [and](x, y) = x+ y + 1
[false] = 1 [true] = 1

This processor eliminates one strict pair and generates a new A∨C prob-
lem τ4.1 = (E]and, {(12.7)}, E,R, Sand) where again we have:

UR(τ4.1) = {(12.20), (12.21)}, UE(τ4.1) = {(Eand)} and the following
polynomial interpretation:

[AND](x, y) = x+ y [and](x, y) = x+ y
[false] = 1 [true] = 1

to conclude finiteness of τ4.1 and therefore of τ ′4.

• For τ ′5 we have:
UR(τ ′5) = {(12.22), (12.23)}, UE(τ ′5) = {(Eor)} and the following polyno-
mial interpretation:

[OR](x, y) = x ∗ y + x+ y [or](x, y) = x ∗ y + x+ y
[false] = 1 [true] = 1
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This processor eliminates one strict pair and generates a new A∨C prob-
lem τ5.1 = (E]or, {(12.9)}, E,R, Sor) where again we have:

UR(τ5.1) = {(12.22), (12.23)}, UE(τ5.1) = {(Eand)} and the following
polynomial interpretation:

[OR](x, y) = x+ y [or](x, y) = x+ y + 1
[false] = 1 [true] = 1

to conclude finiteness of τ5.1 and therefore of τ ′5.

• Finally, for τ ′6 we have:
UR(τ ′6) = ∅, UE(τ ′6) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [cons](x, y) = x+ y + 1
[s](x) = x+ 1

This processor eliminates one strict pair and generates a new A∨C prob-
lem τ6.1 = (E]eq, {(12.11), (12.12)}, E,R,∅) where we have:

UR(τ6.1) = ∅, UE(τ6.1) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [cons](x, y) = x+ 1
[s](x) = x+ 1

This application eliminates another strict pair and generates a new A∨C
problem τ6.2 = (E]eq, {(12.11)}, E,R,∅). We have:

UR(τ6.2) = ∅, UE(τ6.2) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [s](x) = x+ 1

to conclude finiteness of τ6.2 and therefore of τ ′6.

Therefore, after showing the finiteness of all the A∨C problems generated from
Example 9 (see page 21), we can conclude its E-termination.
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13
Experiments on A∨C-Rewriting

We have implemented all the techniques described in this part in the termina-
tion tool mu-term [AGLN10, AGIL07, Luc04]. As we have stated, mu-term
is a tool that can be used to verify a number of termination properties of
(variants of) TRSs. It includes termination of rewriting, termination of inner-
most rewriting, termination of order-sorted rewriting, termination of context-
sensitive rewriting, termination of innermost context-sensitive rewriting and,
thanks to this new approach, termination of rewriting modulo specific axioms.
With these new features implemented, mu-term has been able to participate
in the International Competition of Termination Tools in the category of TRS
Equational in 2010. This is not the first implementation for proving termi-
nation of rewriting modulo axioms: CiME [CMMU03] is able to prove AC-
termination of TRSs, and AProVE [GST06] is able to deal with termination of
rewriting modulo equations satisfying some restrictions. However, in the latest
editions of the competition, CiME did not participate and AProVE is the only
termination tool that has participated in this category from its first edition
in 2004. The TPDB contains 71 examples in the equational category1. In the
2010 edition, there were only two participants: AProVE and mu-term. In the
case of mu-term, it only implemented the techniques described in [ALM10].
The organization randomly selected a subset of 34 examples from the entire
set. mu-term was able to solve 16 out of them whereas AProVE solved 24.
We considered this result as a good one since only a few techniques had been
implemented to deal with termination modulo axioms and AProVE has imple-
mented specific techniques since 2004. These include an AC-recursive path
order (RPO) with status (3 examples are solved with it) and processors based
on usable rules (the remaining 5 examples are solved using them). There is
no formal publication on any of these techniques. In the case of the AC-RPO,
we suppose that they implement the master thesis of Stephan Falke [Fal04],

1We have used version 7.0.2 of the TPDB.
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mu-term [AGLM11] AProVE mu-term [ALM10]
YES score 59 57 39

YES average time 6.83 sec. 5.12 sec. 40.13 sec.

Table 13.1: Comparison in proofs of termination of A∨C-rewrite theories

although [Rub02] was published before. Recently, we have found out that this
work was adapted to the dependency pair framework in the master thesis of
Christian Stein ([Ste06], in German and not publicly available). However, both
papers are based on the notion of minimality presented in [GK01], which we
have shown is not appropriate. In the case of processors for managing usable
rules, it is essential to deal with a correct notion of minimality [HM04, TGS04].

Nowadays, after implementing the techniques described in [AGLM11],
mu-term has been able to solve 59 examples out of 71, two examples more
than AProVE2. For full details of proofs see:

http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-avc/benchmarks.html

In comparison with the implementation of the techniques developed in
[ALM10], where mu-term was able to solve 39 examples3, thanks to the new
techniques, mu-term has currently become a powerful and competitive tool
for proving termination of A∨C-rewrite theories. The practical results are
summarized in Table 13.1 and the complete set of benchmarks can be consulted
in Appendix B (Chapter 20).

2See the 2008 edition of the termination competition where the entire set of examples
from the category were considered.

3See http://www.dsic.upv.es/~balarcon/WRLA10/benchmarks.html

http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-avc/benchmarks.html
http://www.dsic.upv.es/~balarcon/WRLA10/benchmarks.html


14
Related Work and Contributions

As remarked in the introduction, this is not the first work that tries to use de-
pendency pairs for proving termination of rewriting modulo an equational the-
ory, see [Fal04, GK01, KMU02, Kus00, KNT06, KT01, MU98, MU04, Ste06].
However, our work is, as far as we know, the first one that provides a sat-
isfactory notion of minimal nonterminating term for an A∨C-rewrite theory
R = (Σ, E,R) which can be used to provide a suitable definition of minimal
chain of dependency pairs, which can in turn be used to characterize A∨C-
termination (Theorem 102). In order to substantiate this claim, consider the
AC-rewrite theory R = (Σ, E,R) in Example 84 again. The A∨C-DPs for
R are enumerated in Example 98. These dependency pairs coincide with the
ones which would be computed by, e.g., [Fal04, GK01, KNT06, KT01, Ste06].
Remember that t in Example 84 is minimal in Giesl and Kapur’s sense (Defi-
nition 81); and also according to [Fal04, Ste06], which inherit this notion. We
should then be able to find an infinite minimal chain of DPs starting from t].
According to [Fal04, GK01, KNT06, KT01, Ste06], ‘minimal’ means that σ(vi)
is (ExtE(R), E)-terminating for all pairs ui → vi ∈ DPE(R) in the chain of de-
pendency pairs induced by the substitution σ. However, this is not possible:
the marked version t] of t is F (f(0, 1), f(0, f(1, 2))), which is an (ExtE(R), E)-
terminating term. However, after some E] ∪E-equivalence steps (where E] is
applied only at root position), we would be able to apply one of the rules in
DPE(R). Note, however, that no rule u → v ∈ DPE(R) except (10.3) has a
right-hand side v that can be rewritten (after instantiation into σ(v)) into an
instance σ(u′) of the left-hand side u′ of any other pair in DPE(R) by means
of (ExtE(R), E] ∪ E)-rewriting steps. This means that only the dependency
pair (10.3) could be used in any infinite minimal chain of dependency pairs
starting from t]. But such a chain would start as follows:

F (f(0, 1), f(0, f(1, 2))) lE],E F (f(0, 0), f(1, f(1, 2)))→(10.3) F (f(0, f(1, 2)), f(1, f(1, 2)))
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where F (f(0, f(1, 2)), f(1, f(1, 2))) as showed in Example 84, contains a sub-
term f(1, f(1, 2)), which is (ExtE(R), E)-nonterminating. Therefore, this chain
of dependency pairs is not minimal. We conclude that, according to the no-
tion of minimal chain in the aforementioned papers, there is no minimal chain
of pairs starting from t]. This means that no sound approach to proving
AC-termination on the basis of such notion of minimal chain is possible.

We have introduced the notion of stably minimal term (Definition 86)
which overcomes these problems (Proposition 95 and Theorem 96) and leads to
an appropriate characterization of A∨C-termination as the absence of infinite
minimal chains of A∨C-DPs (Definitions 97 and 99, and Theorem 102).

Comparing our DPs with the ones in [KMU02] we would get the same set
of pairs for its “unmarked version”, which lose the essence of the dependency
pairs since it does not lead with tuple symbols and therefore, monotonicity
cannot be disregarded in the strict order. In the case of the two “marked
versions” they affirm that these procedures obtain more dependency pairs
than the unmarked version and therefore, more than our approach. Moreover,
they allow tuple symbols not only at root position losing again, the common
use of dependency pairs.

Furthermore, we note that [KNT06, KT01, KMU02] deal with AC-rewrite
theories only, and that [GK01], which considers more general rewrite theories
E including A∨C-theories, does not cover our work in a second respect: when
purely associative theories are considered (i.e., rewrite theories R = (Σ, E,R)
such that Ef ⊆ {Af} for all f ∈ Σ); then Giesl and Kapur’s technique requires
the computation of instances of the rules in ExtE(R) for which the computation
of all the E-unifiers uniE(v, l) of v and l for the rules l → r in ExtE(R) and
equations u = v ∈ E or v = u ∈ E is required. It is well-known, however, that
the E-unification problem for associative theories E is infinitary, which means
that uniE(v, l) is not guaranteed to be finite, in general. In sharp contrast,
we do not have to do that to deal with purely associative rewrite theories R.

Our second main contribution is the formalization of an A∨C-dependency
pair framework (Definitions 103 and 104) which, on the basis of the previously
developed theory, can be used to develop automatic tools for proving termi-
nation of A∨C-rewrite theories (Theorem 105). Several important processors
have been developed as well: the SCC processor (Theorem 111), the processor
that restricts the set of F axioms (Theorem 113), the reduction pair processor
(Theorem 115), and the reduction pair processor with usable rules and equa-
tions (Theorem 118). We have implemented the techniques described here
in the termination tool mu-term and we have developed some benchmarks,
showing that our A∨C-DP Framework is currently the most powerful approach
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for proving termination of A∨C-rewrite theories. As we have stated, the im-
plementation of the techniques in [ALM10] allowed us to participate in the
termination competition in the equational category in the TPDB and, there-
fore, provide mu-term with the ability to prove termination modulo axioms.
Moreover, thanks to the improvements in [AGLM11], mu-term is a powerful
tool for proving termination of A∨C-rewrite theories and, as far as we know, no
tool is able to solve more examples from the equational category of the TPDB.
Even though much work remains ahead in terms of further developing the new
A∨C-dependency pair framework, we also have to take into consideration that
our framework is applicable to an even wider range of rewrite theories, which
can be transformed into A∨C-theories by nontermination-preserving trans-
formations [DLM09b, DLM+08, LM09]. Nevertheless, appropriate reduction
orders that are well-suited for use in the reduction pair processor should be
investigated. It would also be very useful to explore how the requirements on
E can be relaxed to handle even more general sets of axioms. Following our
approach, we could be able to manage every equational theory E such that E is
regular and linear (to ensure the equivalence between →ExtE(R),E and →R/E)
and contains noncollapsing equations (and maybe, some additional require-
ment on root symbols). Obviously, this let aside the identity axiom, which is
very used in Maude. However, there exists a transformation for dealing with
it in [DLM09b]. Disproving termination of A∨C-rewrite theories is also an
interesting future work to be investigated within the framework.
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15
Termination Tools for Maude

programs

15.1 mu-term 5.0

mu-term was originally designed to prove termination of CSR [Luc04]. How-
ever, the latest version, mu-term 5.0 [AGLN10] includes much more than
that. We haver worked hard in the last years not only to improve its ability
to prove termination of CSR but also to verify a number of other termination
properties of (variants of) TRSs.

In contrast to transformational approaches which translate termination
problems into a classical termination problem for TRSs, we have developed
specific techniques to deal with termination of CSR, innermost CSR, order-
sorted rewriting and rewriting modulo specific axioms (associative or commu-
tative) by using dependency pairs. Our benchmarks show that direct methods
lead to simpler, faster and more successful proofs. Moreover, mu-term 5.0 has
been rewritten to embrace the dependency pair framework which is specially
well-suited for mechanizing proofs of termination.

mu-term 5.0 consists of 47 Haskell modules with more than 19000 lines of
code. Details about the implementation can be found in [Gut10, Chapter 7].

A web-based interface and compiled versions in several platforms are avail-
able at the mu-term 5.0 web site.

http://zenon.dsic.upv.es/muterm/

Its use is really simple: the user introduces a program in the text box
in TPDB or OBJ/Maude format or uploads a file in any of those formats.
Then, fix a timeout (by default 5 seconds) and press the button ‘Prove au-
tomatically”. That is all. This allows inexpert users to prove automatically
termination by means of the automatic option. This is very convenient for
teaching purposes, for instance.

http://zenon.dsic.upv.es/muterm/
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In the DP framework, a strategy is applied to an initial (CSR, innermost
CSR, . . . ) problem and returns a proof tree. This proof tree is later evaluated
following a tree evaluation strategy (normally, breadth-first search).

The strategy of mu-term 5.0 is defined by using the following combinators:

• And: sequential combination of two processors.

• Or: adds a decision point.

• Iterate: applies a strategy until a fix point is reached (success or a don’t
know node is reached).

With small differences depending on the particular kind of problem, we do the
following:

1. We check the system for extra variables (at active positions) in the right-
hand side of the rules.

2. We check whether the system is innermost equivalent. If it is true, then
we transform the problem into an innermost one.

3. Then, we obtain the corresponding dependency pairs, obtaining a DP
problem. And now, recursively:

(a) Decision point between infinite processors and the SCC processor.

(b) Subterm criterion processor.

(c) Reduction pair (RP) processor with linear polynomials (LPoly) and
coefficients in N2 = {0, 1, 2}.

(d) RP processor with LPoly and coefficients in Q2 = {0, 1, 2, 1
2} and

Q4 = {0, 1, 2, 3, 4, 1
2 ,

1
4} (in this order).

(e) RP processor with simple mixed polynomials (SMPoly) and coeffi-
cients in N2.

(f) RP processor with SMPoly and rational coefficients in Q2.

(g) RP processor with 2-square matrices with entries in N2 and Q2.

(h) Transformation processors (only twice to avoid nontermination of
the strategy): instantiation, forward instantiation, and narrowing.

4. If the techniques above fail, then we use RPO (for standard rewriting or
CSR).
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The explanation of processors not given here can be found in [AGL10]. Note
also that all processors are new with respect to mu-term 4.3 [AGIL07].

More details about these experimental results in all considered termination
properties can be found here:

http://zenon.dsic.upv.es/muterm/benchmarks/index.html

Therefore, mu-term 5.0 is no more a tool for proving termination of CSR
only: We can say now that it has evolved to become a powerful termination
tool which is able to prove termination of a wide range of interesting properties
of rewriting with important applications to prove termination of programs
in sophisticated rewriting-based programming languages like Maude or OBJ*
(as we have shown in this Thesis). In fact, apart from MTT, it is the only
termination tool that accepts programs in OBJ/Maude syntax.

15.2 MTT: The Maude Termination Tool

The MTT [DLM08a] is a tool that checks the termination of Maude equa-
tional specifications. The last version of MTT can not only check member-
ship equational theories (like previous versions) but also the termination of
rewrite theories. There are still several restrictions in the Maude specification:
built-ins cannot be used and attributes owise and identity elements are not
supported. MTT takes Maude modules as inputs and tries to prove them ter-
minating by using a number of existing termination tools as backends. As we
have mentioned, proving termination of expressive equational programs that
have the features of Maude is nontrivial, since some of these are not supported
by standard termination methods and tools. Yet, the use of such features
may be essential to ensure termination. MTT uses the theory transformations
described in [DLM+04, DLM+08, LM09] and summarized in Section 1.2, to
bridge the gap between expressive equational programs and conventional ter-
mination tools for term rewriting systems, which are used as backends. It
can send the transformed termination problems to any tool that supports the
TPDB syntax currently shared by many such tools. In previous versions, MTT
was able to interact with CiME, AProVE, and mu-term, but now other formal
tools, such as TTT, Termptation, etc. can be considered as backend as well.
The tool implementation distinguishes two parts:

• a reflective Maude specification implements the theory transformations
described in [DLM+04, DLM+08, LM09], and

• a Java application connects Maude to some term rewriting termination
tools and provides a graphical user interface.

http://zenon.dsic.upv.es/muterm/benchmarks/index.html
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AProVE mu-term

YES score 18/27 12/27

Table 15.1: Comparison in proofs of termination of transformed Maude pro-
grams

mu-term 5.0 AProVE

YES score 20/27 18/27

Table 15.2: Comparison in proofs of termination of transformed Maude pro-
grams with mu-term 5.0

The Java application is in charge of sending the Maude specification provided
by the user to Maude to perform transformations. Depending on the selections,
one transformation or another will be accomplished. The resulting unsorted
unconditional rewriting system obtained from these transformations is proved
terminating by using the above-mentioned tools as backends.

A comparison over a set of Maude examples can be found in:

http://www.lcc.uma.es/~duran/MTT/mtt15/Samples/index.html

There, several Maude examples are transformed by using the transforma-
tions described in [DLM+04, DLM+08, LM09] and summarized in Section 1.2.
This process generates 27 examples that are sent to AProVE and mu-term to
prove their termination. The results showed in this web are summarized in
Table 15.1.

However, these results correspond to a previous version of mu-term, where
the treatment of A∨C-rewrite theories was not developed. Now, taking into
account the new features of mu-term 5.0, we have repeated the benchmarks
and the results are much better.

Complete details can be found in

http://www.dsic.upv.es/~balarcon/Thesis/MTT/benchmarks.html

and in Appendix C (Chapter 21). A summary is shown in Table 15.2.
With mu-term 5.0, we solve 8 examples more than with the previous

version and, moreover, 2 examples more than AProVE. Therefore, nowadays,
mu-term seems to be the most powerful tool for being used as backend for
MTT.

http://www.lcc.uma.es/~duran/MTT/mtt15/Samples/index.html
http://www.dsic.upv.es/~balarcon/Thesis/MTT/benchmarks.html
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The application, its source code, and all the related information concerning
MTT are available in

http://www.lcc.uma.es/~duran/MTT

Therefore, any improvement on these termination tools (in our specific
case, in mu-term) can be useful for MTT and, consequently, for proving
termination of Maude programs. In the near future, MTT will be adapted to
take advantage of the new features implemented in mu-term when proofs of
termination of Maude programs are attempted [Dur11].

http://www.lcc.uma.es/~duran/MTT
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16
Conclusions

Proving termination of programs has been a hard and fashionable task in
recent years. In this thesis, we have addressed the challenge of proving termi-
nation of Maude programs.

Although several papers have previously studied how to deal with termina-
tion of a subset of Maude programs, all of them followed a transformational ap-
proach and the practical results were not really satisfactory. Therefore, there
was an important need to develop direct methods for proving termination of
Maude programs. In the last few years, we have worked to extend the DP
framework to verify a number of termination properties of variants of TRSs,
most of which are able to represent inherent features of Maude programs.

With regard to the default computational mechanism, the Maude strategy
is call by value and admits syntactic annotations used as replacement restric-
tions to become ‘more lazy’, thus (hopefully) avoiding nontermination. Fol-
lowing this, we have developed Part I of this thesis, where we have dealt with
proving termination of innermost context-sensitive rewriting that covers these
features of Maude programs. We have investigated the structure of infinite
innermost context-sensitive rewrite sequences since this analysis is essential to
provide an appropriate definition of innermost context-sensitive dependency
pair, and the related notions of innermost µ-chains, etc. that have allowed us
to define our ICSDP framework. Techniques for proving termination of inner-
most CSR were first investigated following a transformational approach. Thus,
our framework is the first direct method for proving termination of ICSR. We
have defined several specific processors and implemented our results in the ter-
mination tool mu-term showing that our framework dramatically improves
the performance of previous transformational methods.

With respect to specific features of Maude programs, we have addressed the
declaration of equational attributes, specifically, associative and/or commuta-
tive theories. Computationally, this corresponds to rewriting modulo such
equations. Even though there were several works and even implementations
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for proving termination of several combinations of equational theories, we have
provided an appropriate notion of minimal term and of chain for A∨C-theories
that has been used to develop an A∨C-dependency pair framework for prov-
ing termination of A∨C-rewrite theories for the first time. After implementing
the techniques described in Part II, mu-term has become a powerful tool for
proving termination of A∨C-rewrite theories.

Therefore, although Maude incorporates many other features that must
be taken into account to fully capture termination of its programs, this the-
sis constitutes a great step forward in dealing with some of them in a very
successful way.

With regard to future work, we think interesting to address the following
issues and problems:

• Improve the estimation of the A∨C graph in the presence of associative
axioms.

• Investigate the use of argument filterings [KNT99] in the processor of
reduction pairs with usable rules and equations.

• Investigate proofs of innermost non-µ-termination and
A∨C-nontermination.

• Integrate the results about conditional termination of [SG10] in our
framework for proving termination of Maude programs.

Obviously, we also plan to integrate Part I and Part II, i.e., investigate the
(innermost) termination of A∨C-rewrite theories having replacement restric-
tions since, frequently, syntactic annotations and attributes come together in
Maude programs. This is the first main goal and after that, we would like
to extend it to order-sorted rewriting following [LM08] and to investigate the
integration with conditions and memberships. There is no doubt that these
objectives are very ambitious and if it is possible, we will try to follow the
same methodology: direct methods inside the DP framework.



Conclusiones

Probar terminación de programas es una tarea dura y muy de moda en los
últimos años. En esta tesis, nos hemos centrado en probar terminación de
programas Maude.

Aunque varios trabajos han estudiado con anterioridad como manejar ter-
mianción de un subconjunto de programas Maude, todos ellos segúıan una
aproximación transformacional y los resultados prácticos no hab́ıan sido real-
mente satisfactorios. Por lo tanto, exist́ıa una necesidad importante de desar-
rollar métodos directos para probar terminación de programas Maude. En los
últimos años, hemos trabajado extendiendo el marco de pares de dependencia
para verificar varias propiedades de terminación de variantes de sistemas de
reescritura de términos, la mayoŕıa capaz de representar caracteŕısticas inher-
entes de los programas Maude.

Con respecto al mecanismo computacional por defecto, la estrategia de
Maude es de llamada por valor y admite anotaciones sintácticas usadas como
restricciones de reemplazamiento para convertirlo en más perezoso evitando
aśı (con suerte) la no terminación. Siguiendo esto, hemos desarrollado la Parte
I de esta tesis, donde hemos llevado a cabo la verificación de la terminación
de la reescritura sensible al contexto innermost (RSCI), que cubre estas car-
acteŕısticas de los programas Maude. Hemos investigado la estructura de las
secuencias infinitas de reescritura sensible al contexto innermost ya que este
análisis es esencial para llegar a una definición apropiada de par de dependen-
cia sensible al contexto innermost y las correspondientes nociones de µ-cadena
innermost, etc. que nos han permitido definir nuestro marco. Técnicas para
probar terminación de la reescritura sensible al contexto innermost han sido in-
vestigadas con anterioridad siguiendo una aproximación transformacional. Por
lo tanto, nuestro marco es el primer método directo para probar terminación
de la RSCI. Hemos definido varios procesadores espećıficos e implementado
nuestros resultados en la herramienta de termianción mu-term demostrando
que nuestro marco, mejora dramáticamente el rendimiento de los métodos
transformacionales anteriores.

Con respecto a caracteŕısticas espećıficas de programas Maude, nos hemos
centrado en la declaración de atributos ecuacionales, en concreto, teoŕıas aso-
ciativas y/o conmutativas. Computacionalmente, se corresponde con reescrit-
ura módulo esas ecuaciones. A pesar de que exist́ıan varios trabajos e incluso
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implementaciones para probar terminación de varias combianciones de teoŕıas
ecuacionales, hemos proporcionado, por primera vez, una noción apropiada
de término minimal y cadena para teoŕıas A∨C que puede ser usada para
desarrollar un marco de pares de dependencia para probar terminación de
teoŕıas de reescritura A∨C. Después de implementar las técnicas descritas
en la Parte II, mu-term se ha convertido en una potente herramienta para
probar terminación de teoŕıas de reescritura A∨C.

Por lo tanto, aunque Maude incorpora muchas otras caracteŕısticas que
tendŕıan que deben ser tenidas en cuenta para capturar completamente la
terminación de sus programas, esta tesis constituye un gran paso adelante
para tratar con algunas de ellas de un modo muy satisfactorio.

En relación con el trabajo futuro, creemos que seŕıa interesante investigar
los siguientes temas:

• Mejorar la estimación del grafoA∨C en presencia de axiomas asociativos.

• Investigar el uso del filtrado de argumentos [KNT99] en el procesador de
pares de reducción con reglas y ecuaciones usables.

• Investigar pruebas de no µ-terminación innermost y no terminación
A∨C.

• Integrar los resultados sobre terminación condicional de [SG10] en nue-
stro marco para probar terminación de Maude.

Obviamente, también planeamos integrar Parte I y II, es decir, investigar la
terminación innermost de teoŕıas A∨C con restricciones de reemplazamiento
ya que, frecuentemente, las anotaciones sintácticas y los atributos aparecen
juntos en los programas Maude. Este es el primer objetivo y principal y,
despues de ello, nos gustaŕıa extender el marco a la reescritura con tipos
siguiendo [LM08] e investigar su integración con condiciones y merberships. No
hay duda que estos objetivos son muy ambiciosos y, si es posible, intentaremos
seguir la misma metodoloǵıa que hasta ahora: métodos directos dentro del
marco de los pares de dependencia.



Conclusions

Provar terminació de programes és una tasca dura i molt de moda en els últims
anys. En aquesta tesi, ens hem centrat a provar terminació de programes
Maude.

Encara que diversos treballs han estudiat amb anterioritat com abordar la
terminació d’un subconjunt de programes Maude, tots ells seguien una aprox-
imació transformacional i els resultats pràctics són realment satisfactoris. Per
tant, existeix una necessitat important de desenvolupar mètodes directes per
a provar terminació de programes Maude. En els últims anys, hem treballat
intentant estendre el marc de parells de dependència per a verificar diverses
propietats de terminació de variants de sistemes de reescriptura de termes, la
majoria capaç de representar caracteŕıstiques inherents dels programes Maude.

Pel que fa al mecanisme computacional per defecte, l’estratègia de Maude
és de crida per valor i admet anotacions sintàctiques usades com restriccions
de reemplaament per a convertir-lo en mes peresós evitant aix́ı (amb sort) la
no terminació. Seguint açó, hem desenvolupat la Part I d’aquesta tesi, on
hem portat a terme la verificació de la terminació de la reescriptura sensi-
ble al context innermost (RSCI), que cobreix aquestes caracteŕıstiques dels
programes Maude. Hem investigat l’estructura de les seqüències infinites de
reescriptura sensible al context innermost ja que aquesta anàlisi és essencial
per arribar a una definició apropiada de parell de dependència sensible al con-
text innermost i les corresponents nocions de µ-cadena innermost, etc. que
ens han permès definir el nostre marc. Tècniques per a provar terminació de
la reescriptura sensible al context innermost han estat investigades amb an-
terioritat seguint una aproximació transformacional. Per tant, el nostre marc
és el primer mètode directe per a provar terminació de la RSCI. Hem definit
diversos processadors espećıfics i implementat els nostres resultats en l’eina de
terminació mu-term demostrant que el nostre marc millora dramàticament el
rendiment dels mètodes transformacionals anteriors.

Pel que fa a caracteŕıstiques espećıfiques de programes Maude, ens hem
centrat en la declaració d’atributs equacionals, en concret, teories associatives
i/o commutatives. Computacionalment, es correspon amb reescriptura mòdul
les equacions. A pesar que existien diversos treballs i fins i tot implementacions
per a provar terminació de diverses combinacions de teories de reescriptura,
hem proporcionat, per primera vegada, una noció apropiada de terme minimal
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i cadena per a teories A∨C que pot ser usada per a desenvolupar un marc de
parells de dependència per a provar terminació de teories de reescriptura A∨C.
Després d’implementar les tècniques descrites en la Part II, mu-term s’ha
convertit en una potent eina per a provar terminació de teories de reescriptura
A∨C.

Per tant, encara que Maude incorpora moltes altres caracteŕıstiques que
tindrien que ser tingudes en compte per a capturar completament la terminació
dels seus programes, aquesta tesi constitueix un gran pas avant per a tractar
amb algunes d’elles d’una manera molt satisfactòria.

En relació amb el treball futur, creiem que seria interessant investigar els
temes següents:

• Millorar l’estimació del grafo A∨C en presència d’axiomes associatius.

• Investigar l’ús del filtrat d’arguments [KNT99] en el processador de par-
ells de reducción amb regles i equacions usables.

• Investigar proves de no µ-terminació innermost i no terminació A∨C.

• Integrar els resultats sobre terminació condicional de [SG10] en el nostre
marc per a provar terminació de Maude.

Òbviament, també planegem integrar Part I i II, és a dir, investigar la
terminació innermost de teories A∨C amb restriccions de reemplaament ja
que, sovint, les anotacions sintàctiques i els atributs apareixen junts en els
programes Maude. Este és el primer objectiu i principal i, després d’això,
ens agradaria estendre el marc a la reescriptura amb tipus seguint [LM08] i
investigar la seua integració amb condicions i merberships. No hi ha dubte
que estos objectius són molt ambiciosos i, si és possible, intentarem seguir la
mateixa metodologia que fins ara: mètodes directes dins del marc dels parells
de dependència.
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[MU98] C. Marché, X. Urbain. Termination of Associative-
Commutative Rewriting by Dependency Pairs, In T. Nipkow,
editor, Proc of 9th International Conference on Rewriting Tech-
niques and Applications, RTA’98, volume 1379 of LNCS, pages
241–255. Springer-Verlag, 1998.
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Abstract. Termination is one of the most interesting problems when
dealing with context-sensitive rewrite systems. Although there is a good
number of techniques for proving termination of context-sensitive rewrit-
ing (CSR), the dependency pair approach, one of the most powerful tech-
niques for proving termination of rewriting, has not been investigated in
connection with proofs of termination of CSR. In this paper, we show
how to use dependency pairs in proofs of termination of CSR. The im-
plementation and practical use of the developed techniques yield a novel
and powerful framework which improves the current state-of-the-art of
methods for proving termination of CSR.

Keywords: Dependency pairs, term rewriting, program analysis,
termination.

1 Introduction

A replacement map is a mapping μ : F → P(N) satisfying μ(f) ⊆ {1, . . . , k}, for
each k-ary symbol f of a signature F [Luc98]. We use them to discriminate the
argument positions on which the rewriting steps are allowed. In this way, for a
given Term Rewriting System (TRS [Ohl02, Ter03]), we obtain a restriction of
rewriting which we call context-sensitive rewriting (CSR [Luc98, Luc02]). In CSR
we only rewrite μ-replacing subterms: ti is a μ-replacing subterm of f(t1, . . . , tk)
if i ∈ μ(f); every term t (as a whole) is μ-replacing by definition. With CSR
we can achieve a terminating behavior with non-terminating TRSs, by pruning
(all) infinite rewrite sequences. Proving termination of CSR has been recently
recognized as an interesting problem with several applications in the fields of
term rewriting and programming languages (see [DLMMU06, GM04, Luc02,
Luc06]).

Several methods have been developed for proving termination of CSR under
a replacement map μ for a given TRS R (i.e., for proving the μ-termination
of R). In particular, a number of transformations which permit to treat ter-
mination of CSR as a standard termination problem have been described (see
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[GM04, Luc06] for recent surveys). Direct techniques like polynomial orderings
and the context-sensitive version of the recursive path ordering have also been
investigated [BLR02, GL02, Luc04b, Luc05]. Up to now, however, the depen-
dency pairs method [AG00, GAO02, GTS04, HM04], one of the most powerful
techniques for proving termination of rewriting, has not been investigated in
connection with proofs of termination of CSR. In this paper, we address this
problem.

Roughly speaking, given a TRS R, the dependency pairs associated to R
conform a new TRS DP(R) which (together with R) determines the so-called
dependency chains whose finiteness or infiniteness characterize termination ofR.
Given a rewrite rule l → r, we get dependency pairs l� → s� for all subterms s of
r which are rooted by a defined symbol1; the notation t� for a given term t means
that the root symbol f of t is marked thus becoming f � (often just capitalized:
F ). A chain of dependency pairs is a sequence ui → vi of dependency pairs
such that σ(vi) rewrites to σ(ui+1) for some substitution σ and i ≥ 1. The
dependency pairs can be presented as a dependency graph, where the absence
of infinite chains can be analyzed by considering the cycles in the graph. These
basic intuitions are valid for CSR, although some important differences arise.

Example 1. Consider the following TRS R [GM99, Example 1]:
c -> a f(a,b,X) -> f(X,X,X)

c -> b

together with μ(f) = {3}. As shown by Giesl and Middeldorp, among all existing
transformations for proving termination of CSR, only the complete Giesl and
Middeldorp’s transformation [GM04] (yielding a TRS Rμ

C) could be used in this
case, but no concrete proof of termination for Rμ

C is known yet. Furthermore,
Rμ

C has 13 dependency pairs and the dependency graph contains many cycles.
In contrast, R has only one context-sensitive (CS-)dependency pair

F(a,b,X) -> F(X,X,X)

and the corresponding dependency graph has no cycle (due to the replacement
restrictions, since we extend μ by μ(F) = {3}). As we show below, a direct (and
automatic) proof of μ-termination of R is easy now.

Basically, the subterms in the right-hand sides of the rules which are considered
to build the CS-dependency pairs must be μ-replacing terms. However, this is
not sufficient to obtain a correct approximation. The following example shows
the need of a new kind of dependency pairs.

Example 2. Consider the following TRS R:
a -> c(f(a))

f(c(X)) -> X

together with μ(c) = ∅ and μ(f) = {1}. There is no μ-replacing subterm s
in the right-hand sides of the rules which is rooted by a defined symbol. Thus,
there is no ‘regular’ dependency pair. We could wrongly conclude that R is
μ-terminating, which is not true:
1 A symbol f is said to be defined in a TRS R if R contains a rule f(l1, . . . , lk) → r.
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f(a) ↪→μ f(c(f(a))) f(a) ↪→μ · · ·
Indeed, we must add the following dependency pair

F(c(X)) -> X

which would not be allowed in Arts and Giesl’s approach [AG00] because the
right-hand side is a variable.

After some preliminaries in Section 2, Section 3 introduces the general framework
to compute and use context-sensitive dependency pairs for proving termination of
CSR. The introduction of a new kind of dependency pairs (as in Example 2) leads
to a new notion of context-sensitive dependency chain. We prove the correctness
and completeness of the new approach, i.e., our dependency pairs approach fully
characterize termination of CSR. We also show how to use term orderings for
proving termination of CSR by means of the new approach. Furthermore, we are
properly extending Arts and Giesl’s approach: whenever μ(f) = {1, . . . , k} for
all k-ary symbols f ∈ F , CSR and ordinary rewriting coincide; coherently, our
results boil down into the standard results for the dependency pair approach.
Section 4 shows how to compute the (estimated) context-sensitive dependency
graph and investigates how to use term orderings together with the dependency
graph to achieve automatic proofs of termination of CSR within the dependency
pairs approach. Section 5 adapts Hirokawa and Middeldorp’s subterm criterion
[HM04] to CSR. Section 6 concludes.

2 Preliminaries

Throughout the paper, X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity given
by a mapping ar : F → N. The set of terms built from F and X is T (F ,X ).
Positions p, q, . . . are represented by chains of positive natural numbers used to
address subterms of t. Given positions p, q, we denote their concatenation as p.q.
If p is a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}. We denote the
topmost position by Λ. The set of positions of a term t is Pos(t). Positions of
non-variable symbols in t are denoted as PosF(t), and PosX (t) are the positions
of variables. The subterm at position p of t is denoted as t|p and t[s]p is the term
t with the subterm at position p replaced by s. We write t� s if s = t|p for some
p ∈ Pos(t) and t � s if t � s and t �= s. The symbol labelling the root of t is
denoted as root(t). A context is a term C ∈ T (F ∪ {�},X ) with zero or more
‘holes’ � (a fresh constant symbol).

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ),
l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the
right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of rewrite
rules. Given R = (F , R), we consider F as the disjoint union F = C � D of
symbols c ∈ C, called constructors and symbols f ∈ D, called defined functions,
where D = {root(l) | l → r ∈ R} and C = F −D.

Context-sensitive rewriting. A mapping μ : F → P(N) is a replacement map
(or F -map) if ∀f ∈ F , μ(f) ⊆ {1, . . . , ar(f)} [Luc98]. Let MF be the set of all
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F -maps (or MR for the F -maps of a TRS (F , R)). A binary relation R on terms
is μ-monotonic if t R s implies f(t1, . . . , ti−1, t, . . . , tk) R f(t1, . . . , ti−1, s, . . . , tk)
for all f ∈ F , i ∈ μ(f), and t, s, t1, . . . , tk ∈ T (F ,X ). The set of μ-replacing
positions Posμ(t) of t ∈ T (F ,X ) is: Posμ(t) = {Λ}, if t ∈ X and Posμ(t) =
{Λ} ∪ ⋃

i∈μ(root(t)) i.Posμ(t|i), if t �∈ X . The set of replacing variables of t is
Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), t|p = x}. The μ-replacing subterm
relation �μ is given by t �μ s if there is p ∈ Posμ(t) such that s = t|p. We write
t�μ s if t�μ s and t �= s. In context-sensitive rewriting (CSR [Luc98]), we (only)
contract replacing redexes: t μ-rewrites to s, written t ↪→μ s (or t ↪→R,μ s and
even t ↪→ s), if t

p→R s and p ∈ Posμ(t). A TRS R is μ-terminating if ↪→μ is
terminating. A term t is μ-terminating if there is no infinite μ-rewrite sequence
t = t1 ↪→μ t2 ↪→μ · · · ↪→μ tn ↪→μ · · · starting from t. A pair (R, μ) where R is a
TRS and μ ∈ MR is often called a CS-TRS.

Dependency pairs. Given a TRS R = (F , R) = (C �D, R) a new TRS DP(R) =
(F �, D(R)) of dependency pairs forR is given as follows: if f(t1, . . . , tm) → r ∈ R
and r = C[g(s1, . . . , sn)] for some defined symbol g ∈ D and s1, . . . , sn ∈
T (F ,X ), then f �(t1, . . . , tm) → g�(s1, . . . , sn) ∈ D(R), where f � and g� are
new fresh symbols (called tuple symbols) associated to defined symbols f and
g respectively [AG00]. Let D� be the set of tuple symbols associated to sym-
bols in D and F � = F ∪ D�. As usual, for t = f(t1, . . . , tk) ∈ T (F ,X ), we
write t� to denote the marked term f �(t1, . . . , tk). Conversely, given a marked
term t = f �(t1, . . . , tk), where t1, . . . , tk ∈ T (F ,X ), we write t� to denote the
term f(t1, . . . , tk) ∈ T (F ,X ). Given T ⊆ T (F ,X ), let T � be the set {t� |
t ∈ T }.

A reduction pair (�, �) consists of a stable and weakly monotonic quasi-
ordering �, and a stable and well-founded ordering � satisfying either � ◦ �⊆�

or � ◦ � ⊆�. Note that monotonicity is not required for �.

3 Context-Sensitive Dependency Pairs

Let M∞,μ be a set of minimal non-μ-terminating terms in the following sense: t
belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing subterm
s of t (i.e., t �μ s) is μ-terminating. Obviously, if t ∈ M∞,μ, then root(t) is
a defined symbol. The following proposition establishes that, given a minimal
non-μ-terminating term t ∈ M∞,μ, there are two ways for an infinite μ-rewrite
sequence to proceed. The first one is by using ‘visible’ parts of the rules which
correspond to μ-replacing subterms in the right-hand sides which are rooted by
a defined symbol. The second one is by showing up ‘hidden’ non-μ-terminating
subterms which are activated by migrating variables in a rule l → r, i.e., variables
x ∈ Varμ(r) − Varμ(l) which are not μ-replacing in the left-hand side l but
become μ-replacing in the right-hand side r.

Proposition 1. Let R = (C � D, R) be a TRS and μ ∈ MR. Then for all
t ∈ M∞,μ, there exist l → r ∈ R, a substitution σ and a term u ∈ M∞,μ such
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that t
>Λ
↪→∗ σ(l) Λ→ σ(r) �μ u and either (1) there is a μ-replacing subterm s of r

such that u = σ(s), or (2) there is x ∈ Varμ(r)− Varμ(l) such that σ(x) �μ u.

Proposition 1 motivates the following.

Definition 1. Let R = (F , R) = (C � D, R) be a TRS and μ ∈ MR. We define
DP(R, μ) = DPF (R, μ) ∪ DPX (R, μ) to be the set of context-sensitive depen-
dency pairs (CS-DPs) where:

DPF(R, μ) = {l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l ��μ s}

and DPX (R, μ) = {l� → x | l → r ∈ R, x ∈ Varμ(r) − Varμ(l)}. We extend
μ ∈ MF into μ� ∈ MF� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f) if f ∈ D.

A rule l → r of a TRS R is μ-conservative if Varμ(r) ⊆ Varμ(l), i.e., it does not
contain migrating variables; R is μ-conservative if all its rules are (see [Luc06]).
The following result is immediate from Definition 1.

Proposition 2. If R is a μ-conservative TRS, then DP(R, μ) = DPF(R, μ).

Therefore, in order to deal with μ-conservative TRSs R we only need to consider
the ‘classical’ dependency pairs in DPF(R, μ).

Example 3. Consider the TRS R:
g(X) -> h(X) h(d) -> g(c) c -> d

together with μ(g) = μ(h) = ∅ [Zan97, Example 1]. DP(R, μ) is:
G(X) -> H(X) H(d) -> G(c)

with μ�(G) = μ�(H) = ∅.

If the TRS R contains non-μ-conservative rules, then we also need to consider
dependency pairs with variables in the right-hand side.

Example 4. Consider the TRS R [Zan97, Example 5]:
if(true,X,Y) -> X f(X) -> if(X,c,f(true))

if(false,X,Y) -> Y

with μ(if) = {1, 2}. Then, DP(R, μ) is:
F(X) -> IF(X,c,f(true)) IF(false,X,Y) -> Y

with μ�(F) = {1} and μ(IF) = {1, 2}.

Now we introduce the notion of chain of CS-DPs.

Definition 2 (Chain of CS-DPs). Let (R, μ) be a CS-TRS. Given P ⊆
DP(R, μ), an (R,P , μ�)-chain is a finite or infinite sequence of pairs ui → vi ∈
P, for i ≥ 1 such that there is a substitution σ satisfying both:

1. σ(vi) ↪→∗
R,μ� σ(ui+1), if ui → vi ∈ DPF (R, μ), and

2. if ui → vi = ui → xi ∈ DPX (R, μ), then there is si ∈ T (F ,X ) such that
σ(xi) �μ si and s�

i ↪→∗
R,μ� σ(ui+1).
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for i ≥ 1. Here, as usual we assume that different occurrences of dependency
pairs do not share any variable (renamings are used if necessary).

An (R,P , μ�)-chain with u1 → v1 ∈ P as heading dependency pair is called
minimal if σ(u1)� ∈M∞,μ and all dependency pairs in P occur infinitely often.

Remark 1. When an (R, DP(R, μ), μ�)-chain is written for a given substitution
σ, we write σ(u) ↪→DP(R,μ),μ� σ(v) for steps which use a dependency pair u →
v ∈ DPF (R, μ) but we rather write σ(u) ↪→DP(R,μ),μ� s� for steps which use a
dependency pair u → x ∈ DPX (R, μ), where s is as in Definition 2.

In the following, we use DP1
X (R, μ) to denote the subset of dependency pairs

in DPX (R, μ) whose migrating variables occur on non-μ-replacing immediate
subterms in the left-hand side:

DP1
X (R, μ) = {f �(u1,. . . ,uk) → x ∈ DPX (R, μ) | ∃i, 1≤ i≤k, i �∈ μ(f �), x ∈ Var(ui)}

For instance, DP1
X (R, μ) = DPX (R, μ) for the CS-TRS (R, μ) in Example 4. For

this subset of CS-dependency pairs, we have the following.

Proposition 3. There is no infinite (R,P , μ�)-chain with P ⊆ DP1
X (R, μ).

The following result establishes the correctness of the context-sensitive depe-
nency pairs approach.

Theorem 1 (Correctness). Let R be a TRS and μ ∈ MR. If there is no
infinite (R, DP(R, μ), μ�)-chain, then R is μ-terminating.

As an immediate consequence of Theorem 1 and Proposition 3, we have the
following.

Corollary 1. Let R be a TRS and μ ∈ MR. If DP(R, μ) = DP1
X (R, μ), then R

is μ-terminating.

Example 5. Consider the following TRS R [Luc98, Example 15]
and(true,X) -> X first(0,X) -> nil

and(false,Y) -> false first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))

if(true,X,Y) -> X from(X) -> cons(X,from(s(X)))

if(false,X,Y) -> Y

add(0,X) -> X

add(s(X),Y) -> s(add(X,Y))

with μ(cons) = μ(s) = μ(from) = ∅, μ(add) = μ(and) = μ(if) = {1}, and
μ(first) = {1, 2}. Then, DP(R, μ) = DP1

X (R, μ) is:
ADD(0,X) -> X IF(true,X,Y) -> X

AND(true,X) -> X IF(false,X,Y) -> Y

Thus, by Corollary 1 we conclude the μ-termination of R.

Now we prove that the previous CS-dependency pairs approach is not only cor-
rect but also complete for proving termination of CSR.
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Theorem 2 (Completeness). Let R be a TRS and μ ∈ MR. If R is μ-
terminating, then there is no infinite (R, DP(R, μ), μ�)-chain.

Corollary 2 (Characterization of μ-termination). Let R be a TRS and
μ ∈ MR. R is μ-terminating iff there is no infinite (R, DP(R, μ), μ�)-chain.

In the dependency pairs approach, the absence of infinite chains is checked by
finding a reduction pair (�, �) which is compatible with the rules and the depen-
dency pairs [AG00]. In our setting, we can relax the monotonicity requirements
and use μ-reduction pairs (�, �) where � is a stable and μ-monotonic quasi-
ordering which is compatible with the well-founded and stable ordering �, i.e.,
� ◦ �⊆� or � ◦ �⊆�. The following result shows how to use μ-reduction pairs
for proving μ-termination. This is the context-sensitive counterpart of [AG00,
Theorem 7]; however, a number of remarkable differences arise due to the treat-
ment of the dependency pairs in DPX (R, μ). Basically, we need to ensure that
the quasi-ordering is able to ‘look’ for a μ-replacing subterm inside the instantia-
tion σ(x) of a migrating variable x (hence we require �μ⊆�) and also connect a
term which is rooted by defined symbol f and the corresponding dependency pair
which is rooted by f � (hence the requirement f(x1, . . . , xk) � f �(x1, . . . , xk)).

Theorem 3. Let R = (F , R) be a TRS, μ ∈ MF . Then, R is μ-terminating if
and only if there is a μ-reduction pair (�, �) such that,

1. l � r for all l → r ∈ R,
2. u � v for all u → v ∈ DPF(R, μ), and
3. whenever DPX (R, μ) �= ∅ we have that �μ⊆�, where �μ is the μ-replacing

subterm relation on T (F ,X ), and
(a) u (� ∪ �) v for all u → v ∈ DP1

X (R, μ), u � v for all u → v ∈
DPX (R, μ)− DP1

X (R, μ), and f(x1, . . . , xk) � f �(x1, . . . , xk) for all f ∈
D, or

(b) u(� ∪ �)v for all u→v ∈ DPX (R, μ) and f(x1, . . . , xk)�f �(x1, . . . , xk)
for all f ∈ D.

4 Context-Sensitive Dependency Graph

As noticed by Arts and Giesl, the analysis of infinite sequences of dependency
pairs can be made by looking at (the cycles C of) the dependency graph associated
to the TRS R. The nodes of the dependency graph are the dependency pairs
in DP(R); there is an arc from a dependency pair u → v to a dependency pair
u′ → v′ if there are substitutions σ and θ such that σ(v) →∗

R θ(u′).
Similarly, in the context-sensitive (CS-)dependency graph:

1. There is an arc from a dependency pair u → v ∈ DPF (R, μ) to a depen-
dency pair u′ → v′ ∈ DP(R, μ) if there are substitutions σ and θ such that
σ(v) ↪→∗

R,μ� θ(u′).
2. There is an arc from a dependency pair u → v ∈ DPX (R, μ) to each depen-

dency pair u′ → v′ ∈ DP(R, μ).
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Note that the use of μ� (which restricts reductions on the arguments of the de-
pendency pair symbols f �) is essential: given a set of dependency pairs associated
to a CS-TRS (R, μ), we have less arcs between them due to the presence of such
replacement restrictions.

Example 6. Consider the CS-TRS in Example 1. DP(R, μ) is:
F(a,b,X) -> F(X,X,X)

with μ�(F) = {3}. Although the dependency graph contains a cycle (due to
σ(F(X,X,X)) →∗ σ(F(a,b,Y)) for σ(X) = σ(Y ) = c), the CS-dependency
graph contains no cycle because it is not possible to μ�-reduce θ(F(X,X,X))
into θ(F(a,b,Y)) for any substitution θ (due to μ�(F) = {3}).

As noticed by Arts and Giesl, the presence of an infinite chain of dependency
pairs correspond to a cycle in the dependency graph (but not vice-versa).

Again, as an immediate consequence of Theorem 1 and Proposition 3, we have
the following.

Corollary 3. Let R be a TRS, μ ∈ MR and C ⊆ DP1
X (R, μ) be a cycle. Then,

there is no minimal (R, C, μ�)-chain.

According to this, and continuing Example 6, we conclude the μ-termination of
R in Example 1.

4.1 Estimating the CS-Dependency Graph

In general, the (context-sensitive) dependency graph of a TRS is not computable
and we need to use some approximation of it. Following [AG00], we describe how
to approximate the CS-dependency graph of a CS-TRS (R, μ). Let Capμ be
given as follows: let D be a set of defined symbols (in our context, D = D∪D�):

Capμ(x) = x if x is a variable

Capμ(f(t1, . . . , tk)) =
{

y if f ∈ D

f([t1]
f
1 , . . . , [tk]f1 ) otherwise

where y is intended to be a new, fresh variable which has not yet been used
and given a term s, [s]fi = Capμ(s) if i ∈ μ(f) and [s]fi = s if i �∈ μ(f).
Let Renμ given by: Renμ(x) = y if x is a variable and Renμ(f(t1, . . . , tk)) =
f([t1]

f
1 , . . . , [tk]fk) for evey k-ary symbol f , where given a term s ∈ T �(F ,X ),

[s]fi = Renμ(s) if i ∈ μ(f) and [s]fi = s if i �∈ μ(f). Then, we have an arc from
ui → vi to uj → vj if Renμ(Capμ(vi)) and uj unify; following [AG00], we say
that vi and uj are μ-connectable. The following result whose proof is similar to
that of [AG00, Theorem 21] (we only need to take into account the replacement
restrictions indicated by the replacement map μ) formalizes the correctness of
this approach.

Proposition 4. Let (R, μ) be a CS-TRS. If there is an arc from u → v to
u′ → v′ in the CS-dependency graph, then v and u′ are μ-connectable.
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Example 7. (Continuing Ex. 6) Since Renμ�

(Capμ�

(F(X,X,X))) = F(X,X,Z)
and F(a,b,Y) do not unify, we conclude (and this can be easily implemented)
that the CS-dependency graph for the CS-TRS (R, μ) in Example 1 has
no cycle.

4.2 Checking μ-Termination with the Dependency Graph

For the cycles in the dependency graph, the absence of infinite chains is checked
by finding (possibly different) reduction pairs (�C, �C) for each cycle C [GAO02,
Theorem 3.5]. In our setting, we use μ-reduction pairs.

Theorem 4 (Use of the CS-dependency graph). Let R = (F , R) be a
TRS, μ ∈ MF . Then, R is μ-terminating if and only if for each cycle C in
the context-sensitive dependency graph there is a μ-reduction pair (�C, �C) such
that, R ⊆�C, C ⊆�C ∪ �C, and

1. If C ∩ DPX (R, μ) = ∅, then C ∩ �C �= ∅
2. If C ∩ DPX (R, μ) �= ∅, then �μ⊆�C (where �μ is the μ-replacing subterm

relation on T (F ,X )), and
(a) C ∩ �C �= ∅ and f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C, or
(b) f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C.

Following Hirokawa and Middeldorp, the practical use of Theorem 4 concerns the
so-called strongly connected components(SCCs) of the dependency graph, rather
than the cycles themselves (which are exponentially many) [HM04, HM05]. A
strongly connected component in the (CS-)dependency graph is a maximal cycle,
i.e., it is not contained in any other cycle. According to Hirokawa and Middel-
dorp, when considering an SCC C, we remove from C those pairs u → v sat-
isfying u � v. Then, we recompute the SCCs with the remaining pairs in the
CS-dependency graph and start again (see [HM05, Section 4]). In our setting, it
is not difficult to see that, if the condition f(x1, . . . , xk) �C f �(x1, . . . , xk) for
all f ∈ D holds for a given cycle C, then we can remove from C all dependency
pairs in DPX (R, μ), thus continuing from C− DPX (R, μ).

Example 8. Consider the CS-TRS (R, μ) in Example 4 and DP(R, μ):
F(X) -> IF(X,c,f(true))

IF(false,X,Y) -> Y

with μ�(F) = {1} and μ�(IF) = {1, 2}. These two CS-dependency pairs form the
only cycle in the CS-dependency graph. The μ-reduction pair (≥, >) induced by
the polynomial interpretation

[c] = [true] = 0 [f](x) = x [F](x) = x
[false] = 1 [if](x, y, z) = x + y + z [IF](x, y, z) = x + z

can be used to prove the μ-termination of R.

The use of argument filterings, which is standard in the current formulations
of the dependency pairs method, also adapts without changes to the context-
sensitive setting. This is a simple consequence of [AG00, Theorem 11] (using
μ-monotonicity instead of monotonicity for the quasi-orderings is not a problem).
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5 Subterm Criterion

In [HM04], Hirokawa and Middeldorp introduce a very interesting subterm cri-
terion which permits to ignore certain cycles of the dependency graph.

Definition 3. [HM04] Let R be a TRS and C ⊆ DP(R) such that every depen-
dency pair symbol in C has positive arity. A simple projection for C is a mapping
π that assigns to every k-ary dependency pair symbol f � in C an argument po-
sition i ∈ {1, . . . , k}. The mapping that assigns to every term f �(t1, . . . , tk) ∈
T �(F ,X ) with f � a dependency pair symbol in R its argument position π(f �) is
also denoted by π.

In the following result, for a simple projection π and C ⊆ DP(R, μ), we let
π(C) = {π(u) → π(v) | u → v ∈ C}. Note that u, v ∈ T �(F ,X ), but π(u), π(v) ∈
T (F ,X ).

Theorem 5. Let R be a TRS and μ ∈ MR. Let C ⊆ DPF (R, μ) be a cycle. If
there exists a simple projection π for C such that π(C) ⊆ �μ, and π(C)∩�μ �= ∅,
then there is no minimal (R, C, μ�)-chain.

Note that the result is restricted to cycles which do not include dependency
pairs in DPX (R, μ). The following result provides a kind of generalization of
the subterm criterion to simple projections which only consider non-μ-replacing
arguments of tuple symbols.

Theorem 6. Let R = (F , R) be a TRS, μ ∈ MF and C ⊆ DPF (R, μ) be a
cycle. Let � be a stable quasi-ordering on terms whose strict and stable part >
is well-founded and π be a simple projection for C such that for all f � in C,
π(f �) �∈ μ�(f �) and π(C) ⊆�.

1. If C ∩ DPX (R, μ) = ∅ and C∩ > �= ∅, then there is no minimal (R, C, μ�)-
chain.

2. If C∩DPX (R, μ) �= ∅, �μ⊆� (where �μ is the μ-replacing subterm relation
on T (F ,X )), and
(a) C∩ > �= ∅ and f(x1, . . . , xk) � xπ(f�) for all f ∈ D such that f � is in C,

or
(b) f(x1, . . . , xk) > xπ(f�) for all f ∈ D such that f � is in C,
then there is no minimal (R, C, μ�)-chain.

Example 9. Consider the CS-TRS (R, μ) in Example 3. DP(R, μ) is:
G(X) -> H(X)
H(d) -> G(c)

where μ�(G) = μ�(H) = ∅. The dependency graph contains a single cycle in-
cluding both of them. The only simple projection is π(G) = π(H) = 1. Since
π(G(X)) = π(H(X)), we only need to guarantee that π(H(d)) = d > c = π(G(c))
holds for a stable and well-founded ordering >. This is easily fulfilled by, e.g., a
polynomial ordering.
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6 Conclusions

We have shown how to use dependency pairs in proofs of termination of CSR.
The implementation and practical use of the developed techniques yield a novel
and powerful framework which improves the current state-of-the-art of methods
for proving termination of CSR. Some interesting differences arise which can
be summarized as follows: in sharp contrast to the standard dependency pairs
approach, where all dependency pairs have tuple symbols f � both in the left-
and right-hand sides, we have dependency pairs having a single variable in the
right-hand side. These variables reflect the effect of the migrating variables into
the termination behavior of CSR. This leads to a new definition of chain of
context-sensitive dependency pairs which also differs from the standard approach
in that we have to especially deal with such migrating variables. As in Arts
and Giesl’s approach, the presence or absence of infinite chains of dependency
pairs from DP(R, μ) characterizes the μ-terminaton of R (Theorems 1 and 2).
Furthermore, we are also able to use term orderings to ensure the absence of
infinite chains of context-sensitive dependency pairs (Theorem 3). In fact, we
are properly extending Arts and Giesl’s approach: whenever μ(f) = {1, . . . , k}
for all k-ary symbols f ∈ F , CSR and ordinary rewriting coincide and all these
results and techniques boil down into well-known results and techniques for the
dependency pairs approach.

Regarding the practical use of the CS-dependency pairs in proofs of termi-
nation of CSR, we have shown how to build and use the corresponding CS-
dependency graph to either prove that the rules of the TRS and the cycles in
the CS-dependency graph are compatible with some reduction pair (Theorem 4)
or to prove that there are cycles which do not need to be considered at all (The-
orems 5 and 6). We have implemented these ideas as part of the termination
tool mu-term [AGIL07, Luc04a]. We refer the reader to [AGIL07] for details
about the practical impact of the techniques developed in this paper. ¿From
this preliminary results, we can well conclude that the CS-dependency pairs can
play in CSR the (practical and theoretical) role than dependency pairs play in
rewriting.

There are many other aspects of the dependency pairs approach which are
also worth to be considered and eventually extended to CSR (e.g., narrowing
refinements, modularity issues, innermost computations, usable rules, ...). These
aspects provide an interesting subject for future work.
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Abstract

The dependency pairs method is one of the most powerful technique for proving termination of rewriting
and it is currently central in most automatic termination provers. Recently, it has been adapted to be used
in proofs of termination of context-sensitive rewriting. The use of collapsing dependency pairs i.e., having
a single variable in the right-hand side is a novel and essential feature to obtain a correct framework in
this setting. Unfortunately, dependency pairs behave as a kind of glue in the context-sensitive dependency
graph which makes the cycles bigger, thus making some proofs of termination harder. In this paper we
show that this effect can be safely mitigated by removing some arcs from the graph, thus leading to faster
and easier proofs. Narrowing dependency pairs is also introduced and used here to eventually simplify the
treatment of the context-sensitive dependency graph. We show the practicality of the new techniques with
some benchmarks.

Keywords: Dependency pairs, term rewriting, program analysis, termination.

1 Introduction

Termination is one of the most interesting problems when dealing with context-
sensitive rewrite systems. With context-sensitive rewriting (CSR [10,11]) we can
achieve a terminating behavior with non-terminating Term Rewriting Systems
(TRSs [14,15]), by pruning (all) infinite rewrite sequences. In CSR we only rewrite
μ-replacing subterms. Here, μ is a replacement map, i.e., a mapping μ : F → P(N)
satisfying μ(f) ⊆ {1, . . . , k}, for each k-ary symbol f of the signature F [10]. We
use them to discriminate the argument positions on which the rewriting steps are
allowed. Then, ti is a μ-replacing subterm of f(t1, . . . , tk) if i ∈ μ(f); every term t

(as a whole) is μ-replacing by definition. For other subterms we proceed inductively
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in this way. Then, for a given TRS, we obtain a restriction of rewriting which we call
context-sensitive rewriting. Proving termination of CSR is an interesting problem
with several applications in the fields of term rewriting and programming languages
(see [5,6,8,11,13] for further motivation).

The dependency pairs method [1] is one of the most powerful techniques for prov-
ing termination of rewriting. Roughly speaking, given a TRS R, the dependency
pairs associated to R conform a new TRS DP(R) which (together with R) deter-
mines the so-called dependency chains whose finiteness characterizes termination
of R. The dependency pairs can be presented as a dependency graph, where the
absence of infinite chains can be analyzed by considering the cycles in the graph. In
[3], the dependency pairs method has been adapted to be used in proofs of termi-
nation of CSR. The technique has been implemented in the tool mu-term [2,12].
Basically, the non-variable subterms in the right-hand sides of the rules which are
considered to build the CS-dependency pairs must be μ-replacing terms. Neverthe-
less such ‘standard’ dependency pairs do not suffice to obtain a correct method for
proving termination of CSR.

Example 1.1 [3, Example 2] Consider the following TRS R:
a -> c(f(a))
f(c(X)) -> X

together with μ(c) = ∅ and μ(f) = {1}. There is no μ-replacing subterm s in the
right-hand sides of the rules which is rooted by a defined symbol. Thus, there is no
‘standard’ dependency pair. We could wrongly conclude that R is μ-terminating,
which is not true:

f(a) ↪→μ f(c(f(a))) ↪→μ f(a) ↪→μ · · ·

Indeed, as shown in [3], we must add the following dependency pair
F(c(X)) -> X

which would not be allowed in Arts and Giesl’s approach [1] because the right-hand
side is a variable. In this paper, we call collapsing to such kind of dependency pairs.

As in Arts and Giesl’s approach, the analysis of infinite sequences of context-
sensitive dependency pairs can be made by looking at (the cycles C of) the context-
sensitive dependency graph associated to the CS-TRS R. The nodes of the de-
pendency graph are the dependency pairs in DP(R, μ). A disappointing aspect of
collapsing context-sensitive dependency pairs (as F(c(X)) -> X above) is that they
are connected to every other dependency pair in the context-sensitive dependency
graph [3]. Intuitively, this is because the variable X in the right-hand side of the
dependency pair could be instantiated to anything, thus being potentially able to
‘connect’ to every other dependency pair.

In this paper, we show that we can restrict the number of outcoming links of
collapsing dependency pairs to dependency pairs headed by the so-called hidden
symbols which are defined symbols that occur in non-replacing positions in the
right-hand sides of some rule in the TRS. This leads to a new definition of the
context-sensitive dependency graph which greatly improves the performance of the
original method.
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Example 1.2 Consider the following non-terminating TRS R which can be used
to compute the list of prime numbers [7] :
primes -> sieve(from(s(s(0)))) tail(cons(X,Y)) -> Y
from(X) -> cons(X,from(s(X))) if(true,X,Y) -> X
head(cons(X,Y)) -> X if(false,X,Y) -> Y
filter(s(s(X)),cons(Y,Z)) ->

if(divides(s(s(X)),Y),filter(s(s(X)),Z),cons(Y,filter(X,sieve(Y))))
sieve(cons(X,Y)) -> cons(X,filter(X,sieve(Y)))

together with μ(cons) = μ(if) = {1} and μ(f) = {1, . . . , ar(f)} for any other
symbols f . No (automatic or manual) proof of termination for this CS-TRS has
been reported to date. By using the dependency graph as defined in [3] we were
not able to find a proof with mu-term 4.3 [2].

In contrast, with the new definition in this paper, we have no cycles! Thus, a
direct (and automatic) proof of μ-termination of R is easy now.

Narrowing dependency pairs was also introduced by Arts and Giesl to im-
prove the efficiency of the dependency pairs technique in proofs of termination
[1]. Roughly speaking, under some conditions, a dependency pair can be replaced
by a set of pairs which could simplify or restructure the dependency graph and
eventually simplify the proof of termination. We also investigate this technique for
dealing with the context-sensitive dependency graph.

After some preliminary definitions in Section 2, Section 3 introduces the notion
of hidden symbol and investigates its properties in proofs of termination of CSR.
Section 4 shows how to use it to improve the context-sensitive dependency graph.
Section 5 adapts narrowing of dependency pairs to context-sensitive dependency
pairs. Section 6 provides an experimental evaluation of our techniques. Section 7
concludes.

2 Preliminaries

Throughout the paper, X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity given
by a mapping ar : F → N. The set of terms built from F and X is T (F ,X ).
Positions p, q, . . . are represented by chains of positive natural numbers used to
address subterms of t. Given positions p, q, we denote its concatenation as p.q. If p

is a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}. We denote the empty
chain by Λ. The set of positions of a term t is Pos(t). The subterm at position p of t

is denoted as t|p and t[s]p is the term t with the subterm at position p replaced by s.
We write t�s if s = t|p for some p ∈ Pos(t) and t�s if t�s and t �= s. The symbol
labelling the root of t is denoted as root(t). A context is a term C ∈ T (F ∪ {�},X )
with zero or more ‘holes’ � (a fresh constant symbol).

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ),
l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the
right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of rewrite
rules. Given R = (F , R), we consider F as the disjoint union F = C �D of symbols
c ∈ C, called constructors and symbols f ∈ D, called defined functions, where
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D = {root(l) | l → r ∈ R} and C = F −D.

Context-sensitive rewriting.
A mapping μ : F → P(N) is a replacement map (or F-map) if ∀f ∈ F , μ(f) ⊆

{1, . . . , ar(f)} [10]. Let MF be the set of all F-maps (or MR for the F-maps
of a TRS (F , R)). A binary relation R on terms is μ-monotonic if t R s implies
f(t1, . . . , ti−1, t, . . . , tk)Rf(t1, . . . , ti−1, s, . . . , tk) for every t, s, t1, . . . , tk ∈ T (F ,X ).
The set of μ-replacing positions Posμ(t) of t ∈ T (F ,X ) is: Posμ(t) = {Λ}, if t ∈ X
and Posμ(t) = {Λ}∪⋃

i∈μ(root(t)) i.Posμ(t|i), if t �∈ X . The set of replacing variables
of t is Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), t|p = x}. The μ-replacing subterm
relation �μ is given by t �μ s if there is p ∈ Posμ(t) such that s = t|p. We write
t �μ s if t �μ s and t �= s. In context-sensitive rewriting (CSR [10]), we (only)
contract replacing redexes: t μ-rewrites to s, written t ↪→μ s (or t ↪→R,μ s), if
t

p→R s and p ∈ Posμ(t). A TRS R is μ-terminating if ↪→μ is terminating. A term
t is μ-terminating if there is no infinite μ-rewrite sequence t = t1 ↪→μ t2 ↪→μ · · · ↪→μ

tn ↪→μ · · · starting from t. A pair (R, μ) where R is a TRS and μ ∈ MR is often
called a CS-TRS.

Dependency pairs.
Given a TRS R = (F , R) = (C � D, R) a new TRS DP(R) = (F �,D(R)) of

dependency pairs for R is given as follows: if f(t1, . . . , tm) → r ∈ R and r =
C[g(s1, . . . , sn)] for some defined symbol g ∈ D and s1, . . . , sn ∈ T (F ,X ), then
f �(t1, . . . , tm) → g�(s1, . . . , sn) ∈ D(R), where f � and g� are new fresh symbols
(called tuple symbols) associated to defined symbols f and g respectively [1]. Let
D� be the set of tuple symbols associated to symbols in D and F � = F∪D�. As usual,
for t = f(t1, . . . , tk) ∈ T (F ,X ), we write t� to denote the marked term f �(t1, . . . , tk).
Conversely, given a marked term t = f �(t1, . . . , tk), where t1, . . . , tk ∈ T (F ,X ), we
write t� to denote the term f(t1, . . . , tk) ∈ T (F ,X ). Given T ⊆ T (F ,X ), let T � be
the set {t� | t ∈ T}.

3 Structure of infinite μ-rewrite sequences

Let M∞,μ be a set of minimal non-μ-terminating terms in the following sense: t

belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing subterm s

of t (i.e., t �μ s) is μ-terminating. Obviously, if t ∈M∞,μ, then root(t) is a defined
symbol. Furthermore, since μ-terminating terms are preserved under μ-rewriting,
it follows that M∞,μ is also preserved under inner μ-rewritings.

Lemma 3.1 Let R be a TRS and μ ∈ MR. Let t ∈ M∞,μ. If t
>ε
↪→∗ s, then

s ∈M∞,μ.

The following proposition establishes that, given t ∈M∞,μ, there are two ways
for an infinite μ-rewrite sequence to proceed. The first one is by using ‘visible’ parts
of the rules which correspond to μ-replacing subterms in the right-hand sides which
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are rooted by a defined symbol. The second one is by showing up ‘hidden’ non-μ-
terminating subterms which are activated by migrating variables in a rule l → r,
i.e., variables x ∈ Varμ(r)−Varμ(l) which are not μ-replacing in the left-hand side
l but become μ-replacing in the right-hand side r.

Proposition 3.2 [3] Let R = (C � D, R) be a TRS and μ ∈ MR. For all t ∈
M∞,μ, there exist l → r ∈ R, a substitution σ and a term u ∈ M∞,μ such that

t
>ε
↪→∗ σ(l) ε→σ(r) �μ u and either (1) there is a μ-replacing subterm s of r such that

u = σ(s), or (2) there is x ∈ Varμ(r)− Varμ(l) such that σ(x) �μ u.

Now we investigate the structure of such sequences in more detail. In the fol-
lowing, we write t �

�μ
s to denote that s is a non-replacing (hence strict!) subterm

of t: t �
�μ

s if there is p ∈ Pos(t)− Posμ(t) such that s = t|p.
Definition 3.3 [Hidden symbol] Let R = (F , R) be a TRS and μ ∈ MR. We say
that f ∈ F is a hidden symbol if there is a rule l → r ∈ R and t ∈ T (F ,X ) such
that r �

�μ
t and root(t) = f . Let H(R, μ) (or just H, if R and μ are clear for the

context) be the set of all hidden symbols in (R, μ).

Lemma 3.4 Let R = (F , R) be a TRS and μ ∈ MR. Let t ∈ T (F ,X ) and σ be a
substitution. If there is a rule l → r ∈ R such that σ(l) � t and σ(r)�

�μ
t, then there

is no x ∈ Var(r) such that σ(x) � t. Furthermore, there is a term t′ ∈ T (F ,X )
such that r �

�μ
t′, σ(t′) = t and root(t) = root(t′) ∈ H.

Proof. By contradiction. If there is x ∈ Var(r) such that σ(x) � t, then since
variables in l are always below some function symbol we have σ(l) � t, leading to a
contradiction.

Since there is no x ∈ Var(r) such that σ(x) � t but we have that σ(r)�
�μ

t, then
there is a non-variable and non-replacing position p ∈ PosF (r)−Posμ(r), such that
root(r|p) = root(t) ∈ H(R, μ) and σ(r|p) = t. Then, we let t′ = r|p. �

The following lemma establishes that minimal non-μ-terminating and non-μ-
replacing subterms occurring in a μ-rewrite sequence involving only minimal terms
directly come from the first term in the sequence or are rooted by a hidden symbol.

Lemma 3.5 Let R = (F , R) be a TRS and μ ∈ MR. Let A be a finite μ-rewrite
sequence t1 ↪→ t2 ↪→ · · · ↪→ tn with ti ∈ M∞,μ for all i, 1 ≤ i ≤ n and n ≥ 1. If
there is a term t ∈M∞,μ such that t1 � t and tn �

�μ
t, then root(t) ∈ H.

Proof. By induction on n:

(i) If n = 1, then it is vacuously true.

(ii) If n > 1, then we assume that t1 � t and tn �
�μ

t. Let l → r ∈ R be such that
tn−1 = C[σ(l)] and tn = C[σ(r)] for some context C[ ]. We consider two cases:
either tn−1 �

�μ
t holds or not.

(a) If tn−1 �
�μ

t, then by the induction hypothesis we have that root(t) ∈ H.
(b) If tn−1 �

�μ
t does not hold, then one of the following cases holds:

(1) tn−1 �μ t; then tn−1 ∈M∞,μ implies that t /∈M∞,μ, leading to a contra-
diction.
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(2) tn−1 � t (in particular, σ(l) � t); then, since tn �
�μ

t there must be
σ(r) �

�μ
t. Thus, by Lemma 3.4 we conclude that root(t) ∈ H.

�

Now we use the previous lemmas to investigate infinite sequences that mix μ-
rewriting steps on minimal non-μ-terminating terms and the extraction of such
subterms as μ-replacing subterms of (instances of) right-hand sides of rules.

Proposition 3.6 Let R = (F , R) be a TRS and μ ∈ MR. Let A be an infinite

sequence of the form t1
ε→ s1 �μ t′2

>ε
↪→∗ t2

ε→ s2 �μ t′3
>ε
↪→∗ t3 · · · with ti, t′i ∈ M∞,μ

for all i ≥ 1. If there is a term t ∈ M∞,μ such that ti �
�μ

t for some i ≥ 1, then
root(t) ∈ H ∩ D or t1 �

�μ
t.

Proof. By induction on i:

(i) If i = 1, it is trivial.

(ii) If i > 1 and ti �
�μ

t, then we consider two cases: either ti−1 �
�μ

t holds or not.
(a) If ti−1 �

�μ
t, then by the induction hypothesis we get t1 �

�μ
t or root(t) ∈

H ∩ D, as desired.
(b) If ti−1 �

�μ
t does not hold, then let l → r ∈ R be such that ti−1 = σ(l) and

si−1 = σ(r) �μ t′i. We consider two cases:
(1) if ti−1 �μ t then being ti−1 ∈ M∞,μ it would imply that t /∈ M∞,μ, thus

leading to a contradiction.
(2) If ti−1 � t, then we consider two cases: either t′i � t or t′i � t.
(A) If t′i � t, since t′i, t ∈ M∞,μ the case t′i �μ t is excluded and the only

possibility is that t′i ��μ
t. Then, since σ(l) = ti−1 � t and σ(r)�μ t′i ��μ

t,
i.e. σ(r) �

�μ
t, by Lemma 3.4 we conclude that root(t) ∈ H. Since

t ∈M∞,μ, we have root(t) ∈ H ∩ D
(B) If t′i � t, then, by applying Lemma 3.1 and Lemma 3.5 to the μ-rewrite

sequence t′i
>ε
↪→∗ti we conclude root(t) ∈ H ∩ D.

�

As an immediate consequence of Proposition 3.6, we have the following result which
we will use later.

Corollary 3.7 Let (R, μ) be a CS-TRS, A be an infinite sequence of the form

t1
ε→ s1 �μ t′2

>ε
↪→∗ t2

ε→ s2 �μ t′3
>ε
↪→∗ t3 · · · with ti, t′i ∈M∞,μ for all i ≥ 1. If there is

a term t ∈M∞,μ such that ti ��μ
t for some i ≥ 1 and root(t) ∈ D−H, then t1 �

�μ
t.

4 Revised context-sensitive dependency graph

Proposition 3.2 motivates the definition of context-sensitive dependency pair(s) and
chain of context-sensitive dependency pairs.

Definition 4.1 [CS-dependency pairs [3]] Let R = (F , R) = (C � D, R) be a TRS
and μ ∈ MR. We define DP(R, μ) = DPF (R, μ) ∪ DPX (R, μ) to be the set of
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context-sensitive dependency pairs (CS-DPs) where:

DPF (R, μ) = {l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l ��μ s}

and DPX (R, μ) = {l� → x | l → r ∈ R,x ∈ Varμ(r)−Varμ(l)}. We extend μ ∈ MF
into μ� ∈ MF� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f) if f ∈ D.

Example 4.2 Consider the CS-TRS (R, μ) in Example 1.2. There are six context-
sensitive dependency pairs:
1: PRIMES -> SIEVE(from(s(s(0))))
2: PRIMES -> FROM(s(s(0)))
3: TAIL(cons(X,Y)) -> Y
4: IF(true,X,Y) -> X
5: IF(false,X,Y) -> Y
6: FILTER(s(s(X)),cons(Y,Z)) ->

IF(divides(s(s(X)),Y),filter(s(s(X)),Z),cons(Y,filter(X,sieve(Y))))

Note the three collapsing dependency pairs: (3), (4), and (5).

Definition 4.3 [Chain of CS-DPs [3]] Let (R, μ) be a CS-TRS. Given P ⊆
DP(R, μ), an (R,P, μ�)-chain is a finite or infinite sequence of pairs ui → vi ∈ P,
for i ≥ 1 such that there is a substitution σ satisfying both:

(i) σ(vi) ↪→∗
R,μ� σ(ui+1), if ui → vi ∈ DPF (R, μ), and

(ii) if ui → vi = ui → xi ∈ DPX (R, μ), then there is si ∈ T (F ,X ) such that
σ(xi) �μ si and s�

i ↪→∗
R,μ� σ(ui+1).

Here, as usual we assume that different occurrences of dependency pairs do not
share any variable (renamings are used if necessary). An (R,P, μ�)-chain is called
minimal if for all i ≥ 1 σ(ui)� ∈ M∞,μ, si ∈ M∞,μ (whenever they occur in the
chain) and all dependency pairs in P occur infinitely often.

Remark 4.4 When an (R,DP(R, μ), μ�)-chain is written for a given substitution
σ, we write σ(u) ↪→DP(R,μ),μ� σ(v) for steps which use a dependency pair u → v ∈
DPF (R, μ) but we rather write σ(u) ↪→DP(R,μ),μ� s� for steps which use a dependency
pair u → x ∈ DPX (R, μ), where s is as in Definition 4.3.

Theorem 4.5 (Correctness and completeness [3]) Let R be a TRS and μ ∈
MR. R is μ-terminating if and only if there is no infinite (R,DP(R, μ), μ�)-chain.

An essential aspect of the mechanization of the dependency pairs approach is the
analysis of infinite sequences of dependency pairs by looking at (the cycles C of) the
dependency graph associated to the TRS R. In [3],he context-sensitive dependency
graph, is defined as follows:

(i) There is an arc from a dependency pair u → v ∈ DPF (R, μ) to a dependency
pair u′ → v′ ∈ DP(R, μ) if there is a substitutions σ such that σ(v) ↪→∗

R,μ�

σ(u′).

(ii) There is an arc from a dependency pair u → v ∈ DPX (R, μ) to each dependency
pair u′ → v′ ∈ DP(R, μ).

Connecting each collapsing dependency pair with every other dependency pair
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makes the cycles bigger, thus making some proofs of termination harder. Thanks
to the results in the previous section, we can prove the following.

Theorem 4.6 There is no infinite minimal (R,P, μ�)-chain involving an infinite
number of dependency pairs ui → vi ∈ DPX (R, μ) such that root(ui+1)� �∈ H.

Proof. By contradiction. Let A be an infinite (R,P, μ�)-minimal chain of CS-DPs
characterized by the CS-DPs ui → vi for i ≥ 1:

σ(u1)
ε

↪→P s�
1 ↪→∗

R σ(u2)
ε

↪→P s�
2 ↪→∗

R · · ·

where, s�
i = σ(vi) if ui → vi ∈ DPF (R, μ) and σ(xi) �μ si if ui → vi = ui →

xi ∈ DPX (R, μ). Let I be the infinite set of indices satisfying that for all i ∈ I,
ui → vi ∈ DPX (R, μ) and root(ui+1)� �∈ H. Given i ∈ I, let η(i) be the ‘next’
positive integer in I: η(i) = min({j ∈ I | j > i}). Obviously, for all i ∈ I, η(i) ∈ I.
Now consider the following sequence A� which is obtained from A by ‘unsharping’
the tuple symbols and using the rules li → ri which originate the dependency pairs
ui → vi which are used in A:

σ(u1)�
ε

↪→R σ(r1) �μ s1 ↪→∗
R σ(u2)�

ε
↪→R σ(r2) �μ s2 ↪→∗

R · · ·

which corresponds to A above: by minimality of A (see Definition 4.3), we have that
σ(ui)�, si ∈ M∞,μ for all i ≥ 1. By definition of I, for all i ∈ I, vi = xi ∈ X . By
definition of collapsing dependency pair, xi ∈ Pos(ui) − Posμ(ui) and σ(xi) �μ si.
Thus, σ(ui) �

�μ
si for all i ∈ I. By repeatedly applying Corollary 3.7, we have that

σ(ui) �
�μ

σ(uη(i)), i.e., σ(ui) � σ(uη(i)) for all i ∈ I. Thus, we obtain an infinite
�-sequence which contradicts well-foundedness of �. �

As a consequence of this result, we can dismiss the arcs of the dependency graph
which connect collapsing dependency pairs u → v and dependency pairs u′ → v′

such that root(u′)� �∈ H. This leads to a new definition of the context-sensitive
dependency graph:

Definition 4.7 [Context-Sensitive Dependency Graph] Let R be a TRS and μ ∈
MR. The context-sensitive dependency graph consists of the set DP(R, μ) of
context-sensitive dependency pairs together with arcs which connect them as fol-
lows:

(i) There is an arc from a dependency pair u → v ∈ DPF (R, μ) to a dependency
pair u′ → v′ ∈ DP(R, μ) if there is a substitutions σ such that σ(v) ↪→∗

R,μ�

σ(u′).

(ii) There is an arc from a dependency pair u → v ∈ DPX (R, μ) to a dependency
pair u′ → v′ ∈ DP(R, μ) if root(u′)� ∈ H(R, μ).

Example 4.8 Consider again the TRS R in Example 1.2. The hidden defined
symbols are filter, from and sieve. The dependency graph which corresponds to
this example is shown in Figure 1 (right). Note that, in contrast to the situation
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Fig. 1. Dependency graphs for Example 1.2: according to [3] (left) and according to Definition 4.7 (right)

with the old dependency graph (Figure 1, left) the new dependency graph has no
cycle!

As noticed by Arts and Giesl, the presence of an infinite chain of dependency
pairs corresponds to a cycle in the dependency graph (but not vice-versa). In the
dependency graph this is true in the following sense: for each infinite chain of
dependency pairs there is a suffix of the chain which corresponds to a cycle in the
new dependency graph.

On the other hand, the treatment of cycles of the context-sensitive dependency
graph for concluding termination by means of orderings remains as described in [3],
but using the dependency graph in Definition 4.7.

Example 4.9 Consider the following TRS R [16, Example 4]
f(X) -> cons(X,f(g(X)))
g(0) -> s(0)
g(s(X)) -> s(s(g(X)))
sel(0,cons(X,Y)) -> X
sel(s(X),cons(Y,Z)) -> sel(X,Z)

with μ(0) = ∅, μ(f) = μ(g) = μ(s) = μ(cons) = {1}, and μ(sel) = {1, 2}. Then,
DP(R, μ) is:

G(s(X)) -> G(X)
SEL(s(X),cons(Y,Z)) -> SEL(X,Z)
SEL(s(X),cons(Y,Z)) -> Z

The set of hidden symbols is H = {f, g} and there are two cycles:

(i) G(s(X)) -> G(X)

(ii) SEL(s(X),cons(Y,Z)) -> SEL(X,Z)

By using the subterm criterion [3, Section 5] we can easily prove that the system is
μ-terminating.
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5 Narrowing context-sensitive dependency pairs

There are examples where the automation of the CS-DP method can fail or be more
difficult due to the estimation of the arcs that connect two CS-dependency pairs
(by means of functions Capμ and Renμ, see [3]).

Example 5.1 Consider the following example [13, Proposition 7]

f(0) -> cons(0,f(s(0)))

f(s(0)) -> f(p(s(0)))

p(s(X)) -> X

together with μ(f) = μ(p) = μ(s) = μ(cons) = {1} and μ(0) = ∅. Then DP(R, μ)
is:

F(s(0)) -> F(p(s(0)))

F(s(0)) -> P(s(0))

The estimated CS-dependency graph contains one cycle consisting of the CS-depen-
dency pair

F(s(0)) -> F(p(s(0)))

However, this cycle does not belong to the CS-dependency graph because there is
no way to μ-rewrite F(p(s(0))) into F(s(0))!

The problem is that with the estimated CS-dependency graph, we connect more
dependency pairs than needed. The over-estimation eventually comes when a CS-
dependency pair u → v is is connected to u′ → v′ in the estimated dependency
graph and v and u′ do not unify, i.e. at least a rewriting step with some rule of
R is needed to reduce (some instance of) v to (the corresponding instance of) u′.
It is then possible that, after performing such a necessary μ-rewriting step, the
connection between them gets clearly lost, i.e, the nodes were not really connected
in the graph. This is missed in the estimated dependency graph due to the use of
Capμ and Renμ. We can use context-sensitive narrowing to avoid this problem.

Definition 5.2 [Context-sensitive narrowing [10]] Let (R, μ) be a CS-TRS. A term
t μ-narrows to a term s (written t �μ s ), if there exists a non-variable position
p ∈ Posμ(t), θ is the most general unifier of t|p and l for a rewrite rule l → r in R
(sharing no variable with t), and s = θ(t[r]p).

To achieve more precision when connecting two CS-DPs in a (R,DP(R, μ), μ�)-
chain, we may perform all possible μ-narrowings steps on v in order to develop the
reductions from (instances of) v to (instances of) u′.Then, we obtain new terms v1,
. . ., vn which are μ-narrowings of v with unifier θi for i ∈ {1, . . . , n} and can be
used instead of v. Not only the right-hand sides of the CS-dependency pairs are
μ-narrowed: the unifier which used in the narrowing step should also be applied
on the left-hand sides of the μ-narrowed pairs. Therefore, we can replace a CS-
dependency pair u → v by all new μ-narrowed pairs θ1(u) → v1, . . . , θn(u) → vn.
The next result shows that under those conditions, the set of CS-dependency pairs
can be replaced by their narrowings without losing correctness or completeness.
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Theorem 5.3 (Narrowing refinement for CS-termination) Let R be a TRS
and let P be a set of CS-dependency pairs. Let u → v ∈ P such that v is linear and
for all u′ → v′ ∈ P (with renamed variables) the terms v and u′ are not unifiable.
Let

P ′ = (P − {u → v}) ∪ {u′ → v′ | u′ → v′ is a narrowing of u → v}.
There exists an infinite (R,P, μ�)-chain iff there exists an infinite (R,P ′, μ�)-

chain.

Proof. The proof of this theorem corresponds to the proof of Theorem 25 in [1]
. Note that only dependency pairs in DPF (R, μ) can be narrowed. As in Arts
and Giesl’s proof, requiring the no-unification between the CS-dependency pair to
narrow and the rest of the set; the linearity of v; and the renaming of the variables
of the different (occurrences of) dependency pairs is still necessary to guarantee that
narrowing CS-dependency pairs do not miss any chain from P. The main difference
is that the reductions between dependency pairs are μ-reductions, but since we are
using μ-narrowing, the whole proof is adapted without loss of generality. �

Thus, after narrowing the dependency pairs in DP(R, μ) we can build a narrowed
dependency graph. Afterwards, we can use it to check termination as usual.

Example 5.4 (Continuing Example 5.1) Since the right-hand side of the CS-de-
pendency pair in Example 5.1 does not unify with any left-hand side of a dependency
pair, (including itself) and it can be μ-narrowed at position 1 (notice that μ(f)={1})
by using the rule

p(s(X)) -> X

we can replace it by its μ-narrowed CS-dependency pair:

F(s(0)) -> F(0)

The narrowed pair does not form any cycle in the estimated narrowed graph and
termination is easily proved now.

6 Experiments

The techniques described in the previous sections have been implemented as part
of the tool mu-term [2,12]. We have used our new implementation to compare
with the last version of the tool: mu-term 4.3. The benchmarks were executed
in a completely automatic way (see [2] for a description of mu-term’s termination
expert) and with a timeout of 1 minute on the 90 examples in the Context-Sensitive
Rewriting subcategory of the 2006 Termination Competition, available through the
URL:

http://www.lri.fr/∼marche/termination-competition/2006

As remarked above, our termination expert works as explained in [2] for version
4.3 of mu-term. For the new version 4.4 of mu-term, we have just used the new
definition of the (eventually narrowed) dependency graph. We have compared our
new implementation with the previous version of mu-term (corresponding to [3]).
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Termination Tool Total CS-DPs CSRPO Transf. Average time

mu-term (PROLE’06) 66 65 0 1 1.68s

mu-term (FST&TCS’06) 56 45 7 4 4.55s

AProVE 56 0 0 56 4.74s

Table 1

We have also used AProVE for proving termination of the examples. AProVE [9] is
currently the most powerful tool for proving termination of TRSs and implements
most existing results and techniques regarding DPs and related techniques. AProVE

is also able to prove termination of Context-Sensitive Rewriting by using transfor-
mations. Such transformations obtain a proof of the μ-termination of a TRS R as
a proof of termination of a transformed TRS Rμ

Θ (where Θ represents the transfor-
mation). If we are able to prove termination of Rμ

Θ (using the standard methods),
then the μ-termination of R is ensured (see [13] for a recent survey).

A complete account of our experiments can be found here:

http://www.dsic.upv.es/∼rgutierrez/muterm/prole/benchmarks.html

Table 1 summarizes our bechmarks. As shown in Table 1, the results make clear
the advantages of the new refinement: we are able to prove 10 additional examples
and the proofs are almost three times faster (in the average).

Furthermore, we can say that the new refinement developed for the CS-DP
approach greatly improves on the use of other techniques: the use of transformations
and other (also powerful) techniques like CSRPO [4] becomes now anecdotic or null.

7 Conclusions

We have introduced a simplification of the context-sensitive dependency graph by
restricting the outcoming links of collapsing dependency pairs to dependency pairs
headed by the so-called hidden symbols. Hidden symbols are defined symbols that
occur in non-replacing positions in the right-hand sides of some rule in the TRS. This
greatly improves the performance of termination proofs based on the dependency
graph proposed in [3]. Narrowing context-sensitive dependency pairs has also been
investigated. It can also be helpful to simplify or restructure the dependency graph
and eventually simplify the proof of termination. Regarding the practical use of the
(refinements on the) new CS-dependency graph in proofs of termination of CSR,
we have implemented these ideas as part of the termination tool mu-term and we
have obtained quite good results in terms of new examples which could be proved,
and also regarding the time for achieving the proofs.

Since the state-of-the-art of DP-based techniques for proving termination of
CSR which has been introduced in this paper corresponds to the developement
of DPs in the late nineties, we can conclude that further improvements of CS-
DPs will evolve in such a way that the CS-dependency pairs approach can play
for CSR the (practical and theoretical) role than dependency pairs play in rewriting.
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Many other aspects of the dependency pairs approach are also worth to be con-
sidered and extended to CSR (modularity issues, innermost computations, usable
rules,. . . ). They provide an interesting subject for future work.
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[6] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving Operational Termination of
Membership Equational Programs. Higher-Order and Symbolic Computation, to appear, 2006.

[7] J. Giesl and A. Middeldorp. Transforming Context-Sensitive Rewrite Systems. In P. Narendran
and M. Rusinowitch, editors, Proc. of 10th International Conference on Rewriting Techniques and
Applications, RTA’99, LNCS 1631:271-285, Springer-Verlag, Berlin, 1999.

[8] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite systems. Journal
of Functional Programming, 14(4): 379-427, 2004.

[9] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination Proofs in the
Dependency Pair Framework. In U. Furbach and N. Shankar, editors, Proc. of Third International
Joint Conference on Automated Reasoning, IJCAR’06, LNAI 4130:281-286, Springer-Verlag, Berlin,
2006. Available at http://www-i2.informatik.rwth-aachen.de/AProVE .

[10] S. Lucas. Context-sensitive computations in functional and functional logic programs. Journal of
Functional and Logic Programming, 1998(1):1-61, January 1998.

[11] S. Lucas. Context-sensitive rewriting strategies. Information and Computation, 178(1):293-343, 2002.

[12] S. Lucas. MU-TERM: A Tool for Proving Termination of Context-Sensitive Rewriting In V. van
Oostrom, editor, Proc. of RTA’04, LNCS 3091:200-209, Springer-Verlag, Berlin, 2004. Available at
http://www.dsic.upv.es/∼slucas/csr/termination/muterm .

[13] S. Lucas. Proving termination of context-sensitive rewriting by transformation. Information and
Computation, 204(12):1782-1846, 2006.

[14] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, Berlin, 2002.

[15] TeReSe, editor, Term Rewriting Systems, Cambridge University Press, 2003.

[16] H. Zantema. Termination of Context-Sensitive Rewriting. In H. Comon, editor, Proc. of RTA’97,
LNCS 1232:172-186, Springer-Verlag, Berlin, 1997.

B. Alarcón et al. / Electronic Notes in Theoretical Computer Science 188 (2007) 91–103 103

18.2. Improving the Context-Sensitive Dependency Graph 179



180 18. Publications (full text)

18.3 Proving Termination of Context-Sensitive Rewrit-
ing with mu-term

3. B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving Termination
of Context-Sensitive Rewriting with mu-term . Electronic Notes in
Theoretical Computer Science, 188:105–115, 2007.



