

Doctoral Thesis

Supporting Automatic Interoperability in
Model-Driven Development Processes

Giovanni Giachetti Herrera

Advisor: Oscar Pastor López

Supporting Automatic Interoperability in Model-Driven
Development Processes

This report was prepared by

Giovanni Giachetti Herrera

Advisor

Oscar Pastor López, Universitat Politèctnica de València

Members of the Thesis Committee:

Prof. Xavier Franch, Universitat Politècnica de Catalunya

Prof. César González-Pérez, Consejo Superior de Inv. Científicas

Prof. Juan Carlos Trujillo, Universidad de Alicante

Prof. Vicente Pelechano, Universitat Politèctnica de València

Prof. Matilde Celma, Universitat Politèctnica de València

Centro de Investigación en Métodos de Producción de Software (PROS)

Universitat Politècnica de València

Camino de Vera s/n, 46022 Valencia

Spain

Tel: +34-963877007 Ext. 83530

Fax: +34-963877359

Web: www.pros.upv.es

To Beatriz, Bianca, and Caterina

 I

��������	
�����
�

Probably, I would need a document larger than this thesis to express all my
feelings to the people that a wish to thank. If I frame this acknowledgment
section in the context of this thesis, I must say that many people have
interoperated in my life to carry out this doctoral thesis by following a
Friendship-Driven Development process.

Thanks Oscar for your guidance in this academic adventure. Without your
unconditional support in both at professional and personal levels, this thesis
would never have seen the light. You have taught me the importance of enjoy my
work, and that independently of the hard or difficult of the way, with
perseverance and determination is always possible to achieve the goals proposed.

Another special person that I want to thank is Pele. Pele, your honesty and
dedication is an inspiration for current and future generations. You have
demonstrated me that the correct way is always the best one.

Manoli, Xavi, Jaelson, and Fernanda, I really appreciate all the advices and
contributions that you have made to my work. Collaborate with all of you has
been a real delight.

Of course, a special place in my heart is for those unconditional friends that
had given me their affection throughout these years. Ana, Vicky and Peter, for be
with me from the very beginning, your love and support, especially in the hard
moments, are etched in my soul. Pau, Fani, Paqui, and Carlos, I really enjoyed all
the moments that we lived together. In particular, those exciting conversations
combined with good food and drink. Nathalie, J-Lu, Paco, Sergio E., Ignacio
your great charisma and different personalities demonstrate that people with
totally opposite personalities could become in best friends.

Special mention to those friends that are physically far, but close in my heart;
Gonzalo and Daniel, I really hope that in a no longer distant future we can laugh
together again.

Tanja, Arthur, Marce, and Sergio S. Even though you have turned up
recently in my life, I feel you as very close friends.

II

Also, I would thank to all my colleagues and administrative personal from the
ProS research center and from the Computer Science Department. Thank you
for always give me a smile in the corridors and for laughing at my bad jokes.

Finally, I want to thank to the most important woman in my life, my beloved
wife Beatriz and my beautiful daughters Bianca and Caterina. Bea, when we
started our adventure together, I promised to follow you to the end of the world
if necessary. However, I never thought that this journey would have as a result
the two most wonderful gifts in my life. Thank you girls, you three are the
biggest treasure of this pirate.

 III

��
������

When the last few years of software development evolution are analyzed, it can
be observed that the technologies involved are increasingly focused on the
definition of models for the specification of the intended software products. This
model-centric development schema is the main ingredient for the Model-Driven
Development (MDD) paradigm.

In general terms, the MDD approaches propose the automatic generation of
software products by means of the transformation of the defined models into the
final program code. This transformation process is also known as the model
compilation process. Thus, MDD is oriented to reducing (or even eliminating)
manual programming, which is both an error-prone and time-consuming task.
Hence, models become the main actors of the MDD processes: the models are the
new programming code.

In this context, interoperability can be considered to be a natural trend for
the future of model-driven technologies, where different developing and modeling
approaches, tools, and standards can be integrated and coordinated to reduce the
implementation and learning time of MDD approaches as well as to improve the
quality of the final software products. However, there is a lack of approaches that
provide a suitable solution to support interoperability in MDD processes.
Moreover, the proposals that define an interoperability framework for MDD
processes are still in a theoretical space, they are not aligned with current
standards, other interoperability approaches, and existing technologies.

Thus, the main objective of this doctoral thesis is to develop an approach to
achieve the interoperability in MDD processes. This interoperability approach is
based on current metamodeling standards, modeling language customization
mechanisms, and model-to-model transformation technologies. To achieve this
objective, novel approaches have been defined to improve the integration of
modeling languages, to obtain a suitable interchange of modeling information,
and to perform automatic interoperability verification.

For the validation and verification of the proposed interoperability approach,
empirical studies have been carried out to determine the completeness of the
interoperability with regard to the modeling needs of the MDD processes
involved. Also, the proposed interoperability approach has been applied to linking

IV

UML and the i* framework with an industrially-applied MDD approach. From
these two interoperability scenarios, important feedback has been obtained to
improve the approach proposed. These scenarios also show how to put in practice
the results of this thesis and report interesting results for the MDD community.

 V

��
�����

Analizando la evolución del desarrollo de software durante los últimos años, es
posible observar que las tecnologías involucradas se están enfocando cada vez más
en la definición de modelos para especificar los productos de software requeridos.
Este esquema de desarrollo centrado en modelos es el ingrediente principal para el
paradigma de Desarrollo de Software Dirigido por Modelos (DSDM).

En términos generales, las aproximaciones DSDM proponen la generación de
productos de software de manera automática mediante la transformación de los
modelos definidos en el código del programa final. Este proceso de
transformación también es conocido como proceso de compilación de modelos. De
esta manera, DSDM está orientado a reducir (o incluso eliminar) la programación
manual, que es una tarea lenta y propensa a errores. Por lo tanto, los modelos se
convierten en los actores principales de los procesos DSDM: los modelos son el
nuevo lenguaje de programación.

En este contexto, la interoperabilidad puede ser considerada como una
tendencia natural para el futuro de las tecnologías dirigidas por modelos, en
donde, distintas aproximaciones de desarrollo, modelado, herramientas, y
estándares pueden ser integrados y coordinados para reducir los tiempos de
implementación y de aprendizaje de las aproximaciones DSDM, y
consecuentemente, mejorar la calidad de los productos de software. Sin embargo,
existe una carencia de aproximaciones que provean soluciones adecuadas para
soportar la interoperabilidad en procesos DSDM. Además, las propuestas que
definen marcos de interoperabilidad para procesos DSDM aún se encuentran a
nivel teórico y no están alineadas con los estándares actuales, otras
aproximaciones de interoperabilidad o tecnologías existentes.

Por este motivo, el objetivo principal de esta tesis es desarrollar una
aproximación para conseguir la interoperabilidad en procesos MDD. Esta
aproximación de interoperabilidad está basada en estándares actuales de
metamodelado, mecanismos para la personalización de lenguajes de modelado, y
tecnologías para realizar transformaciones de modelo a modelo. Para alcanzar este
objetivo, se han definido propuestas innovadoras para mejorar la integración de
lenguajes de modelado, obtener un adecuado intercambio de información de
modelado, y verificar automáticamente la interoperabilidad.

VI

Para validar y verificar la aproximación de interoperabilidad propuesta, se han
realizado estudios empíricos que determinan la completitud de la
interoperabilidad en relación a las necesidades de modelado de los procesos MDD
involucrados. Además, la aproximación propuesta ha sido utilizada para conseguir
la interoperabilidad de UML y del marco i* con una propuesta DSDM de
aplicación industrial. A partir de estos dos escenarios de interoperabilidad, se ha
obtenido información relevante para mejorar la propuesta desarrollada. Estos
escenarios también muestran cómo aplicar los resultados la tesis y proporcionan
resultados interesantes para la comunidad DSDM.

 VII

��
���

Si s'analitza l’evolució del desenvolupament de programari durant els últims anys,
és possible observar que les tecnologies involucrades s’enfoquen cada vegada més
cap a la definició de models per especificar els productes de programari requerits.
Aquest esquema de desenvolupament centrat en models és l’ingredient principal
per al paradigma de Desenvolupament de Programari Dirigit per Models
(DPDM).

En termes generals, les aproximacions DPDM proposen la generació de
productes de programari de manera automàtica mitjançant la transformació dels
models definits en el codi del programa final. Aquest procés de transformació és
conegut com procés de compilació de models. D’aquesta manera, DPDM està
orientat a reduir (o fins i tot eliminar) la programació manual, que és una tasca
lenta i propensa a errors. Així doncs, els models es converteixen en els actors
principals del processos DPDM: els models són el nou llenguatge de programació.

En aquest context, la interoperabilitat pot ser considerada com una tendència
natural per al futur de les tecnologies dirigides per models, on distintes
aproximacions de desenvolupament, modelat, ferramentes, i estàndards, poden ser
integrats i coordinats per tal de reduir els temps d'implementació i d’aprenentatge
de les aproximacions DPDM i, conseqüentment, millorar la qualitat dels
productes de programari. Tanmateix, existeix una mancança d’aproximacions
que proveïsquen solucions adequades per donar suport a la interoperabilitat dels
processos DPDM. A més, les propostes que defineixen marcs d’interoperabilitat
per a processos DPDM encara es troben a nivell teòric i no estan alineats amb els
estàndards actuals, altres aproximacions d’interoperabilitat o tecnologies
existents.

Per aquest motiu, l'objectiu principal d'aquesta tesi és desenvolupar una
aproximació per aconseguir la interoperabilitat en processos DPDM. Aquesta
aproximació d'interoperabilitat està basada en estàndards actuals de metamodel,
mecanismes per a la personalització de llenguatges de modelat, i tecnologies per a
realitzar transformacions de model a model. Per aconseguir aquest objectiu, s'han
definit propostes innovadores per millorar la integració de llenguatges de modelat,
obtenir un intercanvi d'informació de modelat adequat, i verificar automàticament
la interoperabilitat.

VIII

Per validar i verificar l'aproximació d'interoperabilitat proposada, s'han realitzat
estudis empírics que determinen la completesa de la interoperabilitat en relació a
les necessitats de modelat dels processos DPDM involucrats. A més,
l'aproximació proposada ha estat utilitzada per aconseguir la interoperabilitat de
UML i del marc i* amb una proposta DPDM d'aplicació industrial. A partir
d'aquests dos escenaris d'interoperabilitat, s'ha obtingut informació rellevant per a
millorar la proposta presentada. Aquests escenaris també mostren com aplicar els
resultats de la tesi i proporcionen resultats interessants per a la comunitat
DPDM.

 IX

�������
�

Chapter I. Introduction .. 1�

1.1. MOTIVATION ... 4�
1.2. PROBLEM STATEMENT .. 5�
1.3. OBJECTIVES ... 7�
1.4. THESIS DEVELOPMENT CONTEXT .. 9�
1.5. THESIS STRUCTURE ... 10�

Chapter II. Background .. 13�

2.1. MODELING LANGUAGE CUSTOMIZATION ... 14�
2.2. THE OO-METHOD MDD APPROACH ... 24�
2.3. THE I* FRAMEWORK ... 29�

Chapter III. Related Work ... 33�

3.1. PLANNING THE SYSTEMATIC REVIEW ... 34�
3.2. REVISION OF INTEROPERABILITY APPROACHES .. 38�
3.3. A COMMON INTEROPERABILITY FRAMEWORK .. 46�
3.4. CONCLUSIONS .. 48�

Chapter IV. Achieving MDD Interoperability .. 49�

4.1. AN MDD INTEROPERABILITY MODEL .. 50�
4.2. CHALLENGES FOR INTEGRATION OF MODELING LANGUAGES ... 57�
4.3. THE MDD INTEROPERABILITY PROCESS ... 60�
4.4. CONCLUSIONS .. 63�

Chapter V. The Integration Metamodel ... 65�

5.1. BACKGROUND .. 68�
5.2. IMPROVING THE INTEGRATION OF MODELING LANGUAGES ... 69�
5.3. SYSTEMATIC DEFINITION OF AN INTEGRATION METAMODEL .. 73�
5.4. IMPLEMENTING THE INTEGRATION METAMODEL .. 78�
5.5. BENEFITS OF THE INTEGRATION METAMODEL .. 79�
5.6. CONCLUSIONS .. 82�

Chapter VI. Automatic UML Profile Generation .. 85�

6.1. BACKGROUND .. 87�
6.2. IDENTIFICATION OF METAMODEL EXTENSIONS .. 89�
6.3. INTEGRATION METAMODEL TRANSFORMATION ... 95�
6.4. APPLYING THE TRANSFORMATION RULES ... 107�

X

6.5. CONCLUSIONS ..109�

Chapter VII. Generation of Model Interchange Mechanisms 111�

7.1. BACKGROUND ..113�
7.2. MODEL INTERCHANGE PROPOSAL ..115�
7.3. APPLYING THE INTERCHANGE PROPOSAL ...119�
7.4. COMPARING THE MODEL INTERCHANGE APPROACH..126�
7.5. CONCLUSIONS ..127�

Chapter VIII. Linking UML and MDD Approaches .. 131�

8.1. INTRODUCTION ...132�
8.2. THE APPLICABILITY OF THE UML ASSOCIATION IN MDD PROCESSES133�
8.3. THE SEMANTICS PROPOSED TO CUSTOMIZE THE UML ASSOCIATION135�
8.4. INTEGRATION OF THE PROPOSED SEMANTICS INTO UML ...141�
8.5. COMPILING THE EXTENDED UML ASSOCIATION ...149�
8.6. CONCLUSIONS ..153�

Chapter IX. Linking Goal-Oriented Modeling and Model-Driven Development
 .. 155�

9.1. INTRODUCTION ...156�
9.2. BACKGROUND ..157�
9.3. APPLYING THE INTEROPERABILITY APPROACH TO I* AND OO-METHOD160�
9.4. ANALYSIS OF THE PROPOSAL AND DISCUSSION ..171�
9.5. CONCLUSION ..173�

Chapter X. Automatic Verification of Models for MDD Interoperability 175�

10.1. INTRODUCTION ..176�
10.2. BACKGROUND ...177�
10.3. INTEGRATION OF VERIFICATION MEASURES INTO THE I* FRAMEWORK182�
10.4. APPLYING THE I* VERIFICATION MEASURES ..192�
10.5. EVALUATING THE VERIFICATION APPROACH ..198�
10.6. OVERALL ANALYSIS ...210�
10.7. CONCLUSIONS ...211�

Chapter XI. Conclusions .. 213�

11.1. THESIS CONTRIBUTIONS ...215�
11.2. FUTURE WORK ..219�
11.3. PUBLICATIONS ..221�

���������� ... 225�

Appendix I. Transformation of i* Models into MDD-Oriented Models 245�

 XI

A1.1. INTRODUCTION ... 246�
A1.2. THE PHOTOGRAPHY AGENCY PROJECT ... 247�
A1.3. THE I* METAMODEL ... 249�
A1.4. THE I* TRANSFORMATION PROCESS ... 252�
A1.5. CONCLUSIONS .. 263�

Appendix II. Doctoral Thesis Development .. 265�

A2.1. THE DESIGN RESEARCH ... 266�
A2.2. APPLYING THE DESIGN RESEARCH .. 268�

 XIII

��
�������
���
�

Figure 1. The MDA schema ... 3�

Figure 2. UML profile example .. 16�

Figure 3. Property redefinition example.. 18�

Figure 4. The OO-Method Software Production Process .. 25�

Figure 5. Compilation alternatives provided by the Olivanova technology .. 26�

Figure 6. The i* notation .. 29�

Figure 7. Strategic Dependency model of a buyer-driven e-commerce system .. 30�

Figure 8. Strategic Rationale model of a buyer-driven e-commerce system ... 32�

Figure 9. MDD-oriented Interoperability Framework.. 47�

Figure 10. LCIM Model .. 52�

Figure 11. MDD Interoperability Model ... 54�

Figure 12. MDD Interoperability Model Instantiated .. 56�

Figure 13. MDD Interoperability Process .. 61�

Figure 14. DSML metamodel example.. 70�

Figure 15. Integration Metamodel related to a binary association between classes 72�

Figure 16. Systematic Approach for Integration Metamodel Definition ... 75�

Figure 17. Fixing mapping problems for Integration Metamodel definition .. 75�

Figure 18. Example of a Integration Metamodel transformation .. 80�

Figure 19. Automatic UML Profile Generation Process .. 89�

Figure 20. Example of an equivalent association without type difference .. 90�

Figure 21. Example of an equivalent association with type difference .. 91�

Figure 22. Example of mapping of equivalent attributes .. 91�

Figure 23. Example of enumeration mappings ... 92�

Figure 24. Example of extension identification from new attributes and cardinality differences 93�

Figure 25. Metamodel Comparison Results ... 94�

Figure 26. Generic transformation example for Rule 1 ... 96�

Figure 27. Mapping obtained for the example related to Rule 1 ... 97�

Figure 28. Generic example for the transformation rules 2 to 4 .. 98�

Figure 29. Mapping obtained for the transformation example related to rules 2 to 4 99�

Figure 30. Generic example for transformation rule 5. .. 100�

Figure 31. Mapping obtained for the transformation example related to Rule 5 100�

Figure 32. Generic example for transformation rule 6. .. 101�

Figure 33. Mapping obtained for the transformation example related to Rule 6 102�

XIV

Figure 34. Generic example for transformation rules 7, 8 and 9. ...103�

Figure 35. Mapping obtained for the transformation example related to rules 7 to 9104�

Figure 36. Generic example for Rule 10 ...105�

Figure 37. Generic example for Rule 11 ...107�

Figure 38. Mapping obtained for the example related to Rule 11 ...107�

Figure 39. UML profile generated for the example Integration Metamodel ..108�

Figure 40. Mapping generated for the UML profile presented in Figure 39 ..109�

Figure 41. Schema of the Modeling Languages Interchange Proposal ..117�

Figure 42. Interchange proposal application example ..118�

Figure 43. Schema for the implementation of the interchange proposal in OO-Method and UML
 ..121�

Figure 44. UML model extended with the OO-Method UML profile ..122�

Figure 45. XMI importer application example ...123�

Figure 46. OO-Method presentation model ...124�

Figure 47. Generated application ..124�

Figure 48. Functional size report generated for the application generated from the example UML
model ..125�

Figure 49. Example UML model ..136�

Figure 50. Example of Identification Function in the association ...137�

Figure 51. Example of association temporality ..139�

Figure 52. : The Integration Metamodel of the proposed association semantics ..143�

Figure 53. UML Profile generated from the defined Integration Metamodel ..148�

Figure 54. Example UML model extended with the generated UML profile ..149�

Figure 55. Compilation alternatives provided by the Olivanova technology ..150�

Figure 56. Diagram of the SQL database generated from the example UML model151�

Figure 57. Execution of the service that creates new instances of the class Reservation152�

Figure 58. : Execution of the service del_association with a precondition ..153�

Figure 59. Basic goal-oriented requirements and MDD linking schema ...159�

Figure 60. i* example model ...160�

Figure 61. The i* metamodel for the example model ..161�

Figure 62. The OO-Method metamodel for the linking example ...162�

Figure 63. OO-Method requirement metamodel for the i* linking example ...164�

Figure 64. General Schema of the proposed linking process ...166�

Figure 65. Interoperability proposal applied to i* and OO-Method ...166�

Figure 66. Integration Metamodel for the integration example ...167�

Figure 67. UML Profile generated from the Integration Metamodel of the example169�

Figure 68. Extended example i* model and the OO-Method class model generated170�

Figure 69. Transformations to obtain an OO-Method class model from an i* model171�

 XV

Figure 70. Example i* SR Model. .. 180�

Figure 71. Process for definition of i* verification measures. ... 183�

Figure 72. Application of the GQM approach. ... 183�

Figure 73. EMOF i* Metamodel ... 188�

Figure 74. Verification Model and Mapping Information ... 189�

Figure 75. UML Profile to extend the i* metamodel with the verification measures 191�

Figure 76. Process for the application of verification measures. .. 192�

Figure 77. Example i* Model extended with the generated UML Profile. .. 193�

Figure 78. Class model generated from the example i* model .. 194�

Figure 79. Improved i* model .. 196�

Figure 80. Class model generated from the improved i* model ... 197�

Figure 81. Second i* Model (ISTAR2) for Photography Agency Description .. 199�

Figure 82. Initial class model generated from ISTAR2 without improvements 201�

Figure 83. Experimental tasks ... 202�

Figure 84. Second i* model (ISTAR2) improved with the verification measure results...................... 207�

Figure 85. Class model obtained from the improved version of the second i* model.............................. 208�

Figure 86. i* SR model related to photographer work request .. 248�

Figure 87. i* Metamodel.. 250�

Figure 88. The transformation process modeled with BPMN ... 253�

Figure 89. Reference i* SR model with marked elements to be automated ... 254�

Figure 90. Class model obtained from the application of the proposed guidelines 255�

Figure 91. Design research application schema .. 266�

Figure 92. Interoperability Process – Tentative Design ... 269�

Figure 93. Schema for the integration of i*, OO-Method, and UML.. 271�

 XVII

��
����������
�

Table 1. Summary of the studies analyzed in the systematic review .. 45�

Table 2. The LISI reference model .. 51�

Table 3. Mapping obtained from the Integration Metamodel generation .. 77�

Table 4. Metamodel Extensions Identified .. 95�

Table 5. OCL constraints for association ends ... 144�

Table 6. : OCL constraints for shared events .. 145�

Table 7. Equivalences between the Integration Metamodel and the UML Metamodel 146�

Table 8. Comparison between the Integration Metamodel and the UML Metamodel.......................... 147�

Table 9. Guidelines for transformation of i* models into OO-Method Class Models 163�

Table 10. Integration Metamodel and the i* metamodel mapping ... 168�

Table 11. OO-Method requirements metamodel and Integration Metamodel mappings 169�

Table 12. Guidelines for the transformation of i* models into OO-Method class models.................... 181�

Table 13. Characteristics of measure Wrong Attribute Generation (WAG)... 185�

Table 14. Characteristics of measure Wrong Service Generation (WSG) ... 185�

Table 15. Characteristics of measure Non-Accessible Element (NAE) .. 186�

Table 16. Characteristics of measure Non-Instantiable Class (NIC) .. 187�

Table 17. WAG measure specification in the OCL language. ... 190�

Table 18. Results obtained from measures evaluation. ... 193�

Table 19. Tagged values related to the example i* Model .. 194�

Table 20. Fixing guidelines related to the verification measures .. 195�

Table 21. Tagged values changed in the improved i* Model .. 197�

Table 22. Tagged values related to the Second i* Model for Photography Agency 200�

Table 23. First generation of the MDD models. ... 204�

Table 24. Application of the verification measures to ISTAR1 and ISTAR2 .. 205�

Table 25. Tagged values changed in the improved i* Model .. 208�

Table 26. Second generation of the MDD models. ... 208�

Table 27. Experiment results ... 209�

Table 28. Publication Summary ... 223�

Chapter I. �
�����	�������

When the last few years of software development evolution are analyzed, it can
be observed that the technologies involved are increasingly focused on the
definition of models for the specification of the intended software products. This
model-centric development schema is the main ingredient for the Model-Driven
Development (MDD) paradigm.

In general terms, the MDD approaches propose the automatic generation of
software products by means of the transformation of the defined models into the
final program code. This transformation process is also known as the model
compilation process. Thus, MDD is oriented to reducing (or even eliminating)
manual programming, which is both an error-prone and time-consuming task.
Hence, models become the main actors of the MDD processes: the models are the
new programming code.

In this context, interoperability can be considered to be a natural trend for the
future of model-driven technologies, where different developing and modeling
approaches can be integrated and coordinated to reduce the implementation and
learning time of MDD approaches as well as to improve the quality of the final
software products. Thus, we have developed this doctoral thesis with the aim of
providing an approach that can be used as a reference to achieve interoperability
in MDD processes.

Introduction

2

One of the most important concerns when elaborating a Model-Driven
Development (MDD) [1, 2] solution is the specification of a modeling language
that allows the required software products to be represented at the conceptual
level without ambiguity. Among the different choices that exist for the definition
of an adequate modeling language, there are two alternatives that appear to be the
most suitable. The first of these is the creation of a proprietary Domain-Specific
Modeling Language (DSML) [3, 4] for the MDD approach. The second
alternative is the customization of existing modeling languages, which are
normally supported by a standard or are used as a de-facto standard in specific
domains. Thus, generally speaking, these modeling languages are well-known and
mature modeling approaches, which have been empirically validated. Existing
modeling approaches can be multi-purpose modeling languages such as UML [5]
or, by contrast, modeling languages related to a specific domain, such as i* [6, 7]
for requirement modeling.

Both the customization of existing modeling languages and the specification
of proprietary DSMLs are suitable modeling alternatives that provide interesting
benefits for the application of MDD approaches. In practice, these two modeling
alternatives are viewed as opposite solutions [8], which cannot be integrated into
a common MDD process. This situation is principally caused by the lack of an
appropriate solution that indicates how to interoperate the modeling information
produced by different modeling approaches. We believe that by applying an
appropriate interoperability solution, the existing modeling approaches and the
proprietary DSMLs can be used as complementary alternatives to perform the
modeling tasks that are involved in a MDD process.

A modeling framework that considers the interoperability of different
modeling approaches is a suitable alternative for supporting real software
production processes where different roles must collaborate at different
development stages [9] (e.g. project managers, requirement analysts, system
designers, and programmers). These roles may use different developing tools and
modeling technologies, which can be supported by existing modeling languages
or by DSMLs that are developed in the context of the MDD process. Therefore,
the modeling approaches involved must interoperate with each other in order to
link the different development stages. This situation is clearly observed in MDD
approaches that are based on the Model-Driven Architecture (MDA) [10, 11]
proposed by OMG, which is one of the most widely used MDD implementation
strategies. MDA proposes the consecutive transformation of models from higher
abstraction levels to lower abstraction levels, until the final software product is
achieved. Figure 1 shows the MDA schema.

 Introduction

 3

Figure 1. The MDA schema

MDA suggests the use of UML to perform the modeling tasks that are
related to the CIM, PIM and PSM levels. However, other modeling approaches
can also be used in order to apply the most suitable solution for each abstraction
level. Additionally, modeling approaches can be combined inside of each
abstraction level to obtain a precise conceptual representation from different
perspectives, for instance, the dynamic, structural, and presentation perspectives
[12].

The interoperability of different modeling approaches is not only suitable for
MDD approaches that are based on MDA. It can be generalized for any MDD
approach that wants to achieve a sound Model-Driven Engineering (MDE) [13]
process, where different abstraction levels and modeling perspectives must be
coordinated. This situation is discussed in works such as [14, 15].

The main objective of this doctoral thesis is to develop a suitable approach for
the interoperability of existing modeling approaches, standards, and tools with
specific MDD modeling approaches and technologies, such as proprietary
DSMLs and model compilers. This interoperability approach is based on current
metamodeling standards, modeling language customization mechanisms, and
model-to-model transformation technologies.

We have verified the proposed interoperability approach by linking two
relevant modeling approaches with an industrially-applied MDD process. The
modeling approaches are: 1) UML, which is a well-known general-purpose
modeling language, and 2) the i* framework [6], which is a goal-oriented
requirement modeling approach. The MDD approach involved is OO-Method
[16], which has a proprietary DSML for representing the different constructs
that comprise its conceptual model [12].

Introduction

4

The linking of UML and i* with the OO-Method MDD approach presents
two interesting interoperability scenarios, which provide relevant benefits for
MDD approaches. The development and execution of these interoperability
scenarios are involved in the iterations that have been performed to develop, fix,
improve, and finally obtain the interoperability approach proposed in this thesis.
Appendix II provides additional details about the thesis development process.

The rest of this introduction chapter is organized as follows: Section 1.1
provides additional motivation for the work presented. Section 1.2 states the
problems that exist in the context of MDD development, which drive the
objectives of this thesis. Section 1.3 details the objectives to be achieved. Section
1.4 presents the general context in which this thesis is developed. Finally, Section
1.5 presents the structure of the whole document

1.1. Motivation

The motivation behind the work performed in this thesis lies in the benefits that
a multiple-modeling schema can provide for the implementation and application
of a specific MDD approach. In particular, we consider the benefits related to the
definition of specific DSMLs, and the adoption of existing modeling languages.

On one hand, a specific DSML provides a precise characterization of the
conceptual constructs that are required for the definition of the models that are
involved in a MDD process. Furthermore, the number of conceptual constructs
required by a MDD proposal is generally smaller than the number of conceptual
constructs present in more general modeling approaches (such as UML). This
facilitates the model compilation process and the implementation of specific
MDD tools with improved modeling features. However, it is important to note
that the implementation and maintenance of these specific tools involve extra
effort when putting an MDD approach into practice [17].

On the other hand, an existing modeling approach can be customized to
represent the particular modeling needs of a MDD approach. The use of existing
modeling approaches has a very powerful argumentation, which is: do not
reinvent the wheel and take advantage of existing tools, technologies, theories,
user experience, etc., to put into practice a particular MDD approach [18]. This
is especially true for standard (or de-facto standard) modeling approaches because
languages of this kind have more users and related technologies.

 Introduction

 5

It is clear that the interoperability of proprietary DSMLs and customized
modeling languages provides interesting benefits for the application of MDD
approaches. However, there are certain issues that must be tackled to achieve this
interoperability. The most important issues are presented in the next section.

1.2. Problem Statement

Nowadays, since the lack of a suitable solution to link existing modeling
languages with a specific MDD process, several MDD proposals have defined
Domain-Specific Modeling Languages (DSMLs) [3, 4] to represent their
modeling needs. This has produced the proliferation of several modeling
approaches with their respective notation and modeling tools. As a consequence,
it is very difficult to interchange knowledge among the different approaches that
exist in the MDD community. It also difficult to compare the existing
approaches to contrast their pros and to select an appropriate MDD solution that
is aligned with the needs of a specific project or organization.

In general terms, many of the modeling aspects considered by modeling
approaches related to a specific domain can be generalized. This situation is
observed in MDD proposals with a class model specification. In this case, most of
the concepts of the class model (such as classes, associations, attributes, services,
etc.) can be represented with more general modeling approaches, for instance,
with the UML class model. Thus, it would be possible to customize the UML
class model to represent the concepts involved in the specific MDD approach.
This same idea can be applied to other modeling languages such as the i*
framework for goal-oriented requirement modeling, where MDD proposals can
customize this modeling language to represent their requirement modeling needs.

 Current modeling approaches are based on the definition of metamodels to
specify the abstract syntax of the required conceptual constructs, relationships,
and validation rules. Thus, the customization of modeling languages can be
performed by extending the involved metamodels. In an interoperability context,
this customization must be performed with a mechanism that does not change the
target metamodels. This constraint is oriented to ensuring compatibility with
existing standards and implemented technologies.

Currently, there is not a standardized process that states how to define
metamodel extensions for the customization of a modeling approach. For this

Introduction

6

reason, the customization of a modeling language is usually elaborated in a
straightforward way without a well-defined process. Thus, it is common for
customized languages not to be aligned with the standards [17]. In addition, the
manual and intuitive definition of the required metamodel extensions for
modeling language customization is an error-prone and time-consuming task [19].
These two risk factors (time and error) must be avoided, especially in a MDD
industrial context, where time costs money and mistakes in implementation
directly impact on customer satisfaction.

Even though the use of standardized modeling languages could improve the
application of specific MDD approaches by taking advantage of user experience
and existing technology, the construction of specific MDD tools such as model
compilers is usually harder from standardized modeling languages than from
specific DSMLs. This is mainly due to the extra size and complexity of the
standard modeling languages in relation to the specific DSMLs. The Proprietary
DSMLs only provide the specific constructs and properties required for an MDD
approach, while a standard language provides a larger number of constructs and
properties for a more general application.

In summary, a sound interoperability framework for MDD process must
support the coordination of different modeling approaches that participate at
different abstraction levels (such as requirement models, business process models,
and different kinds of software specification models). However, a standard
solution to achieve this interoperability has not yet been defined. This can be
observed in proposals oriented to goal-oriented modeling, such as the i*
framework for requirement modeling and business analysis. In the i* context, ther
is no well-defined mechanism to transform i* models into the corresponding
software models [20, 21], at least not by means of an automatic model-to-model
transformation process.

Certain proposals have defined mechanisms to confront the automatic
transformation of models among different modeling languages, such as [22],
which is based on the automatic definition of metamodel mappings. However,
these kinds of approaches do not manage all of the differences (heterogeneities)
that may exist among the modeling languages involved, consequently, relevant
modeling information during the transformation process can be lost.

According to the different elements considered in this chapter, we can
conclude that the main problem to obtain a suitable multi-modeling framework
for MDD approaches is the definition of an appropriate interoperability approach
for MDD processes. To confront this problem, more specific issues must be

 Introduction

 7

considered, such as the integration of modeling languages and the appropriate
interchange of models. Thus, the objectives that we want to achieve in this thesis
are guided by this main problem and the specific issues related. These objectives
are detailed in the next section.

1.3. Objectives

In order to tackle the issues presented in the problem statement section, we have
defined the main goal of this thesis as follows:

The Development of a Suitable Approach for the Interoperability of Different
Modeling Approaches in a Common MDD Process.

We consider that the required interoperability can be obtained through the
integration and customization of the modeling approach together with a sound
model-interchange mechanism that prevent the loss of information during the
interchange of modeling information. Furthermore, a suitable model-based
interoperability approach must provide automation facilities to reduce the errors
introduced by manual definition of the required customizations or by the manual
transformation of the models involved.

The interchange of information among the integrated modeling languages is
essential to achieve model interoperability so that an appropriate conceptual
representation at different abstraction levels can be obtained. Also, the model-to-
model transformations for going from an upper abstraction level to a lower
abstraction level can be automated. In addition, to facilitate the application of the
interoperability approach, it must be based on existing standards and technologies
for metamodeling, modeling language customization, and model transformations.

Thus, the main goal of this thesis is supported by the following specific
objectives:

1) The creation of a well-defined process for the customization of modeling
languages with the modeling needs of specific MDD approaches. This
process must have the following features:

a. It must allow the automatic generation of metamodels extensions to
integrate the abstract syntax of the reference MDD approaches into the
modeling approaches involved.

