
Acad mic :

TRABAJO FIN DE MASTER EN INGENIERÍA INDUSTRIAL

AUTHOR:

GUILLERMO OLIVER PEIRÓ

JOSÉ LUIS OLIVER HERRERO

2017-18

SUPERVISOR:

DESIGN OF A BOSTON DYNAMICS
'HANDLE' ROBOT PROTOTYPE WITH
RECURDYN AND MATHEMATICA

AUTHOR:

SUPERVISOR:

Agradecimientos

“La realización de este trabajo fin de máster no habría sido posible sin el apoyo
y consentimiento de algunas personas. Quiero agradecer a mi padre y tutor por
haberme ayudado a lo largo del desarrollo del proyecto. Por supuesto, también
darle las gracias a mi novia por todo lo que ha tenido que aguantar, sobre
todo en las últimas etapas de desarrollo del proyecto y de la redacción de la
memoria, que le ha tenido en vilo hasta el final. Por último, darle las gracias
a mi familia, a mis compañeros, y a toda la gente que he conocido durante
estos últimos años mientras cursaba el grado y el máster; no habría sido lo
mismo sin vosotros.”

iii

Abstract

A simplified 2-dimensional model of Boston Dynamics’ Handle robot will be developed using
industry-leading computational tools.

As a starting point, a virtual model will built and designed in the SolidWorks environment. Using
COSMOSMotion add-in, the model will be adequately modified in order to obtain a self-aligned
mechanical system with no redundant constraints. Mathematica with the MechanicalSystems
package will provide the necessary tools to build a mathematical model and obtain its kinematic
solution, obtaining the expressions of all the generalized coordinates and the inertial properties
of the model in terms of its degrees of freedom.

The dynamic equations of motion of the model will be obtained by reducing the model to an
inverted pendulum on cart system. The resulting nonlinear model will be linearized around the
equilibrium point and closed-loop control schemes will be developed to maintain the balance
of the system. PID and state feedback controllers will be developed using pole placement and
LQR techniques. The designed controllers will be implemented in RecurDyn and SystemModeler
to compare their performance and the resemblance of the results in both multibody dynamics
simulation software.

Keywords: robot, robotics, kinematics, control, dynamics, CAD, CAE, SolidWorks,
Mathematica, RecurDyn, SystemModeler, Boston Dynamics, Handle.

v

Resumen

Un modelo bidimensional simplificado del robot Handle de Boston Dynamics será desarrollado
utilizando herramientas computacionales de amplia aplicación en la industria.

Como punto de partida, se ensamblará un modelo virtual en el entorno de SolidWorks. Utilizando
el complemento COSMOSMotion, el modelo se modificará para obtener un sistema mecánico
autoalineador sin restricciones en exceso. Mathematica y el complemento MechanicalSystems
proporcionarán las herramientas necesarias para desarrollar un modelo matemático del cual se
podrá obtener la solución cinemática, obteniendo las expresiones de las coordenadas generalizadas
y las propiedades inerciales del modelo en función de sus grados de libertad.

Las ecuaciones dinámicas del movimiento del modelo se obtendrán asemejando el modelo a un
sistema de péndulo invertido sobre carro. El sistema no lineal obtenido se linearizará alrededor
del punto de equilibrio y esquemas de control en bucle cerrado se desarrollarán para mantener
el equilibrio del sistema. Controladores PID y de retroalimentación de estados se desarrollarán
utilizando técnicas de colocación de polos y LQR. Los controladores diseñados se implementarán
en RecurDyn y SystemModeler para comparar su funcionamiento y la similitud de los resultados
en las dos herramientas computacionales de simulación dinámica multicuerpo.

Palabras Clave: robot, robótica, cinemática, control, dinámica, CAD, CAE, SolidWorks,
Mathematica, RecurDyn, SystemModeler, Boston Dynamics, Handle.

vii

Contents

I Descriptive Memory 1

1. Introduction 3
1.1. Boston Dynamics Handle . 4

1.2. Computational tools . 5
1.2.1 Mathematica . 5

1.2.2 SolidWorks . 5

1.2.3 RecurDyn . 6

1.2.4 SystemModeler . 6

1.3. Motivation . 7

2. Objectives 9

3. Methodology 11
3.1. Simplified 2-dimensional model in SolidWorks . 11

3.1.1 Theoretical model development . 11

3.1.2 From theory to practice . 14

3.1.3 Body definitions . 17

3.1.3.1 Body 1: Ground . 17

3.1.3.2 Body 2: Wheel . 17

3.1.3.3 Body 3: Lower leg . 18

3.1.3.4 Body 4: Upper leg . 18

3.1.3.5 Body 5: Trunk . 18

3.1.3.6 Body 6: Head . 19

3.1.3.7 Body 7: Upper arm . 19

3.1.3.8 Body 8: Lower arm . 19

3.1.3.9 Body: Cylinder barrel . 20

3.1.3.10 Body: Cylinder rod. 20

3.1.3.11 Parameter values . 20

3.1.3.12 Inertial properties. 21

3.1.4 Model definition . 22

3.1.4.1 Initial position values . 22

ix

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.4.2 Redundant constraint analysis. 24

3.1.4.3 Self-alignment of the linear actuators . 24

3.1.4.4 Resulting self-aligned model . 26

3.1.5 Kinematic motion definition . 27

3.1.5.1 Slider motion . 27

3.1.5.2 Angular motor motion . 28

3.1.5.3 First linear actuator motion . 28

3.1.5.4 Second linear actuator motion . 29

3.1.5.5 Third linear actuator motion . 29

3.1.5.6 Fourth linear actuator motion . 30

3.1.5.7 Fifth linear actuator motion . 30

3.2. Symbolic mathematical model in Mathematica . 31
3.2.1 Mathematical definition of bodies . 32

3.2.1.1 Body 2: Wheel . 33

3.2.1.2 Body 3: Lower leg . 33

3.2.1.3 Body 4: Upper leg . 34

3.2.1.4 Body 5: Trunk . 35

3.2.1.5 Body 6: Head . 36

3.2.1.6 Body 7: Upper arm . 37

3.2.1.7 Body 8: Lower arm . 38

3.2.1.8 Center of mass calculation . 39

3.2.2 Kinematic model definition . 41

3.2.2.1 Solution structure . 43

3.2.2.2 Kinematic simulation . 44

3.2.3 Working range . 45

3.2.4 Dynamic model definition . 47

3.2.4.1 Inverted pendulum using Lagrangian mechanics . 50

3.2.4.2 Inverted pendulum using Newton’s laws. 52

3.2.4.3 Inverted pendulum using constraint equations . 55

3.2.4.4 Space state model . 58

3.2.4.5 Operating point . 59

3.2.4.6 Linearization . 61

3.2.4.7 Dynamic simulation . 63

3.3. Dynamic control in RecurDyn . 64
3.3.1 Importing model into RecurDyn . 64

3.3.2 Obtaining the center of mass . 65

3.3.3 Obtaining the equilibrium angle . 67

3.3.4 PID controller design . 69

3.3.4.1 Pendulum angle controller . 69

3.3.4.2 Pendulum angle and cart position controller . 72

3.3.4.3 Implementation in CoLink . 74

3.3.5 State feedback controller design. 75

3.3.5.1 Pole placement method . 76

3.3.5.2 Linear-Quadratic Regulator . 77

3.3.5.3 Implementation in CoLink . 78

3.3.6 Dynamic simulation . 79

3.3.6.1 Driven motion to free motion . 79

3.4. Modelica-based model in SystemModeler . 81
3.4.1 Custom components. 82

3.4.1.1 Step5 component . 82

3.4.1.2 PrismaticMotion component . 83

x

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.1.3 RevoluteMotion component . 84

3.4.1.4 VectorTranslation component . 85

3.4.2 Model definition . 86

3.4.3 PID controller implementation . 88

3.4.4 State feedback controller implementation . 89

4. Presentation and Analysis of Results 91
4.1. Introduction . 91

4.2. SolidWorks and COSMOSMotion . 93
4.2.1 Self-aligned model . 94

4.2.2 COSMOSMotion kinematic motion results . 95

4.2.2.1 Position results . 95

4.2.2.2 Velocity results . 96

4.2.2.3 Acceleration results . 97

4.3. Mathematica . 98
4.3.1 Kinematic model . 98

4.3.1.1 Equations of motion . 98

4.3.1.2 Comparison between Mathematica and COSMOSMotion kinematic results 102

4.3.2 Working range . 105

4.3.3 Interactive visual representation . 106

4.3.4 Dynamic model . 108

4.3.4.1 Free motion results . 109

4.3.5 Comparison between RecurDyn and Mathematica dynamic free motion results. 110

4.4. RecurDyn . 111
4.4.1 Model . 111

4.4.2 Controllers . 113

4.4.2.1 Ziegler-Nichols closed-loop method . 113

4.4.2.2 PID controller for pendulum angle . 114

4.4.2.3 Double PID controller for pendulum angle and cart position . 115

4.4.2.4 State feedback control using pole placement . 116

4.4.2.5 State feedback control using a Linear-Quadratic Regulator . 117

4.4.2.6 CoLink closed-loop control structures . 118

4.5. SystemModeler . 119
4.5.1 Model . 119

4.5.2 Controller comparison between SystemModeler and RecurDyn . 120

4.5.2.1 Ziegler-Nichols closed-loop method . 121

4.5.2.2 PID controller for pendulum angle . 122

4.5.2.3 Double PID controller for pendulum angle and cart position . 125

4.5.2.4 State feedback control using pole placement . 128

4.5.2.5 State feedback control using a Linear-Quadratic Regulator . 131

4.5.2.6 Discussion . 134

5. Discussion and conclusion 139
5.1. Discussion . 139

5.1.1 Model simplification. 139

5.1.2 Kinematic model . 140

5.1.3 Dynamic model . 141

5.1.4 Control. 141

xi

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

5.2. Future work . 142
5.2.1 Model complexity increase . 142

5.2.2 Control structures . 142

5.3. Conclusion . 143

II Budget 145

1. Introduction 147

2. Budget 149
2.1. Labor cost . 149

2.2. Hardware cost. 151

2.3. Software cost . 152

3. Summary 153

III Appendices 155

A. Self-aligning mechanisms 157
A.1. Basic notions . 157

A.2. Redundant constraints and self-aligning mechanisms. 161

A.3. Application to CAE software . 163
A.3.1 Bushing forces . 165

B. Variable-sided triangles 167
B.1. Trigonometric notions . 168

B.1.1 Tangent half-angle formulas . 168

B.1.2 Cosine formula. 169

B.2. Mathematical definition of variable-sided triangles . 170

C. Interpolating step functions 173
C.1. STEP function . 174

C.2. STEP5 function . 175

C.3. HAVSIN function . 176

C.4. LOGISTIC function . 177

C.5. Function comparison . 178

C.6. Conclusion. 179

D. Kinematics and dynamics of mechanical systems 181
D.1. Coordinate transformation . 181

D.2. Equations of motion . 183
D.2.1 Newton’s Laws. 183

D.2.2 Lagrangian mechanics . 184

xii

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

D.2.3 Constraint equations . 185

D.3. Space state representation . 189

D.4. Space state linearization . 190

D.5. Space state to transfer function. 193

E. Controller design 195
E.1. Control theory . 195

E.2. PID Controller . 199
E.2.1 Influence of the different terms . 199

E.2.1.1 Proportional term . 199

E.2.1.2 Integral term . 200

E.2.1.3 Derivative term . 200

E.2.1.4 Considerations . 200

E.2.2 Tuning. 201

E.2.2.1 Manual tuning . 201

E.2.2.2 Pole placement . 202

E.2.3 Discrete approximation. 206

E.3. State feedback control . 207
E.3.1 Pole placement. 208

E.3.2 Linear-Quadratic Regulator (LQR) . 208

F. Considerations for the Modelica model 211
F.1. State variables . 211

F.2. Planar loops in the MultiBody library. 215

Bibliography 217

Index 219

xiii

List of Figures

1.1 Image of the Handle robot . 4

3.1 Initial kinematic diagram of the Handle robot. 12

3.2 Static image of the Handle robot from which the geometrical information is extracted. 13

3.3 Bodies and joints locations on the Handle robot. 15

3.4 Drivers (linear actuators and motors) which control the DOF of the Handle robot. 16

3.5 Definition of ground body (first body) with parametrized dimensions. 17

3.6 Definition of wheel body (second body) with parametrized dimensions. 17

3.7 Definition of lower leg body (third body) with parametrized dimensions. 18

3.8 Definition of upper leg body (fourth body) with parametrized dimensions. 18

3.9 Definition of trunk body (fifth body) with parametrized dimensions. 18

3.10 Definition of head body (sixth body) with parametrized dimensions. 19

3.11 Definition of upper arm body (seventh body) with parametrized dimensions. . . . 19

3.12 Definition of lower arm body (eighth body) with parametrized dimensions. 19

3.13 Definition of cylinder barrel with parametrized dimensions. 20

3.14 Definition of cylinder rod with parametrized dimensions. 20

3.15 SolidWorks model of the robot with all the bodies and their relevant points. . . . 22

3.16 COSMOSMotion analysis results for the initial configuration. 24

3.17 Representation of the triangle configuration of the linear actuator. 25

3.18 Representation of the self-aligned triangle configuration of the linear actuator. . . 25

3.19 COSMOSMotion analysis results for the self-aligned model. 26

3.20 COSMOSMotion representation of the complete self-aligned model. 26

3.21 STEP5 definition of the slider motion in COSMOSMotion. 27

xv

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.22 STEP5 definition of the angular motor motion in COSMOSMotion. 28

3.23 STEP5 definition of first linear actuator motion in COSMOSMotion. 28

3.24 STEP5 definition of second linear actuator motion in COSMOSMotion. 29

3.25 STEP5 definition of third linear actuator motion in COSMOSMotion. 29

3.26 STEP5 definition of fourth linear actuator motion in COSMOSMotion. 30

3.27 STEP5 definition of fifth linear actuator motion in COSMOSMotion. 30

3.28 Definition of wheel body (second body) in Mathematica. 33

3.29 Definition of lower leg body (third body) in Mathematica. 33

3.30 Definition of upper leg body (fourth body) in Mathematica. 34

3.31 Definition of trunk body (fifth body) in Mathematica. 35

3.32 Definition of head body (sixth body) in Mathematica. 36

3.33 Definition of upper arm body (seventh body) in Mathematica. 37

3.34 Definition of lower arm body (eighth body) in Mathematica. 38

3.35 Definition of the complete model in Mathematica at its initial position. 39

3.36 Representation of the equivalent inverted pendulum on cart model. 47

3.37 Free-body diagram of the first body (cart). 52

3.38 Free-body diagram of the second body (pendulum). 52

3.39 Root locus plot for the inverted pendulum system. 62

3.40 Model of the Handle robot in RecurDyn as imported from SolidWorks. 64

3.41 List of Plant Outputs for the model. 65

3.42 CoLink subroutine to calculate the center of mass of the model. 66

3.43 CoLink subroutine to calculate the center of mass of the model and the equilibrium
angle. 68

3.44 Double closed-loop controller design. 69

3.45 CoLink subroutine to implement a PID controller. 74

3.46 Full state feedback control system. 75

3.47 CoLink subroutine to implement a state feedback controller. 78

3.48 Diagram of the driven to free motion technique implementation. 80

3.49 Modelica Step5 component. 82

3.50 Modelica PrismaticMotion component. 83

3.51 Modelica RevoluteMotion component. 84

3.52 Modelica VectorTranslation component. 85

xvi

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.53 Modelica Handle component. 86

3.54 Internal structure of the Handle component. 87

3.55 Modelica PIDControl component. 88

3.56 Internal structure of the PIDControl component. 88

3.57 Modelica StateFeedbackControl component. 89

3.58 Internal structure of the StateFeedbackControl component. 89

4.1 Kinematic diagram of the final version of the model. 92

4.2 SolidWorks model of the robot with all the bodies and their relevant points. . . . 93

4.3 SolidWorks COSMOSMotion representation of the complete self-aligned model
where the joint position and types are depicted. 94

4.4 COSMOSMotion analysis results for the self-aligned model. 94

4.5 Path followed by the tracer point in COSMOSMotion. 95

4.6 Velocity of the tracer point during the motion in COSMOSMotion. 96

4.7 Acceleration of the tracer point during the motion in COSMOSMotion. 97

4.8 Comparison of tracer point trajectories during the kinematic simulation between
Mathematica symbolic solution (blue) and COSMOSMotion numeric solution
(red). Y vs. X coordinate parametric plot in m. 102

4.9 Comparison of tracer point velocities during the kinematic simulation between
Mathematica symbolic solution (blue) and COSMOSMotion numeric solution
(red). Y vs. X coordinate parametric plot in m/s. 103

4.10 Comparison of tracer point accelerations during the kinematic simulation
between Mathematica symbolic solution (blue) and COSMOSMotion numeric
solution (red). Y vs. X coordinate parametric plot in m/s2. 104

4.11 Working range of the tracer point for variations in La1, La2, La4, and La5 for the
initial position of X2 and Θ3. 105

4.12 Interactive controls in Mathematica. 106

4.13 Interactive visual representation in Mathematica. 107

4.14 Representation of the equivalent inverted pendulum on cart model. 108

4.15 Mathematica model with the trajectory of the tracer point during free motion. . . 109

4.16 Comparison of tracer point trajectories for the free motion dynamic simulation
between Mathematica symbolic solution (blue) and RecurDyn numeric solution
(red). Y vs. X coordinate parametric plot in m. 110

4.17 Dynamic system’s starting position depicted in RecurDyn. 111

4.18 Root locus representation of the closed-loop transfer function of Θ. 113

4.19 Structure of the single and double PID closed-loop control configuration in CoLink.118

xvii

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.20 Structure of the state feedback (pole placement and LQR) control configuration
in CoLink. 118

4.21 Complete model implemented in SystemModeler. 119

4.22 Oscillatory closed-loop response to proportional gain Kp = 1100. 121

4.23 Θ3 response for the closed-loop control with one PID controller for the pendulum
angle. 122

4.24 X2 response for the closed-loop control with one PID controller for the pendulum
angle. 123

4.25 F action for the closed-loop control with one PID controller for the pendulum angle.124

4.26 Θ3 response for the closed-loop control with double PID controller for pendulum
angle and cart position. 125

4.27 X2 response for the closed-loop control with double PID controller for pendulum
angle and cart position. 126

4.28 F action for the closed-loop control with double PID controller for pendulum angle
and cart position. 127

4.29 Θ3 response for the closed-loop control with state feedback control designed using
pole placement. 128

4.30 X2 response for the closed-loop control with state feedback control designed using
pole placement. 129

4.31 F action for the closed-loop control with state feedback control designed using
pole placement. 130

4.32 Θ3 response for the closed-loop control with state feedback control designed using
LQR. 131

4.33 X2 response for the closed-loop control with state feedback control designed using
LQR. 132

4.34 F action for the closed-loop control with state feedback control designed using LQR.133

4.35 Comparison of slider position X2 and control action F noise between RecurDyn
and Mathematica for the single PID configuration. 134

4.36 Comparison of control action F noise between RecurDyn and Mathematica. . . . 134

4.37 Comparison for the results of the Θ3 angle with double PID, state feedback with
pole placement and state feedback LQR controllers. 135

4.38 Comparison for the results of the X2 position with double PID, state feedback
with pole placement and state feedback LQR controllers. 135

4.39 Comparison for the results of the F control action with double PID, state feedback
with pole placement and state feedback LQR controllers. 136

A.1 Table of kinematic pairs from Professor L. N. Reshetov’s book. 158

xviii

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

A.2 A four-bar linkage depicted in SystemModeler. 162

A.3 Bushing force definition in RecurDyn. 165

B.1 A triangle . 169

B.2 Variable-sided triangle and relative angle constraint between bodies. 170

C.1 Heaviside step function . 173

C.2 STEP function . 174

C.3 STEP function derivatives . 174

C.4 STEP5 function . 175

C.5 STEP5 function derivatives . 175

C.6 HAVSIN function . 176

C.7 HAVSIN function derivatives . 176

C.8 LOGISTIC function . 177

C.9 LOGISTIC function derivatives . 177

C.10 Step function comparison . 178

C.11 Step function first and second derivatives comparison 178

D.1 Representation of a vector in different reference frames. 181

E.1 Systems comparison. 195

E.2 Laplace representation of open and closed-loop systems. 196

E.3 Dynamic behavior of the system in terms of the positions of its pole in the complex
plane. 197

E.4 Time response of an underdamped second order system. 204

E.5 Pole location for a second order system in terms of damping ratio ξ and natural
frequency ωn. 204

E.6 Full state feedback control system. 207

F.1 SystemModeler options window. 212

F.2 Inadequate state selection for the model in SystemModeler. 213

F.3 Visual representation of the correctly initialized model in SystemModeler. 214

F.4 Modelica Mechanics.MultiBody.Joints.RevolutePlanarLoopConstraint component. 215

xix

Part I

Descriptive Memory

Chapter 1

Introduction

This first chapter will describe the robot this thesis is based on, the different
computational tools used in the development of the prototype and the motivation
behind all of this.

Robotics has been known in the industry for decades. Industrial robotics for the automation of
production lines is a field that has undergone a great amount of development and research in
the past. This allowed an increase in the performance of the industry and to free workers from
tedious and repetitive jobs with high physical load. Currently, there is a new trend in robotics,
which has been stomping hard over the last two decades: social robotics. Social robotics takes
a leap away from industrial facilities and develops robots that are able to interact with people
and help in the fulfillment of daily activities. Following the line of development of the virtual
assistants, through this type of robotics the aim is to make an assistant, this time a tangible
one, which is able to render services in the physical world that go way beyond what a cybernetic
organism projected on a screen can offer.

A long time has gone by since the presentation by Honda of the humanoid robot ASIMO which
fascinated the world in the early 2000s. Nowadays, companies such as Boston Dynamics or
Agility Robotics are developing social robotics that only a few years back seemed only possible
to conceive in our imagination or in science fiction movies.

The key to success in social robotics projects, and to that extent in any kind of robotics projects,
is not easy to obtain. These multidisciplinary projects require of the successful interaction of
several fields of engineering. A good knowledge of mechanical design is mandatory in order
for the robot to be agile and move efficiently. The design of the associated electronics is also
extremely important; power electronics is required to supply the energy needed for motors and
actuators, and digital electronics is needed to process information from the outside world and
act accordingly. Robust control loops must be designed in order for the robot to maintain its
balance and have a dynamic stable behavior. In sum, the development of a social robot depends
on the correct synergy between mechanics, electronics, and control theory.

3

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

1.1 Boston Dynamics Handle

The Handle robot was officially introduced in February 27, 2017 when Boston Dynamics uploaded
a new video titled Introducing Handle1 to their YouTube channel. There was some prior video
footage leaked at the end of January when the company founder, Marc Raibert, featured the
robot in a presentation to investors and some of those present recorded and uploaded videos to
the Internet.

Handle is presented as the best of both worlds, it combines wheels and legs to provide improved
movement and agile high-strength mobile manipulation. This research robot stands 2 meters
tall, it can travel at speeds of 14.5 kilometers per hour, and jump as high as 1.2 meters vertically.
Its main source of energy is electric power, used to operate both electric and hydraulic actuators,
with a range of about 15 miles on one battery charge. With a total weight of 105 kg, Handle is
able to carry a payload of 45 kg. Using depth cameras and computer vision algorithms, it can
detect and avoid or even jump over obstacles while moving at relatively high speeds.

According to Boston Dynamics, Handle uses many of the same dynamics, balance and mobile
manipulation principles found in the quadruped and biped robots they build in the past. In
this case, the robot has only 10 actuated joints, making it significantly less complex than the
previous robots that walk on two legs. The combination of wheels, which are efficient on flat
surfaces, and legs, that can go almost anywhere, allow Handle to achieve a high mobility and
performance in all types of terrains. Handle can pick up heavy loads while occupying a small
footprint, allowing it to maneuver in tight spaces.

Figure 1.1: Image of the Handle robot obtained from the Boston Dynamics website2.

1Boston Dynamics - Introducing Handle: https://www.youtube.com/watch?v=-7xvqQeoA8c
2Boston Dynamics - Handle: https://www.bostondynamics.com/handle

4

https://www.youtube.com/watch?v=-7xvqQeoA8c
https://www.bostondynamics.com/handle

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

1.2 Computational tools

For the development of this project, several computer aided engineering softwares have been
used. A brief presentation of the software and its relevance to the project will be presented
below.

1.2.1 Mathematica

Mathematica3 is a modern technical computing software developed by Wolfram Research, an
American computer software company, widely used in many technical, scientific, engineering,
mathematical, and computer science fields. First introduced in 1988, what makes Mathematica
unique is its symbolic manipulation kernel, which allows algebraic equation manipulation and
symbolic equation solving in terms of explicit variables which can be parametrized or
substituted accordingly. It the latest releases of the software many new features have been
introduced, including neural networks, machine learning, image processing, Big Data
algorithms, 3D visualizations, and many more. All the programming and development in the
environment of Mathematica is done in Wolfram Language, which include thousands of built-in
functions developed in the last thirty years.

Mathematica has made possible to express the equations of mechanical motion in terms of
different parameters and solve the systems of algebraic equations in order to obtain the
symbolic solution for the position and orientation of each body in the mechanical system. The
resulting equations, expressed in terms of the system’s degrees of freedom and with geometrical
parameters of the bodies yet to be determined, can be simplified by substituting the numerical
values for the dimensions of the bodies and by applying the convenient Mathematica
simplification functions.

The symbolic capabilities ofMathematica will aid in obtaining the dynamic equations of motion of
the system in order to design a controller using two different closed-loop configurations: a classical
PID controller and a full state feedback control. The design of these controllers will be done
in Mathematica, but their performance will be checked with the RecurDyn and SystemModeler
software.

1.2.2 SolidWorks

SolidWorks4 is a well-known computer-aided engineering (CAE) software for the Windows
operating system that is widely used in the industry. Even though it also contains modules for
dynamic multibody and electrical circuits simulation, SolidWorks is mostly used for product
and prototype design as it provides one of the most intuitive and easy to use environments from
all the computer-aided design softwares available. The developer behind SolidWorks is Dassault
Systèmes, an European software company with offers other industry leading computer-aided
engineering (CAE) and finite element method (FEM) software such as CATIA or ABAQUS.

The selected version of the SolidWorks software is the 2007 edition with the COSMOSMotion
add-in, a dynamic multibody simulation module. COSMOSMotion offers the possibility for the
designed system to be simulated in real-world operating conditions, including the mechanical

3Wolfram Research - Mathematica: https://www.wolfram.com/mathematica
4Dassault Systèmes - SolidWorks: https://www.solidworks.com

5

https://www.wolfram.com/mathematica
https://www.solidworks.com

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

operations of actuators and motors and the physical forces generated. The version selection
is due to the fact that the 2007 edition is the last one to include some key features in the
COSMOSMotion add-in.

The simplified 2-dimensional model of the Handle robot has been developed in SolidWorks,
making use of parametric equations in order to define the lengths and positions of the different
bodies of the mechanical system. Using the tools provided in this CAD software, the complete
assembly of the model was developed with the appropriate mechanical joints needed to assemble
the model together and making sure the mobility of the model was as expected. The assembled
model’s mobility is checked using COSMOSMotion and its motion will be simulated using this
add-in. The theory of self-aligning mechanisms will be taken into account in order to obtain a
mechanical configuration with no redundant constraints. The results of the simulation provide a
starting point for the dynamics of the model, these results are to be checked in the next phases
of the project.

1.2.3 RecurDyn

RecurDyn5, blended word originating from Recursive and Dynamics, is a computer-aided
engineering (CAE) software centered in the dynamic simulation of multibody mechanical
systems (MBD). This software is able to simulate rigid and flexible body dynamics by using a
combination of traditional rigid multibody algorithms with cutting-edge finite element
methodology for modeling of flexible bodies. The developer of RecurDyn is FunctionBay, a
software company based in South Korea, which also offers an add-on multibody dynamics
(MBD) module for ANSYS and it is considered a reference in the field of multibody simulation.
The computed-aided design capabilities of RecurDyn are not as powerful as the ones available
in SolidWorks, but it also includes an integrated control design and simulation tool, known as
CoLink, as well as a particle dynamics module. RecurDyn also supports co-simulation with
various other computer-aided engineering software tools, such as MATLAB/Simulink and
provides FMI (Functional Mockup Interface) for interaction with compatible software.

By successfully exporting the model from SolidWorks using the Parasolid binary file format, a
tantamount model was obtained when importing in RecurDyn. Using the controller design
capabilities of CoLink, providing feedback from the own CAD model, different closed-loop
controllers which allowed the robot to maintain its balance were developed.

1.2.4 SystemModeler

SystemModeler6 is a modeling and simulation environment based on the Modelica7 language.
It was originally developed by the company MathCore Engineering under the commercial name
of MathModelica, but it was acquired by Wolfram Research on 2011. Since its acquisition by
Wolfram Research it has been re-branded as SystemModeler and includes a tight integration
with their flag-ship software Mathematica.

5FunctionBay - RecurDyn: https://www.functionbay.org
6Wolfram Research - SystemModeler: https://www.wolfram.com/system-modeler
7Modelica is a non-proprietary, object-oriented, multi-domain equation based language to conveniently model complex

physical systems (containing mechanical, electrical, electronic, hydraulic, thermal, control, electric power or process-oriented
subcomponents, etc.), developed by the Modelica Association. https://www.modelica.org

6

https://www.functionbay.org
https://www.wolfram.com/system-modeler
https://www.modelica.org

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

SystemModeler offers a large selection of modeling libraries, including the Modelica Standard
Library, as well as other self-developed components by Wolfram Research, in an intuitive
drag-and-drop graphical environment in order to build multidomain models of complete
real-world systems. By adding the power of the Wolfram Language it provides a fully
integrated environment for analyzing, understanding and quickly iterating system designs with
a focus on insight, innovation and results. As a new addition other Modelica-based software, it
also provides a graphical representation of mechanical models when properly defined using
supported CAD file formats.

A complete replica of the mechanical system was built in the Modelica language, using elements
from the Modelica Standard Library and other own custom-built components. The bodies from
the CAD model were exported as STL files8 in order to provide a graphical representation for the
SystemModeler simulation results. Using the equations obtained from theMathematica kinematic
solution and dynamic model, a closed-loop controller which allowed the robot to maintain its
balance was also developed. The results of this simulation are to be compared to the results
obtained from the completely numerical simulation of RecurDyn.

1.3 Motivation

The realization of the project responds to academic reasons, more specifically to obtain the
Master’s degree in Industrial Engineering. The choice of the subject is the result of an interest
in robotics, in addition to the motivation that implies the desire for learning and the satisfaction
of self-realization when something is completed successfully. For my Bachelor’s final year project
I had the chance of correcting the deficiencies in electronics and reprogramming the embedded
systems of an existing robot, and now the challenge consists in tackling a robot design from an
earlier stage.

I am sure that Boston Dynamics’ creations intrigue and fascinate the whole world each time
they publish a new video, and I am no exception. Since the first time I saw the Handle robot I
was amazed by the combination of wheels and legs it used, and I thought it would be interesting
to analyze the mechanical configuration behind its motion capabilities. The fact that it used
wheels instead of legs made it easier to extract a simplified virtual model of it, but it was still
interesting enough for it to be analyzed using the latest computational tools in order to get a
glance at the technology enclosed within.

8Stereolithography (*.stl) neutral file format in which three-dimensional bodies are described as their external surface
using triangular tessellation with no information about their colors, textures, mass, or any other properties other than their
external shape.

7

Chapter 2

Objectives

The objectives deriving from the fulfillment of this project are the following:

• Obtaining the Master’s Degree in Industrial Engineering.

• Acquiring competences in the usage of computational design tools with wide professional
application in the field of mechanical engineering.

• Making a first contact with the mechanical and dynamic control design of mobile robots.

9

Chapter 3

Methodology

This chapter contains the bulk of the project: the development of the different
parts will be described, including the methodology and the computational tools
behind all the milestones of the project.

3.1 Simplified 2-dimensional model in SolidWorks

3.1.1 Theoretical model development

The first step in the development of the project is to carefully analyze the only video footage
available for the Handle robot, the Introducing Handle video at Boston Dynamics’ YouTube
channel, in order to extract all the relevant information about the mechanical systems behind
its motion capabilities. A thorough analysis will be carried out to determine the mechanical
configuration which allows the relative motion between the different bodies that make up the
robot. For the sake of reducing the complexity of the robot analysis to a dimension encompassable
by a Master’s thesis, considering the limitations in time and length which apply, the objective is
to obtain a simplified 2-dimensional model prototype which retains most of the characteristics
of its 3-dimensional real counterpart.

Following the conventions of mechanical system analysis, considering the robot as an mechanical
entity on a 2-dimensional world, the ground is the first body of the system. It is a fixed body
over which the motion of the robot will be defined and it will provide a the surface of mechanical
sustenance for it. The wheel is the second body of the system, a relative rolling motion without
slipping between it and the ground is allowed. The next two bodies are what make up the leg,
being body number three the one between the wheel and the knee, and number four the one
which completes the leg by connecting knee and the trunk of the robot. Relative rotational
motion is allowed between them and with the trunk and wheels on both ends. The trunk of
the robot is the fifth body and it is connected with a rotational joint to the sixth body, which
resembles the head of the robot. The arm of the robot are made up of two bodies, numbers seven
and eight, with relative rotational motion between them and of body seven with the trunk. A
ninth additional body could be considered between the leg and the wheel, this body contains the
electric motor which drives the wheel and allows rotational motion with the lower leg.

11

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Once the bodies have been identified, the next thing to consider is what drives the motion
of the joints between them, are there electric motors in each of the joints, or is this motion
achieved through other mechanical means? The first thought might be to think it the robot
contains electric motors for each of the joints, this is the most simple solution but by far the
less efficient one. A big electric motor drives the wheel, but are all joints driven by the same
configuration? Boston Dynamics is known for not going for the easiest solution, but looking
for the most efficient mechanical solution. In this case, after analyzing carefully the robot’s
shapes and the scarce information available online, and taking into consideration configuration
of previous robots from the same company, the conclusion was that the joints are driven by
hydraulic actuators in a triangle configuration.

Figure 3.1: Initial kinematic diagram of the Handle robot where the different bodies, joints and actuators are
defined.

Now, with the robot configuration in mind, a first kinematic diagram of the robot is drawn. This
diagram is the starting point for the creation of the 2-dimensional virtual model. The lengths

12

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

and other body dimensions are yet to be defined, and the shapes of the bodies and actuator
positions are subject to change.

The lengths of bodies and relative starting angle and position values of the robot will be extracted
from one of the static photographs of the robot available at the Boston Dynamics website1.

Figure 3.2: Static image of the Handle robot from which the geometrical information is extracted.

The geometrical parameters (lengths, body dimensions, anchor points, etc.) were proven not to
be completely definitive. Throughout the process described in the following sections, some fine
adjustments had to be done which resulted in modifying slightly some values in order to solve
issues regarding incompatible configurations and for the sake of simplifying the resulting systems
and equations of motion.

1Boston Dynamics (2017). Handle. url: https://www.bostondynamics.com/handle.

13

https://www.bostondynamics.com/handle

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.2 From theory to practice

The complexity of the robot has been reduced to a simplified 2-dimensional model, now it is time
to build it using a computer-aided engineering program. The software chosen is SolidWorks, an
industry-leader CAD software designed to work on 3-dimensional models, therefore we must use
solid bodies, instead of 2-dimensional sketches. We will use two of the available SolidWorks
document types for the creation of the model: parts (*.sldprt) and assemblies (*.sldasm). Parts
define solid bodies as a whole, there is no relative motion between the internal building blocks of
parts. On the other side, assemblies are made up of bodies determined as part documents and
allow the relative motion of the bodies by defining joints between them.

The basic building blocks for the model are extrusions of 2-dimensional shapes with a fixed depth,
as a simple way of obtaining 3-dimensional bodies from 2-dimensional diagrams. There are three
basic shapes (circles, squares and rectangles) with parameterizable dimensions that will make
up the model, the shapes can be combined together to form more complex shapes and they will
use cylindrical holes as joints in order to define the relative anchors between them. Each body
derived from the original diagram will be composed using several of these shapes, and we will
define a different color for each one of the bodies, in order for them to be easily distinguishable
from one another.

A further simplification is proposed. The wheel element which allows relative rolling motion
without slipping will be simplified to the closest equivalent based on blocks. The relative
rotational motion is preserved, but the contact will be replaced for a translational joint with
allows horizontal displacement along the surface of the ground.

The assembly process will be divided in two parts: the internal formation of bodies and the
assembly of the bodies together. The bodies will be constructed by joining the extruded shapes
in the necessary combinations to achieve the overall geometrical configuration desired by using
fixed mechanical relationships, therefore disallowing relative motion between them, inside part
documents. The combination of the part documents which make up the different bodies will be
done inside an assembly document, allowing the relative motion of the bodies between them. This
document will be at the top of the hierarchy pyramid and it will define our complete mechanical
system. SolidWorks allows the user to modify part documents and then auto-updating the
assembly document in which these bodies are used. This is a feature that will prove very useful
in order to tweak some of the parameters of the model with the minimum effort.

Body Name Connected to

1 Ground 2

2 Wheel 1, 3

3 Lower leg 2, 4

4 Upper leg 3, 5

5 Trunk 4, 6, 7

6 Head 5

7 Upper arm 5, 8

8 Lower arm 7

Table 3.1: Bodies of the simplified Handle robot model with nomenclature and connections.

14

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Joint Type Bodies

1 Translational 1, 2

2 Revolute 2, 3

3 Revolute 3, 4

4 Revolute 4, 5

5 Revolute 5, 6

6 Revolute 5, 7

7 Revolute 7, 8

Table 3.2: Joints of the simplified Handle robot model with types and connections.

Figure 3.3: Bodies and joints locations on the Handle robot.

Once the model is assembled together by inserting bodies and defining the relative constraints
or joints (known as Mates in the SolidWorks environment) between them, it is also necessary to
include the drivers and their definition.

The resulting simplified model of the Handle robot is an extruded 2-dimensional assembly with
7 degrees-of-freedom (DOF): five linear actuators, a motor and a slider. The linear actuators
ranging from La1 to La5 are the hydraulic actuators which move the upper body of the robot,
these DOF will be precisely controlled by setting their elongation. The motor Θ3 and slider X2

(substituting the wheel) will be ultimately controlled using a different closed-loop controller for
each one of them.

The end of the lower arm (body number 8) is the tracer point. This point is the equivalent of
the hand in a humanoid robot, and therefore it is a rather interesting point that must be studied
carefully. The equations of motion of this point (position, velocity and acceleration) will be
obtained from the latter mathematical model.

15

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Driver DOF Name Type Bodies

1 X2 Slider 1, 2

2 Θ3 Motor 2, 3

3 La1 Linear actuator 3, 4

4 La2 Linear actuator 4, 5

5 La3 Linear actuator 5, 6

6 La4 Linear actuator 5, 7

7 La5 Linear actuator 7, 8

Table 3.3: Drivers of the simplified Handle robot model with types and connections.

Figure 3.4: Drivers (linear actuators and motors) which control the DOF of the Handle robot.

16

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.3 Body definitions

The definitions of the different body parts with their parameterized dimensions are presented.
All the bodies have a density defined by the ρ parameter (except body 2 with a density of ρ2), a
height of H (except bodies 2 and the cylinder barrel with a height of two times H), a width of
W and the holes present in some bodies have a radius of r. The black and grey mark indicates
the origin of the absolute coordinate system located at the middle of the ground body, the four-
colored mark indicates the local origin of the body’s coordinate system and the blue and yellow
mark in body 8 determines the location of the tracer point.

There are eight main bodies and two additional bodies that make up each of the five linear
actuators (hydraulic cylinders) in the model. All the relevant points in each body, such as local
coordinate system origins and joint positions, have been enumerated accordingly.

According to the specifications of the robot available in the Boston Dynamics website, the
maximum height of the robot is 2 meters and its weight is 105 kilograms. The dimensions
of the different bodies and their densities will be chosen accordingly in order to obtain similar
characteristics. All the bodies will have the same density except the wheel body that is considered
to be heavier due to the electric motors it contains.