Proving Termination of Context-Sensitive
Rewriting with MU-TERM

Beatriz Alarcón, Raúl Gutiérrez,
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Abstract

Context-sensitive rewriting (CSR) is a restriction of rewriting which forbids reductions on selected argu-
ments of functions. Proving termination of CSR is an interesting problem with several applications in the
fields of term rewriting and programming languages. Several methods have been developed for proving
termination of CSR. The new version of MU-TERM which we present here implements all currently known
techniques. Furthermore, we show how to combine them to furnish MU-TERM with an expert which is
able to automatically perform the termination proofs. Finally, we provide a first experimental evaluation
of the tool.

Keywords: Context-sensitive rewriting, term rewriting, program analysis, termination.

1 Introduction

Restrictions of rewriting can eventually achieve termination of rewriting computa-
tions by pruning all infinite rewrite sequences issued from every term. However, such
kind of improvements can be difficult to prove. Context-sensitive rewriting (CSR
[17,18]) is a restriction of rewriting which is useful for describing semantic aspects of
programming languages (e.g., Maude, OBJ2, OBJ3, or CafeOBJ) and analyzing ter-
mination of the corresponding programs (see [8,9,13,18,22] for further motivation).
In CSR, a replacement map μ discriminates, for each symbol of the signature, the
argument positions μ(f) on which rewritings are allowed. In this way, for a given
Term Rewriting System (TRS), we obtain a restriction of the rewrite relation which
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we call context-sensitive rewriting. A TRS R together with a replacement map μ is
often called a CS-TRS and written (R, μ).

Proving termination of CSR is an interesting problem with several applications
in the fields of term rewriting and programming languages (see [22]). There are two
main approaches to prove termination of a CS-TRS (R, μ):

• direct proofs use adapted versions of term orderings such as RPOs and polynomial
orderings to compare the left- and right-hand sides of the rules [4,11,20,21]; and

• transformations which obtain a transformed TRS Rμ
Θ (where Θ represents the

transformation). If we are able to prove termination of Rμ
Θ (using the standard

methods), then termination of the CS-TRS is ensured (see [22] for a recent sur-
vey).

MU-TERM was the first tool implementing techniques for proving termination of
CSR [19]. The tool is available here:

http://www.dsic.upv.es/∼slucas/csr/termination/muterm

Nowadays, the tool AProVE [15] also accepts context-sensitive termination prob-
lems specified in the TPDB format 3 . However, AProVE’s proofs of termination of
CSR are based on using transformations (i.e., no direct proof method is currently
available). The new version of MU-TERM which we present here implements all
currently known techniques. The new contributions which we report in this paper
are the following:

(i) We have implemented the context-sensitive recursive path ordering described
in [4].

(ii) We have implemented the context-sensitive dependency pairs approach de-
scribed in [2].

(iii) On the basis of recent theoretical and experimental results (see [22]), we have
developed a termination expert for CSR which combines the different existing
techniques for proving termination of CSR without any interaction with the
user.

Finally, we want to mention that the Maude Termination Tool [9]:

http://www.lcc.uma.es/∼duran/MTT

which transforms proofs of termination of Maude programs into proofs of termina-
tion of CSR uses MU-TERM’s expert as an auxiliary tool.

We assume a basic knowledge about term rewriting, see [24] for missing defini-
tions and more information. In Section 2 we briefly describe the new features which
have been added to MU-TERM. Section 3 discusses the termination expert. Section
4 provides an experimental evaluation of the new version of MU-TERM. Section 5
concludes and discusses future work.

3 See http://www.lri.fr/∼marche/tpdb/format.html
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Fig. 1. Screenshot of the main window of MU-TERM 4.3

2 New features in MU-TERM

MU-TERM is written in Haskell 4 , and wxHaskell 5 has been used to develop the
graphical user interface. The system consists of more than 45 Haskell modules
containing more than 14000 lines of code. Compiled versions in several platforms
(Linux, Mac OSX, and Windows) and instructions for the installation are available
on the MU-TERM WWW site. A recent hybrid (Haskell/C#) version of the tool is
also available for the .NET platform [3].

MU-TERM has a graphical user interface (see Figure 1) whose details (menu
structure, supported formats, etc.) are given in [19]. Let us briefly recall the main
features of the tool.

• Modularity: If the modular proofs are activated, then MU-TERM attempts a
safe decomposition of the TRS in such a way that the components satisfy the
modularity requirements described in [10]. If it succeeds in performing a non-
trivial decomposition (i.e., MU-TERM obtains more than one component), then
individual proofs of termination of CSR are attempted for each component.

• Direct methods: MU-TERM implements the use of polynomial interpretations
as described in [20,21]. An interesting feature of MU-TERM is that it generates
polynomial interpretations with rational coefficients.

• Transformations: MU-TERM also implements a number of transformations
for proving termination of CSR (see [13,22]).

4 See http://haskell.org/ .
5 See http://wxhaskell.sourceforge.net .
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In the following, we briefly describe the new features implemented in the current
version of MU-TERM.

2.1 Context-Sensitive Recursive Path Ordering (CSRPO)

CSRPO extends the recursive path ordering (RPO [7]) to context-sensitive terms [4].
The first idea that comes in mind to extend RPO to CSR (CSRPO) is marking the
symbols which are in blocked positions and consider them smaller than the active
ones. Therefore, terms in blocked positions become smaller. However, marking all
symbols in non-replacing positions can unnecessarily weaken the resulting ordering.
Thus, in addition to the usual precedence 6 �F on the symbols of the signature F of
the TRS, a marking map, denoted by m, is also used. The marking map defines, for
every symbol and every blocked position, the set of symbols that should be marked.
By F we denote the set of marked symbols corresponding to F . Given a k-ary
symbol f in F ∪ F and i ∈ {1, . . . , k}, a marking map m provides the subset of
symbols in F that should be marked, i.e. m(f, i) ⊆ F . Marking maps are intended
to mark only blocked arguments, i.e., m(f, i) = ∅ if i ∈ μ(f) for all f ∈ F . In
this way, we mark only the necessary symbols (in blocked positions), see [4] for a
thorough discussion.

Example 2.1 Consider the following TRS R:
from(X) -> cons(X,from(s(X)))
sel(0,cons(X,Y)) -> X
sel(s(X),cons(Y,Z)) -> sel(X,Z)

together with μ(cons) = μ(s) = μ(from) = {1} and μ(sel) = {1, 2}. The μ-
termination of R can be proved by the CSRPO induced by the following precedence
and marking map (computed by MU-TERM, see Figure 2):

sel �F from �F cons �F s

m(cons, 2) = m(cons, 2) = {from}, m(from, 1) = ∅

and lexicographic status for all function symbols.

Although the μ-termination of R in Example 2.1 can be proved by using the
following polynomial interpretation:

[from](X) = 3X + 2 [cons](X,Y ) = X + 1
3Y [0] = 0

[s](X) = 2X + 1 [sel](X,Y ) = 2X2Y + X + Y + 1

the proof using CSRPO is much faster.

2.2 Context-Sensitive Dependency Pairs (CSDPs)

Recently, the dependency pairs approach [1], one of the most powerful techniques
for proving termination of rewriting, has been generalized to be used in proofs of

6 By a precedence, we mean a reflexive and transitive relation.
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Fig. 2. Termination of CSR usingCSRPO

termination of CSR [2].
Roughly speaking, given a TRS R, the dependency pairs u → v associated to

R conform a new TRS DP(R) which (together with R) determines the so-called
dependency chains whose finiteness or infiniteness characterize termination of R.
The dependency pairs can be presented as a dependency graph, where the nodes of
the graph are dependency pairs and the absence of infinite chains can be analyzed
by considering the cycles in the graph. Two dependency pairs u → v and u′ → v′ in
the graph are connected by an arc if there is a substitution σ which makes possible
a (possibly empty) rewrite sequence (in R) from σ(v) to σ(u′). These ideas are
generalized (with a number of non-trivial changes) to CSR.

Example 2.2 Consider the following non-terminating TRS R borrowing the well-
known Toyama’s example [12, Example 1]:

f(a,b,X) -> f(X,X,X) c -> a c -> b

together with μ(f) = {3}. The only dependency pair for this system is:
F(a,b,X) -> F(X,X,X)

where F is a ‘marked’ version (often called a tuple symbol) of f and we further assume
that μ(F) = {3}. It is not difficult to see that there is no substitution σ which is able
to originate a (possibly empty) context-sensitive rewrite sequence (with R !) from
σ(F(X,X,X)) to σ(F(a,b,X)). The replacement restriction μ(F) = {3} is essential
for this. Furthermore, this fact can be easily checked as explained in [2] and so it
is implemented in MU-TERM.

A proof of μ-termination of R in Example 2.2 is not possible by using either
CSRPO or polynomials with non-negative coefficients (see [11]). Also, as shown
by Giesl and Middeldorp (see also [13]), among all the existing transformations for
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Fig. 3. Termination of CSR using dependency pairs

proving termination of CSR, only the complete Giesl and Middeldorp’s transforma-
tion [13] (yielding a TRS Rμ

C) could be used in this case, but no concrete proof of
termination for Rμ

C is known yet. Furthermore, Rμ
C has 13 dependency pairs and

the dependency graph contains many cycles. In contrast, the CS-TRS has only one
context-sensitive dependency pair and the corresponding dependency graph has no
cycle! Thus, a direct and automatic proof of μ-termination of R is easy now (see
Figure 3).

Although the subterms in the right-hand sides of the rules which are considered
to build the context-sensitive dependency pairs are μ-replacing terms, considering
only non-variable subterms (as in Arts and Giesl’s approach [1]) is not sufficient
to obtain a correct approximation. As discussed in [2], in general we also need to
consider dependency pairs with variables in the right-hand sides.

Example 2.3 Consider the TRS R [26, Example 5]:
if(true,X,Y) -> X f(X) -> if(X,c,f(true))
if(false,X,Y) -> Y

with μ(if) = {1, 2}. There are two dependency pairs:
F(X) -> IF(X,c,f(true))
IF(false,X,Y) -> Y

with μ extended by μ(F) = {1} and μ(IF) = {1, 2}.

A direct and automatic proof of μ-termination of R is possible with CSDPs by
using an auxiliary polynomial ordering generated by a linear polynomial interpre-
tation (computed by MU-TERM, see Figure 4).

A proof of μ-termination of R in Example 2.3 is not possible by using CSRPO.
Furthermore, the μ-termination of R cannot be proved by using a polynomial or-
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Fig. 4. Termination of CSR using dependency pairs and polynomials

dering based on a linear polynomial interpretation.

3 Automatically proving termination of CSR with MU-
TERM

On the basis of recent theoretical and experimental results, we have developed a
termination expert for CSR which combines the different existing techniques in a
sequence of proof attempts which do not require any user interaction. The sequence
of techniques which are tried by the expert is as follows:

(i) Context-sensitive dependency pairs with auxiliary polynomial orderings based
on polynomial interpretations using either:
(a) linear interpretations whose coefficients are taken from (1) {0, 1}, (2)

{0, 1, 2}, or (3) {0, 1
2 , 1, 2}, in this order; or

(b) simple-mixed interpretations linear whose coefficients are taken from (1)
{0, 1}, (2) {0, 1, 2}, or (3) {0, 1

2 , 1, 2}, again in this order.

(ii) Context-sensitive recursive path ordering.

(iii) Polynomial orderings generated from either linear or simple-mixed polynomial
interpretations whose coefficients are rational numbers of the form p

q where
0 ≤ p, q ≤ 5 and q > 0.

(iv) Transformations which obtain a TRS whose termination is proved by using the
standard dependency pairs approach [1]. The transformations are attempted
according to the decision tree in Figure 5 (explained below).

In the following, we motivate some of the choices we made for obtaining the
concrete configuration of the previous sequence.
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Fig. 5. Decision graph for proving termination of CSR by transformation

3.1 Use of polynomial interpretations

As shown in [21,23], the use of rational (or real) coefficients in polynomial interpreta-
tions can be helpful to achieve proofs of termination of (context-sensitive) rewriting.
In this setting, in order to obtain a proof of μ-termination of a TRS R = (F , R), we
use parametric polynomial interpretations for the symbols f ∈ F , whose indetermi-
nate coefficients are intended to be real (or rational) instead of natural or integer
numbers. The termination problem is rephrased as a set of polynomial constraints
on the indeterminate coefficients. This set of constraints is intended to be solved
in the domain of the real numbers. Although such polynomial constraints over the
reals are decidable [25], the difficulty of the procedure depends on the degree and
composition of the parametric polynomials that we use for this. As in [6], we con-
sider classes of polynomials which are well-suited for automatization of termination
proofs: linear and simple-mixed polynomial interpretations.

The automatic generation of rational coefficients can be computationally expen-
sive. For instance, MU-TERM manages rational (nonnegative) coefficients c ∈ Q
in polynomial interpretations as pairs numerator/denominator, i.e., c = p

q , where
p, q ∈ N and q > 0. Thus, each rational coefficient c involves two integers. This
leads to a huge search space in the corresponding constraint solving process [6,21].
For this reason, MU-TERM is furnished with three main generation modes [21]:

(i) No rationals: here, no rational coefficient is allowed.

(ii) Rationals and integers: here, since rational coefficients are intended to intro-
duce non-monotonicity, we only use them with arguments i 	∈ μ(f).
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(iii) All rationals: where all coefficients of polynomials are intended to be rational
numbers.

These generation modes are orderly used by the expert to try different polynomial
interpretations.

Regarding the range of the coefficients, we follow the usual practice in simi-
lar termination tools, where coefficients are bounded to take values 0, 1, or 2 (see
[6,15,16,27]). Note that (as in those related tools) this choice is heuristic, usually
based on the experience. We do not know of any theoretical or empirical inves-
tigation which tries to guide the choice of appropriate bounds for the coefficients
depending on the concrete termination problem. From our side, we just added the
value 1

2 which enables a minimal (but still fruitful) use of rational coefficients. Again,
these generation modes are orderly used by the expert to try different polynomial
interpretations.

3.2 Use of transformations

In [22] we have investigated how to combine the different transformations for prov-
ing termination of CSR. Figure 5 provides a concrete decision tree for using the
different transformations. Here, LL(R) meas that R is left-linear, CMR is the set
of replacement maps which are not more restrictive than the canonical replacement
map μcan

R of the TRS R. This replacement map has a number of interesting proper-
ties (see [17,18]) and can be automatically computed for each TRS (for instance, the
tool MU-TERM can do that) thus giving the user the possibility of using CSR with-
out explicitly introducing hand-crafted replacement restrictions. Finally, SN(R)?
represeents a check of termination of the TRS R. More details can be found in [22].

4 Experimental evaluation

As remarked in the introduction, besides MU-TERM, AProVE is currently the only
tool which is able to prove termination of CSR by using (non-trivial) transfor-
mations. AProVE is currently the most powerful tool for proving termination of
TRSs and implements most existing results and techniques regarding DPs and re-
lated techniques. AProVE implements a termination expert which successively tries
different transformations for proving termination of CSR and uses a variety of differ-
ent and complementary techniques for proving termination of rewriting, see [15,14].
We have considered the (Linux-based, completely automatic) WST’06-version of
AProVE and the set of 90 termination problems for CSR which have been used in
the 2006 termination competition:

http://www.lri.fr/∼marche/termination-competition/2006

A summary of the benchmarks can be found here:

http://www.dsic.upv.es/∼rgutierrez/muterm/benchmarks.html

The benchmarks were executed on a PC equipped with an AMD Athlon XP proces-
sor at 2.4 GHz and 512 MB of RAM, running Linux (kernel 2.6.12). Both AProVE
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and MU-TERM succeeded (running in a completely automatic way and with a time-
out of 1 minute) on 56 examples; furthermore, the total elapsed time was almost
the same for both tools. The MU-TERM expert used CSDPs in 45 of the 56 cases
(80.4%); CSRPO in 7 cases (12.5%), and transformations in only 4 cases (7.1%,
three of them using Zantema’s transformation and one of them using Giesl and
Middeldorp’s incomplete transformation).

5 Conclusions and Future work

We have presented MU-TERM, a tool for proving termination of CSR. The tool has
been improved with the implementation of new direct techniques for proving ter-
mination of CSR (the context-sensitive dependency pairs and the context-sensitive
recursive path orderings) and an ‘expert’ for automatically proving termination of
CSR. The new features perform quite well and have been shown useful in compar-
ison with previously implemented techniques.

Future extensions of the tool will address the problem of efficiently using neg-
ative coefficients in polynomial interpretations (see [21] for further motivation).
More research is also necessary to make the use of rational coefficients in proofs of
termination much more efficient.

The current implementation of CSRPO is based on an ad-hoc incremental con-
straint solver which could be improved in many different directions. We plan to
explore the reduction of the problem to a SAT-solving format, as described in [5].
We also plan to develop algorithms to solve polynomial constraints over the reals
yielding exact (but not necessarily rational) solutions.

Finally, we want to improve the generation of reports and the inclusion of new,
richer formats for input systems (e.g., Conditional TRSs, Many sorted TRSs, TRSs
with AC symbols, etc.).
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[8] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving Termination of Membership
Equational Programs. In P. Sestoft and N. Heintze, editors, Proc. of ACM SIGPLAN 2004 Symposium
on Partial Evaluation and Program Manipulation, PEPM’04, pages 147-158, ACM Press, New York,
2004.
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Abstract. Innermost context-sensitive rewriting has been proved use-
ful for modeling computations of programs of algebraic languages like
Maude, OBJ, etc. Furthermore, innermost termination of rewriting is
often easier to prove than termination. Thus, under appropriate con-
ditions, a useful strategy for proving termination of rewriting is trying
to prove termination of innermost rewriting. This phenomenon has also
been investigated for context-sensitive rewriting (CSR). Up to now, only
few transformations have been proposed and used to prove termination
of innermost CSR. In this paper, we investigate direct methods for prov-
ing termination of innermost CSR. We adapt the recently introduced
context-sensitive dependency pairs approach to innermost CSR and show
that they can be advantageously used for proving termination of inner-
most CSR. We have implemented them as part of the termination tool
mu-term.

1 Introduction

The dependency pairs method [3] is one of the most powerful techniques for proving
termination of Term Rewriting Systems (TRSs [21,22]). Roughly speaking, given
a TRS R, the dependency pairs associated with R form a new TRS DP(R) which
(together with R) determines the so-called dependency chains which characterize
termination of R. The dependency pairs can be presented as a dependency graph,
where the absence of infinite chains can be analyzed by considering the cycles in
the graph. In [1], the dependency pairs method has been adapted for proving ter-
mination of context-sensitive rewriting (CSR [15,18]). With CSR we can achieve
a terminating behavior for non-terminating TRSs by pruning (all) infinite rewrite
sequences. In CSR we only rewrite μ-replacing subterms. Here, μ is a replacement
map, i.e., a mapping μ : F → P(N) satisfying μ(f) ⊆ {1, . . . , k}, for each k-ary
symbol f of the signature F [15]. We use them to indicate the argument posi-
tions on which the rewriting steps are allowed. Then, ti is a μ-replacing subterm
of f(t1, . . . , tk) if i ∈ μ(f); every term t (as a whole) is μ-replacing by definition.
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For other subterms we proceed inductively in this way. Then, for a given TRS
R and a replacement map μ, we obtain a restriction of rewriting which we call
context-sensitive rewriting. A pair (R, μ) is often called a context-sensitive TRS
(CS-TRS). Proving termination of CSR is an interesting problem with several ap-
plications in the fields of term rewriting and programming languages (see [20] for
further motivation). Furthermore, termination of innermost CSR (i.e., the variant
of CSR where only the deepest μ-replacing redexes are contracted) has proved use-
ful for proving termination of programs in programming languages like Maude and
OBJ* which permit to control the program execution by means of such context-
sensitive annotations [16,17].

Proving innermost termination of rewriting is often easier than proving ter-
mination of rewriting [3] and, for some relevant classes of TRSs, innermost ter-
mination of rewriting is even equivalent to termination of rewriting [10,11]. In
[7,12] it is proved that the equivalence between termination of innermost CSR
and termination of CSR holds in some interesting cases (e.g., for orthogonal
CS-TRSs).

Example 1. Consider the following orthogonal TRS R which is a variant of an
example in [4]:

from(X) -> cons(X,from(s(X)))
sel(0,cons(X,XS)) -> X
sel(s(N),cons(X,XS)) -> sel(N,XS)
minus(X,0) -> X
minus(s(X),s(Y)) -> minus(X,Y)
quot(0,s(Y)) -> 0
quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y)))
zWquot(nil,nil) -> nil
zWquot(cons(X,XS),nil) -> nil
zWquot(nil,cons(X:XS)) -> nil
zWquot(cons(X,XS),cons(Y,YS))->cons(quot(X,Y),zWquot(XS,YS))

together with μ(cons) = {1} and μ(f) = {1, . . . , ar(f)} for all other symbols f .
According to [6], innermost μ-termination of R implies its μ-termination as well.
We will show how R can easily be proved innermost μ-terminating (and hence
μ-terminating) by using the results in this paper.

In this paper, we extend the context-sensitive dependency pairs approach in
[1] for proving termination of innermost CSR. Actually, techniques for proving
termination of innermost CSR have already been investigated [7,16]. However,
these papers only consider transformational techniques, where the original CS-
TRS (R, μ) is transformed into a TRS Rμ

Θ (where Θ represents the transforma-
tion which has been used) whose innermost termination implies the innermost
termination of CSR for (R, μ). Up to now, no direct method has been proposed
to prove termination of innermost CSR. As shown in [2], proofs of termination
using context-sensitive dependency pairs (CSDPs) are much more powerful and
faster than any other technique for proving termination of CSR. Dealing with
innermost CSR, we have a similar situation.
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Example 2. Consider the following TRS R:
b -> c(b)
f(c(X),X) -> f(X,X)

together with μ(f) = {1, 2} and μ(c) = ∅. This system is not μ-terminating:
f(b,b) ↪→ f(c(b),b) ↪→ f(b,b) ↪→ . . .

where ↪→ denotes a context-sensitive rewriting step. However R is innermost
μ-terminating. We can give a very easy automatic proof of this fact because
the innermost context-sensitive dependency graph has no cycle. In contrast, by
using available transformations for proving innermost termination of CSR (see
[8] for a survey), we could not obtain a proof by using tools (like AProVE or
TTT) supporting innermost termination proofs (of rewriting).

In the dependency pairs approach, proofs of termination of innermost rewriting
are easier than proofs of termination of rewriting because: (1) the estimated
innermost dependency graph is more accurate, (2) it is possible to limit the
attention on the so-called usable rules of the TRS (for a given cycle).

After some preliminaries in Section 2, in Section 3 we prove that termination
of innermost CSR can be characterized by using an appropriate definition of
chain of CSDPs. In Section 4 we show how to prove automatically innermost
termination of CSR by using the innermost context-sensitive dependency graph.
Section 5 adapts the notion of usable rules to deal with innermost CSR. Section
6 provides a first experimental evaluation of our techniques.

2 Preliminaries

Terms. Throughout the paper, X denotes a countable set of variables and F
denotes a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed
arity given by a mapping ar : F → N. The set of terms built from F and X is
T (F ,X ). Positions p, q, . . . are represented by chains of positive natural numbers
used to address subterms of t. Given positions p, q, we denote their concatenation
as p.q. Positions are ordered by the standard prefix ordering ≤. If p is a position,
and Q is a set of positions, p.Q = {p.q | q ∈ Q}. We denote the topmost position
by Λ. The set of positions of a term t is Pos(t). Positions of non-variable symbols
in t are denoted as PosF(t) while PosX (t) are the positions of variables. The
subterm at position p of t is denoted as t|p and t[s]p is the term t with the
subterm at position p replaced by s. We write t�s if s = t|p for some p ∈ Pos(t)
and t � s if t � s and t �= s. The symbol labelling the root of t is denoted as
root(t). A context is a term C ∈ T (F ∪ {�},X ) with zero or more ‘holes’ � (a
fresh constant symbol).

Term rewriting. A rewrite rule is an ordered pair (l, r), written l → r, with
l, r ∈ T (F ,X ), l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule
is l and r is the right-hand side (rhs). A TRS is a pair R = (F , R) where R is
a set of rewrite rules. Given R = (F , R), we consider F as the disjoint union
F = C � D of symbols c ∈ C, called constructors and symbols f ∈ D, called
defined functions, where D = {root(l) | l → r ∈ R} and C = F − D.
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Context-sensitive rewriting. A mapping μ : F → P(N) is a replacement map
(or F -map) if ∀f ∈ F , μ(f) ⊆ {1, . . . , ar(f)} [15]. Let MF be the set of all
F -maps (or MR for the F -maps of a TRS (F , R)). A binary relation R on terms
is μ-monotonic if t R s implies f(t1, . . . , ti−1, t, . . . , tk) R f(t1, . . . , ti−1, s, . . . , tk)
for all f ∈ F , i ∈ μ(f), and t, s, t1, . . . , tk ∈ T (F ,X ). The set of μ-replacing
positions Posμ(t) of t ∈ T (F ,X ) is: Posμ(t) = {Λ}, if t ∈ X and Posμ(t) =
{Λ} ∪ ⋃

i∈μ(root(t)) i.Posμ(t|i), if t �∈ X . The set of μ-replacing variables of t

is Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), t|p = x}. The μ-replacing subterm
relation �μ is given by t �μ s if there is p ∈ Posμ(t) such that s = t|p. We write
t �μ s if t �μ s and t �= s. In context-sensitive rewriting (CSR [15]), we (only)
contract μ-replacing redexes: s μ-rewrites to t, written s ↪→μ t (or s ↪→R,μ t and
even s ↪→ t, if R and μ are clear from the context), if s

p→R t and p ∈ Posμ(s). A
μ-normal form is a term which cannot be μ-rewritten. Let NFμ(R) (or just NFμ

if no confusion arises) be the set of μ-normal forms of a TRS R. A μ-innermost
redex is a redex t whose μ-replacing subterms are μ-normal forms: t = σ(l) for
some substitution σ and rule l → r ∈ R and for all p ∈ Posμ(t), t|p ∈ NFμ. A

term s innermost μ-rewrites to t, written s
i

↪→ t, if s
p→R t, p ∈ Posμ(s), and

s|p is an μ-innermost redex. A TRS R is μ-terminating if ↪→μ is terminating.
A term t is μ-terminating if there is no infinite μ-rewrite sequence t = t1 ↪→μ

t2 ↪→μ · · · ↪→μ tn ↪→μ · · · starting from t. A TRS R is innermost μ-terminating

if
i

↪→μ is terminating. We write s
i

↪→!
R t if s

i
↪→∗
R t and t ∈ NFμ.

A pair (R, μ) where R is a TRS and μ ∈ MR is often called a CS-TRS.

Reduction pairs. A reduction pair (�, �) consists of a stable and weakly
monotonic quasi-ordering �, and a stable and well-founded ordering � satis-
fying either � ◦ � ⊆ � or � ◦ � ⊆ �. Note that monotonicity is not required
for �.

3 Termination of Innermost CSR with Dependency Pairs

In the following definition, given a term t = f(t1, . . . , tk) ∈ T (F ,X ), we write t�

to denote the marked term f �(t1, . . . , tk), where f � is a new fresh symbol (called
tuple symbol [3]). Given a signature F , we let F � be the extension of F containing
all tuple symbols for F : F � = F ∪ {f � | f ∈ F}. Similarly, if t = f �(t1, . . . , tk) is
a marked term, we write t� to denote the unmarked term f(t1, . . . , tk).

Definition 1 (CS-dependency pairs [1]). Let R = (F , R) = (C � D, R) be a
TRS and μ ∈ MR. We define DP(R, μ) = DPF(R, μ) ∪ DPX (R, μ) to be the set
of context-sensitive dependency pairs (CS-DPs) where:

DPF(R, μ) = {l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l ��μ s}

and DPX (R, μ) = {l� → x | l → r ∈ R, x ∈ Varμ(r) − Varμ(l)}. We extend
μ ∈ MF into μ� ∈ MF� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f) if f ∈ D.
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Example 3. Consider the CS-TRS (R, μ) in Example 2. There is only one context-
sensitive dependency pair:

F(c(X),X) -> F(X,X)

with μ�(F) = {1, 2}.

In the CS-DP approach, termination of CSR is characterized as the absence of
infinite chains of CS-DPs [1, Definition 2]. In innermost CSR, we only perform
reduction steps on innermost replacing redexes. Therefore, we have to restrict
the definition of chains in order to obtain an appropriate notion corresponding to
innermost CSR. Regarding innermost reductions, arguments of a redex should
be in normal form before the redex is contracted and, regarding CSR, the redex
to be contracted has to be in a replacing position.

Definition 2 (Innermost μ-chain). Given a CS-TRS (P , μ�) of CS-DPs as-
sociated to a CS-TRS (R, μ), an innermost (R,P , μ�)-chain is a sequence of
pairs uj → vj ∈ P such that there is a substitution σ such that σ(uj)∈ NFμ(R)
and such that, for all j ≥ 1,

1. σ(vj)
i

↪→!
R,μ� σ(uj+1), if uj → vj ∈ DPF(R, μ), and

2. if uj → vj = uj → xj ∈ DPX (R, μ), then there is some sj ∈ T (F ,X ) such

that σ(xj) �μ sj and s�
j

i
↪→!
R,μ� σ(uj+1).

As usual we assume that different occurrences of dependency pairs do not share
any variables (renamings are used if necessary). An innermost (R,P , μ�)-chain
is minimal if for all uj → vj ∈ P and j ≥ 1, σ(vj) is innermost μ-terminating
(whenever uj → vj ∈ DPF(R, μ)) and s�

j is innermost μ-terminating (whenever
uj → vj ∈ DPX (R, μ)).

Theorem 1. A CS-TRS (R, μ) is innermost μ-terminating if and only if no
infinite minimal innermost μ-chain exists.

Let M∞,μ be a set of minimal non-μ-terminating terms in the following sense
[1]: t belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing
subterm s of t (i.e., t �μ s) is μ-terminating. The proof of this result uses the
following result.

Proposition 1. [1, Proposition 1] Let R = (C � D, R) be a TRS and μ ∈ MR.
Then for all t ∈ M∞,μ, there exist l → r ∈ R, a substitution σ and a term

u ∈ M∞,μ such that t
>Λ
↪→∗ σ(l) Λ→σ(r) �μ u and either (1) there is a μ-replacing

subterm s of r such that u = σ(s), or (2) there is x ∈ Varμ(r) − Varμ(l) such
that σ(x) �μ u.

Proof. (of Theorem 1) We prove the if part by contradiction. We show that
for any infinite innermost μ-rewriting sequence we can construct an infinite in-
nermost (R, DP(R, μ), μ�)-chain. Let innermost μ-rewriting below the root be
>i
↪→ = (

>Λ
↪→ ∩ i

↪→). If R is not innermost μ-terminating, then, by Proposition 1,
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there is a term t ∈ M∞,μ, a rule l → r ∈ R, a substitution σ, and a term

u ∈ M∞,μ such that t
>i
↪→ σ(l) Λ→ σ(r) �μ u (where every immediate replacing

subterm of σ(l) is a μ-normal form), u is not innermost μ-terminating and either

1. there is a μ-replacing subterm s of r such that u = σ(s), or
2. there is x ∈ Varμ(r) − Varμ(l) such that σ(x) �μ u.

In the first case above, we have a dependency pair l� → s� ∈ DPF (R, μ) such
that u = σ(s) ∈ M∞,μ, i.e., we can start an innermost (R, DP(R, μ), μ�)-chain
beginning with σ(l�) ↪→DP(R,μ),μ� σ(s�). Note that σ(l�) ∈ NFμ(R).

In the second case above, since u ∈ M∞,μ, there is a rule λ → ρ such that

u
>i

↪→! σ(λ) (since we can assume that the variables in this rule do not occur in l,
we can use the same –conveniently extended– substitution σ) and σ(ρ) contains

a subterm in M∞,μ. Hence, u� i
↪→!
R,μ� σ(λ�). Furthermore, there is a dependency

pair l� → x ∈ DPX (R, μ) such that σ(x) �μ u; thus, according to Definition 2
we can start an (R, DP(R, μ), μ�)-chain beginning with

σ(l�) ↪→DP(R,μ),μ� u�

and then continuing with a dependency pair u′ → v′ such that u′ = λ� and
u� i

↪→!
R,μ� σ(u′). Note that σ(l�), σ(λ�) ∈ NFμ(R).

Thus, in both cases we can start an innermost (R, DP(R, μ), μ�)-chain which
could be infinitely extended in a similar way by starting from u�. This contradicts
our initial assumption.

On the other hand, in order to show that the criterion is also necessary for
innermost termination of context-sensitive rewriting we assume that there exists
an infinite innermost μ-chain that implies the existence of an infinite innermost
μ-rewrite sequence. If there is an infinite innermost (R, DP(R, μ), μ�)-chain, then
there is a substitution σ and dependency pairs ui → vi ∈ DP(R, μ) such that
considering the first dependency pair u1 → v1 in the sequence:

1. If u1 → v1 ∈ DPF(R, μ), then v�
1 is a μ-replacing subterm of the right-

hand-side r1 of a rule l1 → r1 in R. Therefore, r1 = C1[v
�
1]p1 for some

p1 ∈ Posμ(r1) and, since σ(u1) ∈ NFμ, we can perform the innermost

μ-rewriting step t1 = σ(u�
1)

i
↪→R,μ σ(r1) = σ(C1)[σ(v�

1)]p1 = s1, where

σ(v�
1)

� = σ(v1)
i

↪→!
R,μ� σ(u2) and σ(u2) also initiates an infinite innermost

(R, DP(R, μ), μ�)-chain. Note that p1 ∈ Posμ(s1).
2. If u1 → x ∈ DPX (R, μ), then there is a rule l1 → r1 in R such that u1 = l�1,

and x ∈ Varμ(r1)−Varμ(l1), i.e., r1 = C1[x]q1 for some q1 ∈ Posμ(r1). Fur-

thermore, since there is a subterm s such that σ(x)�μ s and s� i
↪→!
R,μ� σ(u2),

we can write σ(x) = C′1[s]p′
1

for some p′1 ∈ Posμ(σ(x)). Therefore, since
σ(u1) = σ(l1)� ∈ NFμ, we can perform the innermost μ-rewriting step

t1 = σ(l1)
i

↪→R,μ σ(r1) = σ(C1)[C′1[s]p′
1
]q1 = s1 where s� i

↪→!
R,μ� σ(u2) (hence
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s
i

↪→! u�
2) and σ(u2) initiates an infinite innermost (R, DP(R, μ), μ�)-chain.

Note that p1 = q1.p
′
1 ∈ Posμ(s1).

Since μ�(f �) = μ(f), and p1 ∈ Posμ(s1), we have that s1
i

↪→!
R,μ t2[σ(u2)]p1 = t2

and p1 ∈ Posμ(t2). Therefore, we can build in that way an infinite μ-rewrite
sequence

t1
i

↪→R,μ s1
i

↪→!
R,μ t2

i
↪→R,μ · · ·

which contradicts the innermost μ-termination of R.

Example 4. Consider again the CS-TRS R in Example 2. As shown in Example
3, there is only one CS-DP:

F(c(X),X) -> F(X,X)

Since μ�(F) = {1, 2}, if a substitution σ satisfies σ(F(c(X),X)) ∈ NFμ(R), then
σ(X) = s is in μ-normal form. Assume that the dependency pair is part of an
innermost CS-DP-chain. Since there is no way to μ-rewrite F (s, s), there must
be F (s, s) = F (c(t), t) for some term t, which means that s = t and c(t) = s,
i.e., t = c(t) which is not possible. Thus, there is no infinite innermost chain of
CS-DPs for R, which is proved innermost terminating by Theorem 1.

Of course, ad-hoc reasonings like in Example 4 do not lead to automation. In
the following section we discuss how to prove termination of innermost CSR by
giving constraints on terms that can be solved by using standard methods.

4 Checking Innermost μ-Termination Automatically

The analysis of infinite sequences of dependency pairs can be handled by looking
at (the cycles C of) the dependency graph associated to the TRS R [3].

The Innermost Context-Sensitive dependency graph of a TRS R is the di-
rected graph whose nodes are the CS-dependency pairs; there is an arc from
u → v to u′ → v′ if u → v, u′ → v′ is an innermost μ-chain.

In [2] we have investigated the structure of context-sensitive sequences in order
to improve the CS-dependency graph. A μ-rewrite sequence can proceed in two
ways: by means of visible parts of the rules that is, μ-replacing subterms in the
right-hand sides which are rooted by a defined symbol, or showing up hidden
non-μ-terminating subterms which are activated by migrating variables of a rule
l → r, i.e. those variables that are not μ-replacing in l and become μ-replacing
in r.

Definition 3 (Hidden symbol [2]). Let R = (F , R) be a TRS and μ ∈ MR.
We say that f ∈ F is a hidden symbol if there is a rule l → r ∈ R where f
occurs at a non-μ-replacing position. Let H(R, μ) (or just H, if R and μ are
clear from the context) be the set of all hidden symbols in (R, μ).

Obviously, as innermost μ-chains are restricted chains (also restricted μ-chains!),
the Innermost Context-Sensitive dependency graph (in the following ICSDG or
ICS-dependency graph for short) is a subgraph of the dependency graph.
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Definition 4 (Innermost CSDG). Let R be a TRS and μ ∈ MR. The inner-
most context-sensitive dependency graph consists of the set DP(R, μ) of context-
sensitive dependency pairs and arcs which connect them as follows:

1. There is an arc from a dependency pair u → v ∈ DPF(R, μ) to a depen-
dency pair u′ → v′ ∈ DP(R, μ) if there are subtitutions σ and θ such that

σ(v)
i

↪→! θ(u′) and σ(u) and θ(u′)∈ NFμ(R).
2. There is an arc from a dependency pair u → v ∈ DPX (R, μ) to a dependency

pair u′ → v′ ∈ DP(R, μ) if root(u′)� ∈ H(R, μ) and u and u′ ∈ NFμ(R).

Example 5. Consider the following CS-TRS R in [6]:
f(g(b)) -> f(g(a)) f(a) -> f(a) a -> b

together with μ(f) = {1} and μ(g) = ∅. Then DP(R, μ) is:
F(g(b)) -> F(g(a)) F(a) -> F(a) F(a) -> A

and μ�(F) = {1}. The CSDG contains a single cycle {F(a) -> F(a)}. However,
the ICSDG is empty.

4.1 Approximating the ICSDG

In order to automatically build the Innermost Context-Sensitive Dependency
Graph it is necessary to approximate it since for two dependency pairs u → v
and u′ → v′ it is undecidable to know if there exist two substitutions σ and θ such
that σ(v) μ-reduces innermost to θ(u′) and σ(u) and θ(u′) are instantiated to μ-
normal forms. For this reason, we have to approximate the graph by computing
a supergraph containing it in the same way as previous approaches [3,1]. In
the context-sensitive setting, we have adapted functions Cap and Ren to be
applied only on μ-replacing subterms [1]. On the other hand, in the innermost
setting it is not necessary to use Ren since all variables are always instantiated
to normal forms and cannot be reduced and Cap(v) substitutes every subterm
with a defined root symbol by fresh variables only if the term is not equal to
subterms of u. To approximate the ICS-dependency graph, however, we have to
combine both of them: we use Capμ

u(v) to replace all μ-replacing subterm rooted
with a defined symbol whenever the term was not equal to a μ-replacing subterm
of the left-hand side of the dependency pair u. We use Renμ

u(v) to replace by
fresh variables those ones that are replacing in v but not in u since they are not
μ-normalized. Given a term u, we let Capμ

u be given as follows: let D be a set
of defined symbols (in our context, D = D ∪ D�):

Capμ
u(x) = x if x is a variable

Capμ
u(f(t1, . . . , tk)) =

{
y if f ∈ D

f([t1]
f
1 , . . . , [tk]fk) otherwise

where y is a new, fresh variable which has not yet been used and given a term s,
[s]fi = Capμ

u(s) if i ∈ μ(f) and s is not equal to a μ-replacing subterm of u and
[s]fi = s otherwise. Given a term u, we let Renμ

u be given by: Renμ
u(x) = y if x

is a variable and Renμ
u(f(t1, . . . , tk)) = f([t1]

f
1 , . . . , [tk]fk) for evey k-ary symbol
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f , where given a term s ∈ T �(F ,X ), [s]fi = Renμ
u(s) if i ∈ μ(f) and the variable

is not μ-replacing in u and [s]fi = s otherwise.
We have an arc from u → v to u′ → v′ in the ICS-dependency graph if

Renμ
u(Capμ

u(v)) and u′ are unifiable by some mgu σ such that σ(u), σ(u′) ∈
NFμ(R); following [3], we say that v and u′ are innermost μ-connectable. The
following result whose proof is similar to that of [3, Theorem 39] formalizes the
correctness of this approach (we only need to take into account the replacement
restrictions indicated by the replacement map μ).

Proposition 2. Let (R, μ) be a CS-TRS. If there is an arc from u → v to
u′ → v′ in the ICS-dependency graph, then v and u′ are innermost μ-connectable.

Example 6. (Continuing Example 2) Since Renμ�

u (Capμ�

u (F(X,X))) = F(X,X)
and F(c(Y),Y) do not unify we conclude (and this can easily be implemented)
that the ICS-dependency graph for the CS-TRS (R, μ) in Example 2 contains
no cycles.

We know how to approximate the ICS-dependency graph by means of the func-
tions Capμ

u and Renμ
u. The next step is checking the innermost μ-termination

with the ICSDG automatically.

4.2 Proofs of Termination of Innermost CSR Using the ICSDG

The absence of infinite innermost (R, DP(R, μ), μ�)-chains is checked in the
ICSDG by finding (possibly different) μ-reduction pairs (�C, �C) for each cycle
C. Here, a μ-reduction pair is a pair (�, �) where � is a stable and μ-monotonic
quasi-ordering which is compatible with the well-founded and stable ordering �,
i.e., satisfying either � ◦ � ⊆ � or � ◦ � ⊆ �.

Theorem 2 (Use of the ICSDG). Let R be a TRS and μ ∈ MR. Then, R is
innermost μ-terminating iff for each cycle C in the innermost context-sensitive
dependency graph there is a μ-reduction pair (�C,�C) such that R ⊆�C, C ⊆�C

∪ �C, and

1. If C ∩ DPX (R, μ) = ∅, then C ∩ �C �= ∅
2. If C ∩ DPX (R, μ) �= ∅, then �μ ⊆ �C, and

(a) C ∩ �C �= ∅ and f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C, or
(b) f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C.

The proof is similar to that of [1, Theorem 4]. The practical use of Theorem 2
concerns the so-called strongly connected components (SCCs) of the dependency
graph, rather than the cycles themselves (which are exponentially many) [13,14].

Example 7. There are many examples that are easily solved when trying to build
the ICS-dependency graph since they do not contain cycles. This is the case for
Example 2 and Example 5.

The use of argument filterings, which is standard in the current formulations of
the dependency pairs method, also adapts without changes to this setting.

Also the subterm criterion [13], can be used to ignore certain cycles of the
dependency graph. In [1], we have adapted it to CSR.
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5 Usable CS-Rules

An interesting feature in the treatment of innermost termination problems using
the dependency pairs approach is that, since the variables in the right-hand side
of the dependency pairs are in normal form, the rules which can be used to
connect contiguous dependency pairs are usually a proper subset of the rules
in the TRS. This leads to the notion of usable rules [3, Definition 32] which
simplifies the proofs of innermost termination of rewriting. We adapt this notion
to the context-sensitive setting.

Definition 5 (Basic usable CS-rules). Let R be a TRS and μ ∈ MR. For
any symbol f let Rules(R, f) be the set of rules defining f and such that the
left-hand side l has no redex as proper μ-replacing subterm. For any term t the
set of basic usable rules U0(R, t) is as follows:

U0(R, x) = ∅
U0(R, f(t1, . . . , tn)) = Rules(R, f) ∪ �

i∈μ(f)

U0(R′, ti) ∪ �

l→r∈Rules(R,f)

U0(R′, r)

where R′= R−Rules(R, f). If C ⊆ DP(R, μ), then U0(R, C) =
⋃

l→r∈C

U0(R, r).

Interestingly, although our definition is a straightforward extension of the clas-
sical one (which just takes into account that μ-rewritings are possible only on μ-
replacing subterms), some subtleties arise due to the presence of non-conservative
rules. Here, a rule l → r of a TRS R is μ-conservative if Varμ(r) ⊆ Varμ(l), i.e.,
it does not contain migrating variables; R is μ-conservative if all its rules are
(see [20]).

Definition 6 (Conservative CSDPs). Let R be a TRS and μ ∈ MR. The
set of conservative CSDPs DPCo(R, μ) is DPCo(R, μ) = {u → v ∈ DP(R, μ) |
Varμ�

(v) ⊆ Varμ�

(u)}.

Note that DPCo(R, μ) ⊆ DPF (R, μ). Basic usable rules in Definition 5 can be
applied to cycles C consisting of conservative CS-dependency pairs provided that
U0(R, C) is also conservative. This is proved in Theorem 3 below. First, we need
some auxiliary results.

Proposition 3. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If s

i
↪→ s′ by

applying a rule l → r ∈ R, then there is a substitution σ′ such that s′ = σ′(t′)
for t′ = t[r]p and p ∈ Posμ

F(t).

Proof. Let p ∈ Posμ(s) be the position of an innermost redex s|p = θ(l) for
some substitution θ. Since s = σ(t) and for all replacing variables in t, we have
σ(x) ∈ NFμ(R), it follows that p is a non-variable (replacing) position of t.
Therefore, p ∈ Posμ

F(t). Since s = σ(t), we have that s′ = σ(t)[θ(r)]p and since
p ∈ Posμ

F(t), by defining σ′(x) = σ(x) for all x ∈ V ar(t) and σ(x) = θ(x) for all
x ∈ Var(r) (as usual, we assume Var(t) ∩ Var(r) = ∅), we have s′ = σ′(t[r]p).
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Proposition 4. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a

substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If s
i

↪→ s′ by
applying a conservative rule l → r ∈ R, then there is a substitution σ′ such that
s′ = σ′(t′) for t′ = t[r]p, p ∈ Posμ

F(t) and ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R).

Proof. By Proposition 3, we know that σ′, as in Proposition 3, satisfies s′ = σ′(t′)
for θ as in Proposition 3 and some p ∈ Posμ

F (t). Since s|p is an innermost μ-
replacing redex, we have that ∀y ∈ Varμ(l), θ(y) ∈ NFμ(R). Since the rule l → r
is conservative, Varμ(r) ⊆ Varμ(l), hence ∀z ∈ Varμ(r), σ′(z) ∈ NFμ(R). Since
Varμ(t[r]p) ⊆ Varμ(t) ∪ Varμ(r), we have that ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R).

Proposition 5. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If U0(R, t)

is conservative and s
i

↪→∗
R u then s

i
↪→∗

U0(R,t) u.

Proof. By induction on the length of the sequence s
i

↪→∗
R u. If s = σ(t) = u, it is

trivial. Otherwise, if s
i

↪→R s′
i

↪→∗
R u, we first prove that the result also holds in

s
i

↪→R s′. By Proposition 3, s = σ(t), and s′ = σ′(t′) for t′ = t[r]p is such that
s|p = θ(l) and s′|p = θ(r) for some p ∈ Posμ

F (t). Thus, root(l) = root(t|p) and
by Definition 5, we can conclude that l → r ∈ U0(R, t). By hypothesis, U0(R, t)
is conservative. Thus, l → r is conservative and by Proposition 4, s′ = σ′(t′)
and ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R). Since t′ = t[r]p and root(t|p) = root(l), we
have that U0(R, t′) ⊆ U0(R, t) and (since U0(R, t) is conservative) U0(R, t′) is

conservative as well. By the induction hypothesis we know that s′
i

↪→∗
U0(R,t′) u.

Thus we have s
i

↪→U0(R,t) s′
i

↪→∗
U0(R,t) u as desired.

Theorem 3. Let R = (F , R) be a TRS, μ ∈ MF , and C ⊆ DPCo(R, μ). If there
is a μ�-reduction pair (�, �) such that, U0(R, C) is conservative, U0(R, C) ⊆�,
C ⊆� ∪ �, and C∩ � �= ∅, then there is no minimal innermost (R, C, μ�)-chain.

Proof. We proceed by contradiction. If R is not innermost μ-terminating, then
by Theorem 1 there is an infinite innermost (R, DP(R, μ), μ�)-chain:

σ(u1) ↪→DP(C,μ),μ� σ(v1)
i

↪→!
R σ(u2) ↪→DP(C,μ),μ� σ(v2)

i
↪→!
R σ(u3) ↪→DP(C,μ),μ� · · ·

for a substitution σ and ui → vi ∈ DPF (C, μ) for i ≥ 1. Since ui → vi ∈
DPCo(R, μ), and σ(ui) ∈ NFμ(R), this implies that ∀x ∈ Varμ(vi), σ(x) ∈
NFμ(R) and by Proposition 5 the sequence can be seen as:

σ(u1) ↪→
DP(C,μ),μ� σ(v1)

i
↪→!

(U0(R,C),μ�)
σ(u2) ↪→

DP(C,μ),μ� σ(v2)
i

↪→!
(U0(R,C),μ�)

σ(u3) ↪→ · · ·

By stability of �, we have σ(ui) � σ(vi) and by stability, μ-monotonicity and
transitivity of � we have that σ(vi) � σ(ui+1). By using the compatibility
conditions of the μ-reduction pair, we obtain an infinite decreasing �-sequence
which contradicts well-foundedness of �.
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Unfortunately, dealing with non-conservative CSDPs, considering the basic us-
able CS-rules does not ensure a correct approach.

Example 8. Consider again the TRS R:
b -> c(b)
f(c(X),X)-> f(X,X)

together with μ(f) = {1} and μ(c) = ∅. There are two non-conservative CS-DPs
(note that μ�(F) = μ(f) = {1}):

F(c(X),X) -> F(X,X)
F(c(X),X) -> X

and only one cycle in the ICSDG:
F(c(X),X) -> F(X,X)

Note that U0(R, F(X,X)) = ∅. Since this CS-DP is strictly compatible with,
e.g., an LPO, we would conclude the innermost μ-termination of R. However,
this system is not innermost μ-terminating:

f(b,b)
i

↪→ f(c(b),b)
i

↪→ f(b,b)
i

↪→ · · ·

The problem is that we have to take into account the special status of variables
in the right-hand side of a non-conservative CS-DP. Instances of such variables
are not guaranteed to be μ-normal forms. For this reason, when a cycle contains
at least one non-conservative CS-DP, we have to consider the whole set of rules
of the system.

Furthermore, conservativeness of U0(R, C) cannot be dropped either since we
could infer an incorrect result as shown by the following example.

Example 9. Consider the TRS R:
b -> c(b)
f(c(X),X) -> f(g(X),X)
g(X) -> X

together with μ(f) = {1} and μ(g) = μ(c) = ∅. There is only one con-
servative cycle: {F(c(X),X) -> F(g(X),X)} having only one usable (but non-
conservative!) rule g(X) -> X. This is compatible with the μ-reduction pair in-
duced by the following polynomial interpretation:

[f](x, y) = 0 [c](x) = x + 1 [g](x) = x [F](x, y) = x

However the system is not innermost μ-terminating:

f(c(b),b)
i

↪→ f(g(b),b)
i

↪→ f(b,b)
i

↪→ f(c(b),b)
i

↪→ · · ·

Nevertheless, Theorem 3 is useful to improve the proofs of termination of inner-
most CSR as the following example shows.

Example 10. Consider again the TRS R in example 1. The system contains three
cycles in the ICSDG:
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{ SEL(s(N),cons(X,XS)) -> SEL(N,XS) }
{ MINUS(s(X),s(Y)) -> MINUS(X,Y) }
{ QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) }

The first two cycles can be solved by using the subterm criterion. However, with-
out the notion of usable rules, the last one is difficult to solve. The cycle is con-
servative and the obtained usable rules are also conservative: minus(X,0) -> X
and minus(s(X),s(Y)) -> minus(X,Y). According to Theorem 3, the cycle can
be easily solved by using a polynomial interpretation:

[minus](x, y) = x [0] = 0
[s](x) = x + 1 [QUOT](x, y) = x

6 Experiments

We have implemented the techniques described in the previous sections as part
of the tool mu-term [19]. In order to evaluate the techniques which are reported
in this paper we have made some benchmarks. We have considered the examples
in the Termination Problem Data Base (TPDB, version 3.2) available through
the URL:

http://www.lri.fr/~marche/tpdb/

Although there is no special TPDB category for innermost termination of CSR
(yet) we have used the TRS/CSR directory in order to test our techniques for
proving termination of innermost CSR (Theorems 2, 3). It contains 90 examples
of CS-TRSs. We are able to give an automatic proof of innermost μ-termination
for 62 examples. In order to evaluate our direct techniques in comparison with
the transformational approach of [7,8,16], where termination of innermost CSR
for a CS-TRS (R, μ) is proved by proving innermost termination of a trans-
formed TRS Rμ

Θ, where Θ specifies a particular transformation (see [6,7] for
a survey on this topic), we have transformed the set of examples by using the
transformations that are correct for proving innermost termination of CSR: Giesl
and Middeldorp’s correct transformations for proving termination of innermost
CSR, see [7], although we use the ‘authors-based’ notation introduced in [20]:
GM and C for transformations 1 and 2 for proving termination of CSR intro-
duced in [8], and iGM for the specific transformation for proving termination of
innermost CSR introduced in [7]. Then we have proved innermost termination
of the set of examples with AProVE [9], which is able to prove innermost ter-
mination of standard rewriting. In fact, AProVE is currently the most powerful
tool for proving termination and innermost termination of TRSs but as we have
said, mu-term is nowadays the only termination tool that proves innermost ter-
mination of CSR. The results are summarized in Table 1. Further details can be
found here:

http://www.dsic.upv.es/~balarcon/FroCoS07/benchmarks

Indirectly, we have also made the first benchmarks to evaluate the existing cor-
rect transformations for proving innermost termination of CSR (see Table 1)
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Table 1. Comparing techniques for proving termination of innermost CSR

iCSDPs Transformations
YES score 62 44

YES average time 0.13 sec. 5 sec.

C GM iGM
YES score 24 41 30

showing that, quite surprisingly, the iGM transformation (which is in principle
the more suitable one for proving innermost termination of CSR) obtains worse
results than GM.

7 Conclusions and Future Work

In this paper, we have extended the context-sensitive dependency pairs approach
in [1] for proving termination of innermost CSR. We have introduced the no-
tion of an innermost μ-chain (Definition 2) and proved that it can be used to
characterize innermost μ-termination (Theorem 1). We have also shown how to
automatically prove innermost μ-termination by means of the ICS-dependency
graph (Definition 4, Theorem 2). We have formulated the notion of basic usable
rules showing how to use them in proofs of innermost termination of CSR (Def-
inition 5, Theorem 3). We have implemented these techniques in mu-term and
have made some benchmarks.

Up to now, no direct method has been proposed to prove termination of
innermost CSR. So this is the first proposal of a direct method for proving
termination of innermost CSR. We have extended Arts and Giesl’s approach to
prove innermost termination of TRSs to CSR (thus also extending [1,2]). The
main issue which is left open is a general notion of usable rules, which can be
used with non-conservative CSDPs. As in the standard case, this would probably
help us to achieve better results. Even without them, though, our benchmarks
show that the use of CSDPs dramatically improves the performance of existing
(transformational) methods for proving termination of innermost CSR.

Acknoledgements. We thank the anonymous referees for many useful remarks.
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Abstract. Context-sensitive dependency pairs (CS-DPs) are currently
the most powerful method for automated termination analysis of context-
sensitive rewriting. However, compared to DPs for ordinary rewriting,
CS-DPs suffer from two main drawbacks: (a) CS-DPs can be collapsing.
This complicates the handling of CS-DPs and makes them less powerful
in practice. (b) There does not exist a “DP framework” for CS-DPs which
would allow one to apply them in a flexible and modular way. This paper
solves drawback (a) by introducing a new definition of CS-DPs. With
our definition, CS-DPs are always non-collapsing and thus, they can be
handled like ordinary DPs. This allows us to solve drawback (b) as well,
i.e., we extend the existing DP framework for ordinary DPs to context-
sensitive rewriting. We implemented our results in the tool AProVE and
successfully evaluated them on a large collection of examples.

1 Introduction

Context-sensitive rewriting [23,24] models evaluations in programming langua-
ges. It uses a replacement map μ with μ(f) ⊆ {1, ..., arity(f)} for every function
symbol f to specify the argument positions of f where rewriting may take place.
Example 1. Consider this context-sensitive term rewrite system (CS-TRS)

gt(0, y) → false p(0) → 0
gt(s(x), 0) → true p(s(x)) → x

gt(s(x), s(y)) → gt(x, y) minus(x, y) → if(gt(y, 0), minus(p(x), p(y)), x) (1)
if(true, x, y) → x div(0, s(y)) → 0
if(false, x, y) → y div(s(x), s(y)) → s(div(minus(x, y), s(y)))

with μ(if) = {1} and μ(f) = {1, . . . , arity(f)} for all other symbols f to model
the usual behavior of if: in if(t1, t2, t3), one may evaluate t1, but not t2 or t3. It
will turn out that due to μ, this CS-TRS is indeed terminating. In contrast, if
one allows arbitrary reductions, then the TRS would benon-terminating:
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minus(0, 0) →+ if(gt(0, 0), minus(0, 0), 0) →+ if(..., if(gt(0, 0), minus(0, 0), 0), ...) →+ ...

There are two approaches to prove termination of context-sensitive rewriting.
The first approach transforms CS-TRSs to ordinary TRSs, cf. [13,26]. But trans-
formations often generate complicated TRSs where all termination tools fail.

Therefore, it is more promising to adapt existing termination techniques from
ordinary term rewriting to the context-sensitive setting. Such adaptions were
done for classical methods like RPO or polynomial orders [8,19,25]. However,
much more powerful techniques like the dependency pair (DP) method [6] are
implemented in almost all current termination tools for TRSs. But for a long
time, it was not clear how to adapt the DP method to context-sensitive rewriting.

This was solved first in [1]. The corresponding implementation in the tool
mu-term [3] outperformed all previous tools for termination of CS rewriting.

Nevertheless, the existing results on CS-DPs [1,2,4,20] still have major dis-
advantages compared to the DP method for ordinary rewriting, since CS-DPs
can be collapsing. To handle such DPs, one has to impose strong requirements
which make the CS-DP method quite weak and which make it difficult to ex-
tend refined termination techniques based on DPs to the CS case. In particular,
the DP framework [14,17,21], which is the most powerful formulation of the DP
method for ordinary TRSs, has not yet been adapted to the CS setting.

In this paper, we solve these problems. After presenting preliminaries in
Sect. 2, we introduce a new notion of non-collapsing CS-DPs in Sect. 3. This new
notion makes it much easier to adapt termination techniques based on DPs to
context-sensitive rewriting. Therefore, Sect. 4 extends the DP framework to the
context-sensitive setting and shows that existing methods from this framework
only need minor changes to apply them to context-sensitive rewriting.

All our results are implemented in the termination prover AProVE [16]. As
shown by the empirical evaluation in Sect. 5, our contributions improve the power
of automated termination analysis for context-sensitive rewriting substantially.

2 Context-Sensitive Rewriting and CS-Dependency Pairs

See [7] and [23] for basics on term rewriting and context-sensitive rewriting,
respectively. Let Pos(s) be the set of positions of a term s. For a replacement
map μ, we define the active positions Posμ(s): For x ∈ V let Posμ(x) = {ε}
where ε is the root position. Moreover, Posμ(f(s1, . . . , sn)) = {ε} ∪ {i p | i ∈
μ(f), p ∈ Posμ(si)}. We say that s�μ t holds if t = s|p for some p ∈ Posμ(s) and
s�μ t if s�μ t and s �= t. Moreover, s�

�μ
t if t = s|p for some p ∈ Pos(s)\Posμ(s).

We denote the ordinary subterm relations by � and �.
A CS-TRS (R, μ) consists of a finite TRS R and a replacement map μ. We

have s ↪→R,μ t iff there are � → r ∈ R, p ∈ Posμ(s), and a substitution σ with
s|p = σ(�) and t = s[σ(r)]p. This reduction is an innermost step (denoted i↪→R,μ)
if all t with s|p �μ t are in normal form w.r.t. (R, μ). A term s is in normal form
w.r.t. (R, μ) if there is no term t with s ↪→R,μ t. A CS-TRS (R, μ) is terminating
if ↪→R,μ is well founded and innermost terminating if i↪→R,μ is well founded.
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Let D = {root(�) | � → r ∈ R} be the set of defined symbols. For every f ∈ D,
let f � be a fresh tuple symbol of same arity, where we often write “F” instead of
“f �”. For t = f(t1, . . . , tn) with f ∈ D, let t� = f �(t1, . . . , tn).

Definition 2 (CS-DPs [1]). Let (R, μ) be a CS-TRS. If � → r ∈ R, r�μt, and
root(t) ∈ D, then �� → t� is an ordinary dependency pair.1 If � → r ∈ R, r�μ x
for a variable x, and � ��μ x, then �� → x is a collapsing DP. Let DPo(R, μ) and
DPc(R, μ) be the sets of all ordinary resp. all collapsing DPs.

Example 3. For the TRS of Ex. 1, we obtain the following CS-DPs.

GT(s(x), s(y)) → GT(x, y) (2) M(x, y) → IF(gt(y, 0), minus(p(x),p(y)), x) (5)
IF(true, x, y) → x (3) M(x, y) → GT(y, 0) (6)
IF(false, x, y) → y (4) D(s(x), s(y)) → D(minus(x, y), s(y)) (7)

D(s(x), s(y)) → M(x, y) (8)

To prove termination, one has to show that there is no infinite chain of DPs. For
ordinary rewriting, a sequence s1 → t1, s2 → t2, . . . of DPs is a chain if there
is a substitution σ such that tiσ reduces to si+1σ.2 If all tiσ are terminating,
then the chain is minimal [14,17,22]. But due to the collapsing DPs, the notion
of “chains” has to be adapted when it is used with CS-DPs [1]. If si → ti is a
collapsing DP (i.e., if ti ∈ V), then instead of tiσ ↪→∗

R,μ si+1σ (and termination
of tiσ for minimality), one requires that there is a term wi with tiσ �μ wi and
w�

i ↪→∗
R,μ si+1σ. For minimal chains, w�

i must be terminating.

Example 4. Ex. 1 has the chain (5), (3), (5) as IF(gt(s(y), 0), minus(p(x),p(s(y))), x)

↪→∗
R,μ IF(true, minus(p(x),p(s(y))), x) ↪→(3),μ minus(p(x),p(s(y))) and (minus(p(x),

p(s(y))))� = M(p(x),p(s(y))) is an instance of the left-hand side of (5).

A CS-TRS is terminating iff there is no infinite chain [1]. As in the non-CS
case, the above notion of chains can also be adapted to innermost rewriting. Then
a CS-TRS is innermost terminating iff there is no infinite innermost chain [4].

Due to the collapsing CS-DPs (and the corresponding definition of “chains”),
it is not easy to extend existing techniques for proving absence of infinite chains
to CS-DPs. Therefore, we now introduce a new improved definition of CS-DPs.

3 Non-collapsing CS-Dependency Pairs

Ordinary DPs only consider active subterms of right-hand sides. So Rule (1) of
Ex. 1 only leads to the DP (5), but not to M(x, y) → M(p(x), p(y)). However, the
inactive subterm minus(p(x), p(y)) of the right-hand side of (1) may become ac-
tive again when applying the rule if(true, x, y) → x. Therefore, Def. 2 creates a
collapsing DP like (3) whenever a rule � → r has a migrating variable x with r�μ

x, but � ��μ x. Indeed, when instantiating the collapse-variable x in (3) with an
instance of the “hidden term” minus(p(x), p(y)), one obtains a chain which sim-
ulates the rewrite sequence from minus(t1, t2) over if(..., minus(p(t1), p(t2)), ...)
1 A refinement is to eliminate DPs where � �μ t, cf. [1,9].
2 We always assume that different occurrences of DPs are variable-disjoint and consider

substitutions whose domains may be infinite.
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to minus(p(t1), p(t2)), cf. Ex. 4. Our main observation is that collapsing DPs are
only needed for certain instantiations of the variables. One might be tempted to
allow only instantiations of collapse-variables by hidden terms.3

Definition 5 (Hidden Term). Let (R, μ) be a CS-TRS. We say that t is a
hidden term if root(t) ∈ D and if there exists a rule � → r ∈ R with r �

�μ
t.

In Ex. 1, the only hidden term is minus(p(x), p(y)). But unfortunately, only al-
lowing instantiations of collapse-variables with hidden terms would be unsound.

Example 6. Consider μ(g) = {1}, μ(a) = μ(b) = μ(f) = μ(h) = ∅ and the rules

a → f(g(b)) (9) h(x) → x
f(x) → h(x) b → a

The CS-TRS has the following infinite rewrite sequence:

a ↪→R,μ f(g(b)) ↪→R,μ h(g(b)) ↪→R,μ g(b) ↪→R,μ g(a) ↪→R,μ . . .

We obtain the following CS-DPs according to Def. 2:

A → F(g(b)) H(x) → x (10)
F(x) → H(x) B → A

The only hidden term is b, obtained from Rule (9). There is also an infinite chain
that corresponds to the infinite reduction above. However, here the collapse-
variable x in the DP (10) must be instantiated by g(b) and not by the hidden
term b, cf. the underlined part above. So if one replaced (10) by H(b) → b, there
would be no infinite chain anymore and one would falsely conclude termination.

The problem in Ex. 6 is that rewrite rules may add additional symbols like g
above hidden terms. This can happen if a term g(t) occurs at an inactive position
in a right-hand side and if an instantiation of t could possibly reduce to a term
containing a hidden term (i.e., if t has a defined symbol or a variable at an active
position). Then we call g(�) a hiding context, since it can “hide” a hidden term.
Moreover, the composition of hiding contexts is again a hiding context.

Definition 7 (Hiding Context). Let (R, μ) be a CS-TRS. The function sym-
bol f hides position i if there is a rule � → r ∈ R with r �

�μ
f(r1, . . . , ri, . . . , rn),

i ∈ μ(f), and ri contains a defined symbol or a variable at an active position. A
context C is hiding iff C = � or C has the form f(t1, . . . , ti−1, C

′, ti+1, . . . , tn)
where f hides position i and C′ is a hiding context.

Example 8. In Ex. 6, g hides position 1 due to Rule (9). So the hiding con-
texts are �, g(�), g(g(�)), . . . In the TRS of Ex. 1, minus hides both positions
1 and 2 and p hides position 1 due to Rule (1). So the hiding contexts are
�, p(�), minus(�, �), p(p(�)), minus(�, p(�)), . . .

To remove collapsing DPs s → x, we now restrict ourselves to instantiations of x
with terms of the form C[t] where C is a hiding context and t is a hidden term.
So in Ex. 6, the variable x in the DP (10) should only be instantiated by b, g(b),
3 A similar notion of hidden symbols was presented in [2,4], but there one only used

these symbols to improve one special termination technique (the dependency graph).
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g(g(b)), etc. To represent these infinitely many instantiations in a finite way, we
replace s → x by new unhiding DPs (which “unhide” hidden terms).

Definition 9 (Improved CS-DPs). For a CS-TRS (R, μ), if DPc(R, μ) �=∅,
we introduce a fresh4 unhiding tuple symbol U and the following unhiding DPs:

• s → U(x) for every s → x ∈ DPc(R, μ),
• U(f(x1, . . . , xi, . . . , xn)) → U(xi) for every function symbol f of any arity n

and every 1 ≤ i ≤ n where f hides position i, and
• U(t) → t� for every hidden term t.

Let DPu(R, μ) be the set of all unhiding DPs (where DPu(R, μ)=∅, if DPc(R, μ)
= ∅). Then the set of improved CS-DPs is DP(R, μ) = DPo(R, μ)∪DPu(R, μ).

Example 10. In Ex. 6, instead of (10) we get the unhiding DPs

H(x) → U(x), U(g(x)) → U(x), U(b) → B.

Now there is indeed an infinite chain. In Ex. 1, instead of (3) and (4), we obtain:5

IF(true, x, y)→U(x) (11) U(p(x)) →U(x) (15)
IF(false, x, y)→U(y) (12) U(minus(x, y)) →U(x) (16)

U(minus(p(x), p(y))) →M(p(x), p(y)) (13) U(minus(x, y)) →U(y) (17)
U(p(x)) →P(x) (14)

Clearly, the improved CS-DPs are never collapsing. Thus, now the definition of
(minimal)6 chains is completely analogous to the one for ordinary rewriting.

Definition 11 (Chain). Let P and R be TRSs and let μ be a replacement
map. We extend μ to tuple symbols by defining μ(f �) = μ(f) for all f ∈ D and
μ(U) = ∅.7 A sequence of pairs s1 → t1, s2 → t2, . . . from P is a (P ,R, μ)-chain
iff there is a substitution σ with tiσ ↪→∗

R,μ si+1σ and tiσ is terminating w.r.t.
(R, μ) for all i. It is an innermost (P ,R, μ)-chain iff tiσ

i↪→∗
R,μ si+1σ, siσ is in

normal form, and tiσ is innermost terminating w.r.t. (R, μ) for all i.

Our main theorem shows that improved CS-DPs are still sound and complete.

Theorem 12 (Soundness and Completeness of Improved CS-DPs). A
CS-TRS (R, μ) is terminating iff there is no infinite (DP(R, μ),R, μ)-chain and
innermost terminating iff there is no infinite innermost (DP(R, μ),R, μ)-chain.

Proof. We only prove the theorem for “full” termination. The proof for innermost
termination is very similar and can be found in [5].
4 Alternatively, one could also use different U-symbols for different collapsing DPs.
5 We omitted the DP U(p(y)) → P(y) that is “identical” to (14).
6 Since we only regard minimal chains in the following, we included the “minimality

requirement” in Def. 11, i.e., we require that all tiσ are (innermost) terminating.
As in the DP framework for ordinary rewriting, this restriction to minimal chains is
needed for several DP processors (e.g., for the reduction pair processor of Thm. 21).

7 We define μ(U) = ∅, since the purpose of U is only to remove context around hidden
terms. But during this removal, U’s argument should not be evaluated.
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Soundness

M∞,μ contains all minimal non-terminating terms: t ∈ M∞,μ iff t is non-termi-
nating and every r with t �μ r terminates. A term u has the hiding property iff

• u ∈ M∞,μ and
• whenever u �

�μ
s �μ t′ for some terms s and t′ with t′ ∈ M∞,μ, then t′ is an

instance of a hidden term and s = C[t′] for some hiding context C.

We first prove the following claim:

Let u be a term with the hiding property and let u ↪→R,μ v �μ w
with w ∈ M∞,μ. Then w also has the hiding property. (18)

Let w �
�μ

s �μ t′ for some terms s and t′ with t′ ∈ M∞,μ. Clearly, this also
implies v �

�μ
s. If already u � s, then we must have u �

�μ
s due to the minimality

of u. Thus, t′ is an instance of a hidden term and s = C[t′] for a hiding context C,
since u has the hiding property. Otherwise, u��s. There must be a rule � → r ∈ R,
an active context D (i.e., a context where the hole is at an active position), and
a substitution δ such that u = D[δ(�)] and v = D[δ(r)]. Clearly, u � �s implies
δ(�) ��s and D ��s. Hence, v �

�μ
s means δ(r)�

�μ
s. (The root of s cannot be

above � in D since those positions would be active.) Note that s cannot be at
or below a variable position of r, because this would imply δ(�) � s. Thus, s is
an instance of a non-variable subterm of r that is at an inactive position. So
there is a r′ �∈ V with r �

�μ
r′ and s = δ(r′). Recall that s �μ t′, i.e., there is a

p ∈ Posμ(s) with s|p = t′. If p is a non-variable position of r′, then δ(r′|p) = t′

and r′|p is a subterm with defined root at an active position (since t′ ∈ M∞,μ

implies root(t′) ∈ D). Hence, r′|p is a hidden term and thus, t′ is an instance of a
hidden term. Moreover, any instance of the context C′ = r′[�]p is hiding. So if we
define C to be δ(C′), then s = δ(r′) = δ(r′)[t′]p = δ(C′)[t′] = C[t′] for the hiding
context C. On the contrary, if p is not a non-variable position of r′, then p = p1 p2

where r′|p1 is a variable x. Now t′ is an active subterm of δ(x) (more precisely,
δ(x)|p2 = t′). Since x also occurs in �, we have δ(�)�δ(x) and thus u�δ(x). Due
to the minimality of u this implies u �

�μ
δ(x). Since u �

�μ
δ(x) �μ t′, the hiding

property of u implies that t′ is an instance of a hidden term and that δ(x) = C[t′]
for a hiding context C. Note that since r′|p1 is a variable, the context C′ around
this variable is also hiding (i.e., C′ = r′[�]p1). Thus, the context C = δ(C′)[C]
is hiding as well and s = δ(r′) = δ(r′)[δ(x)[t′]p2 ]p1 = δ(C′)[C[t′]] = C[t′].

Proof of Thm. 12 using Claim (18)

If R is not terminating, then there is a t ∈ M∞,μ that is minimal w.r.t. �. So
there are t, ti, si, t

′
i+1 such that

t
> ε

↪−→∗
R,μ t1

ε→R s1 �μ t′2
> ε

↪−→∗
R,μ t2

ε→R s2 �μ t′3
> ε

↪−→∗
R,μ t3 . . . (19)

where ti, t
′
i ∈ M∞,μ and all proper subterms of t (also at inactive positions)

terminate. Here, “ε” (resp. “> ε”) denotes reductions at (resp. strictly below)
the root.
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Note that (18) implies that all ti have the hiding property. To see this, we
use induction on i. Since t trivially has the hiding property (as it has no non-
terminating proper subterms) and all terms in the reduction t

> ε
↪−→∗

R,μ t1 are
from M∞,μ (as both t, t1 ∈ M∞,μ), we conclude that t1 also has the hiding
property by applying (18) repeatedly. In the induction step, if ti−1 has the hiding
property, then one application of (18) shows that t′i also has the hiding property.
By applying (18) repeatedly, one then also shows that ti has the hiding property.

Now we show that t�i →+
DP(R,μ) t′i+1

� and that all terms in the reduction

t�i →+
DP(R,μ) t′i+1

� terminate w.r.t. (R, μ). As t′i+1
� > ε
↪−→∗

R,μ t�i+1, we get an in-
finite (DP(R, μ),R, μ)-chain.

From (19) we know that there are �i → ri ∈ R and pi ∈ Posμ(si) with
ti = �iσ, si = riσ, and si|pi = riσ|pi = t′i+1 for all i. First let pi ∈ Pos(ri) with
ri|pi /∈ V . Then ��

i → (ri|pi)� ∈ DPo(R, μ) and t�i = ��
iσ →DPo(R,μ) (ri|pi)�σ =

t′i+1
�. Moreover, as ti, t

′
i+1 ∈ M∞,μ, the terms t�i and t′i+1

� are terminating.
Now let pi be at or below the position of a variable xi in ri. By minimality of

ti, xi only occurs at inactive positions of �i. Thus, ��
i → U(xi) ∈ DPu(R, μ) and

ri = Ci[xi] where Ci is an active context. Recall that ti = �iσ has the hiding
property and that ti ��μ

σ(xi)�μ t′i+1. Thus, we have σ(xi) = C[t′i+1] for a hiding
context C and moreover, t′i+1 is an instance of a hidden term. Hence we obtain:
t�
i = σ(��

i)

→DPu(R,μ) U(σ(xi)) since ��
i → U(xi) ∈ DPu(R, μ)

= U(C[t′
i+1]) for a hiding context C

→∗
DPu(R,μ) U(t′

i+1) since U(C[x]) →∗
DPu(R,μ) U(x) for any hiding context C

→DPu(R,μ) t′
i+1

�
since t′

i+1 is an instance of a hidden term and

U(t) →DPu(R,μ) t� for any instance t of a hidden term

All terms in the reduction above are terminating. The reason is that again
ti, t

′
i+1 ∈ M∞,μ implies that t�i and t′i+1

� are terminating. Moreover, all terms
U(. . .) are normal forms since μ(U) = ∅ and since U does not occur in R.

Completeness

Let there be an infinite chain v1 → w1, v2 → w2, ... of improved CS-DPs. First,
let the chain have an infinite tail consisting only of DPs of the form U(f(x1, ..., xi,
..., xn)) → U(xi). Since μ(U) = ∅, there are terms ti with U(t1)

ε→DP(R,μ)U(t2)
ε→DP(R,μ)... Hence, t1 �μ t2 �μ .. which contradicts the well-foundedness of �μ.

Now we regard the remaining case. Here the chain has infinitely many DPs
v → w with v = �� for a rule � → r ∈ R. Let vi → wi be such a DP and let
vj → wj with j > i be the next such DP in the chain. Let σ be the substitution
used for the chain. We show that then v�

iσ ↪→∗
R,μ C[v�

jσ] for an active context
C. Here, (f �(t1, . . . , tn))� = f(t1, . . . , tn) for all f ∈ D. Doing this for all such
DPs implies that there is an infinite reduction w.r.t. (R, μ).

If vi → wi ∈ DPo(R, μ) then the claim is trivial, because then j = i + 1 and
v�

iσ ↪→R,μ C[w�
iσ] ↪→∗

R,μ C[v�
i+1σ] for some active context C.

Otherwise, vi → wi has the form vi → U(x). Then v�
iσ ↪→R,μ C1[σ(x)] for an

active context C1. Moreover, U(σ(x)) reduces to U(δ(t)) for a hidden term t and
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a δ by removing hiding contexts. Since hiding contexts are active, σ(x) = C2[δ(t)]
for an active context C2. Finally, t�δ

> ε
↪−→∗

R,μ vjσ and thus, tδ
> ε

↪−→∗
R,μ v�

jσ. By
defining C = C1[C2], we get v�

iσ ↪→+
R,μ C[v�

jσ]. �	

4 CS Dependency Pair Framework

By Thm. 12, (innermost) termination of a CS-TRS is equivalent to absence
of infinite (innermost) chains. For ordinary rewriting, the DP framework is the
most recent and powerful collection of methods to prove absence of infinite chains
automatically. Due to our new notion of (non-collapsing) CS-DPs, adapting the
DP framework to the context-sensitive case now becomes much easier.8

In the DP framework, termination techniques operate on DP problems instead
of TRSs. Def. 13 adapts this notion to context-sensitive rewriting.

Definition 13 (CS-DP Problem and Processor). A CS-DP problem is
a tuple (P ,R, μ, e), where P and R are TRSs, μ is a replacement map, and
e ∈ {t, i} is a flag that stands for termination or innermost termination. We
also call (P ,R, μ)-chains “(P ,R, μ, t)-chains” and we call innermost (P ,R, μ)-
chains “(P ,R, μ, i)-chains”. A CS-DP problem (P ,R, μ, e) is finite if there is
no infinite (P ,R, μ, e)-chain.

A CS-DP processor is a function Proc that takes a CS-DP problem as input
and returns a possibly empty set of CS-DP problems. The processor Proc is sound
if a CS-DP problem d is finite whenever all problems in Proc(d) are finite.

For a CS-TRS (R, μ), the termination proof starts with the initial DP problem
(DP(R, μ),R, μ, e) where e depends on whether one wants to prove termination
or innermost termination. Then sound DP processors are applied repeatedly.
If the final processors return empty sets, then (innermost) termination is proved.
Since innermost termination is usually easier to show than full termination, one
should use e = i whenever possible. As shown in [12], termination and innermost
termination coincide for CS-TRSs (R, μ) where R is orthogonal (i.e., left-linear
and without critical pairs). So (DP (R, μ),R, μ, i) would be the initial DP prob-
lem for Ex. 1, even when proving full termination. In Sect. 4.1 - 4.3, we recapitu-
late 3 important DP processors and extend them to context-sensitive rewriting.

4.1 Dependency Graph Processor

The first processor decomposes a DP problem into several sub-problems. To this
end, one determines which pairs can follow each other in chains by constructing
a dependency graph. In contrast to related definitions for collapsing CS-DPs in
[1,4], Def. 14 is analogous to the corresponding definition for non-CS rewriting.

Definition 14 (CS-Dependency Graph). For a CS-DP problem (P ,R, μ, e),
the nodes of the (P ,R, μ, e)-dependency graph are the pairs of P, and there is
an arc from v → w to s → t iff v → w, s → t is a (P ,R, μ, e)-chain.
8 For this reason, we omitted the proofs in this section and refer to [5] for all proofs.
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Example 15. Fig. 1 shows the dependency graph for Ex. 1, for both e ∈ {t, i}.9
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Fig. 1. Dependency graph for Ex. 1

A set P ′ �= ∅ of DPs is a cycle if
for every v→w, s→t∈P ′, there is
a non-empty path from v → w to
s → t traversing only pairs of P ′.
A cycle P ′ is a strongly connected
component (“SCC”) if P ′ is not a
proper subset of another cycle.

One can prove termination se-
parately for each SCC. Thus, the
following processor (whose sound-
ness is obvious and completely
analogous to the non-context-
sensitive case) modularizes termi-
nation proofs.

Theorem 16 (CS-Dependency Graph Processor). For d = (P ,R, μ, e),
let Proc(d) = {(P1,R, μ, e), . . . , (Pn,R, μ, e)}, where P1, . . . ,Pn are the SCCs of
the (P ,R, μ, e)-dependency graph. Then Proc is sound.

Example 17. The graph in Fig. 1 has the three SCCs P1 = {(2)}, P2 = {(7)},
P3 = {(5), (11)-(13), (15)-(17)}. Thus, the initial DP problem (DP(R, μ),R, μ, i)
is transformed into the new problems (P1,R, μ, i), (P2,R, μ, i), (P3,R, μ, i).

As in the non-context-sensitive setting, the CS-dependency graph is not com-
putable and thus, one has to use estimations to over-approximate the graph. For
example, [1,4] adapted the estimation of [6] that was originally developed for
ordinary rewriting: Capμ(t) replaces all active subterms of t with defined root
symbol by different fresh variables. Multiple occurrences of the same such sub-
term are also replaced by pairwise different variables. Renμ(t) replaces all active
occurrences of variables in t by different fresh variables (i.e., no variable occurs
at several active positions in Renμ(t)). So Renμ(Capμ(IF(gt(y, 0), minus(p(x),
p(y)), x))) = Renμ(IF(z, minus(p(x), p(y)), x)) = IF(z′, minus(p(x), p(y)), x).

To estimate the CS-dependency graph in the case e = t, one draws an arc
from v → w to s → t whenever Renμ(Capμ(w)) and s unify.10 If e = i, then one
can modify Capμ and Renμ by taking into account that instantiated subterms
at active positions of the left-hand side must be in normal form, cf. [4]. Capμ

v (w)
is like Capμ(w), but the replacement of subterms of w by fresh variables is not
done if the subterms also occur at active positions of v. Similarly, Renμ

v (w) is
like Renμ(w), but the renaming of variables in w is not done if the variables

9 To improve readability, we omitted nodes (6) and (14) from the graph. There are
arcs from the nodes (8) and (13) to (6) and from all nodes (11), (12), (15), (16), (17)
to (14). But (6) and (14) have no outgoing arcs and thus, they are not on any cycle.

10 Here (and also later in the instantiation processor of Sect. 4.3), we always assume
that v → w and s → t are renamed apart to be variable-disjoint.
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also occur active in v. Now we draw an arc from v → w to s → t whenever
Renμ

v (Capμ
v (w)) and s unify by an mgu θ where vθ and sθ are in normal form.11

It turns out that for the TRS of Ex. 1, the resulting estimated dependency
graph is identical to the “real” graph in Fig. 1.

4.2 Reduction Pair Processor

There are several processors to simplify DP problems by applying suitable well-
founded orders (e.g., the reduction pair processor [17,21], the subterm criterion
processor [22], etc.). Due to the absence of collapsing DPs, most of these pro-
cessors are now straightforward to adapt to the context-sensitive setting. In the
following, we present the reduction pair processor with usable rules, because it is
the only processor whose adaption is more challenging. (The adaption is similar
to the one in [4,20] for the CS-DPs of Def. 2.)

To prove that a DP problem is finite, the reduction pair processor generates
constraints which should be satisfied by a μ-reduction pair (�,
) [1]. Here, � is
a stable μ-monotonic quasi-order, 
 is a stable well-founded order, and � and

 are compatible (i.e., 
 ◦ � ⊆ 
 or � ◦ 
 ⊆ 
). Here, μ-monotonicity means
that si � ti implies f(s1, ..., si, ..., sn) � f(s1, ..., ti, ..., sn) whenever i ∈ μ(f).

For a DP problem (P ,R, μ, e), the generated constraints ensure that some
rules in P are strictly decreasing (w.r.t. 
) and all remaining rules in P and
R are weakly decreasing (w.r.t. �). Requiring � � r for all � → r ∈ R en-
sures that in a chain s1 → t1, s2 → t2, ... with tiσ ↪→∗

R,μ si+1σ, we have tiσ �
si+1σ for all i. Hence, if a reduction pair satisfies the constraints, then one can
delete the strictly decreasing pairs from P as they cannot occur infinitely often
in chains.

To improve this idea, it is desirable to require only a weak decrease of certain
instead of all rules. In the non-context-sensitive setting, when proving innermost
termination, it is sufficient if just the usable rules are weakly decreasing [6]. The
same is true when proving full termination, provided that � is Cε-compatible,
i.e., c(x, y) � x and c(x, y) � y holds for a fresh function symbol c [17,22].

For a term containing a symbol f , all f -rules are usable. Moreover, if the
f -rules are usable and f depends on h (denoted f �R h) then the h-rules
are usable as well. Here, f �R h if f = h or if there is a symbol g with
g �R h and g occurs in the right-hand side of an f -rule. The usable rules
of a DP problem are defined to be the usable rules of the right-hand sides of
the DPs.
11 These estimations can be improved further by adapting existing refinements to the

context-sensitive case. However, different to the non-context-sensitive case, for e = i
it is not sufficient to check only for unification of Capμ

v (w) and s (i.e., renaming
variables with Renμ

v is also needed). This can be seen from the non-innermost ter-
minating CS-TRS (R, μ) from [4, Ex. 8] with R = {f(s(x), x) → f(x, x), a → s(a)}
and μ(f) = {1}, μ(s) = ∅. Clearly, Capμ

F(s(x),x)(F(x, x)) = F(x, x) does not unify

with F(s(y), y). In contrast, Renμ
F(s(x),x)(Capμ

F(s(x),x)(F(x, x))) = F(x′, x) unifies with

F(s(y), y). Thus, without using Renμ
F(s(x),x)

one would conclude that the dependency

graph has no cycle and wrongly prove (innermost) termination.
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As in [4,20], Def. 18 adapts12 the concept of usable rules to the CS setting,
resulting in U�(P ,R, μ). But as shown in [20], for CS rewriting it is also helpful
to consider an alternative definition of “dependence” �R,μ where f also depends
on symbols from left-hand sides of f -rules. Let Fμ(t) (resp. F�μ(t)) contain all
function symbols occurring at active (resp. inactive) positions of a term t.

Definition 18 (CS-Usable Rules). Let Rls(f) = {� → r ∈ R | root(�) = f}.
For any symbols f, h and CS-TRS (R, μ), let f �R,μ h if f = h or if there is a
symbol g with g �R,μ h and a rule � → r ∈ Rls(f) with g ∈ Fμ(r). Let f �R,μ h
if f = h or if there is a symbol g with g �R,μ h and a rule � → r ∈ Rls(f) with
g ∈ F�μ(�) ∪ F(r). We define two forms of usable rules:

U�(P ,R, μ) =
⋃

s→t∈P,f∈Fμ(t),f�R,μg Rls(g)
U�(P ,R, μ) =

⋃
s→t∈P,f∈F�μ(s)∪F(t),f�R,μg

Rls(g) ∪ ⋃
�→r∈R,f∈F�μ(r),f�R,μg

Rls(g)

Example 19. We continue Ex. 17. U�(P1,R, μ) = ∅ for P1 = {(2)}, since there
is no defined symbol at an active position in the right-hand side GT(x, y) of (2).
For P2 = {(7)}, U�(P2,R, μ) are the minus-, if-, and gt-rules, since minus occurs
at an active position in D(minus(x, y), s(y)) and minus depends on if and gt. For
P3 = {(5), (11)-(13), (15)-(17)}, U�(P3,R, μ) are the gt- and p-rules, as gt and
p are the only defined symbols at active positions of right-hand sides in P3.

In contrast, all U�(Pi,R, μ) contain all rules except the div-rules, as minus
and p are root symbols of hidden terms and minus depends on if and gt.

As shown in [4,20], the direct adaption of the usable rules to the context-sensitive
case (i.e., U�(P ,R, μ)) can only be used for conservative CS-TRSs (if e = i) resp.
for strongly conservative CS-TRSs (if e = t).13 Let Vμ(t) (resp. V�μ(t)) be all
variables occurring at active (resp. inactive) positions of a term t.

Definition 20 (Conservative and Strongly Conservative). A CS-TRS
(R, μ) is conservative iff Vμ(r) ⊆ Vμ(�) for all rules � → r ∈ R. It is strongly
conservative iff it is conservative and moreover, Vμ(�) ∩V�μ(�) = ∅ and Vμ(r) ∩
V�μ(r) = ∅ for all rules � → r ∈ R.

Now we can define the reduction pair processor.

Theorem 21 (CS-Reduction Pair Processor). Let (�,
) be a μ-reduction
pair. For a CS-DP Problem d = (P ,R, μ, e), the result of Proc(d) is

• {(P \ 
,R, μ, e)}, if P ⊆ (
 ∪ �) and at least one of the following holds:

12 The adaptions can also be extended to refined definitions of usable rules [15,17].
13 The corresponding counterexamples in [4,20] show that these restrictions are still

necessary for our new notion of CS-DPs. In cases where one cannot use U� , one can
also attempt a termination proof where one drops the replacement map, i.e., where
one regards the ordinary TRS R instead of the CS-TRS (R, μ). This may be helpful,
since U� is not necessarily a subset of the non-context-sensitive usable rules, as a
function symbol f also �-depends on symbols from left-hand sides of f -rules.
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(i) U�(P ,R, μ) ⊆ �, P ∪ U�(P ,R, μ) is strongly conservative, � is Cε-compatible

(ii) U�(P ,R, μ) ⊆ �, P ∪ U�(P ,R, μ) is conservative, e = i

(iii) U�(P ,R, μ) ⊆ �, � is Cε-compatible

(iv) R ⊆ �

• {d}, otherwise.

Then Proc is sound.

Example 22. As U�(P1,R, μ) = ∅ and P1 = {(2)} is even strongly conservative,
by Thm. 21 (i) or (ii) we only have to orient (2), which already works with the
embedding order. So (P1,R, μ, i) is transformed to the empty set of DP problems.

For P2 = {(7)}, U�(P2,R, μ) contains the if-rules which are not conservative.
Hence, we use Thm. 21 (iii) with a reduction pair based on the following max-
polynomial interpretation [10]: [D(x, y)] = [minus(x, y)] = [p(x)] = x, [s(x)] =
x+1, [if(x, y, z)] = max(y, z), [0] = [gt(x, y)] = [true] = [false] = 0. Then the DP
(7) is strictly decreasing and all rules from U�(P2,R, μ) are weakly decreasing.
Thus, the processor also transforms (P2,R, μ, i) to the empty set of DP problems.

Finally, we regard P3 = {(5), (11)-(13), (15)-(17)} where we use Thm. 21 (iii)
with the interpretation [M(x, y)] = [minus(x, y)] = x + y + 1, [IF(x, y, z)] =
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Then the DPs (16) and (17) are strictly decreasing, whereas all other
DPs from P3 and all rules from U�(P3,R, μ) are weakly decreasing. So the
processor results in the DP problem ({(5), (11)-(13), (15)},R, μ, i).

Next we apply [M(x, y)] = [minus(x, y)] = x + 1, [IF(x, y, z)] = max(y, z + 1),
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Now (12) is strictly decreasing and all other remaining DPs and usable
rules are weakly decreasing. Removing (12) yields ({(5), (11), (13), (15)},R, μ, i).

Thm. 21 (iii) and (iv) are a significant improvement over previous reduction pair
processors [1,2,4,20] for the CS-DPs from Def. 2. The reason is that all previous
CS-reduction pair processors require that the context-sensitive subterm relation
is contained in � (i.e., �μ ⊆ �) whenever there are collapsing DPs. This is a
very hard requirement which destroys one of the main advantages of the DP
method (i.e., the possibility to filter away arbitrary arguments).14 With our new
non-collapsing CS-DPs, this requirement is no longer needed.

Example 23. If one requires �μ⊆ �, then the reduction pair processor would fail
for Ex. 1, since then one cannot make the DP (7) strictly decreasing. The reason
is that due to 2 ∈ μ(minus), �μ⊆ � implies minus(x, y) � y. So one cannot “filter
away” the second argument of minus. But then a strict decrease of DP (7) to-
gether with μ-monotonicity of � implies D(s(x), s(s(x))) 
 D(minus(x, s(x)),
s(s(x))) � D(s(x), s(s(x))), in contradiction to the well-foundedness of 
.

14 Moreover, previous CS-reduction pair processors also require f(x1, . . . , xn) �
f �(x1, . . . , xn) for all f ∈ D or f(x1, . . . , xn) � f �(x1, . . . , xn) for all f ∈ D. This
requirement also destroys an important feature of the DP method, i.e., that tuple
symbols f � can be treated independently from the original corresponding symbols
f . This feature often simplifies the search for suitable reduction pairs considerably.