Introduction

8

b. The metamodel extensions must not modify the specification of the
target metamodel to assure compatibility with existing technology and
standards.

2) The definition of a mechanism for automatic interchange of information
among models that are defined with customized modeling languages and
models that are defined with specific DSMLs. This interchange mechanism
must have the following features:

a. The interchange of models must be performed by means of model-to-
model transformations that are based on the metamodels of the
modeling languages involved.

b. The interchange of models must prevent the loss of information during
the transformation process.

3) The application of the proposed interoperability approach to different
interoperability scenarios, which are related to different stages of a MDD
process. This third objective is oriented to perform the following tasks:

a. The improvement of the proposed interoperability approach with the
results obtained from the development and execution of the different
interoperability scenarios.

b. The presentation and exemplification of the use of the proposed
interoperability approach by its application in two interoperability
scenarios that are relevant for MDD approaches.

The interoperability scenarios that are considered in this third objective are
related to the following development stages:

a. The analysis level. This stage is oriented to perform the requirement
elicitation in a MDD process.

b. The design level. This stage is oriented to represent the different views
of the intended software products, such as structural, behavioral, and
presentation views.

 Introduction

 9

1.4. Thesis Development Context

This doctoral thesis has been developed within the ProS Research Center [23]
from the Universidad Politécnica de Valencia [24]. The work performed to
achieve the proposed objectives is directly related to the knowledge and
experience obtained from the execution of different research projects, which
involve both industrial and academic efforts. These projects are the following:

1. CONCOM: This Project is oriented to the development of model compilers
for the generation of different kinds of software products in the context of the
OO-Method approach. This project has been financed by CARE
Technologies. It was developed from 2006 to 2008.

2. SESAMO: This project is oriented to the construction of web services from
models by following the model-driven development philosophy. This is a
CICYT project with reference TIN2007-62894. It was developed from
2008 to 2010.

3. ORCA: This project is oriented to construct and coordinate different
methods for software development in a model-driven context. The different
methods are put into practice according to a specific framework that assures
the quality of the generated software products as well as the quality of the
methods applied. This project is financed by the Generalitat Valenciana [25]
(reference PROMETEO/2009/015). It has been under development since
2009 and will continue until 2012.

Furthermore, we are starting a new project that is aligned with the results
obtained in this thesis. This project, called ProsREQ [26], is not only related to
interoperating different requirement modeling approaches and MDD processes to
improve the generation of Web services, but also to automating the generation of
verification mechanisms for the generated software products. ProsREQ is
supported by MICINN [27] under reference TIN2010-18011. It is being
developed by the ProS Research Center in collaboration with the GESSI
research group [28] from the Universidad Politécnica de Cataluña. The
ProsREQ project will be developed from 2011 to 2013.

Introduction

10

1.5. Thesis Structure

In addition to the introduction chapter, this doctoral thesis is comprised of ten
more chapters, which are organized as follows:

Chapter II – Background: This chapter introduces the main concepts that are
involved in the development of this thesis. The approaches that are related to the
interoperability scenarios to improve and evaluate the proposed interoperability
approach are also presented. These correspond to UML, the i* framework, and
the OO-Method MDD approach.

Chapter III – Related Work: This chapter presents a systematic review of the
current approaches related to model-based interoperability. This systematic
review is centered on analyzing those interoperability approaches that provide
relevant features for MDD processes.

Chapter IV – Achieving the MDD Interoperability: This chapter presents the
aspects that are considered in order to obtain a specific process to support MDD
interoperability, which is based on a specific MDD interoperability model. The
steps that comprise the proposed interoperability process are also introduced.

Chapter V – The Integration Metamodel: This chapter presents a specific
DSML metamodel, called Integration Metamodel, which is defined to perform a
correct customization of a modeling language. The Integration Metamodel is used
to automatically obtain a set of lightweight metamodel extensions that are
implemented in a UML profile. As a result, a modeling language customized with
the modeling needs of a specific MDD approach is obtained in accordance with
the OMG modeling standards.

Chapter VI – Automatic UML Profile Generation: This chapter presents a
process that is defined to integrate a particular DSML into a target modeling
language through the automatic generation of a UML profile. This process
facilitates the correct use of existing modeling languages in a proprietary MDD
context and provides a solution that takes advantage of the benefits of standard
modeling languages and proprietary DSMLs.

 Introduction

 11

Chapter VII – Generation of Model Interchange Mechanisms: This chapter
presents a proposal that generates mechanisms that perform model-to-model
transformations to automatically interchange information among modeling
approaches to must interoperate. The generation of the transformation
mechanisms is performed by means of the different artifacts generated from the
application of the proposed MDD interoperability process.

Chapter VIII – Linking UML and MDD Approaches: This chapter presents an
interoperability scenario that is focused on the application of UML models in
MDD processes, specifically, the application of the constructs related to the
UML association in the OO-Method development process. This chapter also
shows how the results obtained allow the generation of software products from
UML models through the industrial model compiler related to the OO-Method
approach.

Chapter IX – Linking Goal-Oriented Modeling and Model-Driven
Development: This chapter presents a second interoperability scenario where the
interoperability approach proposed in this thesis is used to automatically link
GORE models and MDD processes. This scenario has been elaborated by
considering the experience obtained from linking the i* framework with the
industrial implementation of the OO-Method approach.

Chapter X – Automatic Verification of Models for MDD Interoperability: This
chapter presents an approach to guarantee correct MDD interoperability by
means of the integration of specific verification mechanisms into the involved
modeling language. This approach is based on a specific process for the definition
and implementation of verification measures, which also puts into practice the
interoperability approach proposed in this thesis. The results obtained from the
application of this verification approach are empirically validated.

Chapter XI – Conclusions: This chapter presents the contribution obtained from
the work performed in this doctoral thesis, future research lines related to the
work performed, and the publications generated during the thesis development.

Chapter II. �
����
����	��

This chapter presents the basis that are necessary to understand the development
and results of the interoperability approach presented in thesis. In this
interoperability approach, the customization of metamodels to perform the
integration of the involved modeling languages is a key issue. This integration
can be considered as the glue to perform the interoperability of different modeling
approaches and MDD processes by means of the appropriate interchange of
modeling information. Thus, the main alternatives that exist for modeling
languages customization are presented by indicating their advantages and
disadvantages. Also, the modeling frameworks and MDD approaches that are
involved in the interoperability scenarios are presented, which correspond to
UML, the i* framework, and the OO-Method MDD approach.

Background

14

The MDD proposals require modeling languages for the definition of conceptual
models that represent in a complete and unambiguous way the software products
to be developed. According to the IEEE Standard Glossary of Software
Engineering Terminology [29] a software product corresponds to Computer
programs, procedures, and possibly associated documentation and data pertaining
to the operation of a computer system.

The application of existing modeling languages for the definition of
conceptual models provides different advantages for MDD proposals [30], such
as reduction in learning curve, reduction in implantation costs, reuse of existing
technologies and modeling tools, etc. These benefits are more evident when using
standard modeling languages. However, conceptual constructs of standard
modeling languages usually need additional modeling information to represent
the conceptual models of specific MDD approaches with all the required
precision [21, 31, 32]. Thus, customization of the existing modeling languages
must be performed to introduce this additional information. In this thesis, the
customization of modeling languages is the Rosetta stone to obtain an
appropriate MDD interoperability.

The rest of this chapter is organized as follows: Section 1.1 introduces the
main modeling language customization mechanisms. Section 1.1 presents the
OO-Method approach. Finally, Section 1.1 presents the i* modeling framework.

2.1. Modeling Language Customization

In order to use existing modeling languages for the correct representation of the
constructs that are related to MDD approaches, it is necessary to customize the
modeling language with the information that MDD approaches require. In this
case, are only considered those modeling aspects that the original definition of the
target modeling languages does not provide. In other words, existing modeling
languages are customized to use them as proprietary DSMLs.

There are different mechanisms for customization of modeling languages
[33]. In general terms, these customization mechanisms are based on the
definition of extensions over the metamodels that describe the abstract syntax of
the modeling languages. The metamodel extensions not necessarily represent
additional modeling capabilities. These extensions can be constraints to manage
the definition of models, for instance: to reduce the set of possible values related
to a property, or to manage the definition of an association between two classes.

 Background

 15

Among the different metamodel extension mechanisms that exist [33], there
are two kind that have more relevance: the lightweight extension mechanisms and
the heavyweight extension mechanisms. These two extension mechanisms are
detailed below.

2.1.1. Lightweight Extension Mechanisms

The lightweight extensions are denominated ‘light’ because these extensions do
not change the reference metamodel (the metamodel of the modeling language to
be customized). Thus, lightweight extensions only add constraints and new
elements to the target metamodel, but they not change the already defined
elements. The Object Management Group (OMG) [34] has defined a standard for
the definition of lightweight extensions, which is called UML profile.

The UML profile is part of the UML specification and it is defined in the
UML Infrastructure [35]. It indicates the mechanisms used to adapt existing
MOF-based metamodels to specific platforms, domains, business objects, or
software process modeling. Since this extension mechanism is a part of the UML
standard, it can be supported by UML tools. This feature is one of the main
advantages of the UML profile over other customization mechanisms [33],
which are not directly supported by modeling tools.

A UML profile is represented as a UML package that is stereotyped with the
tag <<profile>>. It has three main constructs for the definition of the required
extensions: stereotypes, tagged values, and OCL rules:

• The stereotype is the central construct for the specification of a UML profile.
It is a special kind of UML class (specialization of the metaclass Class from
the UML metamodel). Therefore, the semantics and notation of a stereotype
is very similar to a UML class. The stereotypes are identified by a unique
name, and represent the set of the extensions that are applied over the classes
of the extended metamodel. The extended classes are identified by means of
extensions relationships that go from the stereotypes to the metaclasses that
they extend. The tagged values and the OCL rules are used to characterize
the extensions related to a stereotype.

• A tagged value is a property (specialization of the UML metaclass Property)
that is owned by a stereotype. A tagged value represents a new property that
is added to the metaclass extended by the stereotype that owns the tagged
value. According to the lasts UML specifications (UML 2.1.1 [36] and
above), the type of the tagged values can be specified from other classes or

Background

16

stereotypes. Therefore, the tagged values can be used for the definition of new
attributes as well as for the definition of new associations among the
metaclasses of the extended metamodel.

• The OCL rules are defined by means of the Object Constraint Language
[37]. Each OCL rule is related to a specific stereotype and are used to control
the interaction among the different conceptual constructs (extended
metaclasses). Even though the name OCL makes reference to the definition
of constraints, the last OCL specification can also be used as a query
language and as a language for the specification of functions and operations.

Figure 2. UML profile example

Figure 2 shows a brief example of a UML profile. This UML profile has the
stereotype IdClass that extends the metaclass Class with an identifier, which is
specified by means of the tagged value identifier. The stereotype IdClass also has
an OCL rule that indicates that the assignment of a value for the identifier is
mandatory.

From lasts UML versions, (UML 2.0 and above) the UML specification is
perfectly aligned to the metamodeling standard defined by OMG, which is the
Meta-Object Facility (MOF) [38]. This means that the extension capabilities of
UML profiles can also be applied to any MOF-Based metamodel, such as the
UML metamodel is. Thus, the UML profile could be used to extend any
modeling language that uses a MOF metamodel for the specification of its
abstract syntax, which is suitable to achieve the MDD interoperability proposed
in this thesis.

�����������		

����

��������	
�������
���

����
���������

���	
���������
��	�

����������
�		

��
����

���������

��
�	����

��
������

��
�	���	�

����
��	����

��������

������������

 Background

 17

The standardization of UML profiles (in the UML specification [39])
facilitates the use of this extension mechanism for the integration of multiple
modeling languages, which is one the objectives of this thesis. The
standardization prevents compatibility problems in the definition of extensions
related to different modeling approaches that must interoperate. In addition,
UML profile has standardized interchange support defined in the XMI format
[40]. The standardization of the XMI definition for the UML profiles prevents
compatibility problems to transfer modeling information among model-
management tools.

Since UML profile is a lightweight extension mechanism, the defined
extensions cannot change the target metamodel. Thus, UML profiles can only
define extensions derived from the constructs that already exist in the extended
modeling approach. Moreover, the defined extensions cannot change the
properties of the original modeling constructs. These limitations of UML profiles
can be considered an advantage and a disadvantage at the same time.

On one hand, these limitations are an advantage because if the original
specification of the target metamodel is not changed by the defined extensions,
the technologies based on the original modeling language can be also applied over
models defined with the extended modeling language.

On the other hand, the limitations of UML profiles are a disadvantage since
it may difficult to represent certain modeling needs of MDD approaches from
existing modeling constructs.

2.1.2. Heavyweight Extension Mechanisms

The heavyweight extensions, also known as first level extensions, allow the
extension of modeling approaches through the inheritance of meta-types from the
referenced meta-model. Thus, these metamodel extensions can modify the target
metamodel by redefining properties of the constructs that already exist in the
modeling language. In addition, at difference of lightweight extensions,
heavyweight extensions can add new conceptual constructs to the extended
modeling languages from scratch.

For the definition of heavyweight extensions, it is necessary to select the
constructs to be extended from the target modeling language. Next, the selected
construct are merged in a new package where the extension are defined,
including the definition of new conceptual constructs.

Background

18

The definition of heavyweight extensions is based on the features provided by
the MOF standard [38]. In this metamodeling standard, the package merging is a
very relevant feature that is even used for the specification of the UML
metamodel, the UML superstructure [41]. In addition, there are other interesting
MOF features relevant for the definition of heavyweight extensions, one of these,
the property redefinition, is the feature that allows the modification of properties
of the constructs that already exist in the extended modeling language. Figure
shows a property redefinition example, in this example the association related to
the member ends of a generic relationship is redefined by the association
memberEnd of the construct related to binary associations between classes. In
this redefinition example, the type and cardinality of the original member end are
changed.

Figure 3. Property redefinition example

The main advantage of heavyweight extensions is that they have more
flexibility than lightweight extensions, providing support to represent those
modeling features that lightweight extensions (considering UML profile features)
cannot represent.

The main disadvantage of heavyweight extensions is that they change the
target metamodel, thus the result is a new metamodel that differs from the
original specification of the extended modeling language. Therefore, the extended
metamodel is no-longer compatible with technologies that are based on the
original modeling language. This situation is relevant because the reuse of
existing technologies is one of the main advantages of the interoperability among
modeling languages. In addition, in contrast to lightweight extensions,
heavyweight extensions are not supported by standards for their specification and
interchange, which difficult the correct application of this extension mechanism

 Background

 19

in heterogeneous modeling frameworks for validation of defined extensions and
the interchange of extended models.

The report performed by James Bruck and Kenn Hussey [33] shows in more
detail the different extension mechanisms for metamodels customization. Even
though this work is centered on the specification of extensions for UML, the
presented extension mechanisms and analyzed features are applicable to any
standard modeling language that uses a MOF metamodel. In this work, it is also
explained why lightweight extension mechanism is the most suitable for extend
modeling languages, leaving the heavyweight extensions in a second place. Thus,
heavyweight extensions are usable only when lightweight extensions do not
provide the required flexibility for the representation of the needed modeling
features. The work presented by Staron and Wohlin [30] is an interesting case
study that shows the advantage of using lightweight extensions (trough UML
profiles) instead of heavyweight extensions.

We can conclude that the lightweight extensions are the most suitable
strategy for the customization of modeling languages in order to obtain
appropriate support for interoperability among different modeling approaches.
Lightweight extensions do not change the metamodels of the involved modeling
languages, and, hence, current MDD technologies (such as model compilers) can
be used over models defined with the extended modeling languages. We have
chosen the UML profile extension mechanism for the generation of the
metamodel extensions that are required to support the objectives of this thesis.

2.1.3. Definition of UML Profiles

Currently, there are many proposals related to specific domains that have used
UML profiles to implement their modeling needs [42]. Some of these proposal
have been adopted by OMG and can be found in the UML profiles specification
catalog presented in [43]. It is also possible to find UML profiles oriented to
describe the conceptual models required by model compilers involved in MDD
processes, such as WebML [44] and OO-Method [45] proposals.

In despite that UML profiles are longer used for the customization of UML,
OMG has not defined a standardized process focused on the correct
implementation of UML profiles yet. This situation is presented in the article of
France, et al. [31].

In the literature related to the definition of UML profiles, two main working
schemas can be observed: 1) the definition of a UML profile from scratch; and 2)

Background

20

the definition of a UML profile starting from a DSML Metamodel [17], which
is the metamodel that describes the conceptual constructs required by a MDD
approach.

The first working schema implies the direct definition of the UML profile
extensions in a manual and intuitive way according to the knowledge and criteria
that the UML profile designer has. An example of this implementation schema is
the SysML UML profile [46] [47]. This intuitive method for defining UML
profiles presents a high complexity degree. It difficult the verification of the
required extensions in relation to the modeling needs, and their alignment with
the UML profile standard. Also, this working schema is very time consuming and
susceptible to the introduction of human errors.

The second working schema considers a more structured and formal process.
This schema is centered on the definition of a metamodel that describes the
conceptual constructs required by a specific modeling approach. In the context of
this thesis, this metamodel describes the abstract syntax that supports the
semantics [48] of the modeling language of the MDD approach; i.e., this is the
DSML metamodel of the MDD approach. From the defined metamodel, a
mapping (or model weaving [49]) to the modeling language to be extended is
defined. This mapping is performed to identify the correspondences
(equivalences) among the conceptual constructs of the MDD approach and the
constructs of the target modeling language. Thus, it is possible to identify the
constructs of the target modeling languages that are relevant for the
representation of the MDD constructs. This mapping also allows the
identification of those MDD constructs that are not present in the target
modeling language and must be defined as metamodel extensions.

For the interoperability approach presented in this thesis, the second working
schema has been selected since it provides a methodological solution that
facilitates the correct definition of required modeling needs, and provides more
automation possibilities. Additional benefits of using a metamodel definition for
the automatic UML profile generation are the following:

• The definition of a metamodel provides a formal and precise abstract syntax
related to the conceptual constructs of the MDD approach. This allows the
specification of validation mechanism to assure the correct definition of the
syntax for the required constructs. In addition, the specification of the
abstract syntax of the target modeling language in a metamodel also
facilitates the identification of equivalences among the constructs of the
MDD approach and the constructs that the target modeling language

 Background

 21

provides. This facilitates the implementation of mechanism for the automatic
generation of metamodel extensions that integrate into the target modeling
language the modeling needs of the MDD approach.

• In general terms, the metamodel of a proprietary DSML provides a less
number of constructs than an existing (standard) modeling language that is
not defined for the MDD approach. In addition, the definition of a specific
metamodel perfectly fits with the application domain of the MDD approach.
Both, the reduced number of constructs and the closeness to the application
domain provokes that the definition of the metamodel related to the MDD
approach be more simple and intuitive than the direct definition of extensions
over the target modeling language. In addition, implementation of specific
MDD tools (such as model compilers) is easier from the proprietary DSML
metamodel than from the customized modeling language.

• There is a lot of literature related to the definition of metamodels, and there
also exist tools for the correct specification of metamodels. However, the
documentation related to the correct specification of for UML profiles is very
limited, and the existing UML tools provide little or none aid for the correct
implementation of metamodel extensions. Additionally, most of the
lightweight extension papers are oriented to define UML profiles for UML
while, in the context of this thesis, the extension capabilities the UML
profiles are considered for the customization of any MOF-based metamodel.

• The formalization of the required abstract syntax in a metamodel helps to
determinate if the modeling needs of the MDD approach can be integrated in
the target modeling language according to the extension capabilities of the
UML profiles. Additionally, if the integration is not possible by using UML
profiles, then the DSML metamodel can be also used to implement the
required metamodel extensions with another extension mechanism, such as
heavyweight extensions, or for implementation of specific model editors by
using tools such as Eclipse GMF [50].

One of the first works related to the elaboration of a UML profile form a
metamodel specification is the work presented by Fuentes-Fernández, et al. in
[51]. In this article, the metamodel is called Domain Metamodel, and some basic
guidelines for the generation of the UML profile are proposed. It proposes the
use of MOF (Meta-Object Facility) [38, 52] for defining the metamodel of the
proprietary DSML. MOF is a standard metamodeling language that has tools
support and a standardized interchange format, which facilitates the
implementation of technologies based on this standard. The use of MOF for the

Background

22

specification of the participant modeling languages also facilitates the
identification of structural similarities (equivalences) among conceptual
constructs.

This paper proposes basic guidelines for the inference of metamodel
extensions (stereotypes, tagged values, and OCL constraints) as well as for the
identification of the metaclasses that must be extended from the target
metamodel. These guidelines provide a first approach about how to automate the
UML profile generation. However, the guidelines proposed for the UML profile
construction are very basic and they not take advantage of all the modeling
features already present in the target modeling language for the representation of
the necessary MDD constructs. For instance, this approach proposes the
definition of all attributes present in a metaclass of the proprietary DSML as
tagged values in the corresponding metaclass of the target modeling language.
This not considers those existing attributes of the target metaclass that represent
a semantics that is equivalent to the attributes of the metaclass from the
proprietary DSML.

A relevant point that is missed in this paper is to indicate how the metamodel
of the proprietary DSML can be defined. In particular, to indicate how to obtain
a metamodel that allows the correct integration (definition of the required
metamodel extensions) to the target modeling language.

In [17], Selic presents a systematic approach (updated in [53]) to define
UML profiles starting from a DSML metamodel, which is also called Domain
Model. This work shows a set of criteria that must be considered at the moment
of defining the corresponding metamodel. These criteria are oriented to provide a
correct integration to the target modeling language (UML in this article). In
addition, Selic also proposes a list of elements that must be considered for
mapping the defined metamodel into a UML profile.

The Selic’s work provide interesting information about the new features
introduced in the UML profile specification from UML 2.x specification [41]. At
this point, important aspects of the UML profile extensions capabilities are
presented, such as the capability of import model libraries, and the possibility of
introduce new association in the extended metamodels by means of object-valued
property definition

This is one of the former works that present guidelines for an appropriate
DSML metamodel definition, which supports the appropriate specification of the
required UML profile. Thus, from the defined DSML metamodel, it is possible

 Background

 23

to identify equivalences with the metamodel of the target modeling language,
which facilitates the identification of the elements to be extended and the
extensions that must be defined. This is also a relevant point to be considered to
obtain an automated UML profile generation.

However, the guidelines proposed for the UML profile construction are very
simple, which impede an effective implementation of automatic UML profile
generation solution. Additionally, it not explain how to solve the differences
between participant metamodels (source DSML and target modeling language)
that prevent the correct identification of the elements to be extended and
definition of required modeling extensions.

Going deeper in the line of automating the UML profile generation from a
DSML metamodel, there are two remarkable articles, these are: Lagarde, et al.
[54] and Wimmer, et al. [19].

The Lagarde, et al. article proposes the identification of equivalences between
a source metamodel (DSML metamodel) and a target metamodel (UML
metamodel) through the definition of an initial skeleton of the required UML
profile. Later, the defined skeleton is refined to obtain the final UML profile
through patterns identification. A positive aspect of this work is the definition of
an appropriate input for the mapping of equivalence between metamodels and
later generation of the corresponding UML profile. This input is the UML
profile skeleton, which demands additional knowledge about UML profile
definition. However, this approach is mainly centered on binary associations
between classes, the rest of metamodeling constructs are not considered, and,
hence, it is not possible to perform a complete generation of the UML profile
from the DSML metamodel. The application of the Lagarde, et al. proposal is
presented in [55] and [56].

The Wimmer, et al. article proposes a semiautomatic approach for the
integration of DSML and UML. In this proposal a new specific language for the
definition of a weaving model (mapping model) between the metamodels involved
is defined. This model weaving definition is oriented to identify the equivalences
among the different constructs of the DSML metamodel and the UML
metamodel. In this paper, the EMOF specification [38] is used for the definition
of the reference DSML metamodel, in particular, the eclipse EMF
implementation [57]. Both, the EMOF metamodel and the mapping model, are
used as input for a model-to-model transformation tool that is based on ATL.
This clearly shows how the automatic generation of the corresponding UML
profile can be implemented by using model-to-model transformation technologies,

Background

24

such as ATL [58] or QVT [59], which are based on mappings defined at
metamodel level.

However, this proposal does not support all possible mappings that can be
defined between the participant metamodels. It only supports certain one-to-
many (1:M) mappings (one element of the DSML metamodel is mapped to many
elements of the UML metamodel), and it not supports M:M mappings. This
limitation is relevant for the effective application of this proposal into real MDD
approaches, where the mapping among the different conceptual constructs of the
involved metamodels can be 1:M, M:1, and M:M.

Finally, it is important to point that even though UML profile is the
customization solution that better fits to the purpose of this thesis, this extension
mechanism can be improved to obtain a sound support for model-driven
interoperability. Works such as [60] show certain aspects that can be improved of
UML and indicate how the UML profile specification has been evolving from
previous UML versions.

Following, the OO-Method approach and the i* framework are introduced.
These approaches are used in the two application scenarios defined to verify and
improve the proposed MDD interoperability approach.

2.2. The OO-Method MDD Approach

The OO-Method approach is an object-oriented MDD method successfully
applied to the software industry [12]. OO-Method separates the business logic
from the platform technology in order to allow the automatic generation of final
applications by means of well-defined model transformations [61]. OO-Method
performs this automatic code generation from a conceptual representation of the
required software systems, which is defined by means of the OO-Method
conceptual model.

The OO-Method conceptual model is centered on the specification of
Management Information Systems (MIS) in a precise way and without
ambiguity. This conceptual Model captures the static and dynamic properties of
the system in a Class Model, a Dynamic Model, and a Functional Model. It also
allows the specification of the user interfaces in an abstract way through the
Presentation Model. From these four models that comprise the OO-Method

 Background

 25

conceptual model, the class model is the most important, and the other models
are defined (or derived) from this central model.

The automatic generation of the final software solution is performed starting
from the OO-Method conceptual model by applying the OO-Method software
production process that is presented in Figure 4. This production process consists
in the automatic generation of an Execution Model [62] [63] from the OO-
Method conceptual model by means of a set of model-to-model transformations.

The transformations performed to obtain the Execution model are related to
transforming the constructs of the Conceptual Model into the corresponding
software representations (i.e. the preconditions of services, the derivation formula
for the derived attributes, the body of the services, the integrity constraints for
classes, the valid state transitions, the filters formula for the presentation, etc.).
Therefore, the execution model is configured according to the target
implementation platform that is selected for the conceptual model compilation.

Next, by means a second model transformation (model-to-code) the generated
execution model is automatically transformed into the final implementation
model, which corresponds to the source code of the intended software system.

Figure 4. The OO-Method Software Production Process

The industrial application of OO-Method is performed by means of a suite of
modeling tools and a model compiler developed by the company CARE
Technologies. This MDD solution is called OlivaNova The Programming
Machine [16, 64]. Figure 5 shows an interface provided by the Olivanova
compilation tool, which is related to the selection of the different target
implementation platforms supported by the model compiler, such as JSP, ASP,
C#, EJB, SQL, ORACLE, DB2, etc.

The generated applications have a three-tier architecture: one tier for the
client component, which contains the graphical user interface; one tier for the
server component, which contains the business rules and the connections to the
database; and one tier for the database component, which contains the persistence
aspects of the applications.

Background

26

Figure 5. Compilation alternatives provided by the Olivanova technology

It is important to remark that the software generation performed by the OO-
Method model compiler is obtained from a conceptual model that is independent
of the implementation platform. Hence, a same OO-Method model can be used to
automatically generate software products using different programming
technologies and persistence platforms. With this, the relevance of defining
appropriate conceptual constructs for the modeling languages that are related to
MDD approaches is demonstrated. Following, the four models that comprise the
OO-Method conceptual model are briefly explained.

2.2.1. The OO-Method Class Model

The class model of the OO-Method approach (that is also known as OO-Method
object model) describes the structural part of the system. This model allows the
specification of classes, attributes, derived attributes, events, transactions,
operations, preconditions, integrity constraints, agents, and relationships between
classes. The main concepts of this class model are well-known because most of
they are the same as those used in the UML class model [65].

The main conceptual construct is the class. A class describes a set of objects
that share the same specifications of characteristics, constraints, and semantics. A

 Background

 27

class can have attributes, services, integrity constraints, and relationships with
other classes of the model.

The attributes represent features of a class. The values related to attributes
can also be derived from the values of other attributes or constants.

The services of a class are basic components that are associated with the
specification of the behavior of a class. The services can be events, transactions or
operations. The events are atomic services, indivisible, which can assign a value to
an attribute. The transactions are a sequence of events or other transactions that
have two ways to end the execution: either all involved services are correctly
executed, or none of the services are executed. Finally, the operations are a
sequence of events, transitions or other operations, which are executed
sequentially independently of whether or not the involved services have been
executed correctly. The services can have preconditions that limit their execution.
The preconditions are conditions that must hold for the execution of a service.

The classes can also have integrity constraints, which are expressions of a
semantic condition that must be preserved in every valid state of each object of
the involved class.

The relationships between classes can be generalizations, binary associations,
or agent relationships. The agent relationships are a particular construct of the
OO-Method approach, which represents the visibility and execution properties
that an object of the class model has over the attributes and services of other
objects of the model.

2.2.2. The OO-Method Dynamic Model

The OO-Method dynamic model is comprised of two diagrams: the state
transition diagram and the object interaction diagram. The state transition
diagram defines the valid lives of the objects that belong to a class. This diagram
has the following conceptual constructs: initial state, final state, intermediate
states, and transitions. Most of the concepts of this diagram are the same as those
used in the UML state transition diagram [65]. The initial state represents the
state that objects are in immediately before they are created. The final state
represents the state that objects are in immediately after they are destroyed. The
intermediate states represent the set of possible stages of an object during its life.

Background

28

The intermediate states have incoming and outgoing transitions, which represent
a change of the state of an object. The transitions are activated by an agent that
executes a service and can also have a condition to execute the service when it is
required.

The object interaction diagram defines the interactions among the objects of
the system. To do this, the triggers of the classes of the system and the global
transactions or operations of the system are defined. The triggers are defined in a
specific class. Each trigger is composed by a condition and a service to be
executed. Each trigger service is executed at background; i.e., the result of a
trigger execution (either success or failure) is not visible for the user.

The global transactions and operations are sequences of services, like the
transactions and operations of the class model are. The global services can involve
services of any class of the system. Usually, these services are defined when it is
necessary to execute services of objects that are not related.

2.2.3. The OO-Method Functional Model

The functional model of the OO-Method approach allows the specification of the
effects that the execution of an event has over the values of the attributes of the
class that owns the event.

The functional model uses valuations to assign values to the corresponding
attributes. The valuations can have preconditions. These preconditions and the
effects of the valuation are specified by means of well-formed, first-order logic
formulas.

The change that a valuation produces in the value of an attribute is classified
into three different categories: state, cardinal, and situation. The state category
implies that the change of the value of an attribute only depends on the effect
specified in the valuation formula. The cardinal category increases, decreases or
initializes the numeric-type attributes. The situation category implies that the
valuation effect is applied only if the current value of the involved attribute is
equal to a predefined value.

2.2.4. The OO-Method Presentation Model

In order to specify the interaction between the users of an application and the
system, the OO-Method approach allows the specification of views in the object

 Background

 29

model. A view corresponds to a set of interfaces, which are the communication
point between agents (abstract representation of system users) and classes of the
OO-Method class model. When the views of a system have been defined, the
interaction model of each view must be specified.

The presentation model allows the specification of the graphical user
interface of an application in an abstract way [66]. Thus, it is possible to
completely specify the abstract graphical user interface of the intended
applications. Then, the Model Compiler transforms the presentation model into
the corresponding concrete user interfaces to characterize those parts of the final
software product that represent the user interaction.

2.3. The i* Framework

In general terms, the Goal-Oriented Requirement Engineering (GORE)
approaches are oriented to obtain the ‘why’ of the intended systems through the
analysis of organizational scenarios [15, 67]. Among several existing GORE
approaches, the i* framework [68] is one of the most widespread modeling and
reasoning frameworks.

Figure 6. The i* notation

The i* framework has been originally defined by Eric Yu in [6]. It is focused
on modeling and reasoning about organizational environments and their

Background

30

information systems. It emphasizes the analysis of strategic relationships among
organizational actors capturing the intentional requirements. The term actor is
used to generically refer to any unit for which intentional dependencies can be
ascribed. Actors are intentional, in a sense that they do not simply carry out
activities and produce entities, but they also have desires and needs.

The i* framework is comprised by two complementary models: the Strategic
Dependency model, and the Strategic Rationale model. Figure 6 shows the
notation related to the definition these i* models.

2.3.1. The i* Strategic Dependency Model

According to the definition presented in [69], the Strategic Dependency (SD)
model is used to describe the dependency relationships among various actors in an
organizational context. This model is focused on external relationships among
actors, which are called dependencies. The SD model is defined by means of a set
of nodes and connecting links, where nodes represent actors (depender and
dependee) and each link indicates a dependency (dependum) between two actors.
In the SD model, the internal goals, knowhow, and resources of an actor are not
explicitly modeled. In this model, we distinguish among four types of dependency
links that are based on the type of dependum element, which can be goal,
resource, task, and softgoal.

Figure 7. Strategic Dependency model of a buyer-driven e-commerce system

 Background

 31

In the i* context, a goal is a condition or state of concerns that an actor wants
to achieve. A resource is a physical or informational entity that must be available
for an actor. A task specifies a particular way of doing something, which can be
decomposed in small sub-tasks. Finally, a softgoal is associated to non-functional
requirements.

Figure 7 shows an example i* SD model that has been defined by Eric Yu in
[70]. This i* model is related to a buyer-driven ecommerce system. In this system,
the customer depends on a middleman to find a service provider who is willing to
accept a price set by the customer. The customer submits a priced request to a
middleman. The middleman forwards the request to suppliers. If a supplier
decides to accept the request, it makes an agreement with the middleman. The
middleman expects the customer to pay for the purchase in time.