3.1.3.1 Body 1: Ground

Figure 3.5: Definition of ground body (first body) with parametrized dimensions.

3.1.3.2 Body 2: Wheel

Figure 3.6: Definition of wheel body (second body) with parametrized dimensions.

17

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.3.3 Body 3: Lower leg

Figure 3.7: Definition of lower leg body (third body) with parametrized dimensions.

3.1.3.4 Body 4: Upper leg

Figure 3.8: Definition of upper leg body (fourth body) with parametrized dimensions.

3.1.3.5 Body 5: Trunk

Figure 3.9: Definition of trunk body (fifth body) with parametrized dimensions.

18

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.3.6 Body 6: Head

Figure 3.10: Definition of head body (sixth body) with parametrized dimensions.

3.1.3.7 Body 7: Upper arm

Figure 3.11: Definition of upper arm body (seventh body) with parametrized dimensions.

3.1.3.8 Body 8: Lower arm

Figure 3.12: Definition of lower arm body (eighth body) with parametrized dimensions.

19

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.3.9 Body: Cylinder barrel

Figure 3.13: Definition of cylinder barrel with parametrized dimensions.

3.1.3.10 Body: Cylinder rod

Figure 3.14: Definition of cylinder rod with parametrized dimensions.

3.1.3.11 Parameter values

Parameter Value Units Dimension

L1 50 cm length [L]

L2 3 cm length [L]

L3 25 cm length [L]

L5 20 cm length [L]

L6 35 cm length [L]

L7 20 cm length [L]

L8 20 cm length [L]

L10 10 cm length [L]

Ld 10 cm length [L]

H 2 cm length [L]

W 1 cm length [L]

ρ 1 · 105 kg
m3 density [ML−3]

ρ2 2 · 106 kg
m3 density [ML−3]

r 1
2 cm length [L]

Table 3.4: Parameters and their dimensions.

20

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.3.12 Inertial properties

The values of the geometrical parameters were chosen to obtain similar characteristics as the
real robot. The model is a 2-dimensional approximation with a very small width, which causes
the value of the density to be very large in order to match the mass specifications of the parts.
This is not a problem as long as mass and inertias have coherent values.

The resulting values for mass, moment of inertia and total length of the bodies considering the
parameter values will be recorded. The moment of inertia is calculated for the z axis
(perpendicular to the body) because it is considered as a planar body. The total mass and the
maximum height are close to the real values of the robot.

Body Property Value Units

2
m2 48 kg

I2 0.0208 kg ·m2

Lb2 6 cm

3
m3 10.2429 kg

I3 0.2248 kg ·m2

Lb3 50 cm

4
m4 10.2429 kg

I4 0.2248 kg ·m2

Lb4 50 cm

5
m5 10.1644 kg

I5 0.1867 kg ·m2

Lb5 40 cm

6
m6 14.2429 kg

I6 0.6033 kg ·m2

Lb6 70 cm

7
m7 8.2429 kg

I7 0.1174 kg ·m2

Lb7 40 cm

8
m8 8.2429 kg

I8 0.1174 kg ·m2

Lb8 40 cm

Table 3.5: Inertial properties and total length of bodies.

Real Model Units
Mass 105 109.3789 kg

Height 200 193.5 cm

Table 3.6: Comparison of mass and height specifications.

21

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.4 Model definition

For the correct understanding of the following developments, it is recommended to read chapters
A and B from the appendices where the theory behind self-aligning mechanisms and variable-
sided triangles is carefully detailed.

With all the bodies independently defined and the theory behind self-aligning mechanisms in
mind, the next step is to assembly the complete model together. The eight main bodies are
assembled together using the kinematic pairs defined in Table 3.2 and the linear actuators will
be temporarily defined using only revolute joints.

3.1.4.1 Initial position values

The model will be assembled in a folded starting position, representing the moment when the
robot is at rest lying on the ground. This will be starting position for all the types of subsequent
analyses.

This model contains a total of 8 main bodies plus 10 bodies due to linear actuators. The linear
actuators are dummy bodies that aid in the motion of the model, therefore they are considered
to have a negligible mass compared to the main bodies. These linear actuators are made up of
a barrel with the corresponding rod and account for bodies 10 to 19.

All the coordinates are global coordinates, referred to the absolute coordinate system located at
the midpoint of the ground body (point 11).

The initial positions and angles of the different parts of the model, as well as the values of the
seven degrees of freedom, will be recorded to serve as starting values in the upcoming models.

Figure 3.15: SolidWorks model of the robot with all the bodies and their relevant points.

22

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Body Coordinate Value Units

2
X2 -50 cm
Y2 0 cm
Θ2 0 deg

3
X3 -25.46 cm
Y3 -4.78 cm
Θ3 -11.03 deg

4
X4 -22.96 cm
Y4 2.25 cm
Θ4 -28.2 deg

5
X5 -44.99 cm
Y5 34.06 cm
Θ5 90 deg

6
X6 -27.58 cm
Y6 60.31 cm
Θ6 19.74 deg

7
X7 -65.76 cm
Y7 45.12 cm
Θ7 39.68 deg

8
X8 -73 cm
Y8 14.09 cm
Θ8 -65.92 deg

10
X10 -14.34 cm
Y10 -3.36 cm
Θ10 148.31 deg

11
X11 -17.97 cm
Y11 -1.11 cm
Θ11 148.31 deg

12
X12 -38.64 cm
Y12 19.03 cm
Θ12 104.24 deg

13
X13 -42.53 cm
Y13 34.37 cm
Θ13 104.24 deg

14
X14 -49.1 cm
Y14 23.18 cm
Θ14 114.28 deg

15
X15 -56.41 cm
Y15 39.37 cm
Θ15 114.28 deg

16
X16 -46.66 cm
Y16 35.92 cm
Θ16 99.6 deg

17
X17 -48.7 cm
Y17 48.03 cm
Θ17 99.6 deg

18
X18 -69.05 cm
Y18 39.97 cm
Θ18 -129.56 deg

19
X19 -72.75 cm
Y19 35.5 cm
Θ19 -129.56 deg

Table 3.7: Initial values for the coordinates of all the bodies in the model.

23

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

DOF Value Units
X2 -50 cm
Θ3 -11.03 deg
La1 24.2722 cm
La2 35.8221 cm
La3 37.7705 cm
La4 32.2810 cm
La5 25.8034 cm

Table 3.8: Initial values for the seven degrees of freedom of the model.

3.1.4.2 Redundant constraint analysis

Using COSMOSMotion to analyze the mechanism returns a result of 15 redundant constraints.

Figure 3.16: COSMOSMotion analysis results for the initial configuration.

The triangle configuration the linear actuator defines between itself and the two bodies it connects
must be self-aligned in order to avoid these redundant constraints.

3.1.4.3 Self-alignment of the linear actuators

Lets consider the triangle configuration of the linear actuator independently. The mechanism
has four bodies: the linear actuator which is made up of the rod and barrel bodies, and the two
bodies the actuator connects. If the first body is considered as the fixed one, the model has three
moving bodies. This mechanism has one degree of freedom, therefore its apparent mobility is
one.

There are four kinematic pairs in this mechanical configuration: three revolute joints (class V,
connectivity = 1) and a translational joint (class V, connectivity = 1). The first revolute joint
connects the ground body to the second body, the second revolute joint connects the ground
with the third body (cylinder barrel), and the third revolute joint connects the second body with
the fourth body (cylinder rod). The translational joint allows the displacement of the cylinder
rod into the barrel in their longitudinal axis.

24

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Figure 3.17: Representation of the triangle configuration of the linear actuator.

Applying the Grübler-Kutzbach formula and calculating the number of redundant constraints:

M3D = 6 (4− 4− 1) + (1 + 1 + 1 + 1) = −2

Number of redundant constraints = 1− (−2) = 3
(3.1)

It is a straightforward deduction the fact that if there are 15 redundant constraints in the model
and there are five linear actuators with three redundant constraints, successfully self-aligning the
actuators will lead to the self-alignment of the whole model.

In this case the solution is the same as in the four-bar linkage. Three redundant constraints
means that some revolute joints must be replaced with joints with a higher connectivity. The
sum of the replacement joints’ connectivity must be three units higher. From the two possible
solutions, the solution adopted in this case is the following: replacing two revolute joints for an
spherical (class III, connectivity = 3) and a cylindrical (class VI, connectivity = 2) joint.

Figure 3.18: Representation of the self-aligned triangle configuration of the linear actuator.

Applying the mobility formula again returns the correct number of DOF:

M3D = 6 (4− 4− 1) + (1 + 1 + 3 + 2) = 1 (3.2)

25

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.4.4 Resulting self-aligned model

Replacing the two revolute joints in each of the five linear actuators with the corresponding
spherical and cylindrical joint removes the 15 redundant constraints, resulting in a self-aligned
model. Using COSMOSMotion to analyze the mechanism again returns the correct number of
degrees of freedom and zero redundant constraints.

Figure 3.19: COSMOSMotion analysis results for the self-aligned model.

Figure 3.20: COSMOSMotion representation of the complete self-aligned model.

Now that the model has seven degrees of freedom and zero redundant constraints, it has been
correctly self-aligned and it is ready to be simulated.

26

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.5 Kinematic motion definition

A kinematic simulation using COSMOSMotion will be conducted. All the degrees of freedom
will be driven in order to make the robot stand up from its resting position. The path, velocity
and acceleration of the tracer point will be obtained in order to be compared with the upcoming
results of the mathematical model in Mathematica.

Using STEP5 functions, the displacement of the seven degrees of freedom will be defined and
the model simulated. The motions are selected to achieve a stand up movement of the robot in
the time lapse of one second.

The reason for selecting the STEP5 function as the interpolating step function for the kinematic
motion is detailed in chapter C from the appendices.

3.1.5.1 Slider motion

The slider will describe a positive horizontal motion of 50 centimeters.

Figure 3.21: STEP5 definition of the slider motion in COSMOSMotion.

27

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.5.2 Angular motor motion

The angular motor will describe a positive angular motion of 45 degrees.

Figure 3.22: STEP5 definition of the angular motor motion in COSMOSMotion.

3.1.5.3 First linear actuator motion

The first linear actuator will describe an extension motion of 4 centimeters.

Figure 3.23: STEP5 definition of first linear actuator motion in COSMOSMotion.

28

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.5.4 Second linear actuator motion

The second linear actuator will describe an extension motion of 1 centimeter.

Figure 3.24: STEP5 definition of second linear actuator motion in COSMOSMotion.

3.1.5.5 Third linear actuator motion

The third linear actuator will describe a contraction motion of 12 centimeters.

Figure 3.25: STEP5 definition of third linear actuator motion in COSMOSMotion.

29

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.1.5.6 Fourth linear actuator motion

The fourth linear actuator will describe a contraction motion of 3 centimeters.

Figure 3.26: STEP5 definition of fourth linear actuator motion in COSMOSMotion.

3.1.5.7 Fifth linear actuator motion

The fifth linear actuator will describe an extension motion of 1 centimeter.

Figure 3.27: STEP5 definition of fifth linear actuator motion in COSMOSMotion.

30

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2 Symbolic mathematical model in Mathematica

Developing a mathematical model of the robot in Mathematica provides the opportunity to
obtain expressions for the behavior (position, velocity and acceleration) of all the different bodies
in terms of the values of its seven degrees of freedom.

Mathematica is a very powerful symbolic environment where the equations of motion can be
expressed in terms of the parameters that describe the bodies. By symbolically solving the
equations of the model one can obtain the expressions for the behavior of the bodies in a
generalized way, and then substitute variables for their numerical values to obtain the behavior
for a specific configuration or time period.

The mathematical model is divided in two big parts: kinematics and dynamics. Solving the
kinematic model provides expressions for the position, velocity and acceleration of the bodies in
terms of the values and first and second derivatives of the drivers (DOF). This is the first model
one must obtain when analyzing a mechanical system. Once the kinematic model is solved, the
next step is to tackle the dynamic model. The dynamic model arises when leaving some or all of
the drivers loose. For each driver left loose, one differential equation that describes the behavior
of the degree of freedom appears. The solutions obtained from the kinematic model can be useful
when describing and simplifying the dynamic model.

The solution for the kinematic model was obtained in a completely parametrized symbolic
manner, in which all the geometrical parameters of the bodies were left unsubstituted, and also
in a numerical version, where the value of these parameters are substituted from the beginning
and result in much simplified and less computationally expensive expressions. Both of the
solutions successfully express the positions of the bodies in terms of the system’s degrees of
freedom. The numerical expressions will be used to obtain a interactive model in Mathematica
using the Manipulate command, where the values of the drivers can be changed dynamically
and the visual representation of the model is updated in real time.

It should be noted that development of the mathematical model was an iterative process. The
models had to be successively simplified in order to obtain expressions with a complexity within
reasonable levels. Different approaches for solving the problems presented in the model were
tried until the optimum and simplest solution was obtained. This was the critical phase for the
development of the model, once a simplification was proposed and proven to be valid the previous
2-dimensional model in SolidWorks has to be modified accordingly. The final model depicted
here is the result of many iterations and it is simplified to the maximum extent possible without
losing the essence of the robot.

31

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1 Mathematical definition of bodies

Once the simplified model of the Handle robot is created in the virtual environment of
SolidWorks, it must be mathematically described in Mathematica. The mathematical definition
of the mechanical bodies is essentially reduced a series of points and to the inertial properties
each one of them has. The points that must be defined are those which determine the position
of joints which provide the connection to the surrounding bodies, and the inertial properties are
the center of mass (centroid), the mass, and the moment of inertia.

In order to obtain the inertial properties of each one of the bodies, the CompositeInertia
function of the MechanicalSystems package is used. This function returns the list of the inertial
properties of a composite body made up of a number of specified subcomponents. All of the
subcomponents of each body will be manually defined taking into consideration the geometrical
features it presents (holes and protruding parts). The holes represent the locations of the
mechanical joints between the different bodies.

The ground body does not contribute to the overall center of mass of the model because it
only provides the fixed base over which the robot moves, therefore its inertial properties are not
relevant. The actuators will be considered to have negligible mass and inertia when compared to
the other body parts, therefore not being included in the calculations. The wheel (body number
2) is not included in the center of mass calculated because it only translates horizontally through
the ground, this will be explained in the upcoming sections.

The centroid and inertia of the bodies are calculated relative to the origin of their local coordinate
system, and all bodies have a height of H (except body number 2), a width of W and a density
of ρ (except body number 2). The wheel and the lower leg bodies have a different color than
the rest because they contain the drivers X2 and Θ3, they are colored with a light green as well
as the linear actuators. The orientation and positions of the bodies depicted correspond to the
initial position of the robot, in its folded state. The body’s coordinate system configuration and
the parameters used are the same as in the SolidWorks model.

32

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1.1 Body 2: Wheel

This body contains no holes or protruding parts, its inertial properties are pretty straightforward.

Figure 3.28: Definition of wheel body (second body) in Mathematica.

Centroid {0, 0}

Mass 4HL2 ρ2W

Inertia 4
3HL2(H2 + L2

2) ρ2W

Table 3.9: Inertial properties of wheel body (second body).

3.2.1.2 Body 3: Lower leg

This body contains two holes, the impact of these elements will be taken into account when
obtaining its inertial properties.

Figure 3.29: Definition of lower leg body (third body) in Mathematica.

Centroid {0, 0}

Mass 2
(
H(L3 + 2r)− πr2

)
ρW

Inertia 1
6

(
H3(L3 + 2r) + 4H(L3 + 2r)3 − 6πr2

(
2L2

3 + r2
))
ρW

Table 3.10: Inertial properties of lower leg body (third body).

33

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1.3 Body 4: Upper leg

This body contains two holes, the impact of these elements will be taken into account when
obtaining its inertial properties.

Figure 3.30: Definition of upper leg body (fourth body) in Mathematica.

Centroid {0, 0}

Mass 2
(
H(L3 + 2r)− πr2

)
ρW

Inertia 1
6

(
H3(L3 + 2r) + 4H(L3 + 2r)3 − 6πr2

(
2L2

3 + r2
))
ρW

Table 3.11: Inertial properties of upper leg body (fourth body).

34

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1.4 Body 5: Trunk

This body contains three holes and one protruding part, the impact of these elements will be
taken into account when obtaining its inertial properties.

Figure 3.31: Definition of trunk body (fifth body) in Mathematica.

Centroid { L5(HLd−πr2)
H(2L5+Ld+4r)−3πr2 ,

Ld(H(H+Ld)−2πr2)
2H(2L5+Ld+4r)−6πr2}

Mass
(
H(2L5 + Ld + 4r)− 3πr2

)
ρW

Inertia

1

12 (H(2L5 + Ld + 4r)− 3πr2)

(
H4
(
4L2

5 + 2L5(5Ld + 8r) + L2
d + 20Ldr + 16r2

)
+

6H3
(
2L5L

2
d − πr2(L5 + 2Ld) + 4L2

dr − 2πr3
)

+

H2
(
16L4

5 + 32L3
5Ld + 16r

(
8L3

5 + 6L2
5Ld + L3

d

)
+ 8L5L

3
d+

6r2
(
16L5(4L5 + Ld)− πL2

d

)
+ 64r3(8L5 + Ld) + L4

d + 256r4
)
−

6πHr2
(
8r
(
6L2

5 + L2
d

)
+ 2(2L5 + Ld)

(
4L2

5 + L2
d

)
+ 3r2(18L5 + Ld) + 44r3

)
+

6π2r4
(
16L2

5 + 4L2
d + 9r2

))
ρW

Table 3.12: Inertial properties of trunk body (fifth body).

35

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1.5 Body 6: Head

This body contains two holes, the impact of these elements will be taken into account when
obtaining its inertial properties.

Figure 3.32: Definition of head body (sixth body) in Mathematica.

Centroid {0, 0}

Mass 2
(
H(L6 + 2r)− πr2

)
ρW

Inertia 1
6

(
H3(L6 + 2r) + 4H(L6 + 2r)3 − 6πr2

(
2L2

6 + r2
))
ρW

Table 3.13: Inertial properties of head body (sixth body).

36

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1.6 Body 7: Upper arm

This body contains two holes, the impact of these elements will be taken into account when
obtaining its inertial properties.

Figure 3.33: Definition of upper arm body (seventh body) in Mathematica.

Centroid {0, 0}

Mass 2
(
H(L7 + 2r)− πr2

)
ρW

Inertia 1
6

(
H3(L7 + 2r) + 4H(L7 + 2r)3 − 6πr2

(
2L2

7 + r2
))
ρW

Table 3.14: Inertial properties of upper arm body (seventh body).

37

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1.7 Body 8: Lower arm

This body contains two holes, the impact of these elements will be taken into account when
obtaining its inertial properties.

Figure 3.34: Definition of lower arm body (eighth body) in Mathematica.

Centroid {0, 0}

Mass 2
(
H(L8 + 2r)− πr2

)
ρW

Inertia 1
6

(
H3(L8 + 2r) + 4H(L8 + 2r)3 − 6πr2

(
2L2

8 + r2
))
ρW

Table 3.15: Inertial properties of lower arm body (eighth body).

38

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.1.8 Center of mass calculation

It is possible to obtain the inertias and center of mass of the whole assembly by taking into
consideration the masses and inertias of the different bodies it contains. The same function as
before, CompositeInertia, will be used to calculate the global inertial parameters of the model:
center of mass (centroid), total mass, and total inertia.

The center of mass of the total assembly will be calculated considering the relative position of
each of the bodies and their relative orientations between each other. The origin of the global
coordinate system is located in the midpoint of the ground body (first body), and all the results
will be relative to this point. The total inertia will not be presented because of it is a rather
monstrous equation that does not fit on the page.

Neither the ground body nor the five linear actuators, that are considered to have negligible mass,
will be considered for the calculation of the whole center of mass. The wheel, body number 2,
will also be excluded from the center of mass calculation, only considering the bodies that turn
around the pivot point defined by the revolute joint driven by Θ3.

Figure 3.35: Definition of the complete model in Mathematica at its initial position.

39

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Mass (H(4L3 + 2L5 + 2L6 + 2L7 + 2L8 + Ld + 24r)− 13πr2) ρW

Centroid

{
1

−4H(2L3 + L5 + L6 + L7 + L8)− 2HLd − 48Hr + 26πr2(
−2H(2L3(X3 +X4) + 2L5X5 + 2L6X6 + 2L7X7 + 2L8X8 + LdX5+

4r(X3 +X4 +X5 +X6 +X7 +X8)) + 2L5 cos [Θ5]
(
πr2 −HLd

)
+

Ld sin [Θ5]
(
H(H + Ld)− 2πr2

)
+ 2πr2(2X3 + 2X4 + 3X5 + 2(X6 +X7 +X8))

)
,

1

2H(4L3 + 2(L5 + L6 + L7 + L8) + Ld) + 48Hr − 26πr2(
2H(2L3(Y3 + Y4) + 2L5Y5 + 2L6Y6 + 2L7Y7 + 2L8Y8 + LdY5+

4r(Y3 + Y4 + Y5 + Y6 + Y7 + Y8)) + 2L5 sin [Θ5]
(
HLd − πr2

)
+

Ld cos [Θ5]
(
H(H + Ld)− 2πr2

)
− 2πr2(2Y3 + 2Y4 + 3Y5 + 2(Y6 + Y7 + Y8))

)}
Table 3.16: Total inertial properties of the complete model, considering bodies 3 through 8.

The solution to the generalized coordinates of the bodies and the trigonometric functions of their
angles of orientation will be substituted when the kinematic model is solved in order to obtain
an expression that is only dependent on the seven degrees of freedom of the model.

40

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.2 Kinematic model definition

The kinematic model definition in Mathematica will be done using the MechanicalSystems
package with the Modeler2D option for planar mechanical systems. There are several steps for
the definition of the model and subsequent obtaining of the kinematic equations of motion.

The first thing is to define the bodies using the Body function. The input parameters are the
following: the points that define the body, which are the same as in the SolidWorks definition;
the values of the generalized coordinates in the starting point, both Cartesian coordinates and
the angle of orientation; and the inertial properties of the body, including mass, inertia, and
center of mass.

The constraint equations corresponding to each of the joints will be defined using the
2-dimensional constraint definition functions. In this case, the translational joints will be
defined using Translate2 and revolute joints will be defined using Revolute2. The drivers
that make up the degrees of freedom will be defined separately. RelativeX1 will be used for
the position of the slider X2, and RotationLock1 will define the angular motor Θ3.

The definition of the linear actuators can be defined in two different ways: as a relative
distance with RelativeDistance1 or as a relative angle between the connecting bodies using
RelativeAngle1. In the first mathematical models the relative distance constraint was used,
but it was finally replaced in favor of the relative angle constraint due to the greater simplicity
of the latter. This substitution caused a noticeable decrease in the complexity of the resulting
expressions. More insight about this topic is available in chapter B from the appendices.

The resulting constraint equation vector is:

Φ(q, t) =

4L1L2 sin Θ2

2L2(L1 +X2 − L2 cos Θ2) sin Θ2 + 2L2 cos Θ2(−Y2 + L2 sin Θ2)

X2 −X3 + L3 cos Θ3

Y2 − Y3 + L3 sin Θ3

X3 −X4 + L3 cos Θ3 − L3 cos Θ4

Y3 − Y4 + L3 sin Θ3 − L3 sin Θ4

X4 −X5 − L3 cos Θ4 + L5 cos Θ5

Y4 − Y5 − L3 sin Θ4 + L5 sin Θ5

X5 −X6 + L5 cos Θ5 + 37
70L6 cos Θ6

Y5 − Y6 + L5 sin Θ5 + 37
70L6 sin Θ6

X5 −X7 + L5 cos Θ5 − 7
10L7 cos Θ7 − Ld sin Θ5

Y5 − Y7 + Ld cos Θ5 + L5 sin Θ5 − 7
10L7 sin Θ7

X7 −X8 − L7 cos Θ7 + L8 cos Θ8

Y7 − Y8 − L7 sin Θ7 + L8 sin Θ8

X2 − pos(t)
Θ3 − ang(t)

sin(Θ3 −Θ4 −ΘLa1
)

sin(Θ4 −Θ5 + ΘLa2
)

sin(Θ5 −Θ6 −ΘLa3
)

5Ld cos(Θ5 −Θ7 + ΘLa4
) + 7L5 sin(Θ5 −Θ7 + ΘLa5

)

sin(Θ7 −Θ8 −ΘLa5
)

= 0 (3.3)

41

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Where ΘLa1
, ΘLa2

, ΘLa3
, ΘLa4

and ΘLa5
are the relative angles between bodies expressed in

terms of the corresponding actuator lengths.

ΘLa1
= cos−1

((
L3

5

)2
+
(

29L3

25

)2 − La2
1

2(L3

5)(29L3

25)

)
(3.4)

ΘLa2
= cos−1

((
2L3

5

)2
+
(

3L5

2

)2 − La2
2

2(2L3

5)(3L5

2)

)

ΘLa3
= cos−1

(
(2L5)2 +

(
33L6

70

)2 − La2
3

2(2L5)(33L6

70)

)

ΘLa4
= cos−1

(√(

7L5

5

)2
+ L2

d

)2

+
(

3L7

10

)2 − La2
4

2

(√(
7L5

5

)2
+ L2

d

)
(3L7

10)

ΘLa5

= cos−1

((
6L7

5

)2
+
(
L8

4

)2 − La2
5

2(6L7

5)(L8

4)

)

The constraint equations can be symbolically solved with Mathematica to obtain the x and
y positions and orientations of all the bodies in terms of the seven degrees of freedom: X2,
Θ3, La1, La2, La3, La4 and La5. The trigonometric functions of the body’s angle are also
important expressions that are obtained from these equations. These expressions make up the
kinematic solution of the model. Because of the symbolic nature of the expressions from the
kinematic solution, they can be derived to obtain the expression for linear and angular velocity
and acceleration of the body in terms of its degrees of freedom.

The kinematic solution allows the center of mass and the moment of inertia of the model to be
expressed in terms of its inputs, which are its degrees of freedom. This results can later be used
to develop dynamic model or complex control loops.

The visual representation of the model is another important output that is obtained from
Mathematica. Once the equations that rule the kinematic model are solved and the expressions
for the bodies obtained, it is possible to define a visual representation of the model. The visual
representation is developed using two built-in graphical functions from Mathematica: Disk to
draw circular shapes, and Polygon to define rectangular shapes.

All the bodies are represented in several sections depending on their shapes and the number of
holes they have. Linear actuators that make up the variable-sided triangles are not considered
bodies, instead they are a result from the relative angle constraints and their definition is done
in a simplified way. They are defined between the points they connect using the length of the
barrel L10 as the fixed one and the length of the rod is obtained from the difference between the
corresponding actuator length La and L10.

42

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.2.1 Solution structure

The solution of the kinematic model provides insight into the structure of the solution to the
position and orientation of the bodies in terms of the seven degrees of freedom of the model.
The coordinates of the bodies and the trigonometric functions of the angle have common traits,
both of them have a canonical form with shared coefficients. Uppercase letters denote absolute
coordinates while lowercase refer to coordinates relative to the position of the slider. The length
from the center of mass of the slider to the local origin of coordinates of the body is given the `i
symbol.

The canonical form for the absolute coordinates of body i, where i ∈ [3, 8], is:

Xi = X2 + xi = X2 + ai cos Θ3 − bi sin Θ3 (3.5)

Yi = yi = bi cos Θ3 + ai sin Θ3

Using the cosine formula and the tangent half-angle formulas with the relative angle approach to
solve the variable-sided triangles formed by the actuators, the angle of orientation of the bodies
is obtained as an inverse tangent.

However, the trigonometric functions resulting have a canonical form:

cos Θi = ci cos Θ3 − di sin Θ3 (3.6)

sin Θi = di cos Θ3 + ci sin Θ3

Some important properties of these forms are:

x2
i + y2

i = a2
i + b2i = `2i (3.7)

X2
i + Y 2

i = a2 + b2 +X2
2 +X2(2a cos Θ3 − 2b sin Θ3) = `2i +X2

2 +X2(2a cos Θ3 − 2b sin Θ3)

cos2 Θi + sin2 Θi = c2
i + d2

i = 1

The same is true for the centroid of the model. The center of mass of the model, considering
only bodies 3 through 8, is just another point where its canonical form is the same as the one
for the absolute coordinates of the bodies:

XG = X2 + xG = X2 + aG cos Θ3 − bG sin Θ3 (3.8)

YG = yG = bG cos Θ3 + aG sin Θ3

The coefficients ai, bi, aG, bG, ci and di are functions dependent on the actuator lengths
f(La1, La2, La3, La4, La5).

The moment of inertia of the body, considering only bodies 3 through 8, has no canonical form,
but it is also a function of the actuator lengths:

IG = f(La1, La2, La3, La4, La5) (3.9)

43

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.2.2 Kinematic simulation

The symbolic kinematic solution is a very powerful tool that can be used to obtain a kinematic
simulation of the body. The expressions for linear and angular positions, velocities and
accelerations of the bodies in terms of the degrees of freedom can be used to recreate the same
results of the SolidWorks kinematic model.

If the same type of step functions are defined in Mathematica, the expressions for the generalized
coordinates and its derivatives of the tracer point, or any other point of any other body, can be
obtained and compared with the numerical results of COSMOSMotion.

The mathematical definitions for the slider position X2, the angle Θ3 and the actuators lengths
La1, La2, La3, La4 and La5 as a function of time are expressed in terms of their initial value
and the STEP5 function. Due to STEP5 function being a class C2, the expressions for velocity
and acceleration of all the generalized coordinates of the bodies can be calculated easily.

In order to have the same inputs as in the COSMOSMotion simulation, the drivers will be defined
as functions of time:

X2 = X2i + ∆X2 · T = −0.5 + 0.5 · STEP5[T, 0, 0, 1, 1] (m) (3.10)

Θ3 = Θ3i + ∆Θ3 · T = −11.03 + 45 · STEP5[T, 0, 0, 1, 1] (◦)

La1 = La1i + ∆La1 · T = 0.242722 + 0.04 · STEP5[T, 0, 0, 1, 1] (m)

La2 = La2i + ∆La2 · T = 0.358221 + 0.01 · STEP5[T, 0, 0, 1, 1] (m)

La3 = La3i + ∆La3 · T = 0.377705− 0.12 · STEP5[T, 0, 0, 1, 1] (m)

La4 = La4i + ∆La4 · T = 0.322810− 0.03 · STEP5[T, 0, 0, 1, 1] (m)

La5 = La5i + ∆La5 · T = 0.258034 + 0.01 · STEP5[T, 0, 0, 1, 1] (m)

These definitions will be substituted into the symbolic solutions for the bodies and the tracer
point coordinates obtained from the kinematic model. These symbolic expressions will also be
derived to obtain velocities and accelerations and compared with the solution from
COSMOSMotion.

44

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.3 Working range

The model has seven degrees of freedom for which the maximum and minimum values must
be specified. The position of the slider X2 has no limitation on the movement, it can move
horizontally in an unlimited range. The angular motor that drives the angle Θ3 has no theoretical
limitation, being able to make a complete 360◦ degree turn around the pivot point, but there
must be a range in order to avoid configurations that would not make sense in the real world.
The chosen range will be from −15◦, which corresponds to the folded initial configuration, to
90◦, corresponding to a full extended upwards configuration.

Unlike the other two, the five remaining degrees of freedom do have a mathematical limitation
for their value. The relative angle definition of the variable-sided triangles that make up the
actuators limit the values for their length.

The relative angle of the bodies connected by the actuator are defined as:

ΘLa1
= cos−1

((
L3

5

)2
+
(

29L3

25

)2 − La2
1

2(L3

5)(29L3

25)

)
(3.11)

ΘLa2
= cos−1

((
2L3

5

)2
+
(

3L5

2

)2 − La2
2

2(2L3

5)(3L5

2)

)

ΘLa3
= cos−1

(
(2L5)2 +

(
33L6

70

)2 − La2
3

2(2L5)(33L6

70)

)

ΘLa4
= cos−1

(√(

7L5

5

)2
+ L2

d

)2

+
(

3L7

10

)2 − La2
4

2

(√(
7L5

5

)2
+ L2

d

)
(3L7

10)

ΘLa5

= cos−1

((
6L7

5

)2
+
(
L8

4

)2 − La2
5

2(6L7

5)(L8

4)

)

The maximum and minimum lengths obtained from these equations are:

La1 ∈ R :
24

25
L3 ≤ La1 ≤

34

25
L3 (3.12)

La2 ∈ R :

(
3

2
L5 −

2

5
L3

)
≤ La2 ≤

(
2

5
L3 +

3

2
L5

)
La3 ∈ R :

(
2L5 −

33

70
L6

)
≤ La3 ≤

(
2L5 +

33

70
L6

)

La4 ∈ R :

(√(
7L5

5

)2

+ L2
d −

3

10
L3

)
≤ La4 ≤

(√(
7L5

5

)2

+ L2
d +

3

10
L3

)
La5 ∈ R :

(
6

5
L7 −

1

4
L8

)
≤ La5 ≤

(
6

5
L7 +

1

4
L8

)
These values should be compared to check if they exceed the limitations of the lengths of the
rods and barrels of the cylinder with a minimum value of 2L10 and a maximum value of 4L10.

45

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The resulting values for the limitation of the actuators considering the numerical values of the
parameters are:

La1 ∈ R : 24 ≤ La1 ≤ 34 cm (3.13)

La2 ∈ R : 20 ≤ La2 ≤ 40 cm

La3 ∈ R : 23.5 ≤ La3 ≤ 34 cm

La4 ∈ R : 23.732 ≤ La4 ≤ 35.732 cm

La5 ∈ R : 20 ≤ La5 ≤ 29 cm

Considering the trajectory of the tracer point, the limitations of the actuators define a region that,
doing an analogy with an excavator, it could be considered as its working range. The position
of the slider and the angular motion of the motor can be considered as a pure translation and a
rotation of this region around the pivot point of the revolute joint.

The position of the tracer point does not depend on the third actuator, therefore there are four
parameters that must be varied in order to obtain the region: La1, La2, La4, La5.

Mathematica has a function to define regions in terms of varying parameters:
ParametricRegion. The problem is that the complexity of the function for the position of
the tracer point does not allow to obtain the region directly, it must be reduced into simpler
regions and then combined using a boolean union. The strategy will be to vary two parameters
at a time, maintaining the other two at their maximum or minimum points. The result will be
combined to obtain the final region.

The RegionBoundary function can obtain the contour of the region, but due to the complexity
of the resulting region the algorithm can not obtain the bounds of the region. An alternative
approach will be considered. By analyzing the working range region, the lines that define the
contour will be obtained by using the ParametricPlot function. The contour of the region
will be defined in different sections, being necessary to obtain the intersection between curves to
obtain a closed set.

46

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4 Dynamic model definition

For the correct understanding of the following elaborations, it is recommended to read chapter D
from the appendices where the necessary theory behind kinematics and dynamics of mechanical
systems is carefully detailed.

The complete model has seven degrees of freedom: five linear actuators, a motor, and a slider.
The model dynamics will be simplified under the assumption that the linear actuators are position
controlled and their length can be precisely determined. This leaves the system with two degrees
of freedom, resulting in two differential equations of motion that must be obtained: one for Θ3

and another one for X2.

It is trivial to observe that if the actuators are statically determined at every moment, the model
is equivalent to an inverted pendulum on a cart. The cart is the wheel body, with its position
determined by the X2 slider; and the inverted pendulum is the rest of the model, bodies three
to eight, with its rotation determined by the angle Θ3. As the external action force that drives
the model, a translational force F applied to the cart will be considered.

Although this is a really considerable simplification, in this case the equivalent pendulum model
is not as trivial as the simple pendulum, where the mass is completely located in a single point;
but a physical pendulum, where the rigid body that swings around the pivot point has a specific
mass distribution and moment of inertia.

F Θ3
x

y

X2

sG

M, IG

m

Figure 3.36: Representation of the equivalent inverted pendulum on cart model.

47

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The model can be reduced to a three body system: ground, cart, and pendulum. The ground
body is the fixed one which the cart slides on, and the pendulum is attached to the cart allowing
it to rotate around the cart’s center of gravity. The pendulum’s inertial properties must be those
of the model: bodies three through eight are replaced by this equivalent pendulum with the same
mass, moment of inertia, and center of mass as the combination of the original bodies.

The cart’s relevant inertial properties are:

m = m2 = 4HL2ρ2W (3.14)

sO = {xO, yO}T = {0, 0}T

The pendulum’s inertial properties can be defined as:

M = m3,4,5,6,7,8 =
(
H(4L3 + 2L5 + 2L6 + 2L7 + 2L8 + Ld + 24r)− 13πr2

)
ρW (3.15)

sG = {xG, yG}T = {f(Θ3, La1, La2, La3, La4, La5), g(Θ3, La1, La2, La3, La4, La5)}T

IG = h(La1, La2, La3, La4, La5)

Assuming a strictly rigid body formulation, the masses have constant values for both bodies, they
do not depend on the position or orientation of them. The inertia of the pendulum, IG, depends
on the length of the actuators which modify the geometry of the body, but it does not depend on
the position of the slider nor the orientation of the pendulum because it is the moment of inertia
referred to its center of mass. The sG vector is relative to the pendulum’s local coordinate origin,
located at the place where the revolute joint connects both bodies, and is not dependent on the
position of the cart. The mathematical expressions for the moment of inertia and the center of
mass of the equivalent pendulum are obtained from the symbolic kinematic model solution.

It is important to note that the angle Θ3 is not the angle that the center of mass of the pendulum
forms with the horizontal, but the angle the original lower leg body forms. Considering the
rotation transformation matrix, the coordinates of the local vector of the center of mass, xG and
yG, will have two addends: a cosine and a sine. The values of the coefficients, a and b, are the
coordinates of the same vector calculated with an rotation angle of Θ3 = 0. The coordinates of
the center of mass will have the following expression:

sG = {xG, yG}T (3.16)

xG = a cos Θ3 − b sin Θ3

yG = b cos Θ3 + a sin Θ3

Being both coefficients a = f(La1, La2, La3, La4, La5) and b = g(La1, La2, La3, La4, La5)

functions dependent on the length of the actuators.

The absolute distance to the center of mass is calculated as the Euclidean norm of the vector,
and this distance must not depend on the angle Θ3. The effect the angle has is the rotation of
the center of mass around the anchor point at the joint between the cart, but it does not modify
its absolute distance. The norm of the vector must only depend on the coefficients.

48

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

‖sG‖ =
√
x2
G + y2

G =
√

(a cos Θ3 − b sin Θ3)2 + (b cos Θ3 + a sin Θ3)2 = (3.17)

=

√
(a2 + b2) cos2 Θ3 + (a2 + b2) sin2 Θ3 =

√
(a2 + b2) = `

The norm of the vector, which corresponds to the length from the local origin of the pendulum
to its center of mass, will receive the ` symbol.

From now on, a simplification in the nomenclature will be introduced, because there are only
two variables and one is an angle and another is a distance, there is no possible confusion
and therefore, X2 = x and Θ3 = Θ. This will make the expressions easier to follow without
unnecessary subscripts.

Interesting properties regarding the partial derivatives of the coordinates will be presented, which
will prove to be necessary afterwards:

∂xG
∂Θ

= −a sin Θ− b cos Θ = −yG (3.18)

∂yG
∂Θ

= a cos Θ− b sin Θ = xG

∂2xG
∂Θ2

= −a cos Θ + b sin Θ = −xG

∂2yG
∂Θ2

= −b cos Θ− a sin Θ = −yG

Throughout the development that follows, the chain rule for first and second order derivatives
will be necessary. Derivatives of functions that depend on angle Θ must be calculated and the
dependency of this angle with time must be taken into account.

Considering f a function of Θ and Θ is a function of time, this is f(Θ(t)), the chain rule for first
and second order derivatives gives the following expressions:

df

dt
=
∂f

∂Θ

∂Θ

∂t
(3.19)

d2f

dt2
=
∂2f

∂Θ2

(
∂Θ

∂t

)2

+
∂f

∂Θ

∂2Θ

∂t2

The model is therefore further simplified to a well known equivalent model of an inverted
pendulum on a cart. The next step is to obtain the dynamic equations of motion of the system,
and they will be obtained in three different ways which result in the same expressions.

