
 

 





 

 
 
 

DYNAMIC EVOLUTION  

AND RECONFIGURATION  

OF SOFTWARE ARCHITECTURES  

THROUGH ASPECTS 
 

Cristóbal Costa-Soria 
 
 

 
 

DEPARTMENT OF INFORMATION  
 SYSTEMS AND COMPUTATION  

 
 

A thesis submitted for the degree of  
Doctor of Philosophy in Computer Science 

 
 

Supervised by 
Dr. Jennifer Pérez Benedí 
Dr. Jose A. Carsí Cubel 

 
 

May 2011  



iv 

 

 

Supervisors 

Dr. Jennifer Pérez Benedí 
E.U. Informática, Technical University of Madrid (Spain) 
 
Dr. Jose Ángel Carsí Cubel 
Dept. Information Systems & Computation, Univ. Politécnica de Valencia (Spain) 

 
 

External Reviewers 

Dr. Reiko Heckel 
Dept. of Computer Science 
University of Leicester (UK) 
 
Dr. Laurence Duchien 
Dept. of Computer Science (FIL) 
University of Lille1 (France) 
 
Dr. Carlos E. Cuesta Quintero 
Dept. Computing Languages and 
Systems II 
Rey Juan Carlos University (Spain) 

 
 
 
 
 

Thesis Defense Committee Members 

Dr. Isidro Ramos Salavert 
Universidad Politécnica de Valencia 
(Spain) 
 
Dr. Reiko Heckel 
University of Leicester (UK) 
 
Dr. Carlos E. Cuesta Quintero 
Rey Juan Carlos University (Spain) 
 
Dr. Michel Wermelinger 
The Open University (UK) 
 
Dr. Emilio Insfrán Pelozo 
Universidad Politécnica de Valencia 
(Spain) 

 

 
PhD. Thesis  
© Cristóbal Costa Soria. Valencia, Spain 2011. 
This work is subjected to copyright. All rights are reserved. 
 
This thesis has been partially supported by the Spanish Ministry of Education and Science 
through National Research, Development and Innovation projects DYNAMICA (TIC2003-
07804-C05-01), META/Moment (TIN2006-15175-C05-01), by the European Regional 
Development Fund (FEDER), by the Comunidad de Madrid and the Universidad Rey Juan 
Carlos under the IASOMM project (URJC-CM-2007-CET-1555), and by the Conselleria 
d‟Educació i Ciència (Generalitat Valenciana) under the contract BFPI06/227. 
 
Credits of the pictures   

Álvaro Caminero, toxicpicnic.com (cover, pp. 21 and 131) 
Cristóbal Costa-Soria (pp. 59, 351, 377) 



 

v 

ABSTRACT 
Change is an intrinsic property of software. A software system, during its 
lifetime, may require several updates, improvements, or new features. If these 
change requirements are not addressed, the risk of becoming a useless system 
increases. In fact, this is a challenging issue of safety- and mission-critical 
software systems, which cannot be stopped to perform maintenance or 
evolution operations due to their continuous operation. To reduce the aging 
of these critical systems, they must be provided with mechanisms enabling 
their dynamic evolution, i.e. the support of changes on their structure and 
behaviour while they remain in operation.  

This thesis is concerned with the design of a framework to build architecture-
based, dynamically evolvable, software systems. The fact that this framework is 
a software architecture based approach provides the following advantages: (i) it 
offers a high-level of abstraction for describing dynamic changes; (ii) it allows 
varying the level of system description; and (iii) it advantages from the existing 
support for system modelling, code-generation, and formal analysis provided 
by architecture description languages.  

The framework presented in this thesis, called Dynamic PRISMA, is 
characterized by the combination of two levels of dynamism: Dynamic 
Reconfiguration, which addresses changes at the configuration level (i.e. the 
architectural configuration), and Dynamic Type Evolution, which addresses 
changes at the type-level (i.e. the specification of architectural types and 
instances). This combination is one of the major contributions of this thesis: 
thus a system is not only able to reconfigure at runtime the building blocks it 
is composed of (i.e. architectural types), but also to redefine these building 
blocks (or introduce new ones) at runtime.  

Another contribution of the thesis is the identification of the concerns related 
to dynamic evolution and their integration in the framework through aspects. 
This improves the separation of concerns and allows us to change 
reconfiguration specifications, evolution mechanisms, or the business logic 
independently of each other.  

A third contribution of this thesis is how this dynamism is supported: 
reconfiguration through autonomic capabilities, which provides proactivity 
according to either internal or external stimuli; and type evolution through 
asynchronous reflection, which enables the modification of a type 
specification and the transformation of their instances at different rates (i.e. 
when they are ready for evolution). Specifically, the asynchronous evolution 



vi 

semantics is precisely described by means of graph transformations. This 
formalism has been chosen because it naturally models both the system 
architecture and its asynchronous evolution.  

The work presented in this thesis is illustrated through a case study from the 
robotics domain; an area which could potentially benefit from the results of 
this thesis. 

 

KEYWORDS 

software architectures, dynamic evolution, dynamic reconfiguration, dynamic type 
evolution, dynamic instance evolution, asynchronous evolution, runtime evolution, self-
managed systems, autonomic computing, computational reflection, aspect-oriented 
software development 

 

  



 

vii 

RESUMEN 
El cambio es una propiedad intrínseca del software. Un sistema software, a lo 
largo de su vida útil, puede necesitar actualizaciones, mejoras o la integración 
de nuevas características. Si estas necesidades de cambio no son cubiertas, el 
riesgo de que el sistema software deje de ser útil aumenta. Esto supone un reto 
para los sistemas críticos, los cuales no pueden ser detenidos para realizar 
operaciones de mantenimiento o evolución debido a que deben estar 
continuamente operativos. Para reducir el envejecimiento de dichos sistemas, 
éstos deben incorporar mecanismos que les permitan evolucionar 
dinámicamente, i.e. tolerar cambios tanto estructurales como de 
comportamiento mientras están operativos. 

Esta tesis aborda el diseño de una infraestructura para la construcción de 
sistemas software dinámicamente evolucionables y basados en arquitecturas 
software. Las razones que han motivado el uso de un enfoque basado en 
arquitecturas software son: (i) proporcionan un alto nivel de abstracción para 
definir cambios dinámicos; (ii) permiten variar el nivel de descripción del 
sistema; y (iii) permiten reutilizar las herramientas existentes para modelado 
de sistemas, generación automática de código, y análisis formal 
proporcionadas por los lenguajes de descripción de arquitecturas.  

El marco presentado en esta tesis, llamado Dynamic PRISMA, se caracteriza por 
la combinación de dos niveles de dinamismo: Reconfiguración Dinámica, que 
aborda los cambios a nivel de configuración (i.e. la configuración 
arquitectónica), y Evolución Dinámica de Tipos, que aborda los cambios a 
nivel de tipos (i.e. la especificación de tipos arquitectónicos e instancias). Esta 
combinación es una de las mayores contribuciones de esta tesis: así, un 
sistema no es solamente capaz de reconfigurar durante su ejecución los 
elementos constructivos que lo forman (i.e. los tipos arquitectónicos), sino 
también de redefinir dichos elementos constructivos (o introducir otros) 
durante su ejecución.  

Otra contribución de la tesis es la identificación de las funcionalidades 
relacionadas con la evolución dinámica y su integración a través de aspectos. 
Esto mejora la separación de funcionalidades y permite cambiar de forma 
independiente entre sí las especificaciones de reconfiguración, los mecanismos 
de evolución, o la lógica de negocio.  

Una tercera contribución es cómo este dinamismo se ha soportado: la 
reconfiguración a través de capacidades autonómicas, aportando así 
proactividad en función de estímulos internos y/o externos; y la evolución de 



viii 

tipos a través de la reflexión asíncrona, permitiendo así modificar la 
especificación de un tipo y la transformación de sus instancias en distintos 
tiempos (i.e. cuando éstas están listas para su evolución). Además, la 
semántica de la evolución asíncrona se ha formalizado a través de 
transformaciones de grafos, lo que ha permitido modelar de forma natural 
tanto la arquitectura de un sistema como su evolución asíncrona.  

Por último, el trabajo presentado en esta tesis se ha ilustrado a través de un 
caso de estudio del dominio robótico; un área que podría verse 
potencialmente beneficiada con los resultados de esta tesis. 

 

PALABRAS CLAVE 

arquitecturas software, evolución dinámica, reconfiguración dinámica, evolución 
dinámica de tipos, evolución de instancias, evolución asíncrona, evolución en tiempo de 
ejecución, sistemas auto-gestionados, computación autonómica, reflexión 
computacional, desarrollo de software orientado a aspectos 

 

 



 

ix 

RESUM 
El canvi és una propietat intrínseca del programari. Un sistema informàtic, al 
llarg de la seua vida útil, pot necessitar actualitzacions, millores, o la integració 
de noves característiques. Si aquestes necessitats de canvi no són cobertes, el 
risc de que un sistema informàtic deixe d‟ésser útil augmenta. Açò esdevé un 
repte per als sistemes crítics, els quals no poden ser parats per a realitzar 
operacions de manteniment o evolució a causa de que han d‟estar 
contínuament operatius. Per a reduir l‟envelliment d‟aquests sistemes, s‟han 
d‟incorporar mecanismes que els permeten evolucionar dinàmicament, açò és,  
tolerar canvis tant estructurals com de comportament mentre estan operatius. 

Aquesta tesis aborda el disseny d‟una infraestructura per a la construcció de 
sistemes software dinàmicament evolucionables i basats en arquitectures de 
programari. Les raons que han motivat la utilització d‟una aproximació basada 
en arquitectures de programari són les següents: (i) proporcionen un alt nivell 
d‟abstracció per a definir canvis dinàmics; (ii) permeten variar el nivell 
d‟abstracció dels sistemes complexes; y (iii) permeten reutilitzar el suport 
existent per al modelatge de sistemes, la generació automàtica de codi, i 
l‟anàlisi formal proporcionat pels llenguatges de descripció d‟arquitectures.  

La infraestructura presentada a aquesta tesi, denominada Dynamic PRISMA, es 
caracteritza per la combinació de dos nivells de dinamisme: Reconfiguració 
Dinàmica, que tracta els canvis a nivell de configuració (i.e. la configuració 
arquitectònica), i l‟Evolució Dinàmica de Tipus, que tracta els canvis a nivell 
de tipus (i.e. la especificació de tipus arquitectònics e instàncies). Aquesta 
combinació és una de les majors contribucions d‟aquesta tesi: així, un sistema 
no és solament capaç de reconfigurar durant la seua execució els elements 
constructius amb que està format (i.e. els tipus arquitectònics), sinó també de 
redefinir aquests elements constructius (o introduir-ne d‟altres) durant la seua 
execució. 

Una altra contribució de la tesi és la identificació de les funcionalitats 
relacionades amb l‟evolució dinàmica i la seua integració a través d‟aspectes. 
Açò millora la separació de funcionalitats i permet canviar de forma 
independent les especificacions de reconfiguració, els mecanismes d‟evolució, 
o la lògica de negoci.  

Una tercera contribució és cóm aquest dinamisme s‟ha suportat: la 
reconfiguració a través de capacitats autonòmiques, aportant així proactivitat 
en funció d‟estímuls interns i/o externs; i la evolució de tipus mitjançant la 
reflexió asíncrona, permetent així modificar l‟especificació d‟un tipus i la 



x 

transformació de les seues instàncies en distints temps (i.e. quan aquestes 
estiguen preparades per a evolucionar). A més a més, la semàntica de 
l‟evolució asíncrona s‟ha formalitzat mitjançant transformacions de grafs, el 
que ha permès modelar de forma natural tant l‟arquitectura d‟un sistema com 
la seua evolució asíncrona.  

Per últim, el treball presentat a aquesta tesi s‟ha il·lustrat mitjançant un cas 
d‟estudi del domini robòtic; un àrea que podria veure‟s potencialment 
beneficiada amb els resultats d‟aquesta tesi. 

 

PARAULES CLAU 

arquitectures de programari, evolució dinàmica, reconfiguració dinàmica, evolució 
dinàmica de tipus, evolució d‘instàncies, evolució asíncrona, evolució en temps 
d‘execució, sistemes auto-gestionats, computació autonòmica, reflexió computacional, 
desenvolupament de programari orientat a aspectes 

 



 

xi 

 

 

 

 

 

 

Dedicatoria 

A mi amada Sagrario, por acompañarme en este camino 
con tanta paciencia, cariño y apoyo incondicional; pero 

sobretodo, por hacer que cada momento sea tan especial. 

A mi padre, mi suegro Pío Andrés y mis abuelos Vicente y 
Cristóbal, por todas sus sabias enseñanzas y los felices 

momentos que compartí con ellos, valiosos bienes que me 
han acompañado todo este tiempo. 

A mi madre, mi hermano Raúl y Sonia, por haberme 
ayudado a olvidar los malos momentos, por sus ánimos, y 

por lograr arrancar mi sonrisa. 

A mis tíos Pepe, Mª Isabel y Vicente, por despertar en mí 
la pasión por la Ciencia desde mi más temprana infancia 

y que aún pervive en mí. 

A toda mi familia: mi abuela Rosa, mis tíos Antonio y 
Susi, mi suegra Sagrario, y todos mis cuñados y cuñadas, 

por su comprensión y apoyo durante todos estos meses que 
han tenido que prescindir de mí. 





 

xiii 

PREFACE 
This thesis gathers together the most important results of more than five years 
of intensive research work. Simplicity, one of the fundamental principles of 
Science, has been always present in the developments of this work. At the 
beginnings of a research work, simplicity is not easy to achieve: the problem to 
address is generally blurred, complex and with a wide range of directions to 
explore. This exploration, which is inherent to any research, should be 
conducted to solve the research problem in a simple and clean way. However, 
the way to reach a solution is not unique and several ones may still exist 
waiting to be discovered.  

This thesis describes the path that has been followed to deal with the dynamic 
evolution of architecture-based systems and the advantages it presents to other 
alternative solutions. Many results may look obvious, yet they were not so easy 
to achieve at the beginning. These results may reflect that I have succeeded in 
finding a simple, clean way to a facet of the research problem. However, other 
results may be difficult to understand, which may reflect that I have not 
succeeded in finding a simpler way. I am not completely happy with a lot of 
things (as I am assured it is the case for most writers), but time has come to 
finish the work. I hope you will enjoy it and find it interesting; or, that at 
least, it may raise questions that may contribute to advance in the area.  

 

Manises, 20th February 2011 

 

 

Acknowledgements 

I would like to acknowledge the people who have helped me during these 
years, and who have shared with me their time, knowledge and friendship.  

I want to express my sincere gratitude and appreciation to my supervisors, 
Jennifer Pérez and Jose Angel Carsí. Particularly, I would like to thank Jennifer for 
her encouragement, her availability (also in weekends) in almost all deadlines, 
her deep observations, and specially, her good sense of humour when 
reviewing my papers. I would like to thank Jose Angel for his guidance and 
support, but more importantly, to give me enough confidence and freedom to 
conduct my research. 



xiv 

I would like to thank everyone within the Software Engineering and Information 
Systems research group, for providing a productive and friendly environment. 
Special thanks must go to Isidro Ramos for leading the group, his 
unconditional support to all of us, and for driving us towards the most 
challenging topics. Special thanks must go to Jose Hilario Canós, Javier Jaén, Mª 
Carmen Penadés, Patricio Letelier, Emilio Insfrán and Silvia Abrahao, for their 
support and encouragement in this thesis. Additional thanks to Adrián, Sonia, 
Emanuel, Lorena, David and Javier, for providing a pleasant environment. 

I especially want to thank these colleagues with whom I have shared not only 
office and lunch breaks, but also amusing and unforgettable moments: 
Alejandro Català, Abel Gómez, Jose A. Mocholí, Manuel Llavador, Javier Jaén and 
Elena Navarro. I cannot omit here Nelly Condori, Gonzalo Rojas and Isabel Díaz, 
who have made lunch breaks very pleasant, extremely amusing and de-
stressing.  

Additional thanks must be given to Nour Ali and Carlos Solís, with whom I 
have benefited from interesting discussions. I also would like to thank Rogelio 
Limón, MªEugenia Cabello and Felipe López for their great friendship. I am 
grateful, too, to Carlos Millán, David Hervás, and Sheila Aliaga, for their 
enthusiastic collaboration in the implementation of Dynamic PRISMA in 
PRISMANET. I cannot forget to mention here Rafael Cabedo, Jose Manuel 
Cercós, and Javier Guillén, with whom I shared enjoyable moments during the 
development of PRISMANET earlier prototypes. 

Special thanks to Carlos E. Cuesta, a very inspiring researcher and person with 
a broad knowledge on diverse topics, for sharing with me the enthusiasm and 
his valuable comments about the topic, and for giving me confidence to 
continue with the work. 

I would like to thank to all the wonderful people of the Department of 
Computer Science of the University of Leicester, who made me feel as if I was at 
home during my research stay. I especially want to thank Reiko Heckel for his 
helpful advice, for giving me different points of view that I had not previously 
considered, and for spending with me his valuable time. I also want to thank 
José Fiadeiro for his hospitality and for his valuable comments about my work. 

In addition, I would like to thank Inanna Catalá and Carlos E. Seaton from 
Global Metanoia, for the flexibility, understanding and support they gave me in 
the last months of the writing process. 

Finally, I would like to thank those anonymous reviewers who pointed out 
flaws, possible improvements and suggested new directions in my work.  



 

xv 

Table of Contents 

 
TABLE OF CONTENTS 

PART I: INTRODUCTION 23 

CHAPTER 1. INTRODUCTION .............................................................. 25 

1.1 Motivation ............................................................................................ 26 

1.1.1 Self-Management .................................................................................. 26 
1.1.2 Runtime Maintenance ......................................................................... 27 

1.2 Overall Aim and Objectives ................................................................. 28 
1.3 Research Methodology ......................................................................... 30 
1.4 Research Hypothesis ............................................................................ 32 
1.5 Thesis Overview ................................................................................... 33 

CHAPTER 2. CONTEXT ....................................................................... 35 

2.1 Introduction ......................................................................................... 35 
2.2 Software Architectures ......................................................................... 36 

2.2.1 Definition ............................................................................................. 37 
2.2.2 Basic Concepts ..................................................................................... 39 

2.2.2.1 Component ................................................................................................... 39 
2.2.2.2 Connector ..................................................................................................... 40 
2.2.2.3 Configuration ............................................................................................... 41 
2.2.2.4 System ........................................................................................................... 42 
2.2.2.5 Port ................................................................................................................ 42 
2.2.2.6 Connection ................................................................................................... 42 
2.2.2.7 Compositional Relationship ........................................................................ 43 
2.2.2.8 Other concepts .............................................................................................. 43 

2.3 Aspect-Oriented Software Development ............................................. 43 

2.3.1 Aspect-Oriented Programming ............................................................. 44 
2.3.2 Basic Concepts ..................................................................................... 46 
2.3.3 Aspects in the Software Life Cycle ....................................................... 47 

2.4 PRISMA ............................................................................................... 47 

2.4.1 Model and ADL selection .................................................................... 48 
2.4.2 Aspects as First-Class Citizens .............................................................. 49 
2.4.3 PRISMA Architectural Elements ......................................................... 51 



TABLE OF CONTENTS 

xvi 

2.4.4 Levels of abstraction ............................................................................. 53 
2.4.5 Model-Driven Development Support ................................................... 55 

2.4.5.1 PRISMA in MOF .......................................................................................... 56 
2.4.5.2 The PRISMA MDD Process ......................................................................... 57 

2.5 Conclusions .......................................................................................... 59 

PART II: STATE OF THE ART 61 

CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION .................................. 63 

3.1 Introduction ......................................................................................... 63 
3.2 Software Evolution ............................................................................... 63 

3.2.1 Software Maintenance vs Software Evolution ...................................... 64 
3.2.2 Evolution as part of the Development Process .................................... 65 

3.3 Dynamic Software Evolution ............................................................... 66 

3.3.1 Changing software artefacts ................................................................. 66 
3.3.2 Introducing changes at runtime ........................................................... 67 
3.3.3 Dynamic Evolution: Definitions .......................................................... 68 
3.3.4 Kinds of Dynamic Evolution ................................................................ 70 

3.3.4.1 Granularity of changes ................................................................................. 71 
3.3.4.2 Activeness of change ..................................................................................... 72 

3.4 Main Issues of Dynamic Evolution ..................................................... 73 

3.4.1 Safe Stopping of Running Systems ...................................................... 74 

3.4.1.1 Quiescence .................................................................................................... 74 
3.4.1.2 Tranquillity ................................................................................................... 76 
3.4.1.3 Other approaches for Safe Stopping ............................................................ 78 

3.4.2 Updating Stateful Artefacts .................................................................. 80 

3.4.2.1 No State Transfer .......................................................................................... 81 
3.4.2.2 Delegated State Transfer .............................................................................. 81 
3.4.2.3 Automated State Transfer ............................................................................ 82 

3.5 Other approaches for dynamic change management ......................... 84 

3.5.1 Control Systems ................................................................................... 84 
3.5.2 Autonomic Computing ........................................................................ 85 
3.5.3 Computational Reflection ................................................................... 89 

3.6 Dynamic Evolution in Software Architectures ................................... 92 

3.6.1 Dynamic Reconfiguration .................................................................... 92 
3.6.2 Dynamic Evolution of Architectural Types .......................................... 94 
3.6.3 Combining both kinds of dynamism ................................................... 95 

3.7 Conclusions .......................................................................................... 95 

 



TABLE OF CONTENTS 

xvii 

CHAPTER 4. RELATED WORKS ........................................................... 97 

4.1 Introduction ......................................................................................... 97 
4.2 Dynamic Evolution Approaches .......................................................... 98 

4.2.1 Formal, Dynamic ADLs for Reconfiguration ....................................... 98 

4.2.1.1 Process Algebra Formalisms ......................................................................... 98 
4.2.1.2 Graph-Based Formalisms .............................................................................. 99 
4.2.1.3 Reflection-Based Formalisms...................................................................... 101 

4.2.2 Systems for Dynamic Change Support .............................................. 102 

4.2.2.1 Procedural and Object-Based Techniques ................................................. 102 
4.2.2.2 Dynamic Weaving Techniques in AOP ..................................................... 104 
4.2.2.3 Component-Based Dynamic Frameworks ................................................. 106 

4.2.3 Self-Managed Software Architectures ................................................. 110 

4.2.3.1 Top-down approaches: Self-Adaptive Systems ........................................... 110 
4.2.3.2 Bottom-up approaches: Decentralized Architecture-Based Systems ......... 116 

4.2.4 AOSD & Evolution Concerns ........................................................... 119 

4.3 Comparison of the different approaches .......................................... 123 

4.3.1 Description of the attributes selected ................................................. 123 
4.3.2 Comparison tables ............................................................................. 126 

4.4 Conclusions ........................................................................................ 130 

PART III: DYNAMIC PRISMA 133 

CHAPTER 5. CASE STUDY: AGROBOT ................................................. 135 

5.1 Introduction: Agricultural Robotics .................................................. 135 
5.2 Robotic Software Architectures ......................................................... 137 
5.3 Dynamic Evolution in Robotic Software Architectures ................... 138 
5.4 Case Study: Agrobot,  An Autonomous Robot for Plague control .. 139 

5.4.1 Main Architecture .............................................................................. 140 
5.4.2 Composite Components: VisionSystem ............................................ 142 
5.4.3 Simple Components: ImageProcCard ............................................... 145 
5.4.4 Aspects: ImageProcSwController ....................................................... 147 

5.5 Dynamic Evolution Requirements of the Agrobot ........................... 149 

5.5.1 Dynamic reconfiguration scenario:   
VisionSystem fault-tolerance support ................................................. 150 

5.5.2 Dynamic type evolution scenario:   
Changing the ImageProcSoftware component .................................. 154 

5.6 Conclusions ........................................................................................ 157 

 

 



TABLE OF CONTENTS 

xviii 

CHAPTER 6. AUTONOMIC RECONFIGURATION .................................. 159 

6.1 Introduction ....................................................................................... 159 
6.2 Characteristics of the approach ......................................................... 160 
6.3 Reconfiguration management model ................................................ 163 

6.3.1 A control loop for self-reconfiguration .............................................. 164 
6.3.2 Aspects versus modules ...................................................................... 166 

6.4 Description of the autonomic reconfiguration aspects .................... 167 

6.4.1 The Monitoring Aspect ...................................................................... 168 

6.4.1.1 Introspection Services ................................................................................. 170 
6.4.1.2 Runtime Status Information ...................................................................... 174 
6.4.1.3 Event Interception Services ........................................................................ 175 

6.4.2 The Reconfiguration Analysis Aspect ................................................ 179 

6.4.2.1 Structure of the Reconfiguration Analysis Aspect ..................................... 179 
6.4.2.2 Reconfiguration Triggers ............................................................................ 183 
6.4.2.3 Configuration Transactions ....................................................................... 185 
6.4.2.4 Adding Inference Mechanisms .................................................................. 190 

6.4.3 The Reconfiguration Coordination Aspect ....................................... 190 

6.4.3.1 Domain-Specific Reconfiguration Services ................................................ 191 
6.4.3.2 Transactional Management of Reconfiguration Plans .............................. 194 
6.4.3.3 Generic Reconfiguration Services .............................................................. 202 

6.4.4 The Reconfiguration Effector Aspect ................................................. 214 

6.4.4.1 Services for Safe Stopping .......................................................................... 215 
6.4.4.2 Services for Reconfiguration ...................................................................... 216 
6.4.4.3 Services for Updating, Recovery and Mobility .......................................... 217 

6.5 The Evolver Component ................................................................... 222 

6.5.1 Structure of the Evolver Component ................................................. 222 
6.5.2 Support for Reactive Reconfigurations .............................................. 225 
6.5.3 Weaving the Reconfiguration Aspects Together ................................ 229 
6.5.4 Evolver Specification .......................................................................... 233 

6.5.4.1 Evolver Template: The User-Defined Part ................................................. 233 
6.5.4.2 Evolver Mechanisms: The Generated Functionality ................................. 236 
6.5.4.3 Consistence of Generated Code ................................................................ 238 

6.6 Example: autonomic reconfiguration in the  
 VisionSystem architecture ................................................................. 240 
6.7 Conclusions & further works ............................................................ 244 

6.7.1 Conclusions ........................................................................................ 244 
6.7.2 Further works ..................................................................................... 246 
6.7.3 Results ................................................................................................ 247 

 

 



TABLE OF CONTENTS 

xix 

CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES ......... 249 

7.1 Introduction ....................................................................................... 249 
7.2 Basis of the dynamic evolution of architectural types ....................... 250 

7.2.1 Definitions of Type, Instance and Architectural Type ....................... 250 
7.2.2 Definition of the Dynamic Evolution of Architectural Types ........... 252 

7.3 Reflective Asynchronous Evolution of Architectural Types ............. 253 

7.3.1 System-level evolutions vs type-level evolutions .................................. 254 
7.3.2 A reflective model for evolvable types ................................................ 256 

7.3.2.1 Reflection: The Abstract Model ................................................................. 256 
7.3.2.2 Type Meta-Instances: The Concrete Model ............................................... 257 
7.3.2.3 Reification of Types .................................................................................... 259 
7.3.2.4 Evolution Process Overview ....................................................................... 261 

7.3.3 Evolving instances through transformations ...................................... 263 
7.3.4 An asynchronous model for types evolution ...................................... 266 

7.3.4.1 Modelling evolutions over time ................................................................. 266 
7.3.4.2 Additional characteristics ........................................................................... 271 

7.3.5 Description of the evolution infrastructure ....................................... 273 

7.3.5.1 Type-level Evolution ................................................................................... 274 
7.3.5.2 Instance-level Evolution .............................................................................. 299 

7.3.6 Summary of the evolution process ..................................................... 313 

7.4 Conclusions & further works ............................................................ 316 

7.4.1 Conclusions ........................................................................................ 316 
7.4.2 Further works ..................................................................................... 317 
7.4.3 Results ................................................................................................ 318 

CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS ............... 321 

8.1 Introduction ....................................................................................... 321 
8.2 Challenges of asynchronous evolution .............................................. 321 
8.3 Evolution semantics ........................................................................... 322 

8.3.1 Specification of evolution processes ................................................... 323 
8.3.2 Version management: Evolution Tags ............................................... 324 
8.3.3 Formalisation of the evolution operations ......................................... 327 

8.3.3.1 Architecture-based Concrete Syntax .......................................................... 328 
8.3.3.2 Graph-based Abstract Syntax...................................................................... 342 

8.3.4 Discussion .......................................................................................... 349 

8.4 Conclusions & further works ............................................................ 350 

8.4.1 Conclusions ........................................................................................ 351 
8.4.2 Further works ..................................................................................... 351 
8.4.3 Results ................................................................................................ 352 



TABLE OF CONTENTS 

xx 

PART IV: CONCLUSIONS & FURTHER WORK 353 

CHAPTER 9. CONCLUSIONS ............................................................... 355 

9.1 Conclusions ........................................................................................ 355 

9.1.1 Contributions ..................................................................................... 356 
9.1.2 Evaluation of the approach ................................................................ 359 
9.1.3 Evaluation of the research .................................................................. 365 

9.2 Results of the PhD ............................................................................. 367 
9.3 Further research ................................................................................. 373 

9.3.1 Model-Driven Development support for evolvable systems ............... 373 
9.3.2 Proactive non-programmed evolutions .............................................. 374 
9.3.3 Definition of evolution constraints .................................................... 374 
9.3.4 Coordination of decentralized Evolvers ............................................. 375 
9.3.5 Formal analysis ................................................................................... 375 
9.3.6 Tool support for advanced graph transformations ............................ 377 

PART V: APPENDIXES 379 

APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM ........... 381 

A.1 Specification of the VisionSystem type ............................................. 381 

A.1.1 Interfaces ............................................................................................ 381 
A.1.2 Data Domains .................................................................................... 382 
A.1.3 External Functions ............................................................................. 382 
A.1.4 Architecture and configurations ........................................................ 383 
A.1.5 Components ....................................................................................... 387 
A.1.6 Connectors ......................................................................................... 389 
A.1.7 Aspects ................................................................................................ 390 

A.2 Reconfiguration Elements ................................................................. 395 

A.2.1 Interfaces ............................................................................................ 395 
A.2.2 Evolver Component ........................................................................... 397 
A.2.3 Reconfiguration Analysis Aspect ........................................................ 402 
A.2.4 Reconfiguration Coordination Aspect ............................................... 406 
A.2.5 Architecture Monitoring Aspect ........................................................ 416 
A.2.6 Architecture Effector Aspect .............................................................. 417 

A.3 Type Evolution Elements ................................................................... 418 

A.3.1 Data structures ................................................................................... 418 
A.3.2 Interfaces ............................................................................................ 422 
A.3.3 Type Description Aspect .................................................................... 424 
A.3.4 Type Evolution Aspect ....................................................................... 428 
A.3.5 Evolution Monitoring Aspect ............................................................ 429 
A.3.6 Builder Aspect .................................................................................... 430 
A.3.7 Instance Evolution Planning aspect ................................................... 432 



TABLE OF CONTENTS 

xxi 

A.3.8 Instance Monitoring aspect ................................................................ 434 
A.3.9 Instance Effector aspect ...................................................................... 434 

APPENDIX B. EXTENSIONS OF THE PRISMA AOADL .......................... 437 

B.1 Lists ..................................................................................................... 437 
B.2 Iterations and Loops .......................................................................... 438 
B.3 Partial Definitions of Software Artefacts ........................................... 439 

 

LIST OF FIGURES .................................................................................... 443 

REFERENCES  ..................................................................................... 447 

 





 

23 

Part I: Introduction 

 

 

 

 

PART I 

INTRODUCTION 
 

 

 





  

25 

Chapter 1. Introduction 

 

CHAPTER I 

INTRODUCTION 
 

he work presented in this thesis is concerned with the design of a 
framework to build architecture-based, dynamically evolvable, software 
systems. The goal is to support the evolution processes of such software 

systems that require updates, improvements or new features, but cannot be 
stopped to perform these operations due to their continuous operation. In 
addition, this support is also applicable to the building of self-managed 
software systems, which are able to autonomously change themselves while 
they remain operating. The framework presented in this thesis, called 
Dynamic PRISMA, is characterized by the combination of two levels of 
dynamism: Dynamic Reconfiguration, which addresses changes at the 
configuration level (i.e. the architectural configuration), and Dynamic Type 
Evolution, which addresses changes at the type-level (i.e. the specification of 
architectural types and instances). This combination is one of the major 
contributions of this thesis: thus a system is not only able to reconfigure at 
runtime the building blocks it is composed of (i.e. architectural types), but also 
to redefine these building blocks (or introduce new ones) at runtime. Another 
contribution of the framework is the way that it separates the concerns related 
to dynamic evolution and reconfiguration and encapsulates them into aspects, 
taking the advantages promoted by Aspect-Oriented Software Development. A 
third contribution of this framework is how it integrates the following 
capabilities: autonomic reconfigurations, reflective type descriptions, and 
asynchronous type evolutions. 

The structure of this chapter is as follows: section 1.1 introduces the 
motivation of this work, section 1.2 explains the main goals of the thesis, 
section 1.3 presents the research methodology that has been followed during 
the development of the thesis, section 1.4 presents the research hypothesis, 
and section 1.5 summarizes the structure of the thesis. 

T 



CHAPTER 1. INTRODUCTION 

26 

1.1 Motivation 

A well-known property of current and future software systems is their 
increasing size and complexity (SEI, 2006). Whereas technology evolves and 
provides more features, software systems increase their functionality and their 
non-functional requirements, such as distribution, decentralization, security, 
dependability, etc. This results in larger and complex software developments, 
which increase the costs of such systems. 

One of the most promising techniques to deal with the design of large, 
complex software systems are Software Architectures (Perry & Wolf, 1992) 
(Taylor & Hoek, 2007). Software Architectures provide techniques for 
describing the structure of complex software systems (i.e. the key system 
elements and their organization). Their aim is to hide low-level details and 
help to understand the system. The structure of a software system is described 
in terms of architectural elements (components and connectors) and their 
interactions with each other. This structure can be formally described using an 
Architecture Description Language (ADL), which is used later to build the 
executable code of the software system. In addition, most ADLs generally 
support hierarchical composition (i.e. a composition hiding technique for 
defining systems of systems), which may be helpful for modelling large-scale 
complex systems in a scalable way. However, although Software Architectures 
help in the description and development of complex systems, this is not 
enough: the management and maintenance of these systems still requires a great 
effort (Perry, 2008) (Rombach, 2009). 

1.1.1 Self-Management  

To minimize the management effort of software systems, self-managed 
software architectures were proposed (Oreizy et al., 1999). According to the 
definition of Jeff Kramer and Jeff Magee: 

A self-managed software architecture is one in which components 
automatically configure their interaction in a way that is compatible 
with an overall architectural specification and achieves the goals of the 
system.  

(Kramer & Magee, 2007) 

Examples of systems which require such degree of architectural dynamism are: 
(i) distributed systems with mobile elements, which frequently change the 
connections among its elements (Ali et al., 2006); (ii) multi-agent systems 
based on agreements (Santiago-Perez et al., 2009), which are open systems 
with a dynamic structure; or (iii) self-healing/fault-tolerant systems, which are 



1.1 MOTIVATION 

27 

provided with strategies to recover themselves from failures (Yurcik & Doss, 
2001), (Dashofy et al., 2002). 

However, the development of self-managed architectures still involves some 
challenges. One of them is to provide change management which reconfigures 
the software components, ensures application consistency and avoids 
undesirable transient behaviour (Kramer & Magee, 2007). This change 
management is also known as Dynamic Reconfiguration (Kramer & Magge, 
1985), (Endler & Wei, 1992): the ability to change the architecture of a 
system while it is running. Although several works have been proposed 
(Bradbury et al., 2004), they generally do not scale well for large systems or do 
not explicitly consider the maintainability of the self-management system.  

When a self-management infrastructure is designed, also its maintenance, 
scalability and flexibility must be taken into account. First, to improve 
maintenance, the concerns related to dynamic change should be isolated from 
functional concerns, as it has been stated from other works (Mens & 
Wermelinger, 2002), (Cazzola et al., 2007). Second, to increase scalability, self-
management should be provided in a decentralized way, thus providing local 
autonomy. Finally, to be flexible enough, the self-management system should 
not only deal with goal-oriented proactive changes (i.e. driven autonomously), 
but also with reactive changes (i.e. driven externally), in order to cope with 
unanticipated situations.  

For this reason, one of the objectives of this thesis is to propose a solution for 
supporting dynamic reconfiguration which overcomes these disadvantages.  

1.1.2 Runtime Maintenance 

Although self-managed approaches can reduce the management and 
configuration efforts of large software systems, this is not enough to deal with 
another property: the longevity expected for such systems.  

Due to the high costs associated to the development of large software systems, 
they are expected to be usable for long periods of time. Then, unforeseen 
maintenance operations may be required by technology changes, new 
requirements or necessary corrective measures. This is due to the fact that 
large software systems are exposed to many sources of variability and they are 
integrated in changing environments. On the one hand, when more complex 
the system is, more probable is that unforeseen bugs appear during system 
execution, which must be removed. On the other hand, since it is impossible 
to predict all the features a system will require in the future, the system should 
be prepared to support the introduction of new features after its deployment. 
The maintenance of a software system is one of the most important phases of 



CHAPTER 1. INTRODUCTION 

28 

the software life cycle, since it will be present along its overall lifetime. From 
the beginning, complex software systems must be designed to facilitate their 
future maintenance: they must be flexible enough to support later 
modifications.  

Nowadays, the current practice of introducing changes in running software 
systems is performed offline: the system is shutdown, and once the 
modification has been completed, the entire system is restarted to reflect the 
new changes. However, this solution has the disadvantage that the state and 
pending transactions of the running system are lost. In addition, some systems 
cannot stop their activity due to their critical nature. Examples of such systems 
are those that are in charge of critical infrastructures (e.g. related to military 
resources, energy, health or transports), those required to operate 365 days 24 
hours (e.g. banking systems, manufacturing industry systems), or those that are 
not reachable (e.g. autonomous robots in space explorations). 

In such cases, runtime maintenance support is needed. This is provided by 
Dynamic Evolution, a feature which supports the introduction of updates or 
new, unforeseen functionality on a running system. However, although self-
managed systems allow the adaptation or reorganization of the system 
structure, they will not generally support the dynamic evolution of its types. 
What happens then if the behaviour of the components, or the reorganization 
algorithms, need to be changed without the system being stopped? In this 
regard, self-managed systems are incomplete.  

For this reason, another objective of this thesis is to integrate the support for 
dynamic type evolution in self-managed approaches.  

1.2 Overall Aim and Objectives 

The objective of this work is to provide highly available systems (i.e. those 
systems that perform critical missions and cannot be stopped) with the ability 
to modify their structure (i.e. their software architecture) and/or their 
behaviour (i.e. their type definitions) at runtime.  

This can be supported at different granularity levels. Granularity refers to the 
scale of the artefacts to be changed and can range from very coarse, through 
medium, to a very fine degree of granularity (Buckley et al., 2005). Coarse 
granularity refers to changes at the level of the system architecture; medium 
granularity refers to changes that impact the composition of 
modules/components, such as classes or objects; and fine granularity refers to 
changes on variables, methods or lines of code. Generally, existing approaches 
have only provided change management at a single granularity level. However, 



1.2 OVERALL AIM AND OBJECTIVES 

29 

these levels complement each other and should be combined to provide the 
maximum degree of flexibility to critical software systems.  

For these reasons, the overall aim of this thesis is to provide an integrated 
approach for supporting the three granularity levels of change in architecture-
based systems. This can be achieved through the combination of Dynamic 
Reconfiguration, which addresses the reconfiguration of a software architecture 
at runtime (i.e. a coarse level), and Dynamic Type Evolution, which addresses 
the modification of types (i.e. specifications) and its types at runtime (i.e. at a 
medium and finer level). Since this approach should be integrated in a 
software development process, this work should not only cover the change 
management mechanisms, but also the integration of these mechanisms in the 
design of a system and their maintenance.  

From a more general perspective, the overall aim of this thesis is formulated as 
follows: 

To provide a framework to make easy the design, development, and 
maintenance of architecture-based software systems which are capable of 
changing their structure and behaviour at runtime without shutting 
them down. 

As a result, this framework should allow us to: (i) specify how the structure 
(i.e. the architecture) of a software system may change at runtime in response 
to different situations, like changes in the environment or changes to the 
business logic of the system; and (ii) describe how the architectural types of 
the software system can be evolved at runtime. 

This goal is pursued by addressing the following specific objectives:  

 To identify the main design strategies and mechanisms which enable 
the dynamic modification or recomposition of running software 
systems. These design strategies and mechanisms must be abstracted 
to a platform-independent perspective. 

 To provide support for both degrees of architectural dynamism: 
dynamic reconfiguration of architectures and dynamic evolution of 
architectural types. The purpose is to provide the design and building 
of highly dynamic software systems with the highest degree of 
flexibility. 

 To define a platform-independent model to specify the dynamic 
evolution/reconfiguration plans of evolvable systems.  

 To preserve the Separation of Concerns principle (Parnas, 1972) as 
much as possible to facilitate the maintenance of the evolution 
concerns of highly dynamic systems. 



CHAPTER 1. INTRODUCTION 

30 

 To automate the development process of evolvable systems. The 
system‟s architect should only deal with the specification of 
evolution/reconfiguration plans, and the supporting mechanisms 
should be provided by the infrastructure. 

It is important to note that this work is based on the following assumption: 
the set of structural or behavioural changes that is going to be introduced in a 
system must be semantically compatible with the existing system. A software 
component can be dynamically replaced by another that performs a 
completely different purpose. However, the interacting components must be 
appropriately adapted, or replaced, to correctly interact with the new 
component. If these changes are not also provided by the architect or system 
developer, then the resulting system will not function properly, no matter of 
the evolution mechanisms used. This work is only concerned with the correct 
execution of dynamic changes, but not with trying to establish whether the 
changes proposed are correct.  

1.3 Research Methodology 

Research is an activity directed toward increased knowledge of either natural 
phenomena or the solution of an open issue, by following a scientific 
methodology. What scientific methodology to follow depends on which issues 
to investigate and on the field of science the research is carried out. In the 
area of Computer Science, there is a wide diversity of research methods that 
are being used (Wegner, 1976), (Dodig-Crnkovic, 2002), (Johnson, 2010). 
However, in the specific field of Software Engineering, there is no a well-
established research method (Shaw, 2001), due to the diversity of research 
subjects (Glass et al., 2004) and the short history of Software Engineering 
(Xia, 1997).  

The traditional deductive methodology, which is based on empiricism where 
hypotheses with clear falsification criteria can be identified, is not generally 
applicable in the Software Engineering field. The reason is that this research 
method is tailored to analytic disciplines, which are concerned with finding or 
discovering facts from natural phenomena. In contrast, the Software 
Engineering field is seen as a synthetic discipline, i.e. a discipline more oriented 
toward making and inventing new artefacts. Research in Software Engineering 
entails the creation of new models, methodologies and tools that are meant to 
help software developers, both to reduce development efforts and to be able to 
understand complex problems (Pressman, 2005).  

The synthetic nature of software engineering aligns perfectly with the subject 
of study of the design-science paradigm (March & Smith, 1995), (Hevner et al., 



1.3 RESEARCH METHODOLOGY 

31 

2004): the scientific study of the artificial (Simon, 1996), as opposite to the 
study of the natural. Design science is essentially a problem-solving 
methodology that seeks to create and evaluate artefacts intended to solve 
identified problems. It focuses on the usefulness or utility of a method or 
artefact rather than on its truth, taking into account real-world constraints 
and practical considerations. Design science helps in managing the complexity 
linked to the design of useful artefacts in domain areas in which existing 
theory or previous knowledge is often insufficient. This is the key difference 
among design science and routine design: it addresses important unsolved 
problems in unique or innovative ways, or solved problems in more effective 
or efficient ways (Hevner et al., 2004).  

As stated by Hevner et al., the fundamental principle behind design-science 
research is that the knowledge and understanding of a design problem and its solution 
are acquired in the building and application of an artefact (Hevner et al., 2004). 
According to this principle, Hevner et al. (Hevner et al., 2004) propose seven 
guidelines to help information systems researchers to conduct, evaluate and 
present effective design-science research. These guidelines address design as: 
(1) the production of a viable artefact, in the form of a construct, model, 
method or instantiation; (2) problem relevance, the domain where the artefact 
is purposeful; (3) design evaluation, the demonstration of the utility and 
efficacy of the design artefact via well-executed evaluation methods; (4) 
research contributions that the designed artefact, foundations or 
methodologies used provides to the community; (5) research rigour, via the 
application of rigorous methods in both the construction and evaluation of 
the design artefact; (6) the design as a search process to reach the desired ends 
while accounting to real-world constraints; and (7) the communication of the 
research.  

Since the objectives of this thesis are synthetic (i.e. the development of a 
framework to support the dynamic evolution of systems), a research 
methodology consistent with the principles of design science has been 
followed. Next, through the lens of the design-science guidelines presented by 
Hevner et al. (Hevner et al., 2004), the research performed in this thesis is 
presented.  

The artefact that has been designed is a framework to support dynamic 
reconfiguration and evolution. The domains where the artefact (i.e. the 
framework) is purposeful are the areas of self-managed software systems, 
evolvable systems, and highly-available but also flexible software systems. 
These domains are emerging, as it can be observed from the growing interest 
coming from the fields of software architectures, autonomic computing, 
organic computing, dynamic product lines, self-managed systems, self-adaptive 



CHAPTER 1. INTRODUCTION 

32 

systems, etc. As a result of the novelty of the domains, the available knowledge 
and theories are still insufficient, so innovative designs are required. 

The evaluation of the design artefact has been performed through the 
implementation of a case study. Case studies are frequently used to describe, 
understand, and explain a research subject (Yin, 2002), (Easterbrook et al., 
2008), and in some cases, to validate its correctness and how precisely the 
research goals are met. The implementation of a case study has provided a 
better understanding of the problem and feedback to improve the quality of 
the design artefact. In addition, the case study has also helped to explain the 
contributions of the designed artefact when compared to existing practices, 
and also to disseminate the results of the research.  

1.4 Research Hypothesis 

The hypothesis of this research is that: 

Dynamic Reconfiguration and Dynamic Evolution of Types are 
complementary and should be combined to develop highly dynamic 
software architectures: reconfiguration for structural changes and type 
evolution for behavioural changes. This combination will benefit 
architecture-centric systems with a high degree of: (i) plasticity, which 
will make their structure malleable at runtime (within some constraints), 
and (ii) flexibility, which will make their types modifiable at runtime. In 
addition, due to this complementary nature, they will share some change 
management mechanisms, such as the safe stopping of the running 
elements. 

However, the combination of dynamic reconfiguration and type evolution 
should be realised in a way that their integration in a software system is 
transparent and do not affect the functional concerns of the system. To 
address this problem, concepts from the aspect-oriented community were 
considered. Aspects (Kiczales et al., 1997) are software artefacts designed 
explicitly to encapsulate the properties and behaviour of the concerns (e.g. 
distributed communication, persistence, logging, etc.) that crosscut with the 
main system behaviour (i.e. the functional concerns). In this way, aspects 
centralize the maintenance and reuse of crosscutting concerns. Then, the 
starting question was: Why do not encapsulate the behaviour related to 
dynamic evolution and reconfiguration into aspects? Evolution can be 
considered as a concern that crosscuts with the system functionality, and then, 
be encapsulated in an aspect. For this reason, the previous hypothesis was 
extended with the following statement: 



1.5 THESIS OVERVIEW 

33 

The encapsulation of these evolution concerns into aspects will make 
their integration in the software system transparent, as well as it will 
make easy their maintenance. 

For the construction of dynamic software architectures, this approach has 
been based on PRISMA (Pérez, 2006). PRISMA has been selected among 
other Architecture Description Languages because of the combination it does 
of Aspect-Oriented Software Development (Filman et al., 2004) and 
Component-Based Software Development (Szyperski, 2002) for describing 
complex software architectures. For describing the behaviour of architectural 
elements, PRISMA provides an aspect-oriented model that has the advantage 
that explicitly encourages the separation among the different concerns: an 
architectural element is entirely defined by the combination of different 
aspects. In addition, PRISMA follows a Model-Driven Development approach, 
which allows the automatic generation of the final code from high-level 
(architecture-based) models. In this way, the integration of the evolution 
concerns in the PRISMA model will allow us to model dynamic software 
architectures and automatically generate the final code supporting these 
features. We have called the resulting combination as Dynamic PRISMA.  

1.5 Thesis Overview 

The remainder of this thesis develops as follows: 

Chapter 2: Context. This chapter presents an overview of the context of this 
thesis: Software Architectures, Aspect-Oriented Software Development, 
and the PRISMA model. 

Chapter 3: Dynamic Software Evolution. This chapter presents the main 
concepts related to dynamic evolution: the different definitions, kinds of 
evolutions, mechanisms for safe stopping and state transfer, and 
dynamism in software architectures. 

Chapter 4: Related Works. This chapter presents the state-of-the-art related to 
dynamic evolution and reconfiguration in software architectures. 

Chapter 5: Case Study: Agrobot. This chapter introduces the case study that 
has been chosen to illustrate the approach presented in this thesis: 
Agrobot. This case study is specified in terms of the PRISMA ADL. This 
chapter also presents how dynamic evolution and reconfiguration can 
advantage the development of autonomous robotic systems. 

Chapter 6: Autonomic Reconfiguration. This chapter describes the elements 
that have been defined to support the autonomic reconfiguration of 



CHAPTER 1. INTRODUCTION 

34 

hierarchical software architectures. These elements allow a subsystem to 
autonomously change its architecture at runtime. 

Chapter 7: Dynamic Evolution of Architectural Types. Here is described the 
reflective infrastructure that supports the dynamic evolution of 
architectural types and instances in an asynchronous way. This allows us 
to entirely modify the structure and behaviour of architectural elements 
at runtime, and thus develop a real new architecture at runtime. 

Chapter 8: Description of the Evolution Semantics. This chapter presents 
how the asynchronous evolution semantics proposed in this thesis has 
been described by means of typed graph transformations. 

Chapter 9: Conclusions. This chapter presents the main contributions of the 
thesis, the publication results, and the future research work. 

Appendix A: PRISMA Specifications of the VisionSystem. This appendix 
presents the complete PRISMA specification of a subsystem of the 
Agrobot, the Vision System, as well as the PRISMA specification of the 
elements that support dynamic reconfiguration and type evolution. 

Appendix B: Extensions of the PRISMA AOADL. This appendix presents 
some language constructs that have been added to the PRISMA Aspect-
Oriented Architecture Description Language, to support the features 
introduced in this thesis. 



  

35 

Chapter 2. Context 

 

CHAPTER II 

CONTEXT 
 

2.1 Introduction 

his chapter presents an overview of the context of this thesis: Software 
Architectures, Aspect-Oriented Software Development, and the 
PRISMA approach. 

On the one hand, Software Architectures is a discipline that provides 
techniques for (i) describing the structure (or architecture) of complex 
software systems (i.e. the key system elements and their organization), and (ii) 
reflecting the rationale behind the system design. This discipline has been 
acknowledged as a centric issue in the development of large systems, since it 
contributes to programming-in-the-large rather than to programming-in-the-small 
(DeRemer & Kron, 1976). In addition, the study of software architecture has 
been justified as the primary way to deal with the evolution and customization 
of systems (Perry & Wolf, 1992). This thesis focuses particularly on “evolving-
in-the-large”, as the modification of parts of a running system without shutting 
it down. For this reason, an introductory view to the discipline of Software 
Architectures is needed. 

On the other hand, Aspect-Oriented Software Development (AOSD) focuses 
on the study of the crosscutting-concerns of a system and on the ways to 
improve their modularisation and maintenance, according to the principle of 
Separation of Concerns introduced by Dijkstra (Dijkstra, 1974). The main 
idea pursued by this discipline is the separation of the crosscutting-concerns of 
the system and their automatic recombination or weaving (Elrad et al., 2001). 
This improves the maintenance of code, simplifies system specifications and 
allows us to easily extend systems by adding aspects to existing code.  

Finally, PRISMA is an approach that integrates Software Architectures and 
AOSD disciplines to specify software architectures of complex systems. Since 

T 



CHAPTER 2. CONTEXT 

36 

this thesis has been materialized using the PRISMA approach, the objective of 
this chapter is to provide the reader with an introduction to PRISMA in order 
to permit the comprehension of the coming chapters of this thesis.  

This chapter is organized as follows: Section 2.2 presents an overview of 
Software Architectures. Next, section 2.3 introduces the main concepts related 
to AOSD. Finally, section 2.4 describes the PRISMA model: its main benefits, 
its architectural elements, and its model-driven development support. 

2.2 Software Architectures 

The increasing size and complexity of current software systems has led the 
computing community to acknowledge the importance of the system‟s 
structure as a centric issue in the entire lifecycle of a software system. In their 
seminal works, Dewayne E. Perry and Alexander L. Wolf (Perry & Wolf, 
1992) introduced the need for studying the architecture of software systems. 
This need was justified as the primary way to deal with two factors that 
contribute to the high costs of software: the evolution and customization of 
systems.  

A software system without an appropriate architectural design is more difficult 
to evolve and customize. The architecture of a system tells us what design 
decisions guided the building of the system, i.e. which architectural elements, 
interactions and constraints were used for its development. If such design 
decisions are not taken into account when changing or customizing a system, 
the system can suffer from architectural drift and architectural erosion, two 
phenomena which lead to the fragility and resistance to change of a system 
(Perry & Wolf, 1992). Architectural drift refers to the engineer‟s insensitivity 
to the system‟s architecture and can lead to a loss of clarity of form and system 
understanding. It may involve decisions whose implications are not properly 
understood and which may affect the given system‟s future adaptability 
(Taylor et al., 2009). On the other hand, architectural erosion refers to the 
introduction of architectural design decisions that violate the system 
prescriptive architecture. It can easily occur when a system has been drifted 
too far, as a consequence of many small, intermediate changes that obscure 
violations on important architectural decisions (Taylor et al., 2009). Both 
architectural drift and architectural erosion can be dangerous and expensive, 
and should be avoided. This was one of the factors that motivated the 
emergence of Software Architecture. 

Software Architecture was presented as a solution for the design and 
development of large, complex software systems. The reason is that 
architecture allows us to describe the structure of a software system by hiding 



2.2 SOFTWARE ARCHITECTURES 

37 

the low-level details and abstracting the high level important features, thus 
making software systems simpler and more understandable (Garlan & Perry, 
1995). Other authors contributed to defining and establishing the 
foundations of the Software Architecture discipline. One of the earliest books 
on the matter was the book of Mary Shaw and David Garlan (Shaw & Garlan, 
1996), which provided a collection of definitions, summaries of industrial and 
research projects and early architectural insights from those projects. Other 
interesting books focused on software architecture patterns (Buschmann et al., 
1996), architecture modelling (Hofmeister et al., 1999), and architecture 
evaluation (Clements et al., 2002). Over the years, software architecture has 
been consolidated as a focus of software engineering research (Shaw & 
Clements, 2006), (Taylor & Hoek, 2007), and is becoming a centric element 
of the entire development phase (Taylor et al., 2009).  

2.2.1 Definition 

In the last decade, several definitions about software architecture have been 
proposed. Next we introduce and explain those that consider the most 
relevant. The first definition is the proposed by Perry & Wolf in 1992: 

Software Architecture = {Elements, Form, Rationale} 

Elements capture the system‘s building blocks, which can be of three 
types: processing elements, data elements and connecting elements.  

Form captures how the (architectural) elements are organized in the 
architecture, by means of weighted properties and relationships. That is, 
the form captures how the elements are composed (i.e. the architecture 
configuration), the characteristics of their interactions, and their 
relationship with their operating environment.  

Rationale captures the motivation for the choice of an architectural 
style, the choice of elements, and the form. That is, the system designer‘s 
intent, assumptions, choices, external constraints, selected design 
patterns, and other information that is not easily observable from the 
architecture. 

(Perry & Wolf, 1992) 

This definition is one of the most widely extended and accepted definitions of 
Software Architecture. It is interesting the practical characterization of the 
previous definition provided by Taylor, Medvidovic and Dashofy, by means of 
What, How and Why questions: 



CHAPTER 2. CONTEXT 

38 

Elements help to answer the What questions about the architecture: 
What are the elements of a system? What are their primary purpose and 
the services that they provide? 

Form helps to answer the How questions about the architecture: How is 
the architecture organized? How are the elements composed to 
accomplish the system‘s key task? How are the elements distributed? 

Rationale helps to answer the Why questions about the architecture: 
Why are particular elements used? Why are they combined in a 
particular way? Why is the system distributed in a given manner? 

(Taylor et al., 2009) 

Another extended definition was the proposed by Mary Shaw and David 
Garlan, which implicitly includes the elements defined in the definition of 
Perry and Wolf (i.e. elements, organization and rationale): 

Software architecture [is a level of design that] involves the description of 
elements from which systems are built, interactions among those 
elements, patterns that guide their composition, and constraints on these 
patterns.  

(Shaw & Garlan, 1996) 

In addition, there is another definition provided by the ANSI/IEEE Standard 
1471-2000: 

Architecture is the fundamental organization of a system, embodied in 
its components, their relationships to each other and the environment, 
and the principles governing its design and evolution.  

(IEEE, 2000) 

Note that this definition is similar to the previous ones, but it explicitly 
addresses system evolution, and it does not specifically refer to software.  

Finally, one of the most recent definitions is the provided by Taylor, 
Medvidovic and Dashofy in his book about software architecture: 

A software system‘s architecture is the set of principal design decisions 
made about the system.  

Design decisions encompass every aspect of the system under 
development, including: system structure, functional behaviour, 
interaction, nonfunctional properties and implementation.  



2.2 SOFTWARE ARCHITECTURES 

39 

Principal is a term that implies a degree of importance and topicality 
that grants a design decision architectural status, that is, that makes it 
an architectural design decision (i.e. it impacts a system‘s architecture). 

(Taylor et al., 2009) 

This definition is more abstract than the previous definitions, and explicitly 
gives the system architecture specification with a central role in the 
development of a software system. Therefore, architecture do not only 
comprises the structure of a system, but the description of the main functional 
behaviour (e.g. data processing, storage, visualization, databases, ...), the kind 
of interactions that will be implemented (e.g. event-based communication, 
procedure-based communication, etc.), the non-functional properties (e.g. 
dependability) and the implementation technology (e.g. Java, .NET 3.5, ...). 

It can be noticed that each definition presents different issues. However, it 
can be concluded that each definition is mainly concerned with structure and 
behaviour. Structure describes how the system is made up of interconnected 
units called components. Behaviour is referred to the visible behaviour caused 
by the interaction of the systems components to achieve the overall 
functionality of the system. Structure and behaviour is formally specified using 
an Architecture Description Language (ADL), which is used later to build the 
executable code of the software system. 

2.2.2 Basic Concepts 

Despite the wide set of ADLs defined up to date (Medvidovic & Taylor, 
2000), there are some concepts that are common to all of them. In order to 
facilitate a better comprehension of the work of this thesis, the most relevant 
concepts are presented here. 

2.2.2.1 Component 

The concept of component is the basis of software architecture and the 
concept that Architecture Description Languages (ADLs) share par excellence: 

A software component is an architectural entity that (1) encapsulates a 
subset of the system‘s functionality and/or data, (2) restricts access to 
that subset via an explicitly defined interface, and (3) has explicitly 
defined dependencies on its required execution context.  

(Taylor et al., 2009) 

A component is a computational element that permits users to structure the 
functionality of software systems. It has a high level of encapsulation and it is 
only possible to interact with it by means of its interfaces. Thus, components 



CHAPTER 2. CONTEXT 

40 

are considered as black boxes, which embody the software engineering 
principles of encapsulation, abstraction and modularity. A component can be 
as simple as a single operation or class, or as complex as an entire system, 
depending on the architecture, the perspective of the designers and the needs 
of the system.  

2.2.2.2 Connector 

Connectors describe the interactions among components: 

A software connector is an architectural element tasked with effecting 
and regulating interactions among components. 

(Taylor et al., 2009) 

Connectors were first introduced by Mary Shaw to explicitly separate 
computation from coordination and improve the separation among these 
concerns: 

Connectors are the locus of relations among components. They mediate 
interactions but are not ―things‖ to be hooked up (they are, rather, the 
hookers-up). Each connector has a protocol specification that defines its 
properties. These properties include rules about the types of interfaces it 
is able to mediate for, assurances about properties of the interaction, 
rules about the order in which things happen, and commitments about 
the interaction such as ordering, performance, etc.  

(Shaw, 1994) 

In her work, she presents the need for connectors due to the fact that the 
specification of software systems with complex coordination protocols is very 
difficult without the notion of connector. From her experience in the software 
architecture field, she demonstrates that the connector provides not only a 
high level of abstraction and modularity to software architectures, but also an 
architectural view of the system instead of the object oriented view of 
compositional approaches. She also defends the idea of considering 
connectors as first-class citizens of ADLs.  

This idea is also emphasized in subsequent works of other authors, such as in 
(Allen & Garlan, 1997). In fact, connectors imply a runtime mechanism for 
transferring control and data around a system (Bas et al., 2003). Examples of 
connectors are procedure call, event broadcast, and pipes. In this way, since 
components only deal with functionality and data instead of interactions, 
connectors indirectly benefit the reusability and modularity of components.  

Connectors do not simply redirect calls among two components (as method 
invocations). Moreover, connectors can provide and encapsulate services such 



2.2 SOFTWARE ARCHITECTURES 

41 

as persistence, invocation, messaging, and transactions. These kinds of services 
are usually considered as part of “facility components” in middlewares such as 
CORBA, DCOM or RMI. However, by considering such services as 
connectors, it helps to clarify an architecture and keep the component‟s focus 
on application and domain-specific concerns.  

Taylor et al. (Taylor et al., 2009; chapter 5) have identified four classes of 
services a connector can provide:  

- Communication, i.e. transmission of data among components; 

- Coordination, i.e. transfer of control among components; 

- Conversion, i.e. transform the interaction required by one component 
to that provided by another; 

- Facilitation, i.e. services that mediate and streamline component 
interaction. For instance, load balancing, scheduling services or 
concurrency control. 

Every connector provides services that belong to at least one of these four 
categories. In the literature, several types of connectors have been defined, 
which may provide multiple services. For instance, procedure call provides 
both communication and coordination services. Other types of connectors 
are: event, data access, linkage, stream, arbitrator, adaptor, and distributor. 
For further information, an excellent study of the different types of 
connectors and their properties for building a software architecture can be 
found in (Taylor et al., 2009; chapter 5). 

2.2.2.3 Configuration 

Components and connectors are composed in a specific way to accomplish 
the system‟s objectives. This composition represents the system‟s 
configuration, also referred to as topology: 

An architectural configuration is a set of specific associations between 
the components and connectors of a software system‘s architecture.  

(Taylor et al., 2009) 

That is, a configuration is a specific structure for a concrete system. In some 
formalizations, configurations are generally represented as a graph wherein 
nodes represent components and connectors, and whose edges represent their 
associations (topology or interconnectivity): (Hirsch et al., 1998), 
(Wermelinger et al., 2001). The associations among components and 
connectors are sometimes called attachments.  



CHAPTER 2. CONTEXT 

42 

2.2.2.4 System 

It is frequently the case that different abstraction levels must be provided to 
facilitate the understandability and the specification of the architectural 
description. For this reason, mechanisms to describe architectural elements 
with different granularity levels are always desirable. These needs have led to a 
wide variety of architectural models to introduce the concept of System as a 
composite component, i.e. a component that is made up of other architectural 
elements. An example is the model proposed by Ivar Jacobson (Jacobson et al., 
1997) that introduces the concept of subsystem as a set of organized 
components.  

Systems represent architectural configurations that are made up of connectors 
and components that can be built in a hierarchical way. For this reason, a 
system can be composed of other subsystems (Andrade & Fiadeiro, 2003). 
Other ADLs have also introduced the concept of composite component or 
system, such as Darwin (Magee et al., 1995), ArchWare ADL (Oquendo et al., 
2004) or ACME (Garlan et al., 2000).  

The concept of system differs from configuration in that a system is a building 
block (i.e. another kind of architectural element) that can be reused in several 
software systems, whereas a configuration defines the structure of a specific 
system (i.e. it cannot be reused). 

2.2.2.5 Port  

The concept of port is related to architectural elements (i.e. components and 
connectors). Ports are the points of interaction through which architectural 
elements can interact with the other elements of a software architecture. They 
are the parts into which the interface of an architectural element is divided. 
Their main function is to preserve the black box view of architectural 
elements and to publish the behaviour offered and required by architectural 
elements. They have been used in different ways; some approaches consider a 
port as a service and other approaches as a process with several services. This 
last way of defining ports, not only defines the services of ports, but also the 
conditions of how and when they can be required and provided. 

2.2.2.6 Connection 

Connections are used to constrain the “placement" of architectural elements. 
That is, they constrain how the different architectural elements may interact 
and how they are organized with respect to each other in the architecture 
(Perry & Wolf, 1992). Connections attach two ports of architectural elements, 
generally a component port and a connector port in ADLs where connectors 



2.3 ASPECT-ORIENTED SOFTWARE DEVELOPMENT 

43 

are considered first-class citizens. These connections are usually called 
attachments. 

2.2.2.7 Compositional Relationship 

Compositional relationships emerge along with the concept of systems, due to 
the fact that it is necessary for systems to communicate with their constituent 
architectural elements. These connections are different from attachments 
because they are used to connect architectural elements of different levels of 
granularity. As a result, the semantics of these connections is compositional, 
whereas attachments have a communication semantics that is not 
compositional (the same level of granularity). These relationships are usually 
called bindings. 

Bindings establish the mappings between the internal and external interfaces 
of a system (Garlan, 2001). As a result, bindings establish a connection 
between a system port and a port of one of its architectural elements. 

2.2.2.8 Other concepts 

There are other relevant concepts related to Software Architecture that remain 
to be defined. For instance, the concept of Architecture Style (Perry & Wolf, 
1992), (Abowd et al., 1993) is relevant to define general design decisions 
about the architectural elements and to emphasize important constraints on 
the elements and its relationships. Architectural styles are used to represent 
families of software architecture descriptions that belong to software systems 
that have something in common: resource types, configuration patterns and 
constraints (Garlan, 2001). Example of styles are event-based, publish-suscribe, 
blackboard, pipe-and-filter, client-server, object-oriented, etc. It is also relevant 
the concepts of property (Garlan, 2001) and Constrainte (Andrade & 
Fiadeiro, 2003) to describe the semantics associated to architectural elements 
or the restriction of the design, respectively. The reader can refer to (Taylor et 
al., 2009) to get further details about all the relevant topics within software 
architecture.  

2.3 Aspect-Oriented Software Development 

Since the “software crisis” emerged in the late 1960s, several efforts have dealt 
with the management of complexity of the software development process. 
Parnas proposed the term modularization as a criterion to simplify software 
development and improve software understanding and quality (Parnas, 1972). 
Modularization decomposes complex software systems into smaller parts 



CHAPTER 2. CONTEXT 

44 

called modules. Modularity helps when developing systems, since modules can 
be replaced by other modules while the rest of the system remains intact.  

However, system designers would like to modularly exchange in several 
dimensions: different features should be exchanged independently of each 
other. An illustrative example of this is provided in (Aßmann, 2003) through 
an analogy. For instance, in the architecture of buildings, plans for rooms, 
water, gas and electricty are specified separately. When architects want to 
exchange parts of the electricity support for a room, they never exchange the 
complete room. Instead, they only modify the electricity plan of the room, 
which does not affect the other plans. After all plans are finished, the 
construction process integrates them into the physical layout of the building 
and eliminates remaining conflicts.  

The practice of dividing software into different areas of interest is widely 
referred to as Separation of Concerns (SoC) (Dijkstra, 1974). Separation of 
concerns is the subdivision of a problem into independent parts. For instance, 
an example of separation of concerns in software architecture is the separation 
of a system‟s structure into components (loci of computation) and connectors 
(loci of communication). However, this is not enough, since several concerns 
(such as persistence, audit, logging, security, etc.) may remain intertwined 
across different components. As (Jacobson & Ng, 2003) set out, components 
are developed to satisfy several requirements, which often lead to a 
development where the concerns of the systems are tangled1 and scattered2 
across the architecture of the system.  

2.3.1 Aspect-Oriented Programming 

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) (Elrad et al., 
2001) emerged as another approach for realizing SoC, but showing a key 
difference: it focuses on those concerns that crosscut a software system, 
facilitating that each concern can be separately specified.  

Therefere, the notion of concern is close to that provided by the IEEE standard 
1471-2000:  

                                                      
1 Tangling: the material pertaining to multiple requirements is interleaved within a 
single module (Tarr et al., 1999). As a result the module is less maintainable, reusable 
and comprehensible. 
2 Scattering: a single requirement affects multiple design and code modules (Tarr et al., 
1999). This results in identical definitions repeated in multiple modules. 



2.3 ASPECT-ORIENTED SOFTWARE DEVELOPMENT 

45 

...those interests which pertain to the system‘s development, its operation 
or any other aspects that are critical or otherwise important to one or 
more stakeholders.  

(IEEE, 2000) 

The problem that AOP tries to solve is how to manage properly those 
catalogued as crosscutting-concerns, i.e. concerns that are scattered and tangled. 
Software systems are usually crosscut by common concerns of a domain 
system, and these crosscutting-concerns are spread throughout the software 
units of the system. As a result, the crosscutting-concerns are repeated in all 
the software units that they affect, and these concerns are tangled with the 
other concerns that also modify the same software unit. This increases the 
volume of code and complicates the maintenance that preserves the 
consistency of changes. In addition, tangled concerns make the maintenance 
of a specific concern more costly because it is so difficult to locate the correct 
place to introduce changes. 

 
Figure 2.1. Advantages for Modularity with AOP 

As a solution to this problem, AOP proposes the separation of the 
crosscutting-concerns of software systems into separate entities, which are 
called aspects. Aspects are software units that can be reused throughout the 
system by weaving them wherever necessary (classes, modules, components, 
etc.), managing properly the tangled and scattered code. Kiczales (Kiczales et 
al., 1997) demonstrated that the use of aspects means advantages in terms of 
understandability of code, maintainability and reusability. Figure 2.1 shows 
graphically how the grouping of the crosscutting-concerns of a system into 
isolated units, aspects, benefits the modularity of code. AOP promotes the idea 



CHAPTER 2. CONTEXT 

46 

that software systems are better programmed using the notion of aspect and 
considering aspects as first-class citizens of programming languages. AOP does 
not only offer aspects to encapsulate crosscutting-concerns, but it also provides 
mechanisms to weave aspects with the rest of the software system.  

2.3.2 Basic Concepts 

Next, the essential notions of AOP are presented, in order to understand how 
aspects encapsulate crosscutting-concerns and are weaved to the system:  

 Base code is that code that describes the core functionality of a 
program or domain, where the aspects are woven. Every aspect 
encapsulates a crosscutting concern for the specific program or 
domain. The aspect code collects the set of defined aspects. 

 Weaving is the process that combines the concerns of the system, i.e. 
the integration of the base code and the aspectual code. Weaving 
rules are specified outside the base code to make it unaware of the 
woven aspects. Thus, the system can be changed only by changing the 
weaving rules. 

 Join points are well-defined points in the structure of a program (i.e. 
the base code) where aspect code can be attached or hooked. The 
most common elements of a join point are method calls. These points 
can be extended with aspect code, thus changing the original flow of 
control of the system. 

 Pointcut is a set of join points which have been selected for injecting 
aspect code at run-time. When the execution reaches one of them, the 
advice (a piece of code) is executed to determine the sequence of 
execution at that point. A pointcut allows the aspect to do something 
with a single statement in many places. 

 Advice is the behaviour to be executed at a join point that has been 
selected in a pointcut. An advice determines if the aspect must be 
executed before, after or instead the code of the join point. 

 Aspect is a language constructor that encapsulates a crosscutting-
concern, and is composed of pointcuts and one or more advices. 
Aspects can have their own state. 

Among the different approaches and implementations of AOP, two weaving 
models are distinguished: static weaving and dynamic weaving. On the one 
hand, static weaving models are those in which the aspects and non-aspect 
entities are declared as separate entities, but at compilation time the two 
entities are combined into one. This model has the drawback that at 



2.4 PRISMA 

47 

execution time the aspects cannot be manipulated. As a result, aspects fail to 
gain a high level of evolution, maintenance and reusability. Examples of this 
model are AspectJ (Kiczales et al., 2001), Composition Filters (Aksit et al., 
1994) or Loom.NET (Schult & Polze, 2002). On the other hand, dynamic 
weaving models are those in which the separation of aspects and non-aspect 
entities is conserved at all moments even at execution time. Aspects can be 
woven and unwoven at run-time. This benefits the evolution and adaptation 
of systems, since this model allows us to extend existing code by adding or 
removing aspects. Examples to this model are the Disguises Model (Sanchez et 
al., 1998), PROSE (Popovici et al., 2002), JAsCo (Suvée et al., 2003), EOS 
(Rajan & Sullivan, 2003), and the Dynamic Aspect-Oriented middleware 
Framework (DAOF) (Pinto et al., 2005).  

2.3.3 Aspects in the Software Life Cycle 

Crosscutting-concerns do not only arise in the development phase of the 
software life cycle, but in every phase of the software life cycle. For this reason, 
although AOP emerged from the implementation level, its use has been 
extended to all the stages of the software life cycle: such as requirements 
(Navarro, 2008) or architecture (Pérez, 2006). This is how the term Aspect-
Oriented Software Development (AOSD) (Filman et al., 2004) has emerged 
exploiting the advantages this paradigm can provide in every stage of software 
development. For further details about AOSD and the different existing 
approaches and models, the reader can refer to (Chitchyan et al., 2005), 
(Douence & Le Botlan, 2005), or (Pérez, 2006; chapter 3), where an extensive 
introduction about the AOSD field is presented. 

2.4 PRISMA 

PRISMA provides a model for the definition of complex software systems 
(Pérez et al., 2005b). Its main contributions are the way in which it integrates 
elements from aspect-oriented software development and software architecture 
approaches, as well as the advantages that this integration provides to software 
development. The PRISMA model introduces the notion of aspect following 
an architectural model with connectors and a symmetrical aspect-oriented 
model. 

Since the PRISMA model is a technology-independent model, the PRISMA 
approach also follows the Model-Driven Development paradigm (Selic, 2003) 
to obtain its advantages during the development and maintenance processes 
of PRISMA architectures. The main goal of the PRISMA approach is to give a 
complete support for the development of technology-independent aspect-



CHAPTER 2. CONTEXT 

48 

oriented software architectures, which could be compiled to different 
technological platforms and languages using automatic code generation 
techniques. 

The purpose of this section is to present the main properties of the PRISMA 
model and the reasons why it has been selected as the framework for 
developing the ideas of this thesis. 

2.4.1 Model and ADL selection 

Among the different formal Architecture Description Languages (ADLs) from 
the literature (Medvidovic & Taylor, 2000), we have selected the PRISMA 
ADL (Pérez, 2006) because of the advantages it provides for supporting 
dynamic evolution of software architectures.  

First, the PRISMA language allows modelling (Pérez et al., 2006), (Pérez & 
Cuesta, 2007): (i) the functional decomposition of a system, by using 
architectural elements; and (ii) the system‟s crosscutting concerns, by using 
aspects. This results in simpler, clearer, and more concise system 
specifications. In addition, this allows us to separate those parts of the 
software that exhibit different rates of change, and evolve only the interesting 
parts (Mens & Wermelinger, 2002). In this way, we can easily isolate 
functional and reconfiguration concerns.  

Second, PRISMA does not only allow modelling the structure (i.e. the 
architecture) of a system, but also allows describing precisely the internal 
behaviour of each architectural element. The behaviour is specified by using: 
(i) a modal logic of actions for describing services (Stirling, 1992); and (ii) π-
calculus with priorities, for describing interactions among services (Milner, 
1993). Thus, since the internal behaviour is formally described, this allows us 
to automatically interleave the actions required to perform the runtime 
evolution of its instances: (i) actions to achieve quiescence, and (ii) actions to 
perform the state migration.  

Lastly, the PRISMA ADL is supported by a Model-Driven Development 
framework, PRISMACASE (Pérez et al., 2008), which allows the automatic 
generation of executable code from PRISMA models/specifications. This also 
benefits the support for dynamic evolution. The code generation templates 
can include not only the code for supporting the runtime evolution of the 
system, but also the code to reflect the changes on the formal system 
specification, keeping both in sync. For this reason, next we introduce the 
main concepts of the PRISMA ADL.  



2.4 PRISMA 

49 

2.4.2 Aspects as First-Class Citizens 

Aspect-Oriented Software Development allows us to encapsulate in a single 
artefact (the aspect) the behaviour that is disseminated across a system (i.e. a 
crosscutting concern). 

One of the contributions that the PRISMA model provides to software 
architecture is that it defines an Architecture Description Language that 
introduces aspects as a new concept of software architectures (Pérez et al., 
2006), rather than simulating them using other existing architectural terms 
(components, connectors, views, etc). Then, aspects are first-class citizens of 
software architectures and represent a specific behaviour of a concern (safety, 
coordination, distribution, reconfiguration, etc.) that crosscuts the software 
architecture. Moreover, one concern can be specified by several aspects. 
Aspects can be reused: the same aspect can be imported by each one of the 
architectural elements (components and connectors) that need to take into 
account the behaviour of the concern that this aspect defines. 

Another contribution of the PRISMA model is that the behaviour of 
architectural crosscutting concerns is defined by means of a symmetrical 
aspect-oriented model (Harrison et al., 2002), (Cuesta et al., 2005). In this 
kind of models, aspects are not constrained to only specify non-functional 
requirements; aspects also specify functional requirements (i.e. the business 
logic). As a result, PRISMA provides a homogeneous treatment for functional 
and non-functional requirements. 

 
Figure 2.2. Crosscutting-concerns in PRISMA architectures 

Thus, the behaviour of a PRISMA architectural element is defined by a set of 
aspects, which describe the architectural element from different concerns of the 
architecture and can be reused by other architectural elements at the same 



CHAPTER 2. CONTEXT 

50 

time (see Figure 2.2). In this sense, aspects crosscut those elements of the 
architecture that import their behaviour. 

Since PRISMA is a symmetrical aspect-oriented model that it is applied to 
software architectures, i.e. the architectural level, the weaving process does not 
define pointcuts between base code and aspect code and their corresponding 
advices. In PRISMA, there is no base code; all system behaviour is defined as 
an aspect. As a result, the weaving process is composed of a set of weavings, 
and a weaving indicates that the execution of an aspect service can trigger the 
execution of services in other aspects. 

From the AOP point of view (see section 2.3), PRISMA weavings can be 
defined as follows: every service of an aspect is a join point, the services that 
trigger a weaving are the pointcuts, and the services that are executed as a 
consequence of weavings are the advices. A weaving is defined by means of 
operators that describe the order in which services are executed. A weaving 
has the following structure: 

<aspect1>.<service1> <weaving_operator> <aspect2>.<service2 

Where:  

- <service1> and <service2> are services that are defined in the aspects 
<aspect1> and <aspect2>  

- <weaving_operator> can be one of the following: after, before, instead, 
afterIf(<boolean condition>), beforeIf (<boolean condition>), and 
insteadIf (<boolean condition>). These operators define if <service1> 
is executed after, before or instead <service2>. 

In PRISMA, to preserve the independence of the aspect specification from 
other aspects and weavings, weavings are specified outside aspects and inside 
architectural elements. As a result, aspects are reusable and independent of 
the context of application and weavings weave the different aspects that form 
an architectural element. This way of specifying weavings achieves not only the 
reusability of the aspects in different architectural elements, but also the 
flexibility of specifying different behaviours of an architectural element by 
importing the same aspects and defining different weavings. 



2.4 PRISMA 

51 

2.4.3 PRISMA Architectural Elements 

PRISMA has two kinds of architectural elements: simple (Components and 
Connectors) and composite (Systems3). A simple architectural element can be 
seen as a part of a system which cannot be decomposed into simpler parts. A 
composite architectural element can be seen as a subsystem, which defines a 
logical or physical composition of architectural elements. This allows us to 
increase the modularity, composition and reuse of architectural elements.  

Externally, simple and composite architectural elements are similar: both 
encapsulate their functionality as a black box (see Figure 2.3), which publishes 
a set of services that they offer to other architectural elements. These services, 
grouped in interfaces, are provided through ports, which are the interaction 
points among architectural elements. A port can provide server behaviour (i.e. 
it provides services), client behaviour (i.e. it requires services), or both (i.e. it 
provides and requires services). The interactions among architectural elements 
are called attachments: an attachment links the port of an architectural element 
to the port of another architectural element. 

 
Figure 2.3. Black-box view of PRISMA architectural elements 

However, simple and composite architectural elements differ in its internal 
composition. On the one hand, the internal view of a simple architectural 
element is defined as an invasive composition (Aßmann, 2003) of aspects. This 
can be shown as a prism (see Figure 2.4), where each side of the prism is an 
aspect that the architectural element imports. An aspect defines the state and 
behaviour of a specific concern: (i) the state at any given moment is 
determined by the value of its attributes; and (ii) the behaviour is defined by 
the semantics of the services that the aspect provides. More details about the 
semantics of aspects can be found on (Pérez et al., 2006) and (Pérez, 2006). 
Aspects are synchronised among them by means of weavings. Thus, the 
behaviour of a simple architectural element emerges from the set of aspects it is 
invasively composed of.  

                                                      
3 To avoid confusions, we will use capitalized letters when referring to concepts of the PRISMA 
metamodel: Component and Connector (simple architectural elements), and System (a 
composite architectural element). 



CHAPTER 2. CONTEXT 

52 

 

Figure 2.4. Internal view of simple PRISMA elements 

There are two kind of simple architectural elements: Components and 
Connectors. The difference between a Component and a Connector is that a 
Component captures the functionality of a software system, whereas a 
Connector acts as a coordinator among other architectural elements. This 
difference of roles is reflected in the PRISMA model in the fact that 
components define a functional aspect, whereas connectors define a 
coordination aspect.  

On the other hand, the internal view of a composite architectural element 
consists of architectural elements and the links among them (see Figure 2.5). 
These architectural elements can be of any kind, either simple (i.e. 
Components and Connectors), and/or composite (i.e. Systems), whereas the 
links among them can be of two kinds: attachments or bindings. Attachments 
allow architectural elements to interact with each other. Bindings are a kind 
of connection that enables the communication of internal elements with 
external architectural elements: a binding links the ports of a composite 
architectural element and an (internal) architectural element.  

 

Figure 2.5. Internal view of composite PRISMA elements 

Further details about the semantics of the PRISMA ADL can be found in 
(Pérez et al., 2006) and (Pérez, 2006).  



2.4 PRISMA 

53 

2.4.4 Levels of abstraction 

The PRISMA ADL defines the architectural elements of a software system at 
different levels of abstraction: the type definition level and the configuration level. 
The type definition level defines architectural types, which are instantiated in 
specific architectures or are reused by other architectural types. The 
configuration level defines the architecture of a concrete software system, by 
creating and connecting instances of the architectural types defined at the type 
definition level. In other words, the configuration level specifies the topology 
of a specific architectural instance. This separation among the type level and 
the configuration level allows to easily differentiate (and implement) changes 
in a type, and changes in a configuration (i.e. an architectural instance).  

An architecture is defined at the type-level as a pattern, so that it can be 
reused in any other system or architectural type. The architectural element 
that describes an architecture, and thus defines it through a pattern, is a 
composite architectural type4. A composite type can be used in other 
architectural types as a single unit, and be treated like other simple 
architectural types (i.e. Components and Connectors). This allows PRISMA 
to support the compositionality, or hierarchical composition, of its 
architectural elements: the architecture of a complex software system can be 
described as a composition of several architectural elements which, in turn, 
can be described as the composition of other architectural elements. Thus, a 
complex system can be recursively defined as an architecture of architectures, 
because each composition describes an architecture. 

The pattern of a composite architectural type (i.e. a System) defines: (i) a set of 
ports for communicating with its environment (or with other architectural 
elements); (ii) the set of architectural types it is composed of and the number 
of instances that can be created of each type; and (iii) the set of valid 
connections among the architectural types and the number of connections 
allowed.  

For instance, Figure 2.6-top shows a composite type called Sys. It consists of 
two architectural element types, A and B, with a cardinality of 1..1 and 1..n, 
respectively. These types are connected to each other by an Attachment called 
Att_AB with a cardinality 1..1 and 1..n. These cardinalities mean that only one 
instance of A is allowed, which can be connected to several instances of B. 
Finally, Sys interacts with its environment by means of the port p1. The 

                                                      
4In the PRISMA metamodel, a composite architectural element is called System. This 
is the reason why the terms “composite architectural element” and “System” (with a 
capitalized letter) have been used throughout this thesis as synonyms. 



CHAPTER 2. CONTEXT 

54 

behaviour of this port is provided by the architectural type A, which is 
connected by means of the Binding called Bin_p1A.  

 
Figure 2.6. Example of a composite type and two possible instantiations 

On the other hand, the instantiation of a composite type is defined at the 
configuration-level, and is called Configuration (i.e. a composite instance). A 
Configuration instantiates a concrete architecture from the different 
combinations allowed by the pattern: it instantiates each of the architectural 
types defined in the pattern and connects them appropriately. For instance, 
Figure 2.6-bottom shows two Configurations, C1 and C2, of the System Sys. 
For illustration purposes, the PRISMA ADL specification of System Sys and 
Configurations C1 and C2 is shown respectively in Figure 2.7 and Figure 2.8: 

System Sys 

 Ports 

  P1 : interface1; 

 End_Ports; 

 

 Import Architectural Elements  

  A:TA(1,1), B:TB(1,n); 

 

 Attachments 

  Att_AB: A.PServ(1,1) <--> B.PServ(1,n); 

 End_Attachments; 

 

 Bindings 

  Bin_p1A: P1(1,1) <--> A.PClient(1,1); 

 End_Bindings; 

 

 new() { /* Constructor definition */ } 

 destroy() { /* Destructor definition */ } 

End_System Sys; 

Figure 2.7. Example of a PRISMA System 

The distinction among abstraction levels (type definition level and 
configuration level) provides important advantages. On the one hand, it 
allows us to independently manage architectural types and configurations: 



2.4 PRISMA 

55 

architectural types can be reused in several systems, whereas architectural 
configurations define the specific combination of architectural types which 
define a system. This improves an easy reuse and maintenance. On the other 
hand, the distinction among type and configuration level allows us to clearly 
distinguish among type evolution, which is performed at the type definition 
level and is spread to all the configurations that use the evolved type (see 
Chapter 7), and reconfiguration, which is performed at the configuration level 
and only affects a specific system (see Chapter 6).  

 
Architectural_Model_Configuration C1 = 

 new Sys { 

  A1 = new A(); 

  B1 = new B(); 

 

  att_A1B1 = new Att_AB(A1, B1); 

  bin_A1 = new Bin_p1A(A1); 

 } 

 

Architectural_Model_Configuration C2 = 

 new Sys { 

  A6 = new A(); 

  B5 = new B(); 

  B6 = new B(); 

 

  att_A6-B5 = new Att_AB(A6, B5); 

  att_A6-B6 = new Att_AB(A6, B6); 

  bin_A6 = new Bin_p1A(A6); 

 } 

Figure 2.8. Example of PRISMA Configurations 

2.4.5 Model-Driven Development Support 

The PRISMA approach follows the Model-Driven Development (MDD) 
paradigm (Selic, 2003) (Beydeda et al., 2005). There are two main approaches 
that apply this paradigm. They are the Model-Driven Architecture (MDA) 
approach proposed by the OMG (OMG, 2003), and the Software Factories 
approach proposed by Microsoft (Greenfield et al., 2004). MDA deals with 
the lack of software system adaptation to different technologies and 
programming languages by proposing four levels of abstraction: CIM 
(Computation Independent Model), PIM (Platform Independent Model), 
PSM (Platform Specific Model), and the final application. Software Factories 
leads to the reuse of architectures, software components, techniques and tools 
to improve software development.  

PRISMA follows MDD in the general sense, that is, it is not focused on MDA 
or Software Factories. PRISMA MDD support is not constrained to the 
definition of a specific number of levels of abstraction or techniques because 



CHAPTER 2. CONTEXT 

56 

it can vary depending on the needs of each software system. PRISMA follows 
the MDD approach by providing the software architect with models, which 
allow for completely developing aspect-oriented software architectures. Since 
the level of abstraction of models is higher than programming languages and 
the code is automatically generated from these models, the tasks of the 
software architect are facilitated. In addition, the use of code generation 
techniques improves the development and maintenance processes of software. 

2.4.5.1 PRISMA in MOF 

In order to present how PRISMA model specifications follow the MDD 
approach, the OMG Meta-Object Facility (MOF) specification is going to be 
used (OMG, 2002). MOF allows us to clearly present the differences between 
types and instances and their correspondent models. 

MOF defines a four-level “architecture” and its main purpose is the 
management of model descriptions at different levels of abstraction and their 
static modification. The upper layer, M3, is the most abstract one (see the M3 
layer, Figure 2.9). This layer defines the abstract language used to describe the 
next lower layer, which contains metamodels. The MOF specification 
proposes the MOF Model as the abstract language for defining all kinds of 
metamodels, such as UML or PRISMA. 

 
Figure 2.9. Meta-Object Facility layers and PRISMA models 

The metamodel layer, M2, defines the structure and semantics of the models 
defined at the next lower layer. The PRISMA metamodel is defined at this 



2.4 PRISMA 

57 

level. It defines the properties that interface, aspect, architectural element, and 
connection primitives have (see the system package of the PRISMA 
metamodel in the M2 layer, Figure 2.9). 

The M1 layer comprises the models that describe a software system. These 
models are defined using the primitives and relationships that are described in 
the metamodel layer (M2). PRISMA models are defined using the interface, 
aspect, architectural element, and connection primitives that are defined in 
the previous level (M2). As a result, PRISMA types that are placed in the M1 
layer satisfy the properties established at the M2 layer. An example is the Sys 
type, presented in the previous section, which has been defined using the 
PRISMA system primitive (see M1 layer, Figure 2.9). PRISMA system types are 
defined as architectural patterns, which are not specifically configured until a 
particular instantiation is performed. 

The lowest level is the information layer (M0 layer), which contains the data, 
that is, the instances of a specific model. In PRISMA, these data are particular 
system instantiations (see C1 and C2, M0 layer, Figure 2.9), which behave as 
described in the system type. 

2.4.5.2 The PRISMA MDD Process 

The PRISMA model is a metamodel that permits the definition of PRISMA 
type models whose instantiation defines PRISMA configuration models. 
PRISMA configuration models define specific systems.  

PRISMA applies MDD to define type models from its metamodel (see step A, 
Figure 2.10), and to define configuration models from type models (see step 
B, Figure 2.10). In addition, the PRISMA approach has created a set of 
transformation patterns to transform PRISMA models into its Aspect-
Oriented ADL specifications and into C# code (see steps 1 and 2, Figure 
2.10). PRISMA applies these transformation patterns during the development 
process in order to automatically generate applications from its PRISMA 
architectural models and to show the formal specification of its models.  

This MDD process, together with the models and the generation patterns, are 
provided by a tool, PRISMA CASE. This tool supports the PRISMA approach 
and is presented in detail in (Pérez et al., 2006), (Pérez et al., 2007a), (Guillén-
Martín, 2007). PRISMA CASE currently supports the generation of C# code 
that is executable on .NET technology from its aspect-oriented architectural 
models. The PRISMA CASE is composed of the PRISMA metamodel, a 
graphical modelling tool, a model compiler, a middleware and a generic 
graphical user interface to execute the generated code (see Figure 2.11).  

 



CHAPTER 2. CONTEXT 

58 

 
Figure 2.10. MDD from the PRISMA Metamodel to Applications 

The PRISMA metamodel is part of the PRISMA CASE since the metaclasses 
that allow the creation of PRISMA aspect-oriented software architectures, as 
well the constraints of the PRISMA metamodel, must be available in the 
CASE tool. They are necessary to be able to model PRISMA architectural 
models and to make sure that they satisfy the PRISMA constraints. 

The PRISMA Aspect-Oriented ADL is a formal language. Even though the use 
of a formal language clearly provides advantageous characteristics, the use of a 
formal language is really difficult. For this reason, PRISMA CASE provides a 
graphical language and a graphical modelling tool to model PRISMA software 
architectures using an intuitive and friendly graphical interface. This PRISMA 
graphical modelling tool is divided into two modelling tools following the 
MDD process presented in the previous section: the PRISMA Type Modelling 
Tool and the PRISMA Configuration Modelling tool. 

Since PRISMA CASE must generate executable C# code in .NET technology 
and the .NET framework does not provide support for the Aspect-Oriented 
approach, a PRISMANET middleware has been developed to provide a 
solution (Pérez et al., 2005a). PRISMANET extends the .NET technology 
through the execution of aspects on the .NET platform in accordance with the 
PRISMA model.  



2.5 CONCLUSIONS 

59 

 
Figure 2.11. PRISMA CASE (Perez, 2006) 

Finally, the PRISMA model compiler has been developed to automatically 
generate PRISMA AOADL specifications and C# code from the PRISMA 
architectural models, and a generic GUI is provided to assist the user in 
checking the behaviour of the architecture. 

2.5 Conclusions 

This chapter has presented a brief overview about Software Architecture and 
Aspect-Oriented Software Development. The most important concepts have 
been described to facilitate the comprehension of the remaining chapters of 
this thesis.  

In addition, this chapter has introduced the PRISMA approach, which allows 
the modelling of aspect-oriented software architectures and their code 
generation. The advantages of PRISMA have been analysed and emphasized 
to justify the reasons why PRISMA has been selected to apply the 
contributions of this thesis. Thereby, since PRISMA does not support the 
modelling and code generation of software systems with dynamic evolution 
requirements, the application of this thesis to PRISMA has extended this 
model by including dynamic evolution support. 

 





  

61 

Part II: State of the Art 

 

 

 

 

PART II 

STATE OF THE ART 

 

 

 
 





  

63 

Chapter 3. Dynamic Software Evolution 

 

CHAPTER III 

DYNAMIC SOFTWARE 

EVOLUTION 

3.1 Introduction 

his chapter describes the concepts related to dynamic software 
evolution that are used throughout this thesis. First, section 3.2 
presents software evolution, software maintenance and evolutionary 

processes. Second, section 3.3 introduces dynamic software evolution: the 
terms that are used in the literature and the different kinds of dynamic 
evolution, focusing in the granularity and the activeness of changes. Next, 
section 3.4 presents the main issues related to dynamic evolution: how to 
preserve the consistence of changes before and after dynamic changes. This 
involves the safe stopping and the updating of stateful software artefacts. 
Section 3.5 presents other interesting approaches that address dynamic 
changes: control systems, autonomic computing and computational reflection. 
Finally, section 3.6 presents dynamic evolution in the context of dynamic 
software architectures. 

3.2 Software Evolution 

The Oxford Dictionary defines evolution as ―a gradual process of change and 
development‖. This definition is very abstract and may have several 
interpretations. A more general definition, which captures the characteristics 
of evolution in many situations (including software systems), was proposed by 
Meir M. Lehman in (Cook et al., 2006): 

A process of discrete, progressive, change over time in the characteristics, 
attributes, [or] properties of some material or abstract, natural or 
artificial, entity or system or of a sequence of these [changes].  

T 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

64 

In the context of software engineering, the term software evolution has no one 
widely accepted definition (Mittermeir, 2001). There are two main views on 
software evolution, referred to as the what and why versus the how perspectives 
(Lehman, 1980). The former focuses on the evolution of software as a 
scientific discipline, and studies the nature of evolution, its impact, and its 
driving factors. The latter (i.e. the how) focuses on the evolution of software as 
an engineering discipline, and studies the technology, methods and activities 
that provide means to direct, implement and control software evolution 
(Mens, 2008). This is the perspective that has been followed in this thesis. 

3.2.1 Software Maintenance vs Software Evolution 

As a consequence of the perspective of software evolution as an engineering 
discipline, and the lacking of a standard definition, software evolution is often 
considered as a synonym of software maintenance (Bennett & Rajlich, 2000), 
(Chapin et al., 2001), (Mens, 2008). Software maintenance is defined in the 
ISO/IEC 14764 IEEEStd 14764-2006 standard as: 

The totality of activities required to provide cost-effective support to a 
software system. Activities are performed during the pre-delivery stage 
(planning for post-delivery operations, supportability, and logistics) as 
well as the post-delivery stage (software modification, training, and 
operating a help desk).  

(ISO/IEEE, 2006) 

In addition, most of the following evolution-related research themes have 
been considered as being crucial activities in software maintenance: software 
comprehension, reverse engineering, testing, impact analysis, cost estimation, 
software quality, software measurement, process models, configuration 
management, and re-enginering (Mens, 2008).  

However, both terms should not be used as synonyms. From a linguistic point 
of view, the term maintenance indicates that the software itself is 
deteriorating, which is not the case. It is changes in the environment or user 
needs that make it necessary to adapt the software (Mens, 2008). That is, 
evolution. 

From an engineering perspective, software maintenance is generally viewed as 
a supporting process of a software product, as a way of keeping the product 
operational and usable. Maintenance activities are to correct faults, to improve 
performance or other attributes, or to adapt the software product to a 
modified environment, such as an upgraded operating system. However, the 
addition of new functionality to a software product is not usually considered 
as a maintenance activity but an evolutionary activity. For instance, in 



3.2 SOFTWARE EVOLUTION 

65 

software product versioning (Apache, 2010), minor version numbers reflect 
corrections or improvements (i.e. maintenance activities), whereas major 
version numbers reflect important changes, such as new functionalities (i.e. 
evolutionary activities).  

That is, evolutionary activities are those that involve substantial changes, 
normally performed at the architectural level, whereas maintenance activities 
are those that involve minor changes in concrete modules or components. 
Maintenance activities can be considered as part of the evolutionary activities 
that are being performed on a software product, but not in the other way 
round: software evolution has itself a broader view than software 
maintenance.  

3.2.2 Evolution as part of the Development Process 

Due to the broader perspective of the term software evolution, several authors 
have preferred to use this term (and not maintenance) to refer to a phase of the 
software life cycle, which lasts from the initial creation of the software product 
until its eventual retirement or abandonement. This has lead to the following 
development methods, where evolution is a crucial ingredient: Evolutionary 
development (Gilb, 1981), the Spiral model (Boehm, 1988), the Staged model 
(Bennett & Rajlich, 2000), and Agile Software Development (Cockburn, 2001), 
(Martin, 2002). In these models, the phase of software evolution involves the 
adaptation of the software product to include new user requirements or to 
perform maintenance activities:  

[The phase of] software evolution takes place only when the initial 
development was successful. The goal is to adapt the application to the 
ever-changing user requirements and operating environment. The 
evolution stage also corrects the faults in the application and responds to 
both developer and user learning, where more accurate requirements are 
based on the past experience with the application.  

(Bennett & Rajlich, 2000)  

Note the emphasis that is given to the past experience gathered on using the 
application and how it is considered to generate the new version of the 
application. As Lehman pointed out: “evolution is an intrinsic, feedback driven, 
property of software‖ (Lehman, 1980). This view is common in all the studies 
about software evolution, definining it as an iterative, incremental process 
based on the previous feedback. 

Other authors have studied the types of changes that are usually performed to 
adapt a software product, and have defined what kinds of changes characterize 
a software evolution activity: 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

66 

Software evolution occurs when the software maintenance done is of the 
enhancive, corrective, or reductive types (any of the business rules 
cluster), or it changes software properties sensible by the customer, i.e., it 
is of the adaptive or performance types.  

(Chapin et al., 2001) 

Note that this definition explicitly includes maintenance activities (i.e. 
enhancive, corrective or performance types) as part of the evolution process. 
This also confirms the inclusion of the maintenance process as part of an 
evolution process.  

In conclusion, we could define software evolution as: 

The set of activities and processes that change a previously operational 
software artefact to correct, improve, extend, or reduce its current 
functionality to satisfy new requirements based on the past experience 
with the software artefact and its interactions with the environment. 

In this thesis, we prefer to use the term software artefact instead of software 
product or application to indicate that we can change only a part of a software 
system. In addition, we have also considered as an influencing factor the past 
experience gathered on using the software artefact and how it interacts with its 
environment.  

3.3 Dynamic Software Evolution 

One of the main difficulties of software evolution is that all artefacts produced 
and used during the entire software life-cycle are subject to changes, ranging 
from early requirements over analysis and design documents, to source code 
and executable code (Mens, 2008). Updating the executable code is the last 
step to reflect the changes required by the new requirements. In this thesis, 
the focus will only remain on this last step: how to integrate the changes in 
the running system.  

3.3.1 Changing software artefacts 

To understand how a software artefact is evolved or updated, first we need to 
understand how software systems are built and put into execution. Software 
systems are constructed from one or more program modules, which can be 
either components, classes or files. The generation of the executable code 
starts with the compiling of modules, a process which generates the binary code 
of each module. For each module, the compiler includes a header which maps 
symbol names (i.e. variable names or method names) to code fragments. If a 



3.3 DYNAMIC SOFTWARE EVOLUTION 

67 

module uses/imports another module, then a symbol representing the 
external module is included in the header, but its mapping is deferred until 
the linking is performed. The linking is the process that takes place after the 
compilation of the modules: it combines the code of the modules and resolves 
any reference to externally-defined symbols by matching those references with 
the appropriate definitions in other modules. When linking finishes, then the 
code can be executed.  

Therefore, to change a software artefact (e.g. a module) that is part of a 
software system, the following steps must be performed. First the source code 
of the software artefact must be edited or extended with the required updates 
and recompiled again. Then, the binary code that has been generated in the 
compilation process must be relinked to the other modules of the software 
system, because the references among them have changed. Since the 
references among modules are defined statically, this linking requires shutting 
down the software system to integrate the changed modules, that is, to update 
the references mapped from the old modules to the new modules. This 
process of change is called static evolution or offline evolution, because the 
system needs to be restarted again. This has been the traditional approach for 
performing the evolution of software (Fabry, 1976), (Buckley et al., 2005). 
However, this practice has the disadvantage that (i) the state and pending 
transactions of the running system are lost, and (ii) the entire system will be 
temporarily unavailable during the restarting process. 

3.3.2 Introducing changes at runtime 

For some companies, the cost of system shutdown can be prohibitive. Certain 
safety- and mission-critical systems, such as air traffic control, telephone 
switching, and high availability public information systems cannot be stopped. 
Shutting down and restarting such systems for upgrades may incur 
unacceptable delays, increased cost, and risk (Oreizy et al., 1999). For 
instance, changing the software that controls a spacecraft or an autonomous 
robot cannot be done if it means disabling the life-support system or the 
energy management system. And, disabling a bank-transaction processing 
system may have significant economic consequences.  

In such cases, the support for introducing changes at runtime, without 
stopping the system, is needed. This was first introduced by R.S. Fabry in 
1976, as the need for ―constructing a system in such a way that the programs and 
the data structures which they manage can be changed without stopping the system‖. 
This kind of change was originally called on-the-fly program modification (Fabry, 
1976), (Segal & Frieder, 1993). Since then, other terms have been used in the 
literature: dynamic updating (Segal & Frieder, 1989), dynamic change (Kramer & 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

68 

Magee, 1990), on-line change (Gupta et al., 1996), runtime evolution (Oreizy et 
al., 1998), dynamic evolution (Malabarba et al., 2000), live updating 
(Vandewoude & Berbers, 2005a), or online evolution (Wang et al., 2006).  

As it can be observed from these terms, the change on a software system is 
referred to as program modification, updating, change or evolution, whereas the 
time when the changes are applied are denoted as on-the-fly, dynamic, online, 
runtime, or live. Although these terms are used as synonyms in the literature, 
there is not a widely accepted definition for the kind of change they refer to.  

3.3.3 Dynamic Evolution: Definitions 

Generally, most of the existing definitions are very abstract and only refer to 
the time where changes are applied on a software system:   

Online software evolution is a kind of software evolution that updates 
running programs without interruption of their execution. 

(Wang et al., 2006) 

This definition focuses on the updating of a software system at runtime, from 
the perspective of software maintenance. However, this definition does not 
describe the nature of such updates, and assumes that the changes can be 
applied to the running system without any disruption. This is not true, since 
the subsystems affected by the changes will require to be interrupted somehow 
to introduce the updates.  

Kramer & Magee (Kramer & Magee, 1990) are more explicit and define a 
dynamic change as an evolutionary process, which may involve “modifications or 
extensions to a system that were not envisaged at design time‖, and which are 
performed “without stopping or disturbing the operation of those parts of the system 
unaffected by the change‖. This emphasizes the evolving nature of software 
systems and the minimal disruption on the execution of the other elements of 
a system.  

A different focus is taken by Gupta, Jalote and Barua, who defined on-line 
change as an instantaneous rather than an evolutionary process:  

An on-line change from program ∏ to ∏‘ at time t using the state 
mapping S, in a process P (executing ∏) is equivalent to the following 
sequence of steps:  

1) P is stopped at time t in state s;  



3.3 DYNAMIC SOFTWARE EVOLUTION 

69 

2) The code of P (which, until now, was the program ∏) is 
replaced by the program ∏‘, its state is mapped by S and P is 
then continued (from state S(s) and with the code of ∏‘). 

(Gupta et al., 1996) 

This definition focuses on the transference of the state among the different 
program versions. The change is viewed as a replacement or updating 
operation, where a new program (or module) replaces another, and the 
previous state is mapped to the data structures of the new module. This is the 
perspective taken in the so-called dynamic updating and live updating 
approaches. However, this definition considers an update operation as a 
change that modifies the whole program, so it requires stopping the entire 
system. This is not acceptable in medium-sized and large-sized software 
systems: only the affected parts or structures should be stopped.  

 

In this thesis, we propose the following definition for dynamic change: 

Dynamic evolution is a process of gradual change that is performed 
on a previously operational software system to correct, improve, extend or 
reduce part of its functionality, which occurs during its execution, 
without disturbing those parts of the system unaffected by the change, 
and which preserves the system‘s integrity.  

 

This definition explicitly indicates that:  

 The changes have an evolutive, incremental nature. 

 The system to evolve was previously operational. Otherwise, if the 
system was not operational (e.g. it may be running but being hanged 
or crashed), then static evolution should be used (i.e. changes can be 
performed at design-time). 

 Changes may involve update operations (i.e. corrections and 
improvements), addition of new functionalities, or removal of 
previous functionalities. 

 The change process is performed while the system is running, without 
the need of stopping it. 

 Only those parts of the system which are subject to changes should be 
stopped. The other parts, which are running, should not be disrupted 
by the change process. 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

70 

 System integrity must be preserved: the system should continue 
working normally, and be left in a consistent state. When updating a 
part of the system, its previous state should be preserved or migrated 
whenever possible. 

We have preferred to use the term dynamic evolution instead of the other terms 
proposed in the literature (e.g. on-line change, dynamic updating, dynamic 
change, runtime evolution, etc.), because it describes better the change 
process. On the one hand, the term evolution refers to progressive 
improvement, as a consequence of natural selection mechanisms. Software 
products evolve, or change progressively, while they are still alive, i.e. being 
used. This is not reflected by the other terms (i.e. modification, change, and 
updating), which suggest the realization of instantaneous, occasional changes, 
instead of continuous, progressive improvements. On the other hand, the 
term dynamic refers to objects that are in motion, in activity or in progress. 
This perfectly defines the nature of a runtime change: changes that are 
performed while the software system is running, engaged in some activity, and 
without stopping it.  

3.3.4 Kinds of Dynamic Evolution 

As described in the previous section, dynamic evolution is a term that is used 
to describe those software changes or improvements that are done at runtime, 
without stopping the software system. It is a general term that is not 
constrained to changes on a specific kind of software artefact or to a specific 
granularity of change.  

There are other terms in the literature that denote specialized types of 
dynamic change, and which should not be incorrectly used as synonyms for 
dynamic evolution, which has a more generic meaning. One of these terms is 
dynamic adaptation. For instance, Keeney uses this term as ―the act of changing 
the behaviour of some part of a software system as it executes, without stopping or 
restarting it‖ (Keeney, 2004). Walter Cazzola et al. define dynamic adaptation 
as the ability of a software system ―to adapt itself to environmental changes by 
adding new and/or modifying existing functionalities, avoiding a long out-of-service 
period for maintenance‖ (Cazzola et al., 2004). These definitions have some 
points in common with the definition of dynamic evolution previously 
presented. However, the term dynamic adaptation is a specialized kind of 
dynamic change that is performed by means of adaptors (Canal et al., 2006). 
An adaptor is a specific computational entity developed for guaranteeing that 
a set of mismatching components will correctly interact (Canal et al., 2008). 
Thus, dynamic adaptation is defined as the process of changing a software system 
at runtime in a nonintrusive way, by means of adaptors, and without modifying the 



3.3 DYNAMIC SOFTWARE EVOLUTION 

71 

code of components. By contrast, dynamic evolution may be performed either 
intrusively, by modifying the code of components (e.g. to add new 
functionality), or non-intrusively, by means of adaptors. 

Next, other specialized terms are introduced, which are subclassified by the 
granularity of changes (dynamic reconfiguration, dynamic type evolution and 
dynamic updating), and by the activeness of such changes (reactive/ad-hoc 
evolution, programmed proactive evolution, non-programmed proactive evolution). 
Additional attributes for characterizing dynamic changes can be found in 
(Buckley et al., 2005) and (Andersson et al., 2009a). 

3.3.4.1 Granularity of changes 

Dynamic evolution can be performed at different granularity levels. 
Granularity refers to the scale of the artefacts to be changed and can range 
from very coarse, through medium, to a very fine degree of granularity 
(Buckley et al., 2005): 

 Coarse granularity changes are those changes that are performed at 
the level of system architecture. That is, changes that may impact 
several subsystems, such as modifying an entire subsystem or adding a 
new functionality. These kinds of changes are performed by Dynamic 
Reconfiguration, which addresses the reconfiguration of a software 
architecture at runtime, by adding/removing components, connectors 
and their interconnections. 

 Medium granularity changes are those changes that impact the 
composition of components, modules, or classes, and all of its 
instantiations.  These changes are addressed by the Dynamic Evolution 
of Types, which provides support to the modification of types (i.e. 
specifications) at runtime and their instances. 

 Fine granularity changes are those changes that are performed at the 
level of variables, statements or methods. These changes are 
transversal to the other granularity levels and are implicitly provided 
by the upper levels. They are generally addressed by Dynamic Updating 
approaches (Hicks & Nettles, 2005).  

Generally, existing approaches only provide change management at a single 
granularity level. However, these levels complement each other and should be 
combined to provide critical software systems with the maximum degree of 
flexibility.  



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

72 

3.3.4.2 Activeness of change 

Dynamic changes can be driven in two different ways: reactively or proactively 
(Buckley et al., 2005). 

On the one hand, reactive changes are those changes that are driven by an 
external agent (usually the developer), typically by means of a user interface or 
an external tool. Support for reactive changes is recommended to be able to 
introduce unforeseen changes, i.e. changes not initially predicted during the 
design of a system. In the area of software architecture, this kind of change is 
also referred as ad-hoc reconfiguration (Endler & Wei, 1992). Most of the works 
addressing dynamic updating support this kind of change (Segal & Frieder, 
1993). 

On the other hand, proactive changes are those changes that are driven 
autonomously by the system when some specific conditions or events apply. 
An example of the use of such changes is to provide system dependability: if a 
component instance does not adequately respond, the system might change its 
connections to another suitable component instance, or recreate the 
component instance again. Two subtypes of proactive changes can be 
distinguished, depending on whether these changes are previously 
programmed or not: 

 Programmed evolution. Changes are defined at design-time, and are 
activated when a certain condition or event applies.  In software 
architecture, this kind of change is referred as programmed 
reconfiguration (Endler & Wei, 1992), and are described by means of 
reconfiguration specifications. A reconfiguration specification 
describes when the architecture of a system should change (e.g. in 
response to a certain event or a state change), and what kind of 
changes must be performed on this architecture for each situation. 
Most of the works addressing dynamic reconfiguration support this 
kind of change (Bradbury et al., 2004). 

 Non-programmed/Generative evolution. Changes are automatically 
synthesized at run-time by the system, which also decides when to 
load and use them. This is the most powerful kind of change a system 
may exhibit, but also the most difficult to control. Although this does 
not imply the presence of intelligence, a system provided with this 
kind of evolution will exhibit intelligent behaviour (Pollack, 2006) 
because of its ability to synthesize new behaviours in response to 
either internal or external stimuli. This kind of evolution is still very 
challenging. For this reason, only a few works provide some kind of 
support to this kind of evolution. An example is the work of Sykes et 



3.4 MAIN ISSUES OF DYNAMIC EVOLUTION 

73 

al. (Sykes et al., 2008), which provides support to automatically 
synthesize reconfiguration specifications according to high-level goals.  