220 18. Publications (full text)



648 B. Alarcón et al.

4.3 Transforming Context-Sensitive Dependency Pairs

To increase the power of the DP method, there exist several processors to trans-
form a DP into new pairs (e.g., narrowing, rewriting, instantiating, or forward
instantiating DPs [17]). We now adapt the instantiation processor to the context-
sensitive setting. Similar adaptions can also be done for the other processors.15

The idea of this processor is the following. For a DP s → t, we investigate
which DPs v → w can occur before s → t in chains. To this end, we use the same
estimation as for dependency graphs in Sect. 4.1, i.e., we check whether there is
an mgu θ of Renμ(Capμ(w)) and s if e = t and analogously for e = i.16 Then
we replace s → t by the new DPs sθ → tθ for all such mgu’s θ. This is sound
since in any chain . . . , v → w, s → t, . . . where an instantiation of w reduces to
an instantiation of s, one could use the new DP sθ → tθ instead.

Theorem 24 (CS-Instantiation Processor). Let P ′ = P  {s → t}. For
d = (P ′,R, μ, e), let the result of Proc(d) be (P ∪ P ,R, μ, e) where

– P = {sθ → tθ | θ = mgu(Renμ(Capμ(w)), s), v → w ∈ P ′}, if e = t

– P = {sθ → tθ | θ = mgu(Renμ
v (Capμ

v (w)), s), v → w ∈ P ′, sθ, vθ normal}, if e = i

Then Proc is sound.

Example 25. For the TRS of Ex. 1, we still had to solve the problem ({(5), (11),
(13), (15)},R, μ, i), cf. Ex. 22. DP (11) has the variable-renamed left-hand side
IF(true, x′, y′). So the only DP that can occur before (11) in chains is (5) with the
right-hand side IF(gt(y, 0), minus(p(x), p(y)), x). Recall Renμ(Capμ(IF(gt(y, 0),
minus(p(x), p(y)), x))) = IF(z′, minus(p(x), p(y)), x), cf. Sect. 4.1. So the mgu is
θ = [z′/true, x′/minus(p(x), p(y)), y′/x]. Hence, we can replace (11) by

IF(true, minus(p(x), p(y)), x) → U(minus(p(x), p(y))) (20)

Here the CS variant of the instantiation processor is advantageous over the non-
CS one which uses Cap instead of Capμ, where Cap replaces all subterms with
defined root (e.g., minus(p(x), p(y))) by fresh variables. So the non-CS processor
would not help here as it only generates a variable-renamed copy of (11).

When re-computing the dependency graph, there is no arc from (20) to (15)
as μ(U) = ∅. So the DP problem is decomposed into ({(15)},R, μ, i) (which is
easily solved by the reduction pair processor) and ({(5), (20), (13)},R, μ, i).

Now we apply the reduction pair processor again with the following rational
polynomial interpretation [11]: [M(x, y)] = 3

2x + 1
2y, [minus(x, y)] = 2x + 1

2y,
[IF(x, y, z)] = 1

2x + y + 1
2z, [if(x, y, z)] = 1

2x + y + z, [U(x)] = x, [p(x)] =
[gt(x, y)] = 1

2x, [s(x)] = 2x + 2, [true] = 1, [false] = [0] = 0. Then (20) is strictly
decreasing and can be removed, whereas all other remaining DPs and usable rules

15 In the papers on CS-DPs up to now, the only existing adaption of such a processor
was the straightforward adaption of the narrowing processor in the case e = t, cf.
[2]. However, this processor would not help for the TRS of Ex. 1.

16 The counterexample of [4, Ex. 8] in Footnote 11 again illustrates why Renμ
v is also

needed in the innermost case (whereas this is unnecessary for non-CS rewriting).
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are weakly decreasing. A last application of the dependency graph processor then
detects that there is no cycle anymore and thus, it returns the empty set of DP
problems. Hence, termination of the TRS from Ex. 1 is proved. As shown in our
experiments in Sect. 5, this proof can easily be performed automatically.

5 Experiments and Conclusion

We have developed a new notion of context-sensitive dependency pairs which
improves significantly over previous notions. There are two main advantages:

(1) Easier adaption of termination techniques to CS rewriting
Now CS-DPs are very similar to DPs for ordinary rewriting and consequently,
the existing powerful termination techniques from the DP framework can
easily be adapted to context-sensitive rewriting. We have demonstrated this
with some of the most popular DP processors in Sect. 4. Our adaptions
subsume the existing earlier adaptions of the dependency graph [2], of the
usable rules [20], and of the modifications for innermost rewriting [4], which
were previously developed for the notion of CS-DPs from [1].

(2) More powerful termination analysis for CS rewriting
Due to the absence of collapsing CS-DPs, one does not have to impose extra
restrictions anymore when extending the DP processors to CS rewriting, cf.
Ex. 23. Hence, the power of termination proving is increased substantially.

To substantiate Claim (2), we performed extensive experiments. We imple-
mented our new non-collapsing CS-DPs and all DP processors from this paper
in the termination prover AProVE [16].17 In contrast, the prover mu-term [3]
uses the collapsing CS-DPs. Moreover, the processors for these CS-DPs are not
formulated within the DP framework and thus, they cannot be applied in the
same flexible and modular way. While mu-term was the most powerful tool for
termination analysis of context-sensitive rewriting up to now (as demonstrated
by the International Competition of Termination Tools 2007 [27]), due to our
new notion of CS-DPs, now AProVE is substantially more powerful. For instance,
AProVE easily proves termination of our leading example from Ex. 1, whereas
mu-term fails. Moreover, we tested the tools on all 90 context-sensitive TRSs
from the Termination Problem Data Base that was used in the competition. We
used a time limit of 120 seconds for each example. Then mu-term can prove
termination of 68 examples, whereas the new version of AProVE proves termi-
nation of 78 examples (including all 68 TRSs where mu-term is successful).18

Since 4 examples are known to be non-terminating, at most 8 more of the 90
examples could potentially be detected as terminating. So due to the results of
this paper, termination proving of context-sensitive rewriting has now become

17 We also used the subterm criterion and forward instantiation processors, cf. Sect. 4.
18 If AProVE is restricted to use exactly the same processors as mu-term, then it still

succeeds on 74 examples. So its superiority is indeed mainly due to the new CS-DPs
which enable an easy adaption of the DP framework to the CS setting.
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very powerful. To experiment with our implementation and for details, we refer
to http://aprove.informatik.rwth-aachen.de/eval/CS-DPs/.
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Abstract

Computational systems based on reducing expressions usually have a predefined reduction strategy to break
down the nondeterminism which is inherent to reduction relations. The innermost strategy corresponds to
call by value or eager computation, that is, the computational mechanism of several programming lan-
guages like Maude, OBJ, etc. where the arguments of a function call are always evaluated before calling the
function. This strategy usually fails to terminate when nonterminating computations are possible in the
programs and many eager programming languages also admit the explicit specification of a particular class
of strategy annotations to (try to) avoid them. Context-Sensitive Rewriting provides an abstract model to
describe and analyze the operational behavior of such programs. This paper aims at contributing to the
development of appropriate techniques and tools for the verification of program termination in the afore-
mentioned programming languages, so we focus on termination of innermost (context-sensitive) rewriting.
We adapt the notion of usable argument introduced by Fernández to prove innermost termination by prov-
ing termination of context-sensitive rewriting. Thanks to our recent developments for proving termination
of (innermost) context-sensitive rewriting using dependency pairs, now we can also relax monotonicity re-
quirements for proving innermost termination of (context-sensitive) rewriting. We have implemented these
new improvements in the termination tool mu-term and evaluated the results with some benchmarks.

Keywords: Dependency pairs, innermost rewriting, context-sensitive rewriting program analysis,
termination.

1 Introduction

Most computational systems whose operational principle is based on reducing ex-
pressions (e.g., functional, algebraic, and equational programming languages as well
as theorem provers based on rewriting techniques) incorporate a predefined reduc-
tion strategy which is used to break down the nondeterminism which is inherent
to reduction relations. Thus, every program will be executed according to that
strategy. One of the most commonly used is the innermost strategy, in which only
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TIN2007-68093-C02-02 and HA 2006-2007, the Generalitat Valenciana under grant GVPRE/2008/113.
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innermost redexes are reduced. Here, by an innermost redex we mean a redex con-
taining no other redex. The innermost strategy corresponds to call by value or
eager computation, that is, the computational mechanism of several programming
languages where the arguments of a function are always evaluated before the ap-
plication of the function which use them. It is well-known, however, that programs
written in eager programming languages frequently run into a nonterminating be-
havior if the programs have not carefully been written to avoid such problems. For
this reason, the designers of such eager programming languages have also devel-
oped some features and language constructs aimed at giving the user more flexible
control of the program execution. For instance, syntactic annotations (which are
associated to the arguments of the function symbols) have been used in eager pro-
gramming languages such as Maude [7], OBJ2 [11], OBJ3 [16], and CafeOBJ [12]
to introduce replacement restrictions which are able to (hopefully) avoid nonter-
mination. Such languages admit the explicit specification of a particular class of
strategy annotations, which (basically) are lists of integers associated to function
symbols which specify the ordering in which the arguments are (eventually) evalu-
ated in function calls. This very simple strategy language provides quite a powerful
way to control the program execution. Due to its simplicity, such strategy anno-
tations also provide a simple interface for understanding and eventually modifying
the execution of programs. Context-sensitive rewriting (CSR [18,21]) provides an
abstract model to describe and analyze the operational behavior of such programs,
thus providing an appropriate basis for the development of program verification
tools [8,19,20]. In CSR, a replacement map (i.e., a mapping μ : F → P(N) sat-
isfying μ(f) ⊆ {1, . . . , k}, for each k-ary symbol f of a signature F) associates
a subset of its argument indices to each function symbol. We use a replacement
map to indicate the argument positions on which rewriting steps are allowed. In
this way, we can achieve a terminating behavior by pruning (all) infinite rewrite
sequences. A Term Rewriting System (TRS) R together with a replacement map
μ is often called a CS-TRS (written (R, μ)). The research in this paper aims at
contributing to the development of appropriate techniques and tools for the verifi-
cation of program termination in the aforementioned programming languages. Our
focus is on termination of innermost context-sensitive rewriting (i.e., the variant of
CSR where only the deepest μ-replacing redexes are contracted). Techniques for
proving termination of innermost CSR were first investigated in [13,19]. These pa-
pers, though, only consider transformational techniques, where the original CS-TRS
(R, μ) is transformed into a TRS Rμ

Θ (where Θ represents the transformation which
has been used) whose innermost termination implies the innermost termination of
CSR for (R, μ). In [5], we have extended the context-sensitive dependency pairs
approach in [2,3] for proving termination of innermost CSR. Roughly speaking
the (context-sensitive) dependency pairs associated to a (CS-)TRS are of a set of
rewrite rules which are used together with the original ones to obtain an often easier
proof of termination due to the possibility of applying a number of new auxiliary
techniques, see, e.g., [15,17] for recent state-of-the-art accounts. As shown in [3],
proofs of termination using context-sensitive dependency pairs (CS-DPs) are much
more powerful and faster than any other technique for proving termination of CSR.
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Dealing with innermost CSR, we have a similar situation, see [5].
The main topic we are going to develop in this work is the analysis and extension

of Fernández’s work [9]. In her paper, she noticed that, when dealing with proofs of
innermost termination, requiring monotonicity of the orderings w.r.t. all arguments
of function symbols is not always necessary. According to this, she showed that
innermost termination of rewriting can be rephrased as a context-sensitive rewriting
termination problem. She introduced the notion of usable arguments, which can be
thought of as the argument positions on which innermost reductions take place.
Then, Fernández showed that innermost termination of a TRS R can be proved by
proving termination of the CS-TRS (R, μ) which is obtained when μ(f) collects the
usable arguments of f for each symbol f in the signature. We have implemented
her techniques for the first time, and then we have investigated the practical use
of her results. We have adapted Fernández ideas to deal with proofs of innermost
termination of CSR; this was left as an open problem in [9].

After some preliminaries in Section 2, in Section 3 we summarize the last de-
velopments concerning context-sensitive rewriting and innermost context-sensitive
rewriting using dependency pairs. In Section 4 we show how to adapt Fernández’s
criterion to relax monotonicity requirements when proving innermost termination
of CSR. In Section 5 we apply this criterion to be used with dependency pairs in
proofs of termination of innermost (context-sensitive) rewriting. Section 6 provides
an experimental evaluation of our techniques for proving innermost termination of
(context-sensitive) rewriting automatically. Finally, we conclude and comment on
some future work.

2 Preliminaries

Relations.
A (strict) partial ordering > is an irreflexive and transitive relation. We say that

> is well-founded if there is no infinite decreasing sequence with >. A quasi-ordering
� is a transitive and reflexive relation.

Terms.
Throughout the paper, X denotes a countable set of variables and F denotes a

signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity given
by a mapping ar : F → N. The set of terms built from F and X is T (F ,X ).
Positions p, q, . . . are represented by chains of positive natural numbers used to
address subterms of t. Given positions p, q, we denote their concatenation as p.q.
Positions are ordered by the standard prefix ordering ≤. If p is a position, and Q is
a set of positions, then p.Q = {p.q | q ∈ Q}. We denote the topmost position by Λ.
The set of positions of a term t is Pos(t). Positions of nonvariable symbols in t are
denoted as PosF (t) while PosX (t) are the positions of variables. The subterm at
position p of t is denoted as t|p and t[s]p is the term t with the subterm at position
p replaced by s. The symbol labelling the root of t is denoted as root(t).
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Term rewriting.
A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ), l �∈ X

and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the right-hand
side (rhs). A rule is collapsing if r ∈ X . An instance σ of a left-hand side of a
rewrite rule l → r, written σ(l), is a redex (reducible expresion). A TRS is a pair
R = (F , R) where R is a set of rewrite rules. Given R = (F , R), we consider F
as the disjoint union F = C � D of symbols c ∈ C, called constructors and symbols
f ∈ D, called defined functions, where D = {root(l) | l → r ∈ R} and C = F −D.

Innermost rewriting.
A term is a normal form if it contains no redex. A substitution σ is normalized

if σ(x) is a normal form for all x ∈ Dom(σ). A term f(t1, . . . , tk) is argument nor-
malized if ti is a normal form for all 1 ≤ i ≤ n. An innermost redex is an argument
normalized redex. A term s rewrites innermost to t, written s →i t, if s → t at
position p and s|p is an innermost redex. Let R be a TRS. For any symbol f let
Rules(R, f) be the set of rules l → r defining f and such that the left-hand sides l

are argument normalized. For any term t the set of usable rules U(R, t) is as follows:

U(R, x) = ∅

U(R, f(t1, . . . , tn)) = Rules(R, f) ∪ ⋃
1≤i≤ar(f)

U(R′, ti) ∪
⋃

l→r∈Rules(R,f)

U(R′, r)

where R′= R−Rules(R, f).

Context-sensitive rewriting.
A mapping μ : F → P(N) is a replacement map (or F-map) if ∀f ∈ F , μ(f) ⊆

{1, . . . , ar(f)} [18]. Let MF be the set of all F-maps (or MR for the F-maps
of a TRS (F , R)). A binary relation R on terms is μ-monotonic if t R s im-
plies f(t1, . . . , ti−1, t, . . . , tk) R f(t1, . . . , ti−1, s, . . . , tk) for all f ∈ F , i ∈ μ(f) and
t, s, t1, . . . , tk ∈ T (F ,X ). The set of μ-replacing positions Posμ(t) of t ∈ T (F ,X ) is:
Posμ(t) = {Λ}, if t ∈ X and Posμ(t) = {Λ} ∪⋃

i∈μ(root(t)) i.Posμ(t|i), if t �∈ X . The
set of μ-replacing variables of t is Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), t|p = x}. A
rule l → r is μ-conservative if Varμ(r) ⊆ Varμ(l). The μ-replacing subterm relation
�μ is given by t �μ s if there is p ∈ Posμ(t) such that s = t|p. We write t �μ s

if t �μ s and t �= s and say that s is a strict μ-replacing subterm of t. We write
t �

�μ
s to denote that s is a non-μ-replacing (hence strict) subterm of t: t �

�μ
s if

there is p ∈ Pos(t)−Posμ(t) such that s = t|p. In context-sensitive rewriting (CSR
[18]), we (only) contract μ-replacing redexes: s μ-rewrites to t, written s ↪→μ t (or
s ↪→R,μ t and even s ↪→ t, if R and μ are clear from the context), if s

p→R t and
p ∈ Posμ(s). A TRS R is μ-terminating if ↪→μ is terminating. Termination of CSR
is fully captured by the so-called μ-reduction orderings, i.e., well-founded, stable
orderings � which are μ-monotonic. A term t is μ-terminating if there is no infinite
μ-rewrite sequence t = t1 ↪→μ t2 ↪→μ · · · ↪→μ tn ↪→μ · · · starting from t. A term
t μ-narrows to a term s (written t �R,μ,θ s), if there is a nonvariable μ-replacing
position p ∈ Posμ

F (t) and a rule l → r in R (sharing no variable with t) such that
t|p and l unify with most general unifier θ and s = θ(t[r]p). Then, we say that
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t is μ-narrowable. A μ-normal form is a term which cannot be μ-rewritten. Let
NFμ(R) (or just NFμ if no confusion arises) be the set of μ-normal forms of a TRS
R. A substitution σ is μ-normalized if σ(x) is a μ-normal form for all x ∈ Dom(σ).
A term t = f(t1, . . . , tk) is argument μ-normalized if ti is a μ-normal form for all
i ∈ μ(f). A μ-innermost redex is an argument μ-normalized redex.

A term s innermost μ-rewrites to t, written s ↪→i t, if s
p→R t, p ∈ Posμ(s),

and s|p is a μ-innermost redex. A TRS R is innermost μ-terminating if ↪→μ,i is
terminating. We write s ↪→!

R,μ,i t if s ↪→∗
R,μ,i t and t ∈ NFμ. A pair (R, μ) where R

is a TRS and μ ∈ MR is often called a CS-TRS.

Dependency pairs.
Given a TRS R = (F , R) = (C � D, R) a new TRS DP(R) = (F �, D(R)) of

dependency pairs for R is given as follows: if f(t1, . . . , tm) → r ∈ R and r =
C[g(s1, . . . , sn)] for some defined symbol g ∈ D and s1, . . . , sn ∈ T (F ,X ), then
f �(t1, . . . , tm) → g�(s1, . . . , sn) ∈ D(R), where f � and g� are new fresh symbols
(called tuple symbols) associated to defined symbols f and g respectively [6]. Let
D� be the set of tuple symbols associated to symbols in D and F � = F∪D�. As usual,
for t = f(t1, . . . , tk) ∈ T (F ,X ), we write t� to denote the marked term f �(t1, . . . , tk).
Given T ⊆ T (F ,X ), T � denotes {t� | t ∈ T}. For the sake of readability, capital
letters denote marked symbols in examples.

Reduction pairs.
Given a signature F , a reduction pair (�,�) for terms in T (F ,X ) consists of

a stable and monotonic quasi-ordering � on terms, and a stable and well-founded
ordering � satisfying either � ◦ � ⊆ � or � ◦ � ⊆ �. Note that monotonicity
is not required for �. A μ-reduction pair is a reduction pair (�,�) where the
quasi-ordering � is μ-monotonic (instead of monotonic).

3 Context-sensitive dependency pairs

In the following, we write Narrμ(t) to indicate that t is μ-narrowable (w.r.t. the
intended TRS R). We consider a function Renμ which independently renames all
occurrences of μ-replacing variables within a term t by using new fresh variables
which are not in Var(t):

• Renμ(x) = y if x is a variable, where y is intended to be a fresh new variable
which has not yet been used (we could think of y as the ‘next’ variable in an
infinite list of variables); and

• Renμ(f(t1, . . . , tk)) = f([t1]
f
1 , . . . , [tk]

f
k) for evey k-ary symbol f , where given a

term s ∈ T (F ,X ), [s]fi = Renμ(s) if i ∈ μ(f) and [s]fi = s if i �∈ μ(f).

Let R = (F , R) = (C � D, R) be a TRS and μ ∈ MF . We define iDP(R, μ) =
iDPF (R, μ) ∪ iDPX (R, μ) to be the set of innermost context-sensitive dependency
pairs (ICS-DPs) where:

iDPF (R, μ) = {l� → s� | l → r ∈ R, l� ∈ NFμ(R), r �μ s, root(s) ∈ D, l ��μ s, Narrμ(Renμ(s))}
iDPX (R, μ) = {l� → x | l → r ∈ R, l� ∈ NFμ(R), x ∈ Varμ(r)− Varμ(l)}
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We extend μ ∈ MF into μ� ∈ MF∪D� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f)
if f ∈ D. Let R = (F , R) be a TRS and μ ∈ MF . We say that t ∈ T (F ,X )−X is a
hidden term if there is a rule l → r ∈ R such that r�

�μ
t. Let HT (R, μ) (or just HT ,

if R and μ are clear for the context) be the set of all hidden terms in (R, μ). We
use DHT = {t ∈ HT | root(t) ∈ D} for the set of hidden terms which are rooted by
a defined symbol. We also let NHT (R, μ) = {t ∈ DHT | Narrμ(Renμ(t))} be the
set of hidden terms which are rooted by a defined symbol, and that, after applying
Renμ, become μ-narrowable (see [4] for further motivation and explanations about
these definitions).

Let R = (F , R) and P = (G, P ) be TRSs and μ ∈ MF∪G . An innermost
(P,R, μ)-chain is a finite or infinite sequence of pairs ui → vi ∈ P, together with a
substitution σ satisfying that, for all i ≥ 1, σ(ui) ∈ NFμ(R) and :

(i) if vi �∈ Var(ui)− Varμ(ui), then σ(vi) ↪→!
R,μ,i σ(ui+1), and

(ii) if vi ∈ Var(ui) − Varμ(ui), then there is si ∈ T (F ,X ) such that σ(vi) �μ si

and s�
i ↪→!

R,μ,i σ(ui+1).

As usual, we assume that different occurrences of dependency pairs do not share
any variable (renaming substitutions are used if necessary). An innermost (P,R, μ)-
chain is called minimal if for all i ≥ 1,

(i) if vi �∈ Var(ui)− Varμ(ui), then σ(vi) is innermost (R, μ)-terminating, and

(ii) if vi ∈ Var(ui) − Varμ(ui), then s�
i is innermost (R, μ)-terminating and ∃s̄i ∈

NHT (R, μ) such that si = σ(s̄i).

This more abstract notion of chain can be particularized to be used with ICS-DPs,
by just taking P = iDP(R, μ). In the following, the pairs in a CS-TRS (P, μ),
where P = (G, P ), are partitioned according to its role in the previous Definition as
follows:

PX = {u → v ∈ P | v ∈ Var(u)− Varμ(u)} and PG = P − PX

Innermost Context-Sensitive Dependency Graph.
Let R be a TRS and μ ∈ MR. The innermost context-sensitive dependency

graph consists of the set iDP(R, μ) of innermost context-sensitive dependency pairs
and arcs which connect them as follows:

(i) There is an arc from u → v ∈ PG to u′ → v′ ∈ P if there are substitutions θ

and θ′ such that θ(v) ↪→!
R,μ,i θ′(u′) and θ(u), θ′(u′) ∈ NFμ(R).

(ii) There is an arc from u → v ∈ PX to u′ → v′ ∈ P if there is t ∈ NHT (R, μ)
and substitutions θ and θ′ such that θ(t�) ↪→!

R,μ,i θ′(u′) and θ′(u′) ∈ NFμ(R)

In order to approximate the ICS-DG, we have also adapted functions Ren and
Cap (used in standard rewriting) to the innermost context-sensitive setting (see
[4,5] for details).
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Basic usable CS-rules.
Let R be a TRS and μ ∈ MR. For any symbol f , let Rules(R, μ, f) be the set of

rules l → r defining f and such that the left-hand sides l are argument μ-normalized:
Rules(R, μ, f) = {f(l1, . . . , lk) → r ∈ R | ∀i ∈ μ(f), li ∈ NFμ(R)}. For any term t,
the set of basic usable CS-rules U0(R, μ, t) is as follows:

U0(R, μ, x) = ∅
U0(R, μ, f(t1, . . . , tn)) = Rules(R, μ, f) ∪ S

i∈μ(f)

U0(R′, μ, ti) ∪
S

l→r∈Rules(R,μ,f)

U0(R′, μ, r)

where R′= R−Rules(R, μ, f).

If P is a TRS, then U0(R, μ,P) =
⋃

l→r∈P
U0(R, μ, r).

4 Simplifying monotonicity requirements for innermost
μ-termination

In the innermost setting, matching substitutions are always normalized. For this
reason, in an innermost sequence t1

p1→i t2
p2→i · · ·

pn→i tn+1 starting at root position
(i.e., p1 = Λ), every redex tj |pj for j > 1 comes from a defined symbol introduced
after applying a rule lk → rk in a previous step k < j. Hence the set of arguments
which are reduced can be handled by looking for defined symbols in right-hand sides
of the involved rules l → r.

In [6], Arts and Giesl already noticed that in the treatment of innermost chains,
monotonicity requirements for the reduction pairs can be weaker. In [9] Fernández
defines the notion of usable arguments for a function symbol when proving innermost
termination. The idea is that, in innermost sequences, some arguments are not
relevant for proving termination.

Example 4.1 Consider the following TRS R:

f(s(0), s(0))→ f(x, g(x)) g(s(x))→ g(x)

No innermost sequence starting at root position takes into account the first argu-
ment of f nor the argument of g. The reason is that (instances of) innermost redexes
are argument normalized. That means that all variables (e.g. x) introduced by the
applied rule are normalized and cannot be reduced. Only the second argument
g(x) of f in the right-hand side of the first rule could be innermost reduced after
applying it.

Roughly speaking, the usable arguments of a symbol f with respect to a TRS R
are those arguments with a subterm rooted by a defined symbol in some right-hand
side of a dependency pair or usable rule.
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Definition 4.2 [Usable arguments] [9, Definition 3] Let R = (F , R)= (C � D, R)
be a TRS and P a set of pairs of terms s.t. for all u → v ∈ P, u is argument
normalized with respect to R. The set of usable arguments for a function symbol
f ∈ F with respect to R and P is defined as UA(f,R,P) = {1 ≤ k ≤ ar(f) |
∃u → v ∈ P ∪U(R,P), ∃p, p′ ∈ Pos(v) s.t. root(v|p′) = f , root(v|p) ∈ D , p′.k � p,
u � v|p}.

Considering those usable arguments could be helpful in proofs of innermost termi-
nation since they impose weaker monotonicity requirements.

As Fernández noticed, the set of usable arguments can be seen as a replace-
ment map which specifies the arguments to be reduced. According to her re-
sults, the μ-termination of a TRS R implies the innermost termination of R if
μ(f)=UA(f,R, R) for all f ∈ F where R only contains rules such that all left-hand
sides are argument normalized.

Corollary 4.3 [9, Corollary 11] Let R be a TRS and μ(f) = UA(f,R, R′) for
every f ∈ F where R′ ⊆ R contains all rules l → r ∈ R such that l is argument
normalized. If R is μ-terminating, then R is innermost terminating.

This observation is very useful since now, all techniques for proving termina-
tion of CSR can be used for proving innermost termination. Several methods and
techniques for proving termination of CSR have been developed so far [2,3,14,23].

4.1 Usable arguments for CSR

Following Fernández’s ideas, in the innermost context-sensitive setting (for a given
replacement map μ) we could relax monotonicity requirements by taking into ac-
count that reductions only take place on μ-replacing positions of the right-hand sides
of the rules which are rooted by a defined symbol. We adapt Fernández’s ideas to
CSR. In sharp contrast to the unrestricted case, we need to take into account
that in innermost CSR a redex does not need to be argument normalized. Only
argument μ-normalization can be assumed. Thus, non-μ-replacing subterms may
contain redexes that can be reduced later on if they come to a replacing position.

Proposition 4.4 A CS-TRS (R, μ) is innermost μ-terminating iff R′ is innermost
μ-terminating, where R′ ⊆ R contains all rules l → r ∈ R such that l is argument
μ-normalized.

Proof. Trivial since the only rules that can be applied in innermost μ-reductions
are those whose left-hand sides are argument μ-normalized. �

In the following, we assume that all rules in any CS-TRS (R, μ) are argument μ-
normalized, i.e., for all rules l → r in R, l is argument μ-normalized. Proposition 4.4
ensures that this entails no lack of generality regarding our research on innermost
termination of CSR. The straightforward adaptation of Fernandez’s criterion to
CSR yields the following definition.
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Definition 4.5 [Basic usable CS-arguments] Let (R, μ) = ((C �D, R), μ) be a CS-
TRS and P be a set of pairs of terms s.t. for all u → v ∈ P, u is argument
μ-normalized. The basic usable CS-arguments for a function symbol f ∈ F (w.r.t.
R and P) are defined as UAμ(f,R,P) = {i ∈ μ(f) | ∃u → v ∈ P ∪U0(R, μ,P),
∃p, p′ ∈ Posμ(v) s.t. root(v|p′) = f , root(v|p) ∈ D , p′.i � p, u �μ v|p}.

Note that the replacement map given by μ′(f) = UAμ(f,R,P) for all f ∈ F is
more restrictive than μ, i.e., for all symbols f ∈ F , μ′(f) ⊆ μ(f).

The following proposition is the context-sensitive version of [9, Lemma 5].

Proposition 4.6 Let (R, μ) be a CS-TRS and P be a set of pairs of terms s.t. for
all u → v ∈ P, u is argument μ-normalized and P ∪ U0(R, μ,P) is μ-conservative.

Let innermost μ-rewriting below the root be
>Λ

↪−→i = (
>Λ
↪→ ∩ ↪→i). Let l → r ∈

P ∪U0(R, μ,P) be such that σ(r)
>Λ

↪−→∗
i U0(R,μ,P) t for some term t and substitution

σ s.t. σ(l) is argument μ-normalized . If t|p is an innermost μ-redex, then for all
p′.k � p, we have that k ∈ UAμ(root(t|p′),R,P).

Proof. By induction on the length n of the rewriting sequence. If n = 0, then
σ(r) = t. Then, since σ(l) is argument μ-normalized, it follows that for all x ∈
Varμ(l), σ(x) ∈ NFμ(R). Since the rule l → r is μ-conservative (that is Varμ(r) ⊆
Varμ(l)), we have that for all x ∈ Varμ(r), σ(x) ∈ NFμ(R). It follows that p is a
nonvariable (μ-replacing) position of r, i.e. p ∈ Posμ

F (r). Thus, root(r|p) ∈ D and
the result follows by Definition 4.5.

If n > 0, then there is a term s such that σ(r)
>Λ

↪−→∗
i s and s

>Λ
↪−→i t at some

μ-replacing position q. By the induction hypothesis, every μ-replacing position of
the term t above, which equal or disjoint to q satisfies the result and we only have
to prove it for innermost redexes t|p s.t. q < p, it is say, we have to prove that

k ∈ UAμ(root(t|p′),R,P), for all q < p′.k � p. If s
>Λ

↪−→i t, then s|q = σ′(l′) and
t|q = σ′(r′), for some rule l′ → r′ ∈ U0(R, μ,P) and substitution σ′ s.t. σ′(l′) is
argument μ-normalized. This implies that every innermost redex of t|q occurs at a
position p′′ ∈ Posμ(r′) s.t. root(r′|p′′) ∈ D (since the rule l′ → r′ is conservative
we have that for all x ∈ Varμ(r′), σ(x) ∈ NFμ(R)) and l′ �μ r′|p′′(otherwise, σ′(l′)
would not be an innermost redex of s. By definition, when p′′ > Λ, p′.k � p′′, k

∈ UAμ(root(t|q.p′),R,P) which is equivalent to what we needed to prove ( k ∈
UAμ(root(t|p′),R,P), for all q < p′.k � p). �

Corollary 4.3 suggests that innermost μ-termination of a TRS R = (F , R) could
be proved as μ′-termination for μ′ given by μ′(f) = UAμ(f,R, R) for all f ∈ F .
This is true for μ-conservative CS-TRSs, as the following theorem shows.

Theorem 4.7 A μ-conservative CS-TRS (R, μ) is innermost μ-terminating if R
is μ′-terminating, where for all symbols f ∈ F , μ′(f) = UAμ(f,R, R).

Proof. By contradiction. Assume that R is not innermost μ-terminating. By the
argument of size minimality, there is a infinite innermost μ-rewrite sequence with
the first step at position Λ: s1 ↪→i s2 ↪→i s3 ↪→i · · · (without loss of generality).
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By Proposition 4.6 (where we let P = R), every step sj
>Λ

↪−→i sj+1 at position p

satisfies that p′.k � p, k ∈ UAμ(root(sj |p′),R,P). Therefore, there is an infinite
μ′-rewrite sequence of terms s1 ↪→μ′ s2 ↪→μ′ · · · ↪→μ′ sn ↪→μ′ · · · which contradicts
the μ′-termination of R.

�

Example 4.8 Consider the TRS R :

f(a, b, x) → f(x, x, x)

c → a

c → b

together with μ(f) = {1, 3}. Note that R is μ-conservative. The set of ICS-DPs
consists of the pair F(a, b, x) → F(x, x, x). By using μ′(f) = UAμ(f,R,P) for
every f ∈ F we obtain μ′(f) = ∅. The CS-TRS (R, μ′) has no ICS-DP now. Thus
we easily conclude the μ′-termination of R and, by Theorem 4.7, the innermost
μ-termination of R.

This fact is important since now, all techniques for proving termination of CSR
can be used to prove termination of innermost CSR for μ-conservative systems. The
following example shows that μ-conservativeness cannot be dropped in Theorem 4.7.

Example 4.9 Consider again the TRS R in Example 4.8 but now together with
μ(f) = {1, 2}. If we try to apply Theorem 4.7 to prove innermost μ-termination of
R, we obtain μ′(f) = ∅ and (as discussed in Example 4.8) we would conclude the
innermost μ-termination of R. However, R is not innermost μ-terminating:

f(a,b,c) ↪→i f(c,c,c) ↪→i f(a,c,c) ↪→i f(a,b,c) ↪→i · · ·

Note that the first rule of R is not μ-conservative now.

5 Relaxing monotonicity with CS-DPs

Fernández’s criterion was also adapted to deal with proofs of termination of rewrit-
ing using dependency pairs. We have recently investigated how to prove innermost
termination of CSR by using (context-sensitive) dependency pairs [5]. Now, we
can adapt the use of CS-usable arguments to be applied in proofs of innermost μ-
termination with CS-dependency pairs. To give a further step, we do it directly by
considering the cycles of the ICS-DG.

Theorem 5.1 Let R = (F , R) and P = (G, P ) be TRSs, μ ∈ MF∪G and P is μ-
conservative be such that U0(R, μ,P) is μ-conservative, and μ′(f) = UAμ(f,R, C)
for all f ∈ F . If there is a μ′-reduction pair (�,�) such that U0(R, μ,P) ⊆ �,
P ⊆� ∪ �, and P ∩ � �= ∅, then there is no minimal innermost (R,P, μ)-chain.

Proof. We proceed again by contradiction. Assume that there is a minimal inner-
most (R,P, μ)-chain:
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σ(u1) ↪→P,μ σ(v1)
>Λ

↪−→∗
i (U0(R,μ,P),μ)

σ(u2) ↪→P,μ σ(v2)
>Λ

↪−→∗
i (U0(R,μ,P),μ)

σ(u3) ↪→ · · ·

where all pairs are infinitely often used, and, for all j ≥ 1, all uj → vj ∈ P are μ-
conservative and there is a substitution σ such that σ(uj) is argument μ-normalized
and σ(vj) is innermost (R, μ)-terminating. By Proposition 4.6, every innermost step

in the sequence σ(vj)
>Λ

↪−→∗
i σ(uj+1) is performed at a μ′-replacing position by means

of a rule in U0(R, μ,P). Since by assumption U0(R, μ,P) ⊆ �, and � is stable
and μ′-monotonic, σ(vj) � σ(uj+1) holds for all j > 0. On the other hand, since
P ⊆� ∪ � and P ∩ � �= ∅, the sequence σ(u1) � ∪ � σ(v1) � σ(u2) · · · contains
an infinite number of � steps. By compatibility of � and �, this contradicts the
well-foundedness of �. �

Theorem 4.7 can be generalized to (certain) non-μ-conservative CS-TRSs thanks
to Theorem 5.1 and the results for proving innermost termination of CSR in [5].
Now, for a given CS-TRS (R, μ) that satisfies the conditions of Theorem 5.1, we
can prove its innermost μ-termination by relaxing μ-monotonicity requirements for
each cycle.

6 Implementation and Experiments

We have implemented the techniques described in the previous sections as part of
the termination tool mu-term [1,22]. In order to evaluate the techniques which
are reported in this paper we have made some benchmarks. We have considered
the examples in the 2007 Termination Problem Data Base (TPDB, version 4.0)
available through the URL:

http://www.lri.fr/~marche/tpdb

We are going to comment on the results obtained with each improvement.

6.1 Proving innermost termination of rewriting as termination of CSR

We have implemented the use of Corollary 4.3 for proving innermost termination
of rewriting as termination of CSR (this was one of the main results in Fernández’s
paper). The relevance of this result in practice had not been tested yet. In or-
der to evaluate it we have considered the examples used in the innermost category
of the 2006 termination Competition 3 , which are part of the TPDB (in 2007 the
category was not run). There are 69 examples, 66 of them are known to be inner-
most terminating. With Fernández’s criterion (Corollary 4.3) mu-term succeeds
in 32 examples (success rate of 48.5%). This is acceptable if we think that (except
for AProVE, which succeeds in the 100% of the examples) the success rate for all

3 http://www.lri.fr/~marche/termination-competition/2006
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mu-term Fernández mu-term iDPs [6]

YES score 32 39

YES average time 0.03 sec. 0.03 sec.

Table 1
Summary of benchmarks for innermost termination of rewriting

mu-term Fernández cycle-based mu-term Fernández cycle-based (only)

YES score 38 37

YES average time 0.04 sec. 0.79 sec.

Table 2
Summary of benchmarks for innermost termination of rewriting (based on cycles)

other participants in this category is around 20%. However, we have also imple-
mented the use of (standard) dependency pairs for proving innermost termination
(according to [6, Theorem 37]) together with the narrowing refinement (we call this
tool mu-term iDPs) and we are able to prove 39 examples, including all examples
solved with Fernández’s criterion. Moreover, we have included Fernández’s crite-
rion as a technique to be applied when trying to solve a cycle in the innermost
termination proof (see [9], Theorem 9). There are two news approximations: when
mu-term has to solve a cycle, the first version uses Fernández’s criterion and if it
fails then it tries to solve it in the usual way, that is, without any replacement map
(mu-term Fernández cycle-based). The second one tries to force mu-term to solve
the cycle with Fernández’s criterion, there is no other option (mu-term Fernández
cycle-based only). In both cases the results obtained are similar. With the previous
implementation of mu-term (mu-term iDPs) we solve 39 examples and with these
two configurations we obtain better results than with Corollary 4.3; however, they
do not improve the performance of mu-term iDPs. The results are summarized in
Tables 1 and 2.

Therefore, it seems that using Corollary 4.3 to prove innermost termination of
rewriting is not as good idea (at least with the considered set of examples) since we
lose some examples due to a too restrictive new replacement map, and the average
time is the same. Regarding the application of these ideas to cycles, we obtain
better results but no essential improvement since we also lose some examples.

Full details for the benchmarks summarized in Table 1 can be found here:

http://www.dsic.upv.es/~balarcon/prole08/benchmarks/FerInnermost.htm

In the following URL:

http://www.dsic.upv.es/~balarcon/prole08/Innermost/benchmarks.html

more information can be found regarding the benchmarks summarized in Table 2.
All this shows that we do not obtain any real improvement over the basic tech-
nique of dependency pairs for proving innermost termination at least for the set of
considered examples.
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6.2 Proving innermost termination of CSR

Although there is no special TPDB category for innermost termination of CSR,
we have used the TRSs in the CSR termination subcategory to test our techniques
for proving termination of innermost CSR (Theorems 4.7 and 5.1). It contains 90
CS-TRSs.

Since Theorem 4.7 only applies to conservative systems, we restrict the attention
to the 27 conservative examples. We solve all of them with an average time of 0.025
seconds (mu-termFernández). Further details can be found here:

http://www.dsic.upv.es/~balarcon/prole08/benchmarks/FerICSR.html

On the other hand, we have also implemented the use of Theorem 5.1 to deal
with nonconservative systems. We have compared the same configurations ex-
plained above: the first one (mu-term Fernández cycle-based) tries to solve each μ-
conservative cycle (with associated μ-conservative usable rules) by using CS-usable
arguments as the new replacement map. If it fails, then the normal configuration
of mu-term (mu-term iCSDPs) is used. The second one only applies CS-usable
arguments on cycles when searching for a compatible μ-reduction pair (mu-term

Fernández cycle-based only). All these versions of mu-term succeed over the same
70 examples, the same number of examples that we had already solved using the
innermost version of the context-sensitive dependency pairs [5]. The time average
rates has no exhibit substantial differences. Further details can be found here:

http://www.dsic.upv.es/~balarcon/prole08/iCSR/benchmarks.html

7 Conclusions and future work

In this work we have shown how to relax monotonicity requirements for proving
innermost termination of context-sensitive rewriting. Fernández defined the notion
of usable arguments to indicate those arguments that can be eventually reduced
in innermost computations. This notion is totally equivalent to fix a replacement
map where only those arguments are μ-replacing, thus transforming an innermost
termination problem into a context-sensitive termination problem. We have adapted
Fernández’s approach [9] to be used for proving innermost termination of context-
sensitive rewriting (Theorem 4.7). Moreover, since we have recently adapted the use
of context-sensitive dependency pairs to deal with innermost termination of CSR
[5], we have also investigated how to take advantage of it to adapt the result over
dependency pairs and reduction pairs of [9] to the context-sensitive setting (Theorem
5.1). We have implemented both, the innermost and the innermost context-sensitive
approaches in mu-term since the original results had not been implemented or
tested before in any termination tool. We have performed some benchmarks that
show no real improvement over previous (standard) approaches for proving either
innermost termination [6] or innermost termination of CSR [5].

One of our main motivations to analyze and continue Fernández’s work was the
strong connection that she found between CSR and innermost rewriting, specifi-
cally the possibility of using CSR for proving innermost termination of rewriting
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that she showed in her paper. Since in 2005 there was no really powerful tech-
nique for automatically proving termination of CSR, her work could not be tested,
although it is interesting from a theoretical point of view. The recent definition
of a context-sensitive version of the dependency pairs approach, though, suggested
that some practical benefits could be obtained from her work. After achieving great
results in proofs of termination of CSR we also developed the innermost version of
CS-DPs [5]. The results obtained with this approach were also much better than the
existing transformational methods for proving innermost termination of CSR [13].
This lead us to think about combining the new CS-DP approach with Fernández’s
ideas to obtain a good result for proving innermost termination as she stated in
her paper. Moreover, she left open the problem of adapting the notion of usable
argument to the context-sensitive setting for proving innermost termination of CSR
which was a nontrivial issue due to the peculiarities of context-sensitive reductions
as she already noticed. Therefore we have tackled the problem in all its open issues:
we have implemented her results in the termination tool mu-term and we have also
investigated and implemented the extension of her results to CSR (even the treat-
ment over cycles that she mentioned). Unfortunately, our practical experience has
been very different to what we expected: viewing an innermost termination problem
as a context-sensitive termination problem, even with the possibility of using CS-
DPs to achieve a proof, does not improve the performance of classical techniques
for proving innermost termination of rewriting (dependency pairs, narrowing, etc
[6]). On the other hand, trying to prove innermost termination of CS-TRSs by
using a more restrictive replacement map do not offer any improvement over the
results obtained by using innermost CS-DPs with the original replacement map [5].
Thus, we can only conclude that, nowadays, apart from the theoretical interest of
the approach that combines two different strategies, it does not provide a better
approach over the existing techniques for proving innermost termination [6] and
innermost termination of CSR [5]. The other motivation for Fernández’s work is
that relaxing monotonicity requirements allows the use of non-monotonic orderings
for direct proofs (see e.g., [10]). However, as far as we know, there is no tool imple-
menting these orderings in automatic proofs of termination. Some approximations
for proving innermost termination using specific orderings are presented in [10] but
they does not consider the argument positions of function symbols. More research in
this field could hopefully clarify whether usable arguments can actually improve the
existing methods for proving innermost termination of (context-sensitive) rewriting
in some way.
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Termination is one of the most interesting problems when dealing with context-sensitive

rewrite systems. Although a good number of techniques for proving termination of context-

sensitive rewriting (CSR) have been proposed so far, the adaptation to CSR of the dependency

pair approach, one of the most powerful techniques for proving termination of rewriting,

took some time and was possible only after introducing some new notions like collapsing

dependency pairs, which are specific for CSR. In this paper, we develop the notion of context-

sensitive dependency pair (CSDP) and show how to use CSDPs in proofs of termination of CSR.

The implementation and practical use of the developed techniques yield a novel and pow-

erful framework which improves the current state-of-the-art of methods for automatically

proving termination of CSR.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Most computational systemswhose operational principle is basedon reducing expressions canbedescribed and analyzed

by using notions and techniques from the abstract framework of term rewriting systems (TRSs [11,61]). Such computational

systems (e.g., functional, algebraic, and equational programming languages as well as theorem provers based on rewriting

techniques) often incorporate apredefined reduction strategy that is used tobreakdown thenondeterminismthat is inherent

to reduction relations. Eventually, this can raise problems, as eachkindof strategy only behaves properly for particular classes

of programs (i.e., it is normalizing, optimal, etc.). For this reason, the designers of programming languages have developed

mechanisms to give the user more flexible control of the program execution. For instance, syntactic annotations (which

are associated to arguments of symbols) have been used in programming languages such as Clean [57], Haskell [41], Lisp
[54], Maude [14], OBJ2 [23], OBJ3 [36], CafeOBJ [24], etc. to improve the termination and efficiency of computations.

Lazy languages (e.g., Haskell, Clean) interpret them as strictness annotations in order to become ‘more eager’ and efficient.

Eager languages (e.g., Lisp, Maude, OBJ2, OBJ3, CafeOBJ) use them as replacement restrictions to become ‘more lazy’,

thus (hopefully) avoiding nontermination. Termination is one of the most interesting practical problems in computation

and software engineering. A program or computational system is said to be terminating if it does not lead to any infinite

computation for any possible call or input data. Ensuring termination is often a prerequisite for essential program properties

like correctness.Messages reporting (a never-ending) “processing”, “waiting for an answer”, or even “abnormal termination”

(which are often raised during the execution of software applications) usually correspond to nonterminating computations

arising from bugs in the program.

Context-sensitive rewriting (CSR [44,46]) is a restriction of rewriting that has proved useful in investigating some of the

aforementionedprogramming languages, see e.g., [13,16,17,31,45,52]. InCSR, the restrictionof the rewriting computations is
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Fig. 1. Computing Wallis’ approximation to π
2
.

first imposed on the arguments of function symbols f in the signatureF . A signature is a set of function symbols f1, . . . , fn, . . .
together with an arity function ar : F → N that establishes the number of ‘arguments’ associated to each symbol. A

replacement map is a mapping μ: F → ℘(N) that satisfies μ(f ) ⊆ {1, . . . , ar(f )}, for each symbol f in the signature F
[44]. It specifies the argument positions where rewriting is allowed. In CSR, we only rewrite μ-replacing subterms: every

term t (as a whole) is μ-replacing by definition; and ti (as well as all its μ-replacing subterms) is a μ-replacing subterm of

f (t1, . . . , tk) if i ∈ μ(f ).

Example1. TheTRSR in Fig. 1 canbeused tocomputeapproximations to π
2
byusingWallis’ product: π

2
= limn→∞ 2

1
2
3
4
3
4
5
· · ·

2n
2n−1

2n
2n+1

. InR, function symbols 0 and s are used to represent natural numbers in Peano’s notation; we also have the usual

arithmetic operations addition and product. Symbols cons and nil are the standard list constructors which are then used

to build (possibly infinite) lists of natural numbers like evenNs (the infinite list of even numbers) and oddNs (the infinite

list of odd numbers). Function incr increases all the elements of a list in one unit through the application of s. The function
zip merges a pair of lists into a list of fractions, and tail returns the elements of a list after removing the first one. The

function take can be used to obtain the components of a finite approximation to π
2
which wemultiply with prodOfFracs.

Note the explicit use of consF for building finite lists of fractions of natural numbers by means of take, thus ensuring that

the product of their elements computed by prodOfFracs is well-defined. A call halfPi(sn(0)) for some positive number

n > 0 will return the desired approximation. Since R is nonterminating (due to the first two rules), we should be careful

when choosing the rewrite steps that will be issued to obtain an approximation.

With CSR we can achieve a terminating behaviour for this system. Consider the replacement map μ given by:

μ(cons) = {1} and μ(f ) = {1, . . . , ar(f )} for all f ∈ F − {cons}
where μ(cons) = {1} disallows reductions on the list part of the list constructor cons, thus making a kind of lazy eval-

uation of lists possible. Furthermore, the replacement restrictions imposed by the replacement map μ are not an obstacle

to obtaining the desired approximations: the repeated application of context-sensitive rewriting steps to an expression

halfPi(sn(0)) will obtain (disregarding the particular choice of such steps) an expression frac(sp(0), sq(0)) repre-

senting the approximation
p

q
to π

2
, which is obtained by taking the first n terms in Wallis’ formula (this follows from

[44, Theorem 11]).

1.1. Termination of context-sensitive rewriting

Several methods have been developed for proving termination of CSR under a replacement map μ for a given TRSR (i.e.,

for proving the μ-termination of R). Termination of CSR is an interesting problem with several applications in the fields of

term rewriting and in the analysis of programming languages [8,16,17,19,21,31,46,50,59]. The development of methods

and techniques for automatically proving termination is, therefore, one of the most interesting and challenging problems
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Fig. 2. Dependency pairs for the TRS in Example 1.

when dealingwith CSR. Furthermore, with CSR, we can achieve a terminating behavior with nonterminating TRSs by pruning

(all) infinite rewrite sequences as shown in Example 1. Examples of tools that are able to automatically prove termination

of CSR are AProVE [32], Jambox [18], mu-term [2,47], and VMTL [60].

In the 90s, a number of transformations that permit termination of CSR to be treated as a standard termination

problem were developed (see [31,50] for recent surveys). Polynomial orderings and the context-sensitive version of the

recursive path ordering were also investigated [12,26,48,49]. In [3], we adapted the dependency pair method [10,25,38],

which is a very powerful technique for proving termination of rewriting, to CSR. In this paper, we develop and improve

the original notions in [3] to incorporate recent improvements introduced by the dependency pair framework [33,35],

and we obtain a powerful and modern framework that improves the current state-of-the-art of methods that can be used

to automatically prove termination of CSR. Our tool mu-term implements the methods and techniques described in this

paper.

1.2. Dependency pairs for context-sensitive rewriting

A TRSR is terminating if there is no infinite rewrite sequence starting from any term.With regard to proofs of termination

of rewriting, the dependency pair technique focuses on the following idea: the rules that are really able to produce such

infinite sequences are those rules l → r such that r contains some defined symbol 1 g. Intuitively, we can think of these

rules as representing some possible (direct or indirect) recursive calls. Such recursion paths associated to each rule l → r

are represented as new rules u → v, where u = f �(l1, . . . , lk) if l = f (l1, . . . , lk), and where v = g�(s1, . . . , sm) if

s = g(s1, . . . , sm) is a subterm of r and g is a defined symbol. The notation f � for a given symbol f means that f ismarked. In

1 A symbol g ∈ F is defined inR if there is a rule inRwhose left-hand side is of the form g(l1, . . . , lk).
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Fig. 3. Dependency graph for the TRS in Example 1.

practice, we often capitalize f and use F instead of f � in our examples. For this reason, the dependency pair technique starts

by considering a new TRS DP(R) that contains all these new rules for each l → r ∈ R. For instance, according to [10], the

set DP(R) of dependency pairs for R in Example 1 consists of the rules in Fig. 2. The rules in R and the rules in DP(R)
determine the so-called dependency chainswhose finiteness or infiniteness characterize termination or nontermination ofR
[10]. A chain of dependency pairs is a sequence ui → vi of dependency pairs together with a substitution σ such that σ(vi)
rewrites to σ(ui+1) for all i � 1. The dependency pairs can be presented as a dependency graph, where the infinite chains

are represented by the cycles in the graph. For instance, the dependency graph that corresponds to the TRS R in Example 1

is depicted in Fig. 3. The cycle consisting of nodes (3) and (14) witnesses the nontermination ofR.

In general, these intuitions are valid for CSR: the subterms s of the right-hand sides r of the rules l → r which are

considered to build the context-sensitive dependency pairs l� → s� must be μ-replacing terms now.

Example 2. ConsiderR and μ as in Example 1. Only the dependency pairs (1), (4)-(12), (14)-(21), and (23) in Fig. 2 are also

context-sensitive dependency pairs.

The following example shows the need for dependency pairs of a new kind.

Example 3. Consider the following TRSR:

a→ c(f(a)) f(c(x)) → x

together with μ(c) = ∅ and μ(f) = {1}. No μ-replacing subterm s in the right-hand sides of the rules is rooted by a

defined symbol. Thus, there is no ‘regular’ dependency pair (in particular A → A is dismissed due to μ(c) = ∅). If no other

dependency pair is considered, we could wrongly conclude thatR is μ-terminating, which is not true:

f(a) ↪→μ f(c(f(a))) ↪→μ f(a) ↪→μ · · ·
Indeed, we must add the following collapsing dependency pair:

F(c(x)) → x.

Since the right-hand side is a variable, this would not be allowed in Arts and Giesl’s approach [10].

Collapsing pairs are essential in our approach. They express that infinite context-sensitive rewrite sequences can involve

not only the kind of recursion that is represented by the usual dependency pairs but also a new kind of recursion that is

hidden inside the nonreplacing (or frozen) parts of the terms involved in the infinite sequence. The activation of such delayed

recursions is due to the presence of migrating variableswithin a rule l → rwhich is used in the sequence.Migrating variables

are those that are not replacing in the left-hand side l but that become replacing in the right-hand side r.

Example 4 (Continuing Example 2). The following collapsing pairs are context-sensitive dependency pairs for the CS-TRS in

Example 1:

TAIL(cons(x, xs)) → xs (25)

TAKE(s(n), cons(x, xs)) → xs (26)

Note that variable xs isμ-replacing in the right-hand sides of the rulestail(cons(x, xs)) → xs andtake(s(n), cons(x, xs))
→ consF(x, take(n, xs)) but it is non-μ-replacing in the corresponding left-hand sides.
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1.3. Plan of the paper

Wehave argued that termination of CSR is an interesting and challenging topic of researchwith a goodnumber of practical

applications. The results, techniques, and tools that derive from our work can be of interest to a sufficiently wide audience.

The material in this paper will be more familiar, however, to those specialists who are interested in termination (in general)

and in how to prove termination of CSR in particular. Throughout the paper, however, we made a serious effort to provide

sufficient intuition and informal descriptions for our main definitions and results.

After Section 2, the paper is structured in three main parts:

1. Section 3 provides appropriate notions of minimal non-μ-terminating terms and introduces the main properties of

such terms. We introduce the notion of hidden term and investigate the structure of infinite context-sensitive rewrite

sequences starting fromminimalnon-μ-terminating terms. This analysis is essential inorder toprovideanappropriate

definition of context-sensitive dependency pair and the related notions of chains, graphs, etc.

2. We define the notions of context-sensitive dependency pair and context-sensitive chain of pairs and show how to use

them to characterize termination of CSR. Sections 4 and 5 introduce the general framework to compute and use

context-sensitive dependency pairs to prove termination of CSR. The introduction of dependency pairs of a new kind

(the collapsing dependency pairs, as in Example 3) leads to a notion of context-sensitive dependency chain, which is

quite different from the standard one. In Section 6, we prove that our context-sensitive dependency pair approach fully

characterizes termination of CSR.

3. We describe a suitable framework for dealing with proofs of termination of CSR by using these results. Section 7

adapts the dependency pair framework [33,35] to CSR by defining appropriate notions of CS problem and CS processor

that rely on the results obtained in the second part of the paper. Section 8 introduces the notion of context-sensitive

(dependency) graph and the associated CS processor. Section 9 describes CS processors for removing or transforming

collapsing pairs. Section 10 investigates the use of term orderings in processors. Section 11 adapts Hirokawa and

Middeldorp’s subterm criterion [38]. Section 12 adapts narrowing transformation of pairs in [35].

Experiments are reported in Section 13. Sections 14 and 15 discuss related work. Section 16 concludes.

2. Preliminaries

This section collects a number of definitions and notations about term rewriting. More details and missing notions can

be found in [11,58,61].

LetA be a set andR ⊆ A×A be a binary relation onA. We denote the transitive closure ofR byR+ and its reflexive and

transitive closure by R∗. We say that R is terminating (strongly normalizing) if there is no infinite sequence a1 R a2 R a3 · · · .
A reflexive and transitive relation R is a quasi-ordering.

Given relations R and R′ over the same set A, we define its composition R ◦ R′ as follows: for all a, b ∈ A, a (R ◦ R′) b if

there is c ∈ A such that a R c and c R′ b.

2.1. Signatures, terms, and positions

Throughout the paper, X denotes a countable set of variables and F denotes a signature, i.e., a set of function symbols

{f, g, . . .}, each having a fixed arity given by amapping ar : F → N. The set of terms built fromF andX is T (F,X ). Var(t)
is the set of variables occurring in a term t. A term t is ground if it contains no variable (i.e., Var(t) = ∅). A term is said to

be linear if it has no multiple occurrences of a single variable.

Terms are viewed as labelled trees in the usual way. Positions p, q, . . . are represented by chains of positive natural

numbers used to address subterms of t.We denote the empty chain by�. Given positions p, q, we denote their concatenation

as p · q. Positions are ordered by the standard prefix ordering: p � q if ∃q′ such that q = p · q′. If p is a position, and Q is a

set of positions, then p · Q = {p · q | q ∈ Q}. The set of positions of a term t is Pos(t). Positions of nonvariable symbols in t

are denoted as PosF (t), and PosX (t) are the positions of variables. The subterm at position p of t is denoted as t|p, and t[s]p
is the term t with the subterm at position p replaced by s.

We write s � t, read t is a subterm of s, if t = s|p for some p ∈ Pos(s) and s � t if s � t and s 
= t. We write s � t and

s � t for the negation of the corresponding properties. The symbol labeling the root of t is denoted as root(t). A context is a

term C ∈ T (F ∪ {�},X ) with a ‘hole’ � (a fresh constant symbol). We write C[ ]p to denote that there is a (usually single)

hole � at position p of C. Generally, we write C[ ] to denote an arbitrary context and make the position of the hole explicit

only if necessary. C[ ] = � is called the empty context.

2.2. Substitutions, renamings, and unifiers

A substitution is a mapping σ : X → T (F,X ). Denote as ε the ‘identity’ substitution: ε(x) = x for all x ∈ X . The set

Dom(σ ) = {x ∈ X | σ(x) 
= x} is called the domain of σ .
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Remark 1. We do not impose that the domain of the substitutions be finite. This is usual practice in the dependency pair

approach, where a single substitution is used to instantiate an infinite number of variables coming from renamed versions

of the dependency pairs (see below).

A renaming is an injective substitution ρ such that ρ(x) ∈ X for all x ∈ X . A substitution σ such that σ(s) = σ(t) for

two terms s, t ∈ T (F,X ) is called a unifier of s and t; we also say that s and t unify (with substitution σ ). If two terms s and

t unify, then there is a unique most general unifier σ (up to renaming of variables) such that for every other unifier τ , there
is a substitution θ such that θ ◦ σ = τ .

A relation R ⊆ T (F,X ) × T (F,X ) on terms is stable if, for all terms s, t ∈ T (F,X ) and substitutions σ , we have

σ(s) R σ(t) whenever s R t.

2.3. Rewrite systems and term rewriting

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F,X ), l 
∈ X and Var(r) ⊆ Var(l). The left-hand

side (lhs) of the rule is l, and the right-hand side (rhs) is r. A rewrite rule l → r is said to be collapsing if r ∈ X . A Term

Rewriting System (TRS) is a pair R = (F, R), where R is a set of rewrite rules. We often use ∅ to denote TRSs whose set

of rules R is empty. Given TRSs R = (F, R) and R′ = (F ′, R′), we let R ∪ R′ be the TRS (F ∪ F ′, R ∪ R′). An instance

σ(l) of a lhs l of a rule is called a redex. Given R = (F, R), we consider F as the disjoint union F = C � D of sym-

bols c ∈ C (called constructors) and symbols f ∈ D (called defined functions), where D = {root(l) | l → r ∈ R} and

C = F − D.

Example 5. Consider again the TRS in Example 1. The symbols evenNs, oddNs, incr, take, zip, tail, rep2, add, prod,
prodFrac, prodOfFracs, and halfPi are defined. Symbols s, 0, cons, consF, nil, and frac are

constructors.

We oftenwrite l → r ∈ R instead of l → r ∈ R to express that the rule l → r is a rule ofR. A term s ∈ T (F,X ) rewrites

to t (at position p), written s
p→R t (or just s →R t, or s → t), if s|p = σ(l) and t = s[σ(r)]p, for some rule l → r ∈ R,

p ∈ Pos(s) and substitution σ . We write s
>p→R t if s

q→R t for some q > p. A TRS R is terminating if its one step rewrite

relation →R is terminating.

2.4. Context-sensitive rewriting

A mapping μ : F → ℘(N) is a replacement map (or F-map) if for all symbols f ∈ F , μ(f ) ⊆ {1, . . . , ar(f )} [44]. Let

MF be the set of all F-maps (or MR for the F-maps of a TRS (F, R)). Let μ be the replacement map given by μ(f ) =
{1, . . . , ar(f )} for all f ∈ F (i.e., no replacement restrictions are specified).

A binary relation R on terms is μ-monotonic if, for all f ∈ F , i ∈ μ(f ), and s, t, t1, . . . , tk ∈ T (F,X ), f (t1, . . . , ti−1,
s, ti+1, . . . , tk) R f (t1, . . . , ti−1, t, ti+1, . . . , tk) whenever s R t. If R is μ-monotonic, we just say that R is

monotonic.

The set of μ-replacing positions Posμ(t) of t ∈ T (F,X ) is: Posμ(t) = {�} if t ∈ X , and Posμ(t) =
{�} ∪ ⋃

i∈μ(root(t)) i.Posμ(t|i) if t 
∈ X . Note that Posμ(t) (as Pos(t)) is prefix closed. When no replacement map is made

explicit, theμ-replacing positions are often called active; and the non-μ-replacing ones are often called frozen. The following

results about CSR are often used without any explicit mention.

Proposition 1 [44]. Let t ∈ T (F,X ) and p = q · q′ ∈ Pos(t). Then p ∈ Posμ(t) iff q ∈ Posμ(t) ∧ q′ ∈ Posμ(t|q).
The chain of symbols lying on positions above/on p ∈ Pos(t) is prefixt(�) = root(t), prefixt(i · p) = root(t).prefixt|i(p).

The strict prefix sprefix is sprefixt(�) = �, sprefixt(p · i) = prefixt(p), i.e., the last symbol in prefixt(p · i) is removed.

Although sprefixt(p) is a sequence, when the ordering of symbols in sprefixt(p) does not matter, we often use the standard

set-theoretic notation (e.g., inclusion as in sprefixt(p) ⊆ F) with the obvious meaning.

Proposition 2 [44]. If p ∈ Pos(t) ∩ Pos(s) and sprefixt(p) = sprefixs(p), then p ∈ Posμ(t) ⇔ p ∈ Posμ(s).

The μ-replacing subterm relation �μ is given by s �μ t if there is p ∈ Posμ(s) such that t = s|p. We write s �μ t if

s �μ t and s 
= t. We write s �
�μ

t to denote that t is a non-μ-replacing (hence strict) subterm of s: s �
�μ

t if there

is p ∈ Pos(s) − Posμ(s) such that t = s|p. The set of μ-replacing variables of a term t, i.e., variables occurring at some

μ-replacing position in t, is Varμ(t)={x∈Var(t) | t�μ x}. The set of non-μ-replacing variables of t, i.e., variables occurring

at some non-μ-replacing position in t, is Var�μ(t)={x ∈ Var(t) | t �
�μ
x}. Note that Varμ(t) and Var�μ(t) do not need to be

disjoint (when t is not linear).
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A pair (R, μ) where R is a TRS and μ ∈ MR is often called a CS-TRS. In context-sensitive rewriting, we (only) contract

μ-replacing redexes: sμ-rewrites to t,written s
p

↪→R,μ t (or s ↪→R,μ t, s ↪→μ t andeven s ↪→ t), if s
p→R t andp ∈ Posμ(s).

Example 6. ConsiderR and μ as in Example 1. Then, we have:

evenNs ↪→μ cons(0, incr(oddNs)) 
↪→μ cons(0, incr(incr(evenNs)))

Since the second argument of cons is not μ-replacing, we have 2 
∈ Posμ(cons(0, incr(oddNs))). Thus, redex oddNs
cannot be μ-rewritten.

A term t is μ-terminating (or (R, μ)-terminating, if we want an explicit reference to the involved TRS R) if there is no

infinite μ-rewrite sequence t = t1 ↪→R,μ t2 ↪→R,μ · · · ↪→R,μ tn ↪→R,μ · · · starting from t. A TRS R is μ-terminating if

↪→R,μ is terminating.

A term s μ-narrows to a term t (written s �R,μ,θ t), if there is a nonvariable μ-replacing position p ∈ PosμF (s) and a

rule l → r in R (sharing no variable with s) such that s|p and l unify with the most general unifier θ and t = θ(s[r]p). The
following definition is used in Section 10.2.

Definition 1 [26]. Let F be a signature and μ ∈ MF . The μ-replacing projection TRS Embμ(F) consists of the following

rules:

{f (x1, . . . , xk) → xi | f ∈ F, i ∈ μ(f )}

3. Minimal non-µ-terminating terms and infinite µ-rewrite sequences

Given a TRSR = (C�D, R), theminimal nonterminating terms associated toR are nonterminating terms twhose proper

subterms u (i.e., t � u) are terminating; T∞ is the set of minimal nonterminating terms associated to R [38,40]. Minimal

nonterminating terms have two important properties:

1. Every nonterminating term s contains a minimal nonterminating term t ∈ T∞ (i.e., s � t).

2. Minimal nonterminating terms t are always rooted by a defined symbol f ∈ D: ∀t ∈ T∞, root(t) ∈ D.

As discussed in [38], considering the structure of the infinite rewrite sequences starting from a minimal nonterminating

term t ∈ T∞ can be helpful to come to the notion of dependency pair [10]. Such sequences proceed as follows:

Proposition 3 [38, Lemma 1]. LetR = (C � D, R) be a TRS. For all t ∈ T∞, there exist l → r ∈ R, a substitution σ and a term

u ∈ T∞ such that root(u) ∈ D, t >�−→∗ σ(l)
�→ σ(r)� u, and there is a nonvariable subterm v of r, r � v, such that u = σ(v).

In the following, we show how to generalize these notions and results to CSR.

3.1. Minimal non-μ-terminating terms

Before starting our discussion about (minimal) non-μ-terminating terms, we provide an obvious auxiliary result about

μ-terminating terms. 2

Lemma 1. LetR = (F, R) be a TRS, μ ∈ MF , and s, t ∈ T (F,X ). If s is μ-terminating, then:

1. If s �μ t, then t is μ-terminating.

2. If s ↪→∗
R,μ t, then t is μ-terminating.

Given a TRSR = (F, R) and a replacement map μ ∈ MF , maybe the simplest extension to CSR of the notion of minimal

term for unrestricted rewriting (i.e., T∞), is the following: let T∞,μ be a set of minimal non-μ-terminating terms in the

following sense: t belongs to T∞,μ if t is non-μ-terminating and every strict subterm u (i.e., t � u) is μ-terminating. It is

obvious that root(t) ∈ D for all t ∈ T∞,μ. We also have the following:

Lemma 2. Let R = (F, R) be a TRS, μ ∈ MF , and s ∈ T (F,X ). If s is not μ-terminating, then there is a subterm t of s (s � t)

such that t ∈ T∞,μ.

2 For the sake of readability, the missing proofs of the technical results in this section have been moved to Appendix A.
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Unfortunately, there can be non-μ-terminating terms having no μ-replacing subterm in T∞,μ.

Example 7. Consider the CS-TRS (R, μ) in Example 3 and s = f(c(f(a))). Note that s is not μ-terminating, but s 
∈ T∞,μ

becausef(c(f(a)))�f(a) andf(a) is notμ-terminating. Note thatf(c(f(a)))�
�μ
f(a). The onlyμ-replacing strict subterm

of s is c(f(a)), which is μ-terminating, i.e., c(f(a)) 
∈ T∞,μ.

Therefore, minimal non-μ-terminating terms are not themost natural ones because they could occur at non-μ-replacing

positions, where no μ-rewriting step is possible. Thus, this simple notion would not lead to an appropriate generalization

of Proposition 3 to CSR. There is a suitable generalization of Proposition 3 to CSR (see Proposition 5) based on the following

notion.

Definition 2 (Minimal non-μ-terminating term). Let M∞,μ be a set of minimal non-μ-terminating terms in the follow-

ing sense: t belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing subterm t′ of t (i.e., t �μ t′) is μ-

terminating.

Note that T∞,μ ⊆ M∞,μ. In the following, we often say that terms in T∞,μ are strongly minimal non-μ-terminating; we

use them in Section 3.4. Now, we have the following:

Lemma 3. LetR = (F, R) be a TRS, μ ∈ MF , and s ∈ T (F,X ). If s is not μ-terminating, then there is a μ-replacing subterm t

of s such that t ∈ M∞,μ.

Obviously, if t ∈ M∞,μ, then root(t) is a defined symbol. Since μ-terminating terms are preserved under μ-rewriting

(Lemma 1), it follows thatM∞,μ is preserved under inner μ-rewritings in the following sense.

Lemma 4. LetR be a TRS, μ ∈ MR, and t ∈ M∞,μ. If t
>�

↪−→ ∗ u and u is non-μ-terminating, then u ∈ M∞,μ.

Lemma 4 does not hold for T∞,μ: consider the CS-TRS (R, μ) in Example 3. Note that f(a) ∈ T∞,μ and f(a)
>�

↪−→
f(c(f(a))). Although f(c(f(a))) is not μ-terminating, f(c(f(a))) 
∈ T∞,μ, as shown in Example 7.

3.2. Hidden terms in minimal μ-rewrite sequences

Given a CS-TRS (R, μ), the hidden terms are nonvariable terms occurring on some frozen position in the right-hand side

of some rule of R. As we show in the next section, they play an important role in infinite minimal μ-rewrite sequences

associated toR.

Definition 3 (Hidden symbols and terms). Let R = (F, R) be a TRS and μ ∈ MF . We say that t ∈ T (F,X ) − X is a hidden

term if there is a rule l → r ∈ R such that r �
�μ
t. Let HT (R, μ) (or just HT , if no confusion arises) be the set of all hidden

terms in (R, μ). We say that f ∈ F is a hidden symbol if it occurs in a hidden term. Let H(R, μ) (or just H) be the set of all

hidden symbols in (R, μ).

In the following, we also use DHT (R, μ) = {t ∈ HT (R, μ) | root(t) ∈ D} for the set of hidden terms which are rooted

by a defined symbol.

Example 8. For R and μ as in Example 1, the maximal hidden terms are incr(oddNs), incr(x), zip(xs, ys), and
cons(x, rep2(xs)). The hidden symbols are incr, oddNs, incr, zip, cons, and rep2. Finally, DHT (R, μ) = {oddNs,
incr(oddNs), incr(x), zip(xs, ys), rep2(xs)}.

The following lemma says that frozen subterms t in the contractum σ(r) of a redex σ(l) that do not contain t are (at least

partly) ‘introduced’ by a hidden term in the right-hand side r of the involved rule l → r.

Lemma 5. Let R = (F, R) be a TRS and μ ∈ MF . Let t ∈ T (F,X ) and σ be a substitution. If there is a rule l → r ∈ R such

that σ(l) � t and σ(r) �
�μ
t, then there is no x ∈ Var(r) such that σ(x) � t. Furthermore, there is a term t′ ∈ HT such that

r �
�μ
t′ and σ(t′) = t.

The following lemma establishes that minimal non-μ-terminating and non-μ-replacing subterms that occur in a μ-

rewrite sequence involving only minimal terms come directly from the first term in the sequence or are instances of a

hidden term.
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Lemma 6. Let R be a TRS and μ ∈ MR. Let A be a μ-rewrite sequence t1 ↪→ t2 ↪→ · · · ↪→ tn with ti ∈ M∞,μ for all i,

1 � i � n. If there is a term t ∈ M∞,μ such that t1 � t and tn �
�μ

t, then t = σ(s) for some s ∈ DHT and substitu-

tion σ .

Weuse theprevious results to investigate infinite sequences that combineμ-rewriting steps onminimalnon-μ-terminat-

ing terms and the extraction of such subterms as μ-replacing subterms of (instances of) right-hand sides of the

rules.

Proposition 4. Let R be a TRS and μ ∈ MR. Consider a finite or infinite sequence of the form t1
�

↪→ s1 �μ t′2
>�

↪−→ ∗ t2
�

↪→
s2 �μ t′3

>�

↪−→ ∗ t3 · · · with ti, t
′
i ∈ M∞,μ for all i ≥ 1. If there is a term t ∈ M∞,μ such that ti ��μ

t for some i ≥ 1, then

t1 �
�μ
t or t = σ(s) for some s ∈ DHT and substitution σ .

3.3. Infinite μ-rewrite sequences starting from minimal terms

The following proposition establishes that, given a minimal non-μ-terminating term t ∈ M∞,μ, there are only two

ways for an infinite μ-rewrite sequence to proceed. The first one is by using ‘visible’ parts of the rules that correspond

to μ-replacing nonvariable subterms in the right-hand sides that are rooted by a defined symbol. The second one is by

showing up ‘hidden’ non-μ-terminating subterms that are activated by migrating variables in a rule l → r, i.e., variables

x ∈ Varμ(r) − Varμ(l) that are not μ-replacing in the left-hand side l but become μ-replacing in the right-hand side r.

Proposition 5. Let R be a TRS and μ ∈ MR. Then, for all t ∈ M∞,μ, there exist l → r ∈ R, a substitution σ , and a term

u ∈ M∞,μ such that t
>�

↪−→ ∗ σ(l)
�

↪→ σ(r) �μ u and either

1. there is a nonvariable μ-replacing subterm s of r, r �μ s, such that u = σ(s), or
2. there is x ∈ Varμ(r) − Varμ(l) such that σ(x) �μ u.

Proof. Consider an infinite μ-rewrite sequence starting from t. By definition of M∞,μ, all proper μ-replacing subterms

of t are μ-terminating. Therefore, t has an inner reduction to an instance σ(l) of the left-hand side of a rule l → r of R:

t
>�

↪−→ ∗ σ(l)
�

↪→ σ(r) and σ(r) is not μ-terminating. Thus, we can write t = f (t1, . . . , tk) and σ(l) = f (l1, . . . , lk) for
some k-ary defined symbol f , and ti ↪→∗ σ(li) for all i, 1 � i � k. Since all ti are μ-terminating for i ∈ μ(f ), by Lemma

1, σ(li) and all its μ-replacing subterms are also μ-terminating. In particular, σ(y) is μ-terminating for all μ-replacing

variables y in l: y ∈ Varμ(l). Since σ(r) is non-μ-terminating, by Lemma 3, it contains a μ-replacing subterm u ∈ M∞,μ:

σ(r) �μ u, i.e., there is a position p ∈ Posμ(σ (r)) such that σ(r)|p = u. We consider two cases:

1. If p ∈ PosF (r) is a nonvariable position of r, then there is a μ-replacing nonvariable subterm s of r (i.e., p ∈ PosμF (r)
and s = r|p /∈ X ), such that u = σ(s).

2. If p 
∈ PosF (r), then there is aμ-replacing variable position q ∈ Posμ(r) ∩PosX (r) such that q � p. Let x ∈ Varμ(r)
be such that r|q = x. Then,σ(x)�μu, andσ(x) is notμ-terminating: sinceu ∈ M∞,μ is notμ-terminating, by Lemma

1,σ(x) is notμ-terminating. Sinceσ(y) isμ-terminating for all y ∈ Varμ(l), we conclude that x ∈ Varμ(r)−Varμ(l).
�

Proposition 5 entails the following result, which establishes some properties of infinite sequences starting from minimal

non-μ-terminating terms.

Corollary 1. LetR be a TRS and μ ∈ MR. For all t ∈ M∞,μ, there is an infinite sequence

t
>�

↪−→ ∗ σ1(l1)
�

↪→ σ1(r1) �μ t1
>�

↪−→ ∗ σ2(l2)
�

↪→ σ2(r2) �μ t2
>�

↪−→ ∗ · · ·

where, for all i � 1, li → ri ∈ R are rewrite rules, σi are substitutions, and terms ti ∈ M∞,μ are minimal non-μ-terminating

terms such that either

1. ti = σi(si) for some nonvariable subterm si such that ri �μ si, or

2. σi(xi) �μ ti for some xi ∈ Varμ(ri) − Varμ(li).

Remark 2. The (↪→μ ∪ �μ)-sequence in Corollary 1 can be easily viewed as an infinite μ-rewrite sequence by just

introducing appropriate contexts Ci[ ]pi with μ-replacing holes: since σi(ri) �μ ti, there is pi ∈ Posμ(σi(ri)) such that

σi(ri) = σi(ri)[ti]pi ; just take Ci[ ]pi = σ(ri)[�]pi . Hence:
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t ↪→∗ σ1(l1) ↪→ C1[t1]p1 ↪→∗ C1[σ2(l2)]p1 ↪→ C1[C2[t2]p2 ]p1 ↪→∗ · · ·
Note that, e.g., p1 · p2 ∈ Posμ(C1[C2[t2]p2 ]p1) (use Proposition 1).

3.4. Infinite μ-rewrite sequences starting from strongly minimal terms

In the following, we consider a function Renμ which independently renames all occurrences of μ-replacing variables

within a term t by using new fresh variables that are not in Var(t):

• Renμ(x) = y if x is a variable, where y is intended to be a fresh new variable that has not yet been used;

• Renμ(f (t1, . . . , tk)) = f ([t1]f1, . . . , [tk]fk) for evey k-ary symbol f , where given a term s ∈ T (F,X ), [s]fi = Renμ(s) if

i ∈ μ(f ) and [s]fi = s if i 
∈ μ(f ).

Note that Renμ(t) keeps variables at non-μ-replacing positions untouched. Note also that Renμ is not a substitution:

it replaces the n(x) different μ-replacing occurrences of the same variable x by different variables x1, . . . , xn(x). Clearly,
t = θ(Renμ(t)) for some substitution θ which just identifies the variables introduced by Renμ (i.e., θ(xi) = x for all

1 � i � n(x)). The use of Renμ together with μ-narrowability yields a necessary condition for reducibility of terms under

some instantiations which is used in our development.

Proposition 6. Let R = (F, R) be a TRS and μ ∈ MF . Let t ∈ T (F,X ) − X be a nonvariable term and σ be a substitution. If

σ(t)
>�

↪−→ ∗ σ(l) for some (possibly renamed) rule l → r ∈ R, then Renμ(t) is μ-narrowable.

Proof. We can write the sequence from σ(t) to σ(l) as follows: σ(t) = t1
>�

↪−→ t2
>�

↪−→ · · · >�
↪−→ tm = σ(l) for some

m � 1. We proceed by induction on m.

1. If m = 1, then σ(t) = σ(l). Since t 
∈ X , t is μ-narrowable (at the root position) using the rule l → r. Since

t = θ(Renμ(t)) for some substitution θ , we have σ(t) = σ(θ(Renμ(t))) = σ(l). Since we can assume that the new

variables instantiated by θ are not in l, we have σ(θ(l)) = σ(l). Thus, Renμ(t) and l unify with mgu σ ◦ θ . Since
t /∈ X , implies that Renμ(t) /∈ X , Renμ(t) is μ-narrowable at the root position using the same rule l → r.

2. If m > 1, then we have t1
>�

↪−→ t2
>�

↪−→ ∗ σ(l). We consider two cases according to the position p ∈ Posμ(t1) where

the μ-rewrite step t1
>�

↪−→ t2 is performed (note that t1 = σ(t) by assumption).

(a) If p ∈ PosμF (t), then there is a rule l′ → r′ and a substitution θ such that σ(t)|p = σ(t|p) = θ(l′). Again, we

have σ(t|p) = σ(l′), i.e., t isμ-narrowable at position p using rule l′ → r′ and (reasoning as above), we conclude

that Renμ(t) is μ-narrowable.

(b) If p 
∈ PosμF (t), then there is a μ-replacing variable position q ∈ PosμX (t) of t such that t|q = x ∈ Varμ(t), q � p

and σ(x) ↪→μ t2|q. Therefore, t1 = σ(t[x]q) = σ(t)[σ(x)]q and t2 = σ(t)[t2|q]q = σ ′(t′) for a term t′ = t[y]q
where y is a new fresh variable y 
∈ Var(t) and a substitution σ ′ given by σ ′(y) = t2|q and σ ′(z) = σ(z) for all
z ∈ Var(t) (including x). Clearly,

σ ′(t′) = σ ′(t[y]q) = σ ′(t)[σ ′(y)]q = σ(t)[t2|q]q = t2.

By the inductionhypothesis,Renμ(t′) isμ-narrowable. Since t and t′ only differ in a single variable,we can assume

that Renμ(t′) = Renμ(t). Thus, we conclude that Renμ(t) is μ-narrowable as well. �

Corollary 2. Let R = (F, R) be a TRS and μ ∈ MF . Let t ∈ T (F,X ) − X be a nonvariable term and σ be a substitution such

that σ(t) ∈ M∞,μ. Then, Ren
μ(t) is μ-narrowable.

Proof. By Proposition 5, there is a rule l → r and a substitution σ such that σ(t)
>�

↪−→ ∗
R,μ σ (l) (since we can assume

that variables in l and variables in t are disjoint, we can apply the same substitution σ to t and l without any problem). By

Proposition 6, the conclusion follows. �

In the following, we writeNarr
μ
R(t) (or justNarrμ(t)) to indicate that t isμ-narrowable with respect to the (intended) TRS

R. We also let

NHT (R, μ) =
{
t ∈ DHT (R, μ) | Narrμ

R(Renμ(t))
}

be the set of hidden terms that are rooted by a defined symbol, and that after applying Renμ become μ-narrowable.
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Example 9. Since all terms t ∈ DHT (R, μ) forR and μ as in Example 8 are μ-narrowable (even without applying Renμ),

we have NHT (R, μ) = DHT (R, μ).

As a consequence of the previous results, we have the following main result, which we use later.

Theorem 1. LetR be a TRS and μ ∈ MR. For all t ∈ T∞,μ, there is an infinite sequence

t = t0
>�

↪−→ ∗ σ1(l1)
�

↪→ σ1(r1) �μ t1
>�

↪−→ ∗ σ2(l2)
�

↪→ σ2(r2) �μ t2
>�

↪−→ ∗ · · ·
where, for all i � 1, li → ri ∈ R are rewrite rules, σi are substitutions, and terms ti ∈ M∞,μ are minimal non-μ-terminating

terms such that either

1. ti = σi(si) for some nonvariable term si such that ri �μ si, or

2. σi(xi) �μ ti for some xi ∈ Varμ(ri) − Varμ(li) and ti = θi(t
′
i ) for some t′i ∈ NHT and substitution θi .

Proof. Since T∞,μ ⊆ M∞,μ, by Corollary 1, we have a sequence

t = t0
>�

↪−→ ∗ σ1(l1)
�

↪→ σ1(r1) �μ t1
>�

↪−→ ∗ σ2(l2)
�

↪→ σ2(r2) �μ t2
>�

↪−→ ∗ · · ·
where, for all i � 1, li → ri ∈ R, σi are substitutions, ti ∈ M∞,μ, and either (1) ti = σi(si) for some nonvariable term si
such that ri �μ si or (2) σi(xi) �μ ti for some xi ∈ Varμ(ri) − Varμ(li) (and hence σ(li) �

�μ
ti and σ(ri) �μ ti as well). We

only need to prove that terms ti are instances of hidden terms in NHT whenever (2) holds. By Proposition 4, for all such

terms ti, we have that either (A) σ1(l1) �
�μ
ti or (B) ti = θi(t

′
i ) for some t′i ∈ DHT and substitution θi. In case (B), we just

consider Corollary 2, which ensures that t′i ∈ NHT . In case (A), since t
>�

↪−→ ∗ σ1(l1) and σ1(l1) is not μ-terminating, by

Lemma 4, all terms uj in the μ-rewrite sequence

t = u1
>�

↪−→ u2
>�

↪−→ · · · >�
↪−→ um = σ1(l1)

belong toM∞,μ: uj ∈ M∞,μ for all j, 1 � j � m. Since t ∈ T∞,μ, all its strict subterms (disregarding their μ-replacing

character) are μ-terminating. Since ti is not μ-terminating, t � ti. By Lemma 6, ti = θi(t
′
i ) for some t′i ∈ DHT and

substitution θi. By Corollary 2, t′i ∈ NHT . �

4. Context-sensitive dependency pairs

By Lemma 2 every non-μ-terminating term s0 contains a strongly minimal subterm t ∈ T∞,μ which, by Theorem 1,

starts an infinite μ-rewrite sequence. In such a sequence, a number of μ-rewriting steps below the root of t are performed.

Then a rule l → r is applied at the topmost position of the obtained reduct. According to Proposition 5, the application of

such a rule either

1. introduces a newminimal non-μ-terminating subterm u having a prefix swhich is a nonvariableμ-replacing subterm

of r. By Corollary 2, Renμ(s) is μ-narrowable. Otherwise,

2. takes a minimal non-μ-terminating and non-μ-replacing subterm u and

(a) brings it up to an active position by means of the binding σ(x) for somemigrating variable x in l → r.

(b) At this point, we know that u, which is rooted by a defined symbol due to u ∈ M∞,μ, is an instance of a hidden

term u′ ∈ NHT .

Afterwards, further inner μ-rewritings on u lead to amatchingwith the left-hand-side l′ of a new rule l′ → r′ and everything

starts again. This process is abstracted in the definition of context-sensitive dependency pairs and in the definition of chain

below.

Given a signature F and f ∈ F , we let f � be a new fresh symbol (often called tuple symbol or DP-symbol) associated to

a symbol f [10]. Let F� be the set of tuple symbols associated to symbols in F . As usual, for t = f (t1, . . . , tk) ∈ T (F,X ),
wewrite t� to denote themarked term f �(t1, . . . , tk). Conversely, given amarked term t = f �(t1, . . . , tk), where t1, . . . , tk ∈
T (F,X ), we write t� to denote the term f (t1, . . . , tk) ∈ T (F,X ).

Definition 4 (Context-sensitive dependency pairs). Let R = (F, R) = (C � D, R) be a TRS and μ ∈ MF . Let DP(R, μ) =
DPF (R, μ) ∪ DPX (R, μ) be the set of context-sensitive dependency pairs (CSDPs) where:
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DPF (R, μ) =
{
l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l �μ s,Narrμ(Renμ(s))

}

DPX (R, μ) =
{
l� → x | l → r ∈ R, x ∈ Varμ(r) − Varμ(l)

}

We extend μ ∈ MF into μ� ∈ MF∪D� by μ�(f ) = μ(f ) if f ∈ F , and μ�(f �) = μ(f ) if f ∈ D.

The CSDPs u → v ∈ DPX (R, μ) in Definition 4, consisting of collapsing rules only, are called the collapsing CSDPs.

Remark 3. The notion of CSDP in Definition 4 differs from the standard definition of dependency pair [10,35] in two

additional requirements:

1. As in [38], which follows Dershowitz’s proposal in [15], we require that subterms s of the right-hand sides r of the

rules l → r which are considered to build the dependency pairs l� → s� are not subterms of the left-hand side (i.e.,

l �μ s).

2. As in [53], we require μ-narrowability of Renμ(s): Narrμ(Renμ(s)).

But the crucial difference, which is specific for context-sensitive rewriting, is the introduction and use of collapsing

dependency pairs.

A rule l → r of a TRS R is μ-conservative if Varμ(r) ⊆ Varμ(l), i.e., there is no migrating variable; R is μ-conservative

if all its rules are μ-conservative (see [43,50]). The following fact is obvious from Definition 4.

Proposition 7. IfR is a μ-conservative TRS, then DP(R, μ) = DPF (R, μ).

Therefore, in order to deal with μ-conservative TRSs R we only need to consider the ‘classical’ dependency pairs in

DPF (R, μ).

Fig. 4. Context-sensitive dependency pairs for the CS-TRS in Example 1.
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Example 10. Consider the following TRSR:

g(x) → h(x)

c→ d

h(d) → g(c)

together with μ(g) = μ(h) = ∅ [63, Example 1]. Note that R is μ-conservative. DP(R, μ) consists of the following

(noncollapsing) CSDPs:

G(x) → H(x) H(d) → G(c)

with μ�(G) = μ�(H) = ∅.

If the TRS R contains non-μ-conservative rules, then we also need to consider dependency pairs with variables in the

right-hand side.

Example 11. As discussed in Examples 2 and 4, for the CS-TRS (R, μ) in Example 1, we have the CSDPs in Fig. 4.

5. Chains of CSDPs

An essential property of the dependency pair method is that it provides a characterization of termination of TRSsR as the

absence of infinite (minimal) chains of dependency pairs [10,35]. Aswe prove in Section 6, this is also true for CSRwhen CSDPs

are considered. First, we have to introduce a suitable notion of chain that can be used with CSDPs. As in the DP-framework

[33,35], where the origin of pairs does not matter, we use another TRS P together withR to build the chains. Once this more

abstract notion of chain is introduced, it can be particularized to be used with CSDPs, by just taking P = DP(R, μ).

Definition 5 (Chain of pairs – minimal chain). LetR = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G . A (P,R, μ)-chain is

a finite or infinite sequence of pairs ui → vi ∈ P , together with a substitution σ : X → T (F ∪ G,X ) satisfying that, for all

i � 1:

1. if vi 
∈ Var(ui) − Varμ(ui), then σ(vi) ↪→∗
R,μ σ (ui+1), and

2. if vi ∈ Var(ui)−Varμ(ui), then σ(vi) = Ci[si]pi for some si and Ci[ ]pi such that pi ∈ Posμ(Ci[ ]pi), sprefixCi[ ]pi (pi) ⊆
F , and s

�
i ↪→∗

R,μ σ (ui+1).

As usual, we assume that different occurrences of pairs do not share any variable (renaming substitutions are used if

necessary). A (P,R, μ)-chain is called minimal if for all i � 1,

1. if vi 
∈ Var(ui) − Varμ(ui), then σ(vi) is (R, μ)-terminating, and

2. if vi ∈ Var(ui) − Varμ(ui), then s
�
i is (R, μ)-terminating and ∃s̄i ∈ NHT (R, μ) such that si = σ(s̄i).

Note that the condition vi ∈ Var(ui)−Varμ(ui) in Definition 5 implies that vi is a variable. Furthermore, vi is amigrating

variable in the rule ui → vi.

Remark 4 (Conventions about P). The following conventions about the componentP = (G, P)of our chainswill be observed

during our development:

1. According to the usual terminology [35], we often call pairs the rules u → v ∈ P .
2. We have to mark terms si ∈ T (F,X ) before connecting them to the instance σ(ui+1) of the left-hand side of the next

pair. Sincemarked symbols f � are fresh (with respect to the signatureF of the TRSR), we also assume thatD�∩F = ∅
and D� ⊆ G.

3. We assume that P contains a finite set of rules. This is essential in many proofs.

In the following, the pairs in a CS-TRS (P, μ), where P = (G, P), are partitioned according to their role in Definition 5 as

follows:

PX = {
u → v ∈ P | v ∈ Var(u) − Varμ(u)

}
and PG = P − PX

Remark 5 (Collapsing pairs). Note that all pairs in PX = (G, PX ) are collapsing. The rules in PG = (G, PG) can be collapsing

as well: a rewrite rule f (x) → x ∈ P with μ(f ) = {1} does not belong to PX but rather to PG because x is not a migrating

variable.
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Despite this fact, we refer to PX as the set of collapsing pairs in P because its intended role in Definition 5 is capturing

the computational behavior of collapsing CSDPs in DPX (R, μ).

Remark 6 (Notation for chains). In general, a (P,R, μ)-chain can be written as follows:

σ(u1) ↪→P,μ ◦ ��
μ t1 ↪→∗

R,μ σ (u2) ↪→P,μ ◦ ��
μ t2 ↪→∗

R,μ · · ·
where, for all i � 1 and ui → vi ∈ P ,

1. if ui → vi 
∈ PX , then ti = σ(vi),

2. if ui → vi ∈ PX , then ti = s
�
i for some term si such that σ(vi) = Ci[si]pi for some Ci[ ]pi such that pi ∈ Posμ(Ci[ ]pi),

and sprefixCi[ ]pi (pi) ⊆ F .

This is denoted in a compact way by σ(ui) ↪→P,μ ◦ ��
μ ti emphasizing that there is a P-step followed by either an equality

step (as in (1)) or byμ-replacing projection steps (restricted to symbols inF) plus amarking operation (as in (2)) depending
on the considered pair ui → vi.