2.3.2. The i* Strategic Rationale Model

The Strategic Rationale (SR) model is used to describe stakeholder interests and
concerns, and how they might be addressed by various configurations of systems
and environments [69]. The SR model expands the description of a given actor
and all rationales involved on its intentions, providing support for modeling the
reasoning of each actor about its intentional relationships. In addition to the
dependencies present in the SD model, three new types of relationships are
incorporated in the SR model. These relationships are the following:

1. Task-decomposition links. These links indicate the elements that are
necessary to perform a certain task.

2. Means-end links. These links indicate when a task is a mean to achieve a goal

3. Contributions links. These links indicate how a model element can contribute
to achieve a soft-goal.

Summarizing, an SD model provides a general vision of i* actors and their
dependencies. An SR model is a detailed view of an SD model, which shows the
internal elements related to the defined actors. These internal elements must be
specified inside of the corresponding actor’s boundary. Thus, the constructs of an
SD model can be considered as a subset of the constructs of a SR model. Figure
8 shows the SR model for the example buyer-driven ecommerce system.

Background

32

Figure 8. Strategic Rationale model of a buyer-driven e-commerce system

Chapter III. �
������	������

The emergence of several model-driven development (MDD) proposals requires
the definition of proper interoperability mechanisms that facilitate the reuse of
knowledge in the MDD community by taking advantage of already defined
modeling languages, tools, and standards. However, there are no recent studies
that cover the existing interoperability alternatives in the model-driven domain.
This chapter confronts this situation through a systematic analysis of recent
interoperability approaches that provide relevant features for MDD processes.
The results of this analysis are presented in a general interoperability
framework, which presents those aspects that are already covered by existing
proposals as well as those pending subjects that, from our point of view, are
future challenges to be faced in the model-driven interoperability domain.

Related Work

34

The interoperability of multiple modeling approaches in different stages of a
MDD process is a natural alternative for obtaining a proper software
representation at different abstraction levels. This facilitates the integration of
MDD approaches and already defined modeling languages, tools, and standards.
The interoperability in MDD processes also facilitates the integration of different
development groups in a common development project (e.g., software factories
with different modeling approaches and tools [9]).

However, there is a lack of appropriate references that indicate and compare
the current state of approaches that are related to supporting model-driven
interoperability. Moreover, the proposals that define an interoperability
framework for MDD processes are still in a theoretical space [71] and are not
aligned with current standards, interoperability approaches, and technologies.

In this chapter, we deal with this issue by performing a systematic literature
review of the existing proposals related to supporting interoperability in a model-
driven domain. The results obtained from this systematic review are analyzed to
indicate the interoperability aspects that have already been tackled by existing
approaches as well as those aspects that are not completely solved and must be of
concern in future research.

The rest of this chapter is organized as follows: Section 3.1 shows the
planning of the systematic review. Section 3.2 presents the reviewed proposals by
indicating their most relevant aspects and providing a summary of the different
features analyzed. Section 0 presents our proposal for a common interoperability
framework for MDD processes. Finally, Section 3.4 presents our conclusions and
further work.

3.1. Planning the Systematic Review

The aim of this systematic review is to present an overview of the current state of
Model-Driven proposals that provide relevant features for supporting the
interoperability in MDD processes. According to Kitchenham [72], the following
three phases are essential to perform an appropriate systematic review:

• Planning the Review: In this phase, the need of the review, the research
questions, and the review protocol are defined.

 Related Work

 35

• Conducting the Review: In this phase, the selection of primary studies, the
quality assessment of the studies, the data extraction and monitoring, and the
data synthesis are performed.

• Reporting the Review: In this phase, the results obtained from the review are
reported.

The planning phase of the systematic review is presented in this section. The
conducting phase is presented in Section 3.2. The reporting phase corresponds to
the documentation of the review, which is presented throughout this chapter.

3.1.1. Research Question

In order to explore the evidence of model-based approaches with characteristics
that support interoperability in MDD processes, we have formulated the
following research question (RQ): What model-based approaches provide
relevant interoperability features for model-driven development processes?

The features that we have considered to be relevant are the following:

• Management of Heterogeneity (MH): The proposal manages the structural
differences that exist among modeling approaches that must interoperate.

• Use of Standards (US): The proposal considers the use of existing standards
related to modeling, metamodeling, or model transformation specifications.

• Tool support (TS): The proposal is presented at the theoretical level only, or
by contrast, it has some kind of supporting technology.

• Application Process (AP): The proposal provides a well-defined process for
its proper application.

• Interoperability Verification (IV): The proposal defines mechanisms to verify
the correct interoperability among the modeling approaches involved.

The research question has been structured following the PICOC
(Population, Intervention, Comparison, Outcome, Context) criteria [73]. The
values for each criterion are the following:

Population: Model-based approaches.

Intervention: Interoperability approaches based on model interchange.

Comparison: The approaches are compared in terms of the features presented
above.

Related Work

36

Outcomes: Identification of a model-based interoperability framework.

Context: No context restriction.

3.1.2. Protocol

A review protocol specifies the method that is used to undertake a specific
systematic review. A pre-defined protocol is necessary to reduce the possibility of
researcher bias. In addition, the protocol must be reviewed and corrected several
times by the systematic review team in order to obtain the best possible protocol.
The contents of the final protocol used to perform the systematic review are
explained in the following sub-sections.

Search Strategy for Primary Studies.

The search terms used in our systematic review were constructed using the
following strategy: (1) Deriving major terms from the questions by identifying
the population, intervention, and outcome; (2) Identifying alternative spellings
and synonyms for major terms; (3) Using the boolean OR to incorporate
alternative spellings and synonyms; and (4) Using the boolean AND to link the
major terms. Thus, the construction of the search strings is based on the
following terms:

Population: model, model-driven, model-based, conceptual model, domain model,
modeling, diagram, schema, schemata.

Intervention: interoperability, interchange, integration, mapping, transformation,
weaving.

Outcomes: framework, proposal, approach, schema, scenario, tool, process,
solution.

The search process is organized in two stages (first and second): The first stage
identifies candidate primary sources by using the search strings on the following
electronic databases: IEEE Xplore, ACM Digital Library, Springer Link,
Science Direct, Google Scholar. In order to assess the results of the search
process, we compared the results with a small sample of primary studies that we
already knew [74-78] in order to ensure that the search process was able to find
the sample.

 Related Work

 37

In the second stage, the references of the candidate primary sources identified
in the first phase are revised to locate additional candidate primary sources. This
process must be repeated until no further papers seem relevant.

Study Selection Criteria and Selection Procedures

The study selection criteria are used to determine which studies are included in,
or excluded from, a systematic review.

The inclusion criteria were the following:

• The primary studies must have been published during the last five years
(2007-2011). We consider that the proposals defined from the year 2007 on
are based on current standards and technologies for modeling, metamodeling,
and model transformations.

• The papers must present one or more features related to the research
question.

• The papers must present results that are related to the interchange of
information.

The exclusion criteria were the following:

• Approaches that present a pure model transformation or model integration.

• Older studies related to primary studies. We consider that the most recent
publications provide updated versions of the contributions involved.

From the results obtained by the search strategy, the selection procedure is
applied. First of all, duplicated studies had to be eliminated. Then, the title and
abstract of the remaining studies were read by reviewers. If the nature of some
studies was not clear, the reviewers also read the introduction and the conclusion
of these studies. If the nature of the studies was still not clear, the reviewers had
to read the entire study.

Data Extraction Strategy

The data extraction strategy defines how the information required from each
primary study is obtained. This is a subjective process that, by nature, is error-
prone. In order to minimize errors, we designed a template with 2 sections:
general information, and specific information.

Related Work

38

In the general information section, the following information is extracted
from the studies and saved: title of the study, authors, conference or journal,
volume and issue for journals, pages, and year of publication.

In the specific information section, the data extraction considers the features
previously indicated for the research question: Management of heterogeneity
(MH), Use of Standards (US), Tool support (TS), Application Process (AP), and
Interoperability Verification (IV). Additionally, we extract the following two
features:

• Meta-Extensions (ME). This feature is related to the definition of new
information (extensions) in the involved modeling approaches to provide
additional properties that are necessary by the interoperability approach.

• Pivot Artifact (PA). This feature is related to the use of an intermediate
artifact (such as metamodel or ontology) to perform the interchange of
information among modeling approaches.

• Application Domain (AD). This feature indicates the application domain that
is related to the analyzed approach. It is important to remark that even
though a proposal can be related to a specific domain, it has been selected
because provide contributions that can be generalized in the MDD context.

Synthesis Extraction Strategy

The synthesis of the studies is presented in a table to facilitate the understanding
of the information recovered. The table allows the readers identifying the
similarities and differences among the studies selected in the systematic review.

3.2. Revision of Interoperability Approaches

In the selection of primary studies, 219 candidate primary studies were obtained
after the revision of title and abstracts. Then, these candidates were analyzed by
the reviewers applying the selection procedure, and the inclusion/exclusion
criteria to finally obtain 33 primary studies. The review was finished on March
20th of 2011.

Following, the selected studies are briefly presented. We have grouped the
revised approaches according to their main contribution (some approaches

 Related Work

 39

provide more than one classification contribution). At the end of this section, a
summary table (see Table 1) reports the results of the review.

3.2.1. Model Weaving
The model weaving approach is very popular in model transformation and model
interchange contexts. It consists of the definition of a specific mapping model
(called weaving model) among the metamodels of involved modeling approaches.
The constructs of this weaving model are represented by means of a specific
metamodel. Thus, weaving models indicate semantic equivalences through the
definition of links among the metamodels’ constructs. These links are considered
as semantic connection points because they indicate those constructs (from the
involved metamodels) that have an equivalent meaning (semantics) in the
application domain. The definition of these links can be extended with additional
information defined to manage structural differences among the linked
constructs.

Fabro and Valduriez in [79] propose the use of weaving models between two
metamodels to automatically infer model-to-model (M2M) transformations based
on the ATL tool [80]. These transformations automate the translation between
models defined with the involved metamodels.

The proposal presented in [78] by Kappel et al. is defined to support the
interoperability among modeling tools. This proposal is based on a bridge
metamodel (weaving metamodel) for the definition of semantic metamodel links
(bridges). The defined bridges are used to transform the involved metamodels into
equivalent petri-net representations. The petri-net representation is used to
operationalize M2M transformations and to perform a formal verification of the
structural differences (heterogeneities) among metamodels, which may produce
interoperability conflicts.

The proposal presented by Klar et al. in [81] shows how the MDD
interoperability can be used to support a complete development process. In
particular, this proposal is centered on the integration of requirement modeling
into the MDD process. However, it does not consider how to integrate specific
aspects related to a particular MDD process into the requirement approach.
These MDD aspects are necessary to obtain an appropriate requirement
specification in the domain of the reference MDD approach.

The proposal presented in [82] by Guerra et al. consists of a pattern-based
approach for defining bidirectional relations (a weaving model) among modeling

Related Work

40

approaches. The main contributions of this proposal are the definition of specific
inter-modeling patterns, which allow interoperability conflicts to be
automatically identified. These patterns also facilitate the generation of model-to-
model transformations, model matching, and traceability information.

3.2.2. Meta-Extensions
Seifert et al. in [83] indicate the advantages of using metamodels and model-to-
model transformations to prevent the coupling among tools that must
interoperate. This approach analyzes the pros and cons of proactive and
retroactive tool integration alternatives. From this analysis, it suggests the use of
a role-based metamodeling approach, which involves to extending the
metamodels of tools with specific role information (defined in a role metamodel)
to improve the tool interoperability.

The BIZYCLE framework applied by Milanovic et al. in [84] is defined to
achieve applications and data integration by means of semantic annotations.
These annotations are used to identify both semantic and structural conflicts that
can be solved in a semi-automatic way.

The Tran et al. work [76] suggests the extension of the modeling approaches
that must interoperate to specify the information related to a MDD process.

The proposal presented by Agostinho et al. [85] introduces an interoperability
framework for business networks, which is based on UML for the definition of
the involved metamodels. An interesting feature of this approach is the use of
UML profiles to manage model heterogeneities and to obtain an appropriate
model mapping. This work refers to those transformations that imply a structural
change of the involved constructs as model altering morphisms.

3.2.3. Interoperability Verification
Radjenovic and Paige in [86] present an interoperability approach that is based
on an initial identification of the issues that may prevent an appropriate model
integration. This work considers both structural and behavioral interoperability
conflicts. The detection of interoperability issues is performed by means of the
transformation of the involved metamodels into a proprietary graph
representation, which is called SMILE-X.

The proposal presented by Polgár et al. [87] indicates the need for
interoperability in a common development process. In this approach, a reference

 Related Work

 41

ontology is used to verify whether or not the involved modeling approaches are in
conformance with the target development process.

3.2.4. Pivot Metamodel
The differences between a pivot metamodel and a weaving metamodel are related
to their definition and use. A weaving metamodel is instantiated to represent
links among constructs of the involved metamodels. From these weaving models,
specific M2M transformation rules can be inferred according to a specific
transformation approach, such as ATL [80], QVT [59], or ETL [88]. However,
weaving models do not participate in the execution of the transformation rules.
By contrast, a pivot metamodel can be a pre-defined representation of concepts
(or constructs) for the interoperability domain or can be generated from the
metamodels of the modeling approaches that must interoperate. Also, a pivot
metamodel can be instantiated during the transformation process generating an
intermediate pivot model.

The proposal presented in [9] by Bruneliere et al. defines a pivot metamodel
to solve conflicts related to the heterogeneity among metamodels of modeling
tools. This proposal is also based on current metamodeling standards and
modeling tools.

The DUALLY approach presented by Crnkovic et al. [89] shows that the
use of a pivot metamodel reduces the complexity of the necessary transformation
rules. These rules can also be automatically inferred from the pivot metamodel
definition.

The proposals presented by Ziemann et al. [90] and Jankovic et al. [91] are
related to enterprise modeling. They use the POP* metamodel [92] as pivot
metamodel. According to these proposals, the involved modeling approaches must
be mapped to the POP* metamodel to determine common interrelation points.
Similar approaches are presented by Baumgart [93] in the domain of embedded
systems, and by Mahé [94] for visualization tools.

Berger in [95] considers the definition of a pivot metamodel that comprises
all the conceptual constructs related to the modeling approaches that must
interoperate. This pivot metamodel (defined as generic metamodel in the paper) is
used as an interface among the metamodels of the involved modeling languages,
which isolate the mappings from the metamodel heterogeneities. Later, by means
of a set of pre-defined patterns, a model weaving among the involved metamodels
is automatically generated to perform model-to-model transformations.

Related Work

42

Vallecillo in [96] proposes the generation of a global model for the
combination of different modeling approaches. The generation of this global
metamodel is based on a viewpoint unification, which intends to comprise the
benefits related to three metamodel integration techniques: metamodel extension,
metamodel merge, and language embedding. The use of a common model
obtained by the integration of the involved modeling approaches is also presented
in the proposal of Coutinho et al. [97], which is related to organizational
modeling.

In [98], Moreno and Vallecillo propose a web development interoperability
framework, which is centered on a generic metamodel for web development
methods. Thus, by means of QVT transformations, the modeling approaches
related to the different development method must be mapped to the reference
metamodel. Evidently, due to the use of QVT, the proposal requires that the
involved modeling approaches be defined in MOF-compliant metamodels.

Diskin et al. [99] propose the generation of a pivot metamodel, which only
indicates overlaps among different modeling approaches. This overlap metamodel
reduces the complexity related to the definition of a big metamodel that covers all
the modeling constructs of the involved modeling approaches. However, this
proposal is still theoretical and is not supported by tools or standards.

In the work presented by Biehl et al. [100], the relevance of defining a bridge
between technical spaces is clearly stated. This technical bridge is oriented to
translating the metamodels of the involved modeling tools into equivalent
representations that are defined using a common metamodeling language, i.e., this
solves technical interoperability conflicts. Later, structural bridges are defined in
the common interoperability space to perform M2M transformations among the
metamodels generated by the technical bridges. A similar approach is defined by
Jouault and Guéguen in [101]. In this approach, concrete modeling tools are
translated into equivalent metamodeling representations, which are defined with
a common metamodeling language. The resultant metamodel is called virtual tool.
A similar view is presented by Bambrilla et al. [102], whose work proposes the
translation of Domain-Specific Languages (DSL) to equivalent MOF
representations.

In addition, in a previous work presented by Lukácsy et al. in [103], the
outputs generated by different information sources are transformed into
equivalent models (called interface models) to perform interoperability among
web services. These interface models are expressed in a UML-like language. An
improvement to this kind of service-oriented works is presented by Tran et al. in

 Related Work

 43

[76]. In this paper, the authors propose a reverse-engineering mechanism to
automatically infer model representation from services’ views. The inference
models are integrated in a view-based modeling framework to perform integration
of services. These models are also used to generate code in other implementation
platforms by following a MDD process.

The ModelBus approach presented by Hein et al. [104] is oriented to tool
interoperability among nodes that participate in a common development scenario.
The interoperability is performed by means of a repository of models and
modeling services (such as model transformation and model verification services).
This approach is based on the original idea of model bus presented in [105],
which indicates two important aspects that must be considered to achieve the
MDD interoperability: the functional connectivity (related to metamodel
heterogeneity), and the protocol connectivity (related to technical heterogeneity).

3.2.5. Pivot Ontology
Höfferer in [106] presents an interesting analysis related to the use of ontologies
and metamodels to achieve the model-driven interoperability. Even though this
work is framed in the context of business-process modeling, the analysis and
conclusions obtained can be generalized to any model-interoperability approach.

The Sunindyo et al. proposal [107] uses a common bus to perform the model-
driven interoperability (such as in [104]). This proposal uses ontology mappings
to identify common semantic links among different modeling approaches; the
definition of these links is guided by a process for automatic discovery of the
involved process models.

Roser and Bauer present in [74] an approach that uses an ontology
specification (based on OntoMT) as an intermediate model for managing the
heterogeneities and similarities among the metamodels of the involved modeling
languages. It is also used to reuse the information of already defined M2M
transformations, and to reduce the complexity related to changes in the versions
of the involved metamodels. This approach distinguishes two kinds of model
transformations: 1) mappings, which are horizontal model transformations
defined at the same abstraction level; and 2) refinement transformations, which
imply a change from a higher (less detailed) abstraction level to a lower (more
detailed) abstraction level.

Other ontology-based approaches are the defined by Berre et al. [108], which
is related to service interoperability; and the proposal presented in [109] by

Related Work

44

Barnickel and Fluegge. This last work proposes the idea of semantic mediation at
the domain level to improve the efficiency and the effectiveness of the ontology-
based interoperability. The semantic mediation defines a pivot ontology for each
involved domain, which groups a set of conceptual schemas. According to these
authors, this approach provides a balanced interoperability solution, which is at a
middle point between defining ontologies and mappings for each conceptual
schema and the definition of a common pivot ontology.

Opdahl in [110] presents a modeling approach that is framed in the context
of business processes. It facilitates language interoperability by applying the
Unified Enterprise Modeling Language (UEML) [111]. This approach requires
the translation of the involved DSMLs into the equivalent UEML representation.

Also in the context of business processes, the proposal presented by Costa et
al. [112] provides a model-based platform for the enterprise interoperability. This
proposal uses a reference ontology to identify semantic equivalences among the
information (messages) that must interoperate. This information (defined in a
XML format) is extended with annotations to manage heterogeneities in relation
to the reference ontology, which are used to perform appropriate model-to-model
transformations.

3.2.6. Threats to Validity
There are three main aspects in describing the validity of a study: construct
validity, internal validity, and external validity.

The main threat to the construct validity was identified:

• Selected databases are not representative to our study. To minimize this
threat, we selected the most representative electronic databases for the
software engineering field (IEEE Xplore, ACM Digital Library, Springer
Link, Science Direct, and Google Scholar).

The main threat to the internal validity was identified:

• The systematic review was performed by only two people. To mitigate this
threat, the people that performed the systematic review had knowledge about
conducting a review and interoperability of MDD approaches.

The main threat to the external validity was identified:

• The results obtained cannot be replicated by other people. To mitigate this
threat, we detailed the review protocol; we systematically conducted the

 Related Work

 45

review following this protocol; and we used the facilities that electronic
databases provide to perform the search.

Table 1. Summary of the studies analyzed in the systematic review

Author Year MH US TS AP IV ME PA AD

Agostinho [85] 2011 Y Y N N N Y N Bussiness Networks

Barnickel [109] 2010 Y N N N N N O Services

Baumgart [93] 2010 Y N N N N N M Embeeded Systems

Berger [95] 2010 Y N Y N N N M General

Berre [108] 2009 Y Y N N N N N Services

Biehl [100] 2010 Y Y Y N N N M Tool Interoperability

Brambilla [102] 2008 N Y Y Y N N N Migration DSL to MOF

Brunelière [9] 2010 Y Y Y Y N N M General (modeling tools)

Costa [112] 2007 Y N Y N N Y O Bussiness Processes

Coutinho [97] 2009 Y Y Y Y N N M Organizational Modeling

Crnkovic [89] 2009 N Y Y Y N N M Component Models

Diskin [99] 2010 Y N N Y Y N M General

Fabro [79] 2009 N N Y N N N N General

Guerra [82] 2011 Y N Y Y Y N N General

Hein [104] 2009 Y Y Y Y N N M Tool Interoperability

Höfferer [106] 2007 Y N N N N N O Bussiness Processes

Jankovic [91] 2007 N N N Y N N M Enterprise Modeling

Joualt [101] 2009 Y N N Y N N M Tool Interoperability

Kappel [78] 2011 Y Y Y Y Y N N General

Klar [81] 2008 N Y Y Y N N N RE

Lukácsy [103] 2007 Y N Y N N N M Services

Mahé [94] 2010 Y N Y N N N M Visualization Tools

Milanovic [84] 2009 Y Y Y Y Y N O General

Moreno [98] 2008 Y Y Y N N N M Web Development Tools

Opdahl [110] 2010 Y N Y N N N O WebMl and UML

Polgar [87] 2009 Y Y Y Y Y N O MDD

Radjenovic [86] 2010 Y N Y Y Y N N General

Roser [74] 2007 Y N Y N N N O General

Seifert [83] 2010 N N N Y N Y N Tool Interoperability

Sunindyo [107] 2010 Y N Y Y N N O Signal Engineering

Tran [76] 2008 Y Y Y Y N Y N Services

Vallecillo [96] 2010 Y N N N N Y M General

Ziemann [90] 2007 Y N Y Y N N M Enterprise Modeling

Table 1 shows a summary of the primary studies analyzed by indicating the
results obtained for the features that are involved in the data extraction strategy,

Related Work

46

which correspond to the following: Management of heterogeneity (MH), Use of
Standards (US), Tool support (TS), Application Process (AP), Interoperability
Verification (IV), Meta-Extensions (ME), Pivot Artifact (PA), and Application
Domain (AD). In the table, letters Y and N mean Yes and No respectively. In
the PA column, the letter O means Ontology and the letter M means Metamodel.

3.3. A Common Interoperability Framework

This section analyzes the results of the review in terms of a common
interoperability framework for MDD processes. There is no consensus in the
terminology used by the proposals. For instance, the concept of pivot metamodel
is called global model [96], generic metamodel [95], or overlap model [99]. Thus,
a first challenge to confront is the alignment of concepts using a common
terminology. With the proposed interoperability framework, we provide a first
contribution in this direction. The general schema of this framework is presented
in Figure 9.

An important aspect considered in this framework is the use of a pivot
artifact. According to the review, 17 approaches (51.5% of the approaches) use a
pivot metamodel and 7 approaches (21.2%) use a pivot ontology, which
correspond to 72,7% of the total approaches analyzed. The use of a pivot artifact
is oriented to managing structural heterogeneities through the definition of
semantic links (weavings). We recommend the use of pivot metamodels for this
purpose since the definition of weavings among metamodels and ontologies (also
called lifting [113]) implies additional complexity. The work in [78] discusses in
more detail the differences of using metamodel and ontology as pivots of
interoperability processes. Furthermore, we consider the use of ontologies to be
more appropriate for discovering semantic equivalences among modeling
approaches, which can be used in the automatic generation of the pivot artifact
and weavings. Nevertheless, this requires that the modeling approaches involved
be supported by a standard ontological specification, which is another important
challenge to be confronted in the MDD domain [78].

 Related Work

 47

Figure 9. MDD-oriented Interoperability Framework

The use of modeling weavings is another important aspect to be considered in
the framework, which separates the identification of semantic links from the final
implementation of M2M transformations. The model weaving approach is put in
practice by 21 (63.6%) of the analyzed approaches.

The use of a common interoperability space with a unique metamodeling
language is an aspect that is considered by all the analyzed approaches. This may
imply the redefinition of metamodels (or specific tools’ interchange formats) from
their original specification to the format used in the interoperability space.
Hence, specific bridges, such as the ones presented in [100, 101], become
necessary.

Also, we want to remark that only 4 proposals [76, 83-85] (12,1% of the
approaches) indicate the need for defining modeling extensions to properly
perform the model interoperability. We consider the use of metamodel extensions
to be an important instrument in integrating specific MDD information in the
involved modeling languages. Without these extensions, the necessary
transformations cannot be totally automated, and human intervention is required.
This is a time-consuming and error-prone task. These extensions also prevent the
loss of necessary MDD information when the transformation of models is
performed.

The verification of the interoperability is another aspect that has been
partially tackled by the analyzed approaches. Only 6 approaches (18.2%) consider
some kind of verification mechanism. These mechanisms are mainly focused on

Related Work

48

an appropriate specification of mappings and model transformations
(interoperability specification). However, none of the analyzed approaches
consider the verification of the interoperability execution, i.e., the proper
instantiation of the involved artifacts. In a real context, the defined models may
contain errors or may not provide all the information necessary to perform the
interoperability tasks, such as the execution of M2M transformations.

3.4. Conclusions

The results obtained from the systematic review clearly demonstrate that
interoperability related to model-driven approaches is a hot research topic, which
has received special attention over the last five years.

From the results obtained, redundancy in the works analyzed can be observed
since different approaches tackle similar issues but are not related to each other.
The systematic review presented here can be used as a reference point to contrast
specific contributions with current approaches. Specifically for those novel
interoperability approaches that focus on supporting MDD processes. In this
context, we have defined a common interoperability framework for MDD, which
is based on the results of this revision.

Despite the numerous interoperability approaches found, there still are
important challenges that must be tackled, such as consensus in the terminology
and concepts used, definition of mechanisms to facilitate or even automate the
semantic mapping definition, appropriate mechanisms to guarantee correct
interoperability definition and execution, or the definition and appropriate
application of adequate support standards.

The conclusions obtained from the analysis of the different model-driven
interoperability approaches are used for the definition of the MDD
interoperability model and the interoperability process that are presented in the
next chapter. Also, the performed systematic review has been relevant for the
definition of the different interoperability artifacts that participate in our
approach, which are presented throughout this thesis document.

Chapter IV. �
��������
�� �������!��������"�

The definition of sound interoperability mechanisms to reuse knowledge and
share ideas in the Model-Driven Development community is an important
challenge to be faced during the next years. This kind of interoperability that is
centered on model-driven techniques to combine different modeling approaches in
a common development process is what we called MDD interoperability.

Several benefits can be obtained from MDD interoperability, for instance,
the collaboration of MDD approaches related to different domains (such as
software requirements, system design, business process, etc.), and the integration
of different MDD tools and technologies (such as model compilers, or quality-
assurance approaches).

This chapter presents a big picture about the aspects that we have considered
to face this challenge, thus obtaining a specific process to support the intended
MDD interoperability. The proposed process is based on a particular MDD
interoperability model, which conceptualize the elements that are necessary to
elaborate and automate an MDD interoperability solution.

Achieving MDD Interoperability

50

In the current software context, the necessity of count with interoperability
mechanisms at the different stages of a software development process is a
growing trend. For instance, we can observe interoperability in web applications
where different web services must be coordinated to perform a specific operation.
Also, interoperability becomes necessary in development scenarios where
geographically-distributed software factories are developing different components
of a same software product [9].

According to the IEEE Standard Computer Dictionary [114], the
interoperability is defined as the ability of two or more systems or components to
exchange information and to use the information that has been exchanged.

In literature, it is possible to find several model-driven interoperability
proposals, such as [115-118] (Chapter III shows a detailed analysis of the related
work). The ideas defined in these proposals can be projected over the model-
driven development contexts, where models (instead of programming code) are
the key artifacts that must interoperate across the development process. This kind
of model-driven interoperability that is focused on the interchange of modeling
information (coming from different modeling approaches) throughout a common
development process is what we called MDD interoperability.

Next, we present an MDD interoperability model and a set of challenges that
we have faced to achieve the automatic MDD interoperability. For the
application of the proposed MDD interoperability model a specific process has
been defined. Thus, the stages and the interoperability artifacts involved in this
MDD interoperability process are introduced at the end of this chapter.

The rest of this chapter is organized as follows: Section 4.1 presents our
MDD interoperability model. Section 4.2 presents the challenges that we have
faced to obtain the proposed MDD interoperability. 4.3 Introduces the process to
complete and put into practice the proposed MDD interoperability model.
Finally, Section 4.4 presents our conclusions.

4.1. An MDD Interoperability Model

Model-based proposals related to the context of information systems and tool
interoperability state different levels [119] to achieve an appropriate
interoperability framework, such as [120], [118], [116], and [121]. These

 Achieving MDD Interoperability

 51

proposals have several common aspects by presenting similar interoperability
levels. In particular, we have centered our attention on the LISI (Levels of
Information Systems Interoperability) [118] and LCIM (Levels of Conceptual
Interoperability Models) [116] because of their generic applicability, general
acceptation, and maturity level. From the interoperability models presented in
these two approaches, we have defined our specific MDD interoperability model.

The LISI approach proposes an interoperability model comprised of 5 levels
(from 0 to 4). Level 0 (isolated interoperability) corresponds to a manual
interoperability, where the interoperation tasks must be performed manually by
the system users. Level 4 (enterprise interoperability) indicates that data and
services are automatically interchanged by different applications in a transparent
way for the system users.

The levels defined in the LISI model are transversally divided in four
interoperability attributes called PAID, which correspond to Procedures,
Applications, Infrastructure, and Data. Table 2 summarizes the LISI reference
model.

Table 2. The LISI reference model

Interoperability
Computing

Environment
Level P A I D

Enterprise Universal 4
Enterprise
Level

Interactive
Multi-
Dimensional
Topologies

Enterprise
Model

Domain Integrated 3
Domain
Level

Groupware
World-wide
Network

Domain
Model

Functional Distributed 2
Program
Level

Desktop
Automation

Local
Networks

Program
Model

Connected Peer-to-Peer 1
Local/Site
Level

Standard
System
Drivers

Simple
Connection

Local

Isolated Manual 0
Access
Congtrol

N/A Independent Private

The LCIM approach is related to modeling and simulation, and, hence, it is
closer to the model-driven development domain. Modeling aspects related to
LCIM have a direct correspondence to the modeling tasks involved in MDD
processes. Simulation corresponds to the execution of the modeled systems,
therefore, it can be considered equivalent to the model compilation tasks that are
involved in MDD processes.

Achieving MDD Interoperability

52

The LCIM proposal states seven interoperability levels (from 0 to 6). Level 0
corresponds to the non-interoperability level (the same as the LISI proposal).
Level 6 corresponds to the conceptual interoperability. In this level,
interoperability among software systems is achieved by means of the definition of
mappings among the conceptual models that describe the involved systems. In
other words, conceptual interoperability is achieved through the meta-
specification of the software systems. Figure 10 shows the levels defined for the
LCIM model.

Figure 10. LCIM Model

If we project the LCIM ideas to the MDD context, we can state that to
achieve conceptual interoperability in MDD process, it is necessary to define
mappings among the involved MDD languages. To perform these mappings it is
necessary to consider syntax, semantics, and technical aspects that are related to
modeling languages definition, which corresponds to the levels 1, 2, and 3 of the
LCIM approach.

The levels 4 and 5 (Pragmatic and Dynamic interoperability) of the LCIM
approach are related to operation of information systems and management of
systems’ data in time. In a MDD context, these levels would be related to the
evolution of the MDD models defined and their changes according to new system
requirements. In this thesis, these interoperability levels are not considered since
they are more related to model synchronization and model evolution, which are
topics that are out of the scope of the developed work. However, these are two

 Achieving MDD Interoperability

 53

interesting aspects that can be considered for future research in order to improve
the MDD interoperability.

Thus, adopting the ideas proposed from the LISI and LCIM proposals, we
have defined MDD interoperability as the interchange of modeling information
among different modeling approaches that participate in a common model-driven
development process. This MDD interoperability is comprised by semantic,
syntactic, and technical interoperability (Levels of the LCIM proposal).

To automating MDD interoperability we have adopted the properties
proposed by the LISI approach, which are the following:

• An appropriate interoperability Procedure, which indicates the elements that
must be defined, and the steps that must be performed to interchange the
modeling information.

• The Applications that manage the modeling information, which provide the
features to automate interchange of models.

• The interoperability Infrastructure, which is related to the communication
mechanisms among applications to assure the correct interchange of
information, and to prevent the loss of modeling information when the
interchange process is performed.

• The Data (modeling information) must be specified in a standard format,
which can be interpreted by different modeling tools with independency of
implementation platforms and development contexts.

In summary, the interoperability model defined (see Figure 11) states MDD
interoperability in terms of Technical, Semantic, and Syntactic interoperability.
Also, MDD interoperability can be automated by providing a concrete solution
for Procedure, Application, Infrastructure, and Data properties.

In relation to syntactic interoperability, different modeling approaches have
defined a particular syntax (abstract and concrete) to represent their modeling
elements (conceptual constructs). This syntax is focused on supporting the
semantics [48] of the modeling languages involved.

For the specification of the abstract syntax, it is possible to find standardized
approaches, such as the Meta-object-Facility (MOF) [38]. The MOF approach
provides suitable support for the generation of model-oriented technologies, such
as model editors, and model transformation tools. This abstract syntax
specification is performed by means of a metamodel definition, which represents

Achieving MDD Interoperability

54

the different conceptual constructs (with their properties), the relationships that
exist among the constructs, and a set of rules to manage the constructs’
interaction.

From the metamodels that formalize the abstract syntax of modeling
languages, the concrete syntax can be specified by using tools such as the Eclipse
Graphical Modeling Framework (GMF) [50]. However, a standard for defining
the concrete syntax related to a modeling language has not yet been defined.

