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1. Summary 

 

The ability of an oocyte to undergo successful cytoplasmic and nuclear maturation is 

fundamental for fertilization and embryo development.  

The aim of this study was to evaluate the effect of Nobiletin supplementation during In vitro 

maturation (IVM) of bovine oocytes on nuclear and cytoplasmic maturation and their 

developmental competence. Nobiletin is a polymethoxylated flavonoid isolated from citrus 

fruits exhibiting a wide biological effect in cell adhesion, cell migration, cell cycle regulation and 

inhibition of reactive oxygen species (ROS) production; important factors for oocyte IVM.  

Immature cumulus oocytes complexes (COCs) were aspirated from ovaries of slaughtered 

heifers. Selected COCs were in vitro matured in TCM-199+10% foetal calf serum (FCS) and 10 

ng/ml epidermal growth factor (EGF) (Control) supplemented either with 10, 25, 50 and 100 µM 

of Nobiletin (N10, N25, N50 and N100 respectively) or 0.01% dimethyl sulfoxide (CDMSO), 

vehicle for nobiletin dilution. After 24 h of IVM at 5% CO2 in air at 38.5 °C, a representative 

number of oocytes from each group were fixed and stained to evaluate nuclear and cytoplasmic 

maturation. In addition, oocytes were stained to measure oocyte metabolism in terms of ROS 

and glutathione (GSH) content. The remaining oocytes were fertilized and cultured in vitro to 

evaluate their developmental competence by cleavage rate and blastocyst yield.  

Significantly higher percentage of matured oocytes were observed in metaphase II when N25 

(87±0.6%) or N50 (89.3±0.3%) were added to the IVM medium compared to N10 (72.9±0.3%), 

N100 (71.5±0.8%), Control (71.7±0.7%) and CDMSO (70.5±0.5%) groups. Furthermore, N25 and 

N50 showed higher rate of oocytes with peripheral migration of cortical granules (85.7±0.3% 

and 89.9±2.2% respectively) and mitochondria (86.7±0.6% and 88.9±1.2% respectively) 

compared to the remaining groups (P<0.05). In addition, the supplementation of N25 and N50 

showed a significant reduction (P<0.05) in the ROS (2.53±0.8; 2.62±1.2 a.u. respectively), and 

GSH (2.84±0.4; 3.09±0.1 a.u. respectively) content in comparison with all other groups. Cleavage 

rate was significantly higher (P<0.05) for N25 (89.9±0.3%) and N50 (91.3±0.3%) compared to all 

other groups (N10: 75.6±0.3%; N100: 74.0±0.6%; Control: 74.2±0.4%; and CDMSO: 73.6±0.4%). 

Similarly, cumulative blastocyst yield at D8 was significantly higher (P<0.05) for N25 (32.1±0.8%) 

and N50 (35.5±0.8%) compared to N10 (23.1±0.7%), N100 (24.5±0.9%), Control (25.9±0.4%) and 

CDMSO (26.1±0.6%) groups. In conclusion, supplementation of 25 µM or 50 µM of Nobiletin to 

the IVM medium improves oocyte nuclear and cytoplasmic maturation, reduces oxidative stress 

and improve embryo development. 
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2. Resumen 

 

La habilidad del ovocito para lograr una maduración nuclear y citoplasmática exitosa es 

fundamental para la fertilización y el desarrollo embrionario. 

 

El objetivo de este estudio fue evaluar el efecto de la suplementación con Nobiletina durante la 

maduración in vitro de ovocitos bovinos. La Nobiletina es un flavonoide aislado de las frutas 

cítricas, con vastos efectos en adhesión celular, migración celular, regulación del ciclo celular e 

inhibición de la producción de radicales libres de oxigeno (ROS); todos ellos son factores 

importantes en la maduración in vitro (MIV) de ovocitos.  

Complejos cumulo-ovocitarios (COCs) fueron aspirados de ovarios provenientes de terneras 

sacrificadas para consumo. Los COCs seleccionados fueron madurados in vitro en TCM-199+10% 

suero fetal bovino (FCS) and 10 ng/ml factor de crecimiento epidermal (EGF) (Control) 

suplementado con 10, 25, 50 y 100 µM de Nobiletina (N10, N25, N50 and N100 respectivamente) 

y 0.01% dimetilsulfóxido (CDMSO), como diluyente de la Nobiletina. Después de 24 h de MIV a 

5% CO2 y 38.5 °C, un numero representativo de ovocitos de cada grupo fueron fijados y teñidos 

para evaluar maduración nuclear y citoplasmática. Asimismo, un numero representativo de 

ovocitos fueron teñidos para medir metabolismo ovocitario en términos de contenido de ROS y 

glutatión (GSH). Los ovocitos restantes fueron fertilizados y cultivados in vitro para evaluar su 

capacidad de desarrollo a través de la tasa de división y el rendimiento de blastocistos.  

Un porcentaje significativamente alto de ovocitos fueron observados en metafase II en los 

grupos N25 (87±0.6%) y N50 (89.3±0.3%) comparado con los grupos N10 (72.9±0.3%), N100 

(71.5±0.8%), Control (71.7±0.7%) y CDMSO (70.5±0.5%). Asimismo, los grupos N25 y N50 

mostraron una tasa superior de migración de gránulos corticales (85.7±0.3% y 89.9±2.2% 

respectivamente) y mitocondrias (86.7±0.6% y 88.9±1.2% respectivamente) comparado con los 

restantes grupos (P<0.05). Los grupos N25 y N50 también mostraron una reducción significativa 

(P<0.05) en los niveles de ROS (2.53±0.8; 2.62±1.2 a.u. respectivamente), y GSH (2.84±0.4; 

3.09±0.1 a.u. respectivamente) en comparación con los otros grupos. La tasa de división fue 

significativamente superior (P<0.05) en los grupos N25 (89.9±0.3%) y N50 (91.3±0.3%) 

comparado con los otros grupos (N10: 75.6±0.3%; N100: 74.0±0.6%; Control: 74.2±0.4%; y 

CDMSO: 73.6±0.4%). De forma similar, el rendimiento acumulativo de blastocistos fue 

significativamente más alto (P<0.05) para los grupos N25 (32.1±0.8%) y N50 (35.5±0.8%) 

comparado con N10 (23.1±0.7%), N100 (24.5±0.9%), Control (25.9±0.4%) y CDMSO (26.1±0.6%). 

En conclusión, la suplementación con 25 µM y 50 µM de Nobiletina en el medio de MIV mejora 

la maduración nuclear y citoplasmática de los ovocitos, y reduce el estrés oxidativo mejorando 

el desarrollo embrionario. 
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3. Resum 

L'habilitat de l'oòcit per aconseguir una maduració nuclear i citoplasmàtica reeixida és 

fonamental per a la fertilització i el desenvolupament embrionari. 

L'objectiu d'aquest estudi va ser avaluar l'efecte de la suplementació amb nobiletina durant la 

maduració in vitro d'oòcits bovins. La nobiletina és un flavonoide aïllat de les fruites cítriques, 

amb vasts efectes en adhesió cel·lular, migració cel·lular, regulació del cicle cel·lular i inhibició 

de la producció de radicals lliures d'oxigen (ROS); tots ells són factors importants en la maduració 

in vitro (MIV) d'ovòcits. 

Complexos cúmul-ovocitarios (COCs) van ser aspirats d'ovaris provinents de vedelles sacrificades 

per a consum. Els COCs seleccionats van ser madurats in vitro en TCM-199 + 10% sèrum fetal 

boví (FCS) and 10 ng/ml factor de creixement epidermal (EGF) (Control) suplementat amb 10, 

25, 50 i 100 micres de nobiletina (N10, N25, N50 and N100 respectivament) i 0,01% 

dimetilsulfòxid (CDMSO), com diluent de la nobiletina. Després de 24 h de MIV a 5% CO2 i 38.5 

° C, un nombre representatiu d'ovòcits de cada grup van ser fixats i tenyits per avaluar maduració 

nuclear i citoplasmàtica. Així mateix, un nombre representatiu d'ovòcits van ser tenyits per 

mesurar metabolisme ovocitario en termes de contingut de ROS i glutatió (GSH). Els oòcits 

restants van ser fertilitzats i cultivats in vitro per avaluar la seva capacitat de desenvolupament 

a través de la taxa de divisió i el rendiment de blastocists. 

Un percentatge significativament alt d'ovòcits van ser observats en metafase II en els grups N25 

(87 ± 0.6%) i N50 (89.3 ± 0.3%) comparat amb els grups N10 (72.9 ± 0.3%), N100 (71.5 ± 0.8%), 

Control (71.7 ± 0,7%) i CDMSO (70.5 ± 0.5%). Així mateix, els grups N25 i N50 van mostrar una 

taxa superior de migració de grànuls corticals (85.7 ± 0.3% i 89.9 ± 2.2% respectivament) i 

mitocòndries (86.7 ± 0.6% i 88.9 ± 1.2% respectivament) comparat amb la resta de grups (P < 

0.05). Els grups N25 i N50 també van mostrar una reducció significativa (P <0.05) en els nivells 

de ROS (2.53 ± 0.8; 2.62 ± 1.2 au respectivament), i GSH (2.84 ± 0.4; 3.09 ± 0.1 au 

respectivament) en comparació amb els altres grups. La taxa de divisió va ser significativament 

superior (P <0.05) en els grups N25 (89.9 ± 0.3%) i N50 (91.3 ± 0.3%) comparat amb els altres 

grups (N10: 75.6 ± 0.3%; N100: 74.0 ± 0.6%; control: 74.2 ± 0,4%, i CDMSO: 73.6 ± 0.4%). De 

manera similar, el rendiment acumulatiu de blastocists va ser significativament més alt (P <0.05) 

per als grups N25 (32.1 ± 0.8%) i N50 (35.5 ± 0.8%) comparat amb N10 (23.1 ± 0,7%), N100 (24.5 

± 0,9%), Control (25.9 ± 0.4%) i CDMSO (26.1 ± 0.6%). En conclusió, la suplementació amb 25 

micres i 50 micres de nobiletina en el medi de MIV millora la maduració nuclear i citoplasmàtica 

dels ovòcits, i redueix l'estrès oxidatiu millorant el desenvolupament embrionari. 
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4. Introduction 

 

4.1 Oocyte developmental competence and early embryo development in vivo 

In cattle, the process of oogenesis begins in the fetal ovary (day 70-80 of pregnancy) and female 

calves are born with thousands oocytes as primordial and primary follicles until puberty (Van 

Eetvelde et al., 2017). During oogenesis, oogonia experiment mitotic divisions and early stages 

of meiosis becoming oocytes arrested at the diplotene stage of prophase I (the germinal vesicle 

stage), until they are committed to ovulation or atresia (Lonergan & Fair, 2016).  

