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Extended Capabilities of the 3-D Smith Chart With
Group Delay and Resonator Quality Factor

Andrei A. Muller, Member, IEEE, Esther Sanabria-Codesal, Alin Moldoveanu,
Victor Asavei, and Stepan Lucyszyn, Fellow, IEEE

Abstract— This paper extends the capabilities of the 3-D Smith
chart for representing positive and negative differential-phase
group delay and the associated loaded resonator quality factor,
displayed simultaneously with scattering (S)-parameters. Here,
mathematical concepts, inspired from elementary differential
geometry and topology, are used to implement 3-D projections.
It is shown that a condition for a circuit to exploit negative
differential-phase group delay is that its S-parameter winding
number should be ≥ 0 (relative to its origin). Finally, exem-
plar network responses that exhibit both positive and negative
differential-phase group delay and loaded resonator quality
factor are shown with the 3-D Smith chart. The convenience of
being able to simultaneously display a wider range of parameters
on one visualization platform, with the 3-D Smith chart, may help
to speed-up the design and analysis of microwave circuits by the
user.

Index Terms— Computer-aided design (CAD), differential-
phase group delay, negative group delay (NGD), non-Foster,
quality factor, Smith chart.

I. INTRODUCTION

GROUP delay represents the time taken for the amplitude
envelope of a carrier signal (or information) to be trans-

mitted between two points. Ideally, group delay is constant
with frequency, across a band-limited channel, such that the
Fourier components of the information at the transmit point
experience the same delay and combine to recreate the original
information at the receive point. In practice, however, the
end-to-end group delay of a system is seldom constant with
frequency across the band-limited channel.

As a result, to mitigate against signal distortion, group
delay equalization (across the bandwidth of a channel) is often
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Fig. 1. Conformal mapping from 2-D to 3-D Smith charts (impedance
version).

employed, especially close to the cutoff frequencies of the
channel filter, where there may be significant peaks in group
delay. Tunable differential-phase negative group delay (NGD)
circuits operating at microwave frequencies were first intro-
duced by Lucyszyn et al. [1], [2] over two decades ago. Also
known as NGD networks, in recent years they have attracted
interest from the microwave community [3]–[8].

The 3-D Smith chart (impedance version) was recently
introduced by Muller et al. [9]–[13] in 2011. This
visualization platform represents the response of passive com-
ponents/networks, active devices/ circuits, and mixed topology
subsystems, by exploiting the unity radius Riemann sphere,
using the conformal mapping illustrated in Fig. 1.

In terms of voltage-wave reflection and transmissions coeffi-
cients, the Northern hemisphere represents a modulus less than
unity, while the Southern hemisphere represents a modulus
greater than unity–the equator represents the pure reactance
unity radius circle of the 2-D Smith chart. The Eastern hemi-
sphere represents inductance and West capacitance–separated
by the prime meridian that represents pure resistance (posi-
tive and negative in the Northern and Southern hemispheres,
respectively). Therefore, the origin of the 2-D Smith chart is
mapped to the North Pole of the 3-D Smith chart, while infinite
is just as conveniently mapped to the South Pole [9], [10].

Until very recently, the main applications for the
3-D Smith chart included complex port matching, representing
amplifier stability circles (originally at a single frequency, it
will be shown in the Appendix that this can also be extended
to cover a wide frequency range) and oscillator design, by
projecting onto the surface only of the sphere [9]–[11], with
computer-aided design (CAD) software now commercially
available [12]. The basic geometrical framework employs a
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stereographical projection to map the generalized Smith chart
onto the Riemann sphere.

In 2014, Muller et al. [13] proposed the use of the third
dimension of the Euclidean plane to plot the unilateral trans-
ducer constant power gain circles outside the 3-D chart. Here,
a simple projection (with a constant scaling factor) from the
center of the sphere (i.e., the origin of the 3-D Smith chart)
maps the unilateral transducer power gain circles in 3-D space.

The capability of the 3-D Smith chart to provide intuitive
insights into phenomena that would be otherwise difficult
to visualize on a 2-D Smith chart [14] will be further
exploited here. Mathematical concepts (inspired from ele-
mentary differential geometry and topology) will bring to
light simple and straightforward models for visualizing not
only the scattering (S)-parameters but also the associated
differential-phase group delay and loaded resonator quality
(Q)-factor. For example, a one-to-one mapping between these
parameters allows the viewer to visualize the forward voltage-
wave transmission coefficient S21 on the 3-D Smith chart, the
associated differential-phase group delay in 3-D space, and the
corresponding Q-factor for an equivalent series RLC resonator
along the normal plane of the 3-D differential-phase group
delay space curve.