5.1. Properties of some particular chains

In the following, we let NHT P(R, μ) ⊆ NHT (R, μ) (or just NHT P ) be as follows:

NHT P(R, μ) =
{
t ∈ NHT (R, μ) | ∃u → v ∈ P, ∃θ, θ ′, θ(t�) ↪→∗

R,μ θ ′(u)
}

This set contains the narrowable hidden terms that ‘connect’ with pairs in P .

Remark 7. Note that NHT P(R, μ) is not computable, in general, due to the need for checking the reachability of θ ′(u)
from θ(t�) using CSR. Suitable (over)approximations are discussed below (see Remark 10).

We let P1
X denote the subTRS ofPX containing the rules whosemigrating variables occur on non-μ-replacing immediate

subterms in the left-hand side:

P1
X = {f (u1, . . . , uk) → x ∈ PX | ∃i, 1 � i � k, i 
∈ μ(f ), x ∈ Var(ui)}

Proposition 8. LetR = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G .

1. IfNHT P = ∅, then every infiniteminimal (P,R, μ)-chain is an infiniteminimal (PG,R, μ)-chain and there is no infinite

minimal (PX ,R, μ)-chain.
2. If P = P1

X , then there is no infinite (P,R, μ)-chain.

Proof.

1. By contradiction. Assume that there is an infiniteminimal (P,R, μ)-chain containing anyui → vi ∈ PX . ByDefinition
5, such a pair must be followed by a pair ui+1 → vi+1 ∈ P such that θi(s̄

�
i ) ↪→∗

R,μ σ (ui+1) for some s̄i ∈ NHT and

substitution θi. Therefore, t
′
i ∈ NHT P , but NHT P = ∅, leading to a contradiction.

2. By contradiction. Assume that there is an infinite chain that only uses dependency pairs ui → xi ∈ P1
X for all i � 1.

Let fi = root(ui) for i � 1. Then, by definition of P1
X , for all i � 1, there is ji ∈ {1, . . . , ar(fi)} − μ(fi) such that

ui|ji � xi. According to Definition 5, we have that σ(ui)|ji � σ(xi) �μ si for some term si such that s
�
i ↪→∗

R,μ σ (ui+1).

Since root(s
�
i ) ∈ D� ⊆ G and D� ∩ F = ∅ (Remark 4), no μ-rewriting step is possible at the root of s

�
i . Thus,

root(s
�
i ) = root(ui+1) = fi+1 and ji+1 
∈ μ(fi+1). Since no μ-rewriting step is possible on the ji+1th immediate

subterm s
�
i |ji+1

of s
�
i , it follows that s

�
i |ji+1

= σ(ui+1)|ji+1
� σ(xi+1), i.e., σ(xi) � σ(xi+1) for all i � 1. We get an

infinite sequence σ(x1) � σ(x2) � · · · which contradicts well-foundedness of �. �

The following proposition establishes some important ‘basic’ cases of (absence of) infinite context-sensitive chains of pairs

which are used later.

Proposition 9. LetR = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G .

1. If P = ∅, then every (P,R, μ)-chain is empty.
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2. If R = ∅, then there is no infinite (PX ,R, μ)-chain.
3. Let u → v ∈ PG be such that v = θ(u). Then, there is an infinite (P,R, μ)-chain.

Proof.

1. Obvious, by Definition 5.

2. By contradiction. If there is an infinite (PX ,R, μ)-chain, then, since there is no rule in R, there is a substitution σ
such that

σ(u1) ↪→P,μ σ (x1) ��
μ t1 = σ(u2) ↪→P,μ σ (x2) ��

μ t2 = σ(u3) · · ·

where ti = s
�
i for some terms si ∈ T (F,X ) such that σ(xi) = Ci[si]pi for some Ci[ ]pi and pi ∈ Posμ(Ci[ ]pi) such

that sprefix(pi) ⊆ F for i � 1. Since xi ∈ Var(ui) and ui is not a variable, we have ui � xi; hence, σ(ui) � σ(xi) (by
stability of �) and also σ(ui) � si for all i � 1. Since si and σ(ui+1) only differ in the root symbol, we can actually say

that si � si+1 for all i � 1. Thus, we obtain an infinite sequence s1 � s2 � · · · that contradicts the well-foundedness

of �.

3. Trivial. �

The following example shows that Proposition 9(2) does not hold for TRSs P with arbitrary rules.

Example 12. Consider P = {F(x) → x, G(x) → F(g(x))} together with a TRSRwith an emtpy set of rules:R = ({g}, ∅).
Letμbegivenbyμ(f ) = ∅ for all f ∈ F∪G. Note thatPX consists of thepairF(x) → x because x ∈ Var(F(x))−Varμ(F(x)).
Then, we have an infinite chain

F(g(x)) ↪→P,μ g(x) ��
μ G(x) ↪→P,μ F(g(x)) ↪→R,μ · · ·

Since NHT = ∅, g(x) is not an instance of any term in NHT . Thus, the chain is not minimal.

5.2. Chains of CSDPs vs. chains of DPs

The definition of chain of CSDPs differs from the one for DPs. First, we use ↪→∗ instead of →∗ for connecting pairs. Also,

we require μ-termination instead of termination for minimal chains. However, the most important difference concerns the

treatment of collapsingpairs. In general (and in sharp contrastwith theDPapproach), the connectionbetween the right-hand

side of a collapsing pair (which is a variable, e.g., x) and the left-hand side u of the next pair in the chain depends onwhether

a marked narrowable hidden term (which is introduced by a previous μ-rewriting step) μ-rewrites into σ(u). Dealing with

collapsing pairs, hidden terms can be thought of as playing the role of hidden or delayed recursive paths. This fits the guiding

idea of the DP approach as an analysis of rewriting-based recursion paths in function calls (as briefly discussed in Section 1).

6. Characterizing termination of CSR using chains of CSDPs

The following result establishes the soundness of the CSDP approach.

Theorem 2 (Soundness). Let R be a TRS and μ ∈ MR. Then, R is μ-terminating if there is no infinite minimal (DP(R, μ),

R, μ�)-chain.

Proof. By contradiction. If R is not μ-terminating, then there is t ∈ T∞,μ (Lemma 2). By Theorem 1, there are rules

li → ri ∈ R, substitutions σi, and terms ti ∈ M∞,μ, for i � 1 such that

t = t0
>�

↪−→ ∗ σ1(l1)
�

↪→ σ1(r1) �μ t1
>�

↪−→ ∗ σ2(l2)
�

↪→ σ2(r2) �μ t2
>�

↪−→ ∗ · · ·
where either (D1) ti = σi(si) for some si such that ri �μ si or (D2) σi(xi) �μ ti for some xi ∈ Varμ(ri) − Varμ(li) and

ti = θi(t
′
i ) for some t′i ∈ NHT . Furthermore, since ti−1

>�

↪−→ ∗ σi(li) and ti−1 ∈ M∞,μ (in particular, t0 = t ∈ T∞,μ ⊆
M∞,μ), by Lemma 4, σi(li) ∈ M∞,μ for all i � 1. Note that, since ti ∈ M∞,μ, we have that t

�
i is μ-terminating (with

respect to R), because all μ-replacing subterms of ti (hence of t
�
i as well) are μ-terminating and root(t

�
i ) is not a defined

symbol ofR.

First, note that DP(R, μ) is a TRS P over the signature G = F ∪ D� and μ� ∈ MF∪G as required by Definition 5.

Furthermore, PG = DPF (R, μ) and PX = DPX (R, μ). We can define an infinite minimal (DP(R, μ),R, μ�)-chain using

CSDPs ui → vi for i � 1, where ui = l
�
i and
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1. vi = s
�
i if (D1) holds. Since ti ∈ M∞,μ, we have that root(si) ∈ D and, because ti = σi(si), by Corollary 2, Renμ(si)

is μ-narrowable. Furthermore, if we assume that si is a μ-replacing subterm of li (i.e., li �μ si), then σi(li) �μ σi(si).
Since σi(si) = ti ∈ M∞,μ, this contradicts that σi(li) ∈ M∞,μ. Thus, li �μ si. Hence, ui → vi ∈ DPF (R, μ).

Furthermore, t
�
i = σi(vi) is μ-terminating. Finally, since ti = σi(si)

>�

↪−→ ∗ σi+1(li+1) and μ� extends μ to F ∪ D� by

μ�(f �) = μ(f ) for all f ∈ D, we also have that σi(vi) = σi(s
�
i ) ↪→∗

R,μ� σi+1(ui+1).

2. vi = xi if (D2) holds. Clearly, ui → vi ∈ DPX (R, μ). As discussed above, t
�
i is μ-terminating. Since σi(xi) ∈ T (F,X )

and σi(xi) �μ ti, we have that σ(vi) = Ci[ti]pi for some Ci[ ]pi and pi ∈ Posμ(Ci[ ]pi) such that sprefixCi[ ]pi (pi) ⊆ F .

Finally, since ti
>�

↪−→ ∗ σi+1(li+1), again we have that t
�
i ↪→∗

R,μ� σi+1(ui+1). Furthermore, ti = θi(t
′
i ) for some t′i ∈

NHT and substitution θi.

Regarding σ , w.l.o.g. we can assume that Var(li) ∩ Var(lj) = ∅ for all i 
= j, and therefore Var(ui) ∩ Var(uj) = ∅ as well.

Then, σ is given by σ(x) = σi(x) whenever x ∈ Var(ui) for i � 1. From the discussion in (1) and (2), we conclude that the

CSDPs ui → vi together with σ define an infinite minimal (DP(R, μ),R, μ�)-chain. This leads to a contradiction. �

Let DP1
X (R, μ) = P1

X for P = DP(R, μ). By Theorem 2 and Propositions 8 and 9, we have the following.

Corollary 3 (Basic μ-termination criteria). LetR be a TRS and μ ∈ MR.

1. If DP(R, μ) = ∅, thenR is μ-terminating.

2. If NHT DP(R,μ)(R, μ) = ∅ and DPF (R, μ) = ∅, thenR is μ-terminating.

3. If DP(R, μ) = DP1
X (R, μ), thenR is μ-terminating.

Example 13. Consider the following TRSR [44, Example 15]:

and(true, x) → x

and(false, y) → false

if(true, x, y) → x

if(false, x, y) → y

first(s(x), cons(y, z)) → cons(y, first(x, z))

add(0, x) → x

add(s(x), y) → s(add(x, y))

from(x) → cons(x, from(s(x)))

first(0, x) → nil

together with the canonical replacement mapμ(cons) = μ(s) = μ(from) = ∅,μ(add) = μ(and) = μ(if) = {1}, and
μ(first) = {1, 2}, which ensures completeness of CSR for computing head-normal forms3 with R (see [44,46]). Then,

DP(R, μ) = DP1
X (R, μ) is:

AND(true, x) → x

ADD(0, x) → x

IF(true, x, y) → x

IF(false, x, y) → y

Note also thatNHT DP(R,μ) = ∅. Thus, by either of the last two statements of Corollary 3, we conclude the μ-termination

ofR.

The following example shows that Corollary 3(3) does not hold for chains consisting of arbitrary collapsing CSDPs.

Example 14. Consider the CS-TRS (R, μ) in Example 3. Note that DP(R, μ) = DPX (R, μ) (both DPF (R, μ) and

DP1
X (R, μ) are empty!). We have the following infinite (DP(R, μ),R, μ�)-chain:

F(a) ↪→R,μ� F(c(f(a))) ↪→DP(R,μ),μ� F(a) ↪→R,μ� · · ·
Now, we prove that the previous CS-dependency pair approach is not only correct but also complete for proving termi-

nation of CSR.

Theorem 3 (Completeness). Let R be a TRS and μ ∈ MR. If R is μ-terminating, then there is no infinite (DP(R, μ),R, μ�)-
chain.

3 A head-normal form is a term that cannot be rewritten to a redex.
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Proof. By contradiction. If there is an infinite (DP(R, μ),R, μ�)-chain, then there are a substitution σ and dependency

pairs ui → vi ∈ DP(R, μ) such that

1. σ(vi) ↪→∗
R,μ� σ (ui+1), if ui → vi ∈ DPF (R, μ), and

2. if ui → vi = ui → xi ∈ DPX (R, μ), then there is si ∈ T (F,X ) such that σ(xi) �μ si and s
�
i ↪→∗

R,μ� σ (ui+1).

for i � 1. Now, consider the first dependency pair u1 → v1 in the sequence:

1. If u1 → v1 ∈ DPF (R, μ), then v
�
1 is a μ-replacing subterm of the right-hand-side r1 of a rule l1 → r1 in R.

Therefore, r1 = C1[v�
1]p1 for some position p1 ∈ Posμ(r1) and context C1[ ]p1 , and we can perform the μ-rewriting

step t1 = σ(u1) ↪→R,μ σ (r1) = σ(C1)[σ(v
�
1)]p1 = s1, where σ(v

�
1)

� = σ(v1) ↪→∗
R,μ� σ (u2) and σ(u2) initiates

an infinite (DP(R, μ),R, μ�)-chain. Note that p1 ∈ Posμ(s1).

2. If u1 → x ∈ DPX (R, μ), then there is a rule l1 → r1 inR such that u1 = l
�
1, and x ∈ Varμ(r1) − Varμ(l1), i.e., r1 =

C1[x]q1 for some q1 ∈ Posμ(r1). Furthermore, since σ(x) = C′
1[s]p′

1
for some term s, C′

1[ ]p′
1
and p′

1 ∈ Posμ(C′
1[ ]p′

1
)

such that s� ↪→∗
R,μ� σ (u2), we can perform the μ-rewriting step t1 = σ(l1) ↪→R,μ σ (r1) = σ(C1)[C′

1[s]p′
1
]q1 = s1

where s� ↪→∗
R,μ� σ (u2) (hence s

>�
↪−→ ∗

R,μ u
�
2) and σ(u2) initiates an infinite (DP(R, μ),R, μ�)-chain. Note that

p1 = q1 · p′
1 ∈ Posμ(s1) (use Proposition 1).

Since μ�(f �) = μ(f ), and p1 ∈ Posμ(s1), we have that s1 ↪→∗
R,μ t2[σ(u2)]p1 = t2 and p1 ∈ Posμ(t2). Thus, we can build

an infinite μ-rewrite sequence t1 ↪→R,μ s1 ↪→∗
R,μ t2 ↪→R,μ · · · which contradicts the μ-termination ofR. �

Proposition 9(3) suggests a simple checking of non-μ-termination.

Corollary 4 (Non-μ-termination criterion). LetR = (F, R) be a TRS and μ ∈ MF . If there is u → v ∈ DPF (R, μ) such that

v′ = θ(u) for some substitution θ and renamed version v′ of v, thenR is not μ-terminating.

As a corollary of Theorems 2 and 3, we have:

Corollary 5 (Characterization of μ-termination). LetR be a TRS and μ ∈ MR. Then,R is μ-terminating if and only if there is

no infinite minimal (DP(R, μ),R, μ�)-chain.

7. Mechanizing proofs of µ-termination using CSDPs

Over the last 10 years, the dependency pair method has evolved to a powerful technique for proving termination of

TRSs in practice. In the DP-approach [10], the starting point is a TRS R from which a set of dependency pairs DP(R) is

obtained. Then, these dependency pairs are organized in a dependency graph DG(R) whose nodes are the pairs in DP(R)
and where the arcs are obtained by investigating possible rewriting connections between (instances of) the right-hand sides

of the pairs and (instances of) the left-hand sides of other (not necessarily distinct) pairs. The cycles of the graph are analyzed

to show that no infinite chains of DPs can be obtained from them [25]. In this sense, the treatment of strongly connected

components of the graph (SCCs) instead of cycles [38,39] brought an important improvement to the practical use of this

approach.

In the DP-approach, the components ui → vi of the chains (or cycles) are dependency pairs, i.e., ui → vi ∈ DP(R) for all
i � 1. Since they only make sense when an underlying TRS R is given as the source of the dependency pairs, transforming

DPs is possible (the narrowing transformation is already described in [10]) but only as a final step because, afterwards,

they are no longer dependency pairs of the original TRS. The dependency pair framework [33,35] solves this problem in a

clear way, leading to a more powerful mechanization of termination proofs. The central notion now is that of DP problem

[35, p. 158]: given a TRS R and a set of pairs P , the goal is to verify the absence of infinite (minimal) chains. In this case,

the DP problem is called finite. Termination of a TRS R is addressed as a DP problem4 (P,R) where P = DP(R): R is

terminating if this problem is finite. The most important notion regarding the mechanization of the proofs is the notion of

processor. Formally, a DP processor is a function Proc that takes a DP problem as input and returns a new set of DP problems

that then have to be solved instead. Alternatively, it can also return “no” [35, p. 159]. In the following, we adapt the notions of

[35] to CSR.

4 The original definition in [35] includes an extra parameter e, which specifies two kinds of problems: e = t for termination problems, and e = i for innermost

termination problems.
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7.1. CS problems, CS processors, and the CSDP-framework

In our definition of DP problem for CSR, we prefer to avoid ‘DP’ because, as discussed above, dependency pairs (as such)

are relevant in the theoretical framework only for investigating a particular problem (termination of TRSs), whereas some

transformations can yield sets of pairs which are no longer dependency pairs of the underlying TRS.

Definition 6 (CS problem). A CS problem τ is a tuple τ = (P,R, μ), where R and P are TRSs and μ ∈ MR∪P . The CS

problem τ is finite if there is no infinite minimal (P,R, μ)-chain. The CS problem τ is infinite ifR is non-μ-terminating or

there is an infinite minimal (P,R, μ)-chain.

Remark 8. As in the standard DP framework (see the discussion and further motivation in [35, p. 159]), the inclusion of

the case when R is nonterminating as part of the definition of infinite problem is essential for dealing with some specific

transformations of CS problems (see Theorems 8 and 16).

Definition 7 (CS processor). A CS processor Proc is a mapping from CS problems into sets of CS problems. Alternatively, it

can also return “no”. A CS processor Proc is

• sound if for all CS problems τ , we have that (1) τ is finite whenever Proc(τ ) 
= no and (2) ∀τ ′ ∈ Proc(τ ), τ ′ is finite.
• complete if for all CS problems τ , we have that (1) τ is infinite whenever Proc(τ ) = no or (2) ∃τ ′ ∈ Proc(τ ) such that

τ ′ is infinite.

A (sound) processor transforms DP problems into (hopefully) simpler ones, in such a way that the existence of an infinite

chain in the original DP problem implies the existence of an infinite chain in the transformed one. Here, ‘simpler’ usually

means that fewer pairs are involved. Soundness is essential for proving termination. Completeness is necessary for proving

nontermination.

Processors are used in a divide and conquer scheme to incrementally simplify the original CS problem asmuch as possible,

possibly decomposing it into smaller pieces which are then independently treated in the very same way. The trivial case

comes when the set of pairs P becomes empty. Then, no infinite chain is possible, and we can provide a positive answer yes
to the CS problem which is propagated upwards to the original problem in the root of the decision tree. In some cases, it is

also possible to witness the existence of infinite chains for a given CS problem; then a negative answer no can be provided

and propagated upwards.

Theorem 4 (CSDP-framework). LetR be a TRS and μ ∈ MR. We construct a tree whose nodes are labeled with CS problems or

“yes” or “no”, and whose root is labeled with (DP(R, μ),R, μ�). For every inner node labeled with τ , there is a sound processor

Proc satisfying one of the following conditions:

1. Proc(τ ) = no and the node has just one child that is labeled with “no”.
2. Proc(τ ) = ∅ and the node has just one child that is labeled with “yes”.
3. Proc(τ ) 
= no, Proc(τ ) 
= ∅, and the children of the node are labeled with the CS problems in Proc(τ ).

If all leaves of the tree are labeled with “yes”, then R is μ-terminating. Otherwise, if there is a leaf labeled with “no” and if all

processors used on the path from the root to this leaf are complete, thenR is not μ-terminating.

Propositions 8 and 9 are the basis for the following sound and complete processors, which provide some base cases for

our proofs of termination of CSR.

Theorem 5 (Basic CS processors). Let R = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G . Then, the processors ProcFin and

ProcInf given by 5

ProcFin(P,R, μ) =
⎧
⎨
⎩

∅ if P = ∅ ∨ P = P1
X ∨ (R = ∅ ∧ P = PX ); and

{(P,R, μ)} otherwise

ProcInf (P,R, μ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

no if v = θ(u)

for some u → v ∈ PG and substitution θ; and
{(P,R, μ)} otherwise

are sound and complete.

5 In the following, we often write Proc(P,R, μ) instead of Proc((P,R, μ)) to avoid duplicated parentheses.
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In the following sections, we describe several sound and (most of them) complete CS processors.

8. Context-sensitive dependency graph

In the dependency pairs approach [10], a dependency graph DG(R) is associated to the TRS R. The nodes of DG(R)
are the dependency pairs in DP(R); there is an arc from a dependency pair u → v to a dependency pair u′ → v′
such that Var(u) ∩ Var(u′) = ∅ if θ(v) →∗

R θ(u′) for some substitution θ . In [35], a more general notion of graph

of pairs DG(P,R) associated to a set of pairs P and a TRS R is considered. Pairs in P are now used as the nodes of

the graph, but they are connected by R-rewriting in the same way [35, Definition 7]. The analysis of the cycles in the

graph that is built from such pairs is useful for investigating the existence of infinite (minimal) chains of pairs. In the fol-

lowing section, we take into account these points to provide an appropriate definition of context-sensitive (dependency)

graph.

8.1. Definition of the context-sensitive dependency graph

Given TRSsR and P and a replacement map μ ∈ MR∪P , we want to obtain a notion of graph that is able to represent all

infiniteminimal chains of pairs as given in Definition 5.

Definition 8 (Context-sensitive graph of pairs). Let R and P be TRSs and μ ∈ MR∪P . The context-sensitive (CS-)graph

G(P,R, μ) has P as the set of nodes. Given u → v, u′ → v′ ∈ P , there is an arc from u → v to u′ → v′ if u → v, u′ → v′
is a minimal (P,R, μ)-chain for some substitution σ .

In termination proofs, we are concerned with the so-called strongly connected components (SCCs) of the dependency

graph, rather than with the cycles themselves (which are exponentially many) [39]. A strongly connected component in a

graph is amaximal cycle, i.e., a cycle that is not contained in any other cycle. The following result justifies the use of SCCs for

proving the absence of infinite minimal (P,R, μ)-chains.

Theorem 6 (SCC processor). LetR and P be TRSs and μ ∈ MR∪P . Then, the processor ProcSCC given by

ProcSCC(P,R, μ) = {(Q,R, μ) | Q are the pairs of an SCC in G(P,R, μ)}
is sound and complete.

Proof. We prove soundness by contradiction. Assume thatProcSCC is not sound. Then, there is a CS problem τ = (P,R, μ)
such that, for all τ ′ ∈ ProcSCC(τ ), τ ′ is finite but τ is not finite. Thus, there is an infinite minimal (P,R, μ)-chain A. Since P
contains a finite number of pairs, there is P ′ ⊆ P and a tail B of A, which is an infinite minimal (P ′,R, μ)-chain where all

pairs in P ′ are infinitely often used. According to Definition 8, this means that P ′ is a cycle in G(P,R, μ). Hence P ′ belongs
to some SCC with nodes in Q, i.e., P ′ ⊆ Q. Thus, B is an infinite minimal (Q,R, μ)-chain, i.e., τ ′ = (Q,R, μ) is not finite.
Since τ ′ ∈ ProcSCC(τ ), we obtain a contradiction.

With regard to completeness, sinceQ ⊆ P for someSCC inG(P,R, μ)withnodes inQ, every infiniteminimal (Q,R, μ)-
chain is an infinite minimal (P,R, μ)-chain. Hence, the processor is complete as well. �

As a consequence of this theorem, we can separately work with the strongly connected components of G(P,R, μ), disre-
garding other parts of the graph. Now we can use these notions to introduce the context-sensitive dependency graph.

Definition 9 (Context-sensitive dependency graph). Let R be a TRS and μ ∈ MR. The Context-Sensitive Dependency Graph

(CSDG) forR and μ is DG(R, μ) = G(DP(R, μ),R, μ�).

8.2. Estimating the CS-dependency graph

In general, the context-sensitive graph is not computable: it involves reachability of σ(u′) from σ(v) (for u → v ∈ PG) or
σ(t�) (for t ∈ NHT P ) using CSR. Since the reachability problem for CSR is undecidable, we need to use some approximation

of it.

Remark 9. Several estimations of the dependency graph were investigated in [10,34,39,55,56]. The first one, introduced in

[10], was adapted to CSR in [3].

Following [34], we describe how to approximate the CS-dependency graph of a CS-TRS. Given a TRSR and a replacement

map μ, we let tcap
μ
R be as follows:
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tcap
μ
R(x) = y if x is a variable, and

tcap
μ
R(f (t1, . . . , tk)) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f ([t1]f1, . . . , [tk]fk) if f ([t1]f1, . . . , [tk]fk) does not unify
with l for any l → r inR

y otherwise

where y is intended to be a new, fresh variable that has not yet been used and given a term s, [s]fi = tcap
μ
R(s) if i ∈ μ(f ) and

[s]fi = s if i 
∈ μ(f ). We assume that l shares no variablewith f ([t1]f1, . . . , [tk]fk)when the unification is attempted. Function

tcap
μ
R is intended to provide a suitable approximation of the aforementioned (R, μ)-reachability problems by means of

unification. The following result formalizes the correctness of this approach.

Proposition 10. LetR = (F, R) be a TRS andμ ∈ MF . Let t, u ∈ T (F,X ) be such thatVar(t)∩Var(u) = ∅. If θ(t) ↪→∗ θ(u)

for some substitution θ , then tcap
μ
R(t) and u unify.

Proof. In the following, we let s = tcap
μ
R(t). Note that, since Var(t) ∩ Var(u) = ∅, we also have Var(s) ∩ Var(u) = ∅.

Clearly, t = σ(s) for some substitution σ . We proceed by induction on the length m of the sequence from θ(t) to θ(u).

1. Ifm = 0, then θ(t) = θ(σ (s)) = θ(u). Since Var(s) ∩ Var(u) = ∅, we can write θ(u) = θ(σ (u)), i.e., s and u unify.

2. Ifm > 0, thenwe have θ(t) ↪→ t′ ↪→∗ θ(u). Let p ∈ Posμ(θ(t)) be the positionwhere theμ-rewrite step θ(t) ↪→ t′
is performed. By definition of tcap

μ
R, s = s[z]q for some fresh variable z and position q such that q � p. We can write

θ(t) = θ(s). Furthermore, since z is a fresh variable, we can write t′ = θ(s) if we assume that θ(z) = t′|q. Thus,
θ(s) ↪→∗ θ(u) inm− 1 steps. By the induction hypothesis, tcap

μ
R(s) and u unify. Since tcap

μ
R(s) = tcap

μ
R(tcap

μ
R(t))

and tcap
μ
R(tcap

μ
R(t)) is just a renaming of tcap

μ
R(t), the conclusion follows. �

According to Proposition 10, given terms t, u ∈ T (F,X ) that share no variable, and a substitution θ , the reachability of θ(u)
from θ(t) by μ-rewriting can be approximated as unification of tcap

μ
R(t) and u. Thus, taking into account Definitions 5 and

8, we have the following.

Definition 10 (Estimated context-sensitive graph of pairs). Let R and P be TRSs and μ ∈ MR∪P . The estimated CS-graph

associated toR and P (denoted EG(P,R, μ)) has P as the set of nodes and the arcs that connect them as follows:

1. There is an arc from u → v ∈ PG to u′ → v′ ∈ P if tcap
μ
R(v) and u′ unify.

2. There is an arc from u → v ∈ PX to u′ → v′ ∈ P if there is t ∈ NHT (R, μ) such that tcap
μ
R(t�) and u′ unify.

As a consequence of Proposition 10, we have the following.

Corollary 6 (Approximation of the context-sensitive graph). Let R and P be TRSs and μ ∈ MR∪P . The estimated CS-graph

EG(P,R, μ) contains the CS-graph G(P,R, μ).

Therefore, we have the following estimated CSDG: EDG(R, μ) = EG(DP(R, μ),R, μ�).

Remark 10. Proposition 10 also provides estimations for NHT P : if t ∈ NHT P , then tcap
μ
R(t�) and u unify for some

u → v ∈ P . In the following, we compute NHT P in this way.

Fig. 5. Context-sensitive dependency graph for the CS-TRS in Example 1.
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Example 15. Consider again the CS-TRS (R, μ) in Example 1. Note that

NHT DP(R,μ)(R, μ�) = {oddNs, incr(oddNs), incr(x), zip(xs, ys), rep2(xs)}
The (estimated) CSDG in Fig. 5 has four cycles, each of which contains a single pair. We transform the CS problem

(DP(R, μ),R, μ�) into a set

ProcSCC(DP(R, μ),R, μ�) =
{
({(1)},R, μ�), ({(17)},R, μ�), ({(21)},R, μ�), ({(23)},R, μ�)

}

which contains four new (but very simple) CS problems.

Remark 11 (CSDG vs. DG). Consider againR andμ as in Example 1. Pairs (9) and (10) belong to bothDG(R) (see Fig. 3) and
DG(R, μ) (see Fig. 5). However, they are not equally connected in DG(R) and DG(R, μ). The reason is that the collapsing

pair (25), that is not a node of DG(R), originates an incoming arc from both (9) and (10).

9. Treating collapsing pairs

The following result shows how to safely transform collapsing pairs into noncollapsing ones in some particular cases.

Theorem 7 (Removing collapsing pairs). Let R = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G . Let P ′ = (G′, P′) where

P′ = (P − PX ) ∪ Q for Q = {u → t� | u → x ∈ PX , t ∈ NHT P}, G′ = G if Q = ∅, and G′ = F ∪ G if Q 
= ∅. Then, the

processor ProcgNHT given by

ProcgNHT (P,R, μ) =
⎧
⎨
⎩

{(P ′,R, μ)} if NHT P(R, μ) ⊆ T (F)

{(P,R, μ)} otherwise

is sound.

Proof. First, note that P ′ is a TRS: the new rules in Q are of the form u → t� for t ∈ NHT P . Since NHT P ⊆ T (F), we

trivially have Var(t�) ⊆ Var(u), i.e., u → t� is a rewrite rule. Furthermore, whenever Q 
= ∅, G′ is the union of F and G
to reflect the use of symbols in F coming from terms t� for t ∈ NHT P(R, μ)). Since we assume that D� ⊆ G (Remark 4),

root(t�) ∈ D� ⊆ G ⊆ G′.
Weprove that theexistenceof an infiniteminimal (P,R, μ)-chain implies theexistenceof an infiniteminimal (P ′,R, μ)-

chain. Consider an infinite minimal (P,R, μ)-chain:

σ(u1) ↪→P,μ ◦ ��
μ t1 ↪→∗

R,μ σ (u2) ↪→P,μ ◦ ��
μ t2 ↪→∗

R,μ σ (u3) ↪→P,μ ◦ ��
μ · · ·

for some substitution σ , where, according to Definition 5, for all i � 1, ti is μ-terminating and, (1) if ui → vi ∈ PG , then
ti = σ(vi) and (2) if ui → vi = ui → xi ∈ PX , then ti = s

�
i for some si such that σ(xi) �μ si and si = θi(s̄i) for some

s̄i ∈ NHT and substitution θi. Actually, since ti = s
�
i = θi(s̄i)

� = θi(s̄
�
i ) and ti ↪→∗

R,μ σ (ui+1), we can further say that

s̄i ∈ NHT P .
In case (2), sinceNHT P ⊆ T (F), we have ti = s

�
i = θi(s̄

�
i ) = s̄

�
i , i.e., ti ∈ NHT P . Thus, we can use ui → ti ∈ Q instead

of ui → xi ∈ PX , becausewe still have ti ↪→∗
R,μ σ (ui+1). In this way, by replacing each ui → xi ∈ PX by the corresponding

ui → ti ∈ Q, each step σ(ui) ↪→P,μ ◦ ��
μ ti becomes a step σ(ui) ↪→P ′,μ ti, whereas steps σ(ui) ↪→P,μ σ (vi) = ti for

ui → vi ∈ PG remain unchanged. Thus, we obtain an infinite minimal (P ′,R, μ)-chain, as desired. �

Note that no pair in P ′ in Theorem 7 is collapsing. Unfortunately, ProcgNHT is not complete.

Example 16. Consider the following TRS:

b → f(c(b))

f(x) → x

together with the replacement map μ given by μ(f) = μ(c) = ∅. DP(R, μ) is:

B → F(c(b))

F(x) → x
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and NHT DP(R,μ) = {b}. There is no infinite (P,R, μ�)-chain for P = DP(R, μ), i.e., (DP(R, μ),R, μ�) is finite and R
μ-terminating. However, with P ′ as in Theorem 7:

B → F(c(b))

F(x) → B

we have an infinite minimal (P ’,R, μ�)-chain, i.e, (P ’,R, μ�) is not finite.

The following processor provides a sound and complete transformation of collapsing pairs into noncollapsing pairs.

Theorem 8 (Transforming collapsing pairs). LetR = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G . Let u → x ∈ PX and

Pu = {u → U(x)}
∪ {U(f (x1, . . . , xk)) → U(xi) | f ∈ F, i ∈ μ(f )}
∪ {U(t) → t� | t ∈ NHT P}

where U is a fresh symbol. Let P ′ = (G ∪ {U}, P′) where P′ = (P − {u → x}) ∪ Pu, and μ′ which extends μ by μ′(U) = ∅.

The processor ProceColl given by

ProceColl(P,R, μ) = {(P ′,R, μ′)}
is sound and complete.

Proof. With regard to soundness, we proceed by contradiction. If ProceColl is not sound, then there is an infinite minimal

(P,R, μ)-chain but there is no infinite minimal (P ′,R, μ′)-chain A. Since P is finite, we can assume that there is Q ⊆ P
such that A has a tail B

σ(u1)
�

↪→Q,μ ◦ ��
μ t1 ↪→∗

R,μ σ (u2)
�

↪→Q,μ ◦ ��
μ t2 ↪→∗

R,μ · · ·
for some substitution σ and pairs ui → vi ∈ Q, and, for all i � 1,

1. if vi 
∈ X , then ti = σ(vi),
2. if vi = xi ∈ X , then xi 
∈ Varμ(ui), and σ(xi) = Ci[si]pi for some context Ci[ ]pi , such that pi ∈ Posμ(Ci[ ]pi),

sprefixCi[ ]pi (pi) ⊆ F , si = θi(s̄i) for some s̄i ∈ NHT P and substitution θi, and ti = s
�
i .

For ‘steps’ σ(ui)
�

↪→Q,μ ◦ ��
μ ti such that ui → vi 
= u → x, we have ui → vi ∈ P ′. By minimality of B, ti is (R, μ)-

terminating. Since ti ∈ T (F ∪ G,X ) and μ′(f ) = μ(f ) for all f ∈ F ∪ G, ti is (R, μ′)-terminating, too. On the other hand,

if ui → vi = u → x, then, since Ci[ ]pi ⊆ F , pi ∈ Posμ(Ci[ ]pi), and by definition of Pu, we get

σ(ui) ↪→Pu,μ′ U(σ (vi)) = U(Ci[si]pi) ↪→∗
Pu,μ′ U(si) = U(θi(s̄i)) = θi(U(s̄i)) ↪→Pu,μ′ θi(s̄

�
i ) = s

�
i = ti

where all terms of the form U(s) in the sequence above are (R, μ′)-terminating: sinceμ′(U) = ∅ and U does not belong to

F , U(s) is in (R, μ′)-normal form. Furthermore, by minimality of B, ti is (R, μ)-terminating and, since μ′(f ) = μ(f ) for all
f ∈ F ∪ G, ti is (R, μ′)-terminating. Therefore, we obtain an infinite minimal (P ′,R, μ′)-chain, leading to a contradiction.

For completeness, we consider two cases: if R is not μ-terminating, then all termination problems are infinite (both

before and after the application of ProceColl) and there is no problem. Therefore, assume that R is μ-terminating and that

(P,R, μ) is finite but there is an infinite (P ′,R, μ′)-chain. Again, we can assume that there is Q ⊆ P ′ such that A has a

tail B

σ(u1)
�

↪→Q,μ′ ◦ �
�
μ′ t1 ↪→∗

R,μ′ σ(u2)
�

↪→Q,μ′ ◦ �
�
μ′ t2 ↪→∗

R,μ′ · · ·
for some substitutionσ and pairs ui → vi ∈ Qwhere ti = σ(vi) is (R, μ′)-terminating for i � 1.Without loss of generality,

we can assume that σ(x) ∈ T (F ∪ G,X ) for all x ∈ X , i.e., σ does not introduce any symbol U. It is not difficult to see

that, for each (P ′,R, μ′)-chain which is based on a substitution σ ′ whose bindings σ ′(x) contain symbols U, there is a

(P ′,R, μ′)-chainwhich uses the same pairs inP ′ and rules inR for the rewriting steps, but which is based on a substitution

σ where the U’s have been just removed from all bindings σ ′(x) to obtain σ(x) instead.
If ui → vi ∈ Pu, then, without loss of generality, we can assume that ui = u and vi = U(x). Since μ(U) = ∅, there is

n � 0 such that
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σ(ui)
�

↪→P ′,μ′ σ(U(x)) = U(σ (x)) = σ(ui+1)
�

↪→P ′,μ′ σ(vi+1) = σ(ui+2)
�

↪→P ′,μ′
...
�

↪→P ′,μ′ σ(vi+n) = σ(U(si+n+1))
�

↪→P ′,μ′ σ(s
�
i+n+1) = σ(ti)

↪→∗
R,μ′ σ(ui+n+2)

where, for all j, i+1 � j � i+n, uj = U(fj(x1, . . . , xij , . . . , xkj)), vj = U(xij), ij ∈ μ(fj), and si+n+1 ∈ NHT P (by definition

of ProceColl). Therefore, from the n rewriting steps that remove the fj ∈ F for 1 � j � n, we know that σ(x) = Ci[ti+n+1]pi
with pi ∈ Posμ(Ci[ ]pi) and sprefixCi[ ]pi (pi) ⊆ F . Thus, according to Definition 5, we have: σ(ui)

�
↪→P,μ ◦ ��

μ ti and

ti ↪→∗
R,μ σ (ui+n+2). Furthermore, ti is μ-terminating (because R is μ-terminating). On the other hand, if ui → vi ∈

P − {u → x}, then we have σ(ui)
�

↪→P,μ ◦ ��
μ ti satisfying the conditions in Definition 5. We obtain an infinite minimal

(P,R, μ)-chain, leading again to a contradiction. �

Example17. TheuseofProceCollwith (DP(R, μ),R, μ�) inExample16yields (P ′,R, μ′)whereP ′ consistsof the following

pairs:

B → F(c(b)) F(x) → U(x)

U(b) → B

It is not difficult to see now that there is no infinite minimal (P ′,R, μ′)-chain.

10. Use of µ-reduction pairs

A reduction pair (�, �) consists of a stable and monotonic quasi-ordering �, and a stable and well-founded ordering �
satisfying either� ◦ �⊆� or� ◦ �⊆� [42]. The absence of infinite chains of pairs can be ensured by finding a reduction

pair (�, �) that is compatible with the rules and the pairs: l � r for all rewrite rules l → r and u � v or u � v for all

dependency pairs u → v [10]. In the dependency pair framework, they are used to obtain smaller sets of pairs P ′ ⊆ P by

removing the strict pairs, i.e., those pairs u → v ∈ P such that u � v.

Stability is required for both� and� because, although we only check the left- and right-hand sides of the rewrite rules

l → r (with �) and pairs u → v (with � or �), the chains of pairs involve instances σ(l), σ(r), σ(u), and σ(v) of rules

and pairs, and we aim to conclude σ(l) � σ(r) and also σ(u) � σ(v) or σ(u) � σ(v). Monotonicity is required for � to

deal with the application of rules l → r to an arbitrary depth in terms. Since the pairs are ‘applied’ only at the root level, no

monotonicity is required for � (but, for this reason, we cannot compare the rules inR using �). Endrullis et al. noticed that

transitivity is not necessary for the strict component � because it is somehow ‘simulated’ by the compatibility requirement

above [20].

In our setting, since we are interested in μ-rewriting steps only, we can relax the monotonicity requirements as follows.

Definition 11 (μ-reduction pair). Let F be a signature and μ ∈ MF . A μ-reduction pair (�, �) consists of a stable and μ-

monotonic quasi-ordering� and awell-founded stable relation� on terms in T (F,X ) that are compatible, i.e.,� ◦ �⊆�
or � ◦ � ⊆ �. We say that (�, �) is μ-monotonic if � is μ-monotonic.

The following result allows us to use a μ-monotonic μ-reduction pair to remove some rewrite rules from the original

rewrite systemR before starting a termination proof.

Proposition 11 (Removing strict rewrite rules). Let R be a TRS and μ ∈ MR. Let (�, �) be a μ-monotonic μ-reduction pair

such that l (� ∪ �) r for all l → r ∈ R. Let R� = {l → r ∈ R | l � r} and S = R − R�. Then, R is μ-terminating if and

only if S is μ-terminating.

Proof. Since S ⊆ R, the only if part is obvious. For the if part, we proceed by contradiction. IfR is not μ-terminating, then

there is an infinite μ-rewrite sequence A:

t1 ↪→R,μ t2 ↪→R,μ · · · tn ↪→R,μ · · ·
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where an infinite number of rules inR� havebeenused; otherwise, therewouldbe an infinite tail tm ↪→S,μ tm+1 ↪→S,μ · · ·
for some m � 1 where only rules in S are applied, contradicting the μ-termination of S . Let J = {j1, j2, . . .} be the infinite

set of indices indicating μ-rewrite steps tj ↪→R,μ tj+1 in A, for all j ∈ J, where rules in R� have been used to perform the

μ-rewriting step. Since l � r for all l → r ∈ R�, by stability and μ-monotonicity of �, we have that tji � tji+1. Since

l � r for all l → r ∈ S, by stability and μ-monotonicity of �, we have that tji+1 � tji+1
. By compatibility between �

and �, we have tji � tji+1
for all i � 1. We obtain an infinite sequence tj1 � tj2 � · · · which contradicts well-foundedness

of �. �

10.1. Argument filterings for CSR

An argument filtering π for a signature F is a mapping that assigns to every k-ary function symbol f ∈ F an argument

position i ∈ {1, . . . , k} or a (possibly empty) list [i1, . . . , im] of argument positions with 1 � i1 < · · · < im � k [42]. The

trivial argument filtering π is given by π(f ) = [1, . . . , k] for each k-ary symbol f ∈ F . It corresponds to the argument

filtering which does nothing. In the dependency pair method, argument filteringsπ provide a simple way to remove parts of

the syntactic structure of a rule s → t. Argument filterings (recursively) drop immediate subterms of terms and can produce

terms from a new signature where the arity of symbols has been decreased if necessary. In this way, we obtain simpler

expressions that are (hopefully) easy to compare. In the following, we adapt the argument filtering technique to our CSDP

framework. In Section 10.2, we investigate their use together with μ-reduction pairs. We can use an argument filtering π to

‘filter’ either the signature F or any replacement map μ ∈ MF . In the following, we assume that:

1. The signature Fπ consists of all function symbols f such that π(f ) is some list [i1, . . . , im], where, in Fπ , the arity of

f is m. As usual, we give the same name to the version of f ∈ F that belongs to Fπ .

2. The replacement map μπ ∈ MFπ is given as follows: for all f ∈ F such that f ∈ Fπ and π(f ) = [i1, . . . , im]:
μπ(f ) = {j ∈ {1, . . . ,m} | ij ∈ μ(f )}

An argument filtering π induces a mapping from T (F,X ) to T (Fπ ,X ), also denoted by π :

π(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

t if t is a variable

π(ti) if t = f (t1, . . . , tk) and π(f ) = i

f (π(ti1), . . . , π(tim)) if t = f (t1, . . . , tk) and π(f ) = [i1, . . . , im]

Note that, for the trivial argument filteringπ, we have thatFπ = F andμπ = μ for allμ ∈ MF . Furthermore,π(t) = t

for all t ∈ T (F,X ). In the following, given a substitutionσ and an argument filteringπ , we letσπ be the substitution defined

by σπ(x) = π(σ(x)) for all x ∈ X . The following auxiliary results are used below.

Lemma 7. Let F be a signature, π be an argument filtering for F , and σ be a substitution. If t ∈ T (F,X ), then π(σ(t)) =
σπ(π(t)).

Proof. By structural induction.

1. Base case: t is a variable or a constant symbol. If t = x ∈ X , then π(x) = x and π(σ(x)) = σπ(x) = σπ(π(x)). If t is
a constant symbol, then π(t) = t and σ(t) = t = σπ(t). Hence, π(σ(t)) = π(t) = t = σπ(t) = σπ(π(t)).

2. If t = f (t1, . . . , tk), then we consider the two possible cases according to π(f ):
(a) If π(f ) = i for some i ∈ {1, . . . , k}, then π(t) = π(ti). By the induction hypothesis, π(σ(ti)) = σπ(π(ti)).

Therefore, π(σ(t)) = π(f (σ (t1), . . . , σ (tk))) = π(σ(ti)) = σπ(π(ti)) = σπ(π(f (t1, . . . , tk))) = σπ(π(t)).
(b) If π(f ) = [i1, . . . , im], then π(t) = f (π(ti1), . . . , π(tim)). By the induction hypothesis, π(σ(tij)) = σπ(π(tij))

for all j ∈ {1, . . . ,m}. Thus, π(σ(t)) = π(f (σ (t1), . . . , σ (tk)))= f (π(σ (ti1)), . . . , π(σ (tim)))= f (σπ (π(ti1)),
. . . , σπ (π(tim))) = σπ(f (π(ti1), . . . , π(tim))) = σπ(π(t)). �

Proposition 12. Let R = (F, R) be a TRS, μ ∈ MF , π be an argument filtering for F , and s, t ∈ T (F,X ). Let � be a

μπ -monotonic quasi-ordering such that π(l) � π(r) for all l → r ∈ R. If s ↪→∗ t, then π(s) � π(t).

Proof. By induction on the length n of the μ-rewrite sequence.

1. If n = 0, then s = t and, trivially, π(s) = π(t). Since � is reflexive, we have π(s) � π(t).
2. If n > 0, we can write s ↪→ s′ ↪→∗ t, where the length of the sequence from s′ to t is n − 1. Let p ∈ Posμ(s) be the

μ-replacing position where the μ-rewriting step s ↪→ s′ is performed. We prove that s ↪→ s′ implies π(s) � π(s′)
by induction on the structure of p.
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(a) If p = �, then s = σ(l) and s′ = σ(r) for some rewrite rule l → r and matching substitution σ . By Lemma

7, π(s) = π(σ(l)) = σπ(π(l)) and π(s′) = π(σ(r)) = σπ(π(r)). Since π(l) � π(r), by stability of � we

conclude π(s) = σπ(π(l)) � σπ(π(r)) = π(s′).
(b) If p = i · q, then we can write s = f (s1, . . . , si, . . . , sk) and s′ = f (s′1, . . . , s′i, . . . , s′k) for some nonconstant

symbol f (i.e., ar(f ) > 0) and we know that i ∈ μ(f ), si ↪→ s′i at position q, and sj = s′j for all j 
= i. By the

induction hypothesis, π(si) � π(s′i). We consider the two possible cases according to π(f ):
i. Ifπ(f )= j for some j ∈ {1, . . . , k}, thenπ(s)=π(sj). If i 
= j, then s′j = sj . By reflexivity of�, we haveπ(sj) �

π(s′j). If i= j, then we know from above that π(si) � π(s′i). Therefore, π(s) = π(sj) � π(s′j) = π(s′).
ii. If π(f ) = [i1, . . . , im], then we have that π(s) = f (π(si1), . . . , π(sim)) and π(s′) = f (π(s′i1), . . . , π(s′im)).

Consider ij for some j ∈ {1, . . . ,m}. We have two cases:

A. If ij = i, then by the induction hypothesis, π(sij) � π(s′ij) and, by definition of μπ , j ∈ μπ(f ).

B. If ij 
= i, then s′ij = sij and we have π(sij) = π(s′ij).
Note that π(sij) is the jth immediate subterm of π(s). By μπ -monotonicity of �,

π(s) = π(f (s1, . . . , sk))

= f (π(si1), . . . , π(sij), . . . , π(sim))

� f (π(si1), . . . , π(s′ij), . . . , π(sim))

= f (π(s′i1), . . . , π(s′ij), . . . , π(s′im))

= π(f (s′1, . . . , s′k))
= π(s′)

where we assume that ij = i for some j ∈ {1, . . . , k}. If no such j exists, then we would have π(s) = π(s′),
which also implies π(s) � (s′) because � is reflexive.

Thus, we have proved that s ↪→ s′ implies π(s) � π(s′) as desired.
Therefore, π(s) � π(s′) and, by the induction hypothesis, π(s′) � π(t). By transitivity of �, we conclude

π(s) � π(t). �

Remark 12. We often use argument filterings to transform (sets of) rules S as follows: π(s → t) = π(s) → π(t) for a

rule s → t, and π(S) = {π(s → t) | s → t ∈ S}. Given a TRS R = (F, R), we write π(R) to denote the filtered TRS

(Fπ , π(R)).

10.2. Removing pairs using μ-reduction pairs

Given TRSs R = (F, R) and P = (G, P), and μ ∈ MF∪G , checking the absence of infinite minimal (P,R, μ)-chains can
often be ‘simplified’ to checking the absence of infinite minimal (P ′,R, μ)-chains for a proper subTRS P ′ of P by finding

appropriate μ-reduction pairs (�, �). The presence of collapsing pairs u → v = u → x ∈ PX imposes some additional

requirements on the μ-reduction pairs:

1. We need to ensure that the quasi-ordering� is able to ‘look’ for aμ-replacing subterm s inside the instantiation σ(x)
of a migrating variable x: since σ(x) = C[s]p for some context C[ ]p and μ-replacing position p ∈ Posμ(C[ ]p) such
that sprefixC[ ]p(p) ⊆ F , we can obtain s out from C[s]p by applying the projection rules in Embμ(F) (Definition 1).

Hence, we require Embμ(F)⊆ �.

2. We need to connect the marked version s� of s (which is an instance of a hidden term t ∈ NHT P , i.e., s = θ(t) for

some substitution θ ) with an instance σ(u) of the left-hand side u of a pair; hence, we require t � t� or t � t� for all

t ∈ NHT P which, by stability, becomes s � s� or s � s�.

The following theorem formalizes a generic processor to remove pairs from P by using argument filterings andμ-reduction

pairs.

Theorem 9 (μ-reduction pair processor). Let R = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G . Let π be an argument

filtering for F ∪ G and (�, �) be a μπ -reduction pair such that

1. π(R) ⊆�, π(P) ⊆ � ∪ �, and

2. whenever NHT P 
= ∅ and PX 
= ∅, we have that

(a) for all f ∈ F , either π(f ) = [i1, . . . , im] and μ(f ) ⊆ π(f ), or π(f ) = i and μ(f ) = {i},
(b) Embμπ (Fπ )⊆ �, and
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(c) π(t) (� ∪ �) π(t�) for all t ∈ NHT P ,

Let P� = {u → v ∈ P | π(u) � π(v)}. Then, the processor ProcRP given by

ProcRP(P,R, μ) =
⎧
⎨
⎩

{(P − P�,R, μ)} if (1) and (2) hold

{(P,R, μ)} otherwise

is sound and complete.

Proof. Completeness is obvious, since P − P� ⊆ P . Regarding soundness, we proceed by contradiction. Assume that there

is an infinite minimal (P,R, μ)-chain A, but that there is no infinite minimal (P − P�,R, μ)-chain. Due to the finiteness

of P , we assume that there is Q ⊆ P such that A has a tail B

σ(u1) ↪→Q,μ ◦ ��
μ t1 ↪→∗

R,μ σ (u2) ↪→Q,μ ◦ ��
μ t2 ↪→∗

R,μ σ (u3) ↪→Q,μ ◦ ��
μ · · ·

for some substitution σ , where all pairs in Q are infinitely often used. Also, for all i � 1, (1) if ui → vi ∈ QG , then
ti = σ(vi) and (2) if ui → vi = ui → xi ∈ QX , then ti = s

�
i for some si such that σ(xi) = Ci[si]pi for some Ci[ ]pi and

pi ∈ Posμ(Ci[ ]pi) such that sprefixCi[ ]pi (pi) ⊆ F and si = θi(s̄i) for some s̄i ∈ NHT and substitution θi. Actually, since

ti = s
�
i = θi(s̄i)

� = θi(s̄
�
i ) and ti ↪→∗

R,μ σ (ui+1), we can further say that s̄i ∈ NHT Q.
Since π(ui) (� ∪ �) π(vi) for all ui → vi ∈ Q ⊆ P , by stability of � and �, we have σπ(π(ui)) (� ∪ �) σπ (π(vi))

for all i � 1.

No pair u → v ∈ Q satisfies that π(u) � π(v). Otherwise, we get a contradiction by considering the following two

cases:

1. If ui → vi ∈ QG , then ti = σ(vi) ↪→∗
R,μ σ (ui+1) and by Proposition 12, π(ti) � π(σ(ui+1)). By Lemma 7,

π(ti) � σπ(π(ui+1)). Since we have σπ(π(ui)) (� ∪ �) σπ (π(vi)) = π(σ(vi)) = π(ti) (using Lemma 7), by using

transitivity of � and compatibility between � and �, we conclude that σπ(π(ui)) (� ∪ �) σπ (π(ui+1)).
2. If ui → vi = ui → xi ∈ QX , then σ(vi) = σ(xi) = Ci[si]pi . Since i ∈ μ(f ) implies that i ∈ π(f ), we can say that

π(σ(x)) = σπ(x) = π(Ci)[π(si)]qi for some qi ∈ Posμπ (π(Ci)) and sprefixπ(Ci)(qi) ⊆ Fπ . Since Embμπ (Fπ )⊆ �,

we have σπ(π(vi)) = σπ(xi) � π(si). Furthermore, we are assuming that π(t) (� ∪ �) π(t�) for all t ∈ NHT Q ⊆
NHT P . Since si = θi(s̄i), we have that π(si) = π(θi(s̄i)) = θi,π (π(s̄i)) (using Lemma 7 again) and, similarly,

π(s
�
i ) = θi,π (π(s̄

�
i )). By stability we have that π(si) (� ∪ �) π(s

�
i ). Hence, by transitivity of � (and compatibility

of � and �), we have σπ(π(vi)) = σπ(xi) (� ∪ �) π(s
�
i ). Finally, since π(s

�
i ) = π(ti) and ti ↪→∗

R,μ σ (ui+1) for all

i � 1, by Proposition 12 and Lemma 7, π(ti) � σπ(π(ui+1)). Therefore, again by transitivity of � and compatibility

of � and �, we conclude that σπ(π(ui)) (� ∪ �) σπ (π(ui+1)).

Since u → v occurs infinitely often in B, there is an infinite set I ⊆ N such that σπ(π(ui)) � σπ(π(ui+1)) for all i ∈ I .
And we have σπ(π(ui)) (� ∪ �) σπ (π(ui+1)) for all other ui → vi ∈ Q. Thus, by using the compatibility conditions of the

μπ -reduction pair, we obtain an infinite decreasing �-sequence that contradicts the well-foundedness of �.

Therefore, Q ⊆ P − P�, which means that B is an infinite minimal (P − P�,R, μ)-chain, thus leading to a

contradiction. �

Example 18. Consider the TRSR [63, Example 5]:

if(true, x, y) → x

if(false, x, y) → y

f(x) → if(x, c, f(true))

with μ(f) = {1} and μ(if) = {1, 2}. Then, DP(R, μ) consists of the following CSDPs:

F(x) → IF(x, c, f(true)) IF(false, x, y) → y

with μ�(F) = {1} and μ�(IF) = {1, 2}. The μ-reduction pair (�, >) induced by the polynomial interpretation6

[c] = [true] = 0 [f](x) = x [F](x) = x

[false] = 1 [if](x, y, z) = x + y + z [IF](x, y, z) = x + z

6 See [49] for more information about the automatic generation of polynomial (quasi-)orderings with monotonicity requirements specified by means of

replacement maps.

18.7. Context-Sensitive Dependency Pairs 267



948 B. Alarcón et al. / Information and Computation 208 (2010) 922–968

can be used to prove the μ-termination of R. For P = DP(R, μ), we have NHT P = {f(true)}. First, we can see that the

quasi-ordering is compatible with the rules in Embμ(F):

[f(x)] = x � x = [x]
[if(x, y, z)] = x + y + z � x = [x]
[if(x, y, z)] = x + y + z � y = [y]

Now we can see that the condition on the only hidden term in NHT P is also fulfilled:

[f(true)] = 0 � 0 = [F(true)]
Finally, for the three rules inR and the two pairs in P , we have:

[f(x)] = x � x = [if(x, c, f(true))]
[if(true, x, y)] = x + y � x = [x]
[if(false, x, y)] = x + y + 1 � y = [y]
[F(x)] = x � x = [IF(x, c, f(true))]
[IF(false, x, y)] = y + 1 > y = [y]

We remove the ‘strict’ pair IF(false, x, y) → y from P to obtain P ′. With (P ’,R, μ�), the application of ProcSCC leads to

an empty set of CS problems. Thus, the μ-termination ofR is proved.

The ‘compatibility’ between the replacement map μ and the argument filtering π , which is required when collapsing

pairs are present, is necessary in Theorem 9.

Example 19. Consider the following TRSR:

a→ c(h(f(a), b))

f(c(x)) → x

together with the replacement map μ given by μ(f) = μ(h) = {1} and μ(c) = ∅. DP(R, μ) is:

F(c(x)) → x

and NHT DP(R,μ) = {f(a)}. Note thatR is not μ-terminating:

f(a) ↪→ f(c(h(f(a), b))) ↪→ h(f(a), b) ↪→ · · ·
For the argument filtering π given by π(a) = π(h) = [], π(F) = π(f) = [1] and π(c) = 1, Fπ consists of the constants

a, h and symbol f of arity 1. Also, μ�
π(f) = μ�

π(F) = {1} and μ�
π(a) = μ�

π(h) = ∅. We get the constraints:

π(a) = a � h = π(c(h(f(a), b)))

π(f(c(x))) = f(x) � x = π(x)

f(x) � x

π(f(a)) = f(a) � F(a) = π(F(a))

π(F(c(x))) = F(x) � x = π(x)

which are easily satisfiable (by a polynomial interpretation, for instance). We would wrongly conclude μ-termination ofR.

Note that π(c) = 1 but μ�(c) = ∅, and that π(h) = [] but μ�(h) = {1}.
The next processor is useful when all (filterings of) terms inNHT P are ground. The advantage is that the quasi-ordering

� of the μ-reduction pair does not need to impose compatibility with the rules in Embμ(F).

Theorem 10 (μ-reduction pair processor for ground hidden terms). LetR = (F, R) and P = (G, P) be TRSs andμ ∈ MF∪G .
Let π be an argument filtering for F ∪ G such that, for all t ∈ NHT P , π(t) is ground. Let (�, �) be a μπ -reduction pair such

that
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1. π(R) ⊆�, π(PG) ⊆ � ∪ �, and

2. for all u → v ∈ PX and all t ∈ NHT P , π(u) (� ∪ �) π(t�)

Let P� = {u → v ∈ PG | π(u) � π(v)} ∪ {u → v ∈ PX | ∀t ∈ NHT P , π(u) � π(t�)}. Then, the processor ProcRPg
given by

ProcRPg(P,R, μ) =
⎧
⎨
⎩

{(P − P�,R, μ)} if (1) and (2) hold

{(P,R, μ)} otherwise

is sound and complete.

Proof. Theproof is analogous to that of Theorem9. Assume the facts andnotation in thefirst paragraphof such aproof. Again,

we proceed by contradiction and assume that a pair u → v ∈ Q is in P�. Again, we have σπ(π(ui)) (� ∪ �) σπ (π(ui+1))
for all pairs ui → vi ∈ QG .

Now, if ui → vi = ui → xi ∈ QX , then since π(ui) (� ∪ �) π(t�) for all t ∈ NHT Q ⊆ NHT P , by stability we have

that σπ(π(ui)) (� ∪ �) σπ (π(t�)). Since π(t) is ground, we have σπ(π(ui)) (� ∪ �) π(t�). Therefore, since si ∈ NHT Q
and ti = s

�
i , we have σπ(π(ui)) (� ∪ �) π(ti). Finally, since s

�
i = ti and ti ↪→∗

R,μ σ (ui+1) for all i � 1, by Proposition 12

and Lemma 7, we have that π(ti) � σπ(π(ui+1)). Thus, we also have σπ(π(ui)) (� ∪ �) σπ (π(ui+1)).
Since u → v occurs infinitely often in B, by using the compatibility conditions of the μπ -reduction pair, we obtain

an infinite decreasing �-sequence that contradicts well-foundedness of �. In particular, if u → v ∈ QX ∩ P�, then

π(u) � π(t�) for all t ∈ NHT Q, so each time that u → v is used, a strict decrease occurs. �

Theorem 10 can succeed when Theorem 9 fails.

Example 20. Consider the TRSR:

a→ f(d(c(a))) (27)

f(c(x)) → x (28)

d(c(x)) → b (29)

and the replacement map μ given by μ(c) = ∅ and μ(f) = μ(d) = {1}. There are three CSDPs:

A→ F(d(c(a))) (30)

A→ D(c(a)) (31)

F(c(x)) → x (32)

ProcSCC(DP(R, μ),R, μ�) yields a single CS problem (P,R, μ) with P = {(30), (32)}. Since NHT P = {a} 
= ∅ and

F(c(x)) → x is a collapsing CSDP, according to Theorem 9 we would require that any μ-reduction ordering used in the

theorem satisfy Embμ(F) ⊆ � (assume the trivial filtering π here) and that a (� ∪ �) A. In this case, though, since

d(c(a))�μ c(a), wemust have d(c(a)) � c(a); byμ-monotonicity of�, F(d(c(a))) � F(c(a)). Now, one of the following

two cases must hold:

1. A � F(d(c(a))) and F(c(x)) (� ∪ �) x. By stability of � and �, we have F(c(a)) (� ∪ �) a. Thus,

A � F(d(c(a))) � F(c(a)) (� ∪ �) a (� ∪ �) A.

By compatibility of � and �, we have A � · · · � A, contradicting the well-foundedness of �.

2. A (� ∪ �) F(d(c(a))) and F(c(x)) � x. Hence,

A (� ∪ �) F(d(c(a))) � F(c(a)) � a (� ∪ �) A.

Again, by compatibility of � and �, we have A � · · · � A.

Thus, Theorem 9 cannot be used with this example. SinceNHT P ⊆ T (F), Theorem 10 is applicable here. The μ-reduction

pair (�, >) induced by the following polynomial interpretation: 7

7 See [49,51] for details about the use of polynomial intepretations with rational coefficients.
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[a] = 1 [b] = 0 [c](x) = x + 1 [d](x) = 1
4
x

[f](x) = x [A] = 1 [F](x) = 0

can be used to remove (30) from P . For the three rules inR and the two pairs in P , we have:

[a] = 1 � 1
2

= [f(d(c(a)))]
[f(c(x))] = x + 1 � x = [x]
[d(c(x))] = 1

4
x + 1

4
� 0 = [b]

[A] = 1 > 1
2

= [F(d(c(a)))]
[F(c(x))] = x + 1 � 1 = [A]

We remove (30) from P to obtain P ′ = {(32)}. Now, ProcSCC(P ′,R, μ) = ∅ because NHT P ′ = ∅ and EG(P ′,R, μ)
contains no cycle. Thus, the μ-termination ofR is proved.

Nevertheless, even with NHT P ⊆ T (F), Theorem 9 can be helpful when Theorem 10 fails.

Example 21. ConsiderR and μ as in Example 16. Theorem 10 cannot be used here because, reasoning as in Example 16, we

would obtain constraints that are incompatiblewith thewell-foundedness of� for any strict component� of aμ-reduction

pair (�, �). However, theμ-termination ofR can be easily provedwith Theorem 9. Theμ-reduction pair (�, >) generated
by the following polynomial interpretation:

[b] = 1 [c](x) = 0 [f](x) = x

[B] = 2 [F](x) = x + 1

satisfies the requirements of Theorem 10 and can be used to show a weak decrease of the rules and a strict decrease of the

two CSDPs which can both be removed.

Our last result establishes that if we are able to provide a strict comparison between unmarked and marked versions of

the (filtered) hidden terms in NHT P , then we can remove all collapsing pairs at the same time.

Theorem 11 (μ-reduction pair processor for collapsing pairs). Let R = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G . Let
π be an argument filtering for F ∪ G and (�, �) be a μπ -reduction pair such that

1. π(R) ⊆ �, π(P) ⊆ � ∪ �,

2. π(t) � π(t�) for all t ∈ NHT P and

(a) for all f ∈ F , either π(f ) = [i1, . . . , im] and μ(f ) ⊆ π(f ), or π(f ) = i and μ(f ) = {i},
(b) Embμπ (Fπ )⊆ �.

Then, the processor ProcRPc given by

ProcRPc(P,R, μ) =
⎧
⎨
⎩

{(PG,R, μ)} if (1) and (2) hold

{(P,R, μ)} otherwise

is sound and complete.

Proof. As in the proof of Theorem 9, we proceed by contradiction. We assume that there is an infinite minimal (P,R, μ)-
chain A, but that there is no infinite minimal (PG,R, μ)-chain. Thus, there isQ ⊆ P such thatQ∩ PX 
= ∅ and A has a tail

B as in the proof of Theorem 9. Now, we assume the notation as in the first paragraph of such a proof.

We have σπ(π(ui)) (� ∪ �) π(ti) and π(ti) � σπ(π(ui+1)) for all pairs ui → vi ∈ PG . If ui → vi = ui → xi ∈ QX ,
then by applying the considerations in the corresponding item of the proof of Theorem 9 and taking into account that

π(t) � π(t�) for all t ∈ NHT P , we now have that σπ(π(ui)) (� ∪ �) σπ (xi) � π(ti) � σπ(π(ui+1)). Since pairs

ui → vi ∈ QX occur infinitely often in B, by using the compatibility conditions of the μπ -reduction pair, we obtain an

infinite decreasing �-sequence that contradicts the well-foundedness of �. �
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11. Subterm criterion

In [38], Hirokawa and Middeldorp introduce a subterm criterion that permits certain cycles of the dependency graph to

be ignored without paying attention to the rules of the TRS. Their result applies to cycles in the dependency graph. Thiemann

has adapted it to the DP-framework [62, Section 4.6]. In our adaptation to CSR, we take ideas from both works. Our first

definition is inspired by Thiemann’s head symbols [62, Definition 4.36].

Definition 12 (Root symbols of a TRS). LetR = (F, R) be a TRS. The set of root symbols associated toR is:

Root(R) = {root(l) | l → r ∈ R} ∪ {root(r) | l → r ∈ R, r 
∈ X }
The following result relates Root(P) and the setHP of hidden symbols occurring at the root of terms inNHT P(R, μ). It

is silently used in the statements of some theorems below.

Lemma 8. LetR = (F, R) = (C �D, R) and P = (G, P) be TRSs such that Root(P) ∩D = ∅, andμ ∈ MF∪G . For all f ∈ HP ,
we have f � ∈ Root(P).

Proof. If f ∈ HP , then there is t ∈ NHT P such that f = root(t). Therefore, there are substitutions θ and θ ′ such that

θ(t�) ↪→∗
R,μ θ ′(u) for some u → v ∈ P . Since f � 
∈ F , μ-rewritings on θ(t�) usingR do not remove it. Thus, root(u) = f �

and f � ∈ Root(P). �

Thiemann uses argument filterings (see Section 10.1) instead of simple projections [38, Definition 10]. We find it more

convenient to follow Hirokawa and Middeldorp’s style, so we generalize their definition to be used with TRSs rather than

cycles in the dependency graph.

Definition 13 (Simple projection). Let R be a TRS. A simple projection for R is a mapping π that assigns to every k-ary

symbol f ∈ Root(R) an argument position i ∈ {1, . . . , k}. The mapping that assigns a subterm π(t) = t|π(f ) to every term

t = f (t1, . . . , tk) with f ∈ Root(R) is also denoted by π ; we also let π(x) = x if x ∈ X .

Given a simple projection π for a TRSR, we let π(R) = {π(l) → π(r) | l → r ∈ R}.
Theorem 12 (Subterm processor for noncollapsing pairs). Let R = (F, R) = (C � D, R) and P = (G, P) be TRSs such that

P contains no collapsing rule, i.e., for all u → v ∈ P , v 
∈ X , and Root(P) ∩ D = ∅. Let μ ∈ MF∪G and let π be a simple

projection for P . Let Pπ,�μ = {u → v ∈ P | π(u) �μ π(v)}. Then, the processor ProcsubNColl given by

ProcsubNColl(P,R, μ) =
⎧
⎨
⎩

{(P − Pπ,�μ,R, μ)} if π(P) ⊆ �μ

{(P,R, μ)} otherwise

is sound and complete.

Proof. Completeness is obvious because P − Pπ,�μ ⊆ P . For soundness, we proceed by contradiction. Assume that there

is an infinite minimal (P,R, μ)-chain A but there is no infinite minimal (P − Pπ,�μ,R, μ)-chain. Since P is finite, we can

assume that there is Q ⊆ P such that A has a tail B that is an infinite minimal (Q,R, μ)-chain where all pairs in Q are

infinitely often used. Assume that B is as follows (since QX = ∅, we use a simpler notation):

t0 ↪→∗
R,μ s1

�
↪→Q,μ t1 ↪→∗

R,μ s2
�

↪→Q,μ t2 ↪→∗
R,μ · · ·

where there is a substitution σ such that, for all i � 1, si = σ(ui) and ti = σ(vi) for some ui → vi ∈ Q. Furthermore,

w.l.o.g. we also assume that t0 = σ(v0) for some u0 → v0 ∈ P .
Note that, for all i � 1, root(si) ∈ Root(P) because root(ui) ∈ Root(P). Since root(vi) 
∈ X , we have that root(vi) ∈

Root(P). Then, for all i � 0, root(ti) ∈ Root(P). Therefore, we can apply π to si+1 and ti for all i � 0. Moreover, since

ti ↪→∗
R,μ si+1 for all i � 0 and Root(P)∩D = ∅, we can actually write ti

>�
↪−→ ∗

R,μ si+1 becauseμ-rewritingswithR cannot

change root(ti). Hence, π(ti) ↪→∗
R,μ π(si+1) and also root(ti) = root(si+1) for all i � 0. Finally, since π(ui) �μ π(vi) for

all i � 0, by stability of �μ, we have

π(si) = π(σ(ui)) = σ(π(ui)) �μ σ(π(vi)) = π(σ(vi)) = π(ti)

for all i � 1. No pair u → v ∈ Q satisfies that π(u)�μ π(v). Otherwise, we get a contradiction in both of the following two

complementary cases:
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1. If π(f ) 
∈ μ(f ) for all f ∈ Root(Q), then, for all i � 0, π(ti) = π(si+1), because no μ-rewritings are possible on the

π(root(ti))th immediate subterm π(ti) of ti. Since π(si+1) �μ π(ti+1), we have that π(ti) �μ π(ti+1) for all i � 0.

Furthermore, since we assume π(u) �μ π(v) for some u → v ∈ Qwhich occurs infinitely often in B, and by stability

of �μ, there is a maximal infinite set J = {j1, j2, . . .} ⊆ N such that π(tji) �μ π(tji+1) for all i � 1. We obtain an

infinite sequence π(tj1) �μ π(tj2) �μ · · · which contradicts the well-foundedness of �μ.

2. Ifπ(f ) ∈ μ(f ) for some f ∈ Root(Q), then, since root(ti) = root(si+1) and all pairs inQ occur infinitely often in B, we

can assume that root(t0) = f . Furthermore, since A is minimal, we can assume that t0 is μ-terminating (with respect

toR). Since π(ti) ↪→∗
R,μ π(si+1) and π(si+1) �μ π(ti+1) for all i � 0, the sequence B is transformed into an infinite

↪→R,μ ∪ �μ-sequence

π(t0) ↪→∗
R,μ π(s1) �μ π(t1) ↪→∗

R,μ π(s2) �μ π(t2) ↪→∗
R,μ · · ·

containing infinitely many �μ-steps, due to π(u) �μ π(v) for some u → v ∈ Q which occurs infinitely often in B.

Since �μ is well-founded, the infinite sequence must also contain infinitely many ↪→R,μ-steps. By making repeated

use of the fact that �μ ◦ ↪→R,μ ⊆ ↪→R,μ ◦ �μ, we obtain an infinite ↪→R,μ-sequence starting from π(t0). Thus,
π(t0) is not μ-terminating with respect to R. Since π(f ) ∈ μ(f ) and hence t0 �μ π(t0), this implies that t0 is not

μ-terminating (use Lemma 1(1)). This contradicts μ-termination of t0.

Hence, Q ⊆ P − Pπ,� and B is an infinite minimal (P − Pπ,�μ,R, μ)-chain. This contradicts our initial argument. �

Example 22 (Proof of termination of the main example). Consider the termination problems obtained in Example 15 for

the CS-TRS in Example 1:

τ1 = ({(1)},R, μ�), τ2 = ({(17)},R, μ�), τ3 = ({(21)},R, μ�), and τ4 = ({(23)},R, μ�)

We apply ProcsubNColl to all such problems. For τ1, with π(ADD) = 1, we have π(ADD(s(n),m)) = s(n) �μ n =
π(ADD(n,m)). Now, ProcsubNColl(τ1) = {(∅,R, μ�)}. With ProcFin we conclude that τ1 is finite. Since this can be done for

τ2, τ3, and τ4, the μ-termination ofR is proved.

The following examples show that if P contains collapsing rules, then Theorem 12 does not hold.

Example 23. Consider the two TRSs

R : h(x) → f(g(h(x))) and P : f(g(x)) → x

Let μ be given by μ(f ) = {1, . . . , k} for all symbols f . Note that, Root(P) = {f} and D = {h} are disjoint. By using the

projection π(f) = 1, we get π(f(g(x))) = g(x) �μ x. After removing the pair in P , a finite CS problem (∅,R, μ) is

obtained. However, (P,R, μ) is not finite:

f(g(h(x))) ↪→P,μ h(x) ↪→R,μ f(g(h(x))) ↪→P,μ · · ·
In the following theorem, we show how to use the subterm criterion to remove all collapsing pairs from P .

Theorem 13 (Subterm processor for collapsing pairs). Let R = (F, R) = (C � D, R) and P = (G, P) be TRSs such that PG
contains no collapsing rule, Root(P) ∩ D = ∅, and μ ∈ MF∪G . Let π be a simple projection for P such that

1. π(P) ⊆ �μ, and

2. whenever PX 
= ∅, we have π(f �) ∈ μ(f �) ∩ μ(f ) for all f ∈ HP .

Then, the processor ProcsubColl given by

ProcsubColl(P,R, μ) =
⎧
⎨
⎩

{(PG,R, μ)} if (1) and (2) hold

{(P,R, μ)} otherwise

is sound and complete.

Proof. Completeness is obvious because PG ⊆ P . For soundness, we proceed by contradiction. Assume that there is an

infinite minimal (P,R, μ)-chain A but there is no infinite minimal (PG,R, μ)-chain. Since P is finite, we can assume that
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there isQ ⊆ P such that A has a tail Bwhich is an infinite minimal (Q,R, μ)-chain where all pairs inQ are infinitely often

used and Q contains some collapsing pair u → x ∈ QX . Assume that B is

t0 ↪→∗
R,μ s1

�
↪→Q,μ ◦ ��

μ t1 ↪→∗
R,μ s2

�
↪→Q,μ ◦ ��

μ t2 ↪→∗
R,μ · · ·

where there is a substitution σ such that, for all i � 1, si = σ(ui) for some ui → vi ∈ P , and

1. if vi 
∈ X , then ti = σ(vi),

2. if vi = xi ∈ X , then xi 
∈ Varμ(ui) and ti = r
�
i for some ri ∈ T (F,X ) such that σ(xi) = Ci[ri]pi for some Ci[ ]pi and

pi ∈ Posμ(Ci[ ]pi) such that sprefixCi[ ]pi (pi) ⊆ F and ri = θi(r̄i) for some r̄i ∈ NHT Q and substitution θi.

Since we can freely choose the starting term of B, w.l.o.g. we assume that t0 is a particular case of the second alternative

above, i.e., there is a collapsing pair u0 → x0 such that σ(x0) �μ r0 and t0 = r
�
0. Note that, for all i � 1, root(si) ∈ Root(P)

because root(ui) ∈ Root(P). Furthermore, for all i � 0, root(ti) ∈ Root(P) because:

1. If ui → vi ∈ QG , then root(vi) ∈ Root(P) and ti = σ(vi).

2. If ui → vi ∈ QX , then root(ti) ∈ D�; since ti ↪→∗
R,μ si+1 and D� ∩ F = ∅ (see Remark 4), rewritings withR cannot

remove the marked root symbol in ti; hence, we can further conclude root(ti) = root(si+1) ∈ Root(P).

Therefore, we can apply π to si+1 and ti for all i � 0. Moreover, since ti ↪→∗
R,μ si+1 for all i � 0 and Root(P) ∩ D = ∅, we

can actually write ti
>�

↪−→ ∗
R,μ si+1. Hence, π(ti) ↪→∗

R,μ π(si+1) and also root(ti) = root(si+1) for all i � 0.

Since u → x ∈ QX and B is infinite, it must be HQ 
= ∅ (hence HP 
= ∅). Thus, we have π(f �) ∈ μ(f ) for all

f ∈ HQ ⊆ HP . Then, since root(ti) = root(si+1) and all pairs in Q occur infinitely often in B, we can assume that

root(t0) = f . Furthermore, since A is minimal, we can assume that t0 is μ-terminating. We have that π(ui) �μ π(vi) for all
ui → vi ∈ Q. Now we distinguish two cases:

1. If ui → vi ∈ QG , then si = σ(ui) and ti = σ(vi). By stability of �μ we have π(si) �μ π(ti).

2. If ui → vi = ui → xi ∈ QX , then si = σ(ui) and there is a term ri, such thatσ(xi)�μ ri and r
�
i = ti. Sinceπ(ui)�μ xi,

by stability of �μ we have

π(si) = π(σ(ui)) = σ(π(ui)) �μ σ(xi) �μ ri.

Note that fi = root(ri) = root(r̄i) ∈ HP . Since π(ti+1) = ti|π(f
�
i )

= r
�
i |π(f

�
i )

= ri|π(f
�
i )

and π(f
�
i ) ∈ μ(fi), we have

that ri �μ π(ti) and thus π(si) �μ π(ti).

Therefore, by applying the simple projection π , the sequence B is transformed into an infinite ↪→R,μ ∪ �μ-sequence B′

π(t0) ↪→∗
R,μ π(s1) �μ π(t1) ↪→∗

R,μ π(s2) �μ π(t2) ↪→∗
R,μ · · ·

Since u → x occurs infinitely often in B, and by case (2) above, B′ contains infinitely many �μ steps, starting from π(t0).
Since �μ is well-founded, the infinite sequence must also contain infinitely many ↪→R,μ-steps. By making repeated use of

the fact that �μ ◦ ↪→R,μ ⊆ ↪→R,μ ◦ �μ, we obtain an infinite ↪→R,μ-sequence starting from π(t0). Thus, π(t0) is not

μ-terminating with respect toR. Since π(f �) ∈ μ(f �) and hence t0 �μ π(t0), this implies that t0 is not μ-terminating (use

Lemma 1(1)). This contradicts μ-termination of t0. Therefore, Q cannot contain collapsing pairs. This contradicts our initial

assumption u → x ∈ Q. �

Remark 13. The use of Theorem 13 only makes sense if P ⊆ PG ∪ P1
X . If u → x ∈ PX − P1

X for some u = f (u1, . . . , uk),
then for all i ∈ {1, . . . , k}, whenever x ∈ Var(ui) we have i ∈ μ(f ) and ui ��μ

x. Thus, there is no simple projection π such

that π(u) �μ x.

Example 24. Consider the following TRSR:

g(x, y) → f(x, y)

f(c(x), y) → g(x, g(y, y))

together with the replacement map μ given by μ(c) = μ(g) = {1} and μ(f) = ∅. The CSDPs are:
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G(x, y) → F(x, y) (33)

F(c(x), y) → G(x, g(y, y)) (34)

F(c(x), y) → x (35)

and all of them are part of the only SCC P = {(33), (34), (35)} in the CSDG of (R, μ). Note thatNHT P = {g(y, y)}; hence
HP = {g}. Consider the simple projection π given by π(F) = π(G) = 1. Note that π(G) ∈ μ�(G) ∩ μ�(g) as required by

Theorem 13. We have

• π(G(x, y)) = x �μ x = π(F(x, y))
• π(F(c(x), y)) = c(x) �μ x = π(G(x, g(y, y))),
• π(F(c(x), y)) = c(x) �μ x = π(x)

We use ProcsubColl to remove (35) from P and obtain a new problem ({(33), (34)},R, μ�). Then, ProcsubNColl applies and
yields ({(33)},R, μ�). With ProcSCC , we conclude the μ-termination ofR.

The following result provides a kind of generalization of the subterm criterion to simple projections that only take

non-μ-replacing arguments.

Theorem 14 (Non-μ-replacing projection processor). Let R = (F, R) = (C � D, R) and P = (G, P) be TRSs such that PG
contains no collapsing rule, Root(P)∩D = ∅, andμ ∈ MF∪G . Let� be a stable quasi-ordering on terms whose strict and stable

part > is well-founded and π be a simple projection for P such that

1. for all f ∈ Root(P), π(f ) 
∈ μ(f ),
2. π(P) ⊆ �,

3. whenever NHT P 
= ∅ and PX 
= ∅, we have that Embμ(F)⊆ � and t � t|π(root(t)�) for all t ∈ NHT P .

Let P> = {u → v ∈ P | π(u) > π(v)}. Then, the processor ProcNRP given by

ProcNRP(P,R, μ) =
⎧
⎨
⎩

{(P − P>,R, μ)} if (1), (2), and (3) hold

{(P,R, μ)} otherwise

is sound and complete.

Proof. Completeness is obvious because P−P> ⊆ P . For soundness, we proceed by contradiction. Assume that there is an

infinite minimal (P,R, μ)-chain A but there is no infinite minimal (P − P>,R, μ)-chain. Since P is finite, we can assume

that there is Q ⊆ P such that A has a tail B

σ(u1)
�

↪→Q,μ ◦ ��
μ t1 ↪→∗

R,μ σ (u2)
�

↪→Q,μ ◦ ��
μ t2 ↪→∗

R,μ · · ·
for some substitution σ and pairs ui → vi ∈ Q, and

1. if vi 
∈ X , then ti = σ(vi), and

2. if vi = xi ∈ X , then xi 
∈ Varμ(ui) and ti = s
�
i for some si such that σ(xi) = Ci[si]pi for some Ci[ ]pi and pi ∈

Posμ(Ci[ ]pi) such that sprefixCi[ ]pi (pi) ⊆ F and si = θi(s̄i) for some s̄i ∈ NHT P and substitution θi.

Furthermore, all pairs in Q are used infinitely often in B. As discussed in the proof of Theorem 12, for all i � 1, root(ti) ∈
Root(P), π(ti) ↪→∗

R,μ π(σ (ui+1)) and also root(ti) = root(ui+1) for all i � 1. No pair u → v ∈ Q satisfies that

π(u) > π(v). Otherwise, by applying the simple projection π to the sequence B, we get a contradiction as follows:

1. Sinceπ(f ) 
∈ μ(f ) for all f ∈ Root(Q), noμ-rewritings are possible on the subtermπ(ti) of ti. Therefore, for all i � 1,

π(ti) = π(σ(ui+1)) = σ(π(ui+1)).
2. Due to π(ui) � π(vi) and by stability of �, we have that π(σ(ui)) = σ(π(ui)) � σ(π(vi)). Now, we distinguish

two cases:

(a) If ui → vi ∈ QG , then π(ti) = π(σ(vi)) = σ(π(vi)). Thus, π(σ(ui)) � π(ti).
(b) If ui → vi ∈ QX , then σ(π(vi)) = σ(xi). We have that σ(xi) � si (because Embμ(F)⊆�). Let f = root(ui+1) =

root(ti) = root(s̄
�
i ). Since t � t|π(root(t)�) for all t ∈ NHT P , by stability, we have si = θi(s̄i) � θi(s̄i|π(f )) =

θi(s̄i)|π(f ) = si|π(f ). Since si|π(f �) = ti|π(f �) = π(ti), we have si � π(ti). Hence, π(σ(ui)) � π(ti).
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Thus, we always have π(σ(ui)) � π(ti). We obtain an infinite � sequence

π(σ(u1)) � π(t1) = π(σ(u2)) � π(t2) · · ·
Sincepairs inQoccur infinitely often, this sequence contains infinitelymany> steps starting fromπ(σ(u1)). This contradicts
the well-foundedness of >.

Therefore, Q ⊆ P − P>, i.e., B is an infinite minimal (P − P>,R, μ)-chain. This contradicts our initial assumption. �

Example 25. Consider the CS-TRS (R, μ) in Example 10. DP(R, μ) is:

G(x) → H(x) H(d) → G(c)

where μ�(G) = μ�(H) = ∅. The dependency graph contains a single cycle that includes both pairs. The only simple

projection is π(G) = π(H) = 1. Since π(G(x)) = π(H(x)), we only need to guarantee that π(H(d)) = d > c = π(G(c))
holds for a stable and well-founded ordering > (e.g., an RPO with d > c).

Theorem 15 (Non-μ-replacing projection processor II). Let R = (F, R) = (C � D, R) and P = (G, P) be TRSs such that PG
contains no collapsing rule, Root(P)∩D = ∅, andμ ∈ MF∪G . Let� be a stable quasi-ordering on terms whose strict and stable

part > is well-founded and let π be a simple projection for P such that

1. for all f ∈ Root(P), π(f ) 
∈ μ(f ),
2. π(P) ⊆ �,

3. whenever NHT P 
= ∅ and PX 
= ∅, we have that Embμ(F)⊆ � and t > t|π(root(t)�) for all t ∈ NHT P .

Then, the processor ProcNRP2 given by

ProcNRP2(P,R, μ) =
⎧
⎨
⎩

{(PG,R, μ)} if (1), (2), and (3) hold

{(P,R, μ)} otherwise

is sound and complete.

12. Narrowing transformation

The starting point of a proof ofμ-termination of a TRSR is the computation of the estimated CSDG,EDG(R, μ), followed

by the use of the SCC processor (Theorem 6). The estimation of the graph can lead to overestimating the arcs that connect

two CSDPs.

Example 26. Consider the following example [50, Proposition 7]:

f(0) → cons(0, f(s(0)))

f(s(0)) → f(p(s(0)))

p(s(x)) → x

together with μ(f) = μ(p) = μ(s) = μ(cons) = {1} and μ(0) = ∅. DP(R, μ) consists of the pairs:

F(s(0)) → F(p(s(0))) (36)

F(s(0)) → P(s(0)) (37)

The estimatedCS-dependency graph contains one cycle: {(36)}. However, this cycle does not belong to the CS-dependency

graph because there is no way to μ-rewrite F(p(s(0))) into F(s(0)).

As already observed by Arts and Giesl for the standard case [10], in our case, the overestimation comes when a (noncol-

lapsing) pair ui → vi is followed in a chain by a second one ui+1 → vi+1 and vi and ui+1 are not directly unifiable, i.e., at least

one μ-rewriting step is needed to μ-reduce σ(vi) to σ(ui+1). Then, we always have σ(vi) ↪→R,μ� σ (v′
i) ↪→∗

R,μ� σ (ui+1).

Then, v′
i is a one-step μ-narrowing of vi, and we could require ui � v′

i (which could be easier to prove) instead of ui � vi.

Furthermore, we could discover that vi has no μ-narrowings. In this case, we know that no chain starts from σ(vi).
We can bemore precise when connecting two pairs u → v and u′ → v′ in a chain if we perform all the possible one-step

μ-narrowings on v in order to develop the possible reductions from σ(v) to σ(u′). Then, we obtain new terms v1, . . ., vn,
which are one-step μ-narrowings of v using unifiers θi (i.e., v �R,μ,θi vi) for i ∈ {1, . . . , n}, respectively. These unifiers

are also applied to the left-hand side u of the pair u → v. Therefore, we can replace a pair u → v by all its (one-step)

μ-narrowed pairs θ1(u) → v1,…, θn(u) → vn.
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As in [10,35], a pair u → v ∈ P can only be replaced by its μ-narrowings if the right-hand side v does not unify with

any left-hand side u′ of a (possibly renamed) pair u′ → v′ ∈ P (note that this excludes pairs u → vwith v ∈ X ). Moreover,

the term vmust be linear. We need to demand linearity instead of (the apparently more natural)μ-linearity (i.e., something

like “no multiple μ-replacing occurrences of the same variable are allowed”).

Example 27. The following TRS is used in [10] to motivate the requirement of linearity.

f(s(x)) → f(g(x, x))

g(0, 1)) → s(0)

0 → 1

We make it a CS-TRS by adding a replacement map μ given by μ(f) = μ(s) = {1}, and μ(g) = {2}. The only cycle in

the CSDG consists of the CSDP

F(s(x)) → F(g(x, x)).

If linearity of the right-hand sides is not required for μ-narrowing CSDPs, then this pair will be removed, since F(g(x, x))
and the (renamed version of) the left-hand side F(s(x′)) do not unify. Thus, there are noμ-narrowings. However, the system

is not μ-terminating:

f(s(0)) ↪→ f(g(0, 0)) ↪→ f(g(0, 1)) ↪→ f(s(0)) . . .

Theproblem is that theμ-reduction fromσ(F(g(x, x))) toσ(F(s(x′))) takes place ‘inσ ’, and, therefore, it cannot be captured

by μ-narrowing. Note that F(g(x, x)) is “μ-linear”.

Another restriction to take into account whenμ-narrowing a noncollapsing pair u → v is that theμ-replacing variables

in v have to be μ-replacing in u as well (this corresponds with the notion of conservativeness). Furthermore, they cannot be

both μ-replacing and non-μ-replacing at the same time. This corresponds to the following definition.

Definition 14 (Strongly conservative [29]). Let R be a TRS and μ ∈ MR. A rule l → r is strongly μ-conservative if it is

μ-conservative and Varμ(l) ∩ Var�μ(l) = Varμ(r) ∩ Var�μ(r) = ∅.

The following result shows that, under these conditions, the set of CSDPs can be safely replaced by their μ-narrowings.

Theorem 16 (Narrowing processor). LetR and P be TRSs and μ ∈ MR∪P . Let u → v ∈ P be such that

1. v is linear,

2. for all u′ → v′ ∈ P (with possibly renamed variables), v and u′ do not unify.

Let Q = (P − {u → v}) ∪ {u′ → v′ | u′ → v′ is a μ-narrowing of u → v}. Then, the processor Procnarr given by

Procnarr(P,R, μ) =
⎧
⎨
⎩

{(Q,R, μ)} if (1) and (2) hold

{(P,R, μ)} otherwise
is

1. sound whenever u → v is strongly conservative,

2. complete in all cases.

Proof. The proof of this theorem is analogous to the proof of [35, Theorem 31], which we adapt here. For soundness, we

prove that given a minimal (P,R, μ)-chain “. . . , u1 → v1, u → v, u2 → v2, . . .”, there is a μ-narrowing v′ of v with

the mgu θ such that “. . . , u1 → v1, θ(u) → v′, u2 → v2, . . .” is also a minimal (Q,R, μ)-chain. Hence, every infinite

minimal (P,R, μ)-chain yields an infinite minimal (Q,R, μ)-chain.
If “. . . , u1 → v1, u → v, u2 → v2, . . .” is a minimal (P,R, μ)-chain, then there is a substitution σ such that for all

pairs s → t in the chain,

1. if s → t ∈ PG , then σ(t) is μ-terminating and it μ-reduces to the instantiated left-hand side σ(s′) of the next pair

s′ → t′ in the chain

2. if s → t = s → x ∈ PX then, σ(x) has a μ-replacing subterm s0, σ(x) �μ s0 such that s
�
0 is μ-terminating and

it μ-reduces to the instantiated left-hand side σ(s′) of the next pair s′ → t′ in the chain; furthermore, there is

s̄0 ∈ NHT (R, μ) such that s0 = θ0(s̄0) for some substitution θ0.
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Assumethatσ is a substitutionsatisfying theaboverequirementsandsuch that the lengthof thesequenceσ(v) ↪→∗
R,μ σ (u2)

is minimum. Note that the length of this μ-reduction sequence cannot be zero because v and u2 do not unify, that is,

σ(v) 
= σ(u2). Hence, there is a term q such that σ(v) ↪→R,μ q ↪→∗
R,μ σ (u2). We consider two possible cases:

1. The reduction σ(v) ↪→R,μ q takes place within a binding of σ , i.e., there is a term r, a μ-replacing variable position

p ∈ PosμX (v), and a μ-replacing variable x ∈ Varμ(v) such that v|p = x, q = σ(v[r]p) and σ(x) ↪→R,μ r. Since v

is linear, x occurs only once in v. Thus, q = σ ′(v) for the substitution σ ′ with σ ′(x) = r and σ ′(y) = σ(y) for all

variables y 
= x. As we assume that all occurrences of pairs in the chain are variable disjoint, σ ′(x) behaves like σ for

all pairs except u → v. We have σ(z) ↪→∗
R,μ σ ′(z) for all z ∈ X . Since u → v is strongly conservative, we also have

σ(u) ↪→∗
R,μ σ ′(u) because all occurrences of x in umust be μ-replacing. Hence, if u1 → v1 ∈ PG we have

σ ′(v1) = σ(v1) ↪→∗
R,μ σ (u) ↪→∗

R,μ σ ′(u)

and if u1 → v1 ∈ PX , then there is s1 ∈ T (F,X ) such that

σ ′(v1) = σ(v1) �μ s1 and s
�
1 ↪→∗

R,μ σ (u) ↪→∗
R,μ σ ′(u)

and, in both cases,

σ ′(v) = q ↪→∗
R,μ σ (u2) = σ ′(u2).