There are already some techniques that could be used to address non-
programmed evolution. For instance, the generation of behaviours from 
observed internal or external facts can be addressed by means of Inductive Logic 
Programming: a rule learning technique based on logical programming that uses 
previous background knowledge and existing facts or observations to infer (i.e. 
generate) new rules (i.e. behaviours) at runtime (Bergadano & Gunetti, 1995). 
Other kind of promising techniques are those based on evolutionary 
computation, which are techniques inspired on darwininian evolution 
processes for automated problem solving. In this context, the individuals of 
the population are program specifications which are evaluated and evolved 
iteratively until a user-defined task is achieved. Some works have already 
exploited these techniques for generating some software artefacts. For 
instance, (Wong & Mun, 2005) have analysed the use of genetic programming 
to produce (logical) recursive programs, whereas (Weise et al., 2009) have used 
genetic programming to generate UML models of programs. Likewise, 
(McKinley et al., 2008) uses digital evolution techniques to generate programs.  

Reactive and proactive changes are complementary: both should be supported 
to allow a system to introduce unforeseen changes or updates (i.e. reactive 
change support), and to reconfigure itself autonomously in response to certain 
situations (i.e. programmed proactive change support). The combination of 
both kind of activeness is beneficial for complete dynamic evolution support, 
since it would allow us to introduce at runtime new component types and 
reconfiguration specifications (i.e. proactive change specifications) that were 
not envisaged at design-time.  

3.4 Main Issues of Dynamic Evolution 

When addressing dynamic evolution of software systems, different issues must 
be addressed. The two most important issues which must be dealt with are 
reaching a consistent application state, and the transferring of state. On the 
one hand, application consistency refers to the safe stopping of the running 
software artefacts, so that they can be changed with minimal disruption in the 
normal operation of the system. On the other hand, the transferring of state 
refers to the migration, or the transformation, of the internal structure and 
information content of a software artefact at runtime. Next, these issues are 
presented in detail. 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

74 

3.4.1 Safe Stopping of Running Systems 

One of the main issues that must be faced when addressing dynamic evolution 
is to place a system in a consistent state before and after dynamic change. The 
removal or replacement of a system element at runtime (e.g. a component, a 
type, or a relationship) may cause that some service requests that were pending 
to execute could be lost (if they were to be executed on a removed element), or 
incorrectly executed (if they were to be executed on an element which has 
been changed). This will lead the state of a system to be inconsistent, and 
probably, to evolve towards a failure.  

For this reason, before performing dynamic changes on a running system, the 
affected elements must be placed in a (deactivated) safe state, which must 
guarantee that changes on these elements will not introduce inconsistencies in 
the system. This process must be performed with the minimum disruption on 
the elements that are unaffected by the changes. The conditions that an 
element (either stateless or stateful) must fulfil to be in a safe state are 
provided by the so called safe stopping criteria. This section presents the most 
extended safe stopping criteria, quiescence and tranquillity, and introduces 
other approaches that have been proposed. 

3.4.1.1 Quiescence 

One of the most extended and influential safe stopping criterion is Quiescence, 
proposed by Jeff Kramer and Jeff Magee (Kramer & Magee, 1990). Their main 
contribution is the introduction of a number of requirements to ensure 
consistency when reconfiguring a distributed system. In their model, a system 
is seen as a directed graph whose nodes are system entities and whose arcs are 
connections between those entities. Nodes are processing entities that can 
initiate and/or service transactions, which consist of a sequence of messages 
that must be executed atomically (i.e. all messages are executed, or none of 
them).  

There are two kinds of transactions: independent and dependent. A 
transaction is independent if its completion does not depend on any other 
(possibly nested) transactions with other nodes. A transaction is dependent if its 
completion may depend on the completion of other consequent transactions. 
Cycles are not forbidden, but it is assumed that transactions complete in 
bounded time and that deadlocks are avoided. 

To perform a dynamic change, all the nodes that are going to be affected by 
such change must reach local consistency first. Local consistency in a node 
will be achieved if it has no partially completed transactions. And, to be able 
to determine if there are partially completed transactions, it is assumed that 



3.4 MAIN ISSUES OF DYNAMIC EVOLUTION 

75 

the initiator of a dependent transaction is informed of the completion of its 
consequent transactions.  

Kramer and Magge abstract the status5 of an application into a set of different 
configuration statuses for each node: 

 Active status. A node in this status can initiate, accept, and service 
transactions. This is the normal behaviour.  

 (Generalized6) Passive status. A node in this status must continue to 
accept and service transactions and initiate consequent transactions, but: 

o It is not currently engaged in a (nonconsequent) transaction 
that it initiated, and 

o It will not initiate new (nonconsequent) transactions 

That is, a passive node: (i) accepts and services pending transactions 
from connected nodes to allow them to complete outstanding 
transactions; (ii) has finished the nonconsequent transactions it 
initiated; and (iii) only initiates transactions that are required by other 
pending transactions (i.e. it only initiates nested transactions). 

 Quiescent status. A node will be in this status if: 

o It has passive properties (i.e. it is not engaged in a transaction 
that it initiated and will not initiate new ones) 

o It is not currently engaged in servicing a transaction,  

o No transactions have been or will be initiated by other nodes 
that require service from this node. 

In this status a node is both consistent and frozen. It is consistent 
because the node does not contain the results of partially completed 
transactions, and is frozen because the node state will not change as a 
result of new transactions. 

To move a node Q from the active status to the quiescent status, the following 
nodes must be directed towards the passive status first:  

(i) the node Q;  

                                                      
5 As introduced by (Vandewoude et al., 2007), it will be used the distinction between 
the internal state of an element (which is migrated or transformed in the evolution 
process) and the status that describes its condition with respect to the evolution 
process. 
6 The most extended definition of passive status is restricted to only independent 
transactions (i.e. which cannot be nested). For the sake of generality, the generalized 
definition is provided, because it takes into account dependent transactions. 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

76 

(ii) all nodes which can directly initiate transactions on Q, i.e. all 
nodes with connection arcs directed towards Q; 

(iii) all nodes which can initiate dependent transactions which result 
in consequent transactions on Q. 

This is called the enlarged passive set EPS of a node Q, denoted EPS(Q). Kramer 
and Magee demonstrated that, in a system with nested transactions and 
assuming that these transactions complete in bounded time, a node Q can 
move towards the quiescent status in bounded time if all the nodes in EPS(Q) 
are passivated. 

Kramer and Magee have shown that the quiescence requirement is sufficient 
to ensure consistency, and that quiescence is reachable in finite time. The 
model was implemented and tested in the Conic environment for distributed 
programming (Magee et al., 1989). It has been the basis of many other 
systems, such as (Bidan et al., 1998) and (Moazami-Goudarzi, 1999). 

However, the main disadvantage of the model of Kramer & Magee is that 
enforcing quiescence in a system with nested transactions often causes serious 
disruption to the running system (Vandewoude et al., 2007). Not only must 
the node that is to be updated be put in a passive status, but this is also the 
case for every node that is directly or indirectly capable of initiating 
transactions on this node. This results in a large number of nodes that need to 
be passivated.  

Another disadvantage is that is not always feasible to assume that a node will 
have knowledge of whether its actions are part of a transaction initiated by 
another node, that is, to identify those transactions that are consequent and 
those that are not.  

3.4.1.2 Tranquillity 

The concept of Tranquillity was proposed by Yves Vandewoude, Peter Ebraert 
and Yolande Berbers as a solution to reduce the constraints that the 
quiescence condition exhibits (Vandewoude et al., 2007). The tranquillity 
condition is easier to obtain, less disruptive than quiescence, and still 
sufficient to ensure consistency before changes.  

Tranquillity is based on the following observation. A node that participates in 
an active transaction can be safely replaced if: (i) it is certain that it will not 
further participate in the transaction, and (ii) it has not yet participated in the 
transaction. It is assumed that, in a replacement operation, transactions that 
have not yet begun may be executed by the new version. In these cases, it is 
not needed to wait until the active transaction finishes, and the replacement 
could be performed earlier. 



3.4 MAIN ISSUES OF DYNAMIC EVOLUTION 

77 

 Tranquillity status. A node will be in this status if: 

o It has passive properties (i.e. it is not engaged in a transaction 
that it initiated and will not initiate new ones), 

o It is not actively processing a request,  

o None of its adjacent nodes are engaged in a transaction in 
which it has both already participated and might still participate in 
the future. 

Tranquillity is a weaker condition than quiescence: it relaxes some of the 
constraints quiescence defines in order to reduce the number of nodes that 
need to be passivated. For this reason, it is said that quiescence implies 
tranquillity but not vice versa. Tranquillity does not imply quiescence because 
it does not forbid adjacent nodes to initiate new transactions that involve the 
tranquile node. Adjacent nodes are only required to finish those transactions 
on which the node that is being stopped has participated and might 
participate in the future. In other words, tranquillity does not require to 
completely passivating all the adjacent nodes. 

However, one of the main disadvantages of the tranquillity condition is that it 
is only valid for a subset of change operations: addition, linking and 
replacement of nodes. Tranquillity does not guarantee consistency when 
deleting or unlinking nodes. The reason is the following: a node in the 
tranquillity status may be engaged in an ongoing transaction initiated by one 
of its adjacent nodes, but on which it has not participated yet. If the node is 
unlinked or removed from the system, then the ongoing transaction will fail 
when trying to request a service from this node, leaving the system in an 
inconsistent state. 

Another disadvantage is that dependent transactions are not well addressed. A 
node in a tranquil status is not executing code and can be only involved in an 
ongoing transaction if its participation in this transaction is: (i) finished, (ii) 
not yet begun, and (iii) part of a subtransaction (Vandewoude et al., 2007). A 
subtransaction, or consequent transaction, is a transaction that is initiated by 
a participant of a transaction as part of its response to a message that it 
process from the original transaction. The authors assume that 
subtransactions are independent of its original transaction and may be 
executed by a different version than the original transaction. This is not 
always true: a subtransaction may use information that has been calculated by 
the original transaction, so the subtransaction is not independent of its 
predecessor. For instance, suppose that a node X, at time ti has finished its 
participation in an ongoing transaction, and as a result of this participation, 
the internal state of X has the value v. Then, at time ti+1 another node Y, 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

78 

which is engaged in the active transaction, starts a subtransaction which 
involves X and changes its state to v‘. According to the tranquillity condition, 
the node X could be replaced at time ti by a new version. However, if the new 
version does not migrate correctly the previous state v, an inconsistency with Y 
may be produced. This is still an open issue. 

Finally, another disadvantage is that it is not guaranteed that a tranquil status 
will ever be reached. This is the case when a node is used in an infinite 
sequence of interleaving transactions (Vandewoude et al., 2007). In addition, 
tranquillity is not stable: as soon as a node achieves a tranquil status, all 
interactions between that node and its environment must be blocked. By 
contrast, quiescence is stable: once a node is quiescent, it must be explicitly 
reactivated. This is because tranquillity can occur naturally, whereas 
quiescence must be actively driven.  

For all these drawbacks, tranquillity should be considered as a complementary 
criterion to quiescence. Tranquillity can be reached quickly and with less 
disruption on a system than quiescence. However, in these cases where 
tranquillity is not feasible, a fallback mechanism to quiescence should be 
provided. An example of the implementation of tranquillity and quiescence 
together is provided by DRACO (Vandewoude et al., 2003), (Vandewoude et 
al., 2007), (Vandewoude, 2007). DRACO is an extensible and modular 
component-based framework which provides a reusable module, the Live 
Update Module, which supports tranquillity and the fallback to quiescence if 
tranquillity is not reached in finite time.  

3.4.1.3 Other approaches for Safe Stopping 

Based on the work of Kramer and Magee, Moazami-Goudarzi (Moazami-
Goudarzi, 1999) presents an alternative to reach a safe state with significantly 
less disruption to the running system. However, he assumes that components 
never interleave transactions (i.e. a component never participates in a new 
transaction while another transaction is still in progress). Under this 
assumption, a quiescent state can be reached much more easily by simply 
blocking messages when no transactions are being serviced. A similar 
approach is used in object-oriented contexts: the dynamic replacement of a 
class is delayed until no methods of this class are active (Andersson et al., 
1998), or if there are methods that are active, they remain unchanged in the 
new version of the class (Malabarba et al., 2000). 

The principle of a safe state has been also used in systems that support 
dynamic reconfiguration on top of CORBA. For instance, (Bidan et al., 1998) 
consider node consistency as integrity of RPC (i.e. Remote Procedure Calls): 
all RPC‟s initiated by nodes affected by a reconfiguration must be completed 



3.4 MAIN ISSUES OF DYNAMIC EVOLUTION 

79 

before the changes are performed. They consider the passivation of links 
instead of the passivation of sets of nodes. The advantage is that multi-
threaded components can continue to function, since only the threads that 
use a passivated link are required to block. The disadvantage is that all the 
RPC requests must be independent, that is, no nested RPC‟s are allowed and 
the reconfiguration of systems with re-entrant invocations is not supported.  

Another approach based on CORBA is the work of (Almeida et al., 2001). 
They consider that a system is in a safe state when each node that will be 
affected by changes is not currently involved in interactions and will not be 
involved in interactions. They distinguish among between two types of nodes: 
purely reactive or active. Reactive nodes are only allowed to initiate requests 
that are causally related to incoming requests. Active nodes may proactively 
initiate new requests. However, active nodes must implement a functionality 
to switch to a reactive modus. Then, requests to affected nodes are selectively 
queued by only allowing re-entrant requests to be delivered to the node.  

Other approaches have taken an invasive approach: the developer must define 
in advance locations in the code where changes may take place (Hicks & 
Nettles, 2005). In PODUS (Segal & Frieder, 1993), dynamic change is applied 
at procedure level. Only procedures which are both syntactically and 
semantically inactive can be updated. A procedure is syntactically inactive if it 
is not on the runtime stack and its new version does not call a procedure that 
is on the runtime stack. A procedure is semantically inactive if it does not 
depend on the tasks that are performed by a procedure that is on the runtime 
stack. Since these dependencies cannot be derived from the code, a list with 
semantic dependencies must be specified by the programmer before the 
update takes place. That is, the programmer must specify which procedures 
must be updated concurrently.  

A similar approach has been used in the OpenCOM component model 
(Coulson et al., 2004), (Coulson et al., 2008) to deal with the dependencies 
that multithreaded components may introduce in a system. Pissias and 
Coulson (Pissias & Coulson, 2008) have addressed the implementation of the 
quiescence criterion in the OpenCOM component model without 
introducing architectural restrictions. Their design is based on interception in 
connectors, and makes use of meta-data and reflection services to obtain 
information about the nodes that are involved in an ongoing transaction. 
However, the developer is required to tag those services that may be blocking 
or unblocking in order to prioritize those calls that will enable the finalization 
of pending requests. 

Gomaa and Hussein (Gomaa & Hussein, 2004) introduced a set of design 
patterns for dynamically reconfigurable systems, most of which are based on 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

80 

the concept of quiescence presented in this section. The contribution of their 
work is that they specify, by means of UML state diagram templates, the 
behaviour required to reconfigure different architectural styles: master/slave, 
server/client, centralized and decentralized architectures. 

3.4.2 Updating Stateful Artefacts 

Another important issue that must be faced when addressing dynamic 
evolution is the update of stateful7 artefacts. In case of stateless elements, the 
updating is simple: once their interactions have been safely stopped (i.e. the 
affected elements have been quiesced), they can be replaced with the new 
version and reactivated again. However, in case of stateful elements, the 
updating requires their previous state to be transferred to the new version. And 
this is not easy: the issue is to identify which is the relevant information of the 
previous version, how to obtain it, and how to migrate it to the new data 
structures of the new version. This is known as the problem of state transfer.  

State transfer involves extracting the runtime state of an active element and 
subsequently using this information to initialize the new version. The state 
that needs to be transferred between versions depends on the actual state of 
the application when the update takes place. If the update takes place in the 
middle of a method execution, the runtime stack, CPU registers and exact 
location in the method need to be preserved. If no methods are active, only 
persistent state needs to be copied (global variables, instance variables in 
object oriented languages, etc.). An important reason to drive an application 
to a safe state (see previous section) is that it minimizes the amount of control 
state that needs to be transferred.  

However, the challenging issue is not with copying the data among the old 
version and the new version, but with translating the data among the different 
data structures. If a data structure has significantly changed between two 
versions, a state or data transformation process will be necessary. The problem 
is that this process is application specific: it requires an understanding of the 
semantics and meaning of the data being processed. The challenge has been in 
finding a general purpose algorithm to deal with such state translation. 

                                                      
7 The term “stateful" (Vandewoude, 2007), (Hammer, 2009) usually refers to the 
existence of internal state, which cannot be directly observed from outside, and 
influences the communication behaviour of the element. This internal state may be 
changed as a consequence of the interactions with other elements, or spontaneously 
due to proactive behaviour. 



3.4 MAIN ISSUES OF DYNAMIC EVOLUTION 

81 

Three alternatives have been proposed: no state transfer, delegated state 
transfer, and automated state transfer. These alternatives are presented in the 
following subsections. 

3.4.2.1 No State Transfer 

Given the difficulty that entails the state transfer problem, some approaches 
have proposed to allow old code and new code to be intermixed (Segal & 
Frieder, 1993), (Andersson et al., 1998), (Bierman et al., 2003), and the choice 
of which to execute to be determined automatically. Thus, existing instances 
are not transformed, and are used exclusively by older versions of the code. 
Newly created instances are always of the most recent version, and are 
handled by the new code. This technique is called Passive Partitioning (Gray & 
Hjálmtýsson, 1998), (Malabarba et al., 2000). It is often combined with type 
renaming, to allow multiple versions to coexist. This technique is well suited 
for distributed systems where it is not always feasible to locate all existing 
instances of an old version.  

The advantage is that is efficient to implement and to adopt, and sufficient for 
some cases. The disadvantage is that the updates are deferred until new 
instances are required. Instances using old versions do not benefit from the 
updates introduced by new versions. In addition, this semantics introduces 
the difficulty of dealing with orderly transitions among versions. It becomes 
quite difficult to do so given the possibility of many versions of code and state 
interacting together (Hicks & Nettles, 2005). 

3.4.2.2 Delegated State Transfer 

Another solution is to take a hybrid approach: automatize the migration of 
old instances to the new version, but delegate the complexity of the 
transformation of data structures to the designer of the update. For instance, 
the work of Gupta and Jalote (Gupta & Jalote, 1993) completely implements 
automated state transfer for procedural systems (i.e. the copy of the data). 
However, their approach requires that the state structure of the new version 
remains unchanged, i.e. state transferring is supported, but not state 
transformation.  

If the state structure of the new version changes, the designer of the update is 
required to implement a transformation function to convert the old state 
structure to the new version. Generally, this transformation function does the 
following steps:  

(i) is provided with the old instance to transform,  
(ii) gets access to the internal state of this instance (which internal 

structure is known by the developer), and  



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

82 

(iii) maps the attributes of the old instance to an instance of the new 
version.  

Some approaches provide facilities to help the developer in this task. For 
instance, in JDRUMS (Ritzau & Andersson, 2000) a conversion skeleton class 
is generated which includes the attributes of the old and the new type version; 
the developer then defines manually the mappings among the attributes. A 
similar approach is followed in (Hicks & Nettles, 2005), by automatically 
generating the method template that must be filled in.  

The migration of old instances may be fully automated, i.e. all the old 
instances are converted, or selectively defined, i.e. the developer decides which 
instances are converted and which not. The former is called Global Update and 
the latter Active Partitioning (Malabarba et al., 2000). In Global Update 
approaches, all existing instances are migrated, so it prevents the existence of 
multiple versions of a given element to co-exist at any given time. An example 
of such an approach is the work of Malabarba et al. (Malabarba et al., 2000). 
In Active Partitioning approaches, the developer specifies which instances will 
be converted and when/how this conversion must take place, leaving the 
others in the previous version. An example of such kind of approach is the 
work of (Gray & Hjálmtýsson, 1998), which does not convert instances by 
default, but the programmer is given the option to explicitly convert instances 
himself. 

3.4.2.3 Automated State Transfer 

Finally, another solution is to fully automate the state transfer process: the 
dynamic updating system is capable of extracting the state information of old 
versions and automatically translating this information to the data structures 
of the new version.  

However, such complete automation is not always feasible. On the one hand, 
the state of an element has always a semantic meaning, which is determined 
by the interpretation of the developer and cannot be automatically derived 
from the source code. This semantic relation should be interactively provided 
to be able to transfer the state between two versions. On the other hand, the 
new data structures may contain information that is not available in the old 
data. For instance, it could be imagined the addition of a time stamp field to a 
data structure to indicate when it was created. Dynamically transforming 
existing instances to add this new field will be impossible because the 
information simply does not exist at dynamic-update time. Bloom and Day 
(Bloom & Day, 1993) have explored some of the theoretical limitations of 
state transformation, whereas Adamek and Plasil (Adamek & Plasil, 2005) 



3.4 MAIN ISSUES OF DYNAMIC EVOLUTION 

83 

have explored how to formally verify at runtime the atomicity of dynamic 
updates. 

Nevertheless, some approaches exist that provide a semi-automatic process for 
the state transfer problem. One of these approaches is DeepCompare, a tool 
developed by Yves Vandewoude and Yolande Berbers (Vandewoude & 
Berbers, 2005), (Vandewoude, 2007). Their approach consists of a (pseudo-
interactive) static analysis based on heuristics which takes place after the 
design and implementation of a new component version. The analysis 
automatically detects similarities in the source code of the old version and the 
new version with minimal user effort, and maps corresponding structures 
between them. Then, this information is embedded in the binary of the new 
component version and used at runtime by a fully automatic and generic state 
transfer algorithm. Experimental validation showed that their tool is capable 
of automatically matching the corresponding state structures between 
different versions in the 95% of cases, reducing the time required to 
implement the state transfer logic. The only disadvantage is that this process is 
performed at design-time, and the access to the source code of the old version 
is required. 

The approach proposed by Vandewoude & Berbers is based in a Direct State 
Transfer (Vandewoude & Berbers, 2005): the source code of the old version is 
used directly for extracting, interpreting and converting the information 
contained in the version to be replaced. Another feasible approach is the use 
of Indirect State Transfer: old version instances provide a service to export its 
state in an abstract representation, which is platform independent and 
generally easier to analyse. The advantage is that the source code of the old 
version is not needed, so encapsulation is preserved. This approach could 
benefit from the findings in the area of digital libraries and the semantic web, 
since they address a similar problem to state mapping: the automatic 
generation of mappings among ontologies. For instance, the work of (Llavador 
& Canos, 2007) presents an approach to automatically generate XSL 
transformation templates using semantic relations among schemas.  

Other relevant works that could be applied to this context are those 
addressing the evolution of schemas in relational and object-based databases, 
such as the works of (Staudt, 2000) or (Boronat et al., 2004). For additional 
information of which component-based frameworks provide state-transfer 
support and a comparison among them, the reader can refer to the work of 
M. Hammer (Hammer, 2009).  



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

84 

3.5 Other approaches for dynamic change management 

This section introduces the key findings from other research fields that have 
been relevant for this work: Control Systems, Autonomic Computing, and 
Computational Reflection. These fields are relevant because they have dealt with 
the process of changing running systems: the adaptation of physical devices 
(Control Systems), the self-management of Information Technology 
infrastructures (Autonomic Computing), and the development of highly 
dynamic applications (Computational Reflection). These fields have in 
common the presence of adaptation loops to supervise the running system 
and adapt it accordingly to the system ouputs or some external stimuli. 

3.5.1 Control Systems 

Control systems are used for building physical devices which need to adapt 
their output to some degree of variable input. An example is the control 
system that manages the movement of the wheels of a mobile robot. The 
motors of the wheels turn at a variable speed; the control system increases this 
speed when the target is far, and decreases when the robot is approaching to 
its objective.  

A control system is defined as a process which supervises the execution of 
another process and adapts it according to received stimuli. This adaptation is 
generally performed by means of the configuration of different parameters of 
the managed process.  

Depending on the source of the stimuli, a control system can be open or feed 
forward, if the stimuli are received from the environment; or closed or feedback, 
if the stimuli are received from the outputs of the controlled process (Brosilow 
& Joseph, 2002). Both kinds of control systems can be combined for building 
devices that get the information both from their environment and from their 
outputs (see Figure 3.1). 

In this case, the control system is composed of two controllers: a feedback 
controller, which processes the outputs of the process, and a feedforward 
controller, which processes the signals from the environment. The decisions 
of both controllers are weight according to the goals of the built device.  

The interesting point here, as stated by other authors (Hellerstein et al., 2004), 
(Morrison et al., 2007), is that these ideas are also applicable in the 
development of adaptive/reconfigurable software systems. Software systems 
have the benefit of being more malleable than hardware systems. Applying 
these (elementary) notions of control systems for modelling the dynamic 
evolution of software architectures we would obtain that: the controlled 
process would be the software architecture, and the controllers would be the 



3.5 OTHER APPROACHES FOR DYNAMIC CHANGE MANAGEMENT 

85 

mechanisms capable of dynamically changing this architecture. Thus, a 
feedforward evolution controller would be an element that uses the external 
stimula to integrate unforeseen changes in the architecture (at runtime). And 
a feedback evolution controller would be an element that uses the internal 
stimula to optimize the execution of the architecture and react to foreseen 
changes. These ideas have been taken into account to develop the proposal 
presented in this thesis.  

 
Figure 3.1. A Feedback and Feedforward control system (Morrison et al., 2007) 

3.5.2 Autonomic Computing 

The concept of Autonomic Computing was created from the need of releasing 
Information Technology administrators from the burden of performing 
repetitive management & configuration tasks. This concept emerged as a 
result of an IBM‟s research project (IBM, 2001), and was defined by Jeffrey O. 
Kephart and Dave Chess as: 

Computing systems that can manage themselves given high-level 
objectives from administrators. [...] The term autonomic computing is 
emblematic of a vast and somewhat tangled hierarchy of natural self-
governing systems, many of which consist of myriad interacting, self-
governing components that in turn comprise large numbers of 
interacting, autonomous, self-governing components at the next level 
down.  

(Kephart & Chess, 2003) 

Therefore, the goal is to build hardware/software systems whose resources 
(files, databases, disks, etc.) are automatically managed, thus reducing their 
dependence on humans to constantly monitorize and configure such 
resources. These automatically managed systems would be able to monitorize 
their operation and to adjust themselves to guarantee a certain quality of 
service. 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

86 

Kephart and Chess (Kephart & Chess, 2003) stated that an autonomic system 
is characterised by the following four facets of self-management: 

 Self-Configuration. The components that are deployed in a system are 
capable of installing and configuring themselves, following user-
defined high-level policies. They register their capabilities in the 
system so that other components can either use it or modify their own 
behavior appropriately. The rest of system components adjust 
seamlessly themselves to integrate or use the capabilities provided by 
new components.  

 Self-Optimization. Components periodically monitorize their behaviour 
looking for potential performance improvements, by means of the 
variation of their configuration parameters, or looking for the latest 
updates. 

 Self-Healing. A system is able to detect, diagnose and repair localized 
software and hardware problems, by using knowledge about the 
system configuration or log information. Repairs can be performed by 
applying available patches or the automatic reinstallation of affected 
modules.  

 Self-Protection. A system protects itself from malicious attacks or 
cascading failures. It uses early warnings to anticipate and prevent 
global failures.  

Other authors have distinguished many other facets for self-management, 
which have been collectively named as self-*systems (Babaoglu et al., 2005). 
Since the full categorization of the wide range of facets proposed in the 
literature is so difficult (Lin et al, 2005), (Cuesta & Romay, 2010), several 
authors have even suggested to refer only to generic dimensions (Andersson et 
al, 2009a). 

The realization of these facets (also known as self-management attributes) are 
generally achieved by means of the definition and composition of autonomic 
managers, which are the main building blocks of an autonomic system. An 
autonomic manager is defined as: 

[A software artefact that] automates some management function and 
externalizes this function according to the behaviour defined by its 
management interfaces.  

(IBM, 2006) 

That is, an autonomic manager is an element that automatizes the 
management of a resource, according to a set of high-level policies defined 
through its management interfaces. This resource can be either a non-



3.5 OTHER APPROACHES FOR DYNAMIC CHANGE MANAGEMENT 

87 

autonomic resource (a file, a database, an application, etc.) or another 
autonomic element. This allows the compositionality of autonomic managers, 
i.e. autonomic managers that manage other autonomic managers.  

An autonomic manager implements an intelligent control loop, which 
consists of the following functions (see Figure 3.2): 

 Monitor: provides mechanisms that collect, aggregate, filter and report 
details (such as metrics and topologies) collected from the managed 
resource. This is achieved by means of multiple sensors provided by 
the resource, which can include aspects of hardware instrumentation 
(e.g. temperatures at various points within the hardware platform), 
ambient information (e.g. environmental temperature, physical 
intrusion of the device), or software components (e.g. various 
performance-monitoring counters of the operating system, or specific 
counters for application monitoring). The data can be acquired from 
sensors by polling at specified intervals or can be collected 
asynchronously when specified thresholds are exceeded. 

 
Figure 3.2. Internal Structure of an Autonomic Manager  

(Tewari & Milenkovic, 2006) 

 Analyze: contains the intelligence required to interpret and correlate 
the information provided by the Monitoring data. This allows the 
autonomic manager to learn about the IT environment and help 
predict future situations. It may use historical data and compare with 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

88 

current state to detect significant changes, in order to perform 
performance adjustment or work around anticipated faults.  

 Plan: provides the mechanisms that construct the set of control 
actions needed to achieve goals and objectives, by using policy 
information to guide its work.  

 Execute: this functionality receives the series of action steps from the 
planning element, and puts the plan into action. It activates the 
appropriate control points, or effectors, on the managed resource 
following the proper sequence and timing.  

 Knowledge base: This serves as a repository of knowledge, such as 
historical data and policies, which can be utilized by the other 
elements in their operation. Knowledge can be obtained from 
multiple sources: from other autonomic managers, a management 
console and operator, or can be obtained using machine-learning 
techniques from prior observations of system states and corrective 
changes that were found to be effective. 

As can be observed from the figure, an autonomic manager has sensors and 
effectors wich act on the managed resource (see the bottom of Figure 3.2). In 
addition, an autonomic manager also provides sensors and effectors (see the 
top of Figure 3.2) to allow its management and configuration by other 
autonomic managers. This allows the hierarchical composition of autonomic 
managers in order to achieve the global facets of self-configuration, self-
optimization, self-healing and self-protection by the orchestration of several 
autonomic managers.  

A good illustrating example of a possible composition of autonomic managers 
to build an autonomic system is depicted in Figure 3.3. This figure shows a 
layered architecture composed of: (i) the resources (servers, storage, network, 
databases, etc.); (ii) management interfaces (i.e. sensors and effectors) which 
act on the resources; (iii) single-unit autonomic managers, i.e. those that 
manage a non-autonomic resource; (iv) multiple-unit autonomic managers, 
which manage several single-unit autonomic managers to achieve one self-* 
facet, or which solves conflict among different self-* facets; (v) the system 
administrator, that provides the high-level policies; and (vi) the knowledge 
sources.  

The area of autonomic computing is still an active area of research: several 
challenges remain open and no a commonly accepted framework exists yet. A 
good introduction to the key findings are the survey of (Huebscher & 
McCann, 2008), the introduction of (Muller et al., 2008), or the standards 
that could be used to implement such elements (Tewari & Milenkovic, 2006). 



3.5 OTHER APPROACHES FOR DYNAMIC CHANGE MANAGEMENT 

89 

 

 
Figure 3.3. Reference architecture for Autonomic Computing (IBM, 2006) 

3.5.3 Computational Reflection 

Reflection is a concept arised from the artificial intelligence field, as the ability 
of a system to reason about and act upon itself. Reflection is about meta-
computation, i.e. computation about computation. This was considered as an 
emergent property responsible for intelligent behaviour. The foundations 
were originally laid out by Brian C. Smith in the 80‟s (Smith, 1982). He 
proposed the use of reflection in the context of programming languages and 
developed the language Lisp-3, which quickly became famous in the functional 
community (Demers & Malenfant, 1995). 

Reflection become popular and spread to other fields, such as distributed 
systems, operating systems, and middleware (Kon et al., 2002). This was 
mainly thanks to the contributions of Pattie Maes, who contributed to 
summarize the existing notions about reflection: 

Computational Reflection is the activity performed by a computational 
system when doing computation about (and by that possibly affecting) its 
own computation.  

A reflective system is a computational system which is about itself in a 
causally connected way.  

(Maes, 1987) 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

90 

Reflective systems are generally structured in two levels: the base-level and the 
meta-level. The base-level provides the system‟s functionality. It defines a 
computational system (i.e. a set of computational elements) that reasons about 
and acts upon some part of the world, usually called the domain of the system. 
This level incorporates internal structures representing the domain and a 
program prescribing how these data may be manipulated. It is often referred 
as the base-system of a reflective system.  

On the other hand, the meta-level8 provides the reflective capability. It defines 
a computational system that reasons about and acts upon another 
computational system, i.e. the defined in the base-level. The system defined in 
the meta-level is a system whose domain is another system (i.e. the base-
system). Thus, it incorporates structures representing the base-level and a 
program that manipulates and changes such structures. This is often referred 
as a meta-system. 

Both levels, the meta-level and the base-level, are causally connected:  the 
structures defined in the meta-level and the domain they represent (i.e. the 
base-level) are linked in such a way that if one of them changes, this leads to a 
corresponding effect upon the other (Maes, 1987). In other words, the 
changes performed by the meta-level on its data structures are reflected 
somehow in the real system, i.e. the base-level.  

In order to observe or change something, this must be represented in a way 
that a program can manipulate it. This is addressed in the notion of 
reification: 

The process by which a user program P or any aspect of a programming 
language L, which were implicit in the translated program and the run-
time system, are brought to the fore using a representation (data 
structures, procedures, etc.) expressed in the language L itself and made 
available to the program P, which can inspect them as ordinary data. In 
reflective languages, reification data are causally connected to the 
related reified information such that a modification to one of them 
affects the other. Therefore, the reification data is always a faithful 
representation of the related reified aspect.  

(Malenfant et al., 1996) 

In other words, reification is the action of exposing the internal 
representation of a system in terms of programming entities that can be 

                                                      
8 In general, the term meta- refers to an artifact that reasons and acts upon another 
artifact. For instance: a meta-component is a component that acts upon components. 



3.5 OTHER APPROACHES FOR DYNAMIC CHANGE MANAGEMENT 

91 

manipulated at runtime. The opposite process is called reflection9, which 
effects the changes made to the reified entities into the system. However, these 
definitions may induce to confusion since they do not refer to the base-level 
and meta-level a reflective system is characterised by. This is taken into 
account in the definition from Carlos E. Cuesta: 

Reification is the process that shifts-up an artefact from the base-level 
to the meta-level, where this artefact will be manipulated. Reflection is 
then the inverse process that shifts-down the artefact from the meta-level 
to the base-level. Thus, the reification and reflection processes 
implement the causal connection among the base-level and the meta-
level. 

(Cuesta, 2002; pp. 88) 

Finally, there are two kinds of operations that can be performed at the meta-
level: introspection and intercession. Introspection is the ability of a program 
to observe, and thus reason, about itself. That is, it comprises the operations 
of a program defined at the meta-level which examine the data structures and 
program operations of the base-level. Intercession is the ability of a program 
to modify its execution state. That is, it comprises the operations of a meta-
level program which change the data structures and program operations of the 
base-level (see Figure 3.4). 

 
Figure 3.4. Computational reflection: main concepts 

                                                      
9 Some authors prefer not to use the term reflection to define the action of reflecting 
changes on the base-level, and use the term absorption instead. The reason is to avoid 
confusions with the global term of Reflection. However, we prefer the use of this term 
to preserve the simmetry of operations, in accordance with (Cuesta, 2002). 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

92 

The area of computational reflection has quickly spread to different areas: e.g. 
object-oriented systems (Cazzola, 1998), software architectures (Cazzola et al., 
1999a), (Cuesta et al., 2002) or dynamic petri nets (Capra & Cazzola, 2009), 
among others.   

3.6 Dynamic Evolution in Software Architectures 

Software architectures (Perry & Wolf, 1992) (Shaw & Garlan, 1996) have 
become important due to the increasing diversity and complexity of current 
software systems, which are open, distributed and concurrent. These systems, 
at runtime, may add new components and interactions as part of their normal 
behaviour, causing it to diverge from its initial architecture. Because such 
changes may interact with other parts of the system, it is desirable for the 
architecture to document and allow reasoning about the changes that can 
occur during the system execution (Barais et al., 2008).  

Software architecture descriptions that include not only the description of 
fixed (i.e. static) parts, but also the description of changing (i.e. dynamic) 
parts, are called Dynamic Software Architectures (Allen et al., 1998), (Medvidovic 
& Taylor, 2000), (Cuesta et al., 2001), (Barais et al., 2008). One of the 
definitions that better captures this nature is the following:  

Dynamic Software Architectures represent systems that do not simply 
consist of a fixed, static structure, but can react to certain requirements 
or events by run-time reconfiguration of its components and connections.  

(Baresi et al., 2004) 

Several Architecture Description Languages (ADLs) have been proposed for 
the description and specification of dynamic software architectures (Bradbury 
et al., 2004). The dynamism provided can be of two kinds: dynamic 
reconfiguration, if the structure of the system is changed, dynamic evolution of 
architectural types, if the types that compose this structure are changed. These 
kinds of dynamism are described in detail in the following sections. 

3.6.1 Dynamic Reconfiguration 

The first kind of evolution, called dynamic reconfiguration, is a specific kind of 
evolution that refers to runtime changes that are performed on the structure 
(i.e. the architecture) of a software system. This kind of dynamism is 
fundamental for designing systems which often change their structure, such as 
self-organised systems or mobile systems. It can also be used to implement 
context-awareness behaviours (e.g. adaptation to different environmental 



3.6 DYNAMIC EVOLUTION IN SOFTWARE ARCHITECTURES 

93 

conditions, such as day/night situations in autonomous robots) or to provide 
fault tolerance support (e.g. replacement of failed components). 

The term Dynamic Reconfiguration has its origin in the area of distributed 
systems, as ―Dynamic configuration: the ability to modify and extend a distributed 
system while it is running, without rebuilding the entire system‖ (Kramer & Magge, 
1985). Previous approaches only considered static configurations of 
distributed systems: to change some element of a configuration, the entire 
system had to be rebuilded again. Subsequently, as Software Architecture was 
consolidating, the concepts of static and dynamic configuration become 
progressively introduced in ADLs. An example of this is the development of 
the DARWIN ADL (Magee et al., 1995), which integrated the notions of 
dynamic configuration presented previously in the area of distributed systems. 

Several definitions for dynamic reconfiguration have been proposed, but none 
of them has been widely accepted yet. Endler and Wei defined dynamic 
reconfiguration as ―changing part of an application while it operates. […] Dynamic 
reconfigurations are expressed only at the configuration level, i.e. as changes to the 
program‘s connectivity structure.‖ (Endler & Wei, 1992). Jeff Magee and Jeff 
Kramer also referred to changes on the structure of a system when they used 
the term dynamic reconfiguration: 

A feature of an ADL which permits the description of dynamic software 
architectures in which the organisation of components and connectors 
may change during system execution […]. Structural evolution includes 
changes in both the bindings (connections) between components and the 
set of component instances.          

(Magee & Kramer, 1996) 

This definition considers dynamic reconfiguration as a feature of ADLs for 
describing, or modelling, software systems with a dynamic structure. That is, a 
feature for supporting programmed proactive evolution (see section 3.3.4.2) in the 
system structure. However, other authors do not constrain dynamic 
reconfigurations to be programmed, and also consider reactive or ad-hoc 
reconfigurations (Endler & Wei, 1992), (Moazami-Goudarzi, 1999), 
(Wermelinger et al., 2001). 

Another definition is the proposed by Carlos E. Cuesta: 

The term Dynamic Reconfiguration is used to refer, generally, to those 
changes that are produced [at runtime] in the topology of a composite 
system (i.e. any alteration of the number and order of nodes and links 
that define the system).  

(Cuesta, 2002) 



CHAPTER 3. DYNAMIC SOFTWARE EVOLUTION 

94 

These definitions have in common that they refer to dynamic changes that are 
performed in the organisation/topology of a system. That is, changes involving 
the creation and removal of architectural element instances (i.e. components 
and connectors) and/or the links among them.  

Note that these changes affect the set of architectural instances of a system, but 
not the types or specifications that define the internal structure or behaviour 
of these instances. For this reason, some authors have preferred to use the 
term structural dynamism as a synonym for dynamic reconfiguration, referring 
to changes at the configuration level, as opposed to architectural dynamism, 
where types can be also evolved (Cuesta et al., 2001). The second level of 
dynamism is described in the following section. 

3.6.2 Dynamic Evolution of Architectural Types 

The second kind of dynamism provided in Dynamic Software Architectures, 
called dynamic evolution of architectural types, allows us to change completely the 
type of an architectural element (i.e. its specification) and its instances at 
runtime. This kind of dynamism is necessary for building open systems or 
updating highly available systems. For instance, dynamic evolution can be 
used to support unforeseen changes, like the addition of new behaviours at 
runtime (e.g. addition of new tools to an autonomous robot), or the dynamic 
updating of components to correct malfunctions. 

Carlos E. Cuesta et al. proposed the term architectural dynamism, referring to 
the support for the dynamic evolution of architectural types: 

[Architectural Dynamism] allows the modification of the infrastructure 
in which structures are defined; that is, the dynamic (re)definition of 
new component types. Only the latter creates real new architectures, so 
some authors suggest that the term ―Dynamic Architecture‖ should be 
reserved for this case. 

(Cuesta et al., 2001)  

That is, the dynamic evolution of architectural types allows the introduction 
of new, unforeseen architectural types and links, the removal of existing 
architectural types, or even the modification of such architectural types at 
runtime. This modification will involve the updating of all the instantiations 
of an architectural type (i.e. a component type or a connector type) and the 
migration of their state. In Chapter 7 the concept of dynamic evolution of 
architectural types is defined in more detail (see section 7.2, page 250). 



3.7 CONCLUSIONS 

95 

3.6.3 Combining both kinds of dynamism 

Both kinds of dynamism are complementary: dynamic reconfiguration acts at 
the configuration level (i.e. which defines how architectural instances are 
organised and linked), whereas dynamic evolution of architectural types acts at 
the type level (i.e. which defines the behaviour and structure –the 
specification– of architectural types). In certain cases both kinds of dynamism 
may be needed together: a change in the topology of a software system may 
require changes in the behaviour of its components, and vice versa.  

For instance, a component may be disconnected or removed from the system 
architecture (i.e. a dynamic reconfiguration operation) in case it is failing. 
However, since this operation will reduce the available functionalities of the 
overall system, the current strategies or behaviours must be adapted to deal 
with the new situation. That is, the emerging system must remove all the 
services depending on the removed functionality (i.e. a dynamic type 
evolution operation).  

3.7 Conclusions 

This chapter has presented the fundamental concepts related to the dynamic 
evolution of software systems and at the end, it focus on the architectural 
level. Due to the lack of a widely accepted definition for dynamic evolution, 
several definitions and alternative terms have been proposed in the literature. 
This chapter has gathered together the different terms and definitions and has 
unified them to propose a more general definition of dynamic evolution. In 
addition, this chapter has also described the state of the art of the main issues 
that a system that support dynamic evolution should take into account. They 
are the safe stopping mechanisms (i.e. quiescence and tranquillity), and the 
updating of stateful artefacts in its different variants.  

Other interesting research areas that address some kind of dynamic change 
management have been introduced: control systems, autonomic computing 
and computational reflection. Some of the key concepts from these research 
areas have been used in this thesis to model and support dynamic evolutions: 
reflection and the autonomic control loop, respectively.  

Finally, the different levels of dynamism that can be considered at the 
architectural level have been presented: the dynamic reconfiguration and the 
dynamic evolution of architectural types. Both levels of dynamism are 
interesting because of the degree of flexibility provided for the building of 
truly open evolvable software systems. So that, these two levels has been 
addressed in this thesis. 





  

97 

Chapter 4. Related Works 

 

CHAPTER IV 

RELATED WORKS 
 

4.1 Introduction 

he dynamism in software architectures have been addressed from 
different perspectives. Some works have focused on the formal 
specification and description of dynamic reconfigurations (i.e. 

programmed proactive changes). Others have focused on the low-level 
mechanisms that provide support for dynamic change (referred also as 
dynamic updating), and thus providing support to dynamic type evolution. 
Other works have focused on the design of self-managing systems that are 
capable of dynamically reorganizing their structure according to some 
predefined goals. This chapter introduces the most well-known approaches, to 
give the reader an overview of the different findings and problems that have 
been dealt with in the design and development of dynamic software 
architectures.  

This chapter is organized as follows. Section 4.2 presents an overview of the 
different approaches dealing with dynamic evolution. These approaches are 
categorized in: (i) formal ADLs for reconfiguration, (ii) middlewares for 
dynamic change support, (iii) self-managed software architectures, and (iv) 
aspect-oriented management of evolution. Next, section 4.3 presents a 
comparison among the different approaches, focusing on several attributes 
such as the level of dynamism, activeness, separation of concerns, or 
consistency management. Finally, section 4.4 presents the results of the 
analysis performed over the different approaches. 

T 



CHAPTER 4. RELATED WORKS 

98 

4.2 Dynamic Evolution Approaches 

4.2.1 Formal, Dynamic ADLs for Reconfiguration 

In the last decade, several Architecture Description Languages (ADLs) have 
been proposed for the description and specification of dynamic software 
architectures (Bradbury et al., 2004), particularly for supporting dynamic 
reconfiguration.  

Generally, these approaches integrate specific reconfiguration primitives in 
the ADL to describe when and how the system architecture should be 
reconfigured, i.e. to support programmed proactive reconfigurations. The 
advantage of using an ADL for describing the programmed dynamism of a 
system is that an ADL allows rigorously specifying the global architecture of a 
system, which can be analysed by automated tools. In addition, since several 
ADLs also provide features that support the automatic generation of parts of a 
software system, this will facilitate the building of dynamically reconfigurable 
systems. 

4.2.1.1 Process Algebra Formalisms 

One of the earliest dynamic ADLs was Darwin (Magee et al., 1995). Darwin is 
a declarative language with an operational semantics based on π-calculus and 
which allows the hierarchic specification of distributed systems. Although 
basic components are specified in a programming language, their interface is 
represented in the Darwin ADL, to allow the specification of the system 
architecture. Composite components are only specified in the Darwin 
language, and consist of instantiations of other components and the 
relationships among them. Dynamic behaviour is defined by means of lazy 
and direct instantiations. In the former, each component is not instantiated 
until one of its services is requested. In the latter, components are instantiated 
directly. However, Darwin only allows component instantiation, but not its 
removal neither the creation/destruction of links among them. 

Leda (Canal et al., 1999) is another ADL based in π-calculus. The language is 
structured in components, representing system modules, and roles, describing 
the observable behaviour of components. Attachments define the connections 
among component instances. Leda also allows the hierarchic specification of 
systems. Reconfiguration operations are implicitly provided by the use of π-
calculus channels: (i) the restriction operator (which is represented by the new 
keyword) allows the instantiation of components (processes), (ii) the 
transference of channel names among processes allows the dynamic creation 
of links, and (iii) when a channel name exits from a process then the 
destruction of instances and links are naturally done. Thus, Leda provides full 



4.2 DYNAMIC EVOLUTION APPROACHES 

99 

dynamic reconfiguration support. However it does not provide any tool for 
supporting reactive/ad-hoc reconfigurations. 

Dynamic Wright (Allen et al., 1998) is a language that specifies the behaviour 
and reconfiguration of a system in a variant of the process algebra CSP. 
However, since this algebra only describes static configurations, dynamic 
configurations are not really supported and have to be simulated. All the 
reconfiguration specifications must be centralized in a global component 
called Configuror, which provides the reconfiguration operations and is the 
only element that can modify the architecture. The reconfiguration operations 
that are supported are new, del, attach and detach for creating instances, 
deleting instances, linking instances and unlinking. A replacement operation 
is not provided, so dynamic updating of architectural instances (and state 
transfer) is not supported.  

4.2.1.2 Graph-Based Formalisms 

The ADLs presented above are based on process algebras, which are 
commonly used to study concurrent systems. By contrast, other ADLs have 
been developed on top of graph-based formalisms: graph grammars are used 
to specify software architectures and architectural styles, and a graph to 
represent a specific configuration. Then, dynamism is specified by means of 
graph rewriting rules to represent the reconfiguration. 

The Hirsh et al. approach (Hirsch et al., 1998) represents software 
architectures by means of (hyper)graphs and architectural styles as 
(hyper)graph grammars. The reason to use hypergraphs and not graphs is to 
allow the description of multiple interactions. Unlike other graph-based 
approaches, edges of each graph are components, and nodes represent 
connectors, ports of communication. Dynamic reconfiguration is modelled by 
means of graph rewriting combined with constraint solving, which are used to 
coordinate the dynamic evolution. The language is entirely visual, and does 
not provide support for programmed reconfigurations: only supports ad-hoc 
reconfigurations. The approach constrains reconfiguration rules to be context-
independent: an edge (i.e. a component) can be only rewritten if its nodes (i.e. 
its ports) remain connected after the reconfiguration. However, this has the 
limitation that ports cannot be removed (Cuesta, 2002, pp. 58).  

The work of Wermelinger and Fiadeiro (Wermelinger et al., 2001), 
(Wermelinger & Fiadeiro, 2002) combine concepts from category theory, 
graph grammars and the CommUnity language (Fiadeiro & Maibaum, 1997). 
A configuration is defined as a graph, which nodes represent CommUnity 
programs and edges represent instance morphisms, which describe the 
synchronizations among programs. Reconfigurations are specified through 



CHAPTER 4. RELATED WORKS 

100 

conditional graph rewriting rules that depend on the state of involved 
components. These rules are defined in a way that is guaranteed the 
transference of state during replacement (by means of a process superposition 
morphism) and that components removed are previously in a quiescent state 
(by following a double-pushout approach, which guarantees that the 
components are not removed during interactions). Reconfigurations are 
performed maintaining the architectural style, i.e. conforming to structural 
constraints. Reconfigurations can be reactive, by means of an external tool 
provided by the CommUnity language, or programmed. However, although 
the language is very powerful, its main disadvantage is its complexity.  

Baresi et al. (Baresi et al., 2004) describe architectural styles by means of typed 
graph grammars: a type graph defines the elements of a given style and their 
relationships, constraints define the valid models (by means of cardinalities 
and OCL constraints), and graph transformation rules represent both 
communication mechanisms and reconfiguration mechanisms of the 
considered platform. A configuration that conforms to a given style is 
represented as an instance graph of the type graph. Reconfiguration 
mechanisms are modelled using graph rewriting rules, which can be applied to 
change a graph instance (i.e. a configuration) according to the restrictions 
defined in its graph type. The authors also used the double-pushout semantics 
to ensure the consistency between architecture instances. In their example, 
creation and removal of connections are the only supported reconfiguration 
operations, so they do not address the problems of quiescence and state 
transfer. However, the model is so powerful that all kind of reconfiguration 
operations could be modelled. The characteristic of this approach is that the 
type graph contains meta-types for both component types and instances 
(similar to the meta-model of UML). In this way, instance graphs does not 
only describe the run-time configuration of a concrete architecture, but also its 
application-specific component types. This allows reconfiguration rules of the 
style to operate on both the type-level and the instance-level at the same time, 
necessary to support the dynamic evolution of architectural types.  

With respect to algebra-based ADLs, graph-based approaches have the 
advantage that the consistency of the system architecture is preserved in 
reconfiguration processes: those reconfiguration operations that violate the 
architectural style (i.e. their type-graph) are not allowed and cannot be 
performed. However, graph-based approaches have the disadvantage that their 
languages are excessively verbose and in several cases only support ad-hoc 
reconfigurations. 



4.2 DYNAMIC EVOLUTION APPROACHES 

101 

4.2.1.3 Reflection-Based Formalisms 

The previous ADLs provide support for dynamically reconfiguring a concrete 
architecture. However, none of them provide primitives to allow a system to 
be aware of its actual configuration, and to base its future reconfiguration 
decisions on this information. This ability is called introspection and was 
introduced by reflective ADLs. 

Of particular interest in this context is Marmol (Cuesta et al., 2001), (Cuesta, 
2002), a Meta Architectural MOdeL for introducing the concepts from 
Computational Reflection to the field of Software Architecture. It defines the 
features that an ADL should be provided with to be fully reflective: the 
distinction among base-level and meta-level, the relationship among these 
levels (reification and reflection), the notion of meta-component and meta-
connector, the notion of meta-space (a set of meta-components that reify a 
concrete component), and the concept of reflective tower. An example of the 
application of this model is PiLar.  

PiLar (Cuesta et al., 2001), (Cuesta, 2002) is a formal ADL which allows for 
the representation of hierarchical systems that reconfigure and evolve 
dynamically. Behaviour is specified by means of constraints, described in a 
process-algebraic-like syntax inspired in CCS, which is a static algebra. 
However, the language is provided with reflective capabilities, making the 
ADL fully dynamic. This is demonstrated by the formalisation of its semantics 
in π-calculus. Thus, Carlos E. Cuesta demonstrates his hypothesis that the 
functionality obtained with any static language or algebra (such as CCS) 
combined with reflection is as powerful as other native dynamic language or 
algebra (such as π-calculus). Every component instance can be reified, and be 
manipulated by meta-components, which are capable of doing full 
introspection and intercession on the component instances. In this way, any 
reconfiguration operation can be performed: the explicit creation/removal of 
architectural instances and/or links. This ADL supports implicitly the 
stratification of an architecture in meta-layers: meta-components can be also 
reified and be modified by meta-meta-components. The reflective nature of 
PiLar allows both describe dynamic reconfigurations and dynamic evolution 
of architectural types. However, one of its disadvantages is that it does not 
isolates syntactically base-level from meta-level descriptions, which difficults 
the separation of the reconfiguration concerns from the base functionality.  

Archware ADL (Oquendo et al., 2004) is a formal language based on π-
calculus which provides reflective capabilities by means of hyper-code (Kirby et 
al., 1992) and the concepts of dynamic system composition and 
decomposition. π-calculus is used for specifying hierarchical executable 
architectures: components are represented by behaviors and the interaction 



CHAPTER 4. RELATED WORKS 

102 

between components via channels is represented by communication on 
connections. The language provides specific operations for reflect and reify. 
Evolution is effected by decomposing the selected part of the system, reifying 
the components, applying a transformation, and finally reflecting the code. 
Decomposition is provided by means of a decompose operator, which breaks up 
a composite behaviour (e.g. a composite component or the system 
architecture) into its constituent behaviours (Balasubramaniam et al., 2004). 
These constituent behaviours, on decomposition, are not suspended: each 
continues to execute until it reaches its reduction limit, which is typically 
when it would have interacted with another behavior. Then, these constituent 
behaviours are reified through hyper-code (Mickan et al., 2004), which allows 
the interactive introspection and modification of code at run-time. Finally, 
changes are reflected by means of the compose operator, which defines a 
composite behaviour as as the composition of the behaviors of its subunits. 
Thus, not only the dynamic reconfiguration of architectures is supported, but 
also the dynamic evolution of types that are defined. However, only ad-hoc 
reconfigurations and changes were supported in the initial version of 
Archware ADL. Further extensions have addressed the definition of proactive 
changes (Balasubramaniam et al., 2005). 

4.2.2 Systems for Dynamic Change Support 

The approaches presented in the previous section are focused in the 
specification of dynamism in software architectures for its analysis or 
simulation (e.g. Darwin, Leda, Wermelinger et al. or Baresi), or the 
description of proactive dynamism (e.g. Darwin, Leda, PiLar or Archware). 
However, these approaches only cover the specification of dynamism, but not 
how this dynamism is supported: i.e. how the state is transferred on dynamic 
updatings, how the elements are stopped for being evolved, or how the 
structures are changed dynamically. 

This section introduces the works that have dealt with such low-level details, 
which are very important to completely support the execution of truly 
dynamic evolvable systems. These works, generally called systems for dynamic 
updating or dynamic change support, focus on the modification of runtime 
structures. A more extensive analysis of the state of the art can be found in 
(Vandewoude, 2007) and (Hammer, 2009). 

4.2.2.1 Procedural and Object-Based Techniques 

The earliest works that addressed dynamic change support were characterized 
by a fine level of granularity: the elements subject to changes were statements, 
procedures or modules. Segal and Frieder (Segal & Frieder, 1993) reviewed 



4.2 DYNAMIC EVOLUTION APPROACHES 

103 

the first approaches (around the late 1970s and earlier 1980s) to support 
dynamic program updating. Such earlier works were mainly based on 
supporting the evolution of procedure-oriented programs, with little emphasis 
on the concepts of types and instances. Generally, most of the techniques 
proposed only differed on how the indirection was managed. An interesting 
review of the wide range of techniques used to recompose sotware systems at 
runtime can be found at (McKinley et al., 2004), or its extended version 
(McKinley et al., 2004a). 

Fabry’s work (Fabry, 1976) was one of the first to investigate the updating of 
(abstract) data types and the migration of their instances. His work provided 
deferred updates, using version attributes to distinguish the out-of-date 
instances. The main mechanism used was the use of indirections at code 
segments: all the calls to the old code were updated with the address of the 
new code segment. Thus, running processes could continue executing the old 
code, whereas new processes would start executing the new code. However, 
this means that not only the old code segment is modified, but also the calling 
programs, which results in invasive evolutions. The benefit of current 
approaches is that interactions among processes are made explicit and 
separated from the functional behaviour, thus facilitating their evolution. 
Another limitation of Fabry‟s work is that external interfaces could not be 
modified.  

With the expansion of object-oriented languages and frameworks, the 
distinction among types and instances (e.g. classes and objects) become 
evident, and also the need for dynamically updating both. JDRUMS 
(Andersson et al., 1998), (Ritzau & Andersson, 2000) provides transparent 
dynamic updating features to Java programs, by means of a modified Java 
Virtual Machine. It extends the Java class loader (i.e. the Class and Object Java 
meta-types) to include a link to the class (or object, respectively) that replaces 
it. When a class is dereferenced (i.e. its reference is popped out from the 
running stack), JDRUMS checks if it has been updated and then returns the 
last version. Object updates are performed when they are dereferenced; their 
old, internal state is converted to the structure of the new class. Thus, 
different versions of the same class, as well as their objects, can coexist 
simultaneously: asynchronous evolution is supported. A set of tools are 
provided to drive the updating process (i.e. support for reactive changes), to 
help in the definition of state transfer methods, and to help in the 
propagation of changes to multiple Java Virtual Machines running in a 
distributed environment. JDrums also provides an interface to allow the 
running application to drive the dynamic evolution process by itself (i.e. 
support for proactive changes). The consistency of updates is preserved by 



CHAPTER 4. RELATED WORKS 

104 

delaying the updating of objects until they are not active: that is, any method 
is being executed.  

Other works have also addressed the dynamic evolution of Java programs by 
extending the default class loader, such as Malabarba et al. (Malabarba et al., 
2000) and Wang et al. (Wang et al., 2006). In these works, the updating of a 
class is delayed until no methods of this class are active. Then, the old state is 
transferred to the new component by using the reflection mechanisms 
provided by Java (if no new data structures have been introduced). Thus, this 
guarantees the consistency of the system before and after the updating process. 
However, the evolution has important constraints: a new class version must 
preserve both the attributes (i.e. the state structure) and methods (i.e. the 
interface) of the version it is going to replace. This is not always possible when 
substantial changes need to be introduced. In addition, both approaches 
perform a synchronised dynamic evolution, not suitable for distributed 
systems.  

4.2.2.2 Dynamic Weaving Techniques in AOP 

During the last years, there has been a growing interest in using Aspect-
Oriented Programming (AOP) techniques to address the adaptation of 
applications. In the context of dynamic evolution, the most interesting 
techniques are those that support dynamic weaving models, i.e. the support for 
runtime weaving and unweaving of aspects to an application. This allows the 
evolution of existing code by adding or removing aspects. A comparative 
analysis among four Java-based dynamic weaving systems (i.e. AspectWerkz, 
JBoss, PROSE, and Nanning) is presented in (Chitchyan & Sommerville, 
2004). Next, other relevant works on the topic are described. 

Rapier-Loom.NET (Schult & Polze, 2003) supports the dynamic addition and 
removal of aspects, but weaving definitions are defined inside aspects, thereby 
losing their reusability. Rapier-Loom.NET acts at the type-level: aspects are 
added to the base code and then all the instances benefit from the new 
functionality. The weaving is achieved by dynamically creating a subclass and 
overriding the crosscutted methods with their woven counterparts. That is, 
the weaving of aspects is performed only on object creation. The consequence 
is that the behaviour provided by a new aspect would not be provided to a 
running instance unless this instance is destroyed and recreated again.   

EOS (Rajan & Sullivan, 2003) is another dynamic aspect-oriented approach 
which also defines weavings inside aspects. EOS may act at the type-level (i.e. 
adding aspects to a class that will impact all their instances) or at the instance-
level. In this case, an aspect is only weaved to instances that satisfy a certain 
criteria or trigger an event. This is implemented as a mediator pattern. In this 



4.2 DYNAMIC EVOLUTION APPROACHES 

105 

sense, EOS supports the addition or removal of aspects at any time. EOS 
provides reflective information at join points to evaluate at runtime where an 
aspect should be weaved or not. 

None of the approaches mentioned above takes into account the emerging 
relations that result from the aggregation of various aspects at the same point 
of the base code. However, JAsCo (Suvée et al., 2003), (Vanderperren et al., 
2005) provides an expressive language that permits the definition of 
relationships among aspects. JAsCo integrates AOP and CBSD. It introduces 
the concept of connectors for the weaving between the aspects and the base 
code, which allows for a high level of aspect reusability. The weaving of aspects 
is based on a preliminary insertion of a stub or a trap on the base code that 
will then make appropriate calls to the JAsCo runtime infrastructure. The 
insertion of traps is done through the debugger interface of the Java Virtual 
Machine. When a trap on the base code is executed, the JAsCo runtime 
infrastructure looks for registered connectors (that implement aspect join 
points) and redirects the execution flow to aspects. This is the main 
disadvantage of the approach: the dynamic weaving is referential but not 
inclusive, and requires an infrastructure continuously supervising the 
execution of the entire system.  

PROSE was one of the first platforms that tackled the problem of dynamic 
AOP (Popovici et al., 2002). It has evolved through three different versions 
based on different forms of interception and weaving. The first version 
(Popovici et al., 2002) was intended to demonstrate the potential of dynamic 
AOP. It used the Java Virtual Machine Debugger Interface event notification 
mechanism to convert join-points into stop points. Once the application had 
been stopped, aspect code was executed externally, but with access to the 
context where it was being executed (e.g. calling parameters for methods). The 
second version of PROSE (Popovici et al., 2003) extended this model by 
giving the option of, instead of using the debugger, using the baseline Just-In-
Time compiler. The idea was to weave hooks (i.e. traps) into the application at 
native code locations that correspond to all potential join-points (e.g. method 
definitions). When executed, the hooks determine whether an aspect needed 
to be invoked for that particular join-point. The last version of PROSE 
(Nicoara et al., 2008) further explores the way aspects can be weaved to code 
and provides additional alternative weaving mechanisms to increase the 
flexibility of the system. In essence, PROSE uses code interception and 
redirection to introduce new code (i.e. aspects) at the method level. All the 
changes are reversible: aspects can be inserted and withdrawn at any time.  

In general, all the dynamic AOP approaches support the dynamic 
introduction and weaving of aspects through an interactive tool. Therefore, 
reactive changes are supported. Proactive changes are also supported, although 



CHAPTER 4. RELATED WORKS 

106 

they are defined in a different way with respect to other, non aspect-oriented 
approaches. Proactive changes in AOP approaches are defined by means of 
weavings and pointcuts: they define when and where the aspect code (i.e. the 
code to be executed instead of the base code) must be introduced at runtime. 
For instance, a pointcut usually executes aspectual code when a certain 
method is executed and a condition applies. However, this proactive support 
is limited: complex ECA conditions cannot generally be defined.  

Another advantage of dynamic AOP approaches is that their evolution 
mechanisms (i.e. the dynamic weaving mechanisms) are also separated from 
system functionality. These mechanisms are added in a second stage, either at 
the source code level (e.g. by means of libraries), or at the binary code level 
(e.g. by means of bytecode traps). If the code of the original system is changed, 
the AOP parsers can introduce again the traps needed to support the dynamic 
weaving of aspects. 

However, the type evolution support provided by dynamic AOP approaches is 
limited. The nature of AOP approaches is to add or interleave crosscutting 
concerns into the code of an application (i.e. the base code). That is, the base 
code is only extended or replaced with aspect code, but it cannot be removed 
(only deactivated). AOP approaches can be only used to replace the body of 
methods, but the other elements of a class (i.e. public interface, attributes, 
available methods) must be preserved. For this reason, current dynamic AOP 
approaches should not be considered to perform exhaustive refactorings of 
systems. In addition, since existing data structures cannot be changed, issues 
such as state transfer or the safe stopping of instances are not considered. 

4.2.2.3 Component-Based Dynamic Frameworks  

Dynamic evolution features have also been considered in the development of 
several component-based models and frameworks. This section introduces the 
most extended component-based frameworks, focusing on the features they 
provide for supporting dynamic evolution. Most of the component-based 
frameworks described here are publically available, although some of them 
only are research prototypes. 

The Simplex architecture (German-Rivera et al., 1996), (Sha et al., 1996) 
supports dynamic updating of commercial-of-the-shelf (COTS) components, 
with special emphasis on fault-tolerance. Each component internally is 
composed by four units: (i) the baseline unit, which provides the functional 
behaviour of the component; (ii) the new unit, which acts as a placeholder for 
updates of baseline units; (iii) the safety unit, which implements a safety 
controller, system performance and monitoring functions; and (iv) the module 
management unit, which performs process management and drives upgrade 



4.2 DYNAMIC EVOLUTION APPROACHES 

107 

operations. The approach mainly employs a n-version scheme: instead of 
replacing a component by its update, both the old version (i.e. the baseline 
unit) and the new version (i.e. the new unit) are run in parallel, until the safe 
operation of the update is confirmed. Input is directed to both the old and 
the new version, which allows the new version to absorb information from its 
environment. However, the output of the new version is only used for 
monitoring purposes. The system compares the output of both the old and 
the new version: if the new version behaves correctly according to a 
predetermined user-specified metric, the system then confirms the update and 
removes the old version. If the update is unsuccessful, rollback is used to 
return to the original state. Dynamic reconfiguration of the system (i.e. 
changing connections among modules) is addressed by means of a publish-
subscribe approach, carried out by the module management unit when 
updates are confirmed. This work is fairly abstract and only reports on the 
concepts used (such as a brief description of state transferal). Changes are 
supported by a set of external tools, which are not detailed (similarly to other 
approaches). Dynamic type evolution is partially supported, since the 
approach does not consider the propagation of updates to other copies of the 
updated module. 

ArchJava (Aldrich et al., 2002) is an extension of the Java programming 
language that introduces components directly into the language, by means of 
its own compiler. The authors claim that this allows tight coupling of an 
architecture and implementation of component-based applications and 
prevents inappropriate modification of the architecture at runtime. Only basic 
reconfigurability is provided, component creation and connection, but does 
not allow explicit component removal. Removals are implicitly done when all 
the connections to a component instance have been deleted. The framework 
does not provide mechanisms for state transfer, quiescence or versioning. 

OpenCOM v2 (Coulson et al., 2004), (Coulson et al., 2008) is a reflective 
component model that provides provisions for reconfiguration. It is based on 
Microsoft's COM component model, and the main programming language is 
C++. Components are deployed at runtime into environments called capsules 
(it could be seen as a composite component definition) which provide 
operations for dynamically loading/unloading of components and also 
binding/unbinding of interfaces and components. Dynamism is provided by a 
set of reflective meta-models, which permit different system aspects to be 
programmatically inspected, adapted and extended at runtime. These models 
are: the architecture meta-model, which exposes the compositional topology of 
the components in terms of a causally-connected graph structure; the interface 
meta-model, which allows the exploration of interface types at runtime and the 
dynamic invocation of (dynamically discovered) interface instances at runtime; 



CHAPTER 4. RELATED WORKS 

108 

and the interception meta-model, which allows the dynamic adaptation of 
components, by means of interceptors at bindings between interfaces. By 
requiring components to implement special interfaces, the provision of 
reconfiguration-relevant code in the components is ensured. For ensuring safe 
reconfigurations, quiescence has been recently introduced (Pissias & Coulson, 
2008). The component framework is very technical, and most of the problems 
(e.g., how a connection can be reassigned) arise from details of the actual 
development. The advantage is that this framework is publically available for 
research purposes. 

Draco (Vandewoude et al., 2003), (Vandewoude, 2007) is an extensible and 
modular component-based framework which supports the dynamic 
reconfiguration of systems, as well as the runtime replacement of components. 
Draco is a middleware platform which is part of a set of tools: a custom 
component language, a pre-processor which translates this language into 
standard Java, an Eclipse-based environment that assists the programmer with 
component development and the component framework, Draco. It is 
implemented in Java and supports four primitives for changing the 
composition of systems at runtime: loading, unloading, connection and 
disconnection of components. Among the different features of the 
component model, one of the most interesting is the transactional execution 
of processes and the asynchronous execution support. The framework was 
designed to be easily extensible through extension modules. One of the most 
interesting module is the Live Update Extension module: it provides support for 
safe stopping of components (tranquillity and quiescence, see section 3.4.1.2), 
and for the transference of state when updates are performed (see section 
3.4.2.3). Among the other frameworks, Draco is the only one that implements 
advanced algorithms for the safe stopping of running systems and the 
updating of their components. 

Fractal (Bruneton et al., 2004) is a hierarchical component model which 
provides sharing capabilities (to model resources and resource sharing while 
maintaining component encapsulation), introspection capabilities and 
reconfiguration capabilities. The Fractal component model distinguishes two 
kinds of components: primitives (i.e. simple components, which contain 
actual code), and composites, which are only used as a mechanism to group 
components into a whole. Fractal provides an XML-based ADL that provides 
constructs to specify component types, primitive templates and composite 
templates. Fractal ADL specifications are parsed and instantiated to a 
particular executing platform. One of the most widely used implementations 
of Fractal is Julia (Bruneton et al., 2004), a publically available Java library that 
enables the specification and manipulation of components and architectures 
at runtime. Each component consists of a controller, which manages all the 



4.2 DYNAMIC EVOLUTION APPROACHES 

109 

interactions of the component with the outside. This controller provides a set 
of control interfaces that provide reflective capabilities: service discovery and 
lookup (i.e. introspection), creation and destruction of bindings, addition and 
removal of sub-components, etc. These interfaces allow both ad-hoc and 
limited programmed reconfiguration. Programmed reconfiguration is limited 
because the ADL only allows expressing a single instantiation of a system, 
indicating how its components are instantiated and interconnected, but not 
different configurations. Another drawback is that safe stopping and state 
transfer is weakly supported: they are mentioned, but barely discussed. 
However, since Fractal is open and extensible, other approaches have 
extended the component model to increase the level of dynamism provided. 
For instance, WildCAT (David & Ledoux, 2005) allows the exploration of the 
application‟s execution context at runtime. WildCAT provides a context 
model that changes dynamically to reflect changes in the actual execution 
environment: attribute values or resources can change, appear or disappear at 
any moment. These modifications generate external events which can be 
captured by a reconfiguration policy. This is very useful to implement context-
aware systems. 

SOFA 2.0 (Bures et al., 2006), (Bures et al., 2007) is a hierarchical component 
model whose design has been influenced by the experience obtained with an 
earlier system for dynamic updating, called SOFA/DCUP (Plasil et al., 1998). 
The model provides a text-based ADL called Component Definition Language 
(CDL), which allows specifying the communication among SOFA 
components and embeds a process algebra called behavior protocols to express 
the behavior of each component. A component is represented by a set of 
interfaces, both provided and required, and which determine the 
component‟s type. Components can be primitive (it is defined by binary 
code), or composite (it is defined by a set of subcomponents and 
interconnections among them). An interesting characteristic of the model is 
that components include a specification of behaviour in terms of the event 
traces determined by the secuencing/parallel method call acceptance on the 
provided interfaces and their reactions on the required interfaces. This 
constrains the set of admissible traces of a component and allows the analysis 
of behaviour. The other component models, such as ArchJava and Fractal, 
only check that connected ports provide and require services with compatible 
signatures. In SOFA 2.0 reconfiguration is inherently supported: component 
instances can be dynamically created and removed, by means of the dynamic 
detaching and attaching to connectors. These functionalities are encapsulated 
in controllers, which are the control part of a component (like in Fractal). 
SOFA 2.0 is one of the few frameworks where components can request 
reconfigurations, focusing on the hierarchical structure. State transfer for 
dynamic updates is not discussed but, since version management is supported, 



CHAPTER 4. RELATED WORKS 

110 

passive partitioning may be used (i.e. coexistence of old versions with newer 
versions). The framework also provides a tool to interactively manage a 
running SOFA system. 

4.2.3 Self-Managed Software Architectures 

Self-management is presented as a way by which systems could be scalable, 
support dynamic composition and rigorous analysis, and be flexible and 
robust in the presence of change (Kramer & Magee, 2007). Dynamic 
evolution in this context is essential to support this kind of flexibility.  

There are two main engineering approaches realizing self-managing systems, 
which differ on how the interaction patterns of the system are managed. On 
the one hand, top-down approaches rely on a centralized 
representation/model, which describes the relations among the different 
elements of the system. Self-management is guided by this model: (global) 
decisions are taken upon this model and changes are applied on the system 
globally. An example of top-down approaches are self-adaptive systems (Oreizy 
et al., 1999), which are based on an architecture model and a set of (high-
level) goals to guide the adaptation process.  

On the other hand, bottom-up approaches are fully decentralized: interactions 
are managed locally by the elements of the system. Thus, self-adaptability 
emerges from the local adaptation decisions taken by each component. An 
example of bottom-up approaches are self-organising systems (Serugendo et al., 
2006), which are based on algorithmic functions to guide the (local) 
adaptation process. These systems, usually of a distributed nature, are 
composed of several autonomous instances, which run concurrently and 
organize themselves according to different criteria.  

This section describes some of the representative works that realise each 
engineering approach: top-down or self-adaptive approaches, and bottom-up 
or decentralized approaches.  

4.2.3.1 Top-down approaches: Self-Adaptive Systems 

In parallel with the development of techniques for specifying and supporting 
the dynamic reconfiguration of software systems, several works have addressed 
the design and development of self-adaptive systems: 

A self-adaptive system is one that: (i) is capable of adapting its 
structure at runtime in response to changing operating conditions or user 
requirements, and (ii) relies on a centralized model of the system, which 
defines the high-level goals that guide the changes. 



4.2 DYNAMIC EVOLUTION APPROACHES 

111 

Self-adaptive systems perform dynamic adaptations on the system, i.e. dynamic 
reconfigurations involving non-intrusive changes or replacements, but not 
dynamic evolutions on their types. These changes are applied at the 
architectural level, following a top-down perspective, and are guided by a set of 
(high-level) goals and a centralized model of the system (generally an 
architectural model).  

The first comprehensive self-adaptive conceptual framework was presented in 
1999 by Oreizy et al. (Oreizy et al., 1999). This framework defined an 
adaptation management lifecycle consisting of three tasks: (i) monitoring and 
evaluation of observations from the system execution (e.g. performance 
monitoring, safety inspections, constraint verifications, …); (ii) planning of 
changes, that accepts evaluations, defines appropriate adaptations, and 
constructs a plan for executing that adaptations; and (iii) deploying of change 
descriptions, that propagates the sequence of changes, components 
implementing such changes, and possibly new observers or evaluators to the 
implementation platform. This adaptation lifecycle could be fully autonomous 
or have humans in the loop. The framework is characterized for being 
architecture-based: all the changes are formulated, and reasoned, in terms of 
the architecture. For this reason, an architecture model of the system is 
maintained explicitly on the implementation platform; changes on this model 
are reflected in modifications to the application‟s implementation, while 
ensuring that the model and the implementation are consistent with one 
another. Monitoring and evaluation services observe the application and the 
operating environment and feed this information to the adaptation 
management cycle.  

The architecture-based self-adaptive framework proposed by Oreizy et al. has 
several similarities with architecture-based reflective frameworks. Cazzola et al. 
(Cazzola et al., 1999), (Cazzola et al., 1999a) were one of the first authors to 
propose a reflective framework to address the reconfiguration of software 
architectures. They introduced the term Architectural Reflection as ―the 
computation performed by a system about its own software architecture‖. 
Architectural reflection is provided by reflective mechanisms that exploit the 
architecture of a system as the application domain. The software architecture 
is reified by these reflective mechanisms (i.e. the architecture is made explicit, 
observable, and the system controllable through its architecture), decomposed 
into topology and strategy and manipulated, respectively, by two meta-level 
components, called topologist and strategist. These meta-level components plan 
and force the application‟s reconfiguration through the manipulation of the 
reified architecture.  



CHAPTER 4. RELATED WORKS 

112 

These earlier works on self-adaptive architectures were merely conceptual and 
did not address implementation details: e.g. the specification of 
reconfiguration goals or policies, the coordination and propagation of 
changes, the management of the application consistency, etc. However, these 
works were very influential to the advance in the development of self-adaptive 
systems, and several works followed (Kramer & Magee, 2007), (Cheng et al., 
2009), (Cazzola, 2009). Next other interesting self-adaptive frameworks are 
introduced. 

The K-Component model (Dowling & Cahill, 2001) is a reflective framework 
for building self-adaptive systems. Self-adaptive tasks (i.e. observation, 
reasoning and act) are performed on a reification of the architecture being 
managed. This reification is modelled as a typed, directed configuration 
graph, where interfaces are the vertices, components are the type labels, and 
connectors are directed edges. This configuration graph is automatically built 
as a dependency graph from component definitions and the connections 
among them. Reconfiguration planning, validation, and execution of changes 
are performed over this configuration graph by means of adaptation contracts. 
An adaptation contract is a reflective program that defines: (i) architectural 
constraints, (ii) adaptation events, and (iii) conditional statements that 
associate the occurrence of adaptation events with a set of reconfiguration 
operations. If adaptation is required, a component can be removed from the 
configuration graph and another component, exposing the same interface, can 
be swapped in. A single meta-entity, called the configuration manager, provides 
the execution environment for adaptation contracts, supports the dynamic 
loading and unloading of adaptation contracts, and encapsulates all the 
actuators and reflectors that act on the running system. This model uses the 
reconfiguration protocol proposed by Wermelinger (Wermelinger & Fiadeiro, 
2002) to reach a safe state for reconfigurations. The K-Component model also 
considers the transfer of state among component when performing updates, 
by means of a user-defined constructor. The main disadvantage is the inability 
of the framework to accept new types in the configuration graph, since the 
graph is built statically at compile-time.  

Dashofy, van der Hoek and Taylor (Dashofy et al., 2002) describe an 
infrastructure to build self-healing, architecture-based software systems. Their 
approach consists of dynamically generating a repair plan based on the 
differences among the actual state of the system and the configuration that the 
system should have. Repairs are done at the architectural level. The repair 
plan is generated by a fault-detection/planning agent that monitorizes the 
running system, detects possible faults, and proposes possible repairs. The 
architecture of the system and the set of proposed changes are described in 
xADL 2.0, an extensible ADL (Dashofy et al., 2001). When a fault is detected, 



4.2 DYNAMIC EVOLUTION APPROACHES 

113 

this agent generates a new architectural model that includes a set of proposed 
repairs and which is analysed to detect whether the new model is valid or not. 
If the new model is valid, the repair plan is executed by the architecture 
evolution manager, a meta-entity that invokes the needed low-level evolution 
services provided by the runtime infrastructure. The runtime infrastructure 
performs the required changes in the whole system, but the details about this 
infrastructure are not provided. 

The Chisel framework (Keeney & Cahill, 2003) is a reflective system for 
dynamic evolution in a policy-driven, context-aware manner. It is based on the 
same principles of aspect-oriented development: an object only keeps its core 
functionality, and the non-functional behaviour is separated into multiple 
possible behaviours, called meta-objects, that can be reused by other objects. As 
the environment, user context or application context change, objects will be 
adapted to use different behaviours, driven by a human-readable declarative 
adaptation policy specification. This is performed by a meta-level adaptation 
manager that coordinates the whole adaptation process (monitoring, planning 
and reflecting changes). Although the framework is not architecture-based and 
focuses on changes at a small granularity level (i.e. objects), the contribution 
of the work is its support to unanticipated changes and the definition of 
context-aware policies. 

RAMSES (Cazzola et al., 2004) is another framework that exploits reflection 
to provide applications with self-adaptative capabilities. It has two logic levels: 
the base-level, where the system to be adapted runs, and the meta-level, where 
two meta-objects, called evolutionary and consistency checker, take care of 
planning and validating the evolution of the system. Evolutions and 
validations are driven by a set of ECA rules, and are executed over a 
reification of the base-level. The reification of the base-level is modelled as 
UML diagrams. These diagrams are encoded as XMI models, so they can be 
processed at runtime. The two meta-objects perform changes on these models, 
which are reflected back through code instrumentation techniques. Although 
this approach is not architecture-based, the techniques that are proposed to 
manipulate models at runtime are also interesting, and could be easily applied 
to architecture-based self-adaptive systems. 

The Rainbow framework (Garlan et al., 2004), (Cheng et al., 2005) provides a 
reusable infrastructure for self-adaptive systems together with mechanisms for 
the specialization of that infrastructure to specific systems. Rainbow integrates 
an architectural model of the system in its runtime system, which is used by a 
control loop for self-reconfiguration purposes. The control loop is composed 
of four modules: i) a model manager, that handles and provides access to the 
application‟s architectural model; ii) a constraint evaluator, that supervises the 
model periodically and triggers adaptations if a constraint violation occurs; iii) 



CHAPTER 4. RELATED WORKS 

114 

an adaptation engine, that determines the set of reconfiguration actions to be 
performed; and iv) an adaptation executor, that reflects the changes on the 
application. The monitoring of the system is performed from outside, with 
probes measuring data and gauges aggregating these data to provide decision 
criteria for reconfiguration. Reconfiguration is triggered by rules that are 
based on the output of gauges. Dynamic changes are carried out by external 
effectors, but their behaviour is not detailed. The granularity of changes are 
very coarse (e.g. web clusters), and a great emphasis is placed on maintaining 
the architectural style.  

Plastik (Batista et al., 2005) is a meta-framework for reconfiguration that 
bridges the gap among a high-abstraction level language, Armani ADL 
(Monroe, 98), and a component-based middleware, OpenCOM (Coulson et 
al., 2004). Armani is an extension of the ACME ADL (Garlan et al., 1997) 
that allows the description of architectural constraints over ACME 
architectures, but that does not support the specification of dynamic 
reconfigurations. Plastik extends the ACME/Armani ADL with statements for 
describing dynamic reconfigurations: reconfiguration triggers, the removal of 
components and links (creation of components and links is already covered by 
standard ACME), and the existence of dependencies among components. 
Dependencies are introduced to support the fact that, in some cases, the 
dynamic instantiation/destruction of components is dependent on the 
creation/destruction of other components. The execution support for these 
reconfiguration statements is provided by OpenCOM, a component-based 
middleware that provides reflective capabilities, thus enabling the dynamic 
reconfiguration of its elements. Thus, software systems can be described and 
analysed at a high abstraction level, but also executed directly on a runtime 
platform. Dynamic reconfigurations can be described and executed both 
reactively and proactively, by means of a centralized system configurator. This 
configurator is divided in two levels: an architectural configurator, responsible 
for accepting and validating reconfiguration requests at the ADL level, and a 
runtime configurator, responsible for managing the OpenCOM runtime level. 
There is one instance of the architectural configurator in the whole Plastik 
system, and one instance of the runtime configurator for each deployed 
OpenCOM component frameworks. In this way, high-level reconfiguration 
specifications are centralized in the architectural configurator, and their 
management is delegated to each OpenCOM runtime configurator. 

Ayed and Berbers (Ayed & Berbers, 2007) describe a policy-driven framework 
to dynamically change CORBA component-based applications. This 
framework extends both the execution and deployment models of CORBA by 
introducing new entities and adaptation interfaces in the containers of 
components. The architecture of the system is represented as a graph, which 



4.2 DYNAMIC EVOLUTION APPROACHES 

115 

define components and connections that can be either obligatory or optional. 
Obligatory components and connections are deployed (or created, 
respectively) for all the possible application contexts. However, the existence 
of optional components depends on the application context and requires the 
specification of an existence condition. In the same way, optional connections 
can only be materialised if the two components that they link also exist. The 
deployment plan is extended with the description of variability (i.e. obligatory 
and optional components and connectors), and is context-aware. The 
prototype proposed supports the safe stopping of component instances and 
the state transfer (only if data structures are compatible). This functionality is 
separated in three modules: (i) context manager, which is responsible for the 
collection, storage and reasoning of context information; (ii) adaptation 
manager, which decides the reconfiguration activities to be performed 
according to the context information and which analyses the dependencies 
among other instances; and (iii) consistency manager, which stops, blocks and 
transfers the state of component instances for reconfiguration. These modules 
are provided in a centralized way.  

As a summary, self-adaptive approaches are generally characterized by: (i) 
supporting dynamic reconfiguration; (ii) the separation of dynamic change 
policies or goals from system functionality; (iii) supporting proactive changes 
(generally defined by ECA policies inside the self-control loop); and (iv) 
providing some degree of self-awareness, required to trigger and drive changes. 
The main advantage of self-adaptive approaches is that all the code related to 
the management of change (i.e. the reconfiguration policies) is centralized in a 
single place (i.e. a configuration manager) that eases its maintenance. Another 
advantage is that it makes easy the coordination among different 
reconfiguration policies. Since the configuror has a complete or global view of 
the system, it can analyse the conflicts that may emerge on other subsystems 
when applying a change, to prioritize one instead of others (Raheja et al., 
2010). 

However, the use of a centralized configuration manager also introduces 
important issues for the development of medium-sized distributed systems or 
large-sized centralized ones: 

 Poor scalability. The use of a centralized entity for controlling all the 
changes of a system is not scalable. The larger the system, the more 
complex and less maintainable the configuration/adaptation manager 
would be, since the scope that the manager must supervise will 
increase proportionally. This will also impact on the time required to 
analyze the system and take reconfiguration decisions. 



CHAPTER 4. RELATED WORKS 

116 

 Single point of failure. If the configuration manager fails, the overall 
system would also lose its ability to reconfigure and repair itself. This 
poses also a security risk: in case the security of the configuration 
manager is violated, the architecture of the whole system (i.e. all the 
subsystems) would be available to the attacker, who could change the 
entire system. 

4.2.3.2 Bottom-up approaches: Decentralized Architecture-Based 
Systems  

In the case of large systems or distributed systems, decentralized models are 
preferrable. Several decentralized models have been proposed in the area of 
multi-agent systems and self-organised systems (Serugendo et al., 2006), 
(Santiago-Perez et al., 2009), which could be considered for addressing the 
building of self-reconfigurable architecture-based systems. Generally, in self-
organised systems interactions are managed locally by the elements of the 
system: 

A self-organized system is one that: (i) is capable of reorganizing its 
structure at runtime in response to changing operating conditions; (ii) 
relies on a fully distributed, decentralized model: it is composed of 
autonomous nodes which run concurrently and organize themselves 
according to local decisions. 

Thus, self-adaptability emerges from the local adaptation decisions taken by 
each component. An example is the work of (Rogers et al., 2009), which is 
based on algorithmic functions to guide the (local) adaptation process.  

In the area of software architecture, few works have addressed the 
management of change from a decentralized perspective. Some formal ADLs 
provide implicit support for the description of decentralized reconfigurations: 
these categorized as smart components in (Cuesta et al., 2001). ADLs allowing 
the definition of smart components are those that provide components with 
primitives to reconfigure the system architecture (or at least part of it): e.g. 
Darwin (Kramer & Magge, 1985), LEDA (Canal et al., 1999) or the 
categorical model of Wermelinger (Wermelinger et al., 2001). In this way, 
components are free to reconfigure the architecture to which they belong. 
However, the disadvantage is that reconfiguration specifications are spread 
among the different components, thus decreasing maintenance of such 
specifications and making difficult to see the conflicts among the different 
reconfiguration specifications.  

The work from Georgiadis, Magee and Kramer (Georgiadis et al., 2002) was 
one of the first in describing a system with a completely decentralized change 
execution infrastructure. Architecture specifications are modelled in Darwin 



4.2 DYNAMIC EVOLUTION APPROACHES 

117 

(Magee et al., 1995), but described in Alloy (Jackson, 1999) to express 
structural constraints and benefit from existing Alloy analysis tools. Each 
component is packaged with a configuration view and a component manager. The 
former is a directed graph of the overall system architecture, and the latter is 
the maintainer of the configuration view and the manager of the component 
implementation. Events are used to communicate component managers 
together with: the binding/unbinding of ports, addition/removal of 
components, the failure of components, or the modification of component 
attributes. Architectural constraints, which are deployed in each component 
manager, guide how components should be bound to others. Reconfiguration 
is passively driven by constraint satisfaction: every time the configuration view 
changes, architectural constraints are re-evaluated to detect if a 
reconfiguration is needed. The disadvantage is that reconfiguration rules are 
deployed together the management mechanisms, in the component manager. 
The major issue of the approach is its low scalability: it requires a total order 
broadcast to maintain the consistency of the distributed configuration views.  

The K-Component model, in its second version (Dowling & Cahill, 2004) 
proposes a decentralized architecture-based model for building self-adaptive 
systems. A K-Component is defined as a runtime framework where 
components and connectors can be deployed. Each K-Component contains a 
configuration manager that reifies the architecture defined in the K-
Component and provides adaptation contracts to manage this (local) 
architecture. There is no explicit representation of the system-wide 
architecture: it is partitioned amongst the K-Components of the system. Each 
configuration manager exchanges with its adjacent K-Components the 
information related to the remote components that are connected to its 
connectors: the reification of remote components, feedback events, and their 
states. Adaptation contracts thus operate on a K-Component by reasoning 
about adaptation conditions using either the local information or the shared 
remote information. Adaptation contracts can be defined using ECA rules 
(which are programmed at design-time), or using Collaborative Reinforcement 
Learning techniques. The latter is used to establishing and maintaining 
system-wide properties in a decentralized system.    

The Evolver-Producer model (Morrison et al., 2007) is a conceptual 
framework for the description of evolving systems with a decentralized nature. 
The framework is based on the concept of locus, producer and evolver. Locus 
is the context where a system, subsystem, or element, may change or evolve. A 
locus is structured in two functional units: a Producer, which carries out 
productive functionality (i.e. taking input and producing output), and an 
Evolver, which manages the evolution of the locus. The Evolver monitors the 
Producer, the environmental stimulus, or its own feedback, and uses this 



CHAPTER 4. RELATED WORKS 

118 

information to drive the evolution of the locus to obtain a new version of the 
Producer or even a new version of itself. These concepts can be recursively 
applied: both the Evolver and the Producer may be internally composed of an 
evolver-producer pair, and so on. Thus, each locus is constructed in a system 
as a mini-control system with the producer as the process and the evolver as 
the controller (see section 3.5.1). Moreover, the evolver-producer pair model 
allows loci to be aggregated and structured hierarchically, that is, this does not 
necessarily imply encapsulation but rather the nesting and aggregation 
(statically or dynamically) of change contexts. An example of how the Evolver-
Producer model can be applied for the building of architecture-based 
autonomic systems is described in (Balasubramaniam et al., 2005), using the 
Archware ADL (Oquendo et al., 2004). However, this model does not address 
the problems that arise on the coordination of different change contexts. Both 
proactive and reactive changes are supported: the Evolver defines proactive 
changes, and hyper-code technology (Mickan et al., 2004) supports reactive 
changes. Regarding the implementation details of change mechanisms, the 
authors describe some of the techniques that can be used to implement their 
approach in Java. For instance, state transfer is delegated to the programmer, 
who must provide a constructor to import the previous state. Although their 
work describe how new types can be generated at runtime (by using dynamic 
compiling techniques), their work do not detail how the updated types are 
bounded to the existing system, replacing the old types. For instance, running 
instances are not safely stopped: they are only blocked when they try to interact 
with a stopped connector. This may leave the system in an inconsistent state 
(see section 3.4).  

The Adapt-Medium approach (Phung-Khac et al., 2008), (Phung-Khac et al., 
2010) is an architecture-based approach that deals with the runtime 
adaptation of distributed applications. The approach relies on the concept of 
adapt-medium, a logical aggregation of local adaptation managers that 
collaborate together to perform a runtime adaptation. The set of adaptations 
that can be performed at runtime are defined during a model-based 
development process as a set of design alternatives, or architectural variants 
(similarly as performed in product-line approaches, e.g. (Gomez & Ramos, 
2010)). All the variants related to a functional component are included into 
an adapt-manager, which is deployed together the component in the same host. 
Then, when an adaptation is needed (i.e. an architectural variant must be 
introduced), the adapt-managers that are involved with this variant form an 
adapt-medium and collaboratively drive the adaptation process. Dynamic 
change is finally effected as the replacement of components by another 
variant, supported by a limited state transfer process. Low-level details about 
the safe stopping of involved elements, transactional support or propagation 



4.2 DYNAMIC EVOLUTION APPROACHES 

119 

of changes to instances are not described. The approach is designed to 
support proactive (programmed) adaptations, although in a decentralized 
manner. More details about the distributed management of adaptations are 
addressed in (Zouari et al., 2010). 

The main disadvantage of using decentralized approaches, or considering self-
organised strategies, is that system-wide properties are more difficult to 
control. Each subsystem is able to evolve autonomously, but with the risk of 
breaking the system if no centralized control of the process is performed. 
Another disadvantage is that the maintenance of reconfiguration policies or 
architecture constraints is more complex, as a consequence of being scattered 
among the system. An interesting approach to manage the maintenance of 
reconfiguration policies could be the use of aspect-oriented approaches. 

4.2.4 AOSD & Evolution Concerns 

AOSD, i.e. Aspect-Oriented Software Development (Kiczales et al., 1997), 
proposes the separation of the crosscutting concerns of software systems into 
separate entities called aspects. This separation avoids the tangled concerns of 
software, allowing the reuse of the same aspect in different entities of the 
software system as well as its maintenance.  

In the context of software evolution, several authors have claimed the 
importance of separating parts of the software that exhibit different rates of 
change (Mens & Wermelinger, 2002). This should be considered to avoid the 
entanglement of evolution concerns with other concerns, and to improve 
their design and maintainability. In this sense, aspects can be used to 
encapsulate the evolution concerns and avoid them to be scattered among the 
functional code.  

The superimposition of aspects on software architectures has been shown as 
beneficial for the definition of multiple architectural views, the separate 
description of concrete concerns (such as dynamism), or the study of new 
composition schemas (Cuesta et al., 2006). For this reason, this section 
presents the proposals that have explicitly addressed the use of aspects in 
software architectures to encapsulate evolution concerns. 

One of the earliest proposals on handling separately evolution concerns from 
functional concerns was the work of Rasche and Polze (Rasche & Polze, 
2003). They implemented a framework on .NET supporting dynamic 
component reconfiguration. Configuration descriptions were described in a 
XML-based language, which provided constructs for defining simple ECA 
(Event-Condition-Action) rules. A centralized configuration manager evaluates 
configuration descriptions, initiates reconfigurations when required, and 



CHAPTER 4. RELATED WORKS 

120 

safely stops the components to be reconfigured. Only component 
instantiation and destruction was supported. One interesting contribution is 
that they used aspect-oriented programming to handle configuration code (i.e. 
the reconfiguration concern) separately from functional code. All the code 
required to support the reconfiguration process is provided to each 
component by means of a separate aspect. This aspect encapsulates 
transaction handling, connection management, start/initializing and attribute 
management. Thus, reconfiguration code is added transparently to binary 
components with a minimum interaction with the component developer.  

Gustavsson et al. (Gustavsson et al., 2004) also propose to view the ability to 
update a system as an aspect, since this is a crosscutting feature. They define 
evolvability as a crosscutting concern in the sense that the mechanisms needed 
to make a software artefact dynamically updateable is orthogonal to the 
implementation of the artefact itself. They encapsulate the mechanisms for 
supporting dynamic updates of Java classes into the runtime evolution aspect, 
which is weaved to any Java class that may be updated at runtime. This 
evolution aspect works as a wrapper, which acts as a proxy to the users of the 
class. This aspect listens to a socket for update commands, which are sent 
through a graphical user interface. This approach supports multiple versions 
of classes, transference of state (by means of user-defined constructors) and 
safe locking of the affected classes and objects. 

The previous approaches are very platform-dependent and focused on a 
medium granularity level (i.e. component implementation and classes, 
respectively). SAFRAN (David & Ledoux, 2006) is an extension of the Fractal 
component model (Bruneton et al., 2004) that uses AOP concepts and 
techniques to develop dynamic evolution code separately from business code. 
Whereas the previous approaches focused on encapsulating the mechanisms for 
dynamic evolution into an aspect, SAFRAN proposes to encapsulate 
reconfiguration specifications into aspects, called adaptation aspects. An 
adaptation aspect defines adaptation policies (mainly ECA rules), expressed in 
a domain-specific language for reconfiguration, called FScript (David & 
Ledoux, 2006), (David et al., 2009). FScript gives access to all the standard 
reconfiguration operations provided by Fractal, but it also allows the 
navigation and easy selection of elements. Adaptation aspects can be 
dynamically weaved or unweaved at runtime, thus allowing both reactive and 
proactive changes. The approach is very powerful and provides: (i) both 
internal & external event capturing, (ii) introspection capabilities to explore 
the running architecture and the properties of components, (iii) complete 
support for creating, destroying, binding and unbinding component instances, 
and (iv) consistency of reconfigurations through a transactional 
implementation, which allows the rollback of failed reconfigurations. This is 



4.2 DYNAMIC EVOLUTION APPROACHES 

121 

supported by means of the logging of the inverse operations needed to undo 
each reconfiguration operation. The authors claim that all primitive Fractal 
reconfigurations are atomic and reversible, but they do not provide details 
about how removal operations are undone. The question is how the rollback 
of removed components and the restoration of their previous state are 
managed by means of only inverse operations. Another limitation of the 
approach is that the scope of adaptation is constrained to a composite Fractal 
component, so reconfigurations that may impact the entire architecture or 
may be synchronized with other composite components is not addressed. 

This limitation is overcome by the Fractal Aspect Component model, FAC 
(Pessemier et al., 2008), an aspect-oriented extension of Fractal which 
supports the dynamic weaving of crosscutting concerns to multiple 
components. FAC uses the notion of aspect component to embody crosscutting 
concerns as components, and aspect binding to reflect the weaving among a 
component and an aspect component. The novelty introduced by FAC is the 
notion of aspect domain, which reflects the set of components that are affected 
by an aspect component, i.e. the impact of a crosscutting concern. The 
weaving interface provided in FAC is more general that the adaptation 
interface of SAFRAN, and thus, more expressive. Thus, by means of dynamic 
aspect weaving, FAC provides support for dynamic type evolution. However, it 
suffers from the same disadvantage of other aspect-oriented approaches: type 
evolution is only partially supported. Aspects are added to extend the 
functionality of the existing system, but the existing code cannot be removed 
(only intercepted to be hidden). FAC supports both proactive and reactive 
changes, because the weaving interfaces can be invoked either with the Fractal 
ADL or directly at runtime. In addition, since the weaving specifications can 
be defined outside the specifications of both aspects and components, FAC 
preserves the separation of the evolution concerns (encoded as weaving 
specifications). 

Greenwood and Blair (Greenwood & Blair, 2006) combine several 
techniques to develop a flexible framework capable of adding self-adaptive 
behaviour to existing systems, i.e. without changing the underlying target 
system. Their work uses AspectWerkz (Vasseur, 2004) to dynamically weave 
aspects to existing code (by modifying the Java bytecode of the existing 
system), and Java-based reflection10 to gather run-time information of the 

                                                      
10 Java and .NET provide reflection mechanisms, which have been used by some 
proposals to gather run-time information about classes, methods, parameters and 
attributes. However, to be precise, these mechanisms only provide introspection 
mechanisms, but not intercession (which would enable the change of classes and 
attributes at runtime). 



CHAPTER 4. RELATED WORKS 

122 

system. Self-adaptive behaviour is described by ECA-based policies, described 
in an XML file: the event is some joinpoint being reached in the target system, 
the condition is some test performed on the state of the target system, and the 
action involves the weaving or removing of an aspect. By contrast to other 
approaches, the result of an ECA rule is not a reconfiguration, but the 
weaving of an aspect. In their approach, they used Framed Aspects for 
specifying the set of changes that should be introduced in a running system. 
As an example, they weave two aspects for monitoring the system and 
effecting changes. However, as a result of using AOP techniques to adapt an 
existing system, only extensions to the target system can be done, but not the 
complete removal of components from the base code. 

AspectLEDA (Navasa et al., 2007), (Navasa et al., 2009) is an extension of the 
formal ADL LEDA (Canal et al., 1999), which introduces primitives for 
describing Aspect-Oriented concepts. Aspects are modelled in LEDA as 
components, the join points that can be intercepted by aspects are the 
interactions among system components (i.e. public methods published by 
components), and the pointcuts that define the weavings of aspects to the base 
system architecture are modelled as special connectors. AspectLEDA provides 
support for dynamic adaptation (i.e. non-intrusive dynamic changes), both 
reactive and proactive. Reactive changes are supported through an external 
tool that allows the developer to dynamically weave new aspects to the base 
system. Proactive changes are defined in a structure called Common Item, 
which is produced together each aspect, and that defines ECA policies for 
deciding when an aspect must be applied, under which conditions or events, 
and where (i.e. which interaction point will be adapted by the aspect). Thus, 
AspectLEDA encapsulates the concerns related to dynamic adaptation into 
aspects, benefiting its reuse and maintenance. However, since only non-
invasive changes are supported, major reconfigurations on the architecture 
cannot be performed, neither dynamic type evolutions on components. 

AO-Plastik (Batista et al., 2008) is another approach that proposes to isolate 
reconfiguration concerns from functional concerns. AO-Plastik is an 
extension of the Plastik environment (Batista et al., 2005), a previous work of 
the same authors, which employs the AspectualACME ADL (Garcia et al., 
2006) to support the modelling of crosscutting concerns on software 
architectures. AO-Plastik uses aspectual connectors –which represent 
crosscutting interactions- for encapsulating reconfiguration interactions, and 
aspectual components –which play a crosscutting role within an aspectual 
interaction- for encapsulating reconfiguration actions. In this way, the 
reconfiguration concern is separated into Events and Conditions (defined in 
aspectual connectors) and Actions (defined in aspectual components). This 
adds flexibility to the specification of dynamism: it allows that the same 



4.3 COMPARISON OF THE DIFFERENT APPROACHES 

123 

aspectual component (i.e. a set of reconfiguration actions) can act over 
different systems, according to different conditions defined in different 
aspectual connectors.  

4.3 Comparison of the different approaches 

This section analyses and compares the different approaches presented in the 
previous section. Although all the approaches address the dynamic evolution 
of software systems, they do from different perspectives (e.g. at a formal level, 
using aspects, implementing mechanisms for change, providing a framework, 
etc.), which make difficult their comparison. For this reason, a taxonomy11 for 
dynamically evolvable systems is needed.  

There are several taxonomies in the literature addressing the dynamic 
evolution of software systems: formal ADLs for self-management (Bradbury et 
al., 2004), mechanisms for dynamically composing software (Segal & Frieder, 
1993) (McKinley et al., 2004a), dimensions of software change (Buckley et al., 
2005), and self-adaptive systems (Huebscher & McCann, 2008) (Andersson et 
al., 2009a) (Salehie & Tahvildari, 2009). Among the different attributes 
proposed in these taxonomies, the following attributes have been selected: 
degree of formality, activeness, evolution management, introspection, and type of 
changes. Other attributes have been discarded because of being very specific 
(e.g. goal management, version management, etc.). In addition, other 
attributes not initially considered in existing taxonomies have been included 
in our comparison: level of dynamism, separation of evolution concerns (both 
specifications and mechanisms), and consistency management.  

The following subsection describes these attributes in detail, and then, a 
comparison table is presented. 

4.3.1 Description of the attributes selected 

Next, we detail the attributes that have been used in our comparison and the 
reasons which motivated this selection. 

 Degree of formality. This attribute defines if an approach is based on, 
or complemented by, any mathematical formalism. This is important 
to support the development of correct and robust dynamic software 
systems (Bradbury et al., 2004). Formal specifications have the 
following advantages: (i) they define the system at a high abstraction 

                                                      
11 A system for naming and organizing things into groups which share similar qualities 



CHAPTER 4. RELATED WORKS 

124 

level, (ii) they can be automatically analysed to verify properties or 
validate behaviour, and (iii) they can be used to generate code without 
ambiguity.  

 Level of dynamism. This attribute refers to the kind of changes that 
can be done in a running system. Dynamic reconfiguration is supported 
if the system structure can be evolved at runtime, i.e. changes are 
performed at the architecture level. These changes have a coarse 
granularity: the smallest unit of change are components and/or 
connectors, which may be added or removed at runtime. In addition, 
these changes are done at the configuration level: they only impact a 
certain system instance, but not other instantiations. Dynamic type 
evolution is supported if types can be also defined or changed at 
runtime. That is, changes are not only structural, but also behavioural 
since the entire specification of an element can be changed at 
runtime. These changes generally have a medium or fine granularity: 
the smallest unit of change can be classes (medium granularity) or 
methods (fine granularity). Since changes are done at the type-level, 
they also impact all the instantiations of the changed type. Both kinds 
of dynamism are complementary and benefit each other (see section 
3.6.3). 

 Activeness. This attribute describes how changes can be initiated or 
driven: reactively, proactively, or both. Reactive changes are changes that 
are externally introduced at runtime, generally by means of a user 
interface or a tool. Proactive changes are changes that are initiated by 
the system, generally by means of the use of services for dynamic 
change. Both kinds of activeness are important and complementary: 
the support for proactive changes is essential to build self-
management systems, whereas the support for reactive changes allows 
us to introduce unanticipated changes at runtime. For this reason, the 
level of activeness provided by an approach has been included in our 
comparison. 

 Separation of evolution concerns. This attribute evaluates whether 
an approach separates evolution concerns from other concerns or 
not. This is important to improve the design and maintenance of 
both evolution code and functional code. In addition, it has been 
considered whether evolution specifications and evolution mechanisms are 
also separated. Evolution specifications define the proactive 
behaviour of a self-managed system: they define when and how the 
system will change at runtime. Evolution mechanisms are the 
underlying technologies and techniques that support runtime 
changes. Since functional concerns, evolution specifications and 



4.3 COMPARISON OF THE DIFFERENT APPROACHES 

125 

evolution mechanisms have different rates of change, they should be 
kept separated to improve their maintenance.  

 Evolution management. This attribute refers to the nature of the 
evolution management: if it is centralized or distributed. An approach 
has a centralized evolution management if dynamic change specifications 
and/or mechanisms are centralized in a specialized element or 
“configurator”. Centralized evolution management is generally 
provided by approaches without proactive support, by means of an 
external tool. By the contrary, an approach has a distributed evolution 
management if dynamic change specifications are distributed across the 
elements of a system, i.e. different elements can perform dynamic 
changes on the running system. In some cases, however, the scope of 
changes that an element can perform is not detailed (e.g. Leda, 
Darwin). This attribute is important in order to account for the level 
of scalability provided by an approach. 

 Introspection. This attribute describes the degree of self-awareness 
that a system is provided with. This is an essential attribute to build 
self-managed systems: a self-managed system, in order to reason and 
manage itself, first must be aware of itself. That is, it must be able to 
observe its internal state (i.e. its attributes and properties) and 
configuration (i.e. the elements is composed of and their 
relationships). This is generally provided by reflective approaches.  

 Types of change. This attribute refers to the expressiveness for change 
that an approach supports. This is important to design highly flexible 
systems: the more expressiveness available, the more freedom for 
change provided. This expressiveness is limited by the dynamic 
evolution operations that are available for changing a running system. 
There are five types of evolution operations: (i) additions, if new 
elements (e.g. components, classes, methods) can be introduced at 
runtime; (ii) removals, if an element (e.g. a component or a class) can 
be removed from a running system; (iii) updates, if an element can be 
replaced at runtime; (iv) linkings, if the dynamic creation of links 
among elements is supported (e.g. connectors, relationships); and (v) 
unlinkings, if the removal of relationships among elements is 
supported. Depending on the number of evolution operations that 
are supported, this expressiveness has been defined as Low (1 or 2 
evolution operations), Medium (3 or 4 operations) or Full (the 5 
evolution operations are supported). 

 Consistency management. This attribute evaluates the presence of 
mechanisms, or strategies, for preserving the consistency of a system 



CHAPTER 4. RELATED WORKS 

126 

before and after a dynamic change. This is important to avoid that 
evolving a running system would result in its breakage. Three 
mechanisms have been considered: state transfer, safe stopping and 
transactional support. First, the support for state transfer guarantees 
that, in case of dynamic updatings, the previous state is preserved and 
is not lost among evolutions. Second, the support for safe stopping 
guarantees that the elements to be evolved are placed in a safe state. 
This avoids that changes on these elements may introduce 
inconsistencies in the running system. Third, transactional support 
allows a system to revert a set of dynamic changes if anything fails: e.g. 
execution of invalid actions, violation of system constraints, etc. This 
preserves system integrity after a dynamic change.  

4.3.2 Comparison tables 

A comparison table has been developed from the attributes and the 
approaches analysed in the above section. This table is divided in three 
separate tables due to the limitation of page size. These tables are grouped by 
approaches: formal approaches addressing dynamic reconfiguration (see Table 
1), technological approaches (see Table 2), and self-adaptive and decentralized 
approaches (see Table 3).  

The following symbols have been used: 

 : An attribute is provided or supported. 

 : An attribute has not been considered or is unsupported. 

? : No information was available to evaluate an attribute.  

½ : An attribute is partially supported 

n.a. : An attribute is not applicable in this approach. 

C | D: In the attribute Evolution Management, „C‟ means centralized 
evolution management, whereas „D‟ means distributed evolution 
management. 

L | M | F: In the attribute Types of Change, this value refers to the level of 
expressiveness provided: Low „L‟, Medium „M‟, or Full „F‟. 

  



4.3 COMPARISON OF THE DIFFERENT APPROACHES 

127 

 
 

 

D
eg

re
e 

of
 F

or
m

al
ity

 

Level of 

Dynamism 
Activeness 

Separation 

of concerns 

E
vo

lit
io

n 
M

an
ag

em
en

t 

In
tr

os
pe

ct
io

n 

T
yp

es
 o

f C
ha

ng
e 

Consistency 

Management 

  R
ec

on
fig

ur
at

io
n 

T
yp

e 
E

vo
lu

tio
n 

R
ea

ct
iv

e 

Pr
oa

ct
iv

e 

C
ha

ng
e 

Sp
ec

s. 

C
ha

ng
e 

M
ec

hs
. 

St
at

e 
T

ra
ns

fe
r 

Sa
fe

 S
to

pp
in

g 

T
ra

ns
ac

tio
na

l 

P
ro

ce
ss

-A
lg

eb
ra

 

Darwin       ? D  M    

LEDA       ? D  F    

Dynamic Wright       ? C  F    

G
ra

ph
-B

as
ed

 

Hirsch et al.       ? C  M    

Wermelinger       ? C  F ½   

Baresi et al.       ? C  F    

R
ef

le
ct

iv
e 

PiLar   ½12    ? D  F    

Archware ADL13    ½12     D  F  ½14  

Table 1. Comparison of formal approaches addressing Dynamic Reconfiguration 

  

                                                      
12 Only partial support for type evolution is provided since changes are not propagated 
to all the instances of a type. Only local updates are performed. 
13 Considering the extensions of (Balasubramaniam et al, 2005). 
14 Only a weak stopping algorithm is implemented. Running instances are not safely 
stopped: their threads are only blocked when they try to interact via connectors. Since 
blocked threads have an internal transient state, this may leave the system in an 
inconsistent state for change.  



CHAPTER 4. RELATED WORKS 

128 

 
 

D
eg

re
e 

of
 F

or
m

al
ity

 

Level of 

Dynamism 
Activeness 

Separation 

of concerns 

E
vo

lit
io

n 
M

an
ag

em
en

t 

In
tr

os
pe

ct
io

n 

T
yp

es
 o

f C
ha

ng
e 

Consistency 

Management 

  R
ec

on
fig

ur
at

io
n 

T
yp

e 
E

vo
lu

tio
n 

R
ea

ct
iv

e 

Pr
oa

ct
iv

e 

C
ha

ng
e 

Sp
ec

s. 

C
ha

ng
e 

M
ec

hs
. 

St
at

e 
T

ra
ns

fe
r 

Sa
fe

 S
to

pp
in

g 

T
ra

ns
ac

tio
na

l 

P
ro

ce
du

ra
l, 

O
O

 

Fabry        C  M  
15  

JDrums        D ½ F  16  

Malabarba et al.        C  M  16  

D
yn

. W
ea

vi
ng

 

EOS     17 18  C  M  n.a19  

JAsCo     17   C  M  n.a19  

PROSE     17 18  C  M  n.a19  

C
om

po
ne

nt
-B

as
ed

 

Simplex   ½12     C  M    

OpenCOM   ½12     D  F    

Draco        C  F    

Fractal (Julia)   ½12     D  M    

SOFA 2.0   ½12     D ½ M  
15  

Table 2. Comparison of technological approaches addressing Dynamic Evolution 

 

                                                      
15 This approach has used a passive partitioning technique: old and new versions coexist 
at the same time (see section 3.4.2.1). Old versions are active until they become 
unreferenced by other elements. Thus, safe stopping criteria has not been used.  
16 Only a delayed stopping technique is implemented: changes are delayed until the 
element to change is inactive. 
17 In AOP approaches, proactive specifications are defined by weavings/pointcuts. 
18 To improve the separation of evolution concerns, weavings/pointcuts (as proactive 
specifications) should be separated from aspect code. 
19 Since change is performed directly at the level of code instructions (redirecting the 
execution flow to new code), safe stopping is not needed. When each thread reaches 
an interception point, it is redirected to a new location (i.e. the new code).  



