

Máster Universitario en

Ingeniería y Tecnología

de Sistemas Software

Universitat Politècnica de València

in collaboration with the

Technische Universität Wien

Analysis and style of
Graph-Oriented Database Technology,

focused on the Neo4j System

Final Master’s Project
(Trabajo Fin de Máster)

2017 - 2018

Author: Italo Lombardi

Tutors: Prof. Dr. Juan C. Casamayor

 Prof. Dr. Reinhard Pichler

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

To my family, who inspire me to reach high.

 Italo Lombardi 1

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Acknowledgments

Mis más sinceros agradecimientos a todos los profesores del Máster Universitario
en Ingeniería y Tecnología de Sistemas Software, de manera especial al Profesor Juan
Carlos Casamayor, mi tutor, y a la Directora Profesora María Carmen Penadés.

Juan Carlos, con su curso de TGD, despertó en mí el interés por las bases de datos
orientadas a grafos, tecnología que considero muy importante para mi futura carrera laboral.
Su profesionalidad y amabilidad, que noté desde el primer día, fueron el impulso para pedirle
que fuera mi tutor para esta tesis. Espero haberle hecho sentir orgulloso de haber aceptado
esta tarea.

María Carmen, demostrando profesionalidad y paciencia hacia mi en todo momento,
dándome la oportunidad de participar en dos ocasiones en intercambios Erasmus, siempre
resolviendo las solicitudes y dudas surgidas en su momento.

Special thanks also go to my Tutor in Vienna, Prof. Reinhard Pichler, who
allowed me to live this fantastic experience that has changed me profoundly.

Gracias también a la Profesora Silvia Abrahão que me recomendó el Màster.
Sin ella, todo esto no hubiera sido posible y espero que algún día nuestros caminos
académicos vuelvan a cruzarse.

Mi mayor afecto va a Carlos, Enio, Juanjo y Marco que han sufrido conmigo
durante la redacción de los mil proyectos que hemos realizado. A Fernando, Jacinto, Patty
y Yandry, compañeros durante y después de los exámenes y a todos los otros compañeros
del Máster. Os considero mucho más que sólo amigos.

Hablando de amigos, quiero agradecer a Fabricio y Anca, Daniel y Temi, Paola P.,
Cristhian, Felix, Irving, Jorge, Omar, Paolo y a todos los demás que han hecho de
Valencia mi segundo hogar.

Grazie anche agli amici di Fisciano e di Buonabitacolo, che, anche nella
lontananza, riescono sempre a trovare un momento per condividere con me gioie e dolori.

Dedico questa tesi a tutta la mia famiglia, che mi ha sempre supportato, sperando di
averli resi fieri dopo questo duro lavoro.

 Italo Lombardi 2

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Resumen

El objetivo del trabajo fin de máster es enfocarse en los aspectos fundamentales
de las bases de datos orientadas a grafos, en particular sobre Neo4j, considerado uno
de los sistemas de gestión de bases de datos más importantes y estables, para manejar
datos usando un almacenamiento nativo en grafos.

Cada día, las bases de datos orientadas a grafos son cada vez más populares
que las tradicionales bases de datos relacionales, por lo tanto, al principio, veremos
una descripción general y una comparación entre las dos tecnologías.

En segundo lugar, al entrar en más detalles sobre el sistema Neo4j,
mostraremos todas sus características externas e internas, que le han permitido
alcanzar un amplio dominio.

Posteriormente, nos enfocaremos en Cypher, el lenguaje declarativo del Neo4j,
analizando las funciones principales que se ofrecen.

Una vez adquirido el conocimiento, se mostrará cómo crear y administrar un
proyecto, incluida la instalación y configuración, tratando de informar al lector sobre
los errores más comunes, que se pueden hacer durante las fases de creación de la
base de datos.

Finalmente, mostraremos uno de los casos de uso más famosos de Neo4j, eBay
ShopBot, un sistema que usa un grafo para almacenar e identificar productos
rápidamente, para ayudar a los clientes durante las compras en el sitio web.

Palabras clave: Grafo, Base de datos orientada a grafos, NoSQL, Neo4j,
 Cypher, Modelado de datos, eBay ShopBot

 Italo Lombardi 3

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Abstract

The primary aim of this Master's Thesis is to focus on the fundamental aspects
of graph-oriented databases, with a particular emphasis on Neo4j, considered one of
the most important and stable graph database management system to handle data
using native graph storage.

Every day, Graph Databases are becoming more popular than traditional
Relational Databases, for this reason, this work will begin with an overview and a
critical comparison between the two technologies.

The research will follow with an in-depth analysis of the Neo4j system, and it
will show its external and internal characteristics, which have allowed it to reach
enormous popularity.

Furthermore, it will focus on Cypher, the Neo4j's declarative language,
analysing the primary functions offered.

Once knowledge is acquired on this subject, this assignment will discuss how
to create and manage a project, including installation, configuration and most
common mistakes, that can be made during the database creation phases.

In conclusion, this work will show one of the most famous use cases of Neo4j,
the eBay ShopBot, a system which uses a graph to store and identify products fastly,
to help customers during the shopping on the website.

Keywords: Graph, Graph Database, NoSQL, Neo4j,
 Cypher, Data Modeling, eBay ShopBot

 Italo Lombardi 4

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Table of contents

Acknowledgments 2

Resumen (Spanish) 3

Abstract (English) 4

Table of contents 5

List of figures 10

1) Introduction 16

1.1) Background motivation 16

1.2) Goal 16

1.3) Structure of the dissertation 17

2) Preliminary 18

2.1) Databases - Overview 18

2.1.1) Relational Databases 20

2.1.2) NoSQL Databases 27

2.2) Graphs - Overview 30

3) Graph Databases 34

3.1) Graph Data Model 34

3.2) Graph Databases 35

3.2.1) Relational Databases vs. Graph Databases:
 A Comparison example 36

3.2.1.1) Relational version 36

 Italo Lombardi 5

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

3.2.1.2) Graph version 39

3.2.1.3) Extension of the example 41

3.2.2) Are Graph Databases always the best choice? 42

4) Neo4j 43

4.1) Key characteristics - Overview 43

4.1.1) ACID support 43

4.1.2) Transactional support 44

4.1.3) Scalability support 45

4.1.3.1) Master-Slave Clustering 46

4.1.3.2) Causal Clustering 47

4.1.4) Neo4j’s declarative query language 49

4.1.5) Pathfinding queries 50

4.1.6) REST API via HTTP 50

4.1.7) Server extensions 51

4.1.8) Indexes 51

4.1.9) Caching 52

4.1.10) Cache sharding 52

4.1.11) Browser - A visualisation framework 53

4.1.12) WebAdmin - A monitoring framework 54

4.1.13) Open source technology 54

4.1.14) Licence GPL vs. AGPL 55

4.1.15) Backups 56

5) Cypher 58

5.1) Most relevant clauses 58

5.2) Other clauses 63

 Italo Lombardi 6

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

5.3) Key functions 70

5.4) Query optimisations 74

6) Data Modeling 80

6.1) Data Modeling with Graphs and Neo4j 81

6.1.1) Best practices and pitfalls 82

6.1.2) Architecture 91

6.1.3) Testing 92

6.1.4) Performance testing 93

6.2) Evolving the domain 93

7) Flights and Cities, a Real World Example 95

7.1) Modeling Phase 95

7.1.1) Introduction and understanding of the domain 95

7.1.2) First possible solution 96

7.1.3) Identifying the entities 96

7.1.4) Identifying the relationships 97

7.2) Cypher queries 97

7.2.1) Cities 97

7.2.2) Flights 99

7.2.3) Relationships 99

7.2.3) Indexes 100

7.2.4) First traversal query 101

7.2.5) Planning itinerary 101

8) Inside Neo4j 103

8.1) Index-free adjacency 103

 Italo Lombardi 7

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

8.2) High-level Neo4j architecture 104

8.2.1) Disks 105

8.2.2) Store files 106

8.2.2.1) Node store file 106

8.2.2.2) Relationship store file 107

8.2.2.3) Property store file 108

8.2.2.4) Physical store and traversal 109

8.2.3) Neo4j Caches 110

8.2.3.1) Filesystem cache 110

8.2.3.2) Object cache 111

8.2.4) Transaction logs 112

8.2.5) Neo4j High Availability 113

8.2.6) Programmatic APIs 113

8.3) Traversal ordering 115

8.3.1) Depth-first 116

8.3.2) Breadth-first 117

8.3.3) A comparison between the two algorithms 118

8.3.4) Bidirectional traversals 120

8.4) Design constraints in Neo4j 122

9) Installation & Configuration 123

9.1) Installing Neo4j Desktop on Windows 123

9.2) Installing Neo4j on Linux/Unix 126

9.3) Neo4j with Docker 129

9.4) How to interact with Neo4j 130

9.4.1) Neo4j REST API 130

9.4.1.1) REST API by the HTTP API console 130

 Italo Lombardi 8

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.4.1.2) REST API by Java 134

9.4.2) Accessing Neo4j from Python 136

9.4.2) Accessing Neo4j from JavaScript 138

9.5) Batch data imports 140

9.5.1) CSV importer 140

9.5.2) The spreadsheet (Excel) importer 142

9.5.3) HTTP batch imports with REST API 143

9.5.4) Java API 143

9.6) Configuring a Neo4j cluster M/S on Linux/Unix 145

10) Case study: eBay ShopBot 146

10.1) How it works 147

10.2) Customers preferences and characteristics 150

11) Conclusion 151

11.1) Positive aspects 151

11.2) Negative aspects 152

Bibliography 154

 Italo Lombardi 9

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

List of figures

2) Preliminary

Figure 2.1.1: Edgar Frank Codd 20

Figure 2.1.2: Tabular representation of a Cartesian product and a relation 22

Figure 2.1.3: Example of a Relational Database 24

Figure 2.1.4: Example of a Join Table 26

Figure 2.1.5: Key-Values stores 28

Figure 2.1.6: Column-Family stores 28

Figure 2.1.7: Document store 29

Figure 2.2.1: Leonhard Euler 30

Figure 2.2.2: The seven bridges of Königsberg 30

Figure 2.2.3: The world’s first graph 31

Figure 2.2.4: Königsberg Graph with degrees 31

Figure 2.2.5: Two nodes connected by a relationship 32

Figure 2.2.6: Two nodes connected by the relationship “friend_of” 32

Figure 2.2.7: Graph with five entities and seven relationships 33

3) Graph Databases

Figure 3.1: Crime Board 35

Figure 3.2.1: Hypothetical Social Network 36

Figure 3.2.2: SQL Diagram of tables representing our Social Network 37

Figure 3.2.3: Execution times for multiple join queries [Relational Database] 38

Figure 3.2.4: Execution times for graph traversals 40

Figure 3.2.5: Execution times for multiple join queries (1 million users) 41

 Italo Lombardi 10

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 3.2.6: Execution times for graph traversals (1 million users) 41

 Figure 3.3: Typical use cases for NoSQL databases 42

4) Neo4j

Figure 4.1.1: ACID 44

Figure 4.1.2.1: Neo4j high availability architecture 46

Figure 4.1.2.2: Causal Cluster Architecture 48

Figure 4.1.3: Shortest path problem 50

Figure 4.1.4: Cache Sharding 53

 Figure 4.1.5: Movies Database example using the visualisation tool 53

Figure 4.1.6: Neo4j WebAdmin Charts 54

Figure 4.1.7: Neo4j Advertising - Classical Cypher query style 55

Figure 4.1.8: Neo4j Editions and Licenses 56

5) Cypher

Figure 5.1: Hypothetical Flight Graph 59

Figure 5.2: Node with the label Person and two properties 63

Figure 5.3: Two nodes connected with a relationship 63

Figure 5.4: The same node of before with a new property 63

Figure 5.5: Node with two labels 64

Figure 5.6: The same node of before without the title property 65

Figure 5.7: The node without the Italian label 65

Figure 5.8: A friendship graph and its results of the previous query 67

Figure 5.9: An university courses graph and its results of the previous query 68

Figure 5.10: Friendship graph with new property for specific nodes 69

Figure 5.11: Different results with and without the DISTINCT function 71

Figure 5.12: Different path from two nodes 72

 Italo Lombardi 11

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 5.13: LABEL function 73

Figure 5.14: Result of a PROFILED query 78

Figure 5.15: Result of a EXPLAINED query 78

6) Data Modeling

Figure 6.1: Labeled graph 80

Figure 6.2: Graph for book reviews 82

Figure 6.3: Cars Hypergraph 83

Figure 6.4: Cars Property Graph 83

Figure 6.5: A USER with some properties connected by relationships 84

Figure 6.6: A node USER with some properties 84

Figure 6.7: Two users sharing the same address with different relationships 85

Figure 6.8: Two users sharing the same address
with the same relationship but different properties 85

Figure 6.9: Reifying the relationship between USER and ADDRESS 86

Figure 6.10: Extra properties stored in another node 86

Figure 6.11: All properties together in a single node 87

Figure 6.12: Wrong COUNTRY node 87

Figure 6.13: COUNTRY node split into three nodes 87

Figure 6.14: Strategy for dense nodes 88

Figure 6.15: Family graph with two relationships RELATED_TO 89

Figure 6.16: Extended family graph with the RELATED_TO relationship 90

Figure 6.17: Extended family graph with the specific relationships 90

7) Flights and Cities, a Real World Example

Figure 7.1.1: Cities and flight routes 95

Figure 7.1.2: A graph of a first possible solution 96

 Italo Lombardi 12

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 7.1.3: Cities and flights modeled as nodes 97

Figure 7.1.4: A flights and cities graph 97

Figure 7.2.1: All the cities in our graph 98

Figure 7.2.2: All the flights in our graph 99

Figure 7.2.3: Flights and cities graph 100

Figure 7.2.4: Different paths between two cities 102

8) Inside Neo4j

Figure 8.1: A non-native graph
 vs. index-free adjacency graph processing engine 103

Figure 8.2.1: Neo4j architecture 104

Figure 8.2.2: An example estimation using the Hardware Sizing Calculator 105

Figure 8.2.3: Primary store files 106

Figure 8.2.4: A node record 106

Figure 8.2.5: A relationship record 107

Figure 8.2.6: A property record 108

Figure 8.2.7: How the graph is physically stored 109

Figure 8.2.8: Use of RAM for caching 112

Figure 8.3.1: Ordered graph with a typical tree structure 116

Figure 8.3.2: Walking the graph using the depth-first algorithm 117

Figure 8.3.3: Walking the graph using the breadth-first algorithm 118

Figure 8.3.4: Traversal performance depending both on the node location
 and the depth 119

Figure 8.3.5: An example graph for the pathfinding problem 120

Figure 8.3.6: Bidirectional traversal in a pathfinding problem 121

9) Installation & Configuration

Figure 9.1.1: Download Neo4j 123

 Italo Lombardi 13

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 9.1.2: Login or Sign Up Neo4j Desktop 124

Figure 9.1.3: Neo4j installation 124

Figure 9.1.4: Neo4j Desktop Edition 125

Figure 9.1.5: Manual Oracle Java installation 125

Figure 9.1.6: Environmental Variables [Windows] 125

Figure 9.2.1: 30-day Trial Licence 127

Figure 9.2.2: Neo4j Console starting 128

Figure 9.2.3: Neo4j HTTP Console 128

Figure 9.3.1: Neo4j LOVES Docker 129

Figure 9.3.2: The Neo4j execution within Docker 130

Figure 9.4.1: The output of the create empty node command 131

Figure 9.4.2: A graph about people and animals 137

Figure 9.5.1: Typical structure of a CSV file 141

Figure 9.5.2: An Excel sheet 142

Figure 9.5.3: Array of job descriptions for Neo4j REST batch imports 143

Figure 9.5.4: Java code to use the BatchInserter API 144

10) Case study: eBay ShopBot

Figure 10.1: RJ Pittman 146

Figure 10.2: Example of a customer’s request 147

Figure 10.3: The relevant information in the customer’s request 148

Figure 10.4: Part of the eBay graph 148

Figure 10.5: Searching products using an image 149

Figure 10.6: The analysis of another sentence 149

 Italo Lombardi 14

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

 Italo Lombardi 15

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter I

1) Introduction

1.1) Background motivation

The last decades have seen a radical change in the computer world, with the
birth of an increasing number of applications, aimed at the processing of large
amounts of data.

In particular, the advent of social networks has considerably increased the
amount of data generated, causing problems of storage and management.

The need to develop new applications that can not be addressed with the
traditional relational database approach has led to the search for alternative solutions.

NoSQL data storage and management systems are attracting increasing
interest, and graph-oriented databases can be the solution to many problems currently
present.

These databases do not presuppose a rigid structure or a schema describing the
properties that data must have and the relationships between them. In fact,
non-relational databases aim to be more flexible and faster depending on the type of
problem to be solved.

1.2) Goal

The primary aim of this Master's Thesis is to focus on the fundamental aspects
of graph-oriented databases, with a particular emphasis on Neo4j, considered one of
the most important and stable graph database management system to handle data
using native graph storage and processing.

 Italo Lombardi 16

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

1.3) Structure of the dissertation

This work will begin with an overview and a critical comparison between
Graph Databases and Relational Databases.

The research will follow with an in-depth analysis of the Neo4j system, and it
will show its external and internal characteristics, which have allowed it to reach
enormous popularity.

Furthermore, it will focus on Cypher, the Neo4j's declarative language,
analysing the primary functions offered.

Once knowledge is acquired on this subject, this assignment will discuss how
to create and manage a project, including installation, configuration and most
common mistakes, that can be made during the database creation phases.

In conclusion, this work will show one of the most famous use cases of Neo4j,
the eBay ShopBot, an information system which uses a graph to store and identify
products fastly, to help customers during the shopping on the website.

 Italo Lombardi 17

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter II

2) Preliminary

This dissertation has been written to take a tour into the graph database world,

with emphasis on the system Neo4j, developed in the last few years, to find out how

to solve new problematics issues connected with the enormous increasing volume of

data to manage.

An overview of the fundamental concepts is essential to make it possible to

understand all the topics. The first notion is databases, to identify the general

functionality, and then graphs will be covered to introduce Neo4j.

2.1) Databases - Overview

A database is primarily a means of organising information. This is not
something limited to electronics because, essentially, everything organised as a
structured set of information, can be considered as a database. However, the
increased number of information has motivated the necessity to migrate to a more
reliable database system that isn't paper-based. [1]

The essential characteristics of databases are: [21]

● Large: they can have enormous dimensions and in general much larger than
the available central memory.

● Shared: different users and applications must be able to access common data
according to appropriate methods. This feature reduces data redundancy since
repetitions are avoided, and consequently the possibility of inconsistencies,
due to the presence of non-actualized data on different systems, is also
reduced.

● Persistent: databases have a lifetime that is not limited to that of the
individual executions of the programs that use them.

 Italo Lombardi 18

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The data contained in a database can be divided into two categories: [22]

● The metadata: that is the database schema, which describes the data
structure, the restrictions on the possible values, the relationships existing
between the sets and sometimes also some operations that can be performed
on the data.
The schema must be defined before creating the data, and it is independent of
the applications that use the database.

● The actual data: that is the representations of particular facts that conform to
the definitions on the database scheme.
They are organised in homogeneous sets, among which relations are defined.
The structure of the data and the relationships are described in the schema
with appropriate mechanisms of abstraction depending on the data model
adopted, which consists of the set of concepts used to organise the data of
interest and describe the structure so that it is understandable to a computer.

A good data model should be characterised by:

● Expressiveness: the model should allow representing naturally and directly
the meaning of what is being modelled.

● Ease of use: the model should be based on a minimum number of
mechanisms that are easy to use and understand.

● Feasibility: the mechanisms of the abstraction model and the relative
operators for data manipulation must be feasible in an efficient way on a
database system.

A database system, usually called Database Management System (DBMS),
allows the interaction with the data stored via a predetermined language.

These kinds of interactions can be categorised into three sections:

● Data definition: actions that modify the organisation of the data.
● Data manipulation: which includes both the operations to manipulate the

actual data stored (information creating, updating and deleting) and the
actions where data is selected from the database to be reused in another
application.

● Administration: actions of user management, performance analysis, security
and other higher-level activities.

 Italo Lombardi 19

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The task of the DBMS is therefore to guarantee:

● Reliability: the ability of the system to keep the contents of the database
intact.

● Privacy of data: which means that each user is enabled to perform only
specific actions on data, through authorisation mechanisms.

● Efficiency: the ability to perform operations using a set of resources (time and
space) that are acceptable to users.

● Effectiveness: the capacity of the database to make the activities of its users
productive.

Currently, there are different database management systems, each one with

defined characteristics, advantages and disadvantages.

2.1.1) Relational Databases

Figure 2.1.1: Edgar Frank Codd

Relational Databases are probably 1

the most familiar kind of databases used
by 21st-century computer scientists.

They are based on the Relational
data model [17] proposed by Edgar
Frank Codd (Figure 2.1.1), while he was 2

working for IBM on hard disk research 3

projects, in 1970.

The model is planted on a brand of
mathematics called relational algebra.

Codd, taking advantages of the
power of mathematical abstraction,
developed a simple but powerful structure
for databases, used to manage vast
amounts of data efficiently.

He wrote several papers proving that, using a mathematical representation
called tuple calculus , sets of data would be an excellent way to organise and access 4

1 https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html
2 https://en.wikipedia.org/wiki/Edgar_F._Codd
3 https://www.ibm.com/
4 https://www.tutorialcup.com/dbms/relational-calculus.htm

 Italo Lombardi 20

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

information, using a proper query language. That became the inspiration for
declarative query languages such as Structured Query Language (SQL) . 5

In other words, the relational model provides a natural way to view data and
serves as a specification for a Relational Database Management System (RDBMS).

The relational model is based on two concepts, relation and table, two ideas of
a different nature but easily referable to each other. The notion of relation comes
from mathematics, mainly from the Set theory, while the concept of a table is simple
and intuitive. The presence of these two concepts, one formal and the other intuitive,
led to the great success obtained by the model. [22]

The relational model responds to the requirement of data independence, which
provides a distinction in the description of data between the physical and the logical
level:

● the users who access the data and the programmers who develop the
applications only refer to the logical level;

● the data described at the logical level are then realised employing appropriate
physical structures, but to access the data, it is not necessary to know them.