As the oocyte progresses through oogenesis, it maintains a relationship within the ovarian 

follicle ensuring that the two processes, oogenesis and folliculogenesis, are integrated. The 

follicular growth begins when the shape of the granulosa cells change from flattened to cuboidal 

constituting the primary follicle (Braw-Tal, 2002). Then, the increase of granulosa cells in layers 

in the follicles, originates the secondary follicles. Granulosa cell proliferation finish in the tertiary 

follicles, also called antral follicles (Lussier et al., 1987). The bovine oocyte reaches its full size 

when the follicle enclosing it reaches 

a diameter of approximately 3 mm 

(Fair et al., 1995).  

Resumption of meiosis and 

progression through maturation 

result in arrest at the metaphase II 

stage, with the extrusion of the first 

polar body and a DNA complement 

of 1n2C. Penetration of the sperm 

leads to extrusion of the second 

polar body and establishment of a 

1n1C state in the oocyte, leading to 

a diploid embryo (2n2C) after the 

first mitotic division following 

fertilization as shown in Figure 1 

(Lonergan & Fair, 2016)  

                                              

During oogenesis, oocyte passes from different phases:  

a. Growth phase 

The major factors that regulate development during the growth phase (pre-antral), 

involve paracrine and gap–junction mediated signalling mechanisms.  

During the growth phase, the mitotic proliferation of oogonia occurs in the prenatal 

gonad and is accompanied by entry into meiotic prophase I (PI). In the dictate arrest, 

the oocyte transit from a quiescent non-growing state within the primordial follicle to 

an active growth one, start with an expansion in size, because of new proteins and RNAs 

synthesized, and hyperplasia and organelles.  

This period of gene expression becomes repressed and the oocytes remain in meiotic 

arrest with a germinal vesicle (GV), and the pre-granulosa cells form primordial follicles. 
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The follicles wait in this state until the correct endocrine cues to resume division, or 

activation. Meiosis does not resume in mammals until after puberty (Reviewed by D. 

Albertini, 2015). 

b. Pre-maturation phase and maturation stage 

During pre-maturation and maturation phases (antral follicles), follicle-stimulating 

hormone (FSH) promotes growth and differentiation of somatic cells, ensuring that they 

eventually acquire sensitivity to LH, the primary trigger for ovulation and oocyte 

maturation.  

The estrous cycle in cattle is composed of two or three waves of follicular growth 

involving emergence of a new wave of follicles in association with a transient rise in 

follicle-stimulating hormone (FSH), growth of a follicular cohort, and selection of a 

dominant follicle. Each follicular wave culminates in development of a single 

nonovulatory or ovulatory dominant follicle (Ireland et al., 2000). If the dominant follicle 

develops at a time when progesterone concentration is low, it is exposed to an 

appropriate LH pulsatility pattern and will go on to ovulate. The trigger for resumption 

of meiosis in the oocyte within the dominant follicle is the preovulatory surge of LH, 

which activates the breakdown of the germinal vesicle (GVBD) and progression to 

metaphase II. Each of these phases in maturation has been identified as error-prone in 

terms of nuclear (genetic, epigenetic) or cytoplasmic quality and have been implicated 

as determinants of embryonic developmental competence (Krisher, 2004). 

Approximately 27 h after the onset of the LH surge, ovulation takes place, and the now-matured 

oocyte (arrested in MII) is released along with the cells that surround it (cumulus oophorous) 

and the fimbria of the infundibulum that surrounds the ovary allows the passage of the cumulus-

oocyte complex (COC) into the oviduct. Is only upon fertilization, via the influx of calcium ions 

that is triggered by sperm penetration, that MII stage progress once the sperm enters through 

the zona pellucida (ZP), the glycoprotein coat surrounding the oocyte. 

The oviduct plays a key role in the finale maturation and the transport of the gametes. The 

mucosa epithelium is formed by secretory and ciliary columnar cells, responsible for the 

secretions and the movement of the gametes and embryos through the oviduct respectively 

(Leese et al., 2008). In the bovine species, the proportion of ciliated and secretory cells as well 

as their morphology changes during the oestrous cycle under hormonal control (Abe, 1996; 

Mukherjee et al., 2014b). Apart from the own oviduct secretions, the oviductal fluid (OF) has 

also components from the plasma such as albumin or amino acids. On one hand, ciliated cells 

and both muscular layers, guide the oocyte to the ampullary isthmic junction, where fertilization 

takes places (Reviewed by Croxatto, 2015). On the other hand, and at the same time, sperm 

progress in a counter-current from the distal portion of the oviduct. While a portion migrates to 

the ampulla, the majority remains in the isthmus establishing a sperm reservoir, where the 

sperm cells adhere to the ciliated cells delaying capacitation (Coy et al., 2012). 
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Finally, after fertilization, the ciliary activity of the ampulla moves the zygote to the isthmus 

(Kölle et al., 2009). Approximately 24 hours post fertilization, the first cleavage occurs, this 

process lead the embryo to a 2-cells, 4-cells (36 hours), 8-cells (72 hours), and 16-cell stage (84-

96 hours). This is the most critical period of mammalian development because it includes 

embryonic genome activation, which occurs at the 8- to 16-cell stage in the bovine (Memili & 

First, 2000a) and is critical for future cell differentiation, embryo implantation, and fetal 

development (Niemann & Wrenzycki, 2000). Then, the embryo enters the uterus and by day 7 

forms a blastocyst consisting of an inner cell mass, which gives rise to the foetus, and the 

trophoectoderm (TE), which forms the placenta. On days 9–10, the blastocyst hatches from the 

ZP and soon begins the process of elongation, which involves transitions from a spherical 

blastocyst on day 7 of gestation, through ovoid (days 12–13), tubular (days 14–15), and finally 

filamentous forms around days 16–17 before implantation which begins at Day 19 (see Figure 

2) (Degrelle et al., 2005; Senger, 2005).  

 

4.2 In vitro embryo production (IVP) 

In 1988 Lu et al. (1988) developed a method to produce embryos entirely in vitro with the 

advances in the knowledge of oocyte maturation and sperm capacitation. The fact of being able 

to mature oocytes in vitro also opened the possibility of recovery oocytes from ovaries collected 

at the slaughterhouse, therefore significantly decreasing the cost of the IVP. Therefore, the IVP 

became quickly a commercial reality and a tool for breeding-improvement purposes. Moreover, 

the IPV in mammals allow us to enhance our understanding of oocyte maturation and early 

embryo development during the preimplantation stages. 

Production of embryos in vitro is a three-step process involving oocyte maturation (IVM), oocyte 

fertilization (IVF), and subsequent culture of the zygote to the blastocyst stage (in vitro culture, 

IVC).  

Even when reproductive research has led great progress during the past 30 years, the production 

process of in vitro embryos is far from optimal nowadays. From the oocytes recovered from 
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slaughterhouse ovaries, 90% undergo matured (nuclear and cytoplasmic maturation). Of those, 

80 % are successfully fertilized and divide into 2 cells stage (Lonergan et al., 2003). However, 

only 30% of the matured oocytes manage to reach the blastocyst stage (Rizos et al., 2008). In 

addition, in vitro embryos are of inferior quality compared to in vivo counterparts, in terms of 

morphology, cryotolerance, gene expression patterns (Rizos et al., 2008), and inner cell mass 

(ICM)/trophoectoderm (TE) cells ratios (Plourde et al., 2012). Moreover, after transfer of these 

embryos into recipient cows, pregnancy rate is between 40-60% compared to about 70% when 

in vivo embryos are transferred (Hasler et al., 1995). There is convincing evidence that the 

quality of the oocyte is the principal factor determining the blastocyst yield, while 

postfertilization culture environment, within limits, does not have a major influence on the 

ability of the immature oocyte to ultimately form a blastocyst, but have a major impact in the 

quality of the blastocysts (Rizos et al., 2002). 

 

4.2.1 In vitro maturation (IVM) 

Although the rate of oocytes maturation is high (90%) (Lonergan, et al. 2003), there are many 

factors to consider achieving it, and adverse consequences from in vitro maturation have been 

noted in several mammalian species (Plant et al., 2015). Oocyte origin is what determines the 

final embryo production; those which have matured in vivo and then have been fertilized and 

cultured in vitro are more likely to reach the blastocyst stage than those which have undergone 

the whole process in vitro (Rizos et al., 2002).  