Note that, by minimality and because u → v ∈ PG , σ(v) is (R, μ)-terminating and, since σ(v) ↪→R,μ q, the term q

is (R, μ)-terminating as well. Therefore, σ ′(x) = q is (R, μ)-terminating and σ ′ satisfies the two conditions above.

Since the length of the sequence σ ′(v) ↪→∗
R,μ σ ′(u2) is shorter than the sequence σ(v) ↪→∗

R,μ σ (u2), we obtain a

contradiction and we conclude that the μ-reduction σ(v) ↪→R,μ q cannot take place in a binding of σ .

2. The reductionσ(v) ↪→R,μ q ‘touches’ v, i.e., there is a nonvariable position p ∈ PosμF (v), and a rewrite rule l → r ∈ R
such that σ(v|p) = ρ(l), for some substitution ρ and

σ(v) = σ(v)[σ(v|p)]p = σ(v)[ρ(l)]p ↪→R,μ σ (v)[ρ(r)]p = q

Sincewecanassume that variables in l are fresh,wecanextendσ to behave likeρ onvariables in l. Thus,σ(l) = σ(v|p),
i.e, l and v|p unify and there is a mgu θ and a substitution τ satisfying σ(x) = τ(θ(x)) for all variables x. We have that

v μ-narrows to θ(v)[θ(r)]p = v′ with unifier θ . Again, we can extend σ to behave like τ on the variables of θ(u) and

v′. Therefore, if u1 → v1 ∈ PG we have

σ(v1) ↪→∗
R,μ σ (u) = τ(θ(u)) = σ(θ(u))

and if u1 → v1 ∈ PX , then there is s1 ∈ T (F,X ) such that

σ(v1) = σ(x) �μ s1 and s
�
1 ↪→∗

R,μ σ (u) = τ(θ(u)) = σ(θ(u))

and

σ(v′) = τ(v′) = τ(θ(v))[τ(θ(r))]p = σ(v)[σ(r)]p = σ(v)[ρ(r)]p = q ↪→∗
R,μ σ (u2)

Hence, “. . . , u1 → v1, θ(u) → v′, u2 → v2, . . .” is also a minimal chain.

Completeness is also analogous to the ‘completeness’ part of [35, Theorem 31]. If (Q ,R, μ) is infinite and R is non-μ-

terminating, then (P,R, μ) is infinite as well. IfR is μ-terminating, then let “. . . , u1 → v1, θ(u) → v′, u2 → v2, . . .” be
an infinite minimal (Q,R, μ)-chain where v′ is a one-step μ-narrowing of v using the mgu θ . We prove that “. . . , u1 →
v1, u → v, u2 → v2, . . .” is an infinite minimal (P,R, μ)-chain. There is a substitution σ such that

σ(v1) ↪→∗
R,μ σ (θ(u)) if u1 → v1 ∈ PG , and

σ(v1) = σ(x) �μ s1 and s
�
1 ↪→∗

R,μ σ (θ(u)) if u1 → v1 ∈ PX
Finally, we also have

σ(v′) ↪→∗
R,μ σ (u2).
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Since the variables in the pairs are pairwise disjoint, we may extend σ to behave like σ(θ(x)) on x ∈ Var(u) then σ(u) =
σ(θ(u)) and therefore

σ(v1) ↪→∗
R,μ σ (u) if u1 → v1 ∈ PG , and

σ(v1) �μ s1 and s
�
1 ↪→∗

R,μ σ (u) if u1 → v1 ∈ PX

Moreover, by definition of μ-narrowing, we have θ(v) ↪→R,μ v′. This implies that σ(θ(v)) ↪→R,μ σ (v′), and since

σ(v) = σ(θ(v)), we obtain

σ(v) ↪→R,μ σ (v′) ↪→∗
R,μ σ (u2).

Since R is μ-terminating, σ(v) is (R, μ)-terminating. Hence, “. . . , u1 → v1, u → v, u2 → v2, . . .” is a minimal infinite

(P,R, μ)-chain as well. �

Example 28. Since the right-hand side of pair (36) in Example 26 does not unify with any (renamed) left-hand side of a

CSDP (including itself) and it can beμ-narrowed at position 1 (notice thatμ(f)={1}) by using the rule p(s(x)) → x, we can

replace it by its μ-narrowed pair:

F(s(0)) → F(0) (38)

Now, ProcSCC({(38)},R, μ) = ∅ and the μ-termination ofR is proved.

The following example shows that strong conservativeness cannot be dropped for the pair u → v to beμ-narrowed. This

requirement was not taken into account in [4, Theorem 5.3].

Example 29. Consider the following8 TRSR:

c(e(x)) → d(x, x)

a → e(a)

and P consisting of the following pair:

F(d(x, x)) → F(c(x))

together with μ(c) = μ(d) = μ(F) = {1} and μ(e) = ∅. There is an infinite (P,R, μ)-chain:

F(c(a)) ↪→R,μ F(c(e(a))) ↪→R,μ F(d(a, a)) ↪→P,μ F(c(a)) ↪→R,μ · · ·
Since F(c(x)) does not unify with any left-hand side of another pair, we canμ-narrow the pair inP . We obtainP ′ consisting
of the μ-narrowed pair

F(d(e(x), e(x))) → F(d(x, x))

No infinite (P ′,R, μ)-chain is possible now.Note thatP isμ-conservative, but it is not stronglyμ-conservative (the variable

x is both μ-replacing and non-μ-replacing in F(d(x, x))).

Remark 14 (Implementing the narrowing processor). In our current implementation, we apply the narrowing processor

only if, after computing the (one-step) μ-narrowings of the right-hand side v of a pair u → v ∈ P , the new CS-dependency

graph does not increase the number of arcs. More sophisticated strategies like (the corresponding adaptations of) the safe

transformations in [35, Definition 33] could be considered in the future.

13. Experiments

The processors described in the previous sections were implemented as part of the tool mu-term. We tested the CSDP-

framework in practice on the 90 examples in the Context-Sensitive Rewriting subcategory of the 2007 International Termi-

nation Competition:

http : //www.lri.fr/∼marche/termination − competition/2007/.

These 90 examples are part of the Termination Problem Data Base (TPDB, version 4.0):

http : //www.lri.fr/∼marche/tpdb/.

8 We thank Fabian Emmes for providing this example.
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Table 1

Comparison among CSR termination techniques.

Tool version Proved Total time Average time

CSDPs 65/90 0.31 s 0.00 s

CSRPO 37/90 0.21 s 0.00 s

Polynomial orderings 27/90 0.06 s 0.00 s

Transformations 56/90 5.59 s 0.10 s

We addressed this task in three different ways:

1. We compared CSDPs with previously existing techniques for proving termination of CSR.

2. We compared the improvements introduced by the different CS processors which have been defined in this paper.

3. We participated in the CSR subcategory of the 2007 International Termination Competition.

In the following subsections, we provide more details about this experimental evaluation.

13.1. CSDPs vs. other techniques for proving termination of CSR

Several methods have been developed to prove termination of CSR for a given CS-TRS (R, μ). Twomain approaches have

been investigated so far:

1. Direct proofs, which are based on using μ-reduction orderings (see [63]) such as the (context-sensitive) recursive

path orderings [12] and polynomial orderings [26,48,49]. These are orderings> on terms that can be used to directly

compare the left- and right-hand sides of the rules in order to conclude the μ-termination of the TRS.

2. Indirect proofs, which obtain a proof of the μ-termination of R as a proof of termination of a transformed TRS Rμ


(where  represents the transformation). If we are able to prove termination of Rμ
 (using the standard methods),

then the μ-termination ofR is ensured.

We usedmu-term to compare all these techniques with respect to the aforementioned benchmark examples. The results of

this comparison are summarized in Table 1.

Remark 15. A number of transformations  from TRSs R and replacement maps μ that produce TRSs Rμ
 have been

investigated by Lucas (transformation L [43]), Zantema (transformation Z [63]), Ferreira and Ribeiro (transformation FR

[22]), and Giesl and Middeldorp (transformations9 GM, sGM, and C [30,31]), see [31,50] for recent surveys about these

transformationswhichalso includea thoroughanalysis about their relativepower. All these transformationswere considered

in our experiments, so the item “Transformations” in Table 1 concentrates the joint impact of all of them.

From the benchmarks summarized in Table 1, we clearly conclude that the CSDP-framework is the most powerful tech-

nique for proving termination of CSR. Actually, all the examples that were solved by using CSRPO or polynomial orderings

were also solved using CSDPs. With regard to transformations, there is only one example (namely, Ex9_Luc06, which can

be solved by using transformation GM) that could not be solved with our current implementation.

Example30. The followingnonterminatingTRSR canbeused to compute the list of primenumbersbyusing thewell-known

Erathostenes sieve10 [30]:

primes → sieve(from(s(s(0))))

from(x) → cons(x, from(s(x)))

head(cons(x, y)) → x

sieve(cons(x, y)) → cons(x, filt(x, sieve(y)))

tail(cons(x, y)) → y

if(true, x, y) → x

if(false, x, y) → y

filt(s(s(x)), cons(y, z)) → if(div(s(s(x)), y), filt(s(s(x)), z), cons(y, filt(s(s(x)), z)))

9 The labels for these transformations correspond to the ones introduced in [50].
10 Without appropriate rules for defining symbol div, the TRS has no complete computationalmeaning. However, we take it here as given in [30] for the purpose

of comparing different techniques for proving termination of CSR by transformation.
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Table 2

Comparison among CS processors.

Tool version Narrowing Non-μ-replacing projection Subterm Proved Total time Average time

1 No No No 54/90 3.00 s 0.05 s

2 No No Yes 62/90 0.55 s 0.01 s

3 No Yes No 57/90 0.82 s 0.01 s

4 No Yes Yes 65/90 0.49 s 0.01 s

5 Yes No No 54/90 3.22 s 0.06 s

6 Yes No Yes 62/90 2.64 s 0.04 s

7 Yes Yes No 57/90 1.27 s 0.02 s

8 Yes Yes Yes 65/90 0.31 s 0.00 s

Consider the replacement map μ for the signature F given by:

μ(cons) = μ(if) = {1} and μ(f ) = {1, . . . , ar(f )} for all f ∈ F − {cons, if}.
From the termination point of view, this example is interesting because, since its introduction in Giesl and Middeldorp’s

paper [30], no automatic proof of termination has been reported. In sharp contrast, termination of CSR for this TRS and

replacement map μ is easily proved by using the techniques developed in this paper. In particular, the context-sensitive

dependency graph contains no cycle.

13.2. Contribution of the different CS processors

In our implementation of the CSDP-framework, besides processor ProcSCC , the subterm processors in Section 11 and the

μ-reduction-pair CS processors in Section 10 are the most frequently used (in this order). The impact of the CS processors

in Sections 11 and 12 is summarized in Table 2. Our benchmarks show that the CS processors described in Section 11 play

an important role in our proofs. The subterm processors ProcsubNColl and ProcsubColl are quite efficient, but the ones that

are based on simple projections for non-μ-replacing arguments (ProcNRP and ProcNRP2) also increase the power and the

speed of the CSDP technique. Furthermore, these two groups of CS processors are complementary: the extra problems that

are specifically solved by them are different. Narrowing is useful for simplifying the graph, but it does not play an important

role in the benchmarks because it is only applied to solve two examples (which can be solved without narrowing as well).

Furthermore, it must be used carefully because recomputing the graph can be expensive in that case. Complete details of

our experiments can be found here:

http : //zenon.dsic.upv.es/muterm/benchmarks/csdp/.

13.3. CSDPs at the 2007 International Termination Competition

In2007,AProVE [32]was theonly tool (besidesmu-term) implementing specificmethods forproving terminationofCSR.

BothAProVEandmu-termparticipated in theCSR subcategoryof the2007 International TerminationCompetition.AProVE
participated with a termination expert for CSR which, given a CS-TRS (R, μ), successively tries different transformations

 for proving termination of CSR (which are enumerated in Remark 15, i.e.,  ∈ {C, FR,GM,L, sGM,Z}). It then uses a huge

variety of different and complementary techniques to prove termination of rewriting (according to the DP-framework) on

the obtained TRSRμ
. Actually,AProVE is currently themost powerful tool for proving termination of TRSs and implements

most existing results and techniques regarding DPs and related techniques.

However,mu-term’s implementation of CSDPswas able to beatAProVE in the CSR category (mu-termwas able to prove

68 of the 90 examples; AProVE proved 64), thus demonstrating that CSDPs are actually a very powerful technique for

proving termination of CSR.

14. Related work

The first presentation of the context-sensitive dependency pairs was given in [3]. This paper is an extended and revised

version of [3,4]. We provide complete proofs for all results, 11 and also present many examples about the use of the theory.

The main conceptual differences between [3,4] and this paper are the following:

1. In this paper, we have investigated two different notions of minimal non-μ-terminating terms: the so-called strongly

minimal terms (T∞,μ, which are introduced in this paper) and the minimal terms (M∞,μ), which were introduced in

[3] and further investigated in [4]. The combined use of these notions leads to a better development of the theory. This

has brought new essential results, remarkably Theorem 1, which is the basis (at the level of pure context-sensitive

rewriting) of the new notions of CSDP and minimal chain.

11 We report and fix some bugs in previous papers.
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Fig. 6. Context-sensitive dependency graph of Example 1 following [3].

2. Although most of the ideas in this first part of the paper (Section 3) were present in [4, Section 3], we make some

aspects explicit that were only implicit there. For instance, the essential notion of hidden term (a consequence of

Lemma 5 which is further developed in Lemma 6 and Proposition 4) was implicit in [4, Section 3], but only the notion

of hidden symbolwas made explicit. Actually, the proofs of the aforementioned results in this paper correspond (with

minor changes) to those of Lemmas 3.4 and 3.5, and Proposition 3.6 in [4], respectively.

3. The notion of context-sensitive dependency pairswas first introduced in [3, Definition 1], but the narrowing condition

that we have now included for the noncollapsing CSDPs is new. This condition is inspired in the recent extension of

the DP-method to Order-Sorted TRSs [53]. In this paper, we have elaborated it in depth to show that it is actually a

natural requirement (see Section 3.4). In [53], it has already been shown that including ‘narrowability’ in the usual

definition of dependency pair can be useful to automatically prove termination of rewriting. Similar considerations

are valid for CSR.

4. In [3], a notion ofminimal chainwas introduced but not really used in themain results. Actually, the notion ofminimal

chain in this paper is completely different from the old one and is a consequence of the analysis of infinite μ-rewrite

sequences developed in Section 3. Furthermore, in this paper, the notion of minimal chain of pairs is essential for the

definition of the context-sensitive dependency graph and the development of the CSDP-framework in Section 7.

5. The notion of context-sensitive dependency graph was first introduced in [3] and further refined in [4] thanks to the

introduction of the hidden symbols. The definition in this paper introduces a new refinement through the notion of

‘narrowable hidden term’ and shows a nice symmetry between the arcs associated to noncollapsing and collapsing

pairs. Furthermore, the newdefinition leads to a great simplification of the computed graph: for the CS-TRS in Example

1, compare the graph in Fig. 6 (corresponding to [3]) with the new graph in Fig. 5.

6. The estimation of the CSDG in [3,4]was an adaptation of the one by Arts and Giesl [10] to the context-sensitive setting.

In this paper,we have defined a newestimation of the CSDGon the basis of themost recent proposal byGiesl et al. [34].

7. The definition of a CSDP-framework for the mechanization of proofs of termination of CSR using CSDPs is new. A

number of processors introduced here had a kind of counterpart in [3] (for instance, the use ofμ-reduction orderings

was formalized in [3, Theorem 4] and the subterm criterion for noncollapsing pairs was formalized in [3, Theorem 5])

or in [4] (for instance, the narrowing transformation in [4, Theorem 5.3]), but they were not formulated as processors.

8. This paper introduces a number of new processors that can be used for proving termination of CSR: the SCC proces-

sor, 12 the processors for filtering or transforming collapsing pairs (see Section 9), the use of argument filterings, 13

the use of the subterm criterion with collapsing pairs (Theorem 13), etc.

9. Finally, for thefirst time,wehave consideredhowtodisprove terminationofCSRwithin theCSDP framework (processor

ProcInf in Theorem 5).

14.1. CSDPs vs. DPs and a piece of history

The first attempt to develop a theory of dependency pairs for CSR started more than 10 years ago when the third author

of this paper asked Thomas Arts (who was preparing the first presentation of the dependency pair method [9]) about the

possibility of extending the dependency pair approach to CSR. Arts immediately noticed that themain problem of extending

the existing results for ordinary rewriting to CSR was the possibility of having variables that are not replacing in the left-

hand sides of the rules but that become replacing in the corresponding right-hand side. This is what we now call migrating

variables. After this first failed attempt, the focusmoved to transformations of CS-TRSs (R, μ) into ordinary TRSsRμ
 (where

 represents the transformation) in such a way that termination of Rμ
 implies the μ-termination ofR [31,50].

12 This is mentioned in [3, Section 4.2] but without any formal description.
13 This was briefly mentioned at the end of [3, Section 4.2] but was never formalized.
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During the spring of 2006, mu-term was being revised in preparation for its participation in the 2006 International

Termination Competition, which was organized by Claude Marché. The idea of adapting DPs to CSR came up again. A

first correct version of context-sensitive dependency pairs that did not at the time consider collapsing pairs was the

following:

Definition 15 (First preliminary version of CSDPs). LetR = (F, R) = (C � D, R) be a TRS and μ ∈ MR. Let

DP1(R, μ) =
{
l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l 
�μ s

}

∪
{
l� → MUSUBTERM(x) | l → r ∈ R, x ∈ Varμ(r) − Varμ(l)

}

∪ {MUSUBTERM(f (x1, . . . , xk)) → MUSUBTERM(xi) | f ∈ F, i ∈ μ(f )}
∪ {MUSUBTERM(f (x1, . . . , xk)) → f �(x1, . . . , xk) | f ∈ D}

with μ�(f ) = μ(f ) if f ∈ F , μ�(f �) = μ(f ) if f ∈ D, and μ�(MUSUBTERM) = ∅.

We handle migrating variables x by enclosing them inside a term MUSUBTERM(x) which (after instantiating x by means

of a substitution σ ) would be able to start the search for a μ-replacing subterm s = f (s1, . . . , sk) which (after marking its

root symbol f as f �) is able to connect with the left-hand side of the next CSDP in a sequence. The notion of chain of CSDPs

that was used here was essentially the standard one. All pairs were treated in the very same way and the only difference

was that pairs were connected by using CSR instead of ordinary rewriting.

The implementation of the CSDPs in Definition 15 did not work very well in practice. The structure of pairs which dealt

with migrating variables introduced many arcs in the corresponding graph and, therefore, many cycles. Thus, the following

proposal was considered instead.

Definition 16 (Second preliminary version of CSDPs). LetR = (F, R) = (C�D, R) be a TRS andμ ∈ MR. LetDP2(R, μ) =
DP2,F (R, μ) ∪ DP2,X (R, μ) where:

DP2,F (R, μ) =
{
l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l 
�μ s

}

DP2,X (R, μ) =
{
l� → Ul,f ,x(x) | l → r ∈ R, f ∈ D, x ∈ Varμ(r) − Varμ(l)

}

∪ {Ul,f ,x(f (x1, . . . , xk)) → f �(x1, . . . , xk) | l → r ∈ R, f ∈ D, x ∈ Varμ(r) − Varμ(l)}
and μ�(f ) = μ(f ) if f ∈ F , μ�(f �) = μ(f ) if f ∈ D, and μ�(Ul,f ,x) = {1} for all rules l → r, symbols f , and variables x

originating one of these symbols.

Here, migrating variables x are enclosed inside a term Ul,f ,x(x) which (after instantiating x by means of a substitution

σ ) would be able to connect any μ-replacing subterm s = f (s1, . . . , sk) (with f a defined symbol) with the left-hand side

of the next CSDP in a sequence. Note that no explicit μ-replacing subterm search is possible with this new definition of

CSDP. Instead, this requirement was moved to the definition of chain. Now, although these dependency pairs still remain as

the ‘traditional ones’, a clear distinction wasmade between two kinds of CSDPs: those that were obtained from the nonvariable

parts of the right-hand sides of the rules (DP2,F (R, μ) inDefinition16) and those thatwere introduced to treat themigrating

variables (DP2,X (R, μ) in Definition 16). Both kinds of CSDPs were clearly distinguished in the new definition of chain and

the μ-subterm requirement was used to describe how chains of such CSDPs are built.

A version of mu-term that implemented the CSDPs in Definition 16 was submitted for participation in the Context-

Sensitive (sub)category of the 2006 International Termination Competition (June 2006). We are grateful to Claude Marché

for providing a copy of the folder where the mu-term outcome was stored. It is now available at the following URL:

http : //zenon.dsic.upv.es/muterm/benchmarks/ic10/muterm − 2006/benchmarks.html

A further evolution led to the definition of CSDP which was finally published in [3]. In sharp contrast to the standard

dependency pair approach, where all dependency pairs have tuple symbols f � both in the left- and right-hand sides, we

finally took the definitive step to also consider collapsing pairs having a single variable in the right-hand side as the most

elegant, concise and expressive way to reflect the effect of the migrating variables in the termination behavior of CSR. This

is one of the most important and original contributions of the paper.

15. CSDPs vs. noncollapsing CSDPs

In [1], a transformation of collapsing pairs into ‘ordinary’ (i.e., noncollapsing) pairs is introduced. The transformation

uses the following notion.
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Definition 17 (Hiding context [1, Definition 7]). Let R be a TRS and μ ∈ MR. The function symbol f hides the argument i if

there is a rule l → r ∈ Rwith r�
�μ
f (r1, . . . , ri, . . . , rn), i ∈ μ(f ), and ri contains a defined symbol or a variable at an active

position. A context C is hiding iff C = � or C has the form f (t1, . . . , ti−1, C
′, ti+1, . . . , tn)where f hides the argument i and

C′ is a hiding context.

The notion of CSDPs that is given in [1] is the following:

Definition 18 [1, Definition 9]. LetR be a TRS and μ ∈ MR. If DPX (R, μ) 
=∅, we introduce a fresh unhiding tuple symbol

U and the following unhiding DPs:

• s → U(x) for every s → x ∈ DPX (R, μ),
• U(f (x1, . . . , xi, . . . , xn)) → U(xi) for every function symbol f of any arity n and every 1 ≤ i ≤ nwhere f hides position i,

• U(t) → t� for every hidden term t.

Let DPu(R, μ) be the set of all unhiding DPs (where DPu(R, μ) = ∅ whenever DPX (R, μ) = ∅). Then DP′(R, μ) =
DPF (R, μ) ∪ DPu(R, μ).

The correspondingdefinitionof chain is, essentially, the standardone [10], butμ-rewriting (withR) is used for connecting

pairs.

Definition 19 [1, Definition 11]. Let P and R be TRSs and let μ be a replacement map. We extend μ to tuple symbols by

definingμ(f �) = μ(f ) for all f ∈ D andμ(U) = ∅. A sequence of pairs u1 → v1, u2 → v2, . . . fromP is a (P,R, μ)-chain
if there is a substitution σ with σ(vi) ↪→∗

R,μ σ (ui+1) and σ(vi) is (R, μ)-terminating for all i.

Using these definitions, a characterization of termination of CSR is given.

Theorem 17 [1, Theorem 12]. A TRSR is μ-terminating if and only if there is no infinite (DP′(R, μ),R, μ)-chain.

On the basis of these definitions and results, Alarcón et al. [1, Section 4] develop a CSDP framework.

15.1. Comparing CSDPs and noncollapsing CSDPs

As discussed in Section 14.1, the idea of providing a definition of CSDPs that does not use collapsing pairs cannot be

considered as themain contribution of [1]: in 2006 there was an implementation of CSDPs without collapsing pairs (namely

the one which corresponds to Definition 16). Actually, Definition 18 is very close to Definition 15 (i.e., the first correct notion

of CSDP developed in 2006) if we write U instead of MUSUBTERM in Definition 15. The crucial differences between Definition

15 and Definition 18 are the use of hiding contexts (Definition 17) and the use of hidden terms (Definition 3). As discussed

in [1, Section 3], the notion of hiding context is a refinement of the notion of hidden term described in this paper (and

previously approached in [4]), see Section 3.2.

Indeed, the notion of hiding context is the most important contribution of [1] from the theoretical side. The notion of

hiding context can be easily integrated in the CSDP frameworkdiscussed in this paper. This has been carried out in [27,28,37],

where an extension of our CSDP frameworkwas developed to appropriately integrate this notion.Within this new approach,

Definition 18 could be incorporated to the CSDP framework by using the following modified version of Theorem 8, which

defines the appropriate CS processor.

Theorem 18. LetR = (F, R) and P = (G, P) be TRSs and μ ∈ MF∪G . Let u → x ∈ PX and

Pu = {u → U(x)}
∪ {U(f (x1, . . . , xk)) → U(xi) | f ∈ F, 1 � i � ar(f ) and f hides i}
∪ {U(t) → t� | t ∈ NHT P}

where U is a fresh symbol. Let P ′ = (G ∪ {U}, P′), where P′ = (P − {u → x}) ∪ Pu, and μ′ which extends μ by μ′(U) = ∅.

Then, the processor ProchCtx given by

ProchCtx(P,R, μ) = {(P ′,R, μ′)}
is sound and complete.

The proof of this result would be analogous to the one for Theorem 8 with the proviso, in our definition of chain of pairs

(Definition 5), that the contexts Ci[ ]pi which are used for handling collapsing pairs are now hiding contexts. In contrast to
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Fig. 7. Context-sensitive dependency graph of Example 1 according to [1].

processorProceColl in Theorem8,ProchCtx has the advantage of introducing fewer rules due to the use of the notion of hiding

in Definition 17. Obviously, this could lead to simpler proofs when it is used.

In this paper, we have shown that collapsing pairs are an essential part of the theoretical description of termination of

CSR. Actually, Definition 18 explicitly uses them to introduce the new unhiding pairs. This shows that the most basic notion

whenmodeling the termination behavior of CSR is that of collapsing pair and that unhiding pairs should be better considered

as an ingredient for handling collapsing pairs in proofs of termination (as implemented by processor ProchCtx above).

15.2. Use of CSDPs and noncollapsing CSDPs

The application of Definition 18 at the very beginning of the termination analysis of CS-TRSs (as done in [1]) often leads

to obtaining a more complex dependency graph. For instance, we would replace the collapsing CSDPs (25) and (26) by the

following ones:

TAIL(cons(x, xs)) → U(xs) (39)

TAKE(s(n), cons(x, xs)) → U(xs) (40)

U(incr(x)) → U(x) (41)

U(incr(oddNs)) → INCR(oddNs) (42)

U(oddNs) → ODDNS (43)

U(rep2(x)) → U(x) (44)

U(zip(x, y)) → U(x) (45)

U(zip(x, y)) → U(y) (46)

U(cons(x, y)) → U(x) (47)

to obtain the graph in Fig. 7, which should be compared with the CSDG for the same example in Fig. 5. On the other hand,

if P contains no collapsing pairs (as happens if Definition 18 is used to compute the dependency pairs of a CS-TRS), then

Definition 19 is subsumed by our notion of chain of pairs (Definition 5). This means that, after using processor ProceColl in
Theorem 8 to remove collapsing pairs in the componentP of a CS problem (P,R, μ),we could use all CS processors developed

in [1], some of which have not been discussed in our paper (for instance, the instantiation processor [1, Theorem 24]). Also,

the CS processors that are developed here can be used in any implementation following [1].

Remark 16. Note that, although the definition of chain in [1] (see Definition 19) is apparently closer to the standard one [35,

Definition 3], this does not mean that we can use or easily ‘translate’ existing DP-processors (see [35]) to be used with CSR.

The narrowing processor provides a striking example. Example 29 shows that the application of the narrowing processor

to the TRSs P and R in the example is not correct due to the lack of strong μ-conservativeness of the μ-narrowed pair in P .
Since P has no collapsing pair, one could think (following a naïve interpretation of [1]) that the narrowing processor of the

DP-framework (see [35, Theorem 31]), which does not take into account the replacement restrictions, should work with CSR

without difficulties, which is not the case.
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Table 3

Summary of processors used in mu-term-IC.

Processors Applied in

SCC processor (Section 8) 94/94 problems

Processors based on subterm criteria (Section 11) 56/94 problems

Processors based on reduction pairs (Section 10) 50/94 problems

Basic processors (Section 7) 28/94 problems

Narrowing processor (Section 12) 3/94 problems

Thus, a CSDP framework that is based on Definitions 18 and 19 does not boil down to the DP-framework, and a careful

consideration of the replacement restrictions is necessary before being able to use any DP-processor with CSR.

15.3. Experimental evaluation

We have performed an experimental evaluation of the use of CSDPs vs. the ones in Definition 18 as follows: we prepared

two versions ofmu-term:mu-term-LPAR08 andmu-term-IC. The toolmu-term-LPAR08 first applies Theorem 18 to remove

all collapsing pairs (as one would do when working within the approach described in [1]) and then uses the CS processors

described in both this paper and in [1] to achieve termination proofs. On the other hand,mu-term-IC implements the CSDP

framework that we have described here (with the modifications developed in [27,28,37]).

On a collection of 109 examples, both tools succeeded on the very same ones (94 proofs of termination). However,

mu-term-IC performed globally faster. Furthermore, we did not need to use ProchCtx in the proofs with mu-term-IC. This

suggests that (in contrast towhatwe claimed in [1]when the integration of the notion of hiding context into the CSDP frame-

work was pending), collapsing pairs do not represent any drawback for automatically proving termination of CSR. Detailed

benchmarks are at the following URL: http://zenon.dsic.upv.es/muterm/benchmarks/ic10/muterm-2009/benchmarks.html

Table 3 shows the use of the different processors in these benchmarks. The interpretation of the frequency of use for the

different processors should take into account the following strategy for invoking them inmu-term-IC when CS problems are

treated: first, we try the basic (infinite and finite) processors. If some of them succeed, we are done; otherwise, we continue

as follows:

1. SCC processor.

2. Subterm criterion processors.

3. Reduction pair (RP) processors with polynomial and matrix interpretations over the reals [6,7,49,51].

4. Narrowing processor.

Interestingly, all processors are used at least once during the proofs.

16. Conclusions

Wehave analyzed the structure of infinite context-sensitive rewrite sequences starting fromminimal non-μ-terminating

terms (Theorem 1). This knowledge is used to provide an appropriate definition of context-sensitive dependency pair (Defi-

nition 4), and the related notion of chain (Definition 5). In sharp contrast to the standard dependency pair approach, where

all dependency pairs have tuple symbols f � in both the left- and right-hand sides, we have collapsing dependency pairs that

have a single variable in the right-hand side. These variables reflect the effect of the migrating variables on the termination

behavior of CSR. At the level of minimal chains, however, the contrast with the ordinary DP approach is somehow recovered

by a nice symmetry arising from the central notion of hidden term (Definition 3): a noncollapsing pair u → v is followed by

a pair u′ → v′ if σ(v) μ-rewrites into σ(u′) for some substitution σ ; a collapsing pair u → v is followed by a pair u′ → v′
if there is a hidden term t such that σ(t)� μ-rewrites into σ(u′) for some substitution σ . We have shown how to use the

context-sensitive dependency pairs in proofs of termination of CSR. As in Arts and Giesl’s approach, the absence of infinite

minimal chains of dependency pairs from DP(R, μ) characterizes the μ-termination ofR (Theorems 2 and 3).

We have provided a suitable adaptation of the dependency pair framework to CSR by defining appropriate notions of CS

problem (Definition 6) and CS processor (Definition 7).We have described a number of sound and (most of them) complete CS

processors that can be used in any practical implementation of the CSDP-framework. In particular, we have introduced the

notion of (estimated) context-sensitive (dependency) graph (Definitions 8 and 10) and the associated CS processor (Theorem

6). We have also described some CS processors for removing or transforming collapsing pairs from CS problems (Theorems

7 and 8). We are also able to use μ-reduction pairs (Definition 11) and argument filterings to ensure the absence of infinite

chains of pairs (Theorems 9, 10, and 11). We have adapted Hirokawa and Middeldorp’s subterm criterion which permits

concluding the absence of infinite minimal chains by paying attention only to the pairs in the corresponding CS problem

(Theorems 12 and 13). Following this appealing idea, we have also introduced two new processors that work in a similar

way but use a very basic kind of ordering instead of the subterm relation (Theorems 14 and 15). Narrowing context-sensitive

dependency pairs have also been investigated. It is helpful to simplify or restructure the dependency graph and eventually

simplify the proof of termination (Theorem 16).
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We have implemented these ideas as part of the termination toolmu-term [2,47]. The implementation and practical use

of the developed techniques yield a novel and powerful framework that improves the current state-of-the-art of methods

for proving termination of CSR. Actually, CSDPs were an essential ingredient for mu-term in winning the context-sensitive

subcategory of the 2007 competition of termination tools.

For future work, we plan to extend the basic CSDP-framework described in this paper with further CS processors inte-

grating the usable rules for CSR [29] and proofs of termination of innermost CSR using CSDPs [5].
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Appendix A

A.1. Proofs of Section 3

Lemma 2. Let R = (F, R) be a TRS, μ ∈ MF , and s ∈ T (F,X ). If s is not μ-terminating, then there is a subterm t of s (s � t)

such that t ∈ T∞,μ.

Proof. By structural induction. If s is a constant symbol, it is obvious: take t = s. If s = f (s1, . . . , sk), then we proceed by

contradiction. If there is no subterm t of s such that t ∈ T∞,μ, then s 
∈ T∞,μ. Since s is not μ-terminating, there is a strict

subterm t of s (s � t) that is not μ-terminating. By the Induction Hypothesis, there is t′ ∈ T∞,μ such that t � t′. Then, we

have s � t′, thus leading to a contradiction. �

Lemma 3. LetR = (F, R) be a TRS, μ ∈ MF , and s ∈ T (F,X ). If s is not μ-terminating, then there is a μ-replacing subterm t

of s such that t ∈ M∞,μ.

Proof. By structural induction. If s is a constant symbol, it is obvious: take t = s. If s = f (s1, . . . , sk), then we proceed

by contradiction. If there is no μ-replacing subterm t of s such that t ∈ M∞,μ, then s 
∈ M∞,μ, i.e., there is a strict

μ-replacing subterm t of s which is not μ-terminating. We have t = s|p for some p ∈ Posμ(s) − {�}. By the Induction

Hypothesis, t contains a μ-replacing subterm t′ which belongs toM∞,μ, i.e., t
′ = t|q for some q ∈ Posμ(t). By Proposition

1, p · q ∈ Posμ(s). Thus, t′ is a μ-replacing subterm of s that belongs toM∞,μ, thus leading to a contradiction. �

Lemma 4. LetR be a TRS, μ ∈ MR, and t ∈ M∞,μ. If t
>�

↪−→ ∗ u and u is non-μ-terminating, then u ∈ M∞,μ.

Proof. Allμ-rewritings belowof t the root are issued onμ-replacing andμ-terminating terms that remainμ-terminating by

Lemma1. Then, all strictμ-replacing subtermsofu (which are theones that canbeoriginatedor transformedbyμ-rewritings

from t to u) are μ-terminating. Since u is non-μ-terminating, u ∈ M∞,μ. �

16.1. Proofs of Section 3.2

Lemma 5. LetR = (F, R) be a TRS and μ ∈ MF . Let t ∈ T (F,X ) and σ be a substitution. If there is a rule l → r ∈ R such that

σ(l) � t and σ(r) �
�μ
t, then there is no x ∈ Var(r) such that σ(x) � t. Furthermore, there is a term t′ ∈ HT such that r �

�μ
t′

and σ(t′) = t.

Proof. By contradiction. If there is x ∈ Var(r) such that σ(x) � t, then since variables in l are always below some function

symbol we have σ(l) � t, leading to a contradiction.

Since there is no x ∈ Var(r) such thatσ(x)�t butwehave thatσ(r)�
�μ
t, then there is a nonvariable andnon-μ-replacing

position p ∈ PosF (r) − Posμ(r) of r, such that σ(r|p) = t. Then, we let t′ = r|p. Note that t′ ∈ HT . �

Lemma 6. Let R be a TRS and μ ∈ MR. Let A be a μ-rewrite sequence t1 ↪→ t2 ↪→ · · · ↪→ tn with ti ∈ M∞,μ for

all i, 1 � i � n. If there is a term t ∈ M∞,μ such that t1 � t and tn �
�μ

t, then t = σ(s) for some s ∈ DHT and

substitution σ .

Proof. By induction on n:

1. If n = 1, then it is vacuously true because t1 � t and t1 �
�μ
t do not simultaneously hold.
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2. If n > 1, then we assume that t1 � t and tn �
�μ
t. We consider two cases:

(a) If tn−1 �
�μ
t, then by the induction hypothesis the conclusion follows.

(b) If tn−1��μ
t does not hold, then, since assuming tn−1 �μ t leads to a contradiction (because tn−1 ∈ M∞,μ in the

hypothesis implies that t /∈ M∞,μ), we have that tn−1 � t. Let l → r ∈ R be such that tn−1 = C[σ(l)] and
tn = C[σ(r)] for some context C[ ] and substitution σ . Then, in particular, σ(l) � t and, since tn �

�μ
t there must

be σ(r)�
�μ
t. Thus, by Lemma 5we conclude that t = σ(s) for some s ∈ HT and substitution σ . Since t ∈ M∞,μ,

it follows that root(t) = root(s) ∈ D. Thus, s ∈ DHT . �

Proposition 4. Let R be a TRS and μ ∈ MR. Consider a finite or infinite sequence of the form t1
�

↪→ s1 �μ t′2
>�

↪−→ ∗ t2
�

↪→
s2 �μ t′3

>�

↪−→ ∗ t3 · · · with tj, t
′
j ∈ M∞,μ for all j ≥ 1. If there is a term t ∈ M∞,μ such that ti ��μ

t for some i ≥ 1, then

t1 �
�μ
t or t = σ(s) for some s ∈ DHT and substitution σ .

Proof. By induction on i:

1. If i = 1, it is trivial.

2. If i > 1 and ti ��μ
t, then we consider two cases:

(a) If ti−1 �
�μ
t, then by the induction hypothesis, the conclusion follows.

(b) If ti−1 �
�μ
t does not hold, then let l → r ∈ R and σ be such that ti−1 = σ(l) and si−1 = σ(r) �μ t′i . Since

ti−1 �μ t leads to a contradiction (because ti−1 ∈ M∞,μ implies that t /∈ M∞,μ), we have that ti−1 � t. We

consider two cases:

(A) If t′i � t, then, since t′i , t ∈ M∞,μ, the case t′i �μ t is excluded and the only possibility is that t′i �
�μ
t. Then,

since σ(l) = ti−1 � t and σ(r) �μ t′i ��μ
t, i.e., σ(r) �

�μ
t, by Lemma 5 we conclude that t = σ(s) for some

s ∈ HT and substitution σ . Since t ∈ M∞,μ, it follows that root(t) = root(s) ∈ D. Thus, s ∈ DHT .
(B) If t′i � t, then, by applying Lemma 4 and Lemma 6 to the μ-rewrite sequence t′i

>�
↪−→ ∗

R,μ ti, the conclusion

follows. �
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for A∨C-Termination. In P. Ölveczky, editor, Proc. of 8th International
Workshop on Rewriting Logic and its Applications, WRLA’10, volume 6381 of
Lecture Notes in Computer Science, pages 35–51. Springer-Verlag, 2010.



A Dependency Pair Framework for

A∨C-Termination!

Beatriz Alarcón1, Salvador Lucas1, and José Meseguer2
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Abstract. The development of powerful techniques for proving termi-
nation of rewriting modulo a set of equations is essential when dealing
with rewriting logic-based programming languages like CafeOBJ, Maude,
OBJ, etc. One of the most important techniques for proving termination
over a wide range of variants of rewriting (strategies) is the dependency
pair approach. Several works have tried to adapt it to rewriting modulo
associative and commutative (AC) equational theories, and even to more
general theories. However, as we discuss in this paper, no appropriate
notion of minimality (and minimal chain of dependency pairs) which is
well-suited to develop a dependency pair framework has been proposed to
date. In this paper we carefully analyze the structure of infinite rewrite
sequences for rewrite theories whose equational part is a (free) combina-
tion of associative and commutative axioms which we call A∨C-rewrite
theories. Our analysis leads to a more accurate and optimized notion of
dependency pairs through the new notion of stably minimal term. Then,
we have developed a suitable dependency pair framework for proving
termination of A∨C-rewrite theories.

Keywords: equational rewriting, termination, dependency pairs.

1 Introduction

Rewriting with rules R modulo axioms E is a widely used technique in both rule-
based programming languages and in automated deduction. Consequently, termi-
nation of rewriting modulo specific axioms E (e.g., associativity-commutativity,
AC) has been studied. Methods for proving termination of rewriting systems
modulo AC-axioms are known and even implemented. Several works have tried
to adapt the dependency pair approach (DP-approach [1]) to rewriting modulo
associative and commutative (AC) theories [13,9,10,11,14]. The corresponding
proof methods, though, cannot be applied to commonly occurring combinations
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36 B. Alarcón, S. Lucas, and J. Meseguer

fmod LIST&SET is

sorts Bool Nat List Set .

subsorts Nat < List Set .

ops true false : -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _;_ : List List -> List [assoc] .

op null : -> Set .

op __ : Set Set -> Set [assoc comm] .

op _in_ : Nat Set -> Bool .

op _==_ : List List -> Bool [comm] .

op list2set : List -> Set .

var B : Bool . vars N M : Nat .

vars L L’ : List . var S : Set .

eq N N = N .

eq true and B = B . eq false and B = false .

eq true or B = true . eq false or B = B .

eq 0 == s N = false . eq s N == s M = N == M .

eq N ; L == M = false . eq N ; L == M ; L’ = (N == M) and L == L’ .

eq L == L = true .

eq list2set(N) = N . eq list2set(N ; L) = N list2set(L) .

eq N in null = false . eq N in M S = (N == M) or N in S .

endfm

Fig. 1. Example in Maude syntax [3]

of axioms that fall outside their scope. For instance, they could not be applied
to prove termination of the TRS in Figure 1, (specified in Maude with self-
explanatory syntax; we would not care about sort information here) where we
have a (free) combination of associative and commutative axioms which we call
an A∨C-rewrite theory in this paper. Furthermore, the Dependency Pair Frame-
work (DP-framework [6]), which is the basis of state-of-the-art tools for proving
termination of (different variants of) term rewriting has not yet been adapted
to the AC case.

In this paper, we address these two problems. Giesl and Kapur generalized
the previous works on AC-termination with dependency pairs to deal with more
general kinds of equational theories E satisfying some restrictions [5]. In princi-
ple, the A∨C-theories that we are going to investigate here fit Giesl and Kapur’s
approach. However, as we discuss below, they did not provide any definition of
minimal chain needed for further developments in the DP-framework. In the
DP-framework, the central notion regarding termination proofs is that of DP
problem: the goal is checking the absence (or presence) of the so-called infinite
minimal chains, where the notion of minimal chain can be thought as an ab-
straction of the infinite rewrite sequences starting from minimal non-terminating
terms. The most important notion regarding mechanization of the proofs is that
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of processor. A (correct) processor basically transforms DP problems into (hope-
fully) simpler ones, in such a way that the existence of an infinite chain in the
original DP problem implies the existence of an infinite chain in the transformed
one. Here ‘simpler’ usually means that fewer pairs are involved. Processors are
used in a pipe (more precissely, a tree) to incrementally simplify the original
DP problem as much as possible, possibly decomposing it into smaller pieces
which are then independently treated in the very same way. This is the crucial
new feature of the DP-framework w.r.t. the DP-approach of [1]. This makes it
so powerful as a basis for implementing termination provers.

Before being able to adapt the DP-framework to deal with A∨C-theories,
we start by giving a more refined notion of minimality. In fact, the notion of
minimality which is used in [5] is the straightforward extension of the one which
is used to prove termination of standard rewriting but without dealing with
equivalence preservation which, as we show below, is essential to provide an
appropriate notion of minimal non-E-terminating term for A∨C-theories E which
can be used to define a suitable A∨C-DP-framework. We carefully analyze the
structure of infinite rewrite sequences for A∨C-rewrite theories. This leads to
appropriate definitions of A∨C-dependency pair and minimal chain.

After some technical preliminaries, in Section 3 we investigate the drawbacks
of previous notions of minimal term when modeling infinite A∨C-rewrite se-
quences. Then, we introduce the notion of stably minimal non-E-terminating
term which is the basis of our development. Section 4 investigates the struc-
ture of infinite sequences starting from such stably minimal terms. Section 5
uses these results to formalize our notion of A∨C-dependency pairs and minimal
chains. Section 6 introduces an A∨C-DP-framework for proving A∨C-termination
using A∨C-DPs. in particular, we introduce the notion of A∨C-dependency graph
and a first processor for proving termination in the A∨C-DP-framework. We also
show how to use orderings for defining a second processor. Section 7 compares
our approach with the related work and concludes.

2 Rewriting Modulo Equational Theories

Given a rewrite theory R = (Σ, E, R), we write s →R/E t if there exist u, v such
that s ∼E u, u →R v, and v ∼E t. We say that a rewrite theory R = (Σ, E, R)
is E-terminating, iff →R/E is terminating. In general, given terms s and t, the
problem of whether s →R/E t holds is undecidable: in order to check whether
s →R/E t we have to search through the possibly infinite equivalence classes
[s]E and [t]E to see whether a matching is found for a subterm of some u ∈ [s]E
and the result of rewriting u belongs to the equivalence class [t]E . For this
reason, a much simpler relation →R,E is defined, which becomes decidable if an
E-matching algorithm exists. For any terms s, t, s →R,E t holds iff there is a
position p in s, a rule l → r in R, and a substitution σ such that s|p ∼E σ(l)
and t = s[σ(r)]p (see [15]). We say that a rewrite theory R = (Σ, E, R) is
(R, E)-terminating, if →R,E is terminating.

Regarding E-termination analysis using dependency pairs (DPs), Kusakari
and Toyama observed that there is no simple extension of DPs to directly deal
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with →R/E-computations [11,9]. In contrast, several approaches have been de-
veloped for →R,E-computations [5,11,13]. Since →R,E⊆→R/E (but the opposite
inclusion does not hold, in general), E-termination cannot be concluded from
(R, E)-termination. Actually, Marché and Urbain showed that there are (R, E)-
terminating rewrite theories R which are not E-terminating.

Example 1. Consider the following rewrite theory R = (Σ, E, R), where ‘+’ is
an AC symbol [13]: a + b → a + (b + c). Note that t = a + (b + c) is an →R,E-
normal form (hence (R, E)-terminating). However, t ∼AC (a + b) + c which is
non-E-terminating.

Giesl and Kapur [5] proved the equivalence of both notions of termination with
respect to a notion of extension completion ExtE(R) of a rewrite theory R =
(Σ, E, R) which, for E being a set containing associative or commutative axioms,
goes back to Peterson and Stickel [15].

Theorem 1. [5, Theorem 11] Let R = (Σ, E, R) be a rewrite theory with E
a regular and linear equational theory and t ∈ T (Σ,X ). Then, t starts an in-
finite →R/E-reduction if and only if t starts an infinite →ExtE(R),E-reduction.
Therefore, R is E-terminating if and only if →ExtE(R),E is terminating.

2.1 Combination of Associative and Commutative Theories

Let E be a set of equations that has the modular decomposition E =
⋃

f∈Σ Ef ,
where if k = ar(f) %= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}, where:

– Af is the associativity axiom f(f(x, y), z) = f(x, f(y, z)),
– Cf is the commutativity axiom f(x, y) = f(y, x).

We also define Σ = ΣA & ΣC & ΣAC & Σ∅ where f ∈ ΣA ⇔ Ef = {Af},
f ∈ ΣC ⇔ Ef = {Cf}, f ∈ ΣAC ⇔ Ef = {Af , Cf}, f ∈ Σ∅ ⇔ Ef = ∅. In the
following, we often say that a symbol f ∈ Σ is associative if f ∈ ΣA ∪ΣAC .

Definition 1 (A∨C-rewrite theory). An equational theory E =
⋃

f∈Σ Ef ,
where if k = ar(f) %= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}
is called an A∨C-theory. A rewrite theory R = (Σ, E, R) such that E is an
A∨C-theory, is called an A∨C-rewrite theory.

To deal with rewriting modulo A∨C-theories by using (R, E)-rewriting we have
to extend R by following [15, Definition 10.4]:

ExtAC(R) = R ∪ {f(l, w) → f(r, w) | l → r ∈ R, f = root(l) ∈ ΣAC}
ExtA(R) = R ∪ {f(l, w) → f(r, w), f(w, l) → f(w, r), f(z, f(l, w)) → f(z, f(r,w))

| l → r ∈ R, f = root(l) ∈ ΣA}
ExtC(R) = R

where w and z are fresh variables which do not occur in the original rule of R.
Therefore, given an A∨C theory E, we let: ExtE(R) = ExtAC(R) ∪ ExtA(R) ∪
ExtC(R). Note that R ⊆ ExtE(R).

18.8. A Dependency Pair Framework forA∨C-Termination 293



A Dependency Pair Framework for A∨C-Termination 39

2.2 Minimal Terms and Infinite Rewrite Sequences

Given a TRS R = (C & D, R), with C a subsignature of constructors and D a
subsignature of defined symbols, the minimal nonterminating terms associated
to R are nonterminating terms t whose proper subterms u (i.e., t ! u) are ter-
minating; T∞ is the set of minimal nonterminating terms associated to R [7].
Minimal nonterminating terms have two important properties:

1. Every nonterminating term s contains a minimal nonterminating term t ∈
T∞ (i.e., s " t), and

2. minimal nonterminating terms t are always rooted by a defined symbol f ∈
D: ∀t ∈ T∞, root(t) ∈ D.

Considering the structure of the infinite rewrite sequences starting from a mini-
mal nonterminating term t = f(t1, . . . , tk) ∈ T∞ is helpful to arrive at the notion
of dependency pair. Such sequences proceed as follows (see, e.g., [7]):

1. a finite number of reductions can be performed below the root of t, thus
rewriting t into t′; then

2. a rule f(l1, . . . , lk) → r applies at the root of t′ (i.e., t′ = σ(f(l1, . . . , lk)) for
some substitution σ); and

3. there is a minimal nonterminating term u ∈ T∞ (hence root(u) ∈ D) at some
position p of σ(r) which is a nonvariable position of r which ‘continues’ the
infinite sequence initiated by t in a similar way.

This means that considering the occurrences of defined symbols in the right-hand
sides of the rewrite rules suffices to ‘catch’ every possible infinite rewrite sequence
starting from σ(r). In particular, no infinite sequence can be issued from t′ below
the variables of r (more precisely: all bindings σ(x) are terminating terms). The
standard definition of dependency pair [1] and (minimal) chain of dependency
pairs [6] relies on (1)–(3) above [7]. These facts are formalized as follows:

Proposition 1. [7, Lemma 1] Let R = (C & D, R) be a TRS. For all t ∈ T∞,
there exist l → r ∈ R, a substitution σ and a term u ∈ T∞ such that root(u) ∈ D,
t

>Λ−→∗ σ(l) Λ→ σ(r) " u and there is a nonvariable subterm v of r, r " v, such
that u = σ(v).

In the following section we begin the analysis of infinite E-rewrite sequences
according to this schema. We aim at providing an appropriate notion of minimal
non-E-terminating term (for A∨C-theories E) which allows us to reach a result
similar to Proposition 1.

3 Stably Minimal Non-E-Terminating Terms

In the dependency pair approach [1,7,6], the analysis of infinite rewrite sequences
is restricted to those starting from minimal nonterminating terms t ∈ T∞. The
following notion of minimal non-E-terminating term is implicit in [5, proof of
Theorem 16]. Similar definitions can be found in [10,11,9,14].
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Definition 2 (Minimal non-E-terminating term [5]). Let R
= (Σ, E, R) be a rewrite theory. A non-E-terminating term t ∈ T (Σ,X ) is
said to be minimal (written t ∈ T∞,R,E) if every strict subterm s of t (i.e., t!s)
is (ExtE(R), E)-terminating.

Remark 1. In Definition 2, if we assume that E is linear and regular (like A∨C-
theories), then, by Theorem 1, we could equivalently start by saying that t is
non-(ExtE(R), E)-terminating. This leads to a more symmetric definition which
we often use in the following without further comment.

Every non-E-terminating term s contains a minimal non-E-terminating term
t ∈ T∞,R,E (this is stated without proof in [5, proof of Theorem 16]).

Remark 2 (Root symbols of minimal terms). Note that, if E is an A∨C-equational
theory, then root(t) ∈ D whenever t ∈ T∞,R,E . As remarked by Giesl and Kapur
(see also Example 5 below) this is not true for arbitrary equational theories.

The problem with Giesl and Kapur’s Definition 2 is that minimality is not pre-
served under E-equivalence.

Example 2. Consider the following TRS R:

f(x, x) → f(0, f(1, 2)) (1)

where f ∈ ΣAC . Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, f(1, 2)), y) (2)

Note that t = f(f(0, 1), f(0, f(1, 2))) is non-(ExtAC(R), AC)-terminating:

f(f(0, 1), f(0, f(1, 2))) ∼A f(0, f(1, f(0, f(1, 2)))) ∼A f(0, f(f(1, 0), f(1, 2))) ∼C

f(0, f(f(0, 1), f(1, 2))) ∼A f(0, f(0, f(1, f(1, 2)))) ∼A f(f(0, 0), f(1, f(1, 2)))
Λ→ExtAC(R)

f(f(0, f(1, 2)), f(1, f(1, 2))) →ExtAC(R),AC · · ·

Since f(0, 1) and f(0, f(1, 2)) are in (ExtAC(R), AC)-normal form, we have that
t ∈ T∞,R,AC . However, t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent to t
(i.e., t ∼AC t′), is non-AC-terminating but it is not minimal because its strict
subterm f(1, f(1, 2))) is non-(ExtAC(R), AC)-terminating:

f(1, f(1, 2))) ∼A f(f(1, 1), 2)
Λ→ExtAC (R)f(f(0, f(1, 2)), 2) ∼A f(0, f(f(1, 2), 2))

∼A f(0, f(1, f(2, 2))) ∼A f(f(0, 1), f(2, 2)) ∼C f(f(2, 2), f(0, 1))
Λ→ExtAC (R)

f(f(0, f(1, 2)), f(0, 1)) →ExtAC(R),AC · · ·

Example 2 shows that an essential property of minimal terms when considered
as part of infinite (ExtE(R), E)-rewriting sequences for A∨C-theories E gets lost:
the application of (ExtE(R), E)-rewrite steps at the root of a minimal term s by
means of a rule l → r (i.e., s ∼AC σ(l) Λ→ExtE(R)σ(r)) does not guarantee that
there is a nonvariable subterm v of the right-hand side r which is a prefix of the
‘next’ minimal term in the infinite sequence.
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Example 3. Term t in Example 2 can be rewritten at the root only by rule (2)
of ExtAC(R). We can apply this rule to t′ in Example 2 (for instance) to obtain
s′ = σ(r) = f(f(0, f(1, 2)), f(1, f(1, 2))) (where r = f(f(0, f(1, 2)), y)), which
is non-(ExtAC(R), AC)-terminating. Note that s′ contains a minimal term u ∈
T∞,R,E . Since s′|2 = f(1, f(1, 2)) is non-(ExtAC(R), AC)-terminating, it follows
that s′ is not minimal. Since s′|1 = f(0, f(1, 2)) is (ExtAC(R), AC)-terminating,
the only possibility is that u occurs in s′|2. Actually, s′|2 is minimal already;
hence, u = s′|2. But note the absence of any nonvariable position p ∈ Pos(r) in
the right-hand side of the considered rule such that σ(r|p) = u = f(1, f(1, 2)).

This is in sharp contrast with the situation of the DP-approach for ordi-
nary rewriting. Furthermore, it is not difficult to see that for all t′′ ∼AC t such
t′′ = σ′(l) for some substitution σ′, we have a similar situation. Thus, the prob-
lem illustrated here cannot be solved by using a different ∼AC sequence before
performing the ExtAC(R)-root-step.

In the following we introduce a new notion of minimality which solves these
problems.

3.1 A New Notion of Minimal Non-E-Terminating Terms

The following definition solves the problems discussed above by explicitly requir-
ing that the condition defining minimality is preserved under E-equivalence.

Definition 3 (Stably minimal non-E-terminating term). Let R =
(Σ, E, R) be a rewrite theory. Let M∞,R,E be a set of stably minimal non-E-
terminating terms in the following sense: t ∈ T (Σ,X ) belongs to M∞,R,E if t
is non-E-terminating, and for all t′ ∼E t and every proper subterm s′ of t′ (i.e.,
t′ ! s′), s′ is (ExtE(R), E)-terminating.

We have the following useful characterization of minimality.

Proposition 2 (Characterization of stably minimal terms). Let R =
(Σ, R, E) be a rewrite theory and t ∈ T (Σ,X ). Then, t ∈M∞,R,E if and only
if [t]E ⊆ T∞,R,E . Therefore, M∞,R,E = {t ∈ T (Σ,X ) | [t]E ⊆ T∞,R,E}.
The problem in Example 2 disappears now: t is not minimal according to Defini-
tion 3. The following result shows how to find stably minimal non-E-terminating
terms associated to a given non-E-terminating term. This is essential in our de-
velopment.

Proposition 3. Let R = (Σ, E, R) be a rewrite theory such that [t]E = {t} for
all constant and variable terms t. Let s ∈ T (Σ,X ). If s is non-E-terminating,
then there is a subterm t of some s′ ∼E s (s′ " t) such that t ∈M∞,R,E.

Clearly, Proposition 3 holds whenever R is an A∨C-rewrite theory.

Example 4. Consider the term t in Example 2. Although t ∈ T∞,R,E , t /∈
M∞,R,E : the term t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent to t,
contains a subterm u = f(1, f(1, 2)) which is non-E-terminating. It is not diffi-
cult to see that actually u ∈M∞,R,E .
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In general, Proposition 3 does not hold for arbitrary sets of equations E.

Example 5. Consider the following example [5, Example 13]:

R : f(x) → x E : f(a) = a

Note that a ∈ T∞,R,E . However, a is not stably minimal because a ∼E f(a) but
f(a) %∈ T∞,R,E . Thus, Proposition 3 does not hold.

Now we provide a more precise result about where we can find stably mini-
mal subterms within a non-E-terminating term for A∨C-rewrite theories R =
(Σ, E, R). In the following theorem, given a term s and a symbol f , by an f -
subterm t of s (written s "f t) we mean a subterm t of s such that t = s|p and
for all q < p, root(s|q) = f . We also write s !f t if s "f t and s %= t.

Theorem 2. Let R = (Σ, E, R) be an A∨C-rewrite theory. If s is non-E-
terminating, then there is a subterm t ∈ T∞,R,E of s (s " t) and

1. If (1) Aroot(t) /∈ Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) %= f , and
root(t2) %= f , then t ∈M∞,R,E.

2. If t = f(t1, t2), Af ∈ Ef , and root(t1) = f or root(t2) = f , and t %∈M∞,R,E,
then there is s′ ∼E t and a strict f -subterm u of s′ (s′ !f u) such that
root(u) = f and u ∈M∞,R,E.

The following result is just a convenient reformulation of the previous one.

Corollary 1. Let R = (Σ, E, R) be an A∨C-rewrite theory. If s is non-E-
terminating, then either there is a subterm t ∈M∞,R,E of s (s" t), or there is a
subterm t ∈ T∞,R,E of s satisfying that t = f(t1, t2), Af ∈ Ef , and root(t1) = f
or root(t2) = f , and such that there is s′ ∼E t and a strict f -subterm u of s′

(s′ !f u) such that root(u) = f and u ∈M∞,R,E.

4 Structure of (Stably) Minimal Infinite A∨C-Rewrite
Sequences

Now we analyze A∨C-rewrite sequences starting from stably minimal non-A∨C-
terminating terms. First we consider a restricted case.

Proposition 4. Let R = (Σ, E, R) = (C &D, E, R) be an A∨C-rewrite theory.
Let s ∈ M∞,R,E be such that f = root(s) and either (1) Af /∈ Ef , or (2) s =
f(s1, s2), Af ∈ Ef , and root(s1), root(s2) ∈ C. Assume that for all l → r ∈ R
such that root(l) = f and all subterms v of r (r " v) such that v = g(v1, v2)
for some associative symbol g, we have that root(v1), root(v2) /∈ X ∪ {g}. Then,
there exist l → r ∈ R, a substitution σ and terms t ∈ T (Σ,X ) and u ∈M∞,R,E

such that
s

>Λ−→∗
ExtE(R),E t ∼E σ(l) Λ→R σ(r) " u

and there is a nonvariable subterm v of r, r " v, such that u = σ(v).
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Unfortunately, stable minimality of (arbitrary) non-E-terminating terms s for
A∨C-theories E is not preserved under inner (ExtE(R), E)-rewritings.

Example 6. Term u = f(f(1, 1), 2) in Example 2 is stably minimal: u ∈M∞,R,E .

We have that f(f(1, 1), 2) >Λ−→R f(f(0, f(1, 2)), 2). Note that f(f(0, f(1, 2)), 2) /∈
M∞,R,E : we have f(f(0, f(1, 2)), 2) ∼A f(0, f(f(1, 2), 2)) ∼A f(0, f(1, f(2, 2)))
where f(0, f(1, f(2, 2))) contains a subterm f(1, f(2, 2)) which is
non-(ExtE(R), E)-terminating.

In the following, we show how to avoid this problem. We define deep reduction as
a restriction

>1,2−→ExtE(R),E of inner (ExtE(R), E)-rewriting which restricts reduc-
tions on terms like u above. We will show that deep reduction preserves stable
minimality of non-E-terminating terms for A∨C-rewrite theories R = (Σ, E, R).

Definition 4 (Deep reduction). Let R = (Σ, E, R) be an A∨C-rewrite theory.
Given t ∈ T (Σ,X ), t

>1,2−→ExtE(R),E s if t
q−→ExtE(R),E s for some position q ∈

Pos(t) such that q > p for p ∈ {1, 2} if t = σ(u) for some u = v ∈ E or
v = u ∈ E and u|p /∈ X ; otherwise, q > Λ.

Obviously, >1,2−→ExtE(R),E⊆ >Λ−→ExtE(R),E . The following proposition shows that
deep reduction preserves stable minimality.

Proposition 5. Let R = (Σ, E, R) be an A∨C-rewrite theory and t ∈M∞,R,E.

If t
>1,2−→∗

Ext(R),E s and s is non-E-terminating, then s ∈M∞,R,E.

As a consequence, the following theorem establishes the desired property for
stable minimal non-A∨C-terminating terms.

Theorem 3. Let R = (Σ, E, R) be an A∨C-rewrite theory. For all s ∈M∞,R,E,
there exist l → r ∈ ExtE(R) and a substitution σ such that

s (∼E ◦ >1,2−→ExtE(R),E)∗t ∼E σ(l) Λ→ExtE(R) σ(r)

and there is a nonvariable subterm v of r (r " v), such that either

1. v = f(v1, v2) for some associative symbol f , root(v1) ∈ X ∪{f} or root(v2) ∈
X ∪ {f}, root(σ(v1)) = f or root(σ(v2)) = f , σ(v) ∈ T∞,R,E and there is a
term t′ ∼E σ(v) containing a strict f -subterm u = f(u1, u2) (t′ !f u) such
that u ∈M∞,R,E, or

2. σ(v) ∈M∞,R,E otherwise.

Example 2 shows that Theorem 3 does not hold for Giesl and Kapur’s minimal
terms s ∈ T∞,R,E .

5 A∨C-Dependency Pairs and Chains

Propositions 3 and 4 together with Theorem 3 are the basis for our definition
of A∨C-Dependency Pairs and the corresponding chains. Together, they show

298 18. Publications (full text)



44 B. Alarcón, S. Lucas, and J. Meseguer

that given an A∨C-rewrite theory R = (Σ, E, R), every non-E-terminating
term s has an associated infinite (ExtE(R), E)-rewrite sequence starting from a
stably minimal subterm t ∈M∞,R,E . Such a sequence proceeds as described in
Proposition 4 and Theorem 3, depending on the shape of t.

This process is abstracted in the following definition of A∨C-dependency pairs
(Definition 5) and in the definition of chain below (Definition 6).

Given a signature Σ and f ∈ Σ, we let f # denote a fresh new symbol (often
called tuple symbol or DP-symbol) associated to a symbol f [1]. Let Σ# be the
set of tuple symbols associated to symbols in Σ. As usual, for t = f(t1, . . . , tk) ∈
T (Σ,X ), we write t# to denote the marked term f #(t1, . . . , tk) (written sometimes
F (t1, . . . , tk)). Given a set of rules R and a symbol f ∈ Σ, we let Rf = {l →
r ∈ R | root(l) = f}. Given a set of rules R, the set DP(R) of dependency pairs
associated to R is [1]: DP(R) = {l# → s# | l → r ∈ R, r " s, root(s) ∈ D}.

Definition 5 (A∨C-Dependency Pairs). Let R = (Σ, E, R) = (C &D, E, R)
be an A∨C-rewrite theory. Then, DPE(R) = DP(ExtE(R)) is the set of A∨C-
dependency pairs (A∨C-DPs) of R.

In general, the set of A∨C-DPs which is obtained from Definition 5 is a subset
of those which are obtained by particularizing Giesl and Kapur’s definitions to
the A∨C case [5].

Example 7. Consider the AC-rewrite theory R = (Σ, E, R) in Example 2. The
set DPE(R) consists of the following pairs:

F (x, x) → F (0, f(1, 2)) (3)
F (x, x) → F (1, 2) (4)

F (f(x, x), y) → F (f(0, f(1, 2)), y) (5)
F (f(x, x), y) → F (0, f(1, 2)) (6)
F (f(x, x), y) → F (1, 2) (7)

5.1 Chains of A∨C-DPs

An essential property of the dependency pair method is that it provides a char-
acterization of termination of TRSsR as the absence of infinite (minimal) chains
of dependency pairs [1,6]. If we want to prove the same for A∨C-rewrite the-
ories, we have to introduce a suitable notion of chain which can be used with
A∨C-DPs. As in the DP-framework, where the origin of pairs does not matter,
we should rather think of another rewrite theory P = (Γ, F, P ) which is used
together with R to build the chains. According to the usual terminology [6], we
often call pairs to the rules u → v ∈ P .

Definition 6 (Chain of pairs - Minimal chain). Let P = (Γ, F, P ) and R =
(Σ, E, R) be rewrite theories, and S = (F , S) be a TRS. An (F, P, E, R, S)-chain
is a finite or infinite sequence of pairs ui → vi ∈ P , together with substitutions
σ and θi satisfying that, for all i ≥ 1:
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1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) ∼F ◦ Λ−→+
Sfi

ti (∼F ◦ >1,2−→ExtE(R),E)∗◦ ∼F σ(ui+1)

2. and σ(vi) = ti →∗
ExtE(R),E ◦ ∼F σ(ui+1), otherwise.

An (F, P, E, R, S)-chain is called minimal if for all i ≥ 1, and t′i ∈ [ti]F , t′i is
(ExtE(R), E)-terminating.

As usual, in Definition 6 we assume that different occurrences of dependency
pairs do not share any variable (renaming substitutions are used if necessary).

This more abstract notion of chain can be particularized to be used with A∨C-
DPs, by just taking

1. P = DPE(R),
2. F = E ∪ E#, where E# = {s# = t# | s = t ∈ E}, and
3. S = {f #(f(x, y), z) → f #(x, y), f #(x, f(y, z)) → f #(y, z) | f ∈ ΣA ∪ΣAC}.

Theorem 4 (Characterization of A∨C-termination). Let R = (Σ, E, R)
be an A∨C-rewrite theory. Let S = (Σ ∪ D#, S) be a TRS such that S =
{f #(f(x, y), z) → f #(x, y), f #(x, f(y, z)) → f #(y, z) | f ∈ ΣA ∪ ΣAC}. Then,
R is (ExtE(R), E)-terminating if and only if there is no infinite minimal (E# ∪
E, DPE(R), E, R, S)-chain.

6 An A∨C-Dependency Pair Framework

In the following, we adapt Giesl et al. DP-framework to provide a suitable frame-
work for mechanizing proofs of A∨C-termination using A∨C-DPs.

Definition 7 (A∨C problem). An A∨C problem τ is a tuple τ = (F, P, E, R, S),
where R = (Σ, E, R) is an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory,
and S = (F , S) is a TRS. An A∨C problem is finite if there is no infinite minimal
(F, P, E, R, S)-chain. An A∨C problem τ is infinite if R is non-A∨C-terminating
or there is an infinite minimal (F, P, E, R, S)-chain.

The following definition adapts the notion of processor [6] to prove termination
of A∨C-rewrite theories.

Definition 8 (A∨C processor). An A∨C processor Proc is a mapping from
A∨C problems into sets of A∨C problems. Alternatively, it can also return “no”.
An A∨C processor Proc is

– sound if for all A∨C problems τ , τ is finite whenever Proc(τ) %= no and
∀τ ′ ∈ Proc(τ), τ ′ is finite.

– complete if for all A∨C problems τ , τ is infinite whenever Proc(τ) = no or
∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.
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Similar to [6] for the DP-framework, we construct a tree whose nodes are labeled
with A∨C problems or “yes” or “no”, and whose root is labeled with (E# ∪
E, DPE(R), E, R, S). Now we have the following result which adapts [6, Corollary
5] to A∨C-rewrite theories.

Theorem 5 (A∨C-DP framework). Let R = (Σ, E, R) be an A∨C-theory. We
construct a tree whose nodes are labeled with A∨C problems or “yes” or “no”, and
whose root is labeled with (E#∪E, DPE(R), E, R, S), where S = {f #(f(x, y), z) →
f #(x, y), f #(x, f(y, z)) → f #(y, z) | f ∈ ΣA ∪ΣAC}. For every inner node labeled
with τ , there is a sound processor Proc satisfying one of the following conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.
2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.
3. Proc(τ) %= no, Proc(τ) %= ∅, and the children of the node are labeled with the

A∨C problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is E-terminating. Other-
wise, if there is a leaf labeled with “no” and if all processors used on the path
from the root to this leaf are complete, then R is not E-terminating.

6.1 A∨C-Dependency Graph

A∨C problems focus our attention on the analysis of infinite minimal chains.
Our aim here is obtaining a notion of graph which is able to represent all infinite
minimal chains of pairs as given in Definition 6.

Definition 9 (A∨C-Graph of Pairs). Let R = (Σ, E, R) and P = (Γ, F, P )
be rewrite theories and S = (F , S) be a TRS. The A∨C-graph associated to
them (denoted G(F, P, E, R, S)) has P as the set of nodes. There is an arc from
u → v ∈ P to u′ → v′ ∈ P if u → v, u′ → v′ is an (F, P, E, R, S)-chain.

In termination proofs, we are concerned with the so-called strongly connected
components (SCCs) of the dependency graph, rather than with the cycles them-
selves (which are exponentially many) [8]. A strongly connected component in a
graph is a maximal cycle, i.e., a cycle which is not contained in any other cycle.
In the following result, given two sets of rules S and Q, we let SQ be the least
subset of S satisfying that whenever there is a rule u → v ∈ Q, such that v
unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2) and
s1 /∈ X or s2 /∈ X , then Sf ⊆ SQ.

Theorem 6 (SCC processor). Let R = (Σ, E, R) and P = (Γ, F, P ) be
rewrite theories and S = (F , S) be a TRS. Then, the processor ProcSCC given
by

ProcSCC (F, P, E, R, S) = {(F, Q, E, R, SQ) | Q are the pairs of an SCC in G(F, P, E, R, S)}

is sound and complete.
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As a consequence, we can separately work with the strongly connected compo-
nents of G(F, P, E, R, S), disregarding other parts of the graph. Now we can use
these notions to introduce the A∨C-dependency graph, i.e., the A∨C-graph
whose nodes are the A∨C-DPs instead of an arbitrary set of pairs.

Definition 10 (A∨C-Dependency Graph). Let R = (Σ, E, R) be an A∨C-
rewrite theory with Σ = C & D. Let S = (Σ ∪ D#, S) be a TRS such that S =
{f #(f(x, y), z) → f #(x, y), f #(x, f(y, z)) → f #(y, z) | f ∈ ΣA ∪ΣAC}. The A∨C-
Dependency Graph associated to R is: DG(R) = G(E# ∪ E, DPE(R), E, R, S).

6.2 Estimating the A∨C-Dependency Graph

As in standard rewriting, the A∨C-dependency graph of an A∨C-rewrite theory is
in general not computable. So, we need to use some approximation of it. For any
term t ∈ T (Σ,X ) let Cap(t) result from replacing all proper subterms rooted by
a defined symbol by fresh variables and let Ren(t) which independently renames
all occurrences of variables in t by using new fresh variables [1].

As usual, we do not have to talk about mgu when dealing with rewriting
modulo equations. Instead, it is used the notion of complete set of E-unifiers.
However, although in theory, all these unifiers have to be considered, for our
results of reachability it is enough to check the existence of one.

Proposition 6. Let R = (Σ, E, R) be an A∨C-rewrite theory with Σ = C &D.
Let u, t ∈ T (Σ,X ) be such that Var(u) ∩ Var(t) = ∅ and θ, θ′ be substitutions.
If θ(t) →∗

ExtE(R),E ◦ ∼E θ′(u), then Ren(Cap(t)) and u E-unify.

Now, we are ready to provide a correct estimation of our graph of pairs. Cor-
rectness of our definition relies on Proposition 6.

Definition 11 (Estimated A∨C-Graph of Pairs). Let R = (Σ, E, R) and
P = (Γ, F, P ) be rewrite theories and S = (F , S) be a TRS. The estimated
A∨C-graph associated to them (denoted EG(F, P, E, R, S)) has P as the set of
nodes and arcs which connect them as follows:

1. If v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2)
and s1 /∈ X or s2 /∈ X , then, there is an arc from u → v ∈ P to u′ → v′ ∈ P
if root(u′) = f .

2. Otherwise, there is an arc from u → v ∈ P to u′ → v′ ∈ P if Ren(Cap(v))
and u′ E-unify.

According to Definition 9, we would have the corresponding one for the estimated
A∨C-DG: EDG(R) = EG(E# ∪ E, DPE(R), E, R, S), where

S = {f #(f(x, y), z) → f #(x, y), f #(x, f(y, z)) → f #(y, z) | f ∈ ΣA ∪ΣAC}.
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Example 8. For the A∨C-rewrite theory in Figure 1, the set DPE(R) is1:

LIST2SET (cons(N, L)) → UNION(N, list2set(L)) (8)

LIST2SET (cons(N, L)) → LIST2SET (L) (9)

IN(N, union(M, S)) → EQ(N, M) (10)

IN(N, union(M, S)) → OR(eq(N, M), in(N, S)) (11)

IN(N, union(M, S)) → IN(N, S) (12)

UNION(union(N, N), Z) → UNION(N, Z) (13)

AND(and(true, B), Z) → AND(B, Z) (14)

AND(and(false, B), Z) → AND(false, Z) (15)

OR(or(true, B), Z) → OR(true, Z) (16)

OR(or(false, B), Z) → OR(B, Z) (17)

EQ(s(N), s(M)) → EQ(N, M) (18)

EQ(cons(N, L), cons(M, L′)) → EQ(N, M) (19)

EQ(cons(N, L), cons(M, L′)) → EQ(L, L′) (20)

EQ(cons(N, L), cons(M, L′)) → AND(eq(N, M), eq(L, L′)) (21)

The (estimated) A∨C-DG is:

(14)
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..

))

By Theorem 6 we transform the A∨C problem (E ∪E#, DP(R), E, R, S) into
a set ProcSCC (E ∪ E#, DP(R), E, R, S) given by

{(E ∪ E!, {(9)}, E, R, ∅), (E ∪ E!, {(12)}, E, R, ∅), (E ∪ E!, {(13)}, E, R, Sunion),

(E∪E!, {(14), (15)}, E, R, Sand), (E∪E!, {(16), (17)}, E, R, Sor), (E∪E!, {(18), (19), (20)}, E, R, ∅)}

which contains six new (but simpler) A∨C problems.

6.3 Use of Reduction Pairs

A reduction pair (!, #) consists of a stable and monotonic quasi-ordering !, and
a stable and well-founded ordering # satisfying either ! ◦ #⊆# or # ◦ !⊆#.
In the dependency pair framework reduction pairs are used to obtain smaller
1 We have introduced new ‘prefix’ symbols eq, cons and union instead of the original

‘infix’ ones == , ; , .
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sets of pairs P ′ ⊆ P by removing the strict pairs, i.e., those pairs u → v ∈ P
such that u # v. Stability is required both for ! and # because, although we
only check the left- and right-hand sides of the rewrite rules l → r (with !)
and pairs u → v (with ! or #), the chains of pairs involve instances σ(l), σ(r),
σ(u), and σ(v) of rules and pairs and we aim at concluding σ(l) ! σ(r), and
σ(u) ! σ(v) or σ(u) # σ(v), respectively. Monotonicity is required for ! to
deal with the application of rules l → r to an arbitrary depth in terms. Since
the pairs are ‘applied’ only at the root level, no monotonicity is required for #

(but, for this reason, we cannot compare the rules in R using #). Dealing with
associative-commutative axioms, we will compare them with the equivalence
relation defined by the stable, reflexive, transitive, and symmetric equivalence
∼ induced by !, i.e., ∼ = ! ∩ ", since we need to impose compatibility with
the equational theories E and F . The following theorem formalizes a generic
processor to remove pairs from P by using reduction pairs.

Theorem 7 (Reduction pair processor). Let P = (Γ, F, P ) be a rewrite
theory, R = (Σ, E, R) be an A∨C-rewrite theory, and S = (F , S) be a TRS. Let
(!, #) be a reduction pair such that

1. R ⊆!,
2. P ∪ S ⊆! ∪ #, and
3. E ∪ F ⊆∼.

Let P! = {u → v ∈ P | u # v}. Then, the processor ProcRP given by

ProcRP (F, P, E, R, S) =
{
{(F, P − P!, E, R, S)} if (1), (2), and (3) hold
{(F, P, E, R, S)} otherwise

is sound and complete.

7 Related Work and Conclusions

As remarked in the introduction, this is not the first work which tries to use
dependency pairs for proving termination of rewriting modulo an equational
theory, see [5,10,11,9,13,14]. Our work, however, is, as far as the authors know,
the first one which provides a correct notion of minimal non-terminating term
for an A∨C-rewrite theoryR = (Σ, E, R) which can be used to provide a suitable
definition of minimal chain of dependency pairs which can be used to characterize
A∨C-termination (Theorem 4). In order to substantiate this claim, consider the
AC-rewrite theory R = (Σ, E, R) in Example 2 again. The A∨C-DPs for R are
enumerated in Example 7. Such dependency pairs coincide with the ones which
would be computed by, e.g., [5,10,11]. Remember that t in Example 2 is minimal
in Giesl and Kapur’s sense (Definition 2). We should, then, be able to find an
infinite minimal chain of DPs starting from t#. According to [5,10,11], ‘minimal’
means that σ(vi) is (ExtE(R), E)-terminating for all pairs ui → vi ∈ DPE(R) in
the chain of dependency pairs induced by the substitution σ. However, this is
not possible: the marked version t# of t is F (f(0, 1), f(0, f(1, 2))), which is an
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(ExtE(R), E)-terminating term. After some E# ∪ E-equivalence steps we would
be able to apply one of the rules in DPE(R). Note, however, that no rule u →
v ∈ DPE(R) except (5) has a right-hand side v which can be rewritten (after
instantiation into σ(v)) into an instance σ(u′) of the left-hand side u′ of any other
pair in DPE(R) by means of (ExtE(R), E# ∪E)-rewriting steps. This means that
only the dependency pair (5) could be used in any infinite minimal chain of
dependency pairs starting from t#. But such a chain would start as follows:

F (f(0, 1), f(0, f(1, 2))) ∼
E!∪E

F (f(0, 0), f(1, f(1, 2))) →(5) F (f(0, f(1, 2)), f(1, f(1, 2)))

where F (f(0, f(1, 2)), f(1, f(1, 2))) contains a subterm f(1, f(1, 2)) which, as
showed in Example 2, is non-(ExtE(R), E)-terminating. Therefore, this chain of
dependency pairs is not minimal. We conclude that, according to the notion of
minimal chain in the aforementioned papers, there is no minimal chain of pairs
starting from t#. This means that no sound approach to proving AC-termination
on the basis of such notion of minimal chain is possible. In this paper we have
introduced the notion of stably minimal term (Definition 3) which overcomes
these problems (Proposition 4 and Theorem 3) and leads to an appropriate
characterization of A∨C-termination as the absence of infinite minimal chains
of A∨C-DPs (Definitions 5 and 6, and Theorem 4).

Furthermore, we note that [10,11] deal with AC-rewrite theories only, and that
[5], which considers more general rewrite theories E including A∨C-theories do
not cover our work in a second respect: when purely associative theories are
considered (i.e., rewrite theories R = (Σ, E, R) such that Ef ⊆ {Af} for all
f ∈ Σ), then Giesl and Kapur’s technique requires the computation of instances
of the rules in ExtE(R) for which the computation of all the E-unifiers uniE(v, l)
of v and l for the rules l → r in ExtE(R) and equations u = v ∈ E or v =
u ∈ E is required. It is well-known, however, that the E-unification problem for
associative theories E is infinitary, which means that uniE(v, l) is not guaranteed
to be finite, in general. In sharp contrast, we do not have to do that for dealing
with purely associative rewrite theories R.

Our second main (and novel) contribution is the formalization of an A∨C-
dependency pair framework (Definitions 7 and 8) which, on the basis of the
previously developed theory, can be used to develop automatic tools for proving
termination of A∨C-rewrite theories (Theorem 5). Two important processors
have been adapted as well: the SCC processor (Theorem 6) and the reduction
pair processor (Theorem 7).

Much work remains ahead both in terms of further developing the new A∨C-
dependency pair framework and in tool support. Appropriate reduction orderings
which are well-suited for being used in the reduction pair processor should be
investigated. It would also be very useful to explore how the requirements on
E can be relaxed to handle even more general sets of axioms. Regarding tool
support for the method we have presented, we plan to integrate it within the
tool mu-term [2]. In this way, our termination technique modulo combinations
of associative and commutative axioms will become applicable to an even wider
range of rewrite theories, that can be transformed into A∨C-theories by non-
termination-preserving transformations [3,4,12].
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Abstract. mu-term is a tool which can be used to verify a number of
termination properties of (variants of) Term Rewriting Systems (TRSs):
termination of rewriting, termination of innermost rewriting, termina-
tion of order-sorted rewriting, termination of context-sensitive rewriting,
termination of innermost context-sensitive rewriting and termination of
rewriting modulo specific axioms. Such termination properties are essen-
tial to prove termination of programs in sophisticated rewriting-based
programming languages. Specific methods have been developed and im-
plemented in mu-term in order to efficiently deal with most of them. In
this paper, we report on these new features of the tool.

1 Introduction

Handling typical programming language features such as sort/types and sub-
types, evaluation modes (eager/lazy), programmable strategies for controlling
the execution, rewriting modulo axioms and so on is outside the scope of many
termination tools. However, such features can be very important to determine
the termination behavior of programs. For instance, in Figure 1 we show a Maude
[10] program encoding an order-sorted TRS which is terminating when the sort-
ing information is taken into account but which is nonterminating as a TRS
(i.e., disregarding sort information) [18]. The predicate is-even tests whether
an integer number is even. When disregarding any information about sorts, the
program EVEN is not terminating due to the last rule for is-even, which specifies
a recursive call to is-even. However, when sorts are considered and the hierar-
chy among them is taken into account, such recursive call is not longer possible
due to the need of binding variable Y of sort NzNeg to an expression opposite(Y)
of sort NzPos, which is not possible in the (sub)sort hierarchy given by EVEN.

The notions coming from the already quite mature theory of termination of
TRSs (orderings, reduction pairs, dependency pairs, semantic path orderings,
etc.) provide a basic collection of abstractions for treating termination prob-
lems. For real programming languages, though, having appropriate adaptations,
methods, and techniques for specific termination problems is essential. Giving
support to multiple extensions of such classical termination notions is one of the
main goals for developing a new version of our tool, mu-term 5.0:
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fmod EVEN is

sorts Zero NzNeg Neg NzPos Pos Int Bool .

subsorts Zero < Neg < Int . subsorts NzNeg < Neg .

subsorts Zero < Pos < Int . subsorts NzPos < Pos .

op 0 : -> Zero . op is-even : Int -> Bool .

op s : Pos -> NzPos . op is-even : NzPos -> Bool .

op p : Neg -> NzNeg . op is-even : NzNeg -> Bool .

ops true false : -> Bool . op opposite : NzNeg -> NzPos .

var X : Pos . var Y : NzNeg .

eq opposite(p(0)) = s(0) .

eq opposite(p(Y)) = s(opposite(Y)) .

eq is-even(0) = true .

eq is-even(s(0)) = false .

eq is-even(s(s(X))) = is-even(X) .

eq is-even(Y) = is-even(opposite(Y)) .

endfm

Fig. 1. Maude program

mu-term [23,2] was originally designed to prove termination of Context-Sensitive
Rewriting (CSR, [21]), where reductions are allowed only for specific arguments
μ(f) ⊆ {1, . . . , k} of the k-ary function symbols f in the TRS. In this paper
we report on the new features included in mu-term 5.0, not only to improve
its ability to prove termination of CSR but also to verify a number of other
termination properties of (variants of) TRSs.

In contrast to transformational approaches which translate termination prob-
lems into a classical termination problem for TRSs, we have developed specific
techniques to deal with termination of CSR, innermost CSR, order-sorted rewrit-
ing and rewriting modulo specific axioms (associative or commutative) by using
dependency pairs (DPs, [7]). Our benchmarks show that direct methods lead
to simpler, faster and more successful proofs. Moreover, mu-term 5.0 has been
rewritten to embrace the dependency pair framework [17], a recent formulation
of the dependency pair approach which is specially well-suited for mechanizing
proofs of termination.

2 Structure and Functionality of mu-term 5.0

mu-term 5.0 consists of 47 Haskell modules with more than 19000 lines of code.
A web-based interface and compiled versions in several platforms are available at
the mu-term 5.0 web site. In the following, we describe its new functionalities.

2.1 Proving Termination of Context-Sensitive Rewriting

As in the unrestricted case [7], the context-sensitive dependency pairs (CSDPs,
[3]) are intended to capture all possible function calls in infinite μ-rewrite se-
quences. In [2], even though our quite ‘immature’ CSDP approach was one of
our major assets, mu-term still used transformations [15,25] and the context-
sensitive recursive path ordering (CSRPO, [9]) in many termination proofs.
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Since the developments in [2], many improvements and refinements have been
made when dealing with termination proofs of CSR. The most important one
has been the development of the context-sensitive dependency pair framework
(CSDP framework, [3,20]), for mechanizing proofs of termination of CSR. The
central notion regarding termination proofs is that of CS problem; regarding
mechanization of the proofs is that of CS processor. Most processors in the stan-
dard DP-framework [17] have been adapted to CSR and many specific ones have
been developed (see [3,20]). Furthermore, on the basis of the results in [28] we
have implemented specific processors to prove the infiniteness of CS problems.
Therefore, mu-term 5.0 is the first version of mu-term which is also able to dis-
prove termination of CSR. In the following table, we compare the performance of
mu-term 5.0 and the last reported version of the tool (mu-term 4.3 [2]) regard-
ing its ability to prove termination of CSR over the context-sensitive category of
the Termination Problem Data Base1 (TPDB) which contains 109 examples2.
The results show the power of the new CSDP framework in mu-term 5.0, not
only by solving more examples in less time, but also disregarding the need of
using transformations or CSRPO for solving them.

Table 1. mu-term 4.3 compared to mu-term 5.0 in proving termination of CSR

Termination Tool Total Yes No CSDPs CSRPO Transf. Average (sec)

mu-term 5.0 99/109 95 4 99 0 0 0.95s

mu-term 4.3 64/109 64 0 54 7 3 3.44s

2.2 Proving Termination of Innermost CSR

Termination of innermost CSR (i.e., the variant of CSR where only the deepest μ-
replacing redexes are contracted) has been proved useful for proving termination
of programs in eager programming languages like Maude and OBJ* which per-
mit to control the program execution by means of context-sensitive annotations.
Techniques for proving termination of innermost CSR were first investigated in
[14,22]. In these papers, though, the original CS-TRS (R, μ) is transformed into a
TRS whose innermost termination implies the innermost termination for (R, μ).
In [4], the dependency pair method [7] has been adapted to deal with termination
proofs of innermost CSR. This is the first proposal of a direct method for proving
termination of innermost CSR and mu-term was the first termination tool able
to deal with it. Our experimental evaluation shows that the use of innermost
context-sensitive dependency pairs (ICSDPs) highly improves over the perfor-
mance of transformational methods for proving termination of innermost CSR:
innermost termination of 95 of the 109 considered CS-TRSs could be proved by
using ICSDPs; in contrast, only 60 of the 109 could be proved by using (a combi-
nation of) transformations and then using AProVE [16] for proving the innermost

1 See http://termination-portal.org/wiki/TPDB
2 We have used version 7.0.2 of the TPDB.
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termination of the obtained TRS. Another important aspect of innermost CSR
is its use for proving termination of CSR as part of the CSDP framework [1].
Under some conditions, termination of CSR and termination of innermost CSR
coincide [14,19]. We then switch from termination of CSR to termination of in-
nermost CSR, for which we can apply the existing processors more successfully
(see Section 2.6). Actually, we proceed like that in 30−50% of the CSR termina-
tion problems which are proved by mu-term 5.0 (depending on the particular
benchmarks).

2.3 Proving Termination of Order-Sorted Rewriting

In order-sorted rewriting, sort information is taken into account to specify the
kind of terms that function symbols can take as arguments. Recently, the order-
sorted dependency pairs have been introduced and proved useful for proving
termination of order-sorted TRSs [26]. As a remarkable difference w.r.t. the
standard approach, we can mention the notion of applicable rules which are those
rules which can eventually be used to rewrite terms of a given sort. Another
important point is the use of order-sorted matching and unification. To our
knowledge, mu-term 5.0 is the only tool which implements specific methods for
proving termination of OS-TRSs3. Our benchmarks over the examples in the
literature (there is no order-sorted category in the TPDB yet) show that the
new techniques perform quite well. For instance, we can prove termination of
the OS-TRS EVEN in Figure 1 automatically.

2.4 Proving Termination of A∨C-Rewriting

Recently, we have developed a suitable dependency pair framework for prov-
ing termination of A∨C-rewrite theories [5]. An A∨C-rewrite theory is a tuple
R = (Σ, E, R) where E is a set containing associative or commutative axioms
associated to function symbols of the signature Σ. We have implemented the
techniques described in [5] in mu-term. Even with only a few processors imple-
mented, mu-term behaves well in the equational category of the TPDB, solving
39 examples out of 71. Obviously, we plan to investigate and implement more
processors in this field. This is not the first attempt to prove termination of
rewriting modulo axioms: CiME [11] is able to prove AC-termination of TRSs,
and AProVE is able to deal with termination of rewriting modulo equations sat-
isfying some restrictions.

2.5 Use of Rational Polynomials and Matrix Interpretations

Proofs of termination with mu-term 5.0 heavily rely on the generation of poly-
nomial orderings using polynomial interpretations with rational coefficients [24].
In this sense, recent improvements which are new with respect to the previous
3 The Maude Termination Tool [12] implements a number of transformations from

OS-TRSs into TRSs which can also be used for this purpose.
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versions of mu-term reported in [2,23] are the use of an autonomous SMT-based
constraint-solver for rational numbers [8] and the use of matrix interpretations
over the reals [6]. Our benchmarks show that polynomials over the rationals are
used in around 25% of the examples where a polynomial interpretation is re-
quired during the successful proof. Matrix interpretations are used in less than
4% of the proofs.

2.6 Termination Expert

In the (CS)DP framework, a strategy is applied to an initial (CSR, innermost
CSR, . . . ) problem and returns a proof tree. This proof tree is later evaluated
following a tree evaluation strategy (normally, breadth-first search).

With small differences depending on the particular kind of problem, we do
the following:

1. We check the system for extra variables (at active positions) in the right-
hand side of the rules.

2. We check whether the system is innermost equivalent (see Section 2.2). If it
is true, then we transform the problem into an innermost one.

3. Then, we obtain the corresponding dependency pairs, obtaining a (CS)DP
problem. And now, recursively:
(a) Decision point between infinite processors and the strongly connected

component (SCC) processor.
(b) Subterm criterion processor.
(c) Reduction triple (RT) processor with linear polynomials (LPoly) and

coefficients in N2 = {0, 1, 2}.
(d) RT processor with LPoly and coefficients in Q2 = {0, 1, 2, 1

2} and Q4 =
{0, 1, 2, 3, 4, 1

2 , 1
4} (in this order).