This paper first introduces basic concepts from differential
geometry [15] (the branch of mathematics that studies the
geometry of curves and surfaces in 3-D space) to define the
space curve that can represent both transmission and reflec-
tion response group delays and associated loaded resonator
Q-factor (thickened curve). Then a condition is presented,
based on the notion of a winding number that a circuit
has to obey in order to exhibit negative differential-phase
group delay within the displayed frequency range. Finally,
several network exemplars are considered, demonstrating
the potential for the visualization of multiple parameters
in 3-D.

In Section II, given S21(ω), where ω represents angular
frequency, a new function τ 3D(ω) is defined in the form
of a space curve having its modulus being proportional to
the differential-phase group delay and the phase of S21(ω).
For the first time, the exterior of the 3-D Smith chart
(outer space) will be used to display positive values of
differential-phase group delay, while its interior (inner space)
displays negative values; this is not possible on a conventional
2-D Smith chart. The theory is developed for the concept of
transmission response group delay, but similar implementation
and results are also found with reflection response group delay
(e.g., as exploited by termination impedances in reflection-type
topologies [1], [2]). Since the differential-phase group delay
curve is no longer a plane curve, basic elements of differential
geometry and 3-D projections can be exploited [16]. Here, the
loaded resonator Q-factor associated with differential-phase
group delay is plotted as a generalized cylinder [17], [18] of
variable radius in the normal plane of the differential-phase
group delay curve, tracking its motion (as frequency changes).
The value of loaded resonator Q-factor at each frequency point
will thus be given by the radius of the generalized cylinder
(obtained by extruding a circle of nonconstant radius along
the path of the differential phase group delay curve).

II. DIFFERENTIAL GEOMETRY FORMULATION

A. Differential-Phase Group Delay Based on Homothety

Transmission parameter S21(ω) can be defined using either
the Cartesian (1) or exponential (2) forms, where a(ω)
and b(ω) represent its real and imaginary parts, respectively,

S21(ω) = a(ω) + jb(ω) (1)

S21(ω) = |S21(ω)|e j � S21(ω)

|S21(ω)| =
√

a(ω)2 + b(ω)2

� S21(ω) = tan−1
{

b(ω)

a(ω)

}
(2)

where j = √−1 is the complex operator. The corresponding
differential-phase group delay τ (ω) of a network can be
defined as the negative derivative of insertion phase � S21(ω)
with respect to angular frequency [1], [2]

τ (ω) = −∂ � S21(ω)

∂ω
. (3)

Clearly, differential-phase group delay will be negative when
the phase-frequency gradient is positive (without breaking the
law of causality), which is often found in lossy scenarios.

In principle, the 2-D differential-phase group delay function
τ2D(ω) can be defined as having its amplitude and phasor
given by (3) and in (2), respectively,

τ2D(ω) = τ (ω)e j � S21(ω). (4)

However, in practice, it will be observed that the τ2D(ω) curve
cannot be defined in exponential form, since (3) is not always
positive. Fortunately, the 3-D Smith chart can be exploited
using the following steps. The differential-phase group delay
is first normalized to its maximum absolute peak value (to
achieve a normalized value within the interval [−1, 1])

τN (ω) = τ (ω)

|τ (ω)|MAX
. (5)

The transmission parameter is plotted onto the 3-D Smith
chart, to give a curve of S213D(ω) as frequency changes on the
surface of the Riemann sphere [9], [10] using the following
mapping function [9, eq.(3)], written here in Cartesian vector
form:

S213D(ω) =
(

2a(ω)

1 + |S21(ω)|2 i + 2b(ω)

1 + |S21(ω)|2 j

+1 − |S21(ω)|2
1 + |S21(ω)|2 k

)
(6)

where i, j, and k represent the orthogonal versors with respect
to the center of the Riemann sphere. The S213D(ω) curve is
traced by the position vectors, at each frequency point, relative
to the sphere’s origin.