As part of the procedures for the in vitro production of bovine embryos, IVM is initiated 

immediately following the removal of the immature oocyte from small to medium-sized antral 

follicles. The quality and therefore the blastocyst rate, is influenced by the size of the follicle 

aspirated. Oocytes recovered from follicles of more than 6 mm yield a higher proportion of 

blastocyst compared with follicles between 2-6 mm (65.3% and 34.3% respectively) (Lonergan 

et al., 1994). Cumulus-oocyte complexes (COCs) for research purpose are from a very 

heterogeneous pool of 2-6 mm follicles and are still, several days away from possible ovulation. 

In contrast, the follicle that ovulates a mature oocyte at metaphase II grows to a size of 15–20 

mm (Reviewed by Lonergan, 2016). 

Once obtained COCs are selected for in vitro maturation by morphological criteria based on the 

appearance of the cytoplasm, and the presence or absence of cumulus cells (CCs).  

According to these features the COCs are classified into 4 groups (de Loos et al., 1989): 

- Grade 1: oocytes with more than 4-5 layers of cumulus cells, complete and compact, and a 

homogeneous cytoplasm.  

- Grade 2: oocytes with fewer layers of cumulus cells, between 1 and 3, with homogeneous 

cytoplasm or a darker area on the perimeter of the oocyte.  

- Grade 3: oocytes without cumulus cells or not surrounded by them, with darker and/or 

irregular cytoplasm.  

- Grade 4: expanded oocytes, and pyknotic or very dark and/or irregular oocyte cytoplasm.  

The cumulus cells play a critical role in the development of the oocyte, the cellular 

communication between oocytes and cumulus cells is complex, and both sides have active 
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regulatory roles (Fernando H. Biase & Kimble, 2018). During folliculogenesis, CCs provide 

metabolites and nutrients and support meiotic arrest and cytoplasmic maturation of the oocyte, 

for instance, by exporting cyclic AMP (Conti et al., 2012), calcium (Amireault & Dubé, 2005), and 

other metabolites (Gilchrist et al., 2004; Wigglesworth et al., 2013). 

Cumulus cell expansion is also an important marker for oocyte maturation and is induced by 

gonadotrophin stimulation in vivo and in vitro leading to massive production of mucoid 

extracellular matrix protein (Chen et al., 1990). This process, in vivo, facilitates COC removal 

from the follicle wall, its extrusion during ovulation and its capture by the oviductal fimbriae.  In 

cattle, in vitro cumulus cell expansion was shown to be essential for fertilization and subsequent 

cleavage and blastocyst development (Gutnisky et al., 2007; Nagyova, 2012). 

Oocyte maturation involves (i) nuclear maturation, i.e., progression from prophase I to 

metaphase II with extrusion of the first polar body, (ii) cytoplasmic maturation which includes 

organelle redistribution, and (iii) molecular maturation that involves the accumulation of specific 

mRNAs (Sirard, 2001). 

(i) Nuclear maturation 

Nuclear maturation implicate the transition from a germinal vesicle nucleus to a second 

metaphase arrangement of the chromosomes and formation of a first polar body by the time of 

ovulation in most species so far studied (Andreu-Vázquez et al., 2010). 

In vivo the trigger for resumption of meiosis in the oocyte within the dominant follicle is the 

preovulatory surge of LH, which triggers GVBD and progression to metaphase II (Lonergan & 

Fair, 2016). 

The follicular environment is responsible both for maintaining meiotic arrest of the oocyte at 

prophase I (germinal vesicle stage) and for resumption of meiosis. High levels of intraoocyte 

cAMP keep the oocyte in meiotic arrest by suppressing maturation promoting factor activity via 

stimulation of cAMP-dependent protein kinase A. The preovulatory gonadotrophin surge causes 

a drop in follicular and oocyte cGMP levels, leading to upregulated oocyte phosphodiesterase 

activity, which causes a fall in intraoocyte cAMP and meiotic resumption (Norris et al., 2009; 

Vaccari et al., 2009). 

However, when the oocyte is removed from the follicle before the LH surge, as in IVM, 

spontaneous resumption of meiosis occurs (Pincus & Enzmann, 1935) before the completion of 

cytoplasmic maturation, and this compromises developmental competence (Sánchez & Smitz, 

2012). Therefore, strategies to maintain meiotic arrest before initiating IVM have used to 

improve embryo development (Soares et al., 2017). 

(ii) Cytoplasmic maturation 

Typical oocytes submitted to IVM, although capable of high rates of nuclear maturation, have 

had insufficient time to undergo normal cytoplasmic maturation (Lonergan & Fair, 2016). 

It has been hypothesized that by delaying spontaneous resumption of meiosis in vitro, continued 

mRNA and/or protein accumulation in the oocyte may enhance cytoplasmic maturation 

(Bilodeau-Goeseels, 2012). However, although it is possible to reversibly inhibit meiotic 

resumption, evidence for a positive effect on oocyte competence is relatively sparse. 
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Also, the addition of pharmacological compounds that allow prolong the oocyte maturation 

period to promote a longer interaction between the immature oocyte with adequately 

conditioned cumulus cells have reported promising results (Gilchrist, 2011). 

Despite the attempts to recapitulate in vitro some of the events that occur naturally during 

oocyte maturation in vivo, during IVM oocytes may have neither the time nor the correct 

environment to complete the necessary changes required for subsequent successful 

development (Lonergan & Fair, 2016). 

Those include relocation and modification of organelles, acquiring functional Ca2+ release 

mechanisms, capacity to decondense the chromatin of the fertilizing sperm (Eppig et al., 2008). 

Organelles modification during maturation: 

• Oocyte mitochondria   

Maternal mitochondria play a key role in the ability of oocytes to be competent because the 

whole preimplantation period is sustained by mitochondria produced during oogenesis, and 

only when the embryo begins implantation, their production is resumed (Jansen, 2000). 

Organization and continued metabolic activity of mitochondria are necessary features of 

cytoplasmic maturation and resumption of meiosis (Cummins, 1998; Hyttel et al., 1986), 

affecting subsequent development after fertilization (Bavister, 2000).  

- Mitochondrial distribution  

In bovine oocytes, the major relocation of mitochondria occurs during in vitro maturation (IVM) 

and is influenced by hormones and energy substrates in the maturation medium (Bavister, 

2000).  

As shown in Figure 3, grade 1 and 2 oocytes 

(selected for IVM) show a peripheral uniform 

distribution of mitochondrial foci (A1), and a 

peripheral but weaker mitochondrial signal 

(A2) respectively, after recovery from the 

follicles. After maturation, grade 1 and 2 

oocytes (B1, B2) show large clusters of 

mitochondria in the periphery (large arrows) 

but also foci of mitochondria in the more 

central cytoplasm (arrowheads).  

In addition to oocyte quality, maturation 

conditions may affect the distribution of 

mitochondria.  

Confocal studies revealed a higher incidence 

of mitochondrial clustering in the 

cytoplasmic periphery of oocytes matured in 

vitro in standard maturation medium (TCM199 with serum) and chemically defined medium 

containing glucose and lactate, whereas mitochondria of oocytes matured in chemically defined 

poor medium containing glucose and lactate, often appear homogeneously distributed (Krisher 

& Bavister, 1998). 
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- Metabolic activity  

The energy status, i.e., ATP content, of oocytes is critical for their maturation and has been 

suggested as an indicator for the developmental potential in human (Steeves & Gardner, 1999) 

and mouse oocytes (Leese et al., 1984). In bovine, the mitochondria existing within the oocyte 

must provide adequate ATP for successful maturation of the cytoplasm and nucleus in 

preparation for fertilization (May-Panloup et al., 2007; John et al., 2010), and to fuel the first 

few days of embryonic development (Silva et al., 2011; Tamassia et al., 2004). Embryos with less 

ATP in the cytoplasm had slower development and resulted in a smaller number of cells (Liu et 

al., 2000; Stojkovic et al., 2001). 

Increasing evidence shows the role of mitochondria as determinants of developmental 

competence for mammalian oocytes (Eichenlaub-Ritter et al., 2011; Ramalho-Santos et al., 

2009; Van Blerkom et al., 2002), and are involved in ATP synthesis, reactive oxygen species (ROS) 

production, calcium signalling, and apoptosis (Ramalho-Santos et al., 2009). 

- Maternal mitochondrial transcripts 

The oocyte has the largest number of mitochondria and mtDNA copies of any cell (May-Panloup 

et al., 2007). Evidence from heteroplasmic murine and human oocytes, showed that the 

segregation of mtDNA variants occurs as early as during the first mitotic divisions of germinal 

cell precursors and that these variants are then rapidly transmitted to future generations 

(Ferreira et al., 2009). Thus, maternal transcripts deposited in the oocyte during oogenesis 

affects mitochondria events. For example, mouse oocytes lacking maternal-effect genes such as 

NLR family pyrin domain containing 5 (NLRP5), peptidylarginine deiminase 6 (PADI6), or heat 

shock transcription factor 1 (HSF1) showed altered redox homeostasis that can lead to altered 

mitochondrial functions due to elevated ROS levels (Bierkamp et al., 2010; Fernandes et al., 

2012; Kan et al., 2011). 

 Mitochondrial dysfunctions or abnormalities may compromise developmental processes by 

inducing chromosomal segregation disorders, maturation and fertilization failures, or 

oocyte/embryo fragmentation resulting in mitochondria-driven apoptosis. 