(e) RT processor with simple mixed polynomials (SMPoly) and coefficients
in N2.

(f) RT processor with SMPoly and rational coefficients in Q2.
(g) RT processor with 2-square matrices with entries in N2 and Q2.
(h) Transformation processors (only twice to avoid nontermination of the

strategy): instantiation, forward instantiation, and narrowing.
4. If the techniques above fail, then we use (CS)RPO.

The explanation of each processor can be found in [3,20]. Note also that all
processors are new with respect to mu-term 4.3 [2].

2.7 External Use of mu-term

The Maude Termination Tool4 (MTT [12]), which transforms proofs of termina-
tion of Maude programs into proofs of termination of CSR, use mu-term’s expert
as an external tool to obtain the proofs. The context-sensitive and order-sorted
features developed as part of mu-term 5.0 are essential to successfully handling
4 http://www.lcc.uma.es/~duran/MTT
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Maude programs in MTT. The Knuth-Bendix completion tool mkbTT [29] is a
modern completion tool that combines multi-completion with the use of termi-
nation tools. In the web version of the tool, the option to use mu-term as the
external termination tool is available.

3 Conclusions

We have described mu-term 5.0, a new version of mu-term with new features
for proving different termination properties like termination of innermost CSR,
termination of order-sorted rewriting and termination of rewriting modulo (asso-
ciative or commutative) axioms. Apart from that, a complete implementation of
the CSDP framework [20] has been included in mu-term 5.0, leading to a much
more powerful tool for proving termination of CSR. While transformations were
used in mu-term 4.3, in mu-term 5.0 they are not used anymore. The research
in the field has increased the number of examples which could be handled with
CSDPs in 35 (see Table 1). Regarding proofs of termination of rewriting, from a
collection of 1468 examples from the TPDB 7.0.2, mu-term 5.0 is able to prove
(or disprove) termination of 835 of them. In contrast, mu-term 4.3 was able to
deal with 503 only.

More details about these experimental results in all considered termination
properties discussed in the previous sections can be found here:

http://zenon.dsic.upv.es/muterm/benchmarks/index.html

Thanks to the new developments reported in this paper, mu-term 5.0 has proven
to be the most powerful tool for proving termination of CSR in the context-
sensitive subcategory of the 2007, 2009, and 2010 editions of the International
Competition of Termination Tools5. Moreover, in the standard subcategory, we
have obtained quite good results in the 2009 and 2010 editions, being the third
tool (among five) in solving more examples. We have also participated in the
innermost category in the 2009 and 2010 editions and in the equational category
in 2010.

Note also that mu-term 5.0 has a web interface that allows inexpert users
to prove automatically termination by means of the ‘automatic’ option. This is
very convenient for teaching purposes, for instance. And, apart from MTT, it is
the only termination tool that accepts programs in OBJ/Maude syntax.

Therefore, mu-term 5.0 is no more a tool for proving termination of CSR
only: We can say now that it has evolved to become a powerful termination
tool which is able to prove termination of a wide range of interesting properties
of rewriting with important applications to prove termination of programs in
sophisticated rewriting-based programming languages like Maude or OBJ*.
5 See http://www.lri.fr/~marche/termination-competition/2007/ , where only

AProVE and mu-term participated, and http://termcomp.uibk.ac.at/termcomp/

where there were three more tools in the competition: AProVE, Jambox [13] (only in
the 2009 edition), and VMTL [27]. AProVE and mu-term solved the same number of
examples but mu-term was much faster. The 2008 edition had only one participant:
AProVE.
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Abstract

Innermost context-sensitive rewriting (CSR) has been proved useful
for modeling the computational behavior of programs of algebraic lan-
guages like Maude, OBJ, etc, which incorporate an innermost strategy
which is used to break down the nondeterminism which is inherent to
reduction relations. Furthermore, innermost termination of rewriting is
often easier to prove than termination. Thus, under appropriate con-
ditions, a useful strategy for proving termination of rewriting is trying
to prove termination of innermost rewriting. This phenomenon has also
been investigated for context-sensitive rewriting. Up to now, only few
transformation-based methods have been proposed and used to (specifi-
cally) prove termination of innermost CSR. Powerful and efficient tech-
niques for proving (innermost) termination of (unrestricted) rewriting like
the dependency pair framework have not been considered yet. In this
work, we investigate the adaptation of the dependency pair framework
to innermost CSR. We provide a suitable notion of innermost context-
sensitive dependency pair and show how to extend and adapt the main
notions which conform the framework (chain, termination problem, pro-
cessor, etc.). Thanks to the innermost context-sensitive dependency pairs,
we can now use powerful techniques for proving termination of innermost
CSR. This is made clear by means of some benchmarks showing that
our techniques dramatically improve over previously existing transforma-
tional techniques, thus establishing the new state-of-the-art in the area.
We have implemented them as part of the termination tool MU-TERM.

1 Introduction

Termination is one of the most interesting practical problems in computation
and software engineering. A program or computational system is said to be ter-
minating if it does not lead to any infinite computation for any possible call or
input data. Ensuring termination is often a prerequisite for essential program
properties like correctness. In the last years, many studies have been devel-
oped to analyze termination of programming languages, mainly of functional

1
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[Gie95, LJB01, Xi02] and logic programming languages [CLS05, CT99, DD94,
DL01, DS02, LMS03, Sma04]. In the case of imperative programming lan-
guages, it is becoming important in the last years [AAC+08, BMS05, CPR06,
CS02, Tiw04]. Since most computational systems whose operational princi-
ple is based on reducing expressions can be described and analyzed by using
notions and techniques coming from the abstract model of Term Rewriting
Systems (TRSs [BN98, TeR03]), in many programming languages, it is pos-
sible to reduce the question of termination of programs to analyze termination
of TRSs. For this reason, the development of techniques for proving termi-
nation of term rewrite systems becomes especially important since every im-
provement will have a positive impact on program verification of many pro-
gramming languages. Following this approach, many powerful studies have
been developed for both declarative and imperative programming languages.
Regarding with termination of logic programs several works can be found:
[AM93, KKS98, Mar94, Mar96, SGN09, SGST06]. Termination of the functional
language Haskell [HPW92] has been developed quite recently [GSST06] and also
termination of Java Bytecode [OBEG10]. Moreover, such computational sys-
tems (e.g., functional, algebraic, and equational programming languages as well
as theorem provers based on rewriting techniques) often incorporate a prede-
fined reduction strategy which is used to break down the nondeterminism which
is inherent to reduction relations. Eventually, this can rise problems, as each
kind of strategy only behaves properly (i.e., it is normalizing, optimal, etc.)
for particular classes of programs. One of the most commonly used strategy is
the innermost one, in which only innermost redexes are reduced. Here, by an
innermost redex we mean a redex containing no other redex. The innermost
strategy corresponds to call by value or eager computation, that is, the compu-
tational mechanism of several programming languages where the arguments of
a function are always evaluated before the application of the function which use
them. It is well-known, however, that programs written in eager programming
languages frequently run into a nonterminating behavior if the programs have
not carefully been written to avoid such problems. For this reason, the design-
ers of such eager programming languages have also developed some features and
language constructs aimed at giving the user more flexible control of the pro-
gram execution. For instance, syntactic annotations (which are associated to
arguments of symbols) have been used in programming languages such as Clean
[NSEP92], Haskell [HPW92], Lisp [McC60], Maude [CDE+07], OBJ2 [FGJM85],
OBJ3 [GWM+00], CafeOBJ [FN97], etc., to improve the termination and ef-
ficiency of computations. Lazy languages (e.g., Haskell, Clean) interpret them
as strictness annotations in order to become ‘more eager’ and efficient. Eager
languages (e.g., Lisp, Maude, OBJ2, OBJ3, CafeOBJ) use them as replacement
restrictions to become ‘more lazy’ thus (hopefully) avoiding nontermination.

Context-sensitive rewriting (CSR [Luc98, Luc02]) is a restriction of rewriting
that forbids reductions on some subexpressions and that has proved useful to
model and analyze such programming language features at different levels, see,
e.g., [BM06, DLM+04, DLM+08, GM04, Luc01b, LM09]. Such a restriction
of the rewriting computations is formalized at a very simple syntactic level:

2
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that of the arguments of function symbols f in the signature F . As usual, by a
signature we mean a set of function symbols f1, . . . , fn, . . . together with an arity
function ar : F → N which establishes the number of ‘arguments’ associated
to each symbol. A replacement map is a mapping µ : F → ℘(N) satisfying
µ(f) ⊆ {1, . . . , k}, for each k-ary symbol f in the signature F [Luc98]. We use
them to discriminate the argument positions on which the rewriting steps are
allowed. In CSR we only rewrite µ-replacing subterms: every term t (as a whole)
is µ-replacing by definition; and ti (as well as all its µ-replacing subterms) is a
µ-replacing subterm of f(t1, . . . , tk) if i ∈ µ(f).

Example 1 Consider the following orthogonal TRS R which is a variant of an
example in [Bor03]:

from(x) → cons(x, from(s(x)))
sel(0, cons(x, xs)) → x

sel(s(y), cons(x, xs)) → sel(y, xs)
minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
zWquot(nil, nil) → nil

zWquot(cons(x, xs), nil) → nil
zWquot(nil, cons(x, xs)) → nil

zWquot(cons(x, xs), cons(y, ys)) → cons(quot(x, y), zWquot(xs, ys))

together with µ(cons) = {1} and µ(f) = {1, . . . , ar(f)} for all other symbols f .
According to [GM02a], innermost µ-termination of R implies its µ-termination
as well. We will show how R can easily be proved innermost µ-terminating (and
hence µ-terminating) by using the results in this paper.

The replacement map in Example 1 exemplifies one of the most typical ap-
plications of context-sensitive rewriting as a computational mechanism. The
declaration µ(cons) = {1} disallows reductions on the list part of the list con-
structor cons, thus making possible a kind of lazy evaluation of lists. We can
still use projection operators as sel to continue the evaluation when needed.
The other typical application is the declaration µ(if) = {1} which allows us
to forbid reductions on the two alternatives s and t of if-then-else expressions
if(b, s, t) whereas it is still possible to perform reductions on the boolean part
b, as required to implement the usual semantics of the operator.

Termination is also one of the most interesting problems when dealing with
CSR. With CSR we can achieve a terminating behavior with nonterminating
TRSs by pruning (all) infinite rewrite sequences.

Our focus is on termination of innermost context-sensitive rewriting (i.e.,
the variant of CSR where only the deepest µ-replacing redexes are contracted).
Termination of innermost context-sensitive rewriting has been proved useful
for proving termination of programs in programming languages like Maude and

3
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OBJ* which permit to control the program execution by means of such context-
sensitive annotations [Luc01a, Luc01b]. Techniques for proving termination
of innermost CSR were first investigated in [GM02b, Luc01a]. These papers,
though, only consider transformational techniques, where the original CS-TRS
(R, µ) is transformed into a TRS RµΘ (where Θ represents the transformation
which has been used) whose innermost termination implies the innermost termi-
nation of CSR for (R, µ). The dependency pairs method [AG00, GAO02, GTS04,
GTSF06, HM04, HM05], one of the most powerful techniques for proving ter-
mination of rewriting, had not been investigated in connection with proofs of
termination of CSR until [AGL06]. As shown in [AGL07], proofs of termination
using context-sensitive dependency pairs (CSDPs) are much more powerful and
faster than any other technique for proving termination of CSR. As we show
here, dealing with innermost CSR, we have a similar situation.

Proving innermost termination of rewriting is often easier than proving ter-
mination of rewriting [AG00] and, for some relevant classes of TRSs, inner-
most termination of rewriting is even equivalent to termination of rewriting
[Gra95, Gra96]. In [GM02b, GL02a] it is proved that the equivalence between
termination of innermost CSR and termination of CSR holds in some interesting
cases (e.g., for orthogonal CS-TRSs).

During the last years, we have investigated in deep how to prove termina-
tion of context-sensitive rewriting by using dependency pairs, since they have
proven to be one of the most powerful techniques for proving termination of
unrestricted rewriting. In [AGL10], we define the notion of context-sensitive
dependency pairs following the approach of [HM04] which consists of consider-
ing the structure of the infinite rewrite sequences starting from minimal non-
terminating terms. Therefore, all the advantages and improvements over this
research can also be taken into account in innermost context-sensitive rewriting,
improving our previous results on this field in [AL07].

1.1 Plan of the paper

After some preliminaries in Section 2, we develop the material in the paper in
three main parts:

1. We investigate the structure of infinite innermost context-sensitive rewrite
sequences. This analysis is essential to provide an appropriate definition
of innermost context-sensitive dependency pair, and the related notions
of innermost chains, graph, etc. Section 3 provides appropriate notions
of minimal innermost non-µ-terminating terms and introduces the main
properties of such terms. It also recalls the notion of hidden term in a
CS-TRS. This notion turns to be essential for the appropriate treatment
of our dependency pairs. We investigate the structure of infinite inner-
most context-sensitive rewrite sequences starting from strongly minimal
innermost non-µ-terminating terms.

2. We define the notions of innermost context-sensitive dependency pair and
innermost context-sensitive chain of pairs and show how to use them to
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characterize innermost termination of CSR. Sections 4 introduces the
general framework to compute and use innermost context-sensitive de-
pendency pairs for proving innermost termination of CSR. The introduc-
tion of a new kind of dependency pairs (the collapsing dependency pairs)
leads to a notion of innermost context-sensitive dependency chain, which
is quite different from the standard one. We prove that our innermost
context-sensitive dependency pair approach fully characterizes termination
of innermost CSR.

3. We describe a suitable framework for dealing with proofs of termination
of innermost CSR by using the previous results. Section 5 provides an
adaptation of the dependency pair framework [GTS04, GTSF06] to inner-
most CSR by defining appropriate notions of CS problem and CS processor
which rely in the notions and results investigated in the second part of the
paper. Section 6 introduces several basic processors for proving innermost
termination of CSR. Section 7 introduces the notion of innermost context-
sensitive (dependency) graph and the associated CS processor which for-
malizes the usual practice of analyzing the absence of infinite (minimal)
innermost chains by considering the (maximal) cycles in the dependency
graph. As in the standard case, the ICS-dependency graph is not com-
putable, so we show how to obtain the estimated ICS-dependency graph
which is a computable overestimation of it. Section 8 adapts the notion of
usable rules to deal with proofs of innermost CSR by using term orderings.
We introduce the notion of µ-reduction pair, which is the straightforward
adaptation of reduction pairs used for dealing with dependency pairs in
the standard case. Section 9 adapts to the context-sensitive setting, the
notion of usable argument introduced by Férnandez [Fer05] to prove in-
nermost termination of rewriting by proving termination of CSR. In this
way, we can prove innermost termination of CSR by proving innermost
termination of CSR using a more restrictive replacement map. We also
include this criterion as a processor in the innermost context-sensitive de-
pendency pair framework. Section 10 adapts narrowing transformation of
pairs in [GTSF06] to innermost CSR and the new framework.

The paper ends with an experimental evaluation of our techniques in Section 11.
Section 12 concludes.

2 Preliminaries

This section collects a number of definitions and notations about term rewriting.
More details and missing notions can be found in [BN98, Ohl02, TeR03].

Let A be a set and R ⊆ A × A be a binary relation on A. We denote the
transitive closure of R by R+ and its reflexive and transitive closure by R∗. We
say that R is terminating (strongly normalizing) if there is no infinite sequence
a1 R a2 R a3 · · · . A reflexive and transitive relation R is a quasi-ordering.
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2.1 Signatures, Terms, and Positions

Throughout the paper, X denotes a countable set of variables and F denotes
a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity
given by a mapping ar : F → N. The set of terms built from F and X is
T (F ,X ). A term is ground if it contains no variable. A term is said to be linear
if it has no multiple occurrences of a single variable.

Terms are viewed as labelled trees in the usual way. Positions p, q, . . . are
represented by chains of positive natural numbers used to address subterms
of t. We denote the empty chain by Λ. Given positions p, q, we denote their
concatenation as p.q. Positions are ordered by the standard prefix ordering:
p ≤ q if ∃q′ such that q = p.q′ If p is a position, and Q is a set of positions,
p.Q = {p.q | q ∈ Q}. The set of positions of a term t is Pos(t). Positions of
nonvariable symbols in t are denoted as PosF (t), and PosX (t) are the positions
of variables. The subterm at position p of t is denoted as t|p and t[s]p is the
term t with the subterm at position p replaced by s.

We write t � s, read s is a subterm of t, if s = t|p for some p ∈ Pos(t) and
t� s if t� s and t 6= s. We write t 4 s and t 7 s for the negation of the corre-
sponding properties. The symbol labeling the root of t is denoted as root(t). A
context is a term C ∈ T (F ∪ {2},X ) with a ‘hole’ 2 (a fresh constant symbol).
We write C[ ]p to denote that there is a (usually single) hole 2 at position p of
C. Generally, we write C[ ] to denote an arbitrary context and make explicit
the position of the hole only if necessary. C[ ] = 2 is called the empty context.

2.2 Substitutions

A substitution is a mapping σ : X → T (F ,X ). Denote as ε the ‘identity’
substitution: ε(x) = x for all x ∈ X . The set Dom(σ) = {x ∈ X | σ(x) 6= x} is
called the domain of σ.

Remark 1 In this paper, we do not impose that the domain of the substitutions
is finite. This is usual practice in the dependency pair approach, where a single
substitution is used to instantiate an infinite number of variables coming from
renamed versions of the dependency pairs (see below).

Whenever Dom(σ)∩Dom(σ′) = ∅, for substitutions σ, σ′, we denote by σ∪σ′, a
substitution such that (σ∪σ′)(x) = σ(x) if x ∈ Dom(σ) and (σ∪σ′)(x) = σ′(x)
if x ∈ Dom(σ′).

2.3 Renamings and unifiers

A renaming is an injective substitution ρ such that ρ(x) ∈ X for all x ∈ X . For
renamings, we assume that Var(ρ) is finite (which is the usual practice) and
also idempotency, i.e., ρ(ρ(x)) = ρ(x) for all x ∈ X .

The quasi-ordering of subsumption ≤ over T (F ,X ) is t ≤ t′ ⇔ ∃σ. t′ = σ(t).
We denote as σ ≤ σ′ the fact that σ(x) ≤ σ′(x) for all x ∈ X , thus extending
the quasi-ordering to substitutions.
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A substitution σ such that σ(s) = σ(t) for two terms s, t ∈ T (F ,X ) is called
a unifier of s and t; we also say that s and t unify (with substitution σ). If two
terms s and t unify, then there is a unique (up to renaming of variables) most
general unifier (mgu) θ which is minimal (w.r.t. the subsumption quasi-ordering
≤) among all other unifiers of s and t.

A relation R ⊆ T (F ,X ) × T (F ,X ) on terms is stable if for all terms s, t ∈
T (F ,X ), and substitutions σ, we have σ(s) R σ(t) whenever s R t.

2.4 Rewrite Systems and Term Rewriting

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ),
l 6∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is
the right-hand side (rhs). A rewrite rule l→ r is said to be collapsing if r ∈ X .
A Term Rewriting System (TRS) is a pair R = (F , R), where R is a set of
rewrite rules. Given TRSs R = (F , R) and R′ = (F ′, R′), we let R∪R′ be the
TRS (F ∪ F ′, R ∪ R′). An instance σ(l) of a lhs l of a rule is called a redex.
Given R = (F , R), we consider F as the disjoint union F = C ] D of symbols
c ∈ C, called constructors and symbols f ∈ D, called defined functions, where
D = {root(l) | l→ r ∈ R} and C = F −D.

Example 2 Consider again the TRS in Example 1. The symbols from, sel,
minus, quot and zWquot are defined, and s, 0, cons, and nil are constructors.

For simplicity, we often write l → r ∈ R instead of l → r ∈ R to express that
the rule l→ r is a rule of R. The pair 〈σ(l)[σ(r′)]p, σ(r)〉 is called a critical pair
and is also called an overlay if p = Λ. A critical pair 〈t, s〉 is trivial if t = s. The
critical pairs of a TRS R are the critical pairs between any two of its (renamed)
rules; this includes overlaps of a rule with a renamed variant of itself, except
at the root, i.e., if p = Λ. A TRS R is left-linear if for all l → r ∈ R, l is
a linear term. A left-linear TRS without critical pairs is called orthogonal. A
term t ∈ T (F ,X ) rewrites to s (at position p), written t

p→R s (or just t → s,
or t →R s), if t|p = σ(l) and s = t[σ(r)]p, for some rule l → r ∈ R, p ∈ Pos(t)
and substitution σ. We write t

>p→R s if t
q→R s for some q > p. A TRS R is

terminating if its one step rewrite relation →R is terminating.

2.5 Innermost rewriting

A term is a normal form if it contains no redex. A substitution σ is normalized
if σ(x) is a normal form for all x ∈ Dom(σ). A term f(t1, . . . , tk) is argument
normalized if ti is a normal form for all 1 ≤ i ≤ n. An innermost redex is an
argument normalized redex. A term s rewrites innermost to t, written s →i t,
if s→ t at position p and s|p is an innermost redex. Let R be a TRS. For any
symbol f let Rules(R, f) be the set of rules l→ r defining f and such that the
left-hand sides l are argument normalized. For any term t the set of usable rules
U(R, t) is as follows:
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U(R, x) = ∅
U(R, f(t1, . . . , tn)) = Rules(R, f) ∪ S

i∈ar(f)

U(R′, ti) ∪
S

l→r∈Rules(R,f)

U(R′, r)

where R′= R−Rules(R, f).

2.6 (Innermost) Context-Sensitive Rewriting

A mapping µ : F → ℘(N) is a replacement map (or F-map) if ∀f ∈ F , µ(f) ⊆
{1, . . . , ar(f)} [Luc98]. Let MF be the set of all F-maps (or MR for the F-
maps of a TRS (F , R)). Let µ> be the replacement map given by µ>(f) =
{1, . . . , ar(f)} for all f ∈ F (i.e., no replacement restrictions are specified).

A binary relation R on terms is µ-monotonic if whenever t R s we have that
f(t1, . . . , ti−1, t, . . . , tk) R f(t1, . . . , ti−1, s, . . . , tk) for all f ∈ F , i ∈ µ(f), and
t, s, t1, . . . , tk ∈ T (F ,X ). If R is µ>-monotonic, we just say that R is monotonic.

The set of µ-replacing positions Posµ(t) of t ∈ T (F ,X ) is: Posµ(t) = {Λ},
if t ∈ X and Posµ(t) = {Λ} ∪ ⋃i∈µ(root(t)) i.Posµ(t|i), if t 6∈ X . When no
replacement map is made explicit, the µ-replacing positions are often called
active; and the non-µ-replacing ones are often called frozen. The following
result about CSR is often used without any explicit mention.

Proposition 1 [Luc98] Let t ∈ T (F ,X ) and p = q.q′ ∈ Pos(t). Then p ∈
Posµ(t) iff q ∈ Posµ(t) ∧ q′ ∈ Posµ(t|q)

The µ-replacing subterm relation �µ is given by t�µ s if there is p ∈ Posµ(t)
such that s = t|p. We write t �µ s if t �µ s and t 6= s. We write t �

�µ
s to

denote that s is a non-µ-replacing (hence strict) subterm of t: t�
�µ
s if there is

p ∈ Pos(t)−Posµ(t) such that s = t|p. The set of µ-replacing variables of a term
t, i.e., variables occurring at some µ-replacing position in t, is Varµ(t) = {x ∈
Var(t) | t�µx}. The set of non-µ-replacing variables of t, i.e., variables occurring
at some non-µ-replacing position in t, is Var�µ(t) = {x ∈ Var(t) | t�

�µ
x}. Note

that Varµ(t) and Var�µ(t) do not need to be disjoint.
A pair (R, µ) where R is a TRS and µ ∈ MR is often called a CS-TRS. In

context-sensitive rewriting, we (only) contract µ-replacing redexes: t µ-rewrites
to s, written t ↪→µ s (or t ↪→R,µ s and even t ↪→ s), if t

p→R s and p ∈ Posµ(t).

Example 3 Consider R and µ as in Example 1. Then, we have:

from(0) ↪→µ cons(0, from(s(0)) 6↪→µ cons(0, cons(s(0), from(s(s(0)))

Since the second argument of cons is not µ-replacing, we have that
2 6∈ Posµ(cons(0, from(s(0))), and the redex from(s(0)) cannot be µ-rewritten.

A term t is µ-terminating (or (R, µ)-terminating, if we want an explicit reference
to the involved TRS R) if there is no infinite µ-rewrite sequence t = t1 ↪→µ

t2 ↪→µ · · · ↪→µ tn ↪→µ · · · starting from t. A TRS R is µ-terminating if ↪→µ is
terminating.
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A µ-normal form is a term which cannot be µ-rewritten. Let NFµ(R) (or
just NFµ if no confusion arises) be the set of µ-normal forms of a TRS R.

A substitution σ is µ-normalized if σ(x) is a µ-normal form for all x ∈
Dom(σ). A term t = f(t1, . . . , tk) is argument µ-normalized if ti is a µ-normal
form for all i ∈ µ(f). A µ-innermost redex is an argument µ-normalized redex,
i.e., t = σ(l) for some substitution σ and rule l → r ∈ R and for all p ∈
Posµ(t− Λ), t|p ∈ NFµ. A term s innermost µ-rewrites to t, written s ↪→i t, if
s
p→R t, p ∈ Posµ(s), and s|p is a µ-innermost redex. Let innermost µ-rewriting

below the root be
>Λ
↪−→i = (

>Λ
↪−→ ∩ ↪→i). Termination of CSR is fully captured by

the so-called µ-reduction orderings, i.e., well-founded, stable orderings = which
are µ-monotonic. A TRS R is innermost µ-terminating if ↪→µ,i is terminating.

We write s
!
↪→R,µ,i t if s ↪→∗R,µ,i t and t ∈ NFµ.

A term t µ-narrows to a term s (written t ;R,µ,θ s), if there is a nonvariable
µ-replacing position p ∈ PosµF (t) and a rule l → r in R (sharing no variable
with t) such that t|p and l unify with most general unifier θ and s = θ(t[r]p).

3 Minimal innermost non-µ-terminating terms
and Infinite Innermost µ-rewrite Sequences

In the following, we show how to adapt our results about the structure of in-
finite context-sensitive rewrite sequences [AGL10, Section 3] to the innermost
sequences. Most proofs are only slightly different from the original ones and
therefore we comment on the differences only (for full proofs see [Ala08]). Major
differences come from particularities of reductions under an innermost strategy.
In some cases, they bring us some advantages over the case of ‘free’ reductions in
CSR. In the following we discuss some of these peculiarities. In the innermost
(context-sentive) setting, matching substitutions are always (µ-)normalized. Ac-
cording to the discussion in [AGL10], we introduce the following:

Definition 1 ((Strongly) minimal innermost non-µ-terminating term)
LetM∞,µ,i be the set of minimal innermost non-µ-terminating terms in the fol-
lowing sense: t belongs to M∞,µ,i if t is not innermost µ-terminating and every
strict µ-replacing subterm s of t (i.e., t �µ s) is innermost µ-terminating. Let
T∞,µ,i be a set of strongly minimal innermost non-µ-terminating terms in the
following sense: t belongs to T∞,µ,i if t is innermost non-µ-terminating and ev-
ery strict subterm u (i.e., t � u) is innermost µ-terminating. It is obvious that
root(t) ∈ D for all t ∈ T∞,µ,i or t ∈M∞,µ,i.
Note that T∞,µ,i ⊆ M∞,µ,i. Before starting our discussion about minimal in-
nermost non-µ-terminating terms, we provide auxiliary results about innermost
µ-terminating terms (see [AGL10, Lemmata 1,2,3,4]).

Proposition 2 Let R = (F , R) be a TRS, µ ∈MF , and s, t ∈ T (F ,X ).

1. If s is innermost µ-terminating and s�µt or s ↪→∗R,µ,i t then t is innermost
µ-terminating.
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2. If s is not innermost µ-terminating, then there is a subterm t of s (s� t)
such that t ∈ T∞,µ,i. Furthermore, there is a µ-replacing subterm t of s
(s�µ t) such that t ∈M∞,µ,i.

3. If t ∈ M∞,µ,i, t
>Λ

↪−→∗i u and u is not innermost µ-terminating, then u ∈
M∞,µ,i.

The following result is the innermost context-sensitive version of Lemma 1
in [HM04] that uses previous results. This proposition establishes that, given a
minimal not innermost µ-terminating term t ∈M∞,µ,i, there are only two ways
for an infinite innermost µ-rewrite sequence to proceed. The first one is by using
‘visible’ parts of the rules which correspond to µ-replacing nonvariable subterms
in the right-hand sides which are rooted by a defined symbol. This would
corresponds with the straightforward extension of the original result but taking
into account the reemplacement restrictions. The second one is by showing up
‘hidden’ not innermost µ-terminating subterms which are activated by migrating
variables in a rule l → r, i.e., variables x ∈ Varµ(r) \ Varµ(l) which are not
µ-replacing in the left-hand side l but become µ-replacing in the right-hand side
r.

Proposition 3 Let R = (F , R) = (C ]D, R) be a TRS and µ ∈MF . Then for
all t ∈M∞,µ,i, there exist l→ r ∈ R, a substitution σ such that σ(l) is argument

µ-normalized and a term u ∈ M∞,µ,i such that t
>Λ

↪−→∗i σ(l)
Λ
↪→i σ(r) �µ u and

either

1. there is a nonvariable µ-replacing subterm s of r, r�µs, such that u = σ(s)
and σ(x) ∈ NFµ(R) for all x ∈ Var(s) ∩ Varµ(l), or

2. there is x ∈ Varµ(r) \ Varµ(l) such that σ(x) �µ u, that is, σ(x) = C[u]p
for some context C[]p with p ∈ Posµ(C[]p).

Proof.
Consider an infinite innermost µ-rewrite sequence starting from t. By defini-

tion ofM∞,µ,i, all proper µ-replacing subterms of t are innermost µ-terminating.
Therefore, t has an inner reduction (of innermost µ-rewriting steps) to an in-
stance σ(l) of the left-hand side of a rule l → r of R, such that no strict
µ-replacing subterm of σ(l) is a redex, i.e. σ(l) is argument µ-normalized. Then

we have t
>Λ

↪−→∗i σ(l)
Λ
↪→i σ(r) and σ(r) is not innermost µ-terminating. Note

that, σ(l) must be argument µ-normalized; otherwise, the last step would not
be an innermost µ-rewriting step. Thus, we can write t = f(t1, . . . , tk) and
σ(l) = f(l1, . . . , lk) for some k-ary defined symbol f , and ti ↪→∗i σ(li) for all i,

1 ≤ i ≤ k. More precisely, ti
!
↪→i σ(li) if i ∈ µ(f) Since σ(l) is argument µ-

normalized, σ(x) ∈ NFµ for all µ-replacing variables x in l: x ∈ Varµ(l). Since
σ(r) is not innermost µ-terminating, by Proposition 2-2 it contains a µ-replacing
subterm u ∈ M∞,µ,i: σ(r) �µ u, i.e., there is a position p ∈ Posµ(σ(r)) such
that σ(r)|p = u. We consider two cases:
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1. If p ∈ PosF (r) is a nonvariable position of r, then there is a µ-replacing
subterm s of r, such that u = σ(s). Note that σ(x) ∈ NFµ for all x ∈
Var(r) \ Varµ(l).

2. If p 6∈ PosF (r), then there is a µ-replacing variable position q ∈ Posµ(r)∩
PosX (r) such that q ≤ p. Let x ∈ Varµ(r) be such that r|q = x. Then,
σ(x) �µ u and σ(x) is not innermost µ-terminating (by assumption, u ∈
M∞,µ,i is not innermost µ-terminating: by Proposition 2-1, σ(x) cannot
be innermost µ-terminating either). Since σ(li) is innermost µ-terminating
for all i ∈ µ(f), and σ(x) ∈ NFµ for all µ-replacing variables in l , we
conclude that x ∈ Varµ(r) \ Varµ(l).

2

Proposition 3 entails the following result, which establishes some properties of
infinite sequences starting from minimal innermost non-µ-terminating terms.

Corollary 1 Let R = (F , R) be a TRS and µ ∈MF . For all t ∈M∞,µ,i, there
is an infinite sequence

t
>Λ

↪−→∗i σ1(l1)
Λ
↪→i σ1(r1) �µ t1

>Λ

↪−→∗i σ2(l2)
Λ
↪→i σ2(r2) �µ t2

>Λ

↪−→∗i · · ·
where, for all i ≥ 1, li → ri ∈ R are rewrite rules, σi are substitutions, σi(li) is
argument µ-normalized, and terms ti ∈ M∞,µ,i are minimal innermost non-µ-
terminating terms such that either

1. ti = σi(si) for some nonvariable subterm si such that ri �µ si and σ(x) ∈
NFµ(R) for all x ∈ Var(si) ∩ Varµ(li), or

2. σi(xi) �µ ti which is equivalent to σ(x) = C[ti]pi for some xi ∈ Varµ(ri) \
Varµ(li) and context C[]pi with pi ∈ Posµ(C[]pi).

Now we pay attention to Item 2 of Proposition 3. To analyze in deep infinite
sequences starting from minimal innermost non-µ-terminating terms we need
to go inside the instantiation of the migrating variable, σ(x). Since in (inner-
most) context-sensitive rewriting, function calls can be delayed, terms that are
(innermost) µ-terminating can generate future (innermost) non-µ-terminating
subterms. By Lemma 2 we know that innermost µ-termination is preserved
under µ-rewritings and extraction of µ-replacing subterms, therefore, these in-
nermost non-µ-terminating subterms introduced by innermost µ-rewriting steps
can only occur at frozen positions in the reducts. This is captured by the notion
of hidden term.

Definition 2 (Hidden Term [AGL10]) Let R = (F , R) be a TRS and µ ∈
MF . We say that t ∈ T (F ,X )−X is a hidden term if there is a rule l→ r ∈ R
such that r�

�µ
t. Let HT (R, µ) (or just HT , if R and µ are clear for the context)

be the set of all hidden terms in (R, µ). We say that f ∈ F is a hidden symbol
if it occurs in a hidden term. Let H(R, µ) (or just H) be the set of all hidden
symbols in (R, µ). We also use DHT (R, µ) = {t ∈ HT | root(t) ∈ D} for the
set of hidden terms which are rooted by a defined symbol.
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Example 4 For R and µ as in Example 1, the hidden terms are from(s(x)),
s(x), and zWquot(zs, ys). The hidden symbols are from, s and zWquot. Finally,
DHT (R, µ) = {from(s(x)), zWquot(zs, ys)}.

Innermost non-µ-terminating terms at frozen positions can be activated by
some specific contexts. In Proposition 3 (2), the intended role of hidden terms
in the binding of the migrating variable σ(x) = C[u]p is that u′ is a hidden term
such that θ(u′) = u for some substitution θ and context C[]p. This context can
only be composed by symbols f contained in hidden terms f(. . . , ri, . . .) such
that r′ �

�µ
f(. . . , ri, . . .) �µ ri for a rule l′ → r′ ∈ R satisfying:

• ri is a nonvariable term and σ(ri) = u, or

• ri is a variable at a frozen position in both, l and r.

These symbols conforms what is called as hiding context.
First notion of hiding context was found in [AEF+08] but it has been recently

slightly redefined in [GL10]. We follow the last definition since it present some
advantages.

Definition 3 (Hiding Context [GL10]) Let R be a TRS and µ ∈ MR. A
function symbol f hides position i ∈ µ(f) in the rule l → r ∈ R if r �

�µ
f(r1, . . . , rn) for some terms r1, . . . , rn, and ri contains a µ-replacing defined
symbol (i.e., PosµD(ri) 6= ∅) or a variable x ∈ (Var�µ(l) ∩ Var�µ(r)) \ (Varµ(l) ∪
Varµ(r)) which is µ-replacing in ri (i.e., x ∈ Varµ(ri)). We say that f hides
position i in R if there is a rule l → r such that f hides position i in l → r. A
context C[2] is hiding if

1. C[2] = 2, or

2. C[2] = f(t1, . . . , ti−1, C
′[2], ti+1, . . . , tk), where f hides position i and

C ′[2] is a hiding context.

These notions are used and combined to model infinite context-sensitive
rewrite sequences starting from strongly minimal innermost non-µ-terminating,
although, first, we need some previous results.

Definition 4 (Hiding Property [AEF+08]) A term u has the hiding prop-
erty iff

• u ∈M∞,µ,i and

• whenever u�
�µ
s�µ t

′ for some terms s and t′ with t′ ∈M∞,µ,i, then t′ is
an instance of a hidden term and s = C[t′] for some hiding context C[ ].

Lemma 1 ([AEF+08]) Let u be a term with the hiding property and let u ↪→R,µ,i
v �µ w with w ∈M∞,µ,i. Then w also has the hiding property.
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The proof of the previous lemma differs from the one in [AEF+08] in the
refinement done in the notion of hiding context mentioned in [GL10] and it is
slightly different from the one in [GL10] since we are dealing with innermost
rewriting and all µ-replacing variables of the instantiated left-hand sides of the
rules applied in a innermost µ-rewrite sequence are in µ-normal form: no matter
if they are in a nonactive position on the right-hand side, they cannot start any
reduction. In [GL10] it is not necessary either since in a µ-rewrite sequence,
these variables could start a reduction but due to minimality, these reductions
would be finite.

In the following, we consider a function Renµ [AGL06, AGL10] which in-
dependently renames all occurrences of µ-replacing variables within a term t by
using new fresh variables which are not in Var(t). Note that Renµ(t) keeps
variables at non-µ-replacing positions untouched.

Proposition 4 ([AGL10]) Let R = (F , R) = (C ] D, R) be a TRS and µ ∈
MF . Let t ∈ T (F ,X ) − X be a nonvariable term and σ be a substitution. If

σ(t)
>Λ

↪−→∗i σ(l) for some (probably renamed) rule l → r ∈ R, then Renµ(t) is
µ-narrowable.

Corollary 2 ([AGL10]) Let R = (F , R) be a TRS and µ ∈ MF . Let t ∈
T (F ,X ) − X be a nonvariable term and σ be a substitution such that σ(t) ∈
M∞,µ,i. Then, Renµ(t) is µ-narrowable.

In the following, we write Narrµ(t) [AGL10] to indicate that t is µ-narrowable
(w.r.t. the intended TRS R). We also let

NHT (R, µ) = {t ∈ DHT | Narrµ(Renµ(t))}

be the set of hidden terms which are rooted by a defined symbol, and that, after
applying Renµ, become µ-narrowable.

As a consequence of the previous results, we have the following main result.

Theorem 1 (Minimal Innermost Sequence) Let R be a TRS and µ ∈MR.
For all t ∈ T∞,µ,i, there is an infinite sequence

t = t0
>Λ

↪−→∗i σ1(l1)
Λ
↪→i σ1(r1) �µ t1

>Λ

↪−→∗i σ2(l2)
Λ
↪→i σ2(r2) �µ t2

>Λ

↪−→∗i · · ·

where, for all i ≥ 1, li → ri ∈ R, σi is a substitution, σi(li) is argument
µ-normalized, and ti ∈M∞,µ,i is a minimal innermost non-µ-terminating term
such that either

1. ti = σi(si) for some nonvariable term si such that ri �µ si, or

2. σi(xi) = θi(Ci[t′i]) and ti = θi(t′i) for some variable xi ∈ Varµ(ri) \
Varµ(li), t′i ∈ NHT (R, µ), hiding context Ci[2], and substitution θi.

13

18.10. Innermost Termination of Context-Sensitive Rewriting 329



Proof.
Since T∞,µ,i ⊆M∞,µ,i, by Corollary 1, we have a sequence

t = t0
>Λ

↪−→∗i σ1(l1)
Λ
↪→i σ1(r1) �µ t1

>Λ

↪−→∗i σ2(l2)
Λ
↪→i σ2(r2) �µ t2

>Λ

↪−→∗i · · ·
where, for all i ≥ 1, li → ri ∈ R, σi is a substitution such that σ(li) is argument
µ-normalized, ti ∈ M∞,µ,i, and either (1) ti = σi(si) for some si such that
ri�µsi or (2) σi(xi)�µ ti for some xi ∈ Varµ(ri)\Varµ(li) (and hence σ(li)��µ

ti
and σ(ri) �µ ti as well). If σi(xi) �µ ti for some xi ∈ Varµ(ri) \ Varµ(li), it
means that σ(li) �

�µ
Ci[ti]. Since t ∈ T∞,µ,i, it has the hiding property and,

by Lemma 1, all σ(li) satisfies the hiding property. Hence, Ci[ti] = θi(C ′i[t
′
i])

where t′i ∈ DHT (R, µ) and C ′i[ ] is a hiding context. By Corollary 2 we have
t′i ∈ NHT . 2

4 Innermost Context-Sensitive Dependency Pairs
and Chains

An essential property of the dependency pairs method is that it provides a
characterization of termination of TRSs R as the absence of infinite (minimal)
chains of dependency pairs [AG00, GTSF06]. As we prove here this is also true
for innermost CSR. First, we have to introduce a suitable notion of innermost
dependency pair and chain which can be used for this purpose.

In innermost CSR, we only perform reduction steps on innermost µ-replacing
redexes. Therefore, we have to restrict the definition of chains in order to obtain
an appropriate notion corresponding to innermost CSR, which, obviously, is an
adaptation of the one for standard CSR(see [AGL10]). Regarding innermost
reductions, arguments of a redex should be in normal form before the redex
is contracted and, regarding CSR, the redex to be contracted has to be in a
µ-replacing position.

Given a signature F and f ∈ F , we let f ] be a new fresh symbol (often called
tuple symbol or DP-symbol) associated to a symbol f [AG00]. Let F ] be the set
of tuple symbols associated to symbols in F . As usual, for t = f(t1, . . . , tk) ∈
T (F ,X ), we write t] to denote the marked term f ](t1, . . . , tk). Conversely, given
a marked term t = f ](t1, . . . , tk), where t1, . . . , tk ∈ T (F ,X ), we write t\ to
denote the term f(t1, . . . , tk) ∈ T (F ,X ). Let T ](F ,X ) = {t] | t ∈ T (F ,X )−X}
be the set of marked terms.

Definition 5 (Innermost Context-Sensitive Dependency Pairs) Let R =
(F , R) = (C]D, R) be a TRS and µ ∈MF . We define iDP(R, µ) = iDPF (R, µ)∪
iDPX (R, µ) to be the set of innermost context-sensitive dependency pairs (ICS-
DPs) where:

iDPF (R, µ) = {l] → s] | l→ r ∈ R, l] ∈ NFµ(R), r �µ s, root(s) ∈ D, l 6�µ s,Narrµ(Renµ(s))}
iDPX (R, µ) = {l] → x | l→ r ∈ R, l] ∈ NFµ(R), x ∈ Varµ(r) \ Varµ(l)}

We extend µ ∈ MF into µ] ∈ MF∪D] by µ](f) = µ(f) if f ∈ F , and µ](f ]) =
µ(f) if f ∈ D.
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Example 5 Consider Example 1. The set iDP(R, µ) consists of the following
pairs:

MINUS(s(x), s(y)) → MINUS(x, y) (1)
QUOT(s(x), s(y)) → MINUS(x, y) (2)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y)) (3)

SEL(s(y), cons(x, xs)) → SEL(y, xs) (4)
SEL(s(y), cons(x, xs)) → xs (5)

ZWQUOT(cons(x, xs), cons(y, ys)) → QUOT(x, y) (6)

The ICSDPs u → v ∈ iDPX (R, µ) in Definition 5, consisting of collapsing
rules only, are called the collapsing ICSDPs. A rule l → r of a TRS R is µ-
conservative if Varµ(r) ⊆ Varµ(l), i.e., it does not contain migrating variables;
R is µ-conservative if all its rules are (see [Luc96, Luc06]).

Clearly, If R is µ-conservative, then iDP(R, µ) = iDPF (R, µ).
Therefore, in order to deal with µ-conservative TRSs R we only need to

consider the ‘classical’ dependency pairs in iDPF (R, µ). If the TRS R contains
non-µ-conservative rules, then we also need to consider dependency pairs with
variables in the right-hand side.

To deal with the information corresponding to hidden terms and hiding
contexts when trying to characterize innermost µ-termination with ICSDPs, we
use an unhiding TRS unh(R, µ). This unhiding TRS captures the situation
described in Theorem 1 when managing migrating variables. According to this,
we have to remove the (instance of the) hiding context Ci[] to extract the delayed
call ti and then connect this delayed call, which is an instance θ(t′i) of a hidden
term t′i with the next pair in the innermost µ-chain. We perform these two
actions by using two kind of rewrite rules:

• If θ(Ci[t′i]) = θ(f(t1, . . . , ti−1, C
′
i[t
′
i], ti+1, . . . , tk)) then, since Ci[] is a hid-

ing context, f hides position i and C ′i[] is a hiding context as well. Then,
we can extract θ(C ′i[t

′
i]) from θ(Ci[t′i]) by using the following projection

rule: f(x1, . . . , xi−1, xi, xi+1, . . . , xk)→ xi

• Once ti has been reached, we know that it is an instance ti = θ(t′i) of a
nonvariable hidden term t′i ∈ NHT (R, µ) and we have to connect ti with
the next innermost context-sensitive dependency pair. Since the root of
the innermost context-sensitive dependency pair is a marked symbol, we
can do it by using a rule that just changes the root symbol by its marked
version in the following way: t′i → t′]i

Definition 6 (Unhiding TRS [GL10]) Let R be a TRS and µ ∈ MR. We
define unh(R, µ) as the TRS consisting of the following rules:

1. f(x1, . . . , xi, . . . , xk) → xi for all function symbols f of arity k, distinct
variables x1, . . . , xk, and 1 ≤ i ≤ k such that f hides position i in l→ r ∈
R, and
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2. t→ t] for every t ∈ NHT (R, µ).

Example 6 The unhiding TRS unh(R, µ) for R and µ in Example 1 is:

from(x) → FROM(x)
zWquot(x, y) → ZWQUOT(x, y)
zWquot(x, y) → x
zWquot(x, y) → y

Definitions 5 and 6 lead to a suitable notion of chain which captures minimal
infinite µ-rewrite sequences according to the description in Theorem 1. In the
following, given a TRS S, we let S�µ be the rules from S of the form s→ t ∈ S
and s�µ t (Definition 6-1); and S] = S \ S�µ(Definition 6-2).

As in the DP-framework [GTS04, GTSF06], where the procedence of pairs
does not matter, we rather think of another TRS P which is used together with
R to build the chains. Once this more abstract notion of chain is introduced, it
can be particularized to be used with ICSDPs, by just taking P = iDP(R, µ).

Definition 7 ((Minimal) Innermost µ-Chain) Let R, P and S be TRSs
and µ ∈ MR∪P∪S . An innermost (P,R,S, µ, i)-chain is a finite or infinite
sequence of pairs ui → vi ∈ P, together with a substitution σ satisfying that, for
all i ≥ 1, σ(ui) ∈ NFµ(R) and :

1. if vi /∈ Var(ui) \ Varµ(ui), then σ(vi) = ti
!
↪→R,µ,i σ(ui+1), and

2. if vi ∈ Var(ui)\Varµ(ui), then σ(vi)
Λ
↪−→∗S�µ ,µ

◦ Λ
↪→S],µ ti

!
↪→R,µ,i σ(ui+1).

An innermost (P,R,S, µ, i)-chain is called minimal if for all i ≥ 1, ti is inner-
most (R, µ)-terminating.

Note that the condition vi ∈ Var(ui) \ Varµ(ui) in Definition 8 implies that
vi is a variable. Furthermore, since each ui → vi ∈ P is a rewrite rule (i.e.,
Var(vi) ⊆ Var(ui)), vi is a migrating variable in the rule ui → vi.

In the following, the pairs in a CS-TRS (P, µ), where P = (G, P ), are parti-
tioned according to its role in Definition 8 as follows:

PX = {u→ v ∈ P | v ∈ Var(u) \ Varµ(u)} and PG = P − PX
Despite this fact, we refer to PX as the set of collapsing pairs in P because

its intended role in Definition 8 is capturing the computational behavior of
collapsing ICSDPs in iDPX (R, µ).

The following result establishes the soundness of the innermost context-
sensitive dependency pair approach. As usual, in order to fit the requirement of
variable-disjointness among two arbitrary pairs in a chain of pairs, we assume
that appropriately renamed ICSDPs are available when necessary.

Theorem 2 (Soundness) Let R be a TRS and µ ∈MR. If there is no infinite
minimal innermost (iDP(R, µ),R, unh(R, µ), µ], i)-chain, then R is innermost
µ-terminating.
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Proof.
By contradiction. If R is not innermost µ-terminating, then by Proposi-

tion 2 (2) there is t ∈ T∞,µ,i. By Theorem 1, there are rules li → ri ∈ R,
matching substitutions σi, such that σi(li) is argument µ-normalized and terms
ti ∈M∞,µ,i, for i ≥ 1 such that

t = t0
>Λ

↪−→∗i σ1(l1)
Λ
↪→i σ1(r1) �µ t1

>Λ

↪−→∗i σ2(l2)
Λ
↪→i σ2(r2) �µ t2

>Λ

↪−→∗i · · ·

where either (D1) ti = σi(si) for some si such that ri�µsi or (D2) σi(xi) = Ci[ti]
for some xi ∈ Varµ(ri) \ Varµ(`i) and Ci[ti] = θi(C ′i[t

′
i]) for some t′i ∈ NHT

and hiding context C ′i[2]. Furthermore, since ti−1

>Λ

↪−→∗i σi(li) and ti−1 ∈M∞,µ,i
(in particular, t0 = t ∈ T∞,µ,i ⊆M∞,µ,i), by Proposition 2 (3), σi(li) ∈ M∞,µ,i
for all i ≥ 1. Note that, since ti ∈ M∞,µ,i, we have that t]i is innermost µ-
terminating (with respect to R), because all µ-replacing subterms of ti (hence
of t]i as well) are innermost µ-terminating and root(t]) is not a defined symbol
of R.

First, note that iDP(R, µ) is a TRS P over the signature G = F∪D] and µ] ∈
MF∪G as required by Definition 8. Furthermore, PG = iDPF (R, µ) and PX =
iDPX (R, µ). We can define an infinite minimal innermost
(iDP(R, µ),R, unh(R, µ), µ], i)-chain using ICSDPs ui → vi for i ≥ 1, where
ui = l]i , and

1. vi = s]i if (D1) holds. Since ti ∈ M∞,µ,i, we have that root(si) ∈ D and,
because ti = σi(si) and σi(si) ↪→∗i σi+1(`i+1), by Corollary 2 Renµ(si) is
µ-narrowable. Furthermore, if we assume that si is a µ-replacing subterm
of li (i.e., li�µ si), then σi(li)�µ σi(si) which (since σi(si) = ti ∈M∞,µ,i)
contradicts that σi(li) ∈ M∞,µ,i. Thus, li 6�µsi. Moreover, since σi(li)
is argument µ-normalized, it implies that σi(l

]
i) also, which means that

σi(l
]
i) ∈ NFµ(R) (since root(l]i) is not a defined symbol of R) and trivially

also is l]i . Hence, ui → vi ∈ iDPF (R, µ). Furthermore, by minimality, t]i =

σi(vi) is innermost µ-terminating. Finally, since ti = σi(si)
>Λ

↪−→∗i σi+1(li+1)
and µ] extends µ to F ∪ D] by µ](f ]) = µ(f) for all f ∈ D, we also have

that σi(vi) = σi(s
]
i)

!
↪→R,µ],i σi+1(ui+1).

2. vi = xi if (D2) holds. Again, since σi(li) is argument µ-normalized, it
implies that σi(l

]
i) also, which means that σi(l

]
i) ∈ NFµ(R) (since root(l]i)

is not a defined symbol of R) and trivially also is l]i . Clearly, ui →
vi ∈ iDPX (R, µ). As discussed above, t]i is innermost µ-terminating by
minimality. Since σi(xi) = Ci[ti], we have that σi(vi) = Ci[ti]. By the
hiding property, we know that Ci[ ] is an instance of hiding context C ′i[ ],

then we have that θi(C ′i)[ti]
Λ
↪−→∗S�µ ,µ

ti. And we also know that ti is an

instance θi(t′i) of a hidden term t′i ∈ NHT (R, µ). Thus t′i → t′]i ∈ S] and
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we have θ(t′i)
Λ
↪→S],µ θ(t′]i ). Finally, since ti

>Λ

↪−→∗i σi+1(li+1), again we have

that t]i
!
↪→R,µ],i σi+1(ui+1).

Regarding σ, w.l.o.g. we can assume that Var(li) ∩ Var(lj) = ∅ for all i 6= j,
and therefore Var(ui) ∩ Var(uj) = ∅ as well. Then, σ is given by σ(x) = σi(x)
whenever x ∈ Var(ui) for i ≥ 1. From the discussion in points (1) and (2) above,
we conclude that the ICSDPs ui → vi for i ≥ 1 together with σ define an infinite
minimal innermost (iDP(R, µ),R, unh(R, µ), µ], i)-chain which contradicts our
initial assumption. 2

Now we prove that the use of ICSDPs is not only correct but also complete
for proving innermost termination of CSR.

Theorem 3 (Completeness) Let R be a TRS and µ ∈ MR. If R is inner-
most µ-terminating, then there is no infinite minimal innermost
(iDP(R, µ),R, unh(R, µ), µ], i)-chain.

Proof.
By contradiction. If there is an infinite minimal innermost

(iDP(R, µ),R, unh(R, µ), µ], i)-chain, then there is a substitution σ and depen-
dency pairs ui → vi ∈ iDP(R, µ) such that σ(ui) ∈ NFµ(R) and

1. σ(vi)
!
↪→R,µ],i σ(ui+1), if ui → vi ∈ iDPF (R, µ), and

2. if ui → vi = ui → xi ∈ iDPX (R, µ), then σ(vi)
Λ
↪−→∗S�µ ,µ

◦ Λ
↪→S],µ

ti
!
↪→R,µ,i σ(ui+1).

for i ≥ 1. Now, consider the first dependency pair u1 → v1 in the sequence:

1. If u1 → v1 ∈ iDPF (R, µ), then v\1 is a µ-replacing subterm of the right-
hand-side r1 of a rule l1 → r1 in R. Therefore, r1 = C1[v\1]p1 for some
p1 ∈ Posµ(r1) and, since σ(u1) ∈ NFµ(R), we can perform the innermost
µ-rewriting step s1 = σ(u\1) ↪→R,µ,i σ(r1) = σ(C1)[σ(v\1)]p1 = t1, where

σ(v\1)] = σ(v1)
!
↪→R,µ],i σ(u2) and σ(u2) also initiates an infinite minimal

innermost (iDP(R, µ),R, unh(R, µ), µ], i)-chain. Note that p1 ∈ Posµ(t1).

2. If u1 → x1 ∈ iDPX (R, µ), then there is a rule l1 → r1 in R such that
u1 = l]1, and x1 ∈ Varµ(r1) \ Varµ(l1), i.e., r1 = C1[x1]q1 for some

q1 ∈ Posµ(r1). Furthermore, if σ(v1) = σ(x1) = C1[t1]
Λ
↪−→∗S�µ ,µ

t1

this means that C1[2] is an instance of a hiding context C ′1[2], C1[2] =

θ1(C ′1)[2]. Furthermore, t1 is µ-replacing in C1[t1]. If t1
Λ
↪→S],µ t]1 means

that t1 = θ1(t′1) for some t′1 ∈ DHT , then since σ(u1) = σ(l1)] ∈ NFµ(R),
we can perform the innermost µ-rewriting step s1 = σ(l1) ↪→R,µ,i σ(r1) =

σ(C1)[C ′1[t1]p′1 ]q1 = s1 where t]1
!
↪→R,µ],i σ(u2) (hence t1

!
↪→i u

\
2) and σ(u2)
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initiates an infinite minimal innermost (iDP(R, µ),R, unh(R, µ), µ], i)-chain.
Note that p1 = q1.p

′
1 ∈ Posµ(s1) where p′1 is the position of the hole in

C1[2]p′1 .

Since µ](f ]) = µ(f), and p1 ∈ Posµ(s1), we have that t1
!
↪→R,µ,i s2[σ(u2)]p1 = s2

and p1 ∈ Posµ(s2). Therefore, we can build in that way an infinite innermost
µ-rewrite sequence

s1 ↪→R,µ,i t1
!
↪→R,µ,i s2 ↪→R,µ,i · · ·

which contradicts the innermost µ-termination of R.
2

As a corollary of Theorems 2 and 3, we have.

Corollary 3 (Characterization of innermost µ-termination) Let R be a
TRS and µ ∈MR. Then, R is innermost µ-terminating if and only if there is no
infinite minimal innermost
(iDP(R, µ),R, unh(R, µ), µ], i)-chain.

Example 7 Consider the following TRS R:

b → c(b)
f(c(x), x) → f(x, x)

together with µ(f) = {1, 2} and µ(c) = ∅. There is only one ICSDP:

F(c(x), x) → F(x, x)

Since µ](F) = {1, 2}, if a substitution σ satisfies σ(F(c(x), x)) ∈ NFµ(R), then
σ(x) = s is in µ-normal form. Assume that the dependency pair is part of an
innermost µ-chain. Since there is no way to µ-rewrite F (s, s), there must be
F (s, s) = F (c(t), t) for some term t, which means that s = t and c(t) = s, i.e.,
t = c(t) which is not possible. Thus, there is no infinite innermost chain of
ICSDPs for R, which is proved innermost terminating by Theorem 2.

Of course, ad-hoc reasonings like in Example 7 do not lead to automation. In
following sections we discuss how to prove termination of innermost CSR by
giving constraints on terms that can be solved by using standard methods.

5 Mechanizing Proofs of Innermost µ-termination

Regarding termination proofs, the central notion in the Dependency Pair Frame-
work [GTS04, GTSF06, Thi07] is that of DP-termination problem: given a TRS
R and a set of pairs P, the goal is checking the absence (or presence) of infinite
(minimal) chains. Termination of a TRS R is addressed as a DP-termination
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problem where P = DP(R). The most important notion regarding mechaniza-
tion of the proofs is that of processor. A (correct) processor basically transforms
DP-termination problems into (hopefully) simpler ones, in such a way that the
existence of an infinite chain in the original DP-termination problem implies
the existence of an infinite chain in the transformed one. Here ‘simpler’ usu-
ally means that fewer pairs are involved. Often, processors are not only correct
but also complete, i.e., there is an infinite minimal chain in the original DP-
termination problem if and only if there is an infinite minimal chain in the
transformed problem. This is essential if we are interested in disproving termi-
nation.

In [AEF+08, AGL10, GL10], we have developed a CSDP framework for
CSR. In this chapter, we extend the CSDP framework developed in [GL10] to
innermost CSR. First, we recall the definition of chain for standard CSR.

Definition 8 ((Minimal) µ-Chain of Pairs [GL10]) Let R, P and S be TRSs
and µ ∈MR∪P∪S . A (P,R,S, µ, t)-chain is a finite or infinite sequence of pairs
ui → vi ∈ P, together with a substitution σ satisfying that, for all i ≥ 1,

1. if vi /∈ Var(ui) \ Varµ(ui), then σ(vi) = ti ↪→∗R,µ σ(ui+1), and

2. if vi ∈ Var(ui) \ Varµ(ui), then σ(vi)
Λ
↪−→∗S�µ ,µ

◦ Λ
↪→S],µ ti ↪→∗R,µ σ(ui+1).

A (P,R,S, µ, t)-chain is called minimal if for all i ≥ 1, ti is (R, µ)-terminating.

Definition 9 (CS Problem) A CS problem τ is a tuple τ = (P,R,S, µ, e),
where R, P and S are TRSs, and µ ∈ MR∪P∪S and e ∈ {t, i} is a flag that
stands for termination or innermost termination of CSR. The CS problem
(P,R,S, µ, e) is finite if there is no infinite minimal (P,R,S, µ, e)-chain. The
CS problem (P,R,S, µ, e) is infinite if R is non-µ-terminating (for e = t)
or innermost non-µ-terminating (for e = i) or there is an infinite minimal
(P,R,S, µ, e)-chain.

Definition 10 (CS Processor) A CS processor Proc is a mapping from CS
problems into sets of CS problems. Alternatively, it can also return “no”. A CS
processor Proc is

• sound if for all CS problems τ , τ is finite whenever Proc(τ) 6= no and
∀τ ′ ∈ Proc(τ), τ ′ is finite.

• complete if for all CS problems τ , τ is infinite whenever Proc(τ) = no or
∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.

Now we have the following result which extends the framework in [GL10] to
innermost CSR.

Theorem 4 (CSDP Framework) Let R be a TRS and µ ∈ MR. We con-
struct a tree whose nodes are labeled with CS problems or “yes” or “no”, and
whose root is labeled with (P,R, unh(R, µ), µ], e), where P = DP(R, µ) if e = t
and P = iDP(R, µ) if e = i. For every inner node labeled with τ , there is a
sound processor Proc satisfying one of the following conditions:
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1. Proc(τ) = no and the node has just one child, labeled with “no”.

2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.

3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with
the CS problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is innermost µ-terminating.
Otherwise, if there is a leaf labeled with “no” and if all processors used on
the path from the root to this leaf are complete, then R is not innermost µ-
terminating.

In following sections we describe a number of sound and (most of them)
complete CS-processors for proving termination of innermost CSR. First, we
formalize some basic processors.

6 CS Basic Processors for Innermost Termina-
tion of CSR

In standard rewriting, Gramlich, showed that termination and innermost ter-
mination coincide for locally confluent overlay TRSs R[Gra95, Theorem 3.23].
Thus, his result allows us to prove termination of such TRSs Rby proving in-
nermost termination of R. Although local confluence is undecidable, every
nonoverlapping rewrite system is also a locally confluent overlay system, there-
fore, this approximation is commonly adopted. However, for context-sensitive
rewriting this is not enough. This fact was noticed by Lucas in a personal
communication showing the following example:

Example 8 Consider the following TRS R:

f(x, x) → b
f(x, g(x)) → f(x, x)

c → g(c)

together with µ(f) = {1, 2} and µ(g) = ∅. This system is nonoverlapping and
innermost µ-terminating, but not µ-terminating since f(c, c) ↪→µ f(c, g(c)) ↪→µ

f(c, c) ↪→µ · · ·

Later, in [GL02b, GM02b] it is proved that the equivalence between termination
of innermost CSR and termination of CSR holds in some interesting cases.
Thanks to this, the following result was formulated:

Theorem 5 [GM02b] Let R = (Σ, R) be an orthogonal TRS and µ ∈ MΣ. R
is µ-terminating if and only if it is innermost µ-terminating.

A similar result can be found in [GL02b]. First, we need the following definition:
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Definition 11 [Luc98, Definition 5] Let R = (Σ, R) be a TRS and µ ∈ MR.
R has left-homogeneous replacing variables (LHRV for short) if, for every µ-
replacing variable x in the left-hand side l of a rule l → r ∈ R, all occurrences
of x are replacing in both, l and r.

Theorem 6 [GL02b, Theorem 7] Let R = (Σ, R) be a TRS and µ ∈MR be such
that R is a locally confluent overlay system satisfying LHRV. If R is innermost
µ-terminating, then it is also µ-terminating.

So, whenever it is possible, we switch to innermost µ-termination since proofs
are often easier due to the fact that when considering an innermost rewriting
step, we know that every possible subterm of our redex is in normal form with
respect to our rewriting relation. For instance, this is shown when estimating
the graph.

On the other hand, we have developed a huge amount of processors for
proving termination of CSR [AGL10, GL10] and it is also interesting to use
them in proofs of innermost termination of CSR.

Theorem 7 (Commuting Processors) Let τ = (P,R,S, µ, i) be a CS prob-
lem such that

1. (R∪ P ∪ S) is nonoverlapping and satisfies LHRV , or

2. (R∪ P ∪ S) is orthogonal

Then, the processors Proct→i and Proci→t given by

Proct→i(P,R,S, µ, t) =
{
{(P,R,S, µ, i)} if (1) or (2)
{(P,R,S, µ, t)} otherwise

Proci→t(P,R,S, µ, i) =
{
{(P,R,S, µ, t)} if (1) or (2)
{(P,R,S, µ, i)} otherwise

are sound and Proct→i also complete.

Proof. Regarding soundness of Proct→i, we proceed by contradiction. As-
sume that there is an infinite minimal (P,R,S, µ, t)-chain A, but there is no
infinite minimal (P,R,S, µ, i)-chain. Due to the finiteness of P and S, we can
assume that there are subsets Q ⊆ P and T ⊆ S such that A has a tail B

σ(u1)

8
><
>:

↪→QG ,µ
↪→QX ,µ ◦

Λ↪−→∗T�µ ,µ
◦ Λ
↪→T],µ

9
>=
>;
t1 ↪→

∗
R,µ σ(u2)

8
><
>:

↪→QG ,µ
↪→QX ,µ ◦

Λ↪−→∗T�µ ,µ
◦ Λ
↪→T],µ

9
>=
>;
t2 ↪→

∗
R,µ · · ·

for some substitution σ, where all pairs in Q and all rules in T are infinitely
often used (note that, if T 6= ∅, then T] 6= ∅ and QX 6= ∅), and for all i ≥ 1,
(a) if ui → vi ∈ QG , then ti = σ(vi) and (b) if ui → vi = ui → xi ∈ QX , then

σ(ui) ↪→QX ◦
Λ
↪−→∗T�µ ,µ

◦ Λ
↪→T],µ ti. Moreover, all ti are (R, µ)-terminating.

W.l.o.g. we can assume that σ(u1) is (R, µ)-terminating.
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Proof of item (1) follows [GL02b] result for CSR and the details can be found
in the original paper for equivalence between innermost termination and termi-
nation of TRSs [Gra95]. Proof of item (2) follows the results in [GM02b] and
more precisely, the ones in [Emm08] that adapt them to the CSDP framework
of [AEF+08]. For details about some statements in the following, we recall the
reader to the corresponding lemmas in these papers to simplify the proof. Both
shares the main idea of [Gra95] about using a transformation Φ which (uniquely
since in both cases the system is nonoverlaping) µ-normalizes all maximal sub-
terms of a given term with respect to R (therefore, top parts of the pairs are
untouched). Formally,

Φµ(t) = C[t1 i↓(R,µ), . . . , tn
i↓(R,µ)]

where t = C[t1, . . . , tn] and t1, . . . , tn are innermost µ-terminating subterms
at active positions. Clearly t ↪→∗R,µ,i Φµ(t). The main difference dealing with
context-sensitive rewriting arises in the synchronization within variable parts
since e.g. one occurrence of a variable x can be active while another can be
inactive. This is solved requiring linearity of left-hand sides (en the case of
condition (2)) or LHRV (in the case of condition (1)).

Let u′1 = Φµ(σ(u1)), therefore, u′1 is an innermost (R, µ)-terminating in-
stance of u1 and there exists a substitution σ′ s.t.

σ(u1)
!
↪→R,µ,i u′1 = σ′(u1)

{
↪→QG ,µ

↪→QX ,µ ◦
Λ
↪−→∗T�µ ,µ

◦ Λ
↪→T],µ

}
σ′(t1)

and σ′(t1) = Φµ(σ(t1)) is innermost (R, µ)-terminating. Paying attention in
the part t1 ↪→∗R,µ σ(u2), since by minimality, ti are (R, µ)-terminating, all
contracted redexes in the sequence also will be. Therefore, we can reach the
point where σ′(t1) ↪→∗R,µ,i u′2 such that u′2 = Φµ(σ(u2)) and u′2 is innermost
(R, µ)-terminating.

Since for all pair ui → vi asume variable disjoint, the new substitution can
be extended to σ′(u2) = u′2. Reasoning in this way, the original infinite minimal
(P,R,S, µ, t)-chain can be seen as:

u′1 ↪→∗R,µ,i σ′(u1)

(
↪→QG ,µ

↪→QX ,µ ◦
Λ
↪−→∗T�µ ,µ

◦ Λ
↪→T],µ

)
σ′(t1) ↪→∗R,µ,i u′2 ↪→∗R,µ,i σ′(u2) · · ·

where σ′(ti) is innermost (R, µ)-terminating and σ′(ui) ∈ NFµ(R) for all i ≥ 1.
Therefore we get an infinite minimal (P,R,S, µ, i)-chain, leading to a contra-
diction.

Regarding completeness of Proct→i, since if (P,R,S, µ, i) is infinite, that
means thatR is not innermost µ-terminating and thereforeR is not µ-terminating
or there is an infinite minimal (P,R,S, µ, i)-chain and, since condition (1) or (2)
hold then the equivalence between innermost µ-termination and µ-termination
comes from Theorems 5 and 6 respectively and ti is (R, µ)-terminating and
therefore there is also an infinite minimal (P,R,S, µ, t)-chain. Therefore (P,R,S, µ, t)
is infinite.
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We prove soundness of Proci→t by contradiction. Assume that there is an in-
finite minimal (P,R,S, µ, i)-chain but there is no infinite minimal (P,R,S, µ, t).
Since condition (1) or (2) hold, reasoning as above every minimal (P,R,S, µ, i)-
chain is also a minimal (P,R,S, µ, t)-chain, therefore there is an infinite minimal
(P,R,S, µ, t)-chain, leading to a contradiction.

2

Soundness of Proci→t needs to impose the requirements about equivalence
between innermost µ-termination and µ-termination since we are dealing with
minimal chains. Obviously, it is always possible to prove innermost µ-termination
of a TRS by proving µ-termination without taking into account any additional
condition but this cannot be done when managing minimality.

The following proposition establishes some important ‘basic’ cases of (ab-
sence of) infinite context-sensitive chains of pairs which are used later and with
slight differences were presented in [AGL10]. Note that in the innermost case
they also hold.

Proposition 5 Let R = (F , R) and P = (G, P ) and S = (H, S) be TRSs and
µ ∈MR∪P∪S .

1. If P = ∅, then there is no (P,R,S, µ, i)-chain.

2. If R = ∅, then there is no infinite (PX ,R,S, µ, i)-chain.

3. Let u → v ∈ PG be such that v′ = θ(u) for some substitution θ such that
θ(u) ∈ NFµ(R) and renamed version v′ of v. Then, there is an infinite
innermost (P,R,S, µ, i)-chain.

Proof.

1. Trivial.

2. By contradiction. If there is an infinite (PX ,R,S, µ, i)-chain, then, since
there is no rule in R, there is a substitution σ such that

σ(u1) ↪→P,µ σ(x1)
Λ
↪−→∗S�µ ,µ

s1
Λ
↪→S],µ t1 = σ(u2) ↪→P,µ σ(x2)

Λ
↪−→∗S�µ ,µ

s2
Λ
↪→S],µ · · ·

For i ≥ 1, since xi ∈ Var(ui) and ui is not a variable, we have ui � xi,
hence σ(ui) � σ(xi) (by stability of �), and also σ(ui) � si. Since si and
σ(ui+1) only differ in the root symbol, we can actually say that si � si+1

for all i ≥ 1. Thus, we obtain an infinite sequence s1 � s2 � · · · which
contradicts the well-foundedness of �.

3. Since we always deal with renamed versions ui → vi of the pair u→ v ∈ P,
for each x ∈ Var(u), we write xi to denote the ‘name’ of the variable x
in ui → vi. According to our hypothesis, we can assume the existence of
substitutions θi+1 such that vi = θi+1(ui+1). Note that, for all x ∈ Var(u)
and i ≥ 1, Var(θi+1(ui+1)) ⊆ Var(vi) ⊆ Var(ui) and θ(u) ∈ NFµ(R) is
needed to deal only with innermost µ-chains.
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We can define an infinite innermost ({u → v},∅,∅, µ, i)-chain (hence an
innermost (P,R,S, µ, i)-chain) by using the renamed versions ui → vi of
u → v for i ≥ 1 together with σ given (inductively) as follows: for all
x ∈ Var(u), σ(x1) = x1 and σ(xi) = σ(θi(xi)) for all i > 1. Note that
σ(vi) = σ(θi+1(ui+1)) = σ(ui+1) for all i ≥ 1.

2

According to Proposition 5, for some specific CS problems it is easy to say
whether they are finite or not.

Theorem 8 (Basic Innermost CS Processors) Let R = (F , R), P = (G, P )
and S = (H, S) be TRSs and µ ∈MR∪P∪S .

Then, the processors ProcFin and ProcInf given by

ProcFin(P,R,S, µ, i) =


∅ if P = ∅ ∨ (R = ∅ ∧ P = PX ); and
{(P,R,S, µ, i)} otherwise

ProcInf (P,R,S, µ, i) =

8
<
:

no if v = θ(u) and θ(u) ∈ NFµ(R)
for some u→ v ∈ PG and substitution θ; and

{(P,R,S, µ, i)} otherwise

are sound and complete.

The CS problems in Theorem 8 provide the necessary base cases for our
proofs of innermost termination of CSR.

In the following sections we are going to show some powerful techniques
adapted from standard rewriting to deal with proofs of innermost termination
of CSR.

7 Innermost Context-Sensitive Dependency Graph

The analysis of infinite (minimal) chains of pairs is essential in the (CS)DP
framework [GTSF06, AGL10, GL10]. Following [GL10], for innermost CSR we
have the following.

Definition 12 (Innermost Context-Sensitive Graph of Pairs) Let R, P
and S be TRSs and µ ∈MR∪P∪S . The innermost context-sensitive (ICS) graph
IG(P,R,S, µ) has P as the set of nodes. Given u→ v, u′ → v′ ∈ P, there is an
arc from u → v to u′ → v′ if u → v, u′ → v′ is a minimal (P,R,S, µ, i)-chain
for some substitution σ.

In termination proofs, we are concerned with the analysis of strongly connected
components (SCCs). A strongly connected component in a graph is a maxi-
mal cycle, i.e., a cycle which is not contained in any other cycle. The follow-
ing result justifies the use of SCCs for proving the absence of infinite minimal
(P,R,S, µ, i)-chains.
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Theorem 9 (SCC processor [GL10]) Let R, P and S be TRSs and µ ∈
MR∪P∪S . Then, the processor ProcSCC given by

ProcSCC (P,R,S, µ, i) = {(Q,R,SQ, µ, i) | Q contains the pairs of an SCC in IG(P,R,S, µ)}

(where SQ are the rules from S involving a possible (Q,R,S, µ, i)-chain) is
sound and complete.

As a consequence of this theorem, we can separately work with the strongly
connected components of IG(P,R,S, µ), disregarding other parts of the graph.

Now we can use these notions to introduce the innermost context-sensitive
dependency graph, i.e., the graph whose nodes instead of being arbitrary pairs
are the ICSDPs (P = iDP(R, µ)).

Definition 13 (Innermost Context-Sensitive Dependency Graph (ICS-DG))

Let R = (F , R) be a TRS and µ ∈ MF . The Innermost Context-Sensitive De-
pendency Graph associated to R and µ is IDG(R, µ) = IG(iDP(R, µ),R, unh(R, µ), µ]).

7.1 Estimating the ICS Graph

In general, the innermost context-sensitive graph of a CS problem is not com-
putable: it involves reachability of θ′(u′) from θ(v) (for u → v ∈ PG) or θ(t)
(for t such that s → t ∈ S]) using innermost CSR; as in the unrestricted case,
the reachability problem for innermost CSR is undecidable. So, we need to use
some approximation of it.

In [AGL10], we have adapted to the context-sensitive setting the more re-
cent approximation for standard rewriting [GTS05]. Given a TRS R and a
replacement map µ, we let TCapµR be as follows:

TCapµR(x) = y if x is a variable, and

TCapµR(f(t1, . . . , tk)) =

8
<
:

f([t1]f1 , . . . , [tk]fk) if f([t1]f1 , . . . , [tk]fk) does not unify
with l for any l→ r in R

y otherwise

where y is intended to be a new, fresh variable that has not yet been used and
given a term s, [s]fi = TCapµR(s) if i ∈ µ(f) and [s]fi = s if i 6∈ µ(f). We
assume that l shares no variable with f([t1]f1 , . . . , [tk]fk) when the unification is
attempted. Function TCapµR is intended to provide a suitable approximation
of the aforementioned (R, µ)-reachability problems by means of unification.

Proposition 6 ([AGL10]) Let R = (F , R) be a TRS and µ ∈MF . Let t, u ∈
T (F ,X ) be such that Var(t)∩Var(u) = ∅. If θ(t) ↪→∗ θ(u) for some substitution
θ, then TCapµR(t) and u unify.

In contrast to standard (µ-)rewriting, in the innermost setting it is not nec-
essary to rename multiple occurrences of variables since all variables are always
instantiated to (µ-)normal forms and cannot be reduced. However, in innermost
CSR we have to replace by fresh variables those ones that are µ-replacing in the
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right hand side of the pair, v, but not in the left-hand side, u, since they are not
µ-normalized. Moreover we need to substitute every subterm with a defined
root symbol by fresh variables only if the term is not equal to a µ-replacing
subterm of u or it unifies with the left-hand side of some rule in R.

We define a new version of the function, iTCapµR,u, which is able to approx-
imate the ICS graph by taking into account these particularities of innermost
CSR.

Definition 14 Given a TRS R, a replacement map µ and a term u, we let
iTCapµR,u be as follows:

iTCapµR,u(x) =


y if x ∈ X and x /∈ Varµ(u)
x otherwise

iTCapµR,u(f(t1, . . . , tk)) =

8
<
:

f([t1]f1 , . . . , [tk]fk) if f([t1]f1 , . . . , [tk]fk) does not unify with l for any
l→ r in R or it is equal to a µ-replacing subterm of u

y otherwise

where y is intended to be a new, fresh variable that has not yet been used and
given a term s, [s]fi = iTCapµR,u(s) if i ∈ µ(f) and [s]fi = s if i 6∈ µ(f). We
assume that l shares no variable with f([t1]f1 , . . . , [tk]fk) when the unification is
attempted.

Since when connecting in a chain collapsing pairs we deal with rules in
S] instead of pairs in PG , we cannot look at the left hand side of the pairs.
Therefore, for dealing with pairs in PX , we have to approximate their arcs in
the same way that for CSRsince we do not store information about left-hand
sides of the pairs from which the hidden terms are obtained. So, we have the
following:

Definition 15 (Estimated Innermost Context-Sensitive Graph of Pairs) Let
R = (F , R), S = (H, S) and P = (G, P ) be TRSs and µ ∈ MF∪G∪H. The esti-
mated ICS-graph associated to R, P and S (denoted EIG(P,R,S, µ)) has P as
the set of nodes and arcs which connect them as follows:

1. There is an arc from u→ v ∈ PG to u′ → v′ ∈ P if iTCapµR,u(v) and u′

unify by some mgu σ such that σ(u), σ(u′) ∈ NFµ(R).

2. There is an arc from u → v ∈ PX to u′ → v′ ∈ P if there is s → t ∈
S] such that TCapµR(t) and u′ unify by some mgu σ such that σ(u′) ∈
NFµ(R).

Definition 16 (Correctness of the Estimated ICS-Graph of Pairs) Let
R = (F , R), S = (H, S) and P = (G, P ) be TRSs and µ ∈ MF∪G∪H. The esti-
mated ICS-graph associated to R, P and S (denoted EIG(P,R,S, µ)) has P as
the set of nodes and arcs which connect them as follows:

1. If there is an arc from u→ v ∈ PG to u′ → v′ ∈ P and substitutions θ and

θ′ such that θ(v)
!
↪→R,µ,i θ′(u′), θ(u), θ′(u′) ∈ NFµ(R) then iTCapµR,u(v)

and u′ unify by some mgu σ such that σ(u), σ(u′) ∈ NFµ(R).
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2. If there is an arc from u → v ∈ PX to u′ → v′ ∈ P and there is s ∈
NHT (R, µ) such that θ(s]) = θ(t) = t′ and substitutions θ and θ′ such

that θ(v)
Λ
↪−→∗S�µ ,µ

◦ Λ
↪→S],µ t′

!
↪→R,µ,i θ′(u′) then there is s→ t ∈ S] such

that TCapµR(t) and u′ unify by some mgu σ such that σ(u′) ∈ NFµ(R).

According to Definition 13, we would have the corresponding one for the
estimated ICS-DG: EIDG(R, µ) = EIG(iDP(R, µ),R, unh(R, µ), µ]).

Example 9 Consider the following TRS R [Zan97, Example 4]:

f(x) → cons(x, f(g(x)))
g(0) → s(0)

g(s(x)) → s(s(g(x)))
sel(0, cons(x, y)) → x

sel(s(x), cons(y, z)) → sel(x, z)

with µ(0) = ∅, µ(f) = µ(g) = µ(s) = µ(cons) = {1}, and µ(sel) = {1, 2}.
Then, iDP(R, µ) consists of the following pairs:

G(s(x))→ G(x) (7)
SEL(s(x), cons(y, z))→ SEL(x, z) (8)
SEL(s(x), cons(y, z))→ z (9)

and the unhiding rules are: unh�µ(R, µ) = {f(x) → x} and unh](R, µ) =
{f(g(x))→ F(g(x)), g(x)→ G(x)}.

Regarding pairs (7) and (8) in iDPF (R, µ), there is an arc from (7) to itself
and another one from (8) to itself. Regarding the only collapsing pair (9), we
have TCapµR(F(g(x))) = F(y) and TCapµR(G(x)) = G(y). Since F(y) does not
unify with the left-hand side of any pair, and G(y) unifies with the left-hand side
G(s(x)) of (7) and G(s(x)) is in µ-normal form, there is an arc from (9) to (7),
see Figure 1. Thus, there are two cycles: {(7)} and {(8)}.

(7)
��

(8)
��

(9)

QQ

Figure 1: Innermost CS-Dependency graph for Example 9

The following example shows that using iTCapµR,u provides a better ap-
proximation of the ICS-DG than using TCapµR for noncollapsing pairs.

Example 10 Consider the following TRS R:
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f(a, b, x) → f(x, x, x)
c → a
c → b

together with µ(f) = {1, 2}. There are two ICS-dependency pairs:

F(a, b, x) → F(x, x, x)
F(a, b, x) → x

R is not innermost µ-terminating:

F(c, c, c) ↪→R,µ],i F(a, c, c) ↪→R,µ],i F(a, b, c) ↪→iDP(R,µ,i),µ] F(c, c, c) ↪→R,µ],i · · ·

In order to build the ICS-DG, since there are not hidden terms and therefore S]
is empty, we only have to check if iTCapµR,u(F(x, x, x)) = iTCapµR,F(a,b,x)(F(x, x, x)) =
F(x′′′, x′′, x) unifies with F(a, b, y) so, we get a cycle and the same would be
obtained with TCapµR(F(x, x, x)). However, if we use µ(f) = {1, 3}, the sys-
tem now is innermost µ-terminating (the collapsing pair now disappears) but
if we use the TCapµR we get TCapµR(F(x, x, x)) = F(x′′′, x′′, x) again unifies
with F(a, b, x) and we obtain a spurious cycle. By using iTCapµR,u, we obtain
iTCapµR,F(a,b,x)(F(x, x, x)) = F(x, x, x) (since there are not migrating variables

now) which does not unify with F(a, b, y). Now, innermost µ-termination can
be easily proved since there are no cycles in the ICS-DG.

After showing that iTCapµR,u provides a better approximation of the ICS-
DG for noncollapsing pairs, we are going to show that for the collapsing pairs
this is not true since we can lead into and underestimation of the graph and
conclude a false result.

Example 11 Consider the following TRS R which is a variant of Example 10:

f(a, b, x) → g(f(x, x, x))
g(x) → x

c → a
c → b

together with µ(f) = {1, 2} and µ(g) = ∅. There are two ICS-dependency pairs:

F(a, b, x) → G(f(x, x, x)) (10)
G(x) → x (11)

R is not innermost µ-terminating:

F(c, c, c) ↪→R,µ],i F(a, c, c) ↪→R,µ],i F(a, b, c) ↪→iDP(R,µ),µ],i G(f(a, b, c)) ↪→iDP(R,µ),µ],i F(c, c, c) · · ·

We have S] = {f(x, x, x)→ F(x, x, x)}. Regarding the pair (10) ∈ iDPF (R, µ),
there is an obvious arc from (10) to (11). Regarding the only collapsing pair (11),
since we do not have any information in S] about migrating variables, we have
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to use TCapµR. In this way, we have that TCapµR(F(x, x, x)) = F(x′′, x′, x)
unifies with F(a, b, y) and we obtain an arc from (11) to (10), thus obtaining the
existing cycle {(11)-(10)}. Otherwise, we will not rename any variable and we
would not have obtained the arc.

Example 12 (Continuing Example 7) Since iTCapµR,F(c(x),x)(F(x, x)) = F(x, x)
and F(c(y), y) do not unify we conclude (and this can easily be implemented) that
the ICS-dependency graph for the CS-TRS (R, µ) in Example 7 contains no cy-
cles.

Since for approximating the innermost context-sensitive graph of a set of
pairs, we use function TCapµR for connecting pairs in PX as done in the context-
senstive case, we can also use the following processor instead, which allows a
better approximation of the SCCs. This is because if the SCC has no collapsing
pairs, the set S has no sense and if it has, some pairs from S] can be removed:
those that are not involved in the unification process. Therefore, we will always
compute the SCCs by applying the following processor:

Theorem 10 (SCC Processor using TCapµR [GL10]) Let τ = (P,R,S, µ, i)
be a CS problem. The CS processor ProcSCC given by

ProcSCC (τ) = {(Q,R,SQ, µ) | Q contains the pairs of an SCC in EIG(P,R,S, µ)}

where

• SQ = ∅ if QX = ∅.

• SQ = S�µ ∪ {s → t | s → t ∈ S],TCapµR(t) and u′ unify for some
u′ → v′ ∈ Q by some mgu σ such that σ(u′) ∈ NFµ(R)} if QX 6= ∅.

is sound and complete.

Example 13 Consider again Example 1. The set iDP(R, µ) is in Example 5
and the unhiding TRS unh(R, µ) consists of the rules in Example 6. We can
define the following CS problem:

τ0 = (iDP(R, µ),R, unh(R, µ), µ], i)

The EIDG(R, µ) = EIG(iDP(R, µ),R, unh(R, µ), µ]) of the CS problem τ0 is
shown in Figure 2. If now we apply the improved SCC processor we get the
followings CS subproblems:

ProcSCC (τ0) = {({1},R,∅, µ], i), ({3},R,∅, µ], i), ({4},R,∅, µ], i)}

8 Usable Rules

An interesting feature in the treatment of innermost termination problems using
the dependency pair approach is that, since the variables in the right-hand side
of the dependency pairs are in normal form, the rules which can be used to
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(2) // (1)
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(5) // (6)
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Figure 2: Estimated Innermost CS-Dependency Graph for Example 1

connect contiguous dependency pairs are usually a proper subset of the rules in
the TRS. This leads to the notion of usable rules [AG00, Definition 32] which
simplifies the proofs of innermost termination of rewriting. We adapt this notion
to the context-sensitive setting.

Definition 17 (Basic usable CS-rules) Let R be a TRS and µ ∈ MR. For
any symbol f let Rules(R, f) be the set of rules of R defining f and such that
the left-hand side l has no proper µ-replacing R-redex. For any term t, the set
of basic usable rules U0(R, µ, t) is as follows:

U0(R, µ, x) = ∅
U0(R, µ, f(t1, . . . , tn)) = Rules(R, f) ∪ S

i∈µ(f)

U0(R′, µ, ti) ∪
S

l→r∈Rules(R,f)

U0(R′, µ, r)

where R′= R−Rules(R, f).
Consider now a TRS P. Then, U0(R, µ,P) =

⋃
l→r∈P

U0(R, µ, r). Obviously,

U0(R, µ,P) ⊆ R for all TRSs P and R.

Interestingly, although our definition is a straightforward extension of the clas-
sical one (which just takes into account that µ-rewritings are possible only
on µ-replacing subterms), some subtleties arise due to the presence of non-
conservative rules.

Basic usable rules U0(R, µ,P) in Definition 17 can be used instead of R
when dealing with innermost (P,R,S, µ, i)-chains associated to µ-conservative
TRSs P provided that U0(R, µ,P) is also µ-conservative. This is proved in
Theorem 11 below. First, we need some auxiliary results.

Proposition 7 Let R be a TRS and µ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varµ(t), σ(x) ∈ NFµ(R). If s ↪→i s

′ by
applying a rule l → r ∈ R, then there is a substitution σ′ such that s′ = σ′(t′)
for t′ = t[r]p and p ∈ PosµF (t).

Proof. Let p ∈ Posµ(s) be the position of an innermost redex s|p = θ(l)
for some substitution θ. Since s = σ(t) and for all replacing variables in t, we
have σ(x) ∈ NFµ(R), it follows that p is a non-variable (replacing) position of t.
Therefore, p ∈ PosµF (t). Since s = σ(t), we have that s′ = σ(t)[θ(r)]p and since
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p ∈ PosµF (t), by defining σ′(x) = σ(x) for all x ∈ V ar(t) and σ(x) = θ(x) for all
x ∈ Var(r) (as usual, we assume Var(t) ∩ Var(r) = ∅), we have s′ = σ′(t[r]p).
2

The following proposition states that an innermost µ-rewrite step by apply-
ing a conservative rule makes the set of µ-replacing variables of the contractum
will be instantiated to µ-normal forms.

Proposition 8 Let R be a TRS and µ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varµ(t), σ(x) ∈ NFµ(R). If s ↪→i s

′

by applying a conservative rule l → r ∈ R, then there is a substitution σ′ such
that s′ = σ′(t′) for t′ = t[r]p, p ∈ PosµF (t) and ∀x ∈ Varµ(t′), σ′(x) ∈ NFµ(R).

Proof. By Proposition 7, we know that σ′, as in Proposition 7, satisfies
s′ = σ′(t′) for θ as in Proposition 7 and some p ∈ PosµF (t). Since s|p is an
innermost µ-replacing redex, we have that ∀y ∈ Varµ(l), θ(y) ∈ NFµ(R). Since
the rule l → r is conservative, Varµ(r) ⊆ Varµ(l), hence ∀z ∈ Varµ(r), σ′(z) ∈
NFµ(R). Since Varµ(t[r]p) ⊆ Varµ(t) ∪ Varµ(r), we have that ∀x ∈ Varµ(t′),
σ′(x) ∈ NFµ(R). 2

Now, we prove that in an innermost µ-rewrite sequence starting from a term
instantiated with a µ-normalized substitution, the only rules that can be applied
are the usable rules (if they are µ-conservative).

Proposition 9 Let R be a TRS and µ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varµ(t), σ(x) ∈ NFµ(R). If U0(R, µ, t)
is conservative and s = s1 ↪→R,µ,i s2 ↪→R,µ,i · · · ↪→R,µ,i sn ↪→R,µ,i sn+1 = u for
some n ≥ 0 then si ↪→U0(R,µ,t),µ,i si+1 for all i, 1 ≤ i ≤ n.

Proof. By induction on n. If n = 0, then s = σ(t) = u, it is trivial.
Otherwise, if s1 ↪→R,µ,i s2 ↪→∗R,µ,i u, we first prove that the result also holds
in s1 ↪→R,µ,i s2. By Proposition 7, s1 = σ(t), and s2 = σ′(t′) for t′ = t[r]p is
such that s1|p = θ(l) and s2|p = θ(r) for some p ∈ PosµF (t). Thus, root(l) =
root(t|p) and by Definition 17, we can conclude that l → r ∈ U0(R, µ, t). By
hypothesis, U0(R, µ, t) is conservative. Thus, l → r is conservative and by
Proposition 8, s2 = σ′(t′) and ∀x ∈ Varµ(t′), σ′(x) ∈ NFµ(R). Since t′ = t[r]p
and root(t|p) = root(l), we have that U0(R, µ, t′) ⊆ U0(R, µ, t) and (since
U0(R, µ, t) is conservative) U0(R, µ, t′) is conservative as well. By the induction
hypothesis we know that si ↪→U0(R,µ,t′),µ,i si+1 for all i, 2 ≤ i ≤ n. Thus we
have si ↪→U0(R,µ,t),µ,i si+1 for all i, 1 ≤ i ≤ n as desired.

2

The following theorem formalizes a processor to remove pairs from P by
using the previous result and µ-reduction pairs.

Theorem 11 Let τ = (P,R,S, µ, i) be a CS problem. Let (&,=) be a µ-
reduction pair such that
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1. P and U0(R, µ,P) are conservative,

2. U0(R, µ,P) ⊆& and P ⊆& ∪ =,

Let P= = {u→ v ∈ P | u = v}. Then, the processor ProcUR given by

ProcUR(τ) =
{
{(P \ P=,U0(R, µ,P),∅, µ, i)} if (1) and (2) hold
{(P,R,S, µ, i)} otherwise

is sound.