Figure 11. MDD Interoperability Model

The semantics related to modeling approaches is usually specified by means
of textual representations, for instance, the UML specification [122] and the i*
framework [123]. In a MDD approach, we consider that the semantics is implicit
in the mappings defined between the conceptual constructs and the
corresponding software representations, which are used to perform the model-
compilation process. However, there is a lack of an appropriate standard for the
definition of the semantics related to modeling languages.

Thus, since only the abstract syntax of modeling languages is supported by
standards that can be computationally interpreted, we propose the metamodels
that formalize this abstract syntax as the starting point to support interoperability
in MDD processes. From these metamodels, specific mappings can be defined
(among the conceptual constructs of the involved modeling languages) to obtain
semantic interoperability.

 Achieving MDD Interoperability

 55

Technical interoperability can be achieved by using the interchange format
defined for the open-source implementations of the metamodeling tools. For
instance, the interchange mechanism implemented for the Eclipse UML2 tools is
based on the XML specification [124]. This interchange mechanism is the XML
Metadata Interchange (XMI) [40], which has been defined for the UML
specification.

Thus, for automating MDD interoperability it is necessary: 1) to establish an
appropriate Procedure to generate the interoperability artifacts; 2) to indicate or
implement the Applications that are necessary to manipulate the models and
perform the model interchange; 3) to state the Infrastructure that will be used to
communicate the Applications; and 4) to define the format used for the modeling
Data representation.

We have chosen open-source applications to support automatic MDD
interoperability. In particular, we have considered the modeling tools developed
in the context of the Eclipse Modeling Project [125], such as the Eclipse
Modeling Framework (EMF) [57] and the Eclipse UML2 Project [126]. For the
infrastructure, we have considered the XML implementation for the EMF tools,
and the XMI specification related to the Eclipse UML2 models. The EMOF
(EMF) and UML (Eclipse UML2) specifications provide the formats that are
used to represent the modeling data. Thus, the applications, infrastructure, and
data format are supported by current technologies, tools, and standards.

However, there is no a standard procedure that can be used to perform
automatic MDD interoperability. Therefore we have defined a particular process,
which indicates the steps and tasks that must be performed to automate the
MDD interoperability. Figure 12 shows the proposed MDD interoperability
model instantiated according to the defined process, and the considered standards
and tools.

The process proposed for automating the MDD interoperability is center on
the automatic interchange of modeling information, which can be performed by
means of the integration of the modeling needs related to the target MDD
approach into the involved modeling languages. To perform this integration, we
consider that it is possible to represent the conceptual constructs that are
required by specific MDD approaches (that are represented trough proprietary
DSMLs) starting from conceptual constructs of already-existing modeling
languages.

Achieving MDD Interoperability

56

Figure 12. MDD Interoperability Model Instantiated

For an appropriate representation of the specific MDD constructs, the
constructs of the target modeling languages are customized to fix differences or
to add new properties in the context of the MDD approach. This is, to define
modeling language extensions. For the implementation of the required modeling
language extensions, we use the UML profile extension mechanism since it is a
standardized extension mechanism that has been improved according to the
UML experience, and it is based in the MOF metamodeling standard. Therefore,
the fundamentals related to UML profile extensions can be generalized to any
modeling language that uses a MOF metamodel to formalize its abstract syntax.
In addition, UML profile is a lightweight extension mechanism that does not
alter the target metamodel, and, hence, the defined extensions do not affect the
compatibility with the technologies that are based on the original specification of
the modeling language customized.

By analyzing the previous background and related work (see Chapter II and
Chapter III), three challenges must be faced to support modeling language
integration. Following, these challenges and the solutions proposed to solve them
are detailed.

 Achieving MDD Interoperability

 57

4.2. Challenges for Integration of Modeling Languages

The first of the three challenges that must be solved for modeling language
integration is to indicate the modeling artifact that will be used as starting point
for this integration. The second challenge is related to define an appropriate
mechanism to indicate the semantic equivalences between the involved modeling
languages. Finally, the third challenge is to automate the generation of the
required metamodel extensions in order to reduce the potential errors and
complexity that a manual modeling language customization involves.

4.2.1. First challenge: Establish the starting point

For solving this first challenge, we have considered the definition (or selection) of
the metamodels that are related to the involved modeling languages as starting
point. These metamodels are the artifacts were equivalences among the modeling
languages can be identified and the required extensions can be defined.

Metamodels provide good support to formalize the abstract syntax of
modeling languages, which is essential to perform an appropriate integration of
modeling languages. Also, in the current MDD context, metamodels are widely
used for development of technologies and modeling languages. Thus, it has sense
to consider an element that is commonly used by MDD-oriented approaches as
starting point of a MDD interoperability process.

The paper presented by Selic in [17] indicates a set of elements that must be
considered for an appropriate metamodel specification. These elements are the
following:

• The set of conceptual constructs related to the modeling language, which are
defined as classes (metaclasses) of the metamodel.

• The set of relationships that exist among the different conceptual constructs.

• The set constraints that manage the interaction among the different
conceptual constructs, which are necessary to define valid models (instances
of the metamodel).

• The notation related to each conceptual construct when corresponds.

• The meaning of the conceptual constructs defined.

For the specification of the involved metamodels we propose the use of the
MOF metamodeling standard [38]. The use of MOF facilitates the definition of

Achieving MDD Interoperability

58

UML profiles for the implementation of modeling language extensions. Also,
MOF is a suitable alternative for the specification of the required metamodels
due to the following reasons:

• MOF is supported by a standardized interchange format (XMI [40]) .

• There exist different open-source metamodeling tools based on the MOF
specification such as the Eclipse projects EMF [57] and UML2 [126].

• MOF is used by current model-to-model transformation technologies such as
ATL [80] or QVT [59]

• There are many metamodel specifications based on MOF that can be used as
reference modeling approaches.

• The use of MOF as common metamodeling language prevents the notation
inconsistencies (at metamodel level) and facilitates the identification of
equivalences between the different constructs.

However, there is an important lack of MOF for the appropriate metamodel
specification, which is the impossibility of indicate the notation (concrete syntax)
and meaning (semantics) of the defined constructs [48]. The MOF metamodels
only specify the abstract syntax of the corresponding modeling languages.
Therefore, the notation and meaning of the constructs must be documented in a
separated way. This information is relevant for the correct metamodel
specification and it is helpful to understand the defined metamodels. Also, the
notation and semantics are relevant for the appropriate implementation of MDD
tools, such as modeling tools and model compilers.

The MOF specification provides two alternatives for metamodel definition,
i.e., two metamodeling languages. The first of these languages is the complete set
of constructs of the MOF specification, which is called CMOF (Complete-
MOF). The second alternative corresponds to a subset of the MOF constructs,
which provide essential metamodeling facilities. This second metamodeling
language is called EMOF (Essential-MOF).

The metamodeling capabilities that are provided by EMOF are closer to the
extension capabilities provided by UML profiles. By contrast, CMOF provides a
set of metamodeling facilities that cannot be represented by means of UML
profile extensions, for instance, n-ary associations, or property redefinition.
Therefore, we consider the use of EMOF to specify the metamodels of the
involved modeling languages.

 Achieving MDD Interoperability

 59

Once the corresponding EMOF metamodels are specified, or selected in the
case of already existing EMOF metamodels, the equivalences between
metamodels must be indicated. These equivalences are used to identify the
necessary metamodel extensions. At this point, the second challenge that must be
faced arises.

4.2.2. Second challenge: Identify Semantic Equivalences and
Solve Integration Issues

This challenge involves the appropriate identification of semantic equivalences
between the constructs related to a source and a target modeling language. In the
context of our interoperability proposal, the source modeling language
corresponds to the DSML that represent the constructs of the MDD approach
involved, and the target modeling language is the pre-existing modeling language
that will be customized with the specific MDD syntax. This identification of
semantic equivalences can be performed by means of a mapping (or semantic
links) between the constructs of the source metamodel and the target metamodel.
Thus, this mapping guides the identification of the necessary extensions to
integrate into the target metamodel the abstract syntax of the source metamodel.
However, certain structural differences between the involved metamodels may
prevent the appropriate mapping specification, and, hence, they prevent the
correct identification of the required metamodel extensions. This situation is
presented in works such as [17] and [19]. These works propose systematic
approaches for the generation of UML profiles starting from metamodel
mappings. However, due to structural differences that are present in the involved
metamodels, the final UML profile generation cannot be completely automated.
These structural differences also affect the completeness of the obtained UML
profile, which cannot customize the target modeling language with all the
modeling information required.

Therefore, to solve this challenge, we propose the definition of a pivot
metamodel that allows the structural differences to be fixed, and an appropriate
mapping specification to be obtained. This pivot metamodel is called Integration
Metamodel [127] since it provides the necessary information to perform the
appropriate integration of modeling languages.

Achieving MDD Interoperability

60

4.2.3. Third challenge: Automatic Generation of Metamodel
Extensions

Finally, the third challenge is related to how to automate the generation of the
required metamodel extensions from the defined metamodels and the metamodel
mappings. This is, to automate the generation of the required UML profile. The
automatic generation of the required metamodel extensions prevents the potential
inconsistencies between the syntax of the source and target metamodel that a
manual specification may produce. In addition, the effort in the implementation
of the UML profiles is considerably reduced due to the automatic generation
since it is not necessary to known specific details related to the correct UML
profile specification or deal with complexity of large metamodels. The benefits
obtained from the automatic UML profile generation are very relevant since,
according to Selic in [17], the lack of knowledge about the features of the UML
profile specification has produced that many of the existing UML profiles
definitions be invalid or of poor quality.

In general terms, the metamodel extensions that must be implemented in the
UML profile can be automatically identified by comparing the source and target
metamodels according to the semantic equivalences identified (defined in the
metamodel mappings). Thus, the extensions are the additional modeling
information that is necessary to fix the differences that exist between the target
and source metamodel. For instance, if in the source metamodel there is a
property that cannot be mapped to the target metamodel, then the UML profile
extends the target metamodel with this non-mapped property.

Thus, a UML profile can be automatically generated by considering all the
possible metamodel differences, and, for each one of these, to define specific rules
that generate the necessary UML profile extensions.

Finally, the process for MDD interoperability is defined by considering the
solutions proposed to solve the three challenges presented. This MDD
interoperability process is detailed in the next section.

4.3. The MDD Interoperability Process

In this section, we introduce the process to achieve and automate interoperability
in model-driven development, which is comprised by the following 4 steps: 1)

 Achieving MDD Interoperability

 61

Definition of Modeling Language Metamodels; 2) Definition of Integration
Metamodel; 3) Automatic UML Profile Generation; and 4) Generation of Model-
Interchange Mechanisms.

The modeling language integration is the core of the MDD interoperability
process proposed. It automates the generation of the necessary metamodel
extensions and guides the specification of appropriate mappings, which are the
main artifacts to perform the automatic model interchange. Thus, the first 3 steps
of the interoperability process are related to perform the integration of the
modeling languages involved. Figure 13 shows a general schema of the MDD
interoperability process proposed, which is defined according to the BPMN
notation [128].

Figure 13. MDD Interoperability Process

In the definition of this interoperability process, different works have been
considered. Some of these works are: definition of UML profiles using DSML
metamodels [1, 19, 51, 54], correct use of metamodels in software engineering
[129], UML profile implementations1, interchange between UML profiles and
DSMLs [130], and new UML profile features that are introduced in UML
[131]. The 4 steps that comprise the interoperability process are detailed below:

• Step 1: Definition of Modeling Language Metamodels. The first step of the
process corresponds to the starting point proposed as solution of the first

1 OMG: Catalog of UML Profile Specifications,

http://www.omg.org/technology/documents/profile_catalog.htm

��������������

	�
������

��������

	�����
���

������

�	���	�����
��

��������������

������������

	�����
��

��������������

	�
���

������������

	���������

	�	�

��������������������

����������

 	
�!�������

����������

 	
�!������������

�	���	�����
��

������������	�����
��

������������

�����������

	�
������

��������

Achieving MDD Interoperability

62

integration challenge presented in the previous section, which is the
specification or selection of the EMOF metamodels of the involved modeling
languages.

• Step 2: Definition of Integration Metamodel. The second step is the
definition of an Integration Metamodel to identify the equivalences between
the metamodels involved and to fix the mapping issues that are produced by
structural differences that may exist.

• Step 3: Automatic UML Profile Generation. This step considers the
automatic generation of the UML profile that implements the metamodel
extensions that are required to customize the abstract syntax of a target
modeling language with the modeling information of the MDD approach
involved.

• Step 4: Generation of Model-Interchange Mechanisms. This step considers
the generation of the necessary model transformations rules to automatically
obtain from the models that are defined with the customized modeling
language appropriate inputs (models) for specific MDD tools, such as model
compilers. The interchange mechanisms also transform MDD models into
equivalent representation using the customized modeling language. This is a
bidirectional interchange of models.

The different artifacts that are involved in the application of the proposed
interoperability process are defined to facilitate the validation and verification in
each step. Some of the validation and verification facilities that can be obtained
are the following:

• It is possible to verify the abstract syntax related to the modeling languages
thar must interoperate by means of the metamodels that are involved in the
interoperability process. Also, the definition of metamodels by means of a
standard metamodeling language (EMOF) facilitates the verification of the
abstract syntax specified in relation to the supported semantics of the
corresponding modeling languages.

• The construction of an Integration Metamodel facilitates the definition of
specific rules for automatic UML profile generation. It allows the definition
of verification mechanism that assure the correct application of these rules,
and, hence, the correct generation of the resultant UML profile

• The interchange of models is based on specific model-to-model
transformation rules, which are based on the generated metamodel extensions

 Achieving MDD Interoperability

 63

and mappings. This allows the implementation of validation mechanisms to
assure that the metamodel extensions and the defined models are defined
according to the specification of the MDD approach involved.

4.4. Conclusions

In this chapter, we propose a specific MDD interoperability model, which is used
as reference to identify the necessary tools, and artifacts to support the automatic
MDD interoperability.

The different elements considered in the proposed MDD interoperability
model have been instantiated by using the current model-based technologies. To
complete the proposed interoperability model, we have defined a specific process,
which indicates how the different elements of the proposed model can be
coordinated to support the automatic interoperability in an MDD context.

Thus, the obtained MDD interoperability process is aligned with current
modeling standards and MDD-oriented technologies, such as, modeling languages
specification using metamodels, metamodels extensions mechanisms that are
implemented as UML profiles, and interchange mechanisms that are
implemented through models transformations. Also, time and errors related to
manual specification of metamodel extensions and transformation rules are
reduced by means of the automatic generation of the interoperability artifacts
involved.

The structure proposed for the interoperability process is also a suitable
reference for other metamodel extension mechanisms or proposals for model
interchange. This structure is easily adaptable to different MDD-oriented
technologies. For instance, the UML profile generation rules can be changed to
implement the required extensions with a different extension mechanism. The
work presented by Bruck et al. in [33] introduces different approaches for the
definition of metamodel extensions and provides a comparative summary about
the approaches that are presented.

The adaptation to potential changes that the involved modeling languages
may suffer is also improved by the proposed interoperability process. Changes in
the modeling languages directly impact in the defined metamodels. With the
application of the proposed process, these changes are automatically propagated

Achieving MDD Interoperability

64

to the interoperability artifacts (metamodels extensions, and mappings). This is
very important, especially when the involved modeling languages are comprised
by a big number of conceptual constructs, which are permanently changing. In
this context, the manual identification of the impact that a change in the
modeling languages has over the defined extensions and model transformation
rules can be a titanic labor, which demands a lot of time and is very error prone.

Finally, the steps 2, 3, and 4 of the MDD interoperability process are based
on original contributions that were created in the context of this thesis to tackle
different interoperability challenges. These steps correspond to the Definition of
an Integration Metamodel, the automatic generation of a UML Profile, and the
Generation of model-interchange mechanisms. These three steps of the MDD
interoperability process are detailed in the following chapters, which provide the
information that is necessary to their proper application.

Chapter V. �
��������
�������������	���

In the context of MDD-oriented solutions, a modeling language with a precise
semantics is a mandatory requirement. Nowadays, there are several MDD
approaches that have defined proprietary Domain Specific Modeling Languages
(DSML) to satisfy their modeling needs. However, there is an alternative
modeling solution that considers the customization of existing modeling languages
with the modeling needs of a specific MDD approach. Certain approaches
provide alternatives to perform this customization by means of metamodel
extension mechanisms. But, generally speaking, it is not possible to assure that
the resultant extensions be properly defined according to the modeling standards,
and that the customized modeling language includes all the expressiveness of the
original DSML.

This chapter presents a solution to tackle the issues that may prevent a correct
modeling language customization. This solution is based on a systematic
approach to generate a specific DSML metamodel, called Integration
Metamodel, which is used to automatically obtain a set of lightweight metamodel
extensions that are implemented in a UML profile. As a result, a modeling
language customized with the modeling needs of a specific MDD approach is
obtained in accordance to the OMG modeling standards.

The Integration Metamodel

66

Generally speaking, the elaboration of UML profiles is a manual and intuitive
task, which is performed without following a rigorous and well-defined process.
This situation is motivated by the lack of a standard that specifies the correct way
for the definition UML profiles and metamodel extensions [31]. For this reason,
many of the existing UML profiles are invalid or of poor quality [17]. To avoid
this situation, some works propose a more methodical solution that consists in the
definition of a UML profile from the metamodel that describes the conceptual
constructs required by MDD approaches. In other words, the UML profile is
generated from a DSML metamodel [17]. This UML profile generation schema
is based on the identification of the equivalences (correspondences) that exist
between the source modeling language (which corresponds to a proprietary
DSML) and the modeling language to be customized. The identification of
equivalences is performed by means of a mapping between the different elements
(classes, association, attributes, etc.) of the metamodel related to the source
modeling language and the corresponding constructs of the metamodel of the
target modeling language. Later, the identified equivalences are used to guide the
correct definition of the required extension over the metamodel of the target
modeling language through a UML profile implementation.

Additionally, from the experience acquired in the academic and industrial
application of the OO-Method MDD approach [12], and the integration of OO-
Method with other modeling approaches [132], we have identified three main
requirements that must be fulfilled to obtain a proper process for the application
of UML profiles in different MDD contexts:

• The UML profile definition must be automatic to reduce the complexity
related to the correct UML profile specification, reduce the time that a
manual definition requires, and to prevent the introduction of human errors.
In particular, the two former risk factors (time and errors) are especially
relevant in a MDD industrial context, where time costs money, and mistakes
in implementation directly impact on customers’ satisfaction.

• The UML profile must be easily adapted to the evolution of the MDD
approaches since these are continuously changing in order to introduce new
features that provide an appropriate support to the application domain and
users’ needs.

• The UML profile must integrate all the modeling expressiveness and
precision that is required by the involved MDD approach in the target
modeling language to provide a proper modeling framework for the involved
MDD development process.

 The Integration Metamodel

 67

Certain proposals state that identification of equivalences between the source
and target modeling language can be used to partially automate the UML profile
generation [19, 54]. However, none of these approaches support the requirements
mentioned above. In particular, these proposals cannot provide a totally
automated solution for the generation of a complete UML profile since, in real
MDD approaches, certain structural differences between the corresponding
source and target metamodels may appear. These differences prevent the
automated identification of all the metamodel extensions that must be
implemented.

The automatic UML profile generation takes special relevance when the
involved modeling languages have a large number of conceptual constructs. In
this context, manual approach to determine the impact that the metamodel
extensions have in the rest of related constructs and to assure the correct
identification of all the required extensions is not suitable. The manual
specification of a UML profile is a very error-prone and high time-consuming
task [19].

This chapter presents the proposal defined in the context of this thesis to solve
the structural differences that prevent the automatic identification of required
metamodel extensions. This proposal is based on the definition of a specific
metamodel that is named Integration Metamodel. The Integration Metamodel is
defined from the metamodel of the source modeling language (the one related to
the MDD approach) according to a set of specific rules by following a systematic
approach. The structure of the Integration Metamodel allows a perfect
integration with the metamodel of the target modeling language. The generation
of this Integration Metamodel also implies the specification of the all the
mapping information that is required to automatically generate a UML profile
with all the modeling expressiveness and precision that the source modeling
language has. This proposal has been defined by considering the different
requirements presented before to provide a suitable approach that can be applied
in different MDD contexts. Thus, it is possible to obtain an adequate input for an
automated UML profile generation, which corresponds to the step 3 of the
MDD interoperability process (see Chapter IV).

The rest of this chapter is organized as follows: Section 5.1 presents a brief
background related to UML profiles definition. Section 5.2 explains why an
Integration Metamodel is needed for the integration of modeling languages.
Section 5.3 presents a systematic approach to obtain an Integration Metamodel.
Section 5.4 presents a set of guidelines for the implementation of an Integration

The Integration Metamodel

68

Metamodel using current MDD technologies. Section 5.5 shows the benefits of
the Integration Metamodel for the automatic profile generation. Finally, Section
5.6 presents our conclusions.

5.1. Background

In the literature related to defining UML profiles, two main working schemata
can be observed: 1) the intuitive definition of the UML profile from scratch; and
2) the definition of a UML profile starting from a metamodel specification (a
DSML metamodel). Although, different related works refer to the DSML
metamodel used as source for the UML profile definition as domain model, in
this chapter, the term source metamodel is used to avoid confusions between the
concepts of model and metamodel. In addition, the metamodel of the modeling
language to be extended is identified as target metamodel.

For the integration of modeling languages considered in this thesis, the
second working schema has been selected, because it provides a methodological
solution that provides more automation possibilities. In the brackground chapter
(Chapter II) is presented a set of works related to this working schema. In
general terms, all these works consider the UML metamodel as target
metamodel, and not explore the generation of UML profiles for different
modeling approaches. Also, all the analyzed works have some limitations to
achieve a completely automated UML profile generation. These limitations come
from the structural differences between the source metamodel and the target
metamodel (UML metamodel in the related works). These differences prevent the
definition of an adequate identification of equivalences between the two
metamodels (pattern identification, mappings, etc.). This causes the resulting
UML profile to provide different modeling expressiveness than the source
DSML in the target modeling language and also it prevents the automatic UML
profile generation. The next section briefly explains the relevance of having a
correct mapping to automatically generate an adequate UML profile.

 The Integration Metamodel

 69

5.2. Improving the Integration of Modeling Languages

According to the background described above, the main problems in generating a
UML profile from a source metamodel (related to a specific DSML) are the
structural differences between the source metamodel and the metamodel of the
modeling language to be extended (target metamodel). For this reason, the
interoperability process proposed in this thesis requires the definition of a specific
metamodel that has an appropriate structure and mapping to automatically
generate the required metamodel extensions. This specific metamodel is called
Integration Metamodel.

The Integration Metamodel has been specially formulated to automate the
generation a UML Profile that integrates into a target modeling language all the
modeling expressiveness of a source modeling language. In addition, the
definition of an Integration Metamodel facilitates the generation of a correct
UML profile, and reduces the effort related to manage the changes that can occur
in the involved modeling languages.

The Integration Metamodel is a special DSML metamodel defined to
automate the integration of a source metamodel (source DSML) into a target
metamodel (target modeling language). The Integration Metamodel is defined
from the source metamodel, and represents the same abstract syntax as the
original metamodel. The main difference between the Integration Metamodel and
the source metamodel is its structure since it is defined to obtain an appropriate
mapping to the target metamodel. This mapping allows the automatic
identification of the required metamodel extensions to be performed. The
Integration Metamodel has the following features:

• It is defined according to the EMOF modeling capabilities that are defined in
the MOF (Meta Object Facility) specification [38].

• It is mapped to the target metamodel by taking into account: Classes,
Attributes, Associations, Enumerations, Enumeration Literals, and Data
Types.

• All the classes from the Integration Metamodel are mapped to classes of the
target metamodel. This assures the conceptual constructs of the source
modeling language can be represented from the conceptual constructs of the
target modeling language.

• The mapping information is specified by means of a mapping model that is
based on a specific EMOF metamodel. Thus, all the information needed to

The Integration Metamodel

70

generate a UML profile is specified in XMI files that are defined according
to the OMG Standards and can be processes by model-to-model
transformation technologies.

During the Integration Metamodel definition, the original structure of the
source metamodel may be redefined. This redefinition is performed without
altering the abstract syntax represented in the source metamodel. This is
illustrated by the example presented in Figure 14, which is oriented to integrate
the abstract syntax presented in an example DSML metamodel (source
metamodel) into the UML metamodel (target metamodel).

MultiplicityElement

lower : integer

upper : unat

DMAssociation

newAttr2 : string

part1Lower : int
part1Upper : unat

part2Lower : int
part2Upper : unat

[1..1][1..1]

DSML Metamodel UML Metamodel

DMClass

newAttr1 : string

participant2

memberEnd[2..*]

type [0..1]

Association

Property

Type

TypedElement

Class

attr1 : integer

participant1

Figure 14. DSML metamodel example

Figure 14 shows a DSML metamodel that represents a binary association
between classes. In this metamodel, the class (metaclass) DMClass represents
classes of a model, and the class DMAssociation represents binary associations.
The class DMAssociation has two associations that represent the two participant
classes, participant1 and participant2. This class also has four attributes to specify
the lower and upper bound of each participant (association ends), these are:
part1Lower and part1Upper for participant1, and part2Lower and part2Upper
for participant2. In the two classes of the DSML metamodel, attributes for the
generic representation of properties are defined. These attributes are newAttr1 for
the class DMClass and newAttr2 for the class DMAssociation.

As Figure 14 shows, the DSML metamodel is mapped to the corresponding
classes of the UML metamodel in order to define the equivalences
(correspondences) that exist between the two metamodels. The mapping of the
example (see Figure 14) indicates that the DMClass is mapped to the classes
Class and Property. The mapping between DMClass and Class is clear because

 The Integration Metamodel

 71

both metaclasses represent classes of a model. The mapping between DMClass
and Property is defined because, in UML, the participant classes of an association
are represented by object-valued properties, where the types of these properties
correspond to the related classes.

This mapping 1:2 (one construct of the source metamodel is mapped to two
construct of the target metamodel) does not allow the automatic identification
the extensions that are required to generate the corresponding UML profile.
With this mapping, it is impossible to know if the attribute newAttr1 (from
DMCLass) must be considered to extend the class Property (by means of a
tagged valued defined in the generated UML profile). Or by contrast, it is only an
attribute related to the syntax of a class and must not be considered to extend the
class Property for the correct representation of an association end.

The class DMAssociation presents a similar issue because this class is mapped
to the UML class Association, but the properties related to cardinality are
mapped to the UML class MultiplicityElement. In this case is impossible to
determine if the properties related to cardinality must be considered, or not, to
extend the class Association, which implies the generation of the corresponding
tagged values.

The classes that participate in an association relationship are represented by
two associations in the DSML metamodel (association participant1 and
participant2), while, in the UML metamodel, this is represented by only one
association (association memberEnd). With this mapping is impossible to know,
in an automated way, if a new constraint is necessary to restrict the cardinality of
the association memberEnd. Also, it is impossible to determine if a new
association is necessary in the UML class Association to properly represent the
participant classes according to the DSML syntax.

Furthermore, the type related to these associations that represent the
participant classes is different in each metamodel. In the DSML metamodel the
type corresponds to a class (metaclass DMClass), while in the UML metamodel
the type corresponds to a property (metaclass Property). This difference cannot
be directly managed by UML profile extensions because the tagged values cannot
redefine UML properties to change the related type.

The proposal to solve these mapping issues is to restructure the DSML
metamodel to align it with the UML metamodel, thereby obtaining the
corresponding Integration Metamodel. Figure 15 shows the Integration
Metamodel defined for the presented example.

The Integration Metamodel

72

lower : integer
upper : unat

DMAssociationEnd

lower : integer
upper : unat

MultiplicityElement

memberEnd[2..*]

type [0..1]

Integration Metamodel UML Metamodel

DMAssociation

newAttr2 : string

memberEnd [2..2]

type [1..1]
Association

Property

Type

TypedElement

DMClass

newAttr1 : string

Class

attr1 : integer

Figure 15. Integration Metamodel related to a binary association between classes

The elements of the Integration Metamodel that are mapped to UML
elements are considered equivalent elements of the Integration Metamodel
because these elements have correspondence (equivalence) in the mapped UML
element. For instance in Figure 15, the class DMAssociation is equivalent to the
UML class Association, and the attribute DMAssociationEnd.lower is equivalent
to the UML attribute MultiplicityElement.lower.

In the Integration Metamodel presented in Figure 15, it can be observed that
the conflicts related to the mapping of the class DMClass are solved by the
definition of a new class called DMAssociationEnd, which is equivalent to the
UML class Property. Thus, with the mapping obtained for the Integration
Metamodel, it is clear that the attribute newAttr1 is only involved in the
representation of classes and it must not be considered to extend the class
Property.

The new class DMAssociationEnd represents the participant classes of the
association identified by means of the association type. The association
memberEnd with cardinality [2..2] assures that an association only has two
participants. Thus, the resultant Integration Metamodel represents the same
abstract syntax as the DSML metamodel.

In order to facilitate the definition of the Integration Metamodel, a
systematic approach to obtain the Integration Metamodel from an source
metamodel has been defined [127]. This systematic approach is presented in the
next section.

 The Integration Metamodel

 73

5.3. Systematic Definition of an Integration Metamodel

As the previous example has demonstrated, the identification of problematic
mappings is important for the correct specifications of equivalences between the
DSML and UML, and the final identification of the required UML metamodel
extensions. However, performing a manual analysis for each defined mapping is
not a suitable approach, especially in modeling languages with a large amount of
conceptual constructs. In order to simplify this task, the identification can be
automatically performed through a set of rules that establish specific constraints
that must be fulfilled for a correct Integration Metamodel specification. These
constraints guarantee a correct identification of the required UML extensions:

• Rule 1: All the classes from the Integration Metamodel must be mapped.
This assures that the conceptual constructs of the source DSML can be
represented from the conceptual constructs of the target modeling language.

• Rule 2: The mapping is defined between elements of the same type (classes
with classes, attributes with attributes, and so on).

• Rule 3: An element from the Integration Metamodel is only mapped to one
element of the target metamodel. These are X:1 mappings (with X greater
than 0). For instance, many classes of the source DSML metamodel can be
mapped to one class of the target metamodel. In this situation, the mapping
rule is also accomplished because each class of the Integration Metamodel is
only mapped to one class. However, two properties of a class of the
Integration Metamodel cannot be mapped to the same property in the target
metamodel. It is important to note that the many-to-many mappings that may
exist between the original DSML metamodel and the target metamodel are
transformed into X:1 mappings during the generation of the Integration
Metamodel.

• Rule 4: If the properties (attributes and associations) of a class A from the
Integration Metamodel are mapped to properties of a class B of the target
metamodel, then the class A is mapped to the class B or a specialization of it.
Figure 15 shows this situation can be observed in the mapping defined for
the class DMAssociationEnd (from the Integration Metamodel), since the
properties of this class are mapped to properties of the UML class
MultiplicityElement, while the class DMAssociationEnd is mapped to the
UML class Property, which is an specialization of MultiplicityElement. In

The Integration Metamodel

74

other words, a property is also a multiplicity element; therefore, the attributes
of the class MultiplicityElement are also attributes of the class Property.

These four rules are the core of the systematic approach proposed for the
Integration metamodel generation (see Figure 16). This systematic approach is
composed of the following four steps:

• Step 1: Define the DSML metamodel related to the MDD approach, which
corresponds to the source metamodel of the integration process. The
definition of this metamodel must be elaborated according to the EMOF
modeling capabilities [14]. EMOF provides a set of essential metamodeling
constructs, and corresponds to a subset of the MOF specification. By using
EMOF, the resultant DSML metamodel properties do not have features that
are not supported by UML profiles. In the context of this thesis, the
metamodel definition is performed within the first step of the MDD
interoperability process. Thus, this initial step is not required when the
systematic approach for the generation of the Integration Metamodel is
applied in the MDD interoperability process (see Chapter IV).

• Step 2: Perform the mapping between the defined source metamodel and the
metamodel of the target modeling language (for instance, the UML
metamodel used in the example of Figure 14). The mapping must take into
account: classes, properties (attributes and associations), enumerations,
enumeration literals, and data types.

• Step 3: Verify that the OCL rules of the source metamodel do not produce
conflicts with the OCL rules of the target metamodel. This validation is
performed taking into account the OCL rules defined in the classes of the
source metamodel and the equivalent classes of target metamodel (according
to the mapping defined in Step 2). Since the OCL rules can be
computationally interpreted, this validation can be automated by using works
such as [133].

• Step 4: Fix mapping problems. Identify the elements whose mappings violate
the constraints defined for a correct Integration Metamodel specification and
modify its structure in order to fix them. The structure modification must
consider the semantics that is supported by the corresponding elements of the
source metamodel and the mapped elements in the target metamodel. This
modification can imply the creation of new elements, or the modification of
existing element. Then, for the new elements that are defined and the

 The Integration Metamodel

 75

elements that are modified, repeat the all steps of the systematic approach
starting from the Step 2.

Figure 16. Systematic Approach for Integration Metamodel Definition

The systematic approach presented is iterative and finishes when all the
mapping problems are solved. Figure 17 shows how the mapping problems that
are present in the DSML metamodel presented in Figure 14 are solved to obtain
the Integration Metamodel presented in Figure 15.