49

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4.1 Inverted pendulum using Lagrangian mechanics

Using Lagrangian mechanics the equations of motion of the system can be easily obtained. The
generalized coordinates chosen are the absolute position of the cart, X2, and the relative angle
of the pendulum, Θ3. The generalized external non-conservative forces in this case is only the
force that drives the cart, F .

In the inverted pendulum on cart system, there are two bodies that must be taken into
consideration. The first body is the cart, which has linear velocity but no rotational motion
and therefore no angular velocity. The pendulum has both linear velocity and angular velocity
around the joint with the cart. The linear and angular velocity of the pendulum will be taken
about its center of mass, but it could be taken in any given point and it would be equivalent, if
the moment of inertia is adequately calculated. If the origin of potential energy is defined at
the x axis, the only body with potential energy is the pendulum. The angular velocity of the
cart is ω = Θ̇.

The expression for the Lagrangian of the system is:

L =
1

2
mv2

1 +
1

2
Mv2

2 +
1

2
IGΘ̇2 −MyGg (3.20)

The velocity expressed in this equation is absolute, referring to the global coordinate system.
The linear velocity of the cart is equal to the first derivative of the x position. The linear and
angular velocity of the pendulum are taken at its center of mass, being the absolute position
vector equal to sG plus the x position of the cart in the x coordinate.

v2
1 = ẋ2 (3.21)

v2
2 =

(
d

dt
(x+ xG)

)2

+

(
d

dt
yG

)2

=

(
dx

dt
+
∂xG
∂Θ

∂Θ

∂t

)2

+

(
∂yG
∂Θ

∂Θ

∂t

)2

=

=

(
ẋ+

∂xG
∂Θ

Θ̇

)2

+

(
∂yG
∂Θ

Θ̇

)2

= ẋ2 + 2
∂xG
∂Θ

Θ̇ẋ+

(
∂xG
∂Θ

2

+
∂yG
∂Θ

2)
Θ̇2

The velocity of the second body can be simplified because the term
(
∂xG
∂Θ

2
+ ∂yG

∂Θ

2
)
is equal to

the square of the distance from the joint to the center of mass of the pendulum, `. This is due
to the nature of the sG vector in which the coefficients are independent of the angle Θ and the
norm of the vector is therefore only dependent on the length of the actuators.

The resulting Lagrangian of the system is:

L =
1

2
(M +m)ẋ2 +M

∂xG
∂Θ

Θ̇ẋ+
1

2
M`2Θ̇2 +

1

2
IGΘ̇2 −MyG g (3.22)

Once the Lagrangian has been obtained, the next step is to obtain the equations of motion
particularizing the Euler-Lagrange equation for the degrees of freedom (generalized coordinates)
of the system.

50

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

For the q = x generalized coordinate, the Euler-Lagrange equation is:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= F (3.23)

Differentiating the Lagrangian the two terms can be obtained:

d

dt

(
∂L

∂ẋ

)
=

d

dt

(
(M +m)ẋ+M

∂xG
∂Θ

Θ̇

)
= (M +m)ẍ+M

∂2xG
∂Θ2

Θ̇2 +M
∂xG
∂Θ

Θ̈ (3.24)

∂L

∂x
= 0

Resulting in the first equation of motion:

(M +m)ẍ+M
∂2xG
∂Θ2

Θ̇2 +M
∂xG
∂Θ

Θ̈ = F (3.25)

Taking q = Θ into the Euler-Lagrange equation, in this case with no external torque applied:

d

dt

(
∂L

∂Θ̇

)
− ∂L

∂Θ
= 0 (3.26)

Proceeding in the same way as before, differentiating the Lagrangian:

d

dt

(
∂L

∂Θ̇

)
=

d

dt

(
(IG +M`2)Θ̇ +M

∂xG
∂Θ

ẋ

)
= M

∂2xG
∂Θ2

Θ̇ẋ+M
∂xG
∂Θ

ẍ+ (IG +M`)Θ̈ (3.27)

∂L

∂Θ
= M

∂2xG
∂Θ2

Θ̇ẋ−M∂yG
∂Θ

g

Substituting into the equation and simplifying, the second equation of motion is obtained:

M
∂xG
∂Θ

ẍ+ (IG +M`2)Θ̈ +M
∂yG
∂Θ

g = 0 (3.28)

51

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4.2 Inverted pendulum using Newton’s laws

The same result can be obtained using Newton’s laws, but a deeper analysis of the forces in the
system must be performed. When following this method, a free-body diagram for each body
must be done, identifying and obtaining all the reaction forces in each of the bodies.

F

x

y
Ry

Rx
mg

N
Figure 3.37: Free-body diagram of the first body (cart).

x

y

Ry

Rx

mg

Figure 3.38: Free-body diagram of the second body (pendulum).

52

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Applying Newton’ laws to the first body:

F +Rx = max1
(3.29)

Fy −mg +N = may1

0 = Ioα1

Applying Newton’ laws to the second body:

−Rx = Max2
(3.30)

−Mg −Ry = May2

RyxG −RxyG = IGα2

From the equations of the second body:

Rx = −Max2
(3.31)

Ry = −M(ay2
+ g)

Substituting these terms into the first equation of the first body:

F = max1
+Max2

(3.32)

The acceleration term of the first body is directly the second derivative of the x position, while
the second derivative of the second body can be calculated using the chain rule for second order
derivatives:

ax1
=

d2

dt2
x = ẍ (3.33)

ax2
=

d2

dt2
(x+ xG) = ẍ+

∂2xG
∂Θ2

Θ̇2 +
∂xG
∂Θ

Θ̈

Which yields the first equation of motion again:

(M +m)ẍ+M
∂2xG
∂Θ2

Θ̇2 +M
∂xG
∂Θ

Θ̈ = F (3.34)

Substituting the reaction force terms into the third equation of the third body:

−M(ay2
+ g)xG +Max2

yG = IGα2 = IGΘ̈ (3.35)

Calculating the term of the acceleration in the y axis for the first body:

ay2
=

d2

dt2
yG =

∂2yG
∂Θ2

Θ̇2 +
∂yG
∂Θ

Θ̈ (3.36)

Substituting the acceleration terms and reorganizing the equation:

53

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

(IG −M(
∂xG
∂Θ

yG −
∂yG
∂Θ

xG))Θ̈−MyGẍ+MxGg −MΘ̇2(
∂2xG
∂Θ2

yG −
∂2yG
∂Θ2

xG) = 0 (3.37)

Using the properties of the partial derivatives of the coordinates with respect of Θ:

(
∂2xG
∂Θ2

yG −
∂2yG
∂Θ2

xG) = (−xG)yG − (−yG)xG = 0 (3.38)

(
∂xG
∂Θ

yG −
∂yG
∂Θ2

xG) = (−yG)yG − (xG)xG = −(y2
G + x2

G) = −`2

yG = −∂xG
∂Θ

xG =
∂yG
∂Θ

The substitution of these terms in the equation yields the second equation of motion again:

M
∂xG
∂Θ

ẍ+ (IG +M`2)Θ̈ +M
∂yG
∂Θ

g = 0 (3.39)

This proves that Lagrangian mechanics and Newton’s laws are equivalent methods for obtaining
the equations of motion of a mechanical system.

54

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4.3 Inverted pendulum using constraint equations

The third way of obtaining the equations of motion might seem more complicated than the
previous ones, but it is more easily automatized and more adequate for mechanical systems
that have many different bodies. In this case the constraint equations that reign the interaction
between bodies must be taken into account.

The simplified model contains two relevant bodies that will be defined using their masses, inertias,
and centers of gravity. No parameters will be substituted, everything will be evolved using
a symbolic approach with the help of Mathematica and its MechanicalSystems package. The
resulting equations should match those of the two previous sections.

The local origin of the slider is located in its center of mass; while the local origin of the pendulum
is located in the junction point with the slider, which is a different point than its center of mass.
The constraints between the bodies must be defined. The first constraint is a translational joint
between the ground body and the slider, which introduces two constraint equations. The second
constraint is the revolute joint between the slider and the pendulum, which again introduces two
constraint equations. The x position of the second body (slider) and the angle of rotation of the
third body (pendulum) will be driven constraints. The constraint equation vector for the system
is:

Φ(q, t) =

4L1L2 sin Θ2

2L2(L1 +X2 − L2 cos Θ2) sin Θ2 + 2L2 cos Θ2(−Y2 + L2 sin Θ2)

X2 −X3

Y2 − Y3

X2 − pos(t)
Θ3 − ang(t)

= 0 (3.40)

The mass matrix of the system will have terms out of the diagonal due to the eccentricity of the
pendulum’s center of mass:

M =

m 0 0 0 0 0

0 m 0 0 0 0

0 0 Io 0 0 0

0 0 0 M 0 M(−xG sin(Θ3)− yG cos(Θ3))

0 0 0 0 M M(xG cos(Θ3)− yG sin(Θ3))

0 0 0 M(−xG sin(Θ3)− yG cos(Θ3)) M(xG cos(Θ3)− yG sin(Θ3)) IG +M(x2
G + y2

G)

(3.41)

The generalized coordinates, generalized acceleration and the Lagrange multiplier vectors are:

q =

X2

Y2

Θ2

X3

Y3

Θ3

q̈ =

Ẍ2

Ÿ2

Θ̈2

Ẍ3

Ÿ3

Θ̈3

λ =

λ1

λ2

λ3

λ4

λ5

λ6

55

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The Jacobian of the constraint equations is:

Φq(q, t) =

0 0 4L1L2 cos Θ2 0 0 0

2L2 sin Θ2 −2L2 cos Θ2 2L2
2 cos2 Θ2 + 2L2 cos Θ2(L1 +X2 − L2 cos Θ2) + 2L2

2 sin2 Θ2− 2L2 sin Θ2(−Y2 + L2 sin Θ2) 0 0 0

1 0 0 −1 0 0

0 1 0 0 −1 0

1 0 0 0 0 0

0 0 0 0 0 1

(3.42)

The centrifugal forces and the generalized applied forces vectors are:

C =

0

0

0

M(Θ̇3)2(−xG cos Θ3 + yG sin Θ3)

M(Θ̇3)2(−xG sin Θ3 − yG cos Θ3)

0

QA =

F

−gm
0

0

−gM
gM(−xG cos Θ3 + yG sin Θ3)

(3.43)

The only external applied forces are the gravitational field and the control force, F . The
eccentricity of the pendulum’s center of mass creates centrifugal forces and a torque due to the
gravitational pull.

From the constraint equation vector, the kinematic solution for two generalized coordinates can
be obtained: Θ2 = 0, Y2 = 0, and Y3 = 0. Substituting the values of these generalized coordinates
and their derivatives, which are equal to 0, will simplify the equations significantly. The Lagrange
multipliers designated for the driven equations of motion, which are the last two equations of
the constraint equation vector, are also equal to 0 because these are the unconstrained degrees
of freedom of the system, therefore λ5 = 0 and λ6 = 0.

The result from applying the general Lagrange multiplier form of the constrained equations of
motion is:

mẌ2 + λ3 = F (3.44)

λ4 − 2L2λ2 = −gm
4L1L2λ1 + (2L2

2) + 2(L1 − L2 +X2)L2)λ2 = 0

−M(xG cos Θ3 − yG sin Θ3)(Θ̇3)2 +MẌ2 − λ3 +MΘ̈3(−xG sin Θ3 − yG cos Θ3) = 0

−M(xG sin Θ3 + yG cos Θ3)(Θ̇3)2 − λ4 +MΘ̈3(xG cos Θ3 − yG sin Θ3) = −gM
(IG +M(x2

G + y2
G))Θ̈3 +MẌ2(−xG sin Θ3 − yG cos Θ3) = gM(−xG cos Θ3 + yG sin Θ3)

Considering the expressions of the partial derivatives of the local position vector of the center of
mass of the pendulum, the last equation of this set of equations is directly the second equation
of motion:

(IG +M(x2
G + y2

G))Θ̈3 +MẌ2(−xG sin Θ3 − yG cos Θ3) = gM(−xG cos Θ3 + yG sin Θ3) (3.45)

M
∂xG
∂Θ

ẍ+ (IG +M`2)Θ̈ +M
∂yG
∂Θ

g = 0

56

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The first equation of motion is obtained by obtaining the expression of λ3 from the first equation
and substituting in the fourth equation.

λ3 = F −mẌ2 (3.46)

−M(xG cos Θ3 − yG sin Θ3)(Θ̇3)2 +MẌ2 − F +mẌ2 +MΘ̈3(−xG sin Θ3 − yG cos Θ3) = 0

(M +m)ẍ+M
∂2xG
∂Θ2

Θ̇2 +M
∂xG
∂Θ

Θ̈ = F

As expected, the three methods used for obtaining the equations of motion yielded the same
results.

57

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4.4 Space state model

Considering the equations of motion of the inverted pendulum system with condensed coefficients
in the form:

a1ẍ+ b1Θ̈ + c1Θ̇2 = F (3.47)

a2ẍ+ b2Θ̈ + d2 = 0

Where:

a1 = (M +m) b1 =
∂xG
∂Θ

M c1 =
∂2xG
∂Θ2

M (3.48)

a2 =
∂xG
∂Θ

M b2 = (`2M + IG) d2 = M
∂yG
∂Θ

g

This system is non-linear and time-variant, and its space state equations are:

ẋ1 = ẋ = x2 (3.49)

ẋ2 = ẍ =
b1d2 + b2(F − c1Θ̇2)

a1b2 − a2b1
=
M2 ∂xG

∂Θ
∂yG
∂Θ g + (`2M + IG)(F −M(∂

2xG
∂Θ2)Θ̇2)

(M +m)(`2M + IG)− (∂xG∂Θ)2M2

ẋ3 = Θ̇ = x4

ẋ4 = Θ̈ =
−a1d2 + a2(c1Θ̇2 − F)

a1b2 − a2b1
=
−(M +m)M ∂yG

∂Θ g +M ∂xG
∂Θ (M(∂

2xG
∂Θ2)Θ̇2 − F)

(M +m)(`2M + IG)− (∂xG∂Θ)2M2

y1 = x1 = x

y2 = x3 = Θ

The non-linear space state equations can be written in general space state form:

ẋ(t) = f(x,u, t) (3.50)

y(t) = C x(t)

x =

x1

x2

x3

x4

 =

x

ẋ

Θ

Θ̇

 ẋ =

ẋ1

ẋ2

ẋ3

ẋ4

 =

ẋ

ẍ

Θ̇

Θ̈

 u =

(
F

0

)
C =

(
1 0 0 0

0 0 1 0

)

f(x,u, t) =

x2

gM2 ∂xG
∂x3

∂yG
∂x3
−Mx2

4(IG+`2M)(
∂2xG
∂x2

3
)

(m+M)(IG+`2M)−M2(
∂xG
∂x3

)2
+ F (IG+`2M)

(m+M)(IG+`2M)−M2(
∂xG
∂x3

)2

x4

−gM(m+M)
∂yG
∂x3

+M2x2
4
∂xG
∂x3

(
∂2xG
∂x2

3
)

(m+M)(IG+`2M)−M2(
∂xG
∂x3

)2
+ F

−M ∂xG
∂x3

(m+M)(IG+`2M)−M2(
∂xG
∂x3

)2

The system state equations must be linearized before proceeding with further analysis.

58

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4.5 Operating point

The linearization of a non-linear model is a linear approximation around a given operating point,
and it is only valid in a small region around this point. The selected operating point is usually
the equilibrium point of the system, around which we want our system to work.

The system has two equilibrium points, one stable and the other unstable. The stable equilibrium
point is when the pendulum is hanging down, and the unstable equilibrium point represents the
pendulum in its upwards position. In both of them the derivatives of the state variables are
equal to 0 and the x position of the cart can take any value.

The equilibrium is reached when the relative x coordinate of the center of mass of the pendulum
is equal to 0, that is when the center of mass of the pendulum is in the horizontal from the cart’s
center of mass. In order to find the equilibrium points the following equation must be solved:

xG = a cos Θ− b sin Θ = 0 (3.51)

Using the tangent half angle formulas this equation is converted to a second order polynomial
equation:

x = tan(
Θ

2
) (3.52)

a
(
1− x2

)
x2 + 1

− 2bx

x2 + 1
= 0

a(1− x2)− 2bx = 0

x1 =
−b−

√
a2 + b2

a
x2 =

−b+
√
a2 + b2

a

Θ1 = 2 tan−1(x1) = 2 tan−1

(
−b− `
a

)
Θ2 = 2 tan−1(x2) = 2 tan−1

(
−b+ `

a

)
(3.53)

Because a = f(La1, La2, La3, La4, La5) and b = g(La1, La2, La3, La4, La5) it is possible to find
the equilibrium angle at any moment. The angle corresponding to the unstable equilibrium point
is the positive and close to zero one:

Θeq = 2 tan−1

(
−b+ `

a

)
(3.54)

There is another way to obtain the equilibrium point, this case using the expression of the y
coordinate of the center of mass. This alternative way allows to distinguish between the upwards
and downwards position from the beginning. In the upwards position the y coordinate is equal
to the length to the local origin, yG = `; while in the downwards position the y coordinate is
equal to the length with a negative sign. The equation to be solved is:

yG = b cos Θ + a sin Θ =
√
a2 + b2 = ` (3.55)

59

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Proceeding in the same way as before:

x = tan(
Θ

2
) (3.56)

b
(
1− x2

)
x2 + 1

+
2ax

x2 + 1
=
√
a2 + b2

b(1− x2) + 2ax = (x2 + 1)
√
a2 + b2

x1 =
a

b+
√
a2 + b2

x2 =
a

b+
√
a2 + b2

Θ = 2 tan−1(x) = 2 tan−1

(
a

b+ `

)
(3.57)

This solution yields the correct equilibrium angle directly, but with a different expression.

Θeq = 2 tan−1

(
a

b+ `

)
(3.58)

As expected, the equilibrium point only depends on the actuator lengths.

Lets consider the dynamic equations of motion again:

M
∂xG
∂Θ

ẍ+ (IG +M`2)Θ̈ +M
∂yG
∂Θ

g = 0 (3.59)

(M +m)ẍ+M
∂2xG
∂Θ2

Θ̇2 +M
∂xG
∂Θ

Θ̈ = F (3.60)

It is trivial to observe from these equations that, in a ideal mechanical formulation, if the system
is as its equilibrium point, where xG = 0 and yG = `, and all the velocities and accelerations are
equal to zero, the resulting force needed to maintain this position is F = 0.

60

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4.6 Linearization

If the system is expressed using linearized space state representation around the operating point
determined by xo and uo:

d

dt
x(t) = A(xo,uo) x(t) + B(xo,uo) u(t) (3.61)

y(t) = C x(t)

Where:

x =

x1

x2

x3

x4

 =

x

ẋ

Θ

Θ̇

 xo =

0

0

Θeq

0

 u =

(
F

0

)
uo =

(
0

0

)
(3.62)

C =

(
1 0 0 0

0 0 1 0

)

Taking into consideration the expression of the relative coordinates of the center of mass the
pendulum xG and yG and the expression of their derivatives, the values of the state variables
and their derivatives, and that at the equilibrium xG = 0 and yG = `, the linearized matrices of
coefficients around the operating point are:

A(xo,uo) =

0 1 0 0

0 0 g`2M2

IG(m+M)+`2mM 0

0 0 0 1

0 0 g`M(m+M)
IG(m+M)+`2mM 0

B(xo,uo) =

0 0

IG+`2M
IG(m+M)+`2mM 0

0 0

`M
IG(m+M)+`2mM 0

It is quite important to notice that the linearized system is done for the angle Θeq which depends
on the configuration of the model (the lengths of the actuators), but the results are independent
of this angle.

The length of the actuators are considered in ` =
√
x2
G + y2

G = f(La1, La2, La3, La4, La5) and
IG = h(La1, La2, La3, La4, La5), the linearized system is valid for any combination of the
actuator lengths while the `, IG, and Θeq parameters are correctly updated.

From this linearized model it is easy to obtain the transfer functions of the system. Applying
the Laplace transform to the space state equations, obtaining the state vector from the state
equation and substituting into the output equation, the transfer functions are:

Θ(s)

F(s)
=

`M

(IG(m+M) + `2mM)s2 − g`M(m+M)

[
rad

N

]
(3.63)

X(s)

F(s)
=

s2(IG + `2M)− g`M
(IG(m+M) + `2mM)s4 − g`M(m+M)s2

[m
N

]

61

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The poles of the linearized system can be obtained in order to check the stability of the open-loop
configuration. The condition for stability that must verify is that the poles si have a negative
real part, Re(si) < 0, this would mean that the system without any controller is stable.

The poles are the eigenvalues of the linearized system matrix A which are the solution to the
following equation:

det(s I−A) = 0 (3.64)∣∣∣∣∣∣∣∣∣
s 1 0 0

0 s − g`2M2

IG(m+M)+`2mM 0

0 0 s 1

0 0 − g`M(m+M)
IG(m+M)+`2mM s

∣∣∣∣∣∣∣∣∣ = 0

s4 − s2 g`M(m+M)

IG(m+M) + `2mM
= 0

s1 = 0 s2 = 0 s3 =

√
g`M(m+M)

IG(m+M) + `2mM
s4 = −

√
g`M(m+M)

IG(m+M) + `2mM

As expected, the system has a pole on the positive real semi-plane and therefore it is unstable
in open-loop configuration.

0

(2)

Figure 3.39: Root locus plot for the inverted pendulum system.

To make sure the system is correctly defined, the controllability and observability of the system
will be checked. For the inverted pendulum system, the controllability matrix R and the
observability matrix O are:

R =

0 M`2+IG

mM`2+IG(m+M) 0 g`3M3

(mM`2+IG(m+M))2

M`2+IG
mM`2+IG(m+M) 0 g`3M3

(mM`2+IG(m+M))2 0

0 `M
mM`2+IG(m+M) 0 g`2M2(m+M)

(mM`2+IG(m+M))2

`M
mM`2+IG(m+M) 0 g`2M2(m+M)

(mM`2+IG(m+M))2 0

 O =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 g`2M2

mM`2+IG(m+M) 0

0 0 g`M(m+M)
mM`2+IG(m+M) 0

0 0 0 g`2M2

mM`2+IG(m+M)

0 0 0 g`M(m+M)
mM`2+IG(m+M)

(3.65)

Both matrices have a rank of 4, the same as the number of states, therefore the system is
controllable and observable.

The linearized system depends on six parameters: g, `, m, M , IG, and Θeq. The masses (m,
M), and the acceleration of gravity are constants, while `, IG and Θeq depend on the actuator
lengths and are subject to change during the simulation.

62

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.2.4.7 Dynamic simulation

In order to check if the results of the simplified inverted pendulum model are correct, the method
of constraint equations with the complete eight body system will be solved numerically. These
constraint equations are the same ones that were used to obtain the symbolic kinematic solution
of the model.

Once the inertial properties of bodies, constraints, and generalized loads of the system are defined,
the SolveMech function of the MechanicalSystems add-in returns the numerical solution to the
equations. This numerical solution includes the generalized coordinates and their derivatives, as
well as the values of the Lagrange multipliers.

Substituting the numerical values into the two equations obtained from the simplified model
and solving the differential equations numerically using the NDSolve function in Mathematica
should yield the same solution as the numerical solution of the complete system obtained with
SolveMech.

It is also possible to obtain the equations of motion of this complete eight body system by setting
the actuator lengths to constant values and only considering variations in the slider position X2

and angle Θ3. If the general Lagrange multiplier form of the constrained equations of motion is
applied to this system, two equations of motion can also be obtained that must yield the same
results as the ones obtained from the simplified inverted pendulum on cart model.

The dynamic simulation performed in Mathematica will be a free motion movement under the
action of gravitational force. The actuator lengths will be set at their initial position and the
slider position and the pendulum angle will be let free to swing. The results will be compared
with the same simulation in RecurDyn. Further dynamic simulations using controllers designed
with the linearized model obtained will be performed in RecurDyn and SystemModeler.

63

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3 Dynamic control in RecurDyn

The dynamic analysis of the model will be performed using RecurDyn, an industry-leader
computer aided engineering software in the field of multibody dynamics simulation. This
software allows importing geometry from other proprietary or open source CAD formats as well
as creating the model in its own engine from the ground up. RecurDyn is primarily focused
toward simulation and it also provides a built-in toolbox, CoLink, to develop control oriented
solutions with a high integration between them. All the relevant mathematical operations for
the development of the controllers will be done symbolically with the aid of Mathematica.

For the correct understanding of the following section, it is recommended to read chapter E from
the appendices where the necessary theory behind controller design is carefully detailed.

3.3.1 Importing model into RecurDyn

The starting point is the SolidWorks model, which is stored in its own proprietary format. In
order to achieve a flawless import, this model should be exported from the SolidWorks
environment as a Parasolid binary file (*.x_b).

A new model is created in RecurDyn and the Parasolid file imported. The import process
provides only the geometry of the bodies that make the model up, without any reference to the
connections or joints between them. All the joints must be defined again in this environment in
order to obtain a self-aligned model, the solution for the joint selection obtained in the SolidWorks
environment is valid in RecurDyn.

First, a dynamic free motion simulation will be performed where the model swings subject to
the force of gravity. These results will be compared to the ones obtained in the same dynamic
simulation made with Mathematica. Using the dynamic analysis from the previous chapter, a
PID controller and a state feedback will also be implemented.

Figure 3.40: Model of the Handle robot in RecurDyn as imported from SolidWorks.

64

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.2 Obtaining the center of mass

In order to create a dynamic control which endows the model to maintain its balance, it is
imperative to be able to know the position of the center of mass of the system at any moment
during runtime.

The model is made up of a discrete number of bodies from which their inertial properties are
known, therefore it is equivalent to a discrete mass system. In terms of inertial properties
calculation, each body can be replaced by a particle with the same mass and inertia as the body
and located at its center of mass. In a system comprised of a series of particles, what is known
as a point mass system, the center of mass is calculated using the following equation:

rcm =

∑
imiri∑
imi

=
1

M

∑
i

miri (3.66)

BeingM the total mass of the system, mi the mass of the i-th particle, and ri the position vector
of the particle expressed in the desired reference system. In this case, rcm is a three dimensional
vector; the z-coordinate is known and equal to half the width of the bodies, but the x- and
y-coordinates must be calculated during simulation time using the center of mass equation.

CoLink is the appropriate environment for the calculation of the center of mass, but it must
receive the position of the center of mass of the different bodies as an input. This platform is
independent from the RecurDyn modeling platform, therefore data flow must be defined using
Plant Input for variables transferred from CoLink to RecurDyn and Plant Output for the other
way around.

First, the position of the center of mass of the bodies must be taken as output from the RecurDyn
environment into CoLink. This is done by defining outputs using the absolute position of the
CM marker of the bodies in both x-coordinate,using the DX() function, and the y-coordinate,
using the DY() function. The expressions of the Plant Outputs take the center of mass marker
BdR_handle_part_0X_2017.CM for bodies ranging from 2 to 8 as the input.

Figure 3.41: List of Plant Outputs for the model.

65

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Even though body number 2 has no effect in the center of mass of the pendulum, it is important
to obtain its center of mass position to be able to subtract its x coordinate from the x coordinate
of the center of mass of the pendulum in order to obtain the relative position of the center of
mass with respect to the revolute joint which connects it with the cart.

The next step is to define the block structure that reproduces the center of mass calculation
within the CoLink environment. This is done using a RecurDyn plant block (which provides the
plant inputs and outputs), muxers, demuxers, constant values, and multipliers. The coordinates
of each of the bodies obtained from the modeling environment are multiplied by their masses and
then added together and divided by the total mass of the system. The masses of the different
bodies and the total mass of the system do not change during the simulation, therefore they are
defined as constant values. This procedure provides the coordinates of the center of mass at any
moment during the simulation as an output, and the x coordinate of the wheel body will also be
taken as an output to be used in further developments.

Figure 3.42: CoLink subroutine to calculate the center of mass of the model.

An auxiliary body, with the shape of a sphere, will serve as the visual representation of the center
of mass. Using general constraint equations available in RecurDyn, the resulting coordinates of
the center of mass {xG, yG} obtained from CoLink will be forced to be the position of the sphere
in every moment using a general constraint condition Φ = 0.

66

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.3 Obtaining the equilibrium angle

From the kinematic model, the angle of the lower leg (body number 3) that makes the relative
center of mass be sG = {xG, yG} = {0, `} has been obtained:

Θ3eq = 2 tan−1(
a

b+ `
) (3.67)

This value is dependent on the length of the actuators and it must be obtained in real time
during simulation. The symbolic expressions of the a and b coefficients have been obtained from
the kinematic model, but their complexity is beyond what is reasonably suitable for calculation
in a continuous process. They must be obtained in another way, using the canonical form:

sG = {xG, yG}T (3.68)

xG = a cos Θ3 − b sin Θ3

yG = b cos Θ3 + a sin Θ3

The numerical values of xG and yG are calculated during runtime therefore available at any
moment, but the coefficients are unknown. The easiest way to obtain this coefficients is by
reversing the planar rotation of angle Θ3. The angle is also available, which means that the
inverse rotation can be done to obtain the numerical values of the coefficients. Multiplying by
the inverse rotation matrix, A−1, the coefficients can be obtained:

A−1 sG =

(
cos Θ sin Θ

− sin Θ cos Θ

)(
a cos Θ3 − b sin Θ3

b cos Θ3 + a sin Θ3

)
= (3.69)

=

(
(a cos Θ3 − b sin Θ3) cos Θ3 + (b cos Θ3 + a sin Θ3) sin Θ3

−(a cos Θ3 − b sin Θ3) sin Θ3 + (b cos Θ3 + a sin Θ3) cos Θ3

)
=(

a cos2 Θ3 − b sin Θ3 cos Θ3 + b sin Θ3 cos Θ3 + a sin2 Θ3

b cos2 Θ3 − a sin Θ3 cos Θ3 + a sin Θ3 cos Θ3 + b sin2 Θ3

)
=

(
a

b

)
(3.70)

With these coefficients now it is easy to obtain the length ` =
√
a2 + b2 and calculate the

equilibrium angle Θ3eq in real time in order to feed it as the reference value to the controller.
This method of dynamically calculating the angle allows the reference to adapt to the possible
changes in the geometry resulting from changing the lengths of the actuators.

Using the same procedure as with the center of mass, the equilibrium angle will be calculated in
CoLink. The subroutine for the center of mass calculation will be modified in order to obtain the
coefficients by multiplying the coordinates {xG, yG} of the center of mass by the inverse rotation
matrix. These coefficients will be combined to obtain the length from the slider to the center of
mass `, an finally the equilibrium angle Θ3eq will be obtained.

67

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

F
ig

u
re

3.
43

:
C

oL
in

k
su
br
ou

ti
ne

to
ca
lc
ul
at
e
th
e
ce
nt
er

of
m
as
s
of

th
e
m
od

el
an

d
th
e
eq
ui
lib

ri
um

an
gl
e.

68

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.4 PID controller design

The first approach is to design a double closed-loop control structure with two PID controllers,
one for the angle of the pendulum and another one for the position of the cart.

Cx(s)

X Controller

CΘ(s)

Θ Controller

GΘ(s)

Θ Process

Gx(s)

X Process

xref

Rx(s)

Θref

RΘ(s)

ex

Ex(s)

eΘ

EΘ(s)

uΘ

UΘ(s)

ux

Ux(s)

+
+ u

U(s)

Θ

Θ(s)−

Θ Θ(s)

x

X(s)

−

x X(s)

Figure 3.44: Double closed-loop controller design.

3.3.4.1 Pendulum angle controller

As a first approximation, only the PID controller of the pendulum angle is going to be designed.
This will be done heuristically and by the pole placement method. In both cases the transfer
function will be used. The manipulated or control variable will be a translational force applied
to the center of mass of the cart and the assumption that no saturation occurs will be made.

The inverted pendulum model resulting from the dynamic analysis is unstable in open-loop,
therefore only closed-loop heuristic methods can be applied. The chosen method will be the
Ziegler-Nichols ultimate gain method. Because the transfer function is available, the parameters
of the method will be obtained theoretically and they will be checked with the virtual model in
RecurDyn. This will also serve as proof that the linearized model has been correctly obtained.

Considering the open-loop transfer function of the pendulum angle regarding the control action:

GΘ(s) =
Θ(s)

U(s)
=

`M

(IG(m+M) + `2mM)s2 − g`M(m+M)
(3.71)

The closed-loop transfer function of the system, considering no controller in the cart position
section is easily obtained:

TΘ(s) =
Θ(s)

RΘ(s)
=

CΘ(s)GΘ(s)

1 + CΘ(s)GΘ(s)
(3.72)

69

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Therefore, the characteristic equation of the system is:

1 + CΘ(s)GΘ(s) = 0 (3.73)

In order to obtain the ultimate gain parameter for the Ziegler-Nichols method, the controller
considered must only have the proportional term, CΘ(s) = Kp. Developing the characteristic
equation of the system and obtaining the roots of the characteristic polynomial:

1 + CΘ(s)GΘ(s) = 1 +Kp
`M

(IG(m+M) + `2mM)s2 − g`M(m+M)
= 0 (3.74)

(IG(m+M) + `2mM)s2 − g`M(m+M) +Kp `M = 0

s1,2 = ±

√
g`M(m+M)−Kp `M

(IG(m+M) + `2mM)

This solution gives a set of complementary real poles that are positive and negative, therefore
resulting in an unstable system, if the number inside the square root is positive. It is possible
to obtain an stable oscillatory system with two conjugate imaginary poles if the numerator is
negative, making the condition to obtain a stable system: Kp > g(m + M). The ultimate
gain parameter Ku is exactly the value of the proportional gain which satisfies the equation:
Ku = g(m+M).

To obtain the critical period parameter Tu, the characteristic equation must be solved with the
substitution s = i ω:

−(IG(m+M) + `2mM)ω2 + `M (Kp − g(m+M)) = 0 (3.75)

ω = ±

√
`M (Kp − g(m+M))

(IG(m+M) + `2mM)

(3.76)

Considering that the relationship between frequency and period is ω = 2πf = 2π/T , the period
of the oscillation is:

T =
2π√

`M (Kp−g(m+M))
(IG(m+M)+`2mM)

(3.77)

Due to the nature of this system, with no damping terms, the critical frequency resulting when
Kp = Ku is ω = 0 which results in a non-oscillatory system with both poles at s = 0. It might
seem that the Ziegler-Nichols method is not suitable for this specific system.

Taking advantage that the symbolic expression of the transfer function of the model is available,
it is possible to apply the pole position method. This method provides the parameters of the
PID controller according to previously defined specifications.

70

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Considering a PID controller with the transfer function:

CΘ(s) =
Kd · s2 +Kp · s+Ki

s
(3.78)

Grouping the coefficients of the transfer function in order to simplify calculations:

GΘ(s) =
c3

d1s2 + d2
(3.79)

Where:

d1 = IG(m+M) + `2mM d2 = −g`M(m+M) c3 = `M (3.80)

The characteristic equation of the closed-loop system is:

1 + GΘ(s)CΘ(s) = 1 +
Kd · s2 +Kp · s+Ki

s

c3

d1s2 + d2
= 0 (3.81)

The characteristic polynomial, arranged in coefficient form:

λ(s) = s3 +
c3Kd

d1
s2 +

d2 + c3Kp

d1
s+

c3Ki

d1
= 0 (3.82)

The resulting system is of third degree, the crafted polynomial should have two dominant complex
conjugate poles and a third real pole with a faster dynamics p1 = −k1σ.

λ′(s) = (s2 + 2ξωns+ ω2
n)(s− p1) = (3.83)

s3 + (−p1 + 2ξωn)s2 + (−2p1ξωn + ω2
n)s+ (−p1ω

2
n) = 0

By comparing the coefficients of the equations, the solution for the parameters of the PID in
terms of the damping ξ and natural frequency ωn can be obtained:

Ki =
−d1p1ω

2
n

c3
Kp =

−d2 − 2d1p1ξωn + d1ω
2
n

c3
Kd =

−d1(p1 − 2ξωn)

c3
(3.84)

71

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.4.2 Pendulum angle and cart position controller

Finally, the whole double closed-loop configuration with two PID controllers will be considered.
The parameters of the two controllers can be obtained using the pole placement method.

The transfer functions to be considered are both for the pendulum angle and for the cart position:

GΘ(s) =
Θ(s)

U(s)
=

`M

(IG(m+M) + `2mM)s2 − g`M(m+M)
=

c3

d1s2 + d2
(3.85)

Gx(s) =
X(s)

U(s)
=

s2(IG + `2M)− g`M
(IG(m+M) + `2mM)s4 − g`M(m+M)s2

=
c1s

2 + c2

s2(d1s2 + d2)

Where:

d1 = IG(m+M) + `2mM d2 = −g`M(m+M) (3.86)

c1 = IG + `2M c2 = −g`M c3 = `M

The closed-loop characteristic equation is more complicated due to the double closed-loop, but it
can also be calculated using the matrix equation, considering unity feedback: det(I+C(s)G(s)) =

0. Where the controller and process matrix are:

C(s) =

(
CΘ(s)

Cx(s)

)
G(s) =

(
GΘ(s)

Gx(s)

)T
(3.87)

In this case the matrix are of dimensions 2 × 1 because there are two output variables with
feedback and only one control variable, the resulting is a 2× 2 square matrix.

det(I + C(s)G(s)) =

∣∣∣∣
(

1 0

0 1

)
+

(
CΘ(s)

Cx(s)

)
·
(
GΘ(s) Gx(s)

) ∣∣∣∣ = (3.88)

∣∣∣∣
(

1 + CΘ(s)GΘ(s) CΘ(s)Gx(s)

Cx(s)GΘ(s) 1 + Cx(s)Gx(s)

)∣∣∣∣ = 1 + CΘ(s)GΘ(s) + Cx(s)Gx(s) = 0

If two PID controllers with following transfer functions are considered:

CΘ(s) =
KdΘ

· s2 +KpΘ
· s+KiΘ

s
Cx(s) =

Kdx · s2 +Kpx · s+Kix

s
(3.89)

Expanding the characteristic equation, the characteristic polynomial is obtained:

λ(s) = 1 + CΘ(s)GΘ(s) + Cx(s)Gx(s) = (3.90)

s5 +
c3KdΘ

+c1Kdx
d1

s4 +
d2+c3KpΘ

+c1Kpx
d1

s3 +
c2Kdx+c3KiΘ+c2Kix

d1
s2 + c2Kpx

d1
s+ c2Kix

d1
= 0

The resulting polynomial equation is of fifth degree, therefore the pole placement method must
set five poles. Two of them will be the complex conjugate poles and the three remaining will be
negative real poles with faster dynamics.

72

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

λ′(s) = (s2 + 2ξωns+ ω2
n)(s− p1)(s− p2)(s− p3) = (3.91)

s5 + (−p1 − p2 − p3 + 2ξωn)s4 + (p1p2 + p1p3 + p2p3 − 2p1ξωn − 2p2ξωn − 2p3ξωn + ω2
n)s3+

+(−p1p2p3 + 2p1p2ξωn + 2p1p3ξωn + 2p2p3ξωn − p1ω
2
n − p2ω

2
n − p3ω

2
n)s2+

+(−2p1p2p3ξωn + p1p2ω
2
n + p1p3ω

2
n + p2p3ω

2
n)s− p1p2p3ω

2
n = 0

If the crafted and the characteristic polynomial equations are compared, there are five coefficients
and six controller parameters. This means that one of the parameters can be arbitrarily selected
and all the others will be calculated according to this value. If the KdΘ

parameter is the one
chosen to be set, the expressions for the other parameters are:

KpΘ
= −c1d1ωn(−2p1p2p3ξ+p2p3ωn+p1(p2+p3)ωn)+c2(−d2+d1(p1p2+p1p3+p2p3−2(p1+p2+p3)ξωn+ω2

n))
c2c3

KiΘ =
c21d1p1p2p3ω2

n+c1c2d1(−p1p2p3+2(p2p3+p1(p2+p3))ξωn−(p1+p2+p3)ω2
n)+c22(c3KdΘ

+d1(p1+p2+p3−2ξωn))
c1c2c3

Kpx =
d1ωn(−2p1p2p3ξ + p2p3ωn + p1(p2 + p3)ωn)

c2

Kdx = −c3KdΘ
+ d1(p1 + p2 + p3 − 2ξωn)

c1

Kix = −d1p1p2p3ω
2
n

c2
(3.92)

Using this approach, the control action consists of two terms, one dependent on the reference of
the first controlled variable and the other dependent on the reference of the second controlled
variable:

U(s) = CΘ(s)(RΘ(s)−Θ(s)) + Cx(s)(Rx(s)− X(s)) (3.93)

The closed-loop output of the system for the cart position and the pendulum angle can be
obtained from analyzing the control loop. There are cross terms in the equations, but the
dynamics of the system is determined by the poles of the function. The denominator is the same
for both output functions, and the poles of that expression have been placed using this method.