• Oocyte cortical granules 

Ultrastructural investigations in bovine oocytes have indicated that cortical granules (CGs), 

change significantly during meiotic maturation (Hyttel et al., 1986; Assay et al, 1994). Such 

granules are, in fact, small vesicles that contain enzymes. During the resumption of meiosis, the 

CG migrate from the Golgi apparatus close to the vitelline surface, assuming a position 0.4–0.6 

μm below the plasma membrane (Ducibella & Buetow, 1994). Only when situated just beneath 

the plasma membrane can they undergo exocytosis by fusing with the oocyte membrane. This 

fusion enables release of the CG contents into the perivitelline space, an important step in 

membranous maturation and in instigating a block to polyspermy (Hosoe & Shioya, 1997; 

Szollosi, 1967; Wang et al., 1997). The exocytosis of cortical granules (cortical reaction) is one of 

the most common mechanisms used by the oocyte to prevent polyspermy. If fertilization with 

more than one spermatozoon occurs, the resulting zygote will undergo abnormal cleavage and 

will become non-viable, eventually degenerating at the beginning of mitotic divisions (Ferreira 

et al., 2009). 
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- Cortical granules distribution 

CGs were found to be densely distributed as irregular aggregates of particles throughout the 

peripheral cytoplasm immediately after collection. And as oocyte maturation proceeded, the 

aggregated CGs collapsed and dispersed in the cortex of the cytoplasm (see Figure 4) (Hosoe & 

Shioya, 1997). 

Grade 1 and 2 oocytes (selected 

for IVM) show similar 

ultrastructural appearance of in 

vivo oocytes after maturation 

(Kruip et al., 1983; de Loos et al., 

1989; Hyttel et al., 1986) exhibiting 

a wide distribution of CGs (Hosoe 

& shioya, 1997). 

Dispersion of CGs (type III) is 

regarded as being essential for the 

proper course of oocyte 

maturation (Sathananthan & 

Trounson, 1982). 

Type II oocytes showed to be 

protected against polyspermy but 

may have been immature in some 

other cytoplasmic factor. Thus, 

oocytes type I, metaphase II may 

not have developed to the 

blastocyst stage (Hosoe & Shioya, 

1997a). 

Improvements of maturation culture conditions may enable dispersion of CGs in all oocytes 

and would allow developing more to blastocyst stage. 

(iii) Molecular maturation 

Molecular maturation consists of transcription, storage and processing of maternal mRNA, 

which is stored in a stable, inactive form until translational recruitment (Ferreira et al., 2009). 

The maternal mRNA population is highly diverse and supports a range of different functions 

during oocyte maturation and after fertilization, such as pronuclear formation and fusion 

(Philipps et al., 2008), the first cell division (Tang et al., 2007), embryonic gene transcription 

(Bultman et al., 2006) and cleavage-stage embryogenesis (Ma et al., 2006). 

It has been hypothesized that the quality of an oocyte is based on the presence of the 

appropriate set of mRNA and proteins stored during folliculogenesis (Wrenzycki et al., 2007). A 

defined oocyte-specific gene expression pattern arising during folliculogenesis is crucial for the 

acquisition of oocyte developmental competence; conversely, deficiencies in gene expression 

or dynamics that occur during follicle development may be linked to impaired oocyte 

competence (Eichenlaub-Ritter et al., 2006). 
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While maternal mRNA population supports a range of different functions in early stages, the 

expression of embryonic messages gradually increases during the progression of embryonic 

development from the zygotic stage to the blastocyst stage and the major onset of embryonic 

genome activation (EGA) occurs at a species-specific stage of 8-cell (Memili & First, 2000). 

Lonergan (2003) had found differences in the relative abundance of polyadenylated mRNA 

between in-vivo and in-vitro matured oocytes. Generally, oocytes destined to IVM may not have 

received sufficient exposure to hormones and growth factors in vivo to have the resulting 

accumulation of maternal mRNAs to develop well in vitro (Dieleman et al., 2002). In addition, 

maturing oocytes are essentially transcriptional quiescent and RNA pools are regulated by 

posttranscriptional modifications, such as poly-A tail elongation (Assou et al., 2006; Eichenlaub-

Ritter et al., 2002). It has been shown that a shorter poly-A tail is correlated with low 

developmental competence indicating the importance of adenylation and deadenylation 

processes during in vitro maturation of bovine oocytes (Brevini et al., 2007).  

Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts 

related to their developmental potential. Adona et al., (2016) suggested that dysfunctional gene 

expression is not random and mostly affect the metabolism of oocytes. Some of the most 

important genes related with metabolism are the glucose transporter (GLUT1) (Augustin et al., 

2001); two enzymes involved in anaerobic glycolysis [Glyceraldehyde-3-Phosphate 

Dehydrogenase: GAPDH (You et al., 2012) and Lactate Dehydrogenase A: LDHA (Valckx et al., 

2015)]; and the enzyme that catalyses the first and irreversible step of the pentose phosphate 

pathway [Glucose-6-Phosphate Dehydrogenase: G6PD (Guerin et al., 2001)]. In addition, those 

associated with oxidative response are manganese superoxide dismutase (MNSOD) related to 

mitochondrial activity and glutathione peroxidase (GPX1) (Farin et al., 2001) which protects the 

organism from oxidative damage. Insulin-like growth factors have showed to play a major role 

in the autocrine and paracrine regulation of folliculogenesis. Insulin Like Growth Factor 2 

Receptor (IGF2R) is a negative regulator of excess levels of IGF2 (Pantaleon et al., 2003), and has 

been showed that higher expression in mature oocytes displayed higher embryo developmental 

rates in bovine (Warzych et al., 2007).  

Biase et al., (2014) by comparing the transcriptome of oocytes that sustained embryo 

development to blastocyst stage in vitro with those that arrested development before blastula 

formation, associated specific gene products in the oocyte to its ability to undergo normal 

development. They reported over expression of Serine/threonine-protein phosphatase 2A 

regulatory subunit A beta (PPP2R1B) implicated in the negative control of cell growth and 

division; Discoidin domain receptor family member 1 (DDR1) involve in the regulation of cell 

growth, differentiation and metabolism; and IGF2R in competent oocytes. Furthermore, 

Bermejo-Álvarez et al., (2010) reported that Cyclin B1 (CNB1), the protein encoded by this gene 

is a regulatory protein involved in mitosis related with developmental competence in goats 

(Anguita et al., 2008); Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as 

cyclooxygenase, key enzyme in prostaglandin biosynthesis; and Gremlin 1 (GREM1), which 

encodes a member of the BMPs (bone morphogenic proteins) antagonist family, were related 

with oocyte competence. 
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Environment and maturation medium  

In vivo the oocytes are contained in the follicular antrum, formed early in folliculogenesis. This 

antrum is filled with follicular fluid derived from the bloodstream and from the components 

secreted by somatic cells inside the follicle (Hennet & Combelles, 2012). Follicular fluid (FF) 

contains a variety of proteins, cytokine/growth factors and other peptide hormones, steroids, 

energy metabolites and other undefined factors (Leroy et al., 2012; Van Hoeck et al., 2013). The 

composition of follicular fluid varies between follicles and depends on their size and structure 

(Orsi et al., 2005). Despite several experimental studies, it is still not clear what constitutes a 

follicular environment that allows oocytes to develop successfully (Van Blerkom, 1998). 

Furthermore, oocyte-secreted factors regulate cumulus cell function and developmental 

competence of the oocyte and subsequently the composition of the follicular fluid (Gilchrist et 

al., 2008).  

During IVM experimental evidence in bovine demonstrated that the medium, its supplements, 

and other factors (e.g. the oxygen atmosphere) used for oocyte maturation can influence mRNA 

expression and development of the resultant embryos (Russell et al., 2006; Wrenzycki et al., 

2007; Hashimoto, 2009). 

Oocytes are normally matured between 22 and 24 hours, shorter or longer periods were 

associated with reduced development (Ward et al., 2002) in a suitable environment with 38.5°C, 

5% CO2 in air (∼20% oxygen) in a humidified atmosphere and saturated humidity (Gordon, 

2003).  

Despite the lower oxygen tension in the follicular fluid (McNatty, 1978), IVM is generally 

conducted under atmospheric oxygen tension in both humans and bovine. Although low oxygen 

concentration (5%) is more similar to in vivo conditions, considerably increases the cost of IVM 

and was shown to have detrimental effects on maturation rates (Pinyopummintr & Bavister, 

1995). It is well known that in the female genital tract the oxygen concentration is 40% or even 

less than that in the atmospheric air (<8%), (Mastrioanni & Jones, 1965; Fischer & Bavister, 

1993). High oxygen tension triggers oxidation, which is manifested by the production of ROS. 

ROS are usually free radicals containing one or more unpaired electrons, the most common 

include anion superoxide radical (O2·-) hydrogen peroxide (H2O2), hydroxyl radical (·OH) and 

peroxinitrate (Forman & Fisher, 1981; Fridovich & Porter, 1981). High oxygen tension during IVP 

favours the formation and accumulation of ROS, which could inversely affect both gametes and 

the early embryo (Agarwal et al., 2005; Yanagisawa et al., 1990). Damages caused by increased 

ROS production include cell membrane damage, mitochondrial dysfunction, RNA damage and 

cytoskeleton alterations (Fruehauf & Meyskens, 2007; Yanagisawa et al., 1990). 

On the other hand, it has been reported that ROS at well balanced levels might be beneficial for 

oocyte maturation by modulating the mitogen activated protein kinase (MAPK), and maturation 

promoting factor (MPF) (Fissore et al., 1996). It has been also shown that certain low amount of 

ROS induces sperm hyperactivation, capacitation, acrosome reaction and sperm–oocyte fusion, 

which finally enhances fertilization rate in vitro (de Lamirande et al., 1997). Within the cell, 

redox, i.e. the balance between oxidizing and reducing species is achieved by various enzyme 

systems that neutralize or scavenge toxic oxidants, such as ROS (Fruehauf & Meyskens, 2007). 