Fourth Step: Fix mapping problems

A
DSML Metamodel UML Metamodel

DMClass

newAttr1 : string

Property

Class

attr1 : integer

DSML Metamodel UML Metamodel

DMClass

newAttr1 : string

Property

Class

attr1 : integer

DMAssociationEnd

type[1..1]

MultiplicityElement

lower : integer

upper : unat

DMAssociation

newAttr2 : string

part1Lower : int
part1Upper : unat

part2Lower : int

part2Upper : unat

DSML Metamodel UML Metamodel

Association

MultiplicityElement

lower : integer

upper : unat

DMAssociation

newAttr2 : string

DSML Metamodel UML Metamodel

Association

DMAssociationEnd

lower : integer

upper : unat

[2..2] memberEnd

C

DMAssociation

newAttr2 : string

DSML Metamodel

DMAssociationEnd

lower : integer

upper : unat

[2..2] memberEnd

DMClass

newAttr1 : string

DMAssociationEnd

type[1..1]

DMAssociation

newAttr2 : string

DSML Metamodel

DMAssociationEnd

lower : integer
upper : unat

[2..2] memberEnd

DMClass

newAttr1 : string

type[1..1]

B

Figure 17. Fixing mapping problems for Integration Metamodel definition

The Integration Metamodel

76

In the Figure 17-A, it can be observed that the mapping defined for the class
DMClass is indicating that exist double equivalence with the classes Class and
Property of the UML metamodel. According to the Rule 3 of the set of rules
defined for a correct Integration Metamodel specification, this 1:2 mapping is
conflictive and must be fixed to perform an automatic UML profile generation.
To perform this fixing, it is necessary to precisely indicate which part of the
syntax of the class DMClass corresponds to the mapped classes of the UML
metamodel. To do this, the original structure of the class DMClass is divided in
two classes (one class per each mapped class of the target metamodel). Thus, a
new class DMAssociationEnd is defined to indicate which part of the syntax of
the class DMCLass is related to the UML class Property. The identification of
this syntax is performed by considering the original semantics that is related to
the construct DMClass, which, in this case, corresponds to the semantics of an
association end. Furthermore, the association type between the generated class
DMAssociationEnd and the class DMClass is defined to indicate the relationship
that exists between these two classes. This relationship is also implicit in the
original semantics of the construct DMClass.

Summarizing, in the original DSML Metamodel, the semantics supported by
the class DMClass is the one related to class definition, but also, the semantics
related to an association end definition. Thus, to fix the mapping problems, the
abstract syntax related to the semantics of association end definition was
separated from the class DMClass and explicitly specified by means of the new
class DMAssociationEnd and the association type.

In figure Figure 17-B the situation is similar to that presented in figure
Figure 17-A. Here, the class DMAssociation is mapped to the class Association
of the UML metamodel, but the properties of the class DMAssociation are
mapped to a different UML class than Association. These properties are mapped
to the UML class MultiplicityElement, which is not a specialization of the class
Association. According to the Rule 4 related to a correct Integration Metamodel
specification, this is an incorrect mapping and it must be fixed. In addition,
according to the Rule 3, it is incorrect that two attributes of the class
DMAssociation be mapped to one attribute of the class MultiplicityElement.
Thus, to fix this mapping problems, the attributes related to association end
cardinality are placed in a new class named DMAssociationEnd, which is
mapped to the class MultiplicityElement. And the association memberEnd is
defined to indicate the two association ends that are related to an association.

 The Integration Metamodel

 77

Figure 17-C shows that the new metaclasses defined to solve the mapping
problems related to the classes DMClass and DMAssociation, are representing
the same conceptual construct, the ends of an association. Therefore, the results
obtained in Figure 17-A and Figure 17-B are combined to obtain an appropriate
structure for the Integration Metamodel.

Finally, the second step of the systematic approach presented must be applied
over the new class obtained (DMAssociationEnd) as well as the modified classes
(DMClass and DMAssciation) in order to obtain the final Integration Metamodel
(presented above in Figure 15).

It is important to remark that the systematic approach presented for the
definition of the Integration Metamodel is iterative and finishes when all the
mapping problems are solved.

Each time that the application of the fourth step of the systematic approach
implies a change in the original DSML metamodel (such as in the example), then
a mapping between the modified elements (the resultant Integration Metamodel)
and the original elements (the DSML metamodel) is specified. This mapping
information is used to validate that the resultant Integration Metamodel
represents the same syntax as the original DSML metamodel. This validation
consist into determine if, according to the mapping obtained, there could exist
instances of the source metamodel that cannot have an equivalent representation
with an instance of the Integration Metamodel; i.e., all modeling alternatives of
the MDD approach must be supported by the Integration Metamodel.

Table 3. Mapping obtained from the Integration Metamodel generation

Integration Metamodel DSML Metamodel

DMClass DMClass

 .newAttr1 .newAttr1

DMAssociation DMAssociation

 .newAttr2 .newAttr2

 .memberEnd(1).lower .part1Lower

 .memberEnd(1).upper .part1Upper

 .memberEnd(2).lower .part2Lower

 .memberEnd(2).upper .part2Upper

The Integration Metamodel

78

The generated mapping also allows the generation of mechanisms to
transform an instance of the Integration Metamodel into an instance of the source
metamodel (the DSML metamodel in the example). This mapping information is
very valuable for the generation of the interchange mechanisms in the application
of the interoperability process, which corresponds to the step four of this process.

The mapping information obtained for the example is presented in Table 3.
This Table shows that the first and second instances of the association
memberEnd represent the first and second participant classes of an association.

The obtained Integration Metamodel is the input required for the automatic
UML profile generation (see Chapter 3), which corresponds to the third step of
the MDD interoperability process proposed in this thesis.

5.4. Implementing the Integration Metamodel

The definition of the Integration Metamodel must be performed with a tool that
supports the XMI standard [40]. Thus, it is possible to generate an XML [124]
representation of the different MOF constructs that are involved in the
metamodel definition. With this, a specific Integration Metamodel definition can
be processes by different MDD technologies and tools based on the MOF
specification, such as ATL or QVT model-to-model transformation technologies.

In general terms, most of the current UML tools support the XMI
specification. However, it is important to mention that tool providers usually
make modifications to the official XMI specification to introduce proprietary
modeling features. For instance the XMI output that generates the UML tool
provided by Rational tools differs from the XMI output generated by the
Poseidon UML tool [132]. In this thesis, we have used the Eclipse UML2 Tool
[2], which is an open-source project defined for the implementation of the UML
standard, and, hence, it is compatible with the XMI specification for UML. We
have chosen this UML tool because according to our experience this tool
provides an XMI output that fulfills with the official XMI specification.
Additionally, this tool has exportation facilities that allow the defined models to
be exported as Ecore [2] models, which is the open-source implementation of the
EMOF specification. Ecore is compatible with different open-source MDD
technologies such as Eclipse ATL for the implementation of model-to-model
transformations, or Eclipse EMF and Eclipse GMF for the implementation of

 The Integration Metamodel

 79

specific model editors. Furthermore, different MDD projects have been
implemented by using these open-source technologies. For instance, all the tools
developed in the context of the Eclipse Model Development Tools [134]. Thus,
the use of open-source technologies that implement the current modeling
standards facilitates the interchange of knowledge within the MDD community.

5.5. Benefits of the Integration Metamodel

The use of an Integration Metamodel for UML profile generation provides a set
of benefits in relation to a direct transformation of the source metamodel or to
the manual and intuitive UML profile definition. The most relevant benefits
related to using an Integration Metamodel to generate UML profiles are
following:

• The definition of an Integration Metamodel is more intuitive than the direct
definition of a UML Profile. The Integration Metamodel definition is at
the same abstraction level that the source metamodel. The Integration
Metamodel is defined by using the same metamodeling language as the source
metamodel (EMOF), which prevent the syntactical conflicts. Additionally,
since the Integration Metamodel is defined independently of the UML profile
implementation, it is not mandatory to understand the concepts involved in a
UML profile definition; for instance, how to define stereotypes or the correct
definition of extension relationships.

• The Integration Metamodel helps to isolate the complexity related to a UML
profile design decisions. All these design decisions that are involved in a
correct UML profile generation are defined in the transformation rules
involved in the automated UML profile generation. Thus, the use of the
Integration Metamodel helps to encapsulate the complexity related to the
correct UML profile definition, but also, prevents the potential errors that a
manual and intuitive UML profile specification should generate.
Additionally, the effort to introduce changes in the UML profile (for
instance, as a result of improvements performed to an MDD approach) is
considerably reduced.

• The Integration Metamodel provides a precise specification for the automatic
UML profile generation. The metamodel is defined according the MOF
specification that can be processes by model-to-model technologies, and it

The Integration Metamodel

80

provides a structure that allows an appropriate mapping definition for the
automatic UML profile generation. This is an important advantage of the
Integration Metamodel vs. a direct mapping between the metamodels that are
involved in the integration process. A direct mapping does not always provide
enough information to automatically identify the required metamodel
extensions [18, 135].

• The Integration Metamodel allows the identification of required metamodel
extensions independently of the target extension mechanism. The structure of
the Integration Metamodel and the related mapping to the target metamodel
allow the automatic identification of the required extensions before the
generation of the corresponding UML profile. This facilitates the verification
of the final UML profile, which can be contrasted with the identified
metamodel extensions. It also can be used to validate the correct definition of
the involved transformation rules. In addition, it is possible to use the
Integration Metamodel specification to automatically obtain different
implementation of the required extensions, such as, for the generation of
heavyweight extensions, or the automatic merge of the identified extensions
directly in the target metamodel specification.

Figure 18. Example of a Integration Metamodel transformation

To exemplify the benefits mentioned above, a briefly transformation exercise
is performed over the hypothetical modeling situation that is presented in Figure

 The Integration Metamodel

 81

18. This figure shows a subset of a generic Integration Metamodel and the
correspondent UML profile that is generated in the transformation of it. In the
generated UML profile, the stereotypes Stereotype1 and Stereotype2 represent the
classes Class1 and Class2, respectively.

The transformation presented in Figure 18-A has been carried out according
to the following two transformation rules2:

“One Stereotype for each class of the Integration Metamodel. The stereotype
extends the target class according to the mapping defined".

“Define one generalization between two stereotypes that represent equivalent
classes that are associated with a generalization in the Integration metamodel and
that are referencing the same UML class. The extension relationship related to
the child stereotype is not defined since it is implicit in the generalization
relationship”.

In Figure 18-B, the mapping defined for the Integration Metamodel
presented in Figure 18-A has been changed. This change generates a different
profile according to the following transformation rule:

“If there is a new generalization relationship between two classes from the
Integration Metamodel that are equivalent to different classes of the UML2
Superstructure, the generalization relationship is not represented in the profile,
the extensions of each stereotype to the correspondent UML class are defined,
and the inherited non-equivalent properties are duplicated”

In Figure 18-B it is possible to observe that a single change is introduced in
the Integration Metamodel: the mapping of the class Class2 is changed to a
different UML class (Fig. 5-B). However, this change produces the following
four changes in the resultant UML profile:

1. The generalization relationship is dropped

2. The UML class UMLClass2 is imported

3. The extension for Stereotype2 is defined

4. The property property1 is added to the Stereotype2

2 The complete set of transformation rules for the UML profile generation is

presented in Chapter VI

The Integration Metamodel

82

This basic example shows that it is more intuitive and simple to change a
mapping in the Integration Metamodel than to directly perform the required
changes in the target metamodel. This is because it is not necessary to know
implementation aspects of the UML profiles, the complexity related to the
generation of the new UML profile according to the changes performed is
encapsulated in the transformation rules, Furthermore, one simple change in the
Integration Metamodel may involve many changes in the UML profile; for
instance, in the presented example, one change in the Integration Metamodel has
produced four changes in the corresponding UML profile. Also, the effort to
obtain a new profile definition once the change has been performed is
considerably reduced because the automatic execution of the transformation rules.

It is important to note that in an Integration Metamodel designed for real
MDD solution, the impact of changes in the MDD approach can be even much
greater than the presented example. This justifies the additional effort necessary
to define the Integration Metamodel in order to automate the UML profile
generation and reduce the time and potential errors that a manual definition
involves.

5.6. Conclusions

In this chapter, an Integration Metamodel that improves the automatic
generation of a UML profile has been introduced. The main purpose of this
metamodel is the integration of the abstract syntax that is related to a source
modeling language into a target modeling languages by means of the automatic
generation of the necessary metamodel extensions. These extensions are
implemented through a UML profile definition.

The Integration Metamodel reduces the effort of implementing the necessary
UML profile and facilitates the adaptation of generated UML profiles to the
evolution of the MDD approach involved. In addition, the proposed systematic
approach facilitates the generation of the Integration Metamodel from the
DSML metamodel of the MDD approach.

Apart from to the benefits mentioned, the Integration Metamodel can also be
used as a mechanism to share knowledge between different MDD approaches
because the structure and the mappings of the Integration Metamodel are aligned
with the target metamodel, which can be a standardized modeling language.

 The Integration Metamodel

 83

Therefore, a better understanding of the semantics and design decisions involved
in different proprietary MDD approaches can be achieved taking the target
modeling language as reference. It is important to note that the concepts and
ideas presented in this chapter can also be applied to improve those MDD
approaches that are already using UML and profiles as modeling mechanism.

Chapter VI. �
����������#���$�������%����������

According to our experience, the use of UML profiles is a recommended
strategy to customize modeling languages in order to integrate specific modeling
aspects. This integration allows existing modeling technologies to interoperate each
other in the application of specific MDD approaches. However, in the literature
related to UML profile construction; it is not possible to find a standardized
UML profile generation process.

Therefore, this chapter presents a process defined to integrate a particular
DSML into a target modeling language through the automatic generation of a
UML profile. This process facilitates the correct use of existing modeling
languages in a specific MDD context and provides a solution to take advantage
of the benefits of standardized modeling languages and proprietary DSMLs.

Automatic UML Profile Generation

86

An appropriate modeling language is one of the most important concerns for
Model-Driven Development (MDD) approaches [1]. To obtain modeling
languages that are adequate, different MDD approaches have defined their own
Domain-Specific Modeling Languages (DSML) in order to represent their
particular modeling needs. Two of the benefits that the use of DSMLs provide to
MDD approaches are: (1) a correct and precise representation of the conceptual
constructs related to the application domain, and (2) simplification of the
implementation of tools oriented to improving the modeling tasks, development,
and maintenance of generated software solutions.

Nowadays, different modeling languages are arising as standard (or de-facto
standard) proposals for general-purpose modeling (such as UML) or for the
application in specific modeling domains (such as i* for requirement modeling).
This has motivated that many MDD approaches integrate their modeling needs
into these pre-defined modeling languages in order to use them as DSML. To
perform this integration, the use of the metamodel extension mechanisms is the
most suitable strategy by considering the current MDD standards and
technologies. With the use of existing modeling proposals, especially those
standardized proposals, the MDD approaches could achieve a larger market
(greater number of potential users), take advantage of the existing modeling and
MDD technologies, and reduce the learning curve [17, 33, 54]. In addition, the
standard modeling languages can be used as a mechanism to interchange ideas
and theories among different research communities.

We focus on the use of UML profiles as metamodel extension mechanism
since UML profile is a lightweight extension mechanisms that do not alters the
original metamodel specification of the extended modeling language. In addition,
UML profile has a standard specification [122], it has a standard interchange
format [40] (XMI specification for UML profiles [40]), and it has tools
supporting [126]. Currently, there are many definitions of UML profiles that are
associated to MDD approaches [43]. Generally speaking, these profile definitions
are manually elaborated in a straightforward way and without a standardized
process because a standard that specifies how the UML extensions must be
defined does not currently exist [31]. For this reason, many of the existing UML
profiles are invalid or of poor quality [17]. In addition, the manual definition of a
UML profile is an error-prone and time-consuming task [19]. These two risk
factors (time and error) must be avoided, especially in MDD approaches that are
applied to industrial context, where time costs money and mistakes in
implementation directly impact on customer satisfaction.

 Automatic UML Profile Generation

 87

To avoid the risks described above, some works related to UML profile
elaboration have defined proposals to achieve a semi-automated profile generation
[19, 54]. For the generation of the UML profile, these proposals use as input the
metamodel that describes the conceptual constructs related to the DSML of an
MDD approach (the DSML Metamodel). However, none of these proposals
provide a sound solution for the automatic generation of a complete UML profile.
This is because, in real MDD solutions, structural differences between the
DSML metamodel and the UML Metamodel, which prevent the automated
identification of the extensions that must be performed in UML, may be found.

This chapter introduces a solution for a completely automated UML profile
generation using as input the Integration Metamodel [8] related to a MDD
approach. The details about Integration metamodel rationale and formulation are
presented in Chapter V. The automatic UML profile generation presented in this
chapter is part of the interoperability process that has been presented in Chapter
IV.

Thus, this chapter shows how the required metamodel extensions can be
automatically identified and details the transformation rules to obtain the UML
Profile that implements these extensions. Additionally, in order to exemplify how
the automatic UML generation can be used to integrate existing modeling
approaches and proprietary DSMLs in a unique MDD solution, a brief example
that is based on the integration of the industrial implementation of the OO-
Method approach [12, 16] and UML is presented.

The rest of the chapter is organized as follows: Section 6.1 shows the
background related to UML profile generation. Section 6.2 introduces the
proposed process. Section 6.3 details the automatic UML profile generation.
Finally, Section 6.5 presents our conclusions and further work.

6.1. Background

The UML profile is an extension mechanism that is specified in the UML
Infrastructure [131], which is oriented to adapt existing MOF metamodels to
specific platforms, domains, business objects, or software process modeling. In
the context of this thesis, the UML profiles are used to integrate the modeling
needs of MDD approaches in target modeling languages.

Automatic UML Profile Generation

88

In the literature related to the definition of UML profiles for MDD
approaches, two main working schemas can be observed: 1) the definition of the
UML profile from scratch; and 2) the definition of the UML profile starting
from a DSML Metamodel [17], which is the metamodel that describes the
conceptual constructs required by a MDD approach. For the automatic UML
profile generation presented in this chapter, the second working schema has been
selected since it provides a methodological solution that has more automation
possibilities. In Chapter II is presented a detailed analysis of the current
approaches for generation of UML profiles from DSML metamodels.

In general terms, the analyzed works are only based on the UML metamodel
as target metamodel, and they are centered on representing those modeling
elements that are required by the MDD approach and that do not exist in UML
using the generated UML Profile. However, this focus is not enough to generate
a correct UML profile because there are other elements that must be considered
for a correct UML profile definition. These other elements are: 1) the
representation of the differences that exist between elements of the DSML, and
corresponding elements that already exist in the target metamodel, and 2) the
definition of rules oriented to validate the correct use of the UML profile in order
to produce correct conceptual models.

Even when these additional considerations are omitted, none of the existing
approaches for UML profile generation provide a sound transformation process
to automatically obtain a complete UML profile. The main limitation of these
approaches comes from the structural differences between the source DSML
metamodel and the target metamodel. If these structural differences are solved,
then the UML Profile generation can be automated. The Integration Metamodel
presented in Chapter V presents a solution to solve these structural problems,
which consists of the transformation of the DSML metamodel into a new
metamodel called Integration Metamodel. This Integration Metamodel provides
an adequate input to automate the integration of the abstract syntax that is
represented in a source DSML metamodel into a target Metamodel. Thus the
automatic UML profile generation that is presented in this chapter is based on
this solution.

The UML profile generation is a process that is comprised by two steps: 1)
the comparison of the metamodels to obtain the required metamodel extensions;
and 2) The transformation of the Integration Metamodel into the corresponding
UML profile. These steps are graphically represented in Figure 19 and are
detailed in the following sections.

 Automatic UML Profile Generation

 89

Figure 19. Automatic UML Profile Generation Process

6.2. Identification of Metamodel Extensions

The identification of the metamodel extensions that must be defined in the target
metamodel is performed through a comparison between the Integration
Metamodel and the target metamodel. To perform this comparison, the mapping
information defined in the Integration Metamodel is used.

It is important to remark that in spite of the metamodel comparison is
oriented to identify the metamodel extension that must be implemented in the
final UML profile, this step is performed with independence of the aspects
involved in the UML profile definition.

The comparison between the Integration Metamodel and the target
Metamodel considers the following elements:

• The identification of new elements, which are the elements from the
Integration Metamodel that are not equivalent to elements of the target
metamodel. These elements can be attributes, associations, enumerations,
literal values, and data types.

Automatic UML Profile Generation

90

• The identification of differences in type or cardinality of equivalent
properties, which correspond to attributes or associations that have
equivalence in the target metamodel.

The identification of new elements is very simple to be performed; these are
the elements of the Integration Metamodel that are not mapped to the target
metamodel. The detection of differences in cardinality of equivalent properties is
also very simple to detect. In this case the cardinalities established for equivalent
properties are compared to the cardinalities of the mapped elements of the target
metamodel. However, the identification of differences in type of equivalent
properties requires additional explanation to properly understand how it must be
performed.

In an EMOF metamodel, the type of a property can be stated by the
following elements:

1. By a class of the metamodel, when the property corresponds to an association
end.

2. By an enumeration or data type, when the property corresponds to an
attribute.

For an association end, a type difference exists when the class related to the type
of the source association end differs from the class related to the type of the
target association end. Figure 20 shows an example of an equivalent association
without difference type. In this figure, the type of the source association end
(association1) is given by the class Class1. According to the defined mapping, the
type of association1 is the same than TMassociation1 since Class1, which is the
type of association1, is equivalent to TMClass1, which is the type of
TMassociation1.

Figure 20. Example of an equivalent association without type difference

 Automatic UML Profile Generation

 91

However, if Class1 is mapped to a different target class, then a difference
type between the source and target association ends is present. Figure 21
exemplifies this situation.

�����������" �	�����������"

������

������

��������

��������

�������	

��
���������
�����
� ����
���
�����
�

Figure 21. Example of an equivalent association with type difference

For the identification of differences in equivalent attributes, the data types
and the enumerations must be considered. For the specification of data types,
there are two alternatives:

1. The use of the primitive types that are implicit in the MOF specification,
which are: Integer, Boolean, String, UnlimitedNatural.

2. The definition of new data types, which can be equivalent to primitive types
or to specific data types of the target metamodel.

Figure 22. Example of mapping of equivalent attributes

Figure 22 shows an example Integration Metamodel that has the class
Class1. This class has the three attributes attr1, attr2, attr3, which are
equivalent to the attributes TMattr1, TMattr2, TMattr3 of the target
metamodel. According to the mapping presented, for the attributes attr1 and
TMattr1, there is not a type difference because both attributes are defined with
the primitive type Integer. Between the attributes attr2 and TMattr2 there is a
type difference because attr2 has the primitive type String while TMattr2 has

Automatic UML Profile Generation

92

the primitive type Boolean. Finally, for the attributes attr3 and TMattr3, seems
that there is a type difference because the name of the type related to attr3 (Date)
differs from the name of the type related to TMattr2 (DateInfo). However, since
the data type Date is equivalent to DateInfo according to the defined mapping,
we consider that these two data types are equivalent, and, hence, there are not
differences in the type of the two association ends involved.

For equivalent attributes that are specified by means of enumerations, the
criteria that must be used for the identification of type differences is similar to
the one applied to data types and associations (association ends). It is necessary to
use the mapping information to determine if the enumerations that are related to
source and target elements are equivalent. Figure 23 exemplifies this situation.

Figure 23. Example of enumeration mappings

In the Integration Metamodel that is presented in Figure 23, there are three
different enumerations, which correspond to the types of the three attributes that
are defined in the class Class1. In this figure it can be observed that there are not
type differences for the equivalent attribute attr1 because the enumerations
related to the types of the source and target attributes are equivalent (Enum1 is
equivalent to TMEnum1). For the attribute attr2, which is equivalent to
TMattr2, there is a type difference; the type of attr2 (Enum2) is not equivalent
to the type of TMattr2 (TMEnum3). For the equivalent attribute attr3 the type
difference is really clear since the type related to this attribute is an enumeration
while the type related to the target attribute is a primitive type.

 Automatic UML Profile Generation

 93

Figure 24. Example of extension identification from new attributes and cardinality

differences

Figure 24 exemplifies how the differences that exist between the Integration
Metamodel and the target metamodel allow the correct identification of the
metamodel extensions that must be implemented in the final UML profile. In
this figure, two kinds of differences are shown: new attributes, and cardinality
differences in equivalent attributes.

Figure 24 shows an Integration Metamodel with a class named Class1 that is
mapped to the class TMClass1 of the target metamodel. The attributes attr1 and
attr2 of the Integration Metamodel are equivalent to the attributes TMattr1 and
TMattr2 of the target metamodel. These two attributes present cardinality
differences in relation to the mapped attributes of the target metamodel. Also, the
attribute attr3 of the Integration Metamodel has no equivalence in the target
metamodel; therefore, we consider this attribute as a new attribute. With this
mapping, the UML profile that is shown at the right of the figure is obtained. In
the resultant UML profile, the stereotype Class1 is defined to represent the
corresponding class of the Integration Metamodel, which is extending the target
class TMClass1.

In the stereotype that is defined in the UML profile, the cardinality
difference that exist between Class1.attr1 and TMClass1.attr1 is solved by
means of a OCL constraint that increases the lower bound cardinality of the
attribute TMattr1 of the target metamodel. A similar OCL rule is defined to
constraint the difference of the lower bound cardinality of the attribute TMattr2.
Finally the new attribute attr3 is represented by means of the tagged value attr3
in the stereotype Class1.

With these three extensions (the two OCL rules and the tagged value
defined) the difference that exist between the Integration metamodel and the
target metamodel are solved. This is, the abstract syntax that is represented in the
Integration Metamodel has been integrated into the target metamodel.

Automatic UML Profile Generation

94

If we apply the extension identification to the Integration Metamodel
presented as example in Chapter V, the comparison results presented in Figure
25 are obtained. In this figure, the mappings and new elements that present
differences are enumerated from 1 to 4. In the comparison results, the identified
differences are shown by indicating (when necessary) the values for the
Integration Metamodel element (I.M.) and the UML element (UML).

The mapping information defined in the Integration Metamodel allows the
identification of type differences. For instance, in the case of
DMAssociationEnd.type and Property.type, the type is different because
DMClass is not equivalent to Type.

Figure 25. Metamodel Comparison Results

The cardinality differences are identified by analyzing the lower and upper
bound of the equivalent properties and the referenced UML properties. This is
the case of the equivalent properties DMAssociation.memberEnd and
DMAssociationEnd.type. The differences identified in the comparison of
metamodels indicate the extensions that must be introduced into the target
metamodel in order to correctly represent the modeling needs of the related
MDD approach. Thus, Table 4 shows the required extensions according to the
results presented in Figure 25. In this table, the column Target Element shows
the element of the target metamodel that must be extended (customized), and

 Automatic UML Profile Generation

 95

column Extension shows the metamodel extension (customization) that is
necessary to solve the differences identified.

Table 4. Metamodel Extensions Identified

Target Element Extension

DMClass.newAttr1 Change attribute type from Integer to String

DMAssociation.memberEnd Change the upper bound cardinality from many to 2

DMAssociation Create the attribute newAttr2 with type String

DMAssociationEnd.type
Change lower bound cardinality from 0 to 1

Change the association type from Type to DMClass

6.3. Integration Metamodel Transformation

The second step of the automatic UML profile generation defines a set of rules to
automatically transform the Integration Metamodel and the metamodel
extensions previously obtained in the corresponding UML profile. These
transformation rules are defined considering that the new elements and the
extensions identified during the metamodel comparison must be represented in
the generated UML profile. Also, the transformation rules take into account the
automatic generation of constraints to assure the correct application of the
generated extensions.

The mapping information between the Integration Metamodel and the target
metamodel extended with the generated UML profile is also automatically
obtained during the Integration metamodel transformation. This mapping is
essential to transform models defined with the extended modeling language
(target modeling language) into equivalent models based on the source metamodel
(the metamodel of the reference MDD approach).

In order to show how the Integration Metamodel can be transformed into the
corresponding UML profile and the corresponding mapping is obtained, the
required transformation rules are described below. These transformation rules are
separated by the different EMOF conceptual constructs. The possible modeling
situations are analyzed for each construct, according to the Integration
Metamodel features. A figure that exemplifies the application of the
transformation rules in a generic way is also presented.

Automatic UML Profile Generation

96

6.3.1. Classes

Rule 1: One Stereotype for each equivalent class. The stereotype extends the
referenced class of the target metamodel, and its name is equal to the equivalent
class name. Figure 26 exemplifies this rule.

If the name of the equivalent class is equal to the name of the target class,
then a prefix is used in the generated stereotype to differentiate the resultant
stereotype and the extended class.

This first transformation rule is the most relevant because it involves the
generation of the stereotypes, which are the main constructs of the UML profile.
The rest of transformation rules are applied according to the results obtained by
this first rule.

Figure 26. Generic transformation example for Rule 1

Constraint: At the end of the UML profile generation, if there is only one
stereotype that extends a class of the target metamodel, then the stereotype
extension must be defined as required. This constraint is defined because, in the
DSML context, the target class only has the semantics of the involved equivalent
class (see the transformation of Class3 in Figure 26).

Mapping: The equivalent class will be mapped to the corresponding stereotype
generated by the transformation rule (see Figure 27).

 Automatic UML Profile Generation

 97

Figure 27. Mapping obtained for the example related to Rule 1

6.3.2. Properties

In EMOF, the properties represent attributes of a class (metaclass) or references
(associations) between the classes. The main difference between an attribute and
an association is that an attribute represents a data-valued property, while an
association is an object-valued property. In other words, in an association, the
type is given by another class of the model that represents the related class. These
differences are taken into account in the definition of the involved transformation
rules.

Rule 2: One tagged value for each new property. The tagged value must have the
same type and cardinality as the new property. The name of the tagged value
must be the name of the new property. In the case of an association, the tagged
value must have the same aggregation kind as the new property. The application
of this rule can be observed in Figure 28 for the association Class1.rolClass2.

Mapping: The new property of the Integration Metamodel is mapped to the
tagged value generated in the UML profile (see Figure 29).

Rule 3: One OCL constraint if the lower bound of an equivalent property is
higher than the lower bound of the referenced property:

self.[property]->size() >= [newLowerBound]

Rule 4: One OCL constraint if the upper bound of an equivalent property is
lower than the upper bound of the referenced property:

self.[property]->size() <= [newUpperBound]

As Figure 28 shows, rules 3 and 4 are applied to the Class2.roleClass3 and
Class3.roleClass1, respectively.

Automatic UML Profile Generation

98

Constraint: For rules 3 and 4, an OCL constraint is defined to validate that the
corresponding stereotype is applied each time that the involved association is
established. Thus, the type of the referenced association is restricted to the
stereotype that represents the type of the equivalent association:

self.[equivalentAssociation]->isStereotyped∗([newType])

This validation is also applied if the type of an equivalent association is
changed by a specialization of the original type (see Class2.rolClass3 in Figure
28).

Figure 28. Generic example for the transformation rules 2 to 4

∗ The OCL operation isStereotyped is not part of the OMG specification and is only

used to simplify the OCL rules presented. In the application of the integration process,
this operation must be implemented according to the target UML tool.

 Automatic UML Profile Generation

 99

Mapping: For rules 3 and 4, the equivalent properties of the Integration
Metamodel are mapped to the corresponding properties of the target metamodel
according to the original mapping defined for the Integration Metamodel and the
target metamodel (see Figure 29).

Figure 29. Mapping obtained for the transformation example related to rules 2 to 4

Even though an extension relationship represents a refinement of a class in a
way similar to a generalization relationship, its semantics is represented as a
special kind of association and not as a generalization. For this reason, a tagged
value cannot redefine properties. Therefore, when the differences that exist
between an equivalent property and the referenced property cannot be
represented using OCL constraints, a tagged value that replaces the referenced
property is created. In this case, the MDD process must only consider the new
tagged value defined and not the property of the target metamodel that was
originally referenced.

Rule 5: One tagged value that replaces a property of the target metamodel when
one of the following conditions holds:

• The type of equivalent property is different than the type of the referenced
property, and the new type is not a specialization of the original type or a
stereotype that extends the original type (see Class1.attr3 in Figure 30).

• The upper bound of the equivalent property is higher than the upper bound
of the referenced property (see Class1.attr2 in Figure 30).

• The lower bound of the equivalent property is lower than the lower bound of
the referenced property (see Class1.attr1 in Figure 30).

Automatic UML Profile Generation

100

Figure 30. Generic example for transformation rule 5.

Figure 31. Mapping obtained for the transformation example related to Rule 5

6.3.3. Enumerations

The enumerations are used to specify a customized set of values that can be
represented by an attribute of a class. Graphically, the enumerations are
represented as a class. However, the enumeration is a specialization of a Classifier
and not of a Class. Hence, an enumeration is not a class of the metamodel and it
cannot be extended by a stereotype. This difference is considered in the following
transformation rule.

Rule 6: One enumeration for each new enumeration or equivalent enumeration
with new literal values. In the case of an equivalent enumeration, the generated
enumeration replaces the original enumeration, and the involved equivalent
attributes are considered as new attributes (Rule 2). This replacement is performed
due to the referenced enumeration of the target metamodel cannot be extended
with a stereotype in order to include the new literal values. Figure 32 shows the
application of this rule for Enum2 (equivalent enumeration) and Enum3 (new
enumeration).

 Automatic UML Profile Generation

 101

Constraint: One OCL constraint for each attribute whose type corresponds to an
equivalent enumeration that has fewer alternatives (literal values) than the
referenced enumeration (see Class1.attr1 and Enum1 in Figure 32).

self.[attribute] <> #[nonMappedLiteralValue]

This constraint avoids the use of invalid alternatives (non-referenced literal
values) that are defined in the referenced enumeration.

Figure 32. Generic example for transformation rule 6.

Mapping: The enumeration and corresponding literal values of the Integration
Metamodel are mapped to the enumeration and literal values generated by the
execution of the transformation rule. For equivalent enumerations that does not
present new literal values, the resultant mapping is the same as the originally
defined for the Integration Metamodel.

Automatic UML Profile Generation

102

Figure 33. Mapping obtained for the transformation example related to Rule 6

6.3.4. Generalizations

The generalization relationships have interesting features that must be considered
in the generation of the related stereotypes. Two of the main features that must
be considered are the following:

1. Stereotypes are a special kind of class; therefore, it is possible to define a
generalization between stereotypes

2. The extension association between a stereotype and its related class is a
specialization of Association; therefore, the extension relationship can be
inherited.

These two features are considered in the definition of the transformation rules
related to the generalizations, which are presented below.

Rule 7: Define one generalization between two stereotypes that represent
equivalent classes that are associated with a new generalization and that are
referencing the same target class. The extension related to the child stereotype is
not defined since it is implicit in the generalization relationship. Figure 34 shows
the application of this rule for the generalization defined between the classes
Class1 and Class3.