Θ(s) =
GΘ(s)(CΘ(s)RΘ(s) + Cx(s)Rx(s))

1 + CΘ(s)GΘ(s) + Cx(s)Gx(s)
(3.94)

X(s) =
Gx(s)(CΘ(s)RΘ(s) + Cx(s)Rx(s))

1 + CΘ(s)GΘ(s) + Cx(s)Gx(s)

73

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.4.3 Implementation in CoLink

The CoLink environment will also serve as the place to implement the controller. For each time
step within a controlled simulation, RecurDyn feeds CoLink the specified inputs (body positions),
CoLink performs the programmed operation (force inputs for the drivers), CoLink outputs the
results, and then RecurDyn applies the relevant command for the next time step.

In this case, the motion is driven during the first period of time, the moment of switching is
defined as a parameter in RecurDyn named TimeSwitch, which makes the starting point of the
control loop have a delay. This might cause problems with the derivative and integral term.
Regarding the derivative term, because the equilibrium angle is dynamically calculated in each
iteration, it is not necessary to implement an algorithm for anti-derivative kick. On the other
side, actions must be taken in the integral term, the integration must be disabled until the control
starts in order to avoid integrator windup due to the accumulation of error.

The derivative term of the error will be obtained using a derivative block that is equivalent to
a G(s) = s/(N s + 1) transfer function. The linearization parameter N is used to filter high
frequency noise.

The PID controller will be implemented as a subroutine. The parameters of the proportional,
integral and derivative terms of the PID controllers will be defined as parametric values in
RecurDyn. This will make it easier to change their values without having to modify the
subroutines in CoLink, being able to be modified directly from the RecurDyn environment.
Scopes will be attached to each of the terms in order to see their contribution to the total
control action.

Figure 3.45: CoLink subroutine to implement a PID controller.

74

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.5 State feedback controller design

ẋ(t) = A x(t) + Bu(t)

y(t) = C x(t)

K

r u y

x

−

Figure 3.46: Full state feedback control system.

The alternative to the PID controller design is to create a state feedback control. Considering
the linearized dynamic system of the inverted pendulum and due to the fact that all components
of the state vector are available in the RecurDyn environment, a linear full state feedback control
that stabilized the system can be designed.

The space state system of the open-loop linearized model is:

ẋ(t) = A x(t) + B u(t) (3.95)

y(t) = C x(t)

The system has four state variables: horizontal position x and velocity ẋ of the cart, and angle
Θ and angular velocity Θ̇ of the pendulum. The control action is only the translational force F
applied horizontally to the cart.

The feedback control action will be: u(t) = −K x(t). The reference value of the control action
is zero. Because it is a linearized system, the proportional matrix K must be really applied to
the deviation state vector δx(t) = x(t)− xo(t).

δx(t) = x(t)− xo(t) =

x− xeq
ẋ− ẋeq
Θ−Θeq

Θ̇− Θ̇eq

 u(t) =
(
F
)

K =
(
k11 k12 k13 k14

)
(3.96)

The resulting equations for the closed-loop linearized system with the feedback control are:

ẋ(t) = (A−B K) x(t) (3.97)

y(t) = C x(t)

Where:

A =

0 1 0 0

0 0 g`2M2

IG(m+M)+`2mM 0

0 0 0 1

0 0 g`M(m+M)
IG(m+M)+`2mM 0

B =

0 0

IG+`2M
IG(m+M)+`2mM 0

0 0

`M
IG(m+M)+`2mM 0

C =

1 0 0 0

0 0 1 0

75

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The poles of the resulting closed-loop system are the eigenvalues of the coefficient matrix that
goes with the state vector, that matrix in this case is: A−B K.

λ(s) = det(sI− (A−B K)) = 0 (3.98)

λ(s) = s4 +
IGk12 + k14`M + k12`

2M

`2mM + IG(m+M)
s3 +

IGk11 + k13`M + k11`
2M − g`M(m+M)

`2mM + IG(m+M)
s2+

+
−gk12`M

`2mM + IG(m+M)
s+

−gk11`M

`2mM + IG(m+M)
= 0

The next step is to determine the parameters of the K matrix considering the characteristic
equation of the closed-loop system λ(s).

It must be noted that the linear velocity and angular velocity equilibrium values are 0, as well
as the value for the slider position. The value of the angle at equilibrium is calculated using the
formula obtained previously, which is the same as the reference input to the PID controller.

xeq = 0 ẋeq = 0 (3.99)

Θeq = 2 tan−1

(
a

b+ `

)
Θ̇eq = 0

3.3.5.1 Pole placement method

The procedure to follow is the same as in the PID controller, a specially crafted polynomial
with the desired poles will be constructed, in this case the characteristic polynomial is of fourth
degree:

λ′(s) = (s2 + 2ξωns+ ω2
n)(s− p1)(s− p2) = (3.100)

s4 + s3(−p1 − p2 + 2ξωn) + s2(p1p2 − 2p1ξωn − 2p2ξωn + ω2
n)+ (3.101)

+s(2p1p2ξωn − p1ω
2
n − p2ω

2
n) + p1p2ω

2
n = 0

The values of the parameters can be obtained by comparing the coefficients polynomials such
that λ(s) = λ′(s), as done before with the PID control. In this case, because the system is
controllable, applying Ackermann’s formula the parameters are easily obtained:

k11 =
−(`2mM + IG(m+M))p1p2ω

2
n)

g`M
(3.102)

k12 =
(`2mM + IG(m+M))ωn(−2p1p2ξ + (p1 + p2)ωn)

g`M

k13 = g(m+M) + (IG+`2M)(`2mM+IG(m+M))p1p2ω2
n

g`2M2 + (`2mM+IG(m+M))(p1p2−2(p1+p2)ξωn+ω2
n)

`M

k14 = −1
g`2M2 (`2mM + IG(m+M))((IG + `2M)ωn(−2p1p2ξ + (p1 + p2)ωn) + g`M(p1 + p2 − 2ξωn))

This is the same formula Mathematica uses to calculate the feedback values when using the
StateFeedbackGains function.

76

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.5.2 Linear-Quadratic Regulator

Considering quadratic cost function subject to the system dynamics:

JLQR =

∫ ∞
0

(
x(t)T Q x(t) + u(t)T R u(t)

)
dt (3.103)

The solution to this problem is given by the time-invariant linear state feedback control law:

u(t) = −KLQR x(t) (3.104)

KLQR =

(
k11 k12 k13 k14

)
(3.105)

The values for the weighting matrices Q and R, will be tuned using Bryson’s rules.

Q =

q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

R = ρ r1 (3.106)

qii =
α2
i

(xi)max
r1 =

1

(u1)max

The α, β and ρ parameters and the maximum admissible values (xi)max and (u1)max will be
tuned in order to obtain a satisfactory controller.

In order to obtain the optimum results for the dynamics of the system, the method for setting
the values of the parameters is iterative. Different values for the parameter will be tried and the
KLQR matrix will be calculated using Mathematica function LQRegulatorGains. This results
will be tested on the system and tuned to obtain the desired response.

77

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.5.3 Implementation in CoLink

In the CoLink environment a space feedback controller can easily be implemented, considering
that the state variables are accessible in any moment of the simulation.

As well as in the previous case, the motion is driven during the first period of time, the moment of
switching is defined as a parameter in RecurDyn named TimeSwitch, which makes the starting
point of the control loop have a delay. This is not a problem for a state feedback controller.
Both the pole placement method and the LQR controller share the same control scheme, it is
the values of the proportional feedback gain what changes.

The derivative values of the state variables will be obtained using a derivative block that is
equivalent to a G(s) = s/(N s+ 1) transfer function. The linearization parameter N is used to
filter high frequency noise.

The parameters of the proportional terms of the state feedback controller will be defined as
parametric values in RecurDyn. This will make it easier to change their values without having
to modify the subroutines in CoLink, being able to be modified directly from the RecurDyn
environment. Scopes will be attached to each of the terms in order to see their contribution to
the total control action.

Figure 3.47: CoLink subroutine to implement a state feedback controller.

78

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.3.6 Dynamic simulation

In this case, the dynamic simulation will be of the closed-loop configuration using the controllers
designed to maintain the balance of the robot. The robot will start in its initial configuration
and it will be driven to the initial starting dynamic position using the following motions:

X2 = X2i + ∆X2 · T = −0.5 + 0.5 · STEP5[T, 2, 0, 4, 1] (m) (3.107)

Θ3 = Θ3i + ∆Θ3 · T = −11.03 + 45 · STEP5[T, 0, 0, 2, 1] (◦)

La1 = La1i + ∆La1 · T = 0.242722 + 0.04 · STEP5[T, 0, 0, 2, 1] (m)

La2 = La2i + ∆La2 · T = 0.358221 + 0.01 · STEP5[T, 3, 0, 5, 1] (m)

La3 = La3i + ∆La3 · T = 0.377705− 0.12 · STEP5[T, 0, 0, 2, 1] (m)

La4 = La4i + ∆La4 · T = 0.322810− 0.03 · STEP5[T, 0, 0, 2, 1] (m)

La5 = La5i + ∆La5 · T = 0.258034 + 0.01 · STEP5[T, 0, 0, 2, 1] (m)

The TimeSwitch parameter will determine when the controller action starts, and it will be set
to TimeSwitch = 5 s. The configuration has been chosen in order for the center of mass to be
away from the vertical line over the slider, causing the control loop to correct this situation.

After the first initial response has settled, two actuator lengths will be forced to change.

La1 = La1d + ∆La1 · T = 0.282722− 0.02 · STEP5[T, 10, 0, 15, 1] (m) (3.108)

La5 = La5d + ∆La5 · T = 0.268034 + 0.01 · STEP5[T, 20, 0, 25, 1] (m)

This will cause the ` and IG parameters to change, as well as the equilibrium point Θeq, causing
the model to be altered. This changes are meant to cause a significant change in the values
of the linearized model causing the closed-loop poles to be altered from the original design as
well as a change in the equilibrium point. The dynamic response to these changes of the system
implemented will be observed in order to test the robustness of the control.

Changing from the driven motion in the interval of time 0 < T < TimeSwitch to the free motion
determined by the dynamic of the system and the controllers for T > TimeSwitch is not a trivial
task in RecurDyn.

3.3.6.1 Driven motion to free motion

In RecurDyn, motions, defined as expressions, can be assigned to a joint in order to make this
joint driven. If no motion is defined, the joint is free to move under the dynamics of the system,
but if a motion is defined this joint will be driven. A value of zero in the expression of the motion
will make the joint to remain fixed, it will not make it have free motion. There is no way of
changing the joint from driven and free during simulation.

The only way of addressing this issue is to create a dummy body and a force or torque, depending
if it is a translational or a rotational motion what should be defined. A dummy body with a
negligible weight is created at the location of the body that must perform the motion. An axial
or rotational axial force is created between the dummy body and the target body. The same
joint as the one the target body has is defined between the dummy body and the base body.

79

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The desired motion is applied to the dummy body’s joint, which makes the target body to be
connected to the base body through the dummy force or torque. The expression of this virtual
action is defined using an expression and it is disconnected with a conditional function, e.g. the
IF() function, when a certain condition is satisfied. Once the force keeping the dummy body and
the target body together is set to 0, the connection between the two bodies is broken completely
and the target body is free to move.

The expressions for the virtual forces and torques are:

F = IF(TIME− TimeSwitch : KF · (DX(Marker1,Marker2)), 0, 0) (3.109)

τ = IF(TIME− TimeSwitch : Kτ · (PSI(Marker1,Marker2)), 0, 0)

Where KF and Kτ should be very big constants to minimize the deviation from the desired
motion, the sign of this constants depend on the direction of the motion. The distance function
can be in any direction and magnitude: DX(), DY(), DZ(), DM(); and the angular function
also: PSI(), THETA(), PHI(), YAW(), PITCH(), ROLL(). The first marker is the position of
the target body to be driven while the second marker is the position of the dummy body which
drives. The force is disconnected when the TimeSwitch threshold is reached.

Dummy
Body

Target
Body

Base
Body

Axial Force

Rotational Axial Force
(Torque)

Driven joint
(with motion)

Free joint
(no motion)

Figure 3.48: Diagram of the driven to free motion technique implementation.

This technique will allow a body to perform a driven motion and change to a free motion
when certain conditions apply, e.g. after a certain time or when a sensor has activated, during
simulation. The application of this method is not limited to RecurDyn, it can be applied in any
other multibody dynamics software and it will be applied in SystemModeler to obtain the same
kind of driven to free motion results.

80

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4 Modelica-based model in SystemModeler

Modelica is an object-oriented and equation based language used to model and simulate the
behavior of physical systems in many engineering fields, e.g. mechanical, electrical, hydraulic,
control or process engineering. There is a large set of libraries with many components and
examples available, being the most important the Modelica Standard Library (MSL) with
components from many domains. The language is non-proprietary and it is maintained by the
Modelica Association, a non-profit organization with members all around the world.

There are different software environments implemented that can be used to develop systems in
the Modelica language: some of them are free and open source, such as OpenModelica; and others
are proprietary, e.g. Wolfram SystemModeler, MapleSim and Dymola.

The Modelica language is based on what is known as models, which can be standalone or be part
of another model. If the model is an implementation of a very specific feature or element, it will
be considered as a component. The models and components are usually organized into packages,
that might contain many models and even other packages. At the lowest level of the hierarchy,
functions and blocks are the simplest implementations that contain no subcomponents. Inside a
model, other models, blocks, functions and variables can be instantiated, as well as parameters
that define values that might me subject to change depending on the application. In models with
components, the different elements can be connected with each other using connectors. In order
to be able to simulate a model, it must be balanced, which means that the complete set of model
components an its connections leads to a set of differential, algebraic and discrete equations
where the number of variables is equal to the number of equations to solve.

The Modelica Standard Library has a built-in package in order to model 3-dimensional
mechanical systems, the Modelica.Mechanics.MultiBody library. This library contains all kinds
of components: forces, bodies, sensors, joints, etc. Probably the most interesting feature of this
library is the built-in animation properties of all components, such as joints, forces, bodies,
sensors, allowing an easy visual check of the constructed model. Animation of every component
can be switched off via a parameter, and the animation of a complete system can be switched
off via one parameter in the world model. If animation is switched off, all equations related to
animation are removed from the generated code. This is especially important for real-time
simulation. The animation features are defined through the Visualizer package containing
components to visualize 3-dimensional shapes: boxes, spheres, cylinders, cones, tori, pipes,
beams, gears, springs, wheels, axes, arrows, planes, and surfaces.

In order to check the results obtained from the other software, the Modelica language was used
to create a model in SystemModeler. The results from the kinematic solution from Mathematica
were used to symbolically define masses and moments of inertia for the different bodies and for
the coordinates of the center of mass.

For the correct understanding of the following section, it is recommended to read chapter F
from the appendices where some concepts that must be considered during the Modelica model
definition are carefully detailed.

81

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.1 Custom components

During the development of the equivalent model in SystemModeler, there were some
components that could not be found in the libraries and therefore they had to be customly
defined. Everyone who has some experience developing custom engineering solutions, regardless
of the field, knows that libraries (proprietary or open source) can come in quite handy, but
there is always something that is not yet implemented in them and it must be developed ex
profeso for the desired application. In this case some components had to be modified in order
to obtain the desired behavior and others had to be created from scratch.

The components customly created or modified are:

• Step5 component

• PrismaticMotion component

• RevoluteMotion component

• VectorTranslation component

3.4.1.1 Step5 component

Figure 3.49: Modelica Step5 component.

The first component that must be created is the Step5 component, a quintic polynomial
interpolation of the step function as defined in chapter C from the appendices. The MSL
contains a step component, but it is an exact implementation of the unit step function with a
discontinuity at the moment of the step. The Step5 component uses Equation C.3 to create a
sigmoid transition from the h0 value at time t0 to the h1 value at time t1.

Name Units Description

h0 Real Initial value

h1 Real Final value

t0 s Starting time

t1 s Ending time

Table 3.17: Parameters of the Step5 component.

82

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.1.2 PrismaticMotion component

Figure 3.50: Modelica PrismaticMotion component.

TheMultiBody library from theMSL contains a prismatic joint component to create a connection
between two bodies allowing a relative linear motion between them. Just as it happened in
RecurDyn, this component can be allowed to move freely or forced to be driven using a mechanical
flange by enabling the useAxisFlange parameter, but it not possible to switch between these
states. For the development of the model it is necessary to tweak this component further in
order to allow a switch from driven to free motion at a certain time.

A switchable prismatic joint, the PrismaticMotion component, will be created in order to obtain
this configurable behavior. First, a virtual dummy body is created and it starts in the same
position as the second body, with a fixed relative distance from the first body. The switching
between free and driven motion is implemented by enabling or disabling a force that attracts the
virtual dummy body and the second body together being proportional to the relative distance
between them. The proportional constant of the force is very large, causing the bodies to be
together while it is enabled. The location of the virtual dummy body relative to the first body
is driven using the mechanical flange and therefore the second body follows this same motion.
At a certain time, the force joining the bodies together is disabled causing the virtual dummy
body to stay at its relative location from the first body and the second body to move freely.

Name Type Units Description

Frame_a Connector - Connection to first body

Frame_b Connector - Connection to second body

Flange_a Connector - Mechanical flange connection

Flange_b Connector - Mechanical flange support

X Parameter m Initial position of body

timeSwitch Parameter s Time to switch from driven to free motion

n Parameter Real[3] Axis of traslation resolved in frame_a

r Parameter Real[3] Vector from frame_a to frame_b

Table 3.18: Parameters and connectors of the PrismaticMotion component.

83

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.1.3 RevoluteMotion component

Figure 3.51: Modelica RevoluteMotion component.

The MultiBody library from the MSL contains a revolute joint component to create a connection
between two bodies allowing a relative angular motion between them. Just as it happened in
RecurDyn, this component can be allowed to move freely or forced to be driven using a mechanical
flange by enabling the useAxisFlange parameter, but it not possible to switch between these
states. For the development of the model it is necessary to tweak this component further in
order to allow a switch from driven to free motion at a certain time.

A switchable revolute joint, the RevoluteMotion component, will be created in order to obtain
this configurable behavior. First, a virtual dummy body is created and it starts in the same
position as the second body, with a fixed relative angle from the first body. The switching
between free and driven motion is implemented by enabling or disabling a torque that attracts
the virtual dummy body and the second body together being proportional to the relative angle
between them. The proportional constant of the torque is very large, causing the bodies to have
the same orientation while it is enabled. The orientation of the virtual dummy body relative to
the first body is driven using the mechanical flange and therefore the second body follows this
same motion. At a certain time, the torque joining the bodies together is disabled causing the
virtual dummy body to stay at its relative orientation from the first body and the second body
to move freely.

Name Type Units Description

Frame_a Connector Connection to first body

Frame_b Connector Connection to second body

Flange_a Connector Mechanical flange connection

Flange_b Connector Mechanical flange support

Th Parameter ◦ Initial angle of body

timeSwitch Parameter s Time to switch from driven to free motion

n Parameter Real[3] Axis of rotation resolved in frame_a

r Parameter Real[3] Vector from frame_a to frame_b

Table 3.19: Parameters and connectors of the RevoluteMotion component.

84

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.1.4 VectorTranslation component

Figure 3.52: Modelica VectorTranslation component.

The symbolic expression of the center of mass of the model was obtained using Mathematica
and it would be interesting to show a graphical representation of its spatial location while the
motion of the model occurs. A blue sphere will determine the visual representation of the center
of mass, but a new component that allows it to be positioned according to the values provided
by the symbolic expression must be created.

The resulting VectorTranslation component is a slightly modification of the FixedTranslation
component included in the MSL. It has been modified to allow the relative position of the body
connected to the flange_b connector to be determined by a 3-dimensional vector {x,y,z}. In
this case the first body is the ground and the second body will be the spherical center of mass
representation. The modification was necessary due to the limitation of the FixedTranslation
component that did not allow the original vector that defined the relative position between
frame_b and frame_a to be modified at runtime.

Name Type Units Description

Frame_a Connector Connection to first body

Frame_b Connector Connection to second body

xyz Parameter Real[3] Vector from frame_a to frame_b

Table 3.20: Parameters and connectors of the VectorTranslation component.

85

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.2 Model definition

Even though it may seem simple, this model is quite complex due to high number of closed loops
derived from the usage of variable-sided triangles in the linear actuator configuration. It is very
important to choose state variables correctly and to provide the correct initial values for these
variables.

After several attempts, by a trial and error methodology, the initialization problem of the model
was determined correctly, successfully obtaining the desired initial position. It was necessary to
define self-aligning variable-sided triangle configurations using cylindrical and spherical joints in
substitution for two revolute joints. This is exactly the same procedure described when defining
the model in SolidWorks. The selected state variables were angular positions and velocities of all
revolute joints and the linear position and velocity of the translational (prismatic) joint with the
ground. The translational joint of the slider driver and the revolute joint of the angular driver
between body 2 and 3 had a fixed initial value for their initial values of positions and velocities.
All the remaining revolute joints had fixed initial angular velocity values set to 0.

Boston Dynamics Handle

La1

La2

La3

La4

La5

Th3
part2x

X2

Motion Force

Time
Switch

part3Th

CMTh3

Figure 3.53: Modelica Handle component.

The resulting model has been implemented as a standalone component in SystemModeler with
several inputs and outputs. The inputs of the model are separated in two groups: parameters
and actual connected inputs. The parameters of the model include geometrical and inertial
properties of all the models, including their initial positions. The connected inputs are the
degrees of freedom of the model. The actuator lengths, which make up five of the seven degrees
of freedom, are input variables that are controlled from outside the model. The remaining two
degrees of freedom are part of the dynamic control group. The positions of the slider and the
angle of body number 3 can be driven directly, using the connectors under the motion label; or
dynamically controlled using a force or torque, using the connectors under the force label. The
TimeSwitch parameter determines in what moment of time the control changes from driven to
dynamically controlled. The outputs of the model are the position of the slider X2, the angle of
body 3 Θ3 and the equilibrium angle for the selected configuration of actuator positions Θ3eq .

86

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

world

x

y
origin

r={0, 0, 0}

a b

r={-2 / 5 * L5, 0, 0}
n={0, 0, 1} spherical42

r={L7, 0, 0}

fixedTranslation52

r={-3 / 4 * L8, 0, 0}

act11

path + "/BdR_handle_part-11_2017.STL"

path + "/BdR_handle_part-10_2017.STL"

act41

path + "/BdR_handle_part-11_2017.STL"

act42

s_ref

position

exact=

false

s_ref

s_ref

position3

exact=

false

a

part4rotation

angles

a

part6rotation

angles

a

part8rotation

angles

a

part7rotation

angles

CMTh3

Lact1

Lact2

Lact4

sphere

CM
fixedCM

{x, y, z}

a b

part2x

part3Th

X2_flange_motion_a

X2_flange_motion_b

Th3_flange_motion_a

Th3_flange_motion_b

X2_flange_force_a

X2_flange_force_b

Th3_flange_force_a

Th3_flange_force_b

revoluteMotion

prismaticMotion

sphere

tracer

relativeAngles1

Figure 3.54: Internal structure of the Handle component.

The visual representation of the bodies will be achieved by importing the SolidWorks files in the
STL format, which is one of the supported by the Visualizer package in the MSL. These surface
geometry files will be attached to the body definitions using the FixedShape component, allowing
the model to have a graphical representation that shows the behavior of the system during the
simulation.

87

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.3 PID controller implementation

Following the same procedure as in RecurDyn, a closed-loop must be implemented using a PID
controller and the feedback from the model’sX2 and Θ3 variables and their set-points. In order to
avoid integrator windup, the PID controller has the integral term deactivated until the dynamic
control starts with TimeSwitch. The output is the force applied on the slider F . The parameters
of the component are the proportional, integral and derivative gains for the X2 and Θ3 variables.

The derivative term will be obtained using a derivative block that is equivalent to a G(s) =

s/(N s + 1) transfer function. The linearization parameter N is used to filter high frequency
noise.

CMTh3

part2x

FX2

ControlBlock

part3Th

RefX2

PID

Figure 3.55: Modelica PIDControl component.

part2x

FX2

-

feedback

-

feedback1

k=Kp_Th3

gain

k=Kp_X2

gain1

integrator

I

k=Ki_X2

sum1sum1

sum11sum11

integrator1

I

k=Ki_Th3

derivative

DT1

k=Kd_X2

derivative1

DT1

k=Kd_Th3

sum12sum12

CMTh3

part3Th

RefX2

time > timeSwitch

booleanExpression

0.0

realExpression

switch1

time > timeSwitch

booleanExpression1

0.0

realExpression1

switch2

time > timeSwitch

booleanExpression2

0.0

realExpression2

switch3

Figure 3.56: Internal structure of the PIDControl component.

88

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

3.4.4 State feedback controller implementation

Following the same procedure as in RecurDyn, a closed-loop must be implemented using state
feedback from the model’s X2 and Θ3 variables and their set-points. The output is the force
applied on the slider F . The parameters of the component are the feedback gains for the state
variables.

The derivative values of the state variables will be obtained using a derivative block that is
equivalent to a G(s) = s/(N s+ 1) transfer function. The linearization parameter N is used to
filter high frequency noise.

CMTh3

part2x

FX2

ControlBlock

part3Th

RefX2

State Feedback

Figure 3.57: Modelica StateFeedbackControl component.

part2x

FX2

-

feedback

-

feedback1

k=k3

gain

k=k2

gain1

sum1sum1

sum11sum11

derivative

DT1

k=1

derivative1

DT1

k=1

sum12sum12

CMTh3

part3Th

RefX2
k=k1

gain2

k=k4

gain3

time > timeSwitch

booleanExpression

0.0

realExpression

switch1

k=-1

negative

Figure 3.58: Internal structure of the StateFeedbackControl component.

89

Chapter 4

Presentation and Analysis of Results

The results derived from the methods described in the previous section will be
presented and analyzed in this chapter. The output of the computational tools used
and the different approaches considered will be compared to highlight the differences
and similarities of the data obtained.

4.1 Introduction

The simplified virtual models obtained in the different software environments will be presented.
The first model is defined in the SolidWorks environment using the COSMOSMotion add-in,
including a graphical representation of the tracer point position when driving the different degrees
of freedom in what is known as a kinematic simulation. The symbolic kinematic equations
obtained in Mathematica for the position of the bodies will be presented with the numerical
values of the parameters substituted. The results from the kinematic motion simulation of
SolidWorks COSMOSMotion add-in will be compared to the data obtained when applying the
same input to the drivers in the kinematic equations obtained from Mathematica. The results of
the position, velocity and acceleration of the tracer point will be compared side by side.

The dynamic model developed in Mathematica together with the MechanicalSystems add-in will
allow a dynamic simulation to be done. The first simulation will show how the model behaves
when the position of the slider and the first revolute joint are left free to move under the action
of gravity. The scenario considered will have no damping elements nor numerical damping. A
model in the multibody dynamics software RecurDyn will be developed, and the same simulation
will be performed, comparing the results for the trajectories of the tracer point of both softwares.

Classical PID controllers and state feedback controllers to stabilize the model have been
developed for the RecurDyn model using the control capabilities of the CoLink add-on.
Dynamic calculation of the center of mass allows the stabilization of the model to maintain its
center of mass along the vertical axis of the slider. An equivalent model has been defined in
SystemModeler, where implementation of controllers is also available. The two types of
controllers, PID and state feedback, will also be implemented in this software, and the results
of both of them compared. This will conclude the analysis of the Handle robot prototype.

91

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The model has undergone many changes since it started with the initial hand-made kinematic
diagram of Figure 3.1. It seemed necessary to create a new kinematic diagram with the final
configuration of the model. In this case the graphics obtained in the Mathematica model were
used along with the image editing software Inkscape to create a vector graphic version of the
kinematic diagram.

1 2

3

4

5

6

7

8

1
1,T
1-2

2
1,R
2-3

3
1,R
3-4

4
1,R
4-5

5
1,R
5-6

6
1,R
5-7

7
1,R
7-8

X2

Θ3

La1

La2

La3

La4La5

Figure 4.1: Kinematic diagram of the final version of the model.

92

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.2 SolidWorks and COSMOSMotion

The SolidWorks model is the starting point for all of the subsequent models. This model will be
exported to RecurDyn and SystemModeler through an intermediary neutral format. The model
consists of eight main bodies and ten more bodies that make up the visual representation of the
linear actuators.

Once the different bodies are geometrically defined, the SolidWorks environment is used to
assembly the model from these building blocks. The objective is to obtain a simplified virtual
equivalent model of the theoretical model. The joint configuration of the SolidWorks model will
be analyzed in order to obtain a self-aligned model with the aid of the Grübler mobility formula
from the COSMOSMotion add-in.

There have been further simplifications from the theoretical model to the 2-dimensional virtual
model, some of them resulting from necessary simplifications for the mathematical model’s
complexity to stay within reasonable limits.

A kinematic simulation using the COSMOSMotion add-in will be performed obtaining position,
velocity and acceleration of the tracer point. These results will later be compared to the kinematic
expressions obtained from Mathematica.

Figure 4.2: SolidWorks model of the robot with all the bodies and their relevant points.

93

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.2.1 Self-aligned model

A complete self-aligned model was obtained using SolidWorks and COSMOSMotion, where all
the joints between the bodies have been adequately selected in order to obtain a model with no
redundant constraints.

Figure 4.3: SolidWorks COSMOSMotion representation of the complete self-aligned model where the joint
position and types are depicted.

Figure 4.4: COSMOSMotion analysis results for the self-aligned model.

94

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.2.2 COSMOSMotion kinematic motion results

A series of motions are applied to the degrees of freedom of the model, making the tracer point
follow a given path. The coordinates of the position, velocity and acceleration of the tracer
point’s trajectory will be exported for further analysis.

4.2.2.1 Position results

Figure 4.5: Path followed by the tracer point in COSMOSMotion.

95

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.2.2.2 Velocity results

(a) Velocity x-coordinate.

(b) Velocity y-coordinate.

Figure 4.6: Velocity of the tracer point during the motion in COSMOSMotion.

96

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.2.2.3 Acceleration results

(a) Acceleration x-coordinate.

(b) Acceleration y-coordinate.

Figure 4.7: Acceleration of the tracer point during the motion in COSMOSMotion.

97

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.3 Mathematica

4.3.1 Kinematic model

4.3.1.1 Equations of motion

The canonical forms for the position and trigonometric functions of body i ∈ [3, 8] are:

Xi = X2 + xi = X2 + ai cos Θ3 − bi sin Θ3 (4.1)

Yi = yi = bi cos Θ3 + ai sin Θ3

cos Θi = ci cos Θ3 − di sin Θ3 sin Θi = di cos Θ3 + ci sin Θ3

The expression for the center of mass of bodies 3 through 8 also presents a canonical form:

XG = X2 + xG = X2 + aG cos Θ3 − bG sin Θ3 (4.2)

YG = yG = bG cos Θ3 + aG sin Θ3

The moment of inertia for the grouping of bodies 3 through 8 is a function of the actuator lengths:

IG = f(La1, La2, La3, La4, La5) (4.3)

The coefficients of the canonical forms have been obtained symbolically, in terms of the
parameters defined in Table 3.4, but they will be presented with the numerical value of the
parameters substituted, which result in simpler expressions. All the expressions of the
canonical forms are in terms of the degrees of freedom of the model: X2, Θ3, La1, La2, La3,
La4, and La5. The expression for the moment of inertia is too large to fit in a single page,
therefore it will not be presented here.

The parameters are defined as rational numbers allowing Mathematica to express the resulting
expressions without any accuracy loss due to the use of real numbers with finite precision.

Body 2
X2 = f(T) (4.4)

Y2 = 0

Θ2 = 0

Body 3
a3 =

1

4
(4.5)

b3 = 0

Θ3 = f(T)

98

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

B
od

y
4

a
4

=
1

58
0

(50
00
L
a

2 1
−

14
3
)

(4
.6
)

b 4
=

1

14
5

√ 28
9
−

25
00
L
a

2 1

√ 62
5L
a

2 1
−

36

c 4
=

1

14
5

(43
3
−

50
00
L
a

2 1

)
d

4
=
−

4
1

14
5

√ 28
9
−

25
00
L
a

2 1

√ 62
5
L
a

2 1
−

36

B
od

y
5

(4
.7
)

a
5

=
12

50
0
L
a

2 1

(20
L
a

2 2
+

1
) +

8
√ 62

5L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

√ −6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
−

2
1
6
5
0
L
a

2 2
+

5

21
75

b 5
=

2
(1

0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
−

5
0
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

5
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

4
3
3
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)

2
1
7
5

c 5
=

1

43
5

((43
3
−

50
00
L
a

2 1

)(5
−

50
L
a

2 2

) +
8
√ 62

5L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

√ −6
25
L
a

4 2
+

1
2
5
L
a

2 2
−

4

)
d

5
=

1 43
5

(20
√ 62

5
L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

(10
L
a

2 2
−

1) +
2
(43

3
−

50
00
L
a

2 1

)√ −
62

5
L
a

4 2
+

1
2
5
L
a

2 2
−

4)
B

od
y

6
(4
.8
)

a
6

=
5
0
0

8
7
L
a

2 1

(20
L
a

2 2
+

1
) +

1
4
3
5

(50
00
L
a

2 1
−

43
3
)(10

L
a

2 2
−

1
) +

3
7
(7

4
8
9
−

4
0
0
0
0
L
a

2 3
)((4

3
3
−

5
0
0
0
L
a

2 1
)(

5
−

5
0
L
a

2 2
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)

4
5
9
3
6
0
0
0
0

+

+
3
7
√

(1
2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)(2

0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
+

2
(4

3
3
−

5
0
0
0
L
a

2 1
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

)
4
5
9
3
6
0
0
0
0

+
1
6
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

2
1
7
5

−
8
6
6
L
a

2 2

8
7

+
1

4
3
5

b 6
=
−

3
7
((7

4
8
9
−

4
0
0
0
0
L
a

2 3
)(4
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
(5
−

5
0
L
a

2 2
)+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) +
√

(1
2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)(2

5
0
0
0
L
a

2 1
(1

0
L
a

2 2
−

1
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
1
6
5
0
L
a

2 2
+

2
1
6
5
))

4
5
9
3
6
0
0
0
0

+

+
2
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
(1

0
L
a

2 2
−

1
)+

2
(4

3
3
−

5
0
0
0
L
a

2 1
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

2
1
7
5

+
2
(1

0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
−

5
0
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

5
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

4
3
3
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)

2
1
7
5

c 6
=

(7
4
8
9
−

4
0
0
0
0
L
a

2 3
)((4

3
3
−

5
0
0
0
L
a

2 1
)(

5
−

5
0
L
a

2 2
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) +
√

(1
2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)(2

0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
+

2
(4

3
3
−

5
0
0
0
L
a

2 1
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

)
2
2
9
6
8
0
0

d
6

=
(7

4
8
9
−

4
0
0
0
0
L
a

2 3
)(−(4

√
6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
(5
−

5
0
L
a

2 2
)+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)) −
√

(1
2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)(2

5
0
0
0
L
a

2 1
(1

0
L
a

2 2
−

1
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
1
6
5
0
L
a

2 2
+

2
1
6
5
)

2
2
9
6
8
0
0

99

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

B
od

y
7

(4
.9
)

a
7

=
1

9
6
1
3
5
0

(5
52

5
00

0
L
a

2 1

(20
L
a

2 2
+

1
) −4

42
00
√ 28

9
−

2
50

0L
a

2 1

√ 62
5
L
a

2 1
−

36
L
a

2 2
+

44
2
(4

33
−

50
00
L
a

2 1

)(5
−

50
L
a

2 2

) −1
4 3

(17
50
L
a

2 4
+
√ −3

90
62

5L
a

4 4
+

71
87

5
L
a

2 4
−

28
09
−

16
1
)((4

33
−

5
00

0
L
a

2 1

)(5
−

5
0L
a

2 2

) +
8
√ 6

25
L
a

2 1
−

3
6√ 2

8
9
−

25
00
L
a

2 1

√ −6
25
L
a

4 2
+

1
2
5
L
a

2 2
−

4) +

−
7 1
5

(−6
25

0L
a

2 4
+

28
√ −3

90
6
25
L
a

4 4
+

71
8
75
L
a

2 4
−

28
09

+
57

5
)(20

0√ 62
5
L
a

2 1
−

3
6√ 28

9
−

25
00
L
a

2 1
L
a

2 2
+

2
(43

3
−

50
0
0L
a

2 1

)√ −
62

5
L
a

4 2
+

1
25
L
a

2 2
−

4
−

20
√ 62

5
L
a

2 1
−

36
√ 28

9
−

25
0
0L
a

2 1

) +
44

2
(50

00
L
a

2 1
−

43
3
)√ −

62
5L
a

4 2
+

12
5
L
a

2 2
−

4
+

7
07

2
√ 6

25
L
a

2 1
−

3
6
√ 28

9
−

25
00
L
a

2 1

√ −6
2
5
L
a

4 2
+

12
5
L
a

2 2
−

4
+

4
4
20
√ 6

2
5
L
a

2 1
−

3
6√ 2

89
−

2
50

0L
a

2 1
−

9
5
69

3
00
L
a

2 2
+

2
2
10

)

b 7
=

1
9
6
1
3
5
0

(11
05

0
(50

00
L
a

2 1
−

43
3
) La2 2

+
8
84

0
√ 6

25
L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

(10
L
a

2 2
−

1) +
1
4 3

(17
5
0L
a

2 4
+
√ −3

9
06

2
5
L
a

4 4
+

7
1
87

5
L
a

2 4
−

2
80

9
−

16
1
)(4√ 6

25
L
a

2 1
−

36
√ 2

89
−

25
00
L
a

2 1

(5
−

5
0L
a

2 2

) +
2
(5

00
0L
a

2 1
−

43
3
)√ −

62
5
L
a

4 2
+

12
5
L
a

2 2
−

4) +
7 1
5

(−6
2
50
L
a

2 4
+

28
√ −3

9
06

2
5
L
a

4 4
+

7
1
87

5
L
a

2 4
−

28
0
9

+
5
75
)(2

5
00

0
L
a

2 1

(1
0L
a

2 2
−

1
) +

8
√ 6

2
5
L
a

2 1
−

3
6√ 2

8
9
−

2
5
00
L
a

2 1

√ −6
25
L
a

4 2
+

1
25
L
a

2 2
−

4
−

2
1
65

0
L
a

2 2
+

2
1
65
) +

−
88

4
(50

00
L
a

2 1
−

43
3
)√ −

62
5
L
a

4 2
+

12
5
L
a

2 2
−

4
+

17
68
√ 62

5L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

√ −6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
+

8
84
(10

0
√ 6

25
L
a

2 1
−

36
√ 28

9
−

2
50

0
L
a

2 1
L
a

2 2
−

5
00

0L
a

2 1

√ −6
2
5
L
a

4 2
+

12
5
L
a

2 2
−

4
+

5
√ 62

5
L
a

2 1
−

3
6√ 2

89
−

2
50

0L
a

2 1
+

43
3
√ −6

25
L
a

4 2
+

1
25
L
a

2 2
−

4) −1
10

5
(5

00
0L
a

2 1
−

43
3
))

c 7
=

1
6
6
3

(2 8
7

(17
50
L
a

2 4
+
√ 31

25
L
a

2 4

(23
−

12
5
L
a

2 4

) −2
80

9
−

16
1
)((43

3
−

50
00
L
a

2 1

)(5
−

50
L
a

2 2

) +
8
√ 6

25
L
a

2 1
−

36
√ 2

8
9
−

2
5
0
0L
a

2 1

√ −6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) +

1
4
3
5

(−6
2
50
L
a

2 4
+

2
8
√ 3

12
5L
a

2 4

(2
3
−

1
2
5
L
a

2 4

) −2
8
0
9

+
5
7
5
)(20

0
√ 6

25
L
a

2 1
−

3
6√ 2

8
9
−

2
5
0
0L
a

2 1
L
a

2 2
+

2
(4

3
3
−

5
0
0
0L
a

2 1

)√ −
6
2
5L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
0√ 6

2
5
L
a

2 1
−

3
6√ 2

8
9
−

2
50

0
L
a

2 1

))

d
7

=
1

6
6
3

(−2 8
7

(17
50
L
a

2 4
+
√ 31

25
L
a

2 4

(23
−

12
5
L
a

2 4

) −2
80

9
−

16
1
)(4

√ 62
5
L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

(5
−

50
L
a

2 2

) +
2
(50

0
0L
a

2 1
−

4
3
3)√

−
6
2
5
L
a

4 2
+

12
5
L
a

2 2
−

4) −
1

4
3
5

(−6
2
5
0L
a

2 4
+

2
8
√ −3

9
0
6
2
5L
a

4 4
+

7
18

7
5
L
a

2 4
−

2
80

9
+

5
7
5
)(2

5
0
0
0
L
a

2 1

(1
0L
a

2 2
−

1
) +

8
√ 6

2
5L
a

2 1
−

3
6
√ 2

89
−

2
5
0
0
L
a

2 1

√ −6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
1
6
5
0
L
a

2 2
+

2
1
6
5
))