4.3 COMPARISON OF THE DIFFERENT APPROACHES 

129 

 
 

D
eg

re
e 

of
 F

or
m

al
ity

 

Level of 

Dynamism 
Activeness 

Separation 

of concerns 

E
vo

lit
io

n 
M

an
ag

em
en

t 

In
tr

os
pe

ct
io

n 

T
yp

es
 o

f C
ha

ng
e 

Consistency 

Management 

  R
ec

on
fig

ur
at

io
n 

T
yp

e 
E

vo
lu

tio
n 

R
ea

ct
iv

e 

Pr
oa

ct
iv

e 

C
ha

ng
e 

Sp
ec

s. 

C
ha

ng
e 

M
ec

hs
. 

St
at

e 
T

ra
ns

fe
r 

Sa
fe

 S
to

pp
in

g 

T
ra

ns
ac

tio
na

l 

Se
lf

-A
da

pt
iv

e 

Dashofy et al.        C  F ? ?  

Chisel        C  F ? ?  

Ramses        C  F    

Rainbow        C  F    

Plastik20        C  F    

Ayed & Berbers        C  F    

D
ec

en
tr

al
iz

ed
 Georgiadis et al.        D  M    

K-Component v2        D  F    

Evolver-Producer   ½     D  F  ½14  

Adapt-Medium        D  F    

A
O

SD
-B

as
ed

 

Rasche & Polze        C  M    

Gustavsson et al.        D  F  16  

SAFRAN20        D  F    

FAC20        D  M    

Greenwood & Blair        C  M  n.a19  

AspectLEDA       ? D  M    

AO-Plastik20        C  F    

Table 3. Comparison of self-adaptive and decentralized approaches 

                                                      
20Some of the attributes are inherited from the underlying middleware (i.e. 
OpenCOM or Fractal). These inherited attributes are shaded in grey. 



CHAPTER 4. RELATED WORKS 

130 

4.4 Conclusions 

After the analysis and comparison of different approaches supporting dynamic 
change in software architectures, it is possible to conclude that there is a gap 
among approaches addressing the description of dynamic changes at high 
levels of abstraction and technological approaches addressing the support for 
dynamic evolution. For instance, most of formal ADLs addressing 
architectural dynamism (e.g. Leda, Dynamic Wright, Baresi et al., PiLaR) only 
focus on specifications, but not on the mechanisms that support this 
dynamism. As a consequence of this, formal ADLs do not provide primitives 
to allow the architect define how the old state should be transferred to new 
versions, or how an element should be stopped. On the other hand, 
technological approaches (e.g. JDrums, PROSE, Draco, Simplex) have focused 
on the feasibility of dynamic evolution mechanisms, but have omitted the 
support for proactive change behaviour, required to build self-managed 
systems. Advanced approaches, such as self-adaptive and decentralized ones, 
have focused on both the specification of dynamic changes and the 
mechanisms required for building self-managed systems. However, the support 
that is provided is very limited: consistency management is often incomplete, 
and dynamic type evolution is not addressed. In fact, any approach provides a 
complete support for both dynamic reconfiguration and dynamic type 
evolution. Only a few approaches provide a limited support (e.g. Draco, Julia, 
OpenCOM): at a low abstraction level, in a reactive way, and without the 
propagation of changes to all the instances.  

As a result, it is necessary to provide a model that does not only describe both 
dynamic reconfiguration and type evolution at a high level of abstraction, but 
that also integrates the supporting mechanisms for dynamic change at the 
architectural level. This will enable the interaction of architectural elements 
with such mechanisms (e.g. a component may use reconfiguration services to 
evolve another component type), thus increasing the level of flexibility and 
expressiveness.  

This model should include: 

 A formal support for its specifications, to ease the automatisation of 
some tasks, such as the generation of code, the analysis and 
verification, etc.  

 A high degree of expressiveness for specifying dynamic changes: 
different ways for initiating changes (i.e. proactively and reactively), 
introspection features, and a wide range of evolution operations 
available. 



4.4 CONCLUSIONS 

131 

 An appropriate infrastructure to address different levels of dynamism: 
dynamic reconfiguration and type evolution. 

 A separation of the evolution concerns, to increase their 
maintainability. 

 A decentralized management of evolutions, to increase the scalability 
of evolvable systems. 

 Mechanisms to guarantee the consistency of the architecture before 
and after dynamic changes. 

This thesis presents a framework that has been defined to fulfil these needs. 
This framework is defined in PRISMA, a formal aspect-oriented ADL that has 
been extended with a set of primitives and mechanisms to support both the 
specification and management of dynamic changes at a high level of 
abstraction. This framework has been called Dynamic Prisma, and is presented 
as an important step towards developing highly flexible evolvable systems. 





  

133 

Part III: Dynamic PRISMA 

 

 

 

 

PART III 

DYNAMIC PRISMA 

 

 

 

 

 

 

 

 

 

 
  



 

134 

 

 

 

 

 

 

 

 

Once the state of the art relative to dynamic software evolution has been 
introduced, this part of the thesis describes a framework to build architecture-
based, dynamically evolvable, software systems. This framework has been 
called Dynamic PRISMA, because it has been applied on the PRISMA ADL, 
extending it to include dynamic evolution support.  

The goal of this framework is to combine the two degrees of dynamism, i.e. 
Dynamic Reconfiguration and Dynamic Type Evolution, so that architecture-
based systems can use both simultaneously. In some cases, a software system 
may need to reconfigure its structure to adapt to a concrete situation. In other 
cases, this system may need to change its architectural types at runtime, to 
correct errors or to add new behaviours. This dynamism is provided by 
following the principles from Autonomic Computing through asynchronous 
reflective mechanisms.  

This part is structured in four chapters. First, Chapter 5 presents a case study 
from the domain of autonomous robotics which will be used to illustrate the 
concepts of Dynamic PRISMA. Next, Chapter 6 describes how dynamic 
reconfiguration is supported, illustrating how a composite instance can 
reconfigure its structure at runtime, either proactively or reactively. Then, 
Chapter 7 describes how dynamic type evolution is supported, illustrating 
how an architectural type can be modified at runtime and its instantiations 
automatically transformed to reflect the changes, but in an asynchronous way. 
Finally, Chapter 8 describes how the evolution semantics have been modelled 
by means of graph transformations. 



  

135 

Chapter 5. Case Study: Agrobot 

 

CHAPTER V 

CASE STUDY: AGROBOT 
 

he purpose of this chapter is to provide an introduction to the case 
study that has been chosen to illustrate the Dynamic PRISMA 
approach. In addition, this chapter presents how dynamic evolution 

and reconfiguration can advantage the development of autonomous robotic 
systems, an area which could potentially benefit from the results of this thesis. 

This chapter is organized as follows. First, section 5.1 introduces the field of 
agricultural robotics. Second, section 5.2 describes the specific requirements 
of robotic software architectures. Next, section 5.3 presents how agricultural 
robotics could advantage from dynamic evolution and reconfiguration. 
Section 5.4 presents Agrobot, the case study that is used to illustrate this 
work. Next section 5.5 presents the specific dynamic reconfiguration and 
evolution requirements of the Agrobot. Finally, section 5.6 presents the 
conclusions of this chapter. 

5.1 Introduction: Agricultural Robotics 

The agriculture is an outstanding sector in the Spanish economy. The 
mechanisation of some agricultural processes (e.g. seeding, weeding, 
harvesting), which are performed by large machines, has reduced considerably 
both the high labour and production costs. However, these machines 
generally are heavy weighted and big sized, which entail several disadvantages. 
First, the surroundings can be damaged due to the amount of space required 
to operate these large machines and to the soil compaction produced by their 
heavy weight. Second, the consumption of energy/combustible is high: both 
to move these large machines across the field and to transport them to the 
field. Third, they cannot be used in small fields (which are characteristic of 
Eastern Spain regions such as Valencia and Murcia): the narrow approach 

T 



CHAPTER 5. CASE STUDY: AGROBOT 

136 

roads and borders of these small fields make very costly the transportation and 
use of large machines.  

A friendly environmental solution, capable to operate in small fields, is the 
use of small agricultural robots (Blackmore et al., 2004) (Blackmore et al., 
2006) (Pedersen et al., 2006). These agricultural robots are characterised by 
their small size and light weight, and by their ability to perform (some) 
autonomous tasks. A small size provides the robot with more manoeuvrability: 
(i) the robot can operate in smaller environments, such as small farms with 
narrow crop rows; and (ii) the robot can work at closest distances, looking 
after the plants more precisely. In addition, a small size (and a light weight) 
does not only help to reduce the manipulation and transport costs, but it also 
decreases the amount of energy/combustible the robot requires to work, thus 
providing the robot more operative autonomy.  

A certain degree of autonomy makes the robot more productive and useful, 
since it does not require continuous human guidance to perform its tasks. 
The operator just introduces the robot in the target field, configures the tasks 
that the robot (or robots) must perform, and leaves the robot working. The 
robot will perform its tasks autonomously (i.e. without requiring human 
intervention) over long periods of time, until certain events occur: i.e. the 
tasks have been finished, detection of a particular disease, run out of 
resources, etc. Thus, a unique operator can manage several robots to take care 
of a big field or several smaller ones in parallel.  

Figure 5.1 shows two designs of agricultural robots21. The Scamp scout (see 
Figure 5.1-(a)) is a concept vehicle for non contact sensing of growing crops. 
Valtra RoboTrac (see Figure 5.1-(b)) is a semi-autonomous tractor to perform 
pre-programmed tasks (such as tilling, plowing, disking, planting, etc.) that 
does not require human intervention. Note the small size of the robots with 
respect to current agricultural machines, which allows higher planting density 
and minimizes crop damage.  

Figure 5.2 shows two real prototypes of agricultural robots. The prototype 
ACW (see Figure 5.2-(a)) is an autonomous Christmas tree weeder, which only 
cuts those weeds that are in competition with the trees and allows the non-
competitive plants to improve biodiversity within the field. The prototype 
SAVAGE (see Figure 5.2-(b)) is a low cost, fully autonomous and highly 
flexible robotic platform specifically designed to perform agricultural tasks. It 
is based on a modular design to allow performing different agricultural tasks: 
the different equipment required can be accommodated easily over the base 
structure. 

                                                      
21 http://www.unibots.com/Agricultural_Robot_Designs.htm 

http://www.unibots.com/Agricultural_Robot_Designs.htm


5.2 ROBOTIC SOFTWARE ARCHITECTURES 

137 

 

  

(a) Scamp scout22 (b) Valtra RoboTrac23 

Figure 5.1. Agricultural robot designs 

  

(a) ACW24 (b) SAVAGE25 

Figure 5.2. Agricultural robot prototypes 

5.2 Robotic Software Architectures 

Given the nature of the Robotics domain, there are two qualities of special 
interest for the development of robotic software architectures: dependability 
and adaptability.  

                                                      
22 Designed 2007 by Simon Blackmore and Massey Ferguson / AGCO  
23 Designed 2007 by Hannes Seeberg  
24 http://www.unibots.com/ACW.htm  
25 http://users.forthnet.gr/ath/startrek/   

http://www.unibots.com/ACW.htm
http://users.forthnet.gr/ath/startrek/
http://www.unibots.com/Pictures/95062_vRG3icPtbuuers59WgWTtj7jF.jpg
http://www.unibots.com/Pictures/95062_vRG3icPtbuuers59WgWTtj7jF.jpg
http://www.unibots.com/Pictures/95062_vRG3icPtbuuers59WgWTtj7jF.jpg
http://www.unibots.com/Pictures/95062_vRG3icPtbuuers59WgWTtj7jF.jpg


CHAPTER 5. CASE STUDY: AGROBOT 

138 

Robotic systems are integrations of a large number of sensor devices prone to 
malfunctions, such as wireless radio communications and vision sensors, 
complicating the need to coherently integrate the devices. The software 
systems operating robotic platforms must be capable of continued operation 
in the face of diminished hardware capacity and the loss of essential functions. 
Moreover, the information provided by hardware devices such as sensors may 
also exhibit a high degree of unreliability and intermittent spikes of erroneous 
sensor readings, necessitating the capacity to not only continue operating but 
also to compensate seamlessly for such errors. Dependability is an important 
feature in the design of autonomous robots, which must be able to deal with 
(partial) failures and continue working with reduced functionalities.  

Another important goal is the need to operate within environments that can 
be dynamic and unpredictable. Developing a mobile robot that can traverse 
unknown terrain through varying weather conditions and with potentially 
moving obstacles, for example, greatly increases the difficulty of designing its 
software control systems in a way that can account for and continue operating 
under conditions not fully predicted during the system‟s design and 
development. Adaptability is an important feature to take into account in the 
design and development of the robots of the future, to enable them to survive 
in constantly changing environments.  

However, dependability and adaptability are generally conflicting attributes: a 
robust system is specifically designed to tolerate predefined faults or 
situations, but is generally poorly adaptable.  

5.3 Dynamic Evolution in Robotic Software 
Architectures 

Dynamic Software Architectures can be used to support the adaptability and 
dependability attributes that a robotic system requires. A dynamic software 
architecture is one in which its elements (i.e. components and connectors) can 
be reconfigured or changed at runtime, without the need to shut the system 
down. These (dynamic) changes can be externally-driven (i.e. by the architect), 
or autonomously-driven (i.e. by the system itself) according to a set of 
(internal) high-level goals (Oreizy et al., 1999). Thus, a system is provided with 
enough flexibility to react and adapt, at runtime, to different events (predicted 
and unpredicted ones) from the environment. Dynamic changes may be 
related to the structure of a system or to its behaviour.  

Dynamic reconfiguration (Magee & Kramer, 1996) is generally referred as the 
change that entails the modification of the architecture/structure of a system. 



5.4 CASE STUDY: AGROBOT,  
AN AUTONOMOUS ROBOT FOR PLAGUE CONTROL 

139 

In robotic architectures, dynamic reconfiguration can be used to implement 
context awareness behaviours (i.e. adaptability behaviours): adjust current 
strategies to external conditions (e.g. weather conditions, unavailability of 
resources, blocked paths ...) or to internal conditions (e.g. low level of energy). 
It can also be used to implement fault-tolerance behaviours (e.g. removal or 
replacement of failed components, optimization in case of reduced 
functionality ...).  

Dynamic type evolution or dynamic updating (Segal & Frieder, 1993) is generally 
referred as a change that entails the modification of the behaviour of the 
components. In robotic architectures, dynamic type evolution may be useful 
to support unforeseen changes, like the addition of new behaviours at 
runtime (e.g. addition of new tools and capabilities to a robot), or to update 
malfunctioning components.  

Dynamic reconfiguration and type evolution are two important features to 
take into account in the design and development of the robots of the future, 
to enable them to survive in constantly changing environments. Currently, 
these dynamic changes are provided at low-abstraction levels, i.e. at the code 
level (attributes, methods and code modules). This is poorly reusable and 
maintainable: it relies on current implementation structures and its 
mechanisms are highly scattered around the software architecture. This is not 
acceptable: the increasing demand of service robots (IFR, 2009) is pressuring 
engineers to reduce their development cost and time-to-market, as well as 
requiring better adaptability, dependability and overall quality. Better high-
level designs and developments are needed (Schlegel et al., 2009).  

The approach presented in this thesis copes with these needs. Dynamic 
reconfiguration and type evolution are provided: (i) as independent concerns, 
which facilitates its reuse and maintenance; and (ii) at a high abstraction level, 
i.e. the architecture level: changes are performed on higher level artefacts, 
such as components and connections, instead of at the code level. 

5.4 Case Study: Agrobot,  
An Autonomous Robot for Plague control 

To illustrate the approach, in this section it is presented the software 
architecture of Agrobot, an autonomous agricultural robot for plague control. 
Its objective is to patrol -at periodical intervals- a small field or delimited area, 
looking for pests or disease attacks over a set of growing crops. When a threat 
is detected, a pesticide is applied to the field, as a first counter-attack measure, 



CHAPTER 5. CASE STUDY: AGROBOT 

140 

and a real-time alarm is sent to the manager, to take further specialized 
actions.  

5.4.1 Main Architecture 

The Agrobot architecture is defined hierarchically as a system of systems, that 
is, a composition of composite components. The top level, shown in Figure 
5.3, describes the set of composites the robot is composed of and their 
communication channels (see Figure 5.4 for more details about the notation 
used). Each composite component is depicted as a component, which 
provides and requires a set of services through its ports. The interaction 
among composites is coordinated by different connectors (represented as blue 
small components). 

 

Figure 5.3. Software architecture of the Agrobot 

 

Figure 5.4. Notation used 

More specifically, these composites are instances: local deployments of 
component types. Component types are reusable artefacts which define the 
structure and behaviour of a software artefact. Component instances are the 
execution of a type in a specific environment (i.e. the Agrobot architecture), 
which are conveniently configured or parameterized. Each component 



5.4 CASE STUDY: AGROBOT,  
AN AUTONOMOUS ROBOT FOR PLAGUE CONTROL 

141 

instance not only depicts the instance name (e.g. LeftCamera, see Figure 5.3, 
bottom-left), but also the name of its component type (e.g. VisionSystem).  

The Agrobot is provided with a set of high-level behaviours or tasks: analyse a 
growing crop, apply a pesticide, send an alarm, move to the next crop, 
recharge energy, or sleep. The decision of which specific behaviour should be 
carried out is performed by a composite called AgrobotPlanner (see Figure 5.3). 
This composite coordinates and plans the set of actions that must be done to 
fulfil the selected behaviour: image capturing, pattern analysis, movement, 
sensing, communication, pesticide activation, element disconnection, etc. 
These actions are provided by the different composites of the Agrobot 
architecture, which are parameterized or configured to carry out each specific 
action.  

Next, each one of the composite components of the Agrobot architecture 
shown in Figure 5.3 is briefly described. Vision is performed by the 
RightCamera and LeftCamera composites. These components capture and pre-
filter real-time images from the environment. These images may be used by 
other components to look for crop diseases (i.e. the PlagueAnalyzer 
component) or to guide the movement (i.e. the MovementController 
component).  Sensing is provided by the Humidity-S1 component, which 
manipulates a set of sensors to obtain the humidity of the environment and 
the soil. This allows the PlagueAnalyzer component to evaluate the health of 
the crop being observed. Energy management is provided by the 
SolarEnergyController component, which recharges the batteries and controls its 
consumption. When the battery levels are low and the current position does 
not allow recharging the batteries, this component alerts the AgrobotPlanner 
component to look for a better position (i.e. with more light). Movement 
planning and control is provided by the MovementController component. It 
takes the images captured from its environment (by the RightCamera and 
LeftCamera components) to generate the sequence of movements to go 
towards the next target, avoiding obstacles. Each movement is carried out by 
the motor actuators: the LeftMotor and RightMotor components, which control 
left and right wheels respectively. Plague analysis and reaction is performed by 
the PlagueAnalyzer component. It contains information about the plagues and 
diseases to look for in the crops, as well as the actions to perform for each 
threat detected. This component analyzes the images captured by the vision 
components (i.e. RightCamera and LeftCamera) looking for potential threats. 
When a threat is detected, first an alarm is sent to the manager (through the 
WirelessController component). Next, depending on the degree of the threat, 
the Agrobot applies a small quantity of pesticides (managed by the Insecticide 



CHAPTER 5. CASE STUDY: AGROBOT 

142 

and Fungicide components) directly to the damaged area (thus avoiding the 
overuse of pesticides). 

Next, among the different composites of the Agrobot, we will focus on details 
of the Vision subsystem. The goal is to provide an idea of how the different 
elements have been specified by means of the PRISMA ADL. For this reason, 
only an artefact of each kind of PRISMA element is described: a composite 
component type (i.e. a System) and its instantiation (i.e. a Configuration), a 
simple component type (i.e. a Component), and an Aspect. Further details 
about the other elements of the VisionSystem are provided in Appendix A, 
section A.1 (see page 381). This will permit to illustrate later how the different 
kinds of PRISMA elements (i.e. Systems, Configurations, Components and 
Aspects) can be dynamically evolved. 

5.4.2 Composite Components: VisionSystem 

Most of the components of the Agrobot architecture are composite 
components: each one is composed of other components and connectors. The 
structure and behaviour of composite components are specified by means of 
PRISMA Systems (see section 2.4, the PRISMA model). A PRISMA System 
defines a generic structure, or pattern, which can be reused in any software 
architecture where necessary. This pattern specifies:  

1. What are the architectural types (components and connectors) that 
are valid in the System instances,  

2. How many instances of these types can be created,  

3. How these types can be connected to each other, and  

4. Which are the provided and required behaviours.  

For instance, Figure 5.5 depicts the pattern described by the VisionSystem 
architectural type: (i) it is composed of two component types, 
VideoCaptureCard and ImageProcCard, and two connectors, VCC-Conn and IPC-
Conn; (ii) these types are singleton, i.e. only one instance can be created of 
each one; (iii) these types mainly implement a pipe-and-filter style (Taylor et 
al., 2009); and (iv) the results of internal processing are published through a 
port called ImgOutputPort. 

The VideoCaptureCard component type encapsulates a hardware device which 
captures images from the environment at a constant frame rate. The 
ImageProcCard component type encapsulates another hardware device which 
pre-processes the images captured. This component provides specific 
hardware-based video processing algorithms, which are optimized for the 
robot needs. The VCC-Conn connector forwards the captured images of the 
VideoCaptureCard component to the ImageProcCard component. The IPC-Conn 



5.4 CASE STUDY: AGROBOT,  
AN AUTONOMOUS ROBOT FOR PLAGUE CONTROL 

143 

connector forwards the processed images to the ImgOutputPort port, which are 
then made available to other subsystems of the Agrobot.  

 

Figure 5.5. VisionSystem architectural type 

The PRISMA specification of the VisionSystem type is provided in Figure 5.6. 
This specification defines a System called VisionSystem and provides additional 
details that are omitted from the graphical depiction. For instance: the name 
of the attachments and their cardinalities, the maximum and minimum 
cardinalities of architectural elements, or the constructor and destructor of 
the type. 

 
System VisionSystem 

 

 Ports 

  ImgOutputPort : I_ImageProcessingServices; 

 End_Ports; 

 

 Import Architectural Elements  

  VideoCaptureCard(1,1), ImageProcCard(1,1), VCC-Conn(1,1),  

  IPC-Conn(1,1); 

 

 Attachments 

  Att_VCC_VCCConn: VideoCaptureCard.VideoOut(1,1) <-->  

    VCC-Conn.VideoIn(1,1); 

  Att_VCCConn_IPC: VCC-Conn.VideoOut(1,1) <--> 

    ImageProcCard.VideoIn(1,1); 

  Att_IPC_IPCConn: ImageProcCard.ImageOut(1,1) <--> 

    IPC-Conn.ImageIn(1,1); 

 End_Attachments; 

 

 Bindings 

  Bin_IPCConn: ImgOutputPort(1,1) <--> IPC-Conn.ImageOut(1,1); 

 End_Bindings; 

 

 /* Constructor definition */ 

 new ( frameRate: integer; cameraPosition: string) 

 { 

  new VideoCaptureCard(frameRate); 

  new ImageProcCard(cameraPosition); 

  new VCC-Conn(); 

  new IPC-Conn(); 



CHAPTER 5. CASE STUDY: AGROBOT 

144 

 

  new Att_VCC_VCCConn(input VideoCaptureCardID: string, 

    input VCC-ConnID: string); 

  new Att_VCCConn_IPC(input ImageProcCardID: string, 

    input VCC-ConnID: string); 

  new Att_IPC_IPCConn(input ImageProcCardID: string, 

    input IPC-ConnID: string); 

 

  new Bin_IPCConn(input ImageProcCardID: string); 

   } 

  

 /* Destructor definition */ 

   destroy() 

 { 

  destroy VideoCaptureCard(frameRate); 

  destroy ImageProcCard(); 

  destroy VCC-Conn(); 

  destroy IPC-Conn(); 

       

   destroy Att_VCC_VCCConn(); 

  destroy Att_VCCConn_IPC(); 

  destroy Att_IPC_IPCConn(); 

 

  destroy Bin_IPCConn(); 

   } 

 

End_System VisionSystem; 

Figure 5.6. PRISMA specification of the VisionSystem type 

In PRISMA, the instantiation of a System is defined at the configuration-level, 
and is called Configuration (see section 2.4). Thus, the PRISMA specification 
for instantiating and configuring these instances is provided in Figure 5.7. 
This specification defines two Configurations called RightCamera and 
LeftCamera; it instantiates each of the architectural types defined in the System 
type and connects them appropriately. The configurations RightCamera and 
LeftCamera mainly differ in that they are parameterized to use a right camera or 
a left camera, respectively. That is, they differ in that they have a different 
state and are differently connected. 

 
Architectural_Model_Configuration RightCamera = 

 new VisionSystem { 

  Right-VCapt = new VideoCaptureCard(30); 

  ImgProc-1 = new ImageProcCard(“right”); 

  VCC-Conn1 = new VCC-Conn(); 

  IPC-Conn1 = new IPC-Conn(); 

 

  att1 = new Att_VCC_VCCConn(Right-VCapt, VCC-Conn1); 

  att2 = new Att_VCCConn_IPC(ImgProc-1, VCC-Conn1); 

  att3 = new Att_IPC_IPCConn(ImgProc-1, IPC-Conn1); 

 

  bin1 = new Bin_IPCConn(ImgProc-1); 

 } 

 



5.4 CASE STUDY: AGROBOT,  
AN AUTONOMOUS ROBOT FOR PLAGUE CONTROL 

145 

Architectural_Model_Configuration LeftCamera = 

 new VisionSystem { 

  Left-VCapt = new VideoCaptureCard(30); 

  ImgProc-2 = new ImageProcCard(“left”); 

  VCC-Conn2 = new VCC-Conn(); 

  IPC-Conn2 = new IPC-Conn(); 

 

  att1 = new Att_VCC_VCCConn(Left-VCapt, VCC-Conn2); 

  att2 = new Att_VCCConn_IPC(ImgProc-2, VCC-Conn2); 

  att3 = new Att_IPC_IPCConn(ImgProc-2, IPC-Conn2); 

 

  bin1 = new Bin_IPCConn(ImgProc-2); 

 } 

Figure 5.7. PRISMA specification of RightCamera and LeftCamera instances 

For instance, Figure 5.8 depicts graphically the internal structure (i.e. the 
architecture) of the RightCamera composite component instance. 

 

Figure 5.8. White-box view of the RightCamera component instance 

5.4.3 Simple Components: ImageProcCard 

As an example of how simple components are defined in PRISMA (and which 
allows us later to illustrate how these can be evolved), this section shows the 
specification of the ImageProcCard component. This component encapsulates a 
hardware device for the pre-processing of captured images. The PRISMA 
specification of this component is provided in Figure 5.9.  

ImageProcCard is a PRISMA component that is invasively composed (see section 
2.4.3, page 51) of two aspects: an Integration aspect, ImageProcCardController, 
and a Presentation aspect, ImageProcCardGUI. The Integration aspect is a kind 
of aspect which allows the integration of external libraries or components 
(such as COTS, i.e. components off the shelf) into PRISMA specifications 
(Pérez et al., 2008). This aspect provides services which control the image 
processing hardware device.  

On the other hand, the Presentation aspect is a kind of aspect which captures 
user interface concerns. This aspect provides a visual interface used mainly for 



CHAPTER 5. CASE STUDY: AGROBOT 

146 

debugging purposes: it shows the input and output images, and some statistic 
results. 

The ImageProcCard component provides two ports: VideoIn, which receives the 
captured images, and ImageOut, which outputs the processed images. These 
ports are bound to the VIDEOCARD and IMAGEANALYZER roles of the 
ImageProcCardController (see played_roles, ports section, Figure 5.9). This 
means that the services of these ports are actually provided/required by this 
aspect.  

 
Component ImageProcCard 

 

   Integration Aspect import ImageProcCardController; 

   Presentation Aspect import ImageProcCardGUI; 

    

 Ports 

  VideoIn  : I_VideoServices, 

   Played_Role ImageProcCardController.VIDEOCARD; 

  ImageOut : I_ImageProcessingServices, 

   Played_Role ImageProcCardController.IMAGEANALYZER; 

   End_Ports    

    

 Weavings 

  ImageProcCardGUI.showImage(image) 

   after 

  ImageProcCardController.newProcessedImage(image);  

   End_Weavings  

 

   new(cameraPosition: string) { 

      ImageProcCardController.begin(cameraPosition); 

  ImageProcCardGUI.begin(); 

   }  

 

   destroy() { 

  ImageProcCardGUI.end(); 

      ImageProcCardController.end(); 

   } 

 

End_Component ImageProcCard; 

Figure 5.9. PRISMA specification of the ImageProcCard component 

However, the behaviour of PRISMA components is not provided by a single 
aspect, but by the weaving (or gluing) of several aspects. In this case, the 
behaviour of ImageProcCard results from the weaving of the integration and 
presentation aspects (see weavings section in Figure 5.9): each time a new 
image is processed (i.e. the service newProcessedImage() is executed), the service 
showImage is executed afterwards. 

Finally, the component specification also describes how the component is 
instantiated and destroyed (see the new and destroy services). 



5.4 CASE STUDY: AGROBOT,  
AN AUTONOMOUS ROBOT FOR PLAGUE CONTROL 

147 

5.4.4 Aspects: ImageProcSwController 

Finally, in order to illustrate how the behaviour and state of aspects is defined, 
the ImageProcSwController aspect is shown.  

ImageProcSwController is a Functional Aspect which provides a software-based 
version of the image processing algorithms. This aspect is provided as an 
alternative implementation in case the hardware device for processing images 
fails.  

The internal state of the ImageProcSwController aspect consists of two attributes 
(see the attributes section, Figure 5.10): the image that has been captured, 
CapturedImage, and the last image that has been processed, LastProcessedImage. 
Both attributes are variable, i.e. their value can be changed at runtime. Image 
is a user-defined data type which mainly has two values (see section A.1.2 in 
page 382): the ID of the image and a stream of bytes with the image contents.  

The services that the ImageProcSwController aspect provides and requires are 
defined in the Services section. There are four kinds of services:  

1. Initialization (begin) and finalization (end) services. These services 
define how the aspect is initialized or finalized, respectively. In this 
example, the begin service initializes the constant attribute 
spatialPosition. 

2. Input services (defined with the “in” keyword), which define provided 
behaviour. The newCapturedImage service is invoked to process a new 
image. 

3. Output services (defined with the “out” keyword), which define 
required behaviour. The newProcessedImage service is invoked by the 
aspect when a new processed image is available (i.e. ready to be 
analysed by other subsystems of the robot). 

4. Private services, which define internal behaviour. The processImage 
performs the processing of an image. 

The behaviour of each service is defined in a subsection called valuations, 
which uses a semantics based on modal logic of actions (Stirling, 1992).  

 
Functional Aspect ImageProcSwController 

 using I_VideoServices, I_ImageProcessingServices 

 

   Attributes 

  Constant 

   spatialPosition : string; 

      Variable 

         CapturedImage : Image; 

         LastProcessedImage : Image; 



CHAPTER 5. CASE STUDY: AGROBOT 

148 

 

   Services     

  // Initialization service 

      begin(input cameraPosition: string); 

   Valuations 

    (cameraPosition==“right”) or (cameraPosition==“left”) 

     [begin(cameraPosition)] 

    spatialPosition = cameraPosition; 

 

  // New captured image notification 

      in newCapturedImage(input capturedImage: Image); 

   Valuations 

            [newCapturedImage(capturedImage)] 

    CapturedImage = capturedImage; 

   

  // Notifies about the output of a new processed image 

      out newProcessedImage(input processedImage : Image);           

   Valuations 

            [newProcessedImage(processedImage)] 

    processedImage = LastProcessedImage; 

 

  // Image processing service 

      processImage(); 

         Valuations 

            [processImage()] 

    LastProcessedImage = ImageProcessing(CapturedImage); 

     

  // Finalization service 

      end(); 

  

   PlayedRoles  

  VIDEOCARD for I_VideoServices ::= 

   newCapturedImage?(capturedImage); 

  IMAGEANALYZER for I_ImageProcessingServices ::=  

   newProcessedImage!(processedImage); 

 

   Protocol 

  IMAGEPROCESSINGCARDCONTROLLER ::=  begin():1 --> CAPTURE;     

  CAPTURE ::= end():10  + 

   ( VIDEOCARD_newCapturedImage?(capturedImage):10 -->  

    processImage():10 -->  

    IMAGEANALYZER_newProcessedImage!(processedImage)):10 

   ) --> CAPTURE; 

    

End Functional Aspect ImageProcSwController; 

Figure 5.10. PRISMA specification of the ImagProcSwController aspect 

The Played_Roles section defines, using a π-calculus semantics (Milner, 1993), 
the services that are required and provided through each played_role. In 
PRISMA, a played_role defines a point of interaction, or a hook, of the aspect. 
This hook is later bound to a port when the aspect is imported by a 
component. In this way, aspects are defined independently of components, 
and are able to publish and constrain their behaviour through component 
ports. 



5.5 DYNAMIC EVOLUTION REQUIREMENTS 
OF THE AGROBOT 

149 

Finally the protocols section, using a π-calculus semantics extended with 
priorities (Perez, 2006), defines the different states of the aspect and how the 
different services are orchestrated. In this example, the aspect has two main 
states:  

- IMAGEPROCESSINGCARDCONTROLLER state, i.e. the initial state. 

- CAPTURE state, on which images are processed this way: an image is 
received through the VIDEOCARD played_role, it is processed, and 
the result is sent through the IMAGEANALYSIS played_role.  

Note how for each service invocation (postfixed with the symbol “!”) or 
request (postfixed with the symbol “?”), its execution priority and the new 
state is described. 

5.5 Dynamic Evolution Requirements 
of the Agrobot 

The Agrobot system requires dynamic reconfiguration and evolution features 
to support functional and non-functional requirements. Two examples of 
functional and non-functional requirements that take advantage from 
dynamic reconfiguration support are energy-management and fault-tolerance, 
respectively. 

On the one hand, energy management is a functional requirement that 
optimizes the energy usage of the robot. When energy levels are low, the 
architecture should be automatically reorganised to disable or remove those 
components that are non-critical (e.g. humidity sensors, pesticide actuators, 
plague analysis, etc.). Only those components concerned with movement 
planning and energy management should be kept active, in order to reach a 
recharging location and to save as much energy as possible. And the removal 
of non-critical components must be done safely, to avoid leaving the system in 
an undesirable state: if a plague analysis was being performed, this analysis 
must be stopped in a way that after the reactivation it continues in the same 
point it was stopped (i.e. in the same crop). This is supported by means of 
dynamic reconfiguration.  

On the other hand, fault-tolerance is a non-functional requirement that 
provides reliability to the system: in case any component fails, the robot must 
be aware of it and react accordingly. For instance, if one of the cameras is 
malfunctioning (e.g. RightCamera), it should be excluded from image analysis; 
then, only the other spare camera (e.g. LeftCamera) should be used. And, if 



CHAPTER 5. CASE STUDY: AGROBOT 

150 

alternative components are available, the robot must be able to dynamically 
replace the malfunctioning component by an alternative one. 

Next, to illustrate and evaluate the approach presented in this thesis, two 
scenarios are presented: one that uses dynamic reconfiguration (see section 
5.5.1) and another that uses dynamic type evolution (see section 5.5.2). 

5.5.1 Dynamic reconfiguration scenario:  
VisionSystem fault-tolerance support  

The artificial vision system plays an important role for the autonomous 
execution of tasks, such collision detection or plague detection. For this 
reason, this subsystem is one of the critical elements of the Agrobot: if it does 
not work properly, the robot will not be able to perform its tasks or even 
survive (e.g. if energy is very low, then it could not locate a recharging 
location). Therefore, a certain degree of fault-tolerance must be supported. 

Fault-tolerance support through Dynamic Reconfiguration 

There are several design strategies and architectural patterns for supporting 
fault tolerance (Heimerdinger & Weinstock, 1992). These strategies generally 
rely on the use of redundancy: each critical element of the system has several 
replicas concurrently executing in the system. Thus, the failure of one of these 
critical elements is masked by the other running replicas, being the system able 
to continue working transparently. The advantage of using this kind of 
redundancy is that recovering time is immediate, since the different replicas 
are running and have the same state that the faulty element. However, this 
approach has several disadvantages:  

- Synchronization points, where the results of the different replicas are 
compared or merged, are difficult to define and implement; 

- Since each replica is concurrently running, this increases the usage of 
system resources and costs; 

- System complexity increases proportionally to the number of replicas, 
due to the number of messages each replica produces; 

- It is a static approach: it cannot react to runtime changes of the 
system. 

An alternative to (online) redundancy for supporting fault-tolerance is the use 
of dynamic reconfiguration (Yurcik & Doss, 2001). Dynamic reconfiguration 
provides a software system with flexibility to change its configuration and/or 
replace its components at runtime. Thus, in case of a failure, the system can 
reconfigure its elements at runtime to use a different configuration (i.e. using 



5.5 DYNAMIC EVOLUTION REQUIREMENTS 
OF THE AGROBOT 

151 

different alternative elements) or reach a safe state. This does not require that 
the alternative elements or configurations are executing: they may be loaded 
dynamically on demand.  

Thus, the usage of dynamic reconfiguration in the design of fault-tolerance 
systems would avoid not only the complexity of keeping several redundant 
components operative (since synchronization points are not required), but 
also its related costs (since alternative elements can be dynamically loaded at 
runtime). In addition, dynamic reconfiguration is dynamic itself: it can be 
used to react at runtime to new, non-predicted situations. 

Fault-tolerance in the VisionSystem type 

Dynamic reconfiguration is used in the VisionSystem elements (i.e. the 
RightCamera and LeftCamera components) to change their internal 
architecture when a fault is detected in one of its (internal) components. Fault 
detection is performed by a watchdog component, VisionWatchdog, which 
periodically checks if images are being captured and processed correctly. In 
case misbehaviour is detected, this component sends an event (i.e. raises an 
exception) to notify a failure. For instance, if the image processing component 
(ImageProcCard) does not correctly process images or has a negative 
performance, then the VisionWatchdog component sends the following event:  

 

faultyOutput!(out `ImageProcCard`) 

A similar event is raised if the VideoCaptureCard component does not provide 
images or are provided with a very low quality (e.g. almost black): 

 

faultyOutput!(out `VideoCaptureCard`) 

The events triggered by the watchdog component should be captured by self-
management mechanisms providing dynamic reconfiguration, and react 
appropriately for each kind of event. There are two kinds of reactions that can 
be performed: a replacement by another element, or the disablement and 
isolation of the failing component in order to avoid error propagation. 

A failed component can be dynamically replaced if alternative components are 
available (either spare hardware devices that are initially switched off, or 
alternative software-based implementations that are initially unloaded). This is 
the case of the ImageProcessingCard component. In case a failure is detected, it 
must be removed (i.e. the hardware device is deactivated) and another, 
alternative, component must be used instead: a component called 
ImageProcSoftware. This component implements another (compatible) image 
processing algorithm, but with less performance than the removed one. The 
reason is that hardware-based algorithms are generally faster than software-



CHAPTER 5. CASE STUDY: AGROBOT 

152 

based algorithms. For this reason, to make up for performance, several 
instances of the ImageProcSoftware are created, so that the overall performance 
would be similar to the provided by the ImageProcCard component. 

If no alternative components are available, then the failure must be managed 
in order to avoid its propagation to the other elements of the system. This is 
the case of the VideoCaptureCard component. In case it fails, the entire 
VisionSystem instance must be disabled, since it cannot provide input data. 
Then, the other elements of the Agrobot must be aware of this and avoid its 
usage. Since the Agrobot is provided with two VisionSystem instances, 
RightCamera and LeftCamera, in case one of them fails, the other one must be 
used exclusively. This situation is masked by the connector that propagates the 
images from the cameras (see Figure 5.3).  

Then, the reconfiguration process should do the following upon receving a 
notification of the VisionWatchdog component: 

If the ImageProcCard instance is failing: 

1. This instance should be disabled and removed from the architecture. 
This implies that all its connections must be also removed. 

2. New instances of ImageProcSoftware should be created and attached to 
the elements that the failing ImageProcCard instance was attached. 

If the VideoCaptureCard instance is failing: 

1. Another event should be propagated to the outside, to notify about 
this situation: a VisionSystem instance cannot behave as expected, so 
the other elements must adapt to the new context. 

2. Internally, the VisionSystem instance should disable its elements and 
set a timer to periodically check if the failure is still present. The 
reason is that the failure may be temporal or recover after a self-
restarting process.  

3. Externally, the Agrobot should remove the attachment from the 
failing VisionSystem instance to the connector, and notify the 
connector about this. Thus, the connector will not interpolate two 
input images, but only one. 

It is important to take into account that the rest of elements that interact with 
a VisionSystem instance (e.g. PlagueAnalyzer or MovementController) must not be 
aware of the reconfiguration process that is performed internally. 

The architectural type of the VisionSystem, extended with the elements 
required for fault-tolerance described above, is depicted in Figure 5.11. Note 
how the pattern defined by the PRISMA architectural type allows us to 
describe alternative configurations: the cardinality of ImageProcSoftware (0..*) 



5.5 DYNAMIC EVOLUTION REQUIREMENTS 
OF THE AGROBOT 

153 

shows that it can be instantiated or not. In addition, this cardinality also 
shows that several instances of this component can be created. This is also 
shown by the cardinality of the allowed connections (depicted as „*‟): an 
instance of VCC-Conn can be attached to several instances of 
ImageProcSoftware. An example of an alternative configuration is depicted in 
Figure 5.12: it depicts the configuration of the LeftCamera component in case 
a failure in the ImageProcCard instance would be detected.  

Note also that the FaultyOutput port of the VisionWatchdog component 
remains disconnected: the reason is that this port is used to raise 
events/exceptions, which may be captured or not. In this case, these events are 
captured by the reconfiguration mechanisms, as it will be described in 
Chapter 6. For further details, the complete specification of the VisionSystem 
and its components (including the watchdog and alternative components) is 
provided in appendix A.1 (see page 381). 

 

Figure 5.11. VisionSystem type with fault-tolerance support 

 

Figure 5.12. Example of alternative configuration in case of failure 



CHAPTER 5. CASE STUDY: AGROBOT 

154 

Only two possible failures that may occur in the context of a VisionSystem 
instance have been described. However, the reader must take into account 
that there is a broad range of situations that must be also covered to provide 
an acceptable fault-tolerance degree, such as: the failure of connectors, the 
failure of the watchdog component itself, or even the failure of the 
reconfiguration mechanisms.  

5.5.2 Dynamic type evolution scenario:  
Changing the ImageProcSoftware component 

As shown in the previous section, dynamic reconfiguration can be used to 
provide a large complex system with self-management properties, such as for 
supporting fault-tolerance. However, self-management has some limitations to 
take into account: it can only reconfigure or adapt a system according to a 
range of foreseen situations and/or by using a previously available set of 
software components or types.  

What happens then if unforeseen changes are required, such as maintenance 
operations, the introduction of new features, or even the modification of the 
self-management subsystems? For instance, in the case of the Agrobot, it may 
require updates to correct bugs or the addition of new components to support 
new tools or behaviours. These kinds of changes concern the types26 that 
define a system, i.e. its building elements, which are outside the scope of 
dynamic reconfiguration. 

Convenience of Dynamic Type Evolution 

Changes concerning types (i.e. the specification of software artefacts) are 
generally performed offline: they are applied on the source code of the target 
system, and are installed after the rebooting of the target system. However, 
this solution is unfeasible for systems with high-availability requirements, 
which cannot stop their activity under any reason. Examples of such systems 
are those that are in charge of critical infrastructures (e.g. related to military 
resources, energy, health or transports), those required to operate 24 hours a 
day 7 days a week (e.g. banking systems, manufacturing industry systems), or 
those that are not reachable (e.g. autonomous robots in space explorations). In 
such systems, changes or maintenance operations must be performed at 
runtime, while the system keeps operative. It is in this context where dynamic 

                                                      
26 A type, in this context, is the specification of the structure and behaviour of a 
software artefact, together with its realization (i.e. the executable code). For more 
details, see section 7.2.1-“Definitions of Type, Instance and Architectural Type” in 
page 248. 



5.5 DYNAMIC EVOLUTION REQUIREMENTS 
OF THE AGROBOT 

155 

type evolution is very convenient, or even a necessity, to deal with the expected 
longevity of large and expensive systems.  

This is also the case for the Agrobot: it is an autonomous robot which must be 
fully operative, day and night. During the day it monitors weather conditions, 
supervises the growing crops looking for potential threats, or recharges itself. 
During the night, it processes the data collected during the day, keeps active 
surveillance looking for intruders (e.g. animals that are harmful for the crops), 
and continues monitoring the weather conditions. Some of these tasks are 
critical and cannot be interrupted under any reason. For instance, the energy 
management task is responsible for saving enough energy to perform the next 
recharge cycle; the weather monitoring task is responsible for keeping the 
robot safe from adverse conditions; and the surveillance task is responsible for 
reacting quickly to potential threats27.  

In case updates or new functionalities may be required, they should be applied 
in the Agrobot without stopping or rebooting it, because such an operation 
would disrupt the above described tasks. For instance, if the energy is low, a 
complete shutdown may consume the energy required for the next recharging 
cycle. Another example: during a rebooting process, the weather conditions 
may change so quickly that the safety of the robot or the monitored crops may 
be seriously exposed to danger. For these reasons, to cope with the 
maintenance and/or extensibility needs of the Agrobot whereas keeping it 
operative, dynamic type evolution has been introduced.  

Dynamic type evolution is used in the following two scenarios: software 
updating, or hardware-software updating. Software updating is performed to 
remove bugs from existing components or to introduce components with new 
functionalities. In this case, there is no direct user intervention: the Agrobot 
receives the updates through the Communication System (see the component 
WirelessController in Figure 5.3, page 140) and, by means of the dynamic type 
evolution mechanisms (which are described in Chapter 7), they are installed 
automatically whithout stopping the entire system.  

Hardware-software updating is performed to replace a hardware device by 
another or to add a new tool (e.g. new pesticides, new sensors, different 
motors, etc.). This is an operation which also needs to update the software 
architecture in order to be integrated with the other elements. In this case, the 

                                                      
27 Certain threats can be only addressed in their earlier states. Otherwise, the threat 
propagates quickly and it will not be able to be treated, thus causing the crop to be 
lost. In case one of such diseases is detected, the Agrobot must react quickly with the 
appropriate measures (i.e. the use of specialized pesticides, the removal of affected 
crops, or the sending of an alert to the farmer). 



CHAPTER 5. CASE STUDY: AGROBOT 

156 

only direct user intervention that is required is the plugging of the new 
hardware device in the Agrobot. Once the device is plugged in the Agrobot, it 
provides the Agrobot with the software updates required, which are installed 
in the same way as in the software updating case described above.  

In both cases, a software updating artefact is used: it contains the new type(s) 
to introduce in the system and the instructions to introduce this(these) type(s) 
into the running system seamlessly. In fact, as it will be described in Chapter 
7, these instructions are actually a set of dynamic evolution operations, which 
allows us to change the system at runtime without shutting it down and 
without user interaction. In this way, the users of the Agrobot (i.e. the 
farmers) are provided with remote maintenance support and extensibility, 
without disrupting the critical tasks of the robot. 

Dynamic updating in the VisionSystem type 

In order to later illustrate how our proposal supports dynamic type evolution, 
next a software updating scenario is described.  

The context of this scenario is after the delivery and deployment of the 
Agrobot to the final users (i.e. the farmers). In this scenario, the 
development/maintenance team has detected that a critical update is 
required: the image processing algorithms do not behave correctly in some 
situations (e.g. when the light levels are low). These algorithms are located in 
the ImageProcCard and ImageProcSoftware component types. The update must 
be propagated and installed transparently, without disrupting the operations 
that the robot is carrying on (i.e. at runtime), and without any direct user 
operation (i.e. remotely, in an automated way). Since the ImageProcCard 
component is a hardware element that cannot be remotely changed, the 
maintenance team has decided to update dynamically only the 
ImageProcSoftware type, which will be automatically instantiated in these 
situations where the old image processing algorithms are not appropriate (e.g. 
by means of dynamic reconfiguration processes) 

To update the image processing algorithm, an updating artefact should be 
sent to each Agrobot (through the CommunicationSystem), and perform the 
following actions: 

1. Autenticate itself as a valid element of the system and with 
permissions for changing the system, so that dynamic updating 
services are made available. Otherwise, any element could change 
(and corrupt) the entire system. 

2. Locate the target type that is going to be updated, and in which 
contexts it is being used (i.e. if it is part of other types). In this case, 



5.6 CONCLUSIONS 

157 

the image processing algorithms are defined in the architectural type 
ImageProcCard, which is imported by the VisionSystem composite type. 

3. Perform the updating of the type and its different instances (i.e. 
RightCamera and LeftCamera). In some cases, an updating may also 
require updating the interacting elements so that they use correctly 
the new behaviour. For instance, if the image data type is changed 
(i.e. the format used to encode images), this will also impact all the 
elements that manipulate these images. For simplicity reasons, we 
suppose that only a type needs to be updated. The updating of several 
types at runtime can be performed as a sequence of individual 
evolutions. 

4. Analyse that the results are the expected, or undo the changes and 
return to the initial state.  

It is important to note that the dynamic updating process will be able to be 
performed in parallel to other tasks, such as weather monitoring, energy 
management or surveillance. For instance, in the latter case the surveillance 
can be performed by one camera while the processing algorithms of the other 
are being updated, and so on. This is possible because in Dyanmic PRISMA, 
dynamic evolution is asynchronously performed (see section 7.3.4, page 266). 

5.6 Conclusions 

This chapter has introduced Agrobot, an autonomous agricultural robot for 
plague control. Agrobot is the case study that is used through the thesis to 
illustrate the main concepts of the approach.  

The use of a case study from the domain of autonomous robotics has been 
motivated by the fact that the development of autonomous robots requires to 
deal with dependability and adaptability. Autonomous robots are complex 
systems that should be capable to deal with ever changing situations, most of 
them unforeseen (e.g. unexpected failures, new conditions, etc.), and without 
the direct assistance of a human once it is operating. This chapter has 
presented the advantages that dynamic evolution and reconfiguration can 
provide to the development of autonomous robots: the possibility to 
autonomously change their structure and behaviour at runtime, while 
operating and without the direct human assistance. These advantages are 
illustrated by means of two possible usage scenarios: dynamic updating and 
fault-tolerance.  

In addition, this chapter has described the software architecture of the 
Agrobot, in terms of the PRISMA ADL, and the details of one of its 



CHAPTER 5. CASE STUDY: AGROBOT 

158 

subsystems, the vision system. This has provided an overview about how 
complex systems can be defined through PRISMA: the structure is specified by 
means of simple and composite architectural types, and the behaviour by 
means of aspects, weavings and ports.  

Next, the following chapters describe how the proposed framework, called 
Dynamic PRISMA, supports dynamic reconfiguration and evolution and how 
the Agrobot uses this mechanisms. 



 

159 

Chapter 6. Autonomic Reconfiguration 

 

CHAPTER VI 

AUTONOMIC 

RECONFIGURATION 

6.1 Introduction 

he increasing complexity of software systems is encouraging the 
development of self-managed software architectures, that is, systems 
capable of reconfiguring their structure at runtime to fulfil a set of 

goals (Kramer & Magee, 2007). Several approaches have dealt with different 
aspects of their development, but some issues remain open, such as the 
scalability and maintainability of the self-management subsystem (see section 
4.2.3, page 110).  

To deal with these issues, this chapter presents a reconfiguration management 
model which is characterised by: (i) providing each composite component 
with self-management properties to autonomously reconfigure its internal 
composition, and (ii) isolating and encapsulating self-management properties 
into different aspects. In this sense, since self-management properties are 
distributed among the different components of a system and explicitly 
separated from other concerns, this benefits the scalability and maintenance 
of the self-management behaviour of the system. This approach has been 
called Aspect-Oriented Autonomic Reconfiguration, since local autonomy 
for dynamic reconfiguration is provided for each composite component, and 
separation of concerns is provided by means of Aspect-Oriented Software 
Development techniques (Kiczales et al., 1997). Dynamic reconfiguration is 
addressed in a platform-independent way, by identifying the high-level features 
a reconfigurable technology should provide.  

This chapter is organized as follows: section 6.2 presents an overview of the 
main characteristics of the approach. Next section 6.3 describes the 
reconfiguration management model, based on an aspect-oriented control loop 
for self-reconfiguration. Then, section 6.4 presents in detail each one of the 

T 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

160 

aspects that implement this control loop. Section 6.5 presents how these 
aspects are integrated in a composite component. Next, section 6.6 presents 
an example of the execution of a reconfiguration plan and how it is supported 
by this approach. Finally section 0 presents the conclusions and further works. 

6.2 Characteristics of the approach  

The dynamic reconfiguration approach that is presented in this thesis has the 
following characteristics:  

 Bridges the existing gap among the specification of dynamic 
reconfiguration and the mechanisms that support this 
reconfiguration;  

 Provides autonomous reconfiguration management to each composite 
component; 

 Provides composite instances with reconfiguration plasticity to 
tolerate changes without breaking the design decisions defined in 
their types; 

 Supports both proactive and reactive reconfigurations, and  

 Separates the reconfiguration concerns from other concerns through 
aspects.  

Next, these characteristics and the reasons that motivated their development 
are presented. 

A reconfiguration model bridging the gap among specifications and 
mechanisms 

Several works have addressed the support for dynamic change from different 
levels of abstraction. On the one hand, a lot of works have been focused on 
the technical feasibility of dynamic updating (McKinley et al., 2004) (Ritzau & 
Andersson, 2000) (Segal & Frieder, 1993). For this reason, these works are 
generally tied to a specific technology: their reconfiguration specifications are 
specified at a low abstraction level. On the other hand, other works have been 
focused on the specification of dynamic reconfigurations at a high abstraction 
level (i.e. by means of ADLs): (Bradbury et al., 2004), (Canal et al., 1999), 
(Cuesta et al., 2004), (Endler & Wei, 1992). However, most of these works 
have not addressed how to support the execution of such high level 
reconfigurations.  

Since the dynamic reconfiguration of software systems is highly related with 
the management of running software artefacts, it should be considered not 



6.2 CHARACTERISTICS OF THE APPROACH 

161 

only the specification of how a system should be reconfigured, but also the 
mechanisms that support this reconfiguration. There is a gap among the 
approaches that cope with high-level reconfiguration specifications and the 
approaches that cope with the low-level mechanisms supporting 
reconfiguration. One of the major contributions of this work is the definition 
of a reconfiguration model that bridges this gap. 

Autonomous reconfiguration management 

A characteristic of this approach is that each composite instance is provided 
with autonomous self-reconfiguration capabilities. This allows each composite 
instance to reconfigure autonomously its internal composition, in response to 
either internal or external events, without the direct supervision of a 
centralized reconfiguration manager.  

As it has been described in section 4.2.3.1 (see page 110), the use of a 
centralized reconfiguration manager to supervise and change the whole system 
(e.g. the self-adaptive systems of (Oreizy et al., 1999), (Dashofy et al., 2002), 
(Garlan et al., 2004)) has the disadvantage of decreasing the scalability of the 
self-management subsystem. The bigger the system is, the larger and complex 
the centralized reconfiguration manager is, and so its maintenance. In 
addition, this manager also becomes a single-point-of-failure: if such centralized 
reconfiguration manager fails, the whole system also loses its ability to 
reconfigure. 

By providing self-reconfiguration properties to each composite instance, 
reconfiguration management can be distributed hierarchically among the 
different subsystems (i.e. composite components), thus alleviating the system 
from the need of a global reconfiguration manager28. In this way, since 
reconfiguration management is decentralized, the scalability of the system 
increases. 

Type-constrained reconfigurations 

Another characteristic of this approach is that it uses type-level constraints to 
define the reconfiguration plasticity of composite instances, i.e. the degree on 
which composite instances can change their architecture. This avoids that self-
reconfigurable composite instances, due to several reconfigurations, could 
break the original design decisions and thus their integration with other 

                                                      
28 Only in these cases where a centralized control of reconfigurations is needed, a top-
level reconfiguration manager may be used, which supervises the execution of lower-
level reconfiguration managers. For further information, see (Costa-Soria et al., 2011)  



CHAPTER 6. AUTONOMIC RECONFIGURATION 

162 

elements of the system. This has been performed by means of type-constrained 
reconfigurations.  

PRISMA composite types define type-level constraints (called patterns) in 
terms of: what kind of architectural types can be instantiated, how many of 
them can be instantiated, and how they can be connected (see section 2.4.4, 
page 53). These type-level constraints have been used to define the 
reconfiguration plasticity of composite instances: a composite instance can 
reconfigure its internal architecture, but only while keeping the conformance 
to the pattern defined in its composite type. 

Proactive and reactive reconfiguration support 

Another characteristic that has been taken into account in this approach is 
the support for both kinds of activeness (Buckley et al., 2005): proactive (i.e. 
programmed) reconfigurations and reactive (i.e. ad-hoc) reconfigurations. 
Proactive reconfigurations are those architectural changes that are driven 
autonomously by the system when some specific conditions or events 
(previously defined at design-time) apply (for more details, see section 3.3.4.1, 
page 71). Reactive reconfigurations are those architectural changes that are 
driven at runtime by an external agent. Both reactive and proactive 
reconfigurations are complementary: they must be supported to allow a 
software system to reconfigure itself autonomously (e.g. by using programmed 
reconfigurations) and to introduce unforeseen changes or updates (i.e. ad-hoc 
reconfigurations). This provides the architect with a high level of flexibility for 
defining reconfigurable systems. 

This proposal integrates both kinds of activeness by separating reconfiguration 
requests from reconfiguration mechanisms and making explicit their 
interactions. Proactive reconfigurations are encoded as part of the system, by 
means of Event-Condition-Action rules. By the contrary, reactive 
reconfigurations are externally provided, by means of reconfiguration actions. 
Both proactive and reactive reconfigurations use the underlying 
reconfiguration mechanisms, but they differ in that reactive reconfigurations 
can be filtered through reconfiguration ports. The architect may limit the set 
of reconfiguration actions that are provided by these ports and that can be 
accessed from outside. In this way, the architect decides which kinds of 
reconfigurations are provided, by appropriately connecting the 
reconfiguration mechanisms to other components of the system.  

Separation of reconfiguration concerns through Aspects 

Finally, an important characteristic of this approach is the explicit separation 
of reconfiguration concerns from other concerns. Separation of concerns 



6.3 RECONFIGURATION MANAGEMENT MODEL 

163 

(Dijkstra, 1974) is an important principle that promotes the subdivision of a 
problem (e.g. the design of a software system) into independent parts (e.g. 
modules, components, etc.). In the context of software evolution, separation 
of concerns is a recommended practice to separate the parts of the software 
that may be subject to different rates of change (Mens & Wermelinger, 2002). 
This helps to avoid the entanglement of the different concerns of a software 
system, and improve its design and maintainability. Examples of the concerns 
that can be identified in a software system are: functionality, coordination, 
persistence, distribution, security, presentation, or even evolution and 
reconfiguration. 

Aspect-Oriented Software Development (Kiczales et al., 1997) emerged as another 
approach for realizing the separation of concerns, but showing a key 
difference: it focuses on those concerns that crosscut a software system, 
facilitating that each concern can be separately specified into separate entities 
called aspects. This separation avoids the tangled concerns of software, 
allowing the reuse of the same aspect in different entities of the software 
system as well as its maintenance.  

Several proposals have addressed the integration of aspects in software 
architectures (Cuesta et al., 2005). However, very few of them (David & 
Ledoux, 2006), (Batista et al., 2008) have considered the importance of 
encapsulating the reconfiguration concern into aspects. We consider that the 
separation among reconfiguration concerns and the other concerns of a system is a first 
step to build adaptive systems easier to maintain. Thus, the reconfiguration code 
will be able to change the functional code without being affected. Therefore, 
this approach takes advantage of AOSD techniques to improve the 
reconfiguration management. 

6.3 Reconfiguration management model 

An aspect-oriented control loop for self-reconfiguration 
The approach that is proposed in this thesis provides composite components 
with proactive capabilities for reconfiguring their composition. This means 
that a composite instance is able to autonomously perform changes to itself 
when some specific conditions or events apply. This requires the availability of 
some control system (see section 3.5.1, page 84) to supervise the execution of 
the composite instance and perform the reconfiguration actions when needed. 
Since this control system implements the reconfiguration concern of a 
composite instance, it has been encapsulated into aspects. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

164 

This section presents the control system that has been defined for the 
autonomous management of reconfigurations, and the reasons that have 
motivated its encapsulation into aspects. 

6.3.1 A control loop for self-reconfiguration 

As it has been stated by other authors (Oreizy et al., 1999) (Bradbury et al., 
2004) (Garlan et al., 2004) (Greenwood & Blair, 2006) (Kramer & Magee, 
2007), self-managed architectures generally follow a closed control loop that 
periodically supervises the architecture, plans if any (corrective) change needs 
to be performed, and effects them.  

Similar control loops have been proposed to develop autonomous systems 
(e.g. robots), being the most extended the autonomic control loop (Kephart & 
Chess, 2003), which is usually referred to as the MAPE-K loop (Monitor, 
Analyse, Plan, Execute, Knowledge). This loop performs control operations on 
a managed resource to achieve a set of predefined high-level goals, which are 
part of the knowledge of an autonomic (i.e. self-controlled) element. The 
autonomic control loop has the advantage that clearly isolates the main 
concerns commonly present in every process of (self-)change. Other 
architecture-based proposals for self-management generally merge analysis and 
planning, or planning and execution, or do not explicitly model the 
knowledge required to perform the changes.  

The approach that is proposed in this thesis uses the autonomic control loop 
as a reference model to define how a system reconfigures itself, bridging the 
gap among high-level specifications (i.e. ADLs) and technology-specific 
(dynamic updating) mechanisms. The original MAPE-K loop has been adapted 
for this purpose: the managed resource is the architecture of a system, and the 
control operations performed on this resource are mainly introspection 
operations (for monitoring the architecture), and reconfiguration operations 
(for changing the architecture).  

Another adaptation that has been done to the original MAPE-K loop is its 
implementation through aspects instead of modules (the reasons that have 
motivated this decision are described in section 6.3.2). Each one of the 
different controlling components (i.e. Monitor, Analyse, Plan, etc.) has been 
encapsulated in a different aspect. These aspects, and the concern they 
encapsulate, are the following (see Figure 6.1):  

1. Monitoring, the crosscutting concern that captures the events that take 
place in the architecture of a system (i.e. the managed resource);  



6.3 RECONFIGURATION MANAGEMENT MODEL 

165 

2. Reconfiguration Analysis, the concern that analyzes the different events 
to detect if a reconfiguration must be done, and which defines the set 
of reconfigurations which must be performed on the architecture; 

3. Reconfiguration Coordination, the concern that plans/coordinates how 
the reconfigurations must be applied safely on the architecture 
without interrupting current transactions, and  

4. Reconfiguration Effector, the concern that applies atomic 
reconfiguration operations on the running system.  

 
Figure 6.1. Aspects for autonomic reconfiguration 

Note that, in our proposal, the Knowledge element of the original MAPE-K 
loop is not required. In other architecture-based approaches, the Knowledge 
element has been generally used to maintain a runtime model of the 
architecture, which is analysed to decide whether reconfigurations are needed 
or not (Huebscher & McCann, 2008). However, in our proposal there is no 
need for an explicit management of a runtime model of the system. All the 
information about the architecture of the running system (e.g. the status of its 
architectural elements, types and configurations) is provided by means of 
reflection techniques, through the Monitoring aspect. This has the advantage 
that the architectural information is always updated, reflecting the real status 
of the system.  

Other works have used the Knowledge element for the storage of useful 
information for triggering or generating reconfiguration plans (e.g. use of 
cumulative state information about the architecture, use of utility functions, 
etc.). The Knowledge element keeps the collected information, which is 
analyzed by the Analysis element. However, in our proposal, the information 
for triggering or generating reconfiguration plans is included as part of the 
Reconfiguration Analysis aspect, instead of in a Knowledge element. This is 
because this information belongs to the same concern that the 
Reconfiguration Analysis aspect defines: the definition of proactive 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

166 

reconfiguration behaviour. Thus, the Reconfiguration Analysis aspect 
encapsulates all the required information and algorithms for triggering and 
generating high-level reconfiguration plans.  

6.3.2 Aspects versus modules 

The approach that has been proposed in this thesis adapts the original MAPE-
K control loop through aspects instead of modules. The reason to use aspects 
and not modules for encapsulating dynamic reconfiguration behaviour is 
because of the advantages that AOSD provides (Kiczales et al., 1997): better 
reuse and maintenance of the different concerns.  

Although modules can be used to separate concerns, the invocations among 
different modules (e.g. procedure calls) are defined explicitly inside each 
module, thus making each module dependent of the other. However, in the 
aspect-oriented model defined by the PRISMA approach, aspects are, by 
definition, independent of each other. In PRISMA, we cannot talk about 
invocations among aspects, but synchronizations among aspects. An aspect 
defines provided and required services, and each service is treated as a hook 
which can be intercepted. These interceptions are performed by weavings, 
which are defined outside the aspects and define how two aspects are bound 
together (i.e. synchronized). In addition, an advantage of using weavings to 
hook services among aspects is that they do not need to have the same name 
and signature, since functions can be used to adapt incompatible signatures 
(Guillén-Martín, 2007; pp. 43-60). Thus, aspects are completely independent 
of each other: modifying an aspect will only impact the weavings that are 
specifically related to this aspect, but not other aspects. 

For instance, Figure 6.2 shows some of the weavings that have been defined in 
the VisionSystem architectural type for synchronizing the different 
reconfiguration aspects. The first weaving intercepts the execution of the 
service beforeEvent (provided by the Reconfiguration Analysis aspect), and 
replaces it with the execution of the service beforeServiceRequest (provided by 
the Monitoring aspect). In this way, the Reconfiguration Analysis aspect and 
the Monitoring aspects are bound together, without one aspect explicitly 
declaring a reference to the other. The weaving captures the callings to the 
beforeEvent service and replaces them by the beforeServiceRequest service.   

In case any of the services that take part in a weaving has its signature changed 
(e.g. due to a maintenance operation), then the weavings where it participates 
are invalidated. This results in that weaved services are unbound (i.e. the 
matching among services do not occur). Therefore, the modification of an 
aspect does not necessarily impact the other aspects. The analysis of this 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

167 

impact is outside the scope of this work; however other authors have 
addressed conveniently this problem, such as (Perez-Toledano et al., 2007). 

 

Weavings   

 ... 

 Monitoring.beforeServiceRequest(*, eventName, eventParams)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.beforeEvent(eventName,eventParams); 

 

 Monitoring.getArchElementInstances(“VideoCaptureCard”, list-IDs) 

  insteadOf 

 VisionSystemReconfigurationAnalysis. 

   getInstances-videoCaptureCard(list-IDs); 

 

 VisionSystemReconfigurationServices.create-ImageProcSoftware(params, 

     newID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.create-ImageProcSoftware(params,  

     newID); 

  

 // ... more weavings 

 

End_Weavings;  

Figure 6.2. Example of weavings among aspects 

6.4 Description of the autonomic reconfiguration 
aspects  

In this section, the different aspects of the approach that have been defined to 
support autonomic reconfiguration are described in detail. This approach 
defines four concerns that are encapsulated into aspects. These aspects have 
been defined to separate reconfiguration specifications from reconfiguration 
mechanisms, and thus increase their maintainability. This avoids that changes 
on reconfiguration mechanisms (which are technology-dependent) may impact 
reconfiguration specifications (which are technology-independent), and 
viceversa.  

Each aspect has a different role in our approach (see Figure 6.1 in page 165). 
On the one hand, the Reconfiguration Analysis aspect is domain-specific: it is 
defined by the architect and contains the reconfiguration policies that are 
specific for the composite component that it is weaved to. These policies are 
defined using high-level terms, i.e. using PRISMA concepts, thus avoiding the 
use of low-level details. On the other hand, the Monitoring and Reconfiguration 
Effector aspects (depicted in grey in Figure 6.1) are technology-dependent: they 
implement the mechanisms that provide support for supervising and changing 
the system architecture. They model the low-level services that are provided by 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

168 

the infrastructure and allow us to combine them to perform high-level 
reconfiguration operations. This combination is performed by the 
Reconfiguration Coordination aspect: it encapsulates the mappings from high-
level PRISMA concepts to low-level technological services. Thus, the code that 
has different rates of change (Mens & Wermelinger, 2002) is explicitly 
separated: dynamic updating mechanisms (i.e. Monitoring and Effector aspects), 
reconfiguration specifications (i.e. Analysis aspect), and the mappings among 
them (i.e. Coordination aspect). 

6.4.1 The Monitoring Aspect 

Proactive reconfigurations are generally triggered when a specific event, error 
or state is detected in the architecture of a system. To detect these events, 
errors or states, a mechanism that continually monitors the architecture at 
runtime is needed. This aspect monitorizes the architecture of the composite 
instance where it has been imported to. The PRISMA specification of the 
Monitoring aspect is shown in Figure 6.3. 

The Monitoring aspect has access to the internal structure of a composite 
instance and provides information about it, which can be used for different 
purposes (e.g. introspect the architecture, initiate a reconfiguration process, 
detect events, etc). The internal structure of a composite instance (i.e. its 
architecture) is composed of: architectural elements (i.e. Components, 
Connectors or Systems), links, and ports. Components and Systems process 
services, and Connectors coordinate services; links forward services among 
architectural elements (i.e. Attachments) or ports (i.e. Bindings); and ports 
forward service requests to external architectural elements. This structural 
information is provided through a set of attributes (see Figure 6.3): (i) 
systemID, a reference to the composite instance being monitored; (ii) 
architecturalElements, systemPorts, attachments and bindings, the references to the 
structural parts of a composite instance; and (iii) monitoredServices, the services 
that are being monitored or intercepted. These attributes always reflect the 
current structure and state of the composite instance (they are updated by the 
underlying middleware). However, these attributes cannot be directly accessed: 
the information stored on them can be only obtained by using the different 
services provided by the Monitoring aspect. 

 

ArchitectureMonitoring Aspect  

 using I_SystemInstanceIntrospectionServices 

 

// *************************************************************** 

// Platform-dependent aspect for monitoring and introspecting  

// System instances at runtime 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

169 

// Here are described the public services that are provided. 

// Internal behaviour is provided by low-level implementations. 

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 Attributes 

  Constant 

   systemID: string; // Reference to the System instance 

  Variable 

   architecturalElements: list; 

   systemPorts: list; 

   attachments: list; 

   bindings: list; 

   monitoredServices: list; 

 

 Services  

   // ******** Introspection services ******** 

1 in getConfigurationSpecification(output PRISMAConfSpec: string); 

2 in typeOf(instanceID: string, output typeName: string);  

 

3 in getArchElementInstances(typeName: string,  

   output instances: list); 

4 in getAttachedArchElems(archElemID: string, attachType: string, 

   output attachedArchElemIDs: list); 

5 in getConnectionsOfArchElem(archElemID: string,  

   output connectionList: list); 

6 in getConnectionsByType(connectionType: string,  

   output connectionList: list); 

7 in isAttachment(connID: string, boolean isAtt); 

8 in isBinding(connID: string, boolean isBind); 

 

9 in getArchElementProperties(archElemID: string, 

   output properties: list, output portsList: list); 

10 in getPortProperties(archElemID: string, portName: string, 

   output isProvided: boolean, output isRequired: boolean,  

   output interface: string, output connectionList: list);  

11 in getArchElementInitializationValues(archElemID: string, 

   output initValues: list); 

12 in getAttachmentProperties(connectionID: string,  

   output instance1: string, output instance2: string); 

13 in getBindingProperties(connectionID: string,  

   output sysPort: string, output archElemID: string); 

 

 // ******** Runtime Status Information ******** 

14 in getStatus(elementID: string, output status: string); 

15 in getElementsOfStatus(status: string, output elemIDList: list); 

  

 // ******** Event Interception Services ********   

16 in beforeServiceRequest(elemID: string, serviceName: string,  

   output params: list);  

17 in afterServiceRequest(elemID: string, serviceName: string,  

   output params: list);  

18 in insteadOfServiceRequest(elemID: string, serviceName: string,  

   condition: string, replacingService: string,  

   output params: list);  

19 in monitoredServices(output serviceList: list); 

End Monitoring Aspect; 

Figure 6.3. Services of the Monitoring aspect 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

170 

The Monitoring aspect provides a set of services that collect different kinds of 
information: 

 The current Configuration of the architecture,   

 The Runtime Status of the different elements of the architecture,  

 Events that take place in the architecture. 

These services are described in detail in the following subsections.  

6.4.1.1 Introspection Services 

Since the architecture of a dynamic reconfigurable system can change 
substantially over time, information about the configuration at any given 
moment is essential. Introspection services provide information about the 
actual configuration of the managed architecture.  

At runtime, an architecture configuration is described by a set of references 
(or runtime IDs) to the architectural element instances (i.e. component and 
connector instances), and a set of references (connection IDs) to the 
established links (i.e. attachments and bindings) among the architectural 
element instances. There are two ways for retrieving the configuration of a 
composite instance: through the generation of a PRISMA model describing 
the actual architecture, or through the use of introspection services to obtain 
actual information about each element of the architecture. Each one is 
described next. 

A service to obtain a snapshot of the architecture 

The Monitoring aspect provides a service that returns a model (or snapshot) 
describing the actual architecture of the composite instance: 

 GetConfigurationSpecification. This service returns a 
PRISMA specification that contains a snapshot of the different 
architectural elements that are instantiated in the composite instance 
and how they are connected to each other.  

For instance, given the PRISMA configuration specification of RightCamera 
(see Figure 5.7), this service would return the specification depicted in Figure 
6.4. Note the different elements contained in the specification: (i) the kind of 
PRISMA element (i.e. component, connector, attachment or binding); (ii) the 
identifier (i.e. attribute “id”); (iii) the type; and (iv) initialization values (e.g. 
“initParameters” for Components and Connectors, attributes “source” and 
”target” for attachments, attribute “target” for bindings, etc.).  

 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

171 

<Configuration id=”RightCamera” type=”VisionSystem”> 

 

 <Component id=”Right-VCapt” type=”VideoCaptureCard”> 

  <InitParameter>30</InitParameter> 

 </Component> 

 <Component id=”ImgProc-1” type=”ImageProcCard”> 

  <InitParameter>Right</InitParameter> 

 </Component> 

 <Component id=”R-ImgWatchDog1” type=”VisionWatchdog”> 

  <InitParameter>90</InitParameter> 

 </Component> 

 <Component id=”R-Evolver” type=”VisionSystemEvolver”> 

  <InitParameter>RightCamera</InitParameter> 

 </Component> 

 

 <Connector id=”VCC-Conn1” type=”VCC-Conn” /> 

 <Connector id=”IPC-Conn1” type=”IPC-Conn” /> 

 

 <Attachment id=”att1” type=”Att_VCC_VCCConn”  

  source=”Right-VCapt” target=”VCC-Conn1” /> 

 <Attachment id=”att2” type=”Att_VCCConn_IPC”  

  source=”ImgProc-1” target=”VCC-Conn1” /> 

 <Attachment id=”att3” type=”Att_IPC_IPCConn”  

  source=” ImgProc-1” target=”IPC-Conn1” /> 

 <Attachment id=”att4” type=”Att_VCCConn_ImgMon”  

  source=”VCC-Conn1” target=”R-ImgWatchDog1” /> 

 <Attachment id=”att5” type=”Att_IPCConn_ImgMon”  

  source=”IPC-Conn1” target=”R-ImgWatchDog1” /> 

 <Attachment id=”att6” type=”Att_ImgMon_Evolver”  

  source=”R-ImgWatchDog1” target=”R-Evolver” /> 

 

 <Binding id=”bin1” type=”Bin_IPCConn” target=”ImgProc-1” /> 

 <Binding id=”bin2” type=”Bin_Evolver” target=”R-Evolver” /> 

 

</Configuration> 

Figure 6.4. Example of PRISMA XML Configuration Model 

The advantage of retrieving a complete snapshot of the architecture is that all 
the structural information of a composite instance is provided in a single 
message (i.e. the execution of a service), and that it can be computationally 
processed (e.g. if this model is provided in XML). This model can be 
processed for different purposes:  

- To generate a visual representation of a composite instance, like the 
shown in Figure 5.8, that may be used to understand/simulate the 
current state of a composite. 

- To analyse the architecture and decide if reconfigurations are needed 
(i.e. reactive behaviours/ad-hoc reconfigurations) 

The disadvantage of retrieving such a complete snapshot is that additional 
modules for reading and interpreting the snapshot are needed, in addition to 
the functionality that it is going to use this snapshot. In case simple queries 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

172 

are needed, such as obtaining the attached elements of an architectural 
element, the use of introspection services are more appropriate. 

Services to query the actual configuration 

To retrieve specific, concrete structural information from a composite 
instance without the need of analysing the entire model, a set of additional 
introspection services are provided. These services allow us to get the instances 
of a particular type, the connections to a given instance, their properties, etc. 
These services are described below: 

 TypeOf: This service returns the type name of a given instance ID. 
This not only allows us to identify the type of an instance, but also to 
get access to: (i) the constraints and properties defined by its type 
(such as the minimum and maximum cardinality) or (ii) the reify 
service, which allows us to evolve its type dynamically, as it will be 
described later (see Chapter 7). 

 GetArchElementInstances: This service returns a list, instances, 
with the IDs of the instances of a concrete type, typeName. In 
addition, if typeName is a null string “”, or the wildcard symbol “*”, 
then the service returns the IDs of all the instances created inside the 
composite instance, independently of their types. This service is useful 
for retrieving the list of instances that have been created in a 
composite instance, or only the instances of a certain type. 

 GetAttachedArchElems. Given the ID of an architectural element 
instance, archElemID, and the type of an attachment, attachType, this 
service returns a list, attachedArchElemIDs, with the IDs of all the 
instances that are attached to archElemID following the interaction 
pattern attachType. In addition, if attachType is a null string “”, or the 
wild card symbol “*”, then the service returns all the instances that are 
attached to archElemID, independently of their attachment type. This 
service is useful for retrieving the architectural elements that are 
attached to another, or only those that follow a concrete interaction 
pattern. 

 GetConnectionsOfArchElem. Given the ID of an architectural 
element instance, archElemID, this service returns a list with all the 
connections (i.e. attachments and bindings) that are linked with 
archElemID. In addition, if archElemID is a null string “”, or the wild 
card symbol “*”, then the service returns all the connections that have 
been created in the composite instance. Note the difference with 
respect to the previous service: getAttachedArchElems returns a 
list with the IDs of attached architectural elements, and 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

173 

getConnectionsOfArchElem returns a list with the IDs of 
connections. This service is useful for obtaining the set of 
connections/links created in the composite instance, allowing its 
further manipulation (e.g. recreating them after an architectural 
instance replacement) 

 GetConnectionsByType. This service returns all the connection 
IDs of a given connection type (i.e. an attachment type or a binding 
type).  

 IsAttachment and IsBinding. These services allow us to 
distinguish if a given connection ID is an attachment or a binding 
(which have different properties). 

The services described above allow us to query the configuration of a 
composite instance and retrieve the IDs of its elements (either architectural 
elements or connections).  

An additional set of services allow us to query the properties of these 
elements: 

 GetArchElementProperties. Given the ID of an architectural 
element instance, archElemID, this service returns a list with its 
properties, properties, and a list with its ports, portsList. In addition, if 
archElemID is a null string “”, or the symbol “self”, then the service 
returns the externally-visible properties and ports of the composite 
instance.  

 GetPortProperties. Given the ID of an architectural element 
instance, archElemID, and the name of one of its ports, portName, this 
service returns the properties of such port: (i) if it is a provided port 
(i.e. provides services to other elements, it has a server behaviour), (ii) 
if it is a required port (i.e. requires services from other elements, it has 
a client behaviour), (iii) the interface of services provided/required 
through the port, and (iv) the set of current connections that are 
linked to this port. Note that if a port has both a client and server 
behaviour, then both properties isRequired and isProvided will be true. 

 GetArchElementInitializationValues. Given the ID of an 
architectural element instance, archElemID, this service returns the 
values that have been provided to its creation. This information is 
provided in the PRISMA ADL Configuration specification to 
describe how architectural elements should be created. In certain 
situations, this information may be useful to instantiate architectural 
elements with the same initial properties (e.g. in replacement 
operations), or to identify some required configuration values. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

174 

 GetAttachmentProperties. Given the ID of an attachment, 
connectionID, this service returns the IDs of the architectural element 
instances that are linked by means of the attachment connectionID. 
The name of the ports that an attachment connects is obtained from 
the attachment type. 

 GetBindingProperties. Given the ID of a binding, connectionID, 
this service returns the name of the composite instance port and the 
ID of the architectural element instance that are linked by means of 
the binding connectionID. 

In this way, a System instance (i.e. a composite instance) can be aware of its 
configuration and use this knowledge to decide if a reconfiguration is needed. 
Furthermore, this information also allows us to verify whether or not a set of 
reconfiguration actions has been successfully executed (i.e. the target 
configuration has been achieved).  

One of the advantages of using the introspection services described above is 
that they provide the most updated information about the actual 
configuration of a composite instance. The disadvantage of working with 
runtime models, such as the model returned by the service 
GetConfigurationSpecification, is that it may become quickly out-of-date if the 
composite instance changes during the processing of the model (which may 
take time). By using the introspection services, we always have the updated 
information about the actual elements of the architecture. And, in such a case 
that the properties of a removed element are queried, the execution of an 
introspection service would fail, thus alerting the user. However, the 
disadvantage of using the introspection services is that they are not 
appropriate for exploring the entire configuration model, such as when 
interested on wide analysis or visual representation. In such cases, the service 
GetConfigurationSpecification should be used instead of. 

6.4.1.2 Runtime Status Information 

The architecture of a composite instance can only be reconfigured when the 
elements that are going to undergo changes, and the connections among 
them, are safely stopped. For this reason, the Monitoring Aspect also provides 
information about the runtime status of its elements. This information is 
mainly used by the reconfiguration mechanisms (i.e. the Reconfiguration 
Coordination aspect) to decide when a certain element of the architecture is 
ready to be changed. 

This information is provided by the following services: 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

175 

 GetStatus. Given the ID of one of the elements of a composite 
instance, elementID, this service returns its runtime status, status. 
ElementID can be an architectural element instance, a connection, or 
the name of a port of the composite. 

 GetElementsOfStatus. This service returns all the elements of the 
architecture that have a certain status, which is provided in the 
parameter status. For instance, this service is useful to obtain the set of 
elements that are stopped.  

The status of an element at a certain time is one of the following:  

- Idle. The element is not executing (in case of an architectural element 
instance) or forwarding (in case of a connection or port) any service. 

- Active. A service is being processed (in case of an architectural 
element) or forwarded (in case of a connection or port). 

- Blocked. The element is in a consistent state and ready to apply 
runtime changes. Running transactions have been finished safely. 
New service requests are accepted, but they are queued until the 
element status is changed to the Active status. 

- Blocking. This is a transitional status from Active status (executing a 
service) to Blocked status (not executing services and ready for 
reconfiguration). The element waits until the Tranquillity 
(Vandewoude et al., 2007) or Quiescence (Kramer & Magee, 1990) 
criterion is achieved (see section 3.4.1, page 74 for more details). 
These criteria guarantee that the element has reached a consistent 
state (tranquillity causes less disruption to the architecture than 
quiescence). 

- Unknown. The element is not responding because an error has 
occurred. This information can be used to provide fault-tolerance 
mechanisms. 

6.4.1.3 Event Interception Services 

The Monitoring aspect has access to the set of events that take place in the 
architecture of a composite instance, and provides services to intercept them 
and act before, instead of, or after the event. 

An event is an action that takes place inside a given context that others may 
be interested in knowing about it. In this case, the context is the (internal) 
architecture of a composite instance. As described previously, this architecture 
is composed of architectural elements that request services from each other. 
These architectural elements are black-boxes, and for this reason, we cannot 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

176 

intercept actions or events that occur inside them. Thus, the events that take 
place inside a composite instance, and which can be intercepted by the 
Monitoring aspect, are those that take place at the level of interactions: that is, 
Service Requests. In this way, the behaviour of internal architectural elements 
remain unaffected by interception mechanisms: they are unaware of these 
mechanisms. The Monitoring aspect intercepts service requests when they are 
“transferred” through the connections among architectural elements (i.e. 
attachments), and those coming from/to the external ports of the composite 
instance (i.e. bindings).  

The Monitoring aspect provides three services to intercept events: 
beforeServiceRequest, afterServiceRequest and insteadServiceRequest. These services 
are blocking, that is, the caller is blocked until the required event or service 
request is intercepted in the architecture. Then, when the desired event or 
service request is intercepted, the subscriber is unblocked and can perform the 
required actions in response to such notification. As will be described in 
section 6.4.2.2, this is used to implement reconfiguration triggers, i.e. 
mechanisms that are only activated when a specific event (or service request) is 
detected in the architecture being managed.  

The services beforeServiceRequest and afterServiceRequest intercept the transfer of 
a service request or event among a client instance, i.e. which invokes the 
service, and a server instance, i.e. which provides and serves the service (see 
Figure 6.5, left). These interceptions take place at different times: before the 
service request is delivered to the server instance (beforeServiceRequest), or after 
the service request is processed (afterServiceRequest). However, these services 
do not interrupt the normal execution flow among the client instance 
and the server instance: the notification about the occurrence of a 
service request is sent seamlessly to the subscriber, without affecting the 
delivery of the service request.  

 
Figure 6.5. Event interception behaviour 

The service insteadServiceRequest performs a service interception: it replaces the 
execution of a service request by another (see Figure 6.5, right). The target 
service request is intercepted when it passes through the connector and a 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

177 

different response is sent back to the client instance. This interception is only 
performed if a user-defined condition holds on the parameters of the service 
request. This is useful to trigger a reconfiguration when a service is requested 
with a set of specific parameters (e.g. invalid parameters). In order to minimize 
the disruption on the architecture, the result values expected by the client 
instance must be provided by the service insteadServiceRequest. Otherwise, if the 
service request were simply cancelled, the client instance would be indefinitely 
expecting results, and its execution disrupted. 

The description of the event interception services, and the parameters 
expected, is provided below (see their signature in Figure 6.3): 

 BeforeServiceRequest. This service sends a notification to 
the subscriber just before a service request is delivered to the 
service provider. The parameter serviceName defines the service 
request to intercept, whereas elemID defines which element sent 
the request (a port of the composite instance, an architectural 
instance or a connection). If elemID has the value “*”, then no 
selection of the service requestor is performed (i.e. a notification 
is sent for any occurrence of serviceName in the architecture of a 
composite instance). Finally, the output parameter params 
returns the set of parameters of the service request that has been 
intercepted. 

 AfterServiceRequest. This service sends a notification to 
the subscriber just after a service request is processed by the 
service provider. The meaning of its parameters is the same as 
BeforeServiceRequest, so they are not described again.  

 InsteadOfServiceRequest. This service intercepts the 
delivery of a service request or event, notifies the subscriber 
about this fact, and executes a different service instead. This 
interception is only performed if a specific condition is satisfied 
by the parameters of the service request. The parameter 
serviceName defines the service request to intercept, and elemID 
the element which sent the request (i.e. a port, an architectural 
instance or a connection). The parameter condition provides a 
condition to evaluate on the set of parameters of the service 
request. The parameter replacingService is the name of the service 
that will be executed instead of the original service, and which 
must be provided by the subscriber. Finally, the output 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

178 

parameter params returns the set of parameters of the service 
request that has been intercepted. 

 MonitoredServices. This is an auxiliary service that returns 
the complete list of services that are monitored for interception. 
This service is useful for implementing dependency analysis: to 
analyze the elements of the architecture that are being 
supervised and that, if they are changed, may impact the 
reconfiguration policies. 

For instance, to be subscribed to (i.e. intercept) the event faultyOutput when it 
is triggered by the VisionSysWatchdog component (i.e. before the event is 
processed), the following code must be executed: 
 

beforeServiceRequest!(“VisionSysWatchdog”, “faultyOutput”,  

      output params)  

Thus, if the faultyOutput event is triggered in the architecture, then the 
Monitoring aspect will notify the caller about this fact, providing the 
parameters of the intercepted event.  

Moreover, reconfiguration services (see section 6.4.3.3) can also be 
intercepted, as they take place in the composite instance boundary. For 
instance, the following code will capture the event of creating an architectural 
element instance immediately after being processed: 

 

afterServiceRequest(null,“CreateInstance”,output creationParams) 

In this example, the parameter elemID is null because reconfiguration services 
are not requested through any element of the architecture (they are requested 
at the meta-level). The parameters of the service will be returned in the 
variable creationParams, and we could get the name of the type that has been 
instantiated, its initialization parameters, and the ID of the new instance.  

The interception of reconfiguration events is a very useful feature to keep 
visual representations or models of a system updated as soon as the system 
changes. If an architectural instance is created, removed, or its connections 
changed, then the visual model should be notified to represent this situation. 
This is better than periodically obtaining the complete specification of the 
running system (by means of the getConfigurationSpecification service) and 
checking changes. 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

179 

6.4.2 The Reconfiguration Analysis Aspect 

The Reconfiguration Analysis aspect describes the proactive29 reconfiguration 
behaviour of the composite component that it belongs to. This aspect is 
application-specific: it is defined for a specific composite component, and 
contains the policies or goals that drive the reconfiguration of this 
component. This aspect defines when to perform a reconfiguration, and how 
the different architectural elements must be reconfigured.  

It is important to emphasize that this work is only concerned with the correct 
execution of dynamic changes, but not with trying to establish whether the 
changes proposed are correct. For this reason, the reconfiguration plans 
defined in this aspect must be correct and valid, which is a responsibility of 
the architect. The reconfiguration infrastructure is only responsible for 
guaranteeing that the changes requested are correctly introduced. Syntactical 
analysis are performed to check whether the resulting configuration is correct 
(i.e. all the elements are well connected), but not a behavioural analysis.  

The Reconfiguration Analysis aspect is a new kind of aspect that has been 
introduced in the PRISMA metamodel: it is defined as an automatically-
generated template that the user (i.e. the system architect) completes, by 
defining Event-Condition-Action (ECA) policies for reconfiguration. The user 
defines ECA policies by means of: reconfiguration triggers (i.e. Events and 
Conditions) and configuration transactions (i.e. Actions).  

In order to illustrate how these policies are defined, we will use the fault-
tolerance reconfiguration scenario defined in the VisionSystem type (see section 
5.5.1). 

6.4.2.1 Structure of the Reconfiguration Analysis Aspect 

The Reconfiguration Analysis aspect has the same structure as other kinds of 
PRISMA aspects, with subtle behaviour differences. The generic structure of 
the Reconfiguration Analysis aspect is shown in Figure 6.6. An example of 
such kind of aspect is shown in Figure 6.7. The complete specification of this 
example is provided in section A.2.3.  

 

ReconfigurationAnalysis Aspect <Aspect_Name> 

 using <Used_Interfaces> 

 is partially defined by <SystemTypeName>AnalysisServices 

 

 Attributes 

  Constant 

                                                      
29 See section 3.3.4.2 on page 68 for a description of the kinds of activeness. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

180 

   <User-defined constants> 

  Variable 

   <User-defined attributes> 

  Derived 

    <User-defined derived attributes> 

 

   Services  

  begin(<additional_initialization_params>); 

  end(); 

  

  <User-defined services and events> 

 

 External Functions 

  <External function headers> 

 End_External Functions 

 

   Played_Roles   

  <Player_Roles: internal/external communications> 

 

 Triggers 

  <RECONFIGURATION TRIGGERS: Events and Conditions> 

 

   Transactions 

  <CONFIGURATION TRANSACTIONS: Actions to perform in the arch> 

 

   Protocol    

  <Initialization of default parameters, definition of 

processes, and orchestration of configuration transactions> 

    

End ReconfigurationAnalysis Aspect <Aspect_Name>; 

Figure 6.6. Pattern of the Reconfiguration Analysis Aspect 

An aspect of this kind has a (user-defined) unique name <Aspect_Name>, and 
a set of user-defined provided/required interfaces <Used_Interfaces>. The 
aspect is partially defined: it has a user-defined part and an automatically-
generated part, which provides the hooks to weave this aspect with the other 
reconfiguration aspects. This automatically-generated part is named following 
this pattern: <SystemTypeName>AnalysisServices. This will be described in 
section 6.5.3. 

The Attributes section contains user-defined constants, variables, and derived 
attributes (i.e. calculated on demand applying a derivation rule or function). 
The architect can easily define new attributes to capture certain properties 
from the architecture, such as performance. For instance, the derived attribute 
imageProcPerformance (see Figure 6.7, Derived subsection) returns the ratio of 
images that are processed per second in the VisionSystem (the higher the best). 
This is calculated by an external function, not described here, called 
FCalculateImageProcRatio. 

The Services section contains at least the initialization and destruction 
services begin and end, respectively. The begin service is generally used to get 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

181 

initialization values. For instance, in the VisionSystem example, the begin 
service provides the camera position, which can be “left” or “right” (see Figure 
6.7, Services section). In case the aspect receives or sends events to other 
elements, the headers of these events are defined in this section, specifying if 
they are incoming or outcoming events. For instance, in the VisionSystem 
example, this aspect receives events from internal elements (i.e. the events 
faultyOutput and validOutput, from the VisionWatchdog component), and 
sends events to external elements (i.e. the events enabledSystem and 
disabledSystem, to other subsystems of the Agrobot). 

The External Functions section defines the headers of externally defined 
functions, usually low-level functions that are defined/provided by the target 
platform. For instance, the aspect of the example defines a function to 
suspend the execution a certain time.  

The Played_Roles section is related to the Services section, since it defines the 
different roles on which the different services can be received and/or sent. For 
instance, the example defines two roles: INTERNAL-EVENTS, for the services 
that are received, and EXTERNAL-EVENTS, for the services that are requested 
to other elements (i.e. sent events) (see Figure 6.7, Played_Roles section) 

 

ReconfigurationAnalysis Aspect VisionSystemReconfigurationAnalysis 

 using I_WatchdogEvents, I_VisionSystemEvents 

 is partially defined by VisionSystemAnalysisServices 

 

// *************************************************************** 

// User-defined aspect which contains the reconfiguration policies 

// for VisionSystem instances. 

// *************************************************************** 

 

 Attributes 

  Constant 

   // User-defined constants here 

  Variable 

   cameraPos: string; 

  Derived 

   imageProcPerformance: integer,  

    derivation: FCalculateImageProcRatio(); 

 

   Services  

  // Initialization and destruction services  

  begin(cameraPosition : string) 

   Valuations 

   [begin(cameraPosition] cameraPos = cameraPosition; 

  end(); 

  

  // Interaction with the VisionWatchdog component 

  in faultyOutput(failingComponent: string); 

  in validOutput(); 

 

  // Notification of critical events to external elements 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

182 

  out disabledSystem(instanceID: string, reason: string);  

  out enabledSystem(systemID: string) 

 

 External Functions 

  Suspend(timeout : integer); // Suspends the current process  

 End_External Functions 

 

 

   Played_Roles   

  INTERNAL-EVENTS for I_WatchdogEvents ::= 

   faultyOutput?(failingComponent) + validOutput?(); 

 

  EXTERNAL-EVENTS for I_VisionSystemEvents ::=  

   disabledSystem!(instanceID, reason) +    

   enabledSystem!(instanceID); 

 

 Triggers 

  ... 

 

   Transactions 

  ... 

 

   Protocol    

  VISIONRECONFANALYSIS ::=  begin(cameraPosition) --> ANALYSIS; 

 

  ANALYSIS ::= end():10  

  +  (  AddImageProcessor():10 ) --> ANALYSIS 

  + ( RepairImageProcessingUnit():10 ) --> ANALYSIS 

  + ( DisableVisionSystem():20 ) --> DISABLEDSTATE; 

 

  DISABLEDSTATE ::= Suspend(1200) -->  

   incrementalStart(output success) --> 

   if (success==false) then DISABLEDSTATE 

   else (EXTERNAL-EVENTS_enabledSystem!(SystemID)--> 

     ANALYSIS); 

    

End ReconfigurationAnalysis Aspect 

VisionSystemReconfigurationAnalysis; 

Figure 6.7. Example of a Reconfiguration Analysis Aspect (fragment) 

Finally, the Protocol section defines the different execution states of the 
Reconfiguration Analysis aspect and how the different services (and 
configuration transactions) are orchestrated. In addition, this section also 
initializes the default parameters for instantiating architectural elements. For 
instance, the VisionSystemReconfigurationAnalysis aspect defines three 
processes: VISIONRECONFANALYSIS, ANALYSIS and DISABLEDSTATE. 
The former is the initial state, which starts when the begin service is executed. 
Then, the default parameters of the components imageProcCard and 
imageProcSoftware are set. The next state, ANALYSIS, waits until: (i) the end 
service is executed (i.e. the VisionSystem is shut down); (ii) a configuration 
transaction is executed (then remaining in the Analysis state); or (iii) the 
DisableVisionSystem configuration transaction is executed (which disables all 
the elements of the VisionSystem), changing to the state DISABLEDSTATE. 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

183 

Finally, in this state, the process is suspended and a restarting is tried. If a 
success is achieved, the enabledSystem event is sent to outside (i.e. the other 
Agrobot subsystems) and the ANALYSIS state is achieved. Otherwise, the 
DISABLEDSTATE process is repeated. 

Next, the reconfiguration triggers and configuration transactions are described 
in detail.  

6.4.2.2 Reconfiguration Triggers 

A Reconfiguration Trigger is a condition which, if true, activates a configuration 
transaction. This condition may evaluate user-defined attributes (e.g. 
performance), or be true when a certain event is intercepted (e.g. an 
exception, a service invocation, the creation or destruction of connections, 
etc.). The syntax of triggers has the following structure: 
 

 

<NameOfConfigurationTransactionToExecute> when <Condition>; 

 

Where <condition> can be of three kinds: attribute evaluation, service 
invocation or event interception. 

Attribute evaluation. A user-defined attribute is evaluated, and this 
evaluation may trigger a reconfiguration process. For instance, if the derived 
attribute imageProcPerformance (see Figure 6.8, Derived subsection) returns a 
value lower than 10 (images per second), a reconfiguration trigger is activated 
(see Figure 6.8, Triggers section), which executes a configuration transaction 
for creating additional image processing instances. 

 

ReconfigurationAnalysis aspect VisionSystemReconfigurationAnalysis 

... 

 Attributes 

  Derived 

   imageProcPerformance: integer,  

    derivation: FCalculateImageProcRatio(); 

... 

 Triggers 

  AddImageProcessor() when 

   imageProcPerformance < 10; 

... 

Figure 6.8. Reconfiguration triggers: activation by attributes 

Service invocation. The condition is true when a certain service is requested 
through a played_role of the aspect, that is, from the composite where the 
ReconfigurationAnalysis belongs to.  



CHAPTER 6. AUTONOMIC RECONFIGURATION 

184 

For instance, the reconfiguration trigger shown in Figure 6.9 is activated if the 
service faultyOutput is requested (note the service is postfixed with the symbol 
“?”) AND its parameter failingComponent equals to “ImageProcCard”. Recall 
that this service is invoked by the VisionWatchdog component when a failure is 
detected in the architecture of the VisionSystem type. This means that, in order 
to receive a notification of this service, the aspect must be a service provider 
(see the declaration of the faultyOutput service in the Services section, with the 
“in” modifier, Figure 6.9) and be accessible to other elements (see Figure 6.9, 
PlayedRoles section). This also requires that the service requester (i.e. the 
VisionWatchdog component) is appropriately connected to the service provider 
(i.e. the ReconfigurationAnalysis aspect). 

 

ReconfigurationAnalysis aspect VisionSystemReconfigurationAnalysis 

... 

 Services 

  in faultyOutput(input failingComponent: string); 

 

   Played_Roles   

  INTERNAL-EVENTS for I_WatchdogEvents ::= 

   faultyOutput?(failingComponent); 

... 

 Triggers 

  RepairImageProcessingUnit() when  

   {failingComponent==["ImageProcCard"]} 

   INTERNAL-EVENTS_faultyOutput?(failingComponent); 

... 

Figure 6.9. Reconfiguration triggers: activation by service invocations 

Event interception. The condition is true when a certain event is intercepted 
in the architecture of the composite instance. Event interception is performed 
by means of three services, which are provided by default: beforeEvent, 
insteadOfEvent, and afterEvent. These services intercept an event or service 
request: before it is delivered to the recipients (i.e. the server instances), after its 
processing by the recipients, or instead of the recipients (i.e. the event is 
processed by this aspect, the original recipients do not receive the event). 
Thus, a configuration transaction can be activated as a result of: (i) a service 
request (beforeEvent and insteadOfEvent); or (ii) the processing of a service 
request (afterEvent). The difference is that insteadOfEvent replaces the 
execution of a service request by an alternative implementation. These services 
require as input the name of an event/service to intercept, eventName, and 
return a list with the parameters provided by the intercepted event/service, 
eventParameters. The mechanisms for event capturing are actually provided by 
the Monitoring aspect (see section 6.4.1).  



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

185 

For instance, the reconfiguration trigger shown in Figure 6.10 illustrates how 
to activate the configuration transaction DisableVisionSystem on the 
interception of the faultyOutput event. The main advantage of event 
interception with respect to service invocations is that it is done in a 
transparent way, without creating explicit connections to the VisionWatchdog 
component.  

 

ReconfigurationAnalysis aspect VisionSystemReconfigurationAnalysis 

... 

 Triggers 

  DisableVisionSystem() when  

   {eventParams==["VideoCaptureCard"]} 

   beforeEvent!(“faultyOutput”, out eventParams); 

... 

Figure 6.10. Reconfiguration triggers: activation by event interceptions 

6.4.2.3 Configuration Transactions 

A Configuration Transaction is a specification that describes an ordered set of 
domain-specific reconfiguration operations, called Configuration Actions (see 
section 6.4.3.1, page 191), which must be executed in a transactional way (i.e. 
all or none, see section 6.4.3.2, page 194).  

In other words, the body of a configuration transaction consists of a set of 
configuration actions (i.e. a set of domain-specific reconfiguration operations) 
that, upon execution, will change the architecture of a composite instance. A 
configuration action is self-descriptive: its name takes the form of a 
reconfiguration operation and the name of the type which is manipulated. For 
instance, the configuration action create-ImageProcSoftware creates instances of 
the ImageProcSoftware architectural type; the configuration action attach-
Att_VCCConn_IPCSW creates attachments defined by the type 
VCCConn_IPCSW (i.e. an attachment among an instance of a VCC-Conn 
connector type and an instance of an ImageProcSoftware component type), 
and so on.  

These configuration actions must be ordered, because they describe a change 
process which has dependencies among its elements. For instance, we cannot 
create an attachment with an instance that has not been created yet. Similarly, 
we should not remove an architectural element if it is still connected to other 
elements: we must remove its attachments first.  

An example of how these configuration actions are used to define a 
reconfiguration process is shown in Figure 6.11. This figure shows the 
specification of a configuration transaction called 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

186 

RepairImageProcessingUnit. It describes how the component 
ImageProcCard must be replaced by the component ImageProcSoftware  in case 
of malfunction. The transaction consists of two processes. The first one (see 
REPAIRIMAGEPROCESSINGUNIT process) obtains the references (i.e. the 
IDs) to the instances that are going to be affected by the reconfiguration 
process. Then, the second process (see RECONF process) performs a set of 
configuration actions: creates a new instance of the ImageProcSoftware 
component, attaches the new instance to the VCC-Conn and IPC-Conn 
connector instances, detaches the failing ImageProcCard instance from the 
previous connector instances, and finally destroys the ImageProcCard instance. 
As a result of this process, a new component instance has been created and 
attached to the other interacting elements, removing the failing ImageProcCard 
component instance. 

 

ReconfigurationAnalysis aspect VisionSystemReconfigurationAnalysis 

... 

Transactions 

 RepairImageProcessingUnit(): 

 // Configuration transaction for replacing an imageProcCard  

 // component by an imageProcSoftware component 

 REPAIRIMAGEPROCESSINGUNIT ::=  

  // Get IDs of instances subject to changes 

  // Only one instance of ImageProcCard,VCCConn and IPCConn 

  // is allowed by the System type, so no iterations are needed 

  oldImProcCardID = imageProcCard-list[0] --> 

  VCCConnID=VCC-Conn-list[0] --> 

  IPCConnID=IPC-Conn-list[0] --> RECONF; 

 RECONF ::=  

  create-ImageProcSoftware!(cameraPos, output newImProcID) -->        

  attach-Att_VCCConn_IPCSW!(VCCConnID, newImProcID,  

   output newAttID) --> 

  attach-Att_IPCSW_IPCConn!(newImProcID, IPCConnID, 

   output newAttID) --> 

  detach-Att_VCCConn_IPC!(VCCConnID, oldImProcCardID) --> 

  detach-Att_IPC_IPCConn!(oldImProcCardID, IPCConnID) --> 

  destroy-ImageProcCard!(oldImProcCardID) -->   

 END;   

Figure 6.11. Example of Configuration Transactions: RepairImageProcessingUnit 

The execution of configuration actions may be subject to failures. A 
configuration action may fail if the constraints defined in the System type 
(such as cardinalities) are violated by this action. For instance, a create action 
may fail if we try to create more instances than the maximum allowed. On the 
other hand, a configuration action may also fail due to technical reasons: e.g. 
a connection cannot achieve quiescence and cannot be removed safely.  

This must be taken into account when changing a running system: if anything 
fails in the middle of a reconfiguration process, the resulting system could be 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

187 

left in an inconsistent state. For this reason, reconfiguration processes are 
defined as inherently transactional: such processes must be executed 
atomically, and they should be undoable if anything fails. This transactional 
support is provided in the PRISMA ADL by means of a section called 
Transactions (see Figure 6.11): every process defined in this section is executed 
inside a transactional context. Transactional management is entirely 
transparent for the System architect: this is managed by the underlying 
reconfiguration mechanisms (i.e. the Reconfiguration Coordination aspect, 
see section 6.4.3). The architect only describes: (i) the reconfiguration process 
(i.e. an ordered set of configuration actions), and (ii) the end of the process 
(by means of the END process, see last line from Figure 6.11).  

For instance, a more complex reconfiguration transaction that relies explicitly 
on the use of transactions is IncrementalStart (see Figure 6.12). This 
configuration transaction is activated periodically after an unrecoverable 
failure of the VisionSystem. In this situation, all the subsystems (i.e. 
components and connectors) have been stopped and disabled for preventing 
additional failures. This transaction consists of three processes. The first one 
sets some internal variables, as the output if anything fails. The second 
process, RESTART, tries to incrementally enable each one of the subsystems 
that were previously stopped. This is performed by means of replace 
operations: a new instance is created and the old state is migrated, if possible. 
The reason is that a partial restart may solve some of temporary failures 
(Yurcik & Doss, 2001), even internal transient errors or external physical 
conditions (such as humidity, power failure, etc.). Finally, if all the elements 
have been replaced successfully, the WAITING-TEST process is executed (see 
Figure 6.12). This process waits for two mutually exclusive events: validOutput 
or faultyOutput. These events are triggered by the VisionWatchdog component 
instance after testing the behaviour of the subsystems of the VisionSystem (see 
the complete specification at appendix A.1.7.4). If all the testing is correct (i.e. 
the validOutput event is received), then the transaction is committed: this is 
done by calling the END process, which is provided by the PRISMA ADL. On 
the other hand, if the testing has failed (i.e. the faultyOutput event is received 
instead), the transaction is rollbacked: this is done by calling the ROLLBACK 
process. Then, all the configuration actions that had been executed are 
undone: the original instances are restored, and the replacements deleted. 

 

ReconfigurationAnalysis aspect VisionSystemReconfigurationAnalysis 

... 

Transactions 

 IncrementalStart(output success: boolean): 

  // Tries to restart all the subsystems after a failure 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

188 

  INCREMENTALSTART ::=  

   <success=false> --> RESTART; 

  RESTART ::= 

   // Replaces the old instances by new, fresh ones. 

   getArchElementInitializationValues!( 

    videoCaptureCard-list[0], videoCardInitValues) --> 

   replace-VideoCaptureCard!(videoCaptureCard-list[0],  

    videoCardInitValues[0], output newID)  --> 

   replace-VCC-Conn!(VCC-Conn-list[0], output newID) --> 

   getArchElementInitializationValues!(visionWatchdog-list[0], 

    watchdogInitValues) --> 

   replace-VisionWatchdog!(visionWatchdog-list[0],  

    watchdogInitValues[0], output newID) --> 

   if (imageProcCard-list.Size()>0) then 

    replace-ImageProcCard!(imageProcCard-list[0], 

     cameraPos, output newID) --> 

   foreach elem in imageProcSoftware-list do ( 

    replace-ImageProcSoftware!(elem,cameraPos,output newID);  

   ) --> 

   replace-IPC-Conn!(IPC-Conn-list[0], output newID) --> 

   WAITING-TEST; 

  WAITING-TEST ::= 

   ( INTERNAL-EVENTS_validOutput?() --> <success=true>END ) 

  + ( INTERNAL-EVENTS_faultyOutput?(failingID) --> ROLLBACK); 

Figure 6.12. Example of Configuration Transactions: IncrementalStart 

The Reconfiguration Analysis aspect is provided by default with auxiliary 
variables and services, to make easy the specification of reconfiguration 
processes. These are automatically generated for the given domain (i.e. the 
architecture to reconfigure). On the one hand, predefined attributes are 
provided for getting different kinds of information (see Figure 6.13):  

- systemID is a read-only attribute that provides the ID of the System 
instance being reconfigured. This is useful for notifying external 
systems about reconfiguration actions performed internally. 

- <ArchitecturalElementType>-list. For each architectural 
type available in the architecture being managed, an attribute named 
<ArchitecturalElementType>-list is provided. This attribute is a read-
only list which contains references (i.e. the IDs) to the instances of the 
type named <ArchitecturalElementType>. This is useful for obtaining 
the elements that are instantiated in a System architecture, since their 
IDs are required for performing reconfiguration actions (e.g. see 
Figure 6.12). The values of these lists are provided by means of 
derivation rules; that is, their values are actually provided by low-level 
reconfiguration mechanisms (i.e. the Monitoring Aspect). However, 
this is transparently provided to the System architect.  

 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

189 

ReconfigurationAnalysis Aspect VisionSystemAnalysisServices 

 

 Attributes 

  Derived 

  // Attributes to query the current configuration (read-only) 

   systemID: string, derivation:  

    getArchElementInstances(“self”, output list[0]); 

   videoCaptureCard-list : list, derivation:  

    getInstances-videoCaptureCard(output  

     videoCaptureCard-list); 

   imageProcCard-list : list, derivation:  

    getInstances-imageProcCard(output imageProcCard-list); 

   imageProcSoftware-list: list, derivation:  

    getInstances-imageProcSoftware(output  

     imageProcSoftware-list); 

   visionWatchdog-list: list, derivation:  

    getInstances-visionWatchdog(output visionWatchdog-list); 

   VCC-Conn-list: list, derivation:  

    getInstances-VCC-Conn(output VCC-Conn-list); 

   IPC-Conn-list: list, derivation:  

    getInstances-IPC-Conn(output IPC-Conn-list); 

... 

Figure 6.13. Example of auxiliary attributes provided by the Rec.Analysis aspect 

The services that can be used in a Reconfiguration Analysis aspect for defining 
reconfiguration triggers and configuration transactions are the following:  

 The domain-specific reconfiguration services (i.e. configuration 
actions) provided by the Reconfiguration Coordination aspect. These 
services allow us to change the current architecture in a safe way. For 
instance, the service create-ImageProcSoftware creates a new 
instance of the ImageProcSoftware type, whereas the service attach-
Att_VCCConn_IPCSW attaches an instance of a VCC-Conn 
connector to an instance of an ImageProcessingSoftware component. 

 All the services provided by the Monitoring aspect, which allow us to 
introspect the current state of the managed architecture or intercept 
events. For instance, the service AttachedElements may be useful 
for getting the elements that are interacting with a given instance and 
which will be affected by the reconfiguration of such instance. 

 Additionally, the services StartElement and StopElement 
provided by the ReconfigurationEffector aspect. These services may 
be useful for selectively disabling conflicting elements temporarily 
until a certain event is received. For instance, selective stoppings have 
been used by the DisableVisionSystem configuration transaction (see its 
specification in appendix A.2.3.1) for disabling misbehaving 
component instances. Later, when certain conditions apply (in this 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

190 

case, some time has passed), a different configuration transaction (i.e. 
IncrementalStart) tries to restart the elements of the architecture. 