To eliminate the side effects of ROS during the IVP, two major approaches have been employed; 

firstly, oxygen concentration, especially in embryo culture, has been reduced up to 5%, and 
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secondly, various antioxidant compounds have been used (Takahashi, 2012; Sovernigo et al., 

2017).  

Medium composition  

The widest media use for IVM is tissue culture medium 199 (TCM199) supplemented with:  

(I) Protein source such as bovine serum albumin and serum.  This kind of media are semi-

defined, by the addition of biologicals components as foetal calf serum (FCS) and BSA which 

composition varies between batches and is not fully known (Gordon, 2003).  

(II) Hormones such as gonadotropins (FSH, LH), steroids and growth factors (e.g., epidermal 

growth factors) (Lonergan & Fair, 2016). The gonadotropins FSH and LH are supplemented to 

induce cumulus cell expansion, nuclear and cytoplasmic maturation (Machado et al., 2015; 

Zuelke & Brackett, 1990). Steroid hormones also play an important role in vivo and in vitro. In 

mammalian preovulatory follicles, the LH surge initially stimulates the secretion of both 

androgens and oestrogens (Dieleman et al., 1983). Oestrogen concentrations decrease 6 h after 

the LH surge, followed by a decrease in androgens and an increase in progesterone 

concentration. By 18 h after the LH surge, progesterone constitutes 90% of intrafollicular steroid 

content (Osborn & Moor, 1983). It has been shown that cumulus cells of bovine COCs are able 

to secrete estradiol and progesterone in culture for in vitro maturation, and this steroidogenesis 

is modulated by the steroids progesterone, testosterone and estradiol. 

(III) Antioxidants, most of these substances are endogenous, such as various vitamins 

(retinols and retinoids, a-tocopherol and derivatives, ascorbic acid), glutathione and other thiols 

(Agarwal et al., 2005; Dalvit et al., 2005; Wang et al., 2002), which apart from their antioxidant 

properties they could differentially influence the maturation process of the oocyte and/or the 

developmental competence of the embryo. Blondin el al. (1997) showed that during IVM, 

controlled levels of some less harmful ROS such as superoxide radicals induced by 

hypoxanthine–xanthine system, may have some beneficial effects on oocytes as they might 

remain developmentally more competent. 

Sovernigo et al., (2017) assessed different antioxidants to reduce the harmful effects of ROS on 

the in IVP and found that the supplementation of the maturation medium with quercetin, 

vitamin C or resveratrol decreased ROS levels in oocytes. 

The evidence suggests that the use of antioxidants during IVM may reduce oxidative stress either 

by decreasing ROS levels directly or by increasing glutathione (GSH) levels in oocytes (Jeong & 

Joo, 2016; Wang et al., 2014) which in bovine oocytes acts as the main non-enzymatic defence 

system to reduce ROS levels (Deleuze & Goudet, 2010; Rocha-Frigoni et al., 2016). 

Polymethoxylated flavones (PMFs) 

Flavonoids are a family of phytochemicals that exhibit a broad spectrum of pharmacological 

properties (Middleton et al., 2000; Manthey & Grohmann, 2001). The highest concentration of 

PMFs is found in the citrus peel with much lower amounts found in the juice (Kanes et al., 1993; 

Rouseff & Ting, 1979). Tangerine and nobiletin are two polymethoxylated flavones (PMFs) that 

are relatively common in citrus and both are present in sweet orange peel. 

Citrus fruit-derived flavonoids and their metabolites have been shown to impart significant 

protective biological activities including anticancer, antiviral, anti-inflammatory and 

antiatherogenic activities (Manthey & Grohmann, 2001; Middleton et al., 2000; Whitman et al., 

2005). 
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Naringenin, has been shown that can support the trophectoderm migration in porcine embryos, 

crucial for orchestrating conceptus-uterine interactions during the peri-implantation stage of 

pregnancy (Lim & Song, 2016).  

Nobiletin 

Nobiletin (5,6,7,8,3´,4´- hexamethoxyflavone), was first identified from the peel of citrus fruits, 

belongs to polymethoxyflavones (PMFs) and along with other members of the family has been 

reported to have a broad range of biological effects. 

Those include anti-inflammatory, anticarcinogenic, and antiatherogenic properties (Wang et al., 

2008). For instance, it has been shown that PMFs can downregulate gene expression of some 

proinflammatory cytokines such as interleukins (IL-1a, IL-1b, and IL-6) and tumour necrosis 

factor-a in mouse macrophages (Whitman & Daugherty, 2005). Furthermore, nobiletin acts as 

an anti-carcinogenic compound through anti-proliferative activity, induction of apoptosis and 

cell cycle deregulation (Yoshimizu et al., 2004), and was shown to have anti-proliferative activity 

in human lung cancer (Luo et al., 2008) and colon cancer in mice (Miyamoto et al., 2008). In 

neurobiology, nobiletin has demonstrated a positive effect in rescuing memory deterioration in 

the Alzheimer’s disease rat model (Matsuzaki et al., 2006) and olfactory-bulbectomized mice, as 

well as improved prevention of memory impairment in the Alzheimer’s disease rat model 

(Onozuka et al., 2008). 

Lam et al., (2011) identified for the first time that nobiletin has potent anti-angiogenic activity 

in vivo in zebrafish embryos and in vitro in human endothelial cells through regulating cell cycle 

arrest and the vascular endothelial growth factor (VEGF) pathway. 

It has been demonstrated that Nobiletin has an evident effect in airway inflammation (Wu et al., 

2006), and as an inhibitor of ROS production (Choi et al., 2007).  

When oocytes or embryos are cultured in vitro, they are exposed to manipulation, light 

temperature, medium constituents, sperm and O2 concentration, which favour increase in ROS 

and may lead to downregulated of their defence mechanism (Guerin et al., 2001; Yu et al., 2014). 

This increase of ROS and decreased intracellular GSH pools (Hashimoto et al., 2000) in the 

oocytes have adverse effects on subsequent embryo development. 

Thus, the gaseous environment to which the oocyte is exposed varies considerably between in 

vitro and in vivo conditions (Wrenzycki & Stinshoff, 2013). In addition, the female reproductive 

system is naturally rich in antioxidants such as catalase, glutathione, among others (Carbone et 

al., 2003), and it is considerably different from the synthetic medium used for in vitro culture of 

oocytes and embryos. Therefore, the use of substances with antioxidant properties during the 

in vitro production of embryos may avoid the excessive increase in ROS and improve the embryo 

production efficiency (de Matos et al., 2002; Kere et al., 2013). 

Oxidative stress is a major cause of low efficiency in oocyte maturation and embryo 

development in several species (Luberda, 2005). Balanced ROS act beneficially as signalling 

molecules in physiological processes (Agarwal et al., 2008). However, excessive amounts of ROS 

have damaging effects on cells and lead to cell change and death (Agarwal et al., 2005).  

Based on the above, we hypothesize that the addition of nobiletin as an antioxidant during IVM 

may improve the conditions in which oocytes maturate providing a better oxidative stress 
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response and allowing them to consume critical points during cytoplasmic maturation such as 

organelle relocation.  

 

4.2.2 In vitro fertilization (IVF) 

The IVF is designed to facilitate the union of the gametes. In this step, the most important factor 

is to make a good selection of sperm to remove nonmotile sperm cells and unwanted 

components of semen. There are several products and protocols to do so: the swim-up (Parrish 

et al. 1986), and gradients such as Percoll (Saeki et al., 1991) 12 and BoviPure ™. The Percoll and 

BoviPure ™ have similar results regarding the final rate of blastocysts, but the advantage of 

BoviPure ™ is that it is less toxic (Samardzija et al., 2006). After selection, the sperm 

concentration is calculated, and the proper quantity of sperm is added to the fertilization 

medium to have a final concentration of 1x106 sperm/ml. The IVF medium have a specific ionic 

balance for oocyte and sperm requirements, the most commonly used is the TALP (Bavister & 

Yanagimachi, 1977), a modification of the Tyrode that contains sodium bicarbonate, albumin as 

a source of protein and lactate and pyruvate as an energy source (Gordon, 2003). Heparin is also 

added to the medium to induce sperm capacitation (Parrish et al., 1986) and prepare it for the 

acrosome reaction and fertilization (Parrish et al., 1985). The selected spermatozoa and matured 

oocytes co-cultured for 18-22 hours under the same conditions as maturation: 38.5 °C, 5% CO2 

and saturated humidity (Gordon, 2003). During this period spermatozoa cross all physiological 

barriers, fuse with the ooplasma, the oocyte is activated, and the pronuclear formation begins 

(Galli et al., 2003). 

 

4.2.3 In vitro culture(IVC) 

While oocyte origin is the main factor affecting the rate of blastocysts, the factors that most 

influence the quality of the embryos are the conditions after fertilization (Rizos et al., 2002). 