B
od

y
8

(4
.1
0)

a
8

=
−

1 8
7
4√ 28

9
−

25
00
L
a

2 1

√ 6
25
L
a

2 1
−

36
L
a

2 2
+

1
4
3
5

(50
0
0L
a

2 1
−

43
3)(10

L
a

2 2
−

1) +

(2 8
7

((4
3
3
−

5
0
0
0
L
a

2 1
)(

5
−

5
0
L
a

2 2
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) +

1

4
3
5

(2
0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
−

2
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(4

3
3
−

5
0
0
0
L
a

2 1
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
)) (6

0
1
−

1
0
0
0
0
L
a

2 5
)

7
9
5
6
0
0

+

+
2

4
3
5

√ 6
25
L
a

2 1
−

36
√ 28

9
−

2
50

0L
a

2 1
+

(5
0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

2
1
7
5

+
8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

2
1
7
5

+
1
2
5
0
0
(2

0
L
a

2 2
+

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

5

2
1
7
5

−
(2

0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
−

2
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(4

3
3
−

5
0
0
0
L
a

2 1
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
)

8
4
8
2
5
0

+

(2 8
7

(2
0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
−

2
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(4

3
3
−

5
0
0
0
L
a

2 1
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) +

1

4
3
5

((4
3
3
−

5
0
0
0
L
a

2 1
)(

5
−

5
0
L
a

2 2
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(6

2
5
0
L
a

2 4
−

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

5
7
5
)) √

(8
4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)

7
9
5
6
0
0

−
((4

3
3
−

5
0
0
0
L
a

2 1
)(

5
−

5
0
L
a

2 2
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
)

8
4
8
2
5

b 8
=

1 8
7

(50
00
L
a

2 1
−

43
3) La

2 2
+

4
4
3
5

√ 62
5
L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

(10
L
a

2 2
−

1) +

(1
7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
)(4
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
(5
−

5
0
L
a

2 2
)+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)

8
4
8
2
5

+

−
(6

0
1
−

1
0
0
0
0
L
a

2 5
)(2 8

7

(1
7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
)(4
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
(5
−

5
0
L
a

2 2
)+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) +

1

4
3
5

(−6
2
5
0
L
a

2 4
+

2
8
√
−

3
9
0
6
2
5
L
a

4 4
+

7
1
8
7
5
L
a

2 4
−

2
8
0
9
+

5
7
5
)(2

5
0
0
0
L
a

2 1
(1

0
L
a

2 2
−

1
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
1
6
5
0
L
a

2 2
+

2
1
6
5
))

7
9
5
6
0
0

−
√

(8
4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)(1

4
3
5

(6
2
5
0
L
a

2 4
−

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

5
7
5
)(4
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
(5
−

5
0
L
a

2 2
)+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) +

2 8
7

(1
7
5
0
L
a

2 4
+
√
−

3
9
0
6
2
5
L
a

4 4
+

7
1
8
7
5
L
a

2 4
−

2
8
0
9
−

1
6
1
)(2

5
0
0
0
L
a

2 1
(1

0
L
a

2 2
−

1
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
1
6
5
0
L
a

2 2
+

2
1
6
5
))

7
9
5
6
0
0

+

+

(−6
2
5
0
L
a

2 4
+

2
8
√
−

3
9
0
6
2
5
L
a

4 4
+

7
1
8
7
5
L
a

2 4
−

2
8
0
9
+

5
7
5
)(2

5
0
0
0
L
a

2 1
(1

0
L
a

2 2
−

1
)+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
−

2
1
6
5
0
L
a

2 2
+

2
1
6
5
)

8
4
8
2
5
0

+
4
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

2
1
7
5

+
2
(1

0
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
L
a

2 2
−

5
0
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

5
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

4
3
3
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)

2
1
7
5

−
2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

2
1
7
5

+
1

8
7
0

(4
3
3
−

5
0
0
0
L
a

2 1

)
c 8

=
1

2
4
0

(1
6
6
3

(60
1
−

10
00

0
L
a

2 5

)(2 8
7

(17
50
L
a

2 4
+
√ 31

25
L
a

2 4

(23
−

1
25
L
a

2 4

) −2
80

9
−

16
1)((43

3
−

50
00
L
a

2 1

)(5
−

5
0L
a

2 2

) +
8
√ 6

2
5L
a

2 1
−

3
6
√ 2

8
9
−

2
50

0
L
a

2 1

√ −6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
) +

1
4
3
5

(−6
25

0
L
a

2 4
+

28
√ 3

12
5L
a

2 4

(2
3
−

1
25
L
a

2 4

) −2
8
0
9

+
57

5
)(20

0
√ 6

2
5
L
a

2 1
−

3
6√ 2

89
−

2
5
0
0L
a

2 1
L
a

2 2
+

2
(4

33
−

5
0
0
0L
a

2 1

)√ −
6
25
L
a

4 2
+

1
25
L
a

2 2
−

4
−

2
0
√ 6

25
L
a

2 1
−

3
6
√ 2

8
9
−

2
50

0
L
a

2 1

)) +

1
6
6
3

√ (84
1
−

10
00

0L
a

2 5

)(10
00

0
L
a

2 5
−

36
1
)(2 8

7

(17
50
L
a

2 4
+
√ 31

25
L
a

2 4

(23
−

1
25
L
a

2 4

) −2
80

9
−

16
1)(20

0
√ 62

5L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1
L
a

2 2
+

2
(4

33
−

5
00

0L
a

2 1

)√ −
62

5L
a

4 2
+

1
25
L
a

2 2
−

4
−

20
√ 6

25
L
a

2 1
−

36
√ 2

89
−

25
00
L
a

2 1

) +
1

4
3
5

(62
5
0L
a

2 4
−

28
√ 3

12
5L
a

2 4

(2
3
−

1
25
L
a

2 4

) −2
80

9
−

57
5)((43

3
−

50
0
0L
a

2 1

)(5
−

50
L
a

2 2

) +
8
√ 6

25
L
a

2 1
−

36
√ 28

9
−

25
0
0
L
a

2 1

√ −6
2
5
L
a

4 2
+

12
5
L
a

2 2
−

4
)))

d
8

=
1

2
4
0

(−
1

6
6
3

(60
1
−

10
00

0L
a

2 5

)(2 8
7

(17
50
L
a

2 4
+
√ 31

25
L
a

2 4

(23
−

12
5L
a

2 4

) −2
80

9
−

16
1)(4

√ 62
5
L
a

2 1
−

36
√ 28

9
−

2
50

0L
a

2 1

(5
−

50
L
a

2 2

) +
2
(50

00
L
a

2 1
−

43
3
)√ −

62
5L
a

4 2
+

12
5
L
a

2 2
−

4
) +

1
4
3
5

(−6
25

0L
a

2 4
+

2
8
√ −3

90
62

5L
a

4 4
+

71
87

5
L
a

2 4
−

2
80

9
+

5
75
)(25

00
0L
a

2 1

(1
0
L
a

2 2
−

1) +
8
√ 62

5
L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

√ −6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
−

21
65

0L
a

2 2
+

21
6
5
)) +

−
1

6
6
3

√ (84
1
−

10
0
00
L
a

2 5

)(10
00

0
L
a

2 5
−

36
1
)(1

4
3
5

(62
50
L
a

2 4
−

28
√ 31

2
5L
a

2 4

(23
−

12
5
L
a

2 4

) −2
8
09
−

57
5
)(4

√ 62
5L
a

2 1
−

36
√ 2

8
9
−

25
0
0
L
a

2 1

(5
−

50
L
a

2 2

) +
2
(50

00
L
a

2 1
−

43
3)√

−
62

5
L
a

4 2
+

12
5
L
a

2 2
−

4
) +

2 8
7

(1
75

0L
a

2 4
+
√ −3

90
62

5L
a

4 4
+

7
18

75
L
a

2 4
−

28
0
9
−

16
1)(2

50
0
0L
a

2 1

(10
L
a

2 2
−

1
) +

8
√ 62

5
L
a

2 1
−

36
√ 28

9
−

2
50

0
L
a

2 1

√ −6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
−

2
16

50
L
a

2 2
+

2
16

5
)))

100

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

C
en

te
r

of
m

as
s

(4
.1
1)

a
G

=
−

1
1
3
0
(1

9
2
−
π

)

(−
1 8
7
29

12
00

00
0
L
a

2 2
L
a

2 1
+

1
0
4
0
0
0
0
L
a

2 1

8
7

+
5
0
0
0
0
0

2
9
L
a

2 2
π
L
a

2 1
+

2
5
2
1
7
9
2
0
L
a

2 2

8
7

+
3
7
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
) (4

0
0
0
0
L
a

2 3
−

7
4
8
9
)

7
9
7
5
0

+
5
6
0
0
0
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) L
a

2 5

5
7
6
8
1

+

+
5
6
0
0
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(6

2
5
0
L
a

2 4
−

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

5
7
5
) L
a

2 5

5
7
6
8
1

−
3
7
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
) (4

0
0
0
0
L
a

2 3
−

7
4
8
9
)π

2
2
9
6
8
0
0
0

−
1
0
0
0
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) L
a

2 5
π

1
7
3
0
4
3

+

+
2
0
0
(5

0
0
0
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
L
a

2 1
−

1
0
0
√

2
8
9
−

2
5
0
0
L
a

2 1

√
6
2
5
L
a

2 1
−

3
6
L
a

2 2
+

1
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
−

4
3
3
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
) L
a

2 5
π

1
7
3
0
4
3

−
3
7
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) √ (1

1
3
−

2
0
0
L
a

3
)(

2
0
0
L
a

3
+

1
1
3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)π

2
2
9
6
8
0
0
0

+
5
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) π

3
4
6
0
8
6

+

+
3
6
1
(−5

0
0
0
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
L
a

2 1
+

1
0
0
L
a

2 2

√
6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
−

1
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

4
3
3
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
) π

8
6
5
2
1
5
0

−
2
8
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(6

2
5
0
L
a

2 4
−

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

5
7
5
) π

1
4
4
2
0
2
5

+

(−5
0
0
0
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
L
a

2 1
+

1
0
0
L
a

2 2

√
6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
−

1
0
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

4
3
3
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) √ (8

4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)π

8
6
5
2
1
5

+

−
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
) √ (8

4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)π

1
7
3
0
4
3
0
0

+
9
6
0

2
9

(10
L
a

2 2
−

1
)√ 62

5L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1
+

4 8
7

(5
−

5
0L
a

2 2

) π√
62

5
L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1
−

9
6

2
9

(50
00
L
a

2 1
−

43
3
)√ −

62
5L
a

4 2
+

12
5
L
a

2 2
−

4
−

4
6
5
9
2

4
3
5

√ 28
9
−

2
50

0L
a

2 1

√ 62
5
L
a

2 1
−

3
6√ −

6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
+

1
6

2
9
π
√ 62

5
L
a

2 1
−

36
√ 2

89
−

25
0
0L
a

2 1

√ −6
2
5
L
a

4 2
+

12
5
L
a

2 2
−

4+

+
2 8
7

(5
00

0L
a

2 1
−

43
3
) π√

−
62

5L
a

4 2
+

12
5
L
a

2 2
−

4
+

2
4
3
5
(−

8
0

+
π

)
(2

50
00
(1

0L
a

2 2
−

1
) La2 1

−
21

65
0
L
a

2 2
+

8
√ 6

2
5
L
a

2 1
−

3
6√ 28

9
−

25
0
0L
a

2 1

√ −6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

21
65
) +

7
4
√

2
8
9
−

2
5
0
0
L
a

2 1

√
6
2
5
L
a

2 1
−

3
6
(1
−

1
0
L
a

2 2
)√

(1
2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)

7
9
7
5

+
3
7
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
√

(1
2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)

3
9
8
7
5

−
1
4
0
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
)

5
7
6
8
1

+

−
1
4
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(6

2
5
0
L
a

2 4
−

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

5
7
5
)

5
7
6
8
1

+
2
8
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) √ (2

9
−

1
0
0
L
a

5
)(

1
0
0
L
a

5
+

2
9
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)

2
8
8
4
0
5

+
1
4
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
) √ (8

4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)

1
4
4
2
0
2
5

−
4
3
3
0
0
L
a

2 2
π

2
9

−
1
0
8
5
3
4
4

8
7

+
6
0
π

)

b G
=

1
1
3
0
(1

9
2
−
π

)

(1
2
0
0
0
0
0
0
L
a

2 2
L
a

2 1

2
9

−
6
6
5
6
0
0
0

8
7

√ −6
2
5
L
a

4 2
+

12
5
L
a

2 2
−

4L
a

2 1
+

1
2
0
0
0

2
9
π
√ −6

25
L
a

4 2
+

12
5
L
a

2 2
−

4
L
a

2 1
−

1
2
0
0
0
0
0
L
a

2 1

2
9

−
2
5
0
0
0
0

8
7
L
a

2 2
π
L
a

2 1
+

2
5
0
0
0
π
L
a

2 1

8
7

−
3
7
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) (7

4
8
9
−

4
0
0
0
0
L
a

2 3
)

7
9
7
5
0

+
5
6
0
0
0
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) L
a

2 5

5
7
6
8
1

+

+
5
6
0
0
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
) L
a

2 5

5
7
6
8
1

+
3
7
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
) (7

4
8
9
−

4
0
0
0
0
L
a

2 3
)π

2
2
9
6
8
0
0
0

−
1
0
0
0
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) L
a

2 5
π

1
7
3
0
4
3

+

−
1
0
0
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
) L
a

2 5
π

1
7
3
0
4
3

+
3
7
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
) √ (1

2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)π

2
2
9
6
8
0
0
0

+
1
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
6
2
5
L
a

2 1
−

3
6
(1

0
L
a

2 2
−

1
)√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
π

3
3
9
3

+
8
(4

3
3
−

5
0
0
0
L
a

2 1
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
π

1
6
9
6
5

+

+
4
3
3
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) π

1
7
3
0
4
3
0

+

(2
5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
) π

6
9
2
1
7
2

+

(2
5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) √ (8

4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)π

1
7
3
0
4
3
0

+

+

(4
(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(6

2
5
0
L
a

2 4
−

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

5
7
5
) √ (8

4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)π

1
7
3
0
4
3
0
0

+
1
3
3
1
2
0

8
7
L
a

2 2

√ 6
25
L
a

2 1
−

3
6
√ 2

8
9
−

2
5
0
0L
a

2 1
+

9
1
5
2

8
7

√ 6
2
5
L
a

2 1
−

3
6√ 2

8
9
−

2
5
0
0L
a

2 1
+

2
8
2
3
6
8
(1

0
L
a

2 2
−

1
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

1
1
3
1

+
2
8
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 4
π
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

3
3
9
3

+
1
5
6
8
0
0
(5

0
0
0
L
a

2 1
−

4
3
3
)L
a

2 4

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

1
1
3
1

+

+
2
8
8
2
0
4
8

4
3
5

√ −6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
+

3
8
4

2
9

√ 62
5
L
a

2 1
−

36
√ 28

9
−

25
00
L
a

2 1

√ −6
25
L
a

4 2
+

12
5
L
a

2 2
−

4
+

4
7
6
(5

0
0
0
L
a

2 1
−

4
3
3
)π
√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

3
3
9
3

−
3
7
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
) √ (1

2
7
6
9
−

4
0
0
0
0
L
a

2 3
)(

4
0
0
0
0
L
a

2 3
−

2
2
0
9
)

7
9
7
5
0

+
8
9
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
6
2
5
L
a

2 1
−

3
6
(1
−

1
0
L
a

2 2
)√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9

1
1
3
1

+
4
4
8
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9

5
6
5
5

−
1
2
1
2
4
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
)

2
8
8
4
0
5

+

−
1
4
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(−

6
2
5
0
L
a

2 4
+

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
+

5
7
5
)

5
7
6
8
1

−
2
8
(2

5
0
0
0
(1

0
L
a

2 2
−

1
)L
a

2 1
−

2
1
6
5
0
L
a

2 2
+

8
√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1

√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
+

2
1
6
5
)(1

7
5
0
L
a

2 4
+
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

1
6
1
) √ (8

4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)

2
8
8
4
0
5

+

−
1
4
(4

(5
−

5
0
L
a

2 2
)√

6
2
5
L
a

2 1
−

3
6
√

2
8
9
−

2
5
0
0
L
a

2 1
+

2
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
)(6

2
5
0
L
a

2 4
−

2
8
√

3
1
2
5
L
a

2 4
(2

3
−

1
2
5
L
a

2 4
)−

2
8
0
9
−

5
7
5
) √ (8

4
1
−

1
0
0
0
0
L
a

2 5
)(

1
0
0
0
0
L
a

2 5
−

3
6
1
)

1
4
4
2
0
2
5

−
1
0
3
9
2
0
0
L
a

2 2

2
9

+
1
0
3
9
2
0

2
9
−

2
1
6
5
π

8
7
−

1
5
6
8
0
0
0
√

2
8
9
−

2
5
0
0
L
a

2 1

√
6
2
5
L
a

2 1
−

3
6
(1

0
L
a

2 2
−

1
)L
a

2 4

1
1
3
1

−
2
8
0
0
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4
L
a

2 4
π

3
3
9
3

+

−
4
7
6
0
√

2
8
9
−

2
5
0
0
L
a

2 1

√
6
2
5
L
a

2 1
−

3
6
(1

0
L
a

2 2
−

1
)π

3
3
9
3

−
1
4
1
1
8
4
(5

0
0
0
L
a

2 1
−

4
3
3
)√
−

6
2
5
L
a

4 2
+

1
2
5
L
a

2 2
−

4

5
6
5
5

−
2
4
0

2
9

√ 28
9
−

25
00
L
a

2 1

√ 62
5L
a

2 1
−

3
6
L
a

2 2
π

+
2
1
6
5
0
L
a

2 2
π

8
7

−
1
6

2
9

√ 2
89
−

2
50

0
L
a

2 1

√ 6
25
L
a

2 1
−

3
6π
−

5
1
9
6

1
4
5

√ −6
25
L
a

4 2
+

1
25
L
a

2 2
−

4
π
−

8 8
7

√ 2
89
−

25
00
L
a

2 1

√ 62
5
L
a

2 1
−

36
√ −6

25
L
a

4 2
+

1
25
L
a

2 2
−

4π

)

101

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.3.1.2 Comparison between Mathematica and COSMOSMotion kinematic results

The same kinematic simulation as in COSMOSMotion was performed using the symbolic
kinematic solution in Mathematica, obtaining the same results for the position, velocity, and
acceleration of the tracer point for the specified motion.

-0.65 -0.60 -0.55 -0.50
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.65 -0.60 -0.55 -0.50
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.8: Comparison of tracer point trajectories during the kinematic simulation between Mathematica
symbolic solution (blue) and COSMOSMotion numeric solution (red). Y vs. X coordinate parametric plot in m.

102

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4.9: Comparison of tracer point velocities during the kinematic simulation between Mathematica symbolic
solution (blue) and COSMOSMotion numeric solution (red). Y vs. X coordinate parametric plot in m/s.

103

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

-1.0 -0.5 0.0 0.5 1.0 1.5
-4

-2

0

2

4

6

-1.0 -0.5 0.0 0.5 1.0 1.5
-4

-2

0

2

4

6

Figure 4.10: Comparison of tracer point accelerations during the kinematic simulation between Mathematica
symbolic solution (blue) and COSMOSMotion numeric solution (red). Y vs. X coordinate parametric plot in
m/s2.

104

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.3.2 Working range

The working range for the tracer point considering the range of variation of the lengths of the
actuators is a two dimensional area that has been obtained for the initial value of Θ3. The
movement of the slider X2 is simply a translation of this region and the rotation of the Θ3 will
rotate the region around the pivot point of the revolute joint.

Figure 4.11: Working range of the tracer point for variations in La1, La2, La4, and La5 for the initial position
of X2 and Θ3.

105

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.3.3 Interactive visual representation

An interactive visual representation was developed using the Manipulate function in
Mathematica. This has been possible due to the kinematic expressions obtained for the position
of the bodies and to the working range analysis to obtain the maximum and minimum values
for the actuator lengths.

The relative angle formulation for the actuator lengths yielded symbolic kinematic expressions
that were simplified enough for the model to be recalculated in real time when the values of the
drivers are changed dynamically using the sliders in the interactive controls.

The values of all the degrees of freedom of the model can be modified inside a determined
minimum and maximum range. There is also an option to overlap the working range and a reset
button to return to the initial position.

Figure 4.12: Interactive controls in Mathematica.

106

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

F
ig

u
re

4.
13

:
In
te
ra
ct
iv
e
vi
su
al

re
pr
es
en
ta
ti
on

in
M

at
he

m
at

ic
a.

107

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.3.4 Dynamic model

The dynamic model for the Handle robot has been reduced to a inverted pendulum on cart
system with the following equations of motion:

M
∂xG
∂Θ

ẍ+ (IG +M`2)Θ̈ +M
∂yG
∂Θ

g = 0 (4.12)

(M +m)ẍ+M
∂2xG
∂Θ2

Θ̇2 +M
∂xG
∂Θ

Θ̈ = F (4.13)

Where:

sG = {xG, yG} = {a cos Θ3 − b sin Θ3, b cos Θ3 + a sin Θ3}

The parameters a, b, IG, and ` are functions of the actuator lengths:

a = f(La1, La2, La3, La4, La5) b = g(La1, La2, La3, La4, La5) (4.14)

IG = h(La1, La2, La3, La4, La5) ` = k(La1, La2, La3, La4, La5)

F Θ3
x

y

X2

sG

M, IG

m

Figure 4.14: Representation of the equivalent inverted pendulum on cart model.

108

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.3.4.1 Free motion results

A dynamic simulation of the model in its starting position swinging under the action of the force
of gravity has been performed in Mathematica and RecurDyn.

In Mathematica, the numerical free motion results from the simplified inverted pendulum on cart
model are the same as the numerical solution of the complete eight body system. The eight body
system was solved using the general Lagrange multiplier form of the constrained equations of
motion and, even though the two equations of motion obtained were not as simplified as the ones
of the inverted pendulum model, they yielded the same results as the simplified model. This
confirms that the simplified equivalent model has been correctly developed.

Figure 4.15: Mathematica model with the trajectory of the tracer point during free motion.

109

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.3.5 Comparison between RecurDyn and Mathematica dynamic free
motion results

The free motion dynamic simulation of the model in its starting position swinging under the
action of the force of gravity yielded the same results in Mathematica and RecurDyn.

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2
-0.2

-0.1

0.0

0.1

0.2

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2
-0.2

-0.1

0.0

0.1

0.2

Figure 4.16: Comparison of tracer point trajectories for the free motion dynamic simulation between
Mathematica symbolic solution (blue) and RecurDyn numeric solution (red). Y vs. X coordinate parametric
plot in m.

110

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.4 RecurDyn

4.4.1 Model

The model starts from the initial value of Θ3 and it is driven until the dynamic system’s initial
position. This initial position represents a standing up configuration, and it is at that moment
when the controllers kick in. The initial position has a small deviation from the equilibrium
point, where the center of mass of the upper part of the model should be right on top of the
slider’s center of mass.

Figure 4.17: Dynamic system’s starting position depicted in RecurDyn.

111

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The linearized model will be considered for the design of the controllers, where the equilibrium
point is:

Θeq = 2 tan−1(
a

b+ `
) (4.15)

The values for the degrees of freedom at the dynamic system’s starting position are:

X2 = 0m Θ3 = 33.97◦ (4.16)

La1 = 0.282722m La2 = 0.368221m La3 = 0.257705m

La4 = 0.29281m La5 = 0.268034m

The resulting parameters for those values of actuator lengths are:

` = 76.2733 · 10−2m IG = 12.6727 kg ·m2 Θeq = 37.5884◦ (4.17)

m = 48 kg M = 61.379 kg g = 9.80665
m

s2

The mass parameters are invariants, but the `, IG, and Θeq parameters must be calculated
according to the length of the actuators in every given point.

The open-loop transfer functions of the linearized model are:

Θ(s)

F(s)
=

`M

(IG(m+M) + `2mM)s2 − g`M(m+M)

[
rad

N

]
(4.18)

X(s)

F(s)
=

s2(IG + `2M)− g`M
(IG(m+M) + `2mM)s4 − g`M(m+M)s2

[m
N

]
The open-loop poles of the Θ transfer function are:

s1 =

√
g`M(m+M)

IG(m+M) + `2mM
= 4.0247 s2 = −

√
g`M(m+M)

IG(m+M) + `2mM
= −4.0247

The open-loop poles of the X transfer function are:

s1 = 0 s2 = 0 s3 =
√

g`M(m+M)
IG(m+M)+`2mM = 4.0247 s4 = −

√
g`M(m+M)

IG(m+M)+`2mM = −4.0247

112

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.4.2 Controllers

The controllers will be designed using the linearized model obtained and implemented in
RecurDyn and SystemModeler.

4.4.2.1 Ziegler-Nichols closed-loop method

The root locus plot of the closed-loop transfer function for Θ shows that the system switches
from unstable to oscillatory from a certain value of Kp.

- 4 - 2 2 4

- 3

- 2

- 1

1

2

3

Figure 4.18: Root locus representation of the closed-loop transfer function of Θ.

Considering the numerical values of the parameters, the Ziegler-Nichols method returns the
following value for the critical gain:

Ku = g(m+M) = 1072.642 (4.19)

Due to the characteristics of the root locus plot, the critical period Tu for that specific value of
Kp is zero. This means that the heuristic Ziegler-Nichols closed-loop method is not applicable
for the system.

However, for a close value such as Kp = 1100, the period can be calculated:

T =
2π√

`M (Kp−g(m+M))
(IG(m+M)+`2mM)

= 9.78 s (4.20)

Using RecurDyn it is possible to check that the value of Ku is the stability frontier and that a
certain value ofKp produces oscillations with the resulting period. This shows that the linearized
model is a reliable representation of the virtual model.

113

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.4.2.2 PID controller for pendulum angle

Using the pole placement method the solution for the parameters of a PID controller for the
angle of the pendulum have been obtained:

Ki =
−d1p1ω

2
n

c3
Kp =

−d2 − 2d1p1ξωn + d1ω
2
n

c3
Kd =

−d1(p1 − 2ξωn)

c3
(4.21)

Where:

d1 = IG(m+M) + `2mM d2 = −g`M(m+M) c3 = `M (4.22)

ξ =
−lnPO100√
π2 + ln2 PO

100

ωn =
4

Tset ξ

Considering the numeric values of the coefficients, the settling time Tset and the percentage
overshoot PO, as well as a fast negative pole, the coefficients are easily calculated:

Tset = 2s PO = 15% (4.23)

Ki = 19824.8 Kp = 7361.42 Kd = 1589.26

Where the dominant poles of the closed-loop are:

s1 = −2− 3.31196i s2 = −2 + 3.31196i (4.24)

The negative real pole with fast dynamics is:

s3 = −20 (4.25)

114

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.4.2.3 Double PID controller for pendulum angle and cart position

Using the pole placement method the solution for the parameters of a PID controller for the
angle of the pendulum have been obtained:

KpΘ
= −c1d1ωn(−2p1p2p3ξ+p2p3ωn+p1(p2+p3)ωn)+c2(−d2+d1(p1p2+p1p3+p2p3−2(p1+p2+p3)ξωn+ω2

n))
c2c3

KiΘ =
c21d1p1p2p3ω2

n+c1c2d1(−p1p2p3+2(p2p3+p1(p2+p3))ξωn−(p1+p2+p3)ω2
n)+c22(c3KdΘ

+d1(p1+p2+p3−2ξωn))
c1c2c3

Kpx =
d1ωn(−2p1p2p3ξ + p2p3ωn + p1(p2 + p3)ωn)

c2

Kdx = −c3KdΘ
+ d1(p1 + p2 + p3 − 2ξωn)

c1

Kix = −d1p1p2p3ω
2
n

c2
(4.26)

Where:

d1 = IG(m+M) + `2mM d2 = −g`M(m+M) (4.27)

c1 = IG + `2M c2 = −g`M c3 = `M

The derivative term of the Θ controller can take any arbitrary value, it will be set to KdΘ
= 100.

Considering the numeric values of the coefficients, the settling time Tset, the percentage overshoot
PO, and three fast negative poles, the coefficients are calculated:

Tset = 4s PO = 5% (4.28)

KpΘ
= 8487.84 KdΘ

= 100 KiΘ = 23644.2

Kpx = −1658.31 Kdx = 928.473 Kix = −907.425

Where the dominant poles of the closed-loop are:

s1 = −1− 1.04869i s2 = −1 + 1.04869i (4.29)

The negative real poles with fast dynamics are:

s3 = −2 s4 = −4 s5 = −8 (4.30)

115

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.4.2.4 State feedback control using pole placement

Using the pole placement method the solution for the parameters of a state feedback controller
for the angle of the pendulum have been obtained:

k11 =
−(`2mM + IG(m+M))p1p2ω

2
n)

g`M
(4.31)

k12 =
(`2mM + IG(m+M))ωn(−2p1p2ξ + (p1 + p2)ωn)

g`M

k13 = g(m+M) + (IG+`2M)(`2mM+IG(m+M))p1p2ω2
n

g`2M2 + (`2mM+IG(m+M))(p1p2−2(p1+p2)ξωn+ω2
n)

`M

k14 = −1
g`2M2 (`2mM + IG(m+M))((IG + `2M)ωn(−2p1p2ξ + (p1 + p2)ωn) + g`M(p1 + p2 − 2ξωn))

Considering the numeric values of the coefficients, the settling time Tset, the percentage overshoot
PO, and two fast negative poles, the coefficients are calculated:

Tset = 4s PO = 5% (4.32)

K11 = −453.713 k12 = −602.301 k13 = 5388.84 k14 = 1549.5

Where the dominant poles of the closed-loop are:

s1 = −1− 1.04869i s2 = −1 + 1.04869i (4.33)

The negative real poles with fast dynamics are:

s3 = −4 s4 = −8 (4.34)

116

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.4.2.5 State feedback control using a Linear-Quadratic Regulator

The values for the feedback gain matrix K will be obtained from the LQRegulatorGains
function in Mathematica.

In order to keep it simple, the relative weighting between state variables will not be considered,
making αi = 1, and the penalty parameter between state and control variables will be considered
as ρ = 1.

The maximum admissible values for the state and control variables selected are:

(x1)max = xmax = 0.00001m (x2)max = ẋmax = 0.01m/s

(x3)max = Θmax = 0.001 rad (x4)max = Θ̇max = 0.01 rad/s

(u1)max = Fmax = 1 N

The resulting weighting matrices Q and R are:

Q =

100000 0 0 0

0 100 0 0

0 0 1000 0

0 0 0 100

R = (1) (4.35)

(4.36)

The coefficients obtained as the solution to the problem are:

K11 = −316.228 k12 = −435.351 k13 = 4009.89 k14 = 1148.47 (4.37)

The resulting poles for the closed-loop system are:

s1 = −3.98836 + 0.247558i s2 = −3.98836 + 0.247558i (4.38)

s3 = −1.286264 + 1.13062i s4 = −1.286264 + 1.13062i

The resulting dominant dynamics is similar to the one obtained using pole placement.

117

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.4.2.6 CoLink closed-loop control structures

Two different closed-loop control structures were implemented, one for the PID controllers and
another one for the state feedback controllers. The single PID controller uses the same structure
as the double PID controller with the parameters of the second controller set to zero. The
state feedback controller designed with pole placement and using the linear-quadratic regulator
approach share the same structure.

Figure 4.19: Structure of the single and double PID closed-loop control configuration in CoLink.

Figure 4.20: Structure of the state feedback (pole placement and LQR) control configuration in CoLink.

118

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5 SystemModeler

4.5.1 Model

The complete model in SystemModeler is a closed-loop control structure with the Handle
component and a control block, which can be either a PID control scheme or a state feedback
configuration.

Boston Dynamics Handle

La1

La2

La3

La4

La5

Th3
part2x

X2

Motion Force

Time
Switch

part3Th

CMTh3

La1step5

Step5

La3step5

Step5

La4step5

Step5

La5step5

Step5

La2step5

Step5

step5_X2

Step5

step5_Th3

Step5

phi_ref

position

exact=
false

s_ref

position1

exact=

false

CMTh3

part2x

FX2

ControlBlock

part3Th

RefX2

f

force

tau

torque

La1step5_1

Step5

addadd

+
+1

+1

La5step5_1

Step5

add1add1

+
+1

+1

TTh3

k=0
RefX2

k=0

Figure 4.21: Complete model implemented in SystemModeler.

The validation of the model yields that the complete model is balanced, which is necessary to
perform a simulation. When using a PID control block, the model is globally balanced with
10331 equations and 10331 variables, where 3012 of these are non-trivial equations. When using
a state feedback control block, the model is globally balanced with 10319 equations and 10319
variables, where 3009 of these are non-trivial equations.

119

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5.2 Controller comparison between SystemModeler and RecurDyn

The controllers calculated in the previous section are going to be simulated in both RecurDyn
and SystemModeler and the outputs of the simulation for the state variables Θ3, and X2, the
equilibrium angle Θ3eq , and the translational force F will be compared between them.

As a first result, the period for the closed-loop system using only a proportional gain will be
checked. The simulated results should be in agreement with the calculated values. In this case,
the Ziegler-Nichols closed-loop method is not applicable for the system, but it can be used to
check the resemblance of the mathematical model to the virtual one.

Once the first check is done, four different simulations will be performed: PID controller for
pendulum angle only, double PID controller for pendulum angle and cart position, state
feedback control using pole placement, and state feedback control using the LQR approach.
The simulations consists of two stages. In the first stage, the position of the slider X2 and the
angle Θ3 are driven using the motion connectors of the component. At the time determined by
the TimeSwitch parameter the second stage begins, where the motion of the slider and the
angle are dynamically changed using a translational force F obtained from the control block
until the equilibrium point is reached. During both stages the actuator lengths are driven by
STEP5 functions. This is the same configuration as the one used in RecurDyn, the results of
the simulations between these platforms will be compared.

Simulation stage Starting time (s) Ending time (s)

Driven kinematic motion 0 5

Dynamic equilbrium settle 5 10

Modification of actuator length 10 15

Dynamic equilibrium settle 15 20

Modification of actuator length 20 25

Dynamic equilibrium settle 25 30

Table 4.1: Time table of the dynamic simulation stages with PID and state feedback control

In terms of simulation settings, the solver used for SystemModeler was the default
Differential/Algebraic System Solver (DASSL) with default settings (adaptive step size and a
tolerance of 10−6) and 2000 steps. The RecurDyn solver was the Implicit General Alpha
(IMGALPHA) solver with no numerical damping and an error tolerance of 10−5 and 2000
steps. Both in SystemModeler and RecurDyn, the linearization parameter of the derivative
block transfer function is set to N = 0.01 instead of the default value N = 0.001 in order to
filter the high frequency noise of the numerical values of the system.

120

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5.2.1 Ziegler-Nichols closed-loop method

For a proportional gain of Kp = 1100, the calculated value for the oscillation period is T = 9.78 s.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(b) SystemModeler results.

Figure 4.22: Oscillatory closed-loop response to proportional gain Kp = 1100.

The simulation results in both softwares match. The oscillation period obtained from the graphs
is T = 10 s, which confirms that the linearized mathematical model is accurate to the virtual
model. This verification gives the necessary support to develop the controller using the simplified
linearized model.

121

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5.2.2 PID controller for pendulum angle

A dynamic simulation using a single PID controller for the pendulum angle was performed in
RecurDyn and SystemModeler. The behavior of the relevant variables were extracted and plotted
using Mathematica.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(b) SystemModeler results.

Figure 4.23: Θ3 response for the closed-loop control with one PID controller for the pendulum angle.

122

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

X2

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

X2

(b) SystemModeler results.

Figure 4.24: X2 response for the closed-loop control with one PID controller for the pendulum angle.

123

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

0

100

200

300

400

F

(a) RecurDyn results.

0 5 10 15 20 25 30

0

100

200

300

400

F

(b) SystemModeler results.

Figure 4.25: F action for the closed-loop control with one PID controller for the pendulum angle.

124

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5.2.3 Double PID controller for pendulum angle and cart position

A dynamic simulation using a double PID controller for the pendulum angle and cart position
was performed in RecurDyn and SystemModeler. The behavior of the relevant variables were
extracted and plotted using Mathematica.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(b) SystemModeler results.

Figure 4.26: Θ3 response for the closed-loop control with double PID controller for pendulum angle and cart
position.

125

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

X2

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

X2

(b) SystemModeler results.

Figure 4.27: X2 response for the closed-loop control with double PID controller for pendulum angle and cart
position.

126

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-100

0

100

200

300

400

500

F

(a) RecurDyn results.

0 5 10 15 20 25 30

-100

0

100

200

300

400

500

F

(b) SystemModeler results.

Figure 4.28: F action for the closed-loop control with double PID controller for pendulum angle and cart
position.

127

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5.2.4 State feedback control using pole placement

A state feedback control was designed using pole placement and the corresponding dynamic
simulation was performed in RecurDyn and SystemModeler. The behavior of the relevant
variables were extracted and plotted using Mathematica.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(b) SystemModeler results.

Figure 4.29: Θ3 response for the closed-loop control with state feedback control designed using pole placement.

128

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

X2

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

X2

(b) SystemModeler results.

Figure 4.30: X2 response for the closed-loop control with state feedback control designed using pole placement.

129

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-100

0

100

200

300

400

F

(a) RecurDyn results.

0 5 10 15 20 25 30

0

100

200

300

F

(b) SystemModeler results.

Figure 4.31: F action for the closed-loop control with state feedback control designed using pole placement.

130

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5.2.5 State feedback control using a Linear-Quadratic Regulator

A state feedback control was designed using linear-quadratic regulator theory and the
corresponding dynamic simulation was performed in RecurDyn and SystemModeler. The
behavior of the relevant variables were extracted and plotted using Mathematica.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3

(b) SystemModeler results.

Figure 4.32: Θ3 response for the closed-loop control with state feedback control designed using LQR.

131

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

X2

(a) RecurDyn results.

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

X2

(b) SystemModeler results.

Figure 4.33: X2 response for the closed-loop control with state feedback control designed using LQR.

132

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-100

0

100

200

300

F

(a) RecurDyn results.

0 5 10 15 20 25 30

0

100

200

300

F

(b) SystemModeler results.