6.4.2.4 Adding Inference Mechanisms 

The Reconfiguration Analysis aspect defines a placeholder where reconfiguration 
decision mechanisms are placed. However, the decision of which inference 
engine use to activate and select reconfiguration actions is left to the user. We 
have used the PRISMA ADL to define Event-Condition-Action (ECA) 
policies. These policies are expressive enough to describe how a composite 
component should react in presence of certain events. In fact, it is the 
common approach used in autonomic computing approaches (Huebscher & 
McCann, 2008). In our approach, these policies are defined by the system 
architect at design-time, although they can be changed at runtime by using 
reflective dynamic evolution mechanisms, as described in section Chapter 7. 

Other, more sophisticated, inference engines may be used for activating and 
selecting reconfiguration plans. For instance, Artificial Neural Networks can 
be used for classifying inputs from the architecture (e.g. performance, events, 
etc.) into reconfiguration plans, in a similar way as robot controllers are 
generated (Santos et al., 2001) (Buason et al., 2005). Another option is to use 
Inductive Systems to select a reconfiguration plan depending on the 
information gathered in a knowledge-base from previous reconfigurations or 
actions taken by the user.  

However, the most challenging is to build reconfiguration plans at runtime. 
This is an active area of research which is out of the scope of this thesis and is 
left to future work. A promising work on the topic is the development of 
Digital Evolution (McKinley et al., 2008), where the dynamic generation of state 
diagrams is explored by means of evolutionary techniques. However, it is still 
in an early research phase. Another promising approach is the automatic 
synthesis of component configurations from high-level goals (Sykes et al., 
2008). All of these mechanisms could perfectly be encapsulated inside the 
ReconfigurationAnalysis aspect using the expressive power of the PRISMA 
ADL. 

6.4.3 The Reconfiguration Coordination Aspect 

This aspect performs two roles. On the one hand, the Reconfiguration 
Coordination aspect provides the specific reconfiguration services that are 
available according to the System type that the aspect manages. These 
reconfiguration services are domain-specific (i.e. architecture-specific), and are 
called configuration actions. On the other hand, the Reconfiguration 
Coordination aspect is responsible for driving the successful execution of the 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

191 

reconfiguration plans triggered by the Reconfiguration Analysis aspect. It 
ensures that these plans are performed transactionally (all or none), and that 
the current state of the architecture is preserved.  

These roles are implemented in two different parts: one defines the domain-
specific reconfiguration behaviour (i.e. the configuration actions), and the 
other defines the domain-independent reconfiguration behaviour (i.e. the 
transactional management of reconfigurations and the generic reconfiguration 
services). This separation is due to its nature: the domain-specific behaviour is 
automatically generated for each System type, and the domain-independent 
behaviour is provided as part of the PRISMA metamodel. These parts are 
linked to each other by means of inheritance mechanisms: domain-
independent behaviour is provided by a base aspect called 
BaseReconfigurationCoordination, and domain-specific behaviour is provided 
through the specialization of the base aspect. The specialized aspect is named 
following this pattern: <SystemTypeName>ReconfigurationServices. 
For instance, the specialized Reconfiguration Coordination aspect for the 
VisionSystem System type is called VisionSystemReconfigurationServices. This 
specialized aspect internally uses the behaviour that is inherited from its 
parent (i.e. the BaseReconfigurationCoordination aspect). Both aspects are 
described in detail next. Their complete specification is provided in appendix 
A.2.4. 

6.4.3.1 Domain-Specific Reconfiguration Services 

The Reconfiguration Coordination aspect is the provider of reconfiguration 
services: it provides a set of domain-specific reconfiguration services to change 
the architecture of a System instance at runtime. These are called configuration 
actions, and are automatically generated by the Dynamic PRISMA model 
compiler. 

A Configuration Action is basically an architectural reconfiguration operation: 
an operation which, on execution, may change the architecture of a System 
instance, either by adding or removing elements, or by adding or removing 
connections among elements. This does not differ on the reconfiguration 
operations that other works have proposed (Bradbury et al., 2004). However, 
configuration actions are domain-specific: the set of available reconfiguration 
operations is defined in terms of the operations that are allowed by the 
architectural type of the instance being reconfigured.  

This is a first step for guaranteeing that the changes performed are type-
conformant: only instances of allowed types can be created, and they can only 
be attached to other elements while satisfying the communication patterns 
defined in the architectural type. In this way, since only previously defined 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

192 

(and validated) communication patterns can be used, the possibility of 
performing invalid configurations at runtime is reduced.  

There are seven kinds of configuration actions available. These are defined in 
terms of the specific elements defined in the System type being reconfigured: 
architectural element types (i.e. component and connector types), attachment 
types (i.e. interaction patterns among component/connector types) and 
binding types (i.e. interaction patterns among architectural types and ports).  

The different kinds of configuration actions are the following: 

- getInstances-<ArchitecturalTypeName>: returns a list with 
the IDs of the instances of a certain type. 

- create-<ArchitecturalTypeName>: for creating new instances 
of components/connectors of a certain type. This service requires a 
set of initialization parameters30 (determined by the type to 
instantiate) and returns the ID of the new instance. 

- destroy-<ArchitecturalTypeName>: for destroying instances 
of components/connectors of a certain type. This service requires the 
ID of the instance to destroy. 

- replace-<ArchitecturalTypeName>: for replacing an old 
instance with a new instance of the same type, performing state 
migration if possible. This is useful for recovering/updating old 
instances. It allows us to provide different initialization parameters to 
the new instance. 

- attach-<AttachmentTypeName>: for attaching two instances as 
defined in <attachmentTypeName>. This action only requires the IDs 
of the instances to attach. 

- detach-<AttachmentTypeName>: for detaching two instances. 
This action requires the IDs of the instances to detach. 

- bind-<BindingTypeName>: for binding an instance to an external 
port, as defined in <bindingTypeName>. This action only requires 
the ID of the instance to bind (the port name is defined in 
<bindingTypeName>). 

                                                      
30 Generally, in order to instantiate a type, a set of initialization values may be 
required. For instance, the VideoCaptureCard component requires the initial frame 
rate value, and the ImageProcCard component requires the position of the camera for 
adjusting the captured images. For this reason, reconfiguration specifications should 
also provide the required initialization values when creating new instances or 
replacing existing ones. 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

193 

- unbind-<BindingTypeName>: for removing a binding of an 
instance or port. This action only requires the ID of the instance to 
unbind. 

In this way, the use of (domain-specific) configuration actions avoids the 
possibility of instantiating non-allowed types, removing critical instances, or 
establishing invalid connections among architectural elements. In other 
words, non-valid configuration actions cannot be used because they are simply 
not provided. 

For instance, Figure 6.14 shows the set of domain-specific configuration 
actions that are available for reconfiguringVisionSystem instances: 

 

ReconfigurationCoordination Aspect VisionSystemReconfigurationServices 

 using I_VisionSystemReconfigurationServices 

... 

 

Services 

 // *** DOMAIN-SPECIFIC RECONFIGURATION SERVICES *** 

 //*** Create- Services *** 

 in create-ImageProcCard(cameraPosition: string,  

    output newInstanceID:string); 

 in create-ImageProcSoftware(cameraPosition: string, 

    output newInstanceID: string); 

 

 //*** Destroy- Services *** 

 in destroy-imageProcCard(instanceID : string); 

 in destroy-imageProcSoftware(instanceID : string); 

 

 //*** Replace- Services *** 

 in replace-VideoCaptureCard(oldInstanceID: string,  

    frameRate: natural, output newInstanceID : string); 

 in replace-ImageProcCard(oldInstanceID: string,  

    cameraPosition: string, output newInstanceID : string); 

 in replace-ImageProcSoftware(oldInstanceID: string,  

    cameraPosition: string, output newInstanceID : string); 

 in replace-VisionWatchdog(oldInstanceID: string,  

    timeout: natural, output newInstanceID : string); 

 in replace-VCC-Conn(oldInstanceID: string,  

    output newInstanceID : string); 

 in replace-IPC-Conn(oldInstanceID: string,  

    output newInstanceID : string); 

 

 //*** Attach- Services *** 

 in attach-Att_VCCConn_IPC(VCCConn-ID : string, IPC-ID: string); 

 in attach-Att_VCCConn_IPCSW(VCCConn-ID:string,IPCSW-ID:string); 

 in attach-Att_IPC_IPCConn(IPC-ID : string, IPCConn-ID: string); 

 in attach-Att_IPCSW_IPCConn(IPCSW-ID:string, IPCConn-ID:string); 

 

 //*** Detach- Services *** 

 in detach-Att_VCCConn_IPC(VCCConn-ID: string, IPC-ID: string); 

 in detach-Att_IPC_IPCConn(IPC-ID: string, IPCConn-ID: string); 

 in detach-Att_VCCConn_IPCSW(VCCConn-ID:string,IPCSW-ID:string); 

 in detach-Att_IPCSW_IPCConn(IPC-ID: string,IPCConn-ID: string); 

 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

194 

 //*** Bind- Services *** 

 // NONE 

 //*** Unbind- Services *** 

 // NONE 

...  

Figure 6.14. Example of domain-specific reconfiguration services 

Note in the example above that not all the kinds of configuration actions are 
available for reconfiguring a VisionSystem architecture. This is due to the 
constraints defined by VisionSystem type (see the complete specification of the 
type in section A.1.4.1). For instance, there are not: (i) bind/unbind actions, 
(ii) create/destroy actions for VideoCaptureCard and VisionWatchdog 
components, or for VCC-Conn and IPC-Conn connectors, and (iii) 
attach/detach actions among VideoCaptureCard or VisionWatchdog instances 
and VCC-Conn instances. This is due to the cardinalities defined in the 
VisionSystem type.  

Configuration actions do not only constrain the kinds of reconfiguration 
operations that can be performed, but also take into account the additional 
constraints defined in the System type, such as the minimum and maximum 
cardinalities. If a configuration action violates the constraints defined in the 
System type (e.g. the maximum number of instances allowed of a certain type), 
then the operation fails and is aborted (this checking is performed by the 
Reconfiguration Coordination aspect, which will be described later).  

Cardinality constraints are checked at runtime, except the special case of 
“1..1” cardinalities, which are evaluated at compile-time. When the cardinality 
of an architectural element is “1..1”, i.e. only an instance of this element can 
exist at runtime –a singleton element-, then no create/destroy configuration 
actions are provided for this architectural element. Except from the first 
instance created at the instantiation of a System, no new instances can be 
created, and this instance cannot be removed from the system. This also 
applies for attachment and binding types with a “1..1” cardinality. This can be 
observed in the available configuration actions of the example above (Figure 
6.14). For instance, the cardinality of VideoCaptureCard and VisionWatchdog 
components cannot vary (i.e. their cardinality is “1..1”). Then, after the initial 
VisionSystem instantiation, no new instances of these components can be 
created or destroyed. Thus, the only alternative to modify the existing 
instances is by means of replace actions. 

6.4.3.2 Transactional Management of Reconfiguration Plans 

The Reconfiguration Coordination aspect is actually the responsible for 
executing reconfiguration plans (i.e. ordered sets of domain-specific 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

195 

reconfiguration operations). Since these reconfiguration plans are meant to 
change a running System instance, it must be guaranteed that their execution 
do not break the running system.  

Reconfiguration plans clearly exhibit a transactional behaviour: their 
reliability depends on the same properties that Jim Gray and Andreas Reuter 
defined for describing reliable transactional systems (Gray & Reuter, 1993). 
These properties, also known as ACID properties, are the following:  

- Atomicity. A reconfiguration plan must be processed as a single unit: 
all the required configuration actions must be executed successfully or 
the entire plan undone. Otherwise, a partially executed 
reconfiguration plan would leave the architecture in an inconsistent 
state. In case a reconfiguration fails, the system is left unchanged.  

- Consistency. The execution of a reconfiguration plan must leave the 
architecture of the system in a consistent state. That is, in the 
resulting architecture: (i) all the required client interfaces are bound 
to corresponding server interfaces, and (ii) all the architectural 
elements temporarily stopped during the reconfiguration have been 
restarted.  

- Isolation. The intermediate results of a reconfiguration plan should 
not be accessible until the reconfiguration finishes. That is, the 
resource being changed (i.e. the architecture) should be isolated from 
the other elements that perform reads or writes on this resource. In 
this context, the elements that read (or use) the architecture of a 
System instance are its architectural elements and ports: they interact 
following the topology defined by the architecture. This means that, 
during the processing of a reconfiguration plan, all the elements 
subject to changes must be isolated from the others. On the other 
hand, the elements that write/modify the architecture are other 
reconfiguration plans. This means that, during the processing of a 
reconfiguration plan, other reconfiguration plans cannot be 
concurrently executed on the same architecture or System instance. 
That is, reconfiguration plans must be sequentially executed to avoid 
architecture inconsistencies. 

- Durability. This property refers to the persistence over time of the 
changes performed by a transaction. This is required to guarantee 
that, in case any kind of system failure occurs (either hardware or 
software), the recovered system keeps the reconfigurations performed.  

In order to make explicit the transactional character of reconfiguration plans, 
we decided to use the term configuration transaction. Thus, a configuration 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

196 

transaction is defined as an ordered set of domain-specific reconfiguration 
operations (i.e. configuration actions) that are executed transactionally, i.e. 
satisfying the ACID properties. The transactional support for reconfigurations 
is provided by the Reconfiguration Coordination aspect.  

A configuration transaction is delimited by two operations: 
BeginConfigurationTransaction and EndConfigurationTransaction. These 
operations delimit the beginning and the end (i.e. the commit) of a 
configuration transaction, respectively. During the execution of a 
configuration transaction, auxiliary information is kept for later undoing the 
changes if an error occurs. If the transaction finishes successfully (i.e. the 
EndConfigurationTransaction is executed), this information is simply removed 
and the new changes confirmed and persisted. Otherwise, if any configuration 
action fails or triggers an exception, a service called 
RollbackConfigurationTransaction is implicitly executed, which uses the 
previously stored auxiliary information to undo the architectural changes. 
This service can also be explicitly invoked to manually abort a reconfiguration 
transaction.  

Next, the details about transactional management are described. 

BeginConfigurationTransaction  

The execution of this service performs the following actions. First, it prevents 
other configuration transactions to be started while there is another being 
executed, in order to guarantee the isolation of configuration transactions. 
This is performed by means of the attribute transState, which keeps the state of 
the currently processed transaction (if any). This attribute is set to ACTIVE if a 
transaction is being processed, or to COMMITTED/ROLLBACKED if a 
transaction has finished. Thus, the precondition shown in Figure 6.15 verifies 
that no other transaction is being processed. If this precondition is satisfied, 
then the BeginConfigurationTransaction service can be executed, and then a new 
configuration transaction started. Then, the attribute transState is set to 
ACTIVE, which in turn will prevent new configuration transactions to be 
started.  

Next, this service initializes the auxiliary structures that will be used to store 
the required information to undo the configuration transaction (see Services 
section, Figure 6.15). These structures contain: the IDs of the architectural 
elements and connections created by the transaction (stored in the attributes 
called archElementsCreated and connectionsCreated, respectively); and the IDs of 
the architectural elements and connections that should be destroyed if the 
transaction is committed (stored in the attributes called archElementsToDestroy 
and connectionsToRemove, respectively). 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

197 

Finally, the BeginConfigurationService creates a new transactional context for 
encapsulating the reconfiguration process and preserve the isolation of the 
elements that will be changed (i.e. the architecture). This functionality is 
provided by the PRISMANET middleware, and is accessible by means of an 
external function called NewTransactionalContext. This function returns the ID 
of the newly created transactional context, which is stored in the attribute 
transactionID (see Transactions section, Figure 6.15).  

The concept of transactional context represents the limits of a transaction and 
guarantees the isolation of the resources that are involved in the transaction 
(i.e. that are subject to change). A transactional context protects the attributes 
of the aspect which has initiated the transaction from those services and 
aspects that are outside this transactional context. Thus, only the services that 
are executed by the transaction can read or modify these attributes, thus 
guaranteeing that the intermediate results of the transaction are hidden to 
other elements. In addition, the limits of the transactional context are not 
only confined to the initial aspect or architectural element. The boundaries of 
a transactional context are dynamically extended to: (i) include the results of 
nested transactions, or (ii) support distributed transactions. Further details 
about the implementation of the transactional support in PRISMANET can 
be found in (Millán-Belda, 2006, pp. 129-142) and in Ambient-PRISMA (Ali, 
2008, pp. 301-310). 

 

ReconfigurationCoordination Aspect  

... 

 Attributes 

 Variable 

  transactionID: string; 

  transState: string = “COMMITTED”; // Default value 

  archElementsCreated : list;   

  archElementsToDestroy : list; 

  connectionsToRemove : list; 

  connectionsCreated : list;  

 Derived 

  ArchElemList : list,  

   derivation: getArchElementInstances(“*”, ArchElemList); 

  ConnectionsList : list,  

   derivation: getConnectionsOfArchElem(“*”,ConnectionsList); 

... 

 Preconditions 

  BeginConfigurationTransaction()  

   if ( transState=”COMMITTED” or transState<>”ROLLBACKED”); 

... 

 Services 

 // *** Transaction Management *** 

  in BeginConfigurationTransaction() 

   Valuations 

    [BeginConfigurationTransaction()] 

    transState = “ACTIVE”; 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

198 

    archElementsCreated = new list[]; 

    archElementsToDestroy = new list[]; 

    connectionsToRemove = new list[]; 

    connectionsCreated = new list[]; 

... 

 External Functions 

  NewTransactionalContext(output transactionID: string); 

   // Creates a new transactional context 

... 

 Transactions 

 BeginConfigurationTransaction(): 

  BEGINCONFIG::=  

   NewTransactionalContext(output transactionID) --> END; 

... 

Figure 6.15. PRISMA specification of BeginConfigurationTransaction 

EndConfigurationTransaction 

This service is executed to define the end of a configuration transaction, and 
then, to commit the changes performed on the architecture. The precondition 
to execute this service is that a transaction is being processed (i.e. the attribute 
transState has the value ACTIVE), and that this transaction has been 
successfully executed until now (i.e. the attribute transState do not have the 
value ROLLBACK, which is set when an error occurs). This is evaluated in the 
preconditions section, shown in Figure 6.16.  

The execution of the EndConfigurationTransaction service performs the 
following actions. First it verifies the consistency of the resulting architecture 
(see the CHECK process in the transactions section in Figure 6.16). That is, all 
the client ports are bound to server ports. This checking is performed by the 
service CheckArchitectureConsistency (see  Figure 6.17). This service checks that 
each port with a “requires” role (i.e. a client behaviour, it is a service 
requester) is correctly bound to a port with the same interface and a 
“provides” role (i.e. a server behaviour, it is a service provider). If this checking 
fails (i.e. the resulting architecture is not consistent), then the configuration 
transaction is rollbacked (i.e. the RollbackConfigurationTransaction service is 
executed), leaving the architecture in the previous state. 

Next, the architectural changes are committed, i.e. made permanent. This is 
done in the COMMIT process (see the transactions section in Figure 6.16), 
which:  

- Confirms the removals that have been performed by the 
configuration transaction. The IDs of the elements to remove, i.e. 
connections and architectural elements, are stored in the attributes 
connectionsToRemove and archElementsToDestroy. Then, these elements 
are destroyed, by means of the services Disconnect and DestroyInstance. 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

199 

Once the elements are removed/destroyed, the operation cannot be 
undone, since their internal state is lost. 

- Starts the architectural elements and connections that have been 
created by the transaction. The elements to start are obtained from 
the attributes archElementsCreated and connectionsCreated. First the new 
connections are enabled, and then the architectural elements, which 
may use these connections. 

- Restarts the elements that were stopped temporarily by the 
configuration transaction. These elements are those that have the 
status “passivated”. Passivating allows us to partially stop an element 
with respect other elements, avoiding that this element starts new 
interactions with the others.  

- Saves the new configuration in disk, in order to make the changes 
permanent. If the System instance is restarted, its architecture will 
include the reconfigurations performed previously. This is performed 
by: (i) obtaining the resulting architecture specification (which is a 
XML description provided by the service getConfigurationSpecification), 
and (ii) saving it in the filesystem  (by means of the external function 
SavePRISMASpec). 

Finally, the configuration transaction is finished: (i) the transactional context 
is finished, through the external function FinishTransactionalContext (see the 
FINISH process in Figure 6.16); and (ii) the attribute transState is set to 
COMMITTED, to allow new configuration transactions to be processed (see the 
Valuations section in Figure 6.16). 

 

ReconfigurationCoordination Aspect  

... 

 Preconditions 

  EndConfigurationTransaction() if (transState=”ACTIVE” ); 

   // EndConfiguration is only allowed if a transaction exists 

... 

 Services 

  in EndConfigurationTransaction() 

   Valuations 

    [EndConfigurationTransaction()] 

    transState=“COMMITTED”; 

... 

 External Functions 

  FinishTransactionalContext(transactionID: string); 

   // Destroys a transactional context and makes changes  

   // permanent 

  SavePRISMASpec(name: string, specification: string); 

   // Saves a PRISMA specification (a type or a configuration)  

   // in the filesystem 

... 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

200 

 Transactions 

 EndConfigurationTransaction():  

  CHECK::=  

   CheckArchitectureConsistency(output isConsistent) --> 

   if { isConsistent=true AND transState=“ACTIVE” }  

    then COMMIT   

    else RollbackConfigurationTransaction(); 

  COMMIT::=  

   foreach connID in connectionsToRemove do 

    ( Disconnect!(connID) )  --> 

   foreach archElemID in archElementsToDestroy do 

    ( DestroyInstance!(archElemID) ) --> 

   foreach connID in connectionsCreated do 

    ( StartElement!(connID) )  --> 

   foreach archElemID in archElementsCreated do 

    ( StartElement!(archElemID) )  --> 

   getElementsOfStatus(“passive”, passivatedElements) --> 

   foreach stoppedElem in passivatedElements do 

    (StartElement!( stoppedElem ) ) -->  

   getConfigurationSpecification!(output newConfig) -->  

   SavePRISMASpec(systemID, newConfig) --> FINISH; 

  FINISH::= FinishTransactionalContext(transactionID) --> END; 

... 

Figure 6.16. PRISMA specification of EndConfigurationTransaction 

// Checks that all the required ports are bound to provided ports  

CheckArchitectureConsistency(output isConsistent: boolean): 

 CHECKCONSISTENCY::= 

  foreach archElemID in ArchElemList do ( 

   getArchElementProperties!(archElemID,_, output portsList) 

   --> 

   foreach port in portsList do ( 

    getPortProperties!(archElemID, port, output isProvided,  

     output isRequired,_, output connectionList) --> 

    if { isRequired=true}  

     then ( 

      if {connectionList.Size()=0}  

      // A disconnected port has been found 

      then ( <isConsistent:=false> --> END ) 

     ) 

     else 0 

   ) 

  ) --> 

  <isConsistent:=true> --> END; 

Figure 6.17. PRISMA specification of CheckArchitectureConsistency 

RollbackConfigurationTransaction  

This service is executed to abort a configuration transaction, and then, to 
undo the changes performed on the architecture. The precondition to execute 
this service is that a transaction is being processed (i.e. the attribute transState 
has the value ACTIVE), or that this transaction has been failed (i.e. the 
attribute transState has set to ROLLBACK). This is evaluated in the 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

201 

preconditions section, shown in Figure 6.18. This service can be executed 
explicitly (i.e. by a configuration transaction) if some desired conditions do 
not hold; or implicitly, if a configuration action fails unexpectedly. 

The execution of the RollbackConfigurationTransaction service rollbacks the 
reconfiguration process. This is done in the ROLLBACK process (see the 
transactions section in Figure 6.16), which:  

- Undoes the creations that have been performed by the configuration 
transaction. The IDs of the elements created, i.e. connections and 
architectural elements, are obtained from the attributes 
connectionsCreated and archElementsCreated. Then, these elements are 
destroyed, by means of the services Disconnect and DestroyInstance.  

- Undoes the removals that have been performed by the configuration 
transaction. Since removals cannot be undone, removals are not 
actually executed until the confirmation of the transaction. If the 
transaction is not confirmed and must be undone, simply these 
removals are not performed, and the elements to remove are restarted 
again. The elements to start are obtained from the attributes 
archElementsToDestroy and connectionsToRemove. First the connections 
are enabled, and then the architectural elements, which may use these 
connections. 

- Restarts the elements that were stopped temporarily by the 
configuration transaction. These elements are those that have the 
status “passivated”. Passivating allows us to partially stop an element 
with respect other elements, avoiding that this element starts new 
interactions with the others.  

Finally, the current configuration transaction is finished: (i) the transactional 
context is finished, through the external function FinishTransactionalContext 
(see the FINISH process in Figure 6.18); and (ii) the attribute transState is set 
to ROLLBACKED, to allow new configuration transactions to be processed (see 
the Valuations section in Figure 6.18). 

 

ReconfigurationCoordination Aspect  

... 

 Preconditions 

  RollbackConfigurationTransaction()  

   if (transState=”ACTIVE” or transState=”ROLLBACK”); 

   // Rollback only when a transaction exists 

... 

 Services 

  in RollbackConfigurationTransaction(); 

   Valuations 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

202 

    [RollbackConfigurationTransaction()] 

    transState=”ROLLBACKED”; 

... 

 Transactions 

 RollbackConfigurationTransaction(): 

  ROLLBACK::=  

   foreach connID in connectionsCreated do 

    ( Disconnect!(connID) )  --> 

   foreach archElemID in archElementsCreated do 

    ( DestroyInstance!(archElemID) ) --> 

   foreach archElemID in archElementsToDestroy do 

    ( StartElement!(archElemID) ) --> 

   foreach connID in connectionsToRemove do 

    ( StartElement!(connID) )  -->  

   getElementsOfStatus(“passive”, passivatedElements) --> 

   foreach stoppedElem in passivatedElements do 

    (StartElement!( stoppedElem) ) --> FINISH; 

  FINISH::= FinishTransactionalContext(transactionID) --> END; 

... 

Figure 6.18. PRISMA specification of RollbackConfigurationTransaction  

Finally, we summarize here how the Reconfiguration Coordination aspect 
guarantees the ACID properties for configuration transactions:  

- Atomicity of reconfigurations is guaranteed by means of the internal 
attributes of the aspect, which keep “a journal” of the 
reconfigurations realised, and the rollback of these changes if any 
intermediate operation fails.  

- The architectural consistency after a configuration transaction is 
evaluated by the service EndConfigurationTransaction. If the resulting 
architecture is not consistent, the transaction is undone. 

- Isolation is performed together by preconditions and transactional 
contexts. The preconditions of BeginConfigurationTransaction and 
EndConfigurationTransaction prevent other configuration transactions 
to be executed while one is being processed. And, transactional 
contexts protect the architecture being changed to be accessed by 
services not included in the current transaction. 

- Durability of the reconfigurations is performed by the service 
EndConfigurationTransaction. When a transaction is committed, the 
resulting configuration is saved in disk for enabling recovering it in 
the future.  

6.4.3.3 Generic Reconfiguration Services 

The Reconfiguration Coordination aspect provides configuration actions as a 
way of guaranteeing that only type-conformant reconfigurations are 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

203 

performed. These configuration actions are type-dependent, i.e. they are 
specific for a System type. However, internally these configuration actions 
invoke generic reconfiguration services, i.e. services that provide domain-
independent reconfiguration behaviour (see the protocol section of the 
VisionSystemReconfigurationServices aspect, Figure 6.19).  

 

ReconfigurationCoordination Aspect VisionSystemReconfigurationServices 

 using I_VisionSystemReconfigurationServices 

... 

 Protocol 

 VISIONSYSTEMRECONFIGURATION ::= begin() --> WAITING; 

 WAITING ::=  

  RECONFPLANS.BeginConfigurationTransaction?() --> RECONFIG; 

 RECONFIG ::=  

 ( // *** Provided Reconfiguration Services *** 

   RECONFPLANS.create-imageProcCard?(cameraPosition, newID) 

   --> CreateArchElem(“ImageProcCard”,  

     new list[cameraPosition], newID) 

  + RECONFPLANS.destroy-imageProcCard?(instanceID) 

   --> DestroyArchElem(“ImageProcCard”,instanceID) 

  + RECONFPLANS.replace-imageProcCard?(oldInstanceID,  

    cameraPosition, newInstanceID)  

   --> ReplaceArchElem(oldInstanceID,“ImageProcCard”,  

    new list[cameraPosition], newInstanceID) 

  + RECONFPLANS.attach-Att_VCCConn_IPC?(VCC-ConnID, IPC-ID) 

   --> CreateAttachment(“Att_VCCConn_IPC”, VCC-ConnID,  

    IPC-ID, newAttID) 

  + RECONFPLANS.detach-Att_VCCConn_IPC?(VCC-ConnID, IPC-ID) 

   --> DestroyAttachment(“Att_VCCConn_IPC”, VCC-ConnID,  

    IPC-ID) 

  + RECONFPLANS.create-imageProcSoftware?(cameraPos, newID) 

   --> CreateArchElem(“ImageProcSoftware”, 

    new list[cameraPos], newID) 

  + RECONFPLANS.destroy-imageProcSoftware?(instanceID) 

   --> DestroyArchElem(“ImageProcSoftware”,instanceID) 

  + RECONFPLANS.replace-imageProcSoftware?(oldInstanceID,  

    cameraPosition, newInstanceID)  

   --> ReplaceArchElem(oldInstanceID, “ImageProcSoftware”, 

     new list[cameraPosition], newInstanceID) 

  + RECONFPLANS.attach-Att_VCCConn_IPCSW?(VCC-ConnID,IPCSW-ID) 

   --> CreateAttachment(“Att_VCCConn_IPCSW”, VCC-ConnID,  

    IPCSW-ID, newAttID) 

  + RECONFPLANS.detach-Att_VCCConn_IPCSW?(VCC-ConnID,IPCSW-ID) 

   --> DestroyAttachment(“Att_VCCConn_IPCSW”, VCC-ConnID,  

    IPCSW-ID) 

    ... 

    ... // Rest of available Reconfiguration Services 

    ... 

  ) --> RECONFIG 

... 

End ReconfigurationCoordination Aspect  

  VisionSystemReconfigurationServices; 

Figure 6.19. Protocol section of the VisionSystemReconfigurationServices aspect 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

204 

Generic reconfiguration services are defined by the Reconfiguration 
Coordination base aspect, and describe the application-independent actions 
that must be performed for each kind of reconfiguration operation (i.e. create 
instances, disconnect instances, replace instances, etc.). Generally, each 
generic reconfiguration service performs the following steps:  

- Evaluation of preconditions, to check if the parameters provided are 
correct and if the constraints defined in the System type are satisfied 
(e.g. max and min cardinalities). 

- Stopping of elements (mainly in removals): the running transactions 
of the elements affected by a reconfiguration action are finished in a 
safe way, to avoid disruptions to the rest of the system. Usually this 
implies passivating the adjacent elements.  

- Apply the low-level changes (e.g. destroying the required instance and 
its connections).  

- Check the consistence of the transactional context, to evaluate if any 
error has been raised unexpectedly. In this case, the transaction is 
rollbacked automatically. 

- If the service has been finished successfully, the ID of the element 
created/removed is saved, in order to later undo the operation if 
anything fails.  

Next, the specification of these generic reconfiguration services in PRISMA 
AOADL is presented. 

CreateArchitecturalElement 

This service creates a new instance of an architectural type. It requires the 
name of the architectural type to instantiate, typeName, and the initialization 
values required by such type, params. It returns the ID of the instance created, 
if the operation is executed successfully. The specification of this service is 
shown in Figure 6.20. 

 

ReconfigurationCoordination Aspect  

... 

 Preconditions 

 // Unused parameters are assigned to the “void” variable,  

 // represented as „_‟, for clarity purposes 

 CreateArchElem(typeName, params, newID) if 

  ( getArchElementInstances!(typeName, output instances) AND 

   META-TYPEDESCRIPTION_getArchTypeProperties! 

    (typeName, _, _, _, output AEmaxCard) AND 

    instances.Size() < AEmaxCard  ); 

... 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

205 

 Transactions 

 CreateArchElem(typeName, params, output newID): 

  CREATE::= CreateInstance!(typeName, params, output newID) --> 

      CHECK; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else archElementsCreated.add(newID) --> END; 

... 

Figure 6.20. PRISMA specification of CreateArchElem 

The preconditions to execute this service are that: (i) TypeName is a valid 
architectural type (i.e. it is a type defined in the System type), and (ii) the 
number of existing instances of typeName is lower than the maximum 
cardinality, AEmaxCard, defined for such type in the System type.  

The information required from the System type is obtained by means of the 
meta-level, which contains the description of the System type. 
Communications with the meta-level are performed by means of the 
played_role META-TYPEDESCRIPTION. This played_role provides services to 
introspect the System type, such as: getArchElementTypes, getAttachmentTypes, 
getBindingTypes, getArchTypeProperties, etc. (see the interface 
I_CompositeTypeDescription in appendix A.3.1). In this case, the service 
getArchTypeProperties is used to obtain the maximum cardinality defined by the 
System type for a certain architectural type. This service fails if the requested 
type, typeName, is not defined in the System type. Otherwise, it returns the 
maximum cardinality, AEMaxCard, which is used to evaluate the 
precondition. 

If the preconditions are satisfied, this service creates an instance of the 
required type, by calling the platform-dependent service CreateInstance, which 
is actually provided by the Reconfiguration Effector. 

Finally, this service verifies the consistence of the transactional context. If the 
service CreateInstance has failed, the transactional context will capture the 
exception and will be invalidated. The service CheckConsistence (an external 
function provided by the middleware) checks this situation. If the 
transactional context has been invalidated, the state of the current transaction 
(transState) is set to ROLLBACK and the transaction is rollbacked. Otherwise, 
the ID of the new instance, newID, is stored in the list archElementsCreated, to 
allow us undo the transaction if anything fails. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

206 

CreateAttachment and CreateBinding 

These services create a new connection: an attachment or a binding, 
respectively. CreateAttachment requires the following parameters: (i) the type of 
the attachment to create, attachType; and (ii) the IDs of the architectural 
instances to be attached, srcAE-ID and trgAE-ID. Similarly, CreateBinding 
requires: (i) the type of the binding to create, bindingType; and (ii) the ID of 
the architectural instance which will be bound to a System port, archElemID. 
Both services return the ID of the new connection created: attID and bindID, 
respectively. The specification of these services is shown in Figure 6.21. 

The preconditions to execute these services are quite similar: (i) the IDs of the 
architectural instances exist, (ii) the attachment/binding type is valid (i.e. 
defined in the System type), and (iii) the number of existing connections of 
such attachment/binding type is lower than the maximum cardinality defined 
in the System type.  

Similarly to the service CreateArchitecturalElement, the information required 
from the System type is obtained by means of the played_role META-
TYPEDESCRIPTION. In this case, the services getAttachmentTypeProperties and 
getBindingTypeProperties are used to obtain the maximum cardinalities allowed.  

 

ReconfigurationCoordination Aspect  

... 

 Preconditions 

 // Unused parameters are assigned to the “void” variable,  

 // represented as „_‟, for clarity purposes 

 CreateAttachment(attachType, srcAE-ID, trgAE-ID, attID) if  

  ( ArchElemList.Contains(sourceAE-ID) AND  

   ArchElemList.Contains(targetAE-ID) AND 

   META-TYPEDESCRIPTION_getAttachmentTypeProperties!( 

    attachType, _, _, _, output srcMaxCard, _, _, _, 

    output trgMaxCard) AND 

   getAttachedArchElems!(srcAE-ID, attachType,  

    output attached2src) AND  

   attached2src.Size() < srcMaxCard AND 

   getAttachedArchElems!(trgAE-ID, attachType, 

    output attached2trg) AND  

   attached2trg.Size() < trgMaxCard  ); 

 CreateBinding(bindingType, archElemID, bindID) if  

  ( ArchElemList.Contains(archElemID) AND  

   getConnectionsByType!(bindingType, output bindings) AND 

   META-TYPEDESCRIPTION_getBindingTypeProperties! 

    (bindingType, _, _, _, _, output trgMaxCard) AND 

   bindings.Size() < trgMaxCard ); 

... 

 Transactions 

 CreateAttachment(attachType, srcAE-ID, trgAE-ID, output attID): 

  ATTACH::=  

   META-TYPEDESCRIPTION_getAttachmentTypeProperties! 

    (attachType, _, output srcAEport, _, _, _,  



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

207 

     output trgAEport, _, _) --> 

   Connect!(srcAE-ID, srcAEport, trgAE-ID, trgAEport,  

    output attID) --> CHECK;  

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsCreated.add(attID) --> END; 

 

 CreateBinding(bindingType, archElemID, output bindID): 

  BIND::=  

   META-TYPEDESCRIPTION_getBindingTypeProperties!(bindingType, 

     output systemPortName, _, output trgAEport, _, _) --> 

   Connect!(“self”, systemPortName, archElemID, trgAEport,  

    output bindID) --> CHECK;  

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsCreated.add(bindID) --> END; 

... 

Figure 6.21. PRISMA specification of CreateAttachment & CreateBinding 

If the preconditions are satisfied, these services create the appropriated 
connections (i.e. an attachment or a binding), by calling the platform-
dependent service Connect (which is provided by the Reconfiguration 
Effector). This service creates a connection among two ports of two instances. 
Since the name of the involved ports is provided by the attachment/binding 
type, first they are retrieved from the meta-level. Then, the Connect service is 
invoked. In the case of an attachment, the connection is created among the 
ports of two architectural instances created in the architecture of a System 
instance. In the case of a binding, the connection is created among a port of 
an architectural instance and a port of the System instance. For this reason, 
one of the parameters of the Connect service is “self”, which is the ID of the 
System instance itself. 

Finally, the last operation performed by both services is the verification of the 
consistence of the transactional context. This is performed by the service 
CheckConsistence: if the transactional context has been invalidated, the state of 
the current transaction (transState) will be set to ROLLBACK and the 
transaction undone. Otherwise, the ID of the new connection is stored in the 
list connectionsCreated, to allow later undoing the transaction if anything fails. 

DestroyArchElem 

This service prepares an architectural instance to be removed: it is stopped 
and its connections (if any) removed. It requires the ID of the instance to be 
destroyed, id, and the name of its architectural type, typeName. The 
specification of this service is shown in Figure 6.22. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

208 

The preconditions to execute this service are the following: (i) typeName is 
valid (i.e. it is an architectural type defined in the System type), (ii) id is an 
instance of typeName, and (iii) the number of existing instances is greater than 
the minimum cardinality defined in the System type (i.e. an instance cannot 
be removed if this implies breaking the minimum cardinality). Similarly to the 
service CreateArchitecturalElement, the information required from the System 
type (i.e. the minimum cardinality) is obtained by means of the played_role 
META-TYPEDESCRIPTION.  

 

ReconfigurationCoordination Aspect  

... 

 Preconditions 

 // Unused parameters are assigned to the “void” variable,  

 // represented as „_‟, for clarity purposes 

 DestroyArchElem(typeName, id) if 

  ( getArchElementInstances!(typeName, output instances) AND  

   instances.Contains(id) AND 

   META-TYPEDESCRIPTION_getArchTypeProperties! 

    (typeName, _, _, output AEminCard, _) AND 

   instances.Size() > AEminCard ); 

... 

 Transactions 

 DestroyArchElem(typeName, id): 

    STOP ::= StopElement!(id) -->  

   GetStatus!(id, output status) -->  

   if {status=“Blocked”} then STOPCONNECTIONS else STOP; 

  STOPCONNECTIONS ::=  

   GetConnectionsOfArchElem!(id, output connectionList) --> 

   for each conn in connectionList do ( StopElement!(conn) ) 

   --> REMOVECONNECTIONS; 

  REMOVECONNECTIONS ::= 

   for each conn in connectionList do (  

    GetStatus!(conn, output status) -->  

    if {status=“Blocked”} then connectionsToRemove.add(conn)  

    else STOPCONNECTIONS 

   ) --> CHECK; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else archElementsToDestroy.add(id) --> END; 

... 

Figure 6.22. PRISMA specification of DestroyArchElem 

If the preconditions are satisfied, this service prepares the instance to be 
removed. First, the instance is safely stopped (i.e. it is driven to a quiescent 
status). This is performed by executing the service StopElement, provided by the 
Reconfiguration Effector. This may require passivating the adjacent instances, 
to avoid that they may start new interactions with the stopped instance. Next, 
the connections of the stopped instance are stopped and prepared for 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

209 

removal. This is performed by adding the connection IDs to the list 
connectionsToRemove. 

Finally, the consistence of the transactional context is verified to check if any 
error has occurred during the execution of the previous operations. If the 
transactional context is valid, then the ID of the instance to destroy is stored 
in the list archElementsToDestroy. Since the destruction of instances cannot be 
undone (because their internal state is lost), this service actually postpones the 
destruction until the transactional commit. If the configuration transaction 
ends successfully, then the EndConfigurationTransaction service will confirm 
(and perform) the destruction of instances. Otherwise, the 
RollbackConfigurationTransaction will restart these instances marked for 
removal. This allows us to “undo” the removals without losing the internal 
state of the elements removed. 

DestroyAttachment and DestroyBinding 

These services destroy a connection: an attachment or a binding, respectively. 
DestroyAttachment requires the following parameters: (i) the type of attachment 
to remove, attachType; and (ii) the IDs of the architectural instances to be 
detached, srcAE-ID and trgAE-ID. Similarly, CreateBinding requires: (i) the type 
of the binding to remove, bindingType; and (ii) the ID of the architectural 
instance which will be unbound from a System port, archElemID. The 
specification of these services is shown in Figure 6.23. 

The preconditions to execute these services are similar to CreateAttachment 
and CreateBinding, respectively: (i) the IDs of the architectural instances to 
disconnect exist, (ii) the attachment/binding type is valid (i.e. defined in the 
System type), and (iii) the number of existing connections of such 
attachment/binding type is greater than the minimum cardinality defined in 
the System type (i.e. a connection cannot be removed if this implies breaking 
the minimum cardinality). Similarly as the other services, the information 
required from the System type (i.e. the minimum cardinality) is obtained by 
means of the played_role META-TYPEDESCRIPTION.  

 

ReconfigurationCoordination Aspect  

... 

 Preconditions 

 // Unused parameters are assigned to the “void” variable,  

 // represented as „_‟, for clarity purposes 

 DestroyAttachment(attachType, srcAE-ID, trgAE-ID) if  

  ( ArchElemList.Contains(sourceAE-ID) AND  

   ArchElemList.Contains(targetAE-ID) AND 

   META-TYPEDESCRIPTION_getAttachmentTypeProperties!( 

    attachType, _, _, output srcMinCard, _, _, _,  



CHAPTER 6. AUTONOMIC RECONFIGURATION 

210 

    output trgMinCard, _) AND 

   getConnectionsByType!(attachType, output connections) AND 

   connections.Size()>0 AND 

   getAttachedArchElems!(srcAE-ID, attachType,  

    output attached2src) AND 

   attached2src.Size() > srcMinCard AND 

   getAttachedArchElems!(trgAE-ID, attachType, 

    output attached2trg) AND  

   attached2trg.Size() > trgMinCard 

  ); 

 DestroyBinding(bindingType, archElemID) if  

  ( ArchElemList.Contains(archElemID) AND  

   getConnectionsByType!(bindingType, output bindings) AND 

   META-TYPEDESCRIPTION_getBindingTypeProperties! 

    (bindingType, _, _, _, output trgMinCard, _) AND 

   bindings.Size() > trgMinCard 

  ); 

... 

 Transactions 

 DestroyAttachment(attachType, srcAE-ID, trgAE-ID): 

  GETATTID ::= getConnectionsByType!(attachType, connList) -->  

   for each conn in connList do ( 

    getAttachmentProperties!(conn, output archElem1,  

     output archElem2) -->  

    if {archElem1=srcAE-ID AND archElem2=trgAE-ID}  

    then ( <attachmentID=conn> --> STOP ) 

    else 0 

   ); 

    STOP ::= StopElement!(attachmentID) -->  

   GetStatus!(attachmentID, output status) -->  

   if {status=“Blocked”} then CHECK else STOP; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsToRemove.add(attachmentID)  --> END; 

 

 DestroyBinding(bindingType, archElemID): 

  GETBIND-ID ::= getConnectionsByType!(bindingType,connList) -->  

   for each conn in connList do ( 

    getBindingProperties!(conn, _, output AE-ID) -->  

    if {AE-ID=archElemID}  

    then ( <bindingID=conn> --> STOP ) 

    else 0 

   ); 

    STOP ::= StopElement!(bindingID) -->  

   GetStatus!(bindingID, output status) -->  

   if {status=“Blocked”} then CHECK else STOP; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsToRemove.add(bindingID)  --> END; 

... 

Figure 6.23. PRISMA specification of DestroyAttachment & DestroyBinding 

If the preconditions are satisfied, this service prepares the connection to be 
removed. First, the ID of the target connection is obtained. In order to do 
this, this service gets all the connections of the attachment/binding type to be 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

211 

removed. Then, by means of introspection services, this service selects the 
connection that links the desired instances and keeps the connection ID.  

Next, the connection is safely stopped (i.e. it is driven to a quiescent status). 
This is performed by executing the service StopElement, provided by the 
Reconfiguration Effector. This requires passivating the connected instances, 
to finish their current interactions and avoid starting new ones.  

Once the connection is stopped (i.e. there are no pending interactions over it, 
the consistence of the transactional context is verified. If the transactional 
context is valid, then the ID of the stopped connection is stored in the list 
connectionsToRemove. 

ReplaceArchElem 

Finally, this service replaces an architectural instance by another, compatible 
one. ReplaceArchElem requires the following parameters: (i) the ID of the 
architectural instance to replace, IDToReplace; (ii) the architectural type from 
which the new instance will be created, newType (this type can be the same of 
IDToReplace or a different, compatible one); and (iii) the initialization values, 
initValues. As a result, this service returns the ID of the new instance, newID. 
The specification of this service is shown in Figure 6.24. 

The preconditions to execute this service are that: (i) the ID of the 
architectural instance to replace exists; (ii) the architectural type from which 
the new instance will be created is valid (i.e. it is defined in the System type); 
and (iii) if newType is different from the type of the instance to replace, 
oldType, then after the replacement the minimum cardinality of oldType and 
the maximum cardinality of newType is satisfied. Similarly as other services, 
cardinality information is obtained by means of the played_role META-
TYPEDESCRIPTION.  

 

ReconfigurationCoordination Aspect  

... 

 Preconditions 

 ReplaceArchElem(IDToReplace, newType, initValues, newID) if  

  ( ArchElemList.Contains(IDToReplace) AND 

   META-TYPEDESCRIPTION_getArchElementTypes!(output AETypes) 

    AND  AETypes.Contains(newType) AND 

   typeOf(idToReplace, output oldType) AND 

   (oldType=newType OR  

     (getArchElementInstances!(newType, output inst1) AND 

    META-TYPEDESCRIPTION_getArchTypeProperties! 

     (newType, _, _, _, output maxCard) AND 

     inst1.Size() < AEmaxCard AND 

    getArchElementInstances!(oldType, output inst2) AND  

    META-TYPEDESCRIPTION_getArchTypeProperties! 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

212 

     (oldType, _, _, output minCard, _) AND 

    inst2.Size() > minCard 

     ) 

   ) 

  ); 

... 

 Transactions 

 ReplaceArchElem(idToReplace, newType, initValues, output newID): 

  STOPOLDELEM ::= StopElement!(idToReplace) -->  

   GetStatus!(idToReplace, output status) -->  

   if {status=“Blocked”}  

   then STOPCONNECTIONS  

   else STOPOLDELEM; 

  STOPCONNECTIONS ::= GetConnectionsOfArchElem!(idToReplace, 

     output connectionList)  -->  

   for each conn in connectionList do (  

    StopElement!(conn)  ) --> MIGRATE; 

  MIGRATE ::= 

   typeOf!(idToReplace, output oldType) --> 

   IsSerializableType!(oldType, output isSerializable) --> 

   // Check if old state can be migrated 

   if {isSerializable=false} 

   then ( 

    // State of old instance cannot be obtained: it is lost 

    CreateInstance!(newType, initValues, output newID) 

   ) 

   else ( 

    // State of old instance can be obtained: 

    SerializeState!(idToReplace, output oldState) --> 

    // Check if simple instance replacement is performed 

    if {oldType=newType}  

    then ( 

     CreateInstanceFromSerializedState!(oldType, oldState,  

      output newID) 

    ) 

    else ( 

     // We are performing type updating 

     // Check if new type can convert old state 

     CanMigrateStateFromOldVersions!(newType,  

      output canMigrate) --> 

     if {canMigrate=true} 

     then (  

      ConvertStateFromPreviousVersion!(newType, 

       initValues, oldType, oldState,  

       output transformedState) --> 

      CreateInstanceFromSerializedState!(newType, 

       transformedState, output newID) 

     ) 

     else ( 

      // New type cannot accept old structures. Then the  

      // old state is lost 

      CreateInstance!(newType, initValues, output newID) 

     ) 

    ) 

   ) 

   --> MIGRATEOLDCONNS; 

  MIGRATEOLDCONNS ::= 

   for each conn in connectionList do ( 

    typeOf!(conn, output connType) --> 

    isBinding!(conn, output result) --> 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

213 

    if {result=true} then ( 

     // If conn is a binding connection, recreate... 

     CreateBinding(connType, newID, output newbindID) --> 

     DestroyBinding(conn) 

    ) 

    else ( 

     // If is an attachment connection, recreate... 

     getAttachmentProperties!(conn, output archElem1,  

      output archElem2) --> 

     if {archElem1=idToReplace}  

     then CreateAttachment(connType, newID, archElem2,  

        output attID)  

     else CreateAttachment(connType, archElem1, newID,  

        output attID) --> 

     DestroyAttachment(conn)  

    ) 

   ) --> CHECK; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else (  archElementsToDestroy.add(idToReplace) -->  

      archElementsCreated.add(newID) ) --> 

   END; 

 

... 

Figure 6.24. PRISMA specification of ReplaceArchElem 

If the preconditions are satisfied, this service replaces the instance idToReplace. 
This is performed in three steps. First the service creates a new instance from 
newType, migrates the state and connections of idToReplace to the new 
instance, and finally destroys the old instance. First of all, the instace to 
replace and its connections are safely stopped (i.e. they are driven to a 
quiescent status). This is performed by executing the service StopElement, 
provided by the Reconfiguration Effector.  

Next, the old instance is replaced by a new one, migrating the old state if 
possible (see the MIGRATE process in Figure 6.24). The internal state of the 
old instance can be only migrated if the following three conditions hold: (i) 
the old instance allows us to export its internal state (i.e. it is a serializable 
type), (ii) newType provides a function to create new instances using the state 
previously exported, and (iii) if the type of the instance to replace and newType 
are different, then newType must provide a function to transform the state of 
the old instance to the data structures used by the new type. If these 
conditions are not satisfied, then the old instance is replaced by a new 
instance of newType and its internal state is lost. The migration of the old 
instance is performed by means of the services SerializeState, 
CreateInstanceFromSerializedState and ConvertStateFromPreviousVersion, which are 
provided by the Reconfiguration Effector aspect. The details about how these 
methods perform the migration are described in section 6.4.4.  



CHAPTER 6. AUTONOMIC RECONFIGURATION 

214 

Finally, the connections of the old instance are recreated for the new instance 
(see the MIGRATEOLDCONNS process in Figure 6.24). This is simply performed 
by creating a new attachment/binding (depending on the type of connection) 
to the new instance, and destroying the old one.  

The last step is to check the consistence of the transactional context. If the 
transactional context is valid, then the IDs of the old instance and the new 
instance are stored in the lists archElementsToDestroy and archElementsCreated, 
respectively. That is, the destruction is postponed until the transactional 
commit. In case the configuration transaction fails, the old instance and its 
connections will be restarted, whereas the new instance and its connections 
will be removed. In case the configuration transaction ends successfully, then 
the old instance and its connections will be destroyed, and the new instance 
and its connections started. The final result is then achieved: an instance has 
been effectively replaced by another, keeping its existing connections and state 
(if the migration is possible).  

6.4.4 The Reconfiguration Effector Aspect 

This aspect effects, or performs, changes on the architecture it manages. It 
provides a set of atomic, simple reconfiguration services which execute low-
level (i.e. platform-dependent) behaviour to change the structure of a running 
System instance. These reconfiguration services are simple because they do 
not take into account the status (i.e. whether the element has been previously 
stopped or not) and/or the relations with the adjacent architectural elements. 
They must be correctly coordinated to carry out a safe reconfiguration: this is 
performed by the Reconfiguration Coordination aspect (see section 6.4.3).  

The implementation of these reconfiguration services is technology-
dependent: depending on the technology selected and how the component 
execution model has been implemented, the dynamic updating mechanisms 
to use will be different. However, the importance here is not the 
implementation of these mechanisms, but the identification of the minimum 
services required to support the reconfiguration process without the need to 
include low-level details. 

The specification of the Reconfiguration Effector Aspect is shown in Figure 
6.25, and its services are described below.  

 

ReconfigurationEffector Aspect 

// *************************************************************** 

// Platform-dependent aspect for changing System instances at  

// runtime. 

//  



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

215 

// Here are described the public services that are provided.  

// Internal behaviour is provided by low-level implementations. 

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 Services 

  // *** Services for Safe Stopping *** 

1  in StartElement(elemID: string);  

   // Reach an Active status. 

2  in StopElement(elemID: string);   

   // Reach a Quiescent status.  

   // This may require the passivation of neighbours 

3  in PassivateElement(elemToPassivate: string,  

    blockedElement: string); 

   // Passivates an element with respect the interactions with  

   // another element 

 

  // *** Basic services for Reconfiguration *** 

4  in CreateInstance(typeName: string, initParams: list,  

    output instanceID: string); 

5  in DestroyInstance(instanceID: string); 

6  in Connect(instance1: string, port1: string,  

    instance2: string, port2: string, output connID:string); 

7  in Disconnect(connectionID: string); 

 

  // *** Auxiliar services for Mobility, Recovery and Updating 

8  in IsSerializableType(typeName: string,  

    output isSerializable: boolean); 

9  in SerializeState(instanceID: string, output state: string); 

10  in CreateInstanceFromSerializedState(typeName: string,  

    serializedState: string,  output instanceID: string); 

11  in CanMigrateStateFromOldVersions(typeName: string,  

    output canMigrate: boolean); 

12  in ConvertStateFromPreviousVersion(typeName: string, 

    oldType: string, oldState: string,  

    newRequiredValues:list, output transformedState:string); 

 

End ReconfigurationEffector Aspect; 

Figure 6.25. Services of the Reconfiguration Effector aspect 

6.4.4.1 Services for Safe Stopping 

The Reconfiguration Effector provides three services for managing the 
execution and safe stopping (i.e. quiescence) of the elements of a System 
instance (see services 1-3 of Figure 6.25): 

 StartElement. This service activates the execution of an element, 
elemID. ElemID is a reference to an instance, a link (i.e. an attachment 
or binding) or a System port. When started, the element achieves the 
idle status. 

 StopElement. This service stops the execution of an element, 
elemID. The element achieves the blocked status when either the 
tranquillity or quiescence criterion is achieved. In some cases, this 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

216 

may have the side effect of stopping (i.e. passivating) its adjacent 
elements. 

 PassivateElement. This service passivates the execution of an 
element, elemID, with respect to other element, blockedElement. This 
means that elemID only processes requests that do not involve 
interactions with blockedElement. 

It is important to note that the quiescence of an architectural element 
instance can only be achieved if it provides a service to stop safely its internal 
execution. Otherwise, the only option for the Effector aspect is to block all the 
incoming/outcoming service requests from the instance (i.e. by blocking all 
the links attached to it), in order to isolate them from the other elements of 
the architecture. Obviously, this means that pending transactions are 
interrupted, and then, the instance may achieve an inconsistent state.  

For this reason, a requirement for supporting the safe reconfiguration of a 
System type is that all the architectural elements a System is composed of must 
be provided with mechanisms for achieving its quiescence. Among the 
available strategies for implementing the quiescence of running, stateful 
components (Vandewoude et al., 2007), (Gomaa & Hussein, 2004), (Kramer 
& Magee, 1990), finally a variation of the tranquillity approach was 
implemented. The details of this implementation are not described here, but 
the reader can refer to (Aliaga-Varea, 2008) for further details.  

6.4.4.2 Services for Reconfiguration 

The Reconfiguration Effector aspect provides four basic services for changing 
the internal structure of a System instance (see services 4-7 of Figure 6.25): 

 CreateInstance. This service creates a new instance, instanceID, of 
an architectural type, typeName. The initialization parameters required 
by this type must be provided in initParams. The new instance is 
stopped by default.  

 DestroyInstance. This service destroys an instance. This is 
performed by invoking the destroy service that PRISMA types provide 
by default. The instance is removed from memory; if it had 
connections, they are removed.  

 Connect. This service establishes a link among two ports of two 
instances. The two ports must have compatible interfaces; one must 
provide services, and the other must require services. The service 
returns the ID of the new link created. As soon as the link is created, 
the instances can interact by using this link. 

 Disconnect. This service removes a link, connectionID.  



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

217 

The implementation of these services will depend on the underlying 
infrastructure, and how the code is composed. An extensive study of the 
different techniques proposed to recompose software can be found in 
(McKinley et al., 2004a).  

In PRISMANET, the implementation of the PRISMA model in .NET, the 
dynamic recomposition of a System instance is supported due to a 
combination of different techniques. These techniques are:  wrappers (which 
provide the default PRISMA execution model to user-defined architectural 
elements), function pointers (to redirect services among architectural elements) 
and aspect weaving (for the behaviour of architectural elements). An important 
characteristic is that connections are explicitly separated from architectural 
elements, which allow us to dynamically change a connection without the 
need of changing the instance that used such connection. This confirms the 
importance of considering connectors as first-class citizens in software 
architectures. This separation has been performed by means of dynamic code 
generation (for creating connections), and publish-subscribe mechanisms (for 
sending messages among connections and ports). See (Pérez et al., 2005a), 
(Costa-Soria, 2005), or (Costa-Soria, 2005a) for further details. 

6.4.4.3 Services for Updating, Recovery and Mobility 

In addition to the basic services for reconfiguration described above, and the 
services for achieving quiescence, the Reconfiguration Effector aspect provides 
other services to support additional features, such as Dynamic Updating, 
Persistence & Recovery, and Mobility.  

These features have a common requirement: they need access to the internal 
state of the instances to manage. The difference is how this state is managed: 
dynamic updating transforms this state to fit the data structures of the new 
version; persistence & recovery stores this state in a permanent location (e.g. in a 
database or in a file system) for future usage in case a failure occurs; and 
mobility transfers this state over the network in order to recreate the original 
instance in a different computer. However, these features require that the 
architectural types being managed (i.e. the type that is going to be dynamically 
updated or the instances that are going to be stored or moved) provide 
support to: 

1. State Transfer: The internal state of an instance should be exportable 
on demand, for its storage, transmission (over the network) or 
transformation. 

2. Instance Recreation: Using a previously exported state, an instance 
should be recreatable, i.e. re-established again without any noticeable 
change. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

218 

3. State Mapping: The state of an instance should be upgradeable to fit 
the new data structures of a new version of the same type. 

These requirements are reflected in our approach as a set of services that must 
be implemented by each architectural type, in order to allow the dynamic 
evolution and migration of its instances. Otherwise, if an instance does not 
implement these services, then obviously its state will be lost when performing 
a reconfiguration or evolution process.  

These services are the following (see the complete signature in Figure 6.26): 

 SerializeState. This service returns the internal state of an 
instance. The state is returned in a type-dependent structure encoded 
as a string (parameter exportedState). This state is returned as a string 
because it makes easy its storage (for recovery) or its transference over 
different platforms (for mobility). 

 CreateInstanceFromSerializedState. This service recreates 
an instance from a previously exported state (parameter serializedState). 
This state must be compatible with the data structures expected by the 
type that provides this service. The new instance remains in a Blocked 
status until it is activated. 

 ConvertStateFromPreviousVersion. This service transforms 
the exported/serialized state of an older type version to the new data 
structures of the new type version. For these cases where the new type 
version introduces new data elements, this service allows us providing 
additional values for these variables that were not present in the old 
state (parameter newRequiredValues). 

These services complement each other. To support persistence and mobility of 
architectural types, only the two first services are needed: for each instance 
being backed up or moved over the network, its state is serialized and 
recreated when needed. On the other hand, to support dynamic updating of 
architectural types we need that: (i) the first service, SerializeState, is 
implemented by the instances of the old type, in order to be able to export its 
state, and (ii) the new type implements the other two services, to adapt the 
state of old instances to the new data structures of the new type version and to 
instantiate the new type with the (transformed) state of old instances.  

These services have been grouped in two complementary interfaces: 
I_SerializableType and I_IncrementalUpdating (see Figure 6.26). The former is 
implemented by these architectural types that support instance state migration 
(i.e. state exportability + instance recreation). The latter is implemented by 
these architectural types that support state upgrading. In general, all the 
PRISMA architectural types that are automatically generated implement the 



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

219 

I_SerializableType interface. The I_IncrementalUpdating interface is only 
implemented in PRISMA elements when creating a new, evolved version of 
another type, in order to support the dynamic updating of its instances, as it 
will described in Chapter 7. 

 

Interface I_SerializableType 

 

// *************************************************************** 

// Services that a type must provide to support State Migration 

// *************************************************************** 

  

 SerializeState(output exportedState: string); 

 

 CreateInstanceFromSerializedState(serializedState: string,  

  output instanceID: string); 

 

End_Interface I_SerializableType; 

 

 

Interface I_IncrementalUpdating 

 

// *************************************************************** 

// Services that a type must provide to support Type Updating 

// *************************************************************** 

  

 ConvertStateFromPreviousVersion(oldTypeName: string,  

  oldState: string, newRequiredValues: list,  

  output transformedState: string); 

 

End_Interface I_IncrementalUpdating;    

Figure 6.26. Required Interfaces for Supporting Dynamic Updating 

Since the Effector aspect manages all the elements of a System architecture 
(i.e. architectural instances), it provides access to the services of 
I_SerializableType and I_IncrementalUpdating of each instance (see services 8 to 
12 of Figure 6.25). The main difference is that the Effector aspect provides an 
additional parameter to identify the target instance (instanceID) or type 
(typeName) on which invoke the service. 

In addition, since we cannot assume that every instance implements these 
services (e.g. COTS), the Effector aspect also provides additional services for 
checking whether an instance implements these interfaces or not (see services 
8 to 12 of Figure 6.25): 

 IsSerializableType. This service checks if a type, typeName, 
allows exporting the state of its instances. 

 CanMigrateStateFromOldVersions. This service checks if a 
type, typeName, provides a function to upgrade the state of previous 
type versions. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

220 

The decisions about how these services are implemented are left to each 
architectural type. The implementation may differ depending on the different 
requirements or the target platform.  

Next, a few guidelines are presented for guiding this implementation. Each 
(architectural) type defines how the state of its instances may be exported: 
what are the elements exported, and how these elements are encoded.   

The exported state must include enough information for later restoring the 
instance: (i) the state, i.e. the values of the attributes that the instance 
manages; (ii) the instruction pointer, i.e. the next instruction to be executed; 
and (iii) the connections, i.e. the pointers to the elements that the instance 
was interacting with. The management of the state of instances has been 
extensively studied for supporting runtime mobility of software artefacts, and 
its results can be easily applied for migrating runtime instances to new type 
versions (i.e. dynamic updating). The reader can refer to the works in this field 
for more details: either at a technology-dependent level –(Costa-Soria et al., 
2006), (Chakravarti et al., 2003)–, or at a high-abstraction level –(Ali, 2008), 
(Carzaniga et al., 2007), (Mamei & Zambonelli, 2009), (Zachariadis et al., 
2006)–.   

In PRISMA, the state that is exported from an architectural element is 
composed of:  

1. The attributes of the aspects the architectural element is composed 
of31.  

2. An ordered list of service requests pending to be processed (i.e. 
equivalent to the next instruction pointer). These service requests can 
be either incoming or outcoming. 

Note that the information about the clients that have requested these services 
(i.e. the connections) is not included in the exported state of an architectural 
element, since this information is implicitly contained in connections (i.e. 
attachments and bindings), which are managed separately. In addition, recall 
that the state of an instance can be only consistently exported if the instance is 
stopped first. Otherwise, the internal state would not be consistent. This has 
been taken into account: as described before, the stopping of an instance and 

                                                      
31 Attributes of PRISMA architectural elements are self-contained: they cannot 
contain references (i.e. memory pointers) to data stored outside the boundaries of an 
architectural element (i.e. another architectural element). This would make an 
architectural element dependent of another, which must be avoided. In addition, a 
data reference implicitly encapsulates a connection; this should be managed explicitly 
as a connection, in order to manage correctly the architecture dependencies.  



6.4 DESCRIPTION OF THE AUTONOMIC RECONFIGURATION ASPECTS 

221 

its connections is orchestrated by the Reconfiguration Coordination aspect, 
before the migration of the state of an instance. 

The decisions about the structure and encoding of the exported state are left 
to each (architectural) type. From outside (i.e. the perspective of the Effector 
aspect), the exported state of an instance is a black box which cannot be 
inspected or changed. In order to avoid that the internal attributes of this 
state might be subject to unauthorised inspection or change, the exported 
state can be encripted differently by each type. This also benefits the 
independence of architectural types with respect to reconfiguration 
mechanisms: to support dynamic updating, a type only must provide a 
function to export the state of an instance and a function to recreate an 
instance from an exported state.  

Then, since the exported state contains all the information of a running 
instance, it is easy to recreate an instance. The service 
CreateInstanceFromSerializedState is simply a special constructor of the type that, 
after creating a “normal” instance: (i) initializes its internal attributes with the 
values defined in the serialized state, (ii) sets the instruction pointer (or in 
PRISMA, the list of service requests pending to execute), and (iii) leaves the 
instance in a blocked status, ready for its execution. Then, it is the 
responsability of the reconfiguration mechanisms (i.e. the Effector aspect) 
setting correctly the connections and restarting the instance when needed. 

Finally, by means of a state transformation process (also known as state 
mapping) the state of old instances is upgraded to fit the data structures of the 
new type version. This functionality can be provided by an intermediate 
updating mechanism or by the new type version. We have chosen the new 
type version as the provider of the state mapping functions because: (i) the 
developer of the new version knows in advance the data structures of the old 
version and how these structures have been extended, so it is easier to define 
the mappings; and (ii) we avoid introducing auxiliary elements in the updating 
process: only the new type version must be deployed to the target system. 

The definition of state mapping functions, such as 
ConvertStateFromPreviousVersion, can be done manually or semi-automatically. 
Currently, the state mapping functions defined in PRISMA components are 
defined manually. However, several works have explored the feasibility of 
automatically generating these state mapping functions. For more details, see 
section 3.4.2 on page 80. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

222 

6.5 The Evolver Component 

The previously described aspects provide autonomic reconfiguration 
capabilities to the composite component (i.e. a System type) they are imported 
to. That is, only when a System type imports the Monitoring and 
Reconfiguration Effector aspects, its architecture is made reconfigurable, i.e. it 
may undergo dynamic changes. The aspects for autonomic reconfiguration 
have been encapsulated into a component called Evolver32. The Evolver 
component represents the ability of a System type to be dynamically 
reconfigurable. When an Evolver component is imported by a System type, 
then the PRISMA Model Compiler includes the required dynamic 
reconfiguration mechanisms in the code of the composite component (which 
are accessible by means of the Monitoring and Effector aspects). 

6.5.1 Structure of the Evolver Component 

The Evolver component is a special kind of architectural element. Although it 
is imported in a System type like another architectural element, it provides 
services that belong to the meta-level. That is, it provides services that 
introspect and change the architecture within the Evolver component resides. 
These services can be used by other architectural elements of the System, by 
simply creating the appropriate connections among them and the Evolver 
component. This provides us flexibility to decide when a reconfiguration 
process should start: e.g. when a component invokes a service of the Evolver 
component, when a certain value is passed through a connection, when an 
external event is received through a binding, etc.  

For instance, Figure 6.27 and Figure 6.28 show the complete architecture of 
the VisionSystem type, now including an Evolver component, named 
VisionSystemEvolver (depicted in grey in the figure due to its special nature). 
The VisionSystemEvolver component models (and provides) the 
reconfiguration infrastructure that is specific for the VisionSystem type. This 
component has two connections: an attachment to the VisionWatchdog 
component, and a binding to a port called VisionStatusPort. The attachment 
allows the VisionSystemEvolver to be directly invoked by the VisionWatchdog 
component when a failure is detected (see section 6.4.2). The binding allows 
the VisionSystemEvolver to notify other subsystems of the Agrobot if an 
unrecoverable failure occurs in the VisionSystem (see also section 6.4.2). This 
illustrates how an Evolver component can be integrated in the architecture it 
manages, and interact with other architectural elements when needed.  

                                                      
32 This name has been chosen because this component also imports other aspects, related to the 
dynamic evolution of architectural types. See Chapter 7 for further details. 



6.5 THE EVOLVER COMPONENT 

223 

 
Figure 6.27. Architecture of the VisionSystem type including an Evolver component 

System VisionSystem 

 

 Import Architectural Elements  

  VideoCaptureCard(1,1), ImageProcCard(0,1),  

  VCC-Conn(1,1), IPC-Conn(1,1), 

  ImageProcSoftware(0,*), VisionWatchdog(1,1),  

  VisionSystemEvolver(1,1); 

 

 Ports 

  ImgOutputPort : I_ImageProcessingServices; 

  VisionStatusPort: I_VisionSystemEvents; 

  ReactiveReconfigurationPort: I_VisionSystemReconfigServices; 

 End_Ports; 

 

 Attachments 

  Att_VCC_VCCConn: VideoCaptureCard.VideoOut(1,1) <-->  

    VCC-Conn.VideoIn(1,1); 

  Att_VCCConn_IPC:  

   VCC-Conn.VideoOut(1,1)<-->ImageProcCard.VideoIn(1,1); 

  Att_IPC_IPCConn:  

   ImageProcCard.ImageOut(1,1)<-->IPC-Conn.ImageIn(1,1); 

  Att_VCCConn_ImgMon:  

   VCC-Conn.VideoOut(1,1)<-->VisionWatchdog.VideoOutput(1,1); 

  Att_IPCConn_ImgMon:  

   IPC-Conn.ImageOut(1,1)<-->VisionWatchdog.ImageOutput(1,1); 

  Att_VCCConn_IPCSW:  

   VCC-Conn.VideoOut(1,1)<-->ImageProcSoftware.VideoIn(1,*); 

  Att_IPCSW_IPCConn:  

   ImageProcSoftware.ImageOut(1,*)<-->IPC-Conn.ImageIn(1,1); 

 

  // Example of attachment which enables an internal element to 

  // interact with the evolver (e.g.to trigger a reconfig) 

  Att_ImgMon_Evolver: VisionWatchdog.FaultyOutputPort(1,1) <-->  

   VisionSystemEvolver.InternalEventsPort(1,1); 

 End_Attachments; 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

224 

 

 Bindings 

  Bin_IPCConn: ImgOutputPort(1,1) <--> IPC-Conn.ImageOut(1,1); 

  Bin_Evolver: VisionStatusPort(1,1) <-->  

       VisionSystemEvolver.ExternalEventsPort(1,1); 

  Bin_Evolver2: ReactiveReconfigurationPort(1,1) <--> 

       VisionSystemEvolver.IntrospectionPort(1,1); 

  Bin_Evolver3: ReactiveReconfigurationPort(1,1) <--> 

       VisionSystemEvolver.ReconfigurationPort(1,1); 

 

 End_Bindings; 

 

 /* Constructor definition */ 

 new ( frameRate: integer, cameraPosition: string,  

   timeout: integer) 

 { 

  ... 

   } 

  

 /* Destructor definition */ 

   destroy() 

 { 

  ... 

   } 

 

End_System VisionSystem; 

Figure 6.28. PRISMA specification of the VisionSystem Type 

The internal structure of an Evolver component is shown in Figure 6.29. The 
Evolver imports the reconfiguration aspects described before: (i) the 
Monitoring aspect, which senses the managed architecture; (ii) the 
Reconfiguration Effector aspect, which acts on the managed architecture; (iii) 
the Reconfiguration Coordination aspect, which coordinates the execution of 
reconfigurations; and (iv) the Reconfiguration Analysis aspect, which defines 
the set of proactive reconfigurations (i.e. autonomously-driven 
reconfigurations) to perform on the managed architecture. The “managed 
architecture” is the one where the Evolver component has been integrated 
(this is depicted as “Architecture” in the figure). The relationships among 
these aspects are realized by means of weavings, which are depicted in the 
figure by means of the blue solid circular arrow. The details about these 
relationships are described in section 6.5.3. 

In addition, the Evolver may have three kinds of ports: user-defined ports, 
reactive reconfiguration ports, and meta-level ports. User-defined ports (depicted 
as green in the figure) are used by the Reconfiguration Analysis aspect to 
interact with other elements of the system or to be notified about either 
internal or external events. Reactive reconfiguration ports are the 
ReconfigurationPort and the IntrospectionPort (see Figure 6.29). These ports allow 
us to externally drive a reconfiguration process. Finally, meta-level ports are 



6.5 THE EVOLVER COMPONENT 

225 

used by the Reconfiguration Coordination aspect to interact with the meta-
level and obtain information about the System type of the architecture being 
managed (e.g. obtain the cardinality constraints, the valid architectural types 
and interactions, etc.).  

 

Figure 6.29. Internal Structure of an Evolver component 

Figure 6.30 shows a fragment of the PRISMA metamodel and how it has been 
extended to include the Evolver component and the new kind of aspects (i.e. 
the reconfiguration aspects). Note the relationship among Evolver-Component 
and System: it represents the fact that a PRISMA System type can only have an 
Evolver component, and that this component manages the System to which it 
belongs to. 

6.5.2 Support for Reactive Reconfigurations 

Section 6.4.2 described how proactive reconfiguration (i.e. autonomously-
driven reconfigurations) can be supported in our proposal. In this section the 
support for reactive reconfigurations (i.e. externally-driven reconfigurations) is 
described. 

The support for reactive reconfigurations requires making accessible the 
introspection and reconfiguration services, so external elements (i.e. another 
architectural elements or a human) could perform reconfiguration processes. 
The Evolver component provides support to reactive reconfigurations by 
default, by means of two ports called IntrospectionPort and ReconfigurationPort. 
The former publishes the introspection services provided by the Monitoring 
aspect (see section 6.4.1.1, Introspection Services). The latter publishes the 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

226 

domain-specific reconfiguration services provided by the Reconfiguration 
Coordination aspect (see section 6.4.3.1, Domain-Specific Reconfiguration 
Services). Thus, by using these ports, external elements will be able to perform 
unanticipated reconfigurations. For instance, by connecting these ports to a 
component that provides a user interface, the architect could manually 
perform unanticipated reconfigurations at runtime. 

 
Figure 6.30. Extension of the PRISMA metamodel with the Evolver Component 

However, in some situations, the architect may be interested on disabling 
some services or even do not allow reactive reconfigurations to be performed. 
In order to provide more control to the architect, both cases are considered. 
On the one hand, if reactive reconfiguration support is not wanted, then the 
IntrospectionPort and ReconfigurationPort should be removed from the default-
generated specification of the Evolver component (see Figure 6.36). Thus, 
external elements could not invoke either introspection or reconfiguration 
services: reconfigurations will only be performed proactively. 

On the other hand, if only a few services are wanted, then the interfaces 
provided by the IntrospectionPort and ReconfigurationPort should be modified, 
removing all the services that are not wanted. In this way, the architect can 
decide what kinds of introspection/reconfiguration services are allowed or 



6.5 THE EVOLVER COMPONENT 

227 

not. Only the services that are included in the interfaces provided by the 
IntrospectionPort and ReconfigurationPort will be available to external elements, 
thus restricting the set of actions which can be performed reactively.  

The interfaces provided by the IntrospectionPort and ReconfigurationPort are 
automatically generated when an Evolver component is defined. They are 
named following this pattern: I_<SysName> IntrospectionServices, 
which defines the services provided by the IntrospectionPort, and 
I_<SysName>ReconfigurationServices, which defines the services 
provided by the ReconfigurationPort. For instance, the default interfaces that are 
generated for the VisionSystemEvolver are shown in Figure 6.31 and Figure 
6.32. The VisionSystem architect may consider to remove the services destroy-
imageProcCard and destroy-imageProcSoftware to avoid undesired removal of valid 
instances; or the services related to the connectors to avoid their replacement. 

 

Interface I_VisionSystemIntrospectionServices 

 

// *************************************************************** 

// Default interface that defines the introspection services 

// that will be available for supporting reactive reconfigurations  

// on VisionSystem instances. 

// 

// Remove the services that are not intended to be available 

// outside a System instance. 

// *************************************************************** 

  

 typeOf(elementID: string, output typeName: string); 

 getConfigurationSpecification(output PRISMAConfigSpec: string);  

 

 getAttachedArchElems(archElemID: string, attachType: string, 

  output attachedArchElemIDs: list); 

 getConnectionsOfArchElem(archElemID: string,output conns: list); 

 getConnectionsByType(connectionType: string,output conns: list); 

 isAttachment(connID: string, isAtt: boolean); 

 isBinding(connID: string, isBind: boolean); 

 

 getArchElementProperties(instanceID: string, 

  output properties: list, output portsList: list); 

 getPortProperties(archElemID: string, portName: string, 

  output isProvided: boolean, output isRequired: boolean,  

  output interface: string, output connectionList: list);  

 getArchElementInitializationValues(archElemID: string, 

  output initValues: list); 

 getAttachmentProperties(connectionID: string,  

  output instance1: string, output instance2: string); 

 getBindingProperties(connectionID: string,  

  output sysPort: string, output archElemID: string); 

 

End_Interface I_VisionSystemIntrospectionServices;    

Figure 6.31. Default Introspection Interface for the VisionSystemEvolver 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

228 

Interface I_VisionSystemReconfigurationServices 

 

// *************************************************************** 

// Default interface that defines the reconfiguration services 

// that will be available for supporting reactive reconfigurations  

// on VisionSystem instances. 

// 

// Remove the services that are not intended to be available 

// outside a VisionSystem instance (except those for transaction 

// management, which are required to begin/end reconfigurations) 

// *************************************************************** 

  

// *** TRANSACTION MANAGEMENT –do not remove- *** 

 BeginConfigurationTransaction(); 

 EndConfigurationTransaction(); 

 RollbackConfigurationTransaction(); 

 

//*** ARCHITECTURAL ELEMENTS *** 

 //*** videoCaptureCard ***  

 getInstances-videoCaptureCard(output instances: list); 

 replace-videoCaptureCard(oldInstanceID: string,  

    framerate: natural, output newInstanceID: string); 

 

 //*** imageProcCard ***  

 getInstances-imageProcCard(output instances: list); 

 create-imageProcCard(cameraPosition: string,  

    output newInstanceID:string); 

 destroy-imageProcCard(instanceID: string); 

 replace-imageProcCard(oldInstanceID: string,  

    cameraPosition: string, output newInstanceID: string); 

 

 //*** imageProcSoftware ***  

 getInstances-imageProcSoftware(output instances: list); 

 create-imageProcSoftware(cameraPosition: string,  

    output newInstanceID: string); 

 destroy-imageProcSoftware(instanceID: string); 

 replace-imageProcSoftware(oldInstanceID: string,  

    cameraPosition: string, output newInstanceID: string); 

 

 //*** visionWatchdog ***  

 getInstances-visionWatchdog(output instances: list);  

 replace-visionWatchdog(oldInstanceID: string, timeout: natural, 

    output newInstanceID: string); 

 

 //*** VCC-Conn ***  

 getInstances-VCC-Conn(output instances: list); 

 replace-VCC-Conn(oldInstanceID: string, output newID: string); 

 

 //*** IPC-Conn ***  

 getInstances-IPC-Conn(output instances: list); 

 replace-IPC-Conn(oldInstanceID: string, output newID: string); 

 

//*** CONNECTIONS: ATTACHMENTS & BINDINGS *** 

 //*** Att_VCCConn_IPC *** 

 attach-Att_VCCConn_IPC(VCC-ConnID: string,  

   ImageProcCardID: string); 

 detach-Att_VCCConn_IPC(VCC-ConnID: string,  

   ImageProcCardID: string); 

 

 //*** Att_VCCConn_IPCSW ***  



6.5 THE EVOLVER COMPONENT 

229 

 attach-Att_VCCConn_IPCSW(VCC-ConnID: string,  

   ImageProcSoftwareID: string); 

 detach-Att_VCCConn_IPCSW(VCC-ConnID: string, 

   ImageProcSoftwareID: string); 

 

 //*** Att_IPC_IPCConn ***  

 attach-Att_IPC_IPCConn(ImageProcCardID: string,  

   IPC-ConnID: string); 

 detach-Att_IPC_IPCConn(ImageProcCardID: string,  

   IPC-ConnID: string); 

 

 //*** Att_VCCConn_IPC *** 

 attach-Att_IPCSW_IPCConn(ImageProcSoftwareID: string,  

   IPC-ConnID: string); 

 detach-Att_IPCSW_IPCConn(ImageProcSoftwareID: string, 

   IPC-ConnID: string); 

 

End_Interface I_VisionSystemReconfigurationServices; 

Figure 6.32. Default Reconfiguration Interface for the VisionSystemEvolver 

6.5.3 Weaving the Reconfiguration Aspects Together 

As described in the previous sections, the Reconfiguration Aspects use (or 
require) the execution of services from other aspects. The Reconfiguration 
Analysis aspect uses services provided by the Monitoring aspect and the 
Reconfiguration Coordination aspect to define configuration triggers and 
configuration transactions. The Reconfiguration Coordination aspect uses 
introspection services and low-level reconfiguration services to drive the safe 
execution of configuration transactions. 

However, a characteristic of PRISMA aspects is that they cannot have direct 
invocations of services from other aspects: specifically, calls like 
“aspectName.serviceName(parameters)” are avoided in PRISMA. 
This avoids an aspect specification to be dependent of other aspects. The 
invocations of services among aspects can be addressed in PRISMA by means 
of out services and weavings. Out services are used to declare the services that are 
required from other elements. Then, these services can be hooked either to 
ports, if the services are provided by another architectural element, or to 
aspects (through weavings), if the services are provided by another aspect. In 
this way, an aspect only declares the set of services that are required, but not 
which element provides these services and how they are provided. This 
benefits the independence of aspects and its maintenance.  

Therefore, to define a service invocation among aspects: (i) the service must be 
declared in the Service section of the client aspect as an out service, and (ii) a 
weaving must be defined among this service and the service provided by the 
target aspect. An advantage of using weavings to hook services among aspects 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

230 

is that they do not need to have the same name and signature, since functions 
can be used to adapt incompatible signatures (Guillén-Martín, 2007, pp. 43-
60). 

For instance, each configuration transaction defined in a Reconfiguration 
Analysis aspect uses several domain-specific reconfiguration actions, which are 
provided by the Reconfiguration Coordination aspect. For this reason: (i) the 
Reconfiguration Analysis aspect declares all the domain-specific 
reconfiguration actions used as out services (see Figure 6.33), and the Evolver 
component defines the weavings among these services and the services 
provided by the Reconfiguration Coordination aspect (see Figure 6.34). This 
is done similarly for the synchronization among the Reconfiguration 
Coordination aspect and the Monitoring and Reconfiguration Effector 
aspects. 

 

ReconfigurationAnalysis Aspect VisionSystemAnalysisServices 

... 

 Services 

 // *** Introspection services ********************************* 

 out typeOf(instanceID: string, output typeName: string); 

 out getArchElementProperties(instanceID: string, 

   output properties: list, output portsList: list); 

 out getPortProperties(archElemID: string, portName: string, 

   output isProvided: boolean, output isRequired: boolean,  

   output interface: string, output connectionList: list);  

 out getAttachedArchElems(archElemID: string,attachType:string, 

   output attachedArchElemIDs: list); 

 // ... [more introspection services] 

 

 // *** Domain-specific reconfiguration actions ***************** 

 out create-ImageProcCard(cameraPosition: string,  

    output newInstanceID : string); 

 out create-ImageProcSoftware(cameraPosition: string, 

    output newInstanceID : string); 

 out destroy-imageProcCard(instanceID : string); 

 out destroy-imageProcSoftware(instanceID : string); 

 // ... [more introspection services] 

 

 // *** Services for Event Interception ************************* 

 out beforeEvent(eventName: string, output eventParams: list); 

 out afterEvent(eventName:string, output eventParams:list); 

 out insteadOfEvent(eventName: string, condition: string,  

   replacingService: string, output eventParams:list); 

 

 // *** Services for Selective Element Starting/Stopping ******** 

 out StartElement(instance-ID: string); 

 out StopElement(instance-ID: string); 

... 

   

End ReconfigurationAnalysis Aspect  

   VisionSystemAnalysisServices; 

Figure 6.33. Example of declaration of out services of a Reconf. Analysis aspect 



6.5 THE EVOLVER COMPONENT 

231 

Component VisionSystemEvolver  

...  

 Weavings 

 //*** Weavings: RECONFIGURATION_ANALYSIS --> MONITORING ******* 

1 Monitoring.beforeServiceRequest(*, eventName, eventParams)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.beforeEvent(eventName,eventParams); 

 

2 Monitoring.insteadOfServiceRequest(*, eventName, condition,  

    replacingService, eventParams)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.insteadOfEvent(eventName, condition, 

    replacingService, eventParams); 

 

3 Monitoring.afterServiceRequest(*, eventName, eventParams) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.afterEvent(eventName, eventParams); 

 

4 Monitoring.getAttachedArchElems(archElemID, attachType, 

    attachedArchElemIDs) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.getAttachedArchElems(archElemID,  

    attachType, attachedArchElemIDs); 

 //... [more introspection services] 

 

5 Monitoring.getArchElementInstances(“self”, new list[sysID] ) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.getSystemInstanceID(sysID); 

 

6 Monitoring.getArchElementInstances(“VideoCaptureCard”, list-IDs) 

  insteadOf 

 VisionSystemReconfigurationAnalysis. 

    getInstances-videoCaptureCard(list-IDs); 

 

 //... [same weavings for each architectural type] 

 

 //*** RECONFIGURATION_ANALYSIS --> RECONFIGURATION EFFECTOR *** 

7 ReconfigurationEffector.StartElement(instance-ID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.StartElement(instance-ID); 

 

8 ReconfigurationEffector.StopElement(instance-ID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.StopElement(instance-ID); 

 

 //*** RECONFIGURATION_ANALYSIS --> RECONFIG. COORDINATION ***** 

9 VisionSystemReconfigurationServices.BeginConfigurationTransaction() 

  insteadOf 

 VisionSystemReconfigurationAnalysis.TRANSACTION.BEGIN; 

 

10 VisionSystemReconfigurationServices.EndConfigurationTransaction() 

  insteadOf 

 VisionSystemReconfigurationAnalysis.TRANSACTION.END; 

 

11 VisionSystemReconfigurationServices.RollBackConfigurationTransaction() 

  insteadOf 

 VisionSystemReconfigurationAnalysis.TRANSACTION.ROLLBACK; 

 

12 VisionSystemReconfigurationServices.create-ImageProcCard(params, 

    newInstanceID) 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

232 

  insteadOf 

 VisionSystemReconfigurationAnalysis. 

    create-ImageProcCard(params,newInstanceID); 

 

13 VisionSystemReconfigurationServices.destroy-imageProcCard(instanceID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.destroy-imageProcCard(instanceID); 

 

 // ... [similar weavings among the VisionSystemReconfigurationAnalysis 

 // aspect and the VisionSystemReconfigurationServices aspect] 

   End_Weavings;  

... 

End_Component VisionSystemEvolver; 

Figure 6.34. Example of weaving definitions in the Evolver component 

Note in the definition of weavings that some source services do not share the 
same signature of the target service: they have different name or even different 
parameters. For instance, the weaving nº1 (Figure 6.34, nº1) binds two services 
with different name and number of parameters. The target service 
beforeServiceRequest has one of its parameters set to the default value “*”, which 
means that the ServiceRequest can be intercepted from any element of the 
architecture (see section 6.4.1.3-Event Interception Services). The weaving nº5 
is similar: the source and target services have different name and kind of 
parameters. The source service getSystemInstanceID requires the ID of the 
System instance which is being managed. The target service 
getArchElementInstances returns the IDs of a certain type of architectural 
element. In this case, the “self” keyword identifies the type of the System type, 
and then the service returns the ID of the System instance which is provided 
to the source service by means of parameter matching. Another example is the 
weaving nº9, which weaves the beginning of a configuration transaction 
(identified with the special keyword TRANSACTION.BEGIN) to the service 
BeginConfigurationTransaction provided by the Reconfiguration 
Coordination aspect. Weavings 10 and 11 behave in a similar way, to end or 
rollback a configuration transaction, respectively. 

Since the Reconfiguration Analysis aspect is defined by the architect, he 
should declare the necessary out services and weavings corresponding to the 
introspection and reconfiguration services used in the specification. In order 
to alleviate the architect from these tasks, the synchronizations among 
reconfiguration aspects (i.e. the declaration of out services + the definition of 
weavings) are automatically generated by default when a new Reconfiguration 
Analysis aspect is instantiated.  



6.5 THE EVOLVER COMPONENT 

233 

6.5.4 Evolver Specification 

The structure of an Evolver type and its relationships with the PRISMA 
metamodel is depicted in Figure 6.35. This figure reflects the different kind of 
artefacts that an Evolver type is made of, which are depicted in different colors 
for claritiy purposes (see Figure 6.35): 

 Generic (or base) elements: elements that define the common 
reconfiguration behaviour for all the Evolvers. They are depicted in 
yellow. 

 Automatically-generated elements: elements that define the 
reconfiguration behaviour that is specific for a concrete System type. 
They are depicted in green: <SysName>EvolverMechanisms, 
<SysName>ReconfigurationServices, <SysName>AnalysisServices, 
IntrospectionPort, and ReconfigurationPort. 

 Customizable generated elements: elements that can be modified or 
customized to fit the architect‟s reconfiguration needs. They are 
depicted in blue: <SysName>Evolver, <SysName>Reconfiguration 
AnalyisisAspect, I_<SysName>IntrospectionServices, and 
I_<SysName>ReconfigurationServices 

This decomposition is due to the different rates of change exhibited by these 
elements: their separation in different artefacts improves its maintenance and 
further evolution (Mens & Wermelinger, 2002). Note that almost all the 
automatically-generated elements (except ports) are prefixed with the name of 
the System type that is managed, <SysName>. This is because they are 
specifically generated for a specific System type (i.e. SysName) and are not valid 
for a different type. 

These elements are described in the next sections. 

6.5.4.1 Evolver Template: The User-Defined Part 

The template that is used to generate the specification of a specialized (i.e. 
System-specific) Evolver component type is shown in Figure 6.36. The name 
of an Evolver component type is prefixed with the name of the System type 
that it manages, SysName. This is because it contains automatically-generated 
structures which are specific for a System type, and are not valid for a different 
System type.  

The specification of an Evolver type provides the following elements: 

 The ports IntrospectionPort and ReconfigurationPort, which provide 
reactive reconfiguration support. These ports are bound to a 
Monitoring aspect, called MonitoringAspect, and to a Reconfiguration 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

234 

Coordination aspect, called <SysName>ReconfigurationServices. These 
ports can be removed from the Evolver specification to forbid the use 
of (external) reactive reconfigurations. 

 
Figure 6.35. Metamodel of the Evolver Component 

 The interfaces I_<SysName>IntrospectionServices and 
I_<SysName>ReconfigurationServices, which define the services that are 
published through the IntrospectionPort and ReconfigurationPort. These 



6.5 THE EVOLVER COMPONENT 

235 

interfaces can be customized by the architect, as described in section 
6.5.2, by removing unwanted services. 

 An empty ReconfigurationAnalysis aspect, called 
<SysName>ReconfigurationAnalysisAspect, which must be 
completed by the architect to include proactive reconfiguration 
support. This aspect is partially defined by another artefact, called 
<SysName>AnalysisServices, which defines the out services that are 
required to weave the Analysis aspect with the Reconfiguration 
Coordination aspect, as described in section 6.5.3. 

 

Evolver-Component <SysName>Evolver 

 is partially defined by <SysName>EvolverMechanisms 

 

 // Proactive reconfiguration support  

 ReconfigurationAnalysis Aspect  

   import <SysName>ReconfigurationAnalysisAspect; 

 

 // Additional aspects can be imported if needed. Import below. 

 

   Ports 

  // Ports for providing Reactive Reconfiguration Support 

  // (Remove them if reactive reconfig. is not needed) 

  ReconfigurationPort :        

   I_<SysName>ReconfigurationServices, 

   Played_Role <SysName>ReconfigurationServices.RECONFPLANS; 

  IntrospectionPort : I_<SysName>IntrospectionServices, 

   Played_Role MonitoringAspect.INTROSPECT; 

 

  // Define here additional ports 

   End_Ports; 

 

 Weavings 

  // Define here the weavings among user-defined aspects 

 End_Weavings; 

 

 // Initialization and Destruction services 

   new() { 

  // User-defined initialization here 

   } 

  

   destroy() { 

  // User-defined destruction here 

   } 

 

End_Evolver-Component <SysName>Evolver; 

Figure 6.36. Template for Evolver component types 

The Evolver specification can be customized to fit the architect‟s 
reconfiguration needs, by adding additional aspects, ports and weavings. For 
instance, an example of a customized Evolver specification is the 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

236 

VisionSystemEvolver, the Evolver of the VisionSystem type, which is provided in 
the appendix A.2.2.1. 

6.5.4.2 Evolver Mechanisms: The Generated Functionality 

Note that the Evolver template shown in Figure 6.36 does not include any 
reference to the specific reconfiguration mechanisms of the Evolver, such as 
the Monitoring aspect, the Reconfiguration Effector aspect, the 
Reconfiguration Coordination aspect or the weavings among them. These 
elements have been explicitly separated from the Evolver specification to 
isolate user-defined specifications (i.e. the customizations made to the Evolver 
type by the architect) from automatically-generated specifications (i.e. the 
mechanisms that provide reconfiguration support). This is to avoid 
introducing inconsistencies to each other.  

On the one hand, the user (i.e. the architect) should not modify automatically-
generated specifications: they are regenerated each time the System type is 
modified, so any change performed on them will be lost. In addition, 
generated specifications define the synchronizations among reconfiguration 
aspects; if they are modified, reconfiguration inconsistencies may be 
introduced. For instance, if configuration actions are modified, or additional 
ones are manually added, the System type constraints may be violated. On the 
other hand, user-defined specifications must be defined separately, to avoid 
that the compiler could remove them when regenerating the specification 
again, thus losing user-defined functionality.  

In order to combine user-defined specifications with automatically-generated 
specifications but also keeping them separated for code-generation purposes, 
we have used the concept of partially defined artefacts: 

A partially-defined artefact is a software artefact (i.e. a type, a class, a 
specification) that is splitted in several parts, which are combined in the 
compiling process.  

This notion is particularly useful to keep separated user-defined specifications 
from automatically-generated specifications, whereas both define the same 
artefact.  

Therefore, the Evolver mechanisms that are automatically-generated and 
cannot be customized by the architect have been encapsulated in a partial 
specification called <SysName>EvolverMechanisms. This partial specification 
complements the customizable <SysName>Evolver specification: see the header 
“is partially defined by” in the template of Figure 6.36. A question that the 
reader may be thinking about is why inheritance has not been used to separate 
generated code from user-defined code. The reason is that generated code uses 



6.5 THE EVOLVER COMPONENT 

237 

artefacts that are declared by the user; for instance, the Reconfiguration 
Analysis aspect, which the generated code weaves to the other reconfiguration 
aspects. And, since the Reconfiguration Analysis aspect is an optional 
element, it cannot be declared by the generated code. 

<SysName>EvolverMechanisms is an automatically-generated partial specification 
that assembles the reconfiguration elements that characterize an Evolver type. 
These elements are the following: 

 The aspects that monitorize and change the managed architecture: 
MonitoringAspect and EffectorAspect. 

 The port that is required to introspect the managed System type, 
metaLevelPort.  

 A specialized (i.e. domain-specific) Reconfiguration Coordination 
aspect, called <SysName>ReconfigurationServices. This aspect provides 
the set of available configuration actions for changing <SysName> and 
inherits the generic reconfiguration behaviour (i.e. generic 
reconfiguration services, transactional management and consistency 
checking) from a predefined aspect called 
BaseReconfigurationCoordination.  

 The necessary relationships to weave these elements together (i.e. the 
weavings among aspects), DomainSpecificWeavings. 

For illustrative purposes, Figure 6.37 shows a fragment of the generated 
EvolverMechanisms for the VisionSystem type. The complete specification is 
provided in appendix A.2.2.1. 

 

Component VisionSystemEvolverMechanisms  

 is partial 

 

// *************************************************************** 

// Automatically-generated partial Evolver specification for  

// VisionSystem instances.  

// 

// This part contains the weavings among the different 

reconfiguration  

// mechanisms. It is regenerated each time the VisionSystem type 

changes. 

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 ReconfigurationCoordination Aspect  

   import VisionSystemReconfigurationServices; 

 Monitoring Aspect import MonitoringAspect; 

 ReconfigurationEffector Aspect import EffectorAspect; 

  

 Ports 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

238 

  SystemTypeDescrPort : I_CompositeTypeDescription,  

   Played_Role  VisionSystemReconfigurationServices. 

        META-TYPEDESCRIPTION; 

   End_Ports; 

  

 Weavings 

 

 //*** Weavings: RECONFIGURATION_ANALYSIS --> MONITORING *** 

 Monitoring.beforeServiceRequest(*, eventName, eventParams)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.beforeEvent(eventName, 

    eventParams); 

 

 Monitoring.insteadOfServiceRequest(*, eventName, condition,  

    replacingService, eventParams)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.insteadOfEvent(eventName, 

    condition, replacingService, eventParams); 

 

 //... More introspection services 

 

 

 //*** RECONFIGURATION_ANALYSIS --> RECONFIGURATION EFFECTOR *** 

 ReconfigurationEffector.StartElement(instance-ID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.StartElement(instance-ID); 

 

 ReconfigurationEffector.StopElement(instance-ID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.StopElement(instance-ID); 

 

 //*** RECONFIGURATION_ANALYSIS --> RECONFIG. COORDINATION ***** 

 VisionSystemReconfigurationServices.BeginConfigurationTransaction() 

  insteadOf 

 VisionSystemReconfigurationAnalysis.TRANSACTION.BEGIN; 

 

 ... 

Figure 6.37. Fragment of VisionSystemEvolverMechanisms 

6.5.4.3 Consistence of Generated Code 

These reconfiguration facilities are automatically generated each time the 
System type is modified. If an architectural element or connection is 
introduced in the System type, the corresponding configuration actions (i.e. 
create-, destroy-, attach-, ...) are automatically added to the specialized 
Reconfiguration Coordination aspect (i.e. the aspect 
<SysName>ReconfigurationServices), so the new architectural element or 
connection could be instantiated. Similarly, if an architectural element or 
connection is removed, the corresponding configuration actions are 
automatically removed from the specialized Reconfiguration Coordination 
aspect, avoiding the instantiation or connection of removed elements.  



6.5 THE EVOLVER COMPONENT 

239 

Obviously, these modifications may leave user-defined reconfiguration 
specifications inconsistent. Specifically, inconsistencies may emerge when a 
user-defined configuration transaction performs operations that, due to 
modifications in the System type, are invalid. There are two kinds of invalid 
operations: (i) the use of configuration actions that are no further available, or 
(ii) the violation of cardinality constraints. The former may emerge when an 
architectural type or connection type has been removed from the System type, 
but reconfiguration specifications still use reconfiguration services related to 
the removed elements (i.e. create-, destroy-, attach-, detach-). The latter may 
emerge when the cardinality of architectural types or connections is changed. 
Depending on the kind of inconsistency introduced, it will be managed at 
compile-time or at runtime.  

The first kind of inconsistency, the use of invalid configuration actions, is 
automatically controlled by the PRISMA model compiler. Since configuration 
actions are defined as services, in case one is no more available (e.g. we cannot 
create instances of an element or we cannot attach two elements), then all the 
user-defined reconfiguration specifications that invoke such disabled actions 
would not compile. The user will be aware that its specifications are not valid 
and should be modified. This is another advantage of using domain-specific 
reconfiguration actions for defining reconfiguration policies.  

The second kind of inconsistency, the violation of cardinality constraints, is 
managed at runtime by the Reconfiguration Coordination aspect. If a user-
defined configuration transaction violates the cardinalities defined by the 
System type, then the preconditions of the Reconfiguration Coordination 
aspect simply forbid the execution of these transactions, thus avoiding invalid 
reconfigurations.  

Thus, by means of code-generation techniques, the set of domain-specific 
reconfiguration services provided by an Evolver type always reflect the allowed 
operations that can be performed on a System type. In case a System type 
changes, the set of allowed reconfiguration operations (i.e. configuration 
actions) is updated accordingly. This operation prevents the execution of 
invalid user-defined reconfiguration policies: reconfiguration policies that use 
reconfiguration operations that are no further available due to the changes 
performed to the System type. 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

240 

6.6 Example: autonomic reconfiguration in the 
VisionSystem architecture 

Finally, to provide a summary of the entire autonomic reconfiguration 
process, this section describes the execution of a reconfiguration scenario in a 
VisionSystem composite instance.  

Figure 6.38 shows the configuration of one of the VisionSystem composite 
instances: the RightCamera instance.  

 
Figure 6.38. Architecture of the RightCamera composite instance,  

with the detail of the reconfiguration aspects provided by an Evolver instance 

This configuration instantiates the different components defined in the 
pattern of the VisionSystem type (see Figure 6.27, page 223): Right-VCapt, an 
instance of the component VideoCaptureCard; ImgProc-1, an instance of the 
component ImageProcCard; R-ImgWatchDog1, an instance of the component 
VisionWatchdog; R-Evolver, an instance of the component VisionSystemEvolver; 
and their respective connectors VCC-Conn1 and IPC-Conn1. The complete 
specification of this configuration in PRISMA ADL is provided in appendix 
A.1.4.2 (see page 385).  

A reconfiguration scenario describes how the architecture of a composite 
instance is reconfigured at runtime when a certain situation or event takes 
place. This reconfiguration scenario can be executed proactively, if it was 
defined at design-time, or reactively, if it is defined and introduced at runtime. 
The difference is that proactive reconfiguration scenarios are specified inside a 
ReconfigurationAnalysis aspect, whereas reactive reconfiguration scenarios are 
introduced by using the services provided by the ports IntrospectionPort and 
ReconfigurationPort of an Evolver instance (for more details, see section 6.5.2). 



6.6 EXAMPLE: AUTONOMIC RECONFIGURATION IN THE VISIONSYSTEM 

ARCHITECTURE 

241 

In both cases, reconfigurations are internally executed by invoking the 
reconfiguration services provided by a Reconfiguration Coordination aspect.  

Next, to illustrate how a reconfiguration process is internally executed inside 
an Evolver component, one of the reconfiguration scenarios described in 
section 5.5.1 (see page 150) is used: the dynamic reconfiguration after the 
failure of an ImageProcCard instance. The supervision of ImageProcCard 
instances (among others) is performed by the component VisionWatchdog. In 
case misbehaviour is detected, the VisionWatchdog component sends a 
faultyOutput event to notify others about the failure. This event is intercepted 
by the Evolver component, which evaluates, by means of the 
VSReconfigurationAnalysis aspect, whether a reconfiguration must be performed 
in response to the event or not.  

One of the reconfiguration scenarios defined in this aspect, 
RepairImageProcessingUnit, describes that in case of the failure of an 
ImageProcCard instance it must be replaced by an instance of the component 
ImageProcSoftware, which provides an alternative implementation of the same 
behaviour. The specification of this reconfiguration in PRISMA ADL has 
been presented in Figure 6.11 (see page 186), so it is not recreated again. The 
execution of this scenario, and the sequence of interactions among the 
reconfiguration aspects, is shown in Figure 6.39. 

The first interaction is performed by the VSReconfigurationAnalysis aspect: 
when it is instantiated, it defines the event that will trigger a reconfiguration 
process: “faultyOutput”. This is done through the service beforeEvent! (see 
step 1 in Figure 6.39), which is actually implemented by the MonitoringAspect. 
This aspect monitorizes the services that take place in the architecture of a 
VisionSystem instance; if it intercepts the desired event, then it activates the 
trigger defined in the VSReconfigurationAnalysis aspect (see sequence of 
interactions from 2 to 5). When the VSReconfigurationAnalysis is activated (i.e. 
it has been notified about an event it was subscribed for), then the 
reconfiguration transaction repairImageProcessingUnit is initiated (see step 6). 
This implicitly activates the execution of the service 
beginConfigurationTransaction, provided by the VSReconfigurationServices aspect 
and that prepares the architecture for being reconfigured at runtime (see step 
7).  

Next, for each reconfiguration operation defined in the reconfiguration 
transaction, the VSReconfigurationServices performs the corresponding actions 
(see section 6.4.3.3 for more details). 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

242 

Figure 6.39. Sequence of interactions among reconfiguration aspects 
 as a result of a configuration transaction 

The figure shows the sequence of actions corresponding to the instantiation 
of a new architectural type: when the domain-specific reconfiguration action 
create-ImageProcSoftware is executed by the VSReconfigurationAnalysis aspect (see 
step 8), then the VSReconfigurationServices aspect initiates the generic 
reconfiguration service createArchitecturalElement (see steps 9 to 14). This 
service checks that the architectural constraints are fulfilled (i.e the type is 
valid, and the maximum and minimum cardinality is not violated), then 



6.6 EXAMPLE: AUTONOMIC RECONFIGURATION IN THE VISIONSYSTEM 

ARCHITECTURE 

243 

creates the instance (which is performed by the EffectorAspect, see steps 11-13) 
and checks that the operation has been successfully performed (service 
checkConsistence). This is similar to the other reconfiguration operations, 
except for removals, where a safe stopping operation is performed first. 

Finally, after the successful execution of all the reconfiguration operations, the 
reconfiguration transaction is committed. This is implicitly initiated when the 
last reconfiguration operation is finished, and it is performed by the 
VSReconfigurationServices aspect (see steps 15 to 22). This service first checks 
the consistency of the architecture (see step 17), and if it is valid, then it 
commits the changes (i.e. deletions and replacements are confirmed) and 
starts the execution of all the stopped elements (see step 19 and 20). Finally, it 
generates the PRISMA ADL specification for making changes permanent (see 
step 21). 

Note that in Figure 6.39, the interactions among aspects are depicted as direct 
calls. However, this has been depicted in this way for simplicity reasons. The 
reader must take into account that interactions among aspects are not 
performed through direct calls, but through weavings: a weaving intercepts an 
aspect service (e.g. create-ImageProcSoftware) and executes the code from 
another aspect instead. In this way, aspects do not have direct references 
among them, thus improving reuse and maintenance.  

As a result, the architecture of the RightCamera is reconfigured at runtime: the 
failing ImageProcCard instance is removed and replaced by an instance of a 
different component, an instance of the component ImageProcSoftware. The 
resulting configuration is shown in Figure 6.40.  

 
Figure 6.40. Architecture of the RightCamera composite instance, after  
the execution of the RepairImageProcessingUnit reconfiguration process 



CHAPTER 6. AUTONOMIC RECONFIGURATION 

244 

This is performed transparently to the architect, without the need of dealing 
with low-level details, such as consistency management issues.  

6.7 Conclusions & further works 

This work provides four contributions to the design of autonomous 
dynamically reconfigurable systems. First, it defines a model to bridge the gap 
among high-level reconfiguration specifications and low-level supporting 
mechanisms. Second, it provides each composite component with self-
reconfiguration capabilities to autonomously change its internal composition. 
Third, it considers the support for both reactive and proactive 
reconfigurations, to achieve a better level of flexibility. Fourth, it explicitly 
separates reconfiguration concerns from other concerns of the system, to 
improve their maintainability and reuse. And fifth, it provides composite 
instances with reconfiguration plasticity to tolerate changes without breaking 
the design decisions defined in their types. 

6.7.1 Conclusions 

This chapter has described one perspective of our work: the support for 
autonomic reconfiguration of hierarchical software architectures. Each 
subsystem (i.e. a System) is provided with dynamic reconfiguration 
mechanisms to proactively change its internal structure according to either 
internal or external stimuli. These mechanisms are provided by four aspects: 

 The different stimuli are captured by the Monitoring aspect, which 
monitorizes the architecture and intercepts events. These events can 
be internal, if they are triggered by the elements of the System 
instance being managed, or external, if they come from outside the 
context of the System instance (i.e. they are delivered through System 
ports) 

 The selection of stimuli (i.e. reconfiguration triggers) and the 
reactions to these stimuli (i.e. reconfiguration operations) are defined 
by a different aspect, the Reconfiguration Analysis aspect;  

 The orchestration of the reconfiguration process and its consistence is 
performed by the Reconfiguration Coordination aspect; and  

 The changes to the architecture are performed by the Reconfiguration 
Effector aspect, the mediator with the execution platform. 

As a result, the separation of concerns is enforced by isolating: user-defined 
reconfiguration policies (Reconfiguration Analysis aspect), domain-specific 



6.7 CONCLUSIONS & FURTHER WORKS 

245 

reconfiguration facilities (Reconfiguration Coordination aspect) and 
reconfiguration mechanisms (Monitoring and Reconfiguration Effector 
aspects). The user only deals with high-level reconfiguration actions (e.g. create-
, attach-, detach-, ...), without taking care of low-level reconfiguration actions 
(e.g. quiescing elements, state migration, selective stopping, etc.). This results 
in high-abstraction level, easier to understand, and easy maintainable 
reconfiguration specifications.  

Another advantage of our approach is that the information about the running 
system is obtained at runtime, by means of the introspection services provided 
by the Monitoring aspect. Thus, there is no need for keeping a runtime model 
of the system, since system information is obtained when needed.  

In addition, the interception services provided by the Monitoring aspect are 
very powerful. They do not only notify about services that are requested in the 
architecture, but also about the execution of reconfiguration services. The 
interception of reconfiguration events is a very useful feature to keep visual 
representations or models of a system updated as soon as the system changes. 
If an architectural instance is created, removed, or its connections changed, 
then the visual model should be notified to represent this situation. This is 
better than periodically obtaining the complete specification of the running 
system (by means of the getConfigurationSpecification service) and checking 
changes.  

For each System type, its reconfiguration code is centralized in a special 
component called Evolver. This avoids the scattering of this code among the 
architecture, as in decentralized approaches. Thus, a reconfigurable System 
will have a fixed part, i.e. the Evolver component, and a variable part where 
the Evolver will act upon, i.e. all the other architectural elements and 
connections of the System. The Evolver encapsulates the different aspects and 
integrates the domain-specific behaviour (i.e. reconfiguration policies and 
domain-specific reconfiguration operations) with the domain-independent 
behaviour (event interception, architecture introspection, and architecture 
modification services). This is made by means of automatically-generated code, 
which defines the necessary synchronization code (weavings and out services) 
among aspects.  

Thus, this approach provides a software architecture with the following 
properties: (i) flexibility, due to the use of both proactive and reactive dynamic 
reconfigurations; (ii) maintainability, because aspect-oriented techniques are 
used to separate reconfiguration concerns from other concerns; and (iii) 
scalability, because management is decentralized to each composite 
component.  



CHAPTER 6. AUTONOMIC RECONFIGURATION 

246 

Another contribution of our approach is that the reconfigurations performed 
on a System instance are limited by the constraints defined in its System type. 
This is to avoid that System instances, due to several reconfigurations, could 
lose the conformance with their System type, and thus their integration with 
other systems. A System type defines which architectural elements can be used 
in the architecture and how they can be interconnected. Thus, although 
different instances of the same System type are enabled to reconfigure its 
architecture, they will always maintain type conformance, so that the overall 
composition is preserved.  

6.7.2 Further works 

One aspect from our approach that has left to future work, is the updating of 
the PRISMA Case tool to include the modelling of the reconfiguration aspects 
as described in this chapter: (i) the graphical modelling of reconfiguration 
specifications, (ii) the automatic generation of Evolver specifications and the 
integration of the aspects, and (iii) the graphical depiction of running 
PRISMA System instances by means of the reactive reconfiguration features 
provided by Evolver components. However, the principles and knowledge are 
well established from previous works (Guillén-Martín, 2007), (Pérez et al., 
2007), (Pérez et al., 2007a), so its implementation is straightforward. 

Another extension to our work is the inclusion of context-awareness features, 
in order to enable a System instance to react when the system resources 
decrease or some operating system‟s signals are raised. This is left as a further 
work. An initial direction is to use WILDCAT expressions (David & Ledoux, 
2005) in the Monitoring aspect to explore the execution context of a System 
instance, and interact seamlessly with the middleware. 

Further works remain, such the dynamic generation of reconfiguration plans 
from high-level goals. We have used the PRISMA AOADL to define simple 
event-condition-action (ECA) policies, although other kind of policies could 
have been defined (Huebscher & McCann, 2008). A promising approach that 
could be encapsulated inside the ReconfigurationAnalysis aspect are those 
that carry out task synthesis from high-level goals (Sykes et al., 2008). The 
contribution of this approach is not the definition of the reconfiguration 
specification, but the explicit separation between the reconfiguration 
specifications and the mechanisms that support them. In this way, business 
logic, reconfiguration specifications, and reconfiguration mechanisms 
concerns can be maintained separately since they have different rates of 
change. The business logic can be dynamically changed by the reconfiguration 
specifications, by means of the reconfiguration mechanisms. And the 
reconfiguration specifications can also be dynamically changed by using the 



6.7 CONCLUSIONS & FURTHER WORKS 

247 

reconfiguration mechanisms, treating them as any other concern of the 
system, as we state in the following chapter. 