Now, a variable homothety (a bijection transformation
obtained by pushing or pulling a curve along a line segment
formed by the points of the curve and a fixed point—in our
case the center of the 3-D Smith chart) [18] is considered
alongside the associated scattering (S)-parameter S213D(ω),
with factor (1 + τN (ω)). This factor represents a dilation of
the S213D(ω) curve, relative to the surface of the sphere. This
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Fig. 2. Arbitrary example. (a) Radial lines (each representing a discrete
frequency) emanating from the sphere’s origin through the surface curve of
S213D(ω) and 3-D space curve of τ3D(ω). (b) Vector relationship between
S213D(ω) and τ3D(ω), when the latter becomes negative an observer on the
S213D(ω) curve looks toward the interior of the 3-D Smith chart to follow its
path.

defines a space curve τ 3D(ω) that can be exterior or interior
to the unity radius 3-D chart, which is a bijective function to
S213D(ω)

τ 3D(ω) = (1 + τN (ω))S213D(ω). (7)

In this way, (7) keeps the phase of τ2D(ω) and S21(ω) with
the 3-D Smith chart and makes it possible to visualize the
corresponding normalized value τN (ω) using the exterior and
interior of the 3-D Smith chart for positive and negative values,
respectively. At each frequency point, a radial line emanates
from the sphere’s origin toward the surface projection of
S213D(ω). Moving along the same radial line, an observer at
the sphere’s origin can also visualize τ 3D(ω), as illustrated
in Fig. 2(a). For the observer, there is no difference between
(6) and (7), as the radial line emanating from the observer
touches both curves.

The basic mathematical tool used in (7) is based on homo-
thety. The curves from (6) and (7) are topologically identical.
One can think of the curve from (7) as being pulled-out if
the differential-phase group delay is positive or pushed-in
if negative, along the transmission parameter curve; with a
variable weighting (1 + τN (ω)) directed either away from or
toward the sphere’s origin, respectively.

With S213D(ω), the observer can directly read off S21(ω)
from the surface of the sphere. However, this is not the case
with τ (ω), as |τ (ω)|MAX is not indicated. The distance d from
S213D(ω) to τ 3D(ω), along a radial line emanating from the
sphere’s origin, is given by

d(S213D(ω), τ 3D(ω)) = |τ N (ω)|. (8)

It can be seen that if τN (ω) > 0 there will be an exterior
mapping, while τN (ω) < 0 will have interior mapping. The
second factor in (7) has values in the interval [0, 2]. Therefore,
this factor will be zero when τ 3D(ω) reaches the minimum
negative value (i.e., at the sphere’s origin), unity at the points
where it vanishes (i.e., on the surface of the sphere) and 2
when it reaches the maximum positive values (i.e., exterior
with unity distance from the surface of the sphere).

B. Frenet Coordinate System

When working with curves in 3-D space, instead of using
the Cartesian form, a coordinate system can be adapted to

Fig. 3. Frenet frame showing the osculating, normal, and rectifying planes
for the τ3D(ω) curve. T(ω) points in the direction of increasing frequency.

the local structure, which moves with an observer along its
trajectory, at each point along the curve. The Frenet moving
frame is a more meaningful vector system that provides a
coordinate system at each frequency point [19], [20], tracking
the motion of τ 3D(ω) as frequency changes. For this, τ 3D(ω)
is first rewritten, by putting (6) into (7), as

τ 3D(ω)

= (1 + τN (ω))

×
(

2a(ω)

1 + |S21(ω)|2 i + 2b(ω)

1 + |S21(ω)|2 j + 1 − |S21(ω)|2
1 + |S21(ω)|2 k

)
.

(9)

In the Frenet coordinate system, defined by the unit vectors
{T(ω), N(ω), B(ω)}, the tangent unit vector T(ω) represents
the derivative of τ3D(ω) with respect to angular frequency,
normalized by its modulus, and is defined as

T(ω) = τ ′
3D(ω)

|τ ′
3D(ω)| (10)

where the tick mark ′ denotes the derivative with respect to ω.
The normal unit vector N(ω) has the corresponding derivative
of the tangent unit vector

N(ω) = T′(ω)

|T′(ω)| . (11)

T(ω) points in the forward direction of travel (as frequency
increases), while N(ω) points in the direction in which τ 3D(ω)
is turning [20]. The tendency of τ 3D(ω) to twist out of the
plane created by the tangent and normal unit vectors, in
the direction perpendicular to this plane, is reflected by the
binormal unit vector B(ω), defined by the vector cross product

B(ω) = T(ω)×N(ω). (12)

All three unit vectors are mutually orthogonal and define a
coordinate system [15], [16], [20] along τ 3D(ω); this can
be thought of as a spaceship-based coordinate system. The
plane formed by N(ω) and T(ω) is called the osculating plane
and moves around the τ 3D(ω) curve; the plane formed by
B(ω) and N(ω) is called the normal plane and is perpendic-
ular to τ 3D(ω); and the rectifying plane is formed by T(ω)
and B(ω). These planes are illustrated in Fig. 3.