Figure 4.34: F action for the closed-loop control with state feedback control designed using LQR.

133

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

4.5.2.6 Discussion

The outputs of the simulations performed in RecurDyn and SystemModeler are very similar. In
general terms, both models are equivalent because they yield the same results. However, there
are some differences that must be noted.

Even though the error tolerance of RecurDyn has been reduced significantly from the default
value, the output of the variables have a considerable amount of noise compared to the results
obtained in SystemModeler. This noise is not very noticeable in the value of the Θ3 angle or the
X2 position, but it can be easily appreciated in the value of the control action F . In order to
mitigate this effect, the error tolerance was reduced even further, but this was not successful. In
many occasions the simulation failed during the first seconds of driving motions or during the
actuator changes in the last part of the simulation. The best results were obtained with an error
tolerance of 10−5. The number of steps were also increased to try to improve the results, but it
had no effect on noise reduction.

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

X2 _RecurDyn

X2 _SystemModeler

(a) Slider position X2.

0 5 10 15 20 25 30

0

100

200

300

400

FRecurDyn

FSystemModeler

(b) Control action F .

Figure 4.35: Comparison of slider position X2 and control action F noise between RecurDyn and Mathematica
for the single PID configuration.

In the configuration where only there is only a PID controller for the Θ3 angle and the X2

position is left uncontrolled, the effect of the noise in the simulation causes the result for the
position of the slider in RecurDyn to have a different trend than that of SystemModeler.

0 5 10 15 20 25 30

-100

0

100

200

300

400

500

FRecurDyn

FSystemModeler

(a) Double PID control scheme.

0 5 10 15 20 25 30

-100

0

100

200

300

400

FRecurDyn

FSystemModeler

(b) State feedback using pole position.

0 5 10 15 20 25 30

-100

0

100

200

300

FRecurDyn

FSystemModeler

(c) State feedback using LQR.

Figure 4.36: Comparison of control action F noise between RecurDyn and Mathematica.

As one can notice from the comparisons of the control actions, the result obtained from
RecurDyn has a high frequency component that oscillates around the value obtained from the
SystemModeler simulation. The expected final value of the translational force F to maintain
the balance in the ideal conditions depicted in this model once the transient response is over
should be 0, and this is what the simulation results in SystemModeler show.

134

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The robustness of the different control schemes is something that can be observed from the
results. The double PID controller and both of the state feedback controls are designed to have
the same dominant dynamics (the dominant poles of the systems are practically the same), but
their results are different. The results for the state variables of the system in the SystemModeler
simulations of these controllers are going to be compared in the following figures.

0 5 10 15 20 25 30

-0.2

0.0

0.2

0.4

0.6

Θeq

Θ3 _ 2 PID

Θ3 _StateFeedback

Θ3 _LQR

Figure 4.37: Comparison for the results of the Θ3 angle with double PID, state feedback with pole placement
and state feedback LQR controllers.

For the Θ3 angle, the initial overshoot and settling time to reach the equilibrium angle are inside
the specifications. The reference tracking for the angle is quite acceptable when changing the
actuator lengths and therefore the inertial parameters of the system.

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

X2 _ 2 PID

X2 _StateFeedback

X2 _LQR

Figure 4.38: Comparison for the results of the X2 position with double PID, state feedback with pole placement
and state feedback LQR controllers.

The problem comes with the X2 slider position, the initial overshoot is considerable but things
get worse with the parameter change for the state feedback controllers. When the first actuator
length is modified the overshoot is very considerable for the state feedback controllers, while
its magnitude is much more reduced in the case of the double PID controller. A similar thing
happens with the second actuator length change, but to a less extent.

135

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

0 5 10 15 20 25 30

-100

0

100

200

300

400

500

F2 PID

FState Feedback

FLQR

Figure 4.39: Comparison for the results of the F control action with double PID, state feedback with pole
placement and state feedback LQR controllers.

As expected, the lower effort in control action F is obtained with the LQR controller, and the
highest effort is obtained with the double PID controller.

The parameters of the model are m, M , g, `, IG and Θeq. While the mass and the gravity
acceleration are invariants, with the change in actuator lengths the other three parameters have
significantly changed their value:

La1 = 0.282722→ 0.262722m (4.39)

La5 = 0.268034→ 0.278034m

` = 76.2733 · 10−2 → 59.9480 · 10−2m

IG = 12.6727→ 11.8332 kg ·m2

Θeq = 37.5884→ 20.8285◦

These changes in parameters modify the dynamics of the system, which causes the controllers to
have different behavior than expected. If the dynamic system is modified, the closed-loop results
obtained with the controllers are different that those they were designed for. Although the impact
they had has not been significant enough to make the system unstable, these modifications have
changed the location of the poles of the system. The resulting poles of the closed-loop systems
due to the parameter change are presented for each of the controller configurations.

For the closed-loop system with the single PID controller, the resulting pole modification is:

s1 = −2− 3.31196i→ s1 = −2.00186− 3.29582i (4.40)

s2 = −2 + 3.31196i→ s2 = −2.00186 + 3.29582i

s3 = −20→ s3 = −20.8476

136

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

For the closed-loop system with the double PID controller, the resulting pole modification is:

s1 = −1− 1.04869i→ s1 = −0.86203− 1.07984i (4.41)

s2 = −1 + 1.04869i→ s2 = −0.86203 + 1.07984i

s3 = −2→ s3 = −1.44765

s4 = −4→ s4 = −5.88235− 3.96815i

s5 = −8→ s5 = −5.88235 + 3.96815i

For the closed-loop system with state feedback obtained through pole placement, the resulting
pole modification is:

s1 = −1− 1.04869i→ s1 = −0.97791− 1.09746i (4.42)

s2 = −1 + 1.04869i→ s2 = −0.97791 + 1.09746i

s3 = −4→ s3 = −3.05343

s4 = −8→ s4 = −10.54550

For the closed-loop system with state feedback obtained through LQR, the resulting pole
modification is:

s1 = −1.28626− 1.13061i→ s1 = −1.21121− 1.26002i (4.43)

s2 = −1.28626 + 1.13061i→ s2 = −1.21121 + 1.26002i

s3 = −3.98836− 0.247557→ s3 = −2.26877

s4 = −3.98836 + 0.247557→ s4 = −6.99710

Even though these changes in the dynamics of the system might not seem very considerable, this
effect is very significant in state feedback controllers, while the double PID controller is able to
follow the changing reference value very precisely. The double PID controller is able to track
the reference angle change Θeq very precisely, with very little control effort causing a very small
effect on the slider X2 position. State feedback controllers have a different dynamic response to
the change in equilibrium angle Θeq caused by the parameter change causing an overshoot in
the Θ3 angle response, while in the slider X2 position this overshoot is amplified causing a very
large oscillation.

137

Chapter 5

Discussion and conclusion

5.1 Discussion

5.1.1 Model simplification

The objective of this project was to obtain a simplified prototype of the Handle robot developed
by Boston Dynamics. All the information in which the model is based on was obtained from
the analysis of the original video available at the Boston Dynamics YouTube channel. The
complexity of the real robot makes this an immeasurable task considering that very limited
internal knowledge of its design and operation is known. The real 3-dimensional model was
simplified to a 2-dimensional model with seven degrees of freedom, where most of the drivers are
linear actuators and the wheels have been replaced for a slider.

From careful analysis of the video footage, a first kinematic diagram of the simplified model was
obtained. It must be noted that the model was simplified further and a later diagram was made.
With the mechanical configuration of the system identified, the first task was obtaining a virtual
model using SolidWorks. The model consisted of eight different bodies: ground, wheel (slider),
lower leg, upper leg, trunk, head, upper arm and lower arm. The linear actuators were not really
considered as bodies, as they were modeled as a visual representation of a constraint. All the
bodies were defined by setting the position of their relevant points, i.e. their center of mass and
the points where they connected to other bodies or linear actuators, in terms of their geometrical
dimensions. The tracer point was located at the end of the lower arm.

Using the COSMOSMotion add-in for SolidWorks, the definition of the joints and linear actuators
was made in order to obtain a self-aligning model with no redundant constraints. The absence of
redundant constraints in systems modeled in computer aided engineering softwares is a requisite
in order to make sure that the simulations performed with the model will yield valid results.

139

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

5.1.2 Kinematic model

A complete mathematical model was developed in Mathematica, where the symbolic expressions
for the position and orientation were obtained for the eight bodies that make up the model. The
mechanical system definition was done using the MechanicalSystems package, which makes use
of the constraint equations formulation for the description of mechanical systems. The bodies
that make up the model were defined in terms of their geometric dimensions, inertial properties,
and initial values of their generalized coordinates. The joints that connect the bodies together
were defined and those that make up the degrees of freedom were expressed as functions of
time. All the expressions for the generalized coordinates of the bodies were obtained in terms
of the system’s degrees of freedom by symbolically solving the constraint equations derived from
the joint definitions. These expressions were derived twice to obtain the expressions for the
generalized velocities and accelerations of the bodies in terms of the degrees of freedom and their
derivatives. The center of mass expression of a group of bodies and their moment of inertia were
also obtained in terms of the system’s degrees of freedom.

The mathematical formulation of the variable-sided triangles defined by the linear actuator
configuration was done using relative angle constraints instead of relative distance constraints,
which resulted in a rather considerable reduction in expression complexity. The relative angle
constraint formulation required of the cosine theorem to express the relative angle between
bodies in terms of the actuator length that connects both of them together. This was a very
interesting and unexpected result related to this type of basic mechanism that allowed a
significant performance increase and complexity reduction over the prior approaches made in
the definition of variable-sided triangles.

The kinematic solution to the mechanical system has a considerable relevance for the further
developments. The position of every point in the model can be obtained for any moment in
time for a defined output to the degrees of freedom. A kinematic simulation was performed
in COSMOSMotion in which the position of the slider, the angle of the lower leg body, and
the actuator lengths were driven from the starting point to a certain value. The motion was
defined using STEP5 class C2 functions and the results for the tracer point were compared to
the results obtained from applying the same motion definition to the Mathematica kinematic
model. The results for the tracer point motion of both softwares matched for position, velocity,
and acceleration. The kinematic expressions of the tracer point coordinates, along with the
relative angle formulation for the linear actuators allowed obtaining the area where the point
can be located, what is known as the working range of the model.

The most important outcome of the kinematic model was the interactive visual representation
that was developed in Mathematica. This graphical representation shows the resulting
configuration of the model for any possible value of the model’s degrees of freedom, with the
possibility of overlapping the contour of the working range. The reduced complexity of the
kinematic equations obtained allows for the model to update in real time while the degrees of
freedom are changed using the provided slider widgets.

140

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

5.1.3 Dynamic model

The dynamic model of the robot was reduced to an inverted pendulum on cart model. All
the upper bodies were the linear actuators are attached, bodies 3 through 8, were considered a
single body with its inertial properties determined by the lengths of the actuators. This body,
which is considered the pendulum, is attached to the slider body, which is the equivalent to
the cart. The actuator lengths are driven degrees of freedom, while the cart position and the
angle of the pendulum will be dynamically controlled using a translational force. The simplified
model had two degrees of freedom, and the equations of motion for this model were obtained
using three different ways that yielded the same results: using Lagrangian mechanics, applying
Newton’s Laws of motion and using constraint equations. An ideal model was considered, with
no damping terms in neither the linear nor the angular position equations.

The resulting equations of motion were nonlinear and a linearization around an operating point
was developed. The operating point selected for the model was the equilibrium angle of the
pendulum, in which the center of mass of the pendulum is in the direct vertical from the revolute
joint that joins the pendulum and the cart together. A dynamic control for this resulting model
was designed, using a translational force applied to the cart as the control action to maintain the
balance at equilibrium point. The model has two groups of parameters: the first group consisting
on invariant terms, which were cart mass, pendulum mass, and gravitational acceleration; and
the first group dependent on the actuator lengths, consisting in length to the center of mass,
moment of inertia of the pendulum, and the equilibrium angle.

A open-loop dynamic simulation was performed inMathematica and RecurDyn, yielding the same
results in both of the softwares. This dynamic simulation consisted in a free motion simulation
where the model was left to swing under the gravitational field and the tracer point trajectory
was obtained and compared.

5.1.4 Control

Using the linearized mathematical model, two different closed-loop control schemes were
implemented: a PID controller and a state feedback controller.

First, the heuristic Ziegler-Nichols closed-loop method was tried to obtain a PID controller
for the angle position, but due to the dynamic characteristics of the model (with no damping
whatsoever), it resulted to be unsuccessful. However, the period of oscillation of the closed-loop
system when a proportional term is applied was compared to the expected mathematical result
and it was close enough to consider the linearized model a valid approximation. Two different
schemes of PID control loops were implemented: a single PID control for the pendulum angle
and a double PID control for pendulum angle and cart position. The design method used was
pole placement for both of them. For the state feedback controller, two different design methods
were tried: pole placement and LQR. The dominating dynamics for the double PID controller
and both of the state feedback controllers was selected to be the same.

These closed-loop control configurations were simulated on two multibody dynamics capable
softwares, RecurDyn and SystemModeler, in order to perform a comparison between their results.
The dynamic simulations consisted of two different stages. First, a kinematic driven motion to
a certain point away from the equilibrium is performed and the dynamic control is enabled

141

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

to bring the model to equilibrium. The second phase consisted in changing some actuator
lengths with the impact it has on the model, where the dynamics is modified and the closed-loop
configuration changes. Both softwares yielded the same results overall, but there were some slight
differences. The control action resulting from RecurDyn had high frequency noise as opposed
to the SystemModeler results. The robustness of the PID controller versus the state feedback
controller were also compared. The model change and equilibrium point modification resulting
from the actuator lengths had a big impact in the state feedback controllers, resulting in poor
reference tracking and large overshoots. On the other hand, PID controllers performed much
better, due to resulting higher order closed-loop dynamics, resulting in controls that were more
robust to model and reference modification than state feedback controllers.

5.2 Future work

5.2.1 Model complexity increase

The model has been significantly simplified in order to reduce the magnitude of the problem to
tackle. Once the 2-dimensional kinematic model has been solved it could be possible to propose
a 3-dimensional kinematic model. This model should have two arms and two legs that could
move independent to each other. The MechanicalSystems package for Mathematica was used in
its 2-dimensional formulation, but it could be used to solve the 3-dimensional problem using the
Modeler3D option.

The complexity of the dynamic system could be increased in the current 2-dimensional
formulation by including damping terms in the slider position and pendulum angle. Dynamic
models with more degrees of freedom (including linear actuators as not constant values) could
also be proposed. If the 3-dimensional model is developed, a 3-dimensional dynamic model
should also be developed with the increased difficulty it supposes.

5.2.2 Control structures

The current control loops designed can be improved by considering other choices for the dominant
dynamics of the closed loops and comparing their performance. A fine tuning procedure could be
performed by trying different values for the selected poles and even mixing PID and state feedback
controllers to improve the response of the slider position. Reference tracking improvement in
the state feedback controllers could be achieved using by changing the dominant dynamics of
the system and performing a slower reference change. Another option is to implement several
controllers in terms of the parameters of the dynamic system and switch between them. New
control structures could also be implemented, by using state observers or Kalman filters, to
design a better control with a more robust response to changes of parameters during simulation.

The dynamics of driven motion is also something that must be addressed. When the robot is
in motion with the translational motion driven by the slider (the wheels in the real model), the
balance must be achieved by applying a torque at the angular motor of the lower leg.

An interesting control scheme to be designed is the endpoint control, where the tracer point is set
to a fixed coordinate and one degree of freedom is driven and the others must keep the position
while maintaining the balance of the complete model.

142

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

5.3 Conclusion

After the completion of a project of these dimensions, a moment must be devoted for the reflection
on the conclusions that can be drawn from the work what has been done. It is therefore pertinent
to make a review of the effort made, the knowledge obtained, and, ultimately, the new skills
acquired.

Obtaining a virtual model of an existing robot might seem a simple task, but it is far more difficult
than one can expect. Considering that the information available on the internal working of the
robot is scarce, extracting a virtual model, even if it is a simplified one, is an iterative process.
One realizes that not all the mechanical configurations are valid, and many problems arise when
trying to define a mechanical system that is efficient and gets the work done while maintaining a
reduced complexity. Several iterations were made when defining the 2-dimensional model, being
necessary to simplify the mechanical structures in several occasions to increase performance and
decrease model complexity. It is clear that this robot had a great deal of brainstorming and
troubleshooting behind and it is the work of great designers and engineers.

With the design of the mechanical system and its bodies and joints, the next step is to perform
a mathematical development. The mechanical configuration of the system must be expressed
symbolically using mathematical equations for the kinematic constraints between the bodies.
These equations can be solved in order to obtain what is known as the kinematic solution. Due
to the symbolic nature of the kinematic solution expressions, they can be differentiated to obtain
expressions for the velocity and acceleration of the bodies. The kinematic solution provides an
unequivocal value for the generalized coordinates of the bodies and their derivatives at any given
time in terms of the degrees of freedom of the model. There is a huge amount of mathematical
elaboration in this process. The most challenging part was the inclusion of the actuator lengths
as degrees of freedom of the model in the most simplified way possible, being able to reduce the
complexity of the equations by using a relative angle constraint. The kinematic solution is of
considerable importance and serves as the starting point of for the further developments of the
model.

One step further lies the dynamic model of the system, that must also be obtained mathematically
and using the results yielded by the kinematic development. The dynamic model is necessary
to design the control loops that provide dynamic stability to the robot during its motion. In
this case, the model was reduced to a well-known physical pendulum on cart model, a nonlinear
dynamic system that had to be linearized around the upwards unstable equilibrium point, which
is where the model should operate. There are many developments applicable to linear time-
invariant systems, like the one obtained from the linearization, that provide tools to design
different controller schemes. The closed-loop control provides the necessary dynamic stability
to maintain the model at its unstable equilibrium point. Different closed-loop controls were
implemented, comparing their performance and behavior when put though different dynamic
scenarios. It was satisfying to be able to apply the theoretical developments taught at the
several control courses I have attended to a practical case obtaining successful simulation results.

Different industry-leading computer-aided engineering software were used during the
development of this project. Some of them, such as SolidWorks and Mathematica, were no
strangers to me, but I have been able to increase my competence and operate them more

143

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

fluently. RecurDyn and SystemModeler were new tools I had to learn, and their performance
was much better than I expected. Results from one software were exported and validated using
another, providing a successful interaction between the different computer-aided engineering
softwares.

The result of the execution of this project can be considered as a success, since the objectives have
been achieved. A simplified mathematical model of an existing robot was extracted, obtaining the
symbolic kinematic solution to the model and a dynamic model that was dynamically controlled
using different closed-loop configurations. A wide variety of computer-aided engineering software
were used in the process, acquiring new competences in the operation of computational tools that
are widely used professionally in the field of mechanical engineering. One must admit that there
are many improvements that could be done and more insight should be put on some of the
developments, but I can affirm that I have learned a great deal during the development of this
thesis. I conclude these lines hoping they are not the last I write about the topic of social
robotics.

144

Part II

Budget

Chapter 1

Introduction

In this case, the budget will be written as if it were a custom project being done under request.
The client wishes to create a virtual prototype of the Handle robot using Computer Aided
Engineering (CAE) software. The senior engineer in charge is part of an engineering office and
the only one designed for the task.

The development of the project consists mainly on electronic documents, containing no tangible
assets. The cost of the corresponding training in the different softwares and methodologies
will not be taken into account, even though a previous amount of time was needed in order to
become familiar with some specific software and the theoretical background for some elaborations.
Taking into account the above, the budget will be ordered by sections, which are listed here:
labor, hardware, and software.

Finally, a summary of the budget will be presented, where all the previous sections are included
and the total cost is calculated by applying the corresponding percentages of industrial benefit
and taxes on the added value.

147

Chapter 2

Budget

2.1 Labor cost

In the labor force, only the hours invested by the senior engineer will be taken into account, who
will be responsible for the mechanical design, mathematical development, controller design, and
simulations of the virtual prototype of the robot.

According to the Spanish ministerial order ESS/55/2018, de 26 de enero, por la que se
desarrollan las normas legales de cotización a la Seguridad Social, desempleo, protección por
cese de actividad, Fondo de Garantía Salarial y formación profesional para el ejercicio 2018
published in the Spanish Official State Gazette (Boletín Oficial del Estado) on January 29th,
2018, a rate of contribution of 28.3% to the Social Security in terms of common contingencies is
established. A total of 46 work weeks per year will be considered, equivalent to the
corresponding 230 working days of 8 hours, and 10 extra hours per month with an additional
price of 20%.

Taking as reference the provisions of the XVIII Convenio colectivo nacional de empresas de
ingeniería y oficinas de estudios técnicos published in the Spanish Official State Gazette on
January 18th, 2017, the following values will be considered: e3 per day as food diet, and
e2.28 per day for transport bonuses (12 kilometers on average per day with a fare of e0.19 per
kilometer).

149

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Description Annual cost (e) Cost (e/h)

Base salary (230 days) 40,000.00 21.74

Social security (28,3%) 11,320.00 6.15

Diets 690.00 0.38

Pluses 524.40 0.29

Extra hours (10 h/month) 3,000.00 1.63

Total e55,534.40 e30.18

Table 2.1: Breakdown of the labor cost of the senior Industrial Engineer.

A detailed breakdown of the hours of work dedicated to each of the parts of which this project
is composed is found below.

Description Quantity
(hours)

Unit price
(e/h)

Subtotal (e)

Simplified 2-dimensional model in SolidWorks 30 30.18 905.45

Symbolic mathematical model in Mathematica 110 30.18 3319.99

Dynamic control in RecurDyn 50 30.18 1509.09

Modelica-based model in SystemModeler 70 30.18 2112.72

Drafting of the project documents 40 30.18 1207.27

Total labor cost 300 hours e9,054.52

Table 2.2: Total labor budget.

Only effective hours of work in the development of the project will be considered in the labor cost,
even though more hours were necessary to acquire the necessary competences in the operation of
the softwares and to refresh the knowledge about certain aspects of the mathematical methods
behind some elaborations.

150

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

2.2 Hardware cost

An amortization period for computer equipment of 3 years will be taken into account at a rate
of 1840 hours per year (230 working days with days of 8 hours), calculating the cost of these per
hour worked and using this value to calculate the corresponding part for the budget.

Amortization cost (e/h) =
Price of equipment (e)
Amortization period (h)

Description Price (e) Amortization cost (e/h) Quantity (h) Subtotal (e)

Workstation HP Z2 Mini G3 1830.16 0.33 300 99.47

Total hardware cost e99.47

Table 2.3: Total computer hardware budget.

151

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

2.3 Software cost

In this section, licenses for the use of all the software used for the development of the project
will be considered.

An amortization period for software of 3 years will be taken into account at a rate of 1840 hours
per year (230 working days with days of 8 hours), calculating the cost of these per hour worked
and using this value to calculate the corresponding part for the budget.

Amortization cost (e/h) =
Price of license (e)

Amortization period (h)

Description Licence price (e) Amortization cost e/h) Quantity (h) Subtotal (e)

SolidWorks + COSMOSMotion 2007 5300.00 0.96 30 28.80

Wolfram Mathematica 11 3445.00 0.62 110 68.65

RecurDyn V9R1 5000.00 0.91 50 45.29

Wolfram SystemModeler 5.1 4830.00 0.88 70 61.25

TeXstudio + MiKTeX 0.00 0.00 40 0.00

Windows 10 Pro 199.99 0.04 300 10.87

Total software cost e214.86

Table 2.4: Total computer software budget.

152

Chapter 3

Summary

The final budget is detailed below, which includes all the previous points, adding a 6% industrial
profit, the 13% for general expenses and the corresponding 21% VAT.

Description Quantity Unit price (e) Subtotal (e)

Total labor cost 1.00 9,054.52 9,054.52

Total hardware cost 1.00 99.47 99.47

Total software cost 1.00 214.86 214.86

Budget of Material Execution e9,368.85

Table 3.1: Budget of Material Execution.

153

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Description Cost (e)

Budget of Material Execution 9,368.85

General expenses (13%) 1,217.95

Industrial benefit (6%) 562.13

Budget for Contractual Execution e11,148.93

Table 3.2: Budget of Contractual Execution.

Description Cost (e)

Budget for Contractual Execution 11,148.93

VAT (21%) 2,341.28

Total Budget e13,490.21

Table 3.3: Total Budget.

The total budget of the project amounts to THIRTEEN THOUSAND FOUR HUNDRED
NINETY EURO AND TWENTY ONE CENTS.

154

Part III

Appendices

Chapter A

Self-aligning mechanisms

A.1 Basic notions

First, we must define a kinematic pair, or joint, as a linkage between elements which limits some
relative motions while allowing others. The number of limited motions (constraints or linkage
conditions) can be linear, along a coordinate axis, or angular, around a coordinate axis. This
number, defined as joint class and designated by Roman numerals, represents the number of
forces and torques that can be transmitted through the joint. The amount of allowed relative
motions is referred to as joint mobility. The sum of the class of a kinematic pair and its mobility
is equal to six.

The term joint constraints refers to the limited relative displacements, both linear and angular,
along and around each one of the coordinate axes. A limited linear displacement in a joint
induces a constraint force, while a limited angular displacement induces a constraint torque. The
notion of constraints in kinematics are associated to the notions of constraint force or torque
in dynamics. The joint must be correctly calculated, adequately dimensioning the bodies which
make it up, in order to withstand the constraint forces and torques that will appear.

Figure A.1 extracted from Professor L. N. Reshetov’s book shows a classification of kinematic
pairs. They are classified in rows with Roman numerals according on their classes (number of
constraints) while columns in Arabic numerals represent possible constructive solutions. The
designation of each joint in the analysis of a mechanism will be done by the Roman numeral
with a subindex according to the column number, this way it will be easy to locate in the table.
The last column on the right determines the mobility of the kinematic pair, the number of linear
and angular movements it allows between the elements connected by the joint. As seen in the
table, the sum of a joint’s class and its mobility is equal to six.

The degrees of freedom (DOF) of a body is the number of independent coordinates needed to
uniquely specify the position of the body with respect to a given reference system. Similarly, the
minimum number of coordinates needed to uniquely specify the positions of all the components
in a rigid body system will be the degrees of freedom of said system.

157

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Figure A.1: Table of kinematic pairs from Professor L. N. Reshetov’s book.

158

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

We will use the concept of degree of freedom in three different ways, applied to different elements,
but closely related to one another. First, it will be the degrees of freedom of a body with respect
to a reference system previously defined. Second, it will be the degrees of a kinematic pair. And
third, it will also be the degrees of freedom of a mechanism. Because of this, and in order to
make it more clear, when we address the degrees of freedom of a kinematic pair, we will use the
term connectivity, fi. This same term will apply to the relative degrees of freedom between two
bodies. When referring to a mechanism, the degrees of freedom will be addressed as the mobility
of said mechanism.

The formal definition of the terms is the following: (1) if a kinematic pair is defined between
two bodies which are not connected to any other body, the connectivity of this joint is equal to
the degrees of freedom of the bodies with respect to each other; (2) the mobility of a mechanism
is the minimum number of coordinates necessary to specify the position of all the components
of the mechanism with respect to a component of the mechanism chosen as the base (or fixed)
body.

The mobility, or degrees of freedom (DOF) of a mechanism, is used to determined how many
joint variables must be specified before locating the points of a mechanism as temporal functions.
A mechanism must have a mobility equal or greater than one. Traditionally, almost all the
mechanisms had only one degree of freedom; but, in modern design practice, it is usual to
find mechanisms with two or more degrees of freedom. If the mobility is zero or negative, as
determined by the equations of mobility further on, the assembly is a structure. If the mobility
is equal to zero, the structure is designated as statically determined. If the mobility is negative,
the structure is referred to a hyperstatic or statically indeterminate.

In order to calculate the mobility of a mechanism, we will first consider the case of a planar
linkage, and the result will later be extended to the three dimensional world. Within a plane, a
body which is free to move has three degrees of freedom. A planar mechanism, or planar linkage,
is one where all of the bodies of the mechanism are restricted to lie on the same plane or in
parallel planes. From this definition we can conclude that the vast majority of the mechanisms
used in practice are planar, hence the importance of studying this type of mechanisms initially.

Lets consider a mechanism with N components or rigid bodies, and a number P of joints which
connected them together. The number of components N must consider the number of moving
bodies plus the fixed body or ground.

If the mechanism is contained in a plane, the total mobility of the mechanism will be:

M2D = 3 (N − P − 1) +

P∑
i=1

fi (A.1)

This equation is known as the 2-dimensional mobility formula. In the specialized literature, it
is possible to find differently formulated versions of this formula, all of them equivalent to each
other.

159

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

In space, the movement of each free body has six degrees of freedom instead of three. The
mobility formula in this case is:

M3D = 6 (N − P − 1) +

P∑
i=1

fi (A.2)

This equation is a generalization of the previous one and it is referred to as the 3-dimensional
mobility formula, or the Grübler-Kutzbach criterion.

It is this same criterion the one that SolidWorks add-on COSMOSMotion and multibody
dynamics software RecurDyn uses internally to calculate the mobility or degrees of freedom of a
mechanism. Multibody dynamic simulation software contains this mathematical tool, along
with many others, in order to exhaustively analyze a mechanism and its mobility.

160

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

A.2 Redundant constraints and self-aligning mechanisms

The theory of machines and mechanisms is the science which studies the kinematic pairs (also
known as linkages) and their importance in the development of mechanisms. This science must
provide recommendations about the different existing joints and their applications.

One of the authors who have contributed most to this task is Professor Leonid N. Reshetov1,
with his book “Self-aligning mechanisms”. Professor L. N. Reshetov concludes that in order to
achieve a substantial improvement in the performance of the mechanism, it must be statically
determined or, according to the author’s nomenclature, it must be self-aligning. In this book,
the theory behind self-aligning mechanisms is developed and applied to several examples with
the final purpose to show designers and engineers how to get the mechanisms they use to be
self-aligned.

To facilitate the assembly the mechanisms, it is convenient to choose a scheme such that the
fact that the dimensions of its components differ from the theoretical does not suppose any
problem. The most convenient way is to use statically determined mechanisms, mechanisms
without redundant (or passive) constraints, which we will call self-aligning mechanisms.
Redundant constraints are defined as constraints which can be removed without increasing the
mobility of the mechanism, they occur when some joints are constraining the same degrees of
freedom as other joints.

According to Professor L. N. Reshetov, the existence of redundant constraints in a mechanism
is a harmful factor. The dimensions of the components of a mechanism can vary during the
lifecycle of the machines as a result of many different reasons: subsidence of the foundations,
wear after many cycles or hours of use, correction of the play in the kinematic pairs, elastic
deformations, thermal dilation, as well as due to mistakes made during repair and assembly.
A statically determined mechanism is not dependent on the variation of the dimensions of its
elements. Therefore, the static determination of a mechanism not only solves the problem of
reducing assembly expense, but also solves at the same time the problem of raising its reliability
in service.

There some exceptional cases when the Grübler-Kutzbach criterion return an invalid value for
the mobility of a mechanism, two of the most common ones will be discussed next.

The first case is when the system contains redundant constraints, in this case the mobility formula
gives a negative value. The apparent mobility of a mechanism is the number of useful real
degrees of freedom it contains, this is usually known by previous analysis of the mechanism. The
difference between the apparent mobility, Ma, and the mobility formula, if the resulting value is
positive, is the number of redundant constrains of the mechanism.

Number of redundant constraints = Ma −M3D > 0 (A.3)

1Leonid Nikolayevich Reshetov (1906-1998), was a distinguished professor at the Theory of Mechanisms and
Machines Department of the Bauman Moscow State Technical University. He received the Honorary Title Honored Inventor
of RSFSR, the highest scientific award available at the time at the Russian Federation. As a great engineer, scientist and
inventor, he also took an active part in improvement of courses in the Theory of Mechanisms and Machines and development
of Machinery Design.

161

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Figure A.2: A four-bar linkage depicted in SystemModeler.

An example of this is the four-bar linkage defined by three moving bodies and a fixed one joined
together by four revolute (rotary) joints (class V joint only allowing relative rotation in one axis,
connectivity = 1). This mechanism has one degree of freedom, therefore its apparent mobility is
one. If the mobility formula is applied:

M3D = 6 (4− 4− 1) + (1 + 1 + 1 + 1) = −2

Number of redundant constraints = 1− (−2) = 3
(A.4)

There are three redundant constraints in this mechanism, therefore some revolute joints must be
replaced with joints with a higher connectivity. The sum of the replacement joints’ connectivity
must be three units higher. There are two solutions: replacing two revolute joints for an spherical
(class III, connectivity = 3) and a cylindrical (class VI, connectivity = 2) joint, or replacing one
revolute joint for a in line (class II, connectivity = 4) joint.

The second case is when there are passive degrees of freedom in the mechanism. This occurs when
the joints have not been correctly selected and there are internal unwanted motions possible inside
the mechanism. For example, when there is a body with two spherical joints at its extremities
and the body can perform a rotation along its longitudinal axis.

Passive degrees of freedom = M3D −Ma > 0 (A.5)

Self-aligning a mechanism is an iterative process. Kinematic pairs have to be replaced for others
with different connectivity, but some times not all possible combinations are valid. In very
complex mechanisms, for example those that contain entangled closed loops or redundancy of
mechanisms, some combinations can lead to the appearance of passive degrees of freedom. Some
mechanisms have several solutions for the self-alignment that are valid and where the mobility
formula returns the correct number of degrees of freedom.

162

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

A.3 Application to CAE software

Eliminating redundant constraints is a very important part in the dynamic analysis of motion
in a multibody system. When the mathematical model of the system has several equations
constraining the same degrees of freedom, these duplicate equations must be eliminated from
the problem. Kinematic analysis of the system is independent of the number of redundant
constraints, but the wrong choice of constraints can affect computational performance and
convergence.

Rigid multibody systems with redundant constrains lack a unique solution for the calculation
of reaction forces at joints. This kind of system is statically undetermined, with the number
of equilibrium equations less than the number of unknown reaction forces. There are many
applications for which the calculation of reaction forces is not necessary, for example when only
the kinematic behavior of the mechanism is needed, but many times this is not the case. In
complex models where the friction in joints has to be considered, or when an analysis of forces
and torques is needed in order to correctly determine the size of the joints, the reaction forces
must be obtained.

The constraints between pairs of bodies are defined by a set of algebraic constraint equations that
are equivalent to the physical joint. There are different equations depending on the type of joint.
In a general manner, the mathematical conditions on the relative motion between bodies imposed
by the i-th joint is expressed by a constraint equation, which is a vector equation equivalent to
a set of scalar equations:

Φi(q) = 0 (A.6)

Being q = (q1, q2, ..., qn) the vector of the n generalized coordinates of the system.

The constraint equations for all the kinematic pairs can be unified in a vector equation. If the
multibody system is described by n generalized coordinates, and the joints are expressed by m
scalar equations, the vector equation is:

Φ(q) =

Φ1(q)

Φ2(q)

...

Φm(q)

=

Φ1(q1, q2, ..., qn)

Φ2(q1, q2, ..., qn)

...

Φm(q1, q2, ..., qn)

=

0

0

...

0

= 0 (A.7)

The Jacobian matrix of constraint equations is a m by n matrix defined as:

Φq(q) =

∂Φ1

∂q1
∂Φ1

∂q2
· · · ∂Φ1

∂qn

∂Φ2

∂q1
∂Φ2

∂q2
· · · ∂Φ2

∂qn
...

...
. . .

...

∂Φm
∂q1

∂Φm
∂q2

· · · ∂Φm
∂qn

=

[Φ1]q

[Φ2]q
...

[Φm]q

(A.8)

163

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Multibody dynamics software, such as RecurDyn or COSMOSMotion, analyzes the Jacobian
matrix of constraint equations in search for redundant constraints and eliminates them from
the set of equations. In the mathematical model, when the kinematic pairs repeat constraints
imposed by other joints, equations from the vector of constraints appear to be linearly dependent
from each other. In order to check if the constraint equations are independent, it is enough to
check the rank of the Jacobian matrix. If the Jacobian matrix rank is equal to the number of
equations, all the constraint equations are independent; but if it has a lower rank, there are
dependent constraints equations in the model. These dependent equations define the redundant
constraints that must be removed.

Elimination of redundant constraints is necessary to build a non-singular matrix for the linear
equation set and to uniquely determine the Lagrange multipliers of the remaining constraints in
order to apply iterative root-finding algorithms needed to obtain the numerical solution. Usually,
there is not a unique solution for the identification of redundant constraints, this set of equations
to be removed can be chosen in many ways. However, this is an internal procedure of the software
and sometimes no information is given on which sets of equations were removed.

For example, lets consider a body with an arbitrary mass secured by two fixed joints at its ends.
It is quite obvious, assuming that the body is rigid and has a uniform mass distribution, that the
reaction force on each fixed joint is equal to half its mass. However, if this model is simulated
in a multibody software environment the joints have different reaction forces: one joint absorbs
all the weight of the body, while the other experiences no force. This is the typical result of a
over-constrained model with redundant constraints. A body has six degrees of freedom in space,
and one fixed joint is enough to restrict all of them. The software eliminates the six constraint
equations of the second fixed joint which it considers as a redundant constraint, only taking into
consideration one of them when doing the simulation. This results in one bearing all the weight
while the other takes zero load. If only the kinematic behavior is important in this simulation
there is no problem, but if the application requires to precisely measure the reaction forces in
both joints the model must be self-aligned to get the correct results.

Despite the fact that kinematic behavior of the system is unaffected by existing redundant
constraints, the problem of obtaining the constraint reactions has an infinite number of solutions.
In this case, due to the sometimes arbitrary elimination of dependent constraint equations, not all
the solutions are physically accurate or even possible. It is very important to correctly obtain a
self-aligned mechanism in order to remove redundant constraints beforehand to avoid leaving the
decision of equation elimination to the software, which could result in unexpected results. From
the professional experience acquired working with simulation software and contacting support
teams in the last years, avoiding redundant constraints is considered as good modeling practice.

164

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

A.3.1 Bushing forces

In many multibody dynamics software, such as RecurDyn or MSC/ADAMS, there is an
alternative to the process of self-aligning: bushing forces.

Bushing forces are a way of avoiding the redundant constraint and the automatic equation
elimination done by the software. It could be considered as a type of general constraint equation
Φi(q) = 0 condition in which the displacement of the body can be restricted in its six degrees
of freedom using a series of parameters.

Figure A.3: Bushing force definition in RecurDyn.

Lets consider the classical example of a over-constrained rigid body resting on the ground secured
by two fixed joints. According to classical mechanics, the reaction force on each fixed joint should
the Ry = mg

2 . If the model is simulated, due to the elimination of redundant constraint equations,
all of the upwards reaction force is exerted by one joint, while the other is unloaded.

To obtain the correct reaction forces, joints must be replaced with busing forces. For these
kinds of forces, a very high value of stiffness must be entered in the degree of freedom the
joint constraints. For a fixed joint, the six degrees of freedom must be constrained (translation
and rotation) with high stiffness values for all six of them. In a revolute joint the parameters
restricting the rotational degrees of freedom must be zero, while the stiffness of the translational
must be very high.

The counterpart of this is that the bushing force is not able of constraining a body as firmly as
a real joint will, the body could experience some degree of displacement. The force exerted is
proportional to the displacement, following Hooke’s law F = −k∆x, therefore higher stiffness
parameters reduce the amount of displacement that occur.

Even though bushing forces can replace self-aligning, it is advisable to go though the procedure
of self-aligning which provides the designer a better understanding of the operation of the
mechanism. Using bushing forces for large systems with many joints can be a tedious process
and can lead to unexpected results due to the small displacements that are intrinsic to the
bushing forces formulation and the large forces that can occur.

165

Chapter B

Variable-sided triangles

Triangles are used in a wide variety of applications. In static structures, the rigidity a triangle
provides is well-known since the ancient times and it is still used in the present day as the main
building block of trusses. Trusses support centenary churches and cathedrals, transmission
towers, bridges, bicycle frames, buildings, timber roofs, and many more structures. The
properties of triangles are perfectly defined using trigonometric formulas that provide
relationships between their sides and angles.