In mathematics, considering two sets D1 and D2, the Cartesian product, written
D1 x D2, is the set of ordered pairs (v1, v2), such that v1 is an element of D1 and v2 is
an element of D2, or in other words, is the resulted set generated from all
combinations of each element in both sets.

For example, given the set A = {1,2,3} and B = {a, b} the Cartesian product
A x B consists of the set of all the possible pairs in which the first element belongs to
A and the second to B. In this case, it is composed of six pairs:

A x B = {(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)}

A mathematical relation on the sets D1 and D2, called domains of the relation,
is a subset of D1 x D2. Given the sets A and B above, a possible mathematical
relation is constituted by the set of pairs {(1,a), (1,b), (3,b)}.

Any subset of this Cartesian product is a relation.

Mathematical relations can be represented graphically in tabular form. The two
tables in the Figure 2.1.2 describe the Cartesian product A x B and the mathematical
relation on A and B discussed in the example.

5 https://www.w3schools.com/sql/

 Italo Lombardi 21

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 2.1.2: Tabular representation of a Cartesian product and a relation

If giving some conditions for the pair selection, it is possible to select only the
pairs with specific characteristics. For example, to select pairs with a specific value
at the first position: {(x, y) | x ∊ D1, y ∊ D2, and x = *value*}

These definitions could be extended to define a general relation on n sets
(domains). In this hypothesis, given n > 0 sets (D1, D2, …, Dn), not necessarily
distinct, the Cartesian product is defined as the set of n-tuples (v1,v2, ,vn) such that
vi belongs to Di for 1 ≤ i ≤ n :

D1 x D2 x ... x Dn = {(v1,v2, ,vn) | v1 ∊ D1, v2 ∊ D2, , vn ∊ Dn}

In defining relations we specify the domains from which we chose values.

The number n of the components of the Cartesian product (and therefore for
each n-tuple) is called degree of the Cartesian product and the relation. The number
of elements of the relation is called, in Set theory, cardinality of the relation.

Each n-tuple is ordered internally: the i-th value of each comes from the i-th
domain. This helps us to interpret the data in the relation because by exchanging the
order of the domains, the meaning would change completely.

To alleviate this problem, it is possible to modify the definition of relation,
introducing attributes: to each domain occurrence in the relation, it is associated a
name, called attribute, that describes the element to which it refers.

In this hypothesis, therefore, the order is irrelevant, because it is no longer
necessary to speak of "first domain", "second" and so on, but it is sufficient to refer
to the attributes. The correspondence between attributes and domains is established
employing a function dom : X → D, which associates at each attribute A ∊ X a
domain dom(A) ∊ D.

Then, it is possible to say that a tuple on a set of attributes X is a function t that
associates a value of the domain dom(A) to each attribute A ∊ X.

 Italo Lombardi 22

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

With these assumptions, therefore, we can provide a new definition of relation:
a relation on X is a set of tuples on X.

The difference between this new definition and the traditional mathematical
one lies only in the definition of tuple: in the mathematical relation, there are n-tuples
whose elements are identified by position, while in the new definition, the elements
are identified through the attributes, with a non-positional technique.

This definition, therefore, leads to a new notation: if t is a tuple on X and
A ∊ X, then t[A] indicates the value of t on A.

A relation can, therefore, be used to organise relevant data in the context of an
application of interest. Therefore, usually, a single relationship is not sufficient for
this purpose: a database is generally made up of several relationships, whose tuples
contain common values, where necessary to establish correspondences.

The advantages of the relational model, compared to other existing models , 6

are varied:

● It requires representing what is relevant from the user's point of view only.
● The logical representation of data, consisting only of values, does not refer to

the physical one, which can change over time. This, therefore, allows the
physical independence of the data to be obtained.

● Since all the information contained in the values is simple, it is easy to
transfer data from one context to another (for example, if you need to transfer
a database from one computer to another).

Thus entering in detail in the definitions related to the relational model, we can
distinguish the level of the schemes from that of the instances:

● A relational scheme consists of a symbol R, called name of the relation, and
a set of attributes X = {A1, A2, … , An}. Usually it is indicated with R(X).
A domain is associated with each attribute.

● A database schema is a set of relational schemas with different names in
order to distinguish between the many:

R = {R1 (X1), R2(X2), … , Rn (Xn)}
● A relational instance on a fixed scheme R(X) is a set r of tuples on X.
● A database instance of a fixed schema R = {R1 (X1), R2(X2), … , Rn (Xn)}, is

a set of relations r = {r1, r2, … , rn } where each ri , for 1 ≤ i ≤ n , is a relation
on the schema Ri(Xi).

6 For example https://en.wikipedia.org/wiki/Hierarchical_database_model

 Italo Lombardi 23

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Therefore, relational databases are collections of relation variables that present
the user with tables (relations) of data values in columns (attributes) and rows
(tuples) (Fig. 2.1.3) [18]:

● Each relation has a name and is made up of named attributes of data.
● Each tuple contains one value per attribute.
● The data within the database is stored following a well-defined structure,

called relational schema, which represents all the relationships that the
entities in a data source have.

Figure 2.1.3: Example of a Relational Database

By definition, all tuples within a relation should be distinct. The concept of
key was introduced to maintain the uniqueness of them in a relation. [19]

The key of a relation is the non-empty subset of its attributes, that is used to
identify each tuple uniquely in a relation. The attributes of a relation that make up the
key are called prime or key attributes.

The superset of a key is usually known as superkey which uniquely identifies
each tuple within a relation and may contain additional attributes.

A minimal superkey is called candidate key. Usually, there are more than one
candidate keys in a relation schema, but only one is chosen as primary key which is
the obligatory unique identifier for every tuple in a relation.

Data integrity is ensured by a set of rules or constraints, which specifies a
condition and a proposition that must be maintained as true. Database modifications
may violate these constraints, could create anomalies in the data.

In the relational data model, there are two principal integrity constraints:

1. Entity integrity constraint: which specifies that each attribute of a primary
key must be not null, in order to provide uniqueness of tuples.

2. Referential integrity constraint: expressed in terms of foreign key, which is
an attribute or a set of attributes within one relation that matches the key of
some other relation.

 Italo Lombardi 24

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

This constraint specifies that if a foreign key exists in a relation either the
foreign key value must match a key value of some tuples in another relation
(or the same), or the foreign key value must be null.

Codd by describing a model based on relations, without navigational links or
pointer structures, created something uniquely powerful, flexible and of permanent
relevance. Several are the objectives of the relational data model:

● Allow a high degree of independence between the application program and
the stored data. In this case, application programs must not be affected by
modifications to the internal data representation.

● Provide techniques like the normalisation , to deal with data semantics, 7

consistency and redundancy problems.
● Enable the expansion and standardisation of set-oriented data manipulation

languages.

Disparate are the reasons why relational databases are the most popular
databases used in the world at the moment : 8

❖ Relational databases can cover different real-life scenarios easily, using
systematic methods of managing and storing data.

❖ The data schema is independent of any particular programming language,
version of the application, or purpose.

❖ SQL, used in programming and designed for managing data held in an
RDBMS, became a standard of the ANSI (American National Standards
Institute) in 1986, and of the ISO (International Organization for 9

Standardization) in 1987. 10

It is declarative because it describes what results are required, rather than
methods to obtain them. For its nature, it is easy to learn and understand,
making querying data simple.
It is free-format, which means that parts of statements not required a specific
locations on the screen to be executed.
To support all the required interaction with the data, SQL has two major
components:

➢ DDL: Data Definition Language used to define the database structure;
➢ DML: Data Manipulation Language for retrieving and updating data.

7 https://beginnersbook.com/2015/05/normalization-in-dbms/
8 https://db-engines.com/en/ranking
9 https://www.ansi.org/
10 https://www.iso.org/

 Italo Lombardi 25

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Relational DBMSs have dominated the database sector for about forty years,
but changes in information technology during the last decade have highlighted some
limits.

A first limitation is regarding the rigid schema and low flexibility that
relational databases have. This means that they impose a schema even before we put
any data in it, but the actual reality shows that many domains require applying
different database schema to all the elements that make up.

The second and bigger limitation is related to relationships: the relationships
between two or more entities are treated in several ways depending on their
cardinality . A many-to-many relationship , for example, is a type of cardinality 11 12

that refers to the relationship between two entities A and B in which A may contain a
parent instance for which there are many children in B and vice versa.

These relationships are created using joining tables (Figure 2.1.4). In these 13

tables are usually present identifiers (primary keys) used to create relationships
between different entities.

Figure 2.1.4: Example of a Join Table

This approach works when it comes to relating small amounts of data, but the
simplicity of the Relational Database Systems comes with other problems:

● Size matter: the query response times get worse when tables grow longer.
● Difficult relationships: when the relations become more complex, these

systems start to become very difficult to work with. Join operations become
notably tricky to program and extremely resource intensive for the DBMS.

11 https://www.sqa.org.uk/e-learning/SoftDevRDS02CD/page_44.htm
12 https://en.wikipedia.org/wiki/Many-to-many_(data_model)
13 https://www.w3schools.com/sql/sql_join.asp

 Italo Lombardi 26

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

2.1.2) NoSQL Databases

The explosion of web content marked a new era for databases, with a new

generation categorised under the name NoSQL databases (the acronym of Not 14

Only Structured Query Language).

The first and most important motivation was born out of the frustration with

relational systems, which cannot be used to manage all kinds of scenarios in our

reality.

Using the official definition from Wikipedia: “A NoSQL database provides a

mechanism for storage and retrieval of data that is modeled in means other than the

tabular relations used in relational databases” . 15 16

Various are the motivations for this approach, which include simplicity of

design, more flexibility and solutions more suitable for the problem it must solve.

The used data structures are different from those used in relational databases, making

some operations faster in NoSQL . 17

Depending on the used database, the benefits can be variable. There are those

that focus on being able to scale well and others that aim for data consistency.

We can primarily categorise them into four different categories:

● Key-Value stores

● Column-Family stores

● Document stores

● Graph databases

14 http://nosql-database.org/
15 https://en.wikipedia.org/wiki/NoSQL
16 http://nosql-database.org/
17 An example in the next chapter about Graph Databases

 Italo Lombardi 27

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

In Key-Values stores (Figure
2.1.5), created to be always available
and support extreme loads, keys and
values are aligned with an inherently
schema-less data model.

The data is stored in an item that
contains a key along with the actual
data. It is therefore quite similar to a
Hash Table . 18

This method is the simplest to
implement, but also the most ineffective
if most operations concern only part of
an element.

Figure 2.1.5: Key-Values stores

With a Key-Value store, the access of the value is possible only by lookup
based on its key. The DBMS does not know the content of the value, which is
considered just a big blob of mostly meaningless bits. The advantage of the
opacity of the value is that we can store whatever we like it. The database may
impose some general size limit, but other than that we have complete freedom.
[20]

Figure 2.1.6: Column-Family stores

In Column-Family stores
(Figure 2.1.6), the information is stored
in columns that usually are not
immediately defined. That is another
example of a very task-oriented solution
type.

The data model includes the
concept of a very wide, sparsely
populated table structure that includes a
number of families of columns that
specify the keys for this particular table
structure.

18 https://en.wikipedia.org/wiki/Hash_table

 Italo Lombardi 28

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Document stores (Figure 2.1.7)
are the evolution of the key-value
method. Compared to the classic
relational databases, rather than storing
data in tables with fixed fields, they put
information into a document, with
unlimited fields of unlimited length,
represented in XML , JSON , BSON 19 20 21

or whatever kind of document we want.

Figure 2.1.7: Document store

In contrast to the Key-Values stores, a Document store can see the structure
in the aggregate, imposing limits on what we can place in it, defining allowable
structures and types. In return, more flexibility in access is offered: it is possible to
submit queries to the database based on the fields in the aggregate, we can retrieve
part of the aggregate rather than the whole thing, and the database can create
indexes based on the contents. [20]

Last but not least, Graph Databases that will be described further besides this
dissertation with an emphasis on Neo4j, which is one of the oldest and most used in
its category . 22

19 https://www.w3.org/XML/
20 https://www.json.org/
21 http://bsonspec.org/
22 https://neo4j.com/news/neo4j-named-most-popular-graph-database-forrester-research/

 Italo Lombardi 29

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

2.2) Graphs - Overview

Graphs were first described in an
academic paper, on the Seven Bridges of
Königsberg in 1736, by the mathematician
Leonhard Euler (Figure 2.2.1). [6] [14] 23

He was trying to solve a problem that we
know as the seven bridges of Königsberg , a 24

beautiful medieval city in the Prussian empire,
in today's Russia, situated on the river Pregel.

This long river runs through the city,
create an island in the middle of it, knows as
the Kneiphof, and simultaneously cut
Königsberg into four parts.

By the time of the article, the four parts of
the city, which we will refer to them as A, B, C
and D, were connected by seven bridges,
labelled 1, 2, 3, 4, 5, 6 and 7 in the picture
below (Figure 2.2.2).

Figure 2.2.1: Leonhard Euler

Figure 2.2.2: The seven bridges of Königsberg

The nature of the problem was to take a tour of the city, visiting every one of its
parts and crossing every bridge, without having to walk a single bridge or street
twice. It was mostly a pathfinding problem , which can be solved taking the 25

traditional brute force method or, like Euler did, applying a mathematical 26

algorithm.

23 https://www.biography.com/people/leonhard-euler-21342391
24 https://g.co/kgs/vyhjDH
25 https://en.wikipedia.org/wiki/Pathfinding
26 http://intelligence.worldofcomputing.net/ai-search/brute-force-search.html

 Italo Lombardi 30

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Euler assumed that the only things that mattered for his pathfinding problem
were the parts of the city and the bridges, which connect them.

With this theory in his head, he drew "the world's first graph" (Figure 2.2.3):

Figure 2.2.3: The world’s first graph

Starting somewhere in any one of the four parts of the city, the walker had to
leave that part crossing one of the bridges to go to another part. Then, he will have to
cross another five bridges, leaving and entering different parts of the city, and finally,
he will end the walk in another part of the city.

To find that path, Euler proved that all he had to do was to apply an algorithm
that establishes the degree of each part of the city.

In other words, the degree was the number of bridges connecting the different
parts of Königsberg (Figure 2.2.4).

Figure 2.2.4: Königsberg Graph with degrees

Therefore, Euler explained two things about the degree of every part of the city:

The first and last parts could have an odd number of bridges because the
walker leaves from the first part and then will arrive at the last part, but the other two

 Italo Lombardi 31

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

parts must have an even number of bridges because he will arrive and leave from
these parts of the city.

By proving that no part of the city had an even number of bridges, he also
provided that the required walk cannot be done.

Using this example about the Eulerian Walk [15], we can confirm that the
concepts and techniques of his research are universally applicable. In order to do a
walk on any graph, the graph must have zero or two vertices with an odd degree, and
all intermediate vertices must have an even degree.

However, what is a graph?

A graph (Figure 2.2.5) is an abstract, mathematical representation of two or
more entities connected or related to each other. Entities are represented as vertices
and how those entities relate to the world as edges. [16]

Figure 2.2.5: Two vertices connected by an edge

Graphs are extremely useful in understanding and allow us to model all kinds
of scenarios.

For example, consider the image below (Figure 2.2.6), where are represented
two people connected by the edge "friend_of".

Figure 2.2.6: Two nodes connected by the relationship “friend_of”

We can merely say that these people are friends only reading the label
associated with the edge.

Graphs allow us to represent mostly all kind of situations and, they can be
easily enlarged by putting other relationships entities and labels to indicate its role in
the graph (Figure 2.2.7).

 Italo Lombardi 32

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 2.2.7: Graph with five entities and seven relationships

A graph like the one in the image above can be called labelled property graph 27

and it has the following characteristics: [1]

● It contains vertices (also called nodes) and edges (or relationships).
● Vertices and edges can contain properties (key-value pairs).
● Vertices can be labelled with one or more labels.
● Edges have a name and are directed from a start node to an end node.

All technologies used primarily for transactional online graph persistence,
accessed directly in real time from an application, are called Graph Databases , 28

which is the main topic of this dissertation.

27 https://goo.gl/N4qJaT
28 https://neo4j.com/developer/graph-database/

 Italo Lombardi 33

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter III

3) Graph Databases

3.1) Graph Data Model

A graph structure uses nodes (vertices) and relationships (edges) to store data
persistently, allowing to represent it without the distortions of the relational data
model, and, most important, the possibility to apply various types of graph
algorithms on these structures. [1] [5] [6]

Graph data model has no fixed schema imposed from the database; therefore it
is considered a good fit for dealing with semi-structured data: when nodes or
relationships have fewer or more properties, it is not necessary to alter the design.

The most interesting aspects of relationships are:

● Relationships are directed, from a start node to an end node.
They cannot be dangling but can be self-referencing so in this case the start-
and endpoint is the same node.

● Relationships are explicit because they cannot be inferred or established at
query time through a join operation.

● Relationships are first-class citizen of the model; they have the same 29

expressive power as the nodes representing the entities in the database. [1]
● Relationships can have properties like nodes, which are values associated

with them that can specify some characteristics of that relationship.

In Neo4j the graph data model has been enriched with other concepts:

● Node labels: a way to categorise the nodes in a graph. They can have zero or
an unlimited number of labels assigned and allows to create subgraphs or
some schema in the database easily.

● Relationship types: similar to node labels, they categorise relationships.
Every relationship must have only one type and are used during traversals
across the graph.

29 https://en.wikipedia.org/wiki/First-class_citizen

 Italo Lombardi 34

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

3.2) Graph Databases

Graph databases, using graph theory as a basis, store data in the form of nodes,
relationships and properties. That helps build a graph of data, optimised for
transactional performance, which is related directly to the data.

An example of a graph database in the “real world” could be a crime diagram
for a TV show (Figure 3.1), where people are related to each other. [5]

Figure 3.1: Crime Board

The power of graph databases can be resumed in one single sentence:
“Graph databases offer a remarkable performant and flexible data model,

aligned with today's agile software delivery practices ”. 30

In contrast to relational databases, where large dataset deteriorates
performance, with graph databases, performance tends to remain almost constant,
because there are not join operations, and queries are located to a portion of the
graph. 31

About flexibility, graphs are naturally additive, so, add new kinds of elements
without disturbing the application functionality is easy. This idea follows perfectly
today's incremental and iterative software delivery practices, called Agile
Methodologies, because it allows evolving our data model step by step.

Some Graph Databases use native graph storage, like Neo4j, and others
serialise the graph data into a different data store, like for example an object-oriented
database. Both types present their benefits, but performance and scalability are
crucial qualities offered almost only in a native graph storage database.

30 https://www.versionone.com/agile-101/agile-methodologies/
31 An example later in the chapter.

 Italo Lombardi 35

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

A crucial key to the success of graph structures is the capability to traverse a
graph , without performing an index lookup. This capability is also known as 32

index-free adjacency , which provides a fast walk on the graph's nodes and 33

relationships, enabling to hop from one node to the next by following the explicit
pointers that connect the nodes.

3.2.1) Relational Databases vs. Graph Databases:
 A Comparison example

Social networks might be the perfect examples to show the real power of this 34

technology. As we can see in the image below (Figure 3.2.1), represented as a graph
data structure, user connected with arrows are friends. [2]

Figure 3.2.1: Hypothetical Social Network

Analysing the high-abstraction level image above, it is possible to define and

create both type of databases, a relational and a graph database. There are different
ways to do that, but in this example is used the simplest one.

The relationships IS_FRIEND_OF is symmetric , and this means that is A is a 35

friend of B, B is a friend of A as well.

3.2.1.1) Relational version

In a relational database, this social network would have two relational tables:
one for the user information and the other for friendships (Figure 3.2.2).

32 http://btechsmartclass.com/DS/U3_T10.html
33 https://en.wikipedia.org/wiki/Adjacency_list
34 http://whatis.techtarget.com/definition/social-networking
35 https://en.wikipedia.org/wiki/Symmetric_relation

 Italo Lombardi 36

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 3.2.2: SQL Diagram of tables representing our Social Network

Analyzing some possible queries, to extract information about friends, we can
easily find problems which can affect performance. Popular social networks, like
Facebook or LinkedIn , have features which suggest potential friends from our 36 37

friendship network, up to a certain depth.

This kind of actions needs join operations for each needed level of depth.
For example, to find friends of friends of friends of a user, our query would be:

select count(distinct *) from t_friendship tf1
inner join t_friendship tf2 on tf1.id_User_1 = tf2.id_User_2
inner join t_friendship tf3 on tf2.id_User_1 = tf3.id_User_2
where tf1.id_User_1 = *ID_USER*

Similarly, to iterate through the fifth level of friendship, we would need five

joins in the query. In this case, a relational database engine needs to generate the

Cartesian product of the table t_friendship five times and then discard more than 38

this product, to return only the records that we are interested in.

36 https://www.facebook.com/
37 https://www.linkedin.com/
38 http://mathworld.wolfram.com/CartesianProduct.html

 Italo Lombardi 37

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

On a small dataset, this would not be a big concern, but with high numbers of

users and relationships, this will affect performance significantly.

To demonstrate the performance of our hypothetical social network in a

relational database, we can run some tests on a small dataset, increasing the depth of

the search each time.

The preliminary test conditions are 1,000 users, where each one has on average

50 friends, so the table t_friendship has almost 50,000 records. The use of the cache

is allowed, and the relevant columns have indexes to maximise the performance 39 40

of these join queries. The hardware configuration is not relevant to be specified.

After the execution of our tests, choosing the fastest execution time for each

degree of separation, the results are impressive (Figure 3.2.3). The relational

database can handle queries to depth two and three quite well, with fast response, but

at depths four and five, there is a significant degradation of performance, although

the count result does not change.

The number of the results is always of 999 users, at depth three, four and five,

because the dataset is too small, in consequence, at this level of depth each user has a

relationship with the others.

Figure 3.2.3: Execution times for multiple join queries [Relational Database]

39 http://searchstorage.techtarget.com/definition/cache-memory
40 https://www.essentialsql.com/what-is-a-database-index/

 Italo Lombardi 38

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The tremendous time response is due to the generation of the Cartesian product

of the t_friendship table. With 50,000 rows, the resulting set has 50,0005 records,

which takes too much time and computing power to calculate it. Comparing the

enormous number of records of the cartesian product and the count result of our

queries, we can see that more than 99% of records are discarded.