Some of the main factors affecting the development and the embryo quality are: the culture 

medium, the number of embryos in culture (ratio: embryo/µl of culture medium), the 

temperature and the gas balance in the incubator (Lonergan et al., 2006). The most used media 

for the culture of presumptive zygotes/embryos is synthetic oviductal fluid (SOF) which is usually 

supplemented with 5% of FCS (foetal calf serum) and/or BSA (bovine albumin serum) (Holm et 

al., 1999; Tervit et al., 1972). Both have pros and cons; their use increases the final percentage 

of blastocysts compared to serum free media. However, clear evidence has shown that serum, 

affects negatively the embryo quality compared to the once produced with albumin in a 

concentration of 3mg/ml (Rizos et al., 2002). The addition of FCS to the culture media has also 

been linked to the large offspring syndrome, which is characterized by large calves that can 

cause dystocia and have a high postnatal mortality due to defects in many organs ( Young et al., 

1998; Lazzari et al., 2002); which represents an important economic loss to the farmer. Beside 

the defined or semi-defined media, the embryos can also be cultured with oviductal, granulosa 

or Vero cells; or with conditioned media (Rizos et al., 2017; Mermillod et al., 2010). The 

conditioned media is the result of the co-culture of the media with somatic cells. This co-culture 

systems are supposed to help overcoming the embryonic blockage that happens in the stage of 

8-16 cells (Rizos et al., 2017; Vansteenbrugge et al., 1994). In Lopera-Vasquez et al., (2016) 

provided evidence that extracellular vesicles (EVs) isolated from the conditioned medium of an 
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extended culture BOEC monolayer improve embryo quality and induce cryoprotection in in 

vitro cultures. Also, has been reported that embryo development was not affected by the 

presence of oviductal fluid-extra cellular vesicles (OF-EV), but the quality of the produced 

embryos in terms of cryotolerance and the expression of genes related to metabolism and 

epigenetics were improved (Lopera-Vasquez et al., 2017). In the same line, to optimise the 

bovine embryo IVC, supplementation of the post-fertilisation culture medium with oviductal 

fluid (OF) and uterine fluid (UF) has been used, reporting that a low concentration of OF and/or 

UF supports embryo development and improves embryo quality (Hamdi et al., 2018). 
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5. Motivation and objective of the project 

Some of the differences between in vivo and in vitro matured oocytes have led to the 

identification of specific competency deficits. Therefore, this study proposed to assay the 

antioxidant role of Nobiletin to improve in vitro maturation (IVM) of bovine oocytes and 

determine the consequences in further embryo development.  

 

6. Experimental design 

Cumulus-oocyte complex in IVM medium were treated with different concentration of Nobiletin 

leading the following experimental groups: 

- Control group (C): TCM199 + 10% FCS + 10 ng/ml EGF. 

- Grupo DMSO (CDMSO): Medio TCM199 + 10% FCS + 10 ng/ml EGF. Supplemented with 

0.001% DMSO (as a Nobiletin vehicle). 

- Group 10 (N10): TCM199 + 10% FCS + 10 ng/ml EGF. Supplemented with Nobiletin to a 

final concentration of 10 μM. 

- Group 25 (N25): TCM199 + 10% FCS + 10 ng/ml EGF Supplemented with Nobiletin to a 

final concentration of 25 μM. 

- Group 50 (N50): TCM199 + 10% FCS + 10 ng/ml EGF. Supplemented with Nobiletin to a 

final concentration of 50 μM. 

- Group 100 (N100): TCM199 + 10% FCS + 10 ng/ml EGF. Supplemented with Nobiletin to 

a final concentration of 100 μM. 

The concentration of Nobiletin was based on the findings of other studies in which these 

polymethoxylated flavonoid from citrus fruits, in vivo in zebrafish embryos and in vitro in human 

umbilical vein endothelial, showed an anti-angiogenic activity at concentrations between 30 and 

100µM (Qu et al., 2018). 

After 24 h of IVM part of the oocytes were denudes from CCs and fixed for measuring nuclear 

and cytoplasmic maturation, ROS and GSH levels and gene expression, while the reminding was 

in vitro fertilized and culture to the blastocyst stage. The factors examined in all groups were:  

(1) Oocyte nuclear maturation: percentage of oocytes that reach meiotic metaphase II after 24 

h of IVM. 

(2) Oocyte cytoplasmic maturation: mitochondria and cortical granules were stain after 24 h of 

IVM. The organelle distribution was used as a cytoplasmic maturation parameter. 

(3) Oocyte ROS and GSH levels: the levels of intracellular GSH and ROS were assessed by 

fluorescence intensity after 24 h of IVM as oxidative stress parameters. 

(4) Embryo development: cleavage rate (48 h post IVF) and blastocyst yield at day 7 and 8 post 

IVF. 

Oocytes and their cumulus cells (24 h IVM) along with blastocyst from day 7 and 8, were frozen 

in liquid N2 and stored at −80°C for: 

(5) Oocyte and cumulus cell (CC) gene expression (RT-qPCR). 

(6) Blastocyst gene expression (RT-qPCR). 
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7. Materials and methods 

7.1 In vitro embryo production 

a) Oocyte collection and IVM  

Immature COCs were obtained by aspirating follicles (2–8 mm diameter) from the ovaries of 

mature crossbred heifers (i.e. at least one corpus luteum or remained scars from previous 

ovulations in one or both ovaries) collected at slaughter from local abattoirs. 

Class 1 and class 2 COCs (homogeneous cytoplasm and intact CCs) were matured for 24 h in 500 

µL of maturation medium, TCM 199 supplemented with 10% (v/v) foetal calf serum (FCS) and 10 

ng/ml epidermal growth factor in four-well dishes, in groups of 50 COCs per well at 38.5°C under 

an atmosphere of 5% CO2 in air, with maximum humidity (Lopera-Vasquez et al., 2016). 

Each experiment consisted of six groups of around 100 COCs, in accordance to each treatment: 

(I) no treatment (control); (II) dimethyl sulfoxide (control DMSO, 0.01% DMSO as Nobiletin 

vehicle); (III) 10 µM Nobiletin, (Medical Chemical Express, MCE); solubilized in DMSO to obtain 

a stock solution 70mM; (IV) 25 µM Nobiletin; (V) 50 µM Nobiletin and (VI) 100 µM Nobiletin. 

COCs matured under different conditions were employed to evaluate: nuclear maturation, 

cortical granules (CGs) distribution patterns, mitochondria (Mt) distribution patterns, gene 

expression in oocytes and CCs, as well as levels of ROS and GSH in oocytes after in vitro 

maturation (IVM), developmental competence after in vitro fertilization and culture.  

From each experimental group, after maturation, 10 oocytes and their respective CC´s were 

used to study gene expression analysis. Other 10 oocytes were employed for nuclear maturation 

and CG distribution, 10 oocytes for mitochondria distribution, 10 for ROS and 10 for glutathione. 

The remains were destined to in vitro fertilization and posterior embryo development. At least 

6-8 replicates of each experiment were performed. 

b) Sperm preparation and IVF 

For in vitro fertilization, COCs were washed in fertilization medium before being transferred in 

groups of 50 into four well dishes containing 250 µl of Tyrode’s fertilization medium composed 

by 25 mM bicarbonate, 22 mM Na-lactate, 1 mM Na-pyruvate and 6 mg/ mL fatty acid-free 

bovine serum albumin (BSA) supplemented with 10 mg/mL heparin sodium salt (Calbiochem) 

(Lopera-Vasquez et al., 2016).  

Motile spermatozoa were obtained from frozen semen straws (0.25 mL) thawed at 37°C in a 

water bath for 1 min and centrifuged for 10 min at 280 xg through a gradient of 1 mL of 40% and 

1 mL of 80% Bovipure (Nidacon Laboratories AB, Göthenborg, Sweden Bovipure) according to 

the manufacturer’s instructions. The sperm pellet was isolated and washed in 3 mL of Boviwash 

(Nidacon Laboratories AB) by centrifugation at 280 xg for 5 min. The pellet was re-suspended in 

the remaining 300 µL of Boviwash. Spermatozoa were counted and diluted in the appropriate 

volume of fertilization medium to give a concentration of 2x106 spermatozoa/ml. A 250 ml 

aliquot of this suspension was added to each fertilization well to obtain a final concentration of 

1x106 spermatozoa/ml. Gametes were co-incubated for 18–22 h at 38.5°C under an atmosphere 

of 5% CO2 in air and maximum humidity. 
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c) In vitro culture of presumptive zygotes 

At approximately 20 h post-insemination (hpi), presumptive zygotes were denuded of CCs by 

vortex for 3 min and then cultured in groups of 25 in 25 µL droplets SOF containing 4.2 mM 

sodium lactate (L4263), 0.73 mM sodium pyruvate (P4562) 30 µL/mL BME amino acids (B6766), 

10 µL/ml minimum essential medium (MEM) amino acids (M7145) and 1 µg/ml phenol red 

(P0290). under mineral oil at 38.5°C under an atmosphere of 5% CO2, 5% O2 and 90% N2, as the 

embryo culture is routinely (Lopera-Vasquez et al., 2016). SOF was supplemented with 5% FCS 

7.2 Embryo development  

Cleavage rates were recorded on Day 2 (48 hpi) and cumulative blastocyst yields on Days 7 and 

8 post-insemination under a stereomicroscope. At least 6-8 replicates of each experiment were 

performed. 