However, triangles are much more than static figures. Extremely useful mechanisms arise when
one of the sides of the triangle can vary in length. These variable-sided triangles are much more
common than they seem. There are applications where the length of the variable side of the
triangle is changed in a discrete way, for example the different positions of regulation in a deck
chair; but in other mechanisms its length can be changed continuously producing very interesting
machines such as car jacks and it is the basics behind some vehicle and motorcycle coil spring
suspensions. The variable-sided triangle has one degree of freedom: once the movement of any
part of the mechanism is known, the position of all the other parts is determined.

In the last half-century, many machines have been upgraded by the introduction of a hydraulic
cylinder as the variable side on a triangle. A hydraulic cylinder allows the length of the actuator
to be modified by pumping oil between the two different sides of the cylinder. In civil engineering
there are plenty of examples of the applications of these variable-sided triangles run by hydraulic
cylinders, for example the tipping mechanism of a dump truck or the arms of modern excavators
and backhoes.

Variable-sided triangles are used extensively in the model of the Handle robot: all the linear
actuators are examples of this kind of triangles. Using several trigonometric properties and
formulas it will be possible to describe variable-sided triangles and provide a simple mathematical
relationship between the two bodies they connect together.

167

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

B.1 Trigonometric notions

B.1.1 Tangent half-angle formulas

Using the double-angle formulas and the Pythagorean trigonometric identity it is possible to
obtain formulas that relate the tangent of half of an angle to trigonometric functions of the
whole angle.

sinα = 2 sin
α

2
cos

α

2
=

2 sin α
2 cos α2

cos2 α
2 + sin2 α

2

=
2 tan α

2

1 + tan2 α
2

cosα = cos2 α

2
− sin2 α

2
=

cos2 α
2 − sin2 α

2

cos2 α
2 + sin2 α

2

=

cos2 α

2

cos2 α

2

− sin2 α

2

cos2 α

2

cos2 α

2

cos2 α

2

+
sin2 α

2

cos2 α

2

=
1− tan2 α

2

1 + tan2 α
2

tanα =
sinα

cosα
=

2 tan α

2

1+tan2 α

2

1−tan2 α

2

1+tan2 α

2

=
2 tan α

2

1− tan2 α
2

(B.1)

These formulas, known as the tangent half-angle formulas, are useful to unify sines and cosines of
an angle which appear in an equation under a single trigonometric unknown which is the tangent
of half of the original angle. The equation complexity is reduced to a rational equation with a
single final inverse trigonometric calculation.

For example, lets consider the equation:

a sinϕ+
b

2
cosϕ− b

2
= 0 (B.2)

This equation has a variable ϕ which is contained in two different trigonometric functions.
Through the tangent half-angle formulas, using the following substitution:

u = tan
ϕ

2

sinϕ =
2 tan ϕ

2

1 + tan2 ϕ
2

=
2u

1 + u2

cosϕ =
1− tan2 α

2

1 + tan2 α
2

=
1− u2

1 + u2

(B.3)

The trigonometric equation is transformed into a rational equation and solved using the inverse
tangent function:

2au− bu2

u2 + 1
= 0

2au− bu2 = u(2a− bu) = 0

1. u = 0→ tan
ϕ

2
= 0→ ϕ1 = 0

2. 2a− bu = 0→ u = tan
ϕ

2
=

2a

b
→ ϕ2 = 2 tan−1 2a

b

(B.4)

168

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

B.1.2 Cosine formula

In trigonometry, the cosine formula (also known as the law of cosines) is a generalization of the
Pythagorean theorem, applying to any triangle instead of only to right angle triangles. This law
relates the lengths of the sides of any triangle to the cosine of one of its angles.

c2 = a2 + b2 − 2 a b cosγ (B.5)

It is easy to check that when applied to a right triangle with γ = π
2 radians the cosine formula

is equivalent to the Pythagorean theorem.

A

C

B

b a

c

α β

γ

Figure B.1: A generic triangle ABC. The angles α (A), β (B), and γ (C) are respectively opposite to the sides
a, b, and c.

The first appearance of this law is found in Euclid’s masterpiece, Elements, a mathematical
treatise consisting of 13 books published around 300 BC in Alexandria (currently Egypt). Its
applications are widely used in triangulation, where three out of four variables (a, b, c, and γ)
are known and the other is obtained using the formula. For example, in order to obtain the
third side of a triangle knowing two sides and the angle between them, to obtain the angles of a
triangle if its three sides are known, or to obtain the third side of a triangle if two sides and an
angle opposite to one of them is known.

c =
√
a2 + b2 − 2 a b cosγ

γ = cos−1(
a2 + b2 − c2

2 a b
)

a = b cosγ ±
√
c2 − b2 sin2γ

(B.6)

169

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

B.2 Mathematical definition of variable-sided triangles

There are two ways to implement variable-sided triangles as constraints between pairs of bodies:
as a relative distance constraint or as a relative angle constraint.

La

Φ

a

b

A

B

Figure B.2: Variable-sided triangle and relative angle constraint between bodies.

A relative distance constraint between point A on body i and point B on body j requires that
the distance between these points is equal to a given constant K > 0. The constraint equation
which describes this relationship between two bodies is:

(XA −XB)2 + (YA − YB)2 −K2 = 0(
(Xi + x′iA cos Θi − y′iA sin Θi)− (Xj + x′jB cos Θj − y′jB sin Θj)

)2

+

+

(
(Yi + x′iA cos Θi − y′iA sin Θi)− (Yj + x′jB cos Θj − y′jB sin Θj)

)2

−K2 = 0

(B.7)

Upper case letters represent absolute coordinates and the lower case represent local coordinates.
The rotation angles of the bodies local coordinate axes with the absolute coordinate systems are
represented by Θ.

A relative angle constraint requires that the difference between the rotation angles of bodies i
and j is equal to a given constant φ. The constraint equation which describes this relationship
between two bodies is:

Θj −Θi − φ = 0 (B.8)

This constraint can also be expressed by taking sines on both sides:

sin(Θj −Θi − φ) = 0 (B.9)

170

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

This equation can be expanded into sums of multiplications of trigonometric functions (sines and
cosines) of single angles.

The difference in complexity of these equations is obvious. Moreover, the Jacobian of relative
angle constraints is much more less complex than that of relative distance constraints. The
counterpart is that the K constant in the distance constraint is directly the length of the variable
side of the triangle La (length of the actuator), but in the angle constraint the φ constant must
be obtained using the cosine theorem.

For example, in Figure B.2 the constant for the relative angle between two bodies in terms of
the length of the linear actuator is expressed as:

φ = cos−1(
a2 + b2 − La2

2ab
) (B.10)

This formulation has another advantage, it is possible to obtain the maximum and minimum
values of the length of the actuator from the expression of the relative angle. The arc cosine
function cos−1(x) is defined for a specific domain of x: −1 ≤ x ≤ 1. The maximum and minimum
lengths can be obtained with the formula:∣∣∣∣a2 + b2 − La2

2ab

∣∣∣∣ = 1 (B.11)

a2 + b2 − La2

2ab
= 1

a2 + b2 − La2

2ab
= −1

a2 − 2ab+ b2 = La2 a2 + 2ab+ b2 = La2

(a− b)2 = La2 (a+ b)2 = La2

±(a− b) = La ± (a+ b) = La

There are four solutions, but only two of them are relevant. Considering that a, b and La are
strictly positive values bigger than 0, the maximum value is Lamax = (a+ b) while the negative
(−a − b) solution can be discarded. From the remaining two solutions the minimum value can
be obtained, depending on which parameter is greater: if a > b, Lamin = (a − b); and if b > a,
Lamin = (b−a). This result agrees with what can be easily deducted from the graphical analysis
of the triangle.

These are the maximum and minimum mathematical values, but they must be compared not to
surpass the minimum and maximum values established by the length of the rod and barrel of
the cylinders that make up the actuator.

171

Chapter C

Interpolating step functions

In the real world, there is not such thing as a perfect step in the domain of time. When a system
transitions from one state to another, it always happens in a finite time; even if this time interval
is extremely small, it is never equal to 0. The same principle is valid in the realm of simulation.

In the mathematical world, a sudden change from one value to another is known as a step.
The mathematical function which describes this phenomenon is the Heaviside step function, also
known as the unit step function. The definition of this function is given by:

H(x) =

0 x ≤ 0
1
2 x = 0

1 x ≥ 0

(C.1)

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure C.1: Heaviside step function plotted using Mathematica for −1 ≤ x ≤ 1 .

It is quite obvious that this function can cause difficulties in numerical integration due to the
discontinuity at x = 0, therefore there are several analytic approximations available. These
approximations rely on S-shaped curves, known as sigmoid functions, which produce smooth
transitions from one value to another using trigonometric functions or polynomials.

RecurDyn can be considered as a descendant from MSC/ADAMS ; and as it usually happens
with offspring, they share many traits with their predecessors. Among many other things, the
different ways of handling of step functions is something both softwares have in common.

173

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

C.1 STEP function

The first approximation is the well-known STEP function, which interpolates the Heaviside step
function using a cubic polynomial. Its definition using a piecewise function is as follows:

STEP(x, x0, h0, x1, h1) =

=

h0 x ≤ x0

h0 + (h1 − h0)

(
x− x0

x1 − x0

)2(
3− 2

x− x0

x1 − x0

)
x0 ≤ x ≤ x1

h1 x ≥ x1

(C.2)

Being x the independent variable for the defined function, x0 the starting point (x-value) at
which the function begins, h0 the initial value of the function, x1 the ending point (x-value) at
which the function ends, and h1 the final value of the function.

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure C.2: STEP function plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1, h0 = 0 and

h1 = 1.

This function has a continuous first derivative, but with sharp edges at x = x0 and x = x1,
causing the second derivative to be discontinuous at these points, making it a class C1 function.

-0.5 0.5 1.0 1.5

0.5

1.0

1.5

-0.5 0.5 1.0 1.5

-6

-4

-2

2

4

6

Figure C.3: STEP function derivatives plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1, h0 = 0

and h1 = 1. First derivative on the left and second derivative on the right.

174

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

C.2 STEP5 function

Similar to the STEP function, the STEP5 function interpolates the Heaviside step function using
a quintic polynomial. It is defined by:

STEP5(x, x0, h0, x1, h1) =

=

h0 x ≤ x0

h0 + (h1 − h0)

(
x− x0

x1 − x0

)3
(

10− 15
x− x0

x1 − x0
+ 6

(x− x0

x1 − x0

)2
)

x0 ≤ x ≤ x1

h1 x ≥ x1

(C.3)

Being x the independent variable for the defined function, x0 the starting point (x-value) at
which the function begins, h0 the initial value of the function, x1 the ending point (x-value) at
which the function ends, and h1 the final value of the function.

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure C.4: STEP5 function plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1, h0 = 0 and

h1 = 1.

Because this function is a one degree higher polynomial function than STEP, it has a continuous
first and second derivative, making it a class C2 function. The second derivative has sharp edges
at x = x0 and x = x1.

-0.5 0.5 1.0 1.5

0.5

1.0

1.5

-0.5 0.5 1.0 1.5

-6

-4

-2

2

4

6

Figure C.5: STEP5 function derivatives plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1,

h0 = 0 and h1 = 1. First derivative on the left and second derivative on the right.

175

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

C.3 HAVSIN function

A third approximation is achieved using a partial Haversine function, this is an approximation of
the Heaviside step function using a trigonometric function. It is defined by a piecewise function
as follows:

HAVSIN(x, x0, h0, x1, h1) =

=

h0 x ≤ x0

(h0 + h1)

2
+

(h1 − h0)

2
sin

(
π
x− x0

x1 − x0
− π

2

)
x0 ≤ x ≤ x1

h1 x ≥ x1

(C.4)

Being x the independent variable for the defined function, x0 the starting point (x-value) at
which the function begins, h0 the initial value of the function, x1 the ending point (x-value) at
which the function ends, and h1 the final value of the function.

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure C.6: HAVSIN function plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1, h0 = 0 and

h1 = 1.

This function has a continuous first derivative with sharp edges at x = x0 and x = x1 and a
discontinuous second derivative, making it a class C1 function.

-0.5 0.5 1.0 1.5

0.5

1.0

1.5

-0.5 0.5 1.0 1.5

-4

-2

2

4

Figure C.7: HAVSIN function derivatives plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1,

h0 = 0 and h1 = 1. First derivative on the left and second derivative on the right.

176

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

C.4 LOGISTIC function

Another approximation of the Heaviside step function can be obtained using an exponential
function, the logistic function. This function is defined as:

LOGISTIC(x, x0, h0, x1, h1, k) =
h1

1 + e−k(x−xm)
− h0 (C.5)

xm = (
x1 − x0

2
)

Being x the independent variable for the defined function, xm the x-value of the sigmoid’s mid-
point, x0 the starting point (x-value) at which the function begins, h0 the initial value of the
function, x1 the ending point (x-value) at which the function ends, and h1 the final value of the
function. The parameter k is a measure of the steepness of the curve (the bigger this value, the
steeper the curve), and its typical value ranges between 5 and 20.

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure C.8: LOGISTIC function plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1, h0 = 0,

h1 = 1 and k = 15.

Due to its nature, being an exponential function without a piecewise definition, it is a smooth
function. A smooth function, also known as a C∞ function, is a infinitely derivable function that
has continuous derivatives for all orders everywhere in its domain.

-0.5 0.5 1.0 1.5

1

2

3

-0.5 0.5 1.0 1.5

-20

-10

10

20

-0.5 0.5 1.0 1.5

-400
-300
-200
-100

100

Figure C.9: LOGISTIC function derivatives plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1,

h0 = 0, h1 = 1 and k = 15. First, second and third derivative from left to right.

The logistic function is not really an implemented function in RecurDyn or MSC/ADAMS, but
an equivalent can be obtained using the hyperbolic tangent (TANH) function.

f(x) =
1

1 + e−x
=

ex

1 + ex
=

1

2
+

1

2
tanh(

x

2
) (C.6)

177

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

C.5 Function comparison

-0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

STEP

STEP5

HAVSIN

LOGISTIC

Figure C.10: Step functions plotted using Mathematica for −1

2
≤ x ≤ 3

2
with x0 = 0, x1 = 1, h0 = 0 and

h1 = 1.

-0.5 0.5 1.0 1.5

1

2

3

-0.5 0.5 1.0 1.5

-20

-10

10

20

STEP

STEP5

HAVSIN

LOGISTIC

Figure C.11: First and second derivatives of step functions plotted using Mathematica for −1

2
≤ x ≤ 3

2
with

x0 = 0, x1 = 1, h0 = 0 and h1 = 1. First derivative on the left and second derivative on the right.

While all the analytical approximations of the step function are continuous, not all have a smooth
derivative. Sharp edges in a first derivative at certain points cause discontinuities at these same
points in the second derivative.

STEP and HAVSIN functions have continuous first derivatives with sharp edges at the transition
points, causing discontinuous second order derivatives. The STEP5 function has a continuous
first and second derivative, but sharp edges at the transition points will cause the third order
derivative to be discontinuous. The LOGISTIC function is a special case, with continuous
derivatives of any order, but it has stability problems because of the very steep slopes it contains,
causing the derivatives to be ever-increasing at a considerable rate.

178

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

C.6 Conclusion

Sharp corners found at the transition points in the first derivatives of step function
approximations have as a consequence a rapid change in value which can cause difficulties in
the numerical integration algorithms of dynamic models. While there was a time in which the
STEP function was predominant for describing transitions, the standard has been switched to
the STEP5 function. STEP5 function has a continuous second order derivative, solving the
issues of smoothness in STEP and HAVSIN functions, and because it is expressed as a
polynomial, it is computationally less expensive than the LOGISTIC function.

Function Type Smoothness Computational cost

STEP Polynomial C1 Very low

STEP5 Polynomial C2 Low

HAVSIN Trigonometric C1 Medium

LOGISTIC Exponential C∞ High

Table C.1: Interpolating step function comparison.

According to Dr. Juhwan Choi, Chief Product Officer (CPO) at FunctionBay1: "Until V8R5,
the interpolation type for friction coefficients in contacts entities was defined by various types
of functions such as HAVSIN, STEP and STEP5. Each contact entity used a different one for
friction coefficient calculation, resulting in different values for contact force, as well as stability
problems under some situations. In V9R1, FunctionBay decided to use consistent interpolation
type (STEP5) for the friction coefficient evaluation". It is quite interesting to highlight that this
is considered by the RecurDyn development team as an upgrade to achieve consistent friction,
confirming the fact that using a second order smooth function with continuous first and second
derivative (class C2 function) is the way to go.

1Extracted from Dr. Juhwan Choi speech at the RecurDyn Technology Days 2017 event held in Munich, Germany on
October 11th 2017.

179

Chapter D

Kinematics and dynamics of
mechanical systems

D.1 Coordinate transformation

Any point on a given rigid body can be represented by a vector in a determined reference frame.
In 2-dimensional space, this vector contains two coordinates and it can be represented in polar
coordinates or over the Cartesian plane.

ypxp

ϕ
Θ

x'

y'

x

y

Pxp

O

ypR

''

X

Y

(Xi,Yi)

sP

ri

rP

Figure D.1: Representation of a vector in different reference frames.

Considering a point P of a body i, it can be expressed in the local reference frame x’-y’ in
Cartesian or polar coordinates:

s
′

P = {x′

p, y
′

p}T = {R cosφ,R sinφ}T (D.1)

181

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

If another local reference x-y is considered with the same origin as the first one, but with an
angle of rotation Θ between the axes, the position vector of the point can be expressed in the
new reference frame as:

sP = {x′

p cos Θ− y′

p sin Θ, x
′

p sin Θ + y
′

p cos Θ}T (D.2)

This transformation can be obtained using trigonometry or by using polar coordinates and
considering trigonometric addition formulas:

cos(α+ β) = cosα cosβ − sinα sinβ sin(α+ β) = sinα cosβ + sinβ cosα (D.3)

sP = {R cos(φ+ Θ), R sin(φ+ Θ)}T = (D.4)

= {R cos(φ) cos(Θ)−R sin(φ) sin(Θ), R cos(φ) sin(Θ) +R sin(φ) cos(Θ)}T =

= {x′

p cos Θ− y′

p sin Θ, x
′

p sin Θ + y
′

p cos Θ}T

The original {x′

p, y
′

p} coordinates, which are now the coefficients of the cosine and sine functions
in the x-y coordinate system are the original coordinates of the body with angle of rotation
Θ = 0.

The vectors in the two local reference frames are related by the following matrix transformation:

sP = A s
′

P (D.5)

Where A is the planar rotation transformation matrix :

A =

(
cos Θ − sin Θ

sin Θ cos Θ

)
(D.6)

The planar transformation matrix has full rank, therefore it has an inverse matrix and the
transformation can be reversed. This matrix is orthogonal and it is easy to check that the
inverse matrix is the transpose of the original matrix:

A−1 = AT =

(
cos Θ sin Θ

− sin Θ cos Θ

)
(D.7)

This means that the rotation transformation can be reversed:

s
′

P = AT sP (D.8)

Considering an absolute Cartesian reference frame X-Y, the vector that expresses the position
of the point of the body in the absolute frame is:

rP = ri + sP = ri + A s
′

P =

{Xi + x
′

p cos Θ− y′

p sin Θ, Yi + x
′

p sin Θ + y
′

p cos Θ}T (D.9)

182

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

D.2 Equations of motion

There are several ways of obtaining the equations of motion of a mechanical system, all of them
being equivalent and providing the same result for the equations of motion.

In this analysis three different ways will be used:

• Newton’s Laws

• Lagrangian mechanics

• Constraint equations

Each of them has its advantages and disadvantages. In this case, the three ways will be applied
to a mechanical system with two degrees of freedom in order to obtain the differential equations
that drive the motion of the system.

D.2.1 Newton’s Laws

For a 2-dimensional mechanical system, Newton’s laws of motion perform a balance of forces in
the two coordinate directions and a balance of torques in the outward axis. These summations
are equal to the inertial forces of the body, applied to its center of mass: mass times linear
acceleration and moment of inertia times angular acceleration.

∑
Fx = max = m

d2x

dt2
(D.10)∑

Fy = may = m
d2y

dt2∑
Mz = IG α = IG

d2Θ

dt2

It is important to state that the torque equation usually considers torques with respect to the
center of mass, because the moment of inertia in this position is usually known. If the torques
are taken with respect to another position, one must use the moment of inertia in that exact
point transforming the moment of inertia from the center of mass using Steiner’s parallel axis
theorem:

IP = IG +md2 (D.11)

Where d is the absolute distance between the center of mass and the considered point.

This method requires a deep analysis of the forces acting in the system, including reaction forces
as well as external forces. The most laborious part is that free-body diagrams for each body
must be done, identifying and obtaining all the reaction forces in each of the bodies.

183

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

D.2.2 Lagrangian mechanics

Instead of analyzing the forces involved in the system as Newton’s laws do, Lagrangian mechanics
uses the energy of the system to obtain the equations that rule the behavior of the system. The
dynamics of the system in terms of energy is summarized by an energy function referred to as
the Lagrangian. The Lagrangian is expressed in terms of kinetic (T) and potential (V) energies
of the system in the following way:

L = T − V (D.12)

The kinetic energy of the system must be expressed in terms of the linear and angular velocities
of the different bodies. For a system with N bodies:

T =
1

2

N∑
i=1

miv
2
i +

1

2

N∑
i=1

Iiω
2
i (D.13)

The potential energy of a mechanical system is expressed in terms of its distance from the origin
of potential, in case of being under the action of the gravitational field:

V =

N∑
i=1

miyig (D.14)

All the velocities and positions of the bodies in the equations are absolute, and they must be
referred to the global coordinate system. The linear and angular velocities of the bodies must be
taken at the same point in order to calculate the Lagrangian; they are usually taken at the center
of mass, but they can be taken in any point if the moment of inertia is correctly transformed
using Steiner’s theorem. The origin of potential is also an arbitrary decision, but it is usually
taken coinciding with an axis of the global coordinate system.

The degrees of freedom of the system are known as the generalized coordinates, and the external
non-conservative applied forces are the generalized forces.

The equations of motion can be obtained by particularizing the Euler-Lagrange equation for the
generalized coordinates of the system:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj (D.15)

Being L the Lagrangian of the system, qj the generalized coordinate j, and Qj the generalized
force associated to the coordinate.

This method provides an equation of motion without having to dissect the whole system and the
forces of reaction between the bodies, making it less time consuming and more methodical than
Newton’s laws of motion.

184

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

D.2.3 Constraint equations

The third way of obtaining the equations of motion of a mechanical system is derived from the
principle of virtual work of a planar body, which states that the virtual work of the unbalanced
force mr̈− F and the virtual work of the unbalanced torque Jφ̈− T is equal to 0.

δrT [F−mr̈] + δφ
[
T − Jφ̈

]
= 0 (D.16)

This equation is known as the variational equation of motion of a rigid body in the plane. The
differential equations of motion can be obtained from the previous equation:

F−md2r

dt2
= 0 (D.17)

T − J d
2φ

dt2
= 0

Where:

F =

(
Fx
Fy

)
r =

(
x

y

)

The two terms of the variational equation of motion can be combined in a matrix equation in
terms of the virtual displacement of the generalized coordinates, q. The generalized force vector,
Q, will be defined as the combination of force and torque applied to the body. The mass matrix,
M = diag(m,m, J), is a diagonal matrix which contains the mass and moment of inertia of the
body.

δqT [Q−Mq̈] = 0 (D.18)

Where:

q =

(
r

φ

)
Q =

(
F

T

)
M =

m 0 0

0 m 0

0 0 J

The variational equations of motion for each body i in a planar multibody system with N bodies
can be summed together to obtain the system variational equation of motion:

N∑
i=1

δqi
T [Qi −Miq̈i] = 0 (D.19)

This summation can be written in a more compact form, similar to the equation of a single body,
but with different elements and coefficients:

δqT [Q−Mq̈] = 0 (D.20)

185

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Where:

q =

q1

q2
...

qN

 q̈ =

q̈1

q̈2
...

q̈N

 Q =

Q1

Q2
...

QN

M = diag(M1,M2, . . . ,MN)

The generalized forces vector, Q, must include both constraint forces (reaction forces in the
joints between the bodies) and external applied forces. This makes the equation quite difficult
to apply in large multibody systems. This vector can be divided into Q = QA + QC, where the
first term denotes the generalized applied forces and the second one the constraint forces acting
on the system.

A new expression can be written for a set of virtual displacements δq consistent with constraints,
yielding the constrained variational equations of motion:

δqT
[
QA −Mq̈

]
= 0 (D.21)

The kinematic couplings of joints and the independent driving constraints are described as
constraint equations for the kinematic analysis, and their combined set of constraints can be
written as:

Φ(q, t) =

(
ΦK(q)

ΦD(q, t)

)
= 0 (D.22)

The set of virtual displacements δq consistent with constraints must satisfy the equation:

Φqδq = 0 (D.23)

With Φq being the Jacobian of the constraint equations.

To complete this approach, the introduction of Lagrange multipliers will allow the reduction of
the variational equation of motion to a mixed system of differential-algebraic equations.

The Lagrange multiplier theorem states that a Lagrange multiplier vector λ exists such that:

[
Mq̈ + Φq

Tλ−QA
]T
δq = 0 (D.24)

Due to the nature of virtual displacements, the coefficient of δq must be 0. The equation obtained
is the Lagrange multiplier form of the constrained equations of motion for the system:

Mq̈ + Φq
Tλ = QA (D.25)

186

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

If some of the bodies have a center of mass which is not found at their local origin of
coordinates, the resulting equations must be modified. The mass matrix changes and a new
vector of centrifugal forces is added to the equation. Let the vector sG = {xG, yG}T be the
relative position of the center of mass in the local coordinate system of the body.

The moment of inertia must be displaced from the center of mass to the local origin of coordinates
using Steiner’s parallel axis theorem: Jo = JG + md2, being d =

√
x2
G + y2

G the distance from
the center of mass to the local origin.

The mass matrix, M, which is usually a diagonal matrix which contains the mass and moment
of inertia of the body, has terms outside of the diagonal if the center of mass of the body is not
at its local origin of coordinates. The mass matrix of body i must be modified:

Mi =

m 0 m∂xG

∂Θ

0 m m∂yG
∂Θ

m∂xG
∂Θ m∂yG

∂Θ JG +m
(
x2
G + y2

G

)
 (D.26)

Considering the absolute vector of the center of mass rG = ri + sG, being ri = {xi, yi}T the
vector from the origin of the absolute reference frame to the local reference frame of the body
number i. The terms outside the diagonal are explained from the differentiation done in the first
equation of motion.

Fi = m
d2rG
dt2

d2rG
dt2

=
d2ri
dt2

+
d2sG
dt2

= {d
2xi
dt2

+
d2xG
dt2

,
d2yi
dt2

+
d2yG
dt2
}T = (D.27)

= {d
2xi
dt2

+
∂2xG
∂Θ2

Θ̇2 +
∂xG
∂Θ

Θ̈,
d2yi
dt2

+
∂2yG
∂Θ2

Θ̇2 +
∂yG
∂Θ

Θ̈}T

The terms of the derivatives of the vector ri correspond to the generalized coordinates of the
body i and they are contained in the generalized accelerations vector q̈, but the other two terms
derived from the fact that the local position of the center of mass has an offset from this local
reference frame must be considered.

The terms multiplying the second derivative of the generalized coordinate Θ̈ in both x and y
coordinates are the ones that appear in the mass matrix out of the diagonal. In this case the
terms are:

∂xG
∂Θ

Θ̈ = (−xG sin(φ)− yG cos(φ))Θ̈ (D.28)

∂yG
∂Θ

Θ̈ = (xG cos(φ)− yG sin(φ))Θ̈

The terms multiplying the first derivative of the generalized coordinate squared Θ̇2 represent the
centrifugal forces, these terms must be included in a new vector denominated as the centrifugal
forces vector with the following structure:

187

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Ci =

m∂2xG

∂Θ2 Θ̇2

m∂2yG
∂Θ2 Θ̇2

0

 (D.29)

The resulting equation, considering the modification of the mass matrix and the centrifugal term,
is the general Lagrange multiplier form of the constrained equations of motion for the
system:

Mq̈ + C + Φq
Tλ = QA (D.30)

Where:

M = diag(M1,M2, . . . ,MN)

q̈ =

q̈1

q̈2
...

q̈N

 C =

C1

C2
...

CN

 λ =

λ1
λ2
...
λN

 QA =

QA

1

QA
2
...

QA
N

The resulting system of equations make up a mixed system of differential-algebraic equations
(DAE), since no derivatives of the Lagrange multipliers appear.

Now, there are two different ways to continue with the analysis. This system can be directly
solved numerically to obtain the solution to all the generalized coordinates and the Lagrange
multipliers, or it can be taken further to obtain the equations of motion.

The Lagrange multipliers designated for the driven equations of motion are equal to 0 because
these are the unconstrained degrees of freedom of the system, which provides a further
simplification on the system. When these unconstrained multipliers are considered to be zero,
it is possible to recursively solve the system of the equation for each of all the multipliers until
there are a number of equations left with no multipliers remaining to obtain. There equations,
which will depend on the previously solved Lagrange multipliers, when substituted, make up
the equations of motion of the system. The number of remaining equations must be the same
as the number of unconstrained (not driven) degrees of freedom of the system.

This approach might seem more complicated than the previous ones, but it is more easily
automatized and more adequate for mechanical systems that have many different bodies. Most
computational tools of multibody dynamics that can provide the solution to the motion of any
general mechanical system use this method and then solve the resulting differential equations
using numerical methods.

188

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

D.3 Space state representation

A continuous dynamic system, linear or non-linear and time-invariant or time-variant, can be
written in general space state representation in the form:

d

dt
x(t) = ẋ(t) = f(x,u, t) = A x(t) + B u(t) + g(x,u, t) (D.31)

y(t) = C x(t) + D u(t)

The first equation is the state equation, while the second one is the output equation. x(t) is the
state vector formed by the system’s dependent variables and their derivatives, y(t) is the output
vector, u(t) is the input control or independent variable vector, A is the system matrix, B is
the input matrix, C is the output matrix and D is the feed-through matrix. All the matrix
considered are time-invariant, and g(x,u, t) contains all the non-linear and variable coefficient
terms. In case of a linear time-invariant (LTI) system, the g(x,u, t) vector is 0.

The general representation shows the most general case in which the state equation is non-linear
with respect to state x(t) and control input u(t) and the output equation depends on the control
actions, but most of the times D = 0 and it can be linearized in order to obtain g(x,u, t) = 0.

If the system has a total of n
2 dependent variables with their n

2 derivatives, m control actions
and p output variables:

x(t) =

x1

x2
...
xn

 u(t) =

u1

u2
...
um

 y(t) =

y1

y2
...
yp

 (D.32)

In the state equation, A is a n× n matrix and B is a n×m matrix. In the output equation, C

is a p × n matrix and D is a p ×m matrix. The non-linear and variable terms are grouped in
the vector g(x,u, t) that has n× 1 dimension.

189

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

D.4 Space state linearization

In general, all systems are non-linear, but most of the analytical methods for system control can
only be applied to linear time-invariant (LTI) systems. The goal is to obtain a linearized version
of the non-linear and variable coefficient terms in order to apply the known methods of system
analysis in a limited range around some reference state.

Considering the state equation of a non-linear system expressed in general space state form:

d

dt
x(t) = A x(t) + B u(t) + g(x,u, t) (D.33)

If the dependent state variables are written as deviations from an operating state, xo and uo:

x(t) = xo(t) + δx(t) (D.34)

u(t) = uo(t) + δu(t)

The resulting expression is:

d

dt
xo(t) +

d

dt
δx(t) = A xo(t) + A δx(t) + B uo(t) + B δu(t) + g(xo + δx,uo + δu, t) (D.35)

The non-linear and variable coefficient terms can be written using first order Taylor series
expansion around the operating point:

gi(x,u, t) = gi(xo,uo, t) +

N∑
j=1

∂gi
∂xj

∣∣∣∣
xo,uo

δxj +

M∑
k=1

∂gi
∂uk

∣∣∣∣
xo,uo

δuk +O((δxj)
2) +O((δuk)

2)

(D.36)

Disregarding higher order terms and using matrix notation:

g(x,u, t) = g(xo,uo, t) + Jx(xo,uo)δx(t) + Ju(xo,uo)δu(t) (D.37)

The matrices Jx(xo,uo) and Ju(xo,uo) are referred to as Jacobian matrices and they are
evaluated at the selected operating point. Their expressions are:

Jx(xo,uo) =

∂g1

∂x1

∂g1

∂x2
. . . ∂g1

∂xn

∂g2

∂x1

∂g2

∂x2
. . . ∂g2

∂xn
...

...
. . .

...

∂gn
∂x1

∂gn
∂x2

. . . ∂gn
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
xo,uo

(D.38)

190

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Ju(xo,uo) =

∂g1

∂u1

∂g1

∂u2
. . . ∂g1

∂un

∂g2

∂u1

∂u2

∂u2
. . . ∂g2

∂un
...

...
. . .

...

∂gn
∂u1

∂gn
∂u2

. . . ∂gn
∂un

∣∣∣∣∣∣∣∣∣∣∣∣∣
xo,uo

(D.39)

Around the operating point, the following expression verifies:

d

dt
xo(t) = A xo(t) + B uo(t) + g(xo,uo, t) (D.40)

If these results are substituted into Equation D.35, the result is:

d

dt
δx(t) = [A + Jx(xo,uo)] δx(t) + [B + Ju(xo,uo)] δu(t) (D.41)

If the coefficient are unified into linear matrices A(xo,uo) and B(xo,uo) that depend on the
operating point values (xo,uo), the linearized space state representation is obtained:

d

dt
x(t) = A(xo,uo) x(t) + B(xo,uo) u(t) (D.42)

Redefining the state and control variables as deviations from the operating point, which is
equivalent to δx(t) → x(t) and δu(t) → u(t), and dropping the notation (xo,uo) from the
linearized matrices, the resulting representation has the same form as a linear space state:

d

dt
x(t) = A x(t) + B u(t) (D.43)

It is important to consider that even though it is not explicit in the simplified representation, a
linearized system is always linearized with respect an operating point and the state variables are
deviations from the operating point values. This is an important consideration to have in mind
when operating with the system, e.g. when implementing state feedback control.

The poles of the linearized system can be obtained in order to check the stability of the open-loop
configuration. The poles are the eigenvalues of the linearized system matrix A(xo,uo) which are
the solution to the following matrix equation:

det(s I−A(xo,uo)) = 0 (D.44)

The condition for stability that must verify is that the poles si have a negative real part, Re(si) <
0, this would mean that the system without any controller is stable. If the system has any poles
with a positive real part, the system is unstable and it must be controlled using a closed-loop
configuration.

191

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Once the system is linearized, some further analysis can be done. State controllability and
observability are two important properties of a dynamic system.

The controllability of a system determines if the external control input can transfer the internal
state of the system from any initial state to another final state in a finite time interval. For
linear time-invariant (LTI) systems with n states, the sufficient condition for the controllability
of a system is that the controllability matrix, R, has full rank:

R =
(
B AB A2B . . . An−1B

)
rank(R) = n (D.45)

In cases where all the state variables of a system may not be directly measurable, it is necessary
to estimate the values of the unknown internal state variables using only the available system
outputs. The observability of the system addresses this issue. A system is observable if the
current state can be determined from the system’s outputs in finite time. This means that the
behavior of the entire system can be determined from the system’s outputs. For linear time-
invariant (LTI) systems with n states, the sufficient condition for the observability of a system
is that the observability matrix, O, has full rank:

O =

C

CA

CA2

...
CAn−1

 rank(O) = n (D.46)

The controllability of a system is a requisite when designing control loops such as PID and state
feedback controllers, and the observability of a system is required when state observer or state
predictor controllers are to be implemented.

192

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

D.5 Space state to transfer function

It is possible to obtain the transfer functions of a dynamic system from the space state
representation. The transfer function of a system is usually represented in the domain of
frequency using Laplace transform and it relates a particular input variable to an output
variable: expressed how the output behaves with changes in the input or control variables.

Considering the linear time-invariant space state representation:

ẋ(t) = A x(t) + B u(t) (D.47)

y(t) = C x(t) + D u(t)

Applying the Laplace transform (with all initial conditions set to zero):

sX(s) = AX(s) + BU(s) (D.48)

Y(s) = CX(s) + DU(s)

The transfer function is the quotient between Y(s) and U(s). First, it is necessary to obtain X(s)

from the state equation:

sX(s)−AX(s) = BU(s) (D.49)

(s I−A)X(s) = BU(s)

X(s) = (s I−A)−1 BU(s) = Φ(s) BU(s)

Φ(s) = (s I − A)−1 is known as the state transition matrix, which describes how the system
changes from the current state to the next.

Substituting in the output equation:

Y(s) = C Φ(s) BU(s) + DU(s) = (C Φ(s) B + D)U(s) (D.50)

The transfer function matrix is obtained:

G(s) =
Y(s)

U(s)
= C Φ(s) B + D = C (s I−A)−1 B + D (D.51)

Obtaining the transfer function from the space state representation is quite simple because the
transfer function form of a system is unique. There are many state space representations of a
given system, but all of these representations will result in the same transfer function.

193

Chapter E

Controller design

E.1 Control theory

The operation of a process is based on the modification of an input variable, called manipulated
variable or control variable, which applied to the input of the system results in the modification
of its outputs.

A system with a controller alters this operation scheme, the controller is placed between the input
and the process and receives a desired value that represents the output one wants to achieve for
the system. The controller receives a feedback from the system, the output variable value is read
through a sensor and it is compared to the desired value. The controller is responsible of setting
the most appropriate value for the control variable considering the difference between the current
operating point of the process and the desired one. The system, which at first was an open-loop
system, becomes a closed-loop system.

Process
u y

(a) System without controller (open-loop)

Controller Process
u

Feedback

r e y

−

y

(b) System with controller (closed-loop)

Figure E.1: Systems comparison.

195

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

Where:

• u is the manipulated variable or control action.

• y is the output of the system or process variable.

• r is the desired or reference value, also known as setpoint.

• e is the error or difference between the desired value and the system output, e = r − y.

There are different types of controllers and different ways to implement them into the system.
The fundamental parameters of the controllers can be calculated if the mathematical model of
the process is available, or they can be manually or automatically tuned. Depending on the type
of controller there are different ways to do so.

Systems can be classified into different categories depending on the number of inputs and
outputs they have. The simplest system is one with only one input and one output, known as a
single-input single-output (SISO) system. Systems with many inputs and outputs are known as
multiple-input multiple-output (MIMO) systems, and there are also single-input
multiple-output (SIMO) and multiple-input single-output (MISO) systems in between.

The analysis of a controlled system is usually done using the Laplace transform on the different
variables that intervene in the system. Laplace transform is useful because it provides a way of
analytically describing the behavior of the system in the frequency domain, providing relatively
simple expressions for the integrals and derivatives of the system’s variables.

Applying the Laplace transform to the open-loop and closed-loop SISO systems results in:

G(s)
U(s) Y(s)

(a) Open-loop system

C(s) G(s)
U(s)

H(s)

R(s) E(s) Y(s)

−

Y(s)

(b) Closed-loop system

Figure E.2: Laplace representation of open and closed-loop systems.

Where all the variables and processes are expressed in terms of their Laplace transforms: R(s)

is the Laplace transform of the setpoint, E(s) is the Laplace transform of the error, U(s) is the
Laplace transform of the control action, Y(s) is the Laplace transform of the setpoint, G(s) is
the Laplace transform of the process, C(s) is the Laplace transform of the controller, and H(s)

is the Laplace transform of the feedback.

Due to the linearity of the Laplace transform, from these representations the transfer functions of
the systems can easily be obtained. Transfer functions provide a representation of how changes

196

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

in the input variable affect the output variable, they are expressed in Laplace transform as the
quotient between output and input variables.