3.2.1.2) Graph version

From a "graph point of view", to implement this example, people will be

represented as nodes, and every arrow as a relationship between each node, named

"is_friend_of".

As mentioned previously, in a property graph every relationship must have a

direction, thus to express the friendship between two people, two are the strategies

that can be used: the first is using two arrows between both elements; the other,

usually the most used, implies the use of only one relationship, where the direction is

not considered.

For simplicity in this example, it will consider only one direction, because the

relationships is symmetric and as it will specify later in this work, the relationship

direction does not affect performance or stability.

The potential of graph databases is the powerful and efficient engine for

querying data, mentioned before, called graph traversal.

The traversal is the method of visiting nodes in a graph by moving between

nodes connected with relationships. The traversal is localised only on the required

data, without performing expensive grouping operations on the entire dataset, like

relational database systems.

Most important characteristic is that the relationship direction does not affect

the traversal, then, it is possible to move in every direction with the same efficiency.

To start the traversal, the first step is the selection of the starting node, then,

the engine will follow all the friendship relationships and collect the visited nodes.

 Italo Lombardi 39

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

When the rules stop applying, the traversal stops. We refer to these types of

queries as pattern matching queries because we specify a pattern, we anchor that 41

pattern to one or more starting points, and then the engine starts looking for matching

occurrences of that pattern, ignoring non-matching patterns.

Under the same condition as the MySQL example, with the same queries as

before, the image below (Figure 3.2.4) shows the execution times using a Graph

database on our dataset.

Figure 3.2.4: Execution times for graph traversals

Graph databases improve performance significantly, except for the first query,

where the execution time is almost the same. The considerable difference of time is

the key to the success of this approach on this kind of problems. During those

executions, the engine does not create any Cartesian product of our records, but

Neo4j, for example, merely visits relevant nodes in the database, keeping track of the

ones visited, to skip them if already visited. The traversal stops when there are no

more relevant nodes to visit.

It is easy to understand that query performance is independent of the dataset

size but is connected with the size of the result set.

41 https://en.wikipedia.org/wiki/Pattern_matching

 Italo Lombardi 40

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

3.2.1.3) Extension of the example

However, this example with only 1,000 users is insufficient. To conduct an

effective example, the best decision is to increase the dataset by a thousand times

than before.

After running those tests (Image 3.2.5 and Image 3.2.6), the increased data

does not affect graph databases' performance significantly but demonstrate worse

results on a MySQL database.

Figure 3.2.5: Execution times for

multiple join queries
(1 million users)

Figure 3.2.6: Execution times for

graph traversals
(1 million users)

In the relational example, queries at depth three and four have colossal
execution time, and at depth five, the query cannot compute anything even after one
hour of execution.

These results show that relational databases are optimised for single join
queries, even on large datasets.

Social Networks are just an example, but there are a lot more, like music
recommendation , bioinformatics , network sensors and so on, where graph 42 43 44

databases provide powerful tools to manage our data.

42 https://www.rtinsights.com/music-recommender-system-musimap-neo4j/
43 https://goo.gl/C2UHhK
44 https://arxiv.org/pdf/1708.03878.pdf

 Italo Lombardi 41

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

3.2.2) Are Graph Databases always the best choice?

Referring to the previous topic concerning NoSQL, those kinds of databases
are all task-oriented: they offer the right tool for a specific job (Figure 3.3).
For that reason, there are some problems in which graph databases are not suitable or
efficient solutions.

Reusing the Social Network example, if we limited our join operations only on
depth two, relational databases became a good choice of implementation. In general,
if we are trying to work with extensive lists of things, effectively sets, and not
sophisticated join operations are required, the performance of the graph database
would not be as good as other databases.

Furthermore, graph databases are great for complex queries. As a consequence,
simple queries usually are served quite inefficiently than other kinds of databases. [2]

Figure 3.3: Typical use cases for NoSQL databases

Why choose Neo4j?

Lots are the reasons to use Neo4j to create our projects, but according to the
top ten proposed on its official webpage , Neo4j is an extremely reliable product 45

offering scaling capabilities, cluster support, extraordinary availability, high read
and write speed, and full ACID (Atomicity, Consistency, Isolation, Durability)
compliance.

Since 2007, its community boasts more than 200 enterprise customers, at least
100 technology and service partners and more than 3,000,000 downloads.

45 https://neo4j.com/top-ten-reasons/

 Italo Lombardi 42

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter IV

4) Neo4j

Neo4j, developed by Neo Technology, Inc. (operating from the San 46

Francisco Bay Area in the U.S.) is an extremely scalable and transactional ACID 47

Graph Database Management System, which stores data structured as graphs.

[1][2][5]

It is written in Java and is open source . 48 49

4.1) Key characteristics - Overview

4.1.1) ACID support

Using the official ACID definition from Wikipedia: "ACID (acronym of

Atomicity, Consistency, Isolation and Durability) (Figure 4.1.1) is a collection of

properties of database transactions, designed to guarantee validity even in the event

of errors." In particular, Neo4j supports: [6] [9] 50

● Atomicity: Multiple database operations can be executed within a single

transaction which ensures they are all executed atomically; if one or more

operations fail, the entire transaction fails and will be rolled back.

● Consistency: Ensures that any transaction will bring the database from one

valid state to another. Any data written to the database must be valid

according to all defined rules.

46 http://goo.gl/gKD5Bv
47 Mark D. Hill. 1990. What is scalability?. SIGARCH Comput. Archit. News 18 (1990)
48 https://www.ibm.com/developerworks/java/tutorials/j-introtojava1/index.html
49 St.Laurent, Andrew M; "Understanding Open Source and Free Software Licensing" O'Reilly
50 Haerder, Reuter; "Principles of transaction-oriented database recovery" ACM C.S.

 Italo Lombardi 43

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Isolation: Each transaction should appear as though it is being executed in

isolation from other transactions, even though many of them are executing

concurrently. For example, in an isolated database, as long as the write

operation is not committed, the read operation has to work with the old

version data. In other words, the transactions need to be executed, irrespective

of what is happening in the system at the same time.

● Durability: The changes applied to the data by a committed transaction must

persist in the database. These changes must not be lost because of any failure

Figure 4.1.1: ACID

4.1.2) Transactional support

ACID support is useful when we are working with a database management

system (DBMS) in an online system environment, where operations, usually, need to

be answered extremely fast. This characteristic is not required of every DBMS

because some systems do not require answers in real time because they have

analytical purposes.

For example, these systems are called Analytical Systems . [2][6] 51

We can differentiate two types of systems:

51 http://searchbusinessanalytics.techtarget.com/definition/analytic-database

 Italo Lombardi 44

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Online Transaction Processing (OLTP), which works on operational data 52

to control and run fundamental business tasks. Usually, the operations are

fast, like insert and updates, and need fast answers.

● Online Analytical Processing (OLAP), which works on consolidated data, 53

usually came from OLTP databases, to help with planning, problem-solving

and decision support. Usually, the operations are complicated, and they can

need many hours, depending on the amount of data involved.

Neo4j is typically an OLTP system, but at the same time offers support for
analytical tasks, but, at the moment , it is not optimised for it. 54

Transactional support differentiates Neo4j from the majority of NoSQL
databases and makes it the perfect solution for every kind of environment which
takes benefits using a native graph storage.

In Neo4j, transactions are semantically identical to traditional database
transactions:

● In order to maintain atomicity and consistency, writes occur within a
transaction context, use write locks on any nodes and relationships involved 55

in the transaction. On successful conclusion of it, changes are saved to disk
for durability, and the write locks are released. In case of a fail transaction,
the writes are discarded, and the write locks released, maintaining the graph
in its previous consistent state.

● When two or more transactions attempt to change the same elements
concurrently, the system will detect this potential deadlock situation, and 56

serialise the transactions.
● To maintain isolation, writes within a single transactional context, will not be

visible to other transactions, until they are confirmed and the transaction
ended.

4.1.3) Scalability support

To support critical scalability, high availability, and fault-tolerance

requirements, Neo4j could use two different techniques.

52 https://en.wikipedia.org/wiki/Online_transaction_processing
53 https://en.wikipedia.org/wiki/Online_analytical_processing
54 End of 2017
55 https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
56 Padua, David, “Encyclopedia of Parallel Computing”. Springer. 9780387097657 (2012)

 Italo Lombardi 45

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The first is the classic clustering master-slave technique , which creates 57

clusters of database server instances, that work together to achieve these goals. [2]

4.1.3.1) Master-Slave Clustering

Figure 4.1.2.1: Neo4j high availability architecture

The architecture is composed of a single master instance and an indefinite

number of slave instances (Figure 4.1.2).

Most important characteristics are:

● Each server has the entire database and can respond to all query requests.

● The server should be optimised to respond to a particular subset of queries

that can receive. For example, using a load balancer , it is possible to 58

redirect requests to faster servers or, servers with the necessary nodes in the

cache memory (sharded cache), to improve performances. 59

● In case of potentially conflicting data in the database, the master server

instance decides what to do, choosing the correct data version.

57 https://neo4j.com/docs/operations-manual/current/clustering/high-availability/architecture/
58 https://en.wikipedia.org/wiki/Load_balancing_(computing)
59 http://jimwebber.org/2011/02/scaling-neo4j-with-cache-sharding-and-neo4j-ha/

 Italo Lombardi 46

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Problems with the master instance do not affect stability, because, with a

master election algorithm , the system can choose a new master quickly. 60

This clustering technique provides two features:

● Horizontal scalability: provided by adding more machines to the cluster and
distributing the load, with a load balance, over the cluster members.

● Vertical scalability: provided by adding more resource to the cluster
machines to support write load.

As mentioned before, all servers can respond to all query requests, but writing
through slaves is different from writing through the master.

The slaves need the confirmation from the master before returning to the client,
so, this causes additional network traffic which can affect performance. For this
reason, the recommendation is to direct all write requests directly to the master, but
in high write load scenarios, that can be problematic.

To regulate load, writes can be buffered using a queue and directed to the
master. In this case, writes are executed against the database in groups, and this can
regulate the traffic, but, are required protocols which ensure ACID properties.

About reading, in high read load scenarios, using multi-region cluster in
multiple data centres is an excellent solution to improve response times. Each client's
read request can be executed by the cluster geographically closer to it, to reduce
latency time.

4.1.3.2) Causal Clustering

Causal Clustering , introduced in version 3.2, is the second solution for 61

ensuring redundancy and performance in a high-demand production environment.

This strategy makes use of two different roles (Figure 4.1.2.2): 62

● Core Servers (CS): can execute read and write operations and ensure the
safeguard of data by replicating all transactions using the Raft protocol.
This protocol guarantees that data is safely durable before confirming
transaction commit to the user, waiting for the commit of the majority of the
Core Servers (the minimum number of needed commit is N/2+1, where N is
the number of CS in a cluster). The first impact is on write latency, which
grows with the number of CS in the cluster.

60 For example: the Paxos algorithm. https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
61 https://neo4j.com/docs/operations-manual/current/clustering/causal-clustering/
62 https://goo.gl/fsLoYE

 Italo Lombardi 47

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

To provide sufficient fault tolerance, the formula CS = 2F + 1 can be used to
identify the number of Core Server required to tolerate F faults. In case of
multiple write faults, the server will become read-only to preserve safety.

● Read Replicas (RR): are responsible for scaling out graph workloads,
capable of fulfilling arbitrary read-only queries.
RR are asynchronously replicated from CS via transaction log shipping.
Periodically a Read Replica will poll a Core Server for any new transactions,
and the Core Server will ship those transactions to the Read Replica.
Losing an RR does not impact the cluster's availability and the fault tolerance
of the cluster.

Figure 4.1.2.2: Causal Cluster Architecture

The basic idea of this strategy is the causal consistency which ensures that
causally related operations are seen by every instance in the system in the same
order. Client applications never see stale data and interact with the database as if it
was a single server. Consequently, client applications enjoy read-your-own-writes

 Italo Lombardi 48

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

semantics making interaction with even large clusters predictable and
straightforward.

Therefore, depending on the nature of the workload, users want reads from the
graph to take into account previous writes. Causal consistency makes it easy to write
to Core Servers and read those writes from a Read Replica. For example, it is
guaranteed that the write which created a user account will be present when the same
user subsequently attempts to log in.

On executing a transaction, the client can ask for a bookmark which it then
presents as a parameter to subsequent transactions. Using that bookmark the cluster
can ensure that only servers which have processed the client’s bookmarked
transaction will run its next transaction. This provides a causal chain which ensures
correct read-after-write semantics from the client’s point of view.

4.1.4) Neo4j’s declarative query language

Neo4j's query language is called Cypher , designed to be a human query 63

language, simple to understand and use. [2][4][5][9]

It is declarative because Cypher is focused on the aspects of the result, rather 64

than methods or ways to get to it.

It enables to ask to find data that matches a specific pattern, using pattern
matching:

● A pattern is an occurrence of sequences that need to be found in a given
data. They are used to describe the shape of the data and also provide the path
from where it should start searching for occurrences of the provided pattern.

● Pattern matching is the process used to find a pattern against a data
structure. This technique consists of specifying patterns to which some data
should conform, and then checking to see if it does. This does not mean that
the match has to be always exact because we can consider pattern matching
as an extension of pattern recognition.

Cypher will be discussed in detail in the next chapters of this dissertation.

63 http://neo4j.com/docs/developer-manual/current/cypher/#cypher-intro
64 Lloyd, J.W., Practical Advantages of Declarative Programming

 Italo Lombardi 49

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

4.1.5) Pathfinding queries

Neo4j does not depend massively on indexes because the graph itself provides
a natural adjacency index. As specified before, the relationships attached to a node,
provide a direct connection to other related nodes, allowing a fast traversal
efficiently, in contrast to joining data through indexes, which is many orders of
magnitude slower.

Another significant characteristic offered in Neo4j, using its powerful traversal
framework, is the capability to find out if there are useful paths between different
nodes on our graph (Figure 4.1.3). This kind of queries allowed us to: [2]

● See if exists a path between two nodes.
● Look for the optimal path . 65

● Look for the variability of the path, if a
particular component of the path changes.

Figure 4.1.3: Shortest path

problem

4.1.6) REST API via HTTP

The most common way to communicate with Neo4j is using its REST API via
HTTP (Representational state transfer Application programming interface via 66 67

Hypertext Transfer Protocol). It is possible to submit Cypher queries and execute 68

many algorithms offered in Neo4j. [4][6][7]

REST is a style adopted when designing network applications, used on
different communication protocols, but mostly on HTTP.

It uses four HTTP verbs GET, PUT, POST and DELETE to perform 69

specific actions within the application to access the database.

Some examples will be shown in the next chapters.

For almost the majority of use cases, the REST API is sufficient, but there are
some cases where are required more complex operations and developing a server
extension is considered a better solution.

65 https://en.wikipedia.org/wiki/Shortest_path_problem
66 https://neo4j.com/docs/rest-docs/current/
67 https://en.wikipedia.org/wiki/Application_programming_interface
68 https://tools.ietf.org/html/rfc2616
69 https://restfulapi.net/http-methods/

 Italo Lombardi 50

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

4.1.7) Server extensions

Server extensions are used to execute Java code inside the server, extending or
replacing the operations offered by REST API. [1]

To create them is used Java API for RESTful Web Services (JAX-RS), a 70

Java programming language employed to create API for web services according to
the REST architectural pattern.

Each extension class is annotated , to indicate which HTTP requests it 71

handles, the response formats and the formatting of URI templates.

Different are the benefits of server extensions:

● Transactional: different and complex operations can be executed in the
context of a single transaction.

● Encapsulation: the extension is hidden behind a RESTful interface, that
allows the possibility to modify the implementation easily.

● Response formats: responses can be controlled creating messages easy to
understand, without graph-based terminology.

The three most important limitation of server extensions are:

● Programming language: they can be created only using JAX-RS because it
is a JVM-based language.

● Garbage Collection: is required a control on the garbage collection to ensure
that our code does not introduce any untoward side effects.

● Dangerous: the power of server extensions is the possibility to execute
complicated code, but sometimes this is dangerous because can create errors
in the graph.

4.1.8) Indexes

A database index used to improve performances, at the cost of additional writes
and storage space, is a copy of the information in the database.

In other words, indexes are used to execute our queries on the database,
locating data quickly.

They are similar to the indexes used in the relational databases . 72

70 https://jcp.org/en/jsr/detail?id=339
71 http://download.oracle.com/javase/1,5.0/docs/guide/language/annotations.html
72 https://www.essentialsql.com/what-is-a-database-index/

 Italo Lombardi 51

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

4.1.9) Caching

Neo4j offers two different caching systems : a File Buffer Cache and an 73 74

Object Cache. They were created to improve performances, but every one of them
has different functions: [2]

● The File Buffer Cache is the classic cache which stores data contained in the
database. Data are stored in the cache memory in the same format that they
are on disk, and can be quickly retrieved if the same data is asked again.
Another function is the combination of lots of small transactions in the cache
before the flush to persistent storage, to improve writing operations, which
usually are slow.
There are limits with this cache because typically, the whole database cannot
enter into it, for that reason, Neo4j is continuously monitoring the size of the
cache, deciding the perfect moment to swap out old data.

● The Object Cache allows fast traversal of the graph and is split into two
types:

○ Reference Cache, which stores nodes and their relationships. During
a query execution, if the system has already done a lookup and the
data has not changed, the query will hit the cache and give a response
immediately.

○ High-Performance Cache, stores nodes, relationships and their
properties, for quick query executions, but it is only available in the
Neo4j Enterprise Edition . 75

4.1.10) Cache sharding

As mentioned before, the cache memory is used to improve query
performances, but with massive graphs, it is not possible to fit everything into it. [1]

Partitioning data can solve this problem, using a technique called cache
sharding, which consists of routing requests to servers which have the portion of the
graph required in their cache memory.

In the next figure (Figure 4.1.4) is represented a possible system with three
servers, connected using a load balancer. When a user executes a query on the
database, it is a task of the load balancer to understand to which server redirect the
request, depending on the portion of the graph that is interested in the query.

73 https://neo4j.com/docs/operations-manual/current/performance/
74 Other information inside the “Inside Neo4j” chapter
75 Covered later in the chapter.

 Italo Lombardi 52

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 4.1.4: Cache Sharding

4.1.11) Browser - A visualisation framework

The Browser framework in Neo4j gives the possibility to query the database 76

using Cypher and then see the results like a graph. Working with this visualisation
framework offers an instant feedback on the results because allowed us to see the
graph generated from the executed query and potentially modify our query to
optimise it.

The classic example is the Neo4j Movies database, where are listed some 77

movies with all the information about them (Figure 4.1.5).

Figure 4.1.5: Movies Database example using the visualisation tool

76 https://neo4j.com/developer/guide-data-visualization/
77 http://my-neo4j-movies-app.herokuapp.com/

 Italo Lombardi 53

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

4.1.12) WebAdmin - A monitoring framework

WebAdmin (Figure 4.1.6) was an administration tool offered in the oldest
versions of Neo4j, where it was possible to view statistics about the database (counts
of nodes, properties and relationships, disk usage and so on) or quickly update node
values, indexes and more. It was being used to monitor the database, to identify
performance problems or other errors. Some of its function are in the Browser
visualization framework.

Figure 4.1.6: Neo4j WebAdmin Charts

4.1.13) Open source technology

Neo4j is an open source project (Figure 4.1.7), which means that its source
code is readily available with a licence offered by Neo Technology, Inc.

Different and impressive are the relevant aspects of an open source software.
Most important are:

● Lower change of vendor lock-in: expert users can read and understand the
code, in order to fix it, extend it or audit it, independently of the vendor.

● Better security: knowing what the system does, should be intrinsically more
secure, even though there are many discussions about this topic . 78

● Lighter support and troubleshooting: identifying code which generates errors.
● More innovation through extensibility: because anyone can extend the

software creating new components, called plugins.
● Cheaper: usually, users only need to pay if they derive value from the

software or when they want premium support.

78 https://goo.gl/f989h1

 Italo Lombardi 54

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 4.1.7: Neo4j Advertising - Classical Cypher query style

Compatible bindings can be written in different languages, including Python 79

and Java.

Neo4j offers two different editions (Figure 4.1.8): 80

● Community Edition: The basic version, but fully functional.

● Enterprise Edition: This adds Enterprise functions to the Community
Edition, like clustering, advanced monitoring and online backups.

4.1.14) Licence GPL vs. AGPL

To promote both open source software and Neo4j, the owners have chosen
specific licensing terms to use their graph database software:

● The Community Edition uses the GNU Public License version 3 (GPLv3) 81

as its licensing terms. It is possible to copy, distribute, and modify the
software as long as the programmers keep track of their modifications.
For commercial applications, the distribution is possible without other
requirements, only if the system uses REST API to communicate to the
database. If the system uses Java API, the distribution is possible only if the
software house provides the source code.

● The Enterprise Edition has two types of licences:
○ The Affero GNU Public License version 3 (AGPLv3), built for 82

network software and it is free only if the system code is open source.
○ The Neo Technology Commercial Licence (NTCL) where there 83

are no requirements for the source code and customers have dedicated
support services.

For academic purposes, Neo4j, Inc. offers the opportunity to get an Enterprise
Edition with an Educational License for free, in consequence, each test showed
during this dissertation, has been executed on that edition with all Neo4j's features
enabled.

79 https://www.python.org/
80 https://neo4j.com/editions/
81 https://www.gnu.org/licenses/gpl-3.0.en.html
82 http://www.affero.org/oagpl.html
83 https://neo4j.com/news/neo4j-licensing-guide/

 Italo Lombardi 55

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 4.1.8: Neo4j Editions and Licenses

4.1.15) Backups

Software and Hardware disasters can occur at any time, corrupting data and
creating problems to services offered by graph databases.

Neo4j offers two different types of backup , offline and, for the Enterprise 84

edition, an online version:

● Offline: works on any edition of Neo4j, is the simplest backup which
involves downtime because it has to be performed on a closed database
instance.
Three are the steps to complete this operation:

a. Shut down the Neo4j instance;
b. Copy all Neo4j files to a backup location; 85

c. Restart the database instance.
● Online: it is a robust way to back up a single or clustered Neo4j database

without requiring any downtime.
Two options are available for this type of backup:

1. Full backup: it is a full copy of the entire database, from the
beginning of its creation. Usually, it is an extended operation during

84 https://neo4j.com/docs/operations-manual/current/backup/
85 Covered in the “Inside Neo4j” chapter

 Italo Lombardi 56

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

that the database could continue working, in consequence, to ensure
that the final backup remains consistent and up to date, Neo4j ensures
that any operation occurred during the copy process, will be copied
into the backup.