C. Loaded Resonator Quality Factor

There is a convenient relationship between the differential-
phase group delay and the loaded quality factor of an equiva-
lent series or shunt RLC resonator at its undamped (or driven)
angular resonance frequency ωo [21]

QLR(ωo) = ωo

2
· |τ (ωo)|. (13)
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Fig. 4. Qualitative display of loaded resonator Q-factor in the normal plane of
the differential-phase group delay curve given in Fig. 2, creating a generalized
cylinder of radius proportional to (15).

Fig. 5. Arbitrary loci on the 2-D Smith chart. (a) Four NGD networks
exhibiting a zero S-parameter winding number. (b) Two NGD networks
exhibiting a unity S-parameter winding number. With the inner loop, the
network exhibits negative differential-phase group delay at all the frequencies
displayed, while with the outer loop the associated network has a more band-
limited performance.

Note that the network is inherently loaded by the reference
impedance of the system and/or any other impedance(s) that
terminate its ports. Therefore, the level of port loading will
directly affect the differential-phase group delay and associ-
ated loaded resonator Q-factor.

Using (13), the resonator’s loaded quality factor at reso-
nance QLR(ωo) can be superimposed onto the normal plane to
the τ 3D(ω) curve (offering a more aesthetic perspective [16]).
Hence, taking advantage of the 3-D representation of the
τ 3D(ω) curve (7), the normal plane of the curve can be
used (as in [16]–[18]) to display this Q-factor as a thickened
curve Q3D(ω, θ ) at each frequency point. Here, a variable
radius cylinder is defined, based on the normalized loaded
resonator Q-factor along the curve, by using the following
parameterization with τ 3D(ω):

Q3D(ω, θ ) = τ 3D(ω)

+[N(ω) cos θ + B(ω) sin θ ]QN (ω) (14)

where 0 ≤ θ ≤ 2π is an angle that defines a circle [22]
around each frequency point along the τ3D(ω) curve, to create
a surface; QN (ω) is the normalized loaded resonator Q-factor
with an additional arbitrary scaling factor of 5

QN (ω) = QLR(ω)

5 · QLR(ω)|MAX
. (15)

Using (14) and (15), Fig. 4 qualitatively shows how loaded
resonator Q-factor can be displayed with a 3-D Smith chart for
the same differential-phase group delay curve given in Fig. 2.

Fig. 6. One-port series RLC network exhibiting negative differential-phase
group delay (reflection response).

D. S-Parameter Winding Numbers

The winding number of a closed curve χ in the plane
around a given point p0 is the integer that represents the
total number of times that the curve χ rotates completely
around the point p0. The winding number depends on the
orientation of the curve and is negative if the curve travels
clockwise around the point p0. This mathematical concept
plays an important role in many disciplines (e.g., algebraic
topology, vector calculus, complex analysis, and physics) [23].

For an observer located at the origin of the 2-D Smith
chart [i.e., the origin of the Suv (ω) plane, where u, v ∈
[1, 2] for the one- or two-port network examples used in
this paper], the differential-phase group delay is negative
as the observer rotates in a counterclockwise direction and
positive in a clockwise direction. Therefore, from an observer
tracking the movement with frequency of an S-parameter
loop, the associated winding number is defined as the number
of times Suv (ω) rotates completely around the origin in a
counterclockwise direction. A condition for a circuit to exhibit
negative differential-phase group delay is that it has a zero or
positive S-parameter winding number.

Fig. 5(a) and (b) shows arbitrary examples of zero and
unity S-parameter winding numbers, respectively. In all but
one case, the observer has to rotate in both clockwise and
counterclockwise directions in order to track the movement of
the closed loop, indicating that τ (ω) < 0 over just part of the
fully displayed frequency range. Examples of classical NGD
networks will be given in Sections III and IV.