 Automatic UML Profile Generation

 103

Rule 8: If there is a new generalization between two equivalent classes that are
referencing different classes of the target metamodel, the generalization
relationship is not represented in the UML profile. In this case, the extensions of
each stereotype to the corresponding class are defined, and the inherited
properties (attributes and associations) are duplicated (see the generalization
between classes Class3 and Class4 in Figure 34). If the generalization is
represented, then the child stereotype will be able to extend the class of the target
metamodel that is extended by the father stereotype. This could produce a
modeling error since, according to the mapping information, the child stereotype
is referencing (extends) a different class.

Figure 34. Generic example for transformation rules 7, 8 and 9.

Automatic UML Profile Generation

104

Rule 9: If there is an equivalent generalization between two equivalent classes, the
generalization relationship is not represented in the UML profile, and only the
extensions of each stereotype are defined to the corresponding class of the target
metamodel. In this way, the generalization defined in the target metamodel is
used instead of the equivalent generalization (see the generalization between
classes Class1 and Class2 in Figure 34).

Note that an equivalent generalization represents a generalization that
already exists in the target metamodel. The equivalent generalizations are
automatically identified through the participant classes of the Integration
Metamodel that are equivalent to the classes that participate in the generalization
of the target metamodel.

Figure 35. Mapping obtained for the transformation example related to rules 7 to 9

Mapping: After the application of the transformation rules 7 to 9, the
generalization relationships of the Integration Metamodel are not mapped to the
corresponding relationships in the target metamodel nor the generated UML
profile. The equivalences that exist between the generalization in the Integration
Metamodel and the extended target metamodel are automatically inferred. The
mapping for classes and attributes must be defined according to the rules
previously presented for classes and attributes according to the corresponding
modeling situation. The only especial situation is related to the Rule 9 that

 Automatic UML Profile Generation

 105

requires the definition of new attributes (tagged values) in the generated UML
profile. In this case, it must be defined a mapping between the inherited
properties of the related child class and the attributes generated by the
transformation rule. Figure 35 shows the mapping obtained for the generic
example presented in Figure 34 that is related to rules 7 to 9. Even though in
Figure 35 are indicated the equivalences between generalization of the
Integration Metamodel and the target metamodel extended with the generated
UML profile, this is only to facilitate the understanding of the resultant mapping
since, as mentioned before, this mapping is not really obtained from the UML
profile generation.

6.3.5. OCL Rules

The OCL rules defined in the Integration Metamodel manage the interactions
between the different constructs of the source DSML. Therefore, these rules
must be included in the generated UML profile.

Figure 36. Generic example for Rule 10

Automatic UML Profile Generation

106

Rule 10: The OCL rules defined in the classes of the Integration Metamodel
must be included in the stereotypes generated from these classes. The elements
referenced in the rules must be changed by the corresponding classes of the target
metamodel and the stereotypes that were generated in the Integration Metamodel
transformation process. Figure 36 shows an example of the application of this
transformation rule.

Mapping: The application of the transformation rule number 10 does not imply
the generation of new mapping information. However, it requires the mapping
information that is generated from the other transformation rules for its correct
application.

6.3.6. Data Types

Rule 11: The UML profile specification does not directly support the definition
of data types; however, it is possible to import specific model elements in the
UML profile by means of a model library. Thus, the new data types defined in the
Integration Metamodel are defined in a separate model library that is imported in
the UML profile generated.

The equivalent data types that have differences in relation to the referenced
data types are considered as new data types. Since the data types are classifiers,
they cannot be extended using stereotypes.

Rule 11 is the last rule defined for the transformation of the Integration
Metamodel in the equivalent UML profile. Figure 37 exemplifies the application
of this transformation rule in a generic example.

Mapping: The equivalent attributes that are related to equivalent data types that
present differences must be mapped to the corresponding attributes (tagged
values) defined in the UML profile. The data types of the integration metamodel
do not require to be mapped to the target metamodel extended with the UML
profile. The mapping obtained from the Integration Metamodel transformation
assures that all mapped properties have a correct correspondence of type with the
corresponding properties of the target metamodel and the UML profile
generated. Figure 38 shows the mapping obtained for the transformation
example presented in Figure 37.

 Automatic UML Profile Generation

 107

Figure 37. Generic example for Rule 11

Figure 38. Mapping obtained for the example related to Rule 11

6.4. Applying the Transformation Rules

The eleven transformation rules that are presented above allow the automatic
transformation of an Integration Metamodel into the corresponding UML profile.

Automatic UML Profile Generation

108

Figure 39 presents the UML profile obtained after applying the proposed
transformation rules to the example Integration Metamodel and the results
obtained from the comparison between the example Integration metamodel and
the target metamodel (UML metamodel in the example).

Figure 39. UML profile generated for the example Integration Metamodel

In addition to the UML profile, the transformation of the Integration
Metamodel also generates new mapping information that takes into account the
generated UML profile elements (stereotypes, tagged values, etc.). This new
mapping provides the equivalence between the Integration Metamodel and the
UML Metamodel (target metamodel) extended with the generated UML profile.
Figure 40 shows this new mapping information for the UML profile presented

 Automatic UML Profile Generation

 109

in Figure 39. According to the obtained mapping, all the constructs and
properties that are present in the Integration Metamodel (that represents the
source DSML) have a direct correspondence in the extended metamodel (the
UML metamodel).

Figure 40. Mapping generated for the UML profile presented in Figure 39

The generated UML profile together with the obtained mapping definition
can be used to interchange extended models (that are related to the target
metamodel) and DSML models (that are related to the source metamodel) [136].
In the proposed example, this model interchange can be used to take advantage of
the modeling benefits (tools, knowledge, notation, etc.) that a standard modeling
language such as UML provides to support a specific MDD process.

6.5. Conclusions

This chapter presents a solution for the automatic generation of a UML profile
from the metamodel that represents the DSML related to a MDD approach.

The proposed solution tackles an important topic that has not yet received
the required attention: the correct definition of UML profiles for MDD solutions.
Even though the number of UML profile solutions has increased, the number of
publications related to a correct UML profile definition is very limited [17] (see
Background in Chapter II). In order to obtain this correct definition, the

Automatic UML Profile Generation

110

proposed transformations are focused on three main elements. These elements are
the following:

1. The generation of those modeling elements defined in the source DSML that
are not present in the target modeling language. This is oriented to obtain a
sound representation of the models required by a specific MDD approach by
using an existing modeling approach that is customized with the generated
UML profile.

2. The management of differences that could exist between elements of the
source DSML that are equivalent with elements of the target modeling
language. This aspect is very relevant, since not only is necessary to
extend/customize the target modeling languages with the additional features
that are present in the proprietary DSML, but also, it is important to manage
those differences between the participant modeling languages that could
prevent an appropriate definition of the required models.

3. The generation of constraints to assure that the application of the generated
UML profile follows the DSML specification. This is a very important point
that is not considered by most of the current UML profile proposals. The
definition of the structural features that are required by the MDD approach
in the generated UML profile do not guarantee the correct generation of
models with the customized modeling language. It is also important to assure
that the defined extensions are well applied to obtain properly defined models
in the context of the MDD approach. This is achieved by means the
generation of specific constraints for each extension generated.

It is important to note that the transformation rules that are defined in this
chapter are just one possible solution for the complete generation of a correct
UML profile. Variations of these transformation rules can be defined depending
on different design decisions.

The following chapter explains how the interchange of models is performed
by using the artifacts obtained from the Integration Metamodel definition and the
UML profile generation presented in this chapter.

Chapter VII. �
%���������������	������������
��

�������
�
��

Nowadays, the modeling approaches related to MDD proposals are considered
isolated modeling alternatives. These are not developed to interchange
information with other modeling approaches, which prevent their re-use in
different MDD processes or their application to different development scenarios
(with different modeling abstraction levels). In this chapter, we show how this
MDD reality can change, by means of a proposal that generates model-to-model
transformation mechanisms to automatically interchange information among
different modeling approaches. The generation of these transformation
mechanisms is performed by means of the artifacts generated from the first three
steps of the proposed MDD interoperability process. Thus, the proposal presented
in this chapter shows how proprietary DSMLs and the customized modeling
languages can interoperate to provide benefits for the application of MDD
solutions.

Generation of Model Interchange Mechanisms

112

One of the most important concerns when elaborating a Model-Driven
Development (MDD) solution [1] is the specification of a modeling language that
allows the required software products to be represented at the conceptual level
without ambiguity. Among the different choices that exist for the definition of an
adequate modeling language, there are two alternatives that appear to be the most
suitable. The first of these is the creation of a Domain-Specific Modeling
Language (DSML) [3] that is tailor-made for the MDD approach. . The second
alternative is the customization of previously-existing modeling languages by
means of extensions defined in the corresponding metamodels, which represent
the abstract syntax related to the semantics required for the MDD proposal [17].
In this thesis, we have considered the definition of these extensions by means of
the standard metamodel extension mechanisms that is proposed by OMG [34],
the UML profile [51].

This chapter presents the proposal defined to automatically generate
mechanisms for the interchange of models related to proprietary DSMLs and
customized modeling languages. Thus, it would be possible to take advantage of
the existing MDD tools for those models that can be represented by customized
modeling languages and only to implement new tools for those MDD tasks that
are related to specific aspects of the MDD approach, such as model compilers. It
would also be possible to implement specific modeling tools for those features
that are outside of the scope of existing tools.

The interchange proposal is based on the definition of an Integration
Metamodel and the automatic generation of a UML profile from the defined
Integration Metamodel, which correspond to the steps 2 and 3 of the proposed
MDD interoperability process (these steps are detailed in Chapter V and Chapter
VI of this thesis). All the information required to generate the interchange
mechanisms is obtained from these two steps of the process. For explanation
purposes, the proposed interchange approach is applied to the same example
presented in previous chapters, which is related to the customization of the UML
association according to a binary relationship defined in a simplified DSML
metamodel. Finally, a brief model compilation example is presented to show the
application of this interchange proposal by means of the application of a hybrid
modeling schema that integrates OO-Method and UML tools.

The rest of this chapter is organized as follows: Section 7.1 presents the
background related to UML profiles and DSMLs. Section 7.2 presents our
proposal for model interchange. Section 7.3 presents how to apply the

 Generation of Model Interchange Mechanisms

 113

interchange proposal. Section 7.4 presents a brief discussion about the proposal,
and finally, Section 7.5 presents our conclusions.

7.1. Background

This section briefly introduces the aspects that are relevant to the definition of
DSMLs and UML profiles. This background is specially focused on those aspects
that can be used to perform an interchange between proprietary DSML models
and models that are customized with UML profiles.

7.1.1. Domain-Specific Modeling Languages

A Domain-Specific Modeling Language (DSML) represents the semantics of the
constructs required for the definition of the conceptual models involved in a
MDD solution. For the construction of a DSML, a common strategy is to define
a metamodel to represent the abstract syntax of the required conceptual
constructs [48]. For the elaboration of this DSML Metamodel, one of the most
interesting alternatives is the use of the Essential Meta Object Facility (EMOF)
standard defined by OMG [34]. EMOF is an essential set of metamodeling
constructs, which is defined within the Meta Object Facility (MOF) specification
[38]. In the context of this work, the use of EMOF, instead of the Complete
MOF specification (CMOF or simply MOF), takes special relevance because the
metamodeling capabilities provided by EMOF are very close to the extension
capabilities that the UML profiles provide. Therefore, by using EMOF, the
features of the resultant DSML metamodels can be represented as UML profiles
extensions. By contrast, the complete MOF specification provides a set of
metamodeling capabilities that cannot be expressed as UML profiles extensions.
An example of this is that in MOF-based metamodel is possible the redefinition
of properties, which is not part of the EMOF specification. In the context
metamodeling extensions [33], the properties redefinition corresponds to a heavy-
weight extension mechanism because implies a change in the extended
metamodel: a property of the target metamodel is redefined (changed) by a
property of the defined metamodel extension. However, since the UML profile is
a light-weight extension mechanism, it cannot change the extended metamodel,
and therefore, the properties defined as UML profile extensions cannot redefine
properties that already exist in the target metamodel.

Generation of Model Interchange Mechanisms

114

Another benefit of using EMOF is that it has a standardized XMI definition
[40]. The benefit of using an XMI standardized definition for EMOF
metamodels is that it facilitates the interchange and validation of the defined
metamodels and support from existing metamodeling tools, such as Eclipse
Modeling Framework (EMF) project [57], can be obtained. EMF is an Eclipse
project that provides an open-source implementation of the EMOF standard,
which is called Ecore. In addition, by means of tools like Eclipse GMF [50] and
Eclipse ATL [58, 80], specific model editors and model transformations can be
defined over Ecore metamodels [57].

7.1.2. UML Profiles

The UML profile extension mechanism is part of the UML specification and it is
defined inside of the UML Infrastructure [35]. It defines the mechanisms used
to adapt existing MOF-based metamodels to specific platforms, domains,
business objects, or software process modeling. Since this extension mechanism is
a part of the UML standard, it can be supported by UML tools. Additionally, the
UML profile definitions and can be interchanged by means XMI specification.
These features are relevant advantages of the UML profile over other metamodel
customization mechanisms, which are have not a standard specification and
interchange format. Hence, other extension mechanisms proposed are not
supported by generic modeling tools (such as UML modeling tools) and cannot
interoperate with different MDD technologies.

Generally speaking, UML profiles are manually elaborated without a well-
defined process. This situation is motivated by the lack of a standard that
specifies how the UML extensions must be defined [31]. For this reason, many of
the existing UML profiles are invalid or of poor quality [17]. To avoid this
situation, some works propose a more methodical solution that consists in the
definition of a UML profile from the metamodel that describes the conceptual
constructs required by MDD approaches. In other words, the UML profile is
generated from a DSML metamodel [17, 51, 54]. This UML profile generation
schema is based on the identification of the equivalences (correspondences) that
exist between the source DSML and the target modeling language. This
identification of equivalences is performed by means of a mapping between the
different elements (classes, association, attributes, etc.) of the source DSML
metamodel and the corresponding elements of the metamodel related to the
target modeling language. Later, the identified equivalences are used to guide the

 Generation of Model Interchange Mechanisms

 115

correct definition of the required extension over the target metamodel through
the UML profile implementation.

Certain proposals state that these equivalences can be used to partially
automate the UML profile generation [19, 54]. However, these proposals cannot
provide a totally automated solution for the generation of a complete UML
profile. This occurs because, in real MDD approaches, certain structural
differences between the source DSML metamodel and the target metamodel may
appear. This prevents the automated identification of all the extensions that must
be performed in the target metamodel.

The Integration Metamodel proposal presented in Chapter V, which
corresponds to the second step of the MDD interoperability process proposed in
this thesis, defines a solution to solve these structural differences in order to
obtain an adequate input for an automated UML profile generation. In addition,
considering that the UML profile is generated from the DSML metamodel,
during the generation of the UML profile also can be obtained the information of
the equivalences (mapping) between the extended metamodel (target metamodel
extended with the generated UML profile) and the source DSML metamodel.
With this mapping information, models that are defined using the generated
UML profile can be automatically transformed into the equivalent models related
to the source metamodel, and vice versa. The interchange proposal presented in
this chapter is based on this idea.

7.2. Model Interchange Proposal

Our interchange proposal is based on the outputs obtained from the application
of the Step 2 and Step 3 of the MDD interoperability process proposed in this
thesis, which correspond to the Integration Metamodel Definition, and the
Automatic UML Profile Generation. In particular, the core elements for the
automatic generation of model-to-model transformation are the Integration
Metamodel, the generated UML profile, and the resultant mapping information.
Thus, the generated transformation rules can automatically transform an instance
of the target metamodel (extended/customized metamodel) into an equivalent
instance of the source DSML metamodel and vice versa. In order to understand
how the model-to-model interchange is performed, the same example used in

Generation of Model Interchange Mechanisms

116

previous chapters will be used, which corresponds to a simplified version of a
binary association and its integration into the UML metamodel.

For this example, the corresponding Integration Metamodel and mapping are
defined (Step 2 of the interoperability process). This special metamodel allows the
abstract syntax represented in a source metamodel to be automatically integrated
into a target metamodel by means of an automatic UML profile generation
process (Step 3 of the interoperability process). Additionally, from the application
of the UML profile generation process, a specific mapping between the
Integration Metamodel and the UML metamodel extended with the generated
UML profile is also generated.

From the first mapping obtained, the mapping between the source
metamodel and the Integration Metamodel, a bidirectional correspondence is
obtained between the involved metamodels. Therefore it is possible to know how
an element of the Integration Metamodel can be transformed in the
corresponding element(s) of the source metamodel and vice versa. The same
occurs for the mapping automatically obtained in the UML profile generation.
This is the mapping between the Integration Metamodel and the customized
target metamodel.

Thus, we obtain that our interchange proposal is based on two model
transformations (see Figure 41), which are performed using the two mappings
obtained. These model transformations require the metamodel extensions that are
implemented in the generated UML profile to be executed. The model
transformations use the Integration Metamodel as a pivot metamodel that is used
to go from an instance of the source metamodel to an instance of the target
metamodel and vice versa.

For instance, to transform an instance of the target metamodel extended with
the generated UML profile into an instance of the source metamodel, the
mapping obtained from the UML profile generation is used to generate an
instance of the Integration Metamodel (intermediate model). Next, from this
intermediate model, a new transformation is performed by applying the mapping
obtained from the Integration Metamodel definition. With this last
transformation, an instance of the source metamodel that is equivalent to the
input instance of the target metamodel is obtained. Figure 41 shows the general
schema of the interchange proposal.

Figure 42 exemplifies this interchange proposal with a brief model-to-model
transformation that is related to the metamodels and mappings obtained from the

 Generation of Model Interchange Mechanisms

 117

example related to the integration of a binary association and the UML
metamodel (presented in the previous chapters). This example represents an
association many-to-many between the classes Passenger and Flight. The models
that participate in this example are the UML model that is extended with the
generated UML profile (in the upper side of the figure), the intermediate model
(in the middle of the image), and the DSML model (in the lower side of the
image).

Figure 41. Schema of the Modeling Languages Interchange Proposal

It is important to point that the aim of the interchange proposal is to
guarantee the transformation of an instance of the target metamodel into an
instance of the source metamodel without losing modeling information. In this
example this means to transform an instance of the target UML metamodel into
an instance of the source DSML metamodel. Additionally, as we can observe in
Figure 41, the interchange is based on bidirectional mappings, and, hence, it is
also possible to perform the opposite transformation, which is, the transformation
of an instance of the source DSML metamodel into an equivalent instance of the
UML metamodel.

However, it is probable that the target metamodel be a more general language
(in relation to the source metamodel) with a greater number of constructs. In fact,
this is what we propose as basic for the application of the interoperability
approach. Therefore, it is very possible that the model generated from the
transformation of an instance of the source metamodel be an incomplete instance
of the target metamodel, which must be refined to obtain an adequate (complete)
instance of the target metamodel. This situation can be observed in the presented
example, in particular, in the name of the association. According to the source

DSML

Model

Intermediate

Model

UML

Model

DSML

Metamodel

Integration

Metamodel

UML

Metamodel

InstanceOf InstanceOf InstanceOf

Model-to-Model Transformation Model-to-Model Transformation

DSML Metamodel – I.M.

Mapping

DSML – UML Metamodel

Mapping

DSML Model to UML ModelUML Model to DSML Model

Generation of Model Interchange Mechanisms

118

metamodel, the name of the association is not a relevant property. It is neither
considered in the mappings nor in the interchange process. However, the
association in UML requires an appropriate identification, which is performed by
its name. Thus, a transformation of an instance of the source metamodel, using
the mapping presented in the example, requires a refinement to specify the name
related to each generated association.

Figure 42. Interchange proposal application example

A recommended strategy for the implementation of the required model
transformations is the use of model-to-model transformation technologies such as
QVT or ATL. Thus, an interesting open-source implementation alternative is the
Eclipse ATL project, which performs model transformations by means of a
mapping that is defined between Ecore metamodels (EMF Project)[57]. In
addition, the Eclipse ATL project also provides support to perform
transformations over metamodels defined with the UML2 tools, which are part
of the Eclipse UML2 project [126].

The proposal of Abouzahra et al. presented in [130] shows a practical
approach based on ATL that can be useful to learn how transform a model

�	� !

�"
�

������

�	� !

�"

������

�!������
��	

����������������
��#�!������
��	

�$�����
%

�� !"

��#�!������
��	�	�

�$�����
%

�� !"
��#�!������
��	�	�

������

���������
��#������

������

#�����

��#������

�	� !

�&
�
�����$

�	� !

�"
�

������

�	� !

�"

������

�#�!������
��	

�#�!������
��	�	�

�� !"

�#�!������
��	�	�

�� !"

�#������

���������

�#������

#�����

�	� !

�&
�
�����$

�	� !

�"
�

������

�	� !

�"

������

�#�!������
��	

�#������

���������

�#������

#�����

�	� !

�&
������$
����
"�� ��
��
����
"'����
�!
����
&�� ��
��
����
&'����
�!

%&'(

&����

������������(

&����

)*&'(

&����

 Generation of Model Interchange Mechanisms

 119

extended with a UML profile into another target model. To perform this
transformation, the manual definition of a mapping between the UML profile
and the metamodel related to the target model is required. In our proposal, this
mapping corresponds to the mapping between the UML profile and the
Integration Metamodel, which is automatically obtained. Thus, the Abouzahra et
al. proposal could be an interesting open-source solution to implement the
transformations between the UML model and the intermediate model that is
presented in the interchange proposal. However, it is still necessary to implement
the transformations to obtain the DSML model from the intermediate model, and
vice versa.

Nevertheless, it is important to remark that for the implementation of the
interchange proposal can be used other transformation alternatives, which are
different than model-to-model transformations, for instance, by means of XSLT
transformations.

The next section shows how has been applied the interchange proposal in the
industrial implementation of the OO-method approach, and presents a brief
example of its application.

7.3. Applying the Interchange Proposal

The proposed interchange proposal has been applied to an industrial MDD
solution that is called OlivaNova (the Programming Machine) [62], which has
been developed by CARE Technologies [64]. Olivanova corresponds to the
industrial implementation of the OO-Method approach [12, 16]. Olivanova has
been selected because it already has a suite of MDD tools that are based on the
OO-Method DSML. Thus, by applying our interchange proposal to Olivanova,
UML-based tools can be integrated with the existing Olivanova technology.

In the suite of Olivanova tools, there are two tools that are oriented to
interchange UML and OO-Method models. These tools are the OO-Method
XMI importer, which transforms an UML model into an OO-Method model,
and the OO-Method XMI exporter, which transforms an OO-Method model into
an UML model. The transformations performed by these tools are implemented
through XSLT transformations.

Generation of Model Interchange Mechanisms

120

It is important to mention that these two interchange tools correspond to the
initial effort to obtain an interoperability mechanism for MMD approaches and
UML, which is the starting point for developing the interoperability approach
presented in this thesis.

However, the interchange provided by these interchange tools is limited by
the UML modeling capabilities because the UML constructs do not provide all
the precision required by the OO-Method conceptual model. In order to solve
this problem, a UML profile that extends UML with the precision required by
OO-Method has been defined using the first three steps of the interoperability
process proposed. The mapping information obtained during the generation of
the UML profile has been used to extend the OO-Method interchange tools in
order to improve the interchange between UML and OO-Method models. In
order to perform this improvement, the transformations required by the
interchange proposal are implemented by means of XSLT transformations. This
implementation decision has been taken because the OO-Method interchange
tools are originally based on XSLT. Thus, it is not necessary to implement a
completely new interchange tools, and only the new interchange aspects are
included in the current implementation. This also demonstrates the platform
independency that the proposed interchange approach has since it not only can be
implemented by using tools based on model-to-model transformation technologies
(such as ATL or QVT).

The platform independency of the proposed interchange approach is a very
important point if we consider that the objective is to achieve the interoperation
of different modeling language, which can have tool supporting implemented
with different platforms and technologies.

The implementation schema that is used to apply the interchange proposal in
the Olivanova technology is presented in Figure 43. According to this schema,
the OO-Method metamodel is used as input for the UML profile generation
process.

Figure 43 shows that the UML profile generation process also generates the
mappings required to perform the model transformation involved in the
interchange of UML and OO-Method models. It is important to note that the
mapping between the Integration Metamodel and the UML metamodel is
automatically generated during the automatic UML profile generation process.

In the importation process, the XMI importer tool uses as input the XMI
definition of the UML model (extended with the generated UML profile) and

 Generation of Model Interchange Mechanisms

 121

generates as output an equivalent OO-Method model, which is represented in
XML format according to a specific DTD. The exportation process performs the
opposite transformation, it takes as input the XML representation of an OO-
Method model and generates as output an equivalent UML model. Therefore, the
XMI definition of the UML model can be used by UML-based tools, and the
XML definition of the OO-Method model can be used by the different Olivanova
tools and by the Olivanova model compilers.

Figure 43. Schema for the implementation of the interchange proposal in OO-Method

and UML

The interchange between OO-Method and UML is centered on the OO-
Method object model, which is similar to the UML class model. Therefore, the
interchange tools are focused on transforming an OO-Method object model into
an UML class model, and vice versa. However, the OO-Method object model is
only one of the diagrams involved in the definition of the OO-Method conceptual
model, which is used by the Olivanova technology to automatically generate
software applications throw a MDD process. There are other diagrams involved
in the definition of the OO-Method conceptual model, for instance, the
Presentation Model, which allows the user interface of the generated applications
to be defined.

The object model has been selected for the interchange between OO-Method
and UML because it is the core diagram for the definition of the OO-Method
conceptual model. In addition, due to its proximity with the UML class model, it

Generation of Model Interchange Mechanisms

122

could be more intuitive for defining the OO-Method object model using UML
tools for those customers that already have experience in UML.

Figure 44. UML model extended with the OO-Method UML profile

Figure 44 shows a UML model that has been defined using the UML profile
generated to represent the concepts of the OO-Method association. The
generation of this UML profile is detailed in the next chapter, where the
integration of UML and OO-Method is presented. The UML model describes
the same example presented in Figure 42 (an association between the classes
Passenger and Flight). Figure 44 also shows the description of the UML model
in a tree view, where the application of the different stereotypes can be observed.

It is important to note that even though the OO-Method association is a
binary association as the example presented in the UML profile generation

 Generation of Model Interchange Mechanisms

 123

process, the OO-Method association requires additional properties that are not
defined in that simplified example.

The UML model presented in Figure 44 has been specified using the Eclipse
UML2 tool. This figure shows some of the OO-Method concepts that do not
exist in UML, for instance, the concept of shared event that is represented by the
stereotype sharedEvent. The shared events are services that are defined to manage
the creation or destruction of links between instances of associated classes. Figure
44 also shows that the representation of the OO-Method class is performed by
the stereotype oOmClass.

Later, this UML model is transformed into an equivalent OO-Method object
model by means of the XMI importer tool (see Figure 45).

Figure 45. XMI importer application example

The XMI importer tool uses the mapping information obtained in the
generation of the OO-Method profile (see Figure 43) to perform the
transformations presented in the interchange proposal (see Figure 41).

…….

Generation of Model Interchange Mechanisms

124

Figure 46. OO-Method presentation model

The presentation model can be defined from the obtained OO-Method object
model using the OO-Method presentation model editor, which is based on the
OO-Method DSML. Figure 46 shows a screenshot of this tool, which presents a
partial view of the presentation model related to the imported UML model. This
figure shows that the executable application will have two Population Interaction
Units (PIU) to represent the instances related to each class of the model. A PIU
represents an entry-point for the application, through the presentation of a set of
instances of a class. An instance can be selected, and the corresponding set of
actions and/or navigations specified in the presentation model are offered to the
user. More details can be found in [12].

Figure 47. Generated application

Passengers related

to the flight 1

 Generation of Model Interchange Mechanisms

 125

Figure 47 shows a screenshot of the application that is generated from the
imported UML class model and the defined OO-Method presentation model.
This figure also shows that the association between the classes (defined in the
UML model) is used to implement the navigation between related instances.

Figure 48. Functional size report generated for the application generated from the

example UML model

Finally, the imported UML model can also be used to obtain other software
products; for instance, to obtain the functional size of the modeled application
with the OO-Method function points tools [137-139] in order to estimate the
cost of the generated application. Figure 48 shows a general view of the report of
function points that has been automatically generated from the example UML
model. This report presents the functional size obtained by a measurement
procedure defined according to the IFPUG FPA standard [140].

Generation of Model Interchange Mechanisms

126

7.4. Comparing the Model Interchange Approach

Nowadays, the use of model transformations directed by metamodels mappings
seems to be the most appropriate way for the interchange of models that are
related to model-based technologies. In this context, certain works have proposed
alternatives to facilitate the definition of the required mappings and
transformations, such as [22]. This work presents a proposal to perform an
automatic metamodel matching. The metamodel matching is obtained by means
of the transformation of the participant metamodels into directed labeled graphs.
The generated labeled graphs are compared by using a similarity algorithm to
identify the equivalences between the different meta-elements, which correspond
to the resultant metamodels matching. The obtained matching is used to
transform models based on the source metamodel into equivalent models based on
the target metamodel. This transformation can be performed by means of model
transformation languages such as QVT. However, these kinds of approaches
based on the direct transformation of source models into target models do not
consider those elements of the source metamodel that have no representation in
the target metamodel. Therefore, there is a high probability of lost modeling
information in the transformation process. In addition, the precision of the
proposed similarity identification algorithm is negatively affected by larger size
metamodels, such as the UML metamodel that is considered in our example.

If we consider that one of the main objectives of the proposed approach is the
interoperability of proprietary DSML and more general modeling languages, it is
very common to find modeling elements in the proprietary DSMLs that are not
present in more general modeling languages that are not centered on model
compilation tasks. This is produced by the nature of proprietary DSMLs and
generic modeling languages.

A modeling language that covers a domain in generic way, such as i* for
organizational analysis, provides a general vision of the constructs that are
necessary for representing the target domain. However, at difference of
proprietary DSML related to MDD approaches, these modeling languages are
not centered on those details that are necessary to perform an appropriate model
compilation process. This situation is clearly observed in general-purpose
modeling languages, which are defined for their application into different
domains. By contrast, a proprietary DSML related to an MDD approach is
oriented to a specific domain, and it introduces particular modeling elements for a
precise representation of the required software products in the domain context.

 Generation of Model Interchange Mechanisms

 127

Thus, the compilation of the models defined with these DSMLs can be
performed in an automatic way.

This gap between specific DSMLs for MDD approaches and generic
modeling languages produces the loss of the specific MDD details when the
DSML models are transformed. With the proposal presented in this chapter, we
provide a solution to face the loss of modeling information during the
transformation of DSML models. Thus, it is possible to obtain a complete
integration of particular DSMLs and existing modeling languages through the
bidirectional interchange of models. This solution is centered into the automatic
generation of a UML profile that introduces into the more general modeling
language those specific elements of the DSML that are lost in a direct model
transformation process.

Proposals such as [130] state that it is possible to automate the interchange of
models extended with a UML profile and DSML models by means of model
transformations. However, this proposal requires the manual definition of a
mapping between the participant metamodels. Since this mapping is defined
independently of the definition of the UML profile, there exists the risk that the
obtained mapping does not reflect the equivalences between the participant
metamodels in a correct way. In our proposal this risk is avoided because the
mapping is obtained during the UML profile generation. In addition, the
complexity related to the correct design of a UML profile is encapsulated in the
transformation of the Integration Metamodel [135]. Therefore, the mapping
obtained from this transformation provides a correct identification of the
equivalences between the generated UML profile and the DSML metamodel
(using the Integration Metamodel as intermediate model).

7.5. Conclusions

In this chapter, an interchange proposal to obtain a hybrid modeling schema for
the interoperation of modeling languages is presented. Thus, if we consider that
the main resource in MDD technologies are the models, then, by applying the
proposed interchange approach, it will be possible to achieve the interoperability
in MDD processes. In addition, the tools related to existing modeling languages
can be reused in the application of specific MDD solutions, thereby reducing the
effort of implementing specific MDD tools.

Generation of Model Interchange Mechanisms

128

For the application of this interchange approach, the previous steps of the
proposed MDD interoperability (Integration Metamodel definition and UML
Profile Generation) process play a fundamental role. In these steps, the artifacts
and mapping information to automatically generate the interchange mechanisms
are obtained.

This chapter also shows the application of the interchange proposal to a
specific MDD approach, presenting an implementation schema that has been
used to obtain the interoperability of UML in the OO-Method development
process. In particular, the industrial implementation of OO-method, which is
called Olivanova The Programming Machine. Thus, this implementation
schema shows that it is possible to combine the use of generic and specific
modeling tools for defining the conceptual models that are required by specific
MDD approaches. But also, the application of specific MDD tools based on the
proprietary DSML metamodels to automatically obtain different software
products from models defined with a customized modeling language. In
particular, the presented example briefly shows the application of UML in the
OO-Method MDD development process, and how these customized UML
models can be automatically compiled by using the Olivanova technology.

 Some of the benefits for OO-method and UML that can be achieved with
the presented implementation schema are:

1. The commercial structure defined for the OO-Method approach (such as the
cost estimation based on functional size measurement) can be used by UML
users.

2. The different tools based on the specific OO-Method DSML can be used in
transparent way over extended UML models. This can be observed in the
OO-Method model compiler [62], and functional size measurement tools
[137, 138].

3. The users of the generated UML profile can easily migrate from UML tools
to OO-Method tools. In this way, UML users that have already adopted the
OO-Method approach can take advantage of the improved functionalities that
the specific OO-Method modeling tools provide.

These benefits can be generalized to other MDD approaches that apply the
proposed approach to interoperate with standard modeling languages and their
supporting tools.

 Generation of Model Interchange Mechanisms

 129

In the next chapters, the application of the proposed interoperability
approach is detailed over two scenarios. These interoperability scenarios are the
following:

1. The interoperability of UML in the OO-Method development process

2. The interoperability of i* in the OO-method development process.

It is important to remark that the development of these two interoperability
scenarios were relevant to improve and obtain the final interoperability approach
presented in this thesis.

Chapter VIII. �
������
�#�����	�� ��!!������
�

Even though OMG in the Model-Driven Architecture (MDA) specification
recommends the use of UML for model-driven developments, the lack of
semantic precision in UML has led to different model-driven approaches
proposing their own domain-specific modeling languages in order to introduce
their modeling needs.