2. Incremental backup: does not copy the entire database every time,
but keeps track of the last copied operation and continues from that
point until the last operation. This operation is more efficient than the
full backup because it minimizes the amount of copied data every
time.

Neo4j does not provide any backup scheduling functionality, but there are lots
of external tools (like Cron Job) which can help to schedule backups with the 86

required frequency.

To restore a Neo4j database from a backup is required a simple procedure: 87

a. Shut down the Neo4j instance to be restored;
b. Delete the corrupted or old Neo4j files;
c. Copy the backup files into the folder;
d. Restart the database instance.

Another procedure is the using of the restore command.

neo4j-admin restore --from=<backup-directory>
 [--database=<name>]
 [--force[=<true|false>]]

As it is possible to see, three are the parameters:

● From: the path where the backup is located;
● Database: (optional) the name of the database to restore;
● Force: (optional) if an existing database should be replaced or not.

Both procedures restore the entire database from the backup.
Partial recovery is, at the moment, not supported.

86 http://www.oodlestechnologies.com/blogs/Scheduling-tasks-with-Cron-Job
87 https://goo.gl/JkBiCb

 Italo Lombardi 57

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter V

5) Cypher

Cypher, the Neo4j's declarative language, uses graph pattern-matching as the
primary mechanism for graph data selection . [2][4][5][9] 88

Its declarative nature means that it is possible to query the graph by describing
what is needed to get from it, rather than define methods or ways to get to the results.

Some keywords are similar in functionality to the SQL clauses , making it 89

very easy to understand and use by an operations professional.

5.1) Most relevant clauses

The Cypher syntax is case-sensitive, and the two most relevant clauses are:

● MATCH : matches graph patterns, allowing to locate the portion of relevant 90

data for our queries.
● RETURN : returns the results we are interested in. 91

In some Cypher manuals is presented the START clause, but it was 92

deprecated in the latest versions of Neo4j. This clause, employed in combination
with explicit indexes, was used to find starting nodes in the graph, where the
execution of our queries would start. It was important because avoided to scan the
entire graph, improving performance incredibly.

An old simplistic Cypher query makes use of the START clause to anchor to
the source, which is succeeded by MATCH clauses used to conditionally traverse
through desired nodes, and finally, a RETURN clause that outputs the results.

Today's simplest query only consists of MATCH clauses followed by a
RETURN clause.

88 Covered in section 3.1.4
89 https://db.apache.org/derby/docs/10.7/ref/rrefclauses.html
90 https://neo4j.com/docs/developer-manual/current/cypher/clauses/match/
91 https://neo4j.com/docs/developer-manual/current/cypher/clauses/return/
92 https://neo4j.com/docs/developer-manual/current/cypher/clauses/start/

 Italo Lombardi 58

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

To show how those clauses are used, we can consider a hypothetical graph
which shows some European cities and flights that connect them (Figure 5.1).

Figure 5.1: Hypothetical Flight Graph

A typical query would be the one that finds a connecting flight path from one

city. The START-version query could be:

(1) START city1 = node:location(name = 'Valencia')
(2) MATCH (city1) - [:CONNECTS] -> (city2)
 - [:CONNECTS] -> (city3),

(3) (city1) - [:CONNECTS] -> (city3)
(4) RETURN city2, city3

Analyzing the previous query row by row:

1) The START clause indicates the starting point inside the graph, and uses an
explicit index called location to locate a place stored with the property name
set to 'Valencia.'
This statement returns a reference to a node bound to the identifier city1.

2) The MATCH clause, using the identifier city1, specifies the pattern that we
are looking for in our graph, using the pattern matching technique.
This clause uses ASCII characters to represent nodes and relationships: 93

○ Nodes are drowned with parentheses (node).
○ Relationships are represented using pairs of dashes with greater-than

(- ->) or less-than signs (<- -).

93 https://en.wikipedia.org/wiki/ASCII

 Italo Lombardi 59

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The relationship directions are expressed by the signs < and >.
Between the dashes, inside the square brackets ([]) and prefixed by a
colon (:), there is the relationship name, which connected the two
nodes in our query.
A colon can be used similarly to prefix node labels.

3) Another pattern clause of the MATCH clause, separated from the other with a
comma (,).

4) The RETURN clause used to specify which information, matched during the
execution, it will be returned.

Since the pattern in the MATCH clause can occur in many ways, using the
START clause was a good practice to anchor the start node and limit the number of
useless matched results.

From Cypher 3.2, this clause was removed, and the current recommendation is
to use MATCH instead. Using the START clause explicitly will cause the query to
fall back to using Cypher 3.1.

MATCH (city1:CITY {name = 'Valencia'}) - [:CONNECTS] ->
 (city2) - [:CONNECTS] -> (city3),
 (city1) - [:CONNECTS] -> (city3)
RETURN city2, city3

Curly braces ({ }) are used to specify node and relationship property
key-value pairs.

CITY is the label associated to a node. It is possible for a node to have multiple
labels and each one has to be separated with a colon.

During the execution, Neo4j binds the node with property name set to Valencia
and the label CITY into the identifier city1 and then, by pattern matching, searches
nodes and relationships that have the same style.

In the example graph, the only two cities which fit in the specified pattern are
Napoli and Roma, because city1 is connected with both and they are connected to
each other.

 Italo Lombardi 60

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

An analog way is to express the anchoring as a predicate in the WHERE 94

clause:

MATCH (city1) - [:CONNECTS] -> (city2) -
 [:CONNECTS] -> (city3),

 (city1) - [:CONNECTS] -> (city3)

WHERE city1.name = 'Valencia'
RETURN city2, city3

WHERE, like the SQL clause , it is not mandatory, and it filters out data 95

based on some criteria. For that reason, WHERE is not meant for pattern matching,
and using it can cause performance degradation . 96

WHERE can be used to filter based on value ranges using < and >:

MATCH (p:Person)
WHERE p.age > 18
RETURN p

Other logical operators that can be used in the WHERE clause are: AND, OR,
NOT, EXISTS, IS NULL and so on.

For example, to ensure a property exists on the nodes:

MATCH (p:Person)
WHERE EXISTS (p.age)
RETURN p

In Cypher, it is also possible to utilise Regular expressions , declaring a 97

pattern by using ' =~ ' followed by the pattern.

The next query returns all nodes with an I at the first letter of the property
called name.

94 https://neo4j.com/docs/developer-manual/current/cypher/clauses/where/
95 https://www.w3schools.com/sql/sql_where.asp
96 Covered in section 5.4
97 http://www.regular-expressions.info/tutorial.html

 Italo Lombardi 61

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

MATCH (p:Person)
WHERE p.name =~ 'I.*'
RETURN p

In the previous examples, we used identification variables (like city1 or p)
for nodes, to refer to them during the query, but in some cases, this can be omitted, if
are not necessary. This identification can also be assigned to relationships.

Like in other languages, there are some rules about identifiers. They are case
sensitive, can contain underscores and alphanumeric characters, but the first letter
cannot be a number. It is also possible to use spaces in the identifier, but in this case,
all the name has to be contained into back quotes.

Choosing good names can improve the readability of the query.

About properties, they can be related to nodes or relationships, and a good
practice is to choose an explicit name that follows the same rules of
nodes/relationships names.

In the Cypher queries, each property identifier and value pair has to be
separated with a comma.

Many different value types can be used to save information in properties:

● Array: a collection of similar objects (like strings, integers) used to save
information. An array of different types is not supported.

● Boolean: used to store boolean variables with only true or false value.
● Numerical values: to store any numbers.
● String: the most common way to save information, using alphanumeric

characters.

About relationships, to restrict our pattern, we can use a particular syntax
where is specified the maximum number of away relationships from our nodes. For
example [:CONNECTS*1..2] means that we are looking for nodes placed no more
than two CONNECTS relationships away from the first node.

Neo4j’s official WebPage offers the possibility to run its DBMS without
installation, to execute all Cypher queries on our data. This framework, reaching to
this link (https://neo4j.com/sandbox-v2/), offers guides and allows to start building
applications backed by Neo4j.

All the examples in this dissertation had been executed by this tool.

 Italo Lombardi 62

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

5.2) Other clauses

Other useful clauses which could be used to create complex queries are:

● CREATE : grants the possibility to define new node or relationship. It can 98

be used with the keyword UNIQUE to avoid the creation of duplicate 99

entities.

Figure 5.2: Node with the label

Person and two properties

Create a new unique node (Fig.5.2):

CREATE (:Person
 { name: 'Italo',
 title: 'Student'
 })

Create a new relationship between two nodes (Figure 5.3):

MATCH (a:Person {name:'Italo'}), (b:Person {name:'Frank'})
CREATE (a) - [:IS_FRIEND_OF] -> (b)

Figure 5.3: Two nodes connected with a relationship

● SET : used to assign values to properties of nodes/relationships (Fig. 5.4). 100

MATCH (p { name: 'Italo' })
SET p.age = 29

Figure 5.4: The same node of
before with a new property

98 https://neo4j.com/docs/developer-manual/current/cypher/clauses/create/
99 http://neo4j.com/docs/developer-manual/current/cypher/clauses/create-unique/
100 http://neo4j.com/docs/developer-manual/current/cypher/clauses/set/

 Italo Lombardi 63

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

In this example, if the node does not have the property age, it will be added.
If the property in the specified node already exists, the value will be updated.

To add new label to a specified element (Figure 5.5):

MATCH (p:Person {name : 'Italo'})
SET p:Italian

Figure 5.5: Node with
two labels

● DELETE : deletes nodes or relationships in the graph. 101

The classic query to remove a node is:

MATCH (p { name: 'Italo' })
DELETE p

To delete a node with all its relationships going to or from it, we have to use
another keyword: DETACH.

MATCH (p { name: 'Italo' })
DETACH DELETE p

To delete relationships only, considering a relationship called KNOWS:

MATCH (p { name: 'Italo' })-[r:KNOWS]->()
DELETE r

Using DETACH DELETE and removing the parameters in the MATCH
clause, allows to delete all nodes and relationships in our graph:

MATCH (p)
DETACH DELETE p

101 https://neo4j.com/docs/developer-manual/current/cypher/clauses/delete/

 Italo Lombardi 64

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● REMOVE : used to remove properties and labels from graph elements. 102

Figure 5.6: The same node of

before without the title property

Remove property (Figure 5.6):

MATCH (p { name: 'Italo' })
REMOVE p.title

To remove labels (Figure 5.7):

MATCH (p { name: 'Italo' })
REMOVE p:Italian

Figure 5.7: The node

without the Italian label

● ORDER BY : allows ordering data by properties. This clause has to be 103

written after the RETURN. By default, the sort order is ascending, but with
the keyword DESC, the order can be reversed.

MATCH (p:Person)
RETURN p
ORDER BY p.age DESC, p.name

● LIMIT : limits the maximum number of elements returned. Without this 104

clause, any applicable element would be returned. The LIMIT clause has to
be written after the RETURN.
To show the youngest ten people in our data:

MATCH (p:Person)
RETURN p
ORDER BY p.age
LIMIT 10

102 http://neo4j.com/docs/developer-manual/current/cypher/clauses/remove/
103 https://neo4j.com/docs/developer-manual/current/cypher/clauses/order-by/
104 https://neo4j.com/docs/developer-manual/current/cypher/clauses/limit/

 Italo Lombardi 65

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● SKIP : offers an offset function. This clause allows skipping the 105

visualisation of some results.
Used in combination with LIMIT, can help the creation of pagination.
For example, to see only the results between the 11° and the 15° row:

MATCH (p:Person)
RETURN p
ORDER BY p.name
SKIP 10
LIMIT 5

● WITH : the primary function is to pipeline the output results of one query 106

into the next, in the form of input. It can be considered as a chaining of
queries and helps divide complex queries into several simpler patterns.
WITH can be used to collect additional data from a query, and another
essential function is the possibility to filter results, making queries more
efficient by removing unneeded data.

A possible example to see one of the many functionalities of this clause is:

(1) MATCH (a {name:"Italo"}) -[:IS_FRIEND_OF]-> (b)
(2) WITH b
(3) MATCH (b) -[:IS_FRIEND_OF]-> (c)
(4) RETURN b.name, COUNT(c)

1. The query matches the node with the property name to 'Italo' into the
identifier a and then, searches his friends, binding them to the variable
b.

2. This row could be read like "for every friend of the node a, execute
the other part of the query".

3. For every friend of a, search his friends and binding them to c.
4. Return a list with the name of the friend of the node a, and the number

of his friends, using the aggregating function COUNT (Figure 5.8). 107

105 https://neo4j.com/docs/developer-manual/current/cypher/clauses/skip/
106 http://neo4j.com/docs/developer-manual/current/cypher/clauses/with/
107 https://neo4j.com/docs/developer-manual/current/cypher/functions/aggregating/

 Italo Lombardi 66

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 5.8: A friendship graph and its results of the previous query

● MERGE : equivalent to a combination of MATCH and CREATE, ensures 108

that the pattern exists in the graph, either by reusing existing elements that
match the supplied predicates, or by creating new nodes and relationships.
If all the properties in the query do not match a returned node, a new node
will be created.
Used in combination with CONSTRAINTS can help avoid duplicate
elements.
The simplest query is:

MERGE (p:Person { name : 'Marco'})
RETURN p

In the MERGE clause, it is possible to specify different actions when the
node is found or when is created, using ON CREATE and ON MATCH:

MERGE (p:Person { name : 'Marco'})
ON CREATE SET p.date_creation = 01/01/2018
ON MATCH SET p.last_access = 01/01/2018
RETURN p

The previous query specifies two different actions based on the current data
situation: If the node with property name 'Marco' does not exist, it will be
created, and the property date_creation will be set to the current date.
If the node is matched, the value of the property last_access will only be
updated with a new date.

108 http://neo4j.com/docs/developer-manual/current/cypher/clauses/merge/

 Italo Lombardi 67

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● UNION : acts as a conjunction operation for queries. Combines the action 109

of multiple queries to produce a final result with all the required data.
If we are interested in all the results, duplicates included, it is possible to use
the clause UNION ALL.
The number and the names of the columns must be identical in all queries
combined by the UNION clause.
Considering an example of professor and university courses. (Figure 5.9)
If we want to get the list of the names of both elements, usually, we would
have to use two different queries, but with UNION, we can put all together
and receive all the list.

MATCH (p:Professor)
RETURN p.p_name AS names
UNION

MATCH (c:Course)
RETURN c.c_name AS names

Figure 5.9: An university courses graph and its results of the previous query

● FOREACH : like mostly imperative languages, is used to update the 110

elements in a set of entities sequentially. Considering the previous example of
friendships, this clause can update all nodes which have a particular property:

MATCH list = (p:Person)
WHERE p.age < 18
FOREACH (el in nodes(list) | SET el.underage = TRUE)

109 https://neo4j.com/docs/developer-manual/current/cypher/clauses/union/
110 https://neo4j.com/docs/developer-manual/current/cypher/clauses/foreach/

 Italo Lombardi 68

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 5.10: Friendship graph with new property for specific nodes

The query above, gets with the MATCH clause all Person nodes of the graph,
filtering them by the property age, choosing only the youngest people above
18 years old, then, for each of them, it sets a new boolean property called
underage to TRUE (Figure 5.10).
As we can see, in the MATCH clause we create a sort of node list with all the
underaged Person nodes, and then, in the FOREACH clause, we use
nodes(list), which permits to receive each node of the list and process it.

● CREATE/DROP INDEX : An index is a redundant copy of the 111

information that making look-up operations faster.

They need extra memory space, but there are specific situations that requires
to pick out specific nodes directly, rather than discover them by the traversal
walk.

To support indexes, Cypher allows the creation of them for labels and
property combinations

CREATE INDEX ON :Person(name)

To remove them:

DROP INDEX ON :Person(name)

111 https://goo.gl/2zXtzv

 Italo Lombardi 69

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

MATCH clauses can work both with or without indexes, but using them will
help improve performance. The query syntax maintains the same style
because in MATCH clauses it is not required the specification of the index.

● CREATE/DROP CONSTRAINTS : In some systems, duplicates values 112

would be classified as an integrity violation, and Neo4j with constraints 113

helps keep property values unique.
For example, unique constraints are useful when working with usernames that
are required to be unique.
When a constraint is created, Neo4j creates automatically an index for the
properties that are required to be unique, helping to keep track of the existing
values.
In this scenario, a CREATE operation will produce an error if it tries to create
a node which violates constraints.
The query to create a constraint and at the same time the index on the specific
property is:

CREATE CONSTRAINT ON (p:Person)
 ASSERT p.username IS UNIQUE

To remove both the constraint and the index:

DROP CONSTRAINT ON (p:Person)
 ASSERT p.username IS UNIQUE

The first four clauses, together with MATCH and RETURN are the basic
CRUD operations (Create, Read, Update and Delete) that can be used in Neo4j. 114

5.3) Key functions

Cypher has many functions that can change the query execution, to receive
needed results. The most important are:

● COUNT: is a function used to count all the resulting rows from the queries
RETURN clause. Two are the typical uses, count(*) when we want to count
any returned nodes, or count(element) when we know what we want to count.

112 https://goo.gl/jGRzZz
113 http://neo4j.com/docs/developer-manual/current/cypher/schema/constraints/
114 https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

 Italo Lombardi 70

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

For example, to count how many Person we have in our graph:

MATCH (n:Person) RETURN COUNT(n)

There are some cases when elements can be counted several times. To avoid
the count of duplicates elements is possible to use the DISTINCT function.

● DISTINCT: can be used in combination with other functions and it is used to
return unique values, without duplicates.

MATCH (n:Person {name : 'Italo'}) -
 [:IS_FRIEND_OF] -> (f) - [:IS_FRIEND_OF] -> (h)

RETURN COUNT(DISTINCT h)

This query counts the number of friends of friends, excluding duplicate
nodes, like for example the node with the property name 'Luca', which is
counted only one time (Figure 5.11).

Figure 5.11: Different results with and without the DISTINCT function

● NODES - RELATIONSHIPS: Both functions are similar because they
require a path to return nodes or relationships on it.
For example, creating a list of paths using the MATCH clause, we can get the
information that we need (Figure 5.12):

MATCH p = (a:Person {name:'Italo'}) -
 [:IS_FRIEND_OF] -> (b) -

 [:IS_FRIEND_OF] -> (c:Person {name:'Luca'})
RETURN NODES(p)

 Italo Lombardi 71

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 5.12: Different path from two nodes

● LENGTH : this function, similar to count, is a counter for paths or 115

collections and returns the numbers of path hops or the numbers of items
within a collection.

MATCH p = (a:Person {name:'Italo'}) -
 [:IS_FRIEND_OF] -> (b) -

 [:IS_FRIEND_OF] -> (c:Person {name:'Luca'})
RETURN LENGTH(p)

This query, considering the same graph of the previous example, returns 2
and 2, because there are two possible paths from the first node to the second
and both paths have two hops.

● COLLECT: allows the aggregation of data, collapsing many rows into only
one. It is useful to obtain one particular property from a collection of nodes,
without having to process each element one by one.

MATCH (p:Person)
RETURN COLLECT(p.name)

The result value, considering the previous graph, would be:
["Italo", "Frank", "Anto", "Mick", "Luca"]

115 https://goo.gl/m8NkTm

 Italo Lombardi 72

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● LABELS : returns all the labels associated with a specific node, in form of 116

array (Figure 5.13).

MATCH (p:Person {name:'Italo'})
RETURN LABELS(p)

Figure 5.13: LABEL function

● ID : returns the actual ID for the node or relationship within the database. 117

This numerical ID is created automatically and cannot be set by a user.
Usually, this ID is auto incremental, but when a node is deleted, that number
becomes available and can be used for a new element.
Nodes and relationships have two different lists of IDs, to avoid any problem.
The simple query to get the ID is:

MATCH (p:Person {name: 'Marco Polo'})
RETURN ID(p)

It is possible to use the WHERE clause to obtain an element, knowing only
its ID.

MATCH (n)
WHERE ID(n) = x
RETURN n

● TIMESTAMP : returns the milliseconds between the current date and 1st 118

January 1970. It can be used to update properties or to check the server
timezone.

MATCH (p:Person {name : 'Anto'})
SET p.last_access = TIMESTAMP()

116 https://goo.gl/77Nxra
117 https://goo.gl/W4xkRx
118 https://goo.gl/PA3wZN

 Italo Lombardi 73

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● TYPE : in every example during this dissertation, each query had specified 119

the name of relationships which connect nodes. There are some cases when
the name is not essential, or it is unknown. The function TYPE helps to
explicit the type of a relationship supplied, that, in other words, is the name
associated with it.

MATCH (n:Person {name: 'Italo'}) - [r] -> ()
RETURN TYPE(r)

This query, with anonymous elements , will find any relationships that the 120

node has, and then, return all the types, duplicates included.

5.4) Query optimisations

Although Neo4j offers high performance using its native graph storage, and
Cypher is highly understandable, different are the techniques which can be used to
improve response times or the readability of our queries:

● Anonymous elements: Both nodes and relationships can be associated with
identifiers, used to reference the related elements during the query execution.
The main rule about identifiers is to specify them only when the elements will
be used later, because, avoiding identifiers will make the query easier to
understand.
We have already seen some unnamed (anonymous) relationships like
[:IS_FRIEND_OF], where the relationships have no associated identifiers,
but, in some circumstances, like the query used for the TYPE function, we do
not know even the name of the relationship. In these cases, we can use the
unnamed relationship [], or if we need an identifier, we can put it inside the
square brackets [r] without expressing the relationship type.
Nodes, follow the same rules, so our queries can have unnamed nodes or
relationships causing no problems to the execution.
Some examples of relationships:

MATCH (p) - [r:HELD] -> (c) Fully specified relationship

MATCH (p) - [:HELD] -> (c) Unnamed relationship

119 https://goo.gl/BmQJ4Q
120 Covered in the next section

 Italo Lombardi 74

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

MATCH (p) - [] -> (c) Unnamed relationship
with unknown type

MATCH (p) - -> (c) Same as before

If we do not know the relationship direction, or is not essential to specify, the
symbols < or > can be omitted.