III. ZERO S-PARAMETER WINDING NUMBER

The one-port series RLC network shown in Fig. 6 can
exhibit negative differential-phase group delay (reflection
response) when R > Zo [1]–[3], where Zo is the (real)
reference impedance of the system. From Fig. 6, the voltage-
wave reflection coefficient is given as

S11(ω) = Z(ω) − Z0

Z(ω) + Z0
(16)

where Z(ω) is the driving point impedance of the network,
given by

Z(ω) = R + j

(
ωL − 1

ωC

)
. (17)

Since R, L, and C have positive fixed values, geometri-
cally (17) defines an extended line in the complex impedance
plane that passes through Z = R in the right half of the
impedance plane. This extended line is mapped by (16) into
a circle onto the 2-D Smith chart (because (16) is a Möbius
transformation), passing through S11(ωo) = (R−Z0)/(R+Z0)
and S11(ω) = 1 at dc and infinite frequency. For example,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MULLER et al.: EXTENDED CAPABILITIES OF 3-D SMITH CHART WITH GROUP DELAY AND RESONATOR QUALITY FACTOR 5

Fig. 7. Voltage-wave reflection coefficient S11(ω) loop on the 2-D Smith
chart for the RLC network given in Fig. 6, having a zero S-parameter winding
number when R > Zo, exhibiting negative differential-phase group delay.

Fig. 8. Calculated differential-phase group delay (reflection response) for
the one-port network given in Fig. 6.

Fig. 9. Smith chart displays of calculated voltage-wave reflection coefficient
(surface curve) for the network in Fig. 6. (a) 2-D chart with S11(ω)
corresponding to Fig. 7. (b) 3-D chart with S113D(ω) and reflection response
τ3D(ω) curve (3-D space curve).

with arbitrary values of L = 10 nH, C = 1 pF, and R =
250 �, with Z0 = 50 �, the calculated S11(ω) and associated
differential-phase group delay are shown in Figs. 7 and 8,
respectively.

Fig. 9(a) shows a section of the calculated loop of S11(ω) in
the 2-D Smith chart, while Fig. 9(b) shows the corresponding
differential-phase group delay with the 3-D Smith chart. As
predicted by (7) and seen in Fig. 8, the τ 3D(ω) curve is interior
from 0.57 to 4.46 GHz. Moreover, below, at, and above the
undamped resonance frequency of 1.592 GHz, the network
changes from being capacitive to resistive to inductive, respec-
tively. As a result, the movement with frequency of τ 3D(ω)
starts above the Western hemisphere and crosses the prime
meridian into the Eastern hemisphere.

The one-port shunt RLC network in Fig. 10 exhibits nega-
tive differential-phase group delay (reflection response) when
R < Zo [3].

Fig. 10. Shunt RLC network exhibiting negative differential-phase group
delay (reflection response).

Fig. 11. Voltage-wave reflection coefficient S11(ω) loop on a 2-D Smith
chart for the one-port shunt RLC network given in Fig. 10, having a zero
S-parameter winding number when R < Zo, exhibiting negative differential-
phase group delay.

Fig. 12. Calculated differential-phase group delay (reflection response) for
the one-port network given in Fig. 10.

From Fig. 10, the voltage-wave reflection coefficient is
given as

S11(ω) = Y0 − Y (ω)

Y0 + Y (ω)
(18)

where Y0 = 1/Z0 and Y (ω) is the driving point admittance of
the network, given by

Y (ω) = G + j

(
ωC − 1

ωL

)
(19)

where G = 1/R. It can be seen geometrically that (18) will
map (19) into a circle onto the 2-D Smith chart, this time pass-
ing through S11(ωo) = (Y0 − G)/(Y0 + G) and S11(ω) = −1
at dc and infinite frequency. For example, with arbitrary values
of L = 10 nH, C = 1 pF, and R = 47 �, with Z0 = 50 �,
the calculated S11(ω) and associated differential-phase group
delay are shown in Figs. 11 and 12, respectively.

Fig. 13(a) shows a section of the calculated loop of S11(ω)
in the 2-D Smith chart, while Fig. 13(b) shows the correspond-
ing differential-phase group delay with the 3-D Smith chart.
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Fig. 13. Smith chart displays of calculated voltage-wave reflection coefficient
(surface curve) for the network in Fig. 10. (a) 2-D chart with S11(ω)
corresponding to Fig. 11. (b) 3-D chart with S113D(ω) and reflection response
τ3D(ω) curve (3-D space curve).

Fig. 14. Two-port series network with parallel RLC tuned circuit exhibiting
negative differential-phase group delay (transmission response).