7.3 Oocyte quality assays 
 

i. Nuclear maturation and cortical granules distribution patterns 

Nuclear maturation and CGs distribution, as one parameter of cytoplasmic oocyte maturation, 
were assessed by confocal microscopy (Coy et al., 2005). Briefly, first in vitro matured COCs from 
each treatment (≅ 50) were suspended in 2000 µL of phosphate-buffered saline (PBS) without 
calcium or magnesium supplemented with 0.3% BSA and hyaluronidase, and their CCs were 
removed by vortex. Next, oocytes were treated with 0.5% w/v pronase in PBS to digest the zona 
pellucida. Zona-free oocytes were washed in PBS three times and fixed in 3.7% w/v buffered 
neutral paraformaldehyde solution (pH 7.2–7.4) for 30 min at room temperature and treated 
with permeabilization solution (0.2% v/v Triton X-100 in PBS) for 10 min. The oocytes were 
washed in PBS without calcium or magnesium supplemented with 0.3% BSA and incubated in 
100 μg/mL FITC-LCA (Vector Laboratories, Burlingame, USA) for 30 min in a dark chamber. After 
staining, oocytes were washed, mounted in 3.8 μl of mounting medium (50% v/v PBS, 50% v/v 
glycerol (Sigma G-S150), 0.0025 μg/ mL Hoëchst) between a coverslip and a glass slide and 
sealed with nail polish. Slides were examined using a laser- scanning confocal microscope (Leica 
TCS SP2) equipped with an argon laser excited at 488 nm and whose detection spectrum is 515–
530 nm. Nuclear maturation was observed in an inverted epifluorescence microscope (Nikon 
Eclipse TE 300) equipped with a DA-U3 Digital Camera, and UV-1 filter. For the nuclear 
maturation, all the nucleus and polar bodies were evaluated, oocytes were classified as follows:   
0: GV germinal vesicle stage (nucleus well defined); 1: GVBD; 2: Metaphase I (first metaphasic 
plate visible); 3: Metaphase II (nucleus mature, represented by the presence of first polar body, 
or second metaphasic plate). Those having a metaphase plate and the first polar body were 
classified as metaphase II stage and were considered mature. As a parameter of cytoplasmic 
maturation, CGs were analysed and the distribution of cortical granules was classified as three 
types (type I, distributed in clusters or no migrated; type II, dispersed and partly clustered or 
partially migrated; and type III, small CG arranged at the periphery or migrated)(Hosoe & Shioya, 
1997b). At least 5 replicates were performed. 

ii.  Mitochondrial distribution patterns 

Mitochondrial distribution patterns as parameter of cytoplasmic oocyte maturation, were 

assessed by confocal microscopy. Briefly, first matured COCs from each treatment (≅ 50) were 

suspended in 2000 µL of phosphate-buffered saline (PBS) without calcium or magnesium 

supplemented with 0.3% BSA and hyaluronidase, and their CCs were removed by vortex. Next, 

oocytes were equilibrated for 15 minutes in MIV supplemented with 5% FCS and then incubated 

for 30 minutes in MitoTracker DeepRed (Molecular Probes, Eugene, USA). Oocytes were fixed in 
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3.7% w/v buffered neutral paraformaldehyde solution (pH 7.2–7.4) for 60 min at room 

temperature and darkness. After staining, oocytes were washed, mounted in 3.8 μL of mounting 

medium (50% v/v PBS, 50% v/v glycerol (Sigma G-S150), 0.0025 μg/ mL Hoëchst) between a 

coverslip and a glass slide and sealed with nail polish. Slides were examined using a laser- 

scanning confocal microscope (Leica TCS SP2) equipped with an argon laser excited at 644 nm 

and whose detection spectrum is 665 nm. Mitochondrial patterns were analysed, and the 

distribution was classified as three types (type 0, no migrated; type I, partially migrated; and 

type II, migrated). At least 5 replicates were performed. 

iii. Levels of reactive oxygen species (ROS) and Glutathione(GSH)  

Matured oocytes (≅ 50) from each treatment were denuded, for evaluation of ROS and GSH. 

The oocytes were fixed with 3.7% formaldehyde for 15 minutes and incubated in CellROX Deep 

Red Reagent (Invitrogen, Eugene, USA) at a final concentration of 5 μM, and CellTrackerTM Blue 

(Invitrogen, Eugene, USA) at final concentration of 10 µM, for 30 min at 37°C. After staining 

oocytes were washed 3 times with PBS and mounted in 3.8 μl of mounting medium (50% v/v 

PBS, 50% v/v glycerol (Sigma G-S150), 0.0025 μg/ mL Hoëchst) between a coverslip and a glass 

slide and sealed with nail polish. Fluorescence emitted from the oocytes was captured using B-

2E/C (ROS) and UV-2A (GSH) filters ten seconds after exposure to UV light. Samples were 

examined with an inverted epifluorescence microscope (Nikon Eclipse TE 300) equipped with a 

DA-U3 Digital Camera. The fluorescence intensities expressed were analysed in arbitrary 

fluorescence units (pixel) (Rocha-Frigoni et al., 2016) using the IMAGE J software. At least 5 

replicates were performed. 

7.4 Oocytes and cumulus cells for gene expression analysis 

After 24 h of IVM, pools of 10 COCs (≅ 50) were collected from each treatment group and CCs 

physically separated from oocytes by gentle pipetting with hyaluronidase and vortex 2 min in 

PBS. Oocytes, in pools of 10 per treatment group, were washed in PBS, snap frozen in liquid N2 

and stored at −80°C until mRNA extraction. Their corresponding CCs were also washed in PBS, 

centrifuged at 10,000 xg and then snap frozen in liquid N2 and stored at −80°C until mRNA 

extraction. At least 5 replicates were performed. 

7.5 Statistical Analysis  

Statistical analysis was performed using Sigma Stat (Jandel Scientific, San Rafael, CA, USA). Data 

for IVC (cleavage rates and blastocyst yield), as well as nuclear maturation, CG distribution 

patterns and mitochondrial distribution patterns were compared by one-way analysis of 

variance (ANOVA). When a statistically significant difference (P = <0,001) in the mean values 

among the treatment groups was detected, Tukey’s test was performed to determine whether 

the groups showed significant differences. Values were considered significantly different at 

P<0.05. As results from ROS and GSH fluorescens failed normality test, pairwise multiple 

comparison procedures were performed by Dunn's method. Values were considered 

significantly different at P<0.05. Unless otherwise indicated, data are presented as the 

mean±s.e.m. 
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8. Results  

8.1 Nuclear maturation 

 

Significantly higher percentage of matured oocytes (P<0.05) were observed in metaphase II 

when N25 (87±0.6%) or N50 (89.3±0.3%) were added to the IVM medium compared to N10 

(72.9±0.3%), N100 (71.5±0.8%), Control (71.7±0.7%) and CDMSO (70.5±0.5%) groups (Figure 5). 

 

 

Figure 5. Percentages of bovine oocytes that reach Metaphase II after 24 h of IVM with or 

without Nobiletin. Data are the mean±s.e.m. performed in 5 replicates. Different letters above 

columns indicate significant difference (P<0.05) between treatments. 
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8.2 Organelle Relocation 

 

N25 and N50 showed higher rate of oocytes with peripheral migration of cortical granules 

(85.7±0.3% and 89.9±2.2% respectively) and mitochondria (86.7±0.6% and 88.9±1.2% 

respectively) compared to the remaining groups (P<0.05) (Figure 6). Mitochondrial and cortical 

granules distribution patterns in bovine oocytes after 24 h of IVM for all experimental groups is 

showed on Figures 7 and 8 respectively.  

 

 

 

Figure 6. Percentages of mitochondrial (red) and cortical granules (green) migration in bovine 

oocytes after 24 h of IVM with or without Nobiletin. Data are the mean±s.e.m. performed in 5 

replicates. Different letters above columns indicate significant difference (P<0.05) between 

treatments for mitochondrial and cortical granules migration. 
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Figure 7. Representative fluorescent images of mitochondrial distribution patterns in bovine 

oocytes after 24 h of IVM with or without Nobiletin- (A) Migrated oocytes: show large clusters 

of mitochondria in the periphery; (B) Partially migrated oocytes: show clusters of mitochondria 

in the periphery, but also foci of mitochondria in the more central cytoplasm; (C) Non-migrated 

oocytes: show a peripheral uniform distribution of mitochondrial. In each category can be 

observed the differences in the fluorescens emissions between treatments (1. Control; 2. 

CDMSO; 3. N10; 4. N25; 5. N50; and N100). Scale bar 50 µm. 
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Figure 8. Representative fluorescent images of cortical granules distribution patterns in bovine 

oocytes after 24 h of IVM with or without Nobiletin - (A) Migrated oocytes: show high periphery 

migration of the cortical granules; (B) Partially migrated oocytes: cortical granules individually 

dispersed; (C) Non-migrated oocytes: uniform distribution cortical granules. In each category 

can be observed the differences in the fluorescens emissions between treatments (1. Control; 

2. CDMSO; 3. N10; 4. N25; 5. N50; and N100). Scale bar 50 µm. 
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8.3 Oxidative stress 

 

The results expressed in arbitrary fluorescence units showed that the supplementation of N25 

and N50 presented a significant reduction (P<0.05) in the ROS (2.53±0.8 a.u.; 2.62±1.2 a.u. 

respectively), and GSH (2.84±0.4 a.u.; 3.09±0.1 a.u. respectively) content in comparison with all 

other groups (Figure 9). Fluorescens emissions of ROS (red) and GSH (blue) in bovine oocytes 

after 24 h of IVF for all experimental groups is showed in Figure 10. 

Figure 9. Levels of ROS (red) and GSH (blue) fluorescence emissions in bovine oocytes after 24 h 

of IVM. Data are the mean±s.e.m. performed in 5 replicates. Different letters above columns 

indicate significant difference (P<0.05) between treatments for ROS and GSH. 