About nodes:

MATCH (p:Person) Fully specified node

MATCH (p) Named node

MATCH (:Person) Unnamed node

MATCH () Unnamed node with unknown label

● Indexes and constraints: searches in the graph space are optimised using
indexes which allow the traversal avoid redundant matches, going directly to
the correct element location. Indexes can be created on nodes and unique
property values defined by a constraint.
Searches in the graph space are optimised using indexes which allow the
traversal avoid redundant matches, going directly to the correct element
location. Indexes can be created on nodes and unique property values defined
by a constraint.
Usually, it is not necessary to specify whether or not and which indexes to
use. However, to make sure which indexes should be applied is used the
USING INDEX clause. For example, the following query will match all
users using the index on the email property.

MATCH (u:User)
USING INDEX u:User(email)
WHERE u.email = *email*
RETURN u

 Italo Lombardi 75

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

This query makes sure that the index on the email property is used for
searching. If the index is not present or cannot be used in the query as is, an
error will be returned.
The USING clause must be specified before the WHERE clause.

There are some situations where using an index could decrease performance

. This is the case of queries that match large parts of indexes in which it 121

might be faster to scan the label and filter out nodes that do not match, rather
than using an index.
To avoid the use of indexes, it is possible to use USING SCAN after the
applicable MATCH clause, and this will force Cypher to do a complete label
scan.
Considering the following query, Cypher will ignore possible indexes on the
label Person, performing a scan of all nodes:

MATCH (p:Person)
USING SCAN p:Person
WHERE p.born < 1988
RETURN p.name

● Patterns in the MATCH clause: As mentioned previously, the WHERE
clause is not meant for pattern matching, because it is better used to filter the
results when used with START and WITH. However, when used with
MATCH, it implements constraints to the patterns described. Thus, the pattern
matching is faster when we use the pattern in the MATCH section.
As Cypher is declarative, it can change the order of the operations, and in
these cases, WHERE clauses can be evaluated before, during, or after pattern
matching.

● Use labels to optimise searches and avoid global data scans: the use of
labels in queries can help to optimise the search process for the pattern
because they help to shrink the domain.
In general, queries without a specific pattern, which necessitate scanning the
entire graph are not recommended.

● Split MATCH clause and avoid Cartesian Products generation: Rather
than using multiple match patterns in the same MATCH statement, separated
by a comma, is better to split the patterns into several statements.
This process decreases the query time execution because every MATCH is
performed on a smaller portion of data, for this reason, the first statement,
should contain the pattern which has the "smallest cardinality".

121 https://goo.gl/7dQp9s

 Italo Lombardi 76

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Putting all patterns together in a single MATCH statement implies calculating
all possible combination of the elements. For example:

MATCH (p:Professor), (c:Course), (u:University)
RETURN COUNT(p) as professors,
 COUNT(c) as courses,
 COUNT(u) as universities

The query implies the mapping of all possible triplets of the elements and
then the filtering of the results.
An optimised query, with successive counting, could be, for example:

MATCH (p:Professor)
WITH COUNT(p) AS professors
MATCH (c:Course)
WITH COUNT(c) AS courses, professors
MATCH (u:University)
RETURN COUNT(u) AS universities, courses, professors

● Avoid returning entire nodes: Most of the queries return elements obtained
from the data with the RETURN clause, but, when are required only some
property values, is better to return them directly, and not the entire node,
because doing that, can cause degradation of performance.

● Profiling queries: Despite the use of optimisation techniques, if queries are
still slow, the next step is the profiling, which identifies the cause of poor
performance during the execution. Using the PROFILE command before 122

the query, Neo4j will run the statement and show which operators are doing
most of the work.
By running the following query on a graph with only three nodes, the result is
the one in Figure 5.14.

PROFILE MATCH(n:Person) RETURN n

Neo4j will execute the statement and keep track of how many rows pass
through each operator, and how much each operator needs to interact with the
storage layer to retrieve the necessary data.

122 https://goo.gl/6CkpZR

 Italo Lombardi 77

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 5.14: Result of a PROFILED query

The EXPLAIN command (Figure 5.15) is similar to the PROFILE, but it will
show only the execution plan, without running the statement. The statement
will always return an empty result and make no changes to the database.

Figure 5.15: Result of a EXPLAINED query

By using one of these commands, each query execution is decomposed into
operators, each of which implements a single unit of work. The operators are
combined into a structure called an execution plan . 123

Each operator is annotated with statistics:

1. Rows: the number of rows that the operator PROFILE produced.

123 https://neo4j.com/docs/developer-manual/current/cypher/execution-plans/

 Italo Lombardi 78

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

2. EstimatedRows: the estimated number of rows that will be produced
by the operator. The compiler uses this estimate to choose a suitable
execution plan.

3. DbHits: each operator will ask the Neo4j Storage Engine to do work
such as retrieving or updating data. A database hit is an abstract unit
of this storage engine work. The actions triggering a database hit are
listed here.

● As we have already seen, the keyword USING can influence the decisions of
the planner when building an execution plan for a query.
The clause USING JOIN , the most advanced type of hint, is used to 124

enforce that joins are made at specified points in the graph.
The using of this clause requires extensive knowledge of the relationships in
the graph, to improve performance, reducing the number of visited nodes. By
forcing the join to occur on a specific node, if there are statistical reasons to
do that, performance is improved.
In specific, a query that makes use of the USING JOIN clause, using more
than one starting point (leaf), tries to join the two branches ascending from
these leaves on specified nodes written in the clause. This will force the
planner to look for additional starting points, and in the case where there are
no more good ones, potentially pick an awful starting point. This will
negatively affect query performance. In other cases, the hint might force the
planner to pick an apparently bad starting point, which in reality proves to be
an excellent one.

124 https://goo.gl/He9pb3

 Italo Lombardi 79

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter VI

6) Data Modeling

Modeling is an abstracting activity motivated by the complexity of our
World, in according to specific goals. We model to abstract information into a form
which can be structured and manipulated, to apply techniques created to satisfy our
needs. Usually, transforming and abstracting data can create semantic dissonance
between how we conceptualise the real World and the data storage structure. [1][2]

Graph databases can help to decrease the difference between both elements
because they are considered versatile tools that can be used to model various
domains and problems.

A data model shows how the logical structure of a database is modelled,
defining connections between data and how data is processed inside the system.

Neo4j uses a connected graph data models, based on relationships which
connect different entities, making data access faster than other data models.

As mentioned before, Neo4j is a schemaless database where nodes can have as
many properties and relationships as needed. The data model is implicit in the data
contained in the database, and, it is a description of the reality that we want to store.
For its descriptive nature, it is easy to make changes to expands or alters the data.

Reviewing past arguments, Neo4j offers four fundamental building blocks to
structure and store data: nodes, relationships, properties and labels; extending the
definition of graphs to labeled graphs (Figure 6.1), where their elements can have
labels to group nodes together or indicate their roles within data.

Figure 6.1: Labeled graph

 Italo Lombardi 80

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

6.1) Data Modeling with Graphs and Neo4j

These are the steps for a correct modeling phase:

1. During the initial stage, the first move is to understand every element in the
domain, how they are related, and the rules that direct their state transitions.
Graphs and sketches can help during this part.

2. Understand the end-user goals that motivate the creation of a database and
create a sort of uses cases list where are presented all clients’ needs in the
form of sentences.

3. Identify nodes and relationships that appear in the sentences.
4. Identify properties and labels for every domain element.
5. Test and refine the model.

Agile methodologies, using user stories , provide a compact means for 125

expressing clients’ needs in an user-centred point of view. The classic template for
user stories is:

AS A < type of user >,
I WANT < some goal >,
SO THAT < some reason >

The clause "AS A" establishes the type of user, the "I WANT" clause poses a
question and "SO THAT" specifies the purpose of this story.

An example could be the one where a user wants to find interesting books
based on his and other users’ preferences:

AS A reader of books,
I WANT a list of books based on my preferences
 and similar users like me,

SO THAT I can find other books to read

Analysing the user story, a possible graph (Figure 6.2) could contain two kind
of nodes: READER and BOOK, connected together by a relationship "LIKES". Other
element, like specific properties about books, are not relevant to be specified for this
story.

125 https://goo.gl/EXm2CP

 Italo Lombardi 81

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 6.2: Graph for book reviews

A possible Cypher query to answer the user question could be:

MATCH (me:Reader {name: 'Italo'}) - [:LIKES] ->
 (:Book {title: '1984'}) <- [:LIKES]
 - (other:Reader) - [:LIKES] -> (books:Book)

RETURN books.title

6.1.1) Best practices and pitfalls

In graphs modeling, most relevant problems are concerning the choosing and
treatment of nodes and relationships. [1][5]

Unfortunately, there is no one perfect way to model in a graph database, but
follow some guidelines can help during the process:

● Node or relationship?

In a property graph, used in Neo4j, a relationship is a connection between two,
and only two nodes. If we need more, it is not a relationship, and we must change it
into a node.

A generalised graph model in which a relationship can connect any number of
nodes is called Hypergraphs . 126 127

Therefore, the hypergraph model allows any number of nodes at either end of a
relationship. However, Neo4j only works with property graph, for this reason, some
changes are required.

126 https://en.wikipedia.org/wiki/Hypergraph
127 https://neo4j.com/blog/other-graph-database-technologies/

 Italo Lombardi 82

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

If considering the following hypergraph (Figure 6.3), the OWNS relationship
connects different people with their cars.

Figure 6.3: Cars Hypergraph

A possible solution for this kind of problem could be the splitting of all
OWNS relationships into several, where each relationship has only two nodes (Figure
6.4).

In a property graph, are needed more relationships to express the same concept,
because several OWNS relationships are required to express what the hypergraph
captured with just one hyperedge.

Figure 6.4: Cars Property Graph

In theory, hypergraphs should produce accurate, information-rich data models.
However, in practice, it is easy to miss or limit some details.

 Italo Lombardi 83

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Two are the advantages of using different relationships instead of one:

1. The data modeling techniques used to identify a property graph are more
familiar and result less confusional for a development team.

2. In contrast to hypergraphs, in property graphs, every relationship could be
extended in order to create new properties (such as “primary driver” for
insurance purposes). Because hyperedges are multidimensional, hypergraph
models are more generalised than property graphs.

But not everything has to be a node because properties can be used to express
relevant values.

● Node or property?

Most common errors during the first creation of graphs concern properties and
nodes. An example could be the graph below (Figure 6.5) which represents a user
and some associated properties connected by the relationship "has_property".

Figure 6.5: A USER with some properties connected by relationships

This graph can be reduced to a single
node (Figure 6.6) because all other
elements can be converted to properties:

Figure 6.6: A node USER with

some properties

 Italo Lombardi 84

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

However, on some occasion, a node for a property can be useful to share
information and avoid redundancy. For example, to connect users with the same
Address, indicating which one is current, a good practice is to use a node instead of a
property. There are at least three ways to represent that information:

1. Create a node for the address using different relationship names (Figure 6.7):

Figure 6.7: Two users sharing the same address with different relationships

2. Use the same relationship name but indicate which one is current with a
property (Figure 6.8):

Figure 6.8: Two users sharing the same address

with the same relationship but different properties

3. Use a technique called reification where a relationship between two nodes 128

is broken into two relationships connected by an intermediate node that

represents the original relationship (Figure 6.9).

128 https://en.wikipedia.org/wiki/Reification_(computer_science)

 Italo Lombardi 85

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 6.9: Reifying the relationship between USER and ADDRESS

Each way can be useful in a particular domain, and it is the designers’

responsibility to choose the best one.

● "Rich" properties

Problems can occur when nodes have many properties (Figure 6.10). Usually,
it is not a good idea to split a node into others where are presented other properties.

Figure 6.10: Extra properties stored in another node

 Italo Lombardi 86

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 6.11: All properties

together in a single node

A good practice is to put all together
using properties combined with labels, to
increase query simplicity and performance,
reducing the number of nodes considered
(Figure 6.11). Choosing between label or
property depends on the type of queries that
they will be executed on the graph database.

● Node with multiple concepts

The previous concept is correct
only when properties are related to the
node concept, but when a node and its
properties are two separate concepts, it
is better to split them using a
relationship to connect them (Figure
6.12 and Figure 6.13).

Figure 6.12: Wrong COUNTRY

node

Figure 6.13: COUNTRY node split into three nodes

 Italo Lombardi 87

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Unconnected graphs

A significant anti-pattern to avoid during the modeling phase is the
unconnected graphs. Neo4j based its success on its traversal speed which follows
relationships to get relevant information.

A graph where nodes are not connected leaves a wealth of opportunities
underutilised. In these cases, other kinds of databases would be better to store the
data.

● Dense node

As specified before, the power of Graph Databases is the traversal which
avoids complex join operations to get the required data. The traversal speed is
correlated to the number of relationships that nodes have.

A problem can occur when some nodes are all connected to the same node.
This node, called dense node, becomes problematic for the traversal, due to its high
number of connections.

Instead of having direct connections from different nodes to this dense node, to
avoid worsening performance, it is possible to create a metanode which groups all
other nodes.

An example could be a fan-like graph database (Figure 6.14), where fans are
not directly connected to the Artist but are connected by metanodes:

Figure 6.14: Strategy for dense nodes

 Italo Lombardi 88

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Bidirectional relationships

A relationship is an oriented connection between two nodes, but, in many
cases, relationships go both ways.

The typical example is a family graph (Figure 6.15), where are shown all
related people in a family. The relationship between two brothers is bidirectional, but
it cannot be represented by only one connection. In these cases, two similar
relationships are required to express that information.

Figure 6.15: Family graph with two relationships RELATED_TO

The problem of this solution is the complexity of our graph because we are
extending it creating more relationships, worsening the readability.

Thanks to Cypher, the relationship direction is not required, this means that
instead of having two relationships, it is possible to use only one, changing all
queries, without including the direction.

In this cases an example query could be:

MATCH (p1:Person {name: 'Antonio'}) -
 [r:RELATED_TO {relation: 'Brother'}]
 - (p2:Person)

RETURN p1.name, p2.name

Using this method requires fewer data and keeps queries cleaner.

● Generic vs Specific Relationships

Defining which type of relationships will be used in our graph is always a
difficult choice, but it is always influenced by the queries that will be executed.

If considering the previous example of the family graph, the relationship
RELATED_TO is generic because it can be used with all members of the family, only

 Italo Lombardi 89

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

changing the value associated with the property. In this case, for example, a possible
graph including other family members could be (Figure 6.16):

Figure 6.16: Extended family graph with the RELATED_TO relationship

Using this kind of relationship is enough when most of our queries will ignore
property values presented in the connection, but, when the values are necessary,
specific relationships are the best way to improve graph traversals (Figure 6.17).

Figure 6.17: Extended family graph with the specific relationships

Adopting this strategy like the graph above, improves performance reducing
the numbers of I/O operations, reading only the relationship type for every hop.

 Italo Lombardi 90

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Property refactoring

Following earlier definitions, MATCH and WHERE clauses consume most of
the query execution time. A powerful mean to improve performance is the
refactoring of some properties.

For example, considering the following query, the WHERE clause filters the
results comparing the release date with a defined interval of date:

MATCH (b:Book)
WHERE b.releaseDate >= '01/01/2016'
 AND b.releaseDate < '01/01/2017'
RETURN b.title

This query returns the titles of all books released during 2016. A proper
modification would be splitting of the date, putting the year in a single property.

MATCH (b:Book)
WHERE b.releaseYear = 2016
RETURN b.title

That gives a marked improvement in the query performance regarding its
execution time.

6.1.2) Architecture

At this point of the graph database creation, there are several architectural
decisions to be made, depending on the product in realization. Every choice is led by
the clients’ need, such as the type of APIs that will be used later, and the hardware
specifications.

The primary choice is about Embedded vs Server Neo4j instance:

● Embedded: the database runs in the same process as the application and is
ideal for hardware devices or desktop applications. It offers several
advantages such as low latency because the application does not use the
network to access the database. The main disadvantages are that the
application is responsible for the database life cycle, which includes starting
and closing it safely, and other problems with the Garbage Collection which
can affect query performances.

● Server mode: the database resides on an external server independent both
from the client platform and the application, because, they can access the
database from any platform, only using an HTTP client library to manage

 Italo Lombardi 91

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

REST APIs. The main problems of this approach are about availability and
network overhead.

Other choices are related to the hardware configurations, clustering,
replication, use of cache sharding, load balancing and so on . 129

All these activities are part of the capacity planning , essential both for 130

budgeting and performances purposes. [1]

The ability to estimate the production needs depends on many factors.
More information about the number of expected users, graph size and query
performances required we have, the better our estimation will be accurate.

Severals are the optimisation choices which we will be faced with the planning
phase. Specifically, we can optimise for:

● Cost: using the minimum hardware necessary to offer the required service.
● Performance: by procuring the fastest solution which reduces query times.

Performance can be improved, for example, using fast hard drives
(Solid-State Drives or Enterprise Flash Hardware) and increasing the 131 132

cache size.
● Redundancy: uses when the database availability is crucial, adding new

database clusters to sustain a certain number of machine failures. For
example, using Neo4j, redundancy of one can be achieved with three or four
instances.

● Load: by scaling horizontally for reading load or vertically for writing load to
serve all requests even in a peak load.

6.1.3) Testing

Once the domain model is created, the next step is to test it, in according to the
uses cases list. Two are the techniques which can be applied during testing: [1]

A. The simplest: pick a start node and follow every relationship, reading each
element and verify if it makes sense.

B. Adopt a design for queryability: every sentence in our list is translated into
high-level queries, and then these queries are executed on the graph, proving
the correctness of the domain model and implicitly improving the graph
model. This method is typical of a test-driven approach.

129 More information in the chapter IV related to Neo4j.
130 ”The Art of Capacity Planning” (O’Reilly Media). ISBN-13: 978-0596518578
131 https://en.wikipedia.org/wiki/Solid-state_drive
132 https://en.wikipedia.org/wiki/IBM_FlashSystem

 Italo Lombardi 92

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

For any extension, mistake or lack, going back to refine the model is lighter
than modify the database during the execution time, but, at the same time, graphs are
very adaptive, allowing modification every time easily than a traditional relational
database system.

6.1.4) Performance testing

Usually, tests are made on a small portion of the entire graph, but what works
well and fast on a piece of data, might not work so well on a higher graph with
representative data. For this reason, query performance tests, created following
guidelines, are required to evaluate the system.

After defining a set of queries with random starting nodes each time,
recording of performances is essential to understand how they change modifying
some characteristics, like graph size, hardware or configurations.

Performances are related both to the database and the application. This
implies the execution of some application performance tests, to prove how the
application responds to representative production usage scenarios.

Performance tests serve two purposes: they demonstrate the correctness of the
system, and they help the identification of incorrect behaviours and bugs.

6.2) Evolving the domain

Extending an existing relational database is usually something challenging,
which implies migrations to change the model. 133

This technique provides a structured approach by applying a set of database
refactorings which creates a new database that satisfies the changing needs. Database
refactoring usually requires the changing of the data structure without losing any
information, for this reason, is slow, risky and expensive.

Graph databases simplify the domain extension, reducing the necessity of a full
migration.

Usually, the approach is to add new nodes and relationships without changing
the original model, to support new requirements.

133 https://en.wikipedia.org/wiki/Schema_migration

 Italo Lombardi 93

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Adding new kinds of relationships, fortunately, does not affect any existing
queries and is perfectly safe, but the changing of other elements, like relationship
types or properties, might affect the system.

Run a representative set of queries is mandatory to maintain confidence that the
graph is still working well.

The evolution of the domain is something usual during the system life.
Modeling is a balancing act between the present and the future which implies
compromises on some parameters while optimising for others.

It is essential to understand that there is no correct model for every problem,
but only better and worse solutions. It is up to the designers to understand which one
is the best.

 Italo Lombardi 94

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter VII

7) Flights and Cities, a Real World Example

The travel domain is interesting regarding data modeling challenges, for this reason,

will be presented a modeling phase for a flights and cities graph database. [10]

7.1) Modeling Phase

7.1.1) Introduction and understanding of the domain

The purpose of this project is to create a graph database that can be used for
planning flight travel. The two most relevant elements in the graph are cities and
flights. Each element has some properties that are required to process and return the
information expected from travellers. Their goal is to look at all the possible options
for an itinerary, choosing the interesting cities.

A first phase could be the drawing of cities as nodes, creating a connection
between them only if there are two or more direct flights between them (Figure
7.1.1).

Figure 7.1.1: Cities and flight routes

 Italo Lombardi 95

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

In this high-level abstract figure, relationships are undirected, but it is implicit

that there are at least two direct flights between that connected cities, one from the

first to the second and vice-versa.

7.1.2) First possible solution

If looking at the figure below (Figure 7.1.2), the first solution might come in
the designers’ mind could be the one where cities are nodes and flights are
relationships between them.

Figure 7.1.2: A graph of a first possible solution

There are few problems with this approach. Modeling flights as relationships

works well only if an extension of the model in the future is not required. To support

other functionality, like flight bookings, it is better to change the graph design.

Modeling entities as relationships is something not correct during the modeling

phase, because, relationships cannot have other connections linked to them, for this

reason, a different approach is required to solve this problem.

7.1.3) Identifying the entities

As mentioned previously, two are the relevant entities in our model:

● City: which has a name and a country. Usually, only the name is not adequate
to identify a city uniquely, but in this simplification, we can use it as an
identifier.

● Flight: uniquely identified by its code, has properties like duration, carrier,
information about the airport and so on.

These two elements will be modelled as nodes (Figure 7.1.3).

 Italo Lombardi 96

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 7.1.3: Cities and flights modeled as nodes

7.1.4) Identifying the relationships

As specified in the first possible solution, our graph will be created supporting
possible future extensions, consequently, there will be two different relationships
which connect cities and flights (Figure 7.1.4):

● HAS_FLIGHT: connects the origin city to the flight;
● FLYING_TO: connects the flight to the destination city.