Fig. 15. Voltage-wave transmission coefficient S21(ω) loop on a 2-D Smith
chart for the two-port network shown in Fig. 14, having a zero S-parameter
winding number, exhibiting negative differential-phase group delay.

As predicted by (7) and seen in Fig. 12, the τ 3D(ω) curve is
interior from 1.12 to 1.5 GHz. Moreover, the movement with
frequency of τ 3D(ω) starts above the Eastern hemisphere and
tends toward the prime meridian; it never crosses, since the
network is inductive in the displayed frequency range.

The two-port series network with parallel RLC tuned circuit
shown in Fig. 14 can also exhibit negative differential-phase
group delay (transmission response) [3].

From Fig. 14, the voltage-wave transmission coefficient is
given as

S21(ω) = G + j
(
ωC − 1

ωL

)

(G + Y0/2) + j
(
ωC − 1

ωL

) . (20)

It can be seen that (20) maps ω into a circle onto the 2-D Smith
chart; this time passing through S21(ωo) = G/(G +Y0/2) and
S21(ω) = 1 at dc and infinite frequency. For example, with
arbitrary values of L = 3 nH, C = 5 pF, and R = 100 �, with
Z0 = 50 �, the calculated S21(ω) and associated differential-
phase group delay are shown in Figs. 15 and 16, respectively.

Fig. 17(a) shows a section of the calculated loop of
S21(ω) in the 2-D Smith chart, while Fig. 17(b) shows the
corresponding differential-phase group delay with the 3-D

Fig. 16. Calculated differential-phase group delay (transmission response)
for the parallel RLC network given in Fig. 14.

Fig. 17. Smith chart displays of calculated voltage-wave transmission coef-
ficient (surface curve) for the network in Fig. 14. (a) 2-D chart with S21(ω)
corresponding to Fig. 15. (b) 3-D chart with S213D(ω) and transmission
response τ3D(ω) curve (3-D space curve).

Fig. 18. Typical LC ladder network exhibiting negative differential-phase
group delay (reflection response) with positive S-parameter winding number
for negative values of inductance and capacitance.

Smith chart. As predicted by (7) and seen in Fig. 16, the
τ 3D(ω) curve is interior from 1.09 to 1.5 GHz. Moreover,
below, at, and above at the undamped resonance frequency
of 1.299 GHz, the network changes from being capacitive to
resistive to inductive, respectively. As a result, the movement
with frequency of τ 3D(ω) starts above the Western hemisphere
crosses the prime meridian into the Eastern hemisphere.

IV. POSITIVE S-PARAMETER WINDING NUMBER

Let us now consider a one-port non-Foster network with
negative valued inductances and capacitances [14], as shown
in Fig. 18 (subscript NF represents the non-Foster condition).

As recently shown [14], the driving point
reactance/susceptance for a pure non-Foster network
(made from ideal negative inductive and capacitive element
values) is a strongly real function of negative type of real
frequency. Thus, the circuit behaves like an ideal non-Foster
network having negative reactance and susceptance frequency
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Fig. 19. Calculated differential-phase group delay (reflection response) for
the LC ladder network given in Fig. 18.

Fig. 20. Smith chart displays of calculated voltage-wave reflection coefficient
(surface curve) for the network in Fig. 18. (a) 2-D chart with S11(ω). (b) 3-D
chart with S113D(ω) and reflection response τ3D(ω) curve (3-D space curve).

gradients. In this case, S11(ω) will rotate counterclockwise
completely around the origin (having a positive S-parameter
winding number) and exhibit a negative reflection response
group delay. Using the following arbitrary values of
L1 = L2 = −1 nH and C1 = C2 = −1 pF, with Z0 = 50 �,
the calculated differential-phase group delay is shown in
Fig. 19.

Fig. 20(a) shows a section of the calculated loop of S11(ω)
in the 2-D Smith chart, while Fig. 20(b) shows the correspond-
ing differential-phase group delay with the 3-D Smith chart.

V. FILTER EXAMPLES

A. Optimization of Reflection Response Group Delay

In filter synthesis, one may use the Group Delay Method for
determining the input coupling of the single input or output
resonator, with all other resonators removed, based on voltage-
wave reflection coefficient analysis [24]. It is desirable to find
the value of reflection response group delay at resonance,
which is related to the external quality factor Qe [24]. As an
example, consider the layout of the lossless combline cross-
coupled bandpass filter shown in Fig. 21 [25].