This chapter presents an interoperability scenario that is focused on the
application of UML models into MDD processes. In particular, we face the
customization of the UML association in order to facilitate its application in the
OO-Method development process. To do this, the interoperability approach
proposed in this thesis is applied. At the end of this chapter, we briefly present
how the results obtained from the development of this interoperability scenario are
used to generate software products through the industrial model compiler related
to the OO-Method approach.

Linking UML and MDD Approaches

132

8.1. Introduction

The Model Driven Development (MDD) approach has achieved great relevance
in the software industry, improving the software development process and
reducing the cost of the developed applications [2]. In this context, one of the
most widely used approaches is the Model Driven Architecture (MDA) [10, 11,
141], defined by OMG [34]. The MDA approach recommends the use of UML
to define the conceptual models involved in MDD processes. However, UML is
defined as a general purpose language with a flexible semantics that does not
provide enough precision to define models that can be automatically transformed
into complete software representations.

As states Milicev in [142], the association is one of the key constructs in
UML for which a fully unambiguous semantics still does not exist. In early
versions of UML, many authors have reported this issue, for instance, Graham et
al. in [143] and Snoeck et al. in [144]. In the most recent versions of UML
(UML 2.0 and above), this semantics has been somewhat improved, but some
precision problems still persist. This situation is clearly reported by Albert et al.
in [145] and Gueheneuc et al. in [146]. For instance, the behavior related to
creation, deletion, or update of association instances, or a complete semantics for
the aggregation relationships are not clearly specified [31].

In order to provide an effective solution for interoperating UML and MDD
processes, this chapter shows the application of the MDD interoperability
approach proposed in this thesis. This application allows the UML syntax
(proposed in the UML specification) to be adapted to the modeling needs of a
specific MDD approach. In particular, we advocate on showing how to extend
(customize) the abstract syntax of the UML constructs that are related to
specifying association relationships among classes.

For the application of the interoperability approach, we have inherited the
modeling aspects related the OO-Method approach [16]. We consider that this is
a suitable option for demonstrating the effectiveness of our proposal since OO-
Method is an object-oriented MDD method that has been successfully applied to
the software industry3.

3 The industrial implementation of OO-Method has been successfully applied in several companies such as

Toshiba, Daimler-Chrysler, and Repsol.

 Linking UML and MDD Approaches

 133

Thus this chapter makes a twofold contribution:

1. It shows how a correct integration of the syntax that supports the proposed
semantics can be performed by the application of the proposed
interoperability process

2. It presents an industrially-tested semantics that can be used as a reference for
the application of the UML association in MDD environments

The chapter also exemplifies how to obtain a final software product from a
UML model that has been extended with the generated UML profile. This model
compilation is performed using the industrial solution that implements the OO-
Method approach [63] and the interchange tools that were implemented by
applying the interchange approach proposed in Chapter VII.

The rest of this chapter is organized as follows: Section 8.2 presents a
background of the concepts and technologies involved. Section 8.3 introduces the
semantics adopted in this interoperability scenario to improve the UML
association for MDD processes. Section 8.4 shows how the customization of the
UML association is performed. Section 8.5 presents a model compilation example
related to a UML model that has been extended with the proposed semantics.
Finally, Section 8.6 presents our conclusions.

8.2. The applicability of the UML association in MDD
Processes

This section is centered on the need of customizing the UML specification for its
appropriate application in MDD processes. Specifically, we show why the UML
association must be adapted for this purpose.

In general terms, UML specifications include association definitions that do
not achieve a consensus for a unified semantic definition. Several works have
appeared highlighting the drawbacks of the language and trying to answer many
important questions concerning associations. For instance, the works presented
by Diskin and Dingel [147], Genova et al. [148], and Milicév [142]. With
regard to the UML1.4 specification [149], Henderson-Sellers et al. have
presented different works [150-152] searching for answers to some relevant
questions, such as the directionality of associations or the special meaning of
aggregation and composition. Special attention to the whole-part properties of the

Linking UML and MDD Approaches

134

association has been given by Barbier and Belloir et al. in [153] and [154]. Also,
in [155], Stevens tries to clarify some confusing concepts regarding associations
(without using formalizations), such as the use of tuple for defining links, some
complex questions of the multiplicity definition, or the static and dynamic notion
of associations. This last concept is also discussed by Genova et al. in [148],
where the authors propose a new classification for associations. With regard to
most recent versions of the UML specification (UML 2.x), it is recognized that
the association definition has been improved, but some problems still persist
[145, 146]. For instance, Diskin in [147] presents a framework to formally
explain several confusing notions of associations and detects some flaws in the
association part of the UML metamodel. In [143], Graham et al. center on newer
concepts that are related to association ends in order to improve the
expressiveness of the UML association. In addition, such as France et al. clearly
state in [31], there exists a well-known gap between the conceptual
representation of the UML association and its correct implementation in final
software products, which is a relevant issue for the correct application of UML in
MDD processes. This situation is also present in some implementation proposals
for the UML association such as the proposed by Akehurst et al. [156] and
Gessenharter et al. [157], where elements represented at the implementation level
have no correspondence at the conceptual level. In our proposal, we have centered
our attention on a MDD approach called OO-Method.

The OO-Method approach puts into practice most of the ideas presented in
the analyzed works [14]. However, unlike most of the works that just focus on
specific parts of the association definition, OO-Method provides a holistic view of
the association. For instance, some works just face the composition definition,
which is a subtype of the association; others focus on the notation for specifying
associations; and others on the alternatives to implement associations. Instead,
OO-Method integrates all these aspects to obtain a complete association
specification. Moreover, even though some of the analyzed proposals have a
certain level of technology support, they are mostly applied at the theoretical and
academic levels. In contrast, the OO-Method approach has been successfully
applied to the software industry, which demonstrates the effectiveness of this
approach to support real software development projects. Thus, the rigorous
semantics of the OO-Method association encourages the use of this approach to
explain how this relevant UML construct can be customized for effective MDD
application.

 Linking UML and MDD Approaches

 135

In the OO-method approach, the class model is the core of the OO-Method
conceptual model; the rest of the models involved are defined starting from
elements of the class model. The constructs involved in the specification of
associations among classes are defined within the OO-Method class model.
Moreover, the correct specification of the different modeling aspects of the
association is probably one of the most important and complex parts of the OO-
Method class model. For this reason, the OO-Method association has been chosen
to apply the interoperability approach presented in this thesis.

Thus, by integrating the modeling aspects of the OO-Method association into
UML, we obtain an extended UML association that provides appropriate
modeling information for its application in the OO-Method MDD process. To
perform this integration according to the MDA guide [10] and the latest UML
specification [35, 122], the definition of a UML profile is the more suitable
option. In this context, the application of our MDD interoperability approach
that is based on the UML profile generation is a recommended alternative to
achieve the UML and OO-Method interoperability.

8.3. The Semantics Proposed to Customize the UML
Association

This section introduces the semantics proposed to customize the UML
association, which is inherited from the OO-Method approach. However, since
many concepts in OO-Method already exist in the UML specification, we only
focus on the aspects that meaningfully contribute to improving the UML
association in the context of the MDD development process. Marin, et al. in
[158] show a detailed case study of the OO-method approach, where the
modeling flexibility of the OO-Method association semantics can be observed.

In the OO-Method context, an association is defined as a structural
relationship between classes that represents connections (links) between the
objects of these classes (participant classes). OO-Method associations are binary,
so they only have one or two participant classes (one class in the recursive
associations). Thus, the association concept used in this chapter always refers to
binary associations.

The association ends are the endpoints of an association, which connect the
association to its participant classes. The name of an association end corresponds

Linking UML and MDD Approaches

136

to the role of that end (the task that the participant class plays in the association).
The association ends are characterized by the multiplicity property, which
specifies the maximum/minimum number of objects that can/must be connected
to an object of the opposite end. The relevant concepts that must be added to
UML for appropriate definition of associations according to the OO-Method
approach are:

• Unique identification for class instances (objects).

• Precise behavior for aggregation and composition concepts.

• Precise behavior related to creation, deletion and update of links.

Figure 49. Example UML model

Figure 49 shows a brief UML model that is used throughout this chapter to
illustrate our proposal. This model was defined using the Eclipse UML2 tool
[126]. It shows an association between the classes Passenger and Flight, and an
aggregation between these two classes and the class Reservation. A passenger can
make a reservation for a specific flight, or can take a flight without a previous
reservation. The association between the classes Passenger and Flight indicates
those passengers that actually flew. Thus, a passenger with a reservation may not
be related to a flight, for instance, if the passenger misses the flight.

Following, the specific modeling features that are integrated into UML are
presented.

8.3.1. Object Identification

In UML, it is not possible to uniquely identify the objects participating in an
association when the model is instantiated, since the UML specification does not
define a mechanism for the identification of class instances. It is interesting to
observe that, even though the correct identification of objects is a relevant issue
for correcting compilation of the association, proposals that deal with the
compilation of the UML association usually omit this feature [156, 157]. To
solve this problem, the concept of Identification Function is introduced in the
OO-Method approach.

Passenger

id_passenger : String

passenger_name : String

Flight

flight_number : String

origin : String

destination : String

Reservation

reservation_date : DateTime

passenger flight

 [0..*] [0..*]

reservation

passenger

 { readOnly }

 [0..*]

reservation

flight

 { readOnly }

 [0..*]

 Linking UML and MDD Approaches

 137

The Identification Function corresponds to a set of structural properties that
allows the unique identification of class instances. Thus, the Identification
Function is specified by means of a set of attributes (one or more) owned by a
class. In the example shown in Figure 49, the attribute id_passenger is a clear
candidate to conform the Identification Function of the class Passenger; the same
is true for the attribute flight_number of the class Flight. The Identification
Function is specified by adding the Boolean property isIdentifier to the
specification of class attributes. Thus, isIdentifier is set to TRUE when a class
attribute participates in the Identification Function of the owning class.

Figure 50 shows how the Identification Function is used for the
identification of the objects participating in an association, and how this feature
allows the unequivocally identification of links.

Class: Passeger

12345 John Smith

id_document name

isIdentifier = True

Class: Flight

5 Valencia

flight_number origin

isIdentifier = True

Milan

destination

Association: Passenger_Flight

12345 5

Passenger Flight

Figure 50. Example of Identification Function in the association

8.3.2. Aggregation and Composition

In order to make the semantics of the aggregation concept more precise, we
adopt the following UML assertion: “An association may represent an
aggregation (i.e., a whole/part relationship). In this case, the association-end
attached to the whole element is designated, and the other association-end of the
association represents the parts of the aggregation. Only binary associations may
be aggregations”.

In OO-Method, this definition is extended with additional semantics. Thus,
the property of Identification Dependency of the whole with regard to the part is
introduced to represent the dependency that exists between composite (whole)
and component (part) classes. This dependency is discussed in works such as the
presented by Barbier et al. in [153].

The identification dependency implies that the identifier of the composite
class is built using the identifier of the component classes (and, if necessary by
adding some attribute of the composite class). According to UML, the lower
cardinality of the association end related to the component class must be 1, that

Linking UML and MDD Approaches

138

is, [1..x] cardinality. However, to guarantee the correct compilation of the
identification dependency in the OO-Method development process, the upper
cardinality of the association end related to the component classes is constrained
to 1, that is, [1..1] cardinality. This constraint is defined since [1..*] cardinality
implies that the identification function of the composite class must be conformed
by a multi-valued attribute. However, the target implementation platforms of the
OO-Method approach are based on relational databases that do not provide
support for multi-valued attributes, such as SQL Server.

In the aggregation example presented in Figure 49, the component classes
are Flight and Passenger (with cardinality [1..1]) and the composite class is
Reservation (with cardinality [0..*]). The Identification Function of Reservation
is composed by the attribute id_passenger from Passenger and flight_number
from Flight4.

An aggregation can be specialized in a composition (composite aggregation in
UML), which presents additional features. These features are the following:

• A part must be included in, at most, one composite at a time.

• If a composite is deleted/modified, all its parts are deleted/modified with it.

• There is an identification dependency of the part with regard to the whole.
Thus, for the composition, the cardinality related to the composite class must
be [1..1]. Note that the identification dependency of composition is opposite
to the identification dependency of the aggregation.

8.3.3. Creation, Deletion, and Modification of Links

The creation, deletion, and modification of links are only required in dynamic
associations. In OO-Method, an association is dynamic when the two participant
association ends are defined as dynamic. Otherwise, the association is not
dynamic since the links established cannot change throughout the whole life of
the participant objects. Figure 51 exemplifies this situation for a non-dynamic
association.

Figure 51 shows an association between the classes A and B. The association
end related to class A is static, and the association end related to class B is

4 The specification of the identification function for the class Reservation is not required, since it can be

automatically inferred from the aggregated classes during the model compilation process.

 Linking UML and MDD Approaches

 139

dynamic. In T1, a new instance of class B (named b1) is created. The instance b1
is linked with the two existing instances a1 and a2 of class A. In T2, the
instance b2 is created and is also associated with a1 and a2 (changing the set of
links that are defined for a1 and a2). These links can be performed because the
association end RoleB is dynamic. In T3, a new instance of class A (named a3) is
created, and it is associated with b1 and b2. However, a3 cannot be linked to
these two instances of class B because the association end RoleA is static, and the
links defined in the creation of the instances b1 and b2 cannot change during
their lives. Furthermore, this implies that the links established between the
instances of classes A and B during the creation of the instance b1 and b2 cannot
be changed, and they can only be deleted when one of the participant instances is
deleted.

A B
[0..*] RoleA

static

RoleB [0..*]

dynamic

b1

a1

a2

T1:

b2

a1

a2

b1

a3

b2

T2:

T3:

Figure 51. Example of association temporality

In a UML model, a dynamic association can be represented as a binary
association where the property readOnly of the two involved association ends are
set as false. Thus, a dynamic association implies that the links established between
instances related to the two participant ends can be changed (inserted, deleted, or
updated) during the life of the participant objects.

In UML, it is necessary to manually define (in the participant classes)
operations to represent the management (creation, deletion, and modification) of
links. These operations must include the specification of the related behavior,
which can be specified using different languages, such as natural language, Action
Semantics [159], or the Object Constraint Language (OCL) [37]. For the
definition of these operations, it must be taken into account that the management
of links simultaneously affects properties of the two participant classes of the
association. Therefore, the involved operations must be simultaneously executed
in the participant classes. It is possible to observe that the definition of these
operations is not trivial, and, hence, the manual definition of the behavior that is
related to these operations makes the correct specification of the associations
difficult and error-prone, which is of great relevance when this specification is
interpreted by an automatic model compiler. To face this issue, certain works
[156, 157] have proposed a direct implementation of operations related to

Linking UML and MDD Approaches

140

controlling the associations’ behavior. In these proposals, the operations related to
the management of links are represented at the implementation level
(programming code). Nevertheless, since these operations do not have
representation at the conceptual level, customization of the behavior related to
links management cannot be performed in the UML model.

Thus, our proposal introduces the concept of shared event to represent these
linking management operations. A shared event is a special kind of operation that
defines the behavior related to dynamic associations. It is owned by the two
participant classes, and its definition can be separately customized in each
participant class. Thus, a shared event has a definition that is distributed between
the classes that participate in the association. Events of this kind always require
two input parameters, either linked objects or objects to be linked. A shared event
can be of three types:

• Insert Event: creates a link between an object at one end of the association
and an object at the opposite end.

• Delete Event: removes an existing link between an object at one end of the
association and a related object at the opposite end.

• Edit Event: changes an existing link between an object at one end of the
association and a related object at the opposite end.

The types of shared events depend on the cardinality of the association ends.
Cardinality [1..1] in an association end prevents an existing link from being
deleted or a new link from being created, that is, the execution of an insert or
delete event is not possible. In this case, a link is established during the creation
of an object at the opposite end, and it can only be deleted when one of the
participant objects is deleted. Hence, the dynamic association can only be
managed by an edit shared event because the only option is to change the existing
link for another one. Thus, the edit shared event has the effect of a simultaneous
execution of an insert and deletion event, which prevents the violation of the
association cardinality. In any other case, the dynamic associations are managed
by the insert and delete events.

The behavior of a shared event can be customized by defining preconditions
and post-conditions, which must be specified by means of well-formed, first-order
logic formulas. The case study presented in [158] provides more detailed
examples about the customization and integration of shared events in more
complex services.

 Linking UML and MDD Approaches

 141

8.4. Integration of the Proposed Semantics into UML

In this section, we integrate the semantics proposed (in the previous section) into
UML by applying the first three steps of the MDD interoperability process (see
Chapter IV). By means of this Integration Process, we obtain the following
outputs:

1. A specific metamodel that defines the abstract syntax required for
representing the proposed association semantics.

2. The UML profile that integrates our proposal into UML.

3. The set of mappings to perform the automatic generation of model
interchange mechanisms.

The metamodel that represents the required abstract syntax is defined as an
Integration Metamodel [127] according to the second step of the integration
process (see Chapter V). In this case, we have directly defined an Integration
Metamodel for the proposed semantics, since there is no a previous EMOF
metamodel for the OO-Method industrial approach. The implemented OO-
method tools are based in a XML definition that is not based on a standard
metamodel specification. In other words, the metamodel related to the industrial
OO-Method approach is implicit in the OO-method compilation process, but is
not explicit in a formal specification that could be computationally interpreted,
such as an Ecore file [57]. This is one of the reasons of why the interchange tools
for the industrial OO-Method technology are implemented by means of XSLT
transformations.

The Integration Metamodel defined for the proposed semantics allows the
related abstract syntax to be integrated into UML by means of a UML profile
that is automatically generated [135]. This generation is performed according to
the third step of the proposed interoperability approach (see Chapter 5), which is
oriented to obtain the corresponding UML Profile from the Integration
Metamodel.

Finally, the interchange mechanisms are automatically generated from the
mappings obtained during the generation of the UML profile.

8.4.1. Integration Metamodel definition

Since the industrial OO-Method approach has not a standard metamodel
definition, we have directly defined the Integration Metamodel to support the

Linking UML and MDD Approaches

142

abstract syntax related to the proposed OO-Method semantics. In other words,
we have applied the first and second step of the interoperability approach at the
same time.

According to the Integration Metamodel specification (see Chapter V), there
are four conditions that an Integration Metamodel must hold for the automatic
generation of the metamodel extensions. These are the following:

• All the classes from the Integration Metamodel are mapped to class of the
UML Metamodel. This assures that the constructs from the MDD approach
can be represented from the UML constructs.

• The mapping is defined between elements of the same type (classes with
classes, attributes with attributes, and so on).

• An element from the Integration Metamodel is only mapped to one element
of the UML Metamodel.

• If the properties of a class A from the Integration Metamodel are mapped to
properties of a class B of the UML metamodel, then the class A is mapped to
the class B or a specialization of it.

Figure 52 shows the Integration Metamodel that describes the abstract
syntax for the semantics introduced in section 8.3. This corresponds to a subset
of the whole metamodel that is necessary to describe the abstract syntax of the
industrial implementation of the OO-Method MDD approach.

The Integration Metamodel presented has been specified using the Eclipse
UML2 Tool [126] since it provides automatic generation of EMF metamodels
from the defined UML2 metamodels. EMF [160] is the Eclipse Modeling
Framework, which is based on the EMOF specification. Also, the generated
EMF metamodels are tagged with additional information to automatically obtain
model editors that have interpreters for the defined OCL rules and that support
UML profile extensions. Additionally, the Eclipse UML2 project provides a
complete implementation of the UML metamodel, which is defined according to
the official UML specification. This facilitates that the artifacts involved in the
application of our proposal fulfill the OMG standards.

According to the defined Integration Metamodel (Figure 52), the classes can
own data-valued attributes (class DataValuedAttribute) or object-valued attributes
(class ObjectValuedAttributes). The data-valued attributes are the typical class
attributes, such as the name of the passenger in the UML example (Figure 49).
In the class DataValuedAttribute, the attribute isIdentifier indicates whether the

 Linking UML and MDD Approaches

 143

data-valued attribute participates as (part of) the identifier of its owning class
(isIdentifier = True), and the attribute nullsAllowed specifies whether the data-
valued attribute can take null values.

Figure 52. : The Integration Metamodel of the proposed association semantics

A data-valued attribute that participates as an identifier of a class cannot take
null values (nullsAllowed = False). An object-valued attribute represents an
association end, such as the passenger and flight related to a reservation in the
UML example of Figure 49, and it is related to the association by means of the
association memberEnd. In the context of binary associations, the object-valued
attributes must always have an opposite association end (association opposite). In
the class ObjectValuedAttributes, the attribute aggregation indicates (if necessary)
the kind of association (aggregation, composition, or none) related to the
association end. The class related to an association end is indicated by the
association type. In an object-valued attribute the attribute isStatic indicates if the
association end is static (isStatic = True) or dynamic (isStatic = False). The name
of the object-valued attribute (which is inherited from the class NamedElement)
indicates the role name of the corresponding association end. The class
NamedElement and the related inheritance hierarchy are not represented to
simplify the Integration Metamodel diagram since all the classes defined are
specializations of NamedElement.

Service

SharedEvent

kind : SharedEventKind

Association

/endType : Class [1..2]

AggregationKind

none

aggregation

composition

SharedEventKind

insertEvent

deleteEvent

editEvent

Attribute

Type

DataType

DataValuedAttribute

isIdentifier : Boolean = false

nullsAllowed : Boolean = false

ObjectValuedAttribute

aggregation : AggregationKind = none

isStatic : Boolean = false

upperValue : UnlimitedNatural

lowerValue : Integer

Class

Parameter

direction : DirectionKind

DirectionKind

in

out

ownedService

owningClass

 [0..*]

ownedParameter

service

 [0..*]

opposite
 [0..1]

reqParameter

associationEnd

sharedEvent [0..2]

association

memberEnd [2]

ownedAttribute

owningClass

 [0..*]

type

type

/opposite

type

Linking UML and MDD Approaches

144

Table 5 shows the OCL rules that object-valued attributes must fulfill to
ensure that the cardinality constraint related to the Identification Dependency
feature of aggregation and composition is not violated.

Table 5. OCL constraints for association ends

Description
If the attribute aggregation of an association end holds the value #aggregation, then the
opposite end must have cardinality [1..1].

Context ObjectValuedAttribute

OCL
self.aggregation = #aggregation implies self.opposite.lowerValue = 1 and
self.opposite.upperValue = 1

Description
If the attribute aggregation of an association end holds the value #composition, this end
must have cardinality [1..1].

Context ObjectValuedAttribute

OCL
self.aggregation = #composition implies self.lowerValue = 1 and

self.upperValue = 1

The definition of a shared event is distributed between the classes that
participate in the association because a shared event simultaneously changes
properties of the participant objects. To support this semantics, in the Integration
Metamodel a shared event is represented as two dependent events, which are
related by means of the association opposite. Table 6 shows the OCL constraints
defined for shared events.

A shared event must always participate in an association and is only related to
one object-valued attribute. This is represented by the association associationEnd
with the cardinality [1..1].

The association ownedParameter (inherited from Service) represents the
parameters of a shared event. One of the two parameters that are required by a
shared event (the two participant objects) is the object that executes the service,
whose type corresponds to the class that owns the service. However, this
parameter does not need to be defined in the model because it is implicit in the
semantics of the service and it can be inferred from the association owningClass.
The second parameter required by a shared event (the participant object of the
opposite association end) is identified by the association reqParameter.

According to the Integration Process, to complete the definition of the
Integration Metamodel it is necessary to identify the equivalences between this
metamodel and the UML metamodel. 0 presents these equivalences.

 Linking UML and MDD Approaches

 145

Table 6. : OCL constraints for shared events

Description Shared events can only be defined when both association ends are dynamic.

Context ObjectValuedAttribute

OCL
self.temporality = #static or self.opposite.temporality = #static

implies self.sharedEvent->isEmpty()

Description
Only the shared event editEvent can be defined for dynamic associations when one of the
association ends has cardinality [1..1].

Context ObjectValuedAttribute

OCL

((self.temporality = #dynamic) and (self.opposite.temporality = #dynamic) and

(self.lowerValue = 1) and (self.upperValue = 1)) implies

self.sharedEvent.kind = #editEvent and self.sharedEvent->size() = 1

Description
The insert and delete shared events must be defined for dynamic associations when both
association ends have cardinality [x..*].

Context ObjectValuedAttribute

OCL

((self.temporality = #dynamic) and (self.opposite.temporality = #dynamic) and

(self.upperValue > 1) and (self.opposite.upperValue > 1)) implies

self.sharedEvent->size() = 2 and self.sharedEvent->exists(se | se.kind = #insertEvent) and
self.sharedEvent->exists(se | se.kind = #deleteEvent)

Description
A shared event requires an opposite shared event with the same name and kind, except in
the case of recursive associations.

Context SharedEvent

OCL

self.associationEnd.type <> self.associationEnd.opposite.type implies

self.opposite->notEmpty() and

self.kind = sel.opposite.kind and self.name = self.opposite.name

Description In recursive associations, a shared event does not have an opposite event.

Context SharedEvent

OCL
(self.associationEnd.type = self.associationEnd.opposite.type) implies

self.opposite->isEmpty()

Description A shared event cannot be opposite to itself.

Context SharedEvent

OCL self.opposite->notEmpty() implies self <> self.opposite

Linking UML and MDD Approaches

146

Table 7. Equivalences between the Integration Metamodel and the UML Metamodel

Integration Metamodel UML Metamodel Integration Metamodel UML Metamodel

AggregationKind AggregationKind ObjectValuedAttribute Property

 .none .none .type .type

.aggregation .shared .association .association

 .composition .composite .opposite .opposite

Association Association .aggregation .aggregation

 .memberEnd .memberEnd .isStatic .isReadOnly

Attribute Property .upperValue .upper

 .owningClass .class .lowerValue .lower

Class Class Parameter Parameter

 .ownedAttribute .ownedAttribute .direction .direction

 .ownedService .ownedOperation .service .operation

DataType DataType .type .type

DataValuedAttribute Property Service Operation

 .type .type .owningClass .class

DirectionKind ParameterDirectionKind .ownedParameter .ownedParameter

 .in .in SharedEvent Operation

 .out .out Type Type

8.4.2. UML Profile Generation

The third step of the Integration Process involves the generation of the UML
profile. It requires a comparison between the Integration Metamodel and the
target Metamodel (UML metamodel in the example) to identify the structural
differences that exist between these two metamodels. These differences
correspond to the metamodel extensions that must be implemented in the UML
profile generation. With regard to the conditions established for the Integration
Metamodel definition and the mapping information presented in 0, this second
step of the process is automatically performed. This prevents the extra time,
effort, and potential errors that are involved in a manual identification of the
required extensions. Table 8 summarizes the results of this comparison for the
presented example.

 Linking UML and MDD Approaches

 147

Table 8. Comparison between the Integration Metamodel and the UML Metamodel

Integration Metamodel Difference

Association

 .memberEnd lower bound (IM = 2; UML = *)

DataValuedAttribute

 .type type (IM = DataType; UML = Type)

 .isIdentifier new

 .nullsAllowed new

ObjectValuedAttribute

 .type type (IM = Class; UML = Type)

 .association lower bound (IM = 1; UML = 0)

 .opposite lower bound (IM = 1; UML = 0)

 .sharedEvent new

SharedEvent

 .kind new

 .opposite new

 .reqParameter new

 .associationEnd new

SharedEventKind new

In Table 8, the column Integration Metamodel shows the elements of the
Integration Metamodel that differ from the UML metamodel elements, and the
column Difference shows what the differences are by indicating the values that
differ for the Integration Metamodel element (IM) and the UML metamodel
element (UML). The word new in the column Difference indicates when the
Integration Metamodel introduces an element that does not exist in the UML
metamodel. Thus, the elements that must be introduced into UML to solve the
identified differences are the extensions that must be defined in the UML profile.

After the metamodel comparison has been performed, the final UML profile
is automatically generated (see Figure 53). The UML profile generation is
performed by means of the set of transformation rules presented in Chapter VI,
which are applied over the Integration Metamodel defined. These rules are
applied taking into account the equivalences presented in 0 and the differences
presented in Table 8.

Linking UML and MDD Approaches

148

Figure 53. UML Profile generated from the defined Integration Metamodel

The main features of the transformation rules that are related to the UML
profile generation are the following:

• Equivalent classes of the Integration Metamodel are transformed into
stereotypes that extend the corresponding UML class identified in 0. If the
class of the Integration Metamodel has the same name as the corresponding
UML class, then a prefix is added to differentiate the name of the stereotype
from the name of the extended class. In the example, the prefix OOm is used.
For instance, the class Association of the Integration Metamodel generates
the stereotype OOmAssociation (prefix + class name).

• The new properties (attributes and associations) that are identified in the
metamodel comparison (see Table 8) are represented as tagged values. For
instance, the attribute isIdentifier of the class DataValuedAttribute is defined
as a tagged value in the stereotype DataValuedAttribute (see Figure 53).

• Differences between equivalent properties are managed with OCL
constraints. For instance, the lower bound difference of the associations
opposite and association of the class ObjectValuedAttribute (see Table 8) are
managed with an OCL rule with the following structure:

 self.[property]->size() >= [newLowerBound]

The OCL rules are defined in the stereotypes that are generated from the
involved classes; in this case, the stereotype ObjectValuedAttribute.

• The generated stereotypes have all the constraints defined in the transformed
classes. For each constraint, the elements of the Integration Metamodel are
replaced by the corresponding elements of the UML metamodel or by

«metaclass»

Association

«metaclass»

Property

«metaclass»

DataType

«metaclass»

Parameter

«metaclass»

Operation

«metaclass»

Type

«metaclass»

Class

«stereotype»

OOmClass

«stereotype»

Attribute

«stereotype»

Service

«stereotype»

SharedEvent

kind : SharedEventKind

opposite : SharedEvent

reqParameter : OOmParameter

associationEnd : ObjectValuedAttribute

«enumeration»

SharedEventKind

insertEvent

deleteEvent

editEvent

«stereotype»

ObjectValuedAttribute

sharedEvent : SharedEvent [0..2]

«stereotype»

DataValuedAttribute

isIdentifier : Boolean = false

nullsAllowed : Boolean = false

«stereotype»

OOmAssociation

«stereotype»

OOmDataType

«stereotype»

OOmParameter

«stereotype»

OOmType

{required}{required} {required} {required}{required}{required}{required}

 Linking UML and MDD Approaches

 149

elements of the generated UML profile in the case of new elements. For
instance, the first OCL rule defined in Table 5 is defined in the stereotype
ObjectValuedAttribute as follows:

 self.aggregation = #shared implies

 self.opposite.lower = 1 and self.opposite.upper = 1

In the presented OCL rules, the elements written in italics indicate the UML
elements that are used to replace the corresponding Integration Metamodel
elements according to the equivalences presented in 0.

8.5. Compiling the Extended UML Association

Figure 54 shows the example UML model extended with the generated UML
profile, where the application of the different stereotypes can be observed. The
services for the management of links between objects are defined as shared events
by means of the stereotype sharedEvent, the service new_association is defined as
an insert event; and the service del_association is defined as a delete event.

«OOmClass, OOmType»

Passenger

id_passenger : String

passenger_name : String

new_association(flight : Flight)

del_association(flight : Flight)

«OOmClass, OOmType»

Flight

flight_number : String

origin : String

destination : String

new_association(passenger : Passenger)

del_association(passenger : Passenger)

«OOmType, OOmClass»

Reservation

reservation_date : DateTime

passenger flight

 [0..*] [0..*]

reservation

passenger

 { readOnly }

 [0..*]

reservation

flight

 { readOnly }

 [0..*]

Figure 54. Example UML model extended with the generated UML profile

Once the UML model is correctly specified, it is compiled with the OO-
Method model compilation technology [62] by using the specific interchange

Linking UML and MDD Approaches

150

proposal presented in Chapter 6 [18, 132], which is based on the generated
UML profile and the mapping information obtained during the application of the
interoperability process. In the compilation of the UML model, default services
for the creation, deletion, and edition of instances are automatically created for
each class. These default services are not created for those classes that already
have these kinds of services defined in the UML model.

It is important to remark that the extensions introduced in the UML model
provide a precise definition for the association at conceptual level, which allows
the independency of the business-logic layer from the implementation platform.
With regard to this independence, the OO-Method compilation technology can
generate applications for different implementation platforms from the same
UML model. For instance, from an OO-Method model, the industrial OO-
Method implementation can currently generate software products in .Net, and
J2EE developing platforms, and Oracle, SQL Server, DB2, and PostgreSQL
database servers. The case study presented in [158] shows how the target
platform is selected by using a specific configuration tool for the model
compilation process. Figure 55 shows an screenshot of the configuration tool for
the compilation process, where the different compilation alternatives that the
Olivanova technology provides for the imported UML model can be observed.

Figure 55. Compilation alternatives provided by the Olivanova technology

 Linking UML and MDD Approaches

 151

Next, the generated application is briefly explained considering the aspects
related to the compilation of the object identification, the compilation of the
aggregation, and the compilation of the shared events.

8.5.1. Compilation of the object identification

The Identification Function has a direct impact on the database generated in the
compilation of the UML model (see Figure 56). In this database, the
identification function of each class is transformed into a primary key of the table
that corresponds to the compiled class. In addition, the table
TM_PassengerFlight (not present in the UML model) has been automatically
generated for the implementation of the many-to-many association that exists
between the classes Passenger and Flight.

Figure 56. Diagram of the SQL database generated from the example UML model

8.5.2. Compilation of the Aggregation

In the example, the class Reservation is aggregated by Flight and Passenger. The
aggregation implies the identification dependency of the whole with regard to the
part. Figure 56 shows that to implement the identification dependency, the
primary key of the table Reservation is comprised of the primary keys of the
tables Passenger and Flight. This implementation is automatically inferred by the
model compilation process from the defined aggregation relationships. In
addition, the cardinality [1..1] in the component side is mandatory according to
the semantics proposed for the identification dependency.