Figure 7.1.4: A flights and cities graph

7.2) Cypher queries

7.2.1) Cities

As defined before, cities will be modelled as nodes, with a unique city's name.
To define this constraint, which ensures the uniqueness of the value:

CREATE CONSTRAINT ON (city:City) ASSERT city.name IS UNIQUE

 Italo Lombardi 97

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

It is a good practice to add uniqueness constraints before the creation of nodes
because it ensures that no nodes will have the same property value.

Using the city name in this example is enough to ensure uniqueness, but
usually, it is required other values to achieve that, like name and country together or
ID values.

After defining the first constraint, the next step is the creation of cities:

CREATE (city:City { name: "Valencia", country: "Spain" })
CREATE (city:City { name: "Napoli", country: "Italy" })
CREATE (city:City { name: "Roma", country: "Italy" })
CREATE (city:City { name: "London", country: "England" })
CREATE (city:City { name: "Wien", country: "Austria" })

Executing twice a query will provoke a Constraint Validation error:

Node(x) already exists with label `City`
 and property `name` = 'xxx'

To show the actual graph in the database can be used the following query:

MATCH (n) RETURN n

 The result will be similar to the image below (Figure 7.2.1), or it will be only text:

Figure 7.2.1: All the cities in our graph

 Italo Lombardi 98

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

7.2.2) Flights

Since we have identified flights as entities, the procedure is the same as before.

First, we define a uniqueness constraint on the property code for every flight:

CREATE CONSTRAINT ON (flight:Flight)
 ASSERT flight.code IS UNIQUE

Then, we proceed with the flights' creations:

CREATE (flight:Flight { code: "AAAAA", carrier: "Alitalia",
 duration: 120, source_airport_code: "VLC",
 departure: 1130,
 destination_airport_code: "NAP", arrival: 1320 })

CREATE (flight:Flight { code: "BBBBB", carrier: "Alitalia",
 duration: 125, source_airport_code: "NAP",
 departure: 1400,
 destination_airport_code: "VLC", arrival: 1505 })

The actual graph situation, referring to the flights, is (Figure 7.2.2):

Figure 7.2.2: All the flights in our graph

7.2.3) Relationships

Flights can now be connected to the source and destination cities by
relationships. As defined before, it will be used two relationships:

MATCH (source:City {name: "Valencia"}),
 (destination:City {name: "Napoli"}),
 (flight:Flight {code: "AAAAA"})
CREATE (source) - [:HAS_FLIGHT] -> (flight)
 - [:FLYING_TO] -> (destination)

 Italo Lombardi 99

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

MATCH (source:City {name: "Napoli"}),
 (destination:City {name: "Valencia"}),

 (flight:Flight {code: "BBBBB"})
CREATE (source) - [:HAS_FLIGHT] -> (flight)
 - [:FLYING_TO] -> (destination)

The graph after the executions of the queries is (Figure 7.2.3):

Figure 7.2.3: Flights and cities graph

7.2.3) Indexes

Searching elements without indexes is inefficient.

Neo4j creates indexes on a constraint property automatically, just after the
creation of the constraint itself, for this reason, it is a good practice to add indexes for
other relevant properties manually:

CREATE INDEX on :City (country)
CREATE INDEX on :Flight (carrier)

Usually, indexes should be built on the properties that will be used in future
during the query execution.

The creation of indexes for labels is not required because it is automatic by the
system.

 Italo Lombardi 100

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

7.2.4) First traversal query

In the Real World, this graph would be extended than now. However, at the
moment, it is possible the execution of some queries, to get the information that we
need.

The first query could be the research of flights knowing only the source and
destination cities.

MATCH (source: City {name: "Wien"}) - [:HAS_FLIGHT]
 -> (f:Flight) - [:FLYING_TO]

 -> (destination:City {name: "Valencia"})
RETURN f.code as FlightCode, f.carrier as Carrier

This is a classic query which will generate a list of all possible direct flights
between the designated cities.

7.2.5) Planning itinerary

Our primary focus using this graph database is the creation of an itinerary
between two cities connected by flights. Direct flights are always preferable, but if
there is no one, most people are comfortable with some flights changes.

In a graph terminology, an itinerary, which includes a start node, intermediate
nodes connected by relationships and an end node is called path.

The query to find a flight path is a mild extension of the previous query:

MATCH path = (source:City {name: 'Valencia'}) -
 [:HAS_FLIGHT|FLYING_TO*0..3]
 -> (destination:City {name: 'Wien'})
RETURN path

The flight node has been omitted and has been specified a pattern of
relationships to match. The pipe symbol (|), which separate the relationship types, is
used to specify multiple relationships that might be matched by the query.
The asterisk (*) and the range (0..3) specify the maximum hop numbers that the
query should be traversing. Paths with more hops will be excluded from the results.

The query result is a set of nodes which formed paths from the source node to
the destination, but, usually, travellers need visual information to understand which
option could be better for them.

 Italo Lombardi 101

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Two Cypher clauses could be used in combination with the "WITH" clause, to
extract information from the result paths:

● FILTER: used to separate and group similar items, like nodes with the same
label;

● EXTRACT: extracts elements, path by path, from a collection created with
the previous clause, to display them to the user.

MATCH path = (source:City {name: 'Valencia'})
 - [:HAS_FLIGHT|FLYING_TO*0..6]

 -> (destination:City {name: 'Wien'})

WITH

FILTER (f in nodes(path)
 WHERE "Flight" in labels(f)) AS flights,
FILTER (city in nodes(path)
 WHERE "City" IN labels(city)) AS cities
RETURN

EXTRACT (city IN cities | city.name) AS CitiesInThePath,
EXTRACT (flight IN flights | flight.code) AS FlightCodes,
EXTRACT (flight IN flights | flight.carrier)
 AS FlightCarriers

If considering only a few flights between our cities, a possible query result
could be (Figure 7.2.4):

Figure 7.2.4: Different paths between two cities

The result shows a first possible itinerary from Valencia to Wien, which goes
to Napoles with the flight AAAAA, and then to Wien with the flight CCCCC, both
with different carriers.

Other properties could be shown putting other EXTRACT clauses.

In conclusion, the creation of a flight and cities graph database is manageable,
and performances are incredibly high compared to the relational database systems
where complex join operations must be necessary to obtain the same results.

 Italo Lombardi 102

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter VIII

8) Inside Neo4j

8.1) Index-free adjacency

Neo4j is an open source graph database with native graph storage. Its engine
utilises index-free adjacency where each node maintains direct references to its
adjacent nodes. This technique, avoiding the use of global indexes, is much cheaper
and reduces query times because they are independent of the total size of the graph.

If we compare a non-native graph database with a native, depending on the
implementation, index lookups could have a logarithmic execution time (using the
Big O notation is O(log n) where n is the number of nodes in the graph), versus 134

the constant time (O(1)) for an index-free database.
In this case, to traverse m nodes, the indexes approach has an O(m log n) cost,
compared with the O(m) of the native storage.

Figure 8.1 represents two graphs, the first in a non-native approach, which
uses indexing to traverse nodes, and the other with index-free adjacency:

Figure 8.1: A non-native graph

vs. index-free adjacency graph processing engine

134 Bachmann, Paul; Analytic Number Theory. (1894)

 Italo Lombardi 103

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Considering the Figure 8.1, to find Italo's friends, the index lookup costs

O(log n), that would seem good for small values of n. However, reversing the

direction of the traversal, asking who is friends with Italo, we have to perform

multiple index lookups for every potential friend, and this implies an exponential

increase in the cost (O(m log n)).

In a graph database with native graph storage, relationships can be traversed

with the same cost in either direction. The cost to find Italo's friends is O(1) for each

friend, and the same cost is for the other question, following all the incoming

relationships to the node Italo.

In conclusion, index lookups can work for small graphs, but index-free

adjacency ensures high-performance independently of the graph size.

8.2) High-level Neo4j architecture

Figure 8.2.1: Neo4j architecture

The figure above (Figure 8.2.1) presents the high-level architecture of Neo4j,

where each piece fits together to offer one of the most reliable graph databases at the

moment.

Without entering in low-level details, this work will analyse the structure with

a bottom-up strategy, from the files on disk to the programmatic APIs. [1][2]

 Italo Lombardi 104

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

8.2.1) Disks

Physical disks are used to store the graph data. Several are the questions about
storage, concerning performance and space.

In general, making use of disks that provide lower seek times, like Solid-State
Drives, is better than traditional spinning disks . 135

Concerning the amount of space required, it depends on how much data will be
stored in the database. All Neo4j data is placed under a single directory , and the 136

main store files have fixed record sizes, which can help during the estimation of the
required space.

Neo Technology, Inc. provides an online hardware sizing calculator useful 137

to identify the minimum hardware configuration required to run the system.

This calculator (Figure 8.2.2), in its estimation, provides information about
disk storage capacity, RAM and clustering setup recommendations.

Figure 8.2.2: An example estimation using the Hardware Sizing Calculator

135 https://en.wikipedia.org/wiki/Hard_disk_drive
136 By default “data/graph.db/” in a server-based setup
137 https://neo4j.com/hardware-sizing/

 Italo Lombardi 105

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

8.2.2) Store files

The necessary files for the graph structure in Neo4j are called store files. [1]

These store files are divided by record type, in consequence, there are separate
files for every element like nodes, relationships and so on.

The layout of each file has been designed to optimize performance and storage.
Files are all located under the main directory data/graph.db/ and are prefixed by the
word neostore.

The main store files used by Neo4j from the 2.1 version are (Figure 8.2.3):

Figure 8.2.3: Primary store files

The uniform record size has been defined to enable fast lookups and traversals,
because, lookups on IDs do not require any searching through the store file itself.
Given an ID, the starting point for where the data is located can be directly computed
because there is a fixed relation between the ID and the location within the store file.

For example, we know that the node with ID 1 will be the first record in the
corresponding file. If we are looking for the node with ID 100, this data will start
from the byte 15,000 [(ID) 100 * 15 (bytes for each node record)]. This operation is
calculated in a short constant time O(1) increasing query performance incredibly.

8.2.2.1) Node store file

The node store file (neostore.nodestore.db) stores node records. [1]
In the Figure 8.2.4 is represented a node record and the meaning of its bytes.

Figure 8.2.4: A node record

 Italo Lombardi 106

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The first byte is the inUse flag and informs the database if the record is being
used at the moment or it can be reclaimed for a new node.

From the second byte to the fifth included, is represented the ID of the first
relationship connected to the node (nextRelID), and from the sixth to the ninth the ID
of the first property for the node (nextPropID).

The following five bytes (labels) point to the label store for this node, and the
final byte (extra) is reserved for flags to identify densely connected nodes (aka
super-nodes). 138 139 140

8.2.2.2) Relationship store file

The relationship store file (neostore.relationshipstore.db) stores relationship
records (Figure 8.2.5). [1]

Figure 7.2.5: A relationship record

The first byte is the inUse flag and informs the database if the record is being
used at the moment or it can be reclaimed for a new relationship.

firstNode and secondNode are the IDs of the start and end nodes of the
relationship. In the record are presented both nodes because a relationship always
belongs to both.

relationshipType is a pointer to the relationship type stored in the
corresponding file.

The following four groups of four bytes are pointers for the previous and next
relationship records for both the start and end nodes. The presence of these lists
enables us to rapidly iterate through them in either direction, inserting and deleting
relationships efficiently.

From the twenty-ninth to the thirty-third bytes, nextPropID references the ID
of the first property for the relationship.

The last byte (firstInChainMarker) is a flag indicating if the current record is
the first of a relationship chain.

138 https://en.wikipedia.org/wiki/Dense_graph
139 https://opencredo.com/neo4j-super-nodes-and-indexed-relationships-part-i/
140 https://neo4j.com/blog/the-neo4j-2-1-0-milestone-1-release-import-and-dense-nodes/

 Italo Lombardi 107

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

8.2.2.3) Property store file

The property store file (neostore.propertystore.db) stores property records
where are located the users’ data in key-value pairs. [1][9]

Property can be attached to both nodes and relationships.

Figure 8.2.6: A property record

In the previous version of Neo4j , the property record was different from 141

now because it had only 8 bytes for a property value. In the newer version, the record
has been optimised to emulate a container, to incorporate many properties of variable
lengths (Figure 8.2.6). The inUse flag has been removed to optimize the payload.

The first byte has four high bits of the previous pointer and four high bits of the
next pointer.

From the second byte to the fifth included, there is a pointer to the previous
property record and from the sixth to the ninth the ID of the next.

There are four blocks of 8 bytes in the payload. Each of them is used in a
different way depending on the data type stored in the property. The maximum
number of properties which can be stored in a record is four because each property
occupies between one and four property blocks.

If considering a block of 8 bytes, the type and index of the property are always
necessary and occupy the first 3 bytes and a half of the fourth byte (1 byte + 1 byte +
1 byte + 4 bits).

The pointer to the property index file (neostore.propertystore.db.index) is used
to store the property name and consequently, is always required.

Neo4j optimise automatically the property names allowing all properties with
the same name to share a single record, reducing space wastage and I/O operations.

141 Before the version 2

 Italo Lombardi 108

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

For each property value, the record contains either a pointer to a dynamic store
record or an inlined value:

● The inlined value of the property is dependent on the data type being stored:
○ If the value is a JVM primitive that can be stored in 4 bytes, the other

4 bits of the fourth byte are skipped, and the property is stored into the
remainder bytes.

○ If the value is an array or a long string using DynamicStore, all the 36
free bits in the block are used to store the property value.

○ If the value is a double or a long, the remaining 36 bits are skipped,
and the next block is used to store the value. This option can cause
space wastage, but it is better than the old manner to store properties,
and it is rare.

● There are two dynamic stores used to store large property values: a dynamic
string store and a dynamic array store (neostore.propertystore.db.strings and
neostore.propertystore.db.arrays). For very wide strings or arrays, it is
possible to use more than one dynamic record.

8.2.2.4) Physical store and traversal

Considering the following graph (Figure 8.2.7), on this picture is represented
how Neo4j truly stores this graph on disk:

Figure 8.2.7: How the graph is physically stored

Each of the two node records has pointers to their first property and their first
relationship in a relationship chain. Consequently, is easy to read all properties,
following the singly linked list structure pointed in the record.

 Italo Lombardi 109

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

To find a relationship for a node, following the pointer for its first relationship,
we can obtain all related relationships in a doubly linked list for that particular node
and that allows the searching of the needed element.

The traversal power is its speed. To traverse a relationship from one node to
another it is only necessary several ID computations:

1. From a node record, the database has to locate the first record in the
relationship chain by computing its offset into the relationship store. This
operation is simple because it is only the ID multiplied by 34, the size in
bytes of a relationship record.

2. From the relationship record, to obtain the second node, the system has to get
the ID and then multiplied again, but, this time, by 15, to acquire the correct
node record in the store.

Another significant help offered by the fixed record size is the possibility to

estimate the amount of space required on disk with more precision, knowing the
number of the required elements.

An optimized storage layout is helpful to increase performances, but hardware
considerations still have a significant impact on them. Neo4j uses in-memory
caching to provide low-latency access to the graph, loading portions of the store files
into the cache memory.

8.2.3) Neo4j Caches

The using of fast disks and optimized storage layout increases performance, but
a latency penalty always happens if we are processing data from disks. This penalty
can be reduced using cache memories which decrease the number of I/O operations
on disk.

Recalling the previous section regarding cache , Neo4j offers two different 142

caching systems: a file buffer cache (sometimes called filesystem cache) and an
object cache.

8.2.3.1) Filesystem cache

The filesystem cache is an area of free RAM not allocated to any process that
can be used to increase performance.

142 Section 3.1.9

 Italo Lombardi 110

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

When an element is required, the system checks the filesystem cache to see if it
has already been loaded there. If not, the related store file is read from disk into this
memory area. The file is stored in the same manner which is on disk, with a 1:1
correspondence. Every future request for the same element can be served directly
from the cache, eliminating physical disk I/O. Every future change to the data is also
written to the cache rather than the disk.

Every decision about the cache, including the flush of changes to disk, is
entrusted to the operating system.

Neo4j also ensures that separate file buffer caches are maintained for each store
file in the filesystem cache. This allows the possibility to configure how much space
should be assigned to each file, independently from the others. With a default
configuration, Neo4j will try to configure the quantity of RAM associated with each
file store the best as it can.

8.2.3.2) Object cache

The object cache is an area within the JVM heap where Neo4j, a JVM-based 143

application, stores nodes and relationships optimised for fast traversals and quick
retrievals.

Rather than only interact with raw files, Neo4j makes use of Java objects to
store nodes and relationships. Combining the object cache and the Java objects for
nodes and relationships, it is possible another performance boost which decreases
enormously execution times.

If speaking of the object cache, there is a necessary clarification to be made. In
contrast to the RAM sizes, larger heap sizes can cause problems for a few JVMs.

Java offers the automatic allocation and deallocation of memory for its objects,
making use of the garbage collector to clean old ones. Large heap sizes can result in
long garbage collector pauses and thrashing which decrease performance
dramatically. In these cases, the JVM ends spending more time performing
maintenance activities to free objects than the time to perform useful work, causing
worsening of waiting times.

Choosing the correct heap size is always tricky, but tests can be useful to
identify a good value in correlation to the graph size.

Below an image regarding the use of RAM for caching (Figure 8.2.8).

143 https://www.yourkit.com/docs/kb/sizes.jsp

 Italo Lombardi 111

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 8.2.8: Use of RAM for caching

8.2.4) Transaction logs

As specified before, data changes are executed in the cache memory, but
sometimes, system failures can cause problematic memory loss.

Neo4j offers a full ACID compliance which ensures that all committed
transactions will never be lost. It uses a separate and durable transaction log where
every change is flushed to disk upon every commit. This mechanism is called
write-ahead log (WAL) and provides atomicity and durability of the ACID 144

properties.

Even if the committed transaction has been executed only in the cache
memory, the transaction log is up-to-date on disk. Consequently, it can be used to

144 https://www.youtube.com/watch?v=dEbw211njcc

 Italo Lombardi 112

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

recover and restore the system after a failure, recreating all operations until the last
committed operation.

All transaction log files can be found in the main Neo4j directory, and they
follow the naming format nioneo_logical.log.*.

The transaction log is also useful for the high availability (HA) functionality
allowing Neo4j to run in a clustered setup.

8.2.5) Neo4j High Availability

Allowed only in the Enterprise Edition, Neo4j offers a High Availability
component that provides the capability to run a graph database in a clustered setup,
allowing the distribution of data across multiple machines.

All this topic was already covered in chapter IV, in the section 4.1.3, where are
presented all the relevant information.

8.2.6) Programmatic APIs

At the top of the Neo4j architecture, there are the three primary APIs used to
access and manipulate data. Each of these APIs can be used both individually or
together depending on what operation is required. [2]

Excluding Cypher which has been covered previously in chapter V, the other
two APIs are:

● Core API: it is an imperative Java API that can be used to access and
manage all the graph.
The readings are lazily evaluated to improve performance, for this reason, 145

the relationships are traversed only when the next node is required.
For writes, are provided transaction management capabilities to ensure the
ACID properties.
The following portion of imperative code is checking every friend of a
defined person, to find who has a dog. Friends are connected by the
relationship IS_FRIEND_OF, and every person can have several HAS_A
relationships to indicate possession of an object or animal.

145 https://en.wikipedia.org/wiki/Lazy_evaluation

 Italo Lombardi 113

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

[...]

Iterable<Relationship> relationships =
 me.getRelationships (Direction.INCOMING, IS_FRIEND_OF):
for(Relationship rel : relationships)
{

 Node companionNode = rel.getStartNode();
 if (companionNode.hasRelationship (
 Direction.OUTGOING, HAS_A))

 {

 Relationship singleRelationship =

 companionNode.getSingleRelationship (
 HAS_A, Direction.OUTGOING);
 Node endNode = singleRelationship.getEndNode();
 if(endNode.equals (dog))
 {

 //Do something because the node has a dog
 }

 }

}

[...]

● Traversal API: The Traversal Framework is a declarative Java API which
enables the user to specify constraints that limit the visit of the graph during
the traversal.
With these constraints, it is possible to specify which relationship types
follow, the direction and which type of traversal we want to perform (for
example breadth-first or depth-first covered in the next section). 146 147

In the following portion of code, we combine the Traversal API and the Core
API. The first is used to declare which relationship we want to follow and in
which direction, with a breadth-first strategy. The second is used to identify,
given the path to the current node, if further hops through the graph are
necessary or not.

Traversal.description()
 .relationships (relationships.IS_FRIEND_OF,
 Direction.INCOMING)

 .breadthFirst()
 .evaluator (new Evaluator()

146 https://www.youtube.com/watch?v=s-CYnVz-uh4
147 https://www.youtube.com/watch?v=AfSk24UTFS8

 Italo Lombardi 114

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

 {

 public Evaluation evaluate (Path path)
 {

 if (path.endNode().hasRelationship(
 relationships.HAS_A))
 {

 return Evaluation.INCLUDE_AND_CONTINUE;
 }

 else

 {

 return Evaluation.EXCLUDE_AND_CONTINUE;
 }

 }

 });

In conclusion, if performance is the most relevant requirement, using the Core
API provides a fast and flexible control over the interaction with the graph, but it
requires the explicit knowledge of how the graph data is laid to interact with it.

The Traversal API provides more abstraction that the Core API and it is useful
to create specific functions like the "depth-first search to a specific depth". Due to its
abstraction, it might not perform as optimally as the Core API.

Cypher is the most friendly because it is easy to use and understand, but at the
moment performances cannot be compared with those of the other two APIs. Some
structural changes to the graph can cause problems with the other two APIs, but
Cypher, for its abstraction, is most tolerant.

The future tendency is to improve Cypher performances and offered functions,
for this reason, is considered the future of Neo4j.

8.3) Traversal ordering

Although traversals offer fast walking through the graph, efficient queries are
essential to improve the performance successfully. As mentioned before, every time
a traverser visits a node, it decides which relationship has to be followed to visit the
next node. Selecting an optimal path through the graph improves performance and
reduce memory waste. [2]

 Italo Lombardi 115

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

In graph theory, there are two different algorithms which can be used to
traverse the graph: depth-first and breadth-first.

For both algorithms will be used the same graph which represents a tree
(Figure 8.3.1), a particular graph where there are no cycles, and every two nodes are
connected via a single path.