The input coupling disk diameter and its position are
optimized to peak the reflection response group delay with
a 0 dB return loss (for a purely reactive resonator), at a
target center frequency of 1.85 GHz (corresponding to a target
value set for Qe [24]). This is achieved through optimization,
with the optimized target result shown in Fig. 22(a). With
a Cartesian plot it is difficult to perform multiobjective goal

Fig. 21. Combline cross-coupled bandpass filter [25]. (a) Complete layout
and (b) close-in view of one quadrant for calculating Qe by including the
effects of the iris coupling and terminating reference impedance for the one-
port network with all other resonators removed.

Fig. 22. Target synthesized reflection response group delay for the layout
in Fig. 21(b). (a) Cartesian plot of target group delay τT (ω). (b) 3-D Smith
chart showing the target S113DT(ω) (surface curve) and τ3DT(ω) (3-D space
curve) responses.

Fig. 23. Initial (dotted curves) and final (dashed curves) optimization
results for both S113D(ω) and τ3D(ω) to achieve the target (solid curves)
for S113DT(ω) and τ3DT(ω), shown in Fig. 22(b).

optimization (e.g., obtain a target group delay of 28.3 ns at a
center frequency of 1.85 GHz and the voltage-wave reflection
coefficient on the unity radius contour of the standard 2-D
Smith chart or equator of the 3-D Smith chart). However,
on the 3-D Smith chart, the target values of S-parameters
and associated differential-phase group delay can be combined
onto one visualization platform. In this way, it is possible to
optimize not only the disk diameter and its position but also
the input coaxial cable dimensions, detect the presence of any
additional losses, and view distances from multiple goals over
the desired frequency range, at each optimization step.

Using the 3-D Smith chart, the associated differential-phase
group delay can now be simultaneously displayed with the
S-parameters. For example, Fig. 23 displays the initial (dotted
curves) and final (dashed curves) optimization results for both
S113D(ω) and τ 3D(ω) to achieve the target (solid curves) for
S113DT(ω) and τ 3DT(ω), shown in Fig. 22(b). Both dotted
curves are distant from their respective target solid curves,
whereas the dashed curves are close. It should be noted that
both qualitative and quantitative assessments are much easier
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Fig. 24. τ3DT(ω) represented in a spherical coordinate system. At each
unique value of ω, the corresponding value of S113DT(ω) can be read-off
from the surface of the 3-D Smith chart.

Fig. 25. Setting target masks for the differential-phase group delay in an
advanced optimization step of a filter design [26]. (a) Cartesian plot. (b) 3-D
Smith chart S213D(ω) (surface curve) and τ3D(ω) (3-D space curve). The
3-D target masks are represented by two transparent concentric spheres.

with user-interactive viewing of the 3-D Smith chart, rather
than being seen in the static 2-D images shown here.

Unlike with a 2-D curve, τ 3D(ω) is a space curve defined
by the homothety in (7). With reference to Fig. 24, τ 3DT(ω)
can be expressed with spherical coordinates, relative to the
origin of the Riemann sphere, with ω being the frequency of
interest.

The reflection response group delay τ 3DT(ω) is mathemat-
ically represented by (21), with (22) corresponding to the
associated S-parameter S113DT(ω) in the spherical coordinate
system

τ 3DT(ω) = {(1 + τNT ),	T , φT } (21)

and

S113DT(ω) = {	T , φT } (22)

where (1 + τNT) is the distance from the center of the sphere,
	T is the target colatitude, and φT is the target longitude.
By fitting τ 3D(ω), given as

τ 3D(ω) = {(1 + τN ),	, φ} (23)

with (21), it can be seen that (1 + τN ) = (1 + τNT ), 	 = 	T ,
φ = φT and thus

S113D(ω) = {	,φ}≡S113DT(ω). (24)

This means that, with the Group Delay Method, once the
reflection response group delay τ 3D(ω) is made to fit τ 3DT(ω)
at each unique frequency point then the associated S-parameter
S113D(ω) will automatically fit S113DT(ω) and, therefore, the
complete optimization process can be achieved by a single

Fig. 26. 3-D Smith chart displays of calculated S213D(ω) (surface curve)
for an arbitrary lossy two-port resonator with (a) τ3D(ω) (3-D space curve)
and (b) resonator loaded quality factor Q3D(ω, θ) (3-D space generalized
cylinder).