6.7.3 Results 

The work related to the definition of the autonomic reconfiguration aspects 
has produced a set of results that are published in the following publications: 

- C. Costa-Soria, J. Pérez, J.A. Carsí. An Aspect-Oriented Approach for 
Supporting Autonomic Reconfiguration of Software Architectures. Special Issue 
on Autonomic and Self-Adaptive Systems, Informatica (Slovenia), vol. 35, 
issue 1, pp. 15-27. February 2011. ISSN 0350-5596.  

- C. Costa-Soria, J. Pérez, J.A. Carsí, D. Alonso, F. Ortiz, J.A. Pastor. 
Reconfiguración Dinámica de Arquitecturas Software Aplicada a la Tolerancia a 
Fallos. In proc. of: 3rd International Workshop on Autonomic and Self-
Adaptive Systems (WASELF‟10). Valencia, Spain, September 2010 (in 
Spanish). 

- C. Costa-Soria, J. Pérez, J.A. Carsí. Handling the Dynamic Reconfiguration of 
Software Architectures using Aspects. In proc. of: 13th IEEE European 
Conference on Software Maintenance and Reengineering (CSMR‟09), pp. 
263-266. Kaiserslautern, Germany, 2009.  

- C. Costa, N. Ali, J. Pérez, J.A. Carsí, I. Ramos. Dynamic Reconfiguration of 
Software Architectures Through Aspects. In proc. of: First European 
Conference on Software Architecture (ECSA‟07). Lecture Notes on 
Computer Science, vol. 4758, pp. 279-283. Springer, Heidelberg, 24-26 
September 2007. 

- C. Costa, J. Pérez, J.A. Carsí. Hacia la construcción de arquitecturas software 
dinámicas. In proc. of: V Jornadas DYNAMICA, pp. 109-120. Valencia, 
Spain, 23-24 November, 2006 (in Spanish). 

- C. Costa, J. Pérez, J.A. Carsí. Hacia la reconfiguración dinámica de 
arquitecturas software orientadas a aspectos. In proc. of: IV Taller de 
Desarrollo de Software Orientado a Aspectos (DSOA'06), junto a XI 
Jornadas de Ingeniería del Software y Bases de Datos (JISBD'06). Servicio 
de publicaciones de la Universidad de Extremadura, Informe técnico TR 
24/06, pp. 35-40. Sitges, Spain, 3 October 2006 (in Spanish) 





 

249 

Chapter 7. Dynamic Evolution of Architectural Types 

 

CHAPTER VII 

DYNAMIC EVOLUTION OF 
ARCHITECTURAL TYPES 

7.1 Introduction 

oftware systems are continuously evolving during their lifetime. Due to 
the increasing complexity of software systems, they require continuous 
updates to correct errors and/or reduce defects. Moreover, due to the 

usage of such systems in changing environments, software systems are 
periodically changed to introduce new features (that may also introduce new 
errors and defects). For this reason, evolution should be considered as an 
intrinsic part of live software systems. 

This evolution is generally performed offline: the system is shutdown, and 
once the modification has been completed, the entire system is restarted to 
reflect the new changes. However, this has the disadvantage that the state and 
pending transactions of the running system are lost. The nature of some 
systems makes unfeasible this shutdown to integrate changes. This is the case 
of software systems managing critical resources (e.g. military, avionics, 
energetic) or that are not directly reachable (e.g. autonomous robots in space 
explorations). In such cases, runtime evolution support is needed.  

The previous chapter describes how autonomic reconfigurations allow a 
system to proactively adapt or reorganize its structure, and how this can be 
used to build self-managed systems. However, autonomic reconfigurations 
only cover one level of architectural dynamism: the dynamic modification of 
the system topology. Since autonomic reconfigurations operate at the 
configuration level, they can only change the way that previously defined 
building blocks (i.e. component and connector types) are instantiated and 
interconnected. However, the behaviour of these predefined building blocks 
cannot be changed at runtime; neither new ones can be built at runtime. 
What happens then if the behaviours of some components or several 

S 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

250 

proactive reconfiguration specifications need to be changed without the 
system being stopped? In this regard, self-managed systems are not fully 
dynamic. 

To build really open systems, and/or support the updating of highly available 
systems, an additional level of architectural dynamism is needed: the support 
for the Dynamic Evolution of Architectural Types. This level of dynamism 
covers the dynamic modification of the types that define the infrastructure 
and behaviour of a software system. This allows us to entirely modify the 
architecture of a running system, and thus develop a real new architecture at 
runtime.  

This chapter presents an asynchronous reflective approach for dynamically 
evolving architectural types and instances in a decentralized way. First, this 
approach is reflective because it dynamically provides editable specifications of 
the type to evolve: changes on these specifications are reflected on both the 
type and their instances at runtime. Second, this approach is asynchronous 
because the changes on the instances are not immediately applied; each 
instance is evolved at different times, according to its context. Third, this 
approach is decentralized because each architectural type can be evolved 
independently from other types and its instances. Type compatibility is 
preserved by means of version management, whereas instances are 
incrementally and asynchronously evolved only after each one is ready to 
evolve. The approach is presented from a platform-independent view, by 
describing the different concerns of the dynamic evolution process and how 
they interrelate which each other.  

This chapter is organized as follows. Section 7.2 presents the definitions of 
type, instance, architectural type, and dynamic evolution of architectural 
types. These concepts are important since they are used widely thorough the 
chapter. Next, section 7.3 presents the reflective asynchronous type evolution 
model and the evolution infrastructure that supports this model. Finally, 
section 7.4 presents the conclusions and further works. 

7.2 Basis of the dynamic evolution of architectural types 

7.2.1 Definitions of Type, Instance and Architectural Type 

Before describing what the dynamic evolution of architectural types is, first 
the concept of types and instances should be introduced, to avoid any 
misunderstanding of the concepts that will be used later.  



7.2 BASIS OF THE DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

251 

A type is an abstract concept which defines the structure (i.e. the state) 
and behaviour (i.e. how this state is modified) of a software artefact. A 
type is comprised of two elements:  

(i) specification: the high-level description of a software artefact, 
and 

(ii) executable code: the realization of this software artefact (i.e. 
the implementation of the specification).  

In a Model-Driven Development approach (Beydeda et al., 2005) (Selic, 2003), 
the executable code is automatically generated from a (possibly partial and 
formal) specification. This reflects how specification and executable code are 
closely related elements. The executable code allows the creation and 
execution of different instances of the software artefact: 

An instance is the execution of a type on a concrete platform: it 
behaves as defined by the type specification, and is characterized by an 
internal state (i.e. the data stored in the instance) that is different from 
other instances of the same type. 

The terms type and instance are used at different levels of granularity, 
comprising different kinds of elements, but with the same meaning: the 
specification of a software artefact and the execution of this specification, 
respectively. For instance, in object-oriented approaches (i.e. fine granularity 
levels) types are classes and instances are objects. Likewise, in component-based 
approaches (i.e. medium granularity levels) types are component specitifications, 
and instances are component instances. A component specification can be 
internally defined as a composition of several classes, whereas a component 
instance may comprise the instantiation of several objects.  

Since in software architectures there are not only components, but also 
connectors and systems (i.e. composite components), we use the more general 
terms architectural types and architectural instances: 

An architectural type defines the internal structure and behaviour of 
an architectural element: a component, a connector, or a system (i.e. a 
composite component).  

An architectural instance is the execution of an architectural type on 
a concrete platform.  

The specification of an architectural type may be structural or behavioural. 
The specification is structural if it defines the internal composition of a 
system, that is, it defines how several architectural types are composed, 
interconnected, and instantiated. The specification is behavioural if it defines 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

252 

the internal elements that define the behaviour of a component or a 
connector (e.g. classes, aspects, procedures, etc.).  

Moreover, the term architectural also provides an additional property: 
architectural types and architectural instances are coarse granularity elements 
which only exhibit a set of ports to interact with other architectural elements. 
They are internally composed of several smaller granularity elements (e.g. 
classes and objects), but they are not visible from outside; only their 
relationships with other architectural elements are visible. 

7.2.2 Definition of the Dynamic Evolution of Architectural Types 

When a type that is deployed and active in a software system (i.e. it has been 
instantiated), needs to be changed or updated, dynamic software evolution is 
used. Dynamic software evolution is a feature that allows changing a type 
without the need to shut down the system.  

In the context of software architectures, dynamic evolution is performed on 
architectural types: 

The Dynamic Evolution of Architectural Types allows the 
completely unanticipated runtime modification of the architectural types 
that a software architecture is build from. This modification comprises 
the integration of new architectural types, the modification of 
instantiated types, or the removal of existing types and their instances, 
while the system is running. 

This enables the modification of architectural patterns, if composite 
architectural types are changed (i.e. Systems), and the modification of 
behaviours, if simple architectural types are changed (i.e. Components and 
Connectors).  

It is important to note that the dynamic evolution of a type does not only 
involve the change of its compiled code, but also the migration (or evolution) 
of its instances to the structure defined by the new type specification. This is 
performed by the following evolution process:  

1) The specification of the type is changed;  

2) The executable code of the type is updated or regenerated, so that 
new instances could be created according to the updated type; and  

3) The current running instances of the type (which are stateful) are 
evolved or migrated to integrate the changes performed on the type. 

The last step is the longest, because it entails the safe stopping (see section 3.4) 
of all the instances that are going to evolve. This guarantees that there are no 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

253 

pending or running transactions which could be affected by the evolution 
process.  

7.3 Reflective Asynchronous Evolution of Architectural 
Types 

This section describes the approach for supporting the dynamic evolution of 
architectural types. This approach is characterized by the following features:  

Type-oriented evolution 

The approach focuses on type-oriented evolutions rather than on system-
oriented evolutions. This means that evolution support is not considered as a 
feature of the whole system, but a feature of each architectural type. That is, a 
software system is not evolvable by itself: evolvable are the architectural types 
it is made of. Thus, only the architectural types that require dynamic 
evolution support are provided with evolution mechanisms, whereas non 
evolvable types not. This benefits the overall performance of the system, since 
only the evolvable types would be affected by the execution overhead 
introduced by evolution mechanisms. Another benefit is that it avoids the 
need of a centralized evolution manager, which could be a single-point of 
failure. Each evolvable earchitectural type is provided with its own evolution 
mechanisms, which makes its evolution independent from others.  

Reflective evolution description 

The approach is reflective because each evolvable architectural type is able to: 
(i) reify an editable description of itself, and (ii) reflect the changes on this 
description to itself. The reification operation provides a complete description 
of the type (in terms of PRISMA elements) that can be obtained at runtime, 
inspected, and edited through a set of evolution services. The reflection 
operation performs changes at both the meta-level and the base-level: the 
specification and executable code of the type is changed, and all its running 
instances are changed accordingly. The benefit of using a reflective model is 
that it makes architectural types self-described and self-evolvable. Another 
benefit is that it simplifies the evolution model from the point of view of the 
user: he/she obtains the description of an architectural type, he/she edits it, 
and the architectural type changes itself according to the edited description. 

Asynchronous evolution model 

The approach implements an asynchronous evolution model because each 
architectural type and its instances evolve independently, at different rates. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

254 

Therefore, each architectural type can process and integrate new evolution 
requests despite its instances may be still evolving to previous versions. The 
main benefits of using an asynchronous evolution model are that it enables 
the development of highly flexible systems, and that it supports the 
propagation of changes in distributed and/or mobile systems. This has been 
supported by distributing the evolution mechanisms among the type-level and 
the instance-level. This is a contribution of this work, since related works have 
only considered type-level evolution mechanisms. 

Instance evolution through transformations 

Another contribution of this work is that the evolution of instances has been 
addressed from a different perspective: through their structural decomposition 
and transformation. The instance is decomposed in smaller parts and the 
dependencies among them. Then, changes are performed as a set of 
incremental changes on these smaller parts, taking into account the 
dependencies among them. The benefit is that this enables the transparent 
evolution of instances: changes are performed inside the original boundaries 
of the instance, without the need of recreating again the external links, or 
migrating the state of the instance. Only the smaller parts that have been 
changed may require the updating of links or state migration. This approach 
is better suited to partially change large architectural types. 

These characteristics are described in detail in the following subsections. The 
subsection 7.3.1 discusses why evolution support is provided at the type-level 
instead of at the system-level. Then, subsection 7.3.2 describes in detail the 
reflective model that is provided to evolvable types, and how dynamic changes 
are introduced. Next, subsection 7.3.3 describes the transformation approach 
that has been followed to evolve architectural instances. Subsection 7.3.4 
describes the asynchronous model that has been followed to support the 
evolution of types and instances. Finally, subsection 7.3.5 presents the 
evolution infrastructure that provides support to the characteristics described. 

7.3.1 System-level evolutions vs type-level evolutions 

Dynamic evolution is generally considered as a system-level feature. That is, 
dynamic evolution support is globally provided, so all the types of a system can 
be subject to dynamic changes (although with some restrictions). Examples of 
system-level evolution support are the works of (Malabarba et al., 2000), 
(Ritzau & Andersson, 2000), (Wang et al., 2006). This evolution support 
generally introduces an execution overhead into the application which should 
be taken into account. This overhead may range from a 2% in the approach of 
(Wang et al., 2006) to a 10% in the approach of (Malabarba et al., 2000).  



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

255 

By considering dynamic evolution as a system-level characteristic, it is assumed 
that all the elements of a system are evolvable, and that all of them can be 
evolved the same way. However, this is not always true, particularly in large-
sized software systems. Since large-sized systems are generally heterogenous 
(i.e. integrated by elements from different technologies), it cannot be assumed 
that all the elements of a system could be managed/evolved by a common set 
of mechanisms. These mechanisms will be different for each technology used 
and also for each kind of artefact within the same technology. For instance, 
Java and .NET technologies provide different ways to evolve classes at 
runtime: in Java this is done by means of the modification of the Java Class 
Loader (Malabarba et al., 2000), (Wang et al., 2006), whereas in .NET this is 
done by means of profiling techniques (Mikunov, 2003). And, within the same 
technology, different mechanisms are used depending of the kind of artifact 
to evolve: modification of function pointers to change methods, dynamic 
linking and redirections to change classes, wrappers to change components, 
etc. In addition, not all the elements of a system require dynamic evolution 
support. If dynamic evolution is globally provided, non evolvable elements 
would be also penalized with the overhead of the evolution infrastructure, 
despite not using this infrastructure. Only evolvable elements should assume 
this overhead. 

For these reasons, in our approach dynamic evolution has been considered as 
a feature provided by the types of a system, not a feature of the system itself. 
That is, a software system is not evolvable by itself: evolvable are the types it is 
made of. Thus, only the types that require dynamic evolution support are 
provided with evolution mechanisms (and their corresponding execution 
overhead), whereas non evolvable types not. These evolution mechanisms 
provide each evolvable type with customised code-generation and state-
migration functions to evolve the type specification and its instances.  

Furthermore, the consideration of dynamic evolution as a type feature could 
help to increase the abstraction-level of changes. System-level evolution 
mechanisms are focused on a specific granularity level: e.g. the evolution of 
methods or classes or components. The evolutions on other granularity levels 
are then done manually. For instance, if dynamic evolution of classes is 
supported, the evolution of components (considered as compositions of 
classes) requires manually disassembling a component into its constituent 
classes, update the required classes and reassemble together the different 
classes. The complexity increases as higher the granularity level of the type to 
evolve is from the granularity level of the evolution mechanisms provided. By 
the contrary, if each type is considered as the provider of its dynamic 
evolution, it can abstract finer granularity changes and make easy its 
evolution. Evolutions are requested at a high granularity level (e.g. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

256 

component-level), which are internally propagated to the constituent parts 
(e.g. classes) by requesting finer granularity changes. For instance, evolvable 
composite components may provide services to dynamically change their 
internal composition: services to add, replace or remove the internal 
components it is made of and their relationships. Among these internal 
components, those that are dynamically evolvable would provide services to 
change their internal composition: i.e. services to change their internal classes. 
This is the perspective that has been considered in our approach: evolvable 
architectural types provide services to change their specification (i.e. its 
internal composition) and their instances.  

7.3.2 A reflective model for evolvable types  

In our approach, dynamic evolution is a feature only exhibited by those 
architectural types that are evolvable. An evolvable type is characterised by an 
evolution infrastructure that allows us to change both its specification and its 
instances at runtime. This evolution infrastructure is based on the concepts 
and techniques from the area of Computational Reflection.  

7.3.2.1 Reflection: The Abstract Model 

Computational Reflection (see section 3.5.3) addresses the capability of a 
software system to reason about itself and act upon itself. In order to do so, a 
system must have a representation of itself that is editable and causally connected 
to itself. The changes that are made in this representation (which is managed as 
data) are reflected on the system, and vice versa. These systems are called 
reflective systems, and are structured in two levels: a base-level and a meta-level. 
The base-level is the level where the system normally runs, carrying the main 
functionality it was designed for. The meta-level is the level where the editable 
representation of the system resides. This level allows the system to change its 
behaviour by modifying its representation. The process of obtaining an 
editable representation of the system (or accessing the system meta-level) is 
called reification, and the opposite process is called reflection.  

These concepts have been widely applied in the literature to address the 
dynamic evolution of software systems. Some of these approaches (see sections 
3.5.3, 4.2.1.3 and 4.2.3) provide reflective capabilities at a system-level. The 
entire software system is structured into a base-level and a meta-level, and 
reification-reflection processes affect the entire system as a whole.  

Since our approach focuses on providing dynamic evolution support 
individually to each type rather than system-wide, our proposal is that a 
software system is not reflective: reflective are its evolvable architectural types. In this 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

257 

way, each evolvable type is structured into a base-level and a meta-level (see 
Figure 7.1).  

 
Figure 7.1. Reflective Evolution of Architectural Types 

The base-level contains the executable code of an architectural type and its 
instances. The meta-level contains the specification of the type (i.e. its 
representation), which is editable and causally connected to the base-level. 
This (editable) specification is dynamically obtained when a reification is 
requested to an (evolvable) architectural type. A reification is an operation 
initiated at the base-level which provides access to the meta-level (see 
reification link in Figure 7.1). All the changes performed on this specification 
are reflected back to the base-level, i.e. they are propagated to the executable 
code of the architectural type and its instances. 

This is the abstract model that has been used to address the evolution of 
architectural types. However, the realization of this abstract model poses some 
questions. Since a type does not have a real entity at runtime, how its 
representation can be obtained and manipulated at runtime? That is, how the 
meta-level of an evolvable type can be accessed at runtime?  

7.3.2.2 Type Meta-Instances: The Concrete Model 

To allow the inspection and manipulation of a (evolvable) type at runtime, 
this type must be made explicit and accessible at runtime. This is performed 
by type meta-instances: 

A type meta-instance is a type that is materialized at runtime with 
facilities to inspect and manipulate its meta-level representation.  

In other words, a type meta-instance is the objectification of a type at the 
instance-level, thus allowing base-level entities (i.e. any instance) to access the 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

258 

type meta-level. A type meta-instance provides two services to access this meta-
level: reify and reflect. The reify service returns a representation of the type (i.e. 
a meta-level artefact) that can be inspected and/or manipulated. The reflect 
service takes a representation of the type and uses it to change accordingly the 
base-level of the type. That is, it changes the executable code of the type and 
its respective instances.  

Internally, a type meta-instance encapsulates the elements that a type is 
comprised of: the high-level specification, the executable code (which 
comprises the instantiation mechanisms and the common executable 
behaviour of instances), and the code generation patterns that transform the 
specification into executable code. This allows the meta-instance to build the 
meta-level representation of the type, so other instances can inspect and 
manipulate it, and to regenerate the type base-level (i.e. the executable code of 
the type) each time the meta-level representation is edited.  

Figure 7.2 describes graphically the different dimensions where a type meta-
instance acts: the type-level, the instance-level (both at the base-level), and the 
meta-level.  

 
Figure 7.2. Model of Type Meta-Instances 

A type meta-instance, Meta-instance TA, behaves as the type it materializes (TA), 
because it encapsulates the executable code of this type (see the element called 
Type TA Executable Code in Figure 7.2), thus providing the mechanisms to 
create and destroy instances (see the port publishing the services New and 
Destroy). For this reason, a meta-instance acts at the type-level. On the other 
hand, a type meta-instance is accessible by other instances, to allow them to 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

259 

invoke meta-level services (i.e. see the port publishing the services Reify and 
Reflect in Figure 7.2). For this reason, a meta-instance acts at the instance-level. 
Finally, a type meta-instance contains the reification of the type it materializes 
(see the meta-level element Type Spec in Figure 7.2) and is able to reflect the 
changes on this reification to the base-level. For this reason, a meta-instance 
acts at the meta-level. 

According to the taxonomy of reflective models presented by Walter Cazzola 
in (Cazzola, 1998), our approach could be categorized as a Meta-Class Model: 
the reflective tower is realized by the instantiation link among a type and its 
instances. That is, evolvable types, by means of type meta-instances, provide 
reflective capabilities to reify and manipulate its meta-level representation. The 
changes on this representation are propagated to the base-level by 
manipulating the instantiation link among a type and its instances. When a 
new type version is generated, old instances are migrated from the old type 
version to the new type version. This results in a migration of the 
instantiation link.  

7.3.2.3 Reification of Types 

In our approach, the reflective model presented in the previous section is used 
to evolve both simple and composite architectural types. Externally, type meta-
instances materializing simple and composite types behave identically: they 
create instances of the type that they materialize and they provide meta-level 
services (i.e. Reify and Reflect) to obtain a reification of the type and change its 
base-level. However, meta-instances of simple types differ from meta-instances 
of composite types in that the reification provided is completely different: the 
definition of simple architectural types is different from composite 
architectural types. For instance, in PRISMA, simple architectural types (i.e. 
Components and Connectors) are defined by means of aspects, weavings and 
ports, whereas composite architectural types (i.e. Systems) are defined by means 
of architectural types, attachments, bindings, and ports.  

To abstract from these differences and provide a unified view for evolving 
types, reifications are provided through <Type>Spec objects. The term 
<Type>Spec is an abstraction for referring to the reification of an architectural 
type independently of what kind of architectural element (i.e. simple or 
composite) this reification represents. For instance, in case of simple type 
reifications, this object is called SimpleSpec; in case of composite type 
reifications, this object is called CompositeSpec.  

A <Type>Spec object (i.e. a SimpleSpec or a CompositeSpec) is returned by the 
Reify service of type meta-instances: it encapsulates the reification of a type 
through a set of data structures that can be inspected and manipulated at 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

260 

runtime. To guarantee that the values contained in the data structures are 
changed consistently and that the resulting type reification is syntactically 
correct (i.e. according to the metamodel), the <Type>Spec object provides a set 
of services to edit these data structures. These services are called evolution 
services, because they edit the reification in terms of additions, removals or 
replacements of elements. 

For instance, Figure 7.3 shows the structure of a SimpleSpec object (see the 
class called ComponentSpec). A SimpleSpec object has a set of data structures for 
describing the elements that a simple PRISMA architectural type is composed 
of: (i) aspects (defined in AspectSpec data structures), (ii) ports (defined in 
PortSpec data structures), (iii) weavings (encoded in WeavingSpec structures), 
and (iv) a constructor (defined through the data structures ParamInfo, which 
defines the constructor parameters, and ExpressionSpec, which defines the 
constructor code).  

Note that the reification of simple architectural types only contains the name 
of subtypes, such as aspects, but not the reification of such subtypes (see in 
Figure 7.3 the attribute aspectType in AspectSpec). This is because our reflective 
model is recursive: the reification of subtypes (e.g. aspects) must be requested to 
their respective meta-instances. This improves maintenance through the 
delegation of tasks, and the makes the model simpler. 

 

Figure 7.3. Structure of a SimpleSpec object 

The edition of the values contained in SimpleSpec objects is done (and 
validated) through a set of evolution services: addAspect, addPort, addWeaving, 
removeAspect, removePort, removeWeaving, etc. These services validate that the 
changes introduced are syntactically conformant to the metamodel. Examples 
of these validations are the following: 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

261 

- AddAspect: an aspect can be only added if there is no another aspect of 
the same type already defined in the type;  

- RemoveAspect: an aspect cannot be removed if there is a port or 
weaving that refers to this aspect; 

- ReplaceAspect: an aspect can only replace another if: (i) the old aspect 
exists, (ii) the new aspect does not exist previously, (iii) in case a port 
exists that publishes interfaces from the old aspect, the new aspect 
implements these interfaces, and (iv) in case a weaving exist with the 
old aspect, the new aspect must provide the same service intercepted 
by this weaving 

- AddPort: a port can be only added if: (i) there is no another port with 
the same name, and (ii) there is an aspect that implements the 
interface and PlayedRole that the port defines. 

- AddWeaving: a weaving can be only added if: (i) the aspects it 
synchronizes are defined in the type, and (ii) the services it intercepts 
are provided by each aspect. 

In this way, through the use of evolution services, <Type>Spec objects allow 
base-level elements (i.e. computational entities) to inspect and manipulate type 
reifications as data elements without the risk of introducing inconsistent 
changes.  

In addition, another advantage is that <Type>Spec objects facilitate the 
definition of sets of changes, as it is described in the next section.  

7.3.2.4 Evolution Process Overview 

The dynamic evolution of a type is reactively performed. That is, the 
definition of the changes to carry out on a type is performed externally. The 
entity that defines the set of changes to apply on a type and that initiates the 
evolution process is called evolution agent. This evolution agent can be a 
human (which performs ad-hoc evolutions), or an architectural element 
(which performs programmed evolutions). 

To dynamically evolve a type, an evolution agent must follow three steps: (i) 
reify the type, (ii) manipulate the reification provided, and (iii) reflect the 
changes to the meta-level.  These steps are graphically described in Figure 7.4. 

The first step is to obtain the reification of the type to inspect and/or evolve. 
This reification is obtained by invoking the Reify service provided by the meta-
instance of the type to evolve (if the type is not evolvable, then its meta-
instance will not be available). The Reify service returns an object <Type>Spec 
(i.e. a SimpleSpec or a CompositeSpec object, depending of the kind of 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

262 

architectural type reified). This is described in Figure 7.4 as the step 1. Note 
that, in the figure, the Reify service returns a SimpleSpec object, named as CSPEC. 
This is because the type TA materialized by the meta-instance is a simple 
architectural element. Recall that externally, simple and composite 
architectural elements are black boxes which cannot be distinguished from 
each other. This distinction can be only made when inspecting the internal 
structure of a type, which can be only performed by obtaining its reification. 

 
Figure 7.4. Black-box view of the dynamic evolution process  

The second step is to define the set of changes that are required on the type. 
This is performed by means of the specific evolution services that <Type>Spec 
objects provide. This is described in Figure 7.4 as the step 2: the evolution 
agent manipulates the object obtained in the previous step, CSPEC, by using the 
evolution services this object provides (e.g. removeAspect, addAspect, etc.). The 
resulting specification is named in the figure as C‟SPEC. 

We assume that the set of changes that are going to be introduced in the type 
are correct and valid. If new functionalities are added to an architectural type, 
the interacting types must be also appropriately updated to correctly use the 
new functionality (this also applies when removing functionalities). This is 
responsibility of the architect. The evolution infrastructure is only responsible 
for guaranteeing that the changes requested are correctly introduced. This 
work is only concerned with the correct execution of dynamic changes, but 
not with trying to establish whether the changes proposed are correct.  

Another important aspect to take into account is that either architectural 
types are self-contained (i.e. they are provided with all the internal types that 
they require) or their dependencies are made explicit (i.e. they explicitly 
publish which are the provided and required services or types). This is a 
fundamental principle for enabling the dynamic evolution process. 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

263 

Finally, the third step is to reflect the changes on the type meta-level (which 
results in the dynamic evolution of the type base-level –the modification of the 
type definition and its instances). This is performed by calling the service 
Reflect provided by the type meta-instance. This service requires a <Type>Spec 
object of the same kind that the meta-instance provides, and that was 
generated from the current type version. This is described in Figure 7.4 as the 
step 3: the evolution agent invokes the Reflect service, by providing the edited 
reification, C‟SPEC. Then, the evolution of the type starts: a new type version 
will be generated and its old instances will be migrated/transformed to the 
new type version. 

Note that the edition of a type reification is performed asynchronously: the 
evolution agent does not need to interact with the type meta-instance during 
the edition; only when it wants to reflect the changes. This gives great 
flexibility for evolving running artefacts, without making type meta-instances 
to wait until inspection or manipulation of reifications finish. For instance, an 
evolution agent may encapsulate a tool that enables a user to manipulate a 
type description graphically. When the changes on this graphical description 
finish, they are provided to the type meta-instance and reflected on the type 
and their instances. Another example is the use of mobile agents: the 
evolution agent may be transferred over the network to enable remote 
updating of software artefacts. Thus, a type meta-instance can serve several, 
concurrent reification requests.  

However, concurrent modifications of a type (and version branching) is not 
allowed: for simplicity, our approach has been limited to allow only a single 
evolution path (see page 271). For this reason, in presence of several evolution 
agents working on the same reification version (i.e. editing a <Type>Spec object 
generated from the same type version), only the first agent to reflect its 
changes (i.e. call the Reflect service) could evolve the type. A new type version 
would be generated and the other delivered reifications would be invalidated. 
When the other agents try to reflect their set of changes (which have been 
made to an invalidated reification), then the meta-instance will notify them 
that their reifications are outdated and that they should obtain a new 
reification. This is a simple but yet powerful solution. It does not only 
guarantees that a single evolution path is built, but also makes evolution 
agents to take into account the new changes and to consider if additional 
changes to those initially planned are needed. 

7.3.3 Evolving instances through transformations 

When a set of changes is reflected to the type base-level, this results in the 
generation of a new type version and the evolution of the instances of the old 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

264 

type version. Most of current approaches address the evolution of instances 
through a migration approach (e.g. (Vandewoude & Berbers, 2005), (Ritzau & 
Andersson, 2000)): each instance of the old type version is recreated as an 
instance of the new type version, including the migration of its previous state 
to the new instantiation. This recreation is achieved through the following 
steps:  

1) An instance of the new type version is created: it has no previous 
state, it is initially stopped, and disconnected from other instances. 

2) The old instance is stopped, to avoid that its state could change. 

3) The state of the old instance is migrated (and possibly adapted) to the 
new instance (see section 3.4.2). 

4) The connections from and to the old instance are changed to point to 
the new instance. 

5) The new instance is started. 

6) The old instance is deleted. 

This approach has the disadvantage that is not totally transparent to the 
linked instances: the existing connections must be changed to point to the 
new instance, and a little disruption is during the time the old instance is 
stopped and the new instance is started. However, the big disadvantage is that 
this approach requires an explicit control of the type meta-instance to drive 
the evolution process. That is, instances do not evolve autonomously, i.e. they 
require an external management. 

In this thesis we propose an alternative approach: to use a transformation 
approach based on structural decomposition. In this approach, the evolution 
of instances is addressed by means of the transformation of their internal 
structure to accommodate the changes introduced by the new type version. 
This transformation is based on the decomposition of the instance structure 
in smaller parts and dependencies among them. Then, changes are performed 
as a set of incremental changes on these smaller parts, by adding, removing or 
replacing them, taking into account the dependencies among these parts.  

The result is that an instance is not recreated again, but evolved from inside. 
From outside, an evolved instance keeps its original boundaries, links and 
state, but also integrates the behaviour added by the new type. From inside, 
only the parts that have been affected by the change are modified: their state is 
migrated to new ones (in case of replacements), whereas the state of non-
changed elements is kept intact. Type transformation approaches are better 
suited to partially change large architectural types (e.g. servers), because it is 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

265 

not required the complete stopping of the entire architectural instance; only 
the required parts of the instance. 

A transformation approach can be only realized if the following two 
conditions hold: 

 The type to evolve can be decomposed into smaller entities (or parts) 
and the interrelations among these entities.  

 Type instantiations (i.e. the executable code) preserve the type 
structure, so they can be also decomposed in smaller entities. 

These conditions hold in the case of PRISMA architectural elements. For 
instance, PRISMA simple components can be decomposed into entities and 
interrelations: aspects are entities with an internal state, whereas weavings and 
ports are interrelations among entities (weavings synchronize aspects, and 
ports publish inbound and outbound aspect services). Since the 
implementation of PRISMA simple components (Costa-Soria, 2005), (Pérez et 
al., 2005a) preserves the internal elements (i.e. aspects, weavings and ports are 
implemented as classes which are composed to build a component), then 
PRISMA instances can be evolved through a transformation approach.  

In this way, the evolution of instances is performed through the following 
process:  

1) When a new type version is produced, each instance receives the 
evolutions to apply, as a set of incremental changes on its current 
structure (i.e. additions, deletions or replacements) 

2) The elements that are going to be changed (i.e. the internal parts and 
their relationships) are isolated from the rest, that is, stopped and 
unassembled if necessary. 

3) The incremental changes are applied on the isolated parts. 
Replacement of old parts can be performed through migration or 
through its internal transformation, recursively. 

4) The changed parts are reassembled again to the instance. 

The main advantage of instance transformation, as opposite to instance 
migration, is remarkably when the types evolved are composed of concurrent 
entities which are highly independent among them, such as software 
architecture specifications (i.e. composite components) and aspect-oriented 
components (i.e. PRISMA simple components). Another advantage is that the 
evolution of instances is transparent to other interacting instances, since their 
boundaries are not modified by the evolution process. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

266 

7.3.4 An asynchronous model for types evolution 

Dynamic evolution can be performed synchronously or asynchronously, 
depending on how a type and its instances evolve with respect to each other. 

 In dynamic synchronous evolution, a type and its instances are evolved 
sequentially, i.e., the evolution of a type is followed immediately by the 
update of its instances before the type can evolve any further.  

 In dynamic asynchronous evolution, a type and its instances are evolved 
independently, at different rates. The type may evolve again before all of 
its instances have finished the integration of the previous changes. 

The advantage of asynchronous evolution is that it supports frequent change 
requests, but also the (deferred) propagation of such requests to distributed or 
partly reachable instances. On the one hand, changes can be performed 
earlier: a type can be evolved as soon as required, without waiting to update all 
of its instances. This is useful for developing highly flexible systems, i.e. those 
systems with a high probability of changes. On the other hand, changes can be 
propagated and applied to each instance at different times, without requiring 
instances to be permanently reachable or online. This is particularly useful for 
supporting dynamic changes in distributed systems and/or mobile systems.  

For these advantages, our approach has been designed to support an 
asynchronous evolution model. Next, the synchronous and asynchronous 
evolution models are described in detail, and after that, our asynchronous 
evolution approach will be introduced. 

7.3.4.1 Modelling evolutions over time 

Evolution involves change, and change in turn involves time: the instant when 
a change is produced. This time is important, as it determines the point from 
when evolutions are materialized in a system. This may involve the coexistence 
of instances from both the original type and the evolved type.  

To distinguish among the different evolutions of a type over time and keep 
track of them, type evolutions are captured as type versions. Each time a type 
is dynamically evolved, a new type version is dynamically created/generated. 
This version contains the new (evolved) type specification and the executable 
code from which new instances will be created.  

A type T evolves from a type version Ti (where     , and i=0 is the initial 
type version) to the next, Ti+1, via an evolution process. An evolution process 
starts when a new evolution request is received, and involves: (i) a type-level 
action, which changes the current type version and generates a new one; and 
(ii) instance-level actions, to migrate/evolve the existing instances to the new 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

267 

type version, preserving their internal state. An evolution process ends when 
all the instances have been evolved33. Depending on the evolution model, 
evolution processes (and type versions) may overlap over time (in 
asynchronous models) or not (in synchronous models).  

An abstract, illustrative example 

To illustrate these concepts, and how they relate to synchronous and 
asynchronous evolution models, a graphical example is used. Figure 7.5 
describes visually how a type T and its instances evolve over time. It captures 
the time when a new type version, T1, is introduced in the system and when 
the old instances are evolved to the new version. 

In this figure, the vertical axis depicts the different evolutions, or type versions, 
of the type T, whereas the horizontal axis depicts the time when some actions 
(i.e. evolutions or instantiations) take place. Type versions are depicted as 
squares with the number of version they represent (e.g. T0, T1). The position 
of each square represents the time when the corresponding type version was 
introduced in the system, and the circles represent its instantiations (which 
are identified as unique numbers). 

 
Figure 7.5. Capturing evolution over time 

It is important to note that an instance belongs to (is conformant to) a certain 
type version at a certain time, but later it may belong to a different type 
version (i.e. after evolving to a new type version). That is, an instance keeps its 
identity (captured by its internal state) among evolutions. This fact is also 
captured in the figure: circles with identical number represent the same 

                                                      
33 For the sake of simplicity, it is temporarily assumed that all the existing instances 
must integrate the new changes. However, this assumption is not realistic, since it 
does not always hold. In some cases, some instances should remain unevolved when 
there are compatibility issues of the new version with other existing types. This has 
been taken into account in our approach, but will be considered later. The key idea 
here is that an evolution process ends when it finishes evolving the instances that it has been 
requested to. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

268 

instance, whereas their colour represent the type version to which they are 
conformant to. 

The figure depicts that the type T is originally introduced at instant 0 (and 
materialized as the type version T0), and that two instantiations are created at 
time instants 1 and 2, respectively. Then, at time instant 3 a new evolution 
process starts, which: (i) introduces/generates a new type version, T1; and (ii) 
evolves the existing T0 instantiations (i.e. instances 1 and 2) to the structure of 
the new type version. Evolution processes are depicted as solid round-ended 
lines, tagged with the name of the type version to evolve and the name of the 
new type version. The evolution process “T0T1” starts at time 3 and finishes 
at time 9, when all the instances of T0 have been evolved: instance 1 evolves at 
time 6 and instance 2 at time 9.  

Figure 7.5 does not capture the reasons motivating instance evolution delays. 
These reasons may be that: (i) the instance is waiting to reach a quiescent 
status, (ii) the instance cannot be evolved due to compatibility issues with 
other interacting instances, or (iii) the instance has not received yet the 
evolution request (e.g. in distributed systems). 

Note that a new type version can be instantiated as soon as it is introduced in 
the system, although the evolution process that has introduced this type 
version has not finished yet. For instance, see how the instance 3 is created at 
time 5 while the evolution process T0T1 is still running.  

When addressing dynamic evolution, most of the approaches from the 
literature have only considered scenarios with a single evolutionary step, as the 
described in the previous example. However, in these scenarios the advantages 
of the asynchronous evolution model cannot be perceived, since it behaves 
identically as in the synchronous evolution model. It is only when considering 
several evolutionary steps (three or four consecutive evolution requests) when 
the differences among the synchronous and asynchronous evolution models 
emerge.  

Next, this example is extended with additional evolutionary steps, which will 
better illustrate the differences among the synchronous and asynchronous 
evolution models. 

Synchronous Evolution Model 

In the synchronous evolution model, as implemented in most of current 
approaches (e.g. (Nicoara et al., 2008), (Wang et al., 2006)), the main 
limitation is that a new evolution process cannot be started until the 
completion of the previous evolution process. In other words, in the 
synchronous evolution model, evolution processes cannot overlap each other. This is 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

269 

because in this model, an evolution process replaces the old type version with 
the new version. And since instances are linked to a type version, this 
replacement cannot be effectively completed until all the old instances have 
been evolved to the new type version. As a result, new evolution requests must 
be delayed until all the existing instances have integrated the previous 
evolution request.  

Figure 7.6 shows how the type T used in the previous example, when receiving 
two additional evolution requests, is evolved following a synchronous model. 
These evolution requests are produced at time instants 6 and 11, which will 
initiate two evolution processes, called T1T2 and T2T3, respectively. 
However, these evolution requests must be delayed to avoid the overlapping of 
evolution processes, not supported in synchronous models.  

For instance, according to the figure, the evolution process T1T2 cannot be 
started until time instant 9, when the evolution process T0T1 finishes 
(which finishes when the last instance of T0, identified as 2, is evolved to T1). 
The delays of evolution processes are illustrated in Figure 7.6 as a dotted line 
at the beginning of each evolution process. The figure also shows how the 
delay of this evolution process results in the delay of the following evolution 
process, T2T3, which will be propagated consequently over time if the 
number of instances to evolve is significant. 

 
 Figure 7.6. Synchronous evolution model  

As it can be observed, the main disadvantage of synchronous evolution is the 
time that is needed until a new change can be introduced in a system. This 
limitation is mainly due to that type and instances evolve synchronously: 
when a type is changed, their instances must be adapted before a new change 
request could be processed. 

This may be an important drawback when evolving either distributed or 
mobile systems, where network fluctuations and/or the reachability of the 
instances (e.g. some may be disconnected) may increase the time needed to 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

270 

propagate new changes, and thus, the time needed to perform several dynamic 
changes.  

Asynchronous Evolution Model 

In the asynchronous evolution model, types and instances evolve at different 
times. This allows evolution processes to overlap their execution: as soon as a 
type has been evolved, it can be evolved again, although some of its instances 
may still be applying the previous changes. In this case, the delay produced to 
evolution processes, as in the synchronous evolution model, disappears34. 

Using the same example presented in Figure 7.5, next it is illustrated how the 
type T is evolved following an asynchronous evolution model. As in the 
synchronous case, two additional evolution requests are received at time 
instants 6 and 11, which will initiate two evolution processes, called T1T2 
and T2T3, respectively.  

Figure 7.7 shows how these evolution processes are managed in an 
asynchronous evolution model: they are started immediately, as soon as the 
evolution requests are received (at time instants 6 and 11, respectively). This is 
done although other evolution processes are still active. For instance, at time 
instant 7, two evolution processes are active, ToT1 and T1T2. The former is 
evolving instance 2 from T0 to T1, whereas the latter is evolving instances from 
T1 to T2.  

 
Figure 7.7. Asynchronous evolution model 

The overlap of evolution processes implies the coexistence of several type 
versions and instances belonging to different type versions. For instance, at 
time instant 13, two evolution processes are active: T1T2 and T2T3. The 
former is evolving instance 3 from version T1 to version T2, and the latter is 

                                                      
34 The only delay that is still present and cannot be removed is that produced by the 
instances to evolve to the next type version, due to their evolution autonomy. 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

271 

evolving instance 1 from version T2 to version T3. This also means that three 
type versions are coexisting simultaneously: T1, T2, and T3, providing the 
behaviour of instances 3, 1, and 2, respectively.  

This is a consequence of a feature of the asynchronous evolution model: each 
instance can evolve independently of the other instances, without waiting for 
the other instances to finish the previous evolution process(es). As soon as an 
instance is ready to evolve to the next type version, it does, although other 
instances remain in k-previous versions. In order to support this, an adequate 
version management must be considered. 

7.3.4.2 Additional characteristics  

The approach presented in this thesis provides support to the asynchronous 
model presented above. In addition, this approach takes the following 
considerations: evolutions are performed incrementally, by following a single 
evolution path, and unloading the inactive type versions to preserve system 
resources. These considerations are further explained below. 

Incremental evolutions 

Our approach is focused on an incremental evolution setting: the set of 
changes performed at time t (both at type-level and instance-level) is 
performed on the result of changes performed at time t-1. This is an intrinsic 
property of evolution: changes are performed building from previous 
experience. This also benefits the evolution process: it is not needed to 
completely describe the new type version, but also the differences with respect 
the previous type version. This reduces the size of data that must be 
transferred to communicate changes among types and instances, and also 
allows changing instances through transformation instead of through 
migrations (see section 7.3.3).  

Another advantage of incremental evolutions is that it allows some instances 
remain unevolved, or disconnected from evolution, for some time. If later 
these instances require to integrate the latest changes, they simply would need 
to integrate the set of incremental changes that have been produced from 
their outdated version to the most recent type version. 

Single Evolution Path 

While in a synchronous evolution model only one evolution process is active 
(thus only the old type version and the new one coexist temporarily), in an 
asynchronous evolution model several versions and evolution processes can 
coexist at the same time. However, this does not necessarily mean that several 
evolution paths (i.e. version branching) are allowed. The support for multiple 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

272 

evolution paths poses several problems that are outside the scope of this work, 
so they are avoided in our approach.  

A single evolution path has been guaranteed by constraining the evolution to 
only the latest type version, protecting it from concurrent evolution requests. 
This is done by adding two restrictions to evolution processes: 

 A new evolution process cannot be started until the previous one has 
generated at least the new type version.  

That is, it is introduced a delay equivalent to the time needed to 
generate and introduce a new type version in the system. However, 
this is a logical constraint, since it makes no sense to evolve 
something (from an incremental perspective) that has not been 
produced yet. 

 An evolution process cannot be finished if a previous evolution 
process is still active.  

This is because the previous evolution process may still be evolving 
instances, which must be also evolved by the newer evolution process 
in order to integrate the newer changes.  

At the end, all the instances must follow the evolution path built over time, 
that is, to integrate all the sequence of changes (i.e. evolution requests) 
received. Only in this case we would be able to determine the correct version 
an instance must be evolved to, and adequately manage the different type 
versions. 

Activeness of type versions 

Since an evolution path may consist of several type versions and not all of 
them would be used, to save computer resources the concept of activeness of 
type versions has been used.  

A type version is active if: (i) it is the most recent type version, or (ii) it has 
running instances. While a type version is active, it is kept in memory; 
otherwise, it is unloaded from memory, freeing its resources. 

The most recent type version is active by default to allow its evolution: only 
the latest version can be evolved. The previous versions are outdated and are 
only kept in the system to allow the execution of out-of-date instances. As 
soon as out-of-date instances have been updated or removed, then the old type 
version is not active anymore and can be safely unloaded from the system. In 
general, the end of an evolution process implies the inactivity of the type 
version that has been updated, due to the evolution of all of its instances to 
the new type version.  



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

273 

It is important to note that version inactivity is considered only within the context 
where this type has been imported to (e.g. a composite component or System). 
Every System integrates a local copy of a type, and each local copy may 
integrate the different versions (i.e. evolutions) at different times. A type 
version may be inactive in one System (because it has been successfully 
evolved), but still be active in another System (because it has local instances 
pending to update). For this reason, the accessibility of inactive versions must 
be guaranteed, by storing them in a permanent storage for future reference, 
such as a database or the filesystem. 

7.3.5 Description of the evolution infrastructure 

This section describes the infrastructure that supports the asynchronous 
dynamic evolution of architectural types. This infrastructure is integrated into 
each evolvable architectural type, and is distributed among meta-level artefacts 
(i.e. type meta-instances) and base-level artefacts (i.e. instances). This 
distribution is one of the fundamental points that make possible the 
asynchronous evolution of a type and its instances: to allow this kind of 
evolution35, the type-level and the instance-level must be separately managed.  

For this reason, meta-instances perform type-level operations, whereas each 
instance performs instance-level operations. On the one hand, a meta-
instance manages the evolution of the specification of a type, the executable 
code of this type, and its different versions. In this way, a meta-instance can 
address several evolutions of the type independently of the state of its 
instances. On the other hand, each instance manages how it reaches a safe 
status for evolution (i.e. quiescence), the transformation of its internal 
structure, and/or the migration of its previous state to the new version. In this 
way, each instance may integrate the different evolutions at different times. 

According to the PRISMA model presented in section 2.4, there are two kinds 
of architectural elements: simple (i.e. a Component or a Connector) and 
composite (i.e. a System).  They differ on how these types are internally 
composed: a simple type is composed of aspects, weavings and ports; whereas 
a composite type is composed of ports, other architectural types, and 
interactions among them (attachments and bindings). The infrastructure for 
evolving simple and composite types is quite similar; it only differs on the 
evolution services provided to change the internal composition of the types. 
For instance, the evolution services for simple types are: addAspect, 
addWeaving, addPort, etc., whereas the services for composite types are: 

                                                      
35 Which, as described in section 7.3.4, is characterized by the different rates at which 
types and instances evolve respect each other. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

274 

addArchElement, addAttachment, addBinding, etc.  For simplicity reasons, only 
the evolution details for simple types are described.  

Next, the internal structure of simple type meta-instances and simple instances 
is described in detail. 

7.3.5.1 Type-level Evolution 

Type-level evolution, i.e. the dynamic generation of a new type version and the 
replacement of the old type version, is carried out by type meta-instances. 
Recall that a type meta-instance is the materialization of a type at runtime, 
which provides facilities to inspect and manipulate its meta-level 
representation (see section 7.3.2.2). For each evolvable type defined in 
PRISMA, a type meta-instance is automatically generated. 

The internal structure of a type meta-instance consists of four modules or 
functional areas:  

1) TypeDescription, which encapsulates the reification of the type, 
provides introspection services, and manages the different type 
versions.  

2) Builder, which provides the code responsible for the creation and 
destruction of type instantiations (i.e. the executable code of the type).  

3) TypeEvolution, which is in charge of reflecting changes made on a type 
reification to the type-level. It also encapsulates the domain-
independent code generation patterns that produce a new type 
version. 

4) EvolutionMonitoring, which keeps the connection with the instance-
level: manages the population of instances, propagates evolutions to 
these instances, and supervises the asynchronous evolution. 

Type meta-instances have been integrated in PRISMA by using the same 
concepts that the PRISMA model provides: they are modelled as Components, 
and their behaviour is defined through aspects. These aspects encapsulate the 
functional areas described above, because each functional area implements a 
different concern of the evolution process, which is shared among other meta-
instances. By shared we refer to the fact that the specification of each aspect is 
common for any simple type meta-instance, differing only in the state they 
acquire when they are instantiated. This is the case of the aspects 
TypeDescription, TypeEvolution and EvolutionMonitoring, which are initialised 
with the data of the type encapsulated by the meta-instance. Only the Builder 
aspect is not reusable, because it is completely different for each type meta-
instance: it contains the instantiation process of a specific architectural type.  



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

275 

Figure 7.8 shows the internal structure of a type meta-instance as 
implemented in PRISMA. The four aspects are synchronised through 
weavings, which are automatically generated.  

 
Figure 7.8. Internal structure of a Type Meta-Instance 

For instance, the services provided by the Builder aspect for creating and 
destroying instances are weaved to the EvolutionMonitoring aspect, to update 
the population of instances (see Figure 7.9).  

 

Weavings   

 ... 

 EvolutionMonitoring.RegisterInstance( new InstanceInfo( 

    instanceRef.ID, instanceRef, instanceRef.version)) 

  after 

 Builder.NewInstance(initParams, output instanceRef); 

 

 EvolutionMonitoring.UnRegisterInstance(instanceRef) 

  after 

 Builder.DestroyInstance(instanceRef); 

 

 // ... more weavings 

End_Weavings;  

Figure 7.9. Weavings that manage the population of instances 

For instance, the first weaving of this figure describes the following behaviour: 
after the successful execution of the NewInstance service provided by the 
Builder aspect, the service RegisterInstance provided by the EvolutionMonitoring 
aspect must be executed. Note how the output of the NewInstance service (i.e. 
instanceRef, the reference of the instance that has been created) is used as a 
parameter for the RegisterInstance service. The other weaving is quite similar: 
after the successful execution of the DestroyInstance service, the service 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

276 

UnRegisterInstance of the EvolutionMonitoring aspect must be triggered (which 
will remove the instance reference from the population list). In this way, 
explicit references among aspects are avoided, maintaining them loosely 
coupled, which benefits aspect maintenance and reuse. 

The services provided by the aspects are published through a set of ports, 
which are of two kinds: 

 Public ports: These ports are opened to any software artefact of the 
system, although they are targeted to be used by evolution agents, that 
is, entities that manipulate evolvable types. 

o InstanceFactoryPort: This port publishes the creation and 
destruction services provided by the Builder aspect. It allows 
creating new instantiations of the current type version. 

o ReificationPort: This port publishes the Reify service, provided 
by the TypeDescription aspect. It allows the evolution agents to 
obtain the reification of the current type version. 

o EvolutionPort: This port publishes the Reflect service, provided 
by the TypeEvolution aspect. It allows the evolution agents to 
evolve the current type version. 

 Internal ports: These ports are for private use among the type meta-
instance and the instances it manages.  

o TypeIntrospectionPort: This port allows instances to introspect 
their type. That is, to get information about their current type 
version, such as constraints, allowed types, data structures, 
etc.  

o InstanceMonitoringPort: This port propagates evolution 
requests to instances. It is used by the EvolutionMonitoring 
aspect. 

Next, each aspect of a simple type meta-instance is described in detail. 

Builder Aspect 

The Builder aspect encapsulates the executable code of the type that: (i) is 
required to create and destroy instances, and (ii) provides the behaviour of 
these instances.  

This aspect behaves as an instance factory: it provides two services, New and 
Destroy, which carry out the actions defined in the new and destroy sections of a 
PRISMA type specification, respectively. On the one hand, the service New 
takes as input a set of initialization values (if required by the type), creates a 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

277 

new instantiation of the type, and returns a reference to this instantiation (i.e. 
an instance ID). On the other hand, the service Destroy takes as input the 
reference of an instance created by this aspect and destroys it. 

Since this aspect encapsulates the executable code of the type, it must be 
updated every time the type evolves. For this reason, every time the type is 
evolved, the Builder aspect is automatically regenerated to reflect the new 
changes (not only in memory, but also in disk; more details are later explained 
in page 284). That is, this aspect contains the latest executable type version. 
Thus, new instances will always be created from the latest type version, 
favouring the progressive adoption of newest versions.  

For illustration purposes, Figure 7.11 and Figure 7.11 show the executable 
code (in C#/.NET) that is generated from the PRISMA specification of an 
evolvable type, the ImageProcCard type. Two classes are automatically 
generated: ImageProcCard and ImageProcCardBuilder.  

The ImageProcCard class (see Figure 7.11) is the materialization of the 
ImageProcCard type in .NET. This class behaves as a PRISMA Component: it 
inherits its behaviour from the class ComponentBase and is conformant to the 
IComponent interface. The constructor and destructor of this class (i.e. the 
methods ImageProcCard36 and Destroy, respectively) make use of the generic 
behaviour provided by the PRISMA model, through the invocation of base 
methods (i.e. the inherited constructors and destructors of PRISMA 
Components). 

 

public class ImageProcCard : ComponentBase, IComponent { 

 static IMetaComponent meta; 

 

 public ImageProcCard(string name, params object[] parameters): 

    base (name) {   

   meta.BuildInstance(this, parameters); 

 } 

 

 public void Destroy() { 

  meta.DestroyInstance(this); 

  base.Dispose(); 

 } 

} 

Figure 7.10. Example of an automatically generated evolvable type: ImageProcCard  

                                                      
36 In C#, as in other languages (e.g. Java), the instantiation of classes is performed 
through constructors: special methods which have the same name of the class that 
they instantiate. The service New that is defined in PRISMA specifications and that is 
provided by the Builder aspect, is implemented as a constructor. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

278 

However, note that this class does not contain any specific behaviour of the 
ImageProcCard type (such as internal composition, the ports published, its 
attributes, etc.). Instead, it only contain invocations to services provided by a 
meta object: BuildInstance and DestroyInstance. This meta object is the meta-
instance of the ImageProcCard type (i.e. a IMetaComponent object), and it 
encapsulates the specific behaviour of the ImageProcCard type, inside the 
Builder aspect. 

The Builder aspect is implemented as an automatically generated class, called 
ImageProcCardBuilder (see Figure 7.11). This class defines the specific 
behaviour of the ImageProcCard type, and is regenerated each time the type 
changes. For this reason, and to avoid name conflicts among versions, version 
number is appended to the name of the class: e.g. ImageProcCardBuilder_v0 
identifies the initial version of the ImageProcCardBuilder. 

This class contains the following elements: 

 Information about the type version that this class implements. It is 
stored in an attribute called typeVersion.  

 Information about the type that cannot be automatically obtained by 
reflection from the generated code, or it is difficult to obtain (e.g. 
because it has been transformed to platform dependent code). For 
instance, information about constraints in composite components, 
the high-level specification of the constructor, etc. This information is 
defined in the constructor of the Builder class (see the method 
ImageProcCardBuilder) and is stored in a SimpleSpec data structure (see 
Figure 7.3 for more information about this data structure). Later, this 
data structure will be used by the TypeDescription aspect to complete 
the reified information. 

 The method BuildInstance, which contains the code that builds and 
initializes an ImageProcCard instance in the PRISMANET middleware. 
This is done by: (i) importing and instantiating each one of the 
aspects that the type is composed of (see the AddAspect operation), (ii) 
creating the weavings among these aspects (see the AddWeaving 
operation), and (iii) creating the input/output ports (see the AddPort 
operation).  

 The method DestroyInstance, which contains the code that destroys an 
instance, as defined in the PRISMA specification. 

 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

279 

public class ImageProcCardBuilder_v0 : IBuilder { 

 private int typeVersion = 0; 

 public int GetVersion { get {return typeVersion;}} 

 

 SimpleSpec specification; 

 public SimpleSpec Specification { get {return specification;}} 

 

 public ImageProcCardBuilder_v0() { 

  // Definition of relevant type information  

  this.specification = new SimpleSpec(typeof(ImageProcCard), 

   "AgroBot", AElementType.Component); 

  specification.defineConstructor( 

   new ParamInfo[] { 

    new ParamInfo(“cameraPosition”, typeof(string))  

   }, 

   new ExpressionSpec[] { 

    new ExpressionSpec( 

     “ImageProcCardController.begin(cameraPosition);”), 

    new ExpressionSpec(“ImageProcCardGUI.begin();“) 

   } 

  ) 

  specification.defineDestructor( 

   new ExpressionSpec[] { 

    new ExpressionSpec(“ImageProcCardGUI.end();”), 

    new ExpressionSpec(“ImageProcCardController.end();”) 

   } 

  ) 

 } 

 

 public void BuildInstance(ImageProcCard comp,  

       string cameraPosition)  

 { 

  // Building and initialisation of instances 

  IAspect aspect1= new ImageProcCardController(cameraPosition); 

  comp.AddAspect(aspect1); 

 

  IAspect aspect2= new ImageProcCardGUI(); 

  comp.AddAspect(aspect2); 

 

  comp.AddWeaving(aspect2, "showImage", "image”, 

   WeavingType.AFTER, aspect1, "newProcessedImage", "image"); 

  

  comp.AddPort("VideoIn", "I_VideoServices", "VIDEOCARD"); 

  comp.AddPort("ImageOut", "I_ImageProcessingServices",  

   "IMAGEANALYZER"); 

 } 

 

 public void DestroyInstance(ImageProcCard comp) { 

  comp.GetAspect(typeOf(ImageProcCardGUI)).Dispose(); 

  comp.GetAspect(typeOf(ImageProcCardController)).Dispose(); 

  comp.Dispose(); 

 } 

} 

Figure 7.11. Example of an automatically generated Builder aspect: 
ImageProcCardBuilder  



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

280 

The reason why two classes are generated instead of only one is that the 
former, ImageProcCard, implements the immutable part of the type (i.e. its 
name and the kind of architectural element –simple or composite), whereas 
the latter, ImageProcCardBuilder, implements the parts of the type that can be 
evolved over time (i.e. the type specification). 

Type Description Aspect 

The Type Description aspect provides a reification of the current type version, 
allowing its inspection and edition at runtime. This reification is kept through 
several data structures, which capture all the relevant information about the 
type specification. These data structures are defined as attributes in the Type 
Description aspect, which are populated through the execution of the Reify 
service. The Reify service does not only populates these data structures, but 
also returns a <Type>Spec object that allows us to safely edit the type 
reification. In addition, the TypeDescription aspect provides services to inspect 
only certain elements of a reification, in case an edition is not needed. This is 
provided through introspection services. Finally, this aspect also maintains the 
old type versions, allowing non-updated instances to continue executing.  

Next, these features are described in detail.  

 Reification structure 

The information that is reified from a type varies depending on the kind of 
architectural element (see appendix A.3.3 for more details). For instance, in 
case of simple PRISMA architectural elements (i.e. Components and 
Connectors), the reification is described through the following attributes (see 
Figure 7.12):  

 Aspects: a list with the aspect types that the component or connector 
imports. The information of each aspect is stored in a data structure 
called AspectInfo: i.e. its name, a reference to the type definition, the 
concern, the interfaces implemented and the played roles provided. 

 Weavings: a list with the weavings among aspect types. For each 
weaving, a data structure called WeavingInfo stores the name of the 
aspects that are synchronised, the methods that are weaved, its 
parameters, and the weaving type (i.e. before, after, instead, etc.).  

 Ports: a list with the ports that provide or require services from other 
architectural types. For each port, a data structure called PortInfo 
stores the name of the port, its interface, and its played_role. 

 Constructors: a list which the definition of the different constructors of 
the type (i.e. the new services defined in the type specification). For 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

281 

each constructor, the data structure ConstructorInfo keeps two lists: 
one for the initialisation parameters and another for the different 
expressions defined in the specifications (encoded as strings). 

 Destructor: a list with data structures DestructorInfo, which store the 
expressions that perform the destruction of the type (i.e. the destroy 
service defined in the type specification). 

The information kept for each kind of element is further detailed in appendix 
A.3.1.1 (see page 418). 

 

TypeDescription Aspect SimpleTypeDescription  

 using I_SimpleTypeDescription 

 

 Attributes 

  Constant 

   typeName: string; 

   kind: string; // Component or Connector 

 

  Variable 

   // Data structures for type reification 

   currentVersion: int; 

   aspects: list(AspectInfo); 

   weavings: list(WeavingInfo); 

   ports: list(PortInfo); 

   constructors: list(ConstructorInfo); 

   destructor: list(DestructorInfo); 

 

   // Auxiliary attributes 

   currentTypeVersionFile: string; 

    // File with the binary code of the current version 

   typeSpecObject: SimpleSpec; 

    // Keeps the last generated version of SimpleSpec 

   reificationIsValid: boolean; 

    // True if data stored about the type is still valid 

   reificationsBlocked: boolean; 

    // If true, reify operations are temporarily suspended 

 

   // Version management 

   oldVersions: list(TypeVersion); 

 

 Services 

  in begin(typeName: string,kind: string) 

   Valuations 

    [begin(typeName,kind] 

    this.typeName=typeName; 

    this.kind=kind; 

 

  in Reify(output reification: SimpleSpec) 

   // Ommitted... 

 

  in Stop()   // Blocks reifications temporarily 

   Valuations 

    [Stop()] reificationsBlocked=true; 

 

  in VersionChanged(newTypeDefinition:string, 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

282 

     versionDiffs: list(STEvolutionStep)) 

   Valuations 

    [VersionChanged(newTypeDefinition,versionDiffs)] 

    currentTypeVersionFile=newTypeDefinition; 

    oldVersions.add(new TypeVersion(currentVersion+1, 

     newTypeDefinition, versionDiffs); 

    reificationIsValid=false; 

    reificationsBlocked=false; 

 

  in GetIncrementalChanges(sourceVersion: int,  

     targetVersion: int,  

     output versionDiffs: list(STEvolutionStep)); 

  ... 

... 

End TypeDescription Aspect SimpleTypeDescription; 

Figure 7.12. Fragment of the TypeDescription aspect of simple arch. elements 

 The Reify service 

A reification of the type (and the initialisation of the previous attributes) is 
obtained when the service Reify is invoked (see its signature in Figure 7.12). 
This service performs the following actions: 

1) Inspects the executable code of the current type version (implemented 
in the Builder aspect), gathering the relevant data (i.e. aspect names 
and types, ports, weavings, etc.). The name of the file that contains 
the executable code of the current type version is kept in the attribute 
currentTypeVersionFile. When a new type version is generated, this 
attribute is also updated. 

2) Updates the attributes of the aspect with the collected data. 

3) Builds a <Type>Spec object (i.e. a SimpleSpec object in case of simple 
architectural elements) that encapsulates the reification and allows its 
manipulation. It is stored in the attribute typeSpecObject. 

4) Returns the typeSpecObject object to the user. 

Since the type remains the same until it is evolved, and the reification 
operation is time consuming (due to the code analysis step), this process has 
been optimized: the calculations (steps 1 to 3) are only performed one time 
among evolutions. That is, the first time the Reify service is executed, it 
performs all the calculations (i.e. code inspection, attribute updating and 
<Type>Spec building). However, in the following executions, the Reify service 
will only perform the 4th operation: it will return a copy of the <Type>Spec 
object generated in the previous call and that was stored in the attribute 
typeSpecObject. Only when the type is evolved and a new type version 
generated, the Reify service would perform again the reification calculations. 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

283 

This is controlled through an attribute called reificationIsValid, which is set to 
false when the service VersionChanged is called. This service is called when a 
new type version has been generated, and makes the TypeDescription aspect to 
update its reification. 

 Introspection services 

In addition, the TypeDescription aspect provides a set of services to allow 
instances to introspect themselves (see Figure 7.13). These services return 
information about a specific element of the type, without facilities to edit 
them: getAspectTypes, getAspectTypeProperties, getPorts, etc. These services are 
defined in the interface I_SimpleTypeDescription (see appendix A.3.2.1), and are 
published through a port called TypeIntrospectionPort, which is only available to 
instances of the type. 

 

TypeDescription Aspect SimpleTypeDescription  

 using I_SimpleTypeDescription 

... 

 Services 

  // Services offered through the TypeIntrospectionPort 

  in getPorts(output portsList: list); 

  in getAspectTypes(output aspectTypesList: list); 

  in getWeavings(output weavingList: list); 

 

  in getAspectTypeProperties(aspectName: string,  

    output typeDefinition: string, output concern: string, 

    output interfaces: list, output playedRoles: list); 

  in getPortProperties(portName: string,  

    output isProvided: boolean, output isRequired: boolean,  

    output interface: string, output playedRole: string);  

  in getWeavingProperties(id: string,  

   output sourceAspect: string, output sourceMethod: string, 

   output sourceParameters: list, output weavingType: string,  

   output targetAspect: string, output targetMethod: string, 

   output targetParameters: list, output Functions: list); 

... 

End TypeDescription Aspect SimpleTypeDescription; 

Figure 7.13. Introspection services provided by a SimpleTypeDescription aspect  

 Management of type versions 

Each time the type is evolved, a new type version (i.e. a new specification) is 
generated. The TypeDescription aspect keeps track of old type versions, to 
support type conformance of old instances until they are 
transformed/migrated to the new type version.  



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

284 

Old type versions are stored in the list oldVersions. For each type version, the 
following information is stored (see the TypeVersion data structure in appendix 
A.3.7.1): 

 versionID: Identifies a type version among others. 

 typeDefinition: Name of the file that contains the executable code of 
the type version.  

 versionDiffs: Set of evolution steps to transform instances from a 
previous version to this version. 

Type versions are identified from each other by means of a version number, 
which is increased each time an evolution process is applied on the type 
successfully. The version number is a natural number, where the number zero 
identifies the first type version. The decision for using natural, consecutive 
numbers to identify type versions has been motivated to facilitate the ordering 
of type versions. Since evolutionary changes are sent asynchronously to 
instances, the version number helps each instance to identify when a previous 
evolutionary change has not been received correctly. For instance, if an 
instance is conformant to type version 4, and it is asked to evolve to version 6, 
it can be easily deduced that one evolution request has not been correctly 
received. Thus, the instance should ask the type meta-instance to be provided 
first with the set of evolutionary changes to evolve to version 5, and after that, 
it could evolve to version 6. 

The management of old type versions is required not only to prevent the 
possible loss of evolution requests, but also to enable the reentering of these 
instances that had been excluded from evolution. For example, an instance 
could have been excluded from evolution at version 4 and later be required to 
evolve to version 7. Since evolutions are propagated to the instance-level as 
differences among versions, in case an instance has been excluded from 
evolution, then to integrate it again the instance should be provided with all 
the intermediate evolution steps. In the previous example, this means that the 
instance should be provided with the changes that have been introduced in 
versions 5 and 6. For these cases, the service GetIncrementalChanges is 
provided. Given the IDs of two versions (where the second is subsequent of 
the first), this service returns the set of evolutionary steps that have been 
performed among these two versions.  

Next, the process of how a type is evolved at runtime is addressed. 

Type Evolution Aspect 

As described in section 7.3.2.4 (Evolution Process Overview), to evolve a type 
three steps must be followed by an evolution agent:  



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

285 

1) Obtain a reification of the type to evolve (i.e. a <Type>Spec object), 
which is provided by the Type Description aspect;  

2) Manipulate this reification, which is performed through the services 
that the <Type>Spec object provides (see these services in appendix 
A.3.1); and  

3) Reflect the changes to the meta-level, which is performed by returning 
the <Type>Spec object to the type meta-instance. 

The last step initiates an evolution process, which in turn consists of the 
following steps (which are automatically performed by the evolution 
infrastructure):  

1) Receive and process the set of evolutionary changes,  

2) Generate a new type version,  

3) Propagate the changes to the instance-level, and  

4) Evolve each instance.  

These steps are distributed among different elements of the evolution 
infrastructure. The TypeEvolution aspect is which performs the two first steps: 
it receives and processes the set of evolutionary changes, and generates a new 
type version.  

 The Reflect Service: Starting an Evolution Process 

An evolution process is started when the Reflect service, published by the type 
meta-instance and implemented by this aspect, is executed. This service (see its 
signature in Figure 7.14) requires two input parameters: a <Type>Spec object, 
which provides an edited reification of the type, and an EvolutionPolicy, which 
defines how the evolution process should be executed.  

On the one hand, the <Type>Spec object is required because it provides the 
input of the evolution process: it encapsulates a set of attributes (aspectList, 
weavingList, portList, constructorList, and destructor, see appendix A.3.1) that 
describe the new type version that must be generated. On the other hand, the 
data structure EvolutionPolicy allows the evolution agent to adjust some 
parameters of the evolution process, such as the selection of the strategy for 
evolving instances or the definition of time constraints for the evolution of 
instances. Since these parameters deal with the instance-level evolution, which 
is supervised by the Evolution Monitoring aspect, these will be described later in 
page 293. 

Next, the execution of the Reflect service is described. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

286 

 

TypeEvolution Aspect SimpleTypeEvolution  

 

 Attributes 

  Variable 

   // Auxiliary variables 

   isEvolving: boolean; // A type version is being generated 

 

   // Code generation templates 

   builderGenerationTemplate: string; 

 

 Services 

  in begin(codeTemplates: string) 

   Valuations 

    [begin(codeTemplates] 

    builderGenerationTemplate=codeTemplates; 

    isEvolving=false; 

 

  in Reflect(specification: SimpleSpec,  

       evolParams: EvolutionPolicy); 

   Valuations 

    // Ommitted... 

 

  out NewVersionGenerated(versionID: int, typeDefFile: string, 

    versionDiffs: list(STEvolutionStep),  

    evolPolicy: EvolutionPolicy); 

... 

End TypeEvolution Aspect SimpleTypeEvolution; 

Figure 7.14. Fragment of the TypeEvolution aspect of simple arch. elements 

 The Reflect Service: Generation of a new Type version 

The Reflect service performs several actions: (i) the blocking of other concerns 
(e.g. the Builder, to avoid the creation of new instances during evolution), (ii) 
the evaluation of preconditions, to guarantee that the evolution process can 
be executed correctly, (iii) the generation of a new type version, (iv) the 
dynamic instantiation of the new type version inside the type meta-instance, 
and (v) the unblocking of other concerns and the propagation of changes to 
the instance-level. 

Next, these actions are described in detail. 

Step 1: Blocking of related concerns 

During the generation of a new type version, two functional concerns of the 
type meta-instance are going to be changed: the executable code for creating 
instances (which is encapsulated in the Builder aspect), and the type 
description (which is offered by the TypeDescription aspect). These concerns 
must be blocked temporarily (i.e. until the generation of the new type 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

287 

version), to avoid that new instances and/or type reifications of the version 
that is going to be evolved may be created or obtained, respectively.  

This blocking is performed through two weavings among the Type Evolution 
aspect and the aspects Builder and Type Description (see Figure 7.15). The latter 
aspects must be stopped before the Reflect service is executed. This stopping 
means that all the new requests involving the creation of instances or the 
reification of a type will be buffered and its execution postponed37. Thus, once 
these aspects are stopped, the Reflect service can be safely executed. This is 
captured by the first two weavings (see Figure 7.15).  

 

Weavings   

 ... 

 TypeDescription.Stop() before TypeEvolution.Reflect(spec,params); 

 

 Builder.Stop() before TypeEvolution.Reflect(spec,params); 

 

 // ... more weavings 

End_Weavings;  

Figure 7.15. Weavings used to temporarily block other meta-instance concerns 

Step 2: Evaluation of evolution preconditions  

To start an evolution process, the reification encapsulated in the <Type>Spec 
object and provided to the Reflect service must satisfy the following conditions: 

1) The reification must represent the type that this meta-instance 
manages. This is to avoid the generation of totally different types; only 
incremental evolutions are allowed. This is evaluated by comparing 
the attribute typeName of the <Type>Spec object with the same 
attribute provided by the TypeDescription aspect. 

For instance, the following operation would violate this precondition: 
     

    VisionWatchdog.Reify(out reification); 

    ImageProcCard.Reflect(reification, ...); 

 

2) The type version that the reification modifies is the last type version. 
That is, the type meta-instance has not evolved yet the version that the 
evolver agent is trying to evolve. This guarantees that only a single 
evolution path can be performed: in presence of multiple evolution 
agents, only the first one in reflecting changes initiates an evolution 

                                                      
37 This is possible because all PRISMA service invocations are performed 
asynchronously. See the implementation of the PRISMA model in (Costa-Soria, 2005) 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

288 

process. The others, when trying to reflect their changes, will be 
notified about the use of an outdated type version and asked for 
obtaining a new reification (see section “Single Evolution Path”, in 
page 271). This is evaluated by comparing the attribute version of the 
<Type>Spec object with the same attribute provided by the 
TypeDescription aspect. 

For instance, in the following code, the evolution agent evolAgentB 
could not reflect its changes: 

   

   evolAgentA:  ImageProcCard.Reify(out reification1); 

   evolAgentB:  ImageProcCard.Reify(out reification2); 

   evolAgentA:  reification1.addAspect(aspA, params); 

   evolAgentA:   ImageProcCard.Reflect(reification1, ...); 

   evolAgentB:  reification2.addAspect(aspB, params); 

   evolAgentB:  ImageProcCard.Reflect(reification2, ...); 

 

3) A new evolution process cannot be started whereas another is 
generating a type version. Any subsequent Reflect request received 
while another Reflect request is being executed, is postponed. If the 
executing Reflect request fails, the first request postponed is then 
executed. Otherwise, all the postponed requests are cancelled: they 
edit a type version that is now outdated, so they should be revised and 
adapted to the new type version.  

4) The reification must contain one change at least. Otherwise, it makes 
no sense to start an evolution process. This is evaluated by checking 
the number of elements in the list evolutionSteps of the <Type>Spec 
object. This list contains the set of evolution steps performed on the 
original reification. 

For instance, the following operation would violate this precondition: 
    

    ImageProcCard.Reify(out reification); 

    ImageProcCard.Reflect(reification, ...); 

 

If any of these conditions is not fulfilled, the evolution process is aborted and 
an exception is sent to the evolution agent. If all the evolution preconditions 
are fulfilled, the next step is the dynamic generation of the new type version, 
according to the reification provided in the <Type>Spec object. 

Step 3: Generation of the new type version  

As described in previous sections, the executable code of the current type 
version is encapsulated in the Builder aspect. Therefore, to change this type 
version and introduce a new, evolved type version, the Builder aspect must be 
replaced. The TypeEvolution aspect carries out the dynamic generation of the 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

289 

Builder aspect, which includes the new changes, and its replacement at 
runtime. 

This can be realized because the TypeEvolution aspect encapsulates the knowledge 
of how to transform technology-independent concepts (i.e. the reifications, described 
in PRISMA ADL) to technology-dependent concepts (i.e. the executable code in 
C#). This knowledge is materialised in a set of code generation patterns 
which regenerate the type when it is evolved at runtime. These patterns 
define: (i) the code that will not change among versions (e.g. the structure and 
internal methods of the Builder aspect), and (ii) a set of placeholders or tags 
(encoded with the symbol “%”) which will be replaced by code generated from 
the edited reification. Code-generation patterns are stored in an attribute of 
the TypeEvolution aspect called builderGenerationTemplate. These code-
generation patterns are generic for all PRISMA elements.  

For instance, Figure 7.16 shows the code generation pattern that generates the 
Builder aspect of simple architectural types in C# (see (Hervás-Muñoz, 2009) 
for further details).  

 

using System.Reflection; 

using PRISMA; 

using PRISMA.Aspects; 

using PRISMA.Aspects.Types; 

using PRISMA.Components; 

using PRISMA.Components.Weavings; 

using PRISMA.Middleware; 

 

[assembly:AssemblyVersionAttribute("%__Version__%")] 

namespace %__namespace__% { 

 

public class %__TypeName__%Builder_v%__Version__% : IBuilder { 

 private int typeVersion = %__Version__%; 

 public int GetVersion { get {return typeVersion;}} 

 

 SimpleSpec specification; 

 public SimpleSpec Specification { get {return specification;}} 

 

 public %__TypeName__%Builder_v%__Version__%() { 

  // Definition of relevant type information  

  this.specification = new SimpleSpec( 

   (typeof(%__TypeName__%), "%__namespace__%", 

   %__AEType__%); 

  // Addition of meta-information to the SimpleSpec object 

  %__Specification__% 

 } 

 

 public void BuildInstance(IComponent comp,  

   %__ConstructorParametersDefinition__%)  

 { 

  // Building and initialisation of instances 

  %__ComponentCreation__% 

 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

290 

 } 

 

 public void DestroyInstance(%__TypeName__% comp) { 

  %__ComponentDestruction__% 

  comp.Dispose(); 

 } 

}} 

Figure 7.16. Code generation pattern for Builder aspects of simple types  

For instance, Figure 7.17 shows a fragment of C# code that produces the code 
related to aspects. In this fragment, specification is a variable that contains the 
reification provided by the evolution agent, and from which the list of aspects 
(AspectList) is obtained. For each aspect, this code obtains the type of the 
aspect (AspectType) and the parameters required for initializing this aspect 
(Parameters). The code is produced as a string and stored in the variable called 
componentCreation, which later (when all the elements of the reification have 
been processed) replaces the placeholder %__ComponentCreation__%. 

 

StringBuilder componentCreationAspect; 

for (int i=0; i<this.specification.AspectList.Count; i++) { 

 AspectSpec aux = (AspectSpec) this.specification.AspectList[i]; 

 componentCreationAspect = new StringBuilder( 

  "comp.AddAspect(new %__AspectType__%(%__Parameters__%));\n"); 

 componentCreationAspect.Replace("%__AspectType__%",  

  aux.AspectType.ToString()); 

 componentCreationAspect.Replace("%__Parameters__%",  

  aux.Parameters); 

 componentCreation.Append(componentCreationAspect); 

} 

Figure 7.17. Fragment of the code generation process for aspects in C#  

It is important to note that the generated code must also include meta 
information about the type, to later allow the complete reification of the 
original type specification. Meta information is this information contained in 
a high-abstraction level specification that is not directly transformed to code, 
or which could be very difficult to obtain from the executable code. An 
example of this meta-information is the high-level specification of behaviour, 
such as the definition of constructors in architectural elements (i.e. the New 
service), or the definition of services in aspect types. Another example of this 
meta-information is the specification of the cardinality constraints that are 
defined in composite components. In our implementation, this meta-
information is provided statically in the constructor of the Builder aspect and 
stored in a <Type>Spec object (see the placeholder called “%__Specification__%” 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

291 

in Figure 7.16). This object is dynamically obtained by the Reify service when 
it inspects the Builder aspect.  

Step 4: Dynamic instantiation of the new code  

Once the source code of the new Builder aspect has been generated, the next 
step is the dynamic compiling and linking of this code to the running meta-
instance.  

On the one hand, the dynamic compilation of the new code, in the 
PRISMANET implementation (see (Hervás-Muñoz, 2009), has been 
performed by means of the CodeDom38 library. This library allows to 
dynamically invoke the C# compiler to produce a new assembly (a file that 
contains executable code). The new assembly produced is stored in the file 
system together the rest of assemblies of the type, which makes the changes 
performed to the Builder aspect permanent. In case the system is shutdown 
and restarted again (or the type is transferred over the network), the loading of 
the type will always contain the latest evolutions, because this loading will 
always use the latest Builder aspect. 

On the other hand, the dynamic linking and instantiation of the new code 
into the running type meta-instance is performed through the services that the 
PRISMANET middleware provides to dynamically modify running PRISMA 
instances. For instance, the service ReplaceAspect allows us to replace an aspect 
at runtime while keeping its existing weavings, whereas the service 
GetPRISMAType allows us to dynamically load the last version of the type 
which name is provided: 
 

  meta.ReplaceAspect(“ImageProcCardBuilder”,  

         GetPRISMAType(“ImageProcCardBuilder”)); 

 

The replacement can be safely performed, since the old Builder aspect has been 
previously stopped. In this way, the old Builder aspect is replaced at runtime, 
and then the executable code of the previous type version.  

Step 5: Unblocking of related concerns   

At this point, the new type version has been generated and weaved to the 
running meta-instance. The final step is the unblocking of these processes that 
had been previously blocked (i.e. the creation of instances and the reification 
of the type), and the propagation of changes to the instance-level. Since these 

                                                      
38http://msdn.microsoft.com/en-us/library/system.codedom.aspx; 
http://msdn.microsoft.com/en-us/library/650ax5cx.aspx  

http://msdn.microsoft.com/en-us/library/system.codedom.aspx
http://msdn.microsoft.com/en-us/library/650ax5cx.aspx


CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

292 

are operations that are related to other concerns of the meta-instance (i.e. the 
aspects Builder, Type Description, and Evolution Monitoring, respectively), this 
step is not directly performed by the Reflect service, but by weavings.  

When a new type version is generated, the Reflect service calls the service 
NewVersionGenerated, providing the following information (see its signature in 
Figure 7.14, page 286): 

- versionID, typeDefFile: The ID of the new type version and the name of 
the assembly that has been generated.  

- versionDiffs: The set of differences respect to the previous type version. 
These differences will be propagated to the instance-level to allow 
each instance to integrate only the incremental changes. 

- evolPolicy: The evolution policy that has been provided when calling 
the Reflect service. This will be used by the Evolution Monitoring aspect. 

When this service is called, a set of weavings are activated (see Figure 7.18), 
which in turn initiate other services:  

 The service Start of the Builder aspect. This enables the creation of 
new instances, according to the new type versions. The instantiation 
requests that had been postponed are unblocked and executed. 

 

Weavings   

 ... 

 Builder.Start() 

  after  

 TypeEvolution.NewVersionGenerated(version,type,diffs,evPolicy); 

 

 TypeDescription.VersionChanged(type, diffs) 

  after  

 TypeEvolution.NewVersionGenerated(version,type,diffs,evPolicy); 

 

 EvolutionMonitoring.ReflectToInstances(version, diffs, evPolicy) 

  after 

 TypeEvolution.NewVersionGenerated(version,type,diffs,evPolicy); 

 

 // ... more weavings 

End_Weavings;  

Figure 7.18. Weavings activated when the Reflect service finishes 

 The service VersionChanged of the Type Description aspect. This services 
stores the details of the new type version, allowing its later reification 
and version management. This service also unblocks the reification 
requests, which will return the reification of the new type version, not 
the old one. 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

293 

 The service ReflectToInstances of the Evolution Monitoring aspect. This 
service initiates the propagation of changes to the instance-level. 

From this point in time, although the instances may have not integrated the 
new changes, the evolution of the type is finished: a new type version has been 
generated, new instantiations of this version can be created, and old instances 
have been notified to start a migration process to integrate the new changes. 
Then, the Type Evolution aspect is available to accept new evolution requests. 

Evolution Monitoring Aspect 

The Evolution Monitoring aspect keeps the asynchronous connection with the 
instance-level: it manages the population of instances, propagates evolutions 
to these instances, and supervises periodically the evolution of these instances. 
Next these features are described. 

 

EvolutionMonitoring Aspect SimpleInstancesMonitoring  

 

 Attributes 

  Variable 

   // Instance population 

   population: list(InstanceInfo); 

   // List of time-constrained active evolution processes 

   activeEvolutionProcesses: list(EvolutionProcess); 

 

 Services 

  in ReflectToInstances(version: int,  

    evolutionSteps: list(STEvolutionStep),  

    evolutionParams: EvolutionPolicy); 

   Valuations 

    // Ommitted... 

 

  EvolutionProcessMonitoring(evProcess: EvolutionProcess); 

   // This private service is executed periodically to  

   // supervise the evolution of instances 

  suspend(timeout : integer);   

   // This function suspends the current process 

 

  in RegisterInstance(instanceRef: InstanceInfo) 

   Valuations 

   [RegisterInstance(instanceRef)] 

   population.add(instanceRef); 

 

  in UnRegisterInstance(instanceRef: InstanceInfo) 

   Valuations 

   [UnRegisterInstance(instanceRef)] 

   population.remove(instanceRef); 

  ... 

... 

End EvolutionMonitoring Aspect SimpleInstancesMonitoring; 

Figure 7.19. Fragment of the EvolutionMonitoring aspect of simple arch. Elements 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

294 

 Population Management 

This aspect keeps the connection of the type-level with the instance-level: it 
manages the references to the type instantiations that have been created and 
are still running. Whenever a new instance is created, the service 
RegisterInstance is executed, and a reference to the new instance is stored in the 
attribute called population (see Figure 7.19, Variable and Services section). 
Likewise, if an instance is no longer needed and is destroyed, the service 
UnRegisterInstance is executed, so the reference to this instance is removed 
from the population. The triggering of the services RegisterInstance and 
UnRegisterInstance is performed by the weavings defined in the meta-instance 
among the aspects Builder and EvolutionMonitoring (see Figure 7.9, page 275).  

 Propagation of evolutions to the Instance-Level 

This aspect provides a service called ReflectToInstances, which is executed when 
a new type version has been generated. This service is provided with three 
parameters:  

 version, the code of the new type version, so instances can identify and 
correctly order multiple evolution requests. 

 evolutionSteps, which define the set of evolution steps to apply on each 
instance, and  

 evolutionParams, the evolution policies that will guide the evolution of 
instances. 

Next the two last parameters are described in detail, because they encode how 
the evolution of instances should be realized. 

Definition of evolution steps 

On the one hand, the parameter evolutionSteps provides a list containing the 
incremental changes to perform on the structure of each instance. Each 
incremental change is stored in a data structure called STEvolutionStep (for 
changes in simple architectural types; for composite types this data structure is 
called CTEvolutionStep). This data structure contains the following attributes 
(see Figure 7.20): 

 Action, the evolution operation to perform on the instance: an 
addition (Add), a removal (Remove), an update (Replace), the starting of 
an element (Start) or the stopping (Stop). 

 Type, the kind of structural element of an instance on which the 
action must be performed: an aspect, a port, or a weaving. 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

295 

 Data, a specification with more information about the element of type 
Type, on which Action must be performed. For instance, if the subject 
of an evolution operation is an aspect, this attribute will contain an 
AspectInfo data structure, with the name of the aspect to add or 
remove, its parameters, etc. In case of replacement, the data structure 
ReplacementInfo contains the information of the old aspect to replace, 
and the new aspect. 

 

Data structure STEvolutionStep 

 Attributes 

  action : {Add | Remove | Replace | Start | Stop}; 

  type: { Aspect | Port | Weaving }; 

  data: { AspectInfo | PortInfo | WeavingInfo |  

      ReplacementInfo }; 

End_Data_Structure STEvolutionStep; 

Figure 7.20. Data structure STEvolutionStep 

The service ReflectToInstances propagates these evolution steps (i.e. the 
collection of STEvolutionStep) to each instance that must be evolved. To do so, 
each instance provides a service called reflectToInstance (see section “Instance 
Evolution Planning Aspect”, page 301), which initiates the transformation of its 
internal structure (asynchronously with respect to the evolution of the type 
and the other instances).  

Definition of evolution policies 

On the other hand, the parameter evolParams provides a data structure, 
EvolutionPolicy (see Figure 7.21), which defines the policies that will guide the 
evolution of instances. These policies define the set of instances to be evolved, 
and the evolution timeout per instance. 

Selection of the instances to evolve. To define the set of instances to evolve, 
the attribute evolutionStrategy is used. This attribute can be set to one of the 
following values: 

 EvolveAll. All the existing instances will evolve to the new type 
version; new instances will use the new version. 

 ExcludeSome. A subset of instances is exempt from evolving to the 
new type version; the rest will evolve to the new version. The subset of 
instances to exempt is defined in the attribute exclusionSet. 

 OnlyNew. Only new instances will use the latest type version. The 
existing instances will not evolve to the new version.  



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

296 

By default the EvolveAll strategy is used (see the initialization section of the 
EvolutionPolicy data structure): each instance of the type is requested to evolve 
to the latest type version. However, in certain cases it may be need to exclude 
some instances from evolution. For instance, this is needed when there are 
compatibility issues of the new version with other existing types. In this case, 
the strategy ExcludeSome should be used. Note that these instances that do not 
evolve to a version n, later can be required to evolve to a subsequent version m 
> n. In this case, these instances will apply the sequence of evolutions 
performed from the version n to m. This is planned at the instance-level by the 
InstanceEvolutionPlanning aspect (which is described in page 301). 

 

Data structure EvolutionPolicy 

 Attributes 

  // Strategy for evolving instances 

  evolutionStrategy : { OnlyNew | EvolveAll | ExcludeSome }; 

  exclusionSet : list(string); 

 

  // Maximum time each instance has to apply the changes 

  evolutionTimeoutPerInstance : int; // in milliseconds 

  evolutionRetriesIfTimeoutExceeded : int; 

  actionIfRetriesExceeded: { ForceEvolution | AbortEvolution }; 

 

 // Default evolution policy: evolve all instances in 1 minute 

 // Otherwise, abort the evolution of the instance 

 new() { 

  evolutionPolicy = EvolveAll; 

  exclusionSet = list[]; 

  evolutionTimeoutPerInstance = 10000; 

  evolutionRetriesIfTimeoutExceeded = 6;  

  // Maximum total time to evolve: 10000x6=60000 milliseconds 

  actionIfRetriesExceeded = AbortEvolution; 

 } 

End_Data_Structure EvolutionPolicy; 

Figure 7.21. EvolutionPolicy data structure 

Defining time-constrained evolutions. The other evolution policy that can be 
adjusted through the EvolutionPolicy data structure is the available time that 
instances will have to evolve, and the action to perform in case an instance 
does not evolve in the provided timeout. This policy is optional, but prevents 
that an instance could be indefinitely pending to evolve, which would lead the 
current evolution process to never be finished. 

This is defined through the following attributes: 

 evolutionTimeoutPerInstance: in milliseconds, this attribute defines the 
maximum time each instance has to evolve to the next type version. If 
this timeout is set to zero, no evolution timeout is set, so each 
instance is not time-constrained to evolve.  



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

297 

 evolutionRetriesIfTimeoutExceeded: number of opportunities given to 
each instance to retry its evolution. 

 actionIfRetriesExceeded: the corrective measure to apply when the 
timeout has been exceeded and no retries are available.  
The action can be: 

o AbortEvolution, which cancels the evolution of the instance, 
leaving it in its current type version. This is the action taken 
by default. 

o ForceEvolution, which forces the instance to evolve to the 
next type version, possibly losing its current state or 
compatibility with other instances (depending on the reason 
that motivated the evolution delay). 

Thus, an evolution process can be constrained whether to finish in bounded 
time or not. In case this time is exceeded without evolving to the next version, 
the Evolution Monitoring aspect will send an event to these instances pending to 
evolve to either force or abort its evolution (depending on the evolution 
policy). 

 Monitoring of Evolution Processes 

The management of active evolution processes is carried out through the 
service EvolutionProcessMonitoring. This service is periodically executed for each 
evolution process, in intervals defined by its evolution timeout39, supervising 
the instances that are pending to evolve. Each time this service is executed, it 
is provided with the information of the evolution process that is being 
monitored (see the data structure EvolutionProcess, in Figure 7.22): the target 
type version, the instances that are pending to evolve to this version, the 
remaining retries until a corrective measure is applied, and the details of the 
evolution policy (such as the timeout available to evolve). 

This service first updates the list of instances pending to evolve (list 
instancesToEvolve), removing those that have been evolved to the target type 
version. This can be evaluated because each instance provides an attribute, 
currentVersion, which defines the type version that the instance is conformant 
to (see the InstanceInfo data structure in appendix A.3.5.1).  

                                                      
39 In case of evolution processes which are not time-constrained (i.e. those with an 
evolution timeout=0), no monitoring is needed. Instances are free to evolve to the 
next version or not, since they do not have a maximum time to apply changes. For 
this reason, the list of active evolution processes only contains those that should be 
monitored. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

298 

 

Data structure EvolutionProcess 

 Attributes 

  targetVersion: int; 

  instancesToEvolve: list(InstanceInfo); 

  remainingRetries: int; 

  evolutionPolicy: EvolutionPolicy; 

End_Data_Structure PendingEvolution; 

Figure 7.22. EvolutionProcess data structure 

Next, if the remaining retries is greater than zero, then this service decreases 
the remaining retries and programmes itself to execute again in the timeout 
defined in the evolution process (which is stored in the attribute evolutionPolicy 
of the EvolutionProcess data structure).  

Otherwise (remainingRetries==0), the evolution process must be finished. Then 
the action defined in the evolution policy is applied on those instances that 
are still pending to evolve. For each instance of the list instancesToEvolve, an 
event AbortEvolution or ForceEvolution is sent, waiting until they acknowledge 
the event. Thus, each instance would either abort or force immediately its 
evolution. Finally, the information relative to this evolution process is 
removed from the list activeEvolutionProcesses maintained by the 
EvolutionMonitoring aspect. 

Note that, since some evolution processes may be time constrained whereas 
others not, it may happen that a newer evolution process must finish before 
the previous one has finished. This applies in such a case where an older 
evolution process has a timeout longer than the newer one (e.g. the older 
evolution process is not time-constrained). What happens then to these 
instances that are still evolving to a previous version (i.e. subject to the older 
evolution process) when the time of the newer evolution process finishes? An 
approach could be to force the evolution of such instances to the newer 
version, but this may lead to inconsistencies if instance evolution has been 
delayed due to type incompatibilities with the new version. And to abort the 
evolution of such instances is not a reasonable option: when such instances 
finish the previous evolution process, then they should be given with an 
opportunity to evolve to the new type version. 

The solution to this issue is the following. When the time available for an 
evolution process expires, the events abortEvolution or forceEvolution are sent to 
all the instances that are pending to evolve. However, these events are only 
executed by these instances that are not subject to other previous evolution 
processes. That is, these instances which current version is the one that the 
expiring evolution process is evolving from (i.e. those instances that 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

299 

currentVersion==targetVersion–1). The other instances, i.e. those that are still 
evolving to a previous version, will receive the event but they will defer its 
execution until they reach the type version that this event applies to (see the method 
TransformInstance on the Instance Evolution Planning aspect, page 304). That is, 
the monitoring of the expiring evolution process will finish (as in the case of 
non time-constrained evolution processes), but each instance will locally 
handle the evolution. When a delayed instance reaches the type version 
managed by a time-constrained evolution process that has expired, it 
immediately applies the action defined in the evolution policy: to force or 
abort its evolution.  

Note that the concept of evolution process is abstract and spans multiple 
entities: it starts when a new evolution request is processed by the 
TypeEvolution aspect (i.e. the Reflect service); it comprises the generation of a 
new type version (i.e. a new Builder aspect), the propagation to each instance 
(performed by the EvolutionMonitoring aspect), and the evolution of instances 
(performed locally by each instance); and it only finishes when all the 
instances that have received the evolution steps have integrated the new 
changes (or aborted the evolution, according to the evolution policy).  

Next, it is described how the evolution process is performed at the instance-
level, for each one of the instances. 

7.3.5.2 Instance-level Evolution 

The evolution performed at the instance-level has two main characteristics: it 
is performed asynchronously, and through a transformational approach.  

On the one hand, instance-level evolutions are asynchronous: each instance 
evolves at different times with respect to type-level evolutions and with respect 
to other instances (see section 7.3.4). This enables instance evolutions driven 
by the local context: if the interacting instances are not compatible with the 
new type version, the instance will remain unevolved. Thus, these non-evolved 
instances will neither block the evolution of its type nor the evolution of other 
instances.  

On the other hand, instances evolve through (incremental) transformations: 
the internal structure of each instance is disassembled and adapted to fit the 
new structure defined by the new type version (see section 7.3.3). Thus, 
instances evolve transparently from inside, with their physical boundaries 
remaining unaltered. This is a less disrupting approach that evolving through 
instance migrations. 

This asynchronous, transformational evolution approach can be only 
supported if instances are provided with mechanisms to: (i) receive and 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

300 

manage themselves the evolution requests received from the type-level, and (ii) 
disassemble and transform their internal structure. These mechanisms are 
provided by the following three functional areas:  

1) EvolutionPlanning: receives the evolution requests from the meta-
instance and coordinates when and how they can be performed safely 
in the instance. 

2) Monitoring: provides runtime information about the structural 
elements an instance is composed of. 

3) Effector: dissassemblies the structural elements of the instance and 
performs changes on each element. 

Since these functional areas identify different concerns of the instance 
evolution process, they have also been encapsulated into aspects, called 
instance-level evolution aspects. 

The integration of instance-level evolution aspects inside each instance40 varies 
depending on the kind of architectural element: simple or composite. On the 
one hand, in case of simple architectural elements (i.e. Component or Connector 
instances), instance-level evolution aspects are called: InstanceEvolutionPlanning, 
InstanceMonitoring, and InstanceEffector. Since simple instances are internally 
described by aspects, the instance-level evolution aspects are integrated 
together the rest of user-defined aspects, but cannot be changed by the 
architect. In the implementation, these aspects are integrated as part as the 
executing PRISMA model and thus they cannot be directly seen in the 
generated code (see Figure 7.23). 

On the other hand, in case of composite architectural elements (i.e. System 
instances), instance-level evolution aspects are called: 
ReconfigurationCoordination, ArchitectureMonitoring, and ArchitectureEffector. 
Since composite instances are described by means of configurations of 
component and connector instances, the instance-level evolution aspects have 
been encapsulated in a specific component called Evolver (see Figure 6.29, 
page 225). This component, which has been described in detail in Chapter 6, 
provides autonomic reconfiguration behaviour to a composite instance. 
Moreover, this component, through the aspect ReconfigurationCoordination, 
also contains the behaviour that propagates type-level changes to a composite 
instance.  

 

                                                      
40 Note that the instance-level evolution aspects will be only integrated in case the type 
has been defined as evolvable. 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

301 

 
Figure 7.23. Integration of instance-level evolution aspects in simple instances  

Since the instance-level evolution aspects of composite instances have been 
covered in the previous chapter41, in this chapter only the details of simple 
instance evolution aspects are covered.  

Next, the main characteristics and behaviour of these aspects is described. 

Instance Evolution Planning Aspect 

The InstanceEvolutionPlanning aspect can be considered the delegate of the 
type-level in each instance: it receives the list of changes that must be applied 
in the instance, and coordinates how the instance structure must be 
transformed to integrate these changes safely.  

Figure 7.24 shows the main attributes and services that are provided by this 
aspect, including transaction management, evolution request management, 
and atomic change operations. A more complete specification is provided in 
appendix A.3.7 (see page 432). 

                                                      
41 Although the aspects of the Evolver component have not been described in Chapter 
6 from the point of view of type-level driven changes, these kinds of changes are also 
supported. The ReconfigurationCoordination aspect provides a service to receive type-
level evolution requests, which trigger the regeneration of the domain-specific part, 
and sends the provided evolutionary steps to the ArchitectureEffector aspect, which 
changes the instance architecture. This shows the versatility of the aspects provided. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

302 

 

InstanceEvolutionPlanning Aspect 

... 

 

Attributes 

 Constant 

  instanceID: string;  

 

 Variable 

  instance_version: int; // Current version 

  pendingEvolutions: queue(EvolutionRequest); 

   // list of pending evolutions: versionID and set of changes 

  isEvolving: boolean; 

   // If the instance is evolving to another version. 

 

  // Auxiliary variables for evolution process management 

  newVersion: int; 

  evolutionSteps: list(STEvolutionStep); 

  partsToStop: list(string); 

  partsToStart: list(string); 

 

  // Variables for transaction management 

  ... 

 

Services 

 // *** Type-level Interaction Services *** 

 in ReflectToInstance(newVersion: int,  

   evolutionSteps: list(STEvolutionStep)); 

 in ForceEvolution(versionID: int); 

 in AbortEvolution(versionID: int); 

 

 in GetCurrentVersion(output versionID: int); 

 out GetIncrementalChanges(currentVersion: int, targetVersion: int, 

   output evolutionSteps: list(STEvolutionStep)); 

 

 // *** Internal Evolution Services ***  

 TransformInstance();   

  

 // *** Atomic change operations *** 

 AddAspect(aspectTypeName: string, parameters: string); 

 RemoveAspect(aspectTypeName: string); 

 ReplaceAspect(aspectToReplace: string, newAspectType: string, 

  newAspectParameters: string); 

 AddPort(portName: string, interface: string, playedRole: string); 

 RemovePort(portName: string); 

 AddWeaving(sourceAspect: string, sourceMethod: string, 

  sourceParameters: list, weavingType: string,  

  targetAspect: string, targetMethod: string, 

  targetParameters: list, transfFunctions: list); 

 RemoveWeaving(sourceAspect: string, sourceMethod: string, 

  weavingType: string, targetMethod: string); 

 

 // *** Transaction Management *** 

 BeginEvolutionTransaction(); 

 EndEvolutionTransaction(); 

 RollbackEvolutionTransaction(); 

 

 // *** Starting and Stopping services *** 

 out StartAspect(aspectID: string); 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

303 

 out StopAspect(aspectID: string); 

 out StartPort(portName: string); 

 out StopPort(portName: string); 

 out StopWeaving(sourceAspect: string, targetAspect: string); 

 out StartWeaving(sourceAspect: string, targetAspect: string); 

...  

End_InstanceEvolutionPlanning_Aspect 

Figure 7.24. Services of the InstanceEvolutionPlanning aspect 

Next the most important details about this aspect are described. 

 ReflectToInstance: Receiving changes from the type-level 

Changes are received from the type-level by means of the service 
ReflectToInstance. This service is invoked to notify the instance of the 
generation of a new type version, so that the instance would evolve to this 
version as soon as possible. The service ReflectToInstance requires two input 
parameters:  

 newVersion: an integer that identifies the new type version; 

 evolutionSteps: the list of incremental changes (i.e. STEvolutionStep 
elements, see their structure in appendix A.3.1.4) to evolve from the 
previous type version to the new type version (i.e. newVersion) 

Since instances evolve asynchronously, the invocation of the ReflectToInstance 
service does not mean that the instance would evolve immediately. By the 
contrary, this service stores the information related to the evolution request 
(i.e. the pair newVersion and evolutionSteps) in a data structure called 
EvolutionRequest (see its specification in appendix A.3.7.1, page 432). This data 
structure is added to an internal list, called pendingEvolutions, for its later 
processing: 
 

in ReflectToInstance(newVersion: int,     

          evolutionSteps: list(STEvolutionStep)) 

 Valuations 

  [ReflectToInstance(newVersion, evolSteps)] 

  pendingEvolutions.Add( new EvolutionRequest( 

    targetVersion=newVersion, evolutionSteps=evolSteps)); 

One of the reasons to do that is to acknowledge the caller (i.e. the type meta-
instance) as soon as possible that the evolution request has been received 
successfully. The other reason is to guarantee that no concurrent instance 
evolutions are performed: a different thread is in charge of periodically 
processing the evolution requests received. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

304 

 TransformInstance: The execution of an evolution process 

When a new evolution request is added to the list pendingEvolutions, the 
service TransformInstance is executed automatically. This service initiates the 
evolution of the instance to integrate the changes introduced by a new type 
version. This evolution means that the instance transforms its internal structure 
to the structure defined in the new type version.  

To guarantee that only a single evolution process is being executed, the 
attribute isEvolving is used. This attribute is set to true when an evolution 
process is initiated, and is set to false when an evolution process finishes. The 
service TransformInstance is only executed when the attribute isEvolving is false. 

The fragment below shows the trigger that initiates the execution of the 
TransformInstance service (see Figure 7.24, triggers section): 
  

 // Initiation of an evolution process 

 TransformInstance() when 

  pendingEvolutions.Size()>0 && isEvolving=false; 

 

Next, the different steps that are performed by the TransformInstance service to 
transform the instance are described below. 

Step 1: Obtain evolution request and evaluate version conformance 

The service TransformInstance begins by obtaining an evolution request from 
the list of pending evolutions: 
 

 TransformInstance()   

  Valuations 

   [TransformInstance()] 

   // Processing of a pending evolution request 

   evolutionRequest = pendingEvolutions.dequeue(); 

   newVersion = evolutionRequest.targetVersion; 

   evolutionSteps = evolutionRequest.evolutionSteps; 

An evolution request describes changes as a set of differences (i.e. evolution 
steps) among two consecutive type versions, the source version and the target 
version. Therefore, an evolution request consists of three elements: a source 
version identifier, a target version identifier, and a set of evolution steps. 
However, note in the specification shown above that only two elements are 
obtained: newVersion, i.e. the target version identifier, and evolutionSteps, i.e. 
the list of differences among the source and target versions. But no 
information is gathered about the source version identifier. The reason is 
because, in our implementation, this is not necessary: the source version 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

305 

identifier is calculated from the target version identifier42, source_version 
= newVersion-1.  

The principle behind our evolution approach is the following: if an instance is 
conformant to43 the source version identifier, then by applying the set of 
differences or evolution steps on this instance, this results an instance 
conformant to the target type version. Otherwise (i.e. an instance does not 
have this conformance to the source version), the set of evolution steps cannot 
be used: it may result in inconsistent evolutions (e.g. an evolution step may 
assume the existence of elements that the current instance does not have).  

For this reason, the first step when processing an evolution request is to 
evaluate if the instance to evolve is conformant to the source version of this 
request. This conformance is evaluated through the attribute instance_version 
(see Figure 7.24, variables section). This attribute keeps track of the type 
version that an instance is currently conformant to, and is updated each time 
that the instance is successfully evolved to a new type version. Therefore, if the 
attribute instance_version equals to the source version of the evolution 
request (i.e. instance_version=newVersion-1), then this means that 
the instance is conformant, so the evolution steps can be applied on the 
instance. 

Otherwise, if the instance is not conformant to the source version (i.e. 
instance_version<newVersion-1), this means that the instance has 
been excluded from previous evolutions or that it has lost previous evolution 
requests. In this case, the InstanceEvolutionPlanning aspect must request the set 
of changes that have taken place from the current instance version to the 
source type version, and integrate them with the list of evolution steps 
received. This is performed through the service GetIncrementalChanges, which 
returns the sequence of evolution steps among two type versions: 
 

if (instance_version<(newVersion-1)) then 

 ( TYPE_INTROSPECTION.GetIncrementalChanges(instance_version, 

       newVersion, output evolutionSteps) ); 

 

As a result, the list of evolution steps, called evolutionSteps, is extended with 
the missing evolution steps. In this way, the description of changes to drive 

                                                      
42 Recall that, as described in the section “Type Description Aspect” (see page 298), 
version identifiers are natural numbers that are increased each time a new version is 
generated. 
43 In this context, it is said that an instance is conformant to a type version when the 
structure and behaviour of the instance satisfies the specification of the type version. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

306 

the current instance version to the target version is complete. Next, the 
runtime transformation of the instance can be started.    

Step 2: Preparing the instance for transformation 

Before starting the transformation of the instance structure, the instance must 
be driven to a safe status, to avoid the introduction of inconsistencies due to 
the transformation process.  

The safe status is achieved by stopping (or isolating) the parts of the instance 
that are going to be changed. The set of parts to stop (i.e. an aspect, a port, or 
a weaving) are obtained by looking in the list evolutionSteps for the parts that 
are going to be removed, replaced or stopped. The parts found are added to a 
list called partsToStop. Then, each element of this list is driven to a quiescent 
status (see section 3.4), by executing the services StopAspect, StopWeaving or 
StopPort, respectively.  The implementation of these services is provided by the 
InstanceEffector aspect (which is described later in page 311).  

Note that in some cases, the parts that are interacting with a part that is going 
to be changed (i.e. a part that is in the list partsToStop) must be also stopped. 
For instance, if a port or a weaving is going to be removed, then the aspect 
that receives/sends service requests from/to this port, or that is intercepted by 
the weaving, must be also stopped to avoid inconsistencies. This is performed 
in a second step: the algorithm looks in the list partsToStop for 
removal/replacement operations, and for each part that is going to be 
removed/replaced, it evaluates if the interacting parts should be also stopped. 
In affirmative case, the interacting parts are added to the list partsToStop.  

Since the safe stopping of the parts that are subject to evolution may take 
time, the service TransformInstance suspends itself until the stopping finishes 
(or it is aborted, in case of forced evolutions, see page 308). When the service 
is awaked, then the instance transformation process continues. 

Step 3: Transforming the instance  

The transformation –or evolution– of an instance is performed by means of 
atomic change operations (additions, removals, or updates) on the structural 
parts that assemble the instance (i.e. aspects, weavings and ports). The result 
of this transformation is not only structural, but also behavioural, because the 
elements that define the behaviour of the instance and their interrelations 
have been changed. 

For each evolution step contained in the list evolutionSteps (e.g. addition of an 
aspect, removal of a weaving, etc.), the service TransformInstance executes the 
corresponding atomic change operation (e.g. addAspect, removeWeaving, etc.). 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

307 

Since atomic change operations usually involve low-level changes (i.e. 
modifying memory structures and pointers), they are encapsulated in a 
different aspect, the InstanceEffector aspect. In this way, the 
InstanceEvolutionPlanning aspect is kept as platform independent as possible. 

In addition, the InstanceEvolutionPlanning aspect is also responsible for 
guaranteeing that a transformation process does not finishes unexpectedly, 
leaving the instance partially transformed. An evolution process must be 
successfully completed or, if anything fails, reverted to the previous version. 
This is performed through a transactional management of the transformation 
process. A transformation process is preceded and concluded by the execution 
of the following operations, respectively: BeginEvolutionTransaction and 
EndEvolutionTransaction. These operations delimit the beginning and the end 
(i.e. the commit) of an instance evolution process. During the execution of 
atomic change operations, auxiliary information is kept by the Instance 
Evolution Planning aspect for later undoing the changes if an error occurs. If 
the transaction finishes successfully (i.e. the EndEvolutionTransaction is 
executed), this information is simply removed and the new changes made 
permanent. Otherwise, if any change operation fails or triggers an exception, a 
service called RollbackEvolutionTransaction is executed, which uses the 
previously stored auxiliary information to undo the changes. The details of 
these services are not described here, because they share a lot of similiarities 
with the transaction management of reconfiguration plans described in 
section 6.4.3.2 (page 194). 

Therefore, the set of evolution steps provided by the evolution request are 
translated to atomic change operations and executed inside a transactional 
context, which if successfully completed will be commited or undone in case 
of any failure. 

Step 4: Finishing the transformation process 

Once the transformation process finishes (whether successfully or not), the 
final step is to unblock the parts of the instance that had been quiesced in the 
second step or that have been added in the previous step. This is done by 
means of the services StartAspect, StartWeaving or StartPort, which are provided 
by the InstanceEffector aspect. 

Finally, the variable isEvolving is set to false, thus allowing that another 
evolution process may be started. 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

308 

 Forcing or aborting an instance evolution process 

As described in “Definition of evolution policies” in page 295, an evolution 
process may be constrained to finish in bounded time. In case this time is 
exceeded, the type meta-instance may request two corrective measures: to 
abort the execution of the evolution process, or to force the completion of the 
evolution process immediately. The InstanceEvolutionPlanning aspect is in 
charge of applying these corrective measures. 

The corrective measures are invoked through the services abortEvolution or 
forceEvolution, which require the identifier of the evolution process to abort or 
force. This identifier relates to the target version of an evolution request. It is 
required to distinguish the evolution request to abort or force among the 
others, since several request may be pending at the same time. 

On the one hand, the service abortEvolution aborts the execution of an 
evolution process. The action performed depends on whether the evolution 
process to abort is currently active or not. If the evolution process to abort is 
currently active (this can be observed if the value of the attribute newVersion 
equals to the target version of the evolution process to abort), then its 
execution must be rollbacked. This is achieved by means of two consecutive 
operations: (i) sending an awakening signal to the service TransformInstance, 
and (ii) executing the service RollbackEvolutionTransaction. The former ensures 
that the service TransformInstance is not waiting for the safe stopping of the 
instance parts, whereas the latter undoes any evolution step applied on the 
instance. As a result, the current evolution process is aborted and the instance 
returned to its previous version. By the contrary, if the evolution process is 
not currently active (i.e. it is in the list of pending evolutions), the action 
performed is simply the removal of the corresponding evolution request from 
the list of pending evolutions. In this way, this evolution request will not be 
processed. 

On the other hand, the service forceEvolution forces the completion of an 
evolution process, without taking care of maintaining the current state of the 
instance or aborting running services. The action performed depends on 
whether the evolution process to complete is currently active or not. If the 
evolution process is currently active, then the delaying operations must be 
minimized, to finish the process as soon as possible. Since the most delaying 
operation is the safe stopping of the instance, this is aborted, despite of 
possibly leading to inconsistencies in the instance state or the cancelling of 
running services. This can be solved by reinitializing the state of the instance 
to its predefined values. By the contrary, if the evolution process to complete 
is not currently active (i.e. the corresponding evolution request is in the list of 
pending evolutions), its completion must be postponed to the moment where 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

309 

it would be executed. In this case, the evolution request is tagged 
appropriately: the attribute evolutionFlags is set to “forceEvolution”. Later, 
when this evolution request is processed, this attribute will trigger the 
activation of a timer for the safe stopping operation. If the safe stopping is not 
performed before this timer finishes, then the safe stopping will be aborted 
and the completion of the transformation process will be forced. 