Proof.
We proceed by contradiction. Assume that there is an infinite minimal

innermost (P,R,S, µ, i)-chain A, but that there is no infinite minimal innermost
(P \ P=,U0(R, µ,P),∅, µ, i)-chain. Due to the finiteness of P, and since P is
conservative, we have PX = ∅. Thus, we can assume that there is Q ⊆ P such
that A has a tail B

σ(u1) ↪→QG ,µ t1
!
↪→R,µ,i σ(u2) ↪→QG ,µ t2

!
↪→R,µ,i σ(u3) ↪→QG ,µ · · ·

for some substitution σ, where all pairs in Q are infinitely often used, and, for
all i ≥ 1, since all ui → vi ∈ P are conservative ui → vi ∈ QG (i.e. PX = QX =
∅), then ti = σ(vi) and σ(ui) ∈ NFµ(R), this implies that ∀x ∈ Varµ(ui),
σ(x) ∈ NFµ(R) and by Proposition 9 the sequence can be seen as:

σ(u1) ↪→QG ,µ t1
!
↪→U0(R,µ,P),µ,i σ(u2) ↪→QG ,µ t2

!
↪→U0(R,µ,P),µ,i σ(u3) ↪→QG ,µ · · ·

Furthermore, by minimality, ti = σ(vi) is innermost (R, µ)-terminating for
all i ≥ 1. Since ui (& ∪ =) vi for all ui → vi ∈ Q ⊆ P, by stability of
& and =, we have σ(ui) (& ∪ =) σ(vi) for all i ≥ 1. No pair u → v ∈ Q
satisfies that u = v. Otherwise, we get a contradiction by considering that
since all pairs in P are conservative, we have that ui → vi ∈ QG . Then,

ti = σ(vi)
!
↪→U0(R,µ,P),µ,i σ(ui+1) and ti & σ(ui+1). Since we have σ(ui) (&

∪ =) σ(vi), by using transitivity of & and compatibility between & and =,
we conclude that σ(ui) (& ∪ =) σ(ui+1). Since u → v occurs infinitely of-
ten in B, there is an infinite set I ⊆ N such that σ(ui) = σ(ui+1) for all
i ∈ I. And we have σ(ui) (& ∪ =) σ(ui+1) for all other ui → vi ∈ Q.
Thus, by using the compatibility conditions of the µ-reduction pair, we ob-
tain an infinite decreasing =-sequence which contradicts well-foundedness of =.
Therefore, Q ⊆ (P \ P=). Since NFµ(U0(R, µ,P)) ⊇ NFµ(R), we have that
σ(ui) ∈ NFµ(U0(R, µ,P)). By Proposition 9, innermost (R, µ)-termination
of σ(vi) implies innermost (U0(R, µ,P), µ)-termination of σ(vi) for all i ≥ 1.
Hence, B is an infinite minimal innermost (P \ P=,U0(R, µ,P),∅, µ, i)-chain,
thus leading to a contradiction. 2

Note that the processor is only sound because we refine the result to be
applied only to the set of usable rules instead of over the whole set of rules as
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in standard rewriting [GTSF06] or even for context-sensitive in [AEF+08]. In
this way, (i.e. by taking all the rules in R), it would be also complete, that is:

ProcUR(τ) =
{
{(P \ P=,R,∅, µ, i)} if (1) and (2) hold
{(P,R,S, µ, i)} otherwise

is sound and complete, but since complete processors are useful for disproving
termination, we pay more attention on be more precise with the soundness.

Note also, that in the case of usable rules for context-sensitive rewriting
(non innermost) [GLU08], this improvement is not possible to be taken into
consideration, since it would be unsound.

Unfortunately, dealing with nonconservative pairs, considering the basic us-
able CS-rules does not ensure a correct approach.

Example 14 Consider again the TRS R:

b → c(b)
f(c(x), x) → f(x, x)

together with µ(f) = {1} and µ(c) = ∅. There are two non-conservative ICS-
DPs (note that µ](F) = µ(f) = {1}):

F(c(x), x) → F(x, x)
F(c(x), x) → x

and only one cycle in the ICS-DG:

{F(c(x), x) → F(x, x)}

Note that U0(R, µ, F(x, x)) = ∅. Since this ICSDP is strictly compatible with,
e.g., an LPO, we would conclude the innermost µ-termination of R. However,
this system is not innermost µ-terminating:

f(b, b) ↪→i f(c(b), b) ↪→i f(b, b) ↪→i · · ·

The problem is that we have to take into account the special status of variables
in the right-hand side of a nonconservative ICSDP. Instances of such variables
are not guaranteed to be µ-normal forms. Furthermore, conservativeness of
U0(R, µ,P) cannot be dropped either since we could infer an incorrect result
as shown by the following example.

Example 15 Consider the TRS R:

b → c(b)
f(c(x), x) → f(g(x), x)

g(x) → x

together with µ(f) = {1} and µ(g) = µ(c) = ∅. There is only one conservative
cycle:

{F(c(x), x)→ F(g(x), x)}
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having only one usable (but non-conservative!) rule g(x)→ x This is compatible
with the µ-reduction pair induced by the following polynomial interpretation:

[f](x, y) = 0 [c](x) = x+ 1 [g](x) = x [F](x, y) = x

However the system is not innermost µ-terminating:

f(c(b),b) ↪→i f(g(b),b) ↪→i f(b,b) ↪→i f(c(b),b) ↪→i · · ·

Nevertheless, Theorem 11 is useful to improve the proofs of termination of
innermost CSR as the following example shows.

Example 16 Consider again the TRS R in Example 1. As we have seen in
Example 13 the initial CS problem can be decomposed in the following three:

τ1 = ({1},R,∅, µ], i) (12)
τ2 = ({3},R,∅, µ], i) (13)
τ3 = ({4},R,∅, µ], i) (14)

Problems τ1 and τ3 can be solved by using the subterm processor (see [GL10]).
However, without the notion of usable rules, τ2 is difficult to solve. The pair
(3) is µ-conservative and the obtained usable rules are also µ-conservative:

minus(x, 0)→ x

and
minus(s(x), s(x))→ minus(x, y)

According to Theorem 11, we can apply the usable rules processor ProcUR(τ2)
and get the following problem:

τ4 = (∅, {minus(x, 0)→ x, minus(s(x), s(x))→ minus(x, y)},∅, µ], i)

by using a polynomial interpretation:

[minus](x, y) = x [0] = 0
[s](x) = x+ 1 [QUOT](x, y) = x

Then, by applying ProcFin(τ4), since the set of pairs is empty, we can con-
clude the innermost µ-termination of Example 1. Furthermore, since Example
1 is orthogonal, we have also concluded its µ-termination.
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9 Usable Arguments for CSR

Since in innermost reductions, matching substitutions are always normalized, in
an innermost sequence t1

p1→i t2
p2→i · · · pn→i tn+1 starting at root position (i.e.,

p1 = Λ), every redex tj |pj for j > 1 comes from a defined symbol introduced
after applying a rule lk → rk in a previous step k < j. Hence the set of
arguments which are reduced can be handled by looking for defined symbols in
right-hand sides of the involved rules l→ r.

In [Fer05] Fernández defines the notion of usable arguments for a function
symbol when proving innermost termination. The idea is that, in innermost
sequences, some arguments are not relevant for proving termination.

Example 17 Consider the following TRS R:

f(s(x), s(x)) → f(x, g(x))
g(s(x)) → g(x)

No innermost sequence starting at root position takes into account the first
argument of f nor the argument of g. The reason is that since an innermost
redex is an argument normalized redex, that means that all variables (e.g. x) of
the applied rule are normalized and cannot be reduced. Only the second argument
g(x) of f in the right-hand side of the first rule could be innermost reduced after
applying it.

Considering those usable arguments could be helpful in proofs of innermost
termination since they impose weaker monotonicity requirements. For instance,
when using polynomial orderings, we can use even negative or rational coeffi-
cients for interpreting the symbols that do not need to be monotonic.

As Fernández noticed in [Fer05], the set of usable arguments can be seen as a
replacement map which specifies the arguments to be reduced. In her approach,
proving the µ-termination of a TRS R implies the innermost termination of R
if µ(f)=UA(f,R, R) for all f ∈ F where R only contains rules such that all
left-hand sides are argument normalized.

Following Fernández’s ideas, in the innermost context-sensitive setting (for a
given replacement map µ) we could relax monotonicity requirements by taking
into account that reductions only take place on µ-replacing positions of the
right-hand sides of the rules which are rooted by a defined symbol.

We have adapted Fernández’s ideas to CSR in [AL09]. In sharp contrast to
the unrestricted case, we need to take into account that in innermost CSR a
redex does not need to be argument normalized. Only argument µ-normalization
can be assumed. Thus, non-µ-replacing subterms may contain redexes that can
be reduced later on if they come to a replacing position.

Proposition 10 A CS-TRS (R, µ) is innermost µ-terminating iff R′ is inner-
most µ-terminating, where R′ ⊆ R contains all rules l → r ∈ R such that l is
argument µ-normalized.
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Proof. Trivial since the only rules that can be applied in innermost µ-
reductions are those whose the left-hand sides are argument µ-normalized as we
have shown in the Definition 5 of ICSDPs. 2

In the following, we assume that all CS-TRS (R, µ) are argument µ-normalized,
i.e., for all rule l→ r in R, l is argument µ-normalized. Proposition 10 ensures
that this entails no lack of generality regarding our research on innermost ter-
mination of CSR.

The straightforward adaptation of Fernandez’s criterion to CSR yields the
following definition: the usable CS-arguments for a function symbol f ∈ F are
those arguments with a µ-replacing subterm rooted by a defined symbol in some
right-hand side of a pair or usable rule.

Definition 18 (Basic usable CS-arguments) Let (R, µ) = ((C ] D, R), µ)
be a CS-TRS and P be a set of pairs of terms s.t. for all u → v ∈ P, u is
argument µ-normalized. The basic usable CS-arguments for a function symbol
f ∈ F are defined as UAµ(f,R,P) = {i ∈ µ(f) | ∃u → v ∈ P ∪U0(R, µ,P),
∃p, p′ ∈ Posµ(v) s.t. root(v|p′) = f , root(v|p) ∈ D , p′.i 6 p, u 7µ v|p}.

Note that the replacement map given by µ′(f) = UAµ(f,R,P) for all f ∈ F
is more restrictive than µ: µ′(f) ⊆ µ(f) for all f ∈ F .

The following proposition is the context-sensitive version of [Fer05, Lemma
5].

Proposition 11 Let (R, µ) be a CS-TRS and P be a set of pairs of terms s.t.
for all u → v ∈ P, u is argument µ-normalized and P ∪ U0(R, µ,P) is µ-

conservative. Let l→ r ∈ P∪U0(R, µ,P) be such that σ(r)
>Λ

↪−→∗i U0(R,µ,P) t for
some term t and substitution σ s.t. σ(l) is argument µ-normalized . If t|p is an
innermost µ-redex, then for all p′.k 6 p, we have that k ∈ UAµ(root(t|p′),R,P).

Proof. By induction on the length n of the rewriting sequence. If n = 0,
then σ(r) = t. Then, since σ(l) is argument µ-normalized, it follows that for
all x ∈ Varµ(l), σ(x) ∈ NFµ(R). Since the rule l → r is conservative (that
is Varµ(r) ⊆ Varµ(l)), we have that for all x ∈ Varµ(r), σ(x) ∈ NFµ(R). It
follows that p is a nonvariable (µ-replacing) position of r, i.e. p ∈ PosµF (r).
Thus, root(r|p) ∈ D and the result follows by Definition 18.

If n > 0, then there is a term s such that σ(r)
>Λ

↪−→∗i s and s
>Λ
↪−→i t at

some µ-replacing position q. By the induction hypothesis, every µ-replacing
position of the term t above, which equal or disjoint to q satisfies the result
and we only have to prove it for innermost redexes t|p s.t. q < p, it is say, we

have to prove that k ∈ UAµ(root(t|p′),R,P), for all q < p′.k 6 p. If s
>Λ
↪−→i

t, then s|q = σ′(l′) and t|q = σ′(r′), for some rule l′ → r′ ∈ U0(R, µ,P) and
substitution σ′ s.t. σ′(l′) is argument µ-normalized. This implies that every
innermost redex of t|q occurs at a position p′′ ∈ Posµ(r′) s.t. root(r′|p′′) ∈ D
(since the rule l′ → r′ is conservative we have that for all x ∈ Varµ(r′), σ(x) ∈
NFµ(R)) and l′ 7µ r

′|p′′(otherwise, σ′(l′) would not be an innermost redex of
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s. By definition, when p′′ > Λ, p′.k 6 p′′, k ∈ UAµ(root(t|q.p′),R,P) which
is equivalent to what we needed to prove ( k ∈ UAµ(root(t|p′),R,P), for all
q < p′.k 6 p). 2

Corollary 11 in [Fer05] suggests that innermost µ-termination could be proved
by using a µ′-reduction ordering for µ′ given by µ′(f) = UAµ(f,R,P) for all
f ∈ F . This is true for µ′-conservative CS-TRSs, as the following theorem
shows.

Theorem 12 A µ-conservative CS-TRS (R, µ) is innermost µ-terminating if
there is a µ′-reduction ordering � s.t. R ⊆ �, where for all symbol f ∈ F ,
µ′(f) = UAµ(f,R, R).

Proof. By contradiction. Assume that R is not innermost µ-terminating. By
the argument of size minimality, there is a infinite innermost µ-rewrite sequence
with the first step at position Λ: s1 ↪→i s2 ↪→i s3 ↪→i · · · (without loss of

generality). By Proposition 11 (where we let P = R), every step sj
>Λ
↪−→i sj+1

at position p satisfies that p′.k 6 p, k ∈ UAµ(root(sj |p′),R,P). Since R ⊆ �
and � is stable and µ′-monotonic, sj � sj+1 holds. Therefore, there is an infinite
�-decreasing sequence of terms s1 � s2 � · · · � sn � · · · which contradicts the
well-foundedness of �.

2

Since µ-reduction orderings characterize termination of CSR we have the
following corollary.

Corollary 4 Let R be a µ-conservative TRS for µ ∈ MR. Let µ′ be given by
µ′(f) = UAµ(f,R, R) for every f ∈ F . If R is innermost µ′-terminating, then
R is innermost µ-terminating.

Example 18 Consider the TRS R :

f(a, b, x) → f(x, x, x)
c → a
c → b

together with µ(f) = {1, 3}. By using µ′(f) = UAµ(f,R,P) for every f ∈ F we
obtain µ′(f) = ∅. The pair f(a, b, x)→ f(x, x, x) cannot form a cycle now, thus
easily concluding the µ′-termination of R and, by Corollary 4, the innermost
µ-termination of R.

This fact is important since now, all techniques for proving termination of CSR
can be used to prove termination of innermost CSR for µ-conservative systems.
The following example shows that µ-conservativeness cannot be dropped in
Theorem 12 and Corollary 4.

Example 19 Consider again the TRS R in Example 18 but now together with
µ(f) = {1, 2}. If we try to apply Corollary 4 to prove innermost µ-termination
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of R, we obtain µ′(f) = ∅ and (as discussed in Example 18) the CS-dependency
graph has no cycle thus concluding the innermost µ-termination of R. However,R
is not innermost µ-terminating:

f(a,b,c) ↪→i f(c,c,c) ↪→i f(a,c,c) ↪→i f(a,b,c) ↪→i · · ·
Note that the first rule of R is not µ-conservative now.

9.1 Relaxing Monotonicity with CS-DPs

Fernández’s criterion was also adapted to deal with proofs of termination of
rewriting using dependency pairs, what allows us using reduction pairs instead
of reduction orderings in proofs of termination.

In previous sections, we have shown how to prove innermost termination of
CSR by using ICSDPs. Now, we can adapt the use of CS-usable arguments to
be applied in proofs of innermost µ-termination with ICSDPs. We do that by
providing a new processor for dealing with innermost µ-termination problems.

Theorem 13 Let τ = (P,R,S, µ, i) be a CS problem. Let µA(f) = UAµ(f,R,P)
for all f ∈ F ∪ G ∪H and (&,=) be a µA-reduction pair such that

1. P and U0(R, µ,P) are µ-conservative,

2. U0(R, µ,P) ⊆& and P ⊆& ∪ =,

Let P= = {u→ v ∈ P | u = v}. Then, the processor ProcFer given by

ProcFer (τ) =
{
{(P \ P=,U0(R, µ,P),∅, µA, i)} if (1) and (2) hold
{(P,R,S, µ, i)} otherwise

is sound.

Proof.
We have to prove that every infinite minimal innermost (P,R,S, µ, i)-chain

introduces an infinite minimal innermost (P \ P=,U0(R, µ,P),S, µA, i)-chain.
We proceed by contradiction. Assume that there is an infinite minimal inner-
most (P,R,S, µ, i)-chain A, but that there is no infinite minimal innermost
(P \ P=,U0(R, µ,P),S, µA, i)-chain. Due to the finiteness of P, and since P is
conservative, we have PX = ∅. Thus, we can assume that there is Q ⊆ P such
that A has a tail B

σ(u1) ↪→Q,µ t1
!
↪→R,µ,i σ(u2) ↪→Q,µ t2

!
↪→R,µ,i σ(u3) ↪→Q,µ · · ·

for some substitution σ, where all pairs in Q are infinitely often used, and,
for all i ≥ 1, since all ui → vi ∈ P are conservative ui → vi ∈ QG (i.e.
PX = QX = ∅), then ti = σ(vi) such that for all i > 0, σ(ui) is argument
µ-normalized and σ(vi) is innermost (R, µ)-terminating. By Proposition 9 and

39

18.10. Innermost Termination of Context-Sensitive Rewriting 355



11, every innermost step in the sequence ti
!
↪→R,µ,i σ(ui+1) is performed at a

µA-replacing position by means of a conservative rule in U0(R, µ,P):

σ(u1) ↪→QG ,µA t1
!
↪→U0(R,µ,P),µA,i σ(u2) ↪→QG ,µA t2

!
↪→U0(R,µ,P),µA,i σ(u3) ↪→ · · ·

Since ui (& ∪ =) vi for all ui → vi ∈ Q ⊆ P, by stability of & and =, we
have σ(ui) (& ∪ =) σ(vi) for all i ≥ 1.

No pair u → v ∈ Q satisfies that u = v. Otherwise, we get a contradic-
tion by considering that since all pairs ∈ P are conservative ui → vi ∈ QG ,

then ti = σ(vi)
!
↪→U0(R,µ,P),µA,i σ(ui+1) and ti & σ(ui+1). Since we have

σ(ui) (& ∪ =) σ(vi) = σ(vi) = ti , by using transitivity of & and compatibility
between & and =, we conclude that σ(ui) (& ∪ =) σ(ui+1). Since u→ v occurs
infinitely often in B, there is an infinite set I ⊆ N such that σ(ui) = σ(ui+1)
for all i ∈ I. And we have σ(ui) (& ∪ =) σ(ui+1) for all other ui → vi ∈ Q.
Thus, by using the compatibility conditions of the µ-reduction pair, we ob-
tain an infinite decreasing =-sequence which contradicts well-foundedness of =.
Therefore, Q ⊆ (P \ P=). Since µA ⊆ µ and NFµA(U0(R, µ,P)) ⊇ NFµ(R),
we have that σ(ui) ∈ NFµA(U0(R, µ,P)). By Proposition 9, innermost (R, µ)-
termination of σ(vi) implies innermost (U0(R, µ,P), µ)- termination of σ(vi)
for all i ≥ 1 and by Proposition 11, innermost (U0(R, µ,P), µ)-termination of
σ(vi) implies innermost (U0(R, µ,P), µA)-termination, so we get that innermost
(R, µ)-termination of σ(vi) implies innermost (U0(R, µ,P), µA)-termination.
Hence, B is an infinite minimal innermost (P \P=,U0(R, µ,P), µA)-chain, thus
leading to a contradiction.

2

Corollary 4 can be generalized to (certain) non-µ-conservative CS-TRSs
thanks to Theorem 13. Now, for a given CS-TRS (R, µ) that satisfies the
conditions of Theorem 13, we can prove its innermost µ-termination by relaxing
µ-monotonicity requirements for each cycle.

10 Narrowing Transformation

Although, function TCap provides a good approximation of the graph, it can
lead to overestimate the arcs that connect two dependency pairs. As already
observed by Arts and Giesl for the standard and innermost case [AG00], in
our setting the overestimation comes when a (noncollapsing) pair ui → vi is
followed in a chain by a second one ui+1 → vi+1 and vi and ui+1 are not directly
unifiable, i.e., at least one innermost µ-rewriting step is needed to innermost µ-
reduce σ(vi) to σ(ui+1). Then, the innermost µ-reduction from σ(vi) to σ(ui+1)
requires at least one step, i.e., we always have σ(vi) ↪→R,µ] σ(v′i) ↪→∗R,µ] σ(ui+1).
Furthermore, we could discover that vi has no µ-narrowings. In this case, we
know that no innermost chain starts from σ(vi). A restriction that have to be
taken into account when µ-narrowing a noncollapsing pair u → v is that the

40

356 18. Publications (full text)



µ-replacing variables in v have to be µ-replacing in u as well (this corresponds
with the notion of conservativeness), but furthermore, they cannot be both
µ-replacing and non-µ-replacing at the same time. This corresponds to the
following definition.

Definition 19 (Strongly Conservative [GLU08]) Let R be a TRS and µ ∈
MR. A rule l→ r is strongly µ-conservative if it is µ-conservative and Varµ(l)∩
Var�µ(l) = Varµ(r) ∩ Var�µ(r) = ∅.

In [AGL10], we define the µ-narrowing processor. Of course, µ-narrowing can
also be used in proofs of innermost termination of CSR. In the standard setting,
when using narrowing for proving innermost termination we do not require that
the right-hand side of the dependency pair to be narrowed is linear since the
involved substitution σ is normalized. However, in the context-sensitive setting,
if the pair to be µ-narrowed is not strongly µ-conservative, we can not ensure
that the variables on the right-hand side are µ-normalized so we also have to
demand linearity. When dealing with innermost narrowing in context-sensitive
rewriting we can drop the linearity condition if the pair to be µ-narrowed is
strongly conservative since all µ-replacing variables in the right-hand side of a
pair are instantiated to µ-normal form and µ-reductions can not take place on
them.

Theorem 14 (Innermost Narrowing processor) Let τ = (P,R,S, µ, i) be
a CS problem. Let u→ v ∈ P be such that

1. for all u′ → v′ ∈ P (with possibly renamed variables), v and u′ do not
unify or they unify by some mgu θ such that one of the terms θ(u) or
θ(u′) is not a µ-normal form.

Let Q = (P −{u→ v})∪{u′ → v′ | u′ → v′ is a µ-narrowing of u→ v}. Then,
the processor ProcInarr given by

ProcInarr (P,R,S, µ, i) =
{
{(Q,R,S, µ, i)} if (1) holds
{(P,R,S, µ, i)} otherwise

is

1. sound whenever u→ v is strongly conservative, and

2. complete in all cases.

Proof.
We have to prove that there is an infinite minimal innermost (P,R,S, µ, i)-

chain iff there is an infinite minimal innermost (Q,R,S, µ, i)-chain. We prove
that for every minimal innermost (P,R,S, µ, i)-chain “. . . , u1 → v1, u→ v, u2 →
v2, . . .”, there is an innermost µ-narrowing v′ of v with the mgu θ such that
“. . . , u1 → v1, θ(u)→ v′, u2 → v2, . . .” is also a minimal innermost (Q,R,S, µ, i)-
chain.

If “. . . , u1 → v1, u→ v, u2 → v2, . . .” is a minimal innermost (P,R,S, µ, i)-
chain, then there is an substitution σ such that for all pairs s→ t in the chain,
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1. if s → t ∈ PG , then σ(t) is µ-terminating and it µ-reduces innermost to
the instantiated left-hand side σ(s′) of the next pair s′ → t′ in the chain

2. if s → t = s → x ∈ PX , then σ(x)
Λ
↪−→∗S�µ ,µ

◦ Λ
↪→S],µ t and t, which

is innermost µ-terminating, µ-reduces innermost to the instantiated left-
hand side σ(s′) of the next pair s′ → t′ in the chain.

3. all instantiated left-hand sides are µ-normal forms w.r.t. (R, µ).

Assume that σ is a substitution satisfying the above requirements and such that
the length of the sequence σ(v) ↪→∗R,µ,i σ(u2) is minimal.

Note that σ(v) 6= σ(u2). Otherwise σ would unify v and u2, where both,
u and v2 are µ-normal forms, hence, there is a term q such that σ(v) ↪→R,µ,i
q ↪→∗R,µ,i σ(u2).

The reduction σ(v) ↪→R,µ,i q cannot take place within a binding of σ because
u → v is strongly conservative. Hence, σ(u) would not be a µ-normal form
which violates the last condition for σ. In the innermost case, we do not have
to demand linearity since µ-replacing variables in v come from being replacing
in u (strongly conservative) and they are instantiated to µ-normal forms and no
one can be reduced in v. The remainder of the proof is completely analogous to
the noninnermost case.

2

Example 20 Consider the following example:

f(s(x)) → f(p(s(x)))
p(s(x)) → x

together with µ(f) = µ(s) = {1} and µ(p) = ∅.
The only ICSDP that could generate a cycle is F(s(x))→ F(p(s(x))). How-

ever since the right-hand side F(p(s(x))) does not unify with any (renamed) the
left-hand side (including itself) and the pair is strongly conservative, we can
apply µ-narrowing. Therefore, the pair can be µ-narrowed at position 1 (notice
that µ(f) = µ(F) = {1}) by using the rule p(s(x)) → x. Then, the pair is
transformed into the pair F(s(y)) → F(y) that can be easy disregarded by using
the subterm criterion1.

11 Experiments

We have implemented the techniques described in the previous sections as part
of the tool mu-term [AGL+10]. In order to evaluate the techniques which are
reported in this paper we have made some benchmarks. We have considered
the examples in the Termination Problem Data Base2 (TPDB).

1Instead of using in the proof a polynomial interpretation with rationals, like mu-term or
matrix interpretations like AProVE.

2http://www.termination-portal.org/wiki/TPDB

42

358 18. Publications (full text)



ICSDPs Transformations
YES score 95/109 60/109

YES average time 0.7 sec. 1.5 sec.

Table 1: Comparative in proofs of termination of innermost CSR

C GM iGM
YES score 33 57 42

Table 2: Comparing transformations for proving termination of innermost CSR

11.1 Proving Termination of Innermost CSR: Direct Tech-
niques vs. Transformations

Although there is no special TPDB category for innermost termination of CSR
(yet) we have used the examples used in the CSRcategory in order to test our
techniques for proving termination of innermost CSR. The TPDB v7.0.2 con-
tains 109 examples of CS-TRSs. In order to evaluate our direct techniques in
comparison with the transformational approach of [GM02b, GM04, Luc01a],
where termination of innermost CSR for a CS-TRS (R, µ) is proved by proving
innermost termination of a transformed TRS RµΘ, where Θ specifies a particular
transformation (see [GM02a, GM02b] for a survey on this topic), we have trans-
formed the set of examples by using the transformations that are correct for
proving innermost termination of CSR: Giesl and Middeldorp’s correct trans-
formations for proving termination of innermost CSR, see [GM02b], although
we use the ‘authors-based’ notation introduced in [Luc06]: GM and C for trans-
formations 1 and 2 for proving termination of CSR introduced in [GM04], and
iGM for the specific transformation for proving termination of innermost CSR
introduced in [GM02b]. Then we have proved innermost termination of the set
of examples with AProVE [GST06], which is able to prove innermost termination
of standard rewriting. The results are summarized in Table 1 and 11.1. Further
details can be found here:

http://www.dsic.upv.es/~balarcon/iCSR/benchmarks.html

These are the first known benchmarks comparing not only transformational
techniques vs. direct (DP-based) techniques, but also the existing correct trans-
formations for proving innermost termination of CSR among them. They show
that, quite surprisingly, the iGM transformation (which is in principle the more
suitable one for proving innermost termination of CSR) obtains worse results
than GM (in the average).

In [AL07], we obtained 70 over 90 successful proofs against 44 for trans-
formations (it was used the TPDB v3.2). Obviously, the use of ICSDPs were
imposed without doubts for proving innermost termination of CSR. Moreover,
now, with the recent developments of mu-term embracing the DP-framework,
mu-term would solve 77 over those 90 of the previous version (and 18 over
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the new 19 included in the last one). Therefore, from the results in Table 1, it
is clear that using transformations for proving termination of innermost CSR
makes no sense after introducing the ICSDP framework.

11.2 Proving Innermost Termination of CSR: Relaxing
Monotonicity Requirements

For our experiments about proving termination of innermost CSR by means of
a new replacement map which imposes less monotonicity requirements we have
used the set of examples mentioned in Section 11.1.

We have implemented the use of Theorem 13 to deal with nonconservative
systems (but conservative cycles). mu-term tries to solve each µ-conservative
cycle (with associated µ-conservative usable rules) by using CS-usable argu-
ments as the new replacement map. This implementation of mu-term succeed
over the same 95 examples, the same number of examples that we had already
solved using ICSDPs. The time average rates has no exhibit substantial differ-
ences. Further details can be found here:

http://www.dsic.upv.es/~balarcon/iCSR_UA/benchmarks.html

Although no improvement over the practical use of ICSDPs explained in
previous subsection is shown, we expect that in the future, when we implement
nonmonotonic orderings in our termination tool mu-term we take advantage
of this technique.

Moreover, we have implemented the use of Corollary 11 in [Fer05] to prove
innermost termination of TRSs by proving µ-termination of the CS-TRS ob-
tained after using the usable arguments as replacement map (this was one of
the main results in Fernández’s paper). The relevance of this result in prac-
tice had not been tested yet as no implementation of Fernández’s results was
available (to our knowledge). In order to evaluate it, we have considered the
examples used in the innermost category. There are 358 examples. Using usable
arguments (we call this tool mu-term UA), mu-term succeeds in 158 exam-
ples. However, we have also implemented the use of (standard) dependency
pairs for proving innermost termination (according to [AG00, Theorem 37]) to-
gether with the narrowing refinement (we call this tool mu-term iDPs) and we
are able to prove 199 examples, including all examples solved with Fernández’s
criterion.

Therefore, it seems that using her result to prove innermost termination
of rewriting is not as good idea (at least with the considered set of examples)
since we loose some examples and the average time is worse. The results are
summarized in Table 3. Further details can be found in:

http://www.dsic.upv.es/~balarcon/UA/benchmarks.html

All this shows that we do not obtain any real improvement over the basic
technique of dependency pairs for proving innermost termination at least for
the set of considered examples.
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mu-term UA mu-term iDPs
YES score 158 199

YES average time 4.87 sec. 3.31 sec.

Table 3: Benchmarks for innermost termination of rewriting

11.3 Transforming CS-dependency Pairs

We have also implemented innermost µ-narrowing in mu-term. Due to the pos-
sibility of performing an unbounded number of narrowing steps, the µ-narrowing
transformation could be infinite (this also happens in the standard approach).
In order to implement the transformation, we have chosen to use one-step µ-
narrowing only if the innermost context-sensitive dependency graph obtained
has less cycles and arcs than the original one. One of the best advantages of
using µ-narrowing lies in the possibility of dismissing some CS-DPs if the right-
hand sides do not unify with any left-hand side of another (possible renamed)
CS-DP and they have no µ-narrowings.

11.4 Termination Competition

Thanks to the new developments reported in this paper and in [AGL10, GL10],
mu-term 5.07 has proven to be the most powerful tool for proving termination
of CSR in the context-sensitive subcategory of the 2007, 2009 and 2010 editions
of the International Competition of Termination Tools3.As we have commented,
under some conditions, termination of CSR and termination of innermost CSR
coincide [GM02b, GL02b]. For this reason, one of the most important aspect of
innermost CSR is its use for proving termination of CSR as part of the CSDP
framework. We switch from termination of CSR to termination of innermost
CSRwhenever termination is equivalent, for which we can apply the existing
processors more successfully. Actually, we proceed like that in 30− 50% of the
CSR termination problems which are proved by mu-term 5.0.

12 Conclusions

The results of this paper are revised and extended versions of the results pub-
lished in [AL07, AL09], having into account all improvements made in the CSDP
framework in [AGL10, GL10].

3See http://www.lri.fr/~marche/termination-competition/2007/, where only AProVE
and mu-term participated, and http://termcomp.uibk.ac.at/termcomp/ where there were
three more tools in the competition: AProVE, Jambox [End], and VMTL [SG09]. AProVE
and mu-term solved the same number of examples but mu-term was much faster. The same
situation has happened in 2010 (but without Jambox’s participation).
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12.1 Theoretical Contributions

We have investigated the structure of infinite innermost context-sensitive rewrite
sequences starting from (strongly) minimal innermost non-µ-terminating terms
(Theorem 1). This knowledge has been used to provide an appropriate defi-
nition of innermost context-sensitive dependency pair (Definition 5), and the
related notion of innermost chain (Definition 8). We have proved that it can
be used to characterize innermost µ-termination (Theorems 2 and 3). We have
provided a suitable adaptation of Giesl et al.’s dependency pair framework to
innermost CSR by defining appropriate notions of CS problem (Definition 9)
and CS processor (Definition 10). In this setting we have described a num-
ber of sound and (most of them) complete CS-processors which can be used in
any practical implementation of the ICSDP framework. In particular, we have
introduced the notion of (estimated) innermost context-sensitive (dependency)
graph (Definitions 12 and 15) by using functions to approximate it (Definition
14) and the associated CS processor showing how to automatically prove inner-
most µ-termination by means of the ICS dependency graph (Theorem 10). We
have formulated the notion of basic usable rules showing how to use them in
proofs of innermost termination of CSR (Definition 17, Theorem 11). Narrow-
ing context-sensitive dependency pairs has also been investigated. It can also be
helpful to simplify or restructure the dependency graph and eventually simplify
the proof of (innermost) termination (Theorem 14). We have also shown how to
relax monotonicity requirements for proving innermost termination of context-
sensitive rewriting. We have adapted Fernández’s approach [Fer05] to be used
for proving innermost termination of context-sensitive rewriting (Theorems 12
and 13).

12.2 Applications and Practical Impact

We have implemented these ideas as part of the termination tool mu-term
[AGIL07, Luc04]. The implementation and practical use of the developed tech-
niques yield a novel and powerful framework which improves the current state-
of-the-art of methods for proving termination of CSR. Actually, ICSDPs were
an essential ingredient for mu-term in winning the context-sensitive subcate-
gory of the 2007, 2009 and 2010 competitions of termination tools.

Up to our contributions, no direct method has been proposed to prove ter-
mination of innermost CSR. So this is the first proposal of a direct method for
proving termination of innermost CSR. We have extended the DP framework
[GTS04, GTSF06] to prove innermost termination of TRSs to innermost CSR
(thus also extending [AGL07]). Our benchmarks show that the use of ICSDPs
dramatically improves the performance of existing (transformational) methods
for proving termination of innermost CSR.
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12.3 Future Work

As remarked in the introduction, we aim at applying all previous developments
to deal with termination of Maude programs. Since its computational mecha-
nism can be thought of as kind of “context-sensitive call by value”, we believe
that our research is a essential contribution to the development of tools for
proving termination of Maude programs.
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ing Termination of Membership Equational Programs. In Proc. of
2004 ACM SIGPLAN Symposium on Partial Evaluation and Pro-
gram Manipulation, PEPM’04, pages 147–158, Verona, Italy. ACM
Press, 2004.

[DLM+08] F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Prov-
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Abstract

The development of powerful techniques for proving termination of
rewriting modulo a set of equational axioms is essential when dealing with
rewriting logic-based programming languages like CafeOBJ, Maude, ELAN,
OBJ, etc. One of the most important techniques for proving termination
over a wide range of variants of rewriting (strategies) is the dependency
pair approach. Several works have tried to adapt it to rewriting modulo
associative and commutative (AC) equational theories, and even to more
general theories. However, as we discuss in this paper, no appropriate
notion of minimality (and minimal chain of dependency pairs) which is
well-suited to develop a dependency pair framework has been proposed to
date. In this paper we carefully analyze the structure of infinite rewrite
sequences for rewrite theories whose equational part is any combination
of associativity and/or commutativity axioms, which we call A∨C-rewrite
theories. Our analysis leads to a more accurate and optimized notion of
dependency pairs through the new notion of stably minimal term. We then
develop a suitable dependency pair framework for proving termination of
A∨C-rewrite theories.

1 Introduction

Rewriting with rules R modulo axioms E is a widely used technique in both rule-
based programming languages and in automated deduction. Consequently, ter-
mination of rewriting modulo specific equational axioms E (e.g., associativity-
commutativity, AC) has been studied. Methods for proving termination of
rewriting systems modulo AC-axioms are known and even implemented. Several
works have tried to adapt the dependency pair approach (DP-approach [1]) to
rewriting modulo associative and commutative (AC) theories [20, 16, 17, 18, 21].
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fmod LIST&SET is

sorts Bool Nat List Set .

subsorts Nat < List Set .

ops true false : -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _;_ : List List -> List [assoc] .

op null : -> Set .

op __ : Set Set -> Set [assoc comm] .

op _in_ : Nat Set -> Bool .

op _==_ : List List -> Bool [comm] .

op list2set : List -> Set .

var B : Bool . vars N M : Nat .

vars L L’ : List . var S : Set .

eq N N = N .

eq true and B = B . eq false and B = false .

eq true or B = true . eq false or B = B .

eq 0 == s N = false . eq s N == s M = N == M .

eq N ; L == M = false . eq N ; L == M ; L’ = (N == M) and L == L’ .

eq L == L = true .

eq list2set(N) = N . eq list2set(N ; L) = N list2set(L) .

eq N in null = false . eq N in M S = (N == M) or N in S .

endfm

Figure 1: Example in Maude syntax [7]

The corresponding proof methods, though, cannot be applied to commonly oc-
curring combinations of axioms that fall outside their scope.

Example 1 Consider the (order-sorted) TRS specified in Maude in Figure 1.
It has four sorts: Bool, Nat, List, and Set, with Nat included in both List

and Set as a subsort. That is, a natural number n is simultaneously regarded
as a list of length 1 and as a singleton set. The terms of each sort are, respec-
tively, booleans, natural numbers (in Peano notation), lists of natural numbers,
and finite sets of natural numbers. The rewrite rules in this module then define
various functions such as _and_ and _or_, a function list2set associating
to each list its corresponding set, the set membership predicate _in_, and an
equality predicate _==_ on lists. Furthermore, the idempotency of set union is
specified by the first equation. All these equations rewrite terms modulo the
equational axioms declared in the module. Specifically, _and_ and _or_ have
been declared associative and commutative with the assoc and comm keywords,
the list concatenation operator _;_ has been declared associative using the assoc

keyword; the set union operator __ has been declared associative, commutative
using the assoc and comm, keywords; and the _==_ equality predicate has been
declared commutative using the comm keyword. The succinctness of this specifi-
cation is precisely due to the power of rewriting modulo axioms, which typically
uses considerably fewer rules that standard rewriting.

Methods for proving termination of AC-theories could not be applied to prove
termination of the TRS in Figure 1 (we would not care about sort information

2

18.11. A Dependency Pair Framework forA∨C-Termination 373



here), where we have an arbitrary combination of associative and/or commuta-
tive axioms which we call an A∨C-rewrite theory in this paper. Furthermore,
to the best of our knowledge, the Dependency Pair Framework (DP-framework
[13]), which is the basis of state-of-the-art tools for proving termination of (dif-
ferent variants of) term rewriting has not yet been adapted to the AC case.

In this paper, we address these two problems. Giesl and Kapur generalized
the previous works on AC-termination with dependency pairs to deal with more
general kinds of equational theories E satisfying some restrictions [10]. In prin-
ciple, the A∨C-theories that we investigate here fit the main outlines of Giesl
and Kapur’s approach. However, as we discuss below, the paper [10] did not
provide any definition of minimal chain, which is needed for further develop-
ments in the DP-framework. In the DP-framework, the central notion regarding
termination proofs is that of DP problem: the goal is checking the absence (or
presence) of the so-called infinite minimal chains, where the notion of minimal
chain can be thought of as an abstraction of the infinite rewrite sequences start-
ing from minimal non-terminating terms. The most important notion regarding
mechanization of the proofs is that of processor. A (correct) processor basically
transforms DP problems into (hopefully) simpler ones, in such a way that the
existence of an infinite chain in the original DP problem implies the existence
of an infinite chain in the transformed one. Here ‘simpler’ usually means that
fewer pairs are involved. Processors are used in a pipe (more precisely, a tree)
to incrementally simplify the original DP problem as much as possible, possibly
decomposing it into smaller pieces which are then independently treated in the
very same way. This is the crucial new feature of the DP-framework w.r.t. the
DP-approach of [1]. This makes it very powerful as a basis for implementing
termination provers.

Before being able to extend the DP-framework to deal with A∨C-theories,
we start by giving a more refined notion of minimality. In fact, the notion
of minimality which is used in [10] is the straightforward extension of the one
which is used to prove termination of standard rewriting but without dealing
with E-equivalence preservation which, as we show below, is essential to provide
an appropriate notion of minimal E-nonterminating term for A∨C-theories E
which can be used to define a suitable A∨C-DP-framework. We carefully ana-
lyze the structure of infinite rewrite sequences for A∨C-rewrite theories. This
leads to appropriate definitions of A∨C-dependency pair and of minimal chain.

1.1 Plan of the paper

The results, techniques, and tools that derive from our work can be of interest to
a fairly wide audience. The material in this paper will be more familiar, however,
to specialists interested in termination and in proving termination of rewriting
modulo equational theories. Throughout the paper we made a serious effort to
provide sufficient intuition and informal descriptions for our main definitions
and results. After some technical preliminaries, in Sections 2 and 3, the paper
is structured in three main parts:
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1. In Section 4 we investigate the drawbacks of previous notions of minimal
term when modeling infinite A∨C-rewrite sequences. Then, we introduce
the notion of stably minimal E-nonterminating term, which is the basis of
our development. Section 5 investigates the structure of infinite sequences
starting from such stably minimal terms. This analysis is essential in
order to provide an appropriate definition of A∨C-dependency pair and
the related notions of chain, graph, etc.

2. Section 6 uses these results to formalize our notions of A∨C-dependency
pairs and of minimal chains and shows how to use them to characterize
termination of A∨C-rewrite theories.

3. We describe a suitable framework for dealing with proofs ofA∨C-termination
by using these results. Section 7 extends the dependency pair framework
[12, 13] to A∨C-termination by defining appropriate notions of A∨C prob-
lem and A∨C processor that rely on the results obtained in the second part
of the paper. In particular, we introduce the notion of A∨C-dependency
graph and the associated A∨C processor. We also show how to use order-
ings for defining a second processor and other auxiliary processors. Section
8 formalizes the use of usable rules and usable equations with orderings.
Section 9 shows the performance of our techniques in practice, after im-
plementing them in the termination tool mu-term. Section 10 compares
our approach with related work and concludes the paper.

2 Preliminaries

This section collects a number of definitions and notations about term rewriting.
More details and missing notions can be found in [4, 22, 27].

Let A be a set and R ⊆ A × A be a binary relation on A. We denote the
transitive closure of R by R+ and its reflexive and transitive closure by R∗. We
say that R is terminating (strongly normalizing) if there is no infinite sequence
a1 R a2 R a3 · · · . A reflexive and transitive relation R is a quasi-ordering.

Given relations R and R′ over the same set A, we define its composition R◦R′
as follows: for all a, b ∈ A, a (R ◦R′) b if there is c ∈ A such that aR c and cR′ b.

Throughout the paper, X denotes a countable set of variables and Σ (equiv-
alently F and Γ) denotes a signature, i.e., a set of function symbols {f, g, . . .},
each having a fixed arity given by a mapping ar : Σ→ N. The set of terms built
from Σ and X is T (Σ,X ). Var(t) is the set of variables occurring in a term t.

Terms are viewed as labelled trees in the usual way. Positions p, q, . . . are
represented by chains of positive natural numbers used to address subterms of
t. We denote the empty sequence by Λ. Given positions p, q, we denote their
concatenation as p.q. Positions are ordered by the standard prefix ordering:
p ≤ q if ∃q′ such that q = p.q′. If p is a position, and Q is a set of positions,
then p.Q = {p.q | q ∈ Q}. The set of positions of a term t is Pos(t). Positions of
nonvariable symbols in t are denoted as PosΣ(t), and PosX (t) are the positions
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of variables. The subterm at position p of t is denoted as t|p, and t[s]p is the
term t with the subterm at position p replaced by s.

We write s�t, read t is a subterm of s, if t = s|p for some p ∈ Pos(s) and s�t
if s�t and s 6= t. We write s 4 t and s 7 t for the negation of the corresponding
properties. The symbol labeling the root of t is denoted as root(t). A context
is a term C ∈ T (F ∪ {2},X ) with a ‘hole’ 2 (a fresh constant symbol). We
write C[ ]p to denote that there is a (usually single) hole 2 at position p of C.
Generally, we write C[ ] to denote an arbitrary context and make the position
of the hole explicit only if necessary. C[ ] = 2 is called the empty context.

A substitution is a mapping σ : X → T (Σ,X ). Denote as ε the ‘identity’
substitution: ε(x) = x for all x ∈ X . The set Dom(σ) = {x ∈ X | σ(x) 6= x}
is called the domain of σ. A renaming is an injective substitution ρ such that
ρ(x) ∈ X for all x ∈ X . A substitution σ such that σ(s) = σ(t) for two terms
s, t ∈ T (Σ,X ) is called a unifier of s and t; we also say that s and t unify (with
substitution σ). If two terms s and t unify, then there is a unique most general
unifier σ (up to renaming of variables) such that for every other unifier τ , there
is a substitution θ such that θ ◦ σ = τ .

A binary relation R ⊆ T (Σ,X )×T (Σ,X ) on terms is stable if, for all terms
s, t ∈ T (F ,X ) and substitutions σ, we have σ(s) R σ(t) whenever s R t. We say
that the relation is monotonic if, for all f ∈ Σ, and s, t, t1, . . . , tk ∈ T (Σ,X ),
f(t1, . . . , ti−1, s, ti+1, . . . , tk) R f(t1, . . . , ti−1, t, ti+1, . . . , tk) whenever s R t.

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (Σ,X ),
l 6∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l, and
the right-hand side (rhs) is r. A rewrite rule l → r is said to be collapsing if
r ∈ X . A Term Rewriting System (TRS) is a pair R = (Σ, R), where R is
a set of rewrite rules. An instance σ(l) of a lhs l of a rule is called a redex.
Given R = (Σ, R), we consider Σ as the disjoint union Σ = C ] D of symbols
c ∈ C (called constructors) and symbols f ∈ D (called defined functions), where
D = {root(l) | l→ r ∈ R} and C = F −D.

A term s ∈ T (Σ,X ) rewrites to t (at position p), written s
p→R t (or just

s →R t, or s → t), if s|p = σ(l) and t = s[σ(r)]p, for some rule l → r ∈ R,
p ∈ Pos(s) and substitution σ. We write s

>p→R t if s
q→R t for some q > p. A

TRS R is terminating if its one step rewrite relation →R is terminating.

3 Rewriting Modulo Equational Theories

Given a set of equations E, we write s
p

àE t (a single ‘equational step’) if there
is a position p ∈ Pos(s), an equation u = v ∈ E and a substitution σ such that
s|p = σ(u) and t|p = σ(v), or s|p = σ(v) and t|p = σ(u) (we write s àE t if
position p is not relevant). Note that àE is a symmetric relation. Then, ∼E

is the reflexive and transitive closure of àE ; we have the following equivalence
that will be useful in our development:

∼E = à∗E = (
Λ

àE ∪
>Λ

àE)∗.
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We also write s >Λ∼ E t iff s = f(s1, . . . , sk), t = f(t1, . . . , tk) and si ∼E ti for all

i, 1 ≤ i ≤ k. We define s Λ∼E t as the reflexive and transitive closure of
Λ

àE .
Given a rewrite theory R = (Σ, E,R), where R is a set of rewrite rules and

E is a set of equational axioms, we write s→R/E t if there exist u, v such that
s ∼E u, u →R v, and v ∼E t.We say that a rewrite theory R = (Σ, E,R) is
E-terminating, iff →R/E is terminating. In general, given terms s and t, the
problem of checking whether s →R/E t holds is undecidable: in order to check
whether s →R/E t we have to search through the possibly infinite equivalence
classes [s]E and [t]E to see whether a matching is found for a subterm of some
u ∈ [s]E and the result of rewriting u belongs to the equivalence class [t]E . For
this reason, a much simpler relation →R,E is defined, which becomes decidable
if an E-matching algorithm exists. For any terms s, t, s→R,E t holds iff there is
a position p in s, a rule l → r in R, and a substitution σ such that s|p ∼E σ(l)
and t = s[σ(r)]p (see [23]). This relation only allows applying rules from R in
redexes at positions equal or above of positions of terms where equations from
E have been applied. We say that a rewrite theory R = (Σ, E,R) is (R,E)-
terminating, if →R,E is terminating. In the following, we assume that E and R
are finite sets of equations and rules, respectively.

Regarding E-termination analysis using dependency pairs (DPs), Kusakari
and Toyama observed that there is no simple extension of DPs to directly deal
with →R/E-computations [18, 16]. In contrast, several approaches have been
developed for →R,E-computations [10, 18, 20]. Since →R,E⊆→R/E (but the
opposite inclusion does not hold, in general), E-termination cannot be concluded
from (R,E)-termination. Actually, Marché and Urbain showed that there are
(R,E)-terminating rewrite theories R which are not E-terminating.

Example 2 Consider the following rewrite theory R = (Σ, E,R), where ‘+’ is
an AC symbol [20]:

a+ b→ a+ (b+ c).

Note that t = a+ (b+ c) is an →R,E-normal form (hence (R,E)-terminating).
However, t ∼AC (a+ b) + c which is E-nonterminating.

Giesl and Kapur [10] proved the equivalence of both notions of termination with
respect to a notion of extension completion ExtE(R) (see below) of a rewrite
theory R = (Σ, E,R) for E regular (i.e., Var(u) = Var(v) for all u = v in
E), and linear (neither u nor v have repeated variables). For E being a set
containing associative or commutative axioms, this notion of extension goes
back to Peterson and Stickel [23].

Theorem 1 [10, Theorem 11] Let R = (Σ, E,R) be a rewrite theory with E
a regular and linear equational theory and t ∈ T (Σ,X ). Then, t starts an
infinite →R/E-reduction if and only if t starts an infinite →ExtE(R),E-reduction.
Therefore, R is E-terminating if and only if →ExtE(R),E is terminating.
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3.1 Combination of Associative and Commutative Theo-
ries

Let E be a set of equations that has the modular decomposition E =
⋃
f∈ΣEf ,

where if k = ar(f) 6= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}, where:

• Af is the associativity axiom f(f(x, y), z) = f(x, f(y, z)),

• Cf is the commutativity axiom f(x, y) = f(y, x).

We also define Σ = ΣA ] ΣC ] ΣAC ] Σ∅ where f ∈ ΣA ⇔ Ef = {Af},
f ∈ ΣC ⇔ Ef = {Cf}, f ∈ ΣAC ⇔ Ef = {Af , Cf}, f ∈ Σ∅ ⇔ Ef = ∅. In the
following, we often say that a symbol f ∈ Σ is associative iff f ∈ ΣA ∪ ΣAC .

Definition 1 (A∨C-rewrite theory) An equational theory E =
⋃
f∈ΣEf ,

where if k = ar(f) 6= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}
is called an A∨C-theory. A rewrite theory R = (Σ, E,R) such that E is an
A∨C-theory, is called an A∨C-rewrite theory.

To deal with rewriting modulo A∨C-theories by using (R,E)-rewriting we have
to extend R by following [23, Definition 10.4]:

ExtAC(R) = R ∪ {f(l, w)→ f(r, w) | l→ r ∈ R, f = root(l) ∈ ΣAC}
ExtA(R) = R ∪ {f(l, w)→ f(r, w), f(w, l)→ f(w, r), f(z, f(l, w))→ f(z, f(r, w))

| l→ r ∈ R, f = root(l) ∈ ΣA}
ExtC(R) = R

where w and z are fresh variables which do not occur in the original rule of R.
Therefore, given an A∨C theory E, we let:

ExtE(R) = ExtAC(R) ∪ ExtA(R) ∪ ExtC(R).

Note that R ⊆ ExtE(R).

Example 3 Consider the following TRS R:

f(x, x) → f(0, 0)

where f ∈ ΣAC .
Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, 0), y)

3.2 Minimal Terms and Infinite Rewrite Sequences

Given a TRS R = (C ] D, R), with C a subsignature of constructors and
D a subsignature of defined symbols, so that each rule in R is of the form
f(t1, . . . , tn)→ r with f ∈ D, the minimal nonterminating terms associated to
R are those nonterminating terms t whose proper subterms u (i.e., t � u) are
terminating. Let T∞ denote the set of minimal nonterminating terms associated
to R [14]. Minimal nonterminating terms have two important properties:
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1. Every nonterminating term s contains a minimal nonterminating subterm
t ∈ T∞ (i.e., s� t), and

2. minimal nonterminating terms t are always rooted by a defined symbol
f ∈ D: ∀t ∈ T∞, root(t) ∈ D.

Considering the structure of the infinite rewrite sequences starting from a min-
imal nonterminating term t = f(t1, . . . , tk) ∈ T∞ is helpful to arrive at the
notion of dependency pair. Such sequences proceed as follows (see, e.g., [14]):

1. a finite number of reductions can be performed below the root of t, thus
rewriting t into t′; then

2. a rule f(l1, . . . , lk) → r applies at the root of t′ (i.e., t′ = σ(f(l1, . . . , lk))
for some substitution σ); and

3. there is a minimal nonterminating term u ∈ T∞ (hence root(u) ∈ D)
at some position p of σ(r) which is a nonvariable position of r which
‘continues’ the infinite sequence initiated by t in a similar way.

This means that considering the occurrences of defined symbols in the right-
hand sides of the rewrite rules suffices to ‘catch’ every possible infinite rewrite
sequence starting from σ(r). In particular, no infinite sequence can be issued
from t′ below the variables of r (more precisely: all bindings σ(x) are terminating
terms). The standard definition of dependency pair [1] and (minimal) chain of
dependency pairs [13] rely on (1)–(3) above [14]. These facts are formalized as
follows:

Proposition 1 [14, Lemma 1] Let R = (C ] D, R) be a TRS. For all t ∈ T∞,
there exist l→ r ∈ R, a substitution σ and a term u ∈ T∞ such that root(u) ∈ D,
t

>Λ−→∗ σ(l) Λ→ σ(r) � u and there is a nonvariable subterm v of r, r � v, such
that u = σ(v).

The following auxiliary results will be used later.

Proposition 2 Let R = (Σ, E,R) be a rewrite theory and t, s ∈ T (Σ,X ). If t
is (R,E)-terminating, then

1. If t� s, then s is (R,E)-terminating.

2. If t→∗R,E s then s is (R,E)-terminating.

Proof. Trivial. 2

Proposition 3 (E-Termination Preserved under E-Equivalence) Let R =
(Σ, E,R) be a rewrite theory and t, s ∈ T (Σ,X ). If t ∼E s, then t is E-
terminating if and only if s is E-terminating.
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Proof. Trivial. 2

Proposition 3 does not hold if we change E-termination by (R,E)-termination
(see Example 2). However, as a consequence of Theorem 1 and Proposition 3,
we have:

Corollary 1 Let R = (Σ, E,R) be a rewrite theory such that E is a set of reg-
ular and linear equations and t, s ∈ T (Σ,X ). If t ∼E s, then t is (ExtE(R), E)-
terminating if and only if s is (ExtE(R), E)-terminating.

As a corollary of Theorem 1, we have the following.

Corollary 2 Let R = (Σ, E,R) be an A∨C-rewrite theory and t ∈ T (Σ,X ).
Then, t is E-terminating if and only if it is (ExtE(R), E)-terminating.

In the following section we begin the analysis of infinite E-rewrite sequences
according to the schema in [14]. We aim at providing an appropriate notion of
minimal E-nonterminating term (for A∨C-theories E) which allows us to reach
a result similar to Proposition 1.

4 Stably Minimal E-nonterminating Terms

In the dependency pair approach [1, 14, 13], the analysis of infinite rewrite
sequences is restricted to those starting from minimal nonterminating terms
t ∈ T∞. The following notion of minimal E-nonterminating term is implicit in
[10, proof of Theorem 16]. Similar definitions can be found in [17, 18, 16, 21].

Definition 2 (Minimal E-nonterminating Term [10]) Let R =
(Σ, E,R) be a rewrite theory. An E-nonterminating term t ∈ T (Σ,X ) is said
to be minimal (written t ∈ T∞,R,E) if every strict subterm s of t (i.e., t� s) is
(ExtE(R), E)-terminating.

Remark 1 In Definition 2, if we assume that E is linear and regular (like
A∨C-theories), then, by Theorem 1, we could equivalently start by saying that
t is (ExtE(R), E)-nonterminating. This leads to a more symmetric definition,
which we often use in the following without further comment.

Every E-nonterminating term s contains a minimal E-nonterminating subterm
t ∈ T∞,R,E (this is stated without proof in [10, proof of Theorem 16]).

Proposition 4 Let R = (Σ, E,R) be a rewrite theory and s ∈ T (Σ,X ). If s is
E-nonterminating, then there is a subterm t of s (s� t) such that t ∈ T∞,R,E.

Proof. By structural induction. If s is a constant symbol, it is obvious: take
t = s. If s = f(s1, . . . , sk), then we proceed by contradiction. If there is no
(not necessarily strict) subterm t of s such that t is minimal, then in particular
s is not minimal. Therefore, there is a strict subterm t of s (s � t) which is
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E-nonterminating. By the Induction Hypothesis, there is t′ which is minimal
and such that t� t′. Then, we have s� t′, thus leading to a contradiction. 2

Note that Giesl and Kapur’s minimality of terms is preserved under→ExtE(R),E-
reductions below the root.

Proposition 5 Let R = (Σ, E,R) be a rewrite theory and s ∈ T∞,R,E. If

s
>Λ−→∗ExtE(R),E t and t is E-nonterminating, then t ∈ T∞,R,E.

Proof. Since s is rewritten below the root, we can write s = f(s1, . . . , sk),
where, by minimality of s, we know that s1, . . . , sk are all (ExtE(R), E)-terminating.
Furthermore, since >Λ−→ExtE(R),E performs no rewriting or ∼E-steps at the root,
we have that t = f(t1, . . . , tk) with si →∗ExtE(R),E ti for all i, 1 ≤ i ≤ k. By
Proposition 2, ti is (ExtE(R), E)-terminating for all i, 1 ≤ i ≤ k. And since t is
assumed to be E-nonterminating, t ∈ T∞,R,E . 2

Remark 2 (Root Symbols of Minimal Terms) Note that if E is an A∨C-
equational theory, then root(t) ∈ D whenever t ∈ T∞,R,E. As remarked by Giesl
and Kapur (see also Example 8 below) this is not true for arbitrary equational
theories.

The problem with Giesl and Kapur’s Definition 2 is that minimality is not
preserved under E-equivalence.

Example 4 Consider again the TRS R in Example 3.
Following [10], the term f(f(1, 0), 0) ∈ T∞,R,E since is AC-nonterminating

f(f(1, 0), 0) ∼AC f(1, f(0, 0)) ∼AC f(f(0, 0), 1) Λ→R f(f(0, 0), 1) · · ·
but its strict subterms f(1, 0), 1 and 0 are AC-terminating. However, the root
step with σ(l) = σ(f(f(x, x), y) = f(f(0, 0), 1) shows that σ(l) /∈ T∞,R,E since
f(0, 0) is AC-nonterminating.

Example 5 Consider the following TRS R:

f(x, x) → f(0, f(1, 2)) (1)

where f ∈ ΣAC . Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, f(1, 2)), y) (2)

Note that t = f(f(0, 1), f(0, f(1, 2))) is (ExtAC(R), AC)-nonterminating:

f(f(0, 1), f(0, f(1, 2))) ∼A f(0, f(1, f(0, f(1, 2))))
∼A f(0, f(f(1, 0), f(1, 2)))
∼C f(0, f(f(0, 1), f(1, 2)))
∼A f(0, f(0, f(1, f(1, 2))))
∼A f(f(0, 0), f(1, f(1, 2)))

Λ→ExtAC(R) f(f(0, f(1, 2)), f(1, f(1, 2)))
→ExtAC(R),AC · · ·
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Since f(0, 1) and f(0, f(1, 2)) are in (ExtAC(R), AC)-normal form, we have
that t ∈ T∞,R,AC . However, t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent
to t (i.e., t ∼AC t′), is AC-nonterminating, but it is not minimal because its
strict subterm f(1, f(1, 2))) is (ExtAC(R), AC)-nonterminating:

f(1, f(1, 2)) ∼A f(f(1, 1), 2)
Λ→ExtAC(R) f(f(0, f(1, 2)), 2)

∼A f(0, f(f(1, 2), 2))
∼A f(0, f(1, f(2, 2)))
∼A f(f(0, 1), f(2, 2))
∼C f(f(2, 2), f(0, 1))

Λ→ExtAC(R) f(f(0, f(1, 2)), f(0, 1))
∼A f(f(f(0, 1), 2)), f(0, 1))
∼C f(f(0, 1), f(f(0, 1), 2)))
∼A f(f(0, 1), f(0, f(1, 2)))

→ExtAC(R),AC · · ·

Example 5 shows that an essential property of minimal terms when considered
as part of infinite (ExtE(R), E)-rewriting sequences for A∨C-theories E gets
lost: the application of (ExtE(R), E)-rewrite steps at the root of a minimal term
s by means of a rule l → r (i.e., s ∼AC σ(l) Λ→ExtE(R)σ(r)) does not guarantee
that there is a nonvariable subterm v of the right-hand side r which is a prefix
of the ‘next’ minimal term in the infinite sequence. In the following proposition,
we prove that the problem illustrated in Example 5 is due to the application of
associative steps at the root of a minimal term.

Proposition 6 Let R = (Σ, E,R) be a rewrite theory and t ∈ T∞,R,E.

1. If E is regular and linear and t′ >Λ∼ E t, then t′ ∈ T∞,R,E.

2. If Croot(t) ∈ Eroot(t) and t′ Λ∼C t, then t′ ∈ T∞,R,E.

Proof. Let t = f(t1, . . . , tk). By minimality of t, ti is (ExtE(R), E)-
terminating for all 1 ≤ i ≤ k.

1. If t′ >Λ∼ E t, then t′ = f(t′1, . . . , t
′
k) and t′i ∼E ti for all 1 ≤ i ≤ k. By

Proposition 3, t′ is (ExtE(R), E)-nonterminating and by Corollary 1, t′i is
(ExtE(R), E)-terminating for all 1 ≤ i ≤ k. Hence t′ ∈ T∞,R,E .

2. If Croot(t) ∈ Eroot(t), then k = 2 and t = f(t1, t2), where both t1 and t2

are (ExtE(R), E)-terminating. Since t′ = f(t2, t1) Λ∼C t, by Proposition 3
t′ is (ExtE(R), E)-nonterminating and we have t′ ∈ T∞,R,E .

2
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Example 6 Term t in Example 5 can be rewritten at the root only by rule (2)
of ExtAC(R). We can apply this rule to t′ in Example 5 (for instance) to obtain
s′ = σ(r) = f(f(0, f(1, 2)), f(1, f(1, 2))) (where r = f(f(0, f(1, 2)), y)), which
is (ExtAC(R), AC)-nonterminating. Note that s′ contains a minimal term u ∈
T∞,R,E. Since s′|2 = f(1, f(1, 2)) is (ExtAC(R), AC)-nonterminating, it follows
that s′ is not minimal. Since s′|1 = f(0, f(1, 2)) is (ExtAC(R), AC)-terminating,
the only possibility is that u occurs in s′|2. Actually, s′|2 is minimal already;
hence, u = s′|2. But note the absence of any nonvariable position p ∈ Pos(r) in
the right-hand side of the considered rule such that σ(r|p) = u = f(1, f(1, 2)).

This is in sharp contrast with the situation of the DP-approach for ordinary
rewriting. Furthermore, it is not difficult to see that for all t′′ ∼AC t such
t′′ = σ′(l) for some substitution σ′, we have a similar situation. Thus, the
problem illustrated here cannot be solved by using a different ∼AC sequence
before performing the ExtAC(R)-root-step.

In the following we introduce a new notion of minimality which solves these
problems.

4.1 A New Notion of Minimal E-nonterminating Terms

The following definition solves the problems discussed above by explicitly requir-
ing that the condition defining minimality is preserved under E-equivalence.

Definition 3 (Stably Minimal E-nonterminating Term) Let R =
(Σ, E,R) be a rewrite theory. Let M∞,R,E be a set of stably minimal E-
nonterminating terms in the following sense: t ∈ T (Σ,X ) belongs to M∞,R,E
iff t is E-nonterminating, and for all t′ ∼E t and every proper subterm s′ of t′

(i.e., t′ � s′), s′ is (ExtE(R), E)-terminating.

We have the following useful characterization of minimality.

Proposition 7 (Characterization of Stably Minimal Terms) Let R =
(Σ, R,E) be a rewrite theory and t ∈ T (Σ,X ). Then, t ∈ M∞,R,E if and
only if [t]E ⊆ T∞,R,E. Therefore,

M∞,R,E = {t ∈ T (Σ,X ) | [t]E ⊆ T∞,R,E}

The problem in Example 5 disappears now: t is not (stably) minimal according
to Definition 3. The same situation happens with the problem in Example
4: f(f(1, 0), 0) ∈ T∞,R,E but f(f(1, 0), 0) /∈ M∞,R,E since f(f(1, 0), 0) ∼E

f(f(0, 0), 1) and f(0, 0) is E-nonterminating. In fact, f(0, 0) ∈M∞,R,E .
The following result shows how to find stably minimal E-nonterminating

terms associated to a given E-nonterminating term. This is essential in our
development. A set of equations E is size-preserving if and only if for each
equation u = v the length of u and v are the same, i.e. |u| = |v| and the
multiset of the variables in u coincides with the multiset of the variables in v
[22].
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Proposition 8 Let R = (Σ, E,R) be a rewrite theory such that E is regular
and size-preserving. Let s ∈ T (Σ,X ). If s is E-nonterminating, then there is a
subterm t of some s′ ∼E s (i.e., s′ � t) such that t ∈M∞,R,E.

Proof. By structural induction. If s is a constant symbol or a variable,
then since s has no strict subterms, then s ∈ M∞,R,E , so in this case, we
can choose t = s. If s = f(s1, . . . , sk), then we proceed by contradiction.
If there is no subterm t of some s′ ∼E s (s′ � t) such that t ∈ M∞,R,E ,
then in particular s 6∈ M∞,R,E , (and thus s′ /∈ M∞,R,E for all s′ ∼E s) i.e.,
(since s is E-nonterminating) there is an E-equivalent term s′ ∼ s containing
a strict (ExtE(R), E)-nonterminating subterm t′ (s′ � t′). Therefore, t′ is E-
nonterminating as well. By the Induction Hypothesis, there is t ∈ M∞,R,E
such that t′ � t. Then, s′ � t, thus leading to a contradiction. 2

Clearly, Proposition 8 holds whenever R is an A∨C-rewrite theory.

Example 7 Consider the term t in Example 5. Although t ∈ T∞,R,E, t /∈
M∞,R,E: the term t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent to t,
contains a subterm u = f(1, f(1, 2)) which is E-nonterminating. It is not diffi-
cult to see that actually u ∈M∞,R,E.

In general, Proposition 8 does not hold for arbitrary sets of equations E.

Example 8 Consider the following example [10, Example 13]:
R : f(x) → x E : f(a) = a

Note that a ∈ T∞,R,E. However, a is not stably minimal because a ∼E f(a) but
f(a) 6∈ T∞,R,E. Thus, Proposition 8 does not hold.

Since M∞,R,E ⊆ T∞,R,E , for A∨C-rewrite theories E we have the following
corollary of Proposition 5.

Corollary 3 Let R = (Σ, E,R) be an A∨C-rewrite theory and s ∈ M∞,R,E.

If s >Λ−→∗ExtE(R),E t and t is E-nonterminating, then t ∈ T∞,R,E.

In general, Corollary 3 does not hold if we require that t ∈M∞,R,E .

Example 9 Term u = f(f(1, 1), 2) in Example 6 is stably minimal: u ∈
M∞,R,E. We have that f(f(1, 1), 2) >Λ−→R f(f(0, f(1, 2)), 2). Note that
f(f(0, f(1, 2)), 2) /∈M∞,R,E. We have

f(f(0, f(1, 2)), 2) ∼A f(0, f(f(1, 2), 2)) ∼A f(0, f(1, f(2, 2)))

where f(0, f(1, f(2, 2))) contains a subterm f(1, f(2, 2)) which is (ExtE(R), E)-
nonterminating.

The following results show that the problem arises when s ∈ M∞,R,E is such
that root(s) includes associativity among its axioms, that is, Af ∈ Ef . In the
following, we focus on A∨C-rewrite theories. Hence, we will often implicitly use
Corollary 2 to speak about E-termination rather than (ExtE(R), E)-termination
(see Remark 1).
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Proposition 9 Let R = (Σ, E,R) be an A∨C-rewrite theory. If t ∈ T∞,R,E is
such that (1) Aroot(t) /∈ Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and
root(t2) 6= f , then t ∈M∞,R,E.

Proof. Let t = f(t1, . . . , tk), where, since t ∈ T∞,R,E , ti is E-terminating for
all i, 1 ≤ i ≤ k. We consider two main cases according to f :

1. If f does not have the associativity axiom, i.e., Af /∈ Ef , then we consider
two cases:

(a) f is commutative, i.e., Ef = {Cf}. Then, k = 2 and we can write
t = f(t1, t2), where t1 and t2 are E-terminating. For all u ∼E t
given by u = f(u1, u2) we have two possibilities: either u1 ∼E t1
and u2 ∼E t2, or u1 ∼E t2 and u2 ∼E t1. In both cases, since
E-equivalence preserves E-termination (Proposition 3), we conclude
that u1 and u2 are E-terminating and hence t ∈ M∞,R,E .

(b) f is not commutative, i.e., Ef = ∅. Then, for all u ∼E t we have

u
>Λ∼ E t and the result follows from Proposition 6-(1).

2. If t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and root(t2) 6= f , then no associa-
tivity axiom can be applied at the root of t. Then, we can treat t as in
one of the cases 1a or 1b above.

2

Proposition 10 Let R = (Σ, E,R) = (C ] D, E,R) be an A∨C-rewrite theory
and s ∈ M∞,R,E be such that (1) Aroot(s) /∈ Eroot(s) or (2) s = f(s1, s2), Af ∈
Ef , and root(s1), root(s2) ∈ C. If s >Λ−→∗ExtE(R),E t and t is E-nonterminating,
then t ∈M∞,R,E.

Proof. Since s ∈M∞,R,E , we have that, for all s′ ∼E s, all proper subterms u
of s′ are E-terminating. We can write s = f(s1, . . . , sk), where, by stable mini-
mality of s, all the s1, . . . , sk are E-terminating. Furthermore, since >Λ−→ExtE(R),E

performs no rewriting or E-steps at the root, we have that t = f(t1, . . . , tk) with
si →∗ExtE(R),E ti for all i, 1 ≤ i ≤ k. By Proposition 2, ti is E-terminating for
all i, 1 ≤ i ≤ k. Therefore, t ∈ T∞,R,E . If root(s) = root(t) is such that
Af /∈ Ef , by Proposition 9, t ∈ M∞,R,E . On the other hand, if s = f(s1, s2),
Af ∈ Ef , and root(s1), root(s2) ∈ C, then reductions on s1 and s2 do not
change root(s1) nor root(s2). Thus, t = f(t1, t2) and root(t1) = root(s1) and
root(t2) = root(s2). Since f ∈ D (due to minimality of s), by Proposition 9,
t ∈M∞,R,E . 2

Now we provide a more precise result about where we can find stably mini-
mal subterms within an E-nonterminating term for A∨C-rewrite theories R =
(Σ, E,R). In the following theorem, given a term s and a symbol f , by an
f -subterm t of s (written s�f t) we mean a subterm t of s such that t = s|p and
for all q < p, root(s|q) = f . We also write s�f t if s�f t and s 6= t. This notion
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is similar to the one used in [18] called head subterm but taking into account s
instead of [s]E to get the subterm.

Theorem 2 Let R = (Σ, E,R) be an A∨C-rewrite theory. If s is E-nonterminating,
then there is a subterm t ∈ T∞,R,E of s (s� t) and

1. If (1) Aroot(t) /∈ Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and
root(t2) 6= f , then t ∈M∞,R,E.

2. If t = f(t1, t2), Af ∈ Ef , and root(t1) = f or root(t2) = f , and t 6∈
M∞,R,E, then there is s′ ∼E t and a strict f -subterm u of s′ (i.e., s′�f u)
such that root(u) = f and u ∈M∞,R,E.

Proof. By Proposition 4, s contains a subterm t ∈ T∞,R,E . If (1) Aroot(t) /∈
Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and root(t2) 6= f , then, by
Proposition 9, t ∈ M∞,R,E . Otherwise, we know that t = f(t1, t2), Af ∈ Ef ,
and root(t1) = f or root(t2) = f . If t ∈ M∞,R,E , then we are done. If
t /∈ M∞,R,E , then there must be a term t′ ∼E t, t′ 6= t, which contains a strict
subterm t′′ (i.e., t′ � t′′) which is E-nonterminating. By Proposition 8, there
are terms t′′′ ∼E t′′ and u ∈ M∞,R,E such that t′′′ � u. If root(u) 6= f , then,
since t ∼E t′ � t′′ ∼E t′′′ � u, there must be a strict subterm v of t (i.e., t� v)
satisfying u ∼E v. By Proposition 3, v is E-nonterminating. This contradicts
that t ∈ T∞,R,E . Thus, root(u) = f as desired. Furthermore, we note that
t′ = C[t′′] for some nonempty context C and hence t ∼E t′ ∼E C[t′′′]. Thus,
if we let s′ = C[t′′′], then s′ � u. We can further conclude that s′ �f u: first
note that root(s′) = f because s′ ∼E t, root(t) = f , and ∼E-steps do not
change the root of t (because E is an A∨C-theory). Assume that s′′ is such
that s′ � s′′ � u and root(s′′) 6= f . Then by reasoning as above, we would
conclude that t contains a subterm v′′ ∼E s′′, which contradicts t ∈ T∞,R,E .
Thus, s′ �f u. This completes the proof. 2

The following result is just a convenient reformulation of the previous one.

Corollary 4 Let R = (Σ, E,R) be an A∨C-rewrite theory. If s is E-nonterminating,
then either there is a subterm t ∈ M∞,R,E of s (s � t), or there is a subterm
t ∈ T∞,R,E of s satisfying that t = f(t1, t2), Af ∈ Ef , and root(t1) = f or
root(t2) = f , and such that there is s′ ∼E t and a strict f -subterm u of s′

(s′ �f u) such that root(u) = f and u ∈M∞,R,E.

5 Structure of (Stably) Minimal Infinite A∨C-
Rewrite Sequences

Now we analyze A∨C-rewrite sequences starting from stably minimal A∨C-
nonterminating terms. First we consider a restricted case.

Proposition 11 Let R = (Σ, E,R) = (C ]D, E,R) be an A∨C-rewrite theory.
Let s ∈ M∞,R,E be such that f = root(s) and either (1) Af /∈ Ef , or (2) s =
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f(s1, s2), Af ∈ Ef , and root(s1), root(s2) ∈ C. Assume that for all l → r ∈ R
such that root(l) = f and all subterms v of r (r � v) such that v = g(v1, v2)
for some associative symbol g, we have that root(v1), root(v2) /∈ X ∪{g}. Then,
there exist l→ r ∈ R, a substitution σ and terms t ∈ T (Σ,X ) and u ∈M∞,R,E
such that

s
>Λ−→∗ExtE(R),E t ∼E σ(l) Λ→R σ(r) � u

and there is a nonvariable subterm v of r, r � v, such that u = σ(v).

Proof. Let S be an infinite (ExtE(R), E)-rewrite sequence starting from s.
Since s ∈ M∞,R,E , s is (ExtE(R), E)-nonterminating and all its proper sub-
terms are (ExtE(R), E)-terminating, S must contain a possibly empty sequence
of inner (ExtE(R), E)-rewrite steps followed by a root step. Therefore, there ex-
ists a rule l→ r ∈ ExtE(R) such that s >Λ−→∗ExtE(R),E t ∼E σ(l) Λ→ExtE(R)σ(r). By
Proposition 10, we know that t ∈ M∞,R,E . Furthermore, due to our assump-
tions (1) or (2) on s, and taking into account the shape of rules in ExtE(R)−R
for A∨C-theories E, we can conclude that the rule l→ r actually belongs to R.
Since stable minimality is preserved under ∼E , we also have σ(l) ∈ M∞,R,E .
Since ∼E-steps do not change the root symbol of terms for A∨C-theories E,
root(s) = root(t) = root(l) ∈ D. Let l = f(l1, . . . , lk) for some k-ary defined
symbol f ∈ D. Since σ(l) ∈ M∞,R,E , σ(li) is (ExtE(R), E)-terminating for all
i, 1 ≤ i ≤ k. In particular, σ(x) is (ExtE(R), E)-terminating for all x ∈ Var(l).
Since σ(r) is (ExtE(R), E)-nonterminating, by Theorem 2 there is a subterm
u ∈ T∞,R,E of σ(r). Therefore, there must be a nonvariable subterm v of r (i.e.,
r � v and root(v) ∈ D), such that u = σ(v). Let g = root(v). We consider two
cases according to Theorem 2:

1. If Ag /∈ Eg, then u ∈M∞,R,E .

2. If Ag ∈ Eg, then there must be v = g(v1, v2) for terms v1 and v2 such that
root(v1), root(v2) /∈ X ∪ {g}. Therefore, u = g(u1, u2) with ui = σ(vi)
satisfying root(ui) 6= g for i = 1, 2. Then, u ∈M∞,R,E .

2

Unfortunately, stable minimality of (arbitrary) E-nonterminating terms s for
A∨C-theories E is not preserved under inner (ExtE(R), E)-rewritings (see Ex-
ample 9). As Proposition 10 shows, the problem arises when s is rewritten into
a term like, e.g., t = f(f(t1, t2), t3) on which associative steps can be issued to
rearrange t and possibly introducing an E-nonterminating term below the root,
thus losing stable minimality.

However, as a consequence of previous results, the following theorem estab-
lishes the desired property for stable minimal A∨C-nonterminating terms.

Theorem 3 Let R = (Σ, E,R) be an A∨C-rewrite theory. For all s ∈M∞,R,E,
there exist l→ r ∈ ExtE(R) and a substitution σ such that

s
>Λ−→∗ExtE(R),E t ∼E t′ �f t′′ ∼E σ(l) Λ→ExtE(R) σ(r)

t′′ ∈M∞,R,E and there is a nonvariable subterm v of r (r�v), such that either
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1. v = f(v1, v2) for some associative symbol f , root(v1) ∈ X ∪ {f} or
root(v2) ∈ X ∪ {f}, root(σ(v1)) = f or root(σ(v2)) = f , σ(v) ∈ T∞,R,E
and there is a term t′ ∼E σ(v) containing a strict f -subterm u = f(u1, u2)
(t′ �f u) such that u ∈M∞,R,E, or

2. σ(v) ∈M∞,R,E otherwise.

Proof. Let S be an infinite (ExtE(R), E)-rewrite sequence starting from s.
Since s ∈M∞,R,E , s is (ExtE(R), E)-nonterminating and all its proper subterms
are (ExtE(R), E)-terminating, S must contain a root step after possibly many
(ExtE(R), E)-rewrite steps below the root.

Therefore, s >Λ−→∗ExtE(R),E t and by Corollary 3 , t ∈ T∞,R,E . By Theorem
2, we have that,

1. If Aroot(t) /∈ Eroot(t) or t = f(t1, t2), Af ∈ Ef , root(t1) 6= f , and root(t2) 6=
f , then t ∈M∞,R,E .

2. If t = f(t1, t2), Af ∈ Ef , and root(t1) = f or root(t2) = f , and t 6∈
M∞,R,E , then there is t′ ∼E t and a strict f -subterm t′′ of t′ (i.e., t′�f t

′′)
such that root(t′′) = f and t′′ ∈M∞,R,E .

Therefore, the sequence can proceed as follows:

t ∼E t′ �f t′′ ∼E σ(l) Λ→ExtE(R) σ(r)

Where, if (1) holds, t ∈ M∞,R,E and therefore t = t′ = t′′. Otherwise, in
case (2), if t ∈ M∞,R,E we are done as before. If not, there is t′ ∼E t and a
strict f -subterm t′′ of t′ (i.e., t′�f t

′′) such that root(t′′) = f and t′′ ∈M∞,R,E .
Since stably minimality is preserved by ∼E , therefore, σ(l) ∈ M∞,R,E .

Since A∨C axioms cannot change root(s) or root(t), we have f = root(s) =
root(t) = root(l) ∈ D. Write l = f(l1, . . . , lk). Since σ(l) ∈ M∞,R,E , σ(li) is
(ExtE(R), E)-terminating. In particular, σ(x) is (ExtE(R), E)-terminating for
all x ∈ Var(l). Since σ(r) is (ExtE(R), E)-nonterminating, by Proposition 4
there is a subterm u ∈ T∞,R,E of σ(r) (σ(r) � u). Since σ(x) is (ExtE(R), E)-
terminating for all x ∈ Var(r), there must be a nonvariable subterm v of r
(r � v), such that u = σ(v). By Theorem 2, we only need to carefully consider
the case when u = f(u1, u2) /∈M∞,R,E for some associative symbol f such that
Af ∈ Ef , root(u1) = f or root(u2) = f . Therefore, we must have v = f(v1, v2)
for some terms v1 and v2. Since u1 = σ(v1) and u2 = σ(v2), we must have
v1 ∈ X ∪ {f} or v2 ∈ X ∪ {f}. Theorem 2 also ensures that there is s′ ∼E σ(v)
such that s′ �f u

′ and u′ ∈M∞,R,E . 2

Example 5 shows that Theorem 3 does not hold for Giesl and Kapur’s minimal
terms s ∈ T∞,R,E .
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6 A∨C-Dependency Pairs and Chains

Propositions 8 and 11 together with Theorem 3 are the basis for our definition
of A∨C-Dependency Pairs and the corresponding chains. Together, they show
that given an A∨C-rewrite theory R = (Σ, E,R), every E-nonterminating term
s has an associated infinite (ExtE(R), E)-rewrite sequence starting from a sta-
bly minimal subterm t ∈ M∞,R,E . Such a sequence proceeds as described in
Proposition 11 and Theorem 3, depending on the shape of t.

This process is abstracted in the following definition of A∨C-dependency
pairs (Definition 4) and in the definition of chain below (Definition 5).

Given a signature Σ and f ∈ Σ, we let f ] denote a fresh new symbol
(often called tuple symbol or DP-symbol) associated to a symbol f [1]. Let
Σ] be the set of tuple symbols associated to symbols in Σ. As usual, for
t = f(t1, . . . , tk) ∈ T (Σ,X ), we write t] to denote the marked term f ](t1, . . . , tk)
(written sometimes F (t1, . . . , tk)). Given a set of rules R and a symbol f ∈ Σ,
we let Rf = {l→ r ∈ R | root(l) = f}.

Definition 4 (A∨C-Dependency Pairs) Let R = (Σ, E,R) =
(C ] D, E,R) be an A∨C-rewrite theory. Then, DPE(R) = {l] → s] | l →
r ∈ ExtE(R), r� s, root(s) ∈ D, l 7 v ∼E s} is the set of A∨C-dependency pairs
(A∨C-DPs) of R.

Requiring l 7 v ∼E s for DPAC(R) in Definition 4 follows Dershowitz’s cri-
teria [6] extended to A∨C rewrite theories . In general, the set of A∨C-DPs
which is obtained from Definition 4 is a subset of those which are obtained by
particularizing Giesl and Kapur’s definitions to the A∨C case [10].

Example 10 Consider the AC-rewrite theory R = (Σ, E,R) in Example 5.
The set DPE(R) consists of the following pairs:

F (x, x) → F (0, f(1, 2)) (3)
F (x, x) → F (1, 2) (4)

F (f(x, x), y) → F (f(0, f(1, 2)), y) (5)
F (f(x, x), y) → F (0, f(1, 2)) (6)
F (f(x, x), y) → F (1, 2) (7)

6.1 Chains of A∨C-DPs

An essential property of the dependency pair method is that it provides a charac-
terization of termination of TRSs R as the absence of infinite (minimal) chains
of dependency pairs [1, 13]. If we want to prove the same for A∨C-rewrite the-
ories, we have to introduce a suitable notion of chain which can be used with
A∨C-DPs. As in the DP-framework, where the origin of pairs does not matter,
we should rather think of another rewrite theory P = (Γ, F, P ) which is used
together with R to build the chains. According to the usual terminology [13],
we often call pairs to the rules u→ v ∈ P .
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In the following definition, given sets of equations E and F , we let lF,E =

(
Λ

àF ∪
>Λ

àE)∗. Moreover, we define Λ−→∗Sfi as the application of rules l→ r ∈ S
such that root(l) = f .

Definition 5 (Chain of Pairs - Minimal Chain) Let P = (Γ, F, P ) be a
rewrite theory, R = (Σ, E,R) be an A∨C- rewrite theory, and S = (F , S)
be a TRS. An (F, P,E,R, S)-chain is a finite or infinite sequence of pairs
ui → vi ∈ P , together with substitutions σ and θi satisfying that, for all i ≥ 1:

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E ◦ Λ−→∗Sfi ti →
∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

2. and σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), otherwise.

An (F, P,E,R, S)-chain is called minimal if for all i ≥ 1, and t′i lF,E ti, t′i is
(ExtE(R), E)-terminating.

As usual, in Definition 5 we assume that different occurrences of dependency
pairs do not share any variable (renaming substitutions are used if necessary).

Note that the definition derives directly from Theorem 3: First we have
to look for the minimal term of σ(vi), i.e. ti, (see Theorem 2) which can be
rewritten by using >Λ−→∗ExtE(R),E and again, since minimality can be lost we have
to apply again Theorem 2 to connect with the next pair in the chain. This more
abstract notion of chain can be particularized to be used with A∨C-DPs, by
just taking

1. P = DPE(R),

2. F = E], where E] = {s] = t] | s = t ∈ E}, and

3. S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

We have the following:

Proposition 12 Let Σ be a signature and E be a set of noncollapsing equations
over Σ. Let s, t ∈ T (Σ,X ). Then, s ∼E t if and only if s] lE],E t].

Proof. We have s ∼E t if and only if s (
Λ

àE ∪
>Λ

àE)∗ t. We proceed by

induction on the length of the (
Λ

àE ∪
>Λ

àE)-sequence from s to t. If n = 0, then
s = t and s] = t]. By reflexivity of lE],E , we have s] lE],E t]. If n > 0, then

s (
Λ

àE ∪
>Λ

àE) s0 (
Λ

àE ∪
>Λ

àE)∗ t and, by the induction hypothesis, we know

that s]0 lE],E t]. Now, we consider two cases for the step s (
Λ

àE ∪
>Λ

àE) s0:
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1. If s
Λ

àE s0, then there is a substitution σ and an equation u = v ∈ E such
that s = σ(u) and s0 = σ(v) or s = σ(v) and s0 = σ(u). Therefore, since E
is not collapsing, we have that u, v /∈ X . Then s] = σ(u]) and s]0 = σ(v])
(resp. s] = σ(v]) and s]0 = σ(u])). Therefore, since u] = v] ∈ E], we have

s]
Λ

àE] s]0. Hence, s] lE],E s0.

2. If s
>Λ

àE s0, then, since marking only affects the root symbol of s and s0,

we also have s]
>Λ

àE s]0. Hence, s] lE],E s0.

Thus, by transitivity of lE],E , we conclude that s] lE],E t] as desired. We
similarly prove that s] lE],E t] implies s ∼E t. 2

Proposition 13 Let Σ be a signature f ∈ Σ and s, t ∈ T (Σ,X ). Then, s�f t

if and only if s] Λ−→∗Sf t].

Theorem 4 (Soundness) Let R = (Σ, E,R) be an A∨C-rewrite theory with
Σ = C ] D. Let S = (Σ ∪ D], S) be a TRS such that

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.
If there is no infinite minimal (E],DPE(R), E,R,S)-chain, then R is

(ExtE(R), E)-terminating

Proof. In the remainder of the proof, we let F = E]. We proceed by
contradiction. If R is not (ExtE(R), E)-terminating, then, by Proposition 8, for
each (ExtE(R), E)-nonterminating term there is an associated stably minimal
term s ∈M∞,R,E . Let f = root(s). We consider two cases for s.

1. If (1) Af /∈ Ef or (2) s = f(s1, s2), Af ∈ Ef , and root(s1), root(s2) ∈ C,
and for all l→ r ∈ Rf and all subterms v of r (r�v) such that v = g(v1, v2)
for some associative symbol g, we have that root(v1), root(v2) /∈ X ∪ {g}.
Then by Proposition 11, there exist l→ r ∈ R, a substitution σ and terms
t ∈ T (Σ,X ) and u ∈M∞,R,E such that

s
>Λ−→∗ExtE(R),E t ∼E σ(l) Λ→R σ(r) � u

and there is a nonvariable subterm v of r, r�v, such that u = σ(v). Hence,
u] = σ(v)] = σ(v]). By using Proposition 12 and, since l] → v] ∈ DP(R)
and DP(R) ⊆ DPE(R), we have

s]
>Λ−→∗ExtE(R),E t

] lF,E σ(l)] = σ(l])→DPE(R) σ(v]) = u]

2. Otherwise, by Theorem 3, there is a rule l → r ∈ ExtE(R), a matching
substitution σ and terms t′′ and u ∈M∞,R,E such that:

s
>Λ−→∗ExtE(R),E t ∼E t′ �f t′′ ∼E σ(l) Λ→ExtE(R) σ(r)

Furthermore, by Theorem 3, there is a nonvariable subterm v of r for
which we have two possibilities:
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(a) We have v = g(v1, v2) for some associative symbol g, where root(v1)
∈ X ∪{g} or root(v2) ∈ X ∪{g}, root(σ(v1)) = g or root(σ(v2)) = g,
σ(v) ∈ T∞,R,E and there is a term w ∼E σ(v) containing a strict
g-subterm u = g(u1, u2) (w �g u) such that u ∈ M∞,R,E . If we
assume that there is an v′ ∼E v which is a replacing subterm of l,
i.e., l � v′ ∼E v, then σ(l) � σ(v′) ∼E σ(v). Since σ(v) ∼E w �g u
such that u ∈ M∞,R,E , this contradicts that σ(l) ∈ M∞,R,E . Thus,
l 7 v′ ∼E v. Since l] → v] ∈ DP(ExtE(R)) we have DP(ExtE(R)) ⊆
DPE(R). By using Propositions 12 and 13, we can write:

s
] >Λ−→∗ExtE(R),E◦ lF,E ◦

Λ−→∗Sf t
′′] lF,E σ(l)] = σ(l]) Λ→DPE(R)σ(v]) = σ(v)] lF,E w

] Λ−→+
Sf

u
]

(b) Otherwise, σ(v) ∈ M∞,R,E . If we assume that there is an v′ ∼E v
which is a replacing subterm of l, i.e., l�v′ ∼E v, then σ(l)�σ(v′) ∼E

σ(v). Since σ(v) = u such that u ∈ M∞,R,E , this contradicts
that σ(l) ∈ M∞,R,E . Thus, l 7 v′ ∼E v. Hence, l] → v] ∈
DP(ExtE(R)) ⊆ DPE(R), and, by using Propositions 12 and 13, we
can write:

s] >Λ−→∗ExtE(R),E◦ lF,E ◦ Λ−→∗Sf t
′′] lF,E σ(l)] = σ(l])

Λ→DPE(R) σ(v]) = u]

Note that, since u ∈ M∞,R,E , we have that u] is (ExtE(R), E)-terminating.
Thus, s] starts a minimal (E],DPE(R), E,R,S)-chain which could be infinitely
extended from u] in a similar way (as usual, in order to fit the requirement of
variable-disjointness among two arbitrary pairs in a chain of pairs, we assume
that appropriately renamed A∨C-DPs are available when necessary). This con-
tradicts our initial assumption. 2

Now we prove that the previous A∨C-dependency pairs approach is not only
correct but also complete for proving A∨C-termination.

Theorem 5 (Completeness) Let R = (Σ, E,R) be an A∨C-rewrite theory.
Let S = (Σ ∪ D], S) be a TRS such that

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

If R is (ExtE(R), E)-terminating, then there is no infinite minimal
(E],DPE(R), E,R,S)-chain.

Proof. By contradiction. If there is an infinite minimal (E],DPE(R), E,R,S)-
chain, then there are substitutions σi and A∨C-dependency pairs ui → vi ∈
DPE(R) such that :

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E ◦ Λ−→∗Sfi ti →
∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

2. and σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), otherwise.
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Now, consider the first dependency pair u1 → v1 in the sequence:

• If (1) holds, u\1 is the left-hand side of a rule l1 → r1 ∈ ExtE(R) and v\1
is a subterm of r1. Therefore, r1 = C1[v\1]p1 for some p1 ∈ PosΣ(r1) and
we can perform the A∨C-rewriting step s1 = σ1(u\1) = σ1(l1) →ExtE(R)

σ1(r1) = (C1)[σ1(v\1)]p1 , where, σ1(v\1)] = σ1(v1) lF,E ◦ Λ−→∗Sf1 t1 →
∗
ExtE(R),E

◦ lF,E ◦ Λ−→∗Sfi◦ lF,E σ2(u2) and σ2(u2) initiates an infinite minimal
(E],DPE(R), E,R,S)-chain.

By Theorem 3 we have that t1
>Λ−→∗ExtE(R),E◦ ∼E ◦�f ◦ ∼E s2[σ2(u\2)]p1 =

s2. Therefore, we can build in that way an infinite A∨C-rewrite sequence

s1 →ExtE(R) ◦ ∼E ◦�f t1
>Λ−→∗ExtE(R),E◦ ∼E ◦�f ◦ ∼E s2 →ExtE(R) · · ·

which contradicts the (ExtE(R), E)-termination of R.