Fig. 27. Smith chart displays of source (solid) and load (dashed) stability
circles for a Motorola 2N6679A bipolar transistor at different frequencies
(0.l and 0.5 to 6.5 GHz, in 0.5 GHz steps) [30]. (a) 2-D chart. (b) 3-D chart.

3-D parametrical curve fitting, effectively disregarding the
associated S-parameter curve in this optimization process.

B. Equalization of Transmission Response Group Delay

The flatness of group delay across the operating bandwidth
of a filter [26], [27] is an important design requirement for
many applications. On a conventional Cartesian plot of τ (ω),
target masks are normally introduced to indicate its minimum
and maximum allowable values, as seen in Fig. 25(a). With
a 3-D Smith chart, two transparent concentric spheres can
be introduced, each representing the minimum and maxi-
mum allowable values, as shown in Fig. 25(b). For example,
in Fig. 25(b), τ 3D(ω) lying within the green and orange
spheres, in proximity to the undamped resonance frequency,
obeys the target mask constraints given in Fig. 25(a), while
it is still possible to visualize S213D(ω) on the surface of the
3-D Smith chart.

C. Loaded Resonator Quality Factor

An important target in the design of filters is the quality
factor of its resonators, which is limited by available tech-
nological constraints. The 3-D Smith chart allows for the
simultaneous display of differential-phase group delay and
associated loaded resonator quality factor and S-parameters.
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As an arbitrary example, a two-port lossy resonator was
synthesized using electromagnetic field simulation software.
With a reference impedance Z0 = 50 �, the transmission
response group delay is 14.8 ns. Using (13), the equivalent
series RLC resonator’s loaded Q-factor is 200 at its undamped
resonance frequency of 4.3 GHz. The results are displayed in
Fig. 26, from 4.0 to 4.6 GHz. As with all the results displayed
with the 3-D Smith chart, in practice, markers display the
quantitative numerical values associated with all the curves.

VI. CONCLUSION

This paper presents a new way of simultaneously displaying
various parameters with a 3-D Smith chart. Here, mathematical
concepts, inspired from elementary differential geometry and
topology, are used to implement 3-D projections. The mathe-
matical relationship between S-parameter winding number and
differential-phase group delay is defined, and a condition for a
circuit to exhibit both positive and negative differential-phase
group delay is given. The associated loaded resonator quality
factor is also displayed for the first time with the 3-D Smith
chart.

A variety of different types of networks (NGD, non-
Foster and filter) were arbitrarily chosen as exemplars. With
reflection response group delay optimization, it was shown
that 3-D curve fitting of the differential-phase group delay
automatically satisfies the associated S-parameter requirement
(modulus and phase). Here, two target responses are optimized
by a single 3-D curve fit. Finally, the convenience of being able
to simultaneously display a wider range of parameters on one
visualization platform, with the 3-D Smith chart, may help to
speed-up the design and analysis of microwave circuits by the
user.

APPENDIX

3-D SMITH CHART DISPLAY ENHANCEMENTS

Negative resistance represents a challenge for the
2-D Smith chart [28] (due to scaling problems with large neg-
ative resistance values); while geometrical shape distortions
map onto the new hyperbolic Smith chart [29] (circles on the
2-D Smith chart may lose their shape on the hyperbolic version
of the Smith chart). These limitations are avoided with a 3-D
Smith chart, since infinity converges to a convenience point on
the Riemann sphere (South Pole), while no shape distortions
occur (circles on a 2-D Smith chart are always circles on a
3-D Smith chart).

In order to make the 3-D Smith chart a practical tool,
several display enhancements have been developed to help
in the design and analysis of microwave circuits [12]. For
example, input and output stability circles have been recently
introduced. To avoid oscillation, the stability analysis of
an amplifier must be performed over a wide frequency
range [10, 30]. The current 2016 version of the 3-D
Smith chart [12] can now simultaneously plot stability cir-
cles, as shown in Fig. 27, using measured S-parameters
(at 0.l and from 0.5 to 6.5 GHz, in 0.5 GHz steps) for
the Motorola 2N6679A bipolar transistor [30]. In order
to achieve unconditional stability, the amplifier must be

designed so that all the stability circles lie within the
Southern hemisphere of the 3-D Smith chart. Indeed, as
seen in Fig. 27(b), all the circles can be viewed in
their entirety [(without the scaling issues required with
Fig. 27(a)] and having no shape distortion.
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