Thus, it can be seen that the InstanceEvolutionPlanning aspect plays a key role in 
the asynchronous evolution process: it interacts with the type-level and acts 
locally in the context of an instance. In addition, the aspect also provides 
mechanisms to rollback the evolution in case anything goes wrong: for 
instance, an evolution process does not finish successfully, or an abort signal 
is received from the type-level. And all of this is performed without addressing 
low-level details. These details are provided by two different aspects, the 
InstanceMonitoring aspect and the InstanceEffector aspect, which are described 
below.  

Instance Monitoring aspect 

The InstanceMonitoring aspect provides information about the current instance 
structure and its execution context. The information gathered depends on 
each structural part (i.e. aspects, weavings and ports), and concerns their 
attributes, current execution status, and the dependencies to other structural 
parts. For instance, Figure 7.25 shows the most relevant services provided by 
the InstanceMonitoring aspect. 

Services 1 to 3 provide the list of IDs of each kind of structural part of the 
instance (aspect, port or weaving). These services allow us to iterate over the 
different parts an instance is composed of. 

Services 4 to 6 provide the reference (i.e. the memory pointer, an object) to a 
specific structural part, so that it can be manipulated by the evolution services. 
In order to make easy the analysis of evolution dependencies, these services 
also provide the reference to the parts that are linked together. For instance, 
when an aspect is encapsulated in a component and one of its played roles is 
assigned to a component port, a relationship among the aspect and the port is 
created, which must be taken into account in the evolution process. For this 
reason, the service getAspectProperties provides the list of ports that are linked 
to an aspect, through the parameter linkedPorts. Similarly, the service 
getPortProperties returns not only the pointer to the required port, but also the 
aspect ID that the port publishes services from.  

 

 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

310 

InstanceMonitoring Aspect 

 ...  

 Services  

1  in getAspects(output aspectIDs: list);  

2  in getPorts(output portIDs: list); 

3  in getWeavings(output weavingIDs: list); 

 

4  in getAspectProperties(aspectID: string,  

    output aspect: object, output linkedPorts: list, 

    output definedWeavings: list); 

5  in getPortProperties(portID: string, output port: object, 

    output linkedAspect: string); 

6  in getWeavingProperties(weavingID:string,  

    output sourceAspectID: string,  

    output weavingType: string,  

    output targetAspectID: string); 

 

7  in getStatus(elementID: string, output status: string); 

8  in getElementsOfStatus(status: string,  

    output elemIDList: list); 

 ...  

End_InstanceMonitoring_Aspect; 

Figure 7.25. Services provided by the InstanceMonitoring aspect 

Finally, services 7 and 8 return the status of a structural part. This allows us to 
know if a part is ready to be stopped or by the contrary is busy (e.g. processing 
a service request). The different execution statuses are the following (for more 
details about the safe stopping of running instances, see section 3.4): 

 Idle. The structural part is waiting for new requests. In case of an 
aspect, no service is being processed or pending to be executed. In 
case of a weaving or a port, this means that no service is currently in 
the middle of an interception or being forwarded to an aspect, 
respectively. 

 Active. A service request is being processed (in case of an aspect), 
intercepted (in case of a weaving), or forwarded (in case of a port). 
That is, the structural part is in the middle of a service transaction. 

 Blocked. The structural part is in a consistent state and ready to apply 
runtime changes. Pending services, interceptions, or forwardings have 
been finished safely. New requests are accepted, but they are queued 
until the structural part status is changed to Active. 

 Blocking. This is a transitional status from the Active status 
(executing/intercepting/forwarding a service) to Blocked status (not 
executing services and ready for reconfiguration). The element waits 
until the Tranquillity (Vandewoude et al., 2007) or Quiescence 
(Kramer & Magee, 1990) criterion is achieved. These criteria 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

311 

guarantee that the structural part has reached a consistent state 
(tranquillity causes less disruption than quiescence). 

 Unknown. The structural part is not responding because an error has 
occurred. This information can be used to provide fault-tolerance 
mechanisms. 

In short, the InstanceMonitoring aspect has access to the low-level internal 
details of an instance at runtime (memory pointers, execution structures, 
runtime status). It filters and abstracts this low-level information to provide 
only the necessary data required by evolution processes. 

Instance Effector aspect 

The InstanceEffector aspect implements the low-level mechanisms that enable 
the modification of the internal elements of an instance at runtime. This 
aspect provides a set of atomic evolution services that hide the low-level 
mechanisms, so that changes can be described in terms of PRISMA elements: 
aspects, ports and weavings. The evolution services are simple because they do 
not take into account the status (i.e. whether the part to change is quiesced or 
not) and/or the relations with other instance parts. These evolution services 
must be correctly coordinated to carry out a safe transformation of the 
instance structure. 

For instance, Figure 7.26 shows the most relevant services provided by the 
InstanceEffector aspect: 

 

InstanceEffector Aspect 

 ...  

 Services  

  // *** Services for Safe Stopping *** 

1  in StopPart(elemID: string);    // Reach a Quiescent status. 

2  in StartPart(elemID: string);    // Reach an Active status. 

 

  // *** Atomic change operations *** 

3  in CreateAspect(aspectTypeName: string, initParams: string, 

    output aspectID: string); 

4  in DestroyAspect(aspectID: string); 

5  in CreatePort(name: string, interface: string,  

    playedRole: string, output portID: string); 

6  in DestroyPort(portID: string); 

7  in CreateWeaving(sourceAspectID:string, sourceMethod:string, 

    sourceParameters: list, weavingType: string,  

    targetAspectID: string, targetMethod: string, 

    targetParameters: list, transfFunctions: list, 

    output weavingID: string); 

8  in DestroyWeaving(weavingID: string); 

  

  // Services for aspect updatings 

9  in SerializeAspectState(aspectID: string,  



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

312 

    output state: string); 

10  in UpdateStateStructure(oldAspectType: string,  

    oldState: string, newAspectType: string, 

    newRequiredValues: list,  

    output transformedState: string); 

11  in UnserializeAspectState(aspectType: string,  

    serializedState: string, output aspect: object); 

 ...  

End_InstanceEffector_Aspect; 

Figure 7.26. Services provided by the InstanceEffector aspect 

Services 1 and 2 (StopPart, StarPart) manage the safe stopping and restarting of 
each one of the structural parts. Since ports and weavings are parts that enable 
the interaction among other parts (i.e. aspects), their stopping means that they 
do not forward/intercept service requests; these service requests are queued 
for their later processing. In the case of aspects, since they are stateful parts, 
their stopping means that running service requests are finished safely, and 
that new incoming requests (which involve new transactions) are postponed. 
In the implementation of these stopping services, the quiescence criterion is 
taken into account.  

Services 3 to 8 (i.e. createAspect, destroyAspect, createPort, etc.) perform changes 
on the instance structure in memory: they allocate new memory space for new 
aspects, they add new services to the method description table when new ports 
are added, they introduce interceptions among existing methods when a new 
weaving is added, etc. However, the execution of these services does not take 
into account neither the dependencies among the structural parts when 
applying changes, nor if they are ready to be evolved. These services directly 
change the instance structure; if the instance has not been safely stopped 
before, then inconsistencies may be introduced in the instance state due to 
the execution of these services. 

Note that a replacement operation is not explicitly provided. The replacement 
operation of stateful parts (i.e. aspects) is provided through the services 9 to 
11. The service SerializeAspectState returns the internal state of an aspect in a 
type-dependent structure encoded as a string. The service UpdateStateStructure 
converts a previously serialized state of an aspect to the data structures of a 
new aspect type. Finally the service UnserializeAspectState creates an aspect 
from a previously serialized state. Thus, the replacement operation is 
performed through the consecutive execution of these services, which results 
in the migration of the old aspect state to a new aspect. These services are 
implemented in each aspect type and should be automatically generated for 
each aspect. Additional details about how to address the migration of state 



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

313 

have been covered in section 6.4.4.3 (page 217), so they are not described 
again. 

The implementation of the evolution services provided by this aspect is 
technology-dependent: depending on the technology selected and how the 
instance execution model has been implemented, the dynamic updating 
mechanisms to use will be different. However, the importance here is not the 
implementation of these mechanisms, but the identification of the minimum 
services required to support the reconfiguration process without the need to 
include low-level details.  

In the case of our PRISMA implementation, the main challenges faced up are 
the management of running processes that are concurrently executing (i.e. one 
per aspect), and the decomposition of the instance structure into its parts (i.e. 
aspects, weavings and ports). On the one hand, the management of 
concurrent running processes has been managed by the development of an 
execution model that allows the asynchronous execution of services. Thus, 
when a stop is requested, all the incoming service requests are queued and 
postponed. The instance will be ready to evolve when the services that are 
being processed finish their computations. On the other hand, the 
decomposition of the instance structure has been performed by means of 
dynamic linking strategies. The reference to each structural part is available to 
the evolution mechanisms. When a structural part has been stopped, it can be 
safely removed or replaced from memory by unlinking it from other structural 
parts and by linking the new part to the other structural parts. For specific 
details, the reader is referred to (Costa-Soria, 2005), (Pérez et al., 2005a) and 
(Millán-Belda, 2006). 

In short, the InstanceEffector aspect essentially allows an instance to: (i) isolate 
its structural parts (i.e. the entities and relations that compose the type); (ii) 
stop the running transactions involving these parts; (iii) change or replace 
these parts; and (iii) reassembly again these parts inside the instance 
boundaries. This is performed by abstracting the low-level details to other 
high-level coordination structures (i.e. the InstanceEvolutionPlanning aspect and 
the type meta-instance). 

7.3.6 Summary of the evolution process 

Finally, to provide a summary of the entire dynamic evolution process, this 
section describes the execution of a type evolution scenario, by means of the 
reflective infrastructure described in this chapter.  

The scenario presented in section 5.5.2 (see page 154) describes that, after the 
delivery of the Agrobot to its final users (i.e. the farmers), a critical update is 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

314 

required: the updating of the image processing algorithms. These algorithms 
are located in the ImageProcCard and ImageProcSoftware component types. 
Since the former component is a hardware element that cannot be remotely 
changed, the maintenance team has decided to update only the latter, the 
ImageProcSoftware, which is automatically instantiated when needed. This 
update must be propagated and installed transparently, without disrupting the 
operations that the robot is carrying on (i.e. at runtime), and without any 
direct user operation (i.e. remotely, in an automated way). This dynamic, semi-
automated updating is supported by means of the evolution infrastructure 
described in this chapter, which is described below. 

The type evolution infrastructure defines three steps that must be followed to 
dynamically evolve an architectural type: 

(i) Get a reification of the type to evolve,  
(ii) Manipulate the reification provided by adding, removing or 

replacing elements of the type specification, and  
(iii) Reflect the edited reification to the type meta-level.  

Thus, to dynamically update the image processing algorithms of the Agrobot, 
the maintenance team should send to each Agrobot unit the following set of 
updating instructions (see Figure 7.27): 

1) A set of instructions to get the reification of the type to evolve. The 
type to be evolved is the ImageProcSoftware type, which is imported by 
the VisionSystem type of the Agrobot. To get the reification of the 
ImageProcSoftware type, first its type reference (i.e. a pointer to the type 
meta-instance) must be obtained. This can only be done by going 
down through the hierarchy of compositions: from the top-level 
composition (the Agrobot architecture), to the level where the 
ImagProcSoftware type is imported (the VisionSystem architecture). 
This is shown in Figure 7.27. First, the reification of the Agrobot is 
obtained. Next, from the list of its architectural types, the reference to 
the type VisionSystem is obtained and reified. Third, from the list of 
the architectural types that the VisionSystem is composed of, the 
reference to the type ImageProcSoftware is obtained. Finally, the fourth 
operation shows ImageProcSoftware type is reified. 

2) Edition of the reification with the set of desired changes. In this case, 
the change to perform is to replace the aspect ImageProcSwController, 
which encodes the image processing algorithms, by a new version: the 
aspect ImageProcSwControllerV2. This is shown in Figure 7.27, 5th 
operation.  



7.3 REFLECTIVE ASYNCHRONOUS EVOLUTION OF ARCHITECTURAL TYPES 

315 

3) Reflection of the changes back to the type. Once the changes to the 
reification have been completed, the set of changes are sent back to its 
type to initiate a dynamic evolution process. This is performed by the 
last operation of Figure 7.27. The reflection process also provides the 
set of evolution parameters (e.g. the strategy chosen to evolve 
instances, the timeout to evolve, etc.), which in this case are set to the 
default values (see page 295 for more details). 

 

 // Obtaining the reference of the type to evolve 

 Agrobot.Reify(out agrobotReification); 

 agrobotReification.architecturalTypeList[“VisionSystem”]. 

typeDefinition.Reify(visionSystemReification); 

 imageProcSoftwareTypeRef = visionSystemReification. 

   architecturalTypeList[“ImageProcSoftware”].typeDefinition 

 

 // Reification of the type to evolve 

 imageProcSoftwareTypeRef.Reify(out imageProcSWReification); 

 

 // Modification of the type to evolve: one aspect is replaced 

 imageProcSWReification.ReplaceAspect(“ImageProcSwController”, 

ImageProcSwControllerV2, “”); 

 

 // Reflection of the changes, with the default evolution values 

 imageProcSoftwareTypeRef.Reflect(imageProcSWReification,  

   new EvolutionPolicy()); 

Figure 7.27. Sequence of evolution instructions performed  
to dynamically update the type ImageProcSoftware 

As a result of the Reflect operation, the type is dynamically changed: a new 
type version is automatically generated, and its existing instances are 
progressively transformed to the new version. This is performed by the type 
evolution infrastructure without any further intervention of the evolution 
agent, in a totally automatized and transparent way. 

From an internal point of view, when an edited reification is reflected to the 
type meta-level, different actions are performed at both the type-level and the 
instance-level. At the type-level, first the instance-creation and type-reification 
mechanisms are blocked, to avoid the creation of instances or reification of 
the type version that is going to be evolved. Next, if evolution preconditions 
are satisfied, then a new type version is generated: this involves the generation 
and compilation of the executable code of the new type version and the 
replacement of the old one. If this process finishes successfully, the instance-
creation and type-reification mechanisms are unblocked, so new instantiations 
and type reifications would be performed according to the new type version.  

Then, the changes introduced by the new type version are asynchronously 
propagated to the instance-level. At the instance-level, each instance receives 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

316 

the set of changes and stores it for later management. According to different, 
local conditions, when the instance decides to start an evolution process, 
then: (i) it processes the set of evolution requests received, evaluating its 
version conformance, (ii) reaches a quiescent status to finish consistently 
running transactions, (iii) modify its structure dynamically, according to the 
set of evolution steps that have been received from the type-level, and (iv) if it 
is possible, it migrates the old state to the new data structures introduced by 
the new type version.  

7.4 Conclusions & further works 

This chapter has presented another perspective of this work: the support for 
Dynamic Evolution of Architectural Types. This work provides four contributions 
to the state-of-the-art on type evolutions: (i) type-oriented reflective evolutions, 
(ii) support for asynchronous evolutions, (iii) evolution of instances through 
transformations, and (iv) separation of evolution concerns through aspects. 
This section summarizes these contributions, the remaining works, and the 
related publications. 

7.4.1 Conclusions 

This chapter has described a novel reflection-based approach for supporting 
the dynamic, asynchronous evolution of architectural types. This approach 
combines the following features in an innovative way:  

Type-oriented evolutions. Evolution support is considered as a feature of each 
architectural type, so evolution mechanisms are only integrated in these types 
that actually require them. This avoids that non-evolvable types would be 
affected by the execution overhead introduced by evolution mechanisms, and 
removes the need of a centralized evolution manager, which could be a single-
point-of-failure (if it fails, evolution will not be supported). 

Reflective descriptions. Evolution is provided through reflection: each evolvable 
architectural type is able to obtain (and provide) an editable description of 
itself, and to reflect the changes on its description. Reflective capabilities are 
provided by means of type meta-instances, which contain the meta-level 
representation of a type and are able to regenerate the executable code when 
this meta-representation is changed. Thus, a type meta-instance makes a type 
self-described and self-evolvable. This also simplifies the description of 
evolution. 

Asynchronous evolution model. Evolution is performed asynchronously: each 
architectural type and its instances evolve at different rates. This has been 



7.4 CONCLUSIONS & FURTHER WORKS 

317 

supported by distributing the evolution mechanisms among the type-level and 
the instance-level and by implementing version-management strategies. This 
benefits the propagation of changes in distributed and/or mobile systems: a 
type can be evolved independently of its instances, which may receive and 
integrate the changes later, when they are ready. This gives a great level of 
flexibility to the evolution process: an instance may postpone its evolution 
until it reaches a quiescent status, or until its context is prepared for evolution 
(i.e. it is semantically compatible with the new version). 

Instance evolution through transformations. The evolution of instances is 
performed by means of the decomposition of the internal structure of an 
instance and its incremental transformation, by adding/removing the 
structural elements that have been added/removed from the type 
specification. This benefits the transparent evolution of instances, without the 
need of recreating again the external links or migrating the state of the 
instance. In addition, for these cases in which a type could not be 
decomposed, support for instance migration has been also provided (e.g. for 
the replacement of aspects). 

Separation of concerns through Aspect-Oriented techniques. The evolution 
mechanisms have been separated into different concerns, which in turn are 
distributed among type-level and instance-level concerns. These concerns have 
been encapsulated as aspects, with a special emphasis of making these aspects 
independent of each other (through weavings), to increase reuse and 
maintenance. Type-level aspects address the evolution of both the 
specification and executable code, whereas instance-level aspects address the 
evolution of the internal structure of each instance. These aspects are reused 
by all the evolvable architectural types and its instances, except the Builder 
aspect, which contains the specific executable code of each type. 

It is important to emphasize that the approach presented is very flexible: 
evolution processes can be time-constrained and/or applied to a subset of 
instances. This allows us to either force or abort the integration of changes if 
they are not performed in a certain time. In addition, instances can be 
excluded from evolutions if it is needed (e.g. due to semantic incompatibility), 
without losing the possibility of reintegrating them in the evolution path later. 

7.4.2 Further works 

A feature that has been left to future work is the definition of constraints for 
the evolution of architectural types. Currently, our proposal is generic enough 
to allow the dynamic evolution of any element of a type specification. 
However, in certain cases it may be interesting to limit which parts of the type 
can be evolved or not. An interesting starting point from where to start could 



CHAPTER 7. DYNAMIC EVOLUTION OF ARCHITECTURAL TYPES 

318 

be the work of (Rutle, 2010), which addresses the integration of constraints in 
meta-modelling (i.e. in the type definition), and the constraint-aware model 
transformation. 

Concerning the PRISMA implementation, an earlier prototype of the type 
evolution infrastructure has been developed in .NET (Hervás-Muñoz, 2009). 
However, it remains the integration of this evolution infrastructure in the 
PRISMA Case Tool, to automatically include the evolution mechanisms in 
the generated code of evolvable types. Currently, the evolution mechanisms 
are added after the generation process, by manually editing the generated code 
to include the libraries containing the type-level and instance-level aspects. 
However, the principles and knowledge are well established from previous 
works (Guillén-Martín, 2007), (Pérez et al., 2007), (Pérez et al., 2007a), so its 
implementation is straightforward. 

Further works remain, such as addressing the impact of evolutions on the 
interactions with the adjacent architectural types. Some authors have 
addressed this issue by means of the dynamic generation of adaptors that act 
as mediators among the existing instances and the replaced (or evolved) ones 
(Cámara et al., 2008). We have also started addressing this issue from a 
different perspective, by means of the coordination among the evolution 
mechanisms and other elements, in a non-intrusive way. Since this is still in 
an early stage and some issues remain opened, this has been intentionally left 
outside this thesis. The early findings can be found in (Costa-Soria & Heckel, 
2010), (Costa-Soria et al., 2011). 

7.4.3 Results 

The work related to the definition of the dynamic evolution of architectural 
types has been presented in the following publications: 

- Costa-Soria C., Hervás-Muñoz D., Pérez J., Carsí J.A. A Reflective Approach 
for Supporting the Dynamic Evolution of Component Types. In proc. of: 14th 
IEEE International Conference on Engineering of Complex Computer 
Systems (ICECCS'09), pp. 301-310. Potsdam, Germany, 2-4 June 2009.  

- Costa C., Pérez J., Carsí J.A. Managing Dynamic Evolution of Architectural 
Types. Morrison, R., Balasubramaniam, D., Falkner, K. (eds.): 2nd 
European Conference on Software Architecture (ECSA‟08). Lecture Notes 
on Computer Science, vol. 5292, pp. 281-289. Springer, Heidelberg, 
October 2008.  

- Costa C., Pérez J., Carsí J.A. Soporte a la Evolución Dinámica de Tipos 
Arquitectónicos. In proc. of: 1st Workshop on Autonomic and Self-Adaptive 



7.4 CONCLUSIONS & FURTHER WORKS 

319 

Systems (WASELF‟08). Gijón, Spain, October 2008  
(in Spanish). 

- Costa C., Pérez J., Carsí J.A. Dynamic Adaptation of Aspect-Oriented 
Components. Schmidt, H.W., Crnkovic, I., Heineman, G.T., Stafford, J.A. 
(eds.): 10th International Symposium on Component-Based Software 
Engineering (CBSE‟07). Lecture Notes on Computer Science, vol. 4608, 
pp. 49-65. Springer, Heidelberg, July 2007. 

 





 

321 

Chapter 8. Description of the Evolution Semantics 

 

CHAPTER VIII 

DESCRIPTION OF THE  
EVOLUTION SEMANTICS 

8.1 Introduction 

his chapter describes the semantics of asynchronous type evolution 
from a high-level of abstraction, by means of typed graph 
transformations. This formalism has been chosen because it naturally 
models both the system architecture and the asynchronous nature of 

its evolution. This has been realized by describing the observed behaviour of 
evolution services (both at the type-level and at the instance-level), and by 
using an architecture-based concrete syntax, which is more concise and easier 
to understand than the graph-based abstract syntax. This has facilitated the 
identification and resolution of some issues related to asynchronous 
evolution, such as the management of type conformance, the order of 
evolution processes or the coherence of interactions.  

This chapter is organized as follows. Section 8.2 presents the challenges posed 
by asynchronous evolution. Next, section 8.3 presents how evolution 
semantics has been described by means of typed graph transformations. 
Finally, section 8.4 presents the conclusions and further works. 

8.2 Challenges of asynchronous evolution 

As described in section 7.3.4 (see page 266), asynchronous evolution takes a 
step forward from synchronous evolution. Asynchronous evolution of types 
allows us to introduce multiple (but ordered) change requests, deferring them 
until they can be effectively applied. For instance, this will allow different 
stakeholders to update different parts (i.e. types) of a system at different times, 
without taking into account the update of the running (and perhaps 

T 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

322 

distributed) instances. However, these advantages make asynchronous 
evolution the most challenging.  

Most of related works have been focused on the challenges posed by 
synchronous evolution:  

 The adaptation of runtime data structures and code: (Segal & Frieder, 
1993), (McKinley et al., 2004), or (Nicoara et al., 2008).  

 The state consistency before and after a dynamic change: (Kramer & 
Magee, 1990), (Gomaa & Hussein, 2004), (Vandewoude et al., 2007) 

 The migration of the state: (Ritzau & Andersson, 2000), 
(Vandewoude & Berbers, 2005) 

Asynchronous evolution must also cope with these challenges, but in addition 
it poses new challenges: 

1. Type conformance. Since types evolve at different rates with respect to 
their instances, it is then difficult to check if the instance-level is 
conformant to the type-level. 

2. Version management. Different evolutions of a single type entail the 
existence and management of different versions of this type at 
runtime (at least where there are running instances of such type), 
which adds more complexity to the process. 

3. Order of evolution processes. In such a case where a type could require a 
high rate of evolutions, it could happen that an instance might have 
two or more pending evolutions. In this case, the order of pending 
evolutions must be preserved. This is important in distributed 
systems, where instances may receive newest evolution changes before 
the older ones.  

4. Coherence of interactions. Interactions among instances that are in 
different versions can produce incorrect behaviours. The context 
where instances evolve is also important. 

These challenges have been taken into account when describing the semantics 
of the asynchronous evolution, which is presented in the next section. 

8.3 Evolution semantics 

An evolution process comprises the execution of several evolution operations, 
which are of different kinds (i.e. additions, removals or updates) and focused 
on changing a specific part of an architectural type (e.g. in case of composite 
types: its architectural types, its ports, its attachments, its bindings, …).  



8.3 EVOLUTION SEMANTICS 

323 

8.3.1 Specification of evolution processes 

As described in Chapter 7, an (asynchronous) dynamic evolution process is 
triggered when a meta-service called Reflection, provided by each evolvable 
architectural type, is invoked (see page 261). This service requires a new 
specification of the type to evolve (i.e. a reification), which is described in 
terms of modifications on the current type specification: additions, removals or 
updates.  

The set of modifications that can be performed on an architectural type is 
defined by its metamodel44. According to the PRISMA metamodel (see section 
2.4, page 47) and the characteristics of the System architectural element (i.e. 
the parts that a composite component consists of), 12 evolution operations 
have been defined (see Figure 8.1). Each operation involves runtime changes 
both at type-level and instance-level. 

 

AddArchitecturalType(AEName, type, minCard, maxCard); 

AddAttachmentType(attName, sourceAE, srcPort, srcMinCard, 

srcMaxCard, targetAE, trgPort, trgMinCard, trgMaxCard); 

AddBindingType(bindName, sysPort, targetAE, trgMinCard, trgMaxCard); 

AddPort(portName, interface); 

RemoveArchitecturalType(AEName); 

RemoveAttachmentType(attName); 

RemoveBindingType(bindName); 

RemovePort(sysPortName); 

UpdateArchitecturalType(oldType, newType, minCard, maxCard); 

UpdateArchitecturalTypeCard(AEName, newMinCard, newMaxCard); 

UpdateAttachmentType(attName, srcMinCard, srcMaxCard, trgMinCard, 

trgMaxCard); 

UpdateBindingType(bindName, trgMinCard, trgMaxCard); 

Figure 8.1. Evolution operations over Composite types 

For instance, Figure 8.2 shows how a System type, named Sys, is evolved by 
two evolution processes from the initial version, v0, to versions v1 and v2. The 
first evolution process (see E0: Sys.v0  Sys.v1 in Figure 8.2), started in time t3, 
performs the following operations: (i) introduces a new architectural type C 
and constrains its minimum and maximum cardinality to 1 and n, 
respectively; (ii) attaches this type (through the attachment type called ‗A-C‘) to 
the port ‗pA‘ of type A, with the cardinalities CA[1..1], AC[1..n]; (iii) 

                                                      
44A metamodel describes how an architectural type is defined: the parts it is composed 
of, their relationships and attributes. 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

324 

removes the type B; and (iv) removes the attachment from A to B. The 
resulting Sys type version, v1, is shown in the left. 

The second evolution process (see E1: Sys.v1  Sys.v2 in Figure 8.2), started in 
t9, performs two operations: (i) introduces a new type D; and (ii) attaches it to 
to the type C (which was added in the previous evolution process). The 
resulting Sys type version, v2, is shown in the left. 

 

 
Figure 8.2. Example of two evolution processes 

The successful execution of each evolution process creates a new version (i.e. a 
new specification) of the architectural type being evolved. Type versions are 
identified from each other by means of a version number, which is increased 
each time an evolution process is applied on the type successfully. Each 
instance also contains an attribute which keeps track of the type version that it 
is currently an instance of. This is used to control that only the evolution 
operations leading to the next type version (from the instance perspective) are 
taken into account, thus preserving the order of evolutions.  

Next section presents how different type versions are managed, by means of 
evolution tags. 

8.3.2 Version management: Evolution Tags 

A contribution of the approach presented in this thesis is that only one single 
type specification is needed to describe both the current and previous type versions. This 
is possible because each change that is performed on an architectural type is 
also reflected on its specification, by means of evolution tags.  



8.3 EVOLUTION SEMANTICS 

325 

An evolution tag: 

 Describes the kind of evolution operation that has been performed: 
an addition (+), a removal (–), or an update (U). 

 Is linked to the element of a type specification on which the evolution 
operation has been performed (e.g. in the case of a composite 
component: architectural elements, ports, attachments, bindings, 
constraints, constructors and destructors) 

 Indicates the type version where the evolution operation took place.  

Thus, the specification of a type which makes use of these evolution tags can 
describe not only the structure (and behaviour) of a type, but also the history 
of its evolutions over time.  

Figure 8.3 and Figure 8.4 show, respectively, a graphical and textual 
specification of a System type that includes the description of its evolutions 
over time by means of evolution tags. In particular, these figures describe the 
resulting System type Sys after the execution of the evolution processes 
presented in Figure 8.2. For instance, the tag [+,1] near the declaration of the 
type C tells us that the type C has been imported in version 1 of Sys.  

 
Figure 8.3. Graphical specification of a type tagged with Evolution tags 

System Sys 

 Ports 

  P1 : interface1; 

 End_Ports; 

 

 Import Architectural Elements  

  A(1,1),  

  B(1,n)[-,1],  

  C(1,n)[+,1],  

  D(1,1)[+,2]; 

 

 Attachments 

  Att_AB: A.PServ(1,1) <--> B.PServ(1,n);  [-,1] 

  Att_AC: A.PServ(1,1) <--> C.PServ(1,n);  [+,1] 

  Att_CD: C.PServ(1,n) <--> D.PTester(1,1);[+,2] 

 End_Attachments; 

 

 Bindings 

  Bin_p1A: P1(1,1) <--> A.PClient(1,1); 

 End_Bindings; 

End_System Sys; 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

326 

Figure 8.4. Textual specification of a type tagged with Evolution tags 

Note that, over time, such tagged specification may become difficult to read or 
interpret, as the history of evolutions grows. However, it must be taken into 
account that evolution tags are targeted for internal use of type descriptions: 
they allow us to embed both the definition of an architectural type and its 
evolution in a single place, which eases its management. 

To get the details of a specific type version (e.g. to be returned to an evolution 
agent), it has been defined the function GetTypeVersionSpecification(T, v). This 
function “filters” all the information that is contained in a tagged 
specification and returns only the elements that belong to a specific type 
version (see Figure 8.5). 

 

                           (   )    
             ( )                           

(     )   

(                              )   

(                                )    

(                                ) 
 

Figure 8.5. Function GetTypeVersionSpecification 

From the set of all elements that the tagged specification of a type T consists 
of (i.e. elements(T)), this function returns only these ones that were defined at a 
version „v‘. That is:  

 Unchanged elements. That is, elements of the type T that do not have 
any evolution tag. 

 Elements defined both in version ‗v‘ and in previous versions. That is: 

o Elements that have been added in versions<=v. Those elements 
that have been added subsequently (i.e. elements which 
tag.Version>v) are excluded from the resulting set: they do not 
exist yet in the type version that it is required. 

o Elements that have not been removed or updated in versions<=v. If 
an element is tagged with a “Removed” or “Updated” evolution 
tag, it will be selected if and only if this evolution tag belongs 
to future versions. The element that replaces another element 
is considered as an addition, so it is included in the previous 
case. 



8.3 EVOLUTION SEMANTICS 

327 

The function GetTypeVersionSpecification has been used in the description of 
the evolution semantics to constrain the set of pending evolution operations 
that are visible to each composite instance. Each composite instance is only 
provided with the set of changes that it should apply to be transformed to the 
subsequent type version. This makes each instance to progressively evolve 
from one type version to the following, thus preserving the order of 
evolutions.   

Next, the semantics of the evolution operations is described, which will 
illustrate how evolution tags play a central role in communicating each 
composite instance with the set of changes to be applied. 

8.3.3 Formalisation of the evolution operations 

The semantics of the evolution operations corresponding to composite 
architectural types has been formalised by means of typed graph 
transformations (Heckel, 2006). Graph transformations combine the idea of 
graphs as a modelling paradigm with a rule-based approach to specify the 
evolution of graphs. They are supported by an established mathematical 
theory and a variety of tools for its execution and analysis (Ehrig et al., 2006). 
The main reasons to choose typed graph transformations as the basis for the 
formalisation are the following:  

(i) Software architectures can be easily formalised as graphs, as 
shown in other works (Hirsch et al., 1998), (Wermelinger et al., 
2001);  

(ii) Graph transformations are asynchronous, i.e., each rule can be 
applied once its preconditions are satisfied, which benefits the 
formalisation of asynchronous evolution; and 

(iii) Typed graphs capture the relation among types and instances, 
required to model the evolution both at the type-level and 
instance-level.  

In this work, typed graph transformations have been used to describe the 
observed behaviour of evolution operations: i.e. how a System type (i.e. a PRISMA 
composite type) and its instances change as a result of the execution of 
evolution operations.  

The description of the evolution semantics has produced near 40 typed graph 
transformation rules, concerned with the management of evolutions at the 
type-level, the instance-level, or both. However, only the most representative 
transformation rules are described in this chapter. They are enough to 
illustrate how the different challenges related to asynchronous evolution are 
addressed and how evolution is described. This is possible because each 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

328 

transformation rule is self-contained and can be understood without requiring 
the description of the complete set of rules. 

Typed graph transformation rules are presented using an architecture-based 
concrete syntax, which is more concise and easier to understand than the graph-
based abstract syntax. Instead of using only vertices and nodes (as provided by 
the graph-based abstract syntax), a concrete syntax allows describing the same 
behaviour using concepts closer to the area of software architectures (i.e. 
components, ports, attachments, etc.), but extended with concepts required to 
deal with asynchronous evolution.  

Next, these architecture-based transformation rules are presented, and 
afterwards, their mapping to the graph-based abstract syntax. 

8.3.3.1 Architecture-based Concrete Syntax 

Among the different evolution operations that have been defined for evolving 
PRISMA composites, only two of them have been selected: 
AddArchitecturalType and UpdateArchitecturalType. The former has been 
selected due to the simplicity of its transformation rules, which allows the 
reader to get introduced in the semantics of graph transformations. The latter 
has been selected because it copes with one of the most important issues of 
dynamic evolution: the coherence of interactions and the migration of state 
after replacements. Next the modelling of these evolution operations are 
described in detail. 

Addition of a new architectural type 

The addition of a new architectural type to a composite type (i.e. a System) is 
performed by executing the AddArchitecturalType evolution operation. This 
operation modifies the composition of a System type to add a new, 
unforeseen, architectural type at runtime. This operation requires four 
parameters:  

 AEName, the alias of the type to add;  

 type, the executable code of the type to add;  

 minCard, the minimum number of instances of this type that must 
exist in each system instance; and  

 maxCard, the maximum number of instances that can exist in each 
system instance (i.e. in each Configuration).  

The semantics of this evolution operation is modelled by means of different 
transformation rules which operate at both the type-level and the instance-
level.  



8.3 EVOLUTION SEMANTICS 

329 

 Type-level Rules: AddArchitecturalType 

The rule AddArchitecturalType, which operates at the type-level, describes how a 
composite type (i.e. a System) is changed to introduce a new architectural type 
in its composition. This rule is provided with the same parameters that are 
provided to the evolution operation AddArchitecturalType, described above. A 
graph transformation rule consists of a left hand side, which describes the 
context where the rule can be executed, and a right hand side, which describes 
the result of executing the rule.   

The left hand side of the rule R3 (see Figure 8.6, left side) defines the context: 
the System type to modify, and the set of its instances. The System type to 
modify is represented as the top-left component named „S‟, and matches with 
the type where the evolution rule has been invoked. The set of its instances 
are represented as a multiobject (i.e. a collection of elements) named „S1‟ at 
the bottom-left. There is a condition that must be satisfied to execute this rule: 
the architectural element to add (i.e. AEName) must not already be present in 
the pattern defined by the System type. This is represented graphically as a 
component called „AEName‟ inside „S‟ which is crossed out.  

 
Figure 8.6. Rule R3: AddArchitecturalType 

Note that all the elements, „S‟, „S1‟, and „AEName‟ are variables whose values 
are set when the rule is applied on a specific element. For instance, if the 
following is executed: 

VisionSystem.AddArchitecturalType(ImageProcCard,…) 

Then, „S‟ would be set to VisionSystem, „S1‟ would be set to {RightCamera, 
LeftCamera} and „AEName‟ to ImageProcCard.  

The right hand side of the rule R3 (see Figure 8.6, right side) describes the 
result: the pattern of the System type represented by „S‟ is modified to include 
a new architectural type, identified by AEName. This new type can be 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

330 

instantiated in each one of the System instances, but only while satisfying the 
minCard and maxCard constraints.  

As described in section 8.3.1, the specification of each architectural type keeps 
track of the changes performed on it, to describe its evolution over time and 
to control the asynchronous evolution of its instances. This process is also 
described in transformation rules. When the rule R3 is executed, a new add 
evolution tag (represented by the symbol „+‟) is created and attached to the 
new architectural element (see Figure 8.6, right side). This evolution tag is 
initialized with the current version number of the System type (whenever a 
new evolution process is started, the version number of the type is increased; 
the new evolved type is identified by this version number). This tag is also 
provided with a link to every instance of the type that must be evolved to the 
new type specification (remember that instances can be optionally excluded 
from evolutions). This relationship is reflected in R3 with the „pending_evol‟ 
link to the set of instances. The use of this link is described later.  

Overall, the result of this transformation rule is that the specification of a 
System type is changed, by introducing a new architectural type and an 
addition tag that describes in which version this event took place. Next, type-
level changes are propagated to the instance-level. This is performed through 
instance-level rules. 

 Instance-Level Rules 

Instance-level rules carry out asynchronously the changes that have been 
introduced at the type-level. For instance, after the execution of the type-level 
rule AddArchitecturalType on a composite type, three instance-level rules follow 
on each one of its composite instances:  

(i) CreateArchitecturalElement, which creates instances of the type that 
has been added;  

(ii) ActivateInstantiatedArchElements, which initiates the execution of 
the new instances when the conditions (i.e. the minimum 
cardinality) defined by the composite type are fulfilled; and  

(iii) AdvanceInstanceToNewVersion, which promotes a composite 
instance to a new version when all the requirements of the new 
version have been fulfilled. 

Instance-level rules can be deterministic or non-deterministic. Deterministic 
rules are those that are automatically triggered once some conditions hold, 
whereas non-deterministic rules are those that require some kind of user 
information to be executed. For instance, the rules 
ActivateInstantiatedArchElements and AdvanceInstanceToNewVersion are 



8.3 EVOLUTION SEMANTICS 

331 

deterministic, because they are automatically triggered when the conditions 
they define are fulfilled. By the contrary, the rule CreateArchitecturalElement is 
non-deterministic, because it requires that the user provides the initialisation 
parameters of the new instance. Next these rules are described in detail. 

Rule R20: CreateArchitecturalElement 

The rule CreateArchitecturalElement describes the instantiation of an 
architectural type inside a composite instance. This rule requires three 
parameters: (i) AEType, the name of the architectural type which to create an 
instance; (ii) id, a unique identifier of the instance to create; and (iii) params, 
the parameters required to create an instance of the type AEType.  

This rule can be executed independently, as part of a reconfiguration process 
(i.e. to create new instances according to the constraints defined in the pattern 
of the composite type), or as part of a type-level evolution process. In the first 
case, the parameters of the rule would be provided by the reconfiguration 
agent (either proactive specifications or an external user, see 3.3.4.2, page 72). 
In the second case, the parameters of the rule (mostly id and params) must be 
provided by the evolution agent, i.e. the initiator of the type-level evolution 
process. For this reason, this rule is non-deterministic.  

The semantics of this rule is described in Figure 8.7. In this rule, “S1‖ is a 
Configuration (i.e. the name given in the PRISMA ADL to composite 
instances), and its type is the System “S‖ (i.e. the name given in the PRISMA 
ADL to composite types). The left-hand side of the rule describes which 
conditions must be satisfied to allow the instantiation of an architectural type, 
AEType, in the Configuration S1 (the context where the reconfiguration 
service has been invoked). These conditions are the following: 

(i) The architectural type AEType must be defined in the type of S1: 
AEType exists in the pattern defined by the composite type S (see 
Figure 8.7, top, in the box called S) 

(ii) The composite instance S1 cannot have another instance of 
AEType with the same identifier id (see Figure 8.7, red cross) 

(iii) The number of instances of AEType created in the composite 
instance S1 must be lower than the maximum cardinality 
maxCard defined in the composite type S (see Figure 8.7, 
condition 1).  

(iv) If there are pending type-level evolutions (i.e. the version of the 
composite instance S1 is lower than the latest version of the 
composite type S, see Figure 8.7, condition 2), then the type 
AEType must be also included in the next version of the 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

332 

composite type S (see the second part of the condition 2 in the 
figure).  

The last condition checks that the architectural element that is going to be 
instantiated has not been removed (or replaced by another one) from the 
composite type S (i.e. it has not been tagged for deletion or update). Or, if it 
has been removed, that it has not been done in the next version that the 
composite instance is pending to evolve (i.e. S1.Version+1). In addition, this 
condition also forbids the instantiation of architectural elements that have 
been added in future versions of the composite type S. Those elements that 
belong to type versions that are far from the subsequent version which a 
composite instance is evolving to (i.e. belonging to versions greater than 
S1.Version+1) are hidden to composite instances. Composite instances must 
evolve in an ordered way: first all the changes of the S1.version+1 must be 
included, then the changes belonging to S1.version+2, etc. Thus, the rule takes 
into account not only the conformance of a Configuration to its System type, 
but also the convergence to the subsequent evolution of its System type. 

 
Figure 8.7. Rule R20 - CreateArchitecturalElement 

The right-hand side of the rule describes how the AEType architectural 
element is instantiated in a Configuration (i.e. a composite instance). Each 
new instance created is left in a quiescent state by default, i.e. it cannot start or 
process any transaction (see page 74 for a complete definition of quiescence). 
The quiescent state is very important, and for this reason it has been 
represented in the rules by using the symbols „[‟ and „]‟ around the software 
artefact being quiescent (see Figure 8.7, right-hand side). The creation of 
instances stopped by default is to guarantee that the minimum cardinality 
constraint defined in the System type is satisfied first, before allowing the 



8.3 EVOLUTION SEMANTICS 

333 

execution of these instances. Thus, several instances can be created, but they 
will not be started until their number would not be enough.  

As a result of this transformation rule, the internal composition of a 
composite instance (i.e. its architecture) is changed to accommodate a new 
architectural instance, which is quiescent by default. This rule will be executed 
as many times as necessary until the number of the architectural instances 
created is equal or greater than the minimum cardinality. This is checked by 
the following rule, ActivateInstantiatedArchElements.  

Rule R21: ActivateInstantiatedArchElements 

The rule ActivateInstantiatedArchElements checks whether a composite instance 
has completed all the steps belonging to the evolution operation 
AddArchitecturalElement or not. That is, it checks that a composite instance: (i) 
has integrated the new architectural element in its composition, and (ii) has 
created the required number of instances of the new architectural element.  

This rule (see Figure 8.8) is deterministic, and is automatically triggered for 
each composite instance (depicted as „S1‟ in the figure) that fulfils the 
following conditions: 

 

Figure 8.8. Rule R21 - ActivateInstantiatedArchElements 

(i) Its composite type, S, imports an architectural element, AEType, 
that has been recently added (i.e. it is tagged with the symbol „+‟) 
AND that the composite instance has not integrated yet (i.e. it 
has a pending_evol link to the composite instance). This avoids 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

334 

that this rule could be activated to unblock instances that have 
been quiesced by another rules. 

(ii) The composite instance, S1, has created one or more instances of 
the architectural element AEType. The set of instances is 
modelled by means of a multiobject identified by id, placed inside 
S1, and linked to the AEType element by means of a link 
instance_of. 

(iii) All the instances of AEType are in a quiescent status. This is 
modelled by enclosing the multiobject id by the symbols „[„ and „]‟. 

(iv) The composite instance S1 has created as many instances of 
AEType as specified in the property mincard defined in its 
composite type, S. This is described by the condition 1 (see Figure 
8.8, the first condition below the rule).  

Finally, condition 2 is auxiliary: it guarantees that the specification of the 
composite type that is chosen by the rule conforms to the version that the 
composite instance is evolving to (i.e. S1.version+1). 

As a result, the execution of this rule has two effects. One the one hand it 
unblocks (i.e. it starts the execution of) the set of instances of AEType. This is 
represented by removing from the right hand side the symbols „[‟ and „]‟ that 
were enclosing the multiobject id on the left hand side.  

On the other hand, another effect of the rule is that it removes the link 
„pending_evol‟ among the addition tag (depicted as „+‟) and the composite 
instance S1 where the rule has been applied. This means that the composite 
instance S1 has integrated the new architectural element AEType in its 
structure, as specified by the composite type S. In other words, the composite 
instance has completed the evolution operation AddArchitecturalElement.  

However, since an evolution process consists of several evolution operations, 
the completion of an evolution operation (as represented by this rule) does 
not mean that the composite instance has changed of type version. It has only 
completed one of the evolution operations that are pending. Only when all the 
pending evolution operations are realised, then the instance could be 
promoted to the next version (i.e. to increase the version of a composite 
instance). This is described by the following rule, 
AdvanceInstanceToNextVersion. 

Rule R38: AdvanceInstanceToNextVersion 

The rule AdvanceInstanceToNextVersion describes when a composite instance 
has finished an evolution process, i.e. it has integrated all the type-level 
changes leading to the subsequent type version. A composite instance has 



8.3 EVOLUTION SEMANTICS 

335 

finished an evolution process when it has successfully applied all the evolution 
tags leading to the next type version. That is, given a composite instance S1 
that is conformant to a type version v, then it could be promoted to the next 
type version v+1, if and only if no evolution tag of version v+1 exists with a 
‗pending_evol‘ link to the composite instance S1. Recall that this link points to 
these composite instances that have still not applied an evolution tag. 

This is modelled in the following way (see Figure 8.9, left-hand side): a multi-
object named Evol_Tag models the set of evolution tags which fulfil two 
conditions: (i) they belong to type version v+1 (i.e. the subsequent version of 
the composite instance which is being evaluated); and (ii) they have a 
‗pending_evol‘ link to the composite instance being evaluated, S1. Since this 
multi-object is crossed out, this means that this rule can be only executed if 
the multi-object that fulfils the previous conditions is empty. This rule is 
automatically triggered for each composite instance which satisfies the 
previous condition.  

 
Figure 8.9. Rule R38 - AdvanceInstanceToNextVersion 

The result of this rule (see Figure 8.9, right-hand side) is that the version of 
the composite instance on which this rule has been applied is increased: 
S1.version=S1.version+1.  

From this moment, then the composite instance S1 is fully conformant to 
version v+1 of the composite type S. By contrast, note that during the 
asynchronous execution of an evolution process, instances are partially 
conformant to both their current type version and their subsequent type 
version. However, only when an instance is fully conformant to a type version, 
then it may start evolving to another version (if there are still pending 
evolution processes).  

In addition, the „pending_evol‟ link has an additional use: to monitor the 
evolution state of each instance at the type-level. By looking the oldest 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

336 

evolution tag (i.e. with the minor version) which is still linked to a composite 
instance, it lets us know: (i) the set of evolution operations a composite 
instance is currently involved in, and (ii) the version a composite instance 
currently is conformant to, by decreasing the version provided by the oldest 
evolution tag found. 

Updating of Architectural Types 

Finally, in order to fully understand our approach, the update operation is 
described here. This operation replaces a type version by another and updates 
its instances, keeping all their existing connections and their internal state. 
This is modelled by means of two transformation rules: UpdateAEType and 
ReplaceAE, which act at the type-level and the instance-level respectively. The 
context where these rules are executed are: the composite type (i.e. a System) 
that imports the type to update, and the composite instances (or 
Configurations) that have imported and instantiated the type to be updated.  

 Rule R10: UpdateAEType 

On the one hand, the UpdateAEType rule models the updating of a type 
version by a new one, keeping the existing interaction patterns. Let us recall 
that in the PRISMA model, the type-level defines the interaction patterns 
among types (i.e. what kind of interactions are allowed), and consequently, the 
interactions among their instances. When updating a type, the existing 
interaction patterns must be preserved to guarantee the coherence of 
interactions at the instance-level: the instances that were connected/attached 
to the instance to update must be able to interact with the same instance after 
the updating process.  

The coherence of interactions can be only guaranteed by requiring the new 
type version to be syntactically and semantically compatible with existing 
interactions; otherwise, the update operation must not be performed. That is, 
compatibility evaluation when performing an update is focused on the 
interactions that the old type has, instead of focusing on the type itself. The 
reason is that a new type version, despite being incompatible with its previous 
version, could be semantically compatible with the types that were interacting 
with the previous version. This is the case when, in the context of an 
evolution process, the removal of part of the original functionality is required: 
a new version provides less functionality than the previous version (i.e. the 
new version is not compatible with the old one), and the interactions 
requiring this functionality have been removed from the initial set of 
interactions (i.e. the new version is compatible with the resulting set of 
interactions). If complete compatibility (or subtyping) of the new type with 



8.3 EVOLUTION SEMANTICS 

337 

respect to the old type were required, we would never be allowed to remove 
unused functionality45.  

Since interactions among architectural types are performed through ports (i.e. 
they are the points of interaction), compatibility for updating is evaluated 
through ports. Thus, the requirement to perform an update operation is that 
the new type provides a set of ports syntactically and semantically compatible 
with the interacting ports of the old type. On the one hand, we define a port 
px as syntactically compatible with another port, py, if it provides all the services 
that are required from py, which are defined by the set of existing interactions 
of py, with exactly the same signature (i.e. name and parameters) of each 
service. Note that syntactic compatibility only refers to the minimum set of 
services provided by px: this means that a syntactically compatible port may 
provide additional services or require different services than the original. The 
goal of the updating operation is to guarantee that the updating does not 
break the current architecture, without taking care of the introduction of new 
required services. This is the responsability of other evolution rules, which will 
evaluate if all the required services are conveniently bound, thus guaranteeing 
the consistence of the architecture. 

On the other hand, we define a port px as semantically compatible with another, 
py, if it provides the same observable behaviour as other elements expected 
from py. That is, the execution of the services of px must produce the same 
expected results, or sequence of traces, that py produces. However, the 
evaluation of semantic compatibility is challenging and its integration in the 
evolution model is not trivial. Since this is not the goal of this thesis, the 
reader can refer to other works (Engels et al., 2001) (Engels et al., 2002) in 
order to get more details about how some issues have been addressed from a 
formal perspective. For the sake of simplicity, we have abstracted semantic 
evaluation this way: each port is provided with a function, CanInteractWith, 
which evaluates if another port satisfies a certain contract or interaction 
protocol, i.e. that the observed behaviour is the required. For instance, in a 
port that requires compression and decompression services, a very simple 
function could evaluate that the compression of a sample data is 
decompressed correctly to the original data. That is, each port has the 
responsability of validating that their required services are provided correctly. 
Thus, we could say that a port px is semantically compatible with another, py, if 
all the ports that are connected to py, and request services from py, can interact 
seamlessly with px. In case of semantic incompatibility, a factible solution is 

                                                      
45 In fact, we could remove unused functionality from a type by removing the old version and 
adding the new, reduced one. However, in this case, the state migration of its instances would 
not be performed. 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

338 

the use of dynamically generated adaptors (Cámara et al., 2008) (Canal et al., 
2008). 

Syntactic and semantic compatibility is reflected in the UpdateAEType rule by 
means of condition (1) (see Figure 8.10): the execution of the rule is only 
performed if the ports of the new type version (i.e. parameter NewType) are 
syntactically (see condition 1.1) and semantically (see condition 1.2) 
compatible with the ports of the old type version (i.e. parameter OldType). The 
set of types that interact with OldType are modelled by means of a multiobject 
called AttachedTypes. The ports of the types that interact with OldType (i.e. 
variable p3) are used to evaluate the syntactic and semantic compatibility of 
the ports provided by NewType (i.e. variable p2). Moreover, since AttachedTypes 
includes all the types connected to OldType, in case OldType were connected to 
itself, AttachedTypes would include OldType in its set. This guarantees that the 
updating of a self-interacting type is made consistently: the ports of the new 
version must be semantically compatible with the ports of the old version. 
Self-interacting types are common in self-organised systems: different 
(distributed) instances of the same type (e.g. agents) interact themselves, 
sharing a common interpretation of the environment. In this case, semantic 
compatibility guarantees that instances of the old version can interact 
consistently with instances of the new version. 

 
Figure 8.10. Rule R5 - UpdateAEType 

The execution of this rule introduces the new type version tagged for addition 
(i.e. see the symbol „+‟ near the NewType component), and tags the old type 
version for removal (i.e. see the symbol „-„ near the OldType component). The 
use of the addition and removal tags activates or constrains the behaviour of 
other instance-level rules. For instance: the rule CreateArchitecturalElement (see 
Figure 8.7) not only will create instances of the new type version, but will also 
avoid the creation of instances of the old type version. Another example: the 
rule ActivateInstantiatedElements (see Figure 8.8) will only allow the activation 



8.3 EVOLUTION SEMANTICS 

339 

of instances of the new type version if and only if the minimum cardinality is 
satisfied.  

However, in order to distinguish an update operation (which requires state 
migration) from an addition or removal operation (which also introduce 
addition/removal tags but do not preserve the instance state), this rule also 
introduces a relationship among the old type and the new type: the 
relationship “becomes”. It specifically models which type is going to replace 
the older version, and activates the rule ReplaceAE (which is described below) 
for performing the migration of the instances to the new type version. 

With respect to interactions, the existing connections (i.e. links to 
AttachedTypes, a multiobject which represent the set of types that are 
interacting with OldType) are unlinked from the type to update (i.e. OldType) 
and linked to the new type version (i.e. NewType). This is modelled by tagging 
the old links with the symbol „-„ (i.e. a removal tag) and the new ones with the 
symbol „+‟ (i.e. an addition tag). These tags will avoid the creation of new 
attachments at the instance-level among instances of OldType and 
AttachedTypes, promoting instead the creation of attachments with instances of 
NewType. In this way, OldType will be progressively removed from the System. 

 Rule R37: ReplaceAE 

On the other hand, the ReplaceAE rule models the replacement of an instance 
by a new one, migrating its previous internal state and updating its existing 
connections (see R6, Figure 8.11).  

This rule is activated if and only if a component instance is detected in a 
running System which matches the following conditions: (1) the type of such 
instance (which matches in the rule with OldType) has a “becomes” 
relationship with another type (i.e. NewType in the rule); and (2) such instance 
has reached a quiescent status (represented in the rule by the symbol “[ ]” 
around the instance S1). The first condition detects that the matching type 
has been updated. The second condition ensures that the interactions of the 
instance to migrate are stopped, and that the instance state is consistent, ready 
to be migrated. This is guaranteed by the quiescent status (Kramer & Magee, 
1990), which is only achieved when there are no running and/or pending 
transactions.  

The result of the execution of the ReplaceAE rule is the migration (or 
transformation) of an instance of the old type to an instance of the new type. 
This migration is modelled by means of the modification of the instance_of 
relationship and the transformation of the internal state. An instance of a type 
that has been updated (i.e. S1 is an instance_of the type OldType¸ which will 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

340 

becomes NewType) is transformed to an instance of another type (i.e. in the 
right hand part of the rule R6, S1 is now an instance_of the type NewType). 
This results in that the internal state of the instance (i.e. the State element 
inside the S1 instance, in the left hand part of the rule R6) is transformed to 
another (i.e. f(State), in the right hand part of R6), by means of a state 
migration function. This function is modelled as f() and defines the mappings 
from the old data structures to the new ones.  

 
Figure 8.11. Rule R37 - ReplaceAE 

There are two conditions to enable the state migration of instances: (i) the 
accessibility of their internal state, and (ii) the availability of a state migration 
function. On the one hand, if the old component type does not make 
accessible somehow the internal state of its instances, obviously we cannot 
migrate their state. For this reason, one of the conditions is that the old type 
provides a mechanism to get the internal state of its instances at runtime: this 
can be achieved by means of reflection, or by specialized functions that return 
the internal state to authorized requests (e.g. the migration function of a new 
version of the same type). This condition is explicitly included in the rule R6: 
the State of S1 is visible, at least in the context of the rule. However, the rule 
does not reflect to whom it is accessible. It will depend on the specific 
implementation. 

On the other hand, the new component type must provide a function to 
create new instances from the data structures of a previous type version. 
Otherwise, the state of an old instance could not be introduced into a new 
instance. The implementation of this function can be provided by means of a 
specialized constructor of the new type version which creates a new instance 
from the state of an instance of the previous type version. This condition is 
also explicitly included in the rule R6: NewType provides a function f, which 
results in the transformation of the original state of S1 after the execution of 
the rule. The specific details for the creation of state migration functions are 



8.3 EVOLUTION SEMANTICS 

341 

outside the scope of this paper. This rule only models the presence of such 
functions and what is the result obtained after the execution of the rule. If a 
state migration function is not provided (or the state of the instance is not 
accessible), then the old state cannot be migrated and is simply lost. However, 
the reader can refer to the works of (Ritzau & Andersson, 2000) or 
(Vandewoude & Berbers, 2005) for further details about how to automate the 
creation of state migration functions.  

Another result of the execution of the ReplaceAE rule is the updating of the 
links of the instance to evolve. The set of instances that are interacting are 
represented by a multiobject called AttachedInstances, and their corresponding 
types by another multiobject, AttachedTypes. Note that, as a result of the 
execution of the type-level updating rule, the interacting types (i.e. 
AttachedTypes) are semantically compatible with the updated type (i.e. 
NewType). As a consequence, their instances (i.e. AttachedInstances) will be also 
semantically compatible (i.e. they could interact correctly) with the instance 
after evolution. The updating of links is modelled by means of the 
modification of instance_of relationships (which link the instance-level with the 
type-level): the attachments (i.e. links among instances) belong to different 
attachment types (i.e. patterns of interaction) before and after the execution of 
the rule. This means that, when the rule is executed, the existing links with 
other instances are deleted and replaced by new ones, but which point to the 
updated instance instead of the old one. Then, all the elements could start 
interacting.  

Finally, note that the rule ReplaceAE is abstract enough to model two kinds of 
update approaches: type substitution and type transformation. One the one hand, 
in type substitution approaches, which has been commonly used in dynamic 
updating approaches (e.g. (Malabarba et al., 2000) (Ritzau & Andersson, 
2000) (Segal & Frieder, 1993)), updating is performed through the replacement 
of instances of the old version by instances of the new version. Old instances 
are completely stopped and their state is migrated to new, updated instances. 
On the other hand, in type transformation approaches, updates are performed 
by the transformation of the internal structure of old type instances to 
accommodate the elements introduced by the new type. From outside, an 
evolved instance keeps the original boundaries, links and state, but also 
integrates the behaviour added by the new type. From inside, only the 
elements that have been affected by the change are modified: their state is 
migrated to new ones, whereas the state of non-changed elements is kept 
intact. Type transformation approaches are better suited to partially change 
large architectural types (e.g. servers), because they do not require stopping the 
entire architectural instance, but only the required parts of the instance.  



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

342 

This is the focus that has been used in our proposal to model recursively the 
evolution of PRISMA Systems. From outside, the evolution of a System is 
perceived as a type substitution: its instances are replaced by new versions 
having their state migrated. However, from inside the evolution is performed 
as a type transformation: the differences among the new type specification and 
the current specification are used to incrementally change the original 
instances, by means of a set of evolution operations. This strategy can be 
recursively applied, until (i) the decomposition of a type is not advisable (i.e. 
more than the 60% of type structures are going to be changed), or (ii) the 
internal composition is neither available or modifiable (e.g. COTS).  

8.3.3.2 Graph-based Abstract Syntax  

The architecture-based transformation rules presented in the previous section 
are formalised by mapping them to a graph-based abstract syntax. In this way, 
transformation rules can be introduced and executed in a graph 
transformation tool, such as AGG (AGG, 2010), to simulate and validate 
their execution. This will also allow us to analyze some properties and 
dependencies from a high abstraction level (e.g. interaction dependencies, 
instance-level implications, etc.).  

To do this, the first step is the definition of a type graph, which describes the 
domain of a system and the terms that can be used to define the 
transformation rules. 

Definition of the Type Graph 

A type graph defines the concepts and relations of a specific domain: it 
represents a metamodel. Instances of this metamodel are called instance graphs. 
They represent the runtime states of a system and are subject to modification 
by transformation rules. Given a valid instance graph and a rule, the rule 
could be applied to the graph to produce a new graph. If this graph satisfies 
the constraints of the type graph (i.e. the metamodel), then it constitutes the 
successor state in the runtime model of the system. Note that elements of type 
graphs are not types in the architectural sense, but metamodel elements.  

To model the evolution of both types and instances, an instance graph must 
include not only instances (e.g. composite instances: Configurations), but also 
the types that provide the behaviour of these instances (e.g. composite types: 
Systems). Therefore, a type graph must describe the ontological metamodel 
(Atkinson & Kuhne, 2003) of the concepts that are going to be subject to 
evolution. That is, the type graph must describe both the meta-types (i.e. the 
properties and relations among types) and the meta-instances (i.e. the 
properties and relations among instances). In addition, this type graph should 



8.3 EVOLUTION SEMANTICS 

343 

also include the concepts required to describe how the concepts evolve over 
time: the evolution tags.  

Figure 8.12 shows the type graph that includes the concepts of the PRISMA 
metamodel and the concepts related to the evolution of types and instances. 
The ArchitecturalElement concept represents simple architectural elements (i.e. 
not composites), which provide or request services through a set of Ports (see 
the Port concept in the metamodel). The System concept represents composite 
components: they are composed of several architectural elements (AEType), 
which are connected by means of attachments (AttachmentType) and/or 
bindings (BindingType). Since a System is also an architectural element (e.g. it 
has ports), it inherits its behaviour from the ArchitecturalElement concept. 
The AEType concept provides an alias for an architectural element that is 
imported into a System and the allowed cardinality in such System. 

There are three kinds of evolution tags: Added, Removed, and Update. However, 
the latter is only used by stateful entities, i.e. architectural elements. The 
reason is that the update of stateless entities (like attachments, bindings and 
ports) can be reflected by means of a removal tag and an addition tag. In the 
case of stateful entities, this is not enough, since the state must be migrated 
from the old entity to the new one. For this reason, the updated concept has a 
link (called  replaced_by) to the architectural element that is going to replace 
the tagged element. All the evolution tags (see the concept Evol_Tag) have a 
link (see the link pending_evol) to System instances (i.e. Configurations) that 
are pending to be evolved.  

Finally, the metamodel also defines the elements of the instance-level, their 
properties and relationships (see Figure 8.12, meta-instances). This is needed 
because transformation rules will not only change types, but also instances. 
Since a metamodel defines the domain which is subject to changes, then it 
must also include the definition of instances. Note also how the quiescent 
status has been added to the concept AEInstance: this has been done this way 
to reflect when an instance is ready to be evolved. 

 
  



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

344 

Figure 8.12. Type Graph of PRISMA with Evolution Tags 



8.3 EVOLUTION SEMANTICS 

345 

Figure 8.13 illustrates how an instance graph looks like: it includes type-level 
concepts and instance-level concepts. In particular, the type-level concepts 
included in this graph are related to the System Sys, after the type-level 
execution of the evolution process “E0:Sys.v0Sys.v1”: it removes the 
architectural type B and adds the type C (see Figure 8.2, page 324). The 
System Sys is modelled as a graph, and each one of its structural elements 
(ports, architectural types, and connections) are modelled as nodes of this 
graph, according to the type graph described above. For instance, the type A is 
modelled with two graph nodes: (i) an ArchitecturalElement node named 
“Comp_A” which defines the behaviour of the type and which is linked to the 
Port nodes named “PClient” and “PServ”; and (ii) an AEType node named 
“A” which defines the usage restrictions of such type in Sys: a minimum and 
maximum cardinality of 1. Note how the elements that have been affected by 
the evolution process (i.e. the attachment types Att_AB, Att_AC, and the 
architectural elements B, C) have been tagged with removal or addition tags. 
Finally, the instance graph shows some elements of the instance-level (see M0): 
the Configuration C1, which is still conforming to version 0 of Sys.  

This graph is a clear example of the benefits of using an architecture-based 
concrete description instead of a graph-based abstract description to describe 
the evolution semantics. An architecture-based description of a system (e.g. see 
Figure 8.2, page 324) is more concise than a graph-based abstract description. 
However, the former cannot be automatically validated and/or formally 
analysed to detect inconsistencies. 

Once the type graph describing the metamodel subject to evolution has been 
defined, then graph transformations can be defined. Next it is shown how an 
architecture-based evolution rule, CreateArchitecturalElement, has been mapped 
to a graph-based abstract description. 

 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

346 

 

Figure 8.13. Instance graph of the Sys type (at version 1) 
 with the C1 instance (at version 0) 



8.3 EVOLUTION SEMANTICS 

347 

Mapping of an evolution rule: CreateAE 

An example of the mapping of an evolution rule to a graph transformation 
rule is shown in Figure 8.14. This figure shows how the evolution rule 
CreateArchitecturalElement (see Figure 8.7, page 332) has been modelled in 
AGG. The execution of this rule (which has been renamed as CreateAE) 
requires three input parameters: configName, the name of the Configuration 
where a new instance is going to be created; typeToInstantiate, the name of the 
type to instantiate; and newID, the identifier of the new instance to create.  

 

 
Figure 8.14. CreateAE: mapping of rule CreateAE in the AGG tool 

The left-hand side of the rule describes the initial matching (see Figure 8.14, 
center) required to execute the rule. The instance graph must contain a 
Configuration node whose attribute “name” equals to configName. This node 
must be linked to a System node (by an instance-of relationship), which in turn 
is linked to an AEType node with an attribute “name”=typeTo Instantiate. This 
checks that the type to instantiate is declared in the Configuration type (i.e. 
the System node sysName linked to the Configuration). The right-hand side of 
the rule describes the result of the transformation rule: a new AEInstance 
node, whose attribute “ID” is newID, has been created and linked to the 
selected Configuration node (i.e. 2:Configuration). In order to reflect the fact 
that the new instance is in a quiescent status, it is also linked to a Quiescent 
node.  

The complex conditions defined by the rule CreateArchitecturalElement (see 
Figure 8.7) have been modelled by a set of NACs (Negative Application 
Conditions) and attribute conditions (see Figure 8.14, left). These conditions 
allow the execution of a graph transformation rule only if: (i) none of the 
defined NACs matches with the instance graph, and (ii) all of the attribute 
conditions are true. Here is described how these conditions have been 
modelled in AGG. 

 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

348 

   

NAC1: NotRemovedYet NAC2: NotExistingInstance NAC3: NotAddedLater 

Figure 8.15. NACs of the graph transformation rule CreateAE  

(i) If typeToInstantiate has been removed from the System type (i.e. it has been 
tagged for deletion), it must have been removed in a System version greater 
than the current Configuration version. This is checked by a NAC and an 
attribute condition. NAC1 (see Figure 8.15) checks if the type to instantiate 
(i.e. the node 3:AEType) is tagged for deletion (i.e. it is linked to a Removed 
node). If true, the variable var_removed will contain this tag version number; 
otherwise (the type has not been deleted yet), it will contain the value -1. This 
variable is compared with the current Configuration version (see the first 
attribute condition in Figure 8.16), checking that it is greater. If it is evaluated 
to false, then the rule CreateAE cannot be executed. 

(ii) The identifier of the new instance, newID, must not have been used 
previously. This is checked by NAC2 (see Figure 8.15): if the selected 
configuration (i.e. the node 2:Configuration) is linked to an AEInstance node 
with an ID=newID, then the NAC condition is true and the rule CreateAE 
cannot be executed. 

(iii) If typeToInstantiate has been added at runtime (i.e. it is tagged with an 
addition tag), it must have been added in a System version less than the 
current Configuration version. This is similarly checked as with the removal 
case. See NAC3 in Figure 8.15 and the second attribute condition in Figure 
8.16. 

(iv) The number of existing typeToInstantiate instances in the Configuration 
must be lower than the maximum cardinality defined in the System type. This 
is checked with the help of an auxiliary node, TypePopulation (see Figure 
8.14), which keeps the number of instances (attribute population) of a type 
(attribute typeName) that have been instantiated in the Configuration it is 
linked to. Then, an attribute condition (see the third attribute condition in 
Figure 8.16) checks that the population, p, of the selected TypePopulation 



8.3 EVOLUTION SEMANTICS 

349 

node (i.e. this which attribute typeName equals to the type to instantiate, 
typeToInstantiate) is less than the maximum cardinality, maxC, of the selected 
AEType node. 

 

Figure 8.16. Attribute conditions of the graph transformation rule CreateAE  

In a similar way, the other architecture-based evolution rules are mapped to 
graph-based transformation rules. However, due to the high number of 
evolution rules involved, only the most representative ones have been mapped 
to graph-based rules. The simulation and analysis of the graph-based 
transformation rules has been left as a future work.   

8.3.4 Discussion 

This approach captures the dynamic evolution process at a very high level of 
abstraction, as a sequence of gradual, asynchronous changes on both the type 
and instance levels. Typed graph transformations have been chosen to 
describe the evolution semantics because they naturally model both the system 
itself (as a graph of types and configurations) and the asynchronous nature of 
its evolution (by the individual application of rules without global control). As 
opposed to logic-based formalisations or process calculi approaches (Canal et 
al., 1999), (Cuesta et al., 2004), the use of graphs allows us to represent the 
system and its runtime state at a high level of abstraction. The direct mapping 
between graphs and visual models resembles that between UML diagrams and 
their metamodel-based abstract representations. It has been shown that graph 
transformations allow us to describe precisely and concisely the principles and 
mechanisms of dynamic evolution: (i) how, in presence of change, will the 
involved type and instances react, and (ii) how will their interactions with 
other elements be managed. 

However, the details of how the quiescence status is achieved by instances 
have been explicitly excluded from the graph-based model. The reason is that 
this would require modelling also the instance execution model: to describe 
the safe stopping of running transactions and the blocking of new service 
requests, the model should also include how instances process and execute 
service requests. This would add excessive complexity on the evolution model, 
thus eliminating the benefits of a concise description. We have decided to 
simply model quiescence as an attribute of an instance, which describes when 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

350 

this status is reached. The concrete semantics have been left to the 
infrastructure (i.e. the middleware). 

Another aspect that has been omitted from the transformation rules is the 
evaluation of semantic compatibility among ports. It has been modelled in the 
rules as a function, but this function has not been detailed. The 
implementation of mechanisms to establish compatibility among types has 
been left as a future work. 

As a result of introducing the architecture-based transformation rules in 
AGG, some limitations have been found concerning the use of advanced 
concepts, such as complex application conditions or multi-objects. These 
advanced concepts have been used to describe complex rule preconditions 
(e.g. that the cardinality of a given architectural type is preserved when 
creating new instances) or to describe operations on sets of nodes (e.g. 
quiescing all the instances of a given type, or preserving the existing 
interactions of a given instance). However, the modelling of these advanced 
concepts is still not supported in AGG, so different ways of overcoming these 
limitations have been addressed (e.g. by using the Java interface provided by 
AGG or by assuming that a single node models a multi-object). The 
limitations found are the following: (i) complex application conditions with 
nested if-then-else conditions or that operate on sets of nodes, cannot be 
defined (this must be done in Java through the use of the internal API); (ii) 
multi-objects cannot be modelled, rules can only operate on a set of nodes 
which their exact number is known in advance (we cannot define universally 
quantified operations); (iii) rules that invoke other rules and provides some 
parameters, cannot be directly modelled (it requires the usage of auxiliary 
nodes to pass information among rules); and (iv) the definition of composite 
rules, which would allow the reuse of rules and the management of different 
levels of abstraction, is not currently supported.  

8.4 Conclusions & further works 

This chapter has introduced the semantics of the asynchronous evolution of 
types in the context of software architecture. This is an important feature for 
the design and development of large systems with a long-time usage, since it 
allows the introduction of concurrent changes at runtime without waiting to 
sequence all changes, which would delay the introduction of needed 
capabilities or problem fixes. This section summarizes the contributions of 
this chapter, the remaining works, and the related publications. 



8.4 CONCLUSIONS & FURTHER WORKS 

351 

8.4.1 Conclusions 

This work has been focused on the dynamic evolution of the structural view of 
systems (i.e. the architecture of their composites). This has been addressed 
from a white-box perspective: the internal structure of composite instances is 
evolved gradually, by adding or removing its elements at runtime, 
connecting/disconnecting them, etc. From a black box perspective, this is 
perceived as a replacement of the entire architecture and the migration of 
their state. However, internally only some parts have been changed, while 
keeping the state of the other elements.  

The evolution semantics described allows the concurrent, but ordered, 
dynamic evolution of both the type and its instances. The evolution is 
concurrent because both the type and its instances evolve asynchronously, 
independently of each other. But the evolution is also ordered because 
instances evolve towards the last updated version of the type, while preserving 
the order in which different evolution processes (i.e. those that create new 
type versions) were introduced. Version management is carried out by means 
of evolution tags, which allow keeping evolution traceability, so that each 
instance can follow the evolution of its type across the time. Thus, although a 
type would evolve several times, at the end each instance would converge to 
the last version of the evolved type.  

8.4.2 Further works 

Substantial research remains to be done, such as the definition of a fully 
distributed and decentralized asynchronous evolution model. The model 
presented is decentralized at the instance-level. Each instance evolves at 
different times, without require being located at the same node where the 
evolution started. However, the model relies on a centralized type which 
receives the evolution requests and propagates the changes to its (distributed) 
instances. In a fully decentralized model, a type may also be distributed among 
different nodes. In this case, when an evolutionary change is requested on a 
type, it should be propagated properly to the other nodes. Then, some issues 
arise like: (i) how to keep (distributed) type specifications synchronized; (ii) 
how to manage concurrent type evolution requests and avoid type version 
branching. These issues are similar to those dealt in versioning management 
approaches (De Lucia et al., 2009), (Thao et al., 2008).  

In addition, there are issues that have not been included in the 
transformation rules, such as the management of runtime faults. Since rules 
only describe preconditions and postconditions of actions, they cannot model 
what happens in the middle of such actions. For instance, if an evolution 
operation cannot be finished for any reason, then the changes must be 



CHAPTER 8. DESCRIPTION OF THE EVOLUTION SEMANTICS 

352 

undone. The transactional management of evolutions have been considered 
in the implementation of the evolution infrastructure (see page 306), but not 
in the graph-based modelling. This has been left as a future work.  

8.4.3 Results 

The work related to the description of the asynchronous evolution semantics 
of architectural types has been presented in the following papers: 

- Costa-Soria C., Heckel R. Modelling the Asynchronous Dynamic Evolution of 
Architectural Types. In Weyns, D.; Malek, S.; De Lemos, R.; Andersson, J. 
(eds.): Self-Organizing Architectures (Revised and extended papers). Lecture 
Notes on Computer Science, vol. 6090, pp. 198-229. Springer-Verlag, 
Berlin Heidelberg, July 2010.  

- Costa-Soria C., Heckel R. Formalizing the Asynchronous Evolution of 
Architecture Patterns. In proc. of: Workshop on Self-Organizing 
Architectures (SOAR‟09), held at the Working IEEE/IFIP Conference on 
Software Architecture (WICSA‟09) and European Conference on Software 
Architecture (ECSA‟09). Cambridge, UK, 14th September 2009. 

 



 

353 

Part IV: Conclusions & Further Work 

 

 

 

PART IV 

CONCLUSIONS  
&  

FURTHER WORK 

 

 

 

 





  

355 

Chapter 9. Conclusions 

 

CHAPTER IX 

CONCLUSIONS 
 

This chapter presents a summary of the contributions of the thesis, the 
evaluation of the approach, and the evaluation of the research method in 
section 9.1. The chapter also presents the results of the thesis in section 9.2. 
This chapter also presents future work that can be done to continue this 
research in section 9.3. 

9.1 Conclusions 

 software system, during its lifetime, may require several updates, 
improvements, or new features. If these change requirements are not 
conveniently addressed, then the risk that the software system ages 

prematurely increases (Parnas, 1994). As a result of this aging, the system may 
become useless, due to its inability to meet the functionality, performance or 
stability needs of its users. For this reason, from the early conception of a 
software system, software evolution must be borne in mind. Software 
evolution acquires even more importance in the case of safety- and mission-
critical software systems, which cannot be stopped to perform maintenance or 
evolution operations due to their continuous operation. To reduce the aging 
of these critical systems, they must be provided with mechanisms enabling 
their dynamic evolution, i.e. supporting changes while they remain in operation. 

Dynamic Evolution is a feature which, despite having acquired a lot of 
attention during the last decade, is still interesting to the research community. 
This has been motivated by the increasing scope and requirements of dynamic 
evolution: from the initial objective of changing a single procedure at runtime, 
to the long-term goal of building complete self-managed software systems.  

A 



CHAPTER 9. CONCLUSIONS 

356 

This section is structured as follows. Section 9.1.1 summarizes the 
contributions of this work. Next, section 9.1.2 presents the evaluation of the 
approach, according to the criteria presented in Chapter 4. Finally, section 
9.1.3 evaluates to which extent the goals of the thesis have been satisfied and 
how the research has been conducted. 

9.1.1 Contributions 

This thesis takes another step forward in the development of dynamic 
evolvable systems. Starting from existing results (e.g. safe stopping strategies, 
state migration, code generation, reflective models, etc.), this thesis has 
provided new contributions to the area. We would like to emphasize the 
following contributions: (i) the combination of dynamic reconfiguration and 
type evolution, (ii) the encapsulation of evolution and reconfiguration 
concerns into aspects, and (iii) a model for autonomic reconfiguration and 
asynchronous evolution of types. These contributions, and other results of the 
thesis, are briefly described next. 

A dynamic architecture-based approach 

This thesis presents a framework to build architecture-based, dynamically 
evolvable, software systems. The fact that this framework is an architecture-
based approach provides the following advantages: (i) it offers a high-level of 
abstraction for describing dynamic changes; (ii) it allows varying the level of 
system description; and (iii) it advantages from the existing support provided 
by architecture description languages, such as modelling, code-generation, and 
formal analysis. This framework uses generic architectural terms so that it can 
be applied to any architecture description language.  

In particular, this framework has been applied to the PRISMA architecture 
description language, a language that does not support the description of 
software systems with dynamic evolution requirements, but that provides 
support for: (i) the structural and behavioural modelling of aspect-oriented 
software architectures and, (ii) the automatic generation of executable code. 
The result is Dynamic PRISMA, an extension of the PRISMA model which 
provides dynamic evolution support. 

Integration of dynamic reconfiguration 
 and dynamic type evolution 

The main contribution of Dynamic PRISMA is the combination of two levels 
of dynamism: Dynamic Reconfiguration, addressing changes at the configuration 
level (i.e. the architectural configuration), and Dynamic Type Evolution, 
addressing changes at the type-level (i.e. the specification of architectural types 



9.1 CONCLUSIONS 

357 

and instances). Therefore, in Dynamic PRISMA a software system is not only 
able to reconfigure at runtime the building blocks it is composed of (i.e. 
architectural types), but also to redefine these building blocks (or introduce 
new ones) at runtime. This provides software systems with a high level of 
plasticity and flexibility.  

Plasticity is provided by means of dynamic reconfiguration. In Dynamic 
PRISMA, this is related to changes on the structure of a specific composite 
instance46 maintaining the conformance to its composite type pattern. Thus, a 
composite instance has a degree of plasticity in the sense that it tolerates 
changes on its structure without breaking the design decisions defined by its 
composite type.  

Flexibility is provided by means of dynamic type evolution, which in Dynamic 
PRISMA concerns to changes on the specification of an architectural type 
(either simple or composite) and the propagation to its instances. Thus, an 
architectural type is flexible in the sense that it can be redefined at runtime to 
meet new, unforeseen requirements. 

A model for autonomic reconfiguration  
and asynchronous type evolution 

Another contribution of the thesis is how the two levels of dynamism have 
been supported in the framework. On the one hand, dynamic reconfiguration 
is supported by means of autonomic capabilities, which enable each composite 
instance to reconfigure its structure at runtime according to either internal or 
external stimuli. This reconfiguration can be either reactive (i.e. externally-
driven) or proactive (i.e. internally-driven). On the other hand, dynamic type 
evolution is supported by means of asynchronous reflection, which enables a 
system to change the definition of its architectural types at runtime (both their 
specification and executable code), while allowing each type instantiation to 
delay its transformation until it is ready for evolution.  

Both levels of dynamism are provided with consistency management support to 
preserve the integrity of the system before and after a dynamic change. This 
support is provided through the integration of: (i) safe stopping mechanisms, 
which guarantee that the artefacts to be evolved are placed in a safe state; (ii) 
state transfer mechanisms, which allow software artefacts to preserve their 
state among updatings; and (iii) transactional support, which allows a system 
to revert dynamic changes if anything fails.  

                                                      
46 Note that dynamic reconfiguration only concerns to changes on composite elements. 
Simple elements do not describe architectures and because of that, their change is 
expressed as type evolutions, not dynamic reconfigurations. 



CHAPTER 9. CONCLUSIONS 

358 

Encapsulation of evolution and  
reconfiguration concerns into aspects 

A third contribution of this thesis is the identification of the concerns related 
to evolution and their integration in the framework through aspects. This 
improves the separation of concerns and allows us to change proactive 
reconfiguration specifications, evolution mechanisms, or the business logic 
independently of each other. This separation is possible because the 
dependencies among concerns (i.e. weavings) are made explicit, separately 
managed, and thus easy to be found in the system specification.  

Validation of the evolution semantics in .NET 

Dynamic PRISMA has been validated through its implementation in .NET to 
allow its integration with the existing tools of PRISMA, which are also 
implemented in .NET. The PRISMANET middleware has been extended to 
support the dynamic reconfiguration and evolution of architectural types and 
instances. In addition, the execution model of component instances has been 
modified to integrate the supporting mechanisms for safe stopping, state 
transfer, and transactional evolution. All the management of this functionality 
has been encapsulated into aspects, according to the framework.  

Thus, Dynamic PRISMA can be integrated in the Model-Driven Development 
process of PRISMA: evolvable PRISMA architectures can be defined through 
the PRISMA Case Tool, their code can be automatically generated, and they 
can be directly executed on the PRISMANET middleware, which supports the 
dynamic evolution and reconfiguration of such architectures.  

However, only the most important details of the implementation (e.g. the 
reification of types, the generation of new code, the updating of instances, 
etc.) have been included in this thesis for space reasons. Further 
implementation details can be found in the Ms. Science thesis that have been 
developed in the context of this thesis and that have been supervised by the 
author: (Aliaga-Varea, 2008), (Hervás-Muñoz, 2009).  

Validation of the evolution semantics 
 through graph transformations 

However, since the executable code cannot be directly used to disseminate the 
results across the research community and may be still subject to unforeseen 
failures (because it does not support precise analysis and validation), Dynamic 
PRISMA has been also validated by means of a high-level formalism. 
Specifically, the semantics of evolution has been precisely described by means 
of typed graph transformations.  



9.1 CONCLUSIONS 

359 

This formalism has been chosen because it naturally models both, the system 
architecture and the asynchronous nature of its evolution. This has been 
realized by describing the observed behaviour of evolution services (both at 
the type-level and at the instance-level), and by using an architecture-based 
concrete syntax, which is more concise and easier to understand than the 
graph-based abstract syntax. This has facilitated the identification and 
resolution of some issues related to asynchronous evolution, such as the 
management of type conformance, the order of evolution processes or the 
coherence of interactions. 

Application to the domain of autonomous robotics 

All the contributions of this thesis have been illustrated through a case study 
from the domain of autonomous robotics, an area which could potentially 
benefit from the results of this thesis. In particular, an autonomous 
agricultural robot for plague control, called Agrobot, has been presented. The 
software architecture of this robot has been specified in PRISMA, focusing on 
the vision system and its dynamic evolution requirements. To achieve these 
evolution requirements, Dynamic PRISMA has been used to provide the 
ability to introduce new behaviour at runtime (by replacing aspects through 
type evolutions) and reconfiguring the structure at runtime (by changing 
components through dynamic reconfigurations). This has provided the 
Agrobot with tools to deal with changing environments at runtime, both 
foreseen and unforeseen. This could be promising for the design and 
development of the robots of the future. 

9.1.2 Evaluation of the approach 

This section presents a qualitative evaluation of the proposed approach, 
Dynamic PRISMA, and how it compares to other approaches from the 
literature. This evaluation is performed by means of the list of criteria used in 
Chapter 4 for comparing related works: degree of formality, level of dynamism, 
activeness, separation of concerns, evolution management, introspection support, types 
of change, and consistency management.  

Degree of formality  

Dynamic PRISMA defines a formal architecture description language (i.e. an 
ADL) supporting dynamic reconfiguration and type evolution. It is defined as 
an extension of the PRISMA ADL (Pérez, 2006), a formal ADL47 that does 

                                                      
47 The PRISMA Aspect-Oriented Architecte Description Language (AOADL) is based 
on a modal logic of actions for describing services (Stirling, 1992), and π-calculus with 



CHAPTER 9. CONCLUSIONS 

360 

not support the specification of evolvable systems but which allows the precise 
description of both the structure and behaviour of architectural models. As a 
result, Dynamic PRISMA increases the expressiveness of the PRISMA 
language, enabling the precise description of dynamic, reconfigurable, and 
evolvable, architectural models.  

The semantics of dynamic reconfiguration and type evolution has been 
entirely specified by using the PRISMA ADL language, thus achieving a high 
level of precision in describing the operation of the underlying 
reconfiguration and type evolution mechanisms. In addition, the semantics of 
asynchronous type evolution has been described in terms of typed graph 
transformations, motivated by their expressiveness to describe how models 
evolve over time and their formal backgrounds. The reason behind this 
formalisation, both in PRISMA ADL and in typed graph transformations, is 
twofold. First, this formalisation allows appreciating the complexity of the 
processes without being lost in the details, and helps disseminating the 
semantics of these evolution processes. Second, this formalisation allows the 
analysis and verification of the properties of evolution processes, such as 
liveness (e.g. a component will always reach a quiescent state, an evolution 
transaction always ends) or safety (e.g. only quiesced components are changed, 
a component cannot be removed if another is still interacting with it). 
However, the analysis and verification of the semantics of evolution has been 
left as a future work. 

The formal basis of Dynamic PRISMA advantages non-formal approaches in 
that it enables the automatic generation of code after evolutions, the 
realization of behavioural analyses (e.g. to automatically generate state transfer 
functions or to evaluate semantic compatibility among types on replacements), 
or the verification of system properties regarding changes (e.g. that a certain 
component will not be removed anytime due to reconfigurations, or that a 
type may be instantiated in the system lifetime). These features are manually 
done in non-formal approaches, being complex to perform (e.g. verification of 
system properties). The advantage of using a specification language with a 
formal background is that the structure and behaviour of the software system 
are precisely described, so automatic analyses can be performed to alleviate the 
architect or developer from some tasks. These advanced features have been 
left as potential future work (see sections 9.3.1 and 9.3.5 later in this chapter). 

                                                                                                                             
priorities for describing interactions among services (Milner, 1993). See section 2.4 
(page 49) for more details.  



9.1 CONCLUSIONS 

361 

Level of dynamism 

This attribute refers to the kind of changes that can be done in a running 
system: dynamic reconfiguration, changes in the organisation of the building 
blocks of a system; and dynamic type evolution, changes in the structural and 
behavioural specifications of the building blocks of a system. Most of existing 
works have only considered one degree of dynamism, but not both: either 
dynamic reconfiguration in the area of Software Architectures, or dynamic 
type updating in the area of Component-Based Software Development.  

Dynamic PRISMA features the integration of both levels of dynamism. This is 
done by following an autonomic approach to support changes at the instance-
level (both for reconfigurations and instance-level type evolutions), and a 
reflective approach for communicating with the type-level. Dynamic PRISMA 
advantages other works in the way it combines both kinds of changes. It 
addresses architecture reconfiguration and architectural type evolution in a 
great detail, covering not only the specification of changes but also the 
underlying mechanisms involved. Regarding the area of self-managed systems, 
Dynamic PRISMA is the first that combines reconfiguration and type 
evolution. 

Activeness 

This attribute refers to the way that dynamic changes can be initiated or 
driven: reactively (externally introduced at runtime), proactively (internally 
initiated by the system), or both.  

Dynamic PRISMA supports both kinds of activeness, for both dynamic 
reconfiguration and dynamic type evolution.  This has been done through the 
definition of a common set of lower-level services supporting dynamic change 
(i.e. those encapsulated in the Monitoring and Effector aspects) and their 
coordination at a more abstract level through the different Planning aspects. 
Thus, reactive and proactive changes are driven by means of these common 
interfaces, although in different ways: ports for reactive changes, and the 
Analysis aspect for proactive changes. 

This brings Dynamic PRISMA with expressiveness to build self-managed 
systems (which make extensive use of proactive changes) that are flexible 
enough to be extended with unanticipated changes at runtime (by means of 
reactive changes). Regarding the current state-of-the-art, most approaches 
provide support for both proactive and reactive changes, but only for dynamic 
reconfiguration. Dynamic PRISMA contributes to the area by supporting the 
the description of both proactive and reactive changes for both dynamic 
reconfiguration and type evolution. As further work, it remains the support 
for proactive non-programmed evolutions. 



CHAPTER 9. CONCLUSIONS 

362 

Separation of evolution concerns 

This refers to whether the evolution concerns are explicitly separated from 
other concerns or not. And, in the case of proactive systems, whether 
evolution specifications are separated from the supporting mechanisms or not. 

This has been one of the main goals behind the research concerning Dynamic 
PRISMA: the identification and isolation of the evolution concerns. As a 
result of this research, the concerns related to reconfiguration and type 
evolution have been identified and decomposed into several aspects, 
addressing diferent facets of the evolution process at the type-level and the 
instance-level: an aspect for introspecting the type, another dealing with the 
monitoring of an instance, another dealing with the generation of the evolved 
type, another dealing with the transformation of an instance, etc.  

This separation helps to understand the complex processes that are behind 
dynamic change, and to identify (and reduce) the dependencies among the 
different processes. As a result, this helped in the implementation of the 
executable infrastructure as well as in the maintenance of the change 
specifications. In the literature, any work has addressed this level of 
decomposition of concerns in the description of dynamic changes. 

Evolution management 

With respect to the nature of evolution management (i.e. centralized or 
distributed), Dynamic PRISMA follows a hybrid approach, which varies 
depending on the kind of dynamism (i.e. reconfiguration or type evolution). 

In case of dynamic type evolution, change requests can be provided by any 
element of the system. In this sense, the approach is distributed, because any 
software artefact can act as an evolving agent. These change requests are 
provided to the target type by means of reflection mechanisms, which are 
available from any point of the system. In addition, since type evolutions are 
performed by each type independently of the others, and by their respective 
instances, the management of type evolutions are also distributed. 

In case of dynamic reconfiguration, change requests can be generated by the 
Evolver component of a composite component (i.e. proactive 
reconfigurations), or received from external sources (i.e. reactive 
reconfigurations). In both cases, the management of reconfigurations are 
performed by the Evolver of each composite component. In this sense, the 
approach is hierarchically distributed: each composite component 
reconfigures itself proactively and may induce changes in its internal 
components by means of reactive changes. 



9.1 CONCLUSIONS 

363 

The distributed management achieved by Dynamic PRISMA aligns with the 
growing interest on the scalability issues of self-managed systems. However, 
due to space reasons, the distributed management of type evolutions and 
reconfigurations have not been described in detail in this thesis. This has been 
left to be covered in future publications. 

Introspection 

This attribute describes the degree of self-awareness that a system is provided 
with. With the aim of supporting proactive changes (both programmed and 
non-programmed), Dynamic PRISMA has been developed taking into account 
that an evolvable system must be aware of its structure and state.  

Dynamic PRISMA provides different levels of introspection: at the 
architectural level, which is useful for proactive dynamic reconfigurations, and 
at the type level, which is useful for proactive dynamic type evolutions. At the 
architectural level, each composite instance can be aware of its internal 
composition (in terms of components, connectors and attachments), its 
provided and required services (in terms of ports and bindings), and its 
internal status. At the type level, each type also provides introspection services 
to obtain more details about its specification, which varies depending it is a 
composite type or a simple type. The difference among introspection at the 
type level and introspection at the architectural level is that the latter provides 
state information.  

In comparison to state-of-the-art approaches, the introspection facilities 
provided by Dynamic PRISMA advantage in that they are type-oriented rather 
than system-oriented. Introspection is not provided to all the types of the 
system, but only to those types which are evolvable. And, since introspection 
is provided through service interfaces, the architect can customize which kind 
of introspection services will be available or not, to avoid exposing outside the 
internal structure and state of certain elements of the architecture. This is 
another contribution of this work that has not been considered in the 
literature until now.  

Types of change 

This attribute refers to the kinds of operations that can be performed to 
change software artefacts at runtime. In the literature, five operations have 
been identified: additions, removals, updates, linkings and unlinkings.  

Dynamic PRISMA supports the five evolution operations. However, since 
Dynamic PRISMA operates at two levels of dynamism (i.e. dynamic 
reconfiguration and type evolution), these evolution operations are actually 10 
in total: 5 that apply at the configuration level, and 5 that apply at the type 



CHAPTER 9. CONCLUSIONS 

364 

level. Depending on the context of execution, these evolution operations have 
a different meaning: (1) additions, to add at runtime new architectural 
instances (by means of dynamic reconfiguration), or new types (by means of 
dynamic type evolution); (2) removals, to remove at runtime architectural 
instances (at the configuration level), types or parts of a type (both at the type 
level, by means of type evolution); (3) updates, to replace architectural 
instances or update types (or parts of a type); (4) linkings, to create links among 
architectural instances (by means of dynamic reconfiguration), 
communication patterns among architectural types, or relationships among 
the parts of a type (both by means of dynamic type evolution); and (5) 
unlinkings, to remove links, communication patterns or relationships.  

In addition, a novelty of Dynamic PRISMA is that it introduces an implicit 
new kind of evolution operation: the exclusion operation. For each 
architectural type, both reconfiguration operations and type evolution 
operations can be customized by the architect, by selecting which evolution 
operations are allowed or not. This kind of operation, the exclusion of 
evolution operations, increases the expressiveness of the language. It is 
another contribution of this work that has not been considered in the 
literature (as an evolution operation) until now.  

Consistency management 

This attribute evaluates the presence of mechanisms, or strategies, for 
preserving the consistency of a system before and after a dynamic change. 
Three mechanisms have been considered: state transfer, safe stopping and 
transactional support. Given the importance of these mechanisms for 
preserving system consistency when dealing with dynamic change, the three 
mechanisms have been integrated in the semantics of Dynamic PRISMA.  

Support for state transfer has been integrated in a transparent way in the 
semantics of reconfiguration and type evolution. The update/replace 
evolution operations apply state transfer whenever is possible: that is, if the 
source and target types provide the state transfer functions required for 
migrating the state (see page 217). Currently a delegated state transfer approach 
(see page 81) has been followed: the developer must define the state transfer 
functions. The automatic generation of these functions is feasible, but has 
been left as a future work (see section 9.3.5). 

Support for safe stopping and transactional execution has been integrated as part of 
the middleware, since they rely on low-level structures, such as the 
management of service requests, state contexts, and interactions. However, the 
use of such mechanisms has been made explicit in the semantics to correctly 



9.1 CONCLUSIONS 

365 

analyse in which specific situations they are required and how they may 
impact other concurrent processes of the system. 

The explicit integration of state transfer, safe stopping and transactional 
change in the semantics of dynamic reconfiguration and type evolution is 
another of the contributions of Dynamic PRISMA. In the literature, very few 
works have integrated these consistency mechanisms together in the evolution 
processes.  

 

Among the different criteria evaluated, Dynamic PRISMA is the only one that 
enables the specification of architectural models supporting both dynamic 
reconfiguration and dynamic type evolution, either reactively, proactively or 
both, enabling the full range of change operations (additions, removals, 
updates, linkings, unlinkings, and exclusions), introspection features, and 
integrating mechanisms to guarantee the consistency of the system before and 
after dynamic changes (state transfer, safe stopping, and transactional 
changes). The approach integrates all of these features while clearly isolating 
the concerns related to reconfiguration and evolution from the other 
concerns, thus improving the reuse and maintenance of the evolution-related 
concerns. 

9.1.3 Evaluation of the research 

This section evaluates to which extent the original requirements of the thesis 
have been satisfied and evaluates how the research has been performed. 

On the whole, the main goal of the thesis described in section 1.2 “Overall 
Aim and Objectives” has been achieved: a framework has been designed that 
enables the specification and development of architecture-based software 
systems capable of changing at runtime their structure (i.e. the architecture) 
and behaviour (i.e. the types). This thesis has described the specification 
language for describing such systems as well as the supporting mechanisms for 
developing such systems.  

This goal has been achieved by addressing the different objectives stated in 
section 1.2: (1) the identification of the design strategies and mechanisms 
enabling dynamic change and their integration in the underlying semantics of 
the approach; (2) the combination of the two levels of dynamism, by 
identifying the mechanisms that they have in common; (3) the definition of a 
set of language constructs and evolution services to describe reconfiguration 
plans and type evolution requests at a high-abstraction level, which internally 
use the previously identified mechanisms for dynamic change; (4) the 
identification and isolation of the evolution concerns into different aspects; 



CHAPTER 9. CONCLUSIONS 

366 

and (5) separation of user-defined behaviour and automatically generated 
behaviour, to enable its integration in a MDD approach. 

Regarding the research methodology used to produce the results, and as 
explained in section 1.3 (see page 30), a method consistent with the principles 
of design science has been followed. Next, the results of this work are 
evaluated through the lens of the design-science guidelines presented by 
Hevner et al. (Hevner et al., 2004).  

The design artefact that has been the subject of study in this work, as stated in 
the objectives, is Dynamic PRISMA: a framework to support dynamic 
reconfiguration and type evolution. 

 Problem relevance. The amount of interest and research related to 
dynamic change issues from the areas of software architectures, 
autonomic computing, dynamic product lines, self-managed systems, 
and self-adaptive systems, testifies the relevance of the work. The areas 
of application of the work range from the emerging development of 
autonomous, self-managed systems to the development of mission-
critical and/or highly-available systems with flexible requirements. 

 Research rigour. The work is presented from a technology-
independent perspective, at a level of abstraction that allows 
appreciating the complexity of the processes without technical details. 
The semantics of the dynamic type evolution processes have been 
described in terms of typed graph transformations, which provide a 
great conceptual rigour.  

 Design as a search process. The different specification languages, 
techniques, and strategies proposed in the literature have been 
evaluated, looking for the suitability to the problem addressed. As a 
result of this study, several key properties have been identified and 
included in the design of the proposed solution, together with 
innovative, creative properties (such as asynchronous type evolution, 
instance-level transformations, or artefact-oriented evolutions). 

 Design as an artefact. As a result of the research, an artefact has been 
designed. This artefact is Dynamic PRISMA, a framework supporting 
the specification of systems that are dynamically reconfigurable and 
evolvable. It describes the reconfiguration and type evolution 
processes supporting these systems. It has been instantiated to 
evaluate its feasibility and get feedback from its realization: it has been 
implemented in the middleware of PRISMA, PRISMANET. 
However, since the details about this implementation have not been 
included in the thesis, the work presented is weak in this point.  



9.2 RESULTS OF THE PHD 

367 

 Design evaluation. The evaluation of Dynamic PRISMA has been 
performed through the implementation of a case study, the Agrobot 
Vision system. This provided a better understanding of the problem 
and feedback to improve the quality of the framework. However, for 
realistic purposes, the approach should be evaluated in other systems, 
such as non-stopping manufacturing systems, cloud computing 
infrastructures (which are required to be highly available), or highly-
used social digital ecosystems (e.g. what would happen if large web 
ecosystem such as facebook or twitter require to introduce 
reconfigurations or type evolutions?). These are examples of realistic 
systems that could be used to evaluate the approach. 

 Research contributions. As a result of the research work, some 
innovative concepts and techniques have emerged. The contributions 
have been discussed in section 9.1.1 and evaluated in section 9.1.2, so 
they are not described again.  

 Research communication. The results of this research have been 
presented and discussed on distinct peer reviewed forums, which have 
provided valuable feedback to improve the work and disseminate the 
main contributions (see section 9.2). 

9.2 Results of the PhD 

Part of the results presented in thesis have been presented and discussed 
before on distinct peer-reviewed forums, with both international as national 
impact. Overall, the results of this thesis have been published in two 
international journals, two book chapters, ten international conferences and 
workshops, ten national conferences, and two technical reports. 

Table 4 summarizes the most relevant publications. This table only contains 
the publications that have been included in acknowledged rankings, have 
been cited or have been published by relevant editorials. This table includes 
the following information: 

 Ref.: A number that identifies the publication in the list of 
publications. 

 Conference Name: the conference where the paper has been 
accepted,  

 Publisher: the publisher of the conference proceedings,  



CHAPTER 9. CONCLUSIONS 

368 

 Ranking: the ranking of the conference or journal, according to 
CORE48 2009 classification, and  

 Cites: the number of citations to the paper, according to Google 
Scholar49. 

  

 Ref. Conference Name Publisher Ranking Cites 

1) Special Issue Informatica CORE: C In press 

3) SOAR 2010 
Extended papers 

Springer LNCS (1st edition) 1 

4) Book chapter Springer IFIP — 5 

5) WICSA/ECSA 2009 IEEE CORE: A 4 

7) WASELF 2009 Sistedes — 2 

8) ICECCS 2009 IEEE CORE: A 5 

9) CSMR 2009 IEEE CORE: C 2 

10) ECSA 2008 Springer LNCS CORE: A 2 

11) ECSA 2007 Springer LNCS CORE: A 6 

12) CBSE 2007 Springer LNCS CORE: A 6 

14) NET Tech 2005 Union Agency CORE: C 16 

23) JISBD 2005 Thompson — 5 

Table 4. Most relevant publications 

Next, the full list of publications is listed below50. 

International Journals 

1) C. Costa-Soria, J. Pérez, J.A. Carsí. An Aspect-Oriented Approach for 
Supporting Autonomic Reconfiguration of Software Architectures. Special 
Issue on Autonomic and Self-Adaptive Systems, Informatica 
(Slovenia), vol. 35, issue 1, pp. 15-27. February 2011. ISSN 0350-
5596. 

                                                      
48 CORE (COmputing Research Education): http://core.edu.au  
49 http://scholar.google.com (visited 10th February 2011). 
50 Some publications are in Spanish. In these cases, the reference includes the title in 
both Spanish, to locate the publication, and in English, to facilitate its understanding. 

http://core.edu.au/
http://scholar.google.com/


9.2 RESULTS OF THE PHD 

369 

2) N. Ali, J. Pérez, C. Costa, I. Ramos, J.A. Carsí. Replicación distribuida 
en arquitecturas software orientadas a aspectos utilizando ambientes 
(“Distributed Replication in Aspect-Oriented Software Architectures Using 
Ambients‖). IEEE Latin America Transactions, Special Edition 
JISBD‟06, vol. 5, issue 4, pp. 231-237.  IEEE Region 9, July 2007. 
ISSN 1548-0992 (in Spanish) 

Book Chapters 

3) C. Costa-Soria, R. Heckel. Modelling the Asynchronous Dynamic 
Evolution of Architectural Types. Weyns, D.; Malek, S.; De Lemos, R.; 
Andersson, J. (eds.): Self-Organizing Architectures. Lecture Notes on 
Computer Science Series, vol. 6090, pp. 198-229. Springer-Verlag, 
Berlin Heidelberg, July 2010.  

(Revised and Extended best papers from SOAR‘09 Workshop) 

4) N. Ali, J. Pérez, C. Costa, I. Ramos, J.A. Carsí. Mobile Ambients in 
Aspect-Oriented Software Architectures. K. Sacha (ed.): Software 
Engineering Techniques: Design for Quality. IFIP Series, vol. 227, pp. 
37-48. Springer, October 2006.  

International Conferences & Workshops 

5) J. Pérez, J. Díaz, C. Costa-Soria, J. Garbajosa. Plastic Partial 
Components: A Solution to Support Variability in Architectural Components. 
Joint 8th Working IEEE/IFIP Conference on Software Architecture 
& 3rd European Conference on Software Architecture 
(WICSA/ECSA 2009), pp. 221-230. Cambridge, UK, 14-17 
September. IEEE, 2009 

*Conference Ranking CORE‘09: A 

6) C. Costa-Soria, R. Heckel. Formalizing the Asynchronous Evolution of 
Architecture Patterns. Workshop on Self-Organizing Architectures 
(SOAR‟09), held at the Working IEEE/IFIP Conference on Software 
Architecture and European Conference on Software Architecture 
(WICSA/ECSA 2009). Cambridge, UK, 14th September 2009. 

7) C. Costa-Soria, J. Pérez, J.A. Carsí. An Aspect-Oriented Approach for 
Supporting Autonomic Reconfiguration of Software Architectures. 2nd 
Workshop on Autonomic and SELF-adaptive Systems (WASELF‟09). 
San Sebastián, Spain, 8th September 2009.  

8) C. Costa-Soria, D. Hervás-Muñoz, J. Pérez, J.A. Carsí. A Reflective 
Approach for Supporting the Dynamic Evolution of Component Types. 14th 



CHAPTER 9. CONCLUSIONS 

370 

IEEE International Conference on Engineering of Complex 
Computer Systems (ICECCS'09), pp. 301-310. Potsdam, Germany, 2-
4 June 2009.  

*Conference Ranking CORE‘09: A. Ranking CSCR: 0.88 

9) C. Costa-Soria, J. Pérez, J.A. Carsí. Handling the Dynamic 
Reconfiguration of Software Architectures using Aspects. 13th IEEE 
European Conference on Software Maintenance and Reengineering 
(CSMR‟09), pp. 263-266. Kaiserslautern, Germany, 24-27 March 
2009.  

*Conference acceptance ratio: 30%. Ranking CiteSeer: 0.36 (top 59.29%). 
Ranking CORE‘09: C 

10) C. Costa, J. Pérez, J.A. Carsí. Managing Dynamic Evolution of 
Architectural Types. Morrison, R., Balasubramaniam, D., Falkner, K. 
(eds.): 2nd European Conference on Software Architecture 
(ECSA‟08). Lecture Notes on Computer Science, vol. 5292, pp. 281-
289. Springer, Heidelberg, 2008.  

*Conference acceptance ratio: 28%. Ranking CORE‘09: A 

11) C. Costa, N. Ali, J. Pérez, J.A. Carsí, I. Ramos. Dynamic Reconfiguration 
of Software Architectures Through Aspects. Oquendo, F. (ed.): First 
European Conference on Software Architecture (ECSA‟07). Lecture 
Notes on Computer Science, vol. 4758, pp. 279-283. Springer, 
Heidelberg, 2007.  

*Conference acceptance ratio: 30%. Ranking CORE‘09: A 

12) C. Costa, J. Pérez, J.A. Carsí. Dynamic Adaptation of Aspect-Oriented 
Components. H.W. Schmidt, I. Crnkovic, G.T. Heineman, J.A. 
Stafford (eds.): 10th International Symposium on Component-Based 
Software Engineering (CBSE‟07). Lecture Notes on Computer 
Science, vol. 4608, pp. 49-65. Springer, Heidelberg, 2007.  

*Conference acceptance ratio: 22%. Ranking CORE‘09: A 

13) C. Costa, N. Ali, C. Millán, J.A. Carsí. Transparent Mobility of 
Distributed Objects using .NET. 4th International Conference on .NET 
Technologies. Pilsen, Czech Republic, June 2006.  

*Conference Ranking CORE‘09: C (under the acronym C#) 

14) J. Pérez, N. Ali, C. Costa, J.A. Carsí, I. Ramos. Executing Aspect-
Oriented Component-Based Software Architectures on .NET Technology. 3rd 



9.2 RESULTS OF THE PHD 

371 

International Conference on .NET Technologies. Pilsen, Czech 
Republic, June 2005.  

*Conference Ranking CORE‘09: C (under the acronym C#) 

National Conferences & Workshops 

15) C. Costa-Soria, J. Pérez, J.A. Carsí, D. Alonso, F. Ortiz, J.A. Pastor. 
Reconfiguración Dinámica de Arquitecturas Software Aplicada a la 
Tolerancia a Fallos (―Dynamic Reconfiguration of Software Architectures 
Applied to Fault-Tolerance‖). 3rd International Workshop on 
Autonomic and Self-Adaptive Systems (WASELF‟10). Valencia, 
Spain, September 2010 (in Spanish).  

16) C. Costa, J. Pérez, J.A. Carsí. Soporte a la Evolución Dinámica de Tipos 
Arquitectónicos (―Support for the Dynamic Evolution of Architectural 
Types‖). Workshop on Autonomic and Self-Adaptive Systems 
(WASELF‟08). Gijón, Spain, October 2008 (in Spanish).  

17) J. Pérez, C. Costa, J.A. Carsí, I. Ramos. Verificación de Modelos 
Arquitectónicos Orientados a Aspectos (―Verification of Aspect-Oriented 
Architectural Models‖). XII Jornadas de Ingeniería del Software y Bases 
de Datos (JISBD‟07), pp. 167-176. Zaragoza, 11-14 September 2007 
(in Spanish). 

18) J. Pérez, C. Costa, J.A. Carsí, I. Ramos. PRISMA CASE. XII Jornadas 
de Ingeniería del Software y Bases de Datos (JISBD‟07). Zaragoza, 11-
14 September 2007 (Demo, in Spanish). 

19) C. Costa, J. Pérez, J.A. Carsí. Hacia la construcción de arquitecturas 
software dinámicas (―Towards the building of dynamic software 
architectures‖). V Jornadas DYNAMICA, pp. 109-120. Valencia, 23-24 
November, 2006 (in Spanish). 

20) M.E. Cabello, C. Costa, I. Ramos. Arquitectura software orientada a 
aspectos de un sistema experto multirazonamiento para tareas de diagnóstico 
(―Aspect-Oriented Software Architecture of a Multi-Reasonament Expert 
System for Diagnosis Tasks‖). XIX Congreso Nacional y V Congreso 
Internacional de Informática y Computación. Chiapas, México, 
October 2006 (in Spanish). 

21) C. Costa, J. Pérez, J.A. Carsí. Hacia la reconfiguración dinámica de 
arquitecturas software orientadas a aspectos (―Towards the Dynamic 
Reconfiguration of Aspect-Oriented Software Architectures‖). IV Taller de 
Desarrollo de Software Orientado a Aspectos (DSOA'06). Servicio de 



CHAPTER 9. CONCLUSIONS 

372 

publicaciones de la Universidad de Extremadura, Informe técnico TR 
24/06, pp. 35-40. Sitges, Spain, 3 October 2006 (in Spanish). 

22) N. Ali, J. Pérez, C. Costa, I. Ramos, J.A. Carsí. Replicación 
distribuida en arquitecturas software orientadas a aspectos utilizando 
ambientes (―Distributed Replication in Aspect-Oriented Software 
Architectures using Ambients‖). XI Jornadas de Ingeniería del Software y 
Bases de Datos (JISBD'06), pp. 379-388. Sitges, October 2006 (in 
Spanish). 

23) C. Costa, J. Pérez, N. Ali, J.A. Carsí, I. Ramos. PRISMANET 
middleware: Soporte a la Evolución Dinámica de Arquitecturas 
Software Orientadas a Aspectos (―PRISMANET middleware: Support to 
the Dynamic Evolution of Aspect-Oriented Software Architectures‖). X 
Jornadas de Ingeniería del Software y Bases de Datos (JISBD'05), pp. 
27-34. Granada, September 2005 (in Spanish). 

24) N. Ali, J. Pérez, C. Costa, J.A. Carsí, I. Ramos. Implementation of the 
PRISMA Model in the .NET Platform. II Jornadas DYNAMICA 
(DYNamic and Aspect-Oriented Modelling for Integrated 
Component-based Architectures), held with JISBD'04. Malaga, 11 
November 2004. 

Ms. Science Thesis & Technical Reports 

25) D. Hervás-Muñoz. Evolución dinámica de componentes orientados a 
aspectos en .NET (―Dynamic Evolution of Aspect-Oriented Components in 
.NET‖). Ms Science Thesis. Supervisors: C. Costa-Soria, J.A. Carsí 
Cubel. Faculty of Computer Science, Universidad Politécnica de 
Valencia, February 2009 (in Spanish). 

26) S. Aliaga-Varea. Reconfiguración dinámica de arquitecturas software 
orientadas a aspectos mediante la plataforma .NET (―Dynamic 
Reconfiguration of Aspect-Oriented Software Architectures using the .NET 
platform‖). Ms. Science Thesis. Supervisors: C. Costa-Soria, J.A. Carsí 
Cubel. Faculty of Computer Science, Universidad Politécnica de 
Valencia, September 2008 (in Spanish). 

27) C. Costa-Soria. Estudio e implementación de un modelo de arquitecturas 
orientado a aspectos y basado en componentes sobre tecnología .NET. (“Study 
and Implementation of an Aspect-Oriented Component-Based Architecture 
Model on .NET Technology‖). Technical report DSIC-II/11/05. Dept. 
of Information Systems and Computation, Universidad Politécnica 
de Valencia, April 2005 (in Spanish). 



9.3 FURTHER RESEARCH 

373 

9.3 Further research 

As any other research, the content of this thesis is under continuous 
development. This section is dedicated to present further work and new 
research areas that may allow other researchers to eventually produce more 
useful knowledge and progress in the area.  