• If (2) holds, u\1 is the left-hand side of a rule l1 → r1 ∈ R and v\1 is a
subterm of r1. Therefore, r1 = C1[v\1]p1 for some p1 ∈ PosΣ(r1) and we
can perform the A∨C-rewriting step s1 = σ1(u\1) = σ1(l1) →R σ1(r1) =
(C1)[σ1(v\1)]p1 , where, t]1 = σ1(v\1)] = σ1(v1) →∗ExtE(R),E ◦ lF,E σ2(u2)
and σ2(u2) initiates an infinite minimal (E],DPE(R), E,R,S)-chain.

By Proposition 11 we have that t1
>Λ−→∗ExtE(R),E◦ ∼E s2[σ2(u\2)]p1 = s2.

Therefore, we can build in that way an infinite A∨C-rewrite sequence

s1 →R t1
>Λ−→∗ExtE(R),E◦ ∼E s2 →ExtE(R) · · ·

which contradicts the (ExtE(R), E)-termination of R.

2

As a corollary of Theorems 4 and 5, we have:

Corollary 5 (Characterization of A∨C-Termination) Let R = (Σ, E,R)
be an A∨C-rewrite theory. Let S = (Σ ∪ D], S) be a TRS such that S =
{f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA∪ΣAC}. Then, R is
(ExtE(R), E)-terminating if and only if there is no infinite minimal
(E],DPE(R), E,R,S)-chain.

7 An A∨C-Dependency Pair Framework

In the following, we extend Giesl et al.’s DP-framework to provide a suitable
framework for mechanizing proofs of A∨C-termination using A∨C-DPs.

Definition 6 (A∨C Problem) An A∨C problem τ is a tuple τ =
(F, P,E,R, S), where R = (Σ, E,R) is an A∨C-rewrite theory, P = (Γ, F, P )
is a rewrite theory, and S = (F , S) is a TRS. An A∨C problem is finite if there
is no infinite minimal (F, P,E,R, S)-chain. An A∨C problem τ is infinite if R
is E-nonterminating or there is an infinite minimal (F, P,E,R, S)-chain.
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The following definition extends the notion of DP-processor [13] to prove ter-
mination of A∨C-rewrite theories.

Definition 7 (A∨C Processor) An A∨C processor Proc is a mapping from
A∨C problems into sets of A∨C problems. Alternatively, it can also return
“no”. An A∨C processor Proc is

• sound if for all A∨C problems τ , τ is finite whenever Proc(τ) 6= no and
∀τ ′ ∈ Proc(τ), τ ′ is finite.

• complete if for all A∨C problems τ , τ is infinite whenever Proc(τ) = no
or ∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.

Similar to [13] for the DP-framework, we construct a tree whose nodes are
labeled with A∨C problems or “yes” or “no”, and whose root is labeled with
(E],DPE(R), E,R, S). Now we have the following result which extends [13,
Corollary 5] to A∨C-rewrite theories.

Theorem 6 (A∨C-DP Framework) Let R = (Σ, E,R) be an A∨C-theory.
We construct a tree whose nodes are labeled with A∨C problems or “yes” or
“no”, and whose root is labeled with (E],DPE(R), E,R, S), where

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.

For every inner node labeled with τ , there is a sound processor Proc satisfying
one of the following conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.

2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.

3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with
the A∨C problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is E-terminating. Other-
wise, if there is a leaf labeled with “no” and if all processors used on the path
from the root to this leaf are complete, then R is not E-terminating.

7.1 Preprocessing

A simply technique that can be useful when dealing with proofs of termination
in the DP-framework is to try to remove rules from the original system before
building the DP problem. In this way, we will start the proof with less rules
and therefore less pairs, which can simplify the proof of termination. We extend
here its use for proving E-termination. A reduction pair (&,=) consists of a
stable and monotonic quasi-ordering &, and a stable and well-founded ordering
= satisfying either & ◦ =⊆= or = ◦ &⊆=. We say that (&,=) is monotonic if
= is monotonic. ∼ is the stable, reflexive, transitive, and symmetric equivalence
induced by &, i.e., ∼ =& ∩ ..
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Proposition 14 (Removing strict rewrite rules) Let R = (Σ, E,R) be a
rewrite theory. Let (&,=) be a monotonic reduction pair such that l (& ∪ =) r
for all l → r ∈ R and u ∼ v for all u = v ∈ E. Let R= = {l → r ∈ R | l = r}
and R′ = R − R=. Then, R is E-terminating if and only if R′ = (Σ, E,R′) is
E-terminating.

Proof. Since R′ ⊆ R, the only if part is obvious. For the if part, we proceed
by contradiction. If R is not E-terminating, then there is an infinite E-rewrite
sequence A:

t1 →R/E t2 →R/E · · · tn →R/E · · ·
that can be written in the following way:

t1 ∼E ◦ →R ◦ ∼E t2 ∼E ◦ →R ◦ ∼E · · · tn ∼E ◦ →R ◦ ∼E · · ·

where an infinite number of rules in R= have been used; otherwise, there would
be an infinite tail tm →R′/E tm+1 →R′/E · · · for some m ≥ 1 where only rules
in R′ are applied, contradicting the E-termination of R′. Let J = {j1, j2, . . .}
be the infinite set of indices indicating E-rewrite steps tj →R/E tj+1 in A, for
all j ∈ J , where rules in R= have been used to perform the E-rewriting step.
Since l = r for all l → r ∈ R= and u ∼ v for all u = v ∈ E, by stability and
monotonicity of = and ∼ (since ∼=& ∩ .), we have that tji = tji+1. Since
l & r for all l → r ∈ R′, by stability and monotonicity of &, we have that
tji+1 & tji+1 . By compatibility between & and = (and since ∼=& ∩ .), we
have tji = tji+1 for all i ≥ 1. We obtain an infinite sequence tj1 = tj2 = · · ·
which contradicts well-foundedness of =. 2

7.2 A∨C-Dependency Graph

A∨C problems focus our attention on the analysis of infinite minimal chains.
Our aim here is obtaining a notion of graph which is able to represent all infinite
minimal chains of pairs as given in Definition 5.

Definition 8 (A∨C-Graph of Pairs) Let P = (Γ, F, P ) be a rewrite theory,
R = (Σ, E,R) be an A∨C- rewrite theory and S = (F , S) be a TRS. The A∨C-
graph associated to them (denoted G(F, P,E,R, S)) has P as the set of nodes.
There is an arc from u → v ∈ P to u′ → v′ ∈ P if u → v, u′ → v′ is an
(F, P,E,R, S)-chain.

In termination proofs, we are concerned with the so-called strongly connected
components (SCCs) of the dependency graph, rather than with the cycles them-
selves (which are exponentially many) [15]. A strongly connected component
in a graph is a maximal cycle, i.e., a cycle which is not contained in any other
cycle. In the following result, given two sets of rules S and Q, we let SQ be the
least subset of S satisfying that whenever there is a rule u→ v ∈ Q, such that
v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2) and
s1 /∈ X or s2 /∈ X , then Sf ⊆ SQ.
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Theorem 7 (SCC Processor) Let P = (Γ, F, P ) be a rewrite theory, R =
(Σ, E,R) be an A∨C- rewrite theory and S = (F , S) be a TRS. Then, the
processor ProcSCC given by
ProcSCC (F, P, E, R, S) = {(F, Q, E, R, SQ) | Q are the pairs of an SCC in G(F, P, E, R, S)}

is sound and complete.

As a consequence, we can separately work with the SCCs of G(F, P,E,R, S),
disregarding other parts of the graph. Now we can use these notions to introduce
the A∨C-dependency graph, i.e., the A∨C-graph whose nodes are the A∨C-DPs
instead of an arbitrary set of pairs.

Definition 9 (A∨C-Dependency Graph) Let R = (Σ, E,R) be an A∨C-
rewrite theory with Σ = C ] D. Let S = (Σ ∪ D], S) be a TRS such that
S = {f ](f(x, y), z) → f ](x, y), f ](x, f(y, z)) → f ](y, z) | f ∈ ΣA ∪ ΣAC}. The
A∨C-Dependency Graph associated to R is:

DG(R) = G(E],DPE(R), E,R, S)

7.3 Estimating the A∨C-Dependency Graph

As in standard rewriting, the A∨C-dependency graph of an A∨C-rewrite theory
is in general not computable. So, we need to use some approximation of it.
For any term t ∈ T (Σ,X ) let Cap(t) result from replacing all proper subterms
rooted by a defined symbol by fresh variables and let Ren(t) which independently
renames all occurrences of variables in t by using new fresh variables [1].

As usual, we should not talk about a mgu when dealing with rewriting
modulo equations. Instead, the appropriate notion is that of complete set of E-
unifiers. However, although in theory, all these E-unifiers have to be considered,
for our results of reachability it is enough to check the existence of one.

Proposition 15 Let R = (Σ, E,R) be an A∨C-rewrite theory with Σ = C ]D.
Let u, t ∈ T (Σ,X ) be such that Var(u) ∩ Var(t) = ∅ and θ, θ′ be substitutions.
If θ(t)→∗ExtE(R),E ◦ ∼E θ′(u), then Ren(Cap(t)) and u E-unify.

Proof. In the following, we let s = Ren(Cap(t)). Clearly, t = σ(s) for some
substitution σ. We proceed by induction on the length n of the sequence from
θ(t)→∗ExtE(R),E t′ in θ(t)→∗ExtE(R),E t′ ∼E θ′(u).

1. If n = 0, then θ(t) = t′ ∼E θ′(u). Since t = σ(s), we have θ(σ(s)) ∼E

θ′(u). Since Var(s) ∩ Var(u) = ∅, we conclude that s and u E-unify.

2. If n > 0, then we have t→ExtE(R),E t′′ →∗ExtE(R),E t′ ∼E θ′(u).

Let p ∈ Pos(t) be the position where the E-rewrite step t→ExtE(R),E t′′ is
performed. By definition of Cap and Ren we have that s = s[z]q for some
(fresh) variable z and position q such that q ≤ p. Let s′ = Ren(Cap(t′′)).
Since t′′ = σ′(s′) for some substitution σ′, by the induction hypothesis,
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s′′ = Ren(Cap(s′)) (which is just a renaming of the fresh variables in s′,
i.e., s′′ = ρ(s′) for some renaming substitution ρ for such fresh variables)
and u E-unify, i.e., there is a substitution ν such that ν(s′′) ∼E ν(u). Note
that we can write s′ = τ(s) for some substitution τ such that τ(x) = x
for all x 6= z and τ(z) = s′|q. Therefore, ν(ρ(τ(s))) ∼E ν(u), i.e., s and u
E-unify.

2

Now, we are ready to provide a correct estimation of our graph of pairs. Cor-
rectness of our definition relies on Proposition 15.

Definition 10 (Estimated A∨C-Graph of Pairs) Let P = (Γ, F, P ) be a
rewrite theory, R = (Σ, E,R) be an A∨C- rewrite theory and S = (F , S) be a
TRS. The estimated A∨C-graph associated to them (denoted EG(F, P,E,R, S))
has P as the set of nodes and arcs which connect them as follows:

1. If v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2)
and s1 /∈ X or s2 /∈ X , then, there is an arc from u→ v ∈ P to u′ → v′ ∈
P if root(u′) = f .

2. Otherwise, there is an arc from u→ v ∈ P to u′ → v′ ∈ P if Ren(Cap(v))
and u′ (F ∪ E)-unify (where equations in F can only be applied at root
position).

According to Definition 8, we would have the corresponding one for the
estimated A∨C-DG: EDG(R) = EG(E],DPE(R), E,R, S), where

S = {f ](f(x, y), z)→ f ](x, y), f ](x, f(y, z))→ f ](y, z) | f ∈ ΣA ∪ ΣAC}.
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Example 11 For the A∨C-rewrite theory in Figure 1, the set DPE(R) is1:

LIST2SET(cons(N,L)) → UNION(N, list2set(L)) (8)
LIST2SET(cons(N,L)) → LIST2SET(L) (9)

IN(N, union(M,S)) → EQ(N,M) (10)
IN(N, union(M,S)) → OR(eq(N,M), in(N,S)) (11)
IN(N, union(M,S)) → IN(N,S) (12)

UNION(union(N,N), Z) → UNION(N,Z) (13)
AND(and(true, B), Z) → AND(B,Z) (14)
AND(and(false, B), Z) → AND(false, Z) (15)

OR(or(true, B), Z) → OR(true, Z) (16)
OR(or(false, B), Z) → OR(B,Z) (17)

EQ(s(N), s(M)) → EQ(N,M) (18)
EQ(cons(N,L), cons(M,L′)) → EQ(N,M) (19)
EQ(cons(N,L), cons(M,L′)) → EQ(L,L′) (20)
EQ(cons(N,L), cons(M,L′)) → AND(eq(N,M), eq(L,L′)) (21)

The (estimated) A∨C-DG is:
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By using Theorem 7 we transform the A∨C problem (E],DP(R), E,R, S)
into a set of A∨C problems ProcSCC (E],DP(R), E,R, S) given by

{(E], {(9)}, E, R, ∅), (E], {(12)}, E, R, ∅), (E], {(13)}, E, R, Sunion),

(E], {(14), (15)}, E, R, Sand), (E], {(16), (17)}, E, R, Sor), (E], {(18), (19), (20)}, E, R, ∅)}
which contains six new (but simpler) A∨C problems.

1We have introduced new ‘prefix’ symbols eq, cons and union instead of the original ‘infix’
ones == , ; , .
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7.4 Use of Reduction Pairs

In the dependency pair framework reduction pairs are used to obtain smaller
sets of pairs P ′ ⊆ P by removing the strict pairs, i.e., those pairs u→ v ∈ P such
that u = v. Stability is required both for & and = because, although we only
check the left- and right-hand sides of the rewrite rules l→ r (with &) and pairs
u→ v (with & or =), the chains of pairs involve instances σ(l), σ(r), σ(u), and
σ(v) of rules and pairs and we aim at concluding σ(l) & σ(r), and σ(u) & σ(v)
or σ(u) = σ(v), respectively. Monotonicity is required for & to deal with the
application of rules l → r to an arbitrary depth in terms. Since the pairs are
‘applied’ only at the root level, no monotonicity is required for = (but, for this
reason, we cannot compare the rules in R using =). Dealing with associative
and/or commutative axioms, we will compare them with the equivalence relation
defined by the stable, reflexive, transitive, and symmetric equivalence ∼ induced
by &, i.e., ∼=& ∩ ., since we need to impose compatibility with the equational
theories E and F . The following theorem formalizes a generic processor to
remove pairs from P by using reduction pairs.

Theorem 8 (Reduction Pair Processor) Let P = (Γ, F, P ) be a rewrite
theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (F , S) be a TRS. Let
(&,=) be a reduction pair such that

1. R ⊆&,

2. P ∪ S ⊆& ∪ =, and

3. E ∪ F ⊆∼.

Let P= = {u → v ∈ P | u = v} and S= = {s → t ∈ S | s = t}. Then, the
processor ProcRP given by

ProcRP (F, P,E,R, S) =


{(F, P − P=, E,R, S − S=)} if (1), (2), and (3) hold
{(F, P,E,R, S)} otherwise

is sound and complete.

Proof. Since P − P= ⊆ P and S − S= ⊆ S, completeness is assured.
Regarding soundness, we proceed by contradiction. Assume that there is an
infinite minimal (F, P,E,R, S)-chain A, but that there is no infinite minimal
(F, P − P=, E,R, S − S=)-chain. Due to the finiteness of P and S, we can
assume that there is Q ⊆ P and T ⊆ S such that A has a tail B where all
pairs in Q and rules in T are infinitely often used. We distinguish two kinds of
elementary steps in B, according to Definition 5.

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E ◦ Λ−→∗Sfi ti →
∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)
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Note that, due to the requirements imposed for the rules in R and S and
equations in E and F , and by stability and transitivity of & (hence of ∼),
monotonicity and transitivity of &, we have

σ(vi) ∼ ◦ (& ∪ =) ti & ◦ ∼ ◦ (& ∪ =) ◦ ∼ σ(ui+1)

Here, it is important to specifically consider the case when the rules l→ r
involved in →∗ExtE(R),E-steps are taken from ExtE(R)−R, i.e, l → r /∈ R.
In this case, we do not have an explicit compatibility requirement of l→ r
with &, i.e., l & r is not explicitly required. However, since R is an A∨C
theory, such rules are connected with rules rule l′ → r′ ∈ R in a simple
way. For instance if l = f(l′, w) → f(r′, w) = r for some l′ → r′ ∈ R
such that root(l′) = f , then, since l′ & r′ holds, by monotonicity of &,
we also have l = f(l′, w) & f(r′, w) = r. With other rules included in
ExtE(R) − R (see Section 3.1) we would proceed in a similar way. Now,
taking into account that ∼ ◦ (& ∪ =) =& ∪ = and ∼ ◦ &=&, we have

σ(vi) (& ∪ =) ti (& ∪ =)σ(ui+1)

Note that, by the compatibility condition required for & and =, this means
that σ(vi) & σ(ui+1) or σ(vi) = σ(ui+1).

2. If σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), then we analogously have σ(vi) &
σ(ui+1).

Since ui (& ∪ =) vi for all ui → vi ∈ Q ⊆ P , by stability of & and =, we have
σ(ui) (& ∪ =) σ(vi) for all i ≥ 1. No pair u → v ∈ Q satisfies that u = v and
no rule s→ t ∈ T satisfies s = t. Since u→ v and s→ t occurs infinitely often
in B, and taking into account that σ(vi) & σ(ui+1) or σ(vi) = σ(ui+1) for all
i ≥ 1, there would be an infinite set I ⊆ N such that σ(ui) = σ(ui+1) for all
i ∈ I or there would be an infinite set J ⊆ N such that σ(sj) = σ(tj+1) for
all j ∈ J . And we have σ(ui) (& ∪ =) σ(ui+1) for all other ui → vi ∈ Q or
σ(sj)(& ∪ =)σ(tj+1) for all other sj → tj ∈ T . Thus, by using the compatibility
conditions of the reduction pair, we obtain an infinite decreasing =-sequence
which contradicts well-foundedness of =.

Therefore, Q ⊆ (P−P=) and T ⊆ (S−S=), which means that B is an infinite
minimal (F, P − P=, E,R, S − S=)-chain, thus leading to a contradiction. 2

7.5 Other Processors

Many times, the set of F axioms can be reduced to those equations that are
really involved in minimal A∨C-chains. The following processor shows a trivial
method to eliminate them.

Theorem 9 (F Usable Equations Processor) Let P = (Γ, F, P ) be a rewrite
theory, R = (Σ, E,R) be an A∨C-rewrite theory, and S = (F , S) be a TRS such
that

29

400 18. Publications (full text)



1. root(u), root(v) ∈ Γ− Σ for all u→ v ∈ P ,

2. root(s) = root(t) ∈ Γ− Σ for all s = t ∈ F , and

3. root(l) = root(r) ∈ Γ− Σ for all l→ r ∈ S, and

Let F̂ = {s = t ∈ F | root(s) = root(u) or root(s) = root(v) for some u→ v ∈ P}

Then, the processor ProcFUEq given by

ProcFUEq(F, P,E,R, S) = {(F̂ , P, E,R, S)}

is sound and complete.

Proof. Regarding soundness, we proceed by contradiction. Assume that
there is an infinite minimal (F, P,E,R, S)-chain A, but that there is no infinite
minimal (F̂ , P, E,R, S)-chain. Due to the finiteness of P , we can assume that
there is Q ⊆ P and F ′ ⊆ F such that A has a tail B where all pairs in Q and
equations in F ′ are infinitely often used. We distinguish two kinds of elementary
steps in B, according to Definition 5.

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F ′ or
v′i = u′i ∈ F ′ such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF ′,E ti
Λ−→∗Sfi t

′
i →∗ExtE(R),E ◦ lF ′,E ◦

Λ−→∗Sfi◦ lF ′,E σ(ui+1)

For this sequence we have:

• root(vi) = fi ∈ Γ− Σ (by (1)),

• that means that in the step σ(vi) lF ′,E t′i we can apply equations
below the root by using E and if we apply an equation s = t ∈ F ′,
then root(s) = root(t) = root(vi) = fi (by (2)) since we only use
them at root position. Then, s = t ∈ F̂ .

• In the step ti
Λ−→∗Sfi t

′
i, again we proceed in a similar way. Since for

all l → r ∈ S we know that root(l) = root(r) (by (3)), then we have
that root(ti) = root(t′i) = root(vi).

• The application of →∗ExtE(R),E-steps are below the root (since root(t′i) ∈
Γ− Σ) and therefore the root symbol remains untouched.

• In the next steps, since the root symbol remains unchanged proceed-
ing like in previous steps, again, if a equation s = t ∈ F ′ is applied at
the root position has to be such that root(s) = root(t) = root(vi) =
root(ti) = root(t′i) = . . . = root(ui+1), therefore s = t ∈ F̂ .

2. If σ(vi) = ti →∗ExtE(R),E ◦ lF ′,E σ(ui+1), then we analogously have that
the equations that can be used to connect with the next pair ui+1 are the
equations in E and those from F ′ such that root(s) = root(t) = root(vi) =
root(ui+1). Then, s = t ∈ F̂ .
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Therefore, root(vi) = root(ti) = root(t′i) = . . . = root(ui+1) = fi and F ′ ⊆ F̂ ,
which means that B is an infinite (F̂ , P, E,R, S)-chain. Since {si | si lF̂ ,E
ti} ⊆ {si | si lF,E ti} and by minimality, for all w lF,E ti, w is (ExtE(R), E)-
terminating therefore for all w lF̂ ,E ti, w is (ExtE(R), E)-terminating. There-
fore B is an infinite minimal (F̂ , P, E,R, S)-chain thus leading to a contradic-
tion.

Regarding completeness, we proceed by contradiction. Assume that there is
an infinite minimal (F̂ , P, E,R, S)-chain A, but that there is no infinite minimal
(F, P,E,R, S)-chain. Due to the finiteness of P , we can assume that there is
Q ⊆ P and F ′ ⊆ F̂ such that A has a tail B where all pairs in Q and equations
in F ′ are infinitely often used. Since F̂ ⊆ F , every infinite (F̂ , P, E,R, S)-chain
is also an infinite (F, P,E,R, S)-chain. Reasoning as in the correctness part
over the infinite sequence, we know that root(vi) = root(ti) = root(t′i) = . . . =
root(ui+1) = fi and therefore, we conclude that the only equations from F
that can be used in the infinite (F, P,E,R, S)-chain belong to F̂ . By min-

imality, for all w(
Λ

àF̂ ∪
>Λ

àE)∗ti, w is (ExtE(R), E)-terminating, since the
only equations that can be applied to ti are those {s = t ∈ F | root(s) =
root(ti) or root(t) = root(ti)} which correspond with F̂ , we can conclude that

for all w(
Λ

àF ∪
>Λ

àE)∗ti, w is (ExtE(R), E)-terminating. Therefore B is an
infinite minimal (F, P,E,R, S)-chain thus leading to a contradiction.

2

Example 12 By Example 11 we have τ0 = (E],DP(R), E,R, S) by applying
the SCC processor into ProcSCC (τ0) = {τ1, τ2, τ3, τ4, τ5, τ6} where

• τ1 = (E], {(9)}, E,R,∅),

• τ2 = (E], {(12)}, E,R,∅),

• τ3 = (E], {(13)}, E,R, Sunion),

• τ4 = (E], {(14), (15)}, E,R, Sand),
• τ5 = (E], {(16), (17)}, E,R, Sor) and

• τ6 = (E], {(18), (19), (20)}, E,R,∅).

For the each of these A∨C problem,we can apply ProcFUEq .

• For τ1, we have ProcFUEq(τ1) = (∅, {(9)}, E,R,∅),

• For τ2, we have ProcFUEq(τ2) = (∅, {(12)}, E,R,∅),

• For τ3, we have ProcFUEq(τ3) = (E]union, {(13)}, E,R, Sunion),

• For τ4, we have ProcFUEq(τ4) = (E]and, {(14), (15)}, E,R, Sand),

• For τ5, we have ProcFUEq(τ5) = (E]or, {(16), (17)}, E,R, Sor) and

• For τ6, we have ProcFUEq(τ6) = (E]eq, {(18), (19), (20)}, E,R,∅).
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8 Usable Rules and Equations for A∨C Prob-
lems

Usable rules are widely used in the DP framework to improve the power of DP
processors. In this section we show how to obtain the set of usable rules and
usable equations for a given A∨C problem and how to use them to define a new
reduction pair processor. We follow the approach and techniques developed
in [14, 26]. We assume that all all our rewrite theories are finite (they have no
infinite rules or equations). Our first intuition was to define a proper notion
of A∨C-dependency that not only take into account the symbols occurring in
the rules, but also the symbols occurring in the equations. But, since A∨C
equations do not introduce new symbols in their left- and right-hand sides, we
can use the standard notion of dependency that only considers symbols occurring
in the rules. We use some auxiliar definitions. Let RlsR(f) = {l → r ∈ R |
root(l) = f}, EqsE(f) = {u = v ∈ E | root(u) = f ∨ root(v) = f}. Let
Fun(t) = {f | ∃p ∈ PosF (t), f = root(t|p)}.

Definition 11 (Dependency [28]) Let R = (Σ, R) be a TRS. We say that
f ∈ Σ has a dependency on h ∈ Σ (written f .R h) if f = h or there is a
function symbol g with g .R h and a rule l→ r ∈ RlsR(f) with g ∈ Fun(r).

To obtain the correct notions of usable rule and equation, we have to look
at the structure of the chains. We have two possible ways to proceed in an
(F, P,E,R, S)-chain. Given ui → vi ∈ P either

σ(vi) lF,E ◦ Λ−→∗Sfi ti →
∗
ExtE(R),E ◦ lF,E ◦

Λ−→∗Sfi◦ lF,E σ(ui+1)

or
σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1)

Then, to obtain the set of usable rules and also usable equations we have to
look for usable symbols not only in P , but also in F and S.

Definition 12 (A∨C-Usable Rules and Equations) Let τ be an A∨C prob-
lem such that τ = (F, P,E,R, S) where R = (Σ, E,R) is an A∨C-rewrite theory,
P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a TRS. The set UR(τ) of
A∨C-usable rules of τ is

UR(τ) =
⋃

s→t ∈ P,f ∈ Fun(t),f.Rg

RlsR(g) ∪
⋃

u=v ∈ F,f ∈ Fun(u) ∪ Fun(v),f.Rg

RlsR(g) ∪
⋃

l→r ∈ S,f ∈ Fun(r),f.Rg

RlsR(g)
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The set UE(τ) of A∨C-usable equations of τ is

UE(τ) =
⋃

s→t ∈ P,f ∈ Fun(t),f.Rg

EqsE(g) ∪
⋃

u=v ∈ F,f ∈ Fun(u) ∪ Fun(v),f.Rg

EqsE(g) ∪
⋃

l→r ∈ S,f ∈ ∪Fun(r),f.Rg

EqsE(g)

Note that, if the rules from S are of the form f ](f(x, y), z) → f ](x, y) or
f ](x, f(y, z))→ f ](y, z) do not introduce new rules as usable.

Now, we define an interpretation that, given anA∨C problem τ = (F, P,E,R, S),
allows us to transform any infinite minimal (F, P,E,R, S)-chain into an infinite
sequence of pairs from P where, for all i ≥ 1,

σ′(vi) lF,E′ ◦ →∗Sfi∪Cε ti →
∗
ExtE′ (R′),E′ ◦ lF,E′ ◦ →∗Sfi∪Cε ◦ lF,E′ ◦ →∗Cε σ′(ui+1)

or
σ′(vi) = ti →∗ExtE′ (R′),E′ ◦ lF,E′ ◦ →

∗
Cε σ

′(ui+1)

with Cε = {c(x, y) → x, c(x, y) → y} being c a new fresh binary symbol,
E′ = UE(τ) and R′ = UR(τ) ∪ Cε. We modify the original interpretation used
in [14, 26] in such a way that, if a term is rooted by a non-usable A∨C symbol,
then all its equivalent terms have exactly the same interpretation.

Definition 13 (A∨C-Interpretation) Let R = (Σ, E,R) be an A∨C-rewrite
theory and ∆ ⊆ Σ. Let > be an arbitrary total ordering over
T (Σ ∪ {⊥, c},X ) where ⊥ is a fresh constant symbol and c is a fresh binary
symbol. The A∨C-Interpretation I∆,E is a mapping from E-terminating terms
in T (Σ,X ) to terms in T (Σ ∪ {⊥, c},X ) defined as follows:

I∆,E(t) =

8
>>>>>><
>>>>>>:

t if t ∈ X
f(I∆,E(t1), . . . , I∆,E(tk)) if t = f(t1, . . . , tk)

and f ∈ ∆
order({c(f(I∆,E(s1), . . . , I∆,E(sk)), s′)

| s = f(s1, . . . , sn) ∈ [t]E}) if t = f(t1, . . . , tk)
and f /∈ ∆

where s′ = order
`
{I∆,E(u) | s→ExtE(R),E u}

´

order(T ) =

(
⊥, if T = ∅
c(t, order(T \ {t})) if t is minimal in T w.r.t. >

We have to ensure now that the adapted interpretation does not generate infinite
terms. This is achieved thanks to the fact that for any A∨C-equational theory
E, E-equivalence classes are always finite, and reductions with →ExtE(R),E are
finitely branching due to finiteness of R (assumed in Section 3).

Lemma 1 Let R = (Σ, E,R) be an A∨C-rewrite theory and ∆ ⊆ Σ and t ∈
T (Σ,X ). If t is E-terminating then I∆,E is well-defined.
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Proof. According to Definition 13, to obtain an infinite term as result
of I∆,E(t), either: (1) we get a term t′ such that [t′]E is infinite, or (2) we
would have to perform an infinite number of applications of the function order
({I∆,E(u) | s→R u}):

(1) We know that R is an A∨C-rewrite theory. Therefore all the equations
are of the form f(f(x, y), z) = f(x, f(y, z)) or f(x, y) = f(y, x). Since
equations are linear and no new symbols are added, [t′]E is finite.

(2) We have an infinite sequence of the following way:

t = t0 ∼E t1 →ExtE(R),E t2 ∼E t3 →ExtE(R),E · · ·

that contradicts the E-termination of t.

2

Now, to prove the main theorem, we need some auxiliar results that allow
us to construct the new infinite sequence. The idea is that, for each relation in
the chain R, if s R t then I∆,E(s) R I∆,E(t).

Definition 14 Let R = (Σ, E,R) be a rewrite theory, ∆ ⊆ Σ and σ be a
substitution. We define σI∆,E as σI∆,E (x) = I∆,E(σ(x)).

Lemma 2 Let R = (Σ, E,R) be an A∨C-rewrite theory and ∆ ⊆ Σ. Let t be
a term and σ be a substitution. If σ(t) is E-terminating, then I∆,E(σ(t)) →∗Cε
σI∆,E (t). If t only contains ∆ symbols, then I∆,E(σ(t)) = σI∆,E (t).

Proof. By structural induction on t:

• If t = x is a variable then I∆,E(σ(x)) = σI∆,E (x).

• If t = f(t1, . . . , tk) then

– If f ∈ ∆ then I∆,E(σ(t)) = f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))). By hy-
pothesis, terms σ(ti) are E-terminating for 1 ≤ i ≤ ar(f). By induc-
tion hypothesis, for all terms ti we have I∆,E(σ(ti)) →∗Cε σI∆,E (ti).
This implies f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk)))→∗Cε σI∆,E (t).

– If f /∈ ∆, we have that for all s = f(s1, . . . , sn) ∈ [t]E we obtain
I∆,E(σ(t)) →+

Cε c(f(I∆,E(σ(s1)), . . . , I∆,E(σ(sk))), s′)) using proper
Cε-steps. Since t ∈ [t]E , we can obtain
I∆,E(σ(t)) →+

Cε c(f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))), t′)). Therefore,
we get f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))) applying again a Cε rule. Then,
we conclude that f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))) →∗Cε σI∆,E (t) rea-
soning as in the previous item.

Therefore, we have that I∆,E(σ(t))→∗Cε σI∆,E (t).
The second part of the lemma is proved similarly. By structural induction

on t:
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• If t = x is a variable then I∆,E(σ(x)) = σI∆,E (x).

• If t = f(t1, . . . , tk) and f ∈ ∆ (because t only contains ∆ symbols), then
I∆,E(σ(t)) = f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))). By hypothesis, terms σ(ti)
are E-terminating for 1 ≤ i ≤ ar(f) and terms ti only contain ∆ symbols.
Therefore, by induction hypothesis, I∆,E(σ(ti)) = σI∆,E (ti). This implies
f(I∆,E(σ(t1)), . . . , I∆,E(σ(tk))) = σI∆,E (t).

2

Lemma 3 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and

s
Λ

àF t then I∆,E(s)
Λ

àF I∆,E(t).

Proof. Let s
Λ

à{u=v} t and s = σ(u)
Λ

à{u=v} σ(v) = t or s = σ(v)
Λ

à{v=u}
σ(u) = t for some substitution σ. Since u, v ∈ T (∆,X ) by the construction of

∆, by Lemma 2 we get I∆,E(σ(u)) = σI∆,E (u)
Λ

à{u=v} σI∆,E (v) = I∆,E(σ(v))

or I∆,E(σ(v)) = σI∆,E (v)
Λ

à{v=u} σI∆,E (u) = I∆,E(σ(u)). 2

Lemma 4 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and

s
p

àE t then I∆,E(s)
p

à
∗
UE(τ) I∆,E(t).

Proof. We proceed by induction on the position p ∈ Pos(s) of the redex in

the reduction s
p

à{u=v} t.

• First, we consider that root(s) ∈ ∆.

– If p = Λ (therefore u = v ∈ UE(τ)). So we have s = σ(u)
Λ

à{u=v}

σ(v) = t or s = σ(v)
Λ

à{u=v} σ(u) = t for some substitution σ.
Moreover, u, v ∈ T (∆,X ) by the construction of ∆. By Lemma 2,

we get I∆,E(σ(u)) = σI∆,E (u)
Λ

à{u=v} σI∆,E (v) = I∆,E(σ(v)) or

I∆,E(σ(v)) = σI∆,E (v)
Λ

à{u=v} σI∆,E (u) = I∆,E(σ(u)).

– If p 6= Λ then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn),

si
q

à{u=v} ti and p = i.q. By the induction hypothesis,

I∆,E(si)
q

à
∗
UE(τ) I∆,E(ti), I∆,E(s)

i.q

à
∗

UE(τ) I∆,E(t) and, hence

I∆,E(s)
p

à
∗
UE(τ) I∆,E(t).
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• Finally, we consider the case root(s) /∈ ∆. Since we can infer that t ∈ [s]E

and [s]E = [t]E because s
p

à{u=v} t then, I∆,E(s) = I∆,E(t) and, hence,

I∆,E(s)
p

à
∗
UE(τ) I∆,E(t).

2

Lemma 5 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and
s lF,E t then I∆,E(s) lF,UE(τ) I∆,E(t).

Proof. We can write s lF,E t as s(
Λ

àF ∪
>Λ

àE)∗t and we know:

1. If s′ = t′ trivially I∆,E(s′) = I∆,E(t′).

2. If s′
Λ

àF t′ for any two terms s′, t′ then I∆,E(s′)
Λ

àF I∆,E(t′) by Lemma 3.

3. If s′
>Λ

àE t′ for any two terms s′, t′ then I∆,E(s′)
>Λ

à
∗

UE(τ) I∆,E(t′) by
Lemma 4.

4. If s′
Λ

àF ∪
>Λ

àE t′ for any two terms s′, t′ then I∆,E(s′)
Λ

àF ∪
>Λ

à
∗

UE(τ)

I∆,E(t′) by (2) and (3), which is equivalent to I∆,E(s′)(
Λ

àF ∪
>Λ

àUE(τ)

)∗I∆,E(t′).

Now, we proceed on the length n of the sequence s(
Λ

àF ∪
>Λ

àE)∗t.

• If n = 0 then s = t and I∆,E(s) = I∆,E(t).

• If n > 0 then s(
Λ

àF ∪
>Λ

àE)u(
Λ

àF ∪
>Λ

àE)∗t. By the induction hypoth-

esis, I∆,E(u)(
Λ

àF ∪
>Λ

àUE(τ))∗I∆,E(t), and by (4) we have I∆,E(s)(
Λ

àF
∪
>Λ

àUE(τ))∗I∆,E(u).

Hence, if s lF,E t then I∆,E(s) lF,UE(τ) I∆,E(t). 2

Lemma 6 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and
s→ExtE(R),E t then I∆,E(s)→+

ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(t).

Proof. We proceed by induction on the position p ∈ Pos(s) of the redex
in the reduction s

p∼E s′
p−→l→r t where l → r ∈ ExtE(R). By recursively

applying Lemma 4 to s = s1 àE s2 àE · · · àE sn = s′, we have that
I∆,E(s) = I∆,E(s1) àUE(τ) I∆,E(s2) àUE(τ) · · · àUE(τ) I∆,E(sn) = I∆,E(s′).
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• First, let root(s) = root(s′) ∈ ∆.

– If p = Λ (l → r ∈ ExtUE(τ)(UR(τ))), we have s′ = σ(l) Λ→{l→r}
σ(r) = t for some substitution σ. Moreover, r ∈ T (∆,X ) by the
construction of ∆. By Lemma 2, we get

I∆,E(σ(l))→∗Cε σI∆,E (l)→{l→r} σI∆,E (r) = I∆,E(σ(r))

– If p 6= Λ then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn) and
si →{l→r},E ti. By the induction hypothesis,

I∆,E(si)→+
ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(ti)

and, hence also I∆,E(s)→+
ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(t).

• Finally, let root(s) = root(s′) /∈ ∆. Then,

I∆,E(t) ∈ order
(
{I∆,E(u) | s→ExtE(R),E u}

)

because s→ExtE(R),E t. By applying Cε rules, we get I∆,E(s)→+
Cε I∆,E(t).

Therefore, I∆,E(s)→∗ExtUE(τ)(UR(τ)∪Cε),UE(τ) I∆,E(t). 2

Lemma 7 Let τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is
an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a
TRS. Let ∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u =
v ∈ (E − UE(τ)) or v = u ∈ (E − UE(τ))}). If s and t are E-terminating and
s

Λ→Sfi
t then I∆,E(s)→+

Sfi∪Cε
I∆,E(t).

Proof. We know that p = Λ and l → r ∈ Sfi . So we have s = σ(l) Λ→{l→r}
σ(r) = t for some substitution σ. Moreover, r ∈ T (∆,X ) by the construc-
tion of ∆. By Lemma 2 we get I∆,E(σ(l)) →∗Cε σI∆,E (l) →{l→r} σI∆,E (r) =
I∆,E(σ(r)). Therefore, I∆,E(s)→+

Sfi∪Cε
I∆,E(t). 2

A relation & is Cε-compatible iff c(x, y) & x and c(x, y) & y for a new binary
fresh symbol c.

Theorem 10 (RP Processor with A∨C-Usable Rules and Equations) Let
τ = (F, P,E,R, S) be an A∨C problem where R = (Σ, E,R) is an A∨C-rewrite
theory, P = (Γ, F, P ) is a rewrite theory, and S = (F , S) is a TRS. Let (&,=)
be a reduction pair such that & is Cε-compatible and

1. UR(τ) ⊆&,

2. (P ∪ S) ⊆& ∪ =, and

3. F ∪ UE(E) ⊆∼.
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Let P= = {u → v ∈ P | u = v} and S= = {s → t ∈ S | s = t}. Then, the
processor ProcRP given by

ProcRP (F, P,E,R, S) =


{(F, P − P=, E,R, S − S=)} if (1), (2), and (3) hold
{(F, P,E,R, S)} otherwise

is sound and complete.

Proof. Since P − P= ⊆ P and S − S= ⊆ S, completeness is assured.
Regarding soundness, we proceed by contradiction. Assume that there is an
infinite minimal (F, P,E,R, S)-chain A, but that there is no infinite minimal
(F, P − P=, E,R, S − S=)-chain. Due to the finiteness of P and S, we can
assume that there is Q ⊆ P and T ⊆ S such that A has a tail B where all
pairs in Q and rules in T are infinitely often used. We distinguish two kinds of
elementary steps in B, according to Definition 5.

1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′i) for some u′i = v′i ∈ F or
v′i = u′i ∈ F such that u′i = fi(u′i1, u

′
i2) satisfies u′i1 /∈ X or u′i2 /∈ X , then

σ(vi) lF,E si
Λ−→∗Sfi ti →

∗
ExtE(R),E t′i lF,E wi

Λ−→∗Sfiw
′
i lF,E σ(ui+1)

We apply I∆,E in Definition 13 to the initial term in the sequence. We let
∆ = (Γ ∪ Σ ∪ F)− ({root(l) | l → r ∈ (R − UR(τ))} ∪ {root(u) | u = v ∈
(E −UE(τ)) or v = u ∈ (E −UE(τ))}), E′ = UE(τ) and R′ = UR(τ)∪ Cε.
Sequentially, we obtain the following results:

• Since vi only contains ∆ symbols, by Lemma 2 we have that σI∆,E (vi) =
I∆,E(σ(vi))

• By Lemma 5, I∆,E(σ(vi)) lF,E′ I∆,E(si).

• By induction on the length of the sequence si
Λ−→∗Sfi ti and using

Lemma 7, I∆,E(si)→∗Sfi∪Cε I∆,E(ti).

• By induction on the length of the sequence ti →∗ExtE(R),E t′i and using
Lemma 6, I∆,E(ti)→∗ExtE′ (R′),E′ I∆,E(t′i).

• By Lemma 5, I∆,E(t′i) lF,E′ I∆,E(wi).

• By induction on the length of the sequence wi
Λ−→∗Sfiw

′
i and using

Lemma 7, I∆,E(wi)→∗Sfi∪Cε I∆,E(w′i).

• By Lemma 5, I∆,E(w′i) lF,E′ I∆,E(σ(ui+1)).

• By Lemma 2, I∆,E(σ(ui+1))→∗Cε σI∆,E (ui+1).

Therefore, we obtain the following chain:

σI∆,E (vi) lF,E′ ◦ →∗Sfi∪Cε ◦ →
∗
ExtE′ (R′),E′ t

′′
i

t′′i lF,E′ ◦ →∗Sfi∪Cε ◦ lF,E′ ◦ →
∗
Cε σI∆,E (ui+1)
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Note that, due to the requirements imposed for the rules in UR(τ) and
S and equations in UE(τ) and F , and by stability, transitivity and Cε-
compatibility of & (hence of ∼), monotonicity and transitivity of &, we
have

σI∆,E (vi) ∼ ◦(& ∪ =)◦ & ◦ ∼ ◦(& ∪ =)◦ ∼ ◦ & σI∆,E (ui+1)

Here, it is important to specifically consider the case when the rules l→ r
involved in →ExtE′ (R′),E′ -steps are taken from ExtE′(R′) − (R′), i.e, l →
r /∈ R′. In this case, we do not have an explicit compatibility requirement
of l→ r with &, i.e., l & r is not explicitly required. However, since R′ =
(Σ, E′, R′) is an A∨C rewrite theory, such rules are connected with rules
rule l′ → r′ ∈ R′ in a simple way. For instance if l = f(l′, w)→ f(r′, w) =
r for some l′ → r′ ∈ R′ such that root(l′) = f , then, since l′ & r′ holds, by
monotonicity of &, we also have l = f(l′, w) & f(r′, w) = r. With other
rules included in ExtE′(R′) − (R′) (see Section 3.1) we would proceed in
a similar way. Now, taking into account that ∼ ◦ (& ∪ =) = & ∪ = and
∼ ◦ &=&, we have

σI∆,E (vi) (& ∪ =) σI∆,E (ui+1)

Note that, by the compatibility condition required for & and =, this means
that σI∆,E (vi) & σI∆,E (ui+1) or σI∆,E (vi) = σI∆,E (ui+1).

2. If σ(vi) = ti →∗ExtE(R),E ◦ lF,E σ(ui+1), then we analogously, applying
Lemma 6 and Lemma 5, have

σI∆,E (vi)→∗ExtE′ (R′),E′ ◦ lF,E′ σI∆,E (ui+1)

and, hence, σI∆,E (vi) & σI∆,E (ui+1).

Since ui (& ∪ =) vi for all ui → vi ∈ Q ⊆ P , by stability of & and =, we have
σI∆,E (ui) (& ∪ =) σI∆,E (vi) for all i ≥ 1. No pair u → v ∈ Q satisfies that
u = v, and no rule s → t ∈ T satisfies s = t. Since u → v and s → t occurs
infinitely often in B, and taking into account that σI∆,E (vi) & σI∆,E (ui+1) or
σI∆,E (vi) = σI∆,E (ui+1) for all i ≥ 1, there would be an infinite set J ⊆ N
such that σI∆,E (ui) = σI∆,E (ui+1) for all i ∈ J or there would be an infinite
set K ⊆ N such that σI∆,E (sj) = σI∆,E (tj+1) for all j ∈ K. And we have
σI∆,E (ui) (& ∪ =) σI∆,E (ui+1) for all other ui → vi ∈ Q, and σI∆,E (sj) (&
∪ =) σI∆,E (tj+1) for all other uj → vj ∈ T . Thus, by using the compatibility
conditions of the reduction pair, we obtain an infinite decreasing =-sequence
which contradicts well-foundedness of =.

Therefore, Q ⊆ (P − P=) and T ⊆ (S − S=), which means that B is an
infinite chain, thus leading to a contradiction. 2
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Example 13 For the A∨C-rewrite theory in Figure 1, we have the following
rules in R (with prefix symbols again):

list2set(N) → N (22)
list2set(cons(N,L)) → union(N, list2set(L)) (23)

in(N, null) → false (24)
in(N, union(M,S)) → or(eq(N,M), in(N,S)) (25)

union(N,N) → N (26)
and(true, B) → B (27)
and(false, B) → false (28)
or(true, B) → true (29)
or(false, B) → B (30)
eq(0, s(N)) → false (31)

eq(s(N), s(M)) → eq(N,M) (32)
eq(cons(N,L),M) → false (33)

eq(cons(N,L), cons(M,L′)) → and(eq(N,M), eq(L,L′)) (34)
eq(L,L) → true (35)

By example 12, we have the following A∨C problems:

• τ ′1 = (∅, {(9)}, E,R,∅),

• τ ′2 = (∅, {(12)}, E,R,∅),

• τ ′3 = (E]union, {(13)}, E,R, Sunion),

• τ ′4 = (E]and, {(14), (15)}, E,R, Sand),

• τ ′5 = (E]or, {(16), (17)}, E,R, Sor) and

• τ ′6 = (E]eq, {(18), (19), (20)}, E,R,∅).

For the each of these A∨C problem,we can apply ProcUR.

• In the case of τ ′1 we have:
UR(τ ′1) = ∅, UE(τ ′1) = ∅ and the following polynomial interpretation2:

[LIST2SET](x) = x ∗ x+ x [cons](x, y) = y + 1

to conclude finiteness of τ ′1.

2The quasi-orderings & induced by a polynomial interpretation can always be made com-
patible with the rules of the TRS Cε, i.e., Cε ⊆&.
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• For τ ′2 we have:
UR(τ ′2) = ∅, UE(τ ′2) = ∅ and the following polynomial interpretation:

[IN](x, y) = x ∗ y + y [union](x, y) = y + 1

to conclude finiteness of τ ′2.

• For τ ′3 we have:
UR(τ ′3) = {(26)}, UE(τ ′3) = {(Eunion)} and the following polynomial in-
terpretation:

[UNION](x, y) = x+ y + 1 [union](x, y) = x+ y

to conclude finiteness of τ ′3.

• For τ ′4 we have:
UR(τ ′4) = {(27), (28)}, UE(τ ′4) = {(Eand)} and the following polynomial
interpretation:

[AND](x, y) = x+ y [and](x, y) = x+ y + 1
[false] = 1 [true] = 1

This processor eliminate one strict pair and generate a new A∨C problem
τ4.1 = (E]and, {(14)}, E,R, Sand) where again we have:

UR(τ4.1) = {(27), (28)}, UE(τ4.1) = {(Eand)} and the following polynomial
interpretation:

[AND](x, y) = x+ y [and](x, y) = x+ y
[false] = 1 [true] = 1

to conclude finiteness of τ4.1 and therefore of τ ′4.

• For τ ′5 we have:
UR(τ ′5) = {(29), (30)}, UE(τ ′5) = {(Eor)} and the following polynomial
interpretation:

[OR](x, y) = x ∗ y + x+ y [or](x, y) = x ∗ y + x+ y
[false] = 1 [true] = 1

This processor eliminate one strict pair and generate a new A∨C problem
τ5.1 = (E]or, {(16)}, E,R, Sor) where again we have:
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UR(τ5.1) = {(29), (30)}, UE(τ5.1) = {(Eand)} and the following polynomial
interpretation:

[OR](x, y) = x+ y [or](x, y) = x+ y + 1
[false] = 1 [true] = 1

to conclude finiteness of τ5.1 and therefore of τ ′5.

• Finally, for τ ′6 we have:
UR(τ ′6) = ∅, UE(τ ′6) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [cons](x, y) = x+ y + 1
[s](x) = x+ 1

This processor eliminate one strict pair and generate a new A∨C problem
τ6.1 = (E]eq, {(18), (19)}, E,R,∅) where we have:

UR(τ6.1) = ∅, UE(τ6.1) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [cons](x, y) = x+ 1
[s](x) = x+ 1

This application eliminate another strict pair and generate a new A∨C
problem τ6.2 = (E]eq, {(18)}, E,R,∅). We have:

UR(τ6.2) = ∅, UE(τ6.2) = ∅ and the following polynomial interpretation:

[EQ](x, y) = x ∗ y + x+ y [s](x) = x+ 1

to conclude finiteness of τ6.2 and therefore of τ ′6.

Therefore, after showing the finiteness of all the A∨C problems generated from
Example 1, we can conclude its E-termination.

9 Benchmarks

We have implemented all techniques described in this paper in the termina-
tion tool mu-term. mu-term is a tool which can be used to verify a num-
ber of termination properties of (variants of) Term Rewriting Systems (TRSs):
termination of rewriting, termination of innermost rewriting, termination of
order-sorted rewriting, termination of context-sensitive rewriting, termination
of innermost context-sensitive rewriting and, thanks to this new approach, ter-
mination of rewriting modulo specific axioms. With these new features imple-
mented, mu-term has been able to participate in the International Competition
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of Termination Tools3 in the category of TRS Equational. This is not the first
implementation for proving termination of rewriting modulo axioms: CiME [5]
is able to prove AC-termination of TRSs, and AProVE [11] is able to deal with
termination of rewriting modulo equations satisfying some restrictions. How-
ever, in the last editions of the competition CiME has not participated and
AProVE is the only termination tool that participates in this category from its
first edition in 2004. There exists a Termination Problem Data Base4 (TPDB)
which contains 71 examples in the equational category5. In the 2010 edition
there were only two participants: AProVE and mu-term. The organization
selected randomly a subset of 34 examples from the entire set. mu-term was
able to solve 16 out of them whereas AProVE solved 24. We considered this
result as a good one since only a few techniques had been implemented to deal
with termination modulo axioms and AProVE implements specific techniques
since 2004. These include an AC-recursive path order (RPO) with status (3
examples out of them are solved with it) and processors based on usable rules
(the remaining 5 examples are solved using them). There is no formal publica-
tion of any of these techniques. In the case of the AC-RPO, we suppose that
they implement the master thesis of Stephan Falke [9] although [24] was pub-
lished before. Recently, we have found out that this work was adapted to the
dependency pair framework in the master thesis of Christian Stein ([25], in ger-
man and not available publicly). However, both papers are based on the notion
of minimality presented in [10] which we have shown that is not appropriate.
In the case of processors for managing usable rules is essential to deal with a
correct notion of minimality [14, 26].

Now, with only the techniques described in this paper, mu-term is able
to solve 59 examples out of 71. Two examples more than AProVE6. For full
details see:

http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-avc/benchmarks.html

In comparison with the implementation of the techniques developed in [3],
where mu-term were able to solve 39 examples7, now, thanks to the new tech-
niques, mu-term has become a powerful and competitive tool for proving termi-
nation of A∨C-rewrite theories. The practical results are summarized in Table
1.

10 Related Work and Conclusions

This paper is an extended and revised version of [3]. We provide complete proofs
for all results, and also present more examples about the use of the theory. The
main conceptual differences between [3] and this paper can be summarized as
follows:

3See http://www.lri.fr/~marche/termination-competition/
4See http://termination-portal.org/wiki/TPDB
5We have used version 7.0.2 of the TPDB.
6See the 2008 edition of the termination competition where the entire set of examples from

the category where considered.
7see http://www.dsic.upv.es/~balarcon/WRLA10/benchmarks.html
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mu-term A∨C-DPs AProVE mu-term [3]

YES score 59 57 39

YES average time 6.83 sec. 5.12 sec. 40.13 sec.

Table 1: Comparative in proofs of termination of A∨C-rewrite theories

• We have refined the notion of A∨C- dependency pairs integrating an equa-
tional extension of Dershowitz’s refinement of standard dependency pairs
(see [6]).

• We have refined the notion of A∨C-chain by allowing the application of
F axioms only at the root position.

• We have developed a preprocessing technique which is often able to remove
rules from the original system before starting the proof in the A∨C DP-
framework, thus simplifying the whole proof of A∨C-termination.

• We have refined the A∨C processor of reduction pairs which is now able
to eliminate rules, not only from R, but also from the set S.

• We have developed a new A∨C processor that restricts the set of F axioms
to those that are really used in the A∨C problem.

• We have extended the well-known technique of usable rules to A∨C-
termination and we have developed the corresponding A∨C processor to
eliminate pairs and rules by means of reduction orders.

• We have implemented the techniques presented in [3] and the ones devel-
oped here. We have made some benchmarks showing the performance of
them.

As remarked in the introduction, this is not the first work which tries to use
dependency pairs for proving termination of rewriting modulo an equational
theory, see [9, 10, 16, 17, 18, 20, 21, 25]. Our work, however, is, as far as
we know, the first one which provides a satisfactory notion of minimal non-
terminating term for an A∨C-rewrite theory R = (Σ, E,R) which can be used
to provide a suitable definition of minimal chain of dependency pairs, which
can in turn be used to characterize A∨C-termination (Corollary 5). In order
to substantiate this claim, consider the AC-rewrite theory R = (Σ, E,R) in
Example 5 again. The A∨C-DPs for R are enumerated in Example 10. Such
dependency pairs coincide with the ones which would be computed by, e.g.,
[9, 10, 17, 18, 25]. Remember that t in Example 5 is minimal in Giesl and
Kapur’s sense (Definition 2); and also according to [9, 25] which inherit this
notion. We should, then, be able to find an infinite minimal chain of DPs
starting from t]. According to [9, 10, 17, 18, 25], ‘minimal’ means that σ(vi)
is (ExtE(R), E)-terminating for all pairs ui → vi ∈ DPE(R) in the chain of
dependency pairs induced by the substitution σ. However, this is not possible:
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the marked version t] of t is F (f(0, 1), f(0, f(1, 2))), which is an (ExtE(R), E)-
terminating term. After some E] ∪ E-equivalence steps (where E] is applied
only at root position) we would be able to apply one of the rules in DPE(R).
Note, however, that no rule u→ v ∈ DPE(R) except (5) has a right-hand side v
which can be rewritten (after instantiation into σ(v)) into an instance σ(u′) of
the left-hand side u′ of any other pair in DPE(R) by means of (ExtE(R), E]∪E)-
rewriting steps. This means that only the dependency pair (5) could be used
in any infinite minimal chain of dependency pairs starting from t]. But such a
chain would start as follows:

F (f(0, 1), f(0, f(1, 2))) lE],E F (f(0, 0), f(1, f(1, 2)))→(5) F (f(0, f(1, 2)), f(1, f(1, 2)))

where F (f(0, f(1, 2)), f(1, f(1, 2))) contains a subterm f(1, f(1, 2)) which, as
showed in Example 5, is (ExtE(R), E)-nonterminating. Therefore, this chain of
dependency pairs is not minimal. We conclude that, according to the notion of
minimal chain in the aforementioned papers, there is no minimal chain of pairs
starting from t]. This means that no sound approach to proving AC-termination
on the basis of such notion of minimal chain is possible. In this paper we have
introduced the notion of stably minimal term (Definition 3) which overcomes
these problems (Proposition 11 and Theorem 3) and leads to an appropriate
characterization of A∨C-termination as the absence of infinite minimal chains
of A∨C-DPs (Definitions 4 and 5, and Corollary 5).

Furthermore, we note that [17, 18] deal with AC-rewrite theories only, and
that [10], which considers more general rewrite theories E including A∨C-
theories do not cover our work in a second respect: when purely associative
theories are considered (i.e., rewrite theoriesR = (Σ, E,R) such that Ef ⊆ {Af}
for all f ∈ Σ), then Giesl and Kapur’s technique requires the computation of
instances of the rules in ExtE(R) for which the computation of all the E-unifiers
uniE(v, l) of v and l for the rules l → r in ExtE(R) and equations u = v ∈ E
or v = u ∈ E is required. It is well-known, however, that the E-unification
problem for associative theories E is infinitary, which means that uniE(v, l) is
not guaranteed to be finite, in general. In sharp contrast, we do not have to do
that for dealing with purely associative rewrite theories R.

Our second main (and novel) contribution is the formalization of an A∨C-
dependency pair framework (Definitions 6 and 7) which, on the basis of the
previously developed theory, can be used to develop automatic tools for proving
termination of A∨C-rewrite theories (Theorem 6). Several important processors
have been developed as well: the SCC processor (Theorem 7), the reduction
pair processor (Theorem 8), the processor that restricts the set of F axioms
(Theorem 9), and the reduction pair processor with usable rules and equations
(Theorem 10). We have implemented the techniques described in this paper
in the termination tool mu-term and we have developed some benchmarks,
showing that our A∨C-DP Framework is currently the most powerful approach
for proving termination of A∨C-rewrite theories. As we have commented, the
implementation of the techniques in [3] allowed us to participate in the ter-
mination competition in the equational category in the TPDB and therefore
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providing mu-term the ability of proving termination modulo axioms. Thanks
to these new improvements, mu-term is a powerful tool for proving termination
of A∨C- rewrite theories and as far as we know, no tool is able to solve more
examples from the equational category. Much work remains ahead in terms
of further developing the new A∨C-dependency pair framework. Appropriate
reduction orderings which are well-suited for being used in the reduction pair
processor should be investigated. It would also be very useful to explore how the
requirements on E can be relaxed to handle even more general sets of axioms.
Regarding tool support for the method we have presented, we have integrated
it within the tool mu-term [2]. In this way, our termination technique modulo
arbitrary combinations of associative and/or commutative axioms is applica-
ble to an even wider range of rewrite theories, which can be transformed into
A∨C-theories by non-termination-preserving transformations [7, 8, 19].
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Problem MuTerm-ICSDPs AProVe-Transf AProVe-Transf Problem
timeout TRS/CSR/Ex1_2_AEL03_C
timeout TRS/CSR/Ex1_2_AEL03_GM
timeout TRS/CSR/Ex1_2_AEL03_iGM

2 TRS/CSR/Ex1_2_Luc02c_C
timeout TRS/CSR/Ex1_2_Luc02c_GM
timeout TRS/CSR/Ex1_2_Luc02c_iGM
timeout TRS/CSR/Ex14_AEGL02_C

1 TRS/CSR/Ex14_AEGL02_GM
7 TRS/CSR/Ex14_AEGL02_iGM

timeout TRS/CSR/Ex14_Luc06_C
11 TRS/CSR/Ex14_Luc06_GM

timeout TRS/CSR/Ex14_Luc06_iGM
2 TRS/CSR/Ex15_Luc06_C
0 TRS/CSR/Ex15_Luc06_GM
1 TRS/CSR/Ex15_Luc06_iGM
11 TRS/CSR/Ex15_Luc98_C
2 TRS/CSR/Ex15_Luc98_GM

timeout TRS/CSR/Ex15_Luc98_iGM
timeout TRS/CSR/Ex16_Luc06_C

0 TRS/CSR/Ex16_Luc06_GM
11 TRS/CSR/Ex16_Luc06_iGM
3 TRS/CSR/Ex18_Luc06_C
0 TRS/CSR/Ex18_Luc06_GM
1 TRS/CSR/Ex18_Luc06_iGM

timeout TRS/CSR/Ex1_GL02a_C
1 TRS/CSR/Ex1_GL02a_GM
2 TRS/CSR/Ex1_GL02a_iGM

timeout TRS/CSR/Ex1_GM03_C
timeout TRS/CSR/Ex1_GM03_GM
timeout TRS/CSR/Ex1_GM03_iGM
timeout TRS/CSR/Ex1_GM99_C

0 TRS/CSR/Ex1_GM99_GM
timeout TRS/CSR/Ex1_GM99_iGM
timeout TRS/CSR/Ex1_Luc02b_C
timeout TRS/CSR/Ex1_Luc02b_GM
timeout TRS/CSR/Ex1_Luc02b_iGM

10 TRS/CSR/Ex1_Luc04b_C
2 TRS/CSR/Ex1_Luc04b_GM
18 TRS/CSR/Ex1_Luc04b_iGM
6 TRS/CSR/Ex1_Zan97_C
0 TRS/CSR/Ex1_Zan97_GM
0 TRS/CSR/Ex1_Zan97_iGM
11 TRS/CSR/Ex23_Luc06_C
0 TRS/CSR/Ex23_Luc06_GM
1 TRS/CSR/Ex23_Luc06_iGM

timeout TRS/CSR/Ex24_GM04_C
0 TRS/CSR/Ex24_GM04_GM
1 TRS/CSR/Ex24_GM04_iGM

timeout TRS/CSR/Ex24_Luc06_C
0 TRS/CSR/Ex24_Luc06_GM
10 TRS/CSR/Ex24_Luc06_iGM
12 TRS/CSR/Ex25_Luc06_C
0 TRS/CSR/Ex25_Luc06_GM
5 TRS/CSR/Ex25_Luc06_iGM

timeout TRS/CSR/Ex26_Luc03b_C
22 TRS/CSR/Ex26_Luc03b_GM

timeout TRS/CSR/Ex26_Luc03b_iGM
timeout TRS/CSR/Ex2_Luc02a_C
timeout TRS/CSR/Ex2_Luc02a_GM
timeout TRS/CSR/Ex2_Luc02a_iGM

9 TRS/CSR/Ex2_Luc03b_C
4 TRS/CSR/Ex2_Luc03b_GM

timeout TRS/CSR/Ex2_Luc03b_iGM
timeout TRS/CSR/Ex3_12_Luc96a_C
timeout TRS/CSR/Ex3_12_Luc96a_GM
timeout TRS/CSR/Ex3_12_Luc96a_iGM
timeout TRS/CSR/Ex3_2_Luc97_C
timeout TRS/CSR/Ex3_2_Luc97_GM
timeout TRS/CSR/Ex3_2_Luc97_iGM

16 TRS/CSR/Ex3_3_25_Bor03_C
8 TRS/CSR/Ex3_3_25_Bor03_GM

timeout TRS/CSR/Ex3_3_25_Bor03_iGM
1 TRS/CSR/Ex4_4_Luc96b_C
0 TRS/CSR/Ex4_4_Luc96b_GM
0 TRS/CSR/Ex4_4_Luc96b_iGM

timeout TRS/CSR/Ex4_7_15_Bor03_C
0 TRS/CSR/Ex4_7_15_Bor03_GM
9 TRS/CSR/Ex4_7_15_Bor03_iGM

timeout TRS/CSR/Ex4_7_37_Bor03_C
timeout TRS/CSR/Ex4_7_37_Bor03_GM
timeout TRS/CSR/Ex4_7_37_Bor03_iGM
timeout TRS/CSR/Ex4_7_56_Bor03_C
timeout TRS/CSR/Ex4_7_56_Bor03_GM
timeout TRS/CSR/Ex4_7_56_Bor03_iGM

1 TRS/CSR/Ex4_7_77_Bor03_C
0 TRS/CSR/Ex4_7_77_Bor03_GM
1 TRS/CSR/Ex4_7_77_Bor03_iGM

timeout TRS/CSR/Ex49_GM04_C
3 TRS/CSR/Ex49_GM04_GM
29 TRS/CSR/Ex49_GM04_iGM

timeout TRS/CSR/Ex4_DLMMU04_C
timeout TRS/CSR/Ex4_DLMMU04_GM
timeout TRS/CSR/Ex4_DLMMU04_iGM
timeout TRS/CSR/Ex4_Zan97_C
timeout TRS/CSR/Ex4_Zan97_GM
timeout TRS/CSR/Ex4_Zan97_iGM
timeout TRS/CSR/Ex5_7_Luc97_C
timeout TRS/CSR/Ex5_7_Luc97_GM
timeout TRS/CSR/Ex5_7_Luc97_iGM
timeout TRS/CSR/Ex5_DLMMU04_C

16 TRS/CSR/Ex5_DLMMU04_GM
timeout TRS/CSR/Ex5_DLMMU04_iGM

3 TRS/CSR/Ex5_Zan97_C
0 TRS/CSR/Ex5_Zan97_GM
4 TRS/CSR/Ex5_Zan97_iGM

timeout TRS/CSR/Ex6_15_AEL02_C
timeout TRS/CSR/Ex6_15_AEL02_GM
timeout TRS/CSR/Ex6_15_AEL02_iGM

4 TRS/CSR/Ex6_9_Luc02c_C
timeout TRS/CSR/Ex6_9_Luc02c_GM
timeout TRS/CSR/Ex6_9_Luc02c_iGM

6 TRS/CSR/Ex6_GM04_C
0 TRS/CSR/Ex6_GM04_GM
0 TRS/CSR/Ex6_GM04_iGM
4 TRS/CSR/Ex6_Luc98_C
1 TRS/CSR/Ex6_Luc98_GM
9 TRS/CSR/Ex6_Luc98_iGM

TRS/CSR/Ex6_Luc98 0,033 1

TRS/CSR/Ex6_9_Luc02c 0,033 4

TRS/CSR/Ex6_GM04 0,024 0

TRS/CSR/Ex5_Zan97 0,075 0

TRS/CSR/Ex6_15_AEL02 timeout timeout

TRS/CSR/Ex5_7_Luc97 timeout timeout

TRS/CSR/Ex5_DLMMU04 0,037 16

TRS/CSR/Ex4_DLMMU04 2,668 timeout

TRS/CSR/Ex4_Zan97 0,036 timeout

TRS/CSR/Ex4_7_77_Bor03 0,023 0

TRS/CSR/Ex49_GM04 0,357 3

TRS/CSR/Ex4_7_37_Bor03 0,061 timeout

TRS/CSR/Ex4_7_56_Bor03 0,034 timeout

TRS/CSR/Ex4_4_Luc96b 0,033 0

TRS/CSR/Ex4_7_15_Bor03 0,053 0

TRS/CSR/Ex3_2_Luc97 timeout timeout

TRS/CSR/Ex3_3_25_Bor03 0,035 8

TRS/CSR/Ex2_Luc03b 0,034 4

TRS/CSR/Ex3_12_Luc96a 0,035 timeout

TRS/CSR/Ex26_Luc03b 0,036 22

TRS/CSR/Ex2_Luc02a 0,039 timeout

TRS/CSR/Ex24_Luc06 0,024 0

TRS/CSR/Ex25_Luc06 0,033 0

TRS/CSR/Ex23_Luc06 0,023 0

TRS/CSR/Ex24_GM04 0,024 0

TRS/CSR/Ex1_Luc04b 0,035 2

TRS/CSR/Ex1_Zan97 0,052 0

TRS/CSR/Ex1_GM99 0,023 0

TRS/CSR/Ex1_Luc02b 0,035 timeout

TRS/CSR/Ex1_GL02a 0,064 1

TRS/CSR/Ex1_GM03 timeout timeout

TRS/CSR/Ex16_Luc06 0,023 0

TRS/CSR/Ex18_Luc06 0,024 0

TRS/CSR/Ex15_Luc06 0,023 0

TRS/CSR/Ex15_Luc98 0,035 2

TRS/CSR/Ex14_AEGL02 0,074 1

TRS/CSR/Ex14_Luc06 0,033 11

TRS/CSR/Ex1_2_AEL03 0,042 timeout

TRS/CSR/Ex1_2_Luc02c 0,024 2
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timeout TRS/CSR/Ex7_BLR02_C
timeout TRS/CSR/Ex7_BLR02_GM
timeout TRS/CSR/Ex7_BLR02_iGM
timeout TRS/CSR/Ex8_BLR02_C
timeout TRS/CSR/Ex8_BLR02_GM
timeout TRS/CSR/Ex8_BLR02_iGM

12 TRS/CSR/Ex9_BLR02_C
5 TRS/CSR/Ex9_BLR02_GM
41 TRS/CSR/Ex9_BLR02_iGM

timeout TRS/CSR/Ex9_Luc04_C
timeout TRS/CSR/Ex9_Luc04_GM
timeout TRS/CSR/Ex9_Luc04_iGM
timeout TRS/CSR/Ex9_Luc06_C

0 TRS/CSR/Ex9_Luc06_GM
8 TRS/CSR/Ex9_Luc06_iGM

timeout TRS/CSR/ExAppendixB_AEL03_C
timeout TRS/CSR/ExAppendixB_AEL03_GM
timeout TRS/CSR/ExAppendixB_AEL03_iGM

2 TRS/CSR/ExConc_Zan97_C
0 TRS/CSR/ExConc_Zan97_GM
1 TRS/CSR/ExConc_Zan97_iGM
16 TRS/CSR/ExIntrod_GM01_C
8 TRS/CSR/ExIntrod_GM01_GM
36 TRS/CSR/ExIntrod_GM01_iGM
14 TRS/CSR/ExIntrod_GM04_C
0 TRS/CSR/ExIntrod_GM04_GM
11 TRS/CSR/ExIntrod_GM04_iGM

timeout TRS/CSR/ExIntrod_GM99_C
timeout TRS/CSR/ExIntrod_GM99_GM
timeout TRS/CSR/ExIntrod_GM99_iGM
timeout TRS/CSR/ExIntrod_Zan97_C
timeout TRS/CSR/ExIntrod_Zan97_GM
timeout TRS/CSR/ExIntrod_Zan97_iGM
timeout TRS/CSR/ExProp7_Luc06_C

1 TRS/CSR/ExProp7_Luc06_GM
41 TRS/CSR/ExProp7_Luc06_iGM

timeout TRS/CSR/ExSec11_1_Luc02a_C
timeout TRS/CSR/ExSec11_1_Luc02a_GM
timeout TRS/CSR/ExSec11_1_Luc02a_iGM
timeout TRS/CSR/ExSec4_2_DLMMU04_C
timeout TRS/CSR/ExSec4_2_DLMMU04_GM
timeout TRS/CSR/ExSec4_2_DLMMU04_iGM
timeout TRS/CSR/ExSec11_1_Luc02a_C
timeout TRS/CSR/ExSec11_1_Luc02a_GM
timeout TRS/CSR/ExSec11_1_Luc02a_iGM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete-noand_C
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete-noand_GM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete-noand_iGM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete_C
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete_GM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete_iGM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds-noand_C
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds-noand_GM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds-noand_iGM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds_C
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds_GM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds_iGM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts-noand_C
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts-noand_GM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts-noand_iGM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts_C

13 TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts_GM
timeout TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts_iGM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete-noand_C
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete-noand_GM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete-noand_iGM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete_C
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete_GM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete_iGM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds-noand_C

48 TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds-noand_GM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds-noand_iGM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds_C

7 TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds_GM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds_iGM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts-noand_C

10 TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts-noand_GM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts-noand_iGM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts_C

2 TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts_GM
timeout TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts_iGM
timeout TRS/CSR_Maude/my-nat/MYNAT_complete-noand_C
timeout TRS/CSR_Maude/my-nat/MYNAT_complete-noand_GM
timeout TRS/CSR_Maude/my-nat/MYNAT_complete-noand_iGM
timeout TRS/CSR_Maude/my-nat/MYNAT_complete_C
timeout TRS/CSR_Maude/my-nat/MYNAT_complete_GM
timeout TRS/CSR_Maude/my-nat/MYNAT_complete_iGM
timeout TRS/CSR_Maude/my-nat/MYNAT_nokinds-noand_C
timeout TRS/CSR_Maude/my-nat/MYNAT_nokinds-noand_GM
timeout TRS/CSR_Maude/my-nat/MYNAT_nokinds-noand_iGM
timeout TRS/CSR_Maude/my-nat/MYNAT_nokinds_C
timeout TRS/CSR_Maude/my-nat/MYNAT_nokinds_GM
timeout TRS/CSR_Maude/my-nat/MYNAT_nokinds_iGM
timeout TRS/CSR_Maude/my-nat/MYNAT_nosorts-noand_C
timeout TRS/CSR_Maude/my-nat/MYNAT_nosorts-noand_GM
timeout TRS/CSR_Maude/my-nat/MYNAT_nosorts-noand_iGM

10 TRS/CSR_Maude/my-nat/MYNAT_nosorts_C
timeout TRS/CSR_Maude/my-nat/MYNAT_nosorts_GM

18 TRS/CSR_Maude/my-nat/MYNAT_nosorts_iGM
timeout TRS/CSR_Maude/palindrome/PALINDROME_complete-noand_C
timeout TRS/CSR_Maude/palindrome/PALINDROME_complete-noand_GM
timeout TRS/CSR_Maude/palindrome/PALINDROME_complete-noand_iGM
timeout TRS/CSR_Maude/palindrome/PALINDROME_complete_C
timeout TRS/CSR_Maude/palindrome/PALINDROME_complete_GM
timeout TRS/CSR_Maude/palindrome/PALINDROME_complete_iGM
timeout TRS/CSR_Maude/palindrome/PALINDROME_nokinds-noand_C

7 TRS/CSR_Maude/palindrome/PALINDROME_nokinds-noand_GM
timeout TRS/CSR_Maude/palindrome/PALINDROME_nokinds-noand_iGM
timeout TRS/CSR_Maude/palindrome/PALINDROME_nokinds_C

2 TRS/CSR_Maude/palindrome/PALINDROME_nokinds_GM
52 TRS/CSR_Maude/palindrome/PALINDROME_nokinds_iGM
11 TRS/CSR_Maude/palindrome/PALINDROME_nosorts-noand_C
1 TRS/CSR_Maude/palindrome/PALINDROME_nosorts-noand_GM
7 TRS/CSR_Maude/palindrome/PALINDROME_nosorts-noand_iGM
5 TRS/CSR_Maude/palindrome/PALINDROME_nosorts_C
0 TRS/CSR_Maude/palindrome/PALINDROME_nosorts_GM
6 TRS/CSR_Maude/palindrome/PALINDROME_nosorts_iGM

TRS/CSR_Maude/palindrome/PALINDROME_nosorts-noand 0,036 1

TRS/CSR_Maude/palindrome/PALINDROME_nosorts 0,035 0

TRS/CSR_Maude/palindrome/PALINDROME_nokinds-noand 0,054 7

TRS/CSR_Maude/palindrome/PALINDROME_nokinds 0,08 2

TRS/CSR_Maude/palindrome/PALINDROME_complete-noand 0,32 timeout

TRS/CSR_Maude/palindrome/PALINDROME_complete 0,377 timeout

TRS/CSR_Maude/my-nat/MYNAT_nosorts-noand 0,039 timeout

TRS/CSR_Maude/my-nat/MYNAT_nosorts 0,036 10

TRS/CSR_Maude/my-nat/MYNAT_nokinds-noand 0,054 timeout

TRS/CSR_Maude/my-nat/MYNAT_nokinds 2,619 timeout

TRS/CSR_Maude/my-nat/MYNAT_complete-noand 0,333 timeout

TRS/CSR_Maude/my-nat/MYNAT_complete 22,267 timeout

TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts-noand timeout Don't know

TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nosorts timeout Don't know

TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds-noand 0,249 48

TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_nokinds 5,025 7

TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete-noand 0,729 timeout

TRS/CSR_Maude/length-lazy-list/LengthOfFiniteLists_complete 30,336 timeout

TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts-noand timeout timeout

TRS/CSR_Maude/lazy-nat-list/OvConsOS_nosorts timeout Don't know

TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds-noand 0,405 timeout

TRS/CSR_Maude/lazy-nat-list/OvConsOS_nokinds timeout timeout

TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete-noand 1,705 timeout

TRS/CSR_Maude/lazy-nat-list/OvConsOS_complete timeout timeout

TRS/CSR/ExSec4_2_DLMMU04 0,04 timeout

TRS/CSR/ExSec11_1_Luc02a 0,041 timeout

TRS/CSR/ExProp7_Luc06 0,081 1

TRS/CSR/ExSec11_1_Luc02a 0,041 timeout

TRS/CSR/ExIntrod_GM99 0,037 timeout

TRS/CSR/ExIntrod_Zan97 timeout timeout

TRS/CSR/ExIntrod_GM01 0,035 8

TRS/CSR/ExIntrod_GM04 0,035 0

TRS/CSR/ExAppendixB_AEL03 0,045 timeout

TRS/CSR/ExConc_Zan97 0,023 0

TRS/CSR/Ex9_Luc04 0,024 timeout

TRS/CSR/Ex9_Luc06 0,024 0

TRS/CSR/Ex8_BLR02 0,037 timeout

TRS/CSR/Ex9_BLR02 0,036 5

TRS/CSR/Ex7_BLR02 0,036 timeout
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timeout TRS/CSR_Maude/peanoSimple/MYNAT_complete-noand_C
timeout TRS/CSR_Maude/peanoSimple/MYNAT_complete-noand_GM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_complete-noand_iGM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_complete_C
timeout TRS/CSR_Maude/peanoSimple/MYNAT_complete_GM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_complete_iGM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_nokinds-noand_C

22 TRS/CSR_Maude/peanoSimple/MYNAT_nokinds-noand_GM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_nokinds-noand_iGM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_nokinds_C

31 TRS/CSR_Maude/peanoSimple/MYNAT_nokinds_GM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_nokinds_iGM
timeout TRS/CSR_Maude/peanoSimple/MYNAT_nosorts-noand_C

1 TRS/CSR_Maude/peanoSimple/MYNAT_nosorts-noand_GM
19 TRS/CSR_Maude/peanoSimple/MYNAT_nosorts-noand_iGM
7 TRS/CSR_Maude/peanoSimple/MYNAT_nosorts_C
0 TRS/CSR_Maude/peanoSimple/MYNAT_nosorts_GM
5 TRS/CSR_Maude/peanoSimple/MYNAT_nosorts_iGM

timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete-noand_C
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete-noand_GM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete-noand_iGM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete_C
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete_GM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete_iGM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds-noand_C
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds-noand_GM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds-noand_iGM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds_C
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds_GM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds_iGM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts-noand_C
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts-noand_GM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts-noand_iGM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts_C
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts_GM
timeout TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts_iGM
timeout TRS/aprove08-csr/csrdiv_C
timeout TRS/aprove08-csr/csrdiv_GM
timeout TRS/aprove08-csr/csrdiv_iGM
timeout TRS/aprove08-csr/emmes_C
timeout TRS/aprove08-csr/emmes_GM
timeout TRS/aprove08-csr/emmes_iGM

- TRS/endrullis08/cariboo_ex1_C
- TRS/endrullis08/cariboo_ex1_GM
- TRS/endrullis08/cariboo_ex1_iGM

timeout TRS/endrullis08/cariboo_ex2_C
- TRS/endrullis08/cariboo_ex2_GM
- TRS/endrullis08/cariboo_ex2_iGM
- TRS/endrullis08/cariboo_ex3_C
- TRS/endrullis08/cariboo_ex3_GM
- TRS/endrullis08/cariboo_ex3_iGM
- TRS/endrullis08/cariboo_ex4_C
- TRS/endrullis08/cariboo_ex4_GM
- TRS/endrullis08/cariboo_ex4_iGM
- TRS/endrullis08/cariboo_ex5_C
- TRS/endrullis08/cariboo_ex5_GM
- TRS/endrullis08/cariboo_ex5_iGM

timeout TRS/endrullis08/cariboo_ex6_C
- TRS/endrullis08/cariboo_ex6_GM
- TRS/endrullis08/cariboo_ex6_iGM
- TRS/endrullis08/ex5.3_C
- TRS/endrullis08/ex5.3_GM
- TRS/endrullis08/ex5.3_iGM
- TRS/endrullis08/ex5.4_C
- TRS/endrullis08/ex5.4_GM
- TRS/endrullis08/ex5.4_iGM

timeout TRS/endrullis08/ex5.5_C
- TRS/endrullis08/ex5.5_GM

timeout TRS/endrullis08/ex5.5_iGM
timeout TRS/endrullis08/ex5.6_C

- TRS/endrullis08/ex5.6_GM
- TRS/endrullis08/ex5.6_iGM
- TRS/endrullis08/ex5.7_C
- TRS/endrullis08/ex5.7_GM
- TRS/endrullis08/ex5.7_iGM
- TRS/endrullis08/ex5.8_C
- TRS/endrullis08/ex5.8_GM
- TRS/endrullis08/ex5.8_iGM

timeout TRS/endrullis08/f20_C
timeout TRS/endrullis08/f20_GM
timeout TRS/endrullis08/f20_iGM
timeout TRS/endrullis08/f30_C

- TRS/endrullis08/f30_GM
timeout TRS/endrullis08/f30_iGM
timeout TRS/endrullis08/f40_C

- TRS/endrullis08/f40_GM
timeout TRS/endrullis08/f40_iGM

- TRS/endrullis08/f4_C
- TRS/endrullis08/f4_GM
- TRS/endrullis08/f4_iGM

timeout TRS/endrullis08/morse_C
- TRS/endrullis08/morse_GM

timeout TRS/endrullis08/morse_iGM
YES 95/109 60/109 132/327

YES AVERAGE TIME (s) 0,773798165 1,532110092
SUCESS PERCENTAGE 87,20% 55,00%

TRS/endrullis08/morse 4,447 -

TRS/endrullis08/f40.trs 0,447 -

TRS/endrullis08/f4 0,171 -

TRS/endrullis08/f20 3,762 timeout

TRS/endrullis08/f30 0,232 -

TRS/endrullis08/ex5.7 0,078 -

TRS/endrullis08/ex5.8 0,037 -

TRS/endrullis08/ex5.5 0,143 -

TRS/endrullis08/ex5.6 0,056 -

TRS/endrullis08/ex5.3 0,036 -

TRS/endrullis08/ex5.4 0,223 -

TRS/endrullis08/cariboo_ex5 0,073 -

TRS/endrullis08/cariboo_ex6 0,07 -

TRS/endrullis08/cariboo_ex3 0,056 -

TRS/endrullis08/cariboo_ex4 0,053 -

TRS/endrullis08/cariboo_ex1 0,036 -

TRS/endrullis08/cariboo_ex2 0,207 -

TRS/aprove08-csr/csrdiv 0,297 timeout

TRS/aprove08-csr/emmes timeout timeout

TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts-noand 0,055 timeout

TRS/CSR_Maude/PEPM04/LISTUTILITIES_nosorts 0,041 timeout

TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds-noand 0,62 timeout

TRS/CSR_Maude/PEPM04/LISTUTILITIES_nokinds timeout timeout

TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete-noand 4,04 timeout

TRS/CSR_Maude/PEPM04/LISTUTILITIES_complete timeout timeout

TRS/CSR_Maude/peanoSimple/MYNAT_nosorts-noand 0,036 1

TRS/CSR_Maude/peanoSimple/MYNAT_nosorts 0,033 0

TRS/CSR_Maude/peanoSimple/MYNAT_nokinds-noand 0,043 22

TRS/CSR_Maude/peanoSimple/MYNAT_nokinds 0,066 31

TRS/CSR_Maude/peanoSimple/MYNAT_complete-noand 0,131 timeout

TRS/CSR_Maude/peanoSimple/MYNAT_complete 0,24 timeout
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Features
Processor Intel(R) Core(TM)2 Duo 2.16GHz

RAM 1GB SDRAM
OS Ubuntu-Linux 2.6.24-19-generic

Program Versions MuTerm + SMT Solver
Database TPDB 7.0
Timeout 60s (300s)

Date 10.15.10

Examples muterm AproVE
TRS/AProVE_AC_04/AC01.trs 0.27 1.421
TRS/AProVE_AC_04/AC02.trs 0.269 1.418
TRS/AProVE_AC_04/AC03.trs 1.471 1.532
TRS/AProVE_AC_04/AC04.trs 1.56 3.415
TRS/AProVE_AC_04/AC05.trs 1.83 3.824
TRS/AProVE_AC_04/AC06.trs 4.161 1.477
TRS/AProVE_AC_04/AC07.trs 0.929 2.895
TRS/AProVE_AC_04/AC09.trs 9.291 1.482
TRS/AProVE_AC_04/AC10.trs 5.356 1.485
TRS/AProVE_AC_04/AC11.trs 0.281 1.658
TRS/AProVE_AC_04/AC12.trs 0.638 1.531
TRS/AProVE_AC_04/AC13.trs 8.555 1.49
TRS/AProVE_AC_04/AC14.trs 5.446 1.489
TRS/AProVE_AC_04/AC15.trs 0.369 1.473
TRS/AProVE_AC_04/AC16.trs 1.046 1.589
TRS/AProVE_AC_04/AC17.trs 7.251 2.333
TRS/AProVE_AC_04/AC18.trs 9.049 16.146
TRS/AProVE_AC_04/AC19.trs 0.266 1.528
TRS/AProVE_AC_04/AC20.trs 1.538 3.459
TRS/AProVE_AC_04/AC21.trs 10.386 13.311
TRS/AProVE_AC_04/AC22.trs 54.007 14.057
TRS/AProVE_AC_04/AC23.trs 17.928 2.682
TRS/AProVE_AC_04/AC24.trs 2.611 2.236
TRS/AProVE_AC_04/AC26.trs 5.773 1.536
TRS/AProVE_AC_04/AC27.trs 23.193 1.546
TRS/AProVE_AC_04/AC28.trs 52.257 10.312
TRS/AProVE_AC_04/AC41.trs 0.431 2.468
TRS/AProVE_AC_04/AC48.trs 1.739 1.483
TRS/AProVE_AC_04/AC49.trs 0.574 3.687
TRS/AProVE_AC_04/AC50.trs 0.774 5.216
TRS/AProVE_AC_04/AC51.trs 0.634 1.897
TRS/AProVE_AC_04/AC52.trs 2.222 4.521
TRS/AProVE_AC_04/AC53.trs 0.165 2.966
TRS/AProVE_AC_04/AC54.trs 0.717 4.058

TRS/AProVE_AC_04/IJCAR_AC1.trs 2.188 3.859
TRS/Mixed_AC_and_C/AC08.trs 3.998 4.144
TRS/Mixed_AC_and_C/AC29.trs 0.433 2.815
TRS/Mixed_AC_and_C/AC47.trs 0.707 5.448

TRS/Mixed_AC_and_C/rationals.trs 60 60
TRS/Mixed_AC/BAG_complete-noand.trs 23.91 60

TRS/Mixed_AC/BAG_complete.trs 22.867 60
TRS/Mixed_AC/BAG_nokinds-noand.trs 6.312 13.33

TRS/Mixed_AC/BAG_nokinds.trs 4.74 15.551
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TRS/Mixed_AC/BAG_nosorts-noand.trs 2.795 3.623
TRS/Mixed_AC/BAG_nosorts.trs 3.234 3.019

TRS/Mixed_AC/bag-sum-prod-bin.trs 3.779 2.226
TRS/Mixed_AC/bag-sum-prod-distr.trs 22.476 2.6

TRS/Mixed_AC/bag-sum-prod.trs 2.265 1.536
TRS/Mixed_AC/boolean_rings.trs 4.76 1.528

TRS/Mixed_AC/differ.trs 0.625 5.445
TRS/Mixed_AC/intersect.trs 4.394 2.138

TRS/Mixed_AC/kusakari1.trs 0.328 6.055
TRS/Mixed_AC/RENAMED-BOOL_complete-noand.trs 60 60

TRS/Mixed_AC/RENAMED-BOOL_complete.trs 60 60
TRS/Mixed_AC/RENAMED-BOOL_nokinds-noand.trs 24.786 14.194

TRS/Mixed_AC/RENAMED-BOOL_nokinds.trs 25.811 35.421
TRS/Mixed_AC/RENAMED-BOOL_nosorts-noand.trs 7.696 15.986

TRS/Mixed_AC/RENAMED-BOOL_nosorts.trs 60 5.115
TRS/Mixed_AC/sequent_modulo.trs 155.348 30.213

TRS/Mixed_C/AC42.trs 0.36 2.239
TRS/Mixed_C/AC43.trs 0.327 2.389
TRS/Mixed_C/AC44.trs 0.412 2.564
TRS/Mixed_C/AC45.trs 0.369 2.507
TRS/Mixed_C/AC46.trs 0.993 3.921

TRS/Mixed_C/maude2.trs 2.257 4.327
TRS/Mixed_C/PEANO-NAT_complete-noand.trs 60 60

TRS/Mixed_C/PEANO-NAT_complete.trs 60 60
TRS/Mixed_C/PEANO-NAT_nokinds-noand.trs 60 17.583

TRS/Mixed_C/PEANO-NAT_nokinds.trs 41.51 16.114
TRS/Mixed_C/PEANO-NAT_nosorts-noand.trs 3.712 7.601

TRS/Mixed_C/PEANO-NAT_nosorts.trs 2.388 7.235
muterm AProVE

#TO 8 7
#YES 59 57

#MAYBE 5 5
#NO 0 2

#ERROR 0 0
Avg.YES 6.83 5.123
Avg.NO 0 10.5505

Max. Time 60 (300) 60
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Features
Processor Intel(R) Core(TM)2 Duo 2.16GHz

RAM 1GB SDRAM
OS Ubuntu-Linux 2.6.24-19-generic

Program Versions MuTerm + MultiSolver
Database MTT examples
Timeout 60s

Date 05.02.11

Examples muterm muterm-old
TRS/Maude_AC/blackboard-C-A-B-no-sorts-off-off.trs 1.103 AC not supported

TRS/Maude_AC/blackboard-OS-T-A-B-no-sorts-off-off.trs 1.297 AC not supported
TRS/Maude_AC/data-agents-C-A-B-no-sorts-off-off.trs 39.025 AC not supported

TRS/Maude_AC/die-hard-C-A-B-no-sorts-off-off.trs 1.208 AC not supported
TRS/Maude_AC/die-hard-OS-T-A-B-no-sorts-off-off.trs 10.651 AC not supported

TRS/Maude_AC/die-hard-OS-T-B-O-L--off-off.trs 60 AC not supported
TRS/Maude_AC/dining-philosophers-5-C-A-B-no-sorts-off-off.trs 2.223 AC not supported

TRS/Maude_AC/inf-C-A-B-no-kinds-off-off.trs 60 60
TRS/Maude_AC/inf-C-OS-A-B-no-kinds-off-off.trs 60 60

TRS/Maude_AC/inf-C-OS-B-O-L--off-off.trs 26.424 26.126
TRS/Maude_AC/josephus-C-A-B-no-sorts-off-off.trs 0.08 0.076

TRS/Maude_AC/josephus-generalized-C-A-B-no-sorts-off-off.trs 1.258 AC not supported
TRS/Maude_AC/josephus-generalized-C-OS-B-A-no-sorts-off-off.trs 0.408 AC not supported

TRS/Maude_AC/josephus-OS-T-B-A-no-sorts-off-off.trs 0.085 0.081
TRS/Maude_AC/lazy-list-utilities-C-A-B-no-sorts-off-on.trs 0.041 0.041

TRS/Maude_AC/lazy-list-utilities-C-OS-B-O-L-off-on.trs 0.049 0.049
TRS/Maude_AC/lazy-nat-list-C-OS-B-O-L--off-on.trs 60 60
TRS/Maude_AC/mtt-bool-C-A-B-no-sorts-off-off.trs 0.023 0.023

TRS/Maude_AC/mtt-bool-C-OS-B-A-no-sorts-off-off.trs 0.023 0.024
TRS/Maude_AC/mtt-list-C-A-B-no-kinds-off-off.trs 0.041 0.041
TRS/Maude_AC/mtt-list-C-A-B-no-sorts-off-off.trs 0.033 0.033

TRS/Maude_AC/mtt-map-C-A-B-no-sorts-off-off.trs 0.783 AC not supported
TRS/Maude_AC/mtt-map-C-OS-B-A-no-sorts-off-off.trs 1.055 AC not supported

TRS/Maude_AC/mtt-nat-C-A-B-no-sorts-off-off.trs 0.043 0.043
TRS/Maude_AC/mtt-nat-C-OS-A-B-no-sorts-off-off.trs 0.045 0.045
TRS/Maude_AC/rabbit-hop-C-A-B-no-sorts-off-off.trs 0.122 0.114

TRS/Maude_AC/rabbit-hop-OS-T-A-B-no-sorts-off-off.trs 0.123 0.119
muterm muterm-old

Time 86.143 26.84
#TO 4 3

#YES 20 12
#MAYBE 3 9

#NO 0 0
#ERROR 0 0
Avg.YES 2.39 1.72

Max. Time 60 60
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