The cardinality [1..1], which is defined for the association ends related to the
classes Flight and Passenger, implies that a reservation must always be related to
a flight and a passenger. Thus, the links between a reservation and the
corresponding passenger and flight must be created at the same time as the
creation of the reservation. This particular semantics of the aggregation must be

Linking UML and MDD Approaches

152

considered in the compilation of the service that creates instances of the class
Reservation. Figure 57 shows a screenshot of the application generated from the
UML model, which is related to the execution of the service for creation of new
reservations.

Figure 57. Execution of the service that creates new instances of the class Reservation

Figure 57-A shows the form related to the execution of the service, and
Figure 57-B shows the result of the execution, which indicates the flight and the
passenger linked during the creation of the reservation. The navigation
alternatives have been inferred from the associations defined in the UML model.

Figure 57-A also shows that the service for the creation of an instance of the
class Reservation has three inbound arguments: the date of the reservation
(defined in the UML model) and the flight and passenger related to the new
reservation (inferred from the aggregations relationships).

8.5.3. Compilation of shared events

Figure 58 shows a screenshot of the application related to the execution of the
shared event del_association (executed from an instance of Passenger). This
shared event has two input arguments: the identifiers of the linked passenger and
flight. The execution of the shared event del_association destroys a link that exists
between the selected objects (the input arguments).

�

 Linking UML and MDD Approaches

 153

Specific behavior for the management of links is defined at the conceptual
level by means of the customization of the defined shared events. Thus, in the
shared event del_association, we define the precondition: a link between a
passenger and a flight cannot be destroyed if there already exists a reservation
related to these two objects.

Class Passenger (UML Model Fragment)

Delete Shared Event

Execution ResultExistent link between

passenger 1 and flight 101

Input Argument Flight

This input argument is

automatically inferred

from the owning class

Delete Shared Event

Precondition

Figure 58. : Execution of the service del_association with a precondition

Figure 58 shows that the execution of the service del_association (from an
instance of the class Passenger) does not fulfill the precondition because there
already exists a reservation for the selected passenger and flight; therefore, an
error-message form is displayed. This situation shows the relevance of the
Identification Function, since the identifiers of the instances of the classes
Passenger and Flight are used in the detection of pre-existent links.

8.6. Conclusions

This chapter has presented two main contributions. The first of these is the
application of the proposed process to interoperate UML and MDD approaches
in order to allow the automatic compilation of UML models by using existing
MDD technologies. In particular, we advocate customizing the semantics of the
UML association with a precise semantics that is obtained from the industrial

Linking UML and MDD Approaches

154

implementation of the OO-Method approach [12]. The abstract syntax that
supports this semantics is defined using an Integration Metamodel [127], which
allows the automatic generation of a UML profile that integrates the conceptual
constructs and properties required for the proposed semantics into UML. This
reduces the complexity related to the correct specification of UML extensions,
providing an advantage over a manual UML profile specification, which is a
time-consuming and error-prone task [17]. Furthermore, the proposed process
takes advantage of the OMG standards and existing open-source tools such as
[80, 126, 134], which facilitate the interchange of knowledge within the MDD
community.

The second main contribution of this paper is the semantics proposed for the
UML association and the UML extensions generated to support this semantics.
These extensions provide the capability of precisely representing the structure
and behavior of the association at the conceptual level, which can be used to
automatically obtain a software product in different implementation platforms.
This distinguishes our proposal from others that provide a direct implementation
of the UML association in a specific language [156, 157], which require a
specific behavior for the associations to be defined directly in the code. Thus, the
proposed association modeling representation can be used as a reference by
different MDD approaches.

The interoperability scenario that is presented in this chapter is based on the
integration of two modeling approaches that are in the same abstraction level, but
also, that share a very similar metamodeling structure. The two considered
approaches are related to class model representations. Hence, this first scenario
could seem trivial to perceive the real potential of the proposed integration
approach.

Therefore, in order to stress the proposed integration approach, we have
defined a second interoperability scenario, which is oriented to integrate two
modeling approaches that are in a different abstraction levels and application
domains. These modeling approaches are: 1) the i* framework, which is related to
the organizational analysis domain; and 2) the OO-Method approach, which is
related to the software system modeling.

This new interoperability scenario is focused on show how the proposed
integration approach can be applied in a more complex integration situation,
which demonstrates the potential of the proposal in a non-trivial integration
schema. The next chapter details the implementation of this second
interoperability scenario and the results obtained.

Chapter IX. �
������
�%���&'������	���	����
���	�

��	��& ������ �����!�����

In the context of Goal-Oriented Requirement Engineering (GORE) there are
interesting modeling approaches for the analysis of complex scenarios that are
oriented to obtain and represent the relevant requirements for the development of
software products. However, the way to use GORE models in automated Model-
Driven Development (MDD) processes is not clear, and, in general terms, the
translation of these models into the final software products is still manually
performed.

This chapter presents a scenario where the MDD interoperability approach
proposed in this thesis is used to automatically link GORE models and MDD
processes. This scenario has been elaborated by considering the experience obtained
from linking the i* framework with the industrial implementation of the OO-
method approach. Special attention is paid to the generation of appropriate model
transformation mechanisms to automatically obtain an initial MDD model from
a GORE model, and how to specify verification mechanisms to assure the
correct transformation of the models involved.

Linking Goal-Oriented Modeling and Model-Driven Development

156

9.1. Introduction

An appropriate requirement specification is a key aspect for the correct
development of software systems [161, 162]. Requirement specification should
not only include software specifications, but also multiple complementary views:
intentional, structural, responsibility, functional, and behavioral. The requirement
engineering (RE) field offers different modeling approaches that analyze complex
scenarios and elicit their relevant requirements [162-164]. Of these approaches,
the Goal-Oriented Requirement Engineering (GORE) plays a significant role
[161, 165] because it is mainly concerned with the stakeholder intentions and
their rationales. However, the way in which GORE models should be used in an
automated Model-Driven Development (MDD) process [1] is very often too
vague. An important issue that is still pending is how to properly link the GORE
models with the models of specific MDD approaches.

In general terms, for the application of GORE models to software
production processes, the specified models must be manually analyzed to obtain
the corresponding software representations. As it is reported in [166], the
impossibility of applying requirement models directly into a MDD software
production process is due to their nature since these models are centered on
problem analysis and not on software representation. Unlike requirement models,
the models involved in MDD processes are formulated to provide a precise and
complete conceptual representation of the intended software systems in order to
achieve automatic software generation by means of model compilations.

Thus, we can conclude that for the appropriate application of GORE
modeling to MDD processes, an appropriate input for the model compilation
processes must be obtained from the defined requirement models (i.e. to generate
an MDD conceptual model from a GORE model).

This chapter presents an approach for automatic linking of GORE modeling
and MDD processes by applying the interoperability approach proposed in this
thesis. It has been elaborated by taking as reference the experience obtained from
the linking of the i* framework and an the OO-Method MDD, which has been
successfully applied to the industrial software development [16]. From this
scenario, we show how GORE models can be transformed into the corresponding
MDD-oriented models by detailing the following: the customization mechanisms
for GORE modeling languages (that are defined to automate the model
transformations); the specification of validation mechanisms to assure the

 Linking Goal-Oriented Modeling and Model-Driven Development

 157

appropriate model transformations; and the generation of required transformation
rules.

The rest of this chapter is organized as follows: Section 9.2 presents a
background related to benefits of using GORE modeling in MDD processes.
This section also shows a general vision of how GORE modeling and MDD
processes can interoperate by using the proposed interoperability approach.
Section 9.3 details the application of the interoperability approach to link i*
modeling and the OO-Method MDD approach. Section 9.4 presents an analysis
of the developed interoperability scenario. Finally, Section 9.5 presents our
conclusions.

9.2. Background

Appropriate requirement capturing and elicitation is one of the most important
activities in software development, thus the relevance of requirements
engineering (RE) to obtain a sound software engineering process. RE clarifies
what users want, how they are going to interact with the system, and how the
system impacts the business. If these ideas are projected onto the model-driven
philosophy, it can be stated that requirement modeling is fundamental in
obtaining a sound Model-Driven Engineering (MDE) [13] process for software
development. The paper presented in [15] clearly shows the relevance of
integrating different modeling approaches to obtain a sound modeling process.
This is precisely what we can achieve with the linking of goal-oriented modeling
and model-driven development (MDD) processes. .

9.2.1. Improving MDD Processes with i* Modeling

In the RE domain, the goal-oriented perspective has provided interesting results
at both the industrial [164] and research levels [163]. The Goal-Oriented
Requirement Engineering is concerned with the use of goals for eliciting,
elaborating, structuring, specifying, analyzing, negotiating, documenting, and
modifying requirements [165]. In general terms, it focuses on obtaining the
‘whys’ of the intended systems through the analysis of organizational scenarios.
The work presented in [167] shows the relevance of using scenarios for goal
modeling, what provides the background for the RE modeling approach
considered in this chapter.

Linking Goal-Oriented Modeling and Model-Driven Development

158

Among existing GORE approaches, the i* framework [68] is currently one of
the most widespread modeling and reasoning frameworks [162-164] and it is also
well documented [168]. It emphasizes the analysis of strategic relationships
among organizational actors capturing the intentional requirements. The term
actor is used to generically refer to any unit for which intentional dependencies
can be ascribed. Actors are intentional in the sense that they do not simply carry
out activities and produce entities, but they also have desires and needs.

The i* framework [18] captures the intentions behind software requirements
using strategic relationships among actors. The i* framework offers two
interrelated conceptual models: the Strategic Dependency (SD) model and
Strategic Rationale (SR) model. The SD model is focused on external
relationships among actors, which are called dependencies. In the SD model, the
internal goals, knowhow, and resources of an actor are not explicitly modeled.

The SR model expands the description of a given actor and all rationales
involved on its intentions, providing support for modeling the reasoning of each
actor about its intentional relationships. In addition to the dependency
relationships that are present in the SD model the SR model provides three new
types of relationships. These relationships are the following:

1. Task-decomposition links. These links indicate the elements that are necessary
to perform a certain task.

2. Means-end links. These links indicate when a task is a means to achieve a
goal

3. Contributions links. These links indicate how a model element can contribute
to satisfy a soft goal.

9.2.2. General Schema for the Linking Approach

Our proposal for linking GORE modeling and MDD starts from the idea that
there are two kinds of models that must be coordinated to represent the modeling
needs of different stages of a common development process: GORE models, and
MDD models, which represent different aspects of the intended systems at the
conceptual level. These models are represented by using modeling languages
whose abstract syntax is specified by means of metamodels.

For the coordination of these two models, we assume that it is possible to
partially infer an initial MDD model from both the information that is
represented in a GORE model and from extra information that is added when

 Linking Goal-Oriented Modeling and Model-Driven Development

 159

necessary. This MDD model generation is possible if constructs of the MDD
modeling language can be inferred from constructs of the GORE modeling
language. The constructs involved are represented by the metaclasses of the
corresponding metamodels.

Figure 59. Basic goal-oriented requirements and MDD linking schema

It is important to note that we are referring to an initial MDD model and not
a complete MDD model because there are aspects related to specific system
functionality that cannot be obtained from requirement models. Therefore, these
functional aspects must be specified later, at design time, in the refinement of the
initial MDD model that is obtained. Thus, the basic linking schema presented in
Figure 59 is the starting point of our proposal. From this initial linking schema,
we can state that it is possible to automate the generation of the MDD model by
means of well-defined model-to-model transformations, which are based on the
metamodels of the modeling languages involved. This automatic generation is
possible by using model transformation technologies such as ATL [169] or QVT
[59]. However the question of what happens to the required extra information
arises. If this extra information is not precisely represented, then the
transformation rules cannot be automatically performed. This issue is observed in
proposals such as [20] and [170]. In these proposals, guidelines to transform goal-
oriented models into software conceptual models are defined, but they must be
manually applied because of the lack of a proper mechanism to specify the
additional information required.

To solve this problem and to provide a well-defined input for the automatic
generation of a MDD model, we use the interoperability approach proposed in
this thesis to generate the metamodel extensions that are necessary to represent
the extra information that is required. The application of the interoperability
approach also generates the necessary interchange information to automatically
generate MDD input models from GORE models.

Linking Goal-Oriented Modeling and Model-Driven Development

160

9.3. Applying the Interoperability Approach to i* and OO-
Method

In this section, we explain the different steps of the proposed linking process.
Even though this linking process is based on the interoperability approach
proposed in this thesis, it requires additional tasks to support the differences in
the abstraction level and the application domain of the two involved modeling
approaches. In order to facilitate the understanding, we present the process using
a brief linking example that is based on the i* and OO-Method approaches, which
correspond to the GORE and MDD counterparts, respectively. Figure 60 shows
the i* diagram related to this example.

Figure 60. i* example model

The proposed example represents the reception of work requests (work
applications) from potential employees, which is part of a complete case study of
a photography agency administration system that was developed in the context of
the OO-Method industrial approach (presented in [158]). In order to simplify the
example, only a subset of all the i* and OO-method constructs were used.

9.3.1. Step 1: Definition of the Transformation Guidelines

The first step is to identify those constructs of the GORE modeling approach
that are relevant for the generation of constructs of the MDD modeling approach.
The identification of the relevant constructs is performed over the metamodels of
the modeling languages involved. These metamodels must be EMOF compliant
[38] (according to the MDD interoperability process presented in Chapter IV).

 Linking Goal-Oriented Modeling and Model-Driven Development

 161

Then, the set of transformation guidelines that are needed to obtain the
corresponding MDD constructs must be defined from the identified GORE
constructs.

For the specification of the involved metamodels, we propose using the
Eclipse UML2 tool [134] since it provides automatic generation of EMF
metamodels from the defined UML2 metamodels. EMF is the Eclipse Modeling
Framework that is based on the EMOF specification. Also, the generated EMF
metamodels are tagged with additional information to automatically obtain model
editors that have interpreters for the defined OCL rules and that support UML
profile extensions.

In the i* context, there is not a standardized i* metamodel, and, in general
terms, the existing metamodel proposals (such as the one presented in the i* wiki
[171] or in the articles [7, 172]) are not EMOF compliant. However, for the
linking example presented here, we can use these proposals as reference for the
definition of an appropriate EMOF-based i* metamodel.

Figure 61. The i* metamodel for the example model

Figure 61 shows the i* metamodel defined for the example. In this
metamodel, the i* constructs considered are: actors (class Actor); dependency
resources (class DResource); internal goals and tasks (classes IGoal and ITask,
respectively); and dependency links (class Dependency). It is important to note

IStarRelationship

DependencyRelationShip

InternalRelationship

Node

name : String

DependableNode DependeeLink DependerLink Dependency

IntentionalElement

Actor

InternalElement

Task Resource Goal

MeansEnd

IStarModel

name : String

ITask DResource IGoal

model

ownedRelationship

 [0..*] model

ownedNode

 [0..*]

node

relatedDepender

 [0..*]

node relatedDependee

 [0..*]

dependencyrelatedDependee

 [1..*]

relatedDepender dependency

 [1..*]

boundary

ownedElement [0..*]

relatedMeansend

 [0..*]

relatedEndmeans [0..*]

Linking Goal-Oriented Modeling and Model-Driven Development

162

that this metamodel is only a subset of a complete i* metamodel. Some of the
differences are that tasks, goals, and soft goals can also participate in a dependency
link. Therefore, in a complete i* metamodel, these constructs must be represented
as specializations of the class Dependency (the same as DResource). The resources,
goals, and soft goals must also be represented as internal elements (specializations
of Internal Element) in a complete i* metamodel. The complete structural
representation of the i* metamodel used as reference for this interoperability
scenario is presented in Appendix I.

The OO-Method metamodel used for the proposed example (see Figure 62)
is also a subset of the complete OO-Method metamodel.

Figure 62. The OO-Method metamodel for the linking example

The presented OO-Method metamodel only includes the essential metaclasses
for the definition of classes, attributes, services, associations, and a special
relationship that is called agent link. This last construct is related to the
specification of permissions that a class (of the modeled system) has to execute
services of another class. Another particular modeling aspect of the OO-Method
class model is the possibility of indicating the services that are capable of create or
destroy instances of the class that owns them. This information is indicated by
means of the property kind, which is defined in the metaclass Service.

Service

kind : ServiceKind

Association

«enumeration»

AggregationKind

none

aggregation

composition

Attribute

Type

DataType

DataValuedAttribute

ObjectValuedAttribute

aggregation : AggregationKind

upperValue : UnlimitedNatural

lowerValue : Integer

Class

Parameter

direction : DirectionKind

«enumeration»

DirectionKind

in

out

Relationship

AgentLink

Model

«enumeration»

ServiceKind

creation

destruction

none

ownedService
owningClass [0..*]

ownedParameter

service

 [0..*]

agentLink

service

 [0..*]

association

memberEnd [2]

ownedAssociation

owningModel

ownedAttribute

owningClass

 [0..*]

parameter

type

 [0..*]

type

 [0..*]

/opposite

relationProperty

 [0..1]

type

 [0..*]

owningModel

ownedClass

agentLink

agentClass

 [0..*]

 Linking Goal-Oriented Modeling and Model-Driven Development

 163

Table 9. Guidelines for transformation of i* models into OO-Method Class Models

i* Construct Additional Info Transformation Guideline

Actor
Class + Agent Link to the Services generated from the
actor’s internal tasks

Resource

Physical entity Class

Informational entity related to a
resource or an actor

A Data Valued Attribute that represents information of
the Class generated from an actor or a resource

Informational entity in a resource
dependency

A Data Valued Attribute of the Class generated from
the dependee actor

Task

Involved in a resource dependency A Service of the Class generated from the resource

If it generates a resource
A Creation Service of the Class generated from the
resource

Dependency
link

Where the dependum resource and
the depender and dependee actors
are transformed into classes

Associations are automatically defined among the
generated Classes

Once the EMOF metamodels are properly specified, the relevant i* construct
must be identified, and the guidelines to transform these constructs into the
corresponding OO-Method class model constructs must also be defined. Table 9
shows the transformation guidelines involved in the example. This list is a subset
of the transformation guidelines developed for i* and OO-Method that have been
initially presented in [20]. Appendix I shows an improved version of these
transformation guidelines and their rationale.

Table 9 also shows the additional information that is required by the
transformation guidelines, which may not be present in the i* metamodel. For
instance, an i* resource is transformed into a class or an attribute depending on
whether the resource corresponds to a physical or an informational entity.

9.3.2. Step 2: Definition of MDD Requirement Metamodel

The second step of the linking process corresponds to properly specifying the
modeling information that is required by the transformation guidelines in a
format that can be processed by model-to-model transformation technologies [58].
To do this, we define a new EMOF metamodel with the information of the
identified i* elements and the additional information that is required. As a result a
specific requirement metamodel for the involved MDD approach is obtained.
Figure 63 shows the OO-Method requirement metamodel obtained for the
example, which is defined by considering the information presented in Table 9.

Linking Goal-Oriented Modeling and Model-Driven Development

164

In this metamodel, the i* constructs taken into account are: actors, tasks, and
resources.

Figure 63. OO-Method requirement metamodel for the i* linking example

The defined OO-Method requirement metamodel is considerably simpler
than the original i* metamodel, which facilitates the implementation of model-to-
model transformations for generating the OO-Method class model. The additional
information introduced in this metamodel is the following:

• Specification of resource kind (attribute kind of the metaclass Resource).

• Identification of tasks that generate resources (link producedBy).

• Identification of tasks that participate in a resource dependency (links
requiredBy and providedBy).

To name the links involved in a resource dependency, we consider that the
task related to the depender actor requires the resource for its execution, while the
task related to the dependee actor is responsible for providing the resource.

Thus, at the end of the second step, we obtain two metamodels: the original i*
metamodel (the original GORE metamodel) and the OO-Method requirement
metamodel for the generation of the OO-Method class model (the MDD
requirement metamodel).

9.3.3. Step 3: Definition of Validation Rules

In this step, syntactical validation mechanisms are specified in order to perform a
correct generation of the corresponding MDD models. These validation
mechanisms must be defined in the MDD requirement metamodel (generated in
step 2) since this metamodel has all the information to perform the model
transformations. For instance, in the linking example, an i* resource is

Resource

kind : EntityKind

EntityKind

physical

informational

none

OOmReqModel

name : String

Node

name : String

TaskActor

producedBy [0..1]

requiredBy requires

 [0..*] [0..*]

providedBy provides

 [0..*] [1..*]

ownedNodemodel

 [0..*]

boundary

element

 Linking Goal-Oriented Modeling and Model-Driven Development

 165

transformed into an attribute or a class, depending on whether the resource is
specified as an informational entity or a physical entity (see Table 9). From this
transformation guideline, a possible validation is to assure the appropriate
specification of the kind of resource. This validation cannot be specified in the i*
metamodel since the information related to kind of resource is not present.

For the specification of these syntactical validations, we propose the use of
OCL rules since OCL is also part of the OMG standards for the specification of
metamodels; hence, it is defined to work in conjunction with MOF. In addition,
the OCL rules can be automatically processed by tools such as [134]. Thus, for
the previous validation example, we can define the following OCL rule in the
class Resource of the OO-Method requirement metamodel:

Context: Resource::ValEntityKind()

Body: self.kind = Physical or self.kind = Informational

It is important to note that the modeling information that is not present in
the original GORE metamodel is the critical point to be validated for the correct
generation of the MDD model for the following two reasons:

1. The modeling information that exists in the GORE metamodel has probably
already been validated

2. The new modeling information is essential for performing the model
transformations, and hence, an incorrect specification of this information will
produce an incorrect generation of the MDD model.

9.3.4. Step 4: Application of the Interoperability Approach

The fourth step of the linking approach is to go from the models that are based
on the original GORE metamodel to the specific requirement models for the
MDD approach that are based on the MDD requirement metamodel. This is
because the intention of the linking proposal is to use the original GORE
modeling approach for requirement modeling. In the example, this corresponds to
going from i* models that are based on the original i* metamodel (Figure 61) to
requirement models that are based on the generated OO-method requirement
metamodel (Figure 63).

However, this step is not trivial since the additional modeling information
and validation rules that are present in the defined MDD requirement metamodel
are not present in the original GORE metamodel. Thus, in this step, the
interoperability approach (see Chapter IV) is put into practice to obtain the

Linking Goal-Oriented Modeling and Model-Driven Development

166

required metamodel extensions for the GORE metamodel and the needed model
interchange information. Figure 64 shows the resultant linking schema with the
different input and output elements that are related to each step (numbered from
E1 to E9).

Figure 64. General Schema of the proposed linking process

Figure 64 shows that Step 4 of the process generates the corresponding
Integration Metamodel and UML Profile, as well as, mapping information
(among the metamodels involved) for the automatic interchange of models.

Figure 65. Interoperability proposal applied to i* and OO-Method

Figure 65 shows how each one of the input and output elements considered
in the interoperability process are used to link the i* framework and the OO-
Method MDD approach. This figure also shows the generation of traceability
information [173, 174], which is necessary to maintain the relationships between
the software specification (described in the MDD model) and the requirement
specification (described in the MDD requirement model). The generation of this
traceability information must be implemented together with the transformation
rules for the MDD requirement model.

Figure 66 shows the Integration Metamodel obtained for the example. This
metamodel is generated from the OO-Method requirement metamodel by

 Linking Goal-Oriented Modeling and Model-Driven Development

 167

applying the systematic approach presented in Chapter V. This systematic
approach is based on taking the OO-Method requirement metamodel (the source
metamodel) and performing a set of redefinitions over it to align this source
metamodel to the structure of the i* metamodel (target metamodel). This
redefinition allows the automatic identification of the extensions that are required
to introduce the modeling needs of the source metamodel into the target
metamodel, that is, to extend the i* framework to represent the information of the
OO-Method requirement model.

Figure 66. Integration Metamodel for the integration example

The resultant Integration Metamodel shows the classes AffectsLink and
RequiresLink, which are not present in the OO-Method requirement metamodel.
These classes are defined to perform the correct mapping from the associations
task.requires and task.provides (which are derived from dependency links) to the
i* constructs DependeeLink and DependerLink. This is done since the mapping
can only be performed among elements of the same kind (classes with classes,
associations with association, and so on) [127].

There are four conditions that an Integration Metamodel must hold for the
automatic generation of the metamodel extensions. These are the following:

• All the classes from the Integration Metamodel are mapped to the target
GORE metamodel. This assures that the constructs from the MDD
requirement metamodel can be represented from the constructs of the GORE
metamodel. Table 10 shows the mapping obtained for the linking example.

• The mapping is defined between elements of the same type (classes with
classes, attributes with attributes, and so on).

Resource

kind : EntityKind

EntityKind

physical

informational

none

OOmReqModelNode

name : String

TaskActor RequiresLink ProvidesLink

producedBy

 [0..1]

providedBy

resource [0..*]

requiredBy resource

 [0..*]

ownedNode

model [0..*]

boundary

element

 [0..*]

task

requires

 [0..*]

provides

task [0..*]

Linking Goal-Oriented Modeling and Model-Driven Development

168

• An element from the Integration Metamodel is only mapped to one element
of the GORE Metamodel.

• If the properties (attributes and associations) of a class A from the Integration
Metamodel are mapped to properties of a class B of the GORE metamodel,
then the class A is mapped to the class B or a specialization of it.

Table 10. Integration Metamodel and the i* metamodel mapping

I.M. Element i* Element I.M. Element i* Element

Node Node Resource DResource

 .model .model .kind (No equivalence)

 .name .name .providedBy
 .relatedDependee

 (inherited from Dependency)

 .boundary .boundary .requiredBy
 .relatedDepender

 (inherited from Dependency)

OOmReqModel IStarModel .producedBy (No equivalence)

 .name .name Task ITask

 .ownedNode .ownedNode .provides
 .relatedDependee
 (inherited from DependableNode)

Actor Actor .requires
 .relatedDepender

 (inherited from DependableNode)

 .element .ownedElement RequiresLink DependerLink

ProvidesLink DependeeLink .task .node

 .task .node .resource .dependency

 .resource .dependency EntityKind (No equivalence)

By applying the automatic UML profile generation to the Integration
Metamodel defined (see Chapter VI), the corresponding UML profile that
implements the required i* extensions is obtained (see Figure 67). In the
generated UML profile, the properties that have no equivalence in the target i*
metamodel are defined as new properties (tagged values) in the stereotypes that
extend the metaclasses.

In the Integration Metamodel definition and the UML profile generation,
specific mappings among the participant metamodels are generated, which are
used to perform the automatic transformation of GORE models into MDD
requirements models. These mappings are the following:

 Linking Goal-Oriented Modeling and Model-Driven Development

 169

1. The mapping between the Integration Metamodel and the extended GORE
metamodel. In the example, this corresponds to an extended version of the
mapping presented in Table 10, where the elements of the Integration
Metamodel that have no equivalence in the i* metamodel are mapped to the
corresponding UML profile elements.

2. The mapping between the MDD requirement metamodel and the Integration
Metamodel. Table 11 shows the mapping obtained for the linking example.

Figure 67. UML Profile generated from the Integration Metamodel of the example

Table 11. OO-Method requirements metamodel and Integration Metamodel mappings

OO-Method Req. Element I.M. Element OO-Method Req. Element I.M. Element

Node Node Resource Resource

 .model .model .kind .kind

 .name .name .providedBy .providedBy.task

 .boundary .boundary .requiredBy .requiredBy.task

OOmReqModel OOmReqModel .producedBy .producedBy

 .name .name Task Task

 .ownedNode .ownedNode .provides .provides.resource

Actor Actor .requires .requires.resource

 .element .element

Finally, the OO-Method class model presented in Figure 68 is obtained from
the example i* model that is extended with the generated UML profile. In the

«stereotype»

RequiresLink

«metaclass»

IStarModel

«metaclass»

Node

«metaclass»

Actor

«metaclass»

ITask

«metaclass»

DependerLink

«metaclass»

DependeeLink

«metaclass»

DResource

«enumeration»

EntityKind

physical

informational

none

«stereotype»

OOmReqModel

«stereotype»

Node

«stereotype»

Actor

«stereotype»

Task

«stereotype»

ProvidesLink

«stereotype»

Resource

kind : EntityKind

producedBy : Task [0..1]

Linking Goal-Oriented Modeling and Model-Driven Development

170

extended i* model (see Figure 68), we considered the resource Work Request as a
physical entity produced by the task To Present Work Request.

CandidateEmployee EmployerWorkRequest

<new> createInstance() <new> toPresentWorkRequest()

toProcessWorkRequest()

<new> createInstance()

<agent>
<agent>

Employer

Work

Opportunity

To Present

Work Request
Work

Request

A Work

Request to
be Processed

To Process

Work Request

Candidate

Employee

<<Actor>>
<<Actor>>

<<Task>> <<Task>><<Resource>><<ProvidesLink>> <<RequiresLink>>

Extended Example i* Model

Generated OO-Method Class Model

kind = physical

producedBy = To Present Work Request

Figure 68. Extended example i* model and the OO-Method class model generated

The generation of the OO-Method class model is performed by means of
model-to-model transformation rules that are defined according to the
interchange proposal presented in Chapter VII, which is driven by the
metamodel mappings presented in Table 10 and Table 11, and from the
transformation guidelines presented in Table 9.

Figure 68 shows that the i* actors are transformed into classes. The same
occurs for the resource Work Request since it is a physical entity. The agent
relationships are also represented to indicate the permissions that the classes
CandidateEmployee and Employer (generated from the corresponding i* actors)
have over the services of the class WorkRequest, which were generated from the
defined i* tasks. The task to Present Work Request is transformed into a creation
service of the class WorkRequest since this service generates this resource. The
creation services are identified by the tag <new> (inferred from the property kind
of the metaclass Service of the OO-Method metamodel). In addition, during the
generation of the class model, a creation service is automatically generated for the
classes CandidateEmployee and Employer since, in OO-Method, all classes must
have at least one creation service.

Figure 68 also shows that the generated class model has no attribute
definition or arguments for the services since this modeling information cannot
be derived from the example i* model. The same happens with the functional
specification of the generated services. Therefore, this information must be

 Linking Goal-Oriented Modeling and Model-Driven Development

 171

specified at the design stage in order to generate a complete class model from the
initial class model generated. Thus, from the complete model, the final executable
application can be automatically obtained through the OO-Method model
compiler [12].

Figure 69 shows a graphical example of how the transformation of the i*
model is performed. This example shows the transformation of the resource
Work Request and the task To Present Work Request to the corresponding
constructs of the OO-Method class model. It is important to note that this
transformation is automatically performed by means of the transformation rules;
hence, the generation of the intermediate models is transparent. These
intermediate models are the instances of the Integration Metamodel and the
MDD requirement metamodel.

Work
Request

<<Resource>>

WorkRequest

providedBy = ProvidesLink1

kind = physical

producedBy = To Present Work Request

To Present Work Request

provides = ProvidesLink1

To Present
Work Request

<<Task>>

<<ProvidesLink>>

kind = physical

producedBy = To Present

Work Request

ProvidesLink1

task = To Present Work Request

resource = Work Request

WorkRequest

providedBy = To Present Work Request

kind = physical

producedBy = To Present Work Request

To Present Work Request

provides = WorkRequest

WorkRequest

<new> toPresentWorkRequest()

i* – Integration Metamodel Mapping Int. Metamodel – Oom. Req. Metamodel Mapping i* – OO-Method Transformation Guidelines

Figure 69. Transformations to obtain an OO-Method class model from an i* model

9.4. Analysis of the Proposal and Discussion

In the literature, there are papers that are oriented to generating conceptual
models from GORE models. However, most of these papers are based on
standard UML models (such as [161]), and, in general terms, UML does not
offer all the modeling information necessary to participate in an effective MDD
process [31]. Furthermore, most of the works that are oriented to go from
GORE models to more specific design models, such as [170, 175-177], are not
based on standards or well-defined processes, nor do they introduce automation
possibilities. Therefore, the application of these proposals must be manually
performed [67]. This is not a suitable option because the manual translation of
models is a time consuming and error prone task [168]. Hence, automatic linking

Linking Goal-Oriented Modeling and Model-Driven Development

172

of GORE models and MDD approaches takes on special relevance for the
adoption of new development paradigms and the improvement of development
processes.

One important aspect that must be discussed about our proposal is how to
identify the subset of GORE modeling constructs that must be considered for
the generation of MDD models since it is very probable that not all the elements
of the defined i* model have to be considered for the development of a software
product. In the proposal, even though the constructs that participate in the MDD
model generation are identified, this is not enough to assure that only the
elements that are related to the software specification participate in the
transformation. For instance, in the example, the i* Actor is considered in the
class model generation, but in a real i* model some actors may not be relevant for
the intended system, and, therefore, they must not be transformed into classes of
the class model. UML profiles provide a suitable solution for this issue since it is
possible to indicate that only those stereotyped (extended) elements must be
considered in the transformation process. This is an important reason for using
UML profiles instead of other metamodel extension mechanisms [33]. Other
reasons are that the UML profile has a standard specification [131] and a
standardized interchange format (XMI [40]).

Another interesting discussion point of this proposal is the need for defining
an Integration Metamodel instead of a direct mapping between the original
GORE metamodel and the MDD requirement metamodel. The definition of an
Integration Metamodel is performed because a direct mapping does not always
provide enough information to automatically identify the required metamodel
extensions [18, 135]. Also, a direct transformation is dependant on the extension
mechanism selected. In contrast, the Integration Metamodel allows the required
extensions to be automatically identified independently of their final
implementation.

Some additional benefits of the Integration Metamodel are the following: it
automates the generation of the required transformation rules; the required
extensions can be validated before its implementation; it allows the automatic
generation of the mapping for the interchange of models; and it provides a
common interface between the GORE metamodel and the MDD requirement
metamodel. This last benefit prevents a change in the original GORE metamodel
from affecting the transformation rules that are defined in the MDD requirement
metamodel. These benefits are better perceived in real GORE models that are
more complex than the example presented.

 Linking Goal-Oriented Modeling and Model-Driven Development

 173

The Integration Metamodel is also useful for MDD approaches that already
have a requirement modeling approach. In this case, the MDD requirement
metamodel is the metamodel of the existing requirement approach. The next
steps of the process are normally applied over this metamodel, and the differences
that may exist with the target GORE metamodel (for instance, the i* metamodel)
are managed by the Integration Metamodel and the metamodel extensions.

9.5. Conclusion

In this chapter, an interoperability scenario related to link GORE models and
MDD approaches has