Figure 7.3.1: Ordered graph with a typical tree structure

8.3.1) Depth-first

During the traversal, this algorithm always chooses the first child of the
considered node, that has not been visited before. If all descendant have already been
visited, the algorithm goes back to the first node that has a not visited child.

Using the graph in the example, a walking using depth-first ordering will start
from the node a, then to its first child b and then again to its first child e. In this
example e has no child, then the algorithm goes back to the node b to visit the other
child f and then, after that, it goes back again to continue the walking through the
node c and so on.

Using the same rules, the path generated by this algorithm is:
 a → b → e → f → c → g → h → d → i

which hops all the relationships in this order (Figure 7.3.2):
 R1, R2, R3, R4, R5, R6, R7, R8.

By using this algorithm, the nodes in the left part of the graph are visited

much sooner than the other nodes in the right part (Figure 8.3.2).

 Italo Lombardi 116

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 8.3.2: Walking the graph using the depth-first algorithm

8.3.2) Breadth-first

During the traversal, instead of visiting nodes more distant from the starting
point firstly, the algorithm tries to go as wide in the graph as possible, for every level
of depth. Particularly, the traversal first visits all siblings (nodes which have the same
distance from the root node as the current node) and then it moves onto their
children.

Using the graph in the example, if selecting the node a as starting point, the
traversal will visit first its descendant, the node b, then the node c and finally the
node d. In this case, there are no other siblings. Consequently, the algorithm goes
back to the node b, visiting all its children, then goes back to the node c doing the
same, repeating this procedure until all the graph has been visited.

By using this algorithm, the path generated is:
a → b → c → d → e → f → g → h → i

 which hops all the relationships in this order (Figure 8.3.3):

 R1, R2, R3, R4, R5, R6, R7, R8.

In breadth-first traversal, the nodes closer to the root are visited earlier, leaving
nodes further away from the root for later (Figure 8.3.3).

 Italo Lombardi 117

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 8.3.3: Walking the graph using the breadth-first algorithm

8.3.3) A comparison between the two algorithms

The traversal speed is directly proportional to the number of visited nodes
during its walk on the graph, consequently, choosing the adequate algorithm is
essential to improve performance.

The fundamental characteristics of the two algorithms are:

● depth-first traversal increases search performance if the solution is in the left
part of the graph.

● breadth-first traversal is faster when the solution is closer to the starting point.

Knowing the location of the needed node is crucial to choose the best search
algorithm, but, usually, the location is unknown, and that can cause problems during
the traversal.

The larger is the graph, and bigger is the impact on the walking.

The next comparison, using a large graph, will illustrate the difference between
the two algorithms, depending on the node location.

In the considered graph, each node has three child nodes up to depth level 12;
therefore, there are 797,161 nodes, connected by 797,160 relationships.

 Italo Lombardi 118

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

In total, eight tests were performed, two for each chosen depth (3, 6, 9, 12), the
first with the target node location on the left side of the graph, the other on the right
side (Figure 8.3.4).

Figure 8.3.4: Traversal performance depending both on the node location

and the depth

In conclusion, when the result is close to the starting node, breadth-first
ordering is usually better than depth-first, but away from the starting node, depth-first
can be extremely efficient, depending on the target node location.

In the worst-case scenario, to find the target, the entire graph needs to be
traversed. However, due to the larger required memory of breadth-first traversal, the
other algorithm is better.

In these cases, in addition to performance, memory waste is another relevant
aspect that has to be evaluated:

● If using depth-first ordering, when the algorithm visits all nodes from the root
to the last child in a path, it can go back to other nodes which have not visited
children and forget about that visited branch of the graph. That causes less
waste of memory.

 Italo Lombardi 119

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● When using breadth-first ordering, the algorithm has to remember all the
visited nodes and which descendants are not visited yet, causing an increase
in the memory requirement.

In reality, the choosing of the algorithm is always complicated and depends
both on the graph size and on the position of the target nodes, but usually, the
breadth-first algorithm causes too memory waste, to be considered practical.

8.3.4) Bidirectional traversals

In the first versions of Neo4j, the traversals could have only one starting point,
but from the version 1.8, the limitation changed, introducing the concept of
bidirectional traversals. [2]

If considering the typical pathfinding problem , where the system is looking 148

for a path between two nodes, this concept could increase performance significantly.

In the figure below (Figure 8.3.5) is illustrated a graph where nodes,
representing people, are connected by relationships.

In order to find a path between the start and end node, the system could start its
traversal from the first node, examining all its connections and possibly meet the end
node.

Figure 8.3.5: An example graph for the pathfinding problem

With bidirectional traversals, the system could start two traversals, from the
start and end node, looking for any common meeting node, called collision node.

These kinds of traversals are possible because the direction of the relationship
is not relevant during the execution because it can be hopped from both sides (Figure
8.3.6).

148 Other information in section 4.1.5

 Italo Lombardi 120

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 8.3.6: Bidirectional traversal in a pathfinding problem

In these traversals are used several components which keep information of
every visited node, and if a collision occurs, which is the moment when both
traversals realised that have visited the same node (even in different moments), the
system can directly assert that there is a path between the two nodes.

This technique improves performance because it is necessary only one collision
point, to verify the existence of a path.

The single traversal technique, instead, needs to find precisely the end node,
starting from the first node, and, in a vast and dense graph, this can cause the
examination of the entire database until it finds it.

By using the Traversal API, to find paths between two users connected by the
relationship IS_FRIEND_OF, the code to execute a bidirectional traversal is:

BidirectionalTraversalDescription description =
 Traversal.bidirectionalTraversal()
 .startSide (

 Traversal.description().relationships(IS_FRIEND_OF)
 .uniqueness(Uniqueness.NODE_PATH)

)

 .endSide(

 Traversal.description().relationships(IS_FRIEND_OF)
 .uniqueness(Uniqueness.NODE_PATH)

)

 .collisionEvaluator (new Evaluator() {
 public Evaluation evaluate (Path path) {
 return Evaluation.INCLUDE_AND_CONTINUE;
 }

 })

 .sideSelector(SideSelectorPolicies.ALTERNATING, 100);

 Italo Lombardi 121

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Traverser traverser = description.traverse(startNode, endNode);
Iterator<Path> iterator = traverser.iterator();
while(iterator.hasNext()) {
 //Shows the path
 System.out.println(iterator.next());
}

The code will show all the paths between the start and end node, avoiding
duplicate elements, performing a bidirectional traversal.

8.4) Design constraints in Neo4j

Errors and limitations are typical in human nature, and even Neo4j suffers from
certain constraints regarding the size of data. [10]

The limitation concerns the size of the address space for all the primary keys
used to lookup elements . 149

Each element has a different address space size which limits the maximum
number of storable elements:

● Nodes - maximum 235 elements, no more than 34 billion;
● Relationships - maximum 235 elements, no more than 34 billion;
● Relationship types - maximum 215 elements, no more than 32,000;
● Properties - from 236 to 274 elements, according to the type of the property,

which is no more than 68 billion.

Although those numbers are high, some graphs can reach that size and cause
system failures. In these cases, identify and convert relationships into properties can
alleviate those problems, but usually, a full database refactoring is essential.

Frequently, the problems are caused when the graph contains large domains
together. Modeling each of these domains in a separate graph can solve those
problems. An example could be a company graph which contains information about
employees and sales. Although each information is related to the company, they
represent different domains, and for this reason, they can be modelled in two
different graphs.

149 https://neo4j.com/blog/neo4j-3-0-massive-scale-developer-productivity/

 Italo Lombardi 122

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter IX

9) Installation & Configuration

This chapter has been written to guide the reader during the Neo4j installation.

To run a graph database properly is required a minimum hardware configuration

calculable through the online calculator tool, covered in section 8.2.1.

9.1) Installing Neo4j Desktop on Windows

In order to install Neo4j on the latest version of Windows, the steps are:

1. Download the latest release of Neo4j Desktop and execute it (Figure 9.1.1). 150

Figure 9.1.1: Download Neo4j

150 https://neo4j.com/download/

 Italo Lombardi 123

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

2. During the installation is required a Neo4j free account. The login is possible

with the all common social networks (Figure 9.1.2).

Figure 9.1.2: Login or Sign Up Neo4j Desktop

3. The installation will download and install the latest available version of

Oracle Java automatically (Figure 9.1.3). 151 152

Figure 9.1.3: Neo4j installation

4. As soon as the installation process is finished, Neo4j Desktop (Figure 9.1.4)

will be ready to manage our graphs. The installation of other version is

similar to this.

151 https://www.oracle.com/java/index.html
152 http://www.oracle.com/technetwork/java/javase/downloads/index.html

 Italo Lombardi 124

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 9.1.4: Neo4j Desktop Edition

For every problem with the JVM, a manual installation can fix everything:

1. Download and install the latest version available (32 bit or 64 bit upon the

platform) of Oracle Java or Open JDK (Figure 9.1.5). 153

Figure 9.1.5: Manual Oracle Java installation

2. Check Environment Variables if the JAVA_HOME variable is set (F. 9.1.6)

Figure 9.1.6: Environmental Variables [Windows]

153 http://openjdk.java.net/

 Italo Lombardi 125

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.2) Installing Neo4j on Linux/Unix

In the previous section, we have installed the Neo4j on Windows,
consequently, now we install it on the operating system Ubuntu . 154

All the information about the installation of Neo4j, even on other operating
systems, can be found on the official manual . 155

Neo4j requires the Java runtime which is not included in a clean Ubuntu
version. The installation is very simple and almost automatic because the needed
code is only:

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

Another way to install Java is:

sudo apt-get install
 default-jre

or sudo apt-get install
 default-jdk

The first command will install the Java Runtime Environment (JRE), the
other the Java Development Kit (JDK), which is usually needed to compile Java
applications . 156

On Linux/Unix, there are two different ways to install Neo4j. The first and
simple way allows the installation of both editions, the other only the Enterprise.

The easier and almost semi-automatic method is:

1. First, is required a new Repository:

wget -O - https://debian.neo4j.org/neotechnology.gpg.key |
 sudo apt-key add - echo 'deb http://debian.neo4j.org/repo
 stable/' | sudo tee -a /etc/apt/sources.list.d/neo4j.list
sudo apt-get update

2. Later, Neo4j can be installed with these commands where is specified the
edition and the version required:

sudo apt-get install neo4j=3.x or

154 https://www.ubuntu.com/ version 16.04 LTS
155 http://neo4j.com/docs/operations-manual/current/installation/
156 https://www.javatpoint.com/difference-between-jdk-jre-and-jvm

 Italo Lombardi 126

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

sudo apt-get install neo4j-enterprise=3.x

Make sure to use always the latest and stable version.

The other way to install the Enterprise edition requires more effort:

1. The download needs a Business Subscription which allows exploiting the 157

full potential of Neo4j. As specified before , each test showed on this 158

dissertation has been executed on that version with an Educational License
obtained for free.
It is possible to require a 30-day trial licence to try all its potential (F. 9.2.1).

Figure 9.2.1: 30-day Trial Licence

2. Once the installation (.tar) has been downloaded, open the terminal/shell . 159

3. Extract the contents of the archive, using:

tar -xf neo4j-enterprise-<VERSION>-unix.tar.gz

4. The top-level directory is referred with the NEO4J_HOME variable.
Run Neo4j using the commands below to open the console (Figure 8.2.2) or
to start only the server process in background.:

$NEO4J_HOME/bin/neo4j console or $NEO4J_HOME/bin/neo4j

157 https://neo4j.com/business-subscription/
158 Section 3.1.14
159 https://distrowatch.com/table.php?distribution=linuxconsole

 Italo Lombardi 127

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Figure 9.2.2: Neo4j Console starting

5. Visit with a web browser http://localhost:7474 or http://127.0.0.1:7474 and
connect using the username 'neo4j' with default password 'neo4j' (Figure
9.2.3).
During the first execution, the system will ask for a new password.
Neo4j is now ready to store data.

Figure 9.2.3: Neo4j HTTP Console

In every moment, to show the current status of the Neo4j Server is possible to
execute the command:

$NEO4J_HOME/bin/neo4j status

 Italo Lombardi 128

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.3) Neo4j with Docker

Docker (Figure 9.3.1) is a software 160

technology able to automate the
deployment of applications within
software containers.

It is a shipping container system for 161

software code that provides an additional
layer of abstraction and automation at the
level of operating system virtualization on
Linux.

In the real world, containers protect
their content and allow to carry, all
together, what we need to transport.
Through Docker, the container maintains
source code, database and other relevant
elements together, to offer a service on
every platform it runs.

Figure 9.3.1: Neo4j LOVES Docker

There are several guides on the Internet , or the official manual , to install 162 163

Docker, with all the needed information. Docker is available for MAC, Windows PC,
the most famous Linux distributions and even for Raspberry PI . 164

Docker needs a specific image to run an application or an operating system . 165

Images can be downloaded from several stores, like the Hub Dock Store , where is 166

presented the official Neo4j image , created by Neo Technology, Inc. 167 168

After the installation of Docker, the needed command to install Neo4j is: 169

docker pull neo4j

The Docker system will automatically download every needed file.

160 https://www.docker.com/
161 https://en.wikipedia.org/wiki/Containerization
162 https://goo.gl/ZVCyH3
163 https://docs.docker.com/engine/installation/
164 https://blog.hypriot.com/getting-started-with-docker-on-your-arm-device/
165 https://docs.docker.com/get-started/
166 https://store.docker.com/
167 https://hub.docker.com/_/neo4j/
168 https://neo4j.com/developer/docker/
169 Sometimes the command “sudo” is required to obtain root privileges.

 Italo Lombardi 129

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

After pulling the image in Docker, it will be ready to run. Neo4j requires two
folders to store its data:

● /data to allow the database to be persisted inside or outside its container;
● /logs to allow access to Neo4j log files.

The command 153 to create these folders and to run the image is:

docker run \
 --publish=7474:7474 --publish=7687:7687 \

 --volume=$HOME/neo4j/data:/data \

 --volume=$HOME/neo4j/logs:/logs \

 neo4j

Once Neo4j is started (Figure 9.3.2), pointing the browser at
http://localhost:7474 will show the same interface as before.

The Neo4j image is now ready to be moved and run on every required
platform, without causing problems and data losses.

Figure 9.3.2: The Neo4j execution within Docker

9.4) How to interact with Neo4j

9.4.1) Neo4j REST API

After starting the Neo4j server, the interaction with the database, through the
Neo4j REST API, is possible both by the HTTP console or by applications created
ad-hoc for our purposes. [3][7][11]

9.4.1.1) REST API by the HTTP API console

By using the HTTP API console in the Neo4j Browser, every REST call has to
be executed putting a colon (:) just before the command. All commands consist of a
keyword and a URL which indicate the resource we need to receive or create.

 Italo Lombardi 130

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The traditional operations which can be performed in Neo4j using the REST API are:

● Create an empty node: This command creates an empty node, with no
properties, except for a reference ID (0 in Figure 9.4.1) to itself.

 :POST http://localhost:7474/db/data/node

Figure 9.4.1: The output of the create empty node command

● Create a node with some properties: Like before, the command creates a
new node, but by passing an additional JSON object , it will set all the 170

properties inside.

:POST http://localhost:7474/db/data/node
 {"name":"Italo", "{PROP2}":"{VAL2}"}

● Create a relationship: The command creates a relationship with a specific
type between the two given nodes.

:POST

 http://localhost:7474/db/data/node/{ID1}/relationships
 {"to" : "http://localhost:7474/db/data/node/{ID2}",
 "type" : "{RELATIONSHIP}"}

170 https://www.w3schools.com/js/js_json_objects.asp

 Italo Lombardi 131

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Create a relationship with some properties:

:POST

 http://localhost:7474/db/data/node/{ID1}/relationships
 {"to" : "http://localhost:7474/db/data/node/{ID2}",
 "type" : "{RELATIONSHIP}", "data":{"{PROP1}":"{VAL1}",
 "{PROP2}":"{VAL2}"}}

● Read a node/relationship: Once we have the element ID, to read all its
information the command is:

:GET http://localhost:7474/db/data/node/{ID}

:GET http://localhost:7474/db/data/relationship/{ID}

● Read only the property of a node/relationship:

:GET http://localhost:7474/db/data/node/{ID}/properties

:GET http://localhost:7474/db/data/relationship/
 {ID}/properties

● Add a new property to a node/relationship:

:PUT http://localhost:7474/db/data/node/
 {ID}/properties/{PROP} {VALUE}

:PUT http://localhost:7474/db/data/relationship/
 {ID}/properties/{PROP} {VALUE}

● Delete a relationship: Like nodes, every relationship has an ID, and it can be
used to delete the relationship or change its properties.

:DELETE http://localhost:7474/db/data/relationship/{ID}

 Italo Lombardi 132

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● Delete a node: Nodes without relationships can be deleted using the
following command

:DELETE http://localhost:7474/db/data/node/{ID}

However, when a node has relationships, it cannot be deleted directly.
First, we have to remove all its relationships and then we can delete it.

● Delete a specific property:

:DELETE http://localhost:7474/db/data/node/
 {ID}/properties/{PROPERTY}

:DELETE http://localhost:7474/db/data/relationship/
 {ID}/properties/{PROPERTY}

● Get all the relationship types:

:GET http://localhost:7474/db/data/relationship/types

● See the relationships on a node:

All :GET http://localhost:7474/db/data/node/
 {ID}/relationships/all

Only the
incoming

:GET http://localhost:7474/db/data/node/
 {ID}/relationships/in

Only the
outgoing

:GET http://localhost:7474/db/data/node/
 {ID}//relationships/out

Other commands with examples can be found on the official manual regarding
the Neo4j REST API . 171

171 https://neo4j.com/docs/rest-docs/current/

 Italo Lombardi 133

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

 9.4.1.2) REST API by Java

Neo4j offers a rich set of integration possibilities for Java, like some REST
libraries which can be used in any JVM language.

Although there are multitudes of REST clients in Java used to connect with
Neo4j, in this section will be presented a basic client that creates a node with some
properties and then displays these properties on the screen, everything through REST
APIs. As specified before, the first request is a POST, the other a GET, and both
commands make use of JSON objects to store the properties.

import org.apache.commons.io.IOUtils;
import org.apache.http.HttpResponse;
import org.json.JSONObject;
[.....] //Other imports

public class test {
 public static void main(String[] args) throws
 JSONException {

 try {
 //creating a client to execute our REST requests
 HttpClient client = HttpClientBuilder.create().build();

 //the ENDPOINT + RESOURCE to create a new node

 // username = neo4j, password = italo

 String postUrl =

 "http://neo4j:italo@localhost:7474/db/data/node";

 //creating a JSON object with properties for the node
 JSONObject jsonInput = new JSONObject();
 jsonInput.put("name", "Joanna");

 jsonInput.put("age", "27");

 StringEntity params = new
 StringEntity(jsonInput.toString());

 //Creating the request object to execute the POST
 HttpPost requestPost = new HttpPost(postUrl);
 requestPost.addHeader("content-type",
 "application/json");
 requestPost.setEntity(params);

 Italo Lombardi 134

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

 //Executing the request
 HttpResponse response = client.execute(requestPost);

 //Extracting the ID of the new node
 String json =

 IOUtils.toString(response.getEntity().getContent(),

 "UTf-8");
 JSONObject obj = new JSONObject(json);
 JSONObject obj2 = (JSONObject) obj.get("metadata");
 int IDNewNode = (int) obj2.get("id");

 //The URL of the new node
 String getUrl =

 "http://neo4j:italo@localhost:7474/db/data/node/"
 +IDNewNode;

 //Creating the request object to execute the GET
 HttpGet requestGet = new HttpGet(getUrl);

 //Executing the request
 response = client.execute(requestGet);

 //Showing the answer
 json =

 IOUtils.toString(response.getEntity().getContent(),

 "UTf-8");
 obj = new JSONObject(json);
 System.out.println("The node ID "+IDNewNode
 +" has these prop.: " + obj.get("data"));
 }

 catch (IOException ex) {
 //Exception, do something
 }

 }

}

The output of the code will change at every execution because the ID is
assigned dynamically, but it will be similar to this:

The node ID 93 has these prop.: {"name":"Joanna","age":"27"}

 Italo Lombardi 135

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.4.2) Accessing Neo4j from Python

Python , released in 1991, is a high-level programming language for 172

general-purpose programming. During the years, the developer community has
realised lots of Neo4j clients available for this language, and some of them are
officially supported at the moment . 173

One of the simplest Python clients is the Neo4jRestClient , whose syntax is 174

fully compatible with Python-embedded, created to use the Neo4j REST Server.
All the features of this client are listed in its official manual . 175

The installation is automatic but requires pip (Python Package Manager) , a 176

tool for installing and managing Python packages, and a Python Interpreter.

If they are not installed, the needed commands are:

apt-get update

sudo apt-get install python
sudo apt-get -y install python-pip

The client installation now is possible using

sudo pip install neo4jrestclient

The following source code creates a graph where are presented people and

animals, connected by several relationships, to indicate the feeling that the person
feels towards the animal.

from neo4jrestclient.client import GraphDatabase

The database connection

db = GraphDatabase("http://localhost:7474",

 username="neo4j", password="italo")

Creating nodes with the label Person

person = db.labels.create("Person")

172 https://en.wikipedia.org/wiki/Python_(programming_language)
173 https://neo4j.com/developer/python/
174 https://pypi.python.org/pypi/neo4jrestclient/
175 http://neo4j-rest-client.readthedocs.io/en/latest/
176 https://en.wikipedia.org/wiki/Pip_(package_manager)

 Italo Lombardi 136

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

p1 = db.nodes.create(name="Marta")
p2 = db.nodes.create(name="Anna") [....]
person.add(p1, p2, p3, p4)

Creating nodes with the label Animal

animal = db.labels.create("Animal")
a1 = db.nodes.create(name="Dog")
a2 = db.nodes.create(name="Lion")
a3 = db.nodes.create(name="Frog")
animal.add(a1, a2, a3)

Creating relationships between the nodes

p1.relationships.create("likes", a1)
p2.relationships.create("likes", a2)
p4.relationships.create("is_scared_of", a3) [....]