 

Figure 10. Representative fluorescent images of ROS (red) and GSH (blue) in bovine oocytes after 

24 h of IVM with or without Nobiletin (A, G: Control; B, H: CDMSO; C, I: N10; D, J: N25; E, K: N50; 

F, L: N100). Scale bar 50 µm. 
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8.4 Embryo development 

 

As showed in Table 1, cleavage rate was significantly higher (P<0.05) for N25 (89.9±0.3%) and 

N50 (91.3±0.3%) compared to all other groups (N10: 75.6±0.3%; N100: 74.0±0.6%; Control: 

74.2±0.4%; and CDMSO: 73.6±0.4%). Similarly, cumulative blastocyst yield at D8 was 

significantly higher (P<0.05) for N25 (32.1±0.8%) and N50 (35.5±0.8%) compared to N10 

(23.1±0.7%), N100 (24.5±0.9%), Control (25.9±0.4%) and CDMSO (26.1±0.6%) groups (Table 1). 

 

Table 1. Embryo development evaluation at 48 h post IVF (Cleavage) and blastocyst yield at day 

7 and 8 of IVC. Effect of Nobiletin supplementation in bovine oocyte in vitro maturation on 

cleavage rate and blastocyst yield. 

Treatment 

Total no. 
presumptive  Cleavage rate Blastocyst yield 

zygotes in culture n % n Day 7 (%) n Day 8 (%) 

C 359 267 74,2±0,4bc 76 21,1±0,4b 92 25,8±0,5b 

CDMSO 378 278 73,5±0,5b 78 21±0,4b 98 26,1±0,7bc 

N10 397 300 75,6±0,3c 75 19±0,4b 90 23,1±0,7cb 

N25 372 335 90,0±0,4a 90 24,4±0,5a 119 32,2±0,8a 

N50 336 307 91,3±0,3a 86 25,6±0,6a 117 35,3±0,8a 

N100 414 306 74,0±0,6bc 76 19±0,8b 100 24,5±1,0b 

Data are the mean±s.e.m. performed in 6-8 replicates. Within columns, values with different 
superscript letters differ significantly (P<0.05). 
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9. Discussion 

 

One of the greatest challenges for scientists across the world is to mimic in vivo conditions for 

in vitro assisted reproductive technologies. One of the main difference between in vitro and in 

vivo conditions is the level of oxidative stress, which is higher in the former than in the latter 

(Goto et al., 1993). Antioxidants and ROS are found in equilibrium in cells under normal 

physiological conditions, cells possess mechanisms to hinder excessive free radical formation 

including specific enzymes which control their intracellular levels (Liu et al., 2016). However, in 

certain situations in vivo (such as diseases, pathogens, etc.) or in vitro (such as excessive 

exposure to light, high oxygen tension, etc.), physiological mechanisms suffer disturbances in 

redox equilibrium with the increased production of free radicals (David et al., 2016; Guérin et 

al., 2001). Such increases may cause depletion of intracellular antioxidant concentrations 

(Kurutas, 2015; Liu et al., 2016; Wang et al., 2014).  

During IVP of embryos, in which the entire process is done in vitro (IVM, IVF, IVC), the ROS 

production increases and results in decreased in vitro embryo development (Guérin et al., 2001; 

Yu et al., 2014). Thus, the physiology of oocytes can be protected through supplementation of 

antioxidants in the culture medium. Supplementation with quercetin, resveratrol or vitamin C 

during in vitro maturation act as a defence mechanism against ROS in porcine oocytes 

(Sovernigo et al., 2017). Other results reported a reduction in ROS levels associated with an 

increase in GSH levels in porcine and bovine oocytes (Kere et al., 2013; Kwak et al., 2012; Wang 

et al., 2014). 

Antioxidants provides protection on premature aging of oocyte by the increased production of 

ROS (Agarwal & Majzoub, 2017). Premature aging of oocytes before MII stages are detrimental 

to oocyte nuclear and cytoplasmic maturation process, causes poor fertilization and retarded 

embryo development. Oxidative stress has showed to have contradictory results in the effect 

over meiotic progression, promoting or inhibiting germinal vesicle breakdown (Takami et al., 

1999). On the other hand, negative effects have been reported in the assembly and function of 

the meiotic spindle, mitochondrial defects, apoptosis, and DNA integrity (Combelles et al., 

2009). 

Therefore, the addition of antioxidants to effectively control the losses in the in vitro embryo 

production due to oxidative stress is interesting for both research and commercial production 

purposes. Aiming to reduce the harmful effects of ROS on the in vitro maturation of bovine 

oocytes, the current study assessed the use of Nobiletin, a member of polymethoxylated 

flavones family, as an antioxidant agent. Flavonoids are most commonly known for their 

antioxidant activity in vitro (Bagchi et al., 1999). It has been reported that members of the 

family, Quercetin and Taxifolin, were effective in reducing ROS levels in mature porcine oocytes 

and the rate of blastocyst formation from treated oocytes (Kang et al., 2016).  

Ours results show that intracellular ROS levels in in vitro matured oocytes were reduced by the 

supplementation of the IVM medium with Nobiletin. The levels of intracellular ROS were 

assessed by fluorescence intensity as oxidative stress parameters, finding a significant reduction 

(P<0.05) in the groups supplemented with 25 µM and 50 µM of Nobiletin (N25 2.53±0.8 a.u; N50 

2.62±1.2 a.u. respectively). These results corroborate the findings of other studies in swine, in 

which oocytes matured in vitro with quercetin, vitamin C or resveratrol showed lower 

intracellular ROS levels (Kang et al., 2013; Kwak et al., 2012).  

 



29 
 

The synthesis of intracellular GSH is a critical part of oocyte cytoplasmic maturation (Eppig, 

1996), and the presence of high levels of GSH in oocytes at the end of maturation is considered 

a biochemical marker for improved oocyte quality (de Matos et al., 1995) as this reservoir will 

protect the zygote and early embryo against oxidative damage before genomic activation and 

de novo GSH synthesis (Deleuze & Goudet, 2010). However, studies in porcine (Choi et al., 2013; 

Kere et al., 2013; Kwak et al., 2012), caprine (Mukherjee et al., 2014) and mice (Yu et al., 2014) 

oocytes matured in vitro showed no increase in GSH levels. On the contrary, Rocha-Frigoni et 

al., (2016) reported a depletion of intracellular GSH in mature bovine oocytes among all treated 

groups with antioxidants compared to immature oocytes. This is in agreement with our results 

observing a significative (P<0.05) decrease of GSH levels in 25 µM and 50 µM Nobiletin 

supplemented groups. Based on the above, the expression of GSH is not a clear marker to 

evaluate oocyte quality as the results are contradictive and depended to the antioxidant use.  

 

Nuclear maturation rate (metaphase II) was not affected in oocytes treated with any antioxidant 

tested so far  (Sovernigo et al., 2017; Kang et al., 2013; Kere et al., 2013; Mukherjee et al., 2014; 

Wu et al., 2011) suggesting that antioxidants do not affect nuclear maturation, even with 

reduced ROS levels (as with quercetin, vitamin C or resveratrol) or even with increased GSH 

levels (as observed with cysteamine or carnitine) (Sovernigo et al., 2017). However, we observed   

significantly higher percentage of matured oocytes (P<0.05) in metaphase II when 25 µM and 

50 µM Nobiletin was supplemented (N25: 87±0.6%; N50: 89.3±0.3%) to the IVM medium. 

Antioxidants supplementation during in vitro maturation is essential for improved cytoplasmic 

maturation, which is associated with the embryonic development competence of oocytes 

(Furnus et al., 2008; Dimitrios Rizos et al., 2002). In the present study, cytoplasmic maturation 

was evaluated in terms of organelle relocation. In the same line as nuclear maturation, oocytes 

matured with 25 µM and 50 µM Nobiletin supplemented medium showed to have significative 

higher incidence of mitochondrial clustering in the cytoplasmic periphery (N25 86.7±0.6% and 

N50 88.9±1.2%) and dispersion of cortical granules (N25 85.7±0.3% and N50 89.9±2.2) 

comparing to control and other Nobiletin supplemented groups. Both characteristics happen to 

be essential for the proper course of oocyte maturation (Krisher & Bavister, 1998; Sathananthan 

& Trounson, 1982). 

Our study clearly showed also that supplementation of IVM medium with Nobiletin improves 

the embryo development. In agreement, Rocha-Frigioni et al., (2016) postulated that 

supplementation of IVM medium with cysteine, cysteamine and catalase antioxidants improves 

the mitochondrial membrane potential, the intracellular levels of ROS and GSH in the bovine 

oocytes at the end of maturation, and thereby affects the subsequent embryonic development. 

Here we reported a significantly higher cleavage rate for 25 µM and 50 µM Nobiletin 

supplemented in maturation medium (N25: 89.9±0.3%; N50: 91.3±0.3%) compared to all other 

groups. Similarly, cumulative blastocyst yield at D8 was significantly higher for N25 (32.1±0.8%) 

and N50 (35.5±0.8%) groups. In the same line, Kang et al., (2016) reported that the inclusion of 

Quercetin in the IVM medium increased blastocyst formation, presumably because Quercetin 

reduced ROS and increased intracellular GSH more effectively. However, no beneficial effect has 

been found on blastocyst formation when applied only during IVC, which may be confirming the 

impact of oocyte IVM improvement on in vitro embryo culture. 
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Based on our results, supplementation with Nobiletin during IVM improves bovine oocyte 

quality and the subsequent embryo development. Studies on gene expression of treated oocytes 

and their produced embryos are in progress to confirm the quality improvement.  
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10. Conclusions  

Supplementation of the maturation medium with 25 µM and 50 µM Nobiletin used as an 

antioxidant improves: 

• Nuclear maturation, the percentage of oocytes that reach metaphase II. 

• Cytoplasmic maturation, oocyte organelle distribution (mitochondrial and cortical 

granules migration). 

• Embryo development in terms of cleavage rate and blastocyst yield.   
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