In the open-loop configuration it is trivial to obtain the open-loop transfer function:

Y(s)

U(s)
= G(s) (E.1)

For the closed-loop configuration a closed-loop transfer function can also be obtained:

Y(s) = (R(s)− Y(s)H(s)) C(s)G(s) (E.2)

Y(s)(1 + C(s)G(s)H(s)) = R(s)C(s)G(s)

Y(s) =
R(s)C(s)G(s)

1 + C(s)G(s)H(s)

Y(s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)H(s)

In order to obtain the dynamic behavior of the system in terms of changes in its input, one
must analyze the poles of its transfer function. The poles are the values of s that make the
denominator of the transfer function equal to zero, these values are the ones that determine the
dynamic response and the stability of the system. The equation that sets the denominator of
the transfer function to zero is known as the characteristic equation of the system. The resulting
polynomial expression in terms of s, which zeros are the poles of the system, is known as the
characteristic polynomial. The order of the polynomial corresponds with the number of poles of
the system. s is a complex variable, therefore it will have real and imaginary parts. Considering
a linear time-invariant system, for it to be stable all of the poles of its transfer function must
have negative real values (the real part of each pole must be less than zero), which means that
the transfer function complex poles must reside in the open left half of the complex plane.

Re(s)

Im(s)

UnstableStable

Oscillatory

Figure E.3: Dynamic behavior of the system in terms of the positions of its pole in the complex plane.

197

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

For the open-loop transfer function, the characteristic equation is:

1

G(s)
= 0 (E.3)

The characteristic equation of the closed-loop transfer function is:

1 + C(s)G(s)H(s) = 0 (E.4)

The closed-loop transfer function analysis can also be extended to multiple-input
multiple-output systems with feedbacks, in which the characteristic equation can be obtained
from the determinant of a matrix equation:

det(I + C(s)G(s)H(s)) = 0 (E.5)

In this case transfer functions have additional terms from the cross-influence of the other inputs
of the system.

198

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

E.2 PID Controller

A proportional-integral-derivative controller, known as PID or three-term controller, is a closed-
loop control mechanism that uses the desired value, or setpoint, and the actual value of a process
variable received through feedback, to calculate the error and through automatic adjustment of
the control variable tries to minimize it. The control action is adjusted according to three
different parameters: the proportional action, which depends on the current error; the integral
action, which takes into account the accumulation of previous errors; and the derivative action,
which is a prediction of future errors according to the current error trend line.

Equation E.6 shows the equation that describes the standardized PID controller that transforms
the error e(t) into a control variable u(t); where Kp is the proportional gain, Ti is the integral
time, and Td is the derivative time.

u(t) = Kp

(
e(t) +

1

Ti

∫ t

0
e(τ) dτ + Td

de(t)

dt

)
= Kp e(t) +Ki

∫ t

0
e(τ) dτ +Kd

de(t)

dt
(E.6)

Where:

Ki =
Kp

Ti
Kd = KpTd (E.7)

Applying the Laplace transform to this expression will yield the transfer function of the
controller that will have the form indicated in Equation E.8. This expression is useful when the
transfer function of the model is known and the expression for the transfer function of the
whole closed-loop system wants to be obtained.

C(s) =
U(s)

E(s)
= Kp +

Ki

s
+Kds = Kp

(
Tds

2 + s+ 1
Ti

s

)
=
Kds

2 +Kps+Ki

s
(E.8)

E.2.1 Influence of the different terms

E.2.1.1 Proportional term

The proportional termKp e(t) depends only on the current value of the error between the setpoint
and the process variable. Increasing the proportional gain will increase the speed of the control
system response, as the reaction will be harder, but increasing the gain too much can cause
oscillations in the process variable or even cause the system to become unstable. The increase of
the proportional term reduces the steady-state error, but it causes a bigger overshoot. The steady-
state error is the difference between the process variable and the setpoint once the controller
action has stabilized (after a sufficient amount of time). An overshoot occurs when the output
of the closed-loop system that is increasing or decreasing to get to the setpoint, surpasses the
target value; the amount of desirable overshoot is a parameter to have in mind.

199

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

E.2.1.2 Integral term

The integral term Ki

∫ t
0 e(τ) dτ sums the error over time, causing that even a small deviation

will make the integral component increase. This means that unless the error is zero, the integral
response will continually increase over time, causing the response of the system to have a zero
steady-state error. It can make the system more slow (and even oscillatory) since when the
error signal changes sign, it may take a while for the integrator to unwind (due to the sum of
previous error). If the control action has a limitation and the integral action causes it to saturate,
there is also a phenomenon of windup due to the accumulation of incorrigible error that must be
compensated. Some controllers might need an anti-windup loop to compensate this phenomenon.

E.2.1.3 Derivative term

The derivative term Kd
de(t)
dt depends on the rate of change of the error, which has the opposite

sign than the process variable. This term tries to anticipate error. If the process variable is
increasing rapidly, the derivative component will cause the control action to decrease. Increasing
the derivative time parameter will cause the controller to react more strongly to changes in the
error and increasing the speed of response. It also tends to add damping to the system, decreasing
overshoot. The problem with the derivative term is that it is very sensitive to small fluctuations
or noise in the process variable feedback signal. If the signal is noisy or the control loop rate is
too slow, the derivative term can cause the system to be unstable, this is the reason why most
real world control systems have a small derivative term or none at all.

E.2.1.4 Considerations

Parameter Rise time Overshoot Settling time Steady-state error Stability
Kp ↑ Decrease Increase Small change Decrease Decrease
Ki ↑ Decrease Increase Increase Decrease Decrease
Kd ↑ Small change Decrease Decrease No change Increase

Table E.1: Response of the closed-loop system when increasing the proportional, integral and derivative terms.

There are some considerations to make regarding the integral and derivative terms. The first is
the implementation of a anti-windup mechanism in the accumulation of the integral error. This
is useful when the control variable saturates and the error accumulates without the controller
being able of correcting it. There are several ways of addressing this issue. The first way is
by disabling integration when the output saturates. Another popular way is by using back-
calculation, in which the difference between the control variable value and the saturated value
is subtracted to the integral term with a gain of 1/Taw. The value of this gain determines how
quickly the integral term is reset. There is also a problem with the derivative term when the
setpoint is changing. The derivative term is the slope of the error value, which is the difference
between the setpoint and the output of the system. If the setpoint changes drastically (switches
from one value to another in a step) the slope of the error can be very large causing very large
derivative action, this is known as derivative kick. The solution to this phenomenon is to take
the negative derivative of the process variable, instead of the derivative of the error. This will
make the derivative term independent of changes in the setpoint.

200

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

E.2.2 Tuning

Tuning is referred to as the process of obtaining the optimal proportional (Kp), integral (Ki)
and derivative (Kd) gains that get an ideal response from the closed-loop system. There are
different ways of tuning a PID controller: manually, heuristically or by pole placement using
transfer function analysis. Manual and heuristic tuning are the most popular tuning techniques
and they are valid when the transfer function of the process is unknown. The transfer function of
a process is the mathematical expression, usually in Laplace domain, of how the process behaves
to a change in the control action: Y (s)

U(s) .

E.2.2.1 Manual tuning

The most common way of tuning the controller gains is by manually using the trial and error
method. First, the integral and derivative terms are set to zero and the proportional gain is
increased until it has a fast enough response. Depending on the system, the response might
be oscillatory. Second, the integral term is increased to stop the oscillations and to reduce the
steady state error. This term must be tweaked to achieve a minimal steady-state error while
having a reduced overshoot. Once the values of the proportional and integral term have been
set, the derivative term is increased to reduce overshoot and increase stability, but makes the
system more sensitive to noise.

There are several heuristic methods to tune a PID controller depending on the nature of the
system. There are two main categories: open-loop and closed-loop methods. These methods
receive the name of the engineers that described them using empirical results in the 1940s, 50s
and 60s. Heuristic methods are not guaranteed to be optimal, most times they serve as a starting
point that with a little tweaking can provide a desirable response.

Open-loop methods are suitable for stable self-regulating processes. The controller is tuned by
analyzing the characteristics of open-loop step response (when a step is applied to the control
action, u, working in open-loop). The process must exhibit a S-like curve response to the step
action, the nature of the processes are usually first order processes with no integrators or processes
that can be approximated to first order processes with a delay. The most popular open-loop
methods are Ziegler-Nichols (open-loop variant), Cohen-Coon and CHR (Chien, Hrones and
Reswick).

In closed-loop methods, the controller is tuned by analyzing the response of the closed-loop
system. This methods are applicable to unstable open-loop systems that become stable in
closed-loop configuration, and other higher order systems. The system must exhibit sustained
oscillations when the proportional term is big enough in order for this method to be applied.
The most popular is the Ziegler-Nichols closed-loop method, also known as the Ziegler-Nichols
ultimate gain method. There are other methods, but most of them are based on the work done
by Ziegler and Nichols in 1942 with different parameters or specifications.

Ziegler-Nichols ultimate gain method is based on a 1
4 decay ratio design criterion for acceptable

stability, this means that the ratio of the amplitudes of subsequent peaks of the system response
to a step change in set-point or disturbance is approximately 1

4 . The resulting ratio after tuning
the controller using this method might not be this exact value, but it should be close to it.

201

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The Ziegler-Nichols closed-loop method is very systematic and easy to apply. First, the integral
and derivative gains are set to zero, and the proportional gain is increased until the output begins
to oscillate. This oscillations mean that the system is on the stability limit, and the proportional
gain value that produces this is denoted as the ultimate (or critical) gain, Ku. If there is no value
of Kp that makes the system oscillate this method is not applicable. The ultimate gain value
must be found without any saturation occurring in the control signal, it must be the smallest
Kp value that drives the control loop into sustained oscillations. Second, the period of the
oscillations must be measured, this parameter is known as the ultimate (or critical) period Tu.
With the ultimate gain and ultimate period parameters, there are empirical formulas to obtain
the controller’s parameters, depending on the type and desired characteristics.

Controller type Kp Ti Ki Td Kd

P 0.5Ku - - - -
PI 0.45Ku Tu/1.2 0.54Ku/Tu - -
PID 0.6Ku Tu/2 1.2Ku/Tu Tu/8 0.075KuTu

some overshoot 0.33Ku Tu/2 0.66Ku/Tu Tu/3 0.11KuTu
no overshoot 0.2Ku Tu/2 0.4Ku/Tu Tu/3 KuTu/15

Pessen Integral Rule 0.7Ku Tu/2.5 1.75Ku/Tu 3Tu/20 0.105KuTu

Table E.2: Empirical formulas for the parameters of the different types of controllers obtained through the
Ziegler-Nichols closed-loop method.

E.2.2.2 Pole placement

If the transfer function of the model is available, it is possible to apply more sophisticated
methods of tuning such as the pole placement method. This method provides the parameters of
the PID controller according to previously defined specifications.

The dynamic behavior of the closed-loop system is determined by the poles of the transfer
function. The pole placement method consists in choosing the poles the closed-loop transfer
function should have and calculating the controller parameters needed to obtain these poles.

The poles are chosen according to the dynamic specifications desired for the system, usually by
setting the settling time Tset and the maximum percentage overshoot PO (in %). The term
overshoot refers to the phenomenon when the output signal exceeds its reference value during
the first control cycle, only to come back again and most times oscillate until it reaches its final
state (if the resulting closed-loop system has an integral term, the final state coincides with the
reference). The settling time is defined as the time elapsed until the output enters and remains
in a specified error band around its final state, usually the error band taken consists of a 2%
deviation from the final value.

The characteristic equation of a linear system is expressed as a polynomial equal to zero, where
the polynomial is the characteristic polynomial. It is usually expressed as a monic polynomial,
where all the coefficients have been divided by the leading one.

λ(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0 (E.9)

202

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The fundamental theorem of algebra states that every non-constant single-variable polynomial
of degree n has n complex roots (real numbers are included in the field of complex numbers).
The characteristic polynomial can therefore written as the product of its n poles:

λ(s) =

n∏
i=1

(s− pi) = (s− pn)(s− pn−1) · · · (s− p1) = 0 (E.10)

The objective of these method is to construct a polynomial of the same degree as the characteristic
polynomial of the closed-loop system that contains the desired poles. These polynomials are
then compared coefficient-wise in order to obtain the parameters of the controller that force the
closed-loop system to have the desired dynamics.

Considering closed-loop functions with of second order or higher, the procedure is always the
same. The first two poles are set using the desired overshoot and settling time the system must
have. These will be the dominant poles that rule the dynamics of the system.

These two poles will form a pair of complex conjugate poles, which is equivalent to the expression
of a second order system:

s2 + 2ξωns+ ω2
n = (s− (−σ + i ωd))(s− (−σ − i ωd)) (E.11)

Where the real and imaginary part of the poles are expressed in terms of the damping ratio ξ
and the natural frequency ωn of the system: σ = ξωn and ωd = ωn

√
1− ξ2

From the definition of percentage overshoot PO, the damping ratio ξ can be obtained:

PO [%] = 100 exp (
−πξ√
1− ξ2

) → ξ =
−lnPO100√
π2 + ln2 PO

100

= cosϕ (E.12)

From the approximation for the settling time for a 2% deviation, the natural frequency ωn is
obtained:

Tset =
4

ωn ξ
→ ωn =

4

Tset ξ
(E.13)

The resulting poles are:

s1,2 = −σ ± i ωd = −ξωn ± ωn
√

1− ξ2 (E.14)

Damping ratio is what makes the poles have an imaginary part, ξ = cosϕ, depending on the
damping ratio the system can be: undamped (ξ = 0), poles with only imaginary part that
provide an oscillatory response; underdamped (ξ < 1), complex poles that provide a decaying
oscillatory response; or critically damped (ξ = 1) poles with only real part that provide no
oscillatory response.

203

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

y(t)

t
TsetTpeakTrise

ymax

yfinal

1.02 yfinal

0.98 yfinal

0.9 yfinal

0.1 yfinal

overshoot

Figure E.4: Time response of an underdamped second order system.

Re(s)

Im(s)

φ

Figure E.5: Pole location for a second order system in terms of damping ratio ξ and natural frequency ωn.

The rest of the poles until the crafted polynomial is of the same degree as the closed-loop system
polynomial are chosen to be negative real numbers with a much more faster dynamics than the
conjugate poles. The farther away the poles are from the imaginary axis, the faster their effect
on the system is settled. The poles closest to the imaginary axis, the so called slow poles, are
the dominant poles.

204

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

As a rule of thumb, the remaining poles are chosen to be at least twice as faster as the dominant
poles. Considering the settling time for a first order system (a system with only one real pole,
p = −σ) as approximately Tset = 4/σ, the remaining poles will be multiples of the real part of
the complex conjugate poles pi = −ki · σ, where ki ≥ 2. These poles will be ki times faster than
the original poles with Re(s) = −σ, but the counterpart is that the more this poles move to the
left of the s-plane, the more control effort will it take for the system to stabilize.

The crafted polynomial must be then compared to the closed-loop polynomial to obtain the
coefficients that cause this behavior con the system.

λ(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0 (E.15)

λ′(s) = (s− (−σ + i ωd))(s− (−σ − i ωd))(s− (−k1σ)) · · · (s− (−kn−2σ)) = 0

λ(s) = λ′(s) = 0

The pole placement method is a really powerful method and allows the molding of the system to
the desired specifications, the only consideration is that a very fast settling time for the dominant
poles (i.e. a very high bandwidth ωn) will cause a very aggressive control action. The poles must
be located taking this into consideration.

Because all poles are being placed, the dominant second order behavior is pretty much guaranteed
to be valid and all the desired specifications (settling time and overshoot) should be observed in
the output of the controlled system.

Tset =
4

ωn ξ
PO [%] = 100 exp (

−πξ√
1− ξ2

) (E.16)

Trise =
1 + 1.1ξ + 1.4ξ2

ωn
Tpeak =

π

ωn
√

1− ξ2

205

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

E.2.3 Discrete approximation

In order to apply this type of controller in an electronic system, e.g. in a microcontroller or
digital signal processor (DSP), it must be discretized. The control loop will not be applied in
a continuous fashion in time, but in finite intervals instead; intervals determined by the type of
electronic system used and its frequency of operation. The discretization is achieved by using
the finite difference method to approximate the value of the derivative term and approximating
the integral as a sum, being ∆t or Ts the sampling time, which is the interval of time elapsed
between each of the times in which the control will be applied to the movement.

∫ tk

0
e(τ) dτ =

k∑
i=1

e(ti)∆t

de(tk)

dt
=
e(tk)− e(tk−1)

∆t
(E.17)

The resulting equation is the formula that must be implemented in the electronic system.

u(tk) = Kp

(
e(tk) +

Ts
Ti

k∑
i=1

e(ti) +
Td
Ts

(e(tk)− e(tk−1))

)
(E.18)

It must be noted that the proportional term is independent from the sampling time Ts, but the
integral and derivative terms are not. It is important to have a stable value for sampling time
in order for a complete PID control to be implemented.

The problem with discrete controllers in electronic devices, where there is always some noise in
the signal acquisition, e.g. the analog to digital converters have conversion errors. This causes
the derivative term to be quite unstable in many practical implementations and that it might be
necessary to set a threshold for the error in order to avoid control action when the deviation is
small.

206

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

E.3 State feedback control

Considering a linear time-invariant system or a non-linear system that has been linearized and
assuming that all the components of the state vector can be measured and are accessible, it is
possible to design a controller that stabilizes the closed-loop system by using linear feedback
from the states of the system using the K matrix. This is what is known as linear full state
feedback control.

ẋ(t) = A x(t) + B u(t) (E.19)

y(t) = C x(t) + D u(t)

Where the control action is: u(t) = r(t)−K x(t).

ẋ(t) = A x(t) + Bu(t)

y(t) = C x(t) + D u(t)

K

r u y

x

−

Figure E.6: Full state feedback control system.

Considering the dimensions of the vectors, x(t), u(t) and K must have compatible lengths:

x(t) =

x1

x2
...
xn

 u(t) =

u1

u2
...
um

 K =

k11 k12 . . . k1n

k21 k22 . . . k2n

.
. . .

...
km1 km2 . . . kmn

 (E.20)

The K is a m× n matrix with one proportional term per state and control variable.

For linearized systems, it is very important to consider that the state variables vector x(t) is
not the absolute values of these states, but the deviation from the linearized state (usually the
equilibrium point). In order for the feedback controller to achieve a zero final state error, the
proportional matrix K must be really applied to the deviation state vector δx(t) = x(t)− xo(t).

Substituting the control action into the equations of the system yields:

ẋ(t) = (A−B K) x(t) + B r(t) (E.21)

y(t) = (C−D K) x(t) + D r(t)

The poles of the resulting closed-loop system are the eigenvalues of the coefficient matrix that
goes with the state vector, that matrix in this case is: A−B K. This means that it is independent
of reference value r(t) for each one of the states.

λ(s) = det(sI− (A−B K)) = 0 (E.22)

207

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The controllability of the system pair (A,B) must be considered. If the system is controllable,
the eigenvalues of the characteristic polynomial λ(s) can be placed arbitrarily such that the
closed-loop poles are in the desired locations.

Each one of the ki coefficients will multiply the value of each one of the xi states, and the problem
of how are these coefficients determined must be addressed. There are two ways of doing so:
the first way is using the pole placement method and the second way is using a linear quadratic
regulator.

E.3.1 Pole placement

In a similar way as it is done with PID controllers, the pole placement method consists in crafting
a polynomial with the dynamic characteristics desired λ′(s) for the system and equaling its terms
to the resulting characteristic polynomial obtained from the system λ(s) to obtain the coefficients
K matrix.

The selection of the dynamics of the resulting closed-loop system λ′(s) is done by a second order
approach with the remaining poles being much faster that the second order ones, which are the
dominant ones.

If the system is controllable, Ackermann’s formula calculates the K matrix which places the
poles of the closed-loop system in desired locations given by the chosen desired performances.

K =
(

0 0 0 . . . 0 1
)

R−1 λ′(A) (E.23)

The first vector is the last row of the n× n identity matrix. R is the controllability matrix, and
it is clear that the system must be controllable because the inverse of the controllability matrix
must be calculated. λ′(A) is the desired characteristic polynomial of the closed-loop system
considered as a matrix function and evaluated for the matrix A.

E.3.2 Linear-Quadratic Regulator (LQR)

Considering a linear time-invariant system in which the dynamics are described by the group of
linear differential equations:

ẋ(t) = A x(t) + B u(t) (E.24)

y(t) = C x(t) + D u(t)

The objective is to place the poles of the closed-loop system so that the system minimizes the
quadratic cost function:

JLQR =

∫ ∞
0

(
x(t)T Q x(t) + u(t)T R u(t)

)
dt (E.25)

Where x(t)T Q x(t) is the state cost with weight Q and u(t)T R u(t) is the control cost with
weight R. No cross-coupling term N between state and control is considered. The conditions
for the weighting matrices are R > 0 and Q ≥ 0. This is the basic form of the infinite-horizon
linear-quadratic regulator (LQR) problem.

208

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

The solution to this problem is given by the time-invariant linear state feedback control law:

u(t) = −KLQR x(t) (E.26)

KLQR = R−1BTP

The matrix P is the solution to the Riccati algebraic equation:

0 = P A + ATP−PBR−1BTP + Q (E.27)

In order to assign the values of Q and R, the signals are normalized according to the maximum
admissible deviations using Bryson’s rules.

Q =

q1

. . .
qn

 R = ρ

r1

. . .
rm

 (E.28)

qii =
α2
i

(xi)max
rjj =

β2
j

(uj)max

In this case the quadratic cost function becomes:

JLQR =

∫ ∞
0

(n∑
i=1

qiixi(t)
2 + ρ

m∑
j=1

rjjuj(t)
2

)
dt (E.29)

The values of (xi)max and (ri)max represent the maximum acceptable value of the deviation from
the equilibrium point and the maximum acceptable value for the control variable in equilibrium.
This is equivalent to scaling the variables such that when they reach their maximum acceptable
value the component of the diagonal is 1.

∑
i α

2
i = 1 and

∑
j β

2
j = 1 are used to add relative

internal weights between the state and control components. The ρ parameter provides a relative
weighting between the control and state penalties to compare the relative importance between
them. A bigger value will require less control action to minimize the cost function, while a small
value will incentive a bigger control action disregarding the state variables.

Although Bryson’s rules usually gives good results, it might require an additional trial-and-error
iterative design procedure in order to obtain the desirable properties for the closed-loop system.
The value of the ρ parameters, and possible the values of the Q and R matrices, must be tuned
to obtain the ideal solution.

Comparing this method with the pole placement which uses a dominant second order approach
where the closed-loop pole locations are placed with no regard to the amount of control effort
required, the LQR solution selects the closed-loop poles finding a balance between state errors
and control effort. This design method is focused on system performance rather than on the
mechanics of the design process.

Once the space state representation of the system is obtained and the matrices and parameters
set, the solution to the LQR problem must be obtained numerically. The Mathematica function
that does this is LQRegulatorGains.

209

Chapter F

Considerations for the Modelica model

F.1 State variables

The state variables of a dynamic system are the set of variables within the equations of the
system that can be used to describe the state of the system unmistakably. The behavior of
the whole system can be determined for any moment of time for which the values of the state
variables are known. The state variables depend on the nature of the system: in mechanical
systems, state variables are usually position and velocities of the bodies that make the system; in
electrical circuits, the state variables are the voltages in nodes and the currents going through the
components; and in thermodynamic systems, state variables can include temperature, pressure
and internal energy. State variables are those that are found differentiated at least once within
the model equations, for example, position, velocity and acceleration. The differential equations
involving state variables and their derivatives are the mathematical equations that describe the
system and its behavior in the domain of time.

Sometimes different combinations of state variables exist. In this case, SystemModeler uses
dynamic state selection to choose the appropriate state variables at runtime. A lists of possible
time states to be selected is created, and when singularities occur during the simulation, the
solver may change the state variables by selecting an alternative set of states from the lists.
Dynamic state selection may cause simulation time penalties and it can be globally disabled
and well as locally overridden. Under the Tools→Options menu, inside the Global→Translation
screen, dynamic state selection can be globally disabled, enabled for all classes, or only of a
specified set of classes. In this same window it is interesting to check the Selected states logging
option, this will print the selections made regarding state variables in the Build log.

When using the MultiBody library, position and velocities (angular or linear) are the state
variables of mechanical systems, and these magnitudes are usually relative from one body to
another. Relative positions and velocities are defined in terms of the joints that connect bodies
together. For example, a body that is connected to the ground is rotating at a speed of ten
radians per second. This means that state variables are intrinsic to the definition of joints,

211

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

which provide the mathematical constrains that link bodies together. In the Modelica Standard
Library, joint components contain special parameters that allow the custom selection of their
relative positions and velocities as state variables, locally overriding dynamic state selection.
This parameter is found under the Advanced tab in prismatic, revolute, cylindrical, universal
and planar joints as the stateSelect parameter, and as the enforceStates parameter for spherical
joints.

Figure F.1: SystemModeler window where state variables and dynamic state selection options can be tweaked.

There are five different possible values for the stateSelect attribute defined in the StateSelect
enumeration: never, avoid, default, prefer and always. The enforceStates parameter is a boolean
value, being equivalent to StateSelect.default when false and to StateSelect.always when true.

Value Description

never Do not use it as a state at all.
avoid Use as state if it cannot be avoided (only if variable appears differentiated and no

other potential state with attribute default, prefer, or always can be selected).
default Use as state if appropriate, but only if variable appears differentiated.
prefer Prefer it as state over those having the default value (also variables can be selected,

which do not appear differentiated).
always Do use it as a state.

Table F.1: StateSelect enumeration definition.

SystemModeler, and most Modelica-based platforms, use dynamic state selection to determine
which state variables to choose in every time moment along with index reduction algorithms,
which is known as tearing, in order to reduce high-index systems of differential-algebraic equations
to lower index equations. The algorithm behind dynamic state selection is described in a paper

212

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

by Sven Erik Mattsson and Gustaf Söderlind from Lund University1 and the tearing algorithm
is based on a paper by Constantinos Pantelides from the Imperial College of London2. These
algorithms are usually very efficient even for extremely large systems, but under some special
circumstances they can fail or lead to unwanted results.

Figure F.2: Visual representation of a case of inadequate state selection for the model in SystemModeler.
Choosing initial values and state variables incorrectly may lead to wrong initialization of the model causing most
of the times simulation to fail.

In Modelica, variables that could be potentially chosen as state variables of the system can be
given initial values. These variables have two parameters regarding this topic: Initial Value
and Fixed. The Initial Value parameter, as its name indicates, defines the initial value of the
variable, which by default is equal to zero or an array where all elements are zero. The Fixed
parameter indicates the solver which value to use when solving the system of equations. If the
parameter is set to false, which is the default setting for variables, the solver is free to use another
initial value than the one specified if it is necessary to solve the equations. When set to true,
the solver must use the initial value specified. When manually selecting state variables, it is
very interesting to make use of this setting to achieve the correct solution to the initialization
problem (initial position) of the model. For example, in some mechanical configurations there
could be two different solutions for the position of a body which is connected to another one
using a kinematic pair (the connected body could be on one side of the base body or on the
other) and forcing the initial value on the correct variables will cause the model to start with
the desired configuration.

Fixing the initial value for variables must be done with caution. Variables and their derivatives
are found in nonlinear systems of equations, typically along with many other variables. Therefore
it is not only one variable’s initial value that matters, but several.

1Mattsson, S. and Söderlind, G.. "Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives."
SIAM Journal on Scientific Computing 14, no. 3: pp. 677-692. (1993)

2Pantelides, C.. "The Consistent Initialization of Differential-Algebraic Equations." SIAM Journal on Scientific
Computing 9, no. 2: pp. 213-231. (1988)

213

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

SystemModeler outputs notifications regarding state selection and the initialization problem in
the model. These messages can be found in the build log of the Simulation Center. Selected
state variables are listed after the message: The following variables are selected as states. If the
initialization problem is not fully determined, which can lead to the solver choosing the undesired
solution from the multiple possible solutions of the equations, the list to variables in conflict are
listed under the message: The initialization problem is underdetermined. One must review the
output of the build log to check if the state selection is correct and to correct underdetermined
initialization problems.

The initialization problem of the model must be exactly determined regarding the relevant
variables that have the choice of initial value specification. This is done by setting the Fixed
parameter to true in the variables listed under the initialization message in the build log. Not
all variables can have a fixed initial value, one must chose the most relevant or sensitive
variables for the dynamic response of the model. If too much variables have fixed initial values
or they contain incompatible combinations, the build log will include the notification: The
initialization problem is overdetermined. Overdetermined initialization problems usually
produce the simulation to fail before even starting because the solver is unable to find a
suitable starting position. There is a limit on how many variables can have fixed initial values
before the problem becomes overdetermined.

Figure F.3: Visual representation of the correctly initialized model in SystemModeler. The green spheres
represent the center of mass of each of the bodies and the blue sphere the center of mass of the whole model.

214

Design of a Boston Dynamics Handle Robot Prototype with RecurDyn and Mathematica

F.2 Planar loops in the MultiBody library

Just as it happens in other CAE software, the presence of redundant constraints is a problem
when defining mechanical systems in the Modelica language.

If a mechanical closed loop is defined in a classical way, without considering the theory of self-
aligning mechanisms, it will have redundant constraints. A closed loop is a typical example of a
mechanism where redundant constraints appear; three redundant constraints appear for planar
loops where all the joints allow motion in the same plane, and five redundant constraints appear
when the loop is defined in three dimensional space. This is an issue that has been addressed by
the Modelica developers.

In order to resolve the problems derived from a planar closed loop formed by revolute joints,
the Mechanics.MultiBody.Joints.RevolutePlanarLoopConstraint component was developed in the
Modelica Standard Library. When a planar loop is present, e.g. a four-bar mechanism with four
revolute joints with axes parallel to each other, there is no unique solution to the system if all the
joints are standard revolute joints, causing the solving algorithms to fail. This specially patched
component replaces the redundant constraints with the appropriate known variables, e.g. the
force in the perpendicular direction of the loop (in the direction of the axis of rotation) is set to
zero instead of being an unknown quantity as it happens in standard revolute joints.

Figure F.4: Modelica Mechanics.MultiBody.Joints.RevolutePlanarLoopConstraint component.

The usage of these specially patched components available in Modelica is an alternative to self-
aligning mechanisms, but it should be used with caution. For more complex mechanisms, there
might not be possible to replace a revolute joint with this patched version of it, and it is more
appropriate to take some time to consider how to remove redundant constraints using self-aligning
mechanisms. This will make the designer have a greater insight of how the model works and be
able to anticipate possible issues that could rise when choosing to build the mechanism in the
physical world.

215

Bibliography

Beretta, Robert (1995). Mechanical Systems Pack. User’s Guide. Ed. by Wolfram Research.

Bolt, Brian (1991). Mathematics meets technology. Ed. by Cambridge University Press.

Boston Dynamics (2017). Handle. url: https://www.bostondynamics.com/handle.

FunctionBay Inc. (2017). V9R1 RecurDyn Manual.

Haug, Edward J. (1989). Computer aided kinematics and dynamics of mechanical systems.
Ed. by Allyn and Bacon.

How, Jonathan and Frazzoli, Emilio (2010). 16.30 Feedback Control Systems. Fall 2010.
Ed. by Massachusetts Institute of Technology: MIT OpenCourseWare. url: https://ocw.
mit.edu.

McCormack, Anthony S. and Godfrey, Keith R. (1998). “Rule-Based Autotuning Based on
Frequency Domain Identification”. In: IEEE Transactions on Control Systems Technology,
Volume 6 Number 1, January 1998.

Reshetov, Leonid Nikolayevich (1982). Self-aligning mechanisms. Ed. by Mir Publishers.

Shimizu, Nobuyuki (2015). Recurdyn for Beginners. Innovation for Design and Analysis with
Multibody Dynamics. Ed. by FunctionBay Inc.

Tiller, Michael (2015). Modelica by Example.

Wolfram Research (2018). Wolfram MathWorld. url: https://mathworld.wolfram.com.

217

https://www.bostondynamics.com/handle
https://ocw.mit.edu
https://ocw.mit.edu
https://mathworld.wolfram.com

Index

Canonical form, 43
Center of mass, 65
Constrained equations of motion, 185
Constraint equations, 163
Control theory, 195
Coordinate transformation, 181
Cosine formula, 169

Driven to free motion, 79

Equilibrium angle, 67

Grübler-Kutzbach criterion, 160

Handle
Dynamic model, 47
Initial position, 22
Introduction, 4
Mathematica kinematic model, 41
Modelica model in SystemModeler, 86
RecurDyn model, 64
SolidWorks model, 22

Lagrangian mechanics, 184
Linear-quadratic regulator, 208

Mobility formula, 159

Operating point, 59

PID controller, 199
Pole placement, 202

Redundant constraints, 161
Relative angle constraint, 170
Relative distance constraint, 170

Self-aligning mechanisms, 157
Space state linearization, 190
Space state representation, 189
Space state to transfer function, 193
State feedback control, 207
State variables, 211
Step functions

Cubic polynomial, 174
Haversine function, 176
Introduction, 173
Logistic function, 177
Quintic polynomial, 175

Tangent half-angle formulas, 168

Variable-sided triangles, 167

Working range, 45

Ziegler-Nichols closed-loop method, 201

219

	I Descriptive Memory
	1 Introduction
	1.1 Boston Dynamics Handle
	1.2 Computational tools
	1.2.1 Mathematica
	1.2.2 SolidWorks
	1.2.3 RecurDyn
	1.2.4 SystemModeler

	1.3 Motivation

	2 Objectives
	3 Methodology
	3.1 Simplified 2-dimensional model in SolidWorks
	3.1.1 Theoretical model development
	3.1.2 From theory to practice
	3.1.3 Body definitions
	3.1.3.1 Body 1: Ground
	3.1.3.2 Body 2: Wheel
	3.1.3.3 Body 3: Lower leg
	3.1.3.4 Body 4: Upper leg
	3.1.3.5 Body 5: Trunk
	3.1.3.6 Body 6: Head
	3.1.3.7 Body 7: Upper arm
	3.1.3.8 Body 8: Lower arm
	3.1.3.9 Body: Cylinder barrel
	3.1.3.10 Body: Cylinder rod
	3.1.3.11 Parameter values
	3.1.3.12 Inertial properties

	3.1.4 Model definition
	3.1.4.1 Initial position values
	3.1.4.2 Redundant constraint analysis
	3.1.4.3 Self-alignment of the linear actuators
	3.1.4.4 Resulting self-aligned model

	3.1.5 Kinematic motion definition
	3.1.5.1 Slider motion
	3.1.5.2 Angular motor motion
	3.1.5.3 First linear actuator motion
	3.1.5.4 Second linear actuator motion
	3.1.5.5 Third linear actuator motion
	3.1.5.6 Fourth linear actuator motion
	3.1.5.7 Fifth linear actuator motion

	3.2 Symbolic mathematical model in Mathematica
	3.2.1 Mathematical definition of bodies
	3.2.1.1 Body 2: Wheel
	3.2.1.2 Body 3: Lower leg
	3.2.1.3 Body 4: Upper leg
	3.2.1.4 Body 5: Trunk
	3.2.1.5 Body 6: Head
	3.2.1.6 Body 7: Upper arm
	3.2.1.7 Body 8: Lower arm
	3.2.1.8 Center of mass calculation

	3.2.2 Kinematic model definition
	3.2.2.1 Solution structure
	3.2.2.2 Kinematic simulation

	3.2.3 Working range
	3.2.4 Dynamic model definition
	3.2.4.1 Inverted pendulum using Lagrangian mechanics
	3.2.4.2 Inverted pendulum using Newton's laws
	3.2.4.3 Inverted pendulum using constraint equations
	3.2.4.4 Space state model
	3.2.4.5 Operating point
	3.2.4.6 Linearization
	3.2.4.7 Dynamic simulation

	3.3 Dynamic control in RecurDyn
	3.3.1 Importing model into RecurDyn
	3.3.2 Obtaining the center of mass
	3.3.3 Obtaining the equilibrium angle
	3.3.4 PID controller design
	3.3.4.1 Pendulum angle controller
	3.3.4.2 Pendulum angle and cart position controller
	3.3.4.3 Implementation in CoLink

	3.3.5 State feedback controller design
	3.3.5.1 Pole placement method
	3.3.5.2 Linear-Quadratic Regulator
	3.3.5.3 Implementation in CoLink

	3.3.6 Dynamic simulation
	3.3.6.1 Driven motion to free motion

	3.4 Modelica-based model in SystemModeler
	3.4.1 Custom components
	3.4.1.1 Step5 component
	3.4.1.2 PrismaticMotion component
	3.4.1.3 RevoluteMotion component
	3.4.1.4 VectorTranslation component

	3.4.2 Model definition
	3.4.3 PID controller implementation
	3.4.4 State feedback controller implementation

	4 Presentation and Analysis of Results
	4.1 Introduction
	4.2 SolidWorks and COSMOSMotion
	4.2.1 Self-aligned model
	4.2.2 COSMOSMotion kinematic motion results
	4.2.2.1 Position results
	4.2.2.2 Velocity results
	4.2.2.3 Acceleration results

	4.3 Mathematica
	4.3.1 Kinematic model
	4.3.1.1 Equations of motion
	4.3.1.2 Comparison between Mathematica and COSMOSMotion kinematic results

	4.3.2 Working range
	4.3.3 Interactive visual representation
	4.3.4 Dynamic model
	4.3.4.1 Free motion results

	4.3.5 Comparison between RecurDyn and Mathematica dynamic free motion results

	4.4 RecurDyn
	4.4.1 Model
	4.4.2 Controllers
	4.4.2.1 Ziegler-Nichols closed-loop method
	4.4.2.2 PID controller for pendulum angle
	4.4.2.3 Double PID controller for pendulum angle and cart position
	4.4.2.4 State feedback control using pole placement
	4.4.2.5 State feedback control using a Linear-Quadratic Regulator
	4.4.2.6 CoLink closed-loop control structures

	4.5 SystemModeler
	4.5.1 Model
	4.5.2 Controller comparison between SystemModeler and RecurDyn
	4.5.2.1 Ziegler-Nichols closed-loop method
	4.5.2.2 PID controller for pendulum angle
	4.5.2.3 Double PID controller for pendulum angle and cart position
	4.5.2.4 State feedback control using pole placement
	4.5.2.5 State feedback control using a Linear-Quadratic Regulator
	4.5.2.6 Discussion

	5 Discussion and conclusion
	5.1 Discussion
	5.1.1 Model simplification
	5.1.2 Kinematic model
	5.1.3 Dynamic model
	5.1.4 Control

	5.2 Future work
	5.2.1 Model complexity increase
	5.2.2 Control structures

	5.3 Conclusion

	II Budget
	1 Introduction
	2 Budget
	2.1 Labor cost
	2.2 Hardware cost
	2.3 Software cost

	3 Summary

	III Appendices
	A Self-aligning mechanisms
	A.1 Basic notions
	A.2 Redundant constraints and self-aligning mechanisms
	A.3 Application to CAE software
	A.3.1 Bushing forces

	B Variable-sided triangles
	B.1 Trigonometric notions
	B.1.1 Tangent half-angle formulas
	B.1.2 Cosine formula

	B.2 Mathematical definition of variable-sided triangles

	C Interpolating step functions
	C.1 STEP function
	C.2 STEP5 function
	C.3 HAVSIN function
	C.4 LOGISTIC function
	C.5 Function comparison
	C.6 Conclusion

	D Kinematics and dynamics of mechanical systems
	D.1 Coordinate transformation
	D.2 Equations of motion
	D.2.1 Newton's Laws
	D.2.2 Lagrangian mechanics
	D.2.3 Constraint equations

	D.3 Space state representation
	D.4 Space state linearization
	D.5 Space state to transfer function

	E Controller design
	E.1 Control theory
	E.2 PID Controller
	E.2.1 Influence of the different terms
	E.2.1.1 Proportional term
	E.2.1.2 Integral term
	E.2.1.3 Derivative term
	E.2.1.4 Considerations

	E.2.2 Tuning
	E.2.2.1 Manual tuning
	E.2.2.2 Pole placement

	E.2.3 Discrete approximation

	E.3 State feedback control
	E.3.1 Pole placement
	E.3.2 Linear-Quadratic Regulator (LQR)

	F Considerations for the Modelica model
	F.1 State variables
	F.2 Planar loops in the MultiBody library

	Bibliography
	Index