By executing the code, the created graph will be (Figure 9.4.2):

Figure 9.4.2: A graph about people and animals

Another significant functionality offered by the client is the possibility to
embed Cypher into a Python code:

from neo4jrestclient.client import GraphDatabase
from neo4jrestclient import client

db = GraphDatabase("http://localhost:7474",
 username="neo4j", password="italo")

 Italo Lombardi 137

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

q = "MATCH (p:Person {name: 'Elvira'}) - [r] -> (a:Animal)
 RETURN p, type(r), a"

results = db.query(q, returns=(client.Node,

 str, client.Node))

for r in results:
 print("(%s)-[%s]->(%s)" %
 (r[0]["name"], r[1], r[2]["name"]))

The output of this code is:

(Elvira)-[is_scared_of]->(Frog)

(Elvira)-[dislikes]->(Dog)

9.4.2) Accessing Neo4j from JavaScript

The Neo4j JavaScript driver , officially supported by Neo4j , connects to 177 178 179

the database using the binary protocol.

NPM , the package manager for the JavaScript programming language, is 180

required to install the driver. To install them, the necessary code is:

sudo apt-get install npm
npm install neo4j-driver

The execution of our JavaScript code requires a Node.js interpreter 181

installable through:

sudo apt-get install nodejs

The following portion of code, using the Neo4j JavaScript driver, connects to
the database and creates a node with some properties. To show the correctness of the
creation, the output will be the result of the Cypher query.

177 http://neo4j.com/docs/developer-manual/current/drivers/
178 https://www.npmjs.com/package/neo4j-driver
179 https://neo4j.com/developer/javascript/
180 https://github.com/npm/npm
181 https://nodejs.org/

 Italo Lombardi 138

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

// Connecting to the database create a driver instance

const neo4j = require('neo4j-driver').v1;
const driver = neo4j.driver
 ("bolt://localhost", neo4j.auth.basic("neo4j", "italo"));

// Creating a session to run Cypher statements in

const session = driver.session();

// Defining and creating a Person

const personName = 'Joanna';
const personAge = '27';

//Executing the CYPHER statement

const resultPromise = session.run(
 'CREATE (a:Person {name: $name, age: $age}) RETURN a',
 {name: personName, age: personAge}

);

//Receiving and elaborating the result

resultPromise.then(result => {

 session.close();

 const singleRecord = result.records[0];
 const node = singleRecord.get(0);

 //Showing the result
 console.log("The node with name "+node.properties.name
 +" was created");

 driver.close();

});

The output of this code will be:

The node with name Joanna was created

 Italo Lombardi 139

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.5) Batch data imports

The creation of a database, usually, can take much time, due to the amount of
data that has to be stored. The process of batch import can help during the creation 182

of our database, allowing the data import faster than manual queries. [3][7]

Neo4j offers four different processes for importing data:

● CSV importer
● The spreadsheet (Excel) importer
● HTTP batch imports with REST API
● Java API

9.5.1) CSV importer

A CSV (Comma-separated values) file stores data in plain text, following 183

some rules:

● Every row is a data record;
● Every data record consists of one or more fields, separated by commas;
● Every data record can store numbers or strings;
● Double quotes (") are used to string quotation;
● The CSV file can have headers, but they are not required;
● The character encoding should be UTF-8 . 184

A CSV file, for its characteristics, can be useful to store data for fast reading
and to import them into the database. However, for its simplicity, there are no
controls on duplicate values.

As explained before , Cypher offers the CREATE and MERGE clauses to 185

create new data in the database. Consequently, the CSV import supports both
commands. The first clause creates new elements each time it is executed, the other,
considered a combination of MATCH and CREATE, first try to bind data, executing
a MATCH on the graph, and if it finds something, instead of creating a new element,
it uses the old one. The first clause is faster than the other, but, the second ensures the
absence of duplicates at the cost of higher execution time.

182 https://neo4j.com/blog/bulk-data-import-neo4j-3-0/
183 https://datahub.io/docs/data-packages/csv
184 https://www.w3schools.com/charsets/ref_html_utf8.asp
185 Section 5.2

 Italo Lombardi 140

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

For example, considering a CSV where are stored people and their professions,
a possible file structure could be (Figure 9.5.1):

Figure 9.5.1: Typical structure of a CSV file

The correct steps to import that CSV file into Neo4j, considering the using of
the MERGE statement, are:

1. Start the server and open a new Command Prompt , executing the 186

command:

$NEO4J_HOME/bin/neo4j-shell

This line shows the shell prompt, where many commands can be executed to
manage the database.

2. Execute the LOAD CSV command with the option "WITH HEADERS":

LOAD CSV WITH HEADERS FROM "$NEO4J_HOME/csv_file.csv"
 as csv
 MERGE (person:Person {name : csv.Name})
 ON CREATE SET person.Profession =
 split (csv.Profession, ",")
 ON CREATE SET person.Age = csv.Age;

When the CSV file has no headers, the name can be replaced putting the
column number within [], like an array (for example csv[1]).

186 https://neo4j.com/docs/operations-manual/current/tools/cypher-shell/

 Italo Lombardi 141

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.5.2) The spreadsheet (Excel) importer

Although Neo4j does not provide direct support for Microsoft Excel 187

documents, they can be used to create a script document with dynamic Cypher
queries.

Considering an Excel sheet with three columns (ID, Name and Age) (Figure
9.5.2), putting the following formula into the next free column, will generate 188

Cypher queries automatically:

= "CREATE (p:Person {id: "&A2&",
 name: '"&B2&"', age: "&C2&"});"

Figure 9.5.2: An Excel sheet

All those queries can be used to create a batch import file with the .txt extension: 189

1. Create a new text file;
2. Write the keyword BEGIN at the top of the file;
3. Copy all the cypher queries;
4. Add COMMIT to the end of the file:
5. Save the file with the import.txt name into the $NEO4J_HOME directory;
6. Stop the Neo4j server;
7. Open a console and execute the command:

cat import.txt | $NEO4J_HOME/bin/neo4j-shell
 -config conf/neo4j.properties
 -path $NEO4J_HOME/data/graph.db

8. Start the Neo4j server, and all the queries will be executed automatically.

187 https://g.co/kgs/QwrVuW
188 https://goo.gl/HMEoqJ
189 https://en.wikipedia.org/wiki/Text_file

 Italo Lombardi 142

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.5.3) HTTP batch imports with REST API

Neo4j REST architecture is designed to expose the service root to users who
know the URIs to perform various operations. A URI is composed of a relative
ENDPOINT (http://<HOST>:<PORT>/db/data) and a RESOURCE which indicate
the element what we are working on.

To perform batch operations, Neo4j REST exposes the endpoint /batch/, which
improves performance for a large number of operations.

The API expects a list of job descriptions as input, where are defined all the
required operations. All the job descriptions are executed in a single transaction, and
the rollback is supported in case of any error.

Figure 9.5.3: Array of job descriptions for Neo4j REST batch imports

Considering the example in the Figure 9.5.3, each job description has four elements:

1. method: defines the type of operation (usually GET, PUT, POST and
DELETE);

2. to: specifies the target URI where the request will be submitted;
3. body: the optional attribute for sending parameters;
4. id: defines the unique ID of each job.

In the example, the first job description adds new properties into a defined
node (with the ID 1); the second creates a new node with other properties.

9.5.4) Java API

Neo4j exposes a low-level Java API, called BatchInserter , which helps 190

during the insertion of data. There are some limitation using this API:

● Its priority is only performance, in consequence, there is no transaction
support, is not thread safe and the request method type is only POST.

190 https://goo.gl/nR9h5j

 Italo Lombardi 143

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

● The execution is allowed only in a single thread , so concurrent access to 191

the API is restricted.
● The database must be stopped before the execution, to avoid corrupted data.

The following code (Figure 9.5.4) creates two nodes and a relationship using
the Java API:

Figure 9.5.4: Java code to use the BatchInserter API

Although those processes are optimised to import an enormous amount of data
fastly, Neo4j suffers from some constraints, which prevent, for example, the
exceeding of 34 billion nodes. All these limitations have been covered in section 8.4.

191 https://en.wikipedia.org/wiki/Thread_(computing)

 Italo Lombardi 144

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

9.6) Configuring a Neo4j cluster M/S on Linux/Unix

A typical deployment of Neo4j uses a cluster Master/Slave of three machines
to provide fault tolerance and read scalability. [3]

These functionalities, offered only in the Enterprise Edition, requires some
settings to be activated, but fortunately, the latest versions of Neo4j , needs only a 192

few changing . 193

After copying the same Neo4j version on all the machines, for each of them, is
required an ID, which usually is a positive and unique integer.

Opening the configuration file $NEO4J_HOME/conf/neo4j.conf is shown the
Neo4j configuration. The options that have to be changed are:

● ha.server_id: contains the unique server ID for each Neo4j instance.
This is the only different property for every machine in the cluster.
All other properties are the same.

● ha.initial_hosts: contains a list of IP and number port of the machines
connected by the cluster.
(Example ha.initial_hosts=<Machine1>:<Port1>,<Machine2>:<Port2>)

● dbms.mode=HA : indicates that the High Availability functionality is active.
The default value for the single mode is SINGLE. There is another value
which is ARBITER, used to define which machine will take part in the master
elections if the master instance fail . 194

● dbms.connector.http.enabled: with the value TRUE enables connection to
the server remotely.

● dbms.connector.http.listen_address: usually set with the number 7474,
defines the number port where the instance will receive commands.

Once the configuration file has been changed, it is possible to start all the
Neo4j instances, and when all the machines are ready, the database will be available
to all users. After this moment, every changing on any instance will be propagated
automatically between the others.

192 Tests performed on Neo4j version 3.3.x, Enterprise Edition on a clean Ubuntu installation
193 https://neo4j.com/docs/operations-manual/current/tutorial/highly-available-cluster/
194 https://goo.gl/xWbmjw

 Italo Lombardi 145

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter X

Case study: eBay ShopBot

eBay ShopBot is a personal shopping assistant, which allows customers to 195

converse with eBay , via text, voice or photo, using Facebook Messenger . 196 197

The bot , combining AI knowledge with a natural language understanding 198 199

activity of content parsing , helps customers finding which products are suitable for 200

their requests, using Neo4j as the content delivery vehicle.

RJ Pittman (Figure 10.1), Senior

Vice President and Chief Product
Officer at eBay, explained that the 201

result of the fusion between artificial
intelligence and e-commerce has
resulted in a highly personalised
shopping assistance for everyone, called
eBay ShopBot.

Figure 10.1: RJ Pittman

Its primary goal is to remove the hard work associated with shopping, to build
a real-time recommendation engine that understands clients' requests and increases 202

its knowledge about the shoppers.

Traditional e-commerce main problem is the limited search capability.
Usually, the search engine works only with boolean and simple keyword searches,
losing all the additional context essential to determine the customer’s real and full
intent.

195 https://shopbot.ebay.com/
196 https://www.ebay.com/
197 https://www.messenger.com/
198 https://www.techopedia.com/definition/24063/internet-bot
199 https://en.wikipedia.org/wiki/Artificial_intelligence
200 https://en.ryte.com/wiki/Natural_Language_Processing
201 https://en.wikipedia.org/wiki/Chief_product_officer
202 https://neo4j.com/use-cases/real-time-recommendation-engine/

 Italo Lombardi 146

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

A Natural Language Processing (NLP), machine learning , predictive 203

modeling and a real-time storage and processing engine are the key concept to 204

achieve these requirements.

Based on a Neo4j graph database, eight million nodes connected by twenty
million relationships, the traversals are guided by simple questions, answered by the
customers, creating a new kind of commerce, called Conversational Commerce . 205

10.1) How it works

Figure 10.2: Example of a customer’s request

Figure 10.2 shows a typical customer's request, where a person is looking for a
black bag. Every request is analysed to extract the information required for the
traversal.

In that simple sentence, the NLP is looking for every relevant word essential to
identify the object of interest. By analysing the request, the extracted information is
about the type of object, colour, brand and price.

203 https://www.sas.com/en_us/insights/analytics/machine-learning.html
204 http://searchdatamanagement.techtarget.com/definition/predictive-modeling
205 https://goo.gl/gppAM9

 Italo Lombardi 147

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

All that information together with other, collected by asking questions to the
customer, are used to identify the needed object, helping the user during his shopping
(Figure 10.3).

Figure 10.3: The relevant information in the customer’s request

For every customer's answer, the engine performs a traversal on the eBay
graph, where are listed all its products (Figure 10.4).

Figure 10.4: Part of the eBay graph

The first and most important node in this request is bags, connected with other
nodes indicating the type of bag, materials, colour and so on. Every hop gets the
customer close to the required object, allowing the searching only with some
questions.

As mentioned before, the eBay ShopBot supports several types of requests.
Another significant use case is the searching using an image. The engine, using
Pattern Recognition and Machine Learning, can differentiate the object in the 206

206 Bishop, Christopher M; “Pattern Recognition and Machine Learning”, Springer (2016)

 Italo Lombardi 148

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

image and convert the request in primary information to be used during the graph
walking (Figure 10.5).

Figure 10.5: Searching products using an image

The work performed by the eBay ShopBot behind each request is not limited
to the extraction of the information in the sentence, but it also executes searching on
external sources . Considering the following request: 207

“I am going with my wife on a camping trip in Tahoe next month, need a tent.”

The needed object is a tent, but the engine can extract other information, to
show the perfect product for him (Figure 10.6).

Figure 10.6: The analysis of another sentence

207 https://goo.gl/xFNUfL

 Italo Lombardi 149

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

The request gives us information about the number of people, which can be
used to choose the size of the tent, the location (Lake Tahoe) and the period of the 208

year. From external sources, it is possible to get the altitude of the location and the
expected temperatures for the next month.

All this information together can be used to identify what tent will be suitable
for the customer, using all the real power of the eBay ShopBot.

10.2) Customers preferences and characteristics

However, its functions are not only limited to the product searching. After
every request, eBay ShopBot keeps track of every relevant information about the
customer, to use them during the next search. Considering the following request:

"I want to buy a baseball glove, for left-handed people, size 13'',
 because I have to play a match on Saturday."

The request says that the customer is looking for a baseball glove, delivered
fastly. However, at the same time, the system can store information about the fact
that he is left-handed and his hand is size 13''. All this information can be used in the
future to increase searching performance and accuracy.

Considering another request:

"I need a gift for my son's birthday on Monday.
 He is 7 years old, and he likes Dragon Ball."

The request could be used to define two people, the first is the customer, and
the other is his child. The customer is definitely a father, then his child's birthday is
an important anniversary. About the son, we can store the date of his birthday and his
preference. This information can be used the next year to send a reminder email to
the customer, with some possible gifts for his son.

In conclusion, the eBay ShopBot, running in Docker containers in the cloud, is
a powerful recommendation tool, which based its performance and stability on the
graph database technology.

All its functions are offered thanks to Neo4j, which allows the presentation of a
high-quality recommendation service, confirming it as an excellent Database
Management System for Graph solutions. [13] 209

208 https://wikitravel.org/en/Lake_Tahoe
209 https://neo4j.com/case-studies/ebay-shopbot/

 Italo Lombardi 150

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Chapter XI

Conclusion

This thesis aim has been to give an overview of Graph Database, with a
particular focus on the Neo4j technology, considered at the present times, the most
widespread to handle data in a graph form.

The research developed firstly with a functional and a critical comparative
analysis of the relational databases, which was aimed at determining the advantages,
disadvantages and characteristics that are made available by Graph Databases.

Subsequently, the work continued with a presentation of the features and
functionality of Neo4j, with the aim of providing the necessary tools to evaluate the
possible use of it as an alternative, in certain sectors, to relational or other NoSQL
solutions.

11.1) Positive aspects

The study conducted has established that Neo4j is a tremendously impressive
and promising product, fated to deepen its presence on the market in the near future.

The main features of this Graph Database Management System are:

● Full support of the ACID properties, which ensures validity in our data, even
after a fail situation

● Scalability support to maintain high availability
● Advanced cache management to improve performance
● Accessible through the REST API
● Three different APIs to store and manage data
● Extensible, thanks to server extensions
● Open source, written in Java
● Online community accessible and active.

 Italo Lombardi 151

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

11.2) Negative aspects

1) Although the Neo4j use domain is very extensive, currently, the most famous
software systems is still making use of other data storage technologies,
achieving, sometimes, insufficient results regarding performance or stability.

The reason behind this is the lack of information and promotion
regarding Graph Databases, in fact, although the case study in this
dissertation demonstrates excellent potential and future uses in other sectors,
Neo4j is merely considered useful for Social Networks only, where the high
obtained performance is not comparable to any currently existing technology.

A demonstration of the limited academic success of this system is the
scarcity of scientific articles in the most prestigious digital libraries, where
other NoSQL systems are more used, even in the wrong conditions.

2) Another weakness is the lack of a universal standard, as can be the SQL.
Every Graph Database has its APIs and its method of storing and

accessing data, causing the problematic diffusion of a stable and performing
language such as Cypher.

However, in the last two years, other graph-oriented systems are
adopting Cypher , thus demonstrating confidence in this declarative 210

language created by Neo Technology, Inc.

3) Data security is a critical issue in any software system, because, data must
reside on servers in a secure form, free from theft.

Beside considering server security, a vulnerability that could be
problematic for database administrators resides in store files being protected
by authentication only.

All store files, used to store data, can be copied and transported easily,
and regrettably Neo4j does not offer any protection regarding them.

Subsequently, they could be decrypted using brute force techniques
and powerful calculators.

Using complex passwords, could alleviate the situation, but this
remains a major problem which cannot be underestimated.

4) Neo4j does not offer any scheduling tool for backups or other operations.
Sometimes, database administrators perform planned procedures, used

to execute predefined actions. However, they must rely on external tools to
perform them.

210 SAP HANAand AgensGraph.

 Italo Lombardi 152

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

An internal Neo4j support would allow more natural management of
the scheduler, to simplify the execution of time-related actions.

5) Server extensions, used to execute Java code inside the server, are considered
a powerful means of extending the functionality of our system.

Nevertheless, at the same time, this practise is extremely dangerous
and might create problems in the data.

Improper use could result in the loss of critical data or the execution
of malicious code aimed at the theft of personal information.

Although Neo4j offers tools and guides to secure extensions , it does 211

not offer advanced controls on the code to be executed, leaving the data in the
system vulnerable. More controls and data protection tools would be likely to
improve the usability and security of the system.

6) The use of the START clause, deprecated in the latest versions of Cypher,
causes the regression to an old version of the query interpreter, producing a
loss of performance and a reduction in the functions offered.

At this time, no automatic tools offers the change of old Cypher
queries into new ones, where the MATCH clause has incorporated the
START clause.

A query converter would, therefore, be a useful system for
inexperienced or outdated users.

In order to increase performance, indexes are essential. Usually, it is
not necessary to specify which ones to use. However, to make sure which
indexes should be applied, the USING INDEX clause is the most appropriate.

Auspiciously, the Neo4j development team is constantly working on
extending new features and fixing any bug that might arise.

211 https://neo4j.com/blog/custom-security-plugins-user-defined-procedures-neo4j-enterprise/

 Italo Lombardi 153

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

Bibliography

[1] Graph Databases by Ian Robinson, Jim Webber, and Emil Eifrem (O’Reilly).

Copyright 2015 Neo Technology, Inc. 978-1-491-93089-2.

[2] Neo4j in action by Jonas Partner, Aleksa Vukotic, Nicki Watt (Manning).

Copyright 2015 Manning Publications Co. 978-1-617-29076-3

[3] Neo4j Essentials by Sumit Gupta (Packt Publishing Limited)

Copyright 2015 Packt Publishing. 978-1-78355-517-8

[4] Learning Cypher by Onofrio Panzarino (Packt Publishing Limited)

Copyright 2014 Packt Publishing. 978-1-78328-775-8

[5] Beginning Neo4j by Chris Kemper (aPress)

Copyright 2015 Chris Kemper. 978-1-4842-1228-8

[6] Learning Neo4j by Bruggen, Rik Van (Packt Publishing Limited)

Copyright 2014 Packt Publishing. 978-1-84951-716-4

[7] Neo4j Cookbook by Ankur Goel (Packt Publishing Limited)

Copyright 2015 Packt Publishing. 978-1-78328-725-3

[8] Practical Neo4j by Gregory Jordan (aPress)

Copyright 2015 aPress. 978-1-4842-0023-0

[9] Neo4j High Performance by Sonal Raj (Packt Publishing Limited)

Copyright 2014 Packt Publishing. 978-1-78355-515-4

[10] Neo4j Graph Data Modeling by Mehesh Lal (Packt Publishing Limited)

Copyright 2014 Packt Publishing. 978-1-78439-344-1

 Italo Lombardi 154

Analysis and style of Graph-Oriented Database Technology, focused on the Neo4j System

[11] Building Web Applications with Python and Neo4j by Sumit Gupta (Packt

Publishing Limited)

Copyright 2014 Packt Publishing. 978-1-78398-398-8

[12] Neo4j 2.0 - Eine Graphdatenbank für alle by Michael Hunger (entwickler.press)

Copyright 2014 entwickler.press. 978-3-8680-2128-8

[13] Knowledge Graphs Webinar - 07/11/2017 by Jeff Morris (Head of Product

Marketing - Neo Technology, Inc.)

Online Webinar

[14] Solutio problematis ad geometriam situs pertinentis by Leonhard Euler.

Presented to the St. Petersburg Academy on August 26, 1735.

[15] An Eulerian Trail through Königsberg by Wilson, R. J., Journal of Graph
Theory (1986)

[16] Graph Theory (1st ed.) by Balakrishnan, V. K. (1997-02-01). McGraw-Hill.
0-07-005489-4

[17] A Relational Model of Data for Large Shared Data Banks by Edgar Frank Codd.
IBM Research Laboratory, San Jose, California

[18] Database Systems - A Practical Approach to Design, Implementation, and
Management by Thomas M. Connolly, Carolyn E. Begg. - 5th ed. Pearson
Education. 978-0-321-52306-8

[19] Distributed Database System by Chhanda Ray, Pearson India. 978-8131727188

[20] NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence
 by Pramod J. Sadalage and Martin Fowler. 978-0-321-82662-6

[21] Basi di dati, modelli e linguaggi di interrogazione by P. Atzeni, S. Ceri, S.
Paraboschi, R. Torlone. 88-386-6292-4

[22] Fondamenti di Basi di Dati by A. Albano, G. Ghelli, R. Orsini. 88-08-07003-4

 Italo Lombardi 155