9.3.1 Model-Driven Development support for evolvable systems 

Although there is a broad range of approaches covering different facets of 
dynamic reconfiguration and type evolution (e.g. specification, formal analysis, 
consistency management, runtime support, …), very few works have covered 
the support for Model-Driven Development (MDD) of evolvable systems. 
MDD support is interesting because it would facilitate the specification, 
modelling and code-generation of dynamically evolvable systems. 

The future support for MDD has been taken into account during the 
development of the concepts presented in this thesis. This thesis has not only 
addressed the definition of a framework to support dynamic reconfiguration 
and type evolution, but also the identification of which parts of the evolution 
infrastructure can be automatically generated to free the software architect 
from the burden of dealing with low-level details. The next step is to integrate 
this framework, Dynamic PRISMA, in the MDD process of PRISMA (see 
section 2.4.5, page 55).  

This involves:  

 Extend the PRISMACase tool to integrate the concepts introduced by 
Dynamic PRISMA (i.e. reconfigurable composite types, Reconfiguration 
Analysis aspects, evolvable architectural types, and manipulation of 
both SimpleSpec and CompositeSpec type reifications), supporting both 
the graphical and textual specification of these concepts.  

 Modify the existing code generation patterns to include the Evolver 
component (i.e. for supporting the autonomic reconfiguration of 
composite types) and Type Meta-instances (i.e. for supporting 
asynchronous reflective evolution of either simple or composite types) 
in those architectural types that have been defined as evolvable. 
Currently, this is done manually, by modifying the code that is 
generated from PRISMA models. 

 Develop a visual interface to manage running evolvable architecture-
based systems, which will interact with the evolution and 
reconfiguration ports provided by evolvable architectural types, 



CHAPTER 9. CONCLUSIONS 

374 

allowing their introspection and modification at runtime. Currently 
this is done by means of the ADL language.  

Further research work is required to define graphical models that describe 
proactive evolution and reconfiguration specifications, and to analyse the 
dynamic properties of evolvable systems.  

9.3.2 Proactive non-programmed evolutions 

An area of research that still requires further work and study is the support for 
proactive, non-programmed/generative evolutions. This thesis has been 
focused on the support for dynamic changes, both in a reactive (i.e. ad-hoc) or 
in a proactive (i.e. programmed) way. Reactive dynamic changes are 
introduced by means of the direct invocation of evolution/reconfiguration 
services. Proactive dynamic changes are defined by means of simple Event-
Condition-Action (ECA) policies. These ECA policies are specified at design 
time, or introduced manually at runtime by means of dynamic type evolution.  

However, to truly build self-managing systems, proactive dynamic changes 
should not be explicitly defined by the architect, but automatically produced 
according to high-level goals. That is, the long-term objective is to provide self-
managed systems with support for proactive non-programmed evolutions (see 
3.3.4.2, page 72). The challenge is then to define: (i) what are high-level goals, 
and (ii) how to transform these high-level (possibly abstract) goals to specific 
reconfiguration or evolution actions. Emerging works are exploring the 
automatic task synthesis from high-level goals (Sykes et al., 2008), or the use of 
digital evolution techniques (McKinley et al., 2008). However, current efforts 
are still immature and so computational intensive, which cannot be used at 
runtime. 

9.3.3 Definition of evolution constraints  

An architectural type (or by extension, the entire software system) can be 
entirely redefined at runtime by means of dynamic type evolution. However, 
in certain cases, it may be interesting to limit which parts of an architectural 
type (or a set of architectural types) can be evolved or not. For instance, this 
could be interesting to preserve some architectural design decisions and to 
avoid the removal of critical functional elements. Thus, two kinds of 
constraints would coexist in an ADL specification: these constraints that can 
be changed at runtime as any other part of the specification, and those that 
cannot be changed and that would limit the evolution functionality. This 
would require the adaptation of the evolution and reconfiguration planning 
mechanisms to be constraint-aware.  



9.3 FURTHER RESEARCH 

375 

9.3.4 Coordination of decentralized Evolvers 

Another interesting area of research is the exploration of self-organization 
strategies to enable different Evolvers (i.e. the evolution managers from 
different composite instances) to coordinate their evolutions. This is needed 
to allow the Evolvers to solve together the evolution conflicts that may result 
from their independent evolutions. For instance, a composite instance may be 
interested in removing a functionality that it provides, whereas other adjacent 
instances could need it.  

Dynamic PRISMA implements a decentralized evolution model, motivated by 
the goal of increasing the scalability and autonomy of evolvable systems. The 
premise of this approach is that a software system is not evolvable by itself: it is 
evolvable as a result of the architectural types it is made of. Thus, the 
evolution of a software system is not centrally managed, but distributed 
among the different architectural types it is composed of, by means of Evolver 
components. Therefore, a coordination strategy among the different Evolvers 
is needed that enables the independent evolution of the composites that these 
Evolvers manage, but while preserving the quality attributes of the whole 
system. Some of the early findings about this ongoing work can be found in 
(Costa-Soria et al., 2011). 

9.3.5 Formal analysis  

The formal basis of Dynamic PRISMA advantages non-formal approaches in 
that some advanced analyses can be performed to automate some functions, 
such as the generation of state transfer functions, the evaluation of semantic 
compatibility, or the verification of system properties. These kinds of analysis 
have not been included in the thesis and have been left as a future work. Next 
they are briefly introduced. 

Automatic generation of state transfer functions  

When an instance is going to be updated by a new version, or replaced by a 
different version, its state must be migrated from the old version to the new 
version. This is carried out by means of state transfer functions (see page 80 
for more details). These functions are manually defined by the developer or 
the architect.  

Since each architectural type has its behaviour precisely described (i.e. in terms 
of the PRISMA AOADL), a potential future work is the automatic generation 
of the state transformation functions, by means of the realization of 
behavioural analyses to map the old attributes to the new ones.  



CHAPTER 9. CONCLUSIONS 

376 

Automatic evaluation of semantic compatibility among types 

When a type is going to be updated by a new version, replaced by a new one, 
or introduced in a system, only the syntactic compatibility is evaluated. The 
evolution agent (e.g. the architect) is responsible of the semantic compatibility 
of the new type with the existing system (see page 336 for more details).  

Another potential future work is the realization of behavioural analyses to 
evaluate whether two architectural types are semantically compatible and can 
be connected or not. Although this kind of analysis is feasible (since the 
behaviour of each architectural type is precisely described, this behaviour can 
be subject to automated analysis), it is also challenging. 

Evaluation of the dependencies and conflicts among reconfiguration 
transactions  

A reconfiguration transaction may be in conflict with another if the former 
removes an element that the latter introduces again, thus creating a never-
ending reconfiguration cycle. A benefit of using formal specifications for 
describing changes (i.e. reconfigurations transactions) is that these 
transactions can be analysed and compared looking for potential conflicts or 
dependencies among them. This can be used to assist the architect in the 
process of describing Event-Condition-Action rules, or to detect and avoid at 
runtime the presence of reconfiguration cycles. 

Verification of system properties  

Another advantage of using formal specifications for describing the structure 
and behaviour of a system is that model-checking techniques can be used to 
evaluate whether certain properties are satisfied along the system lifetime or 
not. Examples of properties that could be evaluated are the following: a 
component may be instantiated in the architecture (a reachability property), a 
component will never be removed from the system (a safety property), a 
connection among two components will be created in any moment of the 
future (a liveness property), etc.  

The challenge relies in the fact that, in dynamically evolvable systems, the set 
of possible states is very high (in the case of constrained dynamic 
reconfigurations) or infinite (in the case of dynamic type evolutions). 
Therefore, it is required the use of model-checking techniques that are 
efficiently evaluated at runtime whenever a dynamic change is performed, to 
guarantee that the system properties are preserved after the dynamic change. 



9.3 FURTHER RESEARCH 

377 

9.3.6 Tool support for advanced graph transformations 

This thesis has explored how the asynchronous evolution semantics can be 
described by means of typed graph transformations, as a first step towards its 
formal analysis. However, as a result of this first step, some limitations have 
been found related to the simulation of graph transformation rules that use 
advanced concepts, such as complex application conditions or multi-objects51. 
These advanced concepts have been used to describe complex rule 
preconditions (e.g. that the cardinality of a given architectural type is 
preserved when creating new instances) or to describe operations on sets of 
nodes (e.g. quiescing all the instances of a given type, or preserving the 
existing interactions of a given instance).  

The limitations are concerned with the fact that these advanced concepts have 
no support (or are very difficult to model) in the AGG tool (AGG, 2010), the 
tool that has been selected to simulate the graph transformations. These 
limitations are the following: (i) complex application conditions with nested if-
then-else conditions or that operate on sets of nodes, cannot be defined (this 
must be done in Java through the use of the internal API); (ii) multi-objects 
cannot be modelled, rules can only operate on a set of nodes which their exact 
number is known in advance (we cannot define universally quantified 
operations); (iii) rules that invoke other rules and provides some parameters, 
cannot be directly modelled (it requires the usage of auxiliary nodes to pass 
information among rules); and (iv) the definition of composite rules, which 
would allow the reuse of rules and the management of different levels of 
abstraction, is not currently supported. These limitations have been overcome 
by using the Java interface provided by AGG (for complex application 
conditions) and assuming that certain conditions apply (for multi-objects). 
However, an interesting area of research that would improve the 
expressiveness of graph transformation systems would be considering the 
support for these advanced features. 

 

                                                      
51 An introduction to these advanced concepts can be found in (Heckel, 2006) 





  

379 

Part V: Appendixes 

 

 

 

 

PART V 

APPENDIXES 

 

 





  

381 

Appendix A. PRISMA Specifications of the VisionSystem 

 

APPENDIX A 

PRISMA SPECIFICATIONS  
OF THE VISIONSYSTEM 

his appendix provides the complete specifications of the VisionSystem 
composite type (i.e. the subsystem of the Agrobot robot that is in charge 
of capturing and processing images from the environment) using the 

PRISMA ADL, as well as the specifications of the Reconfiguration and Type 
Evolution elements.  

This appendix is organized as follows. First, section A.1 presents the complete 
PRISMA specifications of the VisionSystem composite type as well as the 
specification of its instances RightCamera and LeftCamera. Next, section A.2 
presents the specifications of the reconfiguration elements that the 
VisionSystem imports: the VisionSystemEvolver and the automatically generated 
elements. Finally, section A.3 presents the specifications of the type evolution 
elements that are automatically generated to provide the VisionSystem with 
asynchronous reflective evolution capabilities. 

A.1 Specification of the VisionSystem type 

A.1.1 Interfaces 

A.1.1.1 I_VideoServices 

Interface I_VideoServices  

 newCapturedImage(input capturedImage : Image); 

End_Interface I_VideoServices; 

A.1.1.2 I_ImageProcessingServices 

Interface I_ImageProcessingServices 

 newProcessedImage(input processedImage : Image); 

End_Interface I_ImageProcessingServices; 

T 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

382 

A.1.1.3 I_WatchdogEvents 

Interface I_WatchdogEvents  

 validOutput(); 

 faultyOutput(input failingComponentID: string); 

End_Interface I_WatchdogEvents; 

A.1.2 Data Domains 

Domains 

 // Simple data types  

 boolean, natural, integer, double, char, string, 

 

 // Complex data types 

 date,  // Date and time functions 

 list,  // Array data type 

 Image  // Encapsulates an image. 

    // Attributes: frameID, imageType & stream (byte array) 

End_Domains; 

A.1.3 External Functions 

// Functions provided by external elements  

// (COTs, SystemServices, ...) 

Image ImageProcessing(Image capturedImage); 

 /* Apply an image processing algorithm on the image provided as 

 input and returns the transformed image.*/ 

 

ByteStream GetImage(); 

 /* Captures an image from a video capture card */ 

 

Boolean TestImageProcessing(Image capturedIMG, Image processedIMG); 

 /* Perform a set of simple checkings to verify that processedIMG 

  is the a transformation of capturedIMG */ 

 

Boolean TestImage(Image imageToTest); 

 /* Evaluates if an image is valid */ 

 

Integer FCalculateImageProcRatio(); 

 /* Returns the ratio of images that are processed per second in 

the VisionSystem (the higher the best) */ 

 

Void Suspend(timeout : integer);  

 /* Function provided by the System to suspend a process */ 



A.1 SPECIFICATION OF THE VISIONSYSTEM TYPE 

383 

A.1.4 Architecture and configurations 

A.1.4.1 VisionSystem composite type 

PRISMA graphical specification (with Evolver) 

 
PRISMA ADL textual specification 

System VisionSystem 

 

 Import Architectural Elements  

  VideoCaptureCard(1,1), ImageProcCard(0,1),  

  VCC-Conn(1,1), IPC-Conn(1,1), 

  ImageProcSoftware(0,*), VisionWatchdog(1,1),  

  VisionSystemEvolver(1,1); 

 

 Ports 

  ImgOutputPort : I_ImageProcessingServices; 

  VisionStatusPort: I_VisionSystemEvents; 

  ReactiveReconfigurationPort: I_VisionSystemReconfigServices; 

 End_Ports; 

 

 Attachments 

  Att_VCC_VCCConn: VideoCaptureCard.VideoOut(1,1) <-->  

    VCC-Conn.VideoIn(1,1); 

  Att_VCCConn_IPC:  

   VCC-Conn.VideoOut(1,1) <--> ImageProcCard.VideoIn(1,1); 

  Att_IPC_IPCConn:  

   ImageProcCard.ImageOut(1,1) <--> IPC-Conn.ImageIn(1,1); 

  Att_VCCConn_ImgMon:  

   VCC-Conn.VideoOut(1,1) <--> VisionWatchdog.VideoOutput(1,1); 

  Att_IPCConn_ImgMon:  

   IPC-Conn.ImageOut(1,1) <--> VisionWatchdog.ImageOutput(1,1); 

  Att_VCCConn_IPCSW:  

   VCC-Conn.VideoOut(1,1) <--> ImageProcSoftware.VideoIn(1,*); 

  Att_IPCSW_IPCConn:  

   ImageProcSoftware.ImageOut(1,*) <--> IPC-Conn.ImageIn(1,1); 

 

  // Example of attachment which enables an internal element to 

  // interact with the evolver (e.g.to trigger a reconfiguration) 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

384 

  Att_ImgMon_Evolver: VisionWatchdog.FaultyOutputPort(1,1) <-->  

   VisionSystemEvolver.InternalEventsPort(1,1); 

 End_Attachments; 

 

 Bindings 

  Bin_IPCConn: ImgOutputPort(1,1) <--> IPC-Conn.ImageOut(1,1); 

  Bin_Evolver: VisionStatusPort(1,1) <-->  

       VisionSystemEvolver.ExternalEventsPort(1,1); 

  Bin_Evolver2: ReactiveReconfigurationPort(1,1) <--> 

       VisionSystemEvolver.IntrospectionPort(1,1); 

  Bin_Evolver3: ReactiveReconfigurationPort(1,1) <--> 

       VisionSystemEvolver.ReconfigurationPort(1,1); 

 End_Bindings; 

 

 /* Constructor definition */ 

 new ( frameRate: integer, cameraPosition: string,  

   timeout: integer) 

 { 

  // Only the constructors of the elements that are initially 

  // created. ImageProcSoftware is optionally created at runtime 

 

  new VideoCaptureCard(frameRate); 

  new ImageProcCard(cameraPosition); 

  new VCC-Conn(); 

  new IPC-Conn(); 

  new VisionWatchdog(timeout); 

  new VisionSystemEvolver(this.ID); 

 

  new Att_VCC_VCCConn(input VideoCaptureCardID: string, 

    input VCC-ConnID: string); 

  new Att_VCCConn_IPC(input ImageProcCardID: string, 

    input VCC-ConnID: string); 

  new Att_IPC_IPCConn(input ImageProcCardID: string, 

    input IPC-ConnID: string); 

  new Att_VCCConn_ImgMon(input VCC-ConnID: string,  

 input VisionWatchdogID: string); 

  new Att_IPCConn_ImgMon(input IPC-ConnID: string, 

    input VisionWatchdogID: string); 

  new Att_ImgMon_Evolver(input VisionWatchdogID: string, 

    input VisionSystemEvolverID: string); 

 

  new Bin_IPCConn(input ImageProcCardID: string); 

  new Bin_Evolver(input VisionSystemEvolverID:string); 

  new Bin_Evolver2(input VisionSystemEvolverID:string); 

  new Bin_Evolver3(input VisionSystemEvolverID:string); 

 

   } 

  

 /* Destructor definition */ 

   destroy() 

 { 

  destroy VideoCaptureCard(); 

  destroy ImageProcCard(); 

  destroy ImageProcSoftware(); 

  destroy VCC-Conn(); 

  destroy IPC-Conn(); 

  destroy VisionWatchdog(); 

  destroy VisionSystemEvolver(); 

       

   destroy Att_VCC_VCCConn(); 



A.1 SPECIFICATION OF THE VISIONSYSTEM TYPE 

385 

  destroy Att_VCCConn_IPC(); 

  destroy Att_IPC_IPCConn(); 

  destroy Att_VCCConn_IPCSW(); 

  destroy Att_IPCSW_IPCConn(); 

  destroy Att_VCCConn_ImgMon(); 

  destroy Att_IPCConn_ImgMon(); 

  destroy Att_ImgMon_Evolver(); 

 

  destroy Bin_IPCConn(); 

  destroy Bin_Evolver(); 

  destroy Bin_Evolver2(); 

  destroy Bin_Evolver3(); 

   } 

 

End_System VisionSystem; 

 

A.1.4.2 Configuration: RightCamera 

PRISMA ADL graphical specification 

 
PRISMA ADL textual specification 

Architectural_Model_Configuration RightCamera = 

 new VisionSystem { 

  Right-VCapt = new VideoCaptureCard(30); 

  ImgProc-1 = new ImageProcCard(“right”); 

  VCC-Conn1 = new VCC-Conn(); 

  IPC-Conn1 = new IPC-Conn(); 

  R-ImgWatchDog1 = new VisionWatchdog(90); 

  R-Evolver = new VisionSystemEvolver(this.ID); 

 

  att1 = new Att_VCC_VCCConn(Right-VCapt, VCC-Conn1); 

  att2 = new Att_VCCConn_IPC(ImgProc-1, VCC-Conn1); 

  att3 = new Att_IPC_IPCConn(ImgProc-1, IPC-Conn1); 

 

  att4 = new Att_VCCConn_ImgMon(VCC-Conn1, R-ImgWatchDog1); 

  att5 = new Att_IPCConn_ImgMon(IPC-Conn1, R-ImgWatchDog1); 

  att6 = new Att_ImgMon_Evolver(R-ImgWatchDog1, R-Evolver); 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

386 

 

  bin1 = new Bin_IPCConn(ImgProc-1); 

  bin2 = new Bin_Evolver(R-Evolver); 

  bin3 = new Bin_Evolver2(R-Evolver); 

  bin4 = new Bin_Evolver3(R-Evolver); 

 } 

PRISMA XML Specification 

<Configuration id=”RightCamera” type=”VisionSystem”> 

 <Component id=”Right-VCapt” type=”VideoCaptureCard”> 

  <InitParameter>30</InitParameter> 

 </Component> 

 <Component id=”ImgProc-1” type=”ImageProcCard”> 

  <InitParameter>Right</InitParameter> 

 </Component> 

 <Component id=”R-ImgWatchDog1” type=”VisionWatchdog”> 

  <InitParameter>90</InitParameter> 

 </Component> 

 <Component id=”R-Evolver” type=”VisionSystemEvolver”> 

  <InitParameter>RightCamera</InitParameter> 

 </Component> 

 

 <Connector id=”VCC-Conn1” type=”VCC-Conn” /> 

 <Connector id=”IPC-Conn1” type=”IPC-Conn” /> 

 

 <Attachment name=”att1” type=”Att_VCC_VCCConn”  

  source=”Right-VCapt” target=”VCC-Conn1” /> 

 <Attachment name=”att2” type=”Att_VCCConn_IPC”  

  source=”ImgProc-1” target=”VCC-Conn1” /> 

 <Attachment name=”att3” type=” Att_IPC_IPCConn”  

  source=” ImgProc-1” target=” IPC-Conn1” /> 

 <Attachment name=”att4” type=” Att_VCCConn_ImgMon”  

  source=”VCC-Conn1” target=”R-ImgWatchDog1” /> 

 <Attachment name=”att5” type=”Att_IPCConn_ImgMon”  

  source=”IPC-Conn1” target=”R-ImgWatchDog1” /> 

 <Attachment name=”att6” type=”Att_ImgMon_Evolver”  

  source=”R-ImgWatchDog1” target=”R-Evolver” /> 

 

 <Binding name=”bin1” type=”Bin_IPCConn” target=”ImgProc-1” /> 

 <Binding name=”bin2” type=”Bin_Evolver” target=”R-Evolver” /> 

 <Binding name=”bin3” type=”Bin_Evolver2” target=”R-Evolver” /> 

 <Binding name=”bin4” type=”Bin_Evolver3” target=”R-Evolver” /> 

 

</Configuration> 



A.1 SPECIFICATION OF THE VISIONSYSTEM TYPE 

387 

A.1.4.3 Configuration: LeftCamera 

Architectural_Model_Configuration LeftCamera = 

 new VisionSystem { 

  Left-VCapt = new VideoCaptureCard(30); 

  ImgProc-2 = new ImageProcCard(“left”); 

  VCC-Conn2 = new VCC-Conn(); 

  IPC-Conn2 = new IPC-Conn(); 

  L-ImgWatchDog1 = new VisionWatchdog(90); 

  L-Evolver = new VisionSystemEvolver(this.ID); 

 

  att1 = new Att_VCC_VCCConn(Left-VCapt, VCC-Conn2); 

  att2 = new Att_VCCConn_IPC(ImgProc-2, VCC-Conn2); 

  att3 = new Att_IPC_IPCConn(ImgProc-2, IPC-Conn2); 

 

  att4 = new Att_VCCConn_ImgMon(VCC-Conn2, L-ImgWatchDog1); 

  att5 = new Att_IPCConn_ImgMon(IPC-Conn2, L-ImgWatchDog1); 

  att6 = new Att_ImgMon_Evolver(L-ImgWatchDog1, L-Evolver); 

 

  bin1 = new Bin_IPCConn(ImgProc-2); 

  bin2 = new Bin_Evolver(L-Evolver); 

  bin3 = new Bin_Evolver2(L-Evolver); 

  bin4 = new Bin_Evolver3(L-Evolver); 

 } 

A.1.5 Components 

A.1.5.1 VideoCaptureCard 

Component VideoCaptureCard 

 

 Integration Aspect import VideoCapture; 

  

 Ports 

  VideoOut : I_VideoServices, 

   Played_Role VideoCapture.SERVEIMAGE; 

   End_Ports; 

 

   new(input frameRate: natural) { 

      VideoCapture.begin(frameRate); 

   } 

  

   destroy() { 

      VideoCapture.end(); 

   } 

 

End_Component GraphicsCard; 

A.1.5.2 ImageProcCard 

Component ImageProcCard 

 

   Integration Aspect import ImageProcCardController; 

   Presentation Aspect import ImageProcCardGUI; 

    

 Ports 

  VideoIn  : I_VideoServices, 

   Played_Role ImageProcCardController.VIDEOCARD; 

  ImageOut : I_ImageProcessingServices, 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

388 

   Played_Role ImageProcCardController.IMAGEANALYZER; 

   End_Ports; 

    

 Weavings 

  ImageProcCardGUI.showImage(image) 

   after 

  ImageProcCardController.newProcessedImage(image);  

   End_Weavings;  

 

   new(cameraPosition: string) { 

      ImageProcCardController.begin(cameraPosition); 

  ImageProcCardGUI.begin(); 

   }  

 

   destroy() { 

  ImageProcCardGUI.end(); 

      ImageProcCardController.end(); 

   } 

 

End_Component ImageProcCard; 

A.1.5.3 ImageProcSoftware 

Component ImageProcSoftware 

 

   Functional Aspect import ImageProcSwController; 

   Presentation Aspect import ImageProcCardGUI; 

    

 Ports 

  VideoIn  : I_VideoServices, 

   Played_Role ImageProcSwController.VIDEOCARD; 

  ImageOut : I_ImageProcessingServices, 

   Played_Role ImageProcSwController.IMAGEANALYZER; 

   End_Ports; 

    

 Weavings 

  ImageProcCardGUI.showImage(image) 

   after 

  ImageProcSwController.newProcessedImage(image);  

   End_Weavings; 

 

   new(cameraPosition: string) { 

      ImageProcSwController.begin(cameraPosition); 

  ImageProcCardGUI.begin(); 

   }  

 

   destroy() { 

  ImageProcCardGUI.end(); 

      ImageProcSwController.end(); 

   } 

 

End_Component ImageProcSoftware; 

A.1.5.4 VisionWatchdog 

Component VisionWatchdog 

 

   Functional Aspect import ImageMonitoring; 

  



A.1 SPECIFICATION OF THE VISIONSYSTEM TYPE 

389 

 Ports 

  VideoOutput : I_VideoServices, 

   Played_Role ImageMonitoring.VIDEOCARD; 

  ImageOutput : I_ImageProcessingServices, 

   Played_Role ImageMonitoring.IMAGEPROCESSOR; 

  FaultyOutput : I_WatchdogEvents, 

   Played_Role ImageMonitoring.WATCHDOG; 

   End_Ports; 

  

   new(input timeout: natural) { 

      ImageMonitoring.begin(input monitorTimeout : natural); 

   } 

  

   destroy() { 

      ImageMonitoring.end(); 

   } 

 

End_Component VisionWatchdog; 

A.1.6 Connectors 

A.1.6.1 VCC-Conn 

Connector VCC-Conn 

 

 Coordination Aspect import VideoForwarding; 

  

 Ports 

  VideoIn : I_VideoServices, 

   Played_Role VideoForwarding.RECEIVE; 

  VideoOut: I_VideoServices, 

   Played_Role VideoForwarding.FORWARD; 

 

   End_Ports; 

 

   new() { VideoForwarding.begin(); }  

   destroy() { VideoForwarding.end(); } 

 

End_Connector VCC-Conn; 

A.1.6.2 IPC-Conn 

Connector IPC-Conn 

 

 Coordination Aspect import ImageForwarding; 

  

 Ports 

  VideoIn : I_ImageProcessingServices, 

   Played_Role ImageForwarding.RECEIVE; 

  VideoOut: I_ImageProcessingServices, 

   Played_Role ImageForwarding.FORWARD; 

 

   End_Ports; 

 

   new() { ImageForwarding.begin(); }  

   destroy() { ImageForwarding.end(); } 

 

End_Connector IPC-Conn; 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

390 

A.1.7 Aspects 

A.1.7.1 VideoCapture 

Integration Aspect VideoCapture using I_VideoServices 

// This aspect provides access to the video capture card 

 

 Attributes 

  Constant 

   captureTimeout : natural, NOT NULL; 

      Variable 

   imageCaptured : Image; 

   nextFrameNumber : natural;          

 

   Services  

  begin(input timeout : natural); 

   Valuations 

    [begin(timeout)] 

    captureTimeout:=timeout; 

 

  out newCapturedImage(input capturedImage : Image);     

  // Event that sends a new captured image 

   Valuations 

            [newCapturedImage(capturedImage)] 

    capturedImage:=imageCaptured; 

 

  sleep(); 

  // Suspends the aspect “timeout” milliseconds 

 

      captureImage();        

   Valuations 

            [captureImage()] 

    imageCaptured:= new Image(nextFrameNumber,   

     "CapturedImage", GetImage()); 

    // Creates a new image object. GetImage is an external  

    // function that provides a stream of pixels (an image) 

    nextFrameNumber:=nextFrameNumber+1; 

   

  end(); 

  

 Played_Roles  

  SERVEIMAGE for I_VideoServices ::=  

    newCapturedImage!(capturedImage); 

 

   Protocol 

  VIDEOCAPTURE ::=  begin(timeout):1 --> CAPTURE;        

  CAPTURE ::= end() +  

   (  captureImage():10 -->  

    SERVEIMAGE_newCapturedImage!(capturedImage):10 -->  

    sleep():10 

   ) --> CAPTURE; 

  

End Integration Aspect VideoCapture; 

A.1.7.2 ImageProcSwController 

Functional Aspect ImageProcSwController 

 using I_VideoServices, I_ImageProcessingServices 

 



A.1 SPECIFICATION OF THE VISIONSYSTEM TYPE 

391 

   Attributes 

  Constant 

   spatialPosition : string; 

      Variable 

         CapturedImage : Image; 

         LastProcessedImage : Image; 

 

   Services     

  // Initialization service 

      begin(input cameraPosition: string); 

   Valuations 

    (cameraPosition==“right”) or (cameraPosition==“left”) 

     [begin(cameraPosition)] 

    spatialPosition = cameraPosition; 

 

  // New captured image notification 

      in newCapturedImage(input capturedImage: Image); 

   Valuations 

            [newCapturedImage(capturedImage)] 

    CapturedImage = capturedImage; 

   

  // Notifies about the output of a new processed image 

      out newProcessedImage(input processedImage : Image);           

   Valuations 

            [newProcessedImage(processedImage)] 

    processedImage = LastProcessedImage; 

 

  // Image processing service 

      processImage(); 

         Valuations 

            [processImage()] 

    LastProcessedImage = ImageProcessing(CapturedImage); 

    // ImageProcessing is an external function 

     

  // Finalization service 

      end(); 

  

   Played_Roles  

  VIDEOCARD for I_VideoServices ::= 

   newCapturedImage?(capturedImage); 

  IMAGEANALYZER for I_ImageProcessingServices ::=  

   newProcessedImage!(processedImage); 

 

   Protocol 

  IMAGEPROCESSINGCARDCONTROLLER ::=  begin():1 --> CAPTURE;     

  CAPTURE ::= end():10  + 

   (VIDEOCARD_newCapturedImage?(capturedImage):10 -->  

     processImage():10 -->  

    IMAGEANALYZER_newProcessedImage!(processedImage)):10  

   ) --> CAPTURE; 

    

End Functional Aspect ImageProcSwController; 

A.1.7.3 ImageProcCardGUI 

Presentation Aspect ImageProcCardGUI 

 // Only reflects the information shown to the user, 

 // but not the design of user interface 

   

 Attributes 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

392 

  Constant 

   windowTitle : string; 

   componentID_label : string; 

      Variable 

   image_to_show : picture; 

   image_label : string; 

 

   Services     

  // Field initialization  

      begin(input componentName : string); 

   Valuations 

    [begin(componentName)]  

    componentID_label = "Component ID: " + comp_name;  

    windowTitle = "Image processing controller"; 

    image_label = "Image processed"; 

       

  // Image showing 

  in showImage(input image : list); 

   Valuations 

    [showImage(image)] image_to_show = image;  

           

      end(); 

 

 Protocol 

  IMAGEPROCESSINGCARDGUI ::= begin(componentName):1 --> NORMAL;     

  NORMAL ::= showImage?(image):5 + end():10; 

    

End Presentation Aspect ImageProcCardGUI; 

A.1.7.4 ImageMonitoring 

// This aspect monitorizes the correctness of image processing  

Functional Aspect ImageMonitoring using I_VideoServices,  

  I_ImageProcessingServices, I_ VisionSystemEvents 

 

 Attributes 

  Constant 

   timeout : natural, NOT NULL; 

  Variable 

   capturedIMG : Image; 

   processedIMG : Image; 

   processedIMGDelay : natural;   

/* This variable counts the number of times non desired data is 

received: (i) if only captured images are received, this means that 

the image processing component does not work, (ii) if the processed 

image does not belong to the captured imaged, this means that the 

image processing component does not work correctly */ 

            

 Services  

  begin(input monitorTimeout : natural); 

   Valuations 

    [begin(monitorTimeout) ] 

    timeout := monitorTimeout; 

       

  in newCapturedImage(input capturedImage : Image);  

  // A new image has been captured by the videocard 

   Valuations 

    [newCapturedImage(capturedImage)] 

    capturedIMG:=capturedImage; 



A.1 SPECIFICATION OF THE VISIONSYSTEM TYPE 

393 

     

  in newProcessedImage(input processedImage : Image);   

  // A new image has been processed by the image processing 

   Valuations 

    [newProcessedImage(processedImage)] 

    processedIMG:=processedImage; 

 

  analyzeVideo(output isFaulty : boolean); 

  // Checks that capturedImage is a valid image 

   Valuations 

    [analyzeOutputs(isFaulty)] 

    isFaulty:= TestImage(capturedIMG); 

    // This function is directly implemented in code 

   

  analyzeOutputs(output isFaulty : boolean); 

  // Checks that processedImage is valid and that is equivalent 

  // to f2(capturedImage)   

   Valuations 

    TestImage(processedIMG)==true 

    [analyzeOutputs (isFaulty)] 

   isFaulty:=TestImageProcessing(capturedIMG,processedIMG); 

    // This function is directly implemented in code 

     

  out validOutput(); 

   // If everything is correct, this event is triggered 

  out faultyOutput(input failingComponentID: list);  

   // If error, an event is triggered (see protocol section) 

       

  suspend(timeout : integer);   

   // This function suspends the current process  

       

  initializeDelayCounter(); 

   Valuations 

    [initializeDelayCounter()] 

    processedIMGDelay:=0; 

    

  addDelay(); 

   Valuations 

    [addDelay()] 

    processedIMGDelay:=processedIMGDelay+1;    

    

  end(); 

    

 Played_Roles   

   VIDEOCARD for I_VideoServices ::=  

   newCapturedImage?(capturedImage); 

   IMAGEPROCESSOR for I_ImageProcessingServices ::=  

   newProcessedImage?(processedImage); 

   WATCHDOG for I_WatchdogEvents::=  

   faultyOutput!(failingComponentID); 

 

 Protocol    

 IMAGEMONITORING ::=  begin(monitorTimeout):1 --> GET_CAPTURE;  

 

 // First, get a captured image 

 GET_CAPTURE ::= end():10 + 

   VIDEOCARD_newCapturedImage?(capturedImage)--> TEST_CAPT; 

 

 // Test if the captured image does not have anomalies 

 TEST_CAPT ::=  analyzeVideo(isFaulty):10 --> 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

394 

   if (isFaulty==true) then VIDEO_FAULTY else GET_PROCIMG; 

 

 VIDEO_FAULTY ::=  

   WATCHDOG_faultyOutput!("VideoCard"):10 --> WAIT; 

   // We send a faulty event 

   

 // Get the corresponding processed image 

 GET_PROCIMG ::=  

  IMAGEPROCESSOR_newProcessedImage?(processedImage) --> 

   ( if (processedImage.ID==capturedIMG.ID)  

     then TEST_PROC 

    // Normal behaviour. Both the captured and processed  

    // image have the same ID (they are the same)  

     else (IMAGEPROCESSOR_newProcessedImage?(processedImage)  

      --> addDelay()  

      --> GET_PROC_IMG ) 

   ) 

  +  (  VIDEOCARD_newCapturedImage?(capturedImage):10 -->  

    addDelay():10 ) --> GET_PROC_IMG 

   // We have not received yet the processed image we want.  

   // We wait for it. 

 

    +  if (processedIMGDelay>20) then  

    (addDelay():10 --> PROC_FAULTY); 

   // Error, we have reached the maximum number of retries  

   // and the desired processed image has not been received 

 

  // We test whether the processed image is correct or not. 

  TEST_PROC ::= analyzeOutputs(isFaulty):10 --> 

   if (isFaulty==true) then PROC_FAULTY 

   else WAIT; 

 

      PROC_FAULTY ::=  

   WATCHDOG_faultyOutput!("ImageProcCard"):10 --> WAIT; 

   // We send a faulty event 

 

      WAIT ::= validOutput!() --> initializeDelayCounter() -->  

  ( suspend(timeout) --> GET_CAPTURE  

    // Suspends the monitor until the next test. 

  + VIDEOCARD_newCapturedImage?(captImage) --> WAIT     

  +  IMAGEPROCESSOR_newProcessedImage?(procImage) --> WAIT 

  ); 

    // In a waiting state, all new images are discarded. 

    

End Functional Aspect ImageMonitoring; 

A.1.7.5 VideoForwarding 

Coordination Aspect VideoForwarding using I_VideoServices 

 

   Services     

      begin(); 

  in/out newCapturedImage(input capturedImage : Image); 

  end(); 

 

 Played_Roles   

   RECEIVE for I_VideoServices ::=  

   newCapturedImage?(capturedImage); 

   SEND for I_VideoServices ::=  



A.2 RECONFIGURATION ELEMENTS 

395 

   newCapturedImage!(capturedImage); 

 

 Protocol 

  IMAGEFORWARDING ::= begin():1 --> IDLE;     

  IDLE ::= end():10 + 

   RECEIVE.newCapturedImage?(capturedImage):5 --> FORWARD; 

  FORWARD ::=  

   SEND.newCapturedImage!(capturedImage):5 --> IDLE; 

    

End Coordination Aspect VideoForwarding; 

A.1.7.6 ImageForwarding 

Coordination Aspect ImageForwarding using I_ImageProcessingServices 

  

   Services     

      begin(); 

  in/out newProcessedImage(input processedImage : Image);  

  end(); 

 

 Played_Roles   

   RECEIVE for I_ImageProcessingServices ::=  

   newProcessedImage?(processedImage); 

   SEND for I_ImageProcessingServices ::=  

   newProcessedImage!(processedImage); 

 

 Protocol 

  IMAGEFORWARDING ::= begin():1 --> IDLE;     

  IDLE ::= end():10 + 

   RECEIVE.newProcessedImage?(processedImage) --> FORWARD; 

  FORWARD ::=  

   SEND.newProcessedImage!(processedImage):10 --> IDLE; 

    

End Coordination Aspect ImageForwarding; 

A.2 Reconfiguration Elements 

A.2.1 Interfaces 

A.2.1.1 I_VisionSystemEvents 

Interface I_VisionSystemEvents  

 enabledSystem(input instanceID: string); 

 disabledSystem(input instanceID: string, input reason: string); 

End_Interface I_VisionSystemEvents; 

A.2.1.2 I_VisionSystemIntrospectionServices 

Interface I_VisionSystemIntrospectionServices 

 

// *************************************************************** 

// Default interface that defines the introspection services 

// that will be available for supporting reactive reconfigurations  

// on VisionSystem instances. 

// 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

396 

// Remove the services that are not intended to be available 

// outside a System instance. 

// *************************************************************** 

  

 typeOf(elementID: string, output typeName: string); 

 getConfigurationSpecification(output PRISMAConfigSpec: string);  

 

 getAttachedArchElems(archElemID: string, attachType: string, 

  output attachedArchElemIDs: list); 

 getConnectionsOfArchElem(archElemID: string,output conns: list); 

 getConnectionsByType(connectionType: string,output conns: list); 

 isAttachment(connID: string, isAtt: boolean); 

 isBinding(connID: string, isBind: boolean); 

 

 getArchElementProperties(instanceID: string, 

  output properties: list, output portsList: list); 

 getPortProperties(archElemID: string, portName: string, 

  output isProvided: boolean, output isRequired: boolean,  

  output interface: string, output connectionList: list);  

 getArchElementInitializationValues(archElemID: string, 

  output initValues: list); 

 getAttachmentProperties(connectionID: string,  

  output instance1: string, output instance2: string); 

 getBindingProperties(connectionID: string,  

  output sysPort: string, output archElemID: string); 

 

End_Interface I_VisionSystemIntrospectionServices;     

A.2.1.3 I_VisionSystemReconfigurationServices 

Interface I_VisionSystemReconfigurationServices 

 

// *************************************************************** 

// Default interface that defines the reconfiguration services 

// that will be available for supporting reactive reconfigurations  

// on VisionSystem instances. 

// 

// Remove the services that are not intended to be available 

// outside a VisionSystem instance (except those for transaction 

// management, which are required to begin/end reconfigurations) 

// ***************************************************************  

 

// *** TRANSACTION MANAGEMENT –do not remove- *** 

 BeginConfigurationTransaction(); 

 EndConfigurationTransaction(); 

 RollbackConfigurationTransaction(); 

 

//*** ARCHITECTURAL ELEMENTS *** 

 //*** videoCaptureCard ***  

 getInstances-videoCaptureCard(output instances: list); 

 replace-videoCaptureCard(oldInstanceID: string,  

    framerate: natural, output newInstanceID: string); 

 

 //*** imageProcCard ***  

 getInstances-imageProcCard(output instances: list); 

 create-imageProcCard(cameraPosition: string,  

    output newInstanceID:string); 

 destroy-imageProcCard(instanceID: string); 

 replace-imageProcCard(oldInstanceID: string,  

    cameraPosition: string, output newInstanceID: string); 



A.2 RECONFIGURATION ELEMENTS 

397 

 

 //*** imageProcSoftware ***  

 getInstances-imageProcSoftware(output instances: list); 

 create-imageProcSoftware(cameraPosition: string,  

    output newInstanceID: string); 

 destroy-imageProcSoftware(instanceID: string); 

 replace-imageProcSoftware(oldInstanceID: string,  

    cameraPosition: string, output newInstanceID: string); 

 

 //*** visionWatchdog ***  

 getInstances-visionWatchdog(output instances: list);  

 replace-visionWatchdog(oldInstanceID: string, timeout: natural, 

    output newInstanceID: string); 

 

 //*** VCC-Conn ***  

 getInstances-VCC-Conn(output instances: list); 

 replace-VCC-Conn(oldInstanceID: string, output newID: string); 

 

 //*** IPC-Conn ***  

 getInstances-IPC-Conn(output instances: list); 

 replace-IPC-Conn(oldInstanceID: string, output newID: string); 

 

//*** CONNECTIONS: ATTACHMENTS & BINDINGS *** 

 //*** Att_VCCConn_IPC *** 

 attach-Att_VCCConn_IPC(VCC-ConnID: string,  

   ImageProcCardID: string); 

 detach-Att_VCCConn_IPC(VCC-ConnID: string,  

   ImageProcCardID: string); 

 

 //*** Att_VCCConn_IPCSW ***  

 attach-Att_VCCConn_IPCSW(VCC-ConnID: string,  

   ImageProcSoftwareID: string); 

 detach-Att_VCCConn_IPCSW(VCC-ConnID: string, 

   ImageProcSoftwareID: string); 

 

 //*** Att_IPC_IPCConn ***  

 attach-Att_IPC_IPCConn(ImageProcCardID: string,  

   IPC-ConnID: string); 

 detach-Att_IPC_IPCConn(ImageProcCardID: string,  

   IPC-ConnID: string); 

 

 //*** Att_VCCConn_IPC *** 

 attach-Att_IPCSW_IPCConn(ImageProcSoftwareID: string,  

   IPC-ConnID: string); 

 detach-Att_IPCSW_IPCConn(ImageProcSoftwareID: string, 

   IPC-ConnID: string); 

 

End_Interface I_VisionSystemReconfigurationServices;    

A.2.2 Evolver Component 

A.2.2.1 User-defined part: VisionSystemEvolver 

Evolver-Component VisionSystemEvolver 

 is partially defined by VisionSystemEvolverMechanisms 

 

 // Reconfiguration policies 

   ReconfigurationAnalysis Aspect  

  import VisionSystemReconfigurationAnalysis; 

 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

398 

 // Additional user-defined aspects can be imported if needed 

 

   Ports 

  // Ports for providing Reactive Reconfiguration Support 

  // (Remove if reactive reconfig. is not needed) 

  ReconfigurationPort : I_VisionSystemReconfigurationServices, 

   Played_Role VisionSystemReconfigurationServices.RECONFPLANS; 

  IntrospectionPort : I_SystemInstanceIntrospectionServices, 

   Played_Role Monitoring.INTROSPECT; 

 

  // User-defined ports 

  InternalEventsPort : I_WatchdogEvents, Played_Role  

    VisionSystemReconfigurationAnalysis.INTERNAL-EVENTS; 

  ExternalEventsPort : I_VisionSystemEvents, Played_Role  

    VisionSystemReconfigurationAnalysis.EXTERNAL-EVENTS; 

   End_Ports; 

 

 Weavings 

  // User-defined weavings among user-defined aspects here 

 End_Weavings; 

 

 // Initialization and Destruction services 

   new(cameraPosition: string) { 

      VisionSystemReconfigurationAnalysis.begin(cameraPosition); 

   } 

  

   destroy() { 

      VisionSystemReconfigurationAnalysis.end(); 

   } 

 

End_Evolver-Component VisionSystemEvolver; 

A.2.2.2 Generated part: VisionSystemEvolverMechanisms 

Component VisionSystemEvolverMechanisms  

 is partial 

 

// *************************************************************** 

// Automatically-generated partial Evolver specification for  

// VisionSystem instances.  

// 

// This part contains the weavings among the different reconfiguration  

// mechanisms. It is regenerated each time the VisionSystem type changes. 

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 ReconfigurationCoordination Aspect  

   import VisionSystemReconfigurationServices; 

 Monitoring Aspect import MonitoringAspect; 

 ReconfigurationEffector Aspect import EffectorAspect; 

  

 Ports 

  SystemTypeDescrPort : I_CompositeTypeDescription,  

   Played_Role  VisionSystemReconfigurationServices. 

        META-TYPEDESCRIPTION; 

   End_Ports; 

  

 Weavings 

 

 //************************************************************* 



A.2 RECONFIGURATION ELEMENTS 

399 

 //*** Weavings: RECONFIGURATION_ANALYSIS --> MONITORING *** 

 //************************************************************* 

 Monitoring.beforeServiceRequest(*, eventName, eventParams)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.beforeEvent(eventName,eventParams); 

 

 Monitoring.insteadOfServiceRequest(*, eventName, condition,  

    replacingService, eventParams)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.insteadOfEvent(eventName, 

    condition, replacingService, eventParams); 

 

 Monitoring.afterServiceRequest(*, eventName, eventParams) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.afterEvent(eventName, eventParams); 

 

 Monitoring.getAttachedArchElems(archElemID, attachType, 

    attachedArchElemIDs) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.getAttachedArchElems(archElemID,  

    attachType, attachedArchElemIDs); 

 

 Monitoring.typeOf(instance-ID, type) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.typeOf(instance-ID, type); 

 

 Monitoring.getArchElementProperties(ID, properties, ports)  

  insteadOf 

 VisionSystemReconfigurationAnalysis.getArchElementProperties(ID, 

   properties, ports); 

 

 //... More introspection services 

 

 Monitoring.getArchElementInstances(“self”, new list[sysID] ) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.getSystemInstanceID(sysID); 

 

 Monitoring.getArchElementInstances(“VideoCaptureCard”, list-IDs) 

  insteadOf 

 VisionSystemReconfigurationAnalysis. 

   getInstances-videoCaptureCard(list-IDs); 

 

 //... Same weavings for each architectural type 

 

 //************************************************************* 

 //*** RECONFIGURATION_ANALYSIS --> RECONFIGURATION EFFECTOR *** 

 //************************************************************* 

 ReconfigurationEffector.StartElement(instance-ID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.StartElement(instance-ID); 

 

 ReconfigurationEffector.StopElement(instance-ID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.StopElement(instance-ID); 

 

 //************************************************************* 

 //*** RECONFIGURATION_ANALYSIS --> RECONFIG. COORDINATION ***** 

 //************************************************************* 

 VisionSystemReconfigurationServices.BeginConfigurationTransaction() 

  insteadOf 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

400 

 VisionSystemReconfigurationAnalysis.TRANSACTION.BEGIN; 

 

 VisionSystemReconfigurationServices.EndConfigurationTransaction() 

  insteadOf 

 VisionSystemReconfigurationAnalysis.TRANSACTION.END; 

 

 VisionSystemReconfigurationServices.RollBackConfigurationTransaction() 

  insteadOf 

 VisionSystemReconfigurationAnalysis.TRANSACTION.ROLLBACK; 

 

 VisionSystemReconfigurationServices.create-ImageProcCard(params, 

    newInstanceID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis. 

    create-ImageProcCard(params,newInstanceID); 

 

 VisionSystemReconfigurationServices.create-ImageProcSoftware(params, 

    newID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.create-ImageProcSoftware(params, 

    newID); 

 

 VisionSystemReconfigurationServices.destroy-imageProcCard(instanceID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.destroy-imageProcCard(instanceID); 

 

 VisionSystemReconfigurationServices.destroy-imageProcSoftware(instID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.destroy-imageProcSoftware(instID); 

 

 VisionSystemReconfigurationServices.replace-VideoCaptureCard(oldInstID, 

    newParams, newInstanceID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.replace-VideoCaptureCard(oldInstID, 

    newParams, newInstanceID); 

 

 VisionSystemReconfigurationServices.replace-ImageProcCard(oldInstaID, 

    newParams, newInstanceID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis.replace-ImageProcCard(oldInstID, 

    newParams, newInstanceID); 

 

 VisionSystemReconfigurationServices. 

    replace-ImageProcSoftware(oldInstID, newParams, newInstanceID) 

  insteadOf 

 VisionSystemReconfigurationAnalysis. 

    replace-ImageProcSoftware(oldInstID,newParams, newInstanceID); 

 

 // ... Similar weavings among the VisionSystemReconfigurationAnalysis 

 // aspect and the VisionSystemReconfigurationServices aspect 

 

 //************************************************************* 

 //*** Weavings: RECONFIGURATION_COORDINATION --> MONITORING *** 

 //************************************************************* 

 Monitoring.typeOf(instanceID, typeName) 

  insteadOf 

 ReconfigurationCoordination.typeOf(instanceID, typeName); 

 

 Monitoring.getConfigurationSpecification(spec) 

  insteadOf 



A.2 RECONFIGURATION ELEMENTS 

401 

 ReconfigurationCoordination.getConfigurationSpecification(spec); 

 

 Monitoring.getArchElementInstances(typeName, instances) 

  insteadOf 

 ReconfigurationCoordination.getArchElementInstances(typeName,  

    instances); 

 

 Monitoring.getAttachedArchElems(archElemID, attachType, 

    attachedArchElemIDs) 

  insteadOf 

 ReconfigurationCoordination.getAttachedArchElems(archElemID, 

    attachType, attachedArchElemIDs); 

 

 Monitoring.getConnectionsOfArchElem(archElemID, connectionList) 

  insteadOf 

 ReconfigurationCoordination.getConnectionsOfArchElem(archElemID,  

    connectionList); 

 

 Monitoring.getConnectionsByType(connectionType, connectionList) 

  insteadOf 

 ReconfigurationCoordination.getConnectionsByType(connectionType, 

    connectionList); 

   

 // ... Rest of Rec.Coord. services weaved to the  

 //   Monitoring aspect 

   

 //************************************************************* 

 //*** Weavings: RECONFIGURATION_COORDINATION --> REC.EFFECTOR** 

 //************************************************************* 

 

 ReconfigurationEffector.StartElement(elemID) 

  insteadOf 

 ReconfigurationCoordination.StartElement(elemID); 

 

 ReconfigurationEffector.StopElement(elemID) 

  insteadOf 

 ReconfigurationCoordination.StopElement(elemID); 

 

 ReconfigurationEffector.CreateInstance(typeName,initParams,instanceID) 

  insteadOf 

 ReconfigurationCoordination.CreateInstance(typeName,initParams,instanceID); 

 

 ReconfigurationEffector.DestroyInstance(instanceID) 

  insteadOf 

 ReconfigurationCoordination.DestroyInstance(instanceID); 

 

 ReconfigurationEffector.Connect(instance1, port1, instance2, port2,  

    connectionID) 

  insteadOf 

 ReconfigurationCoordination.Connect(instance1, port1, instance2, port2,  

    connectionID); 

 

 ReconfigurationEffector.Disconnect(connectionID) 

  insteadOf 

 ReconfigurationCoordination.Disconnect(connectionID); 

 

 ReconfigurationEffector.IsSerializableType(typeName, isSerializable) 

  insteadOf 

 ReconfigurationCoordination.IsSerializableType(typeName, isSerializable); 

  



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

402 

 // ... Rest of Rec.Coord. services weaved to the  

 //   Reconfiguration Effector aspect 

 

   End_Weavings;  

 

End_Component VisionSystemEvolver-Mechanisms; 

A.2.3 Reconfiguration Analysis Aspect 

A.2.3.1 User-defined part: VSReconfigurationAnalysisAspect 

ReconfigurationAnalysis Aspect VisionSystemReconfigurationAnalysis 

 using I_WatchdogEvents, I_VisionSystemEvents 

 is partially defined by VisionSystemAnalysisServices 

 

// *************************************************************** 

// User-defined aspect which contains the reconfiguration policies 

// for VisionSystem instances. 

// *************************************************************** 

 

 Attributes 

  Constant 

   // User-defined constants here 

  Variable 

   cameraPos: string; 

  Derived 

   imageProcPerformance: integer,  

    derivation: FCalculateImageProcRatio(); 

 

   Services  

  // Initialization and destruction services  

  begin(cameraPosition : string) 

   Valuations 

   [begin(cameraPosition] cameraPos = cameraPosition; 

  end(); 

  

  // Interaction with the VisionWatchdog component 

  in faultyOutput(failingComponent: string); 

  in validOutput(); 

 

  // Notification of critical events to external elements 

  out disabledSystem(instanceID: string, reason: string);  

  out enabledSystem(systemID: string) 

 

 External Functions 

  Suspend(timeout : integer); // Suspends the current process  

 End_External Functions 

 

   Played_Roles   

  INTERNAL-EVENTS for I_WatchdogEvents ::= 

   faultyOutput?(failingComponent) + validOutput?(); 

 

  EXTERNAL-EVENTS for I_VisionSystemEvents ::=  

   disabledSystem!(instanceID, reason) +    

   enabledSystem!(instanceID); 

 

 Triggers 

  // Example of activation by means of attribute evaluation 

  AddImageProcessor() when 

   imageProcPerformance < 10; 



A.2 RECONFIGURATION ELEMENTS 

403 

 

  // Example of activation by using played_roles 

  RepairImageProcessingUnit() when  

   {failingComponent==["ImageProcCard"]} 

   INTERNAL-EVENTS_faultyOutput?(failingComponent); 

 

  // Example of activation by means of event capturing 

  DisableVisionSystem() when  

   {eventParams==["VideoCaptureCard"]} 

   beforeEvent!(“faultyOutput”, out eventParams); 

 

   Transactions 

 AddImageProcessor(): 

  // Config. transaction for creating additional image processors 

  ADDIMAGEPROCESSOR ::= 

   // Gets IDs of instances required for reconfiguration: 

   // the connectors, for attaching the new instance. Only one 

   // instance of each connector exists. 

   VCCConn-ID=VCC-Conn-list[0] --> 

   IPCConn-ID=IPC-Conn-list[0] --> RECONF; 

  RECONF::=   

   create-ImageProcSoftware!(cameraPos, output newImProcID) -->        

   attach-Att_VCCConn_IPCSW!(VCCConn-ID, newImProcID, 

    output newAttID) --> 

   attach-Att_IPCSW_IPCConn!(newImProcID, IPCConn-ID, 

    output newAttID) --> END; 

  

 RepairImageProcessingUnit(): 

  // Configuration transaction for replacing an imageProcCard  

  // component by an imageProcSoftware component 

  REPAIRIMAGEPROCESSINGUNIT ::=  

   // Get IDs of instances subject to changes 

   // Only one instance of ImageProcCard,VCCConn and IPCConn 

   // is allowed by the System type, so no iterations are needed 

   oldImProcCardID = imageProcCard-list[0] --> 

   VCCConnID=VCC-Conn-list[0] --> 

   IPCConnID=IPC-Conn-list[0] --> RECONF; 

  RECONF ::=  

   create-ImageProcSoftware!(cameraPos, output newImProcID) -->        

   attach-Att_VCCConn_IPCSW!(VCCConnID, newImProcID,  

    output newAttID) --> 

   attach-Att_IPCSW_IPCConn!(newImProcID, IPCConnID, 

    output newAttID) --> 

   detach-Att_VCCConn_IPC!(VCCConnID, oldImProcCardID) --> 

   detach-Att_IPC_IPCConn!(oldImProcCardID, IPCConnID) --> 

   destroy-ImageProcCard!(oldImProcCardID) --> END;   

 

 DisableVisionSystem(): 

  // Configuration transaction for disabling the entire system 

  // in case an unrecoverable error occurs. 

  DISABLEVISIONSYSTEM ::= 

   EXTERNAL-EVENTS_disabledSystem!(SystemID, 

     “An unrecoverable error has occurred”) --> 

   StopElement!(videoCaptureCard-list[0]) --> 

   StopElement!(visionWatchdog-list[0]) --> 

   StopElement!(VCC-Conn-list[0]) --> 

   StopElement!(IPC-Conn-list[0]) --> 

   {imageProcCard-list.Size()>0}    

    // 0..1 instances of ImageProcCard are allowed 

    StopElement!(imageProcCard-list[0]) --> 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

404 

   foreach elem in imageProcSoftware-list do 

    // 0..* instances of ImageProcSoftware are allowed 

     (StopElement!(elem)) --> 

   END; 

 

 IncrementalStart(output success: boolean): 

  // Tries to restart all the subsystems after a failure 

  INCREMENTALSTART ::=  

   <success=false> --> RESTART; 

  RESTART ::= 

   // Replaces the old instances by new, fresh ones. 

   getArchElementInitializationValues!(videoCaptureCard-list[0], 

    videoCardInitValues) --> 

   replace-VideoCaptureCard!(videoCaptureCard-list[0],  

    videoCardInitValues[0], output newID)  --> 

   replace-VCC-Conn!(VCC-Conn-list[0], output newID) --> 

   getArchElementInitializationValues!(visionWatchdog-list[0], 

    watchdogInitValues) --> 

   replace-VisionWatchdog!(visionWatchdog-list[0],  

    watchdogInitValues[0], output newID) --> 

   if (imageProcCard-list.Size()>0) then 

    replace-ImageProcCard!(imageProcCard-list[0], 

     cameraPos, output newID) --> 

   foreach elem in imageProcSoftware-list do ( 

    replace-ImageProcSoftware!(elem, cameraPos, output newID);  

   ) --> 

   replace-IPC-Conn!(IPC-Conn-list[0], output newID) --> 

   WAITING-TEST; 

  WAITING-TEST ::= 

   ( INTERNAL-EVENTS_validOutput?() --> <success=true>END ) 

  + ( INTERNAL-EVENTS_faultyOutput?(failingID) --> ROLLBACK); 

 

   Protocol    

  VISIONRECONFANALYSIS ::=  begin(cameraPosition) --> ANALYSIS; 

 

  ANALYSIS ::= end():10  

  +  (  AddImageProcessor():10 ) --> ANALYSIS 

  + ( RepairImageProcessingUnit():10 ) --> ANALYSIS 

  + ( DisableVisionSystem():20 ) --> DISABLEDSTATE; 

 

  DISABLEDSTATE ::= Suspend(1200) -->  

   incrementalStart(output success) --> 

   if (success==false) then DISABLEDSTATE 

   else (EXTERNAL-EVENTS_enabledSystem!(SystemID)--> ANALYSIS); 

    

End ReconfigurationAnalysis Aspect 

VisionSystemReconfigurationAnalysis; 

A.2.3.2 Generated part: VisionSystemAnalysisServices 

ReconfigurationAnalysis Aspect VisionSystemAnalysisServices 

 is partial 

 

// *************************************************************** 

// Automatically-generated partial Reconfiguration Analysis aspect  

// which defines 

// - For the Architect: all the services available to define  

//   reconfiguration policies for VisionSystem instances. 

// - For the System: the hooks that will be weaved with the 

//   reconfiguration mechanisms. 



A.2 RECONFIGURATION ELEMENTS 

405 

// 

// Do not change, since it is regenerated each time the VisionSystem 

// type is changed. 

// SHOULD NOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 Attributes 

  Derived 

  // Attributes to query the current configuration (read-only) 

   systemID: string, derivation:  

    getArchElementInstances(“self”, output list[0]); 

   videoCaptureCard-list : list, derivation:  

    getInstances-videoCaptureCard(output  

     videoCaptureCard-list); 

   imageProcCard-list : list, derivation:  

    getInstances-imageProcCard(output imageProcCard-list); 

   imageProcSoftware-list: list, derivation:  

    getInstances-imageProcSoftware(output  

     imageProcSoftware-list); 

   visionWatchdog-list: list, derivation:  

    getInstances-visionWatchdog(output visionWatchdog-list); 

   VCC-Conn-list: list, derivation:  

    getInstances-VCC-Conn(output VCC-Conn-list); 

   IPC-Conn-list: list, derivation:  

    getInstances-IPC-Conn(output IPC-Conn-list); 

 

 Services 

 

 // *************************************************************  

 //    Introspection services 

 // ************************************************************* 

  out typeOf(instanceID: string, output typeName: string); 

 

  // Introspection of Architectural Elements 

  out getArchElementProperties(instanceID: string, 

    output properties: list, output portsList: list); 

    // If instanceID=”self” the properties of System instance 

    // are returned 

  out getPortProperties(archElemID: string, portName: string, 

    output isProvided: boolean, output isRequired: boolean,  

    output interface: string, output connectionList: list);  

    // If archElemID=”self”, the properties of System ports 

    // are queried 

 

  // Introspection of connections 

  out getAttachedArchElems(archElemID: string, attachType: string, 

    output attachedArchElemIDs: list); 

    // If attachType==”*” returns all the connections of 

    // archElemID 

  out getConnectionsOfArchElem(archElemID: string,  

    output connectionList: list); 

    // If instanceID==”*” returns all of its connections 

  out getConnectionsByType(connectionType: string,  

    output connectionList: list); 

  out isAttachment(connID: string, boolean isAtt); 

  out isBinding(connID: string, boolean isBind); 

  out getAttachmentProperties(connectionID: string,  

    output instance1: string, output instance2: string); 

  out getBindingProperties(connectionID: string,  

    output sysPort: string, output archElemID: string); 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

406 

 

 // *************************************************************  

 //    Headers of allowed domain-specific reconfiguration actions 

 // ************************************************************* 

  out create-ImageProcCard(cameraPosition: string,  

     output newInstanceID : string); 

  out create-ImageProcSoftware(cameraPosition: string, 

     output newInstanceID : string); 

  out destroy-imageProcCard(instanceID : string); 

  out destroy-imageProcSoftware(instanceID : string); 

 

  out replace-VideoCaptureCard(oldInstanceID: string,  

     frameRate: natural, output newInstanceID : string); 

  out replace-ImageProcCard(oldInstanceID: string,  

     cameraPosition: string, output newInstanceID : string); 

  out replace-ImageProcSoftware(oldInstanceID: string,  

     cameraPosition: string, output newInstanceID : string); 

  out replace-VisionWatchdog(oldInstanceID: string,  

     timeout: natural, output newInstanceID : string); 

  out replace-VCC-Conn(oldInstanceID: string,  

     output newInstanceID : string); 

  out replace-IPC-Conn(oldInstanceID: string,  

     output newInstanceID : string); 

 

  out attach-Att_VCCConn_IPC(VCCConn-ID : string, IPC-ID: string); 

  out attach-Att_VCCConn_IPCSW(VCCConn-ID:string,IPCSW-ID:string); 

  out attach-Att_IPC_IPCConn(IPC-ID : string, IPCConn-ID: string); 

  out attach-Att_IPCSW_IPCConn(IPCSW-ID: string,  

     IPCConn-ID: string); 

 

  out detach-Att_VCCConn_IPC(VCCConn-ID: string, IPC-ID: string); 

  out detach-Att_IPC_IPCConn(IPC-ID: string, IPCConn-ID: string); 

  out detach-Att_VCCConn_IPCSW(VCCConn-ID:string,IPCSW-ID:string); 

  out detach-Att_IPCSW_IPCConn(IPC-ID: string,IPCConn-ID: string);  

 

 // *************************************************************  

 //    Services for Event Interception 

 // ************************************************************* 

  out beforeEvent(eventName: string, output eventParams: list); 

  out afterEvent(eventName:string, output eventParams:list); 

  out insteadOfEvent(eventName: string, condition: string,  

    replacingService: string, output eventParams:list); 

 

 // *************************************************************  

 //    Services for Selective Element Starting/Stopping 

 // ************************************************************* 

  out StartElement(instance-ID: string); 

  out StopElement(instance-ID: string); 

    

End ReconfigurationAnalysis Aspect  

   VisionSystemAnalysisServices; 

A.2.4 Reconfiguration Coordination Aspect 

A.2.4.1 Base Reconfiguration Coordination Aspect 

ReconfigurationCoordination Aspect  

 

// *************************************************************** 

// Predefined behaviour for ReconfigurationCoordination aspects, 



A.2 RECONFIGURATION ELEMENTS 

407 

// which coordinates runtime, transactional reconfigurations  

// of System instances. 

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 Attributes 

  Constant 

   systemID: string; // Reference to the System instance 

 

  Variable 

   transactionID: string; 

   transState: string = “COMMITTED”; // Default value 

   archElementsCreated : list;   

   archElementsToDestroy : list; 

   connectionsToRemove : list; 

   connectionsCreated : list;  

  Derived 

   ArchElemList : list,  

    derivation: getArchElementInstances(“*”, ArchElemList); 

   ConnectionsList : list,  

    derivation: getConnectionsOfArchElem(“*”,ConnectionsList); 

 

 External Functions 

  NewTransactionalContext(output transactionID: string); 

   // Creates a new transactional context 

 CheckConsistence(transactionID: string, output transState: string); 

   // Checks if the transactional context is valid or invalid 

   // (if an error or exception has occurred) 

  FinishTransactionalContext(transactionID: string); 

   // Destroys a transactional context and makes changes  

   // permanent 

  SavePRISMASpec(name: string, specification: string); 

   // Saves a PRISMA specification (a type or a configuration)  

   // in the filesystem 

 End_External Functions 

 

 Services 

 // *** Transaction Management *** 

  in BeginConfigurationTransaction() 

   Valuations 

    [BeginConfigurationTransaction()] 

    // Initialization of transaction management structures 

    transState = “ACTIVE”; 

    archElementsCreated = new list[]; 

    archElementsToDestroy = new list[]; 

    connectionsToRemove = new list[]; 

    connectionsCreated = new list[]; 

 

  in EndConfigurationTransaction() 

   Valuations 

    [EndConfigurationTransaction()] 

    transState=“COMMITTED”; 

 

  in RollbackConfigurationTransaction() 

   Valuations 

    [RollbackConfigurationTransaction()] 

    transState=”ROLLBACKED”; 

 

 // *** Generic services for Reconfiguration (private) *** 

  CreateArchElem(typeName: string, params: list, 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

408 

    output newID: string); 

  DestroyArchElem(typeName: string, id: string); 

  ReplaceArchElem(IDToBeReplaced: string, 

   newType: string, initializationValues: list,  

   output newID: string); 

  CreateAttachment(attachmentType: string, sourceAE-ID: string,  

   targetAE-ID: string, output attID: string); 

  DestroyAttachment(attachmentType: string,  

   instance1-ID: string, instance2-ID: string);  

  CreateBinding(bindingType: string, archElemID: string, 

   output bindingID: string);  

  DestroyBinding(bindingType: string, archElemID: string);  

 

 // *** Required services (used as a weaving hook) *** 

  out typeOf(instanceID: string, output typeName: string); 

  out getConfigurationSpecification(output PRISMASpec: string);  

  out getArchElementInstances(typeName: string, instances: list); 

  out getAttachedArchElems(archElemID: string, attachType: string, 

    output attachedArchElemIDs: list); 

  out getConnectionsOfArchElem(archElemID: string,  

    output connectionList: list); 

  out getConnectionsByType(connectionType: string,  

    output connectionList: list); 

  out getArchElementProperties(instanceID: string, 

    output properties: list, output portsList: list); 

  out getPortProperties(archElemID: string, portName: string, 

    output isProvided: boolean, output isRequired: boolean,  

    output interface: string, output connectionList: list);  

  out getAttachmentProperties(connectionID: string,  

    output instance1: string, output instance2: string); 

  out getBindingProperties(connectionID: string,  

    output sysPort: string, output archElemID: string); 

  out isBinding(connID: string, isBind: boolean); 

  out getStatus(elementID: string, output status: string); 

  out getElementsOfStatus(status: string,  

    output elemIDList: list); 

 

  in/out StartElement(elemID: string);  

  in/out StopElement(elemID: string); 

  out CreateInstance(typeName: string, initParams: list,  

    output instanceID: string); 

  out DestroyInstance(instanceID: string); 

  out Connect(instance1: string, port1: string, instance2: string,  

    port2: string, output connectionID: string); 

  out Disconnect(connectionID: string); 

  out IsSerializableType(typeName: string,  

    output isSerializable: boolean); 

  out SerializeState(instanceID: string, output state: string); 

  out CreateInstanceFromSerializedState(typeName: string,  

    serializedState: string,  output instanceID: string); 

  out CanMigrateStateFromOldVersions(typeName: string,  

    output canMigrate: boolean); 

  out ConvertStateFromPreviousVersion(typeName: string, 

    defaultInitValues: list,  oldType: string,oldState: string,  

    output transformedState: string); 

 

 Played_Roles 

  // Communication with the meta-level 

  META-TYPEDESCRIPTION for I_CompositeTypeDescription ::= 

   getTypeName!(typeName) + getPorts?(portsList) + 



A.2 RECONFIGURATION ELEMENTS 

409 

   getArchElementTypes!(archElemList) +  

   getAttachmentTypes!(attachmentList) + 

   getBindingTypes!(bindingList) +  

   ... // any service can be invoked 

 

 Preconditions 

  BeginConfigurationTransaction()  

   if ( transState=”COMMITTED” or transState<>”ROLLBACKED”); 

   // A new transaction cannot be started if there are  

   // unfinished transactions 

  EndConfigurationTransaction() if (transState=”ACTIVE” ); 

  RollbackConfigurationTransaction()  

   if (transState=”ACTIVE” or transSate=“ROLLBACK”); 

   // End and Rollback only when a transaction exists 

 

 // Check the constraints of the architectural type 

 // Unused parameters are assigned to void variable, „_‟ for clarity  

 // purposes 

  CreateArchElem(typeName, params, newID) if 

   ( getArchElementInstances!(typeName, output instances) AND 

    META-TYPEDESCRIPTION_getArchTypeProperties! 

     (typeName, _, _, _, output AEmaxCard) AND 

     instances.Size() < AEmaxCard  ); 

  DestroyArchElem(typeName, id) if 

   ( getArchElementInstances!(typeName, output instances) AND  

    instances.Contains(id) AND 

    META-TYPEDESCRIPTION_getArchTypeProperties! 

     (typeName, _, _, output AEminCard, _) AND 

    instances.Size() > AEminCard ); 

  ReplaceArchElem(IDToReplace, newType, initValues, newID) if  

   ( ArchElemList.Contains(IDToReplace) AND 

    META-TYPEDESCRIPTION_getArchElementTypes!(output AETypes) 

      AND 

    AETypes.Contains(newType) AND 

    typeOf(idToReplace, output oldType) AND 

    (oldType=newType OR  

      (getArchElementInstances!(newType, output inst1) AND 

     META-TYPEDESCRIPTION_getArchTypeProperties! 

      (newType, _, _, _, output maxCard) AND 

      inst1.Size() < AEmaxCard AND 

     getArchElementInstances!(oldType, output inst2) AND  

     META-TYPEDESCRIPTION_getArchTypeProperties! 

      (oldType, _, _, output minCard, _) AND 

     inst2.Size() > minCard 

      ) 

    ) 

   ); 

  CreateAttachment(attachType, srcAE-ID, trgAE-ID, attID) if  

   ( ArchElemList.Contains(sourceAE-ID) AND  

    ArchElemList.Contains(targetAE-ID) AND 

    META-TYPEDESCRIPTION_getAttachmentTypeProperties!( 

     attachType, _, _, _, output srcMaxCard, _, _, _, 

     output trgMaxCard) AND 

    getAttachedArchElems!(srcAE-ID, attachType,  

     output attached2src) AND  

    attached2src.Size() < srcMaxCard AND 

    getAttachedArchElems!(trgAE-ID, attachType, 

     output attached2trg) AND  

    attached2trg.Size() < trgMaxCard  ); 

  DestroyAttachment(attachType, srcAE-ID, trgAE-ID) if  



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

410 

   ( ArchElemList.Contains(sourceAE-ID) AND  

    ArchElemList.Contains(targetAE-ID) AND 

    META-TYPEDESCRIPTION_getAttachmentTypeProperties!( 

     attachType, _, _, output srcMinCard, _, _, _, 

     output trgMinCard, _) AND 

    getConnectionsByType!(attachType, output connections) AND 

    connections.Size()>0 AND 

    getAttachedArchElems!(srcAE-ID, attachType,  

     output attached2src) AND 

    attached2src.Size() > srcMinCard AND 

    getAttachedArchElems!(trgAE-ID, attachType, 

     output attached2trg) AND  

    attached2trg.Size() > trgMinCard 

   ); 

  CreateBinding(bindingType, archElemID, bindID) if  

   ( ArchElemList.Contains(archElemID) AND  

    getConnectionsByType!(bindingType, output bindings) AND 

    META-TYPEDESCRIPTION_getBindingTypeProperties! 

     (bindingType, _, _, _, _, output trgMaxCard) AND 

    bindings.Size() < trgMaxCard ); 

  DestroyBinding(bindingType, archElemID) if  

   ( ArchElemList.Contains(archElemID) AND  

    getConnectionsByType!(bindingType, output bindings) AND 

    META-TYPEDESCRIPTION_getBindingTypeProperties! 

     (bindingType, _, _, _, output trgMinCard, _) AND 

    bindings.Size() > trgMinCard 

   ); 

 

 Transactions 

 BeginConfigurationTransaction(): 

  BEGINCONFIG::=  

   NewTransactionalContext(output transactionID) --> END; 

 

 CreateArchElem(typeName, params, output newID): 

  CREATE::= CreateInstance!(typeName, params, output newID) --> 

      CHECK; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else archElementsCreated.add(newID) --> END; 

 

 CreateAttachment(attachType, srcAE-ID, trgAE-ID, output attID): 

  ATTACH::=  

   META-TYPEDESCRIPTION_getAttachmentTypeProperties! 

    (attachType, _, output srcAEport, _, _, _,  

     output trgAEport, _, _) --> 

   Connect!(srcAE-ID, srcAEport, trgAE-ID, trgAEport,  

    output attID) --> CHECK;  

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsCreated.add(attID) --> END; 

 

 CreateBinding(bindingType, archElemID, output bindID): 

  BIND::=  

   META-TYPEDESCRIPTION_getBindingTypeProperties!(bindingType, 

      output systemPortName, _, output trgAEport, _, _) --> 

   Connect!(“self”, systemPortName, archElemID, trgAEport,  

    output bindID) --> CHECK;  

  CHECK::= CheckConsistence(output transState) --> 



A.2 RECONFIGURATION ELEMENTS 

411 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsCreated.add(bindID) --> END; 

 

 DestroyArchElem(typeName, id): 

    STOP ::= StopElement!(id) -->  

   GetStatus!(id, output status) -->  

   if {status=“Blocked”} then STOPCONNECTIONS else STOP; 

  STOPCONNECTIONS ::=  

   GetConnectionsOfArchElem!(id, output connectionList) --> 

   for each conn in connectionList do ( StopElement!(conn) ) 

   --> REMOVECONNECTIONS; 

  REMOVECONNECTIONS ::= 

   for each conn in connectionList do (  

    GetStatus!(conn, output status) -->  

    if {status=“Blocked”} then connectionsToRemove.add(conn)  

    else STOPCONNECTIONS 

   ) --> CHECK; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else archElementsToDestroy.add(id) --> END; 

       

 DestroyAttachment(attachType, srcAE-ID, trgAE-ID): 

  GETATTID ::= getConnectionsByType!(attachType, connList) -->  

   for each conn in connList do ( 

    getAttachmentProperties!(conn, output archElem1,  

     output archElem2) -->  

    if {archElem1=srcAE-ID AND archElem2=trgAE-ID}  

    then ( <attachmentID=conn> --> STOP ) 

    else 0 

   ); 

    STOP ::= StopElement!(attachmentID) -->  

   GetStatus!(attachmentID, output status) -->  

   if {status=“Blocked”} then CHECK else STOP; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsToRemove.add(attachmentID)  --> END; 

 

 DestroyBinding(bindingType, archElemID): 

  GETBIND-ID ::= getConnectionsByType!(bindingType, connList) -->  

   for each conn in connList do ( 

    getBindingProperties!(conn, _, output AE-ID) -->  

    if {AE-ID=archElemID} then ( <bindingID=conn> --> STOP ) 

    else 0 

   ); 

    STOP ::= StopElement!(bindingID) -->  

   GetStatus!(bindingID, output status) -->  

   if {status=“Blocked”} then CHECK else STOP; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else connectionsToRemove.add(bindingID)  --> END; 

 

 ReplaceArchElem(idToReplace, newType, initValues, output newID): 

    STOPOLDELEM ::= StopElement!(idToReplace) -->  

   GetStatus!(idToReplace, output status) -->  

   if {status=“Blocked”} then STOPCONNECTIONS else STOPOLDELEM; 

  STOPCONNECTIONS ::=  



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

412 

   GetConnectionsOfArchElem!(idToReplace, output connectionList) 

   --> for each conn in connectionList do  

     ( StopElement!(conn) ) 

   --> MIGRATE; 

  MIGRATE ::= 

   typeOf!(idToReplace, output oldType) --> 

   IsSerializableType!(oldType, output isSerializable) --> 

   // Check if old state can be migrated 

   if {isSerializable=false} 

   then ( 

    // State of old instance cannot be obtained: it is lost 

    CreateInstance!(newType, initValues, output newID) 

   ) 

   else ( 

    // State of old instance can be obtained: 

    SerializeState!(idToReplace, output oldState) --> 

    // Check if simple instance replacement is performed 

    if {oldType=newType}  

    then ( 

     CreateInstanceFromSerializedState!(oldType, oldState,  

      output newID) 

    ) 

    else ( 

     // We are performing type updating 

     // Check if new type can convert old state 

     CanMigrateStateFromOldVersions!(newType,  

      output canMigrate) --> 

     if {canMigrate=true} 

     then ( 

      ConvertStateFromPreviousVersion!(newType,initValues, 

       oldType, oldState, output transformedState) --> 

      CreateInstanceFromSerializedState!(newType, 

       transformedState, output newID) 

     ) 

     else ( 

      // New type cannot accept old structures. Then the  

      // old state is lost 

      CreateInstance!(newType, initValues, output newID) 

     ) 

    ) 

   ) 

   --> MIGRATEOLDCONNS; 

  MIGRATEOLDCONNS ::= 

   for each conn in connectionList do ( 

    typeOf!(conn, output connType) --> 

    isBinding!(conn, output result) --> 

    if {result=true} then ( 

     // If conn is a binding connection, recreate... 

     CreateBinding(connType, newID, output newbindID) --> 

     DestroyBinding(conn) 

    ) 

    else ( 

     // If is an attachment connection, recreate... 

     getAttachmentProperties!(conn, output archElem1,  

      output archElem2) --> 

     if {archElem1=idToReplace}  

     then CreateAttachment(connType, newID, archElem2,  

        output attID)  

     else CreateAttachment(connType, archElem1, newID,  

        output attID) --> 



A.2 RECONFIGURATION ELEMENTS 

413 

     DestroyAttachment(conn)  

    ) 

   ) --> CHECK; 

  CHECK::= CheckConsistence(output transState) --> 

    if {transState=“ROLLBACK”}  

   then RollbackConfigurationTransaction()  

   else (  archElementsToDestroy.add(idToReplace) -->  

      archElementsCreated.add(newID) ) --> 

   END; 

 

 EndConfigurationTransaction():  

  CHECK::=  

   CheckArchitectureConsistency(output isConsistent) --> 

   if { isConsistent=true AND transState=“ACTIVE” }  

    then COMMIT   

    else RollbackConfigurationTransaction(); 

  COMMIT::=     

   foreach connID in connectionsToRemove do 

    ( Disconnect!(connID) )  --> 

   foreach archElemID in archElementsToDestroy do 

    ( DestroyInstance!(archElemID) ) --> 

   foreach connID in connectionsCreated do 

    ( StartElement!(connID) )  --> 

   foreach archElemID in archElementsCreated do 

    ( StartElement!(archElemID) )  --> 

   getElementsOfStatus(“passive”, passivatedElements) --> 

   foreach stoppedElem in passivatedElements do 

    (StartElement!( stoppedElem ) ) -->  

   getConfigurationSpecification!(output newConfig) -->  

   SavePRISMASpec(systemID, newConfig) --> FINISH; 

  FINISH::= FinishTransactionalContext(transactionID) --> END; 

 

 RollbackConfigurationTransaction(): 

  ROLLBACK::=  

   foreach connID in connectionsCreated do 

    ( Disconnect!(connID) )  --> 

   foreach archElemID in archElementsCreated do 

    ( DestroyInstance!(archElemID) ) --> 

   foreach archElemID in archElementsToDestroy do 

    ( StartElement!(archElemID) ) --> 

   foreach connID in connectionsToRemove do 

    ( StartElement!(connID) )  -->  

   getElementsOfStatus(“passive”, passivatedElements) --> 

   foreach stoppedElem in passivatedElements do 

    (StartElement!( stoppedElem) ) --> FINISH; 

  FINISH::= FinishTransactionalContext(transactionID) --> END; 

 

 // Checks that all the required ports are bound to provided ports  

 CheckArchitectureConsistency(output isConsistent: boolean): 

  CHECKCONSISTENCY::= 

   foreach archElemID in ArchElemList do ( 

    getArchElementProperties!(archElemID,_, output portsList) 

    --> 

    foreach port in portsList do ( 

     getPortProperties!(archElemID, port, output isProvided,  

      output isRequired,_, output connectionList) --> 

     if { isRequired=true}  

      then ( 

       if {connectionList.Size()=0}  

       // A disconnected port has been found 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

414 

       then ( <isConsistent:=false> --> END ) 

      ) 

      else 0 

    ) 

   ) --> 

   <isConsistent:=true> --> END; 

 

End ReconfigurationCoordination Aspect; 

A.2.4.2 Generated part: VisionSystemReconfigurationServices 

ReconfigurationCoordination Aspect VisionSystemReconfigurationServices 

 using I_VisionSystemReconfigurationServices 

  

// *************************************************************** 

// Automatically-generated domain-specific aspect for coordinating 

// ad-hoc and programmed reconfigurations of VisionSystem instances.  

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 Services 

  in begin(); 

  in end(); 

  

 // *** DOMAIN-SPECIFIC RECONFIGURATION SERVICES *** 

  //*** Create- Services *** 

  in create-ImageProcCard(cameraPosition: string,  

     output newInstanceID:string); 

  in create-ImageProcSoftware(cameraPosition: string, 

     output newInstanceID: string); 

 

  //*** Destroy- Services *** 

  in destroy-imageProcCard(instanceID : string); 

  in destroy-imageProcSoftware(instanceID : string); 

 

  //*** Replace- Services *** 

  in replace-VideoCaptureCard(oldInstanceID: string,  

     frameRate: natural, output newInstanceID : string); 

  in replace-ImageProcCard(oldInstanceID: string,  

     cameraPosition: string, output newInstanceID : string); 

  in replace-ImageProcSoftware(oldInstanceID: string,  

     cameraPosition: string, output newInstanceID : string); 

  in replace-VisionWatchdog(oldInstanceID: string,  

     timeout: natural, output newInstanceID : string); 

  in replace-VCC-Conn(oldInstanceID: string,  

     output newInstanceID : string); 

  in replace-IPC-Conn(oldInstanceID: string,  

     output newInstanceID : string); 

 

  //*** Attach- Services *** 

  in attach-Att_VCCConn_IPC(VCCConn-ID : string, IPC-ID: string); 

  in attach-Att_VCCConn_IPCSW(VCCConn-ID:string,IPCSW-ID:string); 

  in attach-Att_IPC_IPCConn(IPC-ID : string, IPCConn-ID: string); 

  in attach-Att_IPCSW_IPCConn(IPCSW-ID:string, IPCConn-ID:string); 

 

  //*** Detach- Services *** 

  in detach-Att_VCCConn_IPC(VCCConn-ID: string, IPC-ID: string); 

  in detach-Att_IPC_IPCConn(IPC-ID: string, IPCConn-ID: string); 

  in detach-Att_VCCConn_IPCSW(VCCConn-ID:string,IPCSW-ID:string); 

  in detach-Att_IPCSW_IPCConn(IPC-ID: string,IPCConn-ID: string); 



A.2 RECONFIGURATION ELEMENTS 

415 

 

  //*** Bind- Services *** 

  // NONE 

  //*** Unbind- Services *** 

  // NONE 

 

  // *** Services to query the current configuration (read-only) 

  in getInstances-videoCaptureCard(output instances: list); 

  in getInstances-imageProcCard(output instances: list); 

  in getInstances-imageProcSoftware(output instances: list); 

  in getInstances-visionWatchdog(output instances: list); 

  in getInstances-VCC-Conn(output instances: list); 

  in getInstances-IPC-Conn(output instances: list); 

 

 Played_Roles 

  RECONFPLANS for I_VisionSystemReconfiguration ::= 

   BeginConfigurationTransaction?() --> 

   (  create-imageProcCard?(newID) +  

    destroy-imageProcCard?(instanceID) +  

    replace-imageProcCard?(oldID, newID) + 

    attach-Att_VCCConn_IPC?(VCC-ConnID, IPC-ID) + 

    detach-Att_VCCConn_IPC?(VCC-ConnID, IPC-ID) + 

    ... 

    ... // Rest of available Reconfiguration Services 

    ... 

    RollbackConfigurationTransaction?() + 

    EndConfigurationTransaction?() 

   ); 

 

 Protocol 

  VISIONSYSTEMRECONFIGURATION ::= begin() --> WAITING; 

  WAITING ::=  

   RECONFPLANS.BeginConfigurationTransaction?() --> RECONFIG; 

  RECONFIG ::=  

  ( // *** Provided Reconfiguration Services *** 

    RECONFPLANS.create-imageProcCard?(cameraPosition, newID) 

    --> CreateArchElem(“ImageProcCard”,  

      new list[cameraPosition], newID) 

   + RECONFPLANS.destroy-imageProcCard?(instanceID) 

    --> DestroyArchElem(“ImageProcCard”,instanceID) 

   + RECONFPLANS.replace-imageProcCard?(oldInstanceID,  

     cameraPosition, newInstanceID)  

    --> ReplaceArchElem(oldInstanceID,“ImageProcCard”,  

     new list[cameraPosition], newInstanceID) 

   + RECONFPLANS.attach-Att_VCCConn_IPC?(VCC-ConnID, IPC-ID) 

    --> CreateAttachment(“Att_VCCConn_IPC”, VCC-ConnID,  

     IPC-ID, newAttID) 

   + RECONFPLANS.detach-Att_VCCConn_IPC?(VCC-ConnID, IPC-ID) 

    --> DestroyAttachment(“Att_VCCConn_IPC”, VCC-ConnID,  

     IPC-ID) 

   + RECONFPLANS.create-imageProcSoftware?(cameraPos, newID) 

    --> CreateArchElem(“ImageProcSoftware”, 

     new list[cameraPos], newID) 

   + RECONFPLANS.destroy-imageProcSoftware?(instanceID) 

    --> DestroyArchElem(“ImageProcSoftware”,instanceID) 

   + RECONFPLANS.replace-imageProcSoftware?(oldInstanceID,  

     cameraPosition, newInstanceID)  

    --> ReplaceArchElem(oldInstanceID, “ImageProcSoftware”, 

      new list[cameraPosition], newInstanceID) 

   + RECONFPLANS.attach-Att_VCCConn_IPCSW?(VCC-ConnID,IPCSW-ID) 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

416 

    --> CreateAttachment(“Att_VCCConn_IPCSW”, VCC-ConnID,  

     IPCSW-ID, newAttID) 

   + RECONFPLANS.detach-Att_VCCConn_IPCSW?(VCC-ConnID,IPCSW-ID) 

    --> DestroyAttachment(“Att_VCCConn_IPCSW”, VCC-ConnID,  

     IPCSW-ID) 

    ... 

    ... // Rest of available Reconfiguration Services 

    ... 

  ) --> RECONFIG 

  + ( // *** Introspection services *** 

   +  RECONFPLANS.getInstances-videoCaptureCard?(instances) 

    --> getArchElementInstances!(“videoCaptureCard”,instances) 

   +  RECONFPLANS.getInstances-imageProcCard?(instances) 

    --> getArchElementInstances!(“imageProcCard”,instances) 

   +  RECONFPLANS.getInstances-imageProcSoftware?(instances) 

    -->getArchElementInstances!(“imageProcSoftware”,instances) 

   +  RECONFPLANS.getInstances-visionWatchdog?(instances) 

    --> getArchElementInstances!(“visionWatchdog”,instances) 

   +  RECONFPLANS.getInstances-VCC-Conn?(instances) 

    -->getArchElementInstances!(“VCC-Conn”,instances) 

   +  RECONFPLANS.getInstances-IPC-Conn?(instances) 

    --> getArchElementInstances!(“IPC-Conn”,instances) 

  ) --> RECONFIG 

  + RECONFPLANS.RollbackConfigurationTransaction?()--> WAITING  

  + RECONFPLANS.EndConfigurationTransaction?()--> WAITING;  

 

End ReconfigurationCoordination Aspect 

VisionSystemReconfigurationServices; 

A.2.5 Architecture Monitoring Aspect 

ArchitectureMonitoring Aspect  

 

// *************************************************************** 

// Platform-dependent aspect for monitoring and introspecting  

// System instances at runtime. 

// 

// Here are described the public services that are provided. 

// Internal behaviour is provided by low-level implementations. 

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 Attributes 

  // All of them private, only shown for descriptive use 

  Constant 

   systemID: string; // Reference to the System instance 

  Variable 

   monitoredServices: list; 

   architecturalElements: list; 

   systemPorts: list; 

   attachments: list; 

   bindings: list; 

 

   Services  

  // **** Introspection services **** 

  in typeOf(instanceID: string, output typeName: string); 

  in getConfigurationSpecification(output PRISMAConfSpec: string);  

 

  in getArchElementInstances(typeName: string,  

    output instances: list); 



A.2 RECONFIGURATION ELEMENTS 

417 

    // If typeName==”*” returns all the instances 

  in getAttachedArchElems(archElemID: string, attachType: string, 

    output attachedArchElemIDs: list); 

    // If attachType==”*” returns all the connections of 

    // archElemID 

  in getConnectionsOfArchElem(archElemID: string,  

    output connectionList: list); 

    // If archElemID==”*” returns all the created connections 

  in getConnectionsByType(connectionType: string,  

    output connectionList: list); 

  in isAttachment(connID: string, isAtt: boolean); 

  in isBinding(connID: string, isBind: boolean); 

 

  in getArchElementProperties(archElemID: string, 

    output properties: list, output portsList: list); 

    // If instanceID=”self” the properties of System instance 

    // are returned 

  in getPortProperties(archElemID: string, portName: string, 

    output isProvided: boolean, output isRequired: boolean,  

    output interface: string, output connectionList: list);  

    // If archElemID=”self”, the properties of System ports 

    // are queried 

  in getArchElementInitializationValues(archElemID: string, 

    output initValues: list); 

  in getAttachmentProperties(connectionID: string,  

    output instance1: string, output instance2: string); 

  in getBindingProperties(connectionID: string,  

    output sysPort: string, output archElemID: string); 

 

  // **** Runtime status **** 

  in getStatus(elementID: string, output status: string); 

  in getElementsOfStatus(status: string, output elemIDList: list); 

   // Return the elements that are in a specific “status”  

 

  // **** Event interception services ****   

  in beforeServiceRequest(elemID: string, serviceName: string,  

    output params: list);  

  in afterServiceRequest(elemID: string, serviceName: string,  

    output params: list);  

  in insteadOfServiceRequest(elemID: string, serviceName: string,  

    condition: string, replacingService: string,  

    output params: list);  

  in monitoredServices(output serviceList: list); 

 

 Played_Roles 

  // Services provided for Ad-hoc reconfiguration 

  INTROSPECT for I_SystemInstanceIntrospectionServices ::= 

   typeOf?(elementID, typeName) + 

   getConfigurationSpecification?(PRISMAConfigSpec) + 

   getArchElementInstances?(typeName, instances) + 

   getAttachedArchElems?(archElemID, attachType, attachedAEs) + 

   ...  

   // any service of I_SystemInstanceIntrospectionServices  

   

End ArchitectureMonitoring Aspect; 

A.2.6 Architecture Effector Aspect 

ArchitectureEffector Aspect 

 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

418 

// *************************************************************** 

// Platform-dependent aspect for changing System instances at runtime. 

//  

// Here are described the public services that are provided.  

// Internal behaviour is provided by low-level implementations. 

// CANNOT BE CHANGED BY THE USER 

// *************************************************************** 

 

 Services 

  // Services for Safe Stopping 

  in StartElement(elemID: string);  

   // Reach an Active status. 

  in StopElement(elemID: string);   

   // Reach a Quiescent status. This may require the passivation  

   // of neighbours 

  in PassivateElement(elemToPassivate: string,  

    blockedElement: string); 

   // Passivates an element with respect the interactions with  

   // another element 

 

  // Basic services for Reconfiguration 

  in CreateInstance(typeName: string, initParams: list,  

    output instanceID: string); 

  in DestroyInstance(instanceID: string); 

  in Connect(instance1: string, port1: string, instance2: string,  

    port2: string, output connectionID: string); 

  in Disconnect(connectionID: string); 

 

  // Auxiliary services for Mobility, Recovery and Updating 

  in IsSerializableType(typeName: string,  

    output isSerializable: boolean); 

  in SerializeState(instanceID: string, output state: string); 

  in CreateInstanceFromSerializedState(typeName: string,  

    serializedState: string,  output instanceID: string); 

  in CanMigrateStateFromOldVersions(typeName: string,  

    output canMigrate: boolean); 

  in ConvertStateFromPreviousVersion(typeName: string, 

    oldType: string, oldState: string,  

    newRequiredValues: list, output transformedState: string); 

 

End ArchitectureEffector Aspect; 

A.3 Type Evolution Elements 

A.3.1 Data structures 

A.3.1.1 Related to simple types 

SimpleSpec 

Data Structure SimpleSpec  

 

 Attributes 

  Variable 

   typeName: string; 

   namespace: string; 

   kind: { Component | Connector }; 

   version: string; 



A.3 TYPE EVOLUTION ELEMENTS 

419 

 

   aspectList: list(AspectInfo); 

   weavingList: list(WeavingInfo); 

   portList: list(PortInfo); 

   constructorList: list(ConstructorInfo); 

   destructor: list(DestructorInfo); 

 

   evolutionSteps: list(STEvolutionStep); 

 

 Services 

  AddAspect(aspectType: string, parameters: string); 

  RemoveAspect(aspectType: string); 

  ReplaceAspect(aspectToReplace: string, newAspectType: string, 

   newAspectParameters: string); 

  AddPort(portName: string, interface: string,  

   playedRole: string); 

  RemovePort(portName: string); 

  AddWeaving(sourceAspect: string, sourceMethod: string, 

   sourceParameters: list, weavingType: string,  

   targetAspect: string, targetMethod: string, 

   targetParameters: list, transfFunctions: list); 

  RemoveWeaving(sourceAspect: string, sourceMethod: string, 

   weavingType: string, targetMethod: string); 

  StopAspect(aspectType: string); 

  DefineConstructor(constructorParameters: list(ParamInfo), 

   expressions: list(Expression)); 

  DefineDestructor(expressions: list(Expression)); 

 

End_Data_Structure SimpleSpec 

AspectInfo 

Data Structure AspectInfo 

 Attributes 

  aspectName: string; 

  typeDefinition: string;  

   // Reference to the aspect definition or implementation 

  concern: string; // eg. Functional, Presentation, etc. 

  interfaces: list(string); 

  playedRoles: list(string); 

End_Data_Structure AspectInfo; 

PortInfo 

Data Structure PortInfo 

 Attributes 

  portName: string;  

  portInterface: string; 

  portPlayedRole: string; 

  isProvided: boolean; 

  isRequired: boolean; 

End_Data_Structure PortInfo; 

WeavingInfo 

Data Structure WeavingInfo 

 Attributes 

  sourceAspect: string; // Aspect to be intercepted 

  sourceMethod: string; // Method to be intercepted 

  sourceParameters: list(string);  



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

420 

  weavingType: string; // Before, After, Instead, InsteadIf 

  targetAspect: string; 

  targetMethod: string; 

  targetParameters: list(string);  

  transfFunctions: list(string); 

End_Data_Structure WeavingInfo; 

A.3.1.2 Related to composite types 

CompositeSpec 

Data Structure CompositeSpec  

 

 Attributes 

  Variable 

   typeName: string; 

   namespace: string; 

   kind: { System }; 

   version: string; 

 

   architecturalTypeList: list(AETypeInfo); 

   attachmentTypeList: list(AttTypeInfo); 

   bindingTypeList: list(BindTypeInfo); 

   portList: list(PortInfo); 

   constructorList: list(ConstructorInfo); 

   destructor: list(DestructorInfo); 

 

   evolutionSteps: list(CTEvolutionStep); 

 

 Services 

  AddArchitecturalType(AEName: string, typeDefinition: string, 

   minCard: integer, maxCard: integer); 

   // aeName: Name of the architectural type in the System 

   //    (i.e. an alias).  

   // typeDefinition: A reference to the concrete type 

   //    specification or implementation. 

 

  AddAttachmentType(attName: string, sourceAE: string,  

   srcPort: string, srcMinCard: integer, srcMaxCard: integer, 

   targetAE: string, trgPort: string, trgMinCard: integer, 

   trgMaxCard: integer); 

  AddBindingType(bindName: string, sysPort: string,  

   targetAE: string, trgMinCard:integer, trgMaxCard:integer); 

  AddPort(portName: string, interface: string); 

  RemoveArchitecturalType(AEName: string); 

  RemoveAttachmentType(attName: string); 

  RemoveBindingType(bindName: string); 

  RemovePort(sysPortName: string); 

  UpdateArchitecturalType(oldType: string, newType: string, 

   minCard: integer, maxCard: integer); 

  UpdateArchitecturalTypeCard(AEName: string, 

   newMinCard: integer, newMaxCard: integer); 

  UpdateAttachmentType(attName: string, srcMinCard: integer, 

   srcMaxCard: integer, trgMinCard: integer, 

   trgMaxCard:integer); 

  UpdateBindingType(bindName: string, trgMinCard: integer, 

   trgMaxCard: integer); 

  DefineConstructor(constructorParameters: list(ParamInfo), 

   expressions: list(Expression)); 

  DefineDestructor(expressions: list(Expression)); 



A.3 TYPE EVOLUTION ELEMENTS 

421 

 

End_Data_Structure CompositeSpec 

Architectural Element Info 

Data Structure AETypeInfo 

 Attributes 

  name: string; // Name of the architectural type in the System 

  minCard: integer;  

  maxCard: integer; 

  typeDefinition: string; // Reference to the implementation 

End_Data_Structure AETypeInfo; 

AttachmentType Info 

Data Structure AttTypeInfo 

 Attributes 

  attName : string;  

  srcArchElemType: string; srcAEport: string; 

  srcMinCard: integer;  

  srcMaxCard: integer;  

  trgArchElemType: string; trgAEport: string; 

  trgMinCard: integer;  

  trgMaxCard: integer; 

End_Data_Structure AttTypeInfo; 

BindingType Info 

Data Structure BindTypeInfo 

 Attributes 

  name : string;  

  systemPortName: string; 

  trgArchElemType: string; trgAEport: string; 

  trgMinCard: integer;  

  trgMaxCard: integer; 

End_Data_Structure BindTypeInfo; 

A.3.1.3 Constructor and destructor 

ConstructorInfo  

Data Structure ConstructorInfo 

 Attributes 

  parameters: list(ParamInfo); 

  expressions: list(Expression);  

End_Data_Structure ConstructorInfo; 

DestructorInfo 

Data Structure DestructorInfo 

 Attributes 

  expressions: list(Expression);  

End_Data_Structure DestructorInfo; 

ParamInfo 

Data Structure ParamInfo 

 Attributes 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

422 

  parameterName: string;  

  parameterType: string; 

End_Data_Structure ParamInfo; 

Expression 

Data Structure Expression 

 Attributes 

  varName: string;  // Name of a variable for assignments 

  varType: string;  // Type of the variable 

  expression: string; // Expression 

 

/* This simple structure allows us to encapsulate the following 

statements: 

  Variable declaration  varType varName; 

  Statement  expression; 

  Variable assignment  varName = expression; 

  Declaration and assignment  varType varName = expression; 

*/ 

End_Data_Structure Expression; 

A.3.1.4 CTEvolutionStep 

Data structure CTEvolutionStep 

 Attributes 

  action : {Add | Remove | Replace | Start | Stop}; 

  type: { ArchitecturalElement | Attachment | Binding | Port }; 

  data: { ArchitecturalElementInfo | AttachmentInfo |  

      BindingInfo | PortInfo | ReplacementInfo }; 

End_Data_Structure CTEvolutionStep; 

A.3.1.5 STEvolutionStep 

Data structure STEvolutionStep 

 Attributes 

  action : {Add | Remove | Replace | Start | Stop}; 

  type: { Aspect | Port | Weaving }; 

  data: { AspectInfo | PortInfo | WeavingInfo |  

      ReplacementInfo }; 

End_Data_Structure STEvolutionStep; 

A.3.1.6 ReplacementInfo 

Data structure ReplacementInfo 

 Attributes 

  oldAspect : AspectInfo; 

  newAspect : AspectInfo; 

End_Data_Structure ReplacementInfo; 

A.3.2 Interfaces 

A.3.2.1 I_SimpleTypeDescription 

Interface I_SimpleTypeDescription 

 

// *************************************************************** 

// Interface providing type introspection services for  



A.3 TYPE EVOLUTION ELEMENTS 

423 

// simple architectural types (i.e. Components and Connectors) 

// *************************************************************** 

  

 getTypeSpecification(output xmlSpec: string);  

 getPorts(output portsList: list); 

 getAspectTypes(output aspectTypesList: list); 

 getWeavings(output weavingList: list); 

 

 getAspectTypeProperties(aspectName: string,  

  output typeDefinition: string, output concern: string, 

  output interfaces: list, output playedRoles: list); 

 getPortProperties(portName: string,  

  output isProvided: boolean, output isRequired: boolean,  

  output interface: string, output playedRole: string);  

 getWeavingProperties(id: string,  

  output sourceAspect: string, output sourceMethod: string, 

  output sourceParameters: list, output weavingType: string,  

  output targetAspect: string, output targetMethod: string, 

  output targetParameters: list, output transfFunctions: list); 

End_Interface I_SimpleTypeDescription;    

A.3.2.2 I_CompositeTypeDescription 

Interface I_CompositeTypeDescription 

 

// *************************************************************** 

// Interface providing type introspection services for  

// System architectural types. 

// *************************************************************** 

  

 getTypeSpecification(output xmlSpec: string);  

 getSystemPorts(output portsList: list); 

 

 getArchElementTypes(output archElementList: list); 

 getAttachmentTypes(output attachmentList: list); 

 getBindingTypes(output bindingList: list); 

 

 getArchTypeProperties(aeName: string,  

  output typeDefinition: string, output portList: string,  

  output minCard: integer, output maxCard: integer); 

  // aeName: Name of the architectural type inside the System 

  //    (i.e. an alias).  

  // typeDefinition: A reference to the concrete type 

  //    specification or implementation. 

 getPortProperties(archElemType: string, portName: string, 

  output isProvided: boolean, output isRequired: boolean,  

  output interface: string);  

 getAttachmentTypeProperties(attType: string,  

  output srcArchElemType: string, output srcAEport: string, 

  output srcMinCard: integer, output srcMaxCard: integer, 

  output trgArchElemType: string, output trgAEport: string, 

  output trgMinCard: integer, output trgMaxCard: integer); 

 getBindingTypeProperties(bindType: string,  

  output systemPortName: string,  

  output trgArchElemType: string, output trgAEport: string, 

  output trgMinCard: integer, output trgMaxCard: integer); 

 

 getConnectionsofType(archElemType: string,  

  output attachments: list, output bindings); 

 getAttachedTypes(archElemType: string,  



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

424 

  output attachedArchTypes: list); 

 

End_Interface I_CompositeTypeDescription;    

A.3.2.3 I_SerializableType 

Interface I_SerializableType 

 

// *************************************************************** 

// Services that must provide a type to support the 

// Dynamic Updating (state migration), Recovery or Mobility 

// *************************************************************** 

  

 SerializeState(output exportedState: string); 

 CreateInstanceFromSerializedState(serializedState: string, 

   output instanceID: string); 

 

End_Interface I_SerializableType;    

A.3.2.4 I_IncrementalUpdating 

Interface I_IncrementalUpdating 

 

// *************************************************************** 

// Services that must provide a type to support the 

// migration of instances from previous versions. 

// *************************************************************** 

  

 ConvertStateFromPreviousVersion(oldTypeName: string,  

  oldState: string, newRequiredValues: list,  

  output transformedState: string); 

 CreateInstanceFromSerializedState(serializedState: string, 

   output instanceID: string); 

 

End_Interface I_IncrementalUpdating;    

A.3.3 Type Description Aspect 

A.3.3.1 Data structures: TypeVersion 

Data Structure TypeVersion 

 Attributes 

  versionID: int; // Version number, where 0 is the initial 

  typeDefinition: string;  

   // Name of the type assembly containing executable code 

  versionDiffs: list(STEvolutionStep); 

   // Evolution steps to migrate from versionID-1  

End_Data_Structure TypeVersion; 

A.3.3.2 Reification of simple types: SimpleTypeDescription 

TypeDescription Aspect SimpleTypeDescription  

 using I_SimpleTypeDescription 

 

 Attributes 

  Constant 

   typeName: string; 

   kind: string; // Component or Connector 



A.3 TYPE EVOLUTION ELEMENTS 

425 

 

  Variable 

   // Data structures for type reification 

   currentVersion: int; 

   aspects: list(AspectInfo); 

   weavings: list(WeavingInfo); 

   ports: list(PortInfo); 

   constructors: list(ConstructorInfo); 

   destructor: list(DestructorInfo); 

 

   // Auxiliary attributes 

   currentTypeVersionFile: string; 

    // File with the binary code of the current version 

   typeSpecObject: SimpleSpec; 

    // Keeps the last generated version of SimpleSpec 

   reificationIsValid: boolean; 

    // True if data stored about the type is still valid 

   reificationsBlocked: boolean;  

    // If true, reify operations are temporarily suspended 

   oldVersions: list(TypeVersion); 

    // Version management 

 

 Services 

  in begin(typeName: string,kind: string) 

   Valuations 

    [begin(typeName,kind] 

    this.typeName=typeName; 

    this.kind=kind; 

 

  in Reify(output reification: SimpleSpec) 

   // Ommitted... 

 

  in Stop()   // Blocks reifications temporarily 

   Valuations 

    [Stop()] reificationsBlocked=true; 

 

  in VersionChanged(newTypeDefinition:string, 

     versionDiffs: list(STEvolutionStep)) 

   Valuations 

    [VersionChanged(newTypeDefinition,versionDiffs)] 

    currentTypeVersionFile=newTypeDefinition; 

    oldVersions.add(new TypeVersion(currentVersion+1, 

     newTypeDefinition, versionDiffs); 

    reificationIsValid=false; 

    reificationsBlocked=false; 

 

  in GetIncrementalChanges(sourceVersion: int,  

     targetVersion: int,  

     output versionDiffs: list(STEvolutionStep)); 

 

  // Services offered through the TypeIntrospectionPort 

  in getPorts(output portsList: list); 

  in getAspectTypes(output aspectTypesList: list); 

  in getWeavings(output weavingList: list); 

  in getAspectTypeProperties(aspectName: string,  

    output typeDefinition: string, output concern: string, 

    output interfaces: list, output playedRoles: list); 

  in getPortProperties(portName: string,  

    output isProvided: boolean, output isRequired: boolean,  

    output interface: string, output playedRole: string);  



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

426 

  in getWeavingProperties(id: string,  

    output sourceAspect: string, output sourceMethod: string, 

    output sourceParameters: list, output weavingType: string,  

    output targetAspect: string, output targetMethod: string, 

   output targetParameters: list, output transfFunctions: list); 

  ... 

... 

End TypeDescription Aspect SimpleTypeDescription; 

A.3.3.3 Reification of composite types: CompositeTypeDescription 

TypeDescription Aspect CompositeTypeDescription 

 using I_CompositeTypeDescription 

 

 Attributes 

  Constant 

   typeName: string; 

 

  Variable 

   // Data structures for type reification 

   currentVersion: int; 

   systemPorts: list(PortInfo); 

   archElements: list(AETypeInfo); 

   attachments: list(AttTypeInfo); 

   bindings: list(BindTypeInfo); 

   constructors: list(ConstructorInfo); 

   destructor: list(DestructorInfo); 

 

   // Auxiliary attributes 

   currentTypeVersionFile: string; 

    // File with the binary code of the current version 

   typeSpecObject: CompositeSpec; 

    // Keeps the last generated version of CompositeSpec 

   reificationIsValid: boolean; 

    // True if data stored about the type is still valid 

   reificationsBlocked: boolean;  

    // If true, reify operations are temporarily suspended 

   oldVersions: list(TypeVersion); 

    // Version management 

 

 Services 

  in begin(typeName: string) 

   Valuations 

    [begin(typeName] this.typeName=typeName; 

 

  in Reify(output reification: CompositeSpec) 

   // Ommitted... 

 

  in Stop()   // Blocks reifications temporarily 

   Valuations 

    [Stop()] reificationsBlocked=true; 

 

  in VersionChanged(newTypeDefinition:string, 

     versionDiffs: list(CTEvolutionStep)) 

   Valuations 

    [VersionChanged(newTypeDefinition,versionDiffs)] 

    currentTypeVersionFile=newTypeDefinition; 

    oldVersions.add(new TypeVersion(currentVersion+1, 

     newTypeDefinition, versionDiffs); 

    reificationIsValid=false; 



A.3 TYPE EVOLUTION ELEMENTS 

427 

    reificationsBlocked=false; 

 

  in GetIncrementalChanges(sourceVersion: int,  

     targetVersion: int,  

     output versionDiffs: list(CTEvolutionStep)); 

 

  // Services offered through the TypeIntrospectionPort  

  in getTypeSpecification(output xmlSpec: string)  

   Valuations 

   [getTypeSpecification(xmlSpec)]  

   xmlSpec=BuildXMLSystemTypeSpec(); 

 

  in getTypeName(output typeName: string) 

   Valuations 

   [getTypeName(typeName)] typeNAme=this.typeName; 

 

  in getSystemPorts(output portsList: list) 

   Valuations 

   [getSystemPorts(portsList)] portsList=systemPorts; 

 

  in getArchElementTypes(output archElementList: list) 

   Valuations 

   [getArchElementTypes(archElementList)]  

   archElementList=archElements; 

 

  in getAttachmentTypes(output attachmentList: list) 

   Valuations 

   [getAttachmentTypes(attachmentList)]  

   attachmentList=attachments; 

 

  in getBindingTypes(output bindingList: list) 

   Valuations 

   [getBindingTypes(bindingList)]  

   bindingList=bindings; 

 

  in getArchTypeProperties(aeName: string,  

    output typeDefinition: string, output portList: string,  

    output minCard: integer, output maxCard: integer); 

   Valuations 

   archElements.Contains(aeName) 

   [getArchTypeProperties(...)] 

    i=archElements.IndexOf(aeName);  

    typeDefinition=archElements[i].typeRef; 

    portList=archElements[i].typeRef.Ports(); 

    minCard= archElements[i].minCard; 

    maxCard= archElements[i].maxCard; 

 

  in getPortProperties(archElemType: string, portName: string, 

    output isProvided: boolean, output isRequired: boolean,  

    output interface: string) 

   Valuations 

    ... // ommitted 

 

  in getAttachmentTypeProperties(attType: string,  

    output srcArchElemType: string, output srcAEport: string, 

    output srcMinCard: integer, output srcMaxCard: integer, 

    output trgArchElemType: string, output trgAEport: string, 

    output trgMinCard: integer, output trgMaxCard: integer) 

   Valuations 

    ... // ommitted 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

428 

 

  in getBindingTypeProperties(bindType: string,  

    output systemPortName: string,  

    output trgArchElemType: string, output trgAEport: string, 

    output trgMinCard: integer, output trgMaxCard: integer) 

   Valuations 

    ... // ommitted 

 

  in getConnectionsofType(archElemType: string,  

    output attachments: list, output bindings) 

   Valuations 

    ... // ommitted 

 

  in getAttachedTypes(archElemType: string,  

    output attachedArchTypes: list) 

   Valuations 

    ... // ommitted 

 

  External Functions 

  BuildXMLSystemTypeSpec();  

   // Builds a PRISMA XML specification from current type spec. 

   // This XML also includes the type version number.  

 End_External Functions 

 

End TypeDescription Aspect CompositeTypeDescription; 

A.3.4 Type Evolution Aspect 

The following fragment shows the specification of a type evolution aspect for 
simple types. In case of composite types, the difference is that the data 
structures CompositeSpec and CTEvolutionStep are used instead of SimpleSpec 
and STEvolutionStep, respectively. 

TypeEvolution Aspect SimpleTypeEvolution  

 

 Attributes 

  Variable 

   // Auxiliary variables 

   isEvolving: boolean; // A type version is being generated 

 

   // Code generation templates 

   builderGenerationTemplate: string; 

 

 Services 

  in begin(codeTemplates: string) 

   Valuations 

    [begin(codeTemplates] 

    builderGenerationTemplate=codeTemplates; 

    isEvolving=false; 

 

  in Reflect(specification: SimpleSpec,  

       evolParams: EvolutionPolicy); 

   Valuations 

    // Ommitted... 

 

  out NewVersionGenerated(versionID: int, typeDefFile: string, 

    versionDiffs: list(STEvolutionStep),  

    evolPolicy: EvolutionPolicy); 



A.3 TYPE EVOLUTION ELEMENTS 

429 

... 

End TypeEvolution Aspect SimpleTypeEvolution; 

A.3.5 Evolution Monitoring Aspect 

A.3.5.1 Data structures 

InstanceInfo 

Data structure InstanceInfo 

 Attributes 

  ID: string; 

  reference: string; // Pointer to the instance  

  currentVersion: int;   

End_Data_Structure InstanceInfo; 

EvolutionProcess 

Data structure EvolutionProcess 

 Attributes 

  targetVersion: int; 

  instancesToEvolve: list(InstanceInfo); 

  remainingRetries: int; 

  evolutionPolicy: EvolutionPolicy; 

End_Data_Structure PendingEvolution; 

EvolutionPolicy 

Data structure EvolutionPolicy 

 Attributes 

  // Strategy for evolving instances 

  evolutionStrategy : { OnlyNew | EvolveAll | ExcludeSome }; 

  exclusionSet : list(string); 

 

  // Maximum time each instance has to apply the changes 

  evolutionTimeoutPerInstance : int; // in milliseconds 

  evolutionRetriesIfTimeoutExceeded : int; 

  actionIfRetriesExceeded: { ForceEvolution | AbortEvolution }; 

 

 // Default evolution policy: evolve all instances in 1 minute 

 // Otherwise, abort the evolution of the instance 

 new() { 

  evolutionPolicy = EvolveAll; 

  exclusionSet = list[]; 

  evolutionTimeoutPerInstance = 10000; 

  evolutionRetriesIfTimeoutExceeded = 6;  

  // Maximum total time to evolve: 10000x6=60000 milliseconds 

  actionIfRetriesExceeded = AbortEvolution; 

 } 

End_Data_Structure EvolutionPolicy; 

A.3.5.2 Simple components: SimpleInstanceMonitoring 

The following fragment shows the specification of an evolution monitoring 
aspect for simple types. In case of composite types, the only difference is that 
the data structure CTEvolutionStep is used instead of STEvolutionStep. 

EvolutionMonitoring Aspect SimpleInstancesMonitoring  



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

430 

 

 Attributes 

  Variable 

   // Instance population 

   population: list(InstanceInfo); 

   // List of time-constrained active evolution processes 

   activeEvolutionProcesses: list(EvolutionProcess); 

 

 Services 

  in ReflectToInstances(evolutionSteps: list(STEvolutionStep),  

    evolutionParams: EvolutionPolicy); 

   Valuations 

    // Ommitted... 

 

  EvolutionProcessMonitoring(evProcess: EvolutionProcess); 

   // This private service is executed periodically to  

   // supervise the evolution of instances 

  suspend(timeout : integer);   

   // This function suspends the current process 

 

  in RegisterInstance(instanceRef: InstanceInfo) 

   Valuations 

   [RegisterInstance(instanceRef)] 

   population.add(instanceRef); 

 

  in UnRegisterInstance(instanceRef: InstanceInfo) 

   Valuations 

   [UnRegisterInstance(instanceRef)] 

   population.remove(instanceRef); 

  ... 

... 

End EvolutionMonitoring Aspect SimpleInstancesMonitoring; 

A.3.6 Builder Aspect 

A.3.6.1 Example for simple types: ImageProcCardBuilder 

The following code shows how a Builder aspect of a simple type, the 
ImageProcCardBuilder, looks like. This code is platform-dependent, because it 
must be directly executable. 

public class ImageProcCardBuilder_v0 : IBuilder { 

 private int typeVersion = 0; 

 public int GetVersion { get {return typeVersion;}} 

 

 SimpleSpec specification; 

 public SimpleSpec Specification { get {return specification;}} 

 

 public ImageProcCardBuilder_v0() { 

  // Definition of relevant type information  

  this.specification = new SimpleSpec(typeof(ImageProcCard), 

   "AgroBot", AElementType.Component); 

  specification.defineConstructor( 

   new ParamInfo[] { 

    new ParamInfo(“cameraPosition”, typeof(string))  

   }, 

   new ExpressionSpec[] { 

    new ExpressionSpec( 

     “ImageProcCardController.begin(cameraPosition);”), 



A.3 TYPE EVOLUTION ELEMENTS 

431 

    new ExpressionSpec(“ImageProcCardGUI.begin();“) 

   } 

  ) 

  specification.defineDestructor( 

   new ExpressionSpec[] { 

    new ExpressionSpec(“ImageProcCardGUI.end();”), 

    new ExpressionSpec(“ImageProcCardController.end();”) 

   } 

  ) 

 } 

 

 public void BuildInstance(ImageProcCard comp,  

       string cameraPosition)  

 { 

  // Building and initialisation of instances 

  IAspect aspect1= new ImageProcCardController(cameraPosition); 

  comp.AddAspect(aspect1); 

 

  IAspect aspect2= new ImageProcCardGUI(); 

  comp.AddAspect(aspect2); 

 

  comp.AddWeaving(aspect2, "showImage", "image”, 

   WeavingType.AFTER, aspect1, "newProcessedImage", "image"); 

  

  comp.AddPort("VideoIn", "I_VideoServices", "VIDEOCARD"); 

  comp.AddPort("ImageOut", "I_ImageProcessingServices",  

   "IMAGEANALYZER"); 

 } 

 

 public void DestroyInstance(ImageProcCard comp) { 

  comp.GetAspect(typeOf(ImageProcCardGUI)).Dispose(); 

  comp.GetAspect(typeOf(ImageProcCardController)).Dispose(); 

  comp.Dispose(); 

 } 

} 

A.3.6.2 Code generation pattern for simple types 

This is the code generation pattern, in C#, which is used to dynamically 
generate a Builder aspect for simple types. 

using System.Reflection; 

using PRISMA; 

using PRISMA.Aspects; 

using PRISMA.Aspects.Types; 

using PRISMA.Components; 

using PRISMA.Components.Weavings; 

using PRISMA.Middleware; 

 

[assembly:AssemblyVersionAttribute("%__Version__%")] 

namespace %__namespace__% { 

 

public class %__TypeName__%Builder_v%__Version__% : IBuilder { 

 private int typeVersion = %__Version__%; 

 public int GetVersion { get {return typeVersion;}} 

 

 SimpleSpec specification; 

 public SimpleSpec Specification { get {return specification;}} 

 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

432 

 public %__TypeName__%Builder_v%__Version__%() { 

  // Definition of relevant type information  

  this.specification = new SimpleSpec( 

   (typeof(%__TypeName__%), "%__namespace__%", 

   %__AEType__%); 

  // Addition of meta-information to the SimpleSpec object 

  %__Specification__% 

 } 

 

 public void BuildInstance(IComponent comp,  

   %__ConstructorParametersDefinition__%)  

 { 

  // Building and initialisation of instances 

  %__ComponentCreation__% 

 

 } 

 

 public void DestroyInstance(%__TypeName__% comp) { 

  %__ComponentDestruction__% 

  comp.Dispose(); 

 } 

}} 

A.3.7 Instance Evolution Planning aspect 

A.3.7.1 Data structure: EvolutionRequest 

Data structure EvolutionRequest 

 Attributes 

  sourceVersion: integer, derivation: targetVersion-1; 

  targetVersion: integer; 

  evolutionSteps: list(STEvolutionStep); 

  evolutionFlags: { forceEvolution | abortEvolution }; 

End_Data_Structure EvolutionRequest; 

A.3.7.2 Aspect InstanceEvolutionPlanning 

InstanceEvolutionPlanning Aspect 

... 

 

Attributes 

 Constant 

  instanceID: string;  

 

 Variable 

  instance_version: int; // Current version 

  pendingEvolutions: queue(EvolutionRequest); 

   // list of pending evolutions: versionID and set of changes 

  isEvolving: boolean; 

   // If the instance is evolving to another version. 

 

  // Auxiliary variables for evolution process management 

  newVersion: int; 

  evolutionSteps: list(STEvolutionStep); 

  partsToStop: list(string); 

  partsToStart: list(string); 

 

  // Variables for transaction management 

  transactionID: string; 



A.3 TYPE EVOLUTION ELEMENTS 

433 

  transState: string = “COMMITTED”; // Default value 

  aspectsAdded : list; 

  aspectsToRemove : list; 

  weavingsToRemove : list; 

  weavingsAdded : list; 

  portsToRemove : list; 

  portsAdded : list;  

 

Triggers 

 // Initiation of an evolution process 

 TransformInstance() when 

  pendingEvolutions.Size()>0 && isEvolving=false; 

 

Services 

 // *** Type-level Interaction Services *** 

 in ReflectToInstance(newVersion: int,  

   evolutionSteps: list(STEvolutionStep)) 

  Valuations 

   [ReflectToInstance(newVersion, evolSteps)] 

   pendingEvolutions.Add( new EvolutionRequest( 

    targetVersion=newVersion, evolutionSteps=evolSteps)); 

 

 in ForceEvolution(versionID: int); 

 in AbortEvolution(versionID: int); 

 

 in GetCurrentVersion(output versionID: int); 

 out GetIncrementalChanges(currentVersion: int, targetVersion: int, 

   output evolutionSteps: list(STEvolutionStep)); 

 

 // *** Internal Evolution Services ***  

 TransformInstance()   

  Valuations 

   [TransformInstance()] 

   // Processing of a pending evolution request 

   evolutionRequest = pendingEvolutions.dequeue(); 

   newVersion = evolutionRequest.targetVersion; 

   evolutionSteps = evolutionRequest.evolutionSteps; 

  

 // *** Atomic change operations *** 

 AddAspect(aspectTypeName: string, parameters: string); 

 RemoveAspect(aspectTypeName: string); 

 ReplaceAspect(aspectToReplace: string, newAspectType: string, 

  newAspectParameters: string); 

 AddPort(portName: string, interface: string, playedRole: string); 

 RemovePort(portName: string); 

 AddWeaving(sourceAspect: string, sourceMethod: string, 

  sourceParameters: list, weavingType: string,  

  targetAspect: string, targetMethod: string, 

  targetParameters: list, transfFunctions: list); 

 RemoveWeaving(sourceAspect: string, sourceMethod: string, 

  weavingType: string, targetMethod: string); 

 

 // *** Transaction Management *** 

 BeginEvolutionTransaction(); 

  Valuations 

   [BeginEvolutionTransaction()] 

    // Initialization of transaction management structures 

   transState = “ACTIVE”; 

   aspectsAdded = new list[]; 

   aspectsToRemove = new list[]; 



APPENDIX A. PRISMA SPECIFICATIONS OF THE VISIONSYSTEM  

434 

   weavingsToRemove = new list[]; 

   weavingsAdded = new list[]; 

   portsToRemove = new list[]; 

   portsAdded = new list[]; 

 EndEvolutionTransaction() 

  Valuations 

   [EndEvolutionTransaction ()] transState=“COMMITTED”; 

 RollbackEvolutionTransaction() 

  Valuations 

   [RollbackEvolutionTransaction()] transState=”ROLLBACKED”; 

 

 // *** Starting and Stopping services *** 

 out StartAspect(aspectID: string); 

 out StopAspect(aspectID: string); 

 out StartPort(portName: string); 

 out StopPort(portName: string); 

 out StopWeaving(sourceAspect: string, targetAspect: string); 

 out StartWeaving(sourceAspect: string, targetAspect: string); 

...  

End_InstanceEvolutionPlanning_Aspect 

A.3.8 Instance Monitoring aspect 

InstanceMonitoring Aspect 

 ...  

 Services  

  in getAspects(output aspectIDs: list);  

  in getPorts(output portIDs: list); 

  in getWeavings(output weavingIDs: list); 

 

  in getAspectProperties(aspectID: string,  

    output aspect: object, output linkedPorts: list, 

    output definedWeavings: list); 

  in getPortProperties(portID: string, output port: object, 

    output linkedAspect: string); 

  in getWeavingProperties(weavingID:string,  

    output sourceAspectID: string,  

    output weavingType: string,  

    output targetAspectID: string); 

 

  in getStatus(elementID: string, output status: string); 

  in getElementsOfStatus(status: string,  

    output elemIDList: list); 

 ...  

End_InstanceMonitoring_Aspect; 

A.3.9 Instance Effector aspect 

InstanceEffector Aspect 

 ...  

 Services  

  // *** Services for Safe Stopping *** 

  in StopPart(elemID: string);    // Reach a Quiescent status. 

  in StartPart(elemID: string);    // Reach an Active status. 

 

  // *** Atomic change operations *** 

  in CreateAspect(aspectTypeName: string, initParams: string, 

    output aspectID: string); 

  in DestroyAspect(aspectID: string); 



A.3 TYPE EVOLUTION ELEMENTS 

435 

  in CreatePort(name: string, interface: string,  

    playedRole: string, output portID: string); 

  in DestroyPort(portID: string); 

  in CreateWeaving(sourceAspectID:string, sourceMethod:string, 

    sourceParameters: list, weavingType: string,  

    targetAspectID: string, targetMethod: string, 

    targetParameters: list, transfFunctions: list, 

    output weavingID: string); 

  in DestroyWeaving(weavingID: string); 

  

  // Services for aspect replacements 

  in SerializeAspectState(aspectID: string,  

    output state: string); 

  in UpdateStateStructure(oldAspectType: string,  

    oldState: string, newAspectType: string, 

    newRequiredValues: list,  

    output transformedState: string); 

  in UnserializeAspectState(aspectType: string,  

    serializedState: string, output aspect: object); 

 ...  

End_InstanceEffector_Aspect; 





  

437 

Appendix B. Extensions of the PRISMA AOADL 

 

APPENDIX B 

EXTENSIONS OF THE 
PRISMA AOADL 

his appendix presents some language constructs that have been added 
to the PRISMA Aspect-Oriented Architecture Description Language 
(AOADL), in order to support the features introduced in this thesis. 
These language constructs are: lists (section B.1), iterations and loops 

(section B.2), and partial definitions (section B.3). 

B.1 Lists 

A new datatype has been added to the PRISMA ADL: list. This datatype 
defines a variable collection of elements of any PRISMA datatype. This 
collection is untyped, so it can contain different kind of elements (integers, 
strings, datetimes, etc.).  

The list datatype provides several methods for its manipulation: 

- new list[]: Creates an empty list. 

- new list[elem1,elem2,...]: Creates a list which is initialised 
with the elements elem1, elem2, ... 

- Size(): Provides the number of elements that the list contains. 

- Add(element): Adds element to the list. The list allows duplicated 
elements. 

- Remove(element): Remove the first occurrence of element from the 
list. If element is not in the list, this service does nothing. 

- list[i]: Returns the element that is in the position i. The range of 
accepted values of i are: 0<=i<Size.  

- list[name]: Returns the element that is identified by “name”. 

T 



APPENDIX B. EXTENSIONS OF THE PRISMA AOADL  

438 

- Contains(element): Returns true if element is contained in the 
list. 

- IndexOf(element): Returns the position of the first item which 
equals element. 

In this way, complex data structures (queues, stacks and specific 
collections) can be built from this base datatype.  

B.2 Iterations and Loops 

Iterative structures are required to operate on groups of elements, as stated in 
(Bradbury et al., 2004). These constructs take the form of well known 
programming structures (while, for and foreach). The modelling of their 
behaviour, using the PRISMA dialect of poliadic π-calculus (Perez, 2006, pp. 
120-126) is provided below: 

 
 

 while{COND}(P) ::=  

   LOOP ::= if COND then (P --> LOOP) else 0  => 

   *(if COND then P else 0)    => 

   *({COND}P) 

 

 

 

 for(INIT, COND, INCR) (P) ::= 

   INIT --> *(if COND then (P --> INCR) else 0)  => 

   INIT --> *({COND}(P --> INCR))   

 

 

 

 foreach VAR in LIST do (P) ::= 

   <i=0> -->  

   *(if i<LIST.Size()  

    then ( <VAR=LIST[i]> --> P --> <i=i+1> ) 

    else 0 

   ) 

 

Where: 

- COND is the condition used to finish an iteration, e.g. {i<=5} 

- P is a process, as defined in pi-calculus, which is going to be repeated 
several times. 

- 0 is a void process. It means the finalization of the current process. 

- INIT is a process which defines a variable and sets an initial value, 
e.g. <i=0> 



B.3 PARTIAL DEFINITIONS OF SOFTWARE ARTEFACTS 

439 

- INCR is a process which increases the variable defined in INIT, eg. 
<i=i+1> 

- LIST represents a list or collection of items (variables), eg. 
list={“e1”,”e2”,”e3”}. It provides a method Size() for 
retrieving the number of items, and an accessor to get its elements by 
means of an index, e.g. list[i]. 

These structures are useful for specifying configuration transactions: for 
iterating on the list of existing instances and select one in particular if some 
conditions apply. For instance, the following PRISMA specification fragment 
uses the foreach construct for selecting, among the set of instances attached to 
a given instance (imageProcCard-ID), only those that are of type VCC-Conn or 
IPC-Conn.  
 

    

 AttachedElements!(ImageProcCard-ID, output attachedIDs) --> 

 foreach elem in attachedIDs do ( 

   ( if TypeOf(elem)==”VCC-Conn” then ...) 

  + ( if TypeOf(elem)==”IPC-Conn” then ...) 

 ) 

 

 

Another example of the use of iterations is shown in the fragment below, 
which belongs to the IncrementalStart configuration transaction (defined in the 
VisionSystemReconfigurationAnalysis aspect, see A.2.3). In this fragment, a 
replace action is executed for each instance of imageProcSoftware component: 
 

... 

 foreach elem in imageProcSoftware-list do ( 

  replace-ImageProcSoftware!(elem, cameraPos, output newID);  

 ) --> 

... 

 

In this way, PRISMA reconfiguration specifications are simplified and easier 
to understand for architects unfamiliar with process algebras and pi-calculus 
in particular.  

B.3 Partial Definitions of Software Artefacts 

The framework presented in this thesis has introduced several software 
artefacts (e.g. the Evolver component, the Reconfiguration Analysis aspect) that 
have user-defined sections and automatically-generated sections. The 
automatically-generated sections define the synchronizations with other 
elements of the evolution infrastructure, and are regenerated each time the 
type is changed. This is the case of the Reconfiguration Analysis aspect, which 
domain-specific services can change if the composite type is changed (see 



APPENDIX B. EXTENSIONS OF THE PRISMA AOADL  

440 

section 6.5.4.2, page 236). The user-defined sections must be defined 
separately, to avoid that the compiler may remove them when regenerating the 
specifications again, thus losing user-defined functionality. This is an issue 
that is common in most of model-driven development supporting tools. 

To deal with this issue, the concept of partially defined software artefacts has 
been used:  

A partially-defined artefact is a software artefact (i.e. a type, a class, a 
specification) that is splitted in several parts, which are combined in the 
compiling process.  

 

This concept is particularly useful to combine user-defined specifications with 
automatically-generated specifications, while also maintaining them separated 
for code-generation purposes. This concept has been integrated into the 
PRISMA AOADL in the following way: 

 Software artefacts that can be partially defined are: aspects, components, 
connectors and systems. 

 A software artefact is partially defined by a base specification and a set 
of partial specifications (one or more).  

o The base specification defines almost all the sections of the 
software artefact, but leaves some undefined. This 
specification uses the keyword: 

is partially defined by <set of partial specifications> 

o Partial specifications extend the base specification by adding 
more elements to an already defined section (e.g. adding 
more ports to the ports section defined in the base 
specification of a component), or by adding elements to a 
section that has not been defined (e.g. the base specification 
of a component does not defines weavings). This specification 
uses the keyword: 

is partial 

 

Next, it is shown how the PRISMA AOADL syntax has been extended to 
include these special keywords52: 

                                                      
52 It is only shown the fragment of the PRISMA AOADL syntax where the partial 
concept is used. For more details about the complete PRISMA AOADL, see (Pérez, 
2006) 



B.3 PARTIAL DEFINITIONS OF SOFTWARE ARTEFACTS 

441 

 
 

<aspect> ::= <concern> Aspect <aspect_name> 

     [is partially defined by 

        <list_aspect_names_of_the_same_concern> |  

      is partial ] 

     [using <interface_name_list>] 

     ... 

 

<component> ::= Component <component_name> 

      [is partially defined by <list_of_component_name > |  

       is partial ] 

      <aspects_importation_seq> 

      ... 

 

<connector> ::= Connector <connector_name> 

      [is partially defined by <list_of_connector_name > |  

       is partial ] 

      <aspects_importation_seq> 

      ... 

 

<system> ::= System <system_name> 

      [is partially defined by <list_of_system_name > |  

       is partial ] 

      <aspects_importation_seq> 

      ... 

 

Examples of how the partial concept is used in PRISMA AOADL 
specifications are provided in Appendix A, sections A.2.2, A.2.3, and A.2.4, 
so are not included here. 





 

443 

List of Figures 

 
LIST OF FIGURES 

Figure 2.1. Advantages for Modularity with AOP.................................................... 45 

Figure 2.2. Crosscutting-concerns in PRISMA architectures ..................................... 49 

Figure 2.3. Black-box view of PRISMA architectural elements ................................. 51 

Figure 2.4. Internal view of simple PRISMA elements ............................................. 52 

Figure 2.5. Internal view of composite PRISMA elements ........................................ 52 

Figure 2.6. Example of a composite type and two possible instantiations ................. 54 

Figure 2.7. Example of a PRISMA System ............................................................... 54 

Figure 2.8. Example of PRISMA Configurations ..................................................... 55 

Figure 2.9. Meta-Object Facility layers and PRISMA models .................................. 56 

Figure 2.10. MDD from the PRISMA Metamodel to Applications ......................... 58 

Figure 2.11. PRISMA CASE (Perez, 2006) ............................................................. 59 

Figure 3.1. A Feedback and Feedforward control system (Morrison et al., 2007) .... 85 

Figure 3.2. Internal Structure of an Autonomic Manager   
(Tewari & Milenkovic, 2006) .............................................................. 87 

Figure 3.3. Reference architecture for Autonomic Computing (IBM, 2006) ............ 89 

Figure 3.4. Computational reflection: main concepts................................................ 91 

Figure 5.1. Agricultural robot designs ...................................................................... 137 

Figure 5.2. Agricultural robot prototypes ................................................................. 137 

Figure 5.3. Software architecture of the Agrobot ..................................................... 140 

Figure 5.4. Notation used ....................................................................................... 140 

Figure 5.5. VisionSystem architectural type ............................................................ 143 

Figure 5.6. PRISMA specification of the VisionSystem type ................................... 144 

Figure 5.7. PRISMA specification of RightCamera and LeftCamera instances ..... 145 

Figure 5.8. White-box view of the RightCamera component instance ..................... 145 

Figure 5.9. PRISMA specification of the ImageProcCard component .................... 146 



LIST OF FIGURES 

444 

Figure 5.10. PRISMA specification of the ImagProcSwController aspect ............... 148 

Figure 5.11. VisionSystem type with fault-tolerance support ................................... 153 

Figure 5.12. Example of alternative configuration in case of failure ...................... 153 

Figure 6.1. Aspects for autonomic reconfiguration .................................................. 165 

Figure 6.2. Example of weavings among aspects ..................................................... 167 

Figure 6.3. Services of the Monitoring aspect .......................................................... 169 

Figure 6.4. Example of PRISMA XML Configuration Model ............................... 171 

Figure 6.5. Event interception behaviour ................................................................ 176 

Figure 6.6. Pattern of the Reconfiguration Analysis Aspect .................................... 180 

Figure 6.7. Example of a Reconfiguration Analysis Aspect (fragment) ................... 182 

Figure 6.8. Reconfiguration triggers: activation by attributes .................................. 183 

Figure 6.9. Reconfiguration triggers: activation by service invocations .................... 184 

Figure 6.10. Reconfiguration triggers: activation by event interceptions ................. 185 

Figure 6.11. Example of Configuration Transactions:  
RepairImageProcessingUnit ................................................................ 186 

Figure 6.12. Example of Configuration Transactions: IncrementalStart ................ 188 

Figure 6.13. Example of auxiliary attributes provided by the Rec.Analysis aspect .. 189 

Figure 6.14. Example of domain-specific reconfiguration services ........................... 194 

Figure 6.15. PRISMA specification of BeginConfigurationTransaction ................. 198 

Figure 6.16. PRISMA specification of EndConfigurationTransaction ................... 200 

Figure 6.17. PRISMA specification of CheckArchitectureConsistency ................... 200 

Figure 6.18. PRISMA specification of RollbackConfigurationTransaction ............ 202 

Figure 6.19. Protocol section of the VisionSystemReconfigurationServices aspect ... 203 

Figure 6.20. PRISMA specification of CreateArchElem......................................... 205 

Figure 6.21. PRISMA specification of CreateAttachment & CreateBinding ......... 207 

Figure 6.22. PRISMA specification of DestroyArchElem ....................................... 208 

Figure 6.23. PRISMA specification of DestroyAttachment & DestroyBinding ...... 210 

Figure 6.24. PRISMA specification of ReplaceArchElem ....................................... 213 

Figure 6.25. Services of the Reconfiguration Effector aspect ................................... 215 

Figure 6.26. Required Interfaces for Supporting Dynamic Updating ...................... 219 

Figure 6.27. Architecture of the VisionSystem type including  
an Evolver component ........................................................................ 223 

Figure 6.28. PRISMA specification of the VisionSystem Type ............................... 224 

Figure 6.29. Internal Structure of an Evolver component ....................................... 225 



LIST OF FIGURES 

445 

Figure 6.30. Extension of the PRISMA metamodel with the Evolver Component . 226 

Figure 6.31. Default Introspection Interface for the VisionSystemEvolver .............. 227 

Figure 6.32. Default Reconfiguration Interface for the VisionSystemEvolver ......... 229 

Figure 6.33. Example of declaration of out services of a Reconf. Analysis aspect ... 230 

Figure 6.34. Example of weaving definitions in the Evolver component ................. 232 

Figure 6.35. Metamodel of the Evolver Component ............................................... 234 

Figure 6.36. Template for Evolver component types................................................ 235 

Figure 6.37. Fragment of VisionSystemEvolverMechanisms ................................... 238 

Figure 6.38. Architecture of the RightCamera composite instance,  with the detail  
of the reconfiguration aspects provided by an Evolver instance ........... 240 

Figure 6.39. Sequence of interactions among reconfiguration aspects  as a result  
of a configuration transaction ............................................................. 242 

Figure 6.40. Architecture of the RightCamera composite instance, after the execution 
of the RepairImageProcessingUnit reconfiguration process ................. 243 

Figure 7.1. Reflective Evolution of Architectural Types .......................................... 257 

Figure 7.2. Model of Type Meta-Instances .............................................................. 258 

Figure 7.3. Structure of a SimpleSpec object ........................................................... 260 

Figure 7.4. Black-box view of the dynamic evolution process ................................... 262 

Figure 7.5. Capturing evolution over time .............................................................. 267 

Figure 7.6. Synchronous evolution model ................................................................ 269 

Figure 7.7. Asynchronous evolution model .............................................................. 270 

Figure 7.8. Internal structure of a Type Meta-Instance ........................................... 275 

Figure 7.9. Weavings that manage the population of instances .............................. 275 

Figure 7.10. Example of an automatically generated evolvable type:  
ImageProcCard ................................................................................... 277 

Figure 7.11. Example of an automatically generated Builder aspect: 
ImageProcCardBuilder ....................................................................... 279 

Figure 7.12. Fragment of the TypeDescription aspect of simple arch. elements ...... 282 

Figure 7.13. Introspection services provided by a SimpleTypeDescription aspect .... 283 

Figure 7.14. Fragment of the TypeEvolution aspect of simple arch. elements ......... 286 

Figure 7.15. Weavings used to temporarily block other meta-instance concerns ...... 287 

Figure 7.16. Code generation pattern for Builder aspects of simple types ............... 290 

Figure 7.17. Fragment of the code generation process for aspects in C# ................. 290 

Figure 7.18. Weavings activated when the Reflect service finishes .......................... 292 



LIST OF FIGURES 

446 

Figure 7.19. Fragment of the EvolutionMonitoring aspect of simple  
architectural elements ......................................................................... 293 

Figure 7.20. Data structure STEvolutionStep ......................................................... 295 

Figure 7.21. EvolutionPolicy data structure ............................................................ 296 

Figure 7.22. EvolutionProcess data structure .......................................................... 298 

Figure 7.23. Integration of instance-level evolution aspects in simple instances ...... 301 

Figure 7.24. Services of the InstanceEvolutionPlanning aspect ............................... 303 

Figure 7.25. Services provided by the InstanceMonitoring aspect ............................ 310 

Figure 7.26. Services provided by the InstanceEffector aspect ................................. 312 

Figure 7.27. Sequence of evolution instructions performed  
to dynamically update the type ImageProcSoftware ............................ 315 

Figure 8.1. Evolution operations over Composite types ........................................... 323 

Figure 8.2. Example of two evolution processes ....................................................... 324 

Figure 8.3. Graphical specification of a type tagged with Evolution tags ............... 325 

Figure 8.4. Textual specification of a type tagged with Evolution tags ................... 326 

Figure 8.5. Function GetTypeVersionSpecification ................................................. 326 

Figure 8.6. Rule R3: AddArchitecturalType ........................................................... 329 

Figure 8.7. Rule R20 - CreateArchitecturalElement ............................................... 332 

Figure 8.8. Rule R21 - ActivateInstantiatedArchElements ..................................... 333 

Figure 8.9. Rule R38 - AdvanceInstanceToNextVersion ........................................ 335 

Figure 8.10. Rule R5 - UpdateAEType................................................................... 338 

Figure 8.11. Rule R37 - ReplaceAE ........................................................................ 340 

Figure 8.12. Type Graph of PRISMA with Evolution Tags ................................... 344 

Figure 8.13. Instance graph of the Sys type (at version 1)   
with the C1 instance (at version 0) .................................................... 346 

Figure 8.14. CreateAE: mapping of rule CreateAE in the AGG tool .................... 347 

Figure 8.15. NACs of the graph transformation rule CreateAE............................. 348 

Figure 8.16. Attribute conditions of the graph transformation rule CreateAE ....... 349 

 



 

447 

References 

 
REFERENCES 

(Abowd et al., 1993) G.D. Abowd, R. Allen, D. Garlan. Using style to 
understand descriptions of software architectures. ACM Software Engineering 
Notes, 18(5):9–20, 1993. 

(Adamek & Plasil, 2005) J. Adamek, F. Plasil. Component composition errors and 
update atomicity: static analysis. Journal of Software Maintenance and 
Evolution, 17:363-377. Wiley, 2005 

(AGG, 2010) TU Berlin Graph Grammar Group. AGG: Attributed Graph 
Grammar System Tool. In: http://user.cs.tu-berlin.de/~gragra/agg/   

(Aksit et al., 1994) M. Aksit, K. Wakita, J. Bosch, L. Bergmans, Y. Yonezawa. 
Abstracting Object Interactions Using Composition Filters. In: ECOOP'93, 
workshop on Object-Based Distributed Programming, 1994. 

(Aldrich et al., 2002) J. Aldrich, C. Chambers, D. Notkin. ArchJava: Connecting 
Software Architecture to Implementation. International Conference on 
Software Engineering (ICSE‟02). Orlando, USA, 2002. 

(Ali et al., 2006) N. Ali, J. Pérez, C. Costa, I. Ramos, J.A. Carsí. Mobile 
Ambients in Aspect-Oriented Software Architectures. K. Sacha (ed.): Software 
Engineering Techniques: Design for Quality. IFIP Series, vol. 227, pp. 37-
48. Springer, 2006. 

(Ali, 2008) N. Ali. Ambients in an Aspect-Oriented Software Architecture. PhD 
Thesis, Universidad Politécnica de Valencia, February 2008. 

(Aliaga-Varea, 2008) S. Aliaga-Varea. Dynamic Reconfiguration of Aspect-Oriented 
Software Architectures using the .NET platform. Ms Science Thesis. Faculty of 
Computer Science, Universidad Politécnica de Valencia, September 2008 
(in Spanish). 

(Allen & Garlan, 1997) R. Allen, D. Garlan. A formal basis for architectural 
connection. ACM Transactions on Software Engineering and Methodology. 
July, 1997. 

http://user.cs.tu-berlin.de/~gragra/agg/


REFERENCES 

448 

(Allen et al., 1998) R. Allen, R. Douence, D. Garlan. Specifying and Analyzing 
Dynamic Software Architectures. Fundamental Approaches to Software 
Engineering (FASE‟98). LNCS, vol. 1382, pp. 21–37. Springer, 1998. 

(Almeida et al., 2001) J.P. Almeida, M. Wegdam, L. Pires, and M. van 
Sinderen. An approach to dynamic reconfiguration of distributed systems based on 
object-middleware. 19th Brazilian Symposium on Computer Networks 
(SBRC 2001). Santa Catarina, Brazil, May 2001. 

(Andersson & Ritzau, 2000) J. Andersson, T. Ritzau. Dynamic code update in 
Jdrums. Workshop on Software Engineering for Wearable and Pervasive 
Computing. Limerick, Ireland, June 2000. 

(Andersson et al., 1998) J. Andersson, M. Comstedt, T. Ritzau. Run-time 
Support for Dynamic Java Architectures. ECOOP'98 workshop on Object-
Oriented Software Architectures (WOOSA'98). Brussels, 1998. Available 
as Technical report 13/98 University of Karlskrona/Ronneby. 

(Andersson et al., 2009) J. Andersson, R. De Lemos, S. Malek, D. Weyns. 
Reflecting on Self-Adaptive Software Systems. ICSE workshop on Software 
Engineering for Adaptive and Self-Managing Systems (SEAMS‟09). 
Vancouver, Canada, 2009. 

(Andersson et al., 2009a) J. Andersson, R. De Lemos, S. Malek, D. Weyns. 
Modeling Dimensions of Self-Adaptive Software Systems. Software Engineering 
for Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. LNCS vol. 
5525, pp. 27-47. Springer 2009. 

(Andrade & Fiadeiro, 2003) L.F. Andrade, J.L. Fiadeiro. Architecture Based 
Evolution of Software Systems. In M. Bernardo & P. Inverardi (eds.): Formal 
Methods for Software Architectures. Lecture Notes in Computer Science, 
vol. 2804. Springer, 2003. 

(Apache, 2010) Apache Commons. Versioning Guidelines. In: 
http://commons.apache.org/releases/versioning.html (last accessed on 
August 2010) 

(Aßmann, 2003) U. Aßmann.  Invasive Software Composition. Springer, 2003. 

(Atkinson & Kuhne, 2003) C. Atkinson, T. Kühne. Model-Driven Development: 
A Metamodeling Foundation. Software, 20(5): 36-41. IEEE, 2003. 

(Ayed & Berbers, 2007) D. Ayed and Y. Berbers. Dynamic Adaptation of 
CORBA Component-Based Applications. In: ACM Symposium on Applied 
Computing (SAC‟07). Seoul, Korea, March 2007. 

(Babaoglu et al., 2005) O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. 
Leonardi, A. P. A. van Moorsel. The Self-Star Vision. In Self-star Properties 

http://commons.apache.org/releases/versioning.html


REFERENCES 

449 

in Complex Information Systems, Conceptual and Practical Foundations. 
Lecture Notes in Computer Science, vol. 3460, pp. 1-20. Springer, 2005. 

(Balasubramaniam et al., 2004) D. Balasubramaniam, R. Morrison, K. 
Mickan, et al. Support for feedback and change in self-adaptive systems. ACM 
SIGSOFT Workshop on Self-Managing Systems (WOSS‟04). Newport 
Beach, CA, USA, 2004. 

(Balasubramaniam et al., 2005) D. Balasubramaniam, R. Morrison, G. Kirby, 
et al. A software architecture approach for structuring autonomic systems. 
Workshop on Design and Evolution of Autonomic Application Software 
(DEAS‟05). St. Louis, Missouri, 2005. 

(Barais et al., 2008) O. Barais, A.F. Le Meur, L. Duchien, J. Lawall. Software 
Architecture Evolution. T. Mens, S. Demeyer (eds.): Software Evolution, 
chapter 10. Springer, 2008. 

(Baresi et al., 2004) L. Baresi, R. Heckel, S. Thone, D. Varro. Style-based 
refinement of dynamic software architectures. 4th Working IEEE/IFIP 
Conference on Software Architecture (WICSA‟04). June 2004. 

(Bas et al., 2003) L. Bass, P. Clements, R. Kazman. Software Architecture in 
Practice. Second Edition, Addison Wesley, 2003. 

(Batista et al., 2005) T. Batista, A. Joolia, G. Coulson. Managing Dynamic 
Reconfiguration in Component-Based Systems. In: 2nd European Workshop on 
Software Architectures (EWSA'05). LNCS, vol. 3527, pp. 1-17. Springer, 
2005. 

(Batista et al., 2008) T. Batista, A. Tadeu, G. Coulson, et al. On the Interplay of 
Aspects and Dynamic Reconfiguration in a Specification-to-Deployment 
Environment. In proc. of: 2nd European Conference on  Software 
Architecture (ECSA‟08). LNCS, vol. 5292. Springer, 2008. 

(Bencomo et al., 2008) N. Bencomo, G.S. Blair, C.A. Flores-Cortés, P. Sawyer. 
Reflective Component-based Technologies to Support Dynamic Variability. In: 2nd 
Int. Workshop on Variability Modelling of Software-Intensive Systems 
(VaMoS‟08). Universität Duisburg-Essen, Germany, 2008. 

(Bennett & Rajlich, 2000) K.H. Bennett, V.T. Rajlich. Software maintenance 
and evolution: a roadmap. Conference on the Future Of Software 
Engineering (FOSE‟00). Limerick, Ireland, June, 2000. 

(Bergadano & Gunetti, 1995) F. Bergadano, D. Gunetti. Inductive Logic 
Programming: From Machine Learning to Software Engineering. MIT Press, 
December 1995. 

(Beydeda et al., 2005) S. Beydeda, M. Book, V. Gruhn. Model-Driven Software 
Development. Springer, 2005. 



REFERENCES 

450 

(Bidan et al., 1998) C. Bidan, V. Issarny, T. Saridakis, A. Zarras. A dynamic 
reconfiguration service for CORBA. IEEE International Conference on 
Configurable Distributed Systems. May 1998. 

(Bierman et al., 2003) G. Bierman, M. Hicks, P. Sewell, G. Stoyle. Formalizing 
dynamic software updating. 2nd InternationalWorkshop on Unanticipated 
Software Evolution. Warsaw, Poland, April, 2003. 

(Blackmore et al., 2004) B.S. Blackmore, S. Fountas, L. Tang, H. Have. Design 
specifications for a small autonomous tractor with behavioural control. Journal of 
the International Commision of Agricultural and Biosystems Engineering 
(CIGR). Vol. 6, Manuscript PM 04 001. July 2004. 

(Blackmore et al., 2006) B.S. Blackmore, H.W. Griepentrog, S. Fountas. 
Autonomous Systems for European Agriculture. In proc. of Automation 
Technology for Off-Road Equipment (ATOE). Bonn, Germany, 2006. 

(Bloom & Day, 1993) T. Bloom, M. Day. Reconfiguration and module 
replacement in Argus: Theory and practice. Software Engineering Journal, 
8(2):102-108, March 1993. 

(Boehm, 1981) B.W. Boehm. A spiral model of software development and 
enhancement. IEEE Computer, Vol. 21, No. 5, pp. 61-72, 1988. 

(Boronat et al., 2004) A. Boronat, J. Pérez, J.A. Carsí, I. Ramos. Two 
Experiences in Software Dynamics. J. UCS 10(4): 428-453, 2004. 

(Bradbury et al., 2004) J.S. Bradbury, J.R. Cordy, J. Dingel, M. Wermelinger. 
A Survey of Self-Management in Dynamic Software Architecture Specifications. In 
proc. of: First ACM SIGSOFT Workshop on Self-Managed Systems 
(WOSS‟04). Newport Beach, CA, 2004. 

(Brosilow & Joseph, 2002) C. Brosilow, B. Joseph. Techniques of Model-Based 
Control. In: Feedforward Control. Prentice-Hall, New York (2002), Chap. 9 

(Bruneton et al., 2004) E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.B. 
Stefani. An open component model and its support in java. In proc. of the 7th 
Int. Symposium on Component-Based Software Engineering (CBSE‟04). 
LNCS, Vol. 3054. Springer-Verlag, 2004. 

(Buason et al., 2005) G. Buason, N. Bergfeldt, T. Ziemke. Brains, Bodies, and 
Beyond: Competitive Co-Evolution of Robot Controllers, Morphologies and 
Environments. In: Genetic Programming and Evolvable Machines, vol. 
6(1):25-51. March 2005. 

(Bucchiarone et al., 2007) A. Bucchiarone, H. Melgratti, S. Gnesi, R. Bruni. 
Modelling Dynamic Software Architectures using Typed Graph Grammars. Graph 
Transformations for Verification and Concurrency. Electronic Notes on 
Theoretical Computer Science, Vol. 213, No. 1, pp. 39-53. Elsevier, 2007. 



REFERENCES 

451 

(Buckley et al., 2005) J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel. 
Towards a taxonomy of software change. Journal of Software Maintenance and 
Evolution: Research and Practice, 17(5):309-332. Wiley, 2005. 

(Bures et al., 2006) T. Bures, P. Hnetynka, F. Plasil. SOFA 2.0: Balancing 
Advanced Features in a Hierarchical Component Model. In: 4th International 
Conference on Software Engineering Research, Management and 
Applications (SERA‟06). USA, 2006. 

(Bures et al., 2007) T. Bures, P. Hnetynka, F. Plasil. Runtime Concepts of 
Hierarchical Software Components. International Journal of Computer & 
Information Science, Vol. 8, No. S, pp. 454-463, 2007. 

(Buschmann et al., 1996) F. Buschmann, R. Meunier, H. Rohnert, P. 
Sommerlad, M. Stal. Pattern-Oriented Software Architecture: A System of 
Patterns. Wiley, 1996. 

(Cámara et al., 2008) J. Cámara, G. Salaün, C. Canal. Composition and Run-
time Adaptation of Mismatching Behavioural Interfaces. Journal of Universal 
Computer Science, 14(13):2182-2211. Springer, 2008. 

(Canal et al., 1999) C. Canal, E. Pimentel, J.M. Troya. Specification and 
Refinement of Dynamic Software Architectures. In: First Working IFIP 
Conference on Software Architecture (WICSA‟99). San Antonio, Texas, 
USA, 1999. 

(Canal et al., 2006) C. Canal, J.M. Murillo, P. Poizat. Software Adaptation. 
L‟Objet, special issue on coordination and adaptation techniques, vol. 12, 
no. 1, pp. 9-31, 2006. 

(Canal et al., 2008) C. Canal, P. Poizat, G. Salaün. Model-Based Adaptation of 
Behavioral Mismatching Components. Transactions on Software Engineering, 
vol. 34, No. 4. IEEE, 2008. 

(Capra & Cazzola, 2009) L. Capra, W. Cazzola. An Introduction to Reflective 
Petri Nets. E.M.O. Abu-Taieh, A.A. El Sheikh (eds.): Handbook of 
Research on Discrete Event Simulation Environments: Technologies and 
Applications, chapter 9, pp. 191–217. IGI Global, November 2009. 

(Carzaniga et al., 2007) A. Carzaniga, G.P. Picco, G. Vigna. Is Code Still Moving 
Around? Looking Back at a Decade of Code Mobility. In: 29th International 
Conference on Software Engineering (May 20 - 26, 2007). IEEE Computer 
Society, Washington DC, 2007. 

(Cazzola et al., 1999) W. Cazzola, A. Savigni, A. Sosio, F. Tisato. Rule-Based 
Strategic Reflection: Observing and Modifying Behavior at the Architectural Level. 
14th IEEE Int. Conf. on Automated Software Engineering. IEEE, 1999. 



REFERENCES 

452 

(Cazzola et al., 1999a) W. Cazzola, A. Savigni, A. Sosio, F. Tisato. Architectural 
Reflection: Concepts, Design, and Evaluation. Technical Report RI-DSI 234-
99, DSI, Università degli Studi di Milano, May 1999. 

(Cazzola et al., 2004) W. Cazzola, A. Ghoneim, G. Saake. Software Evolution 
through Dynamic Adaptation of Its OO Design. In: Objects, Agents, and 
Features. LNCS, vol. 2975, pp. 31-48. Springer, Heidelberg, 2004. 

(Cazzola et al., 2007) W. Cazzola, S. Chiba, G. Saake. Guest Editors' 
Introduction: Aspects and Software Evolution. Transactions on Aspect-
Oriented Software Development, 4: 114-116. Springer, 2007. 

(Cazzola, 1998) W. Cazzola. Evaluation of Object-Oriented Reflective Models. 
ECOOP Workshop on Reflective Object-Oriented Programming and 
Systems (EWROOPS'98), Brussels, Belgium, July 1998. 

(Cazzola, 2009) W. Cazzola. Cogito, Ergo Muto! In proc. of Workshop on Self-
Organizing Architectures (SOAR‟09), held at the Joint 8th Working 
IEEE/IFIP Conference on Software Architecture & 3rd European 
Conference on Software Architecture (WICSA/ECSA 2009). Cambridge, 
UK, 14th September 2009. 

(Chakravarti et al., 2003) A.J. Chakravarti, X. Wang, J.O. Hallstrom, G. 
Baumgartner. Implementation of Strong Mobility for Multi-Threaded Agents in 
Java. In: Proc. of International Conference on Parallel Processing 
(ICPP'03), 2003. 

(Chapin et al., 2001) N. Chapin, J.E. Hale, K.M. Kham, J.F. Ramil, W. Tan. 
Types of software evolution and software maintenance. Journal of Software 
Maintenance, Vol.  13, pp. 3-30, 2001. 

(Cheng et al., 2005) S. Cheng, D. Garlan, B.R. Schmerl. Making Self-
Adaptation an Engineering Reality. Self-star Properties in Complex 
Information Systems. LNCS, vol. 3460, pp. 158-173. Springer, Heidelberg, 
2005. 

(Cheng et al., 2009) B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. 
Magee, J. Andersson, et al. Software Engineering for Self-Adaptive Systems: A 
Research Roadmap. In Software Engineering for Self-Adaptive Systems, 
LNCS vol. 5525, pp. 1-26. Springer, 2009. 

(Chitchyan & Sommerville, 2004) R. Chitchyan, I. Sommerville. Comparing 
Dynamic AO Systems. In proc. of: Dynamic Aspects Workshop (DAW‟04). 
Lancaster, UK, March 2004. 

(Chitchyan et al., 2005) R. Chitchyan, A. Rashid, P. Sawyer et al. Report 
Synthesizing State-of-the-Art in Aspect-Oriented Requirements Engineering, 



REFERENCES 

453 

Architectures and Design. Technical Report AOSD-Europe Deliverable D11, 
AOSD-Europe-ULANC-9. Lancaster Univ., UK, 2005. 

(Clements et al., 2002) P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, 
R. Little, R. Nord, J. Stafford. Documenting Software Architectures: Views and 
Beyond. Addison-Wesley, 2002. 

(Cockburn, 2001) A. Cockburn. Agile Software Development. Addison-Wesley, 
2001. 

(Cook et al., 2006) S. Cook, R. Harrison, M.M. Lehman, P. Wernick. 
Evolution in software systems: foundations of the SPE classification scheme. 
Journal of Software Maintenance and Evolution: Research and Practice, 
Vol. 18, No. 1, pp. 1-35, 2006. 

(Costa-Soria & Heckel, 2010) C. Costa-Soria, R. Heckel. Modelling the 
Asynchronous Dynamic Evolution of Architectural Types. Self-Organizing 
Architectures. Lecture Notes on Computer Science, vol. 6090, pp. 198-
229. Springer-Verlag, Berlin Heidelberg, July 2010. 

(Costa-Soria et al., 2006) C. Costa, N. Ali, C. Millán, J.A. Carsí. Transparent 
Mobility of Distributed Objects using .NET. In proc. of 4th International 
Conference on .NET Technologies, pp. 11-18. Pilsen, Czech Republic, 
June 2006.  

(Costa-Soria et al., 2011) C. Costa-Soria, J. Pérez, J.A. Carsí. An Aspect-Oriented 
Approach for Supporting Autonomic Reconfiguration of Software Architectures. 
Special Issue on Autonomic and Self-Adaptive Systems, Informatica 
(Slovenia), vol. 35, issue 1, pp. 15-27. February 2011. ISSN 0350-5596. 

(Costa-Soria, 2005) C. Costa-Soria. Study and Implementation of an Aspect-
Oriented Component-Based Architecture Model on .NET Technology. Ms Science 
Thesis. Faculty of Computer Science, Universidad Politécnica de Valencia, 
March 2005 (in Spanish). 

(Costa-Soria, 2005a) C. Costa, J. Pérez, N. Ali, J.A. Carsí, I. Ramos. 
PRISMANET middleware: Dynamic Evolution Support for Aspect-Oriented 
Software Architectures. In: X Jornadas de Ingeniería del Software y Bases de 
Datos (JISBD'05). Granada, September 2005 (in Spanish) 

(Coulson et al., 2004) G. Coulson, G.S. Blair, P. Grace, A. Jolia, K. Lee, J. 
Ueyama. OpenCOM v2: A Component Model for Building Systems Software. In: 
IASTED Software Engineering and Applications. Cambridge (MA), USA, 
2004. 

(Coulson et al., 2008) G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. 
Lee, J. Ueyama, T. Sivaharan. A generic component model for building systems 
software. ACM Trans. Comput. Syst. 26(1):1-42, 2008. 



REFERENCES 

454 

(Cuesta & Romay, 2010) C.E. Cuesta, M.d.P. Romay. Elements of Self-adaptive 
Systems - A Decentralized Architectural Perspective. In: Self-Organizing 
Architectures. Lecture Notes on Computer Science Series, vol. 6090, pp. 1-
20. Springer-Verlag, Berlin Heidelberg, July 2010. 

(Cuesta et al., 2001) C.E. Cuesta, P.d.l. Fuente, M. Barrio-Solárzano. Dynamic 
Coordination Architecture through the use of Reflection. ACM Symposium on 
Applied Computing (SAC‟01). Las Vegas, Nevada, USA, 2001. 

(Cuesta et al., 2002) C.E. Cuesta, P.d.l Fuente, M. Barrio-Solórzano, M.E. 
Beato. Introducing Reflection in Architecture Description Languages. 3rd 
IEEE/IFIP Conference on Software Architecture (WICSA‟02). Montréal, 
Québec, Canada, August 25-30, 2002. 

(Cuesta et al., 2004) C.E. Cuesta, P. Romay, P.d.l. Fuente, M. Barrio-
Solórzano. Reflection-Based, Aspect-Oriented Software Architecture. In proc. of: 
First European Workshop on Software Architecture (EWSA‟04). LNCS, 
3047. Springer, 2004. 

(Cuesta et al., 2005) C.E. Cuesta, M.d.P. Romay, P.d.l Fuente, M. Barrio-
Solárzano. Architectural aspects of architectural aspects. In proc. of: 2nd 
European Workshop on Software Architecture (EWSA‟05). LNCS, vol. 
3527. Springer, 2005. 

(Cuesta et al., 2006) C.E. Cuesta Quintero, M.d.P. Romay, P.d.l Fuente, M. 
Barrio-Solórzano. Temporal Superimposition of Aspects for Dynamic Software 
Architecture. In proc. of: 8th IFIP Int. Conf. on Formal Methods for Open 
Object-Based Distributed Systems (FMOODS‟06). LNCS, vol. 4037, pp. 
93-107. Springer, 2006 

(Cuesta, 2002) C.E. Cuesta. Reflection-Based Dynamic Software Architecture. PhD 
Thesis, Department of Computing Science, Universidad de Valladolid, 
2002 (in Spanish). 

(Dashofy et al., 2001) E.M. Dashofy, A. van der Hoek, R.N. Taylor. A Highly-
Extensible, XML-Based Architecture Description Language. Working IEEE/IFIP 
Conference on Software Architecture (WICSA‟01). August, 2001. 

(Dashofy et al., 2002) E.M. Dashofy, A. van der Hoek, R.N. Taylor. Towards 
Architecture-Based Self-Healing Systems. In proc. of: First Workshop on Self-
Healing Systems (WOSS‟02). Charleston, South Carolina, 2002. 

(David & Ledoux, 2005) P. David and T. Ledoux. WildCAT: a generic 
framework for context-aware applications. In: 3rd Int. Workshop on 
Middleware for Pervasive and Ad-Hoc Computing (MPAC‟05). Grenoble, 
France, 2005. 



REFERENCES 

455 

(David & Ledoux, 2006) P. David, T. Ledoux. An Aspect-Oriented Approach for 
Developing Self-Adaptive Fractal Components. In proc. of: 5th Symposium on 
Software Composition (SC‟06). Vienna, Austria, 2006. 

(David et al., 2009) P. David, T. Ledoux, M. Léger, T. Coupaye. FPath and 
FScript: Language support for navigation and reliable reconfiguration of Fractal 
architectures. Annales des Télécommunications 64(1-2):45-63, 2009. 

(De Lucia et al., 2009) A. De Lucia, V. Deufemia, C. Gravino, M. Risi. 
Behavioral Pattern Identification through Visual Language Parsing and Code 
Instrumentation. In proc of: 13th European Conference on Software 
Maintenance and Reengineering (CSMR‟09). Kaiserslautern, Germany, 
2009. 

(Demers & Malenfant, 1995) F-N. Demers, J. Malenfant. Reflection in Logic, 
Functional and Object-Oriented Programming: a Short Comparative Study. In: 
IJCAI'95 workshop on Reflection and Meta-Level Architectures and their 
Applications in Artifficial Intelligence, pp. 29-38. Montreal, 1995. 

(DeRemer & Kron, 1976) F. DeRemer, H. Kron. Programming in the Large vs 
Programming in the Small. IEEE Transactions on Software Engineering, 
2(2):80-86, 1976. 

(Dijkstra, 1974) E.W. Dijkstra. A Discipline of Programming. EWD. 477, Neuen, 
The Netherlands, 30 August 1974. 

(Dodig-Crnkovic, 2002) G. Dodig-Crnkovic. Scientific Methods in Computer 
Science. In: Conf. for the Promotion of Research in IT at New Universities 
and at University Colleges in Sweden, 2002. 

(Douence & Le Botlan, 2005) R. Douence, D. Le Botlan. Towards a taxonomy 
of AOP semantics. Technical report AOSD Europe, milestone M8.1. July, 
2005. Available in: http://www.emn.fr/z-info/dlebotla/papers/dl05.pdf  

(Dowling & Cahill, 2001) J. Dowling, V. Cahill. The K-Component Architecture 
Meta-Model for Self-Adaptive Software. In proc. of 3rd Int. Conf. on Metalevel 
Architectures and Separation of Crosscutting Concerns (Reflection‟2001). 
LNCS vol. 2192, pp. 81-88. Springer-Verlag, Sep. 2001. 

(Dowling & Cahill, 2004) J. Dowling, V. Cahill. Self-managed decentralised 
systems using K-components and collaborative reinforcement learning. In proc. of 
the 1st ACM SIGSOFT Workshop on Self-Managed Systems. Newport 
Beach, California, Oct. 31 – Nov. 01, 2004.  

(Easterbrook et al., 2008) S. Easterbrook, J. Singer, M.A. Storey, D. Damian. 
Selecting Empirical Methods for Software Engineering Research. Guide to 
Advanced Empirical Software Engineering. Springer, 2008. 

http://www.emn.fr/z-info/dlebotla/papers/dl05.pdf


REFERENCES 

456 

(Ehrig et al., 2006) H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of 
Algebraic Graph Transformation (Monographs in Theoretical Computer Science. 
An EATCS Series). Springer, 2006. 

(Elrad et al., 2001) T. Elrad, R.E. Filman, A. Bader. Aspect-Oriented 
Programming: An Introduction. Communication of the ACM, Vol. 44, No. 
10, October 2001. 

(Endler & Wei, 1992) M. Endler & J. Wei. Programming Generic Dynamic 
Reconfigurations for Distributed Applications. In: First International Workshop 
on Configurable Distributed Systems. London, UK, 1992. 

(Engels et al., 2001) G. Engels, R. Heckel, J.M. Küster. Rule-Based Specification 
of Behavioral Consistency Based on the UML Meta-model. In: Gogolla, M., 
Kobryn, C. (eds.): «UML» 2001 - The Unified Modeling Language, 
Modeling Languages, Concepts, and Tools. LNCS, vol. 2185, pp. 272-286. 
Springer, Heidelberg, 2001. 

(Engels et al., 2002) G. Engels, R. Heckel, J.M. Küster, L. Groenewegen. 
Consistency-Preserving Model Evolution through Transformations. In: Jézéquel, 
J.M., Hußmann, H., Cook, S. (eds.): «UML» 2002 - The Unified Modeling 
Language. LNCS, vol. 2460, pp. 212-227. Springer, Heidelberg, 2002. 

(Fabry, 1976) R.S. Fabry. How to design a system in which modules can be changed 
on the fly. In: 2nd International Conference on Software Engineering 
(ICSE‟76). San Francisco, California, USA, 1976. 

(Fiadeiro & Maibaum, 1997) J.L. Fiadeiro, T.S.E. Maibaum. Categorical 
Semantics of Parallel Program Design. Science of Computer Programming, 
28:111-138, 1997. 

(Filman et al., 2004) R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented 
Software Development. Addison Wesley Professional, 2004. 

(Garcia et al., 2006) A. Garcia, C. Chavez, T. Batista, C. Sant‟anna, U. 
Kulesza, A. Rashid, C. Lucena. On the Modular Representation of Architectural 
Aspects. In proc. of 3rd European Workshop on Software Architecture 
(EWSA‟06), pp. 82-97. 2006. 

(Garlan & Perry, 1995) D. Garlan, D.E. Perry. Introduction to the Special Issue 
on Software Architecture. IEEE Transactions on Software Engineering, 21(4), 
April 1995. 

(Garlan et al., 1997) D. Garlan, R.T. Monroe, D. Wile. ACME: An 
Architectural Interchange Language. Proceedings of the 1997 Conference of 
the Centre For Advanced Studies on Collaborative Research. Toronto, 
Ontario, Canada, November 1997. 



REFERENCES 

457 

(Garlan et al., 2004) D. Garlan, S. Cheng, A. Huang, B. Schmerl, P. 
Steenkiste. Rainbow: Architecture-Based Self-Adaptation with Reusable 
Infrastructure. Computer, 37:46-54. IEEE, 2004. 

(Garlan, 2001) D. Garlan. Software Architecture. Wiley Encyclopedia of 
Software Engineering. John Wiley & Sons, 2001. 

(Georgiadis et al., 2002) I. Georgiadis, J. Magee, J. Kramer. Self-organising 
software architectures for distributed systems. In proc. of: First Workshop on 
Self-Healing Systems (WOSS‟02). Charleston, South Carolina, 2002. 

(German-Rivera et al., 1996) J. German-Rivera, A.A. Danylyszyn, C.B. 
Weinstock, L.R. Sha, M.J. Gagliardi. An Architectural Description of the 
Simplex Architecture, Tech. Report CMU/SEI-96-TR-006, 1996. 

(Gilb, 1981) T. Gilb. Evolutionary development. SIGSOFT Software Engineering 
Notes, Vol. 6, No. 2, pp. 17. ACM, 1981. 

(Glass et al., 2004) R.L. Glass, I. Vessey, V. Ramesh. Research in software 
engineering: an analysis of the literature. Information and Software 
Technology, Volume 44, Issue 8, pp. 491-506. Elsevier, 2002. 

(Gomaa & Hussein, 2004) H. Gomaa, M. Hussein. Software reconfiguration 
patterns for dynamic evolution of software architectures. In: 4th Working 
International Conference on Software Architecture (WICSA‟04). IEEE, 
2004. 

(Gomez & Ramos, 2010) A. Gómez, I. Ramos. Cardinality-Based Feature 
Modeling and Model-Driven Engineering: Fitting them Together. In proc. of: 4th 
Int. Workshop on Variability Modelling of Software-Intensive Systems 
(VAMOS‟10), pp. 61-68. Linz, Austria, January 27-29, 2010.  

(Gray & Hjálmtýsson, 1998) R. Gray, G. Hjálmtýsson. Dynamic c++ classes: A 
lightweight mechanism to update code in a running program. In USENIX 
Technical Conference, 1998. 

(Gray & Reuter, 1993) J. Gray, A. Reuter. Transaction Processing: Concepts and 
Techniques. Morgan Kauffman, 1993. 

(Greenfield et al., 2004) J. Greenfield, K. Short, S. Cook and S. Kent. Software 
Factories. Wiley Publising Inc., 2004. 

(Greenwood & Blair, 2006) P. Greenwood and L. Blair. A Framework for Policy 
Driven Auto-adaptive Systems Using Dynamic Framed Aspects. Transactions on 
Aspect-Oriented Software Development II.  LNCS, vol. 4242, pp. 30-65. 
Springer, 2006. 

(Guillén-Martín, 2007) J. Guillén-Martín. Automatic Code Generation and 
Execution of Aspect-Oriented Software Architectures. Ms Science Thesis. Faculty 



REFERENCES 

458 

of Computer Science, Universidad Politécnica de Valencia, July 2007 (in 
Spanish). 

(Gupta & Jalote, 1993) D. Gupta, P. Jalote. On-line software version change using 
state transfer between processes. Software-Practice and Experience, 23(9):949–
964, 1993. 

(Gupta et al., 1996) D. Gupta, P. Jalote, G. Barua. A Formal Framework for On-
line Software Version Change. IEEE Trans. Softw. Eng., Vol. 22, No. 2, pp. 
120-131, Feb. 1996. 

(Gustavsson et al., 2004) J. Gustavsson, T. Staijen, U. Aßmann. Runtime 
Evolution as an Aspect. In proc. of 1st Int. Workshop on Foundations of 
Unanticipated Software Evolution (FUSE‟04). Barcelona, Spain, 2004. 

(Hammer, 2009) M. Hammer. How to Touch a Running System: Reconfiguration 
of Stateful Components. PhD. Thesis, Faculty of Mathematics, Computer 
Science and Statistics, LMU München, June 2009. 

(Harrison et al., 2002) W.H. Harrison, H.L. Ossher, P.L. Tarr. Asymmetrically  
vs. Symmetrically Organized Paradigms for Software Composition. Technical 
Report RC22685, Thomas J. Watson Research Center, IBM, 2002. 

(Heckel, 2006) R. Heckel. Graph Transformation in a Nutshell. School on 
Foundations of Visual Modelling Techniques (FoVMT 04). ENTCS, vol. 
148(1), pp. 187-198. Elsevier, 2006. 

(Heimerdinger & Weinstock, 1992) W.L. Heimerdinger, C.B. Weinstock. A 
Conceptual framework for System Fault Tolerance. Technical Report 
CMU/SEI-92-TR-033. Carnegie Mellon University, 1992. 

(Hellerstein et al., 2004) J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury. 
Feedback Control of Computing Systems. Wiley & Sons, 2004. 

(Hervás-Muñoz, 2009) D. Hervás-Muñoz. Dynamic Evolution of Aspect-Oriented 
Components in .NET. Ms Science Thesis. Faculty of Computer Science, 
Universidad Politécnica de Valencia, February 2009 (in Spanish). 

(Hevner et al., 2004) A.R. Hevner, S.T. March, J. Park, S. Ram. Design science 
in information systems research. MIS Quarterly, 28, pp. 75-105, 2004. 

(Hicks & Nettles, 2005) M. Hicks, S. Nettles. Dynamic software updating. ACM 
Transactions on Programming Languages and Systems (TOPLAS), 
27(6):1049-1096, November 2005. 

(Hicks, 2001) M. Hicks. Dynamic Software Updating. PhD thesis, Dept. of 
Computer and Information Science, University of Pennsylvania, June 
2001. 



REFERENCES 

459 

(Hirsch et al., 1998) D. Hirsch, P. Inverardi, U. Montanari. Graph 
grammars and constraint solving for software architecture styles. In: 3rd Int. 
Software Architecture Workshop (ISAW-3). ACM Press, 1998. 

(Hofmeister et al., 1999) C. Hofmeister, R.L. Nord, D. Soni. Applied Software 
Architecture. Addision Wesley Longman, 1999. 

(Huebscher & McCann, 2008) M.C. Huebscher, J.A. McCann. A survey of 
autonomic computing-degrees, models, and applications. ACM Computer 
Surveys, 40(3). ACM, 2008. 

(IBM, 2001) IBM. Autonomic Computing: IBM‘s perspective on the state of 
information technology. Available in: http://www.research.ibm.com/ 
autonomic/manifesto/autonomic_computing.pdf   

(IBM, 2006) IBM. An architectural blueprint for autonomic computing. White 
paper, 4th edition: http://www.research.ibm.com/autonomic 

(IEEE, 2000) IEEE Software Engineering Standards Committee. Recommended 
Practices for Architectural Description of Software-Intensive Systems (IEEE Std 
1471-2000). IEEE Computer Society, Sept. 2000. 

(IFR, 2009) International Federation of Robotics, Statistical Department. 
World Robotics 2009 Study. Available online at:  
http://www.worldrobotics.org/downloads/2009_executive_summary.pdf  

(ISO/IEEE, 2006) International Standard ISO/IEC 14764 IEEE Std 14764-
2006. Software Engineering – Software Life Cycle Processes – Maintenance 
(Revision of IEEE Std 1219-1998). September, 2006. 

(Jackson, 1999) D. Jackson. Alloy: A Lightweight Object Modelling Notation. MIT 
Lab for Computer Science, July 1999. 

(Jacobson & Ng 2003) I. Jacobson & Pan-Wei Ng. Aspect-Oriented Software 
Development with Use Cases. Addison Wesley Professional, 2005. 

(Jacobson et al., 1997) I. Jacobson, M. Griss, P. Jonsson. Software Reuse. 
Architecture, Process and Organization for Business Success. Addison-Wesley 
1997. 

(Johnson, 2010) C. Johnson. What is research in computing science? Computer 
Science Dept., Glasgow University. Electronic resource: 
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.ht
ml  

(Keeney & Cahill, 2003) J. Keeney and V. Cahill. Chisel: A Policy-Driven, 
Context-Aware, Dynamic Adaptation Framework. In: 4th IEEE International 
Workshop on Policies for Distributed Systems and Networks. June 04-06, 
2003. 

http://www.research.ibm.com/%20autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/%20autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic
http://www.worldrobotics.org/downloads/2009_executive_summary.pdf
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html


REFERENCES 

460 

(Keeney, 2004) J. Keeney. Completely Unanticipated Dynamic Adaptation of 
Software. PhD Thesis. Trinity College, University of Dublin, 2004. 

(Kephart & Chess, 2003) J.O. Kephart & D.M. Chess. The Vision of Autonomic 
Computing. Computer, 36(1):41-50. IEEE, 2003. 

(Kiczales et al., 1997) G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. 
Lopes, J. Loingtier, J. Irwin. Aspect-Oriented Programming. In proc. of: 11th 
European Conference on Object-Oriented Programming (ECOOP‟97), pp. 
220-242. Jyväskylä, Finland, June 9-13 1997. 

(Kiczales et al., 2001) G. Kiczales, E. Hilsdale, J. Huguin, M. Kersten, J. Palm, 
W.G. Griswold. An Overview of AspectJ. In: 15th European Conference on 
Object-Oriented Programming (ECOOP‟01). Lecture Notes in Computer 
Science, Vol. 2072. Springer-Verlag, 2001. 

(Kirby et al., 1992) G.N.C. Kirby, R.C.H. Connor, Q.I. Cutts, A. Dearle, 
A.M. Farkas, R. Morrison. Persistent hyperprograms. 5th Int. Conf. on 
Persistent Object Systems. Springer, Berlin, 1992. 

(Kon et al., 2002) F. Kon, F. Costa, G. Blair, R.H. Campbell. The Case for 
Reflective Middleware. Communications of the ACM 45(6):33-38. ACM, 
2002. 

(Kramer & Magee, 1990) J. Kramer & J. Magee. The Evolving Philosophers 
Problem: Dynamic Change Management. IEEE Transactions on Software 
Engineering, 16(11):1293-1306. IEEE, 1990. 

(Kramer & Magee, 2007) J. Kramer and J. Magee. Self-managed systems: an 
architectural challenge. In proc. of: ICSE - Future of Software Engineering 
(FOSE‟07), pp. 259–268. IEEE, 2007. 

(Kramer & Magge, 1985) J. Kramer, J. Magee. Dynamic Configuration for 
Distributed Systems. IEEE Transactions on Software Engineering, Vol. 11, 
No. 4, pp. 424-436, 1985. 

(Lehman, 1980) M.M. Lehman. Programs, life cycles, and laws of software 
evolution. Proceedings of the IEEE, Vol. 68, No. 9, pp. 1060-1076, Sept. 
1980. 

(Lin et al., 2005) P. Lin, A. MacArthur, J. Leaney. Defining Autonomic 
Computing: A Software Engineering Perspective. In proc. of: Australian Conf. 
Software Engineering (ASWEC‟05), pp. 85-97. IEEE CS, 2005. 

(Llavador & Canos, 2007) M. Llavador, J.H. Canós. A Framework for the 
Generation of Transformation Templates. Research and Advanced Technology 
for Digital Libraries, 11th European Conference (ECDL‟07). Lecture 
Notes in Computer Science, vol. 4675, pp. 501-504. Springer 2007. 



REFERENCES 

461 

(Maes, 1987) P. Maes. Concepts and Experiments in Computational Reflection. 
In: SIGPLAN Notices, Vol. 22, No. 12, pp. 147-155. ACM Press, New 
York, NY, USA, 1987. 

(Magee & Kramer, 1996) J. Magee & J. Kramer. Dynamic Structure in Software 
Architectures. ACM Software Engineering Notes, 21(6):3-14. ACM, 
November 1996. 

(Magee et al., 1989) J. Magee, J. Kramer, M.S. Sloman. Constructing distributed 
systems in Conic. Transactions on Software Engineering, 6(15):663–675, 
June 1989. 

(Magee et al., 1995) J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying 
Distributed Software Architectures. In: 5th European Software Engineering 
Conference (ESEC‟95). Sitges, Spain, 1995. 

(Malabarba et al., 2000) S. Malabarba, R. Pandey, J. Gragg, E. Barr, J.F. 
Barnes. Runtime support for type-safe dynamic Java classes. In: Bertino, E. (ed.): 
ECOOP 2000- Object-Oriented Programming. LNCS, vol. 1850, pp. 337-
361. Springer, Heidelberg, 2000. 

(Malenfant et al., 1996) J. Malenfant, M. Jacques, F-N. Demers. A Tutorial on 
Behavioural Reflection and its Implementation. In: Reflection'96, pp. 1-20, 
1996. 

(Mamei & Zambonelli, 2009) M. Mamei, F. Zambonelli. Programming pervasive 
and mobile computing applications: The TOTA approach. ACM Trans. 
Software Engineering Methodology 18(4):1-56. July, 2009. 

(March & Smith, 1995) S.T. March, G. Smith. Design and Natural Science 
Research on Information Technology. Decision Support Systems 15(4), pp. 
251-266. December, 1995. 

(Martin, 2002) R.C. Martin. Agile Software Development: Principles, Patterns, and 
Practices. Prentice Hall, 2002. 

(McKinley et al., 2004) P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. 
Cheng. Composing Adaptive Software. Computer, 37(7):56-64. IEEE, July 
2004. 

(McKinley et al., 2004a) P.K. McKinley, S.M. Sadjadi, E.P. Kasten, B.H.C. 
Cheng. A Taxonomy of Compositional Adaptation. Technical Report MSU-
CSE-04-17, Dept. Computer Science and Engineering, Michigan State 
Univ., 2004. 

(McKinley et al., 2008) P. McKinley, B.H.C. Cheng, C. Ofria, D. Knoester, B. 
Beckmann, H. Goldsby. Harnessing Digital Evolution. IEEE Computer, 
41(1):54-63. Jan, 2008. 



REFERENCES 

462 

(Medvidovic & Taylor, 2000) N. Medvidovic, R.N. Taylor. A Classification and 
Comparison Framework for Software Architecture Description Languages. 
Transactions on Software Engineering 26(1):70-93. IEEE, 2000. 

(Mens & Wermelinger, 2002) T. Mens and M. Wermelinger. Separation of 
concerns for software evolution. Journal of Software Maintenance and 
Evolution, 14(5):311-315. Wiley, 2002. 

(Mens, 2008) T. Mens. Introduction and Roadmap: History and Challenges of 
Software Evolution. T. Mens, S. Demeyer (eds.): Software Evolution, chapter 
1. Springer, 2008. 

(Mickan et al., 2004) K. Mickan, R. Morrison, G. Kirby, D. Balasubramaniam, 
E. Zirintsis. Using generative programming to visualise hypercode in complex and 
dynamic systems. 27th Australasian Conference on Computer Science. 
Australian Computer Society, Darlinghurst, Australia, 377-386. 

(Mikunov, 2003) A. Mikunov. Rewrite MSIL Code on the Fly with the .NET 
Framework Profiling API. MSDN Magazine, September 2003. 

(Millán-Belda, 2006) C. Millán-Belda. Development of Distributed and Mobile 
Applications from an Aspect-Oriented Architectural Model. Master Science 
Thesis. Faculty of Computer Science, Universidad Politécnica de Valencia, 
September 2006 (in Spanish). 

(Milner, 1993) R. Milner. The Polyadic π-Calculus: A Tutorial. Laboratory for 
Foundations of Computer Science Deptartment. University of Edinburgh, 
1993. 

(Mittermeir, 2001) R.T. Mittermeir. Software evolution: Let‘s sharpen the 
terminology before sharpening (out-of-scope) tools. In: 4th International 
Workshop on Principles of Software Evolution (IWPSE‟01). ACM, New 
York, NY, 2001. 

(Moazami-Goudarzi, 1999) K. Moazami-Goudarzi. Consistency preserving 
dynamic reconfiguration of distributed systems. PhD thesis, Imperial College, 
London, March 1999. 

(Monroe, 98) R.T. Monroe. Capturing Software Architecture Design Expertise 
With Armani. Technical Report CMU-CS-98-163, Carnegie Mellon 
University School of Computer Science, 1998. 

(Morrison et al., 2004) R. Morrison, G.N.C. Kirby, D. Balasubramaniam, K. 
Mickan, F. Oquendo, S. Cîmpan, B.C. Warboys, B. Snowdon, R.M. 
Greenwood. Support for evolving software architectures in the ArchWare ADL. 
4th Working IEEE/IFIP Conf. on Software Architecture (WICSA‟04). 
Oslo, Norway, 2004. 



REFERENCES 

463 

(Morrison et al., 2007) R. Morrison, D. Balasubramaniam, G. Kirby, K. 
Mickan, B. Warboys, R.M. Greenwood, I. Robertson, R. Snowdon. A 
Framework for Supporting Dynamic Systems Co-Evolution. Automated Software 
Engineering, 14(3):261-292. Springer, 2007. 

(Muller et al., 2008) H.A. Müller, H.M. Kienle, U. Stege. Autonomic Computing 
Now You See It, Now You Don't. In: ISSSE 2008. LNCS vol. 5413, pp. 32-54. 
Springer, 2008. 

(Navarro, 2008) E. Navarro. ATRIUM – Architecture Traced from RequIrements 
by applying a Unified Methodology. PhD Thesis, University of Castilla-La 
Mancha, May 2007. 

(Navasa et al., 2007) A. Navasa, M.A. Pérez-Toledano, J.M. Murillo. 
AspectLEDA: Extending an ADL with Aspectual Concepts. In proc. of: 1st 
European Conference on Software Architecture (ECSA‟07). LNCS, vol. 
4758, pp. 330–334. Springer, 2007. 

(Navasa et al., 2009) A. Navasa, M.A. Perez-Toledano, J.M. Murillo. An ADL 
dealing with aspects at software architecture stage. Information and Software 
Technology, 51(2):306-324. Elsevier, February 2009. 

(Nicoara et al., 2008) A. Nicoara, G. Alonso, T. Roscoe. Controlled, Systematic, 
and Efficient Code Replacement for Running Java Programs. In: ACM SIGOPS 
Operating Systems Review, Vol. 42, No. 4. May 2008. 

(OMG, 2002) Object Management Group. Meta-Object Facility 1.4 
Specification. Technical Report formal/2002-04-03, 2002. In: 
http://www.omg.org/technology/documents/formal/mof.htm  

(OMG, 2003) Object Management Group. Model Driven Architecture Guide, 
2003. In: http://www.omg.org/docs/omg/03-06-01.pdf 

(Ommering et al., 2000) R. van Ommering, F. van der Linden, J. Kramer, J. 
Magee. The Koala Component Model for Consumer Electronics Software. IEEE 
Computer, 33(3):78-85, Mar 2000. 

(Oquendo et al., 2004) F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, 
F. Gallo, H. Garavel, C. Occhipinti. ArchWARE: Architecting Evolvable 
Software. In proc. of: European Workshop in Software Achitecture (EWSA 
2004). Lecture Notes in Computer Science, vol. 3047, pp. 257-271. 
Springer, 2004. 

(Oreizy et al., 1998) P. Oreizy, N. Medvidovic, R.N. Taylor. Architecture-based 
runtime software evolution. 20th international Conference on Software 
Engineering (ICSE‟98). IEEE, 1998. 

(Oreizy et al., 1999) P. Oreizy, M. Gorlick, R.N. Taylor, D. Heimbinger, G. 
Johnson, N. Medvidovic, A. Quilici, D.S. Rosenblum and A.L. Wolf. An 

http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/docs/omg/03-06-01.pdf


REFERENCES 

464 

Architecture-Based Approach to Self-Adaptive Software. Intelligent Systems, 
14:54-62. IEEE, 1999. 

(Parnas, 1972) D.L. Parnas. On the Criteria To Be Used in Decomposing Systems 
Into Modules. Communications of the ACM, Vol. 15, No. 12, pp. 1053-
1058. December, 1972. 

(Parnas, 1994) D.L. Parnas. Software aging. In proc. of: International 
Conference on Software Engineering (ICSE‟94). IEEE, 1994. 

(Pedersen et al., 2006) S.M. Pedersen, S. Fountas, H. Have, B.S. Blackmore. 
Agricultural robots—system analysis and economic feasibility. Precision 
agriculture 7(4):295-308. Springer, 2006. 

(Pérez & Cuesta, 2007) J. Pérez, C.E. Cuesta. Aspect-oriented connectors for 
coordination. In: International Workshop on Synthesis and Analysis of 
Component Connectors (SYANCO‟07), in Conjunction with the 6th 
ESEC/FSE Joint Meeting. Dubrovnik, Croatia, September 3-4, 2007. 

(Pérez et al., 2005a) J. Pérez, N. Ali, C. Costa-Soria, J.A. Carsí, I. Ramos. 
Executing Aspect-Oriented Component-Based Software Architectures on .NET 
Technology. In proc. of: 3rd International Conference on .NET 
Technologies, pp. 97-108. Pilsen, Czech Republic, June 2005. 

(Pérez et al., 2005b) J. Pérez, N. Ali, J.A. Carsí, I. Ramos. Dynamic Evolution in 
Aspect-Oriented Architectural Models. In proc. of: 2nd European Workshop 
on Software Architecture (EWSA'05). LNCS, Vol. 3527, pp. 59-76. 
Springer, Pisa, Italy, 2005. 

(Pérez et al., 2006) J. Pérez, N. Ali, J.A. Carsí, I. Ramos. Designing Software 
Architectures with an Aspect-Oriented Architecture Description Language. In 
proc. of: 9th Int. Symp. on Component-Based Software Engineering 
(CBSE‟06). LNCS, Vol. 4063, pp. 123-138. Springer, 2006. 

(Pérez et al., 2007) J. Pérez, C. Costa, J.A. Carsí, I. Ramos. Verification of 
Aspect-Oriented Architectural Models. In proc. of: XII Conference on 
Software Engineering and Databases (JISBD‟07), pp. 167-176. Zaragoza, 
11-14 sep 2007. ISBN 978-84-9732-595-0. 

(Pérez et al., 2007a) J. Pérez, C. Costa, J.A. Carsí, I. Ramos. PRISMA CASE. In 
proc. of: XII Conference on Software Engineering and Databases 
(JISBD‟07), pp. 399-400. Zaragoza, 11-14 sep 2007.  

(Pérez et al., 2008) J. Pérez, I. Ramos, J.A. Carsí. Taking Advantage of COTS for 
Developing Aspect-Oriented Software Architectures. In: 15th Annual IEEE 
International Conference and Workshop on Engineering of Computer 
Based Systems (ECBS‟08), pp. 245-254. Belfast, Northern Ireland, 31 
March - 4 April, 2008. 



REFERENCES 

465 

(Pérez et al., 2008) J. Pérez, N. Ali, J.A. Carsí, I. Ramos, B. Álvarez, P. 
Sánchez, J.A. Pastor. Integrating Aspects in Software Architectures: PRISMA 
Applied to Robotic Tele-operated Systems. Journal of Information & Software 
Technology, 50(9-10):969-990. Elsevier, 2008. 

(Pérez, 2006) J. Pérez. PRISMA: Aspect-Oriented Software Architectures. PhD 
Thesis, Universidad Politécnica de Valencia, December 2006. 

(Perez-Toledano et al., 2007) M.A. Perez-Toledano, A. Navasa, J.M. Murillo, 
C. Canal. TITAN: a Framework for Aspect Oriented System Evolution. In: 
International Conference on Software Engineering Advances (ICSEA‟07). 
IEEE, 2007. 

(Perry & Wolf, 1992) D.E. Perry & A.L. Wolf. Foundations for the Study of 
Software Architecture. Software Engineering Notes, 17(4):40-52. ACM, 1992. 

(Perry, 2008) D.E. Perry. Issues in Architecture Evolution: Using Design Intent in 
Maintenance and Controlling Dynamic Evolution. In proc. of: European 
Conference on Software Architecture (ECSA‟08). Lecture Notes on 
Computer Science, vol. 5292. Springer, 2008. 

(Pessemier et al., 2008) N. Pessemier, L. Seinturier, L. Duchien, T. Coupaye. 
A Component-Based and Aspect-Oriented Model for Software Evolution. 
International Journal of Computer Applications in Technology  (IJCAT), 
31(1-2):94-105. Inderscience, 2008. 

(Phung-Khac et al., 2008) A. Phung-Khac, M.T. Segarra, J.M. Gilliot, A. 
Beugnard. Dynamic Composition and Adaptation in Adapt-Medium. In proc. 
of: Workshop on Autonomic and SELF-Adaptive Systems (WASELF‟08), 
pp. 43-52. San Sebastián, Spain, September 8th, 2008. 

(Phung-Khac et al., 2010) A. Phung-Khac, J. Gilliot, Maria-Teresa Segarra, A. 
Beugnard, E. Kaboré. Modelling Changes and Data Transfers for Architecture-
Based Runtime Evolution of Distributed Applications. In proc. of: 4th European 
Conference on Software Architecture (ECSA‟2010). LNCS, vol. 6285, pp. 
392-400. Springer, 2010. 

(Pinto et al., 2005) M. Pinto, L. Fuentes and J.M. Troya. A Dynamic Component 
and Aspect-Oriented Platform. In: The Computer Journal, Vol. 48, No. 4, pp. 
401-420. Oxford University Press, 2005. 

(Pissias & Coulson, 2008) P. Pissias, G. Coulson. Framework for quiescence 
management in support of reconfigurable multi-threaded component-based systems. 
IET Software 2(4): 348-361, 2008. 

(Plasil et al., 1998) F. Plasil, D, Balek, R. Janecek. SOFA/DCUP: Architecture 
for component trading and dynamic updating. International Conference on 
Configurable Distributed Systems (ICCDS '98), pp 43-52. IEEE, 1998. 



REFERENCES 

466 

(Pollack, 2006) J.B. Pollack. Mindless Intelligence. IEEE Intelligent Systems Vol. 
21, No. 3, pp. 50-56, 2006. 

(Popovici et al., 2002) A. Popovici, T. Gross, G. Alonso. Dynamic Weaving for 
Aspect-Oriented Programming. In: First Intern. Conf. on Aspect-Oriented 
Software Development (AOSD‟02). Enschede, The Netherlands, 2002. 

(Popovici et al., 2003) A. Popovici, G. Alonso, T. Gross. Just-In-Time Aspects: 
Efficient DynamicWeaving for Java. In proc. of 2nd International Conference 
on Aspect-Oriented Software Development (AOSD‟03), Boston, USA, 
March 2003. 

(Pressman, 2005) R.S. Pressman. Software Engineering: A Practitioners Approach 
(6th Edition). McGraw-Hill, 2005. 

(Raheja et al., 2010) R. Raheja, S. Wen-Cheng, D. Garlan and B. Schmerl. 
Improving Architecture-Based Self-Adaptation Using Preemption. In: Self-
Organizing Architectures. Lecture Notes on Computer Science Series, vol. 
6090, pp. 21-37. Springer-Verlag, Berlin Heidelberg, July 2010. 

(Rajan & Sullivan, 2003) H. Rajan, K. Sullivan. EOS: Instance-Level Aspects for 
Integrated System Design. In: 9th European Software Engineering 
Conference held jointly with 11th Intern. Symp. on Foundations of 
Software Engineering (ESEC-FSE‟03). Helsinki, Finland, Sept. 2003. 

(Rasche & Polze, 2003) A. Rasche, A. Polze. Configuration and Dynamic 
Reconfiguration of Component-Based Applications with Microsoft .NET. In proc. 
of: 6th IEEE Int. Symposium on Object-Oriented Real-Time Distributed 
Computing (ISORC‟03). Hakodate, Japan, 2003. 

(Ritzau & Andersson, 2000) T. Ritzau and J. Andersson. Dynamic Deployment 
of Java Applications. In proc. of: Java for Embedded Systems Workshop. 
London, 2000. 

(Rogers et al., 2009) A. Rogers, N.R. Jennings, A. Farinelli. Self-Organising 
Sensors for Wide Area Surveillance using the Max-Sum Algorithm. In proc. of: 
WICSA/ECSA Workshop on Self-Organizing Architectures (SOAR‟09). 
Cambridge, UK, 2009. 

(Rombach, 2009) H.D. Rombach. Design for Maintenance - Use of Engineering 
Principles and Product Line Technology. In: 13th European Conf. on Software 
Maintenance and Reengineering (CSMR‟09). Kaiserslautern, Germany, 
2009. 

(Rutle, 2010) A. Rutle. Diagram Predicate Framework. PhD Thesis, University of 
Bergen, Norway, September 2010. 



REFERENCES 

467 

(Salehie & Tahvildari, 2009) M. Salehie, L. Tahvildari. Self-adaptive software: 
Landscape and research challenges. ACM Transactions on Autonomous and 
Adaptive Systems 4(2):1-42, May. 2009. 

(Sanchez et al., 1998) F. Sanchez, J. Hernandez, J.M. Murillo, E. Pedraza. 
Runtime adaptability of synchronization constraints in COOLs. In: 2nd ECOOP 
Workshop of Aspect Oriented Programming, 1998. 

(Santiago-Perez et al., 2009) J. Santiago-Pérez, C.E. Cuesta, S. Ossoswki. The 
Agreement as an Adaptive Architecture for Open Multi-Agent Systems. 2nd 
Workshop on Autonomic and SELF-adaptive Systems (WASELF‟09). San 
Sebastián, Spain, 8th September 2009. 

(Santos et al., 2001) J. Santos, R. J. Duro, J. A. Becerra, J. L. Crespo and F. 
Bellas. Considerations in the application of evolution to the generation of robot 
controllers. In: Information Sciences, vol. 133(3-4): 127-148.  April 2001. 

(Schlegel et al., 2009) C. Schlegel, T. Hassler, A. Lotz, and A. Steck. Robotic 
software systems: from code-driven to model-driven designs. In Proc. of: 
International Conference on Advanced Robotics (ICAR 2009). IEEE, 
2009. 

(Schult & Polze, 2003) W. Schult, A. Polze. Speed vs. Memory Usage-an Approach 
to Deal with Contrary Aspects. 2nd Workshop on Aspects, Components, and 
Patterns for Infrastructure Software (ACP4IS), International Conference 
on Aspect-Oriented Software Development (AOSD). Boston, 
Massachusetts, 2003. 

(Segal & Frieder, 1989) M.E. Segal, O. Frieder. Dynamic program updating: a 
software maintenance technique for minimizing software downtime. Journal of 
Software Maintenance, Vol. 1, No. 1, pp. 59-79, 1989. 

(Segal & Frieder, 1993) Mark E. Segal, Ophir Frieder. On-the-Fly Program 
Modification: Systems for Dynamic Updating. Software, 10(2):53-65. IEEE, 
1993. 

(SEI, 2006) Software Engineering Institute. Ultra-Large-Scale Systems: Software 
Challenge of the Future. Technical Report. Carnegie Mellon Univ., 
Pittsburgh, USA, 2006. 

(Selic, 2003) B. Selic. The pragmatics of model-driven development. Software, 20(5). 
IEEE, 2003. 

(Serugendo et al., 2006) G.D.M. Serugendo, M.P. Gleizes, A. Karageorgos. 
Self-organisation and emergence in MAS: An Overview. Informatica (Slovenia), 
30(1):45-54, 2006. 



REFERENCES 

468 

(Sha et al., 1996) L. Sha, R. Rajkumar, M. Gagliardi. Evolving dependable real-
time systems. IEEE Aerospace Applications Conference on Reliability and 
Quality of Design. February 1996. 

(Shaw & Clements, 2006) M. Shaw, P. Clements. The Golden Age of Software 
Architecture. IEEE Software 23(2):31-39, March 2006. 

(Shaw & Garlan, 1996) M. Shaw and D. Garlan. Software Architecture: 
Perspectives on an Emerging Discipline. Prentice-Hall, NJ, USA, 1996. 

(Shaw, 1994) M. Shaw. Procedure Calls Are the Assembly Language of Software 
Interconnection: Connectors Deserve First-Class Status. In proc. of: Workshop 
on Studies of Software Design. January, 1994. 

(Shaw, 2001) M. Shaw. The Coming-of-age of Software Architecture Research. In: 
23rd International Conference on Software Engineering  (ICSE‟01). IEEE 
Computer Society, 2001. 

(Simon, 1996) H.A. Simon. The Sciences of the Artificial (3rd edition). MIT 
Press, 1996. 

(Smith, 1982) B.C. Smith. Reflection and Semantics in a Procedural Language. 
Technical Report MIT-LCS-TR-272, Massachusetts Institute of 
Technology, 1982. 

(Staudt, 2000) B. Staudt Lerner. A model for compound type changes encountered 
in schema evolution. ACM Transactions on Database Systems, 25(1):83–127, 
March 2000. 

(Stirling, 1992) C. Stirling. Modal and Temporal Logics. Handbook of Logic in 
Computer Science, vol. II. Clarendon Press, Oxford, 1992. 

(Suvée et al., 2003) D. Suvée, W. Vanderperren, V. Jonckers. JAsCo: an 
Aspect-Oriented Approach Tailored for Component-Based Software Development. 
2nd International Conference on Aspect-Oriented Software Development 
(AOSD), ACM Press, pp. 21-29, Boston, Massachusetts, March, 2003. 

(Sykes et al., 2008) D. Sykes, W. Heaven, J. Magee, J. Kramer. From goals to 
components: a combined approach to self-management. Workshop on Software 
Engineering for Adaptive and Self-Managing Systems (SEAMS‟08). Leipzig, 
Germany, 2008. 

(Szyperski, 2002) C. Szyperski. Component Software: Beyond Object Oriented 
Programming. ACM Press and Addison Wesley, New York, USA, 2002. 

(Tarr et al., 1999) P. Tarr, H. Ossher, W. Harrison, S.M. Sutton Jr. N Degrees 
of Separation: Multidimensional Separation of Concerns. In proc of: 21st Intern. 
Conf. on Software Engineering (ICSE‟99). Los Angeles, CA, USA 16-22 
May 1999. 



REFERENCES 

469 

(Taylor & Hoek, 2007) R.N. Taylor, A. van der Hoek. Software Design and 
Architecture - The once and future focus of software engineering. In: ICSE - 
Future of Software Engineering (FOSE‟07), pp. 226-243. IEEE, 2007. 

(Taylor et al., 2009) R.N. Taylor, N. Medvidovic, E.M. Dashofy. Software 
Architecture: Foundations, Theory and Practice. Wiley, 2009. 

(Tewari & Milenkovic, 2006) V. Tewari, M. Milenkovic. Standards for 
Autonomic Computing. Intel Technology Journal 10(4):275-284. Intel 
Corporation, 2006. 

(Thao et al., 2008) C. Thao, E.V. Munson, T.N. Nguyen. Software 
Configuration Management for Product Derivation in Software Product Families. 
In proc. of: 15th Int. Conf. on Engineering of Computer Based Systems 
(ECBS‟08). Belfast, Northern Ireland, 2008. 

(Vanderperren et al., 2005) W. Vanderperren, D. Suvée, M.A. Cibrán, B. De 
Fraine. Stateful Aspects in JAsCo. In proc. of Software Composition (SC 
2005), LNCS, vol. 3628, pp. 167-181. Springer, 2005. 

(Vandewoude & Berbers, 2005) Y. Vandewoude, Y. Berbers. Component state 
mapping for runtime evolution. In: International Conference on 
Programming Languages and Compilers. Las Vegas, Nevada, USA, 2005. 

(Vandewoude & Berbers, 2005a) Y. Vandewoude, Y. Berbers. Fresco: Flexible 
and reliable evolution system for components. Electronic Notes in Theoretical 
Computer Science, 127(3):197–205, April 2005. 

(Vandewoude et al., 2003) Y. Vandewoude, P. Rigole, D. Urting, Y. Berbers. 
Draco: An Adaptive Runtime Environment for Components. Technical Report 
CW372, Dept. of Computer Science KULeuven, April 2003. 

(Vandewoude et al., 2007) Y. Vandewoude, P. Ebraert, Y. Berbers, T. 
D'Hondt. Tranquillity: A low Disruptive Alternative to Quiescence for Ensuring 
Safe Dynamic Updates. IEEE Transactions on Software Engineering, 
33(12):856-868, 2007. 

(Vandewoude, 2007) Y. Vandewoude. Dynamically updating component-oriented 
systems. PhD Thesis, Katholieke Universiteit Leuven, Belgium, 2007. 

(Vasseur, 2004) A. Vasseur. Java Dynamic AOP and Runtime Weaving - How 
Does AspectWerkz Address It? In proc. of Dynamic Aspects Workshop, in 
conjunction with AOSD‟04. Lancaster, UK, 2004. 

(Wang et al., 2006) Q. Wang, J. Shen, X. Wang, H. Mei. A Component-Based 
Approach to Online Software Evolution. Journal of Software Maintenance and 
Evolution, 18(3). Wiley 2006. 



REFERENCES 

470 

(Wegner, 1976) P. Wegner. Research Paradigms in Computer Science. 2nd 
Internat. Conf. on Software Engineering (ICSE‟76). IEEE, 1976. 

(Weise et al., 2009) T. Weise, M. Zapf, M. Ullah Khan, K. Geihs. Combining 
Genetic Programming and Model-Driven Development. In International Journal 
of Computational Intelligence and Applications (IJCIA), Vol. 8, No. 1, pp. 
37-52, 2009. 

(Wermelinger & Fiadeiro, 2002) M. Wermelinger, J.L. Fiadeiro. A Graph 
Transformation Approach to Software Architecture Reconfiguration. Sci. 
Comput. Program., 44(2):133–155, 2002. 

(Wermelinger et al., 2001) M. Wermelinger, A. Lopes, J.L. Fiadeiro. A graph 
based architectural (re)configuration language. SIGSOFT Software Engineering 
Notes 26(5), pp. 21-32. ACM, 2001. 

(Wong & Mun, 2005) M.L. Wong, Tuen Mun. Evolving Recursive Programs by 
Using Adaptive Grammar Based Genetic Programming.  Genetic Programming 
and Evolvable Machines, Vol. 6, No. 4, pp. 421-455. Dec 2005. 

(Xia, 1997) F. Xia. Software Engineering Research: A Methodological Analysis. In: 
Fourth Asia-Pacific Software Engineering and international Computer 
Science Conference (APSEC‟97). IEEE, 1997. 

(Yin, 2002) R.K. Yin. Applications of Case Study Research. Sage Publications, 3rd 
edition, 2002. 

(Yurcik & Doss, 2001) W. Yurcik, D. Doss. Achieving Fault-Tolerant Software 
with Rejuvenation and Reconfiguration. IEEE Software, 18(4):48-52. IEEE, 
2001. 

(Zachariadis et al., 2006) S. Zachariadis, C. Mascolo, W. Emmerich. The 
SATIN Component System-A Metamodel for Engineering Adaptable Mobile 
Systems. IEEE Trans. Software Eng. 32(11): 910-927, 2006. 

(Zouari et al., 2010) M. Zouari, M.T. Segarra, F. André. A Framework for 
Distributed Management of Dynamic Self-adaptation in Heterogeneous 
Environments. In proc. of: 10th IEEE Int. Conf. on Computer and 
Information Technology (CIT‟2010), pp. 265-272. Bradford, UK, June 29-
July 1, 2010. 



 

 

 


	Cover
	Abstract
	Keywords

	Resumen
	Palabras clave

	Resum
	Paraules clau

	Dedicatoria

	Preface
	Acknowledgements

	Table of Contents
	Part I: Introduction
	Chapter 1. Introduction
	1.1 Motivation
	1.1.1 Self-Management
	1.1.2 Runtime Maintenance

	1.2 Overall Aim and Objectives
	1.3 Research Methodology
	1.4 Research Hypothesis
	1.5 Thesis Overview

	Chapter 2. Context
	2.1 Introduction
	2.2 Software Architectures
	2.2.1 Definition
	2.2.2 Basic Concepts
	2.2.2.1 Component
	2.2.2.2 Connector
	2.2.2.3 Configuration
	2.2.2.4 System
	2.2.2.5 Port
	2.2.2.6 Connection
	2.2.2.7 Compositional Relationship
	2.2.2.8 Other concepts


	2.3 Aspect-Oriented Software Development
	2.3.1 Aspect-Oriented Programming
	2.3.2 Basic Concepts
	2.3.3 Aspects in the Software Life Cycle

	2.4 PRISMA
	2.4.1 Model and ADL selection
	2.4.2 Aspects as First-Class Citizens
	2.4.3 PRISMA Architectural Elements
	2.4.4 Levels of abstraction
	2.4.5 Model-Driven Development Support
	2.4.5.1 PRISMA in MOF
	2.4.5.2 The PRISMA MDD Process


	2.5 Conclusions


	Part II: State of the Art
	Chapter 3. Dynamic Software Evolution
	3.1 Introduction
	3.2 Software Evolution
	3.2.1 Software Maintenance vs Software Evolution
	3.2.2 Evolution as part of the Development Process

	3.3 Dynamic Software Evolution
	3.3.1 Changing software artefacts
	3.3.2 Introducing changes at runtime
	3.3.3 Dynamic Evolution: Definitions
	3.3.4 Kinds of Dynamic Evolution
	3.3.4.1 Granularity of changes
	3.3.4.2 Activeness of change


	3.4 Main Issues of Dynamic Evolution
	3.4.1 Safe Stopping of Running Systems
	3.4.1.1 Quiescence
	3.4.1.2 Tranquillity
	3.4.1.3 Other approaches for Safe Stopping

	3.4.2 Updating Stateful Artefacts
	3.4.2.1 No State Transfer
	3.4.2.2 Delegated State Transfer
	3.4.2.3 Automated State Transfer


	3.5 Other approaches for dynamic change management
	3.5.1 Control Systems
	3.5.2 Autonomic Computing
	3.5.3 Computational Reflection

	3.6 Dynamic Evolution in Software Architectures
	3.6.1 Dynamic Reconfiguration
	3.6.2 Dynamic Evolution of Architectural Types
	3.6.3 Combining both kinds of dynamism

	3.7 Conclusions

	Chapter 4. Related Works
	4.1 Introduction
	4.2 Dynamic Evolution Approaches
	4.2.1 Formal, Dynamic ADLs for Reconfiguration
	4.2.1.1 Process Algebra Formalisms
	4.2.1.2 Graph-Based Formalisms
	4.2.1.3 Reflection-Based Formalisms

	4.2.2 Systems for Dynamic Change Support
	4.2.2.1 Procedural and Object-Based Techniques
	4.2.2.2 Dynamic Weaving Techniques in AOP
	4.2.2.3 Component-Based Dynamic Frameworks

	4.2.3 Self-Managed Software Architectures
	4.2.3.1 Top-down approaches: Self-Adaptive Systems
	4.2.3.2 Bottom-up approaches: Decentralized Architecture-Based Systems

	4.2.4 AOSD & Evolution Concerns

	4.3 Comparison of the different approaches
	4.3.1 Description of the attributes selected
	4.3.2 Comparison tables

	4.4 Conclusions


	Part III: Dynamic PRISMA
	Chapter 5. Case Study: Agrobot
	5.1 Introduction: Agricultural Robotics
	5.2 Robotic Software Architectures
	5.3 Dynamic Evolution in Robotic Software Architectures
	5.4 Case Study: Agrobot,  An Autonomous Robot for Plague control
	5.4.1 Main Architecture
	5.4.2 Composite Components: VisionSystem
	5.4.3 Simple Components: ImageProcCard
	5.4.4 Aspects: ImageProcSwController

	5.5 Dynamic Evolution Requirements of the Agrobot
	5.5.1 Dynamic reconfiguration scenario:  VisionSystem fault-tolerance support
	Fault-tolerance support through Dynamic Reconfiguration
	Fault-tolerance in the VisionSystem type

	5.5.2 Dynamic type evolution scenario:  Changing the ImageProcSoftware component
	Convenience of Dynamic Type Evolution
	Dynamic updating in the VisionSystem type


	5.6 Conclusions

	Chapter 6. Autonomic Reconfiguration
	6.1 Introduction
	6.2 Characteristics of the approach
	A reconfiguration model bridging the gap among specifications and mechanisms
	Autonomous reconfiguration management
	Type-constrained reconfigurations
	Proactive and reactive reconfiguration support
	Separation of reconfiguration concerns through Aspects

	6.3 Reconfiguration management model
	6.3.1 A control loop for self-reconfiguration
	6.3.2 Aspects versus modules

	6.4 Description of the autonomic reconfiguration aspects
	6.4.1 The Monitoring Aspect
	6.4.1.1 Introspection Services
	A service to obtain a snapshot of the architecture
	Services to query the actual configuration

	6.4.1.2 Runtime Status Information
	6.4.1.3 Event Interception Services

	6.4.2 The Reconfiguration Analysis Aspect
	6.4.2.1 Structure of the Reconfiguration Analysis Aspect
	6.4.2.2 Reconfiguration Triggers
	6.4.2.3 Configuration Transactions
	6.4.2.4 Adding Inference Mechanisms

	6.4.3 The Reconfiguration Coordination Aspect
	6.4.3.1 Domain-Specific Reconfiguration Services
	6.4.3.2 Transactional Management of Reconfiguration Plans
	BeginConfigurationTransaction
	EndConfigurationTransaction
	RollbackConfigurationTransaction

	6.4.3.3 Generic Reconfiguration Services
	CreateArchitecturalElement
	CreateAttachment and CreateBinding
	DestroyArchElem
	DestroyAttachment and DestroyBinding
	ReplaceArchElem


	6.4.4 The Reconfiguration Effector Aspect
	6.4.4.1 Services for Safe Stopping
	6.4.4.2 Services for Reconfiguration
	6.4.4.3 Services for Updating, Recovery and Mobility


	6.5 The Evolver Component
	6.5.1 Structure of the Evolver Component
	6.5.2 Support for Reactive Reconfigurations
	6.5.3 Weaving the Reconfiguration Aspects Together
	6.5.4 Evolver Specification
	6.5.4.1 Evolver Template: The User-Defined Part
	6.5.4.2 Evolver Mechanisms: The Generated Functionality
	6.5.4.3 Consistence of Generated Code


	6.6 Example: autonomic reconfiguration in the VisionSystem architecture
	6.7 Conclusions & further works
	6.7.1 Conclusions
	6.7.2 Further works
	6.7.3 Results


	Chapter 7. Dynamic Evolution of Architectural Types
	7.1 Introduction
	7.2 Basis of the dynamic evolution of architectural types
	7.2.1 Definitions of Type, Instance and Architectural Type
	7.2.2 Definition of the Dynamic Evolution of Architectural Types

	7.3 Reflective Asynchronous Evolution of Architectural Types
	Type-oriented evolution
	Reflective evolution description
	Asynchronous evolution model
	Instance evolution through transformations
	7.3.1 System-level evolutions vs type-level evolutions
	7.3.2 A reflective model for evolvable types
	7.3.2.1 Reflection: The Abstract Model
	7.3.2.2 Type Meta-Instances: The Concrete Model
	7.3.2.3 Reification of Types
	7.3.2.4 Evolution Process Overview

	7.3.3 Evolving instances through transformations
	7.3.4 An asynchronous model for types evolution
	7.3.4.1 Modelling evolutions over time
	An abstract, illustrative example
	Synchronous Evolution Model
	Asynchronous Evolution Model

	7.3.4.2 Additional characteristics
	Incremental evolutions
	Single Evolution Path
	Activeness of type versions


	7.3.5 Description of the evolution infrastructure
	7.3.5.1 Type-level Evolution
	Builder Aspect
	Type Description Aspect
	 Reification structure
	 The Reify service
	 Introspection services
	 Management of type versions

	Type Evolution Aspect
	 The Reflect Service: Starting an Evolution Process
	 The Reflect Service: Generation of a new Type version
	Step 1: Blocking of related concerns
	Step 2: Evaluation of evolution preconditions
	Step 3: Generation of the new type version
	Step 4: Dynamic instantiation of the new code
	Step 5: Unblocking of related concerns


	Evolution Monitoring Aspect
	 Population Management
	 Propagation of evolutions to the Instance-Level
	Definition of evolution steps
	Definition of evolution policies

	 Monitoring of Evolution Processes


	7.3.5.2 Instance-level Evolution
	Instance Evolution Planning Aspect
	 ReflectToInstance: Receiving changes from the type-level
	 TransformInstance: The execution of an evolution process
	Step 1: Obtain evolution request and evaluate version conformance
	Step 2: Preparing the instance for transformation
	Step 3: Transforming the instance
	Step 4: Finishing the transformation process

	 Forcing or aborting an instance evolution process

	Instance Monitoring aspect
	Instance Effector aspect


	7.3.6 Summary of the evolution process

	7.4 Conclusions & further works
	7.4.1 Conclusions
	7.4.2 Further works
	7.4.3 Results


	Chapter 8. Description of the Evolution Semantics
	8.1 Introduction
	8.2 Challenges of asynchronous evolution
	8.3 Evolution semantics
	8.3.1 Specification of evolution processes
	8.3.2 Version management: Evolution Tags
	8.3.3 Formalisation of the evolution operations
	8.3.3.1 Architecture-based Concrete Syntax
	Addition of a new architectural type
	 Type-level Rules: AddArchitecturalType
	 Instance-Level Rules
	Rule R20: CreateArchitecturalElement
	Rule R21: ActivateInstantiatedArchElements
	Rule R38: AdvanceInstanceToNextVersion


	Updating of Architectural Types
	 Rule R10: UpdateAEType
	 Rule R37: ReplaceAE


	8.3.3.2 Graph-based Abstract Syntax
	Definition of the Type Graph
	Mapping of an evolution rule: CreateAE


	8.3.4 Discussion

	8.4 Conclusions & further works
	8.4.1 Conclusions
	8.4.2 Further works
	8.4.3 Results



	Part IV: Conclusions & Further Work
	Chapter 9. Conclusions
	9.1 Conclusions
	9.1.1 Contributions
	A dynamic architecture-based approach
	Integration of dynamic reconfiguration  and dynamic type evolution
	A model for autonomic reconfiguration  and asynchronous type evolution
	Encapsulation of evolution and  reconfiguration concerns into aspects
	Validation of the evolution semantics in .NET
	Validation of the evolution semantics  through graph transformations
	Application to the domain of autonomous robotics

	9.1.2 Evaluation of the approach
	Degree of formality
	Level of dynamism
	Activeness
	Evolution management
	Introspection
	Types of change
	Consistency management

	9.1.3 Evaluation of the research

	9.2 Results of the PhD
	International Journals
	Book Chapters
	International Conferences & Workshops
	National Conferences & Workshops

	9.3 Further research
	9.3.1 Model-Driven Development support for evolvable systems
	9.3.2 Proactive non-programmed evolutions
	9.3.3 Definition of evolution constraints
	9.3.4 Coordination of decentralized Evolvers
	9.3.5 Formal analysis
	Automatic generation of state transfer functions
	Automatic evaluation of semantic compatibility among types
	Evaluation of the dependencies and conflicts among reconfiguration transactions
	Verification of system properties

	9.3.6 Tool support for advanced graph transformations



	Part V: Appendixes
	Appendix A. PRISMA Specifications of the VisionSystem
	A.1 Specification of the VisionSystem type
	A.1.1 Interfaces
	A.1.1.1 I_VideoServices
	A.1.1.2 I_ImageProcessingServices
	A.1.1.3 I_WatchdogEvents

	A.1.2 Data Domains
	A.1.3 External Functions
	A.1.4 Architecture and configurations
	A.1.4.1 VisionSystem composite type
	PRISMA graphical specification (with Evolver)
	PRISMA ADL textual specification

	A.1.4.2 Configuration: RightCamera
	PRISMA ADL graphical specification
	PRISMA ADL textual specification
	PRISMA XML Specification

	A.1.4.3 Configuration: LeftCamera

	A.1.5 Components
	A.1.5.1 VideoCaptureCard
	A.1.5.2 ImageProcCard
	A.1.5.3 ImageProcSoftware
	A.1.5.4 VisionWatchdog

	A.1.6 Connectors
	A.1.6.1 VCC-Conn
	A.1.6.2 IPC-Conn

	A.1.7 Aspects
	A.1.7.1 VideoCapture
	A.1.7.2 ImageProcSwController
	A.1.7.3 ImageProcCardGUI
	A.1.7.4 ImageMonitoring
	A.1.7.5 VideoForwarding
	A.1.7.6 ImageForwarding


	A.2 Reconfiguration Elements
	A.2.1 Interfaces
	A.2.1.1 I_VisionSystemEvents
	A.2.1.2 I_VisionSystemIntrospectionServices
	A.2.1.3 I_VisionSystemReconfigurationServices

	A.2.2 Evolver Component
	A.2.2.1 User-defined part: VisionSystemEvolver
	A.2.2.2 Generated part: VisionSystemEvolverMechanisms

	A.2.3 Reconfiguration Analysis Aspect
	A.2.3.1 User-defined part: VSReconfigurationAnalysisAspect
	A.2.3.2 Generated part: VisionSystemAnalysisServices

	A.2.4 Reconfiguration Coordination Aspect
	A.2.4.1 Base Reconfiguration Coordination Aspect
	A.2.4.2 Generated part: VisionSystemReconfigurationServices

	A.2.5 Architecture Monitoring Aspect
	A.2.6 Architecture Effector Aspect

	A.3 Type Evolution Elements
	A.3.1 Data structures
	A.3.1.1 Related to simple types
	SimpleSpec
	AspectInfo
	PortInfo
	WeavingInfo

	A.3.1.2 Related to composite types
	CompositeSpec
	Architectural Element Info
	AttachmentType Info
	BindingType Info

	A.3.1.3 Constructor and destructor
	ConstructorInfo
	DestructorInfo
	ParamInfo
	Expression

	A.3.1.4 CTEvolutionStep
	A.3.1.5 STEvolutionStep
	A.3.1.6 ReplacementInfo

	A.3.2 Interfaces
	A.3.2.1 I_SimpleTypeDescription
	A.3.2.2 I_CompositeTypeDescription
	A.3.2.3 I_SerializableType
	A.3.2.4 I_IncrementalUpdating

	A.3.3 Type Description Aspect
	A.3.3.1 Data structures: TypeVersion
	A.3.3.2 Reification of simple types: SimpleTypeDescription
	A.3.3.3 Reification of composite types: CompositeTypeDescription

	A.3.4 Type Evolution Aspect
	A.3.5 Evolution Monitoring Aspect
	A.3.5.1 Data structures
	InstanceInfo
	EvolutionProcess
	EvolutionPolicy

	A.3.5.2 Simple components: SimpleInstanceMonitoring

	A.3.6 Builder Aspect
	A.3.6.1 Example for simple types: ImageProcCardBuilder
	A.3.6.2 Code generation pattern for simple types

	A.3.7 Instance Evolution Planning aspect
	A.3.7.1 Data structure: EvolutionRequest
	A.3.7.2 Aspect InstanceEvolutionPlanning

	A.3.8 Instance Monitoring aspect
	A.3.9 Instance Effector aspect


	Appendix B. Extensions of the PRISMA AOADL
	B.1 Lists
	B.2 Iterations and Loops
	B.3 Partial Definitions of Software Artefacts


	List of Figures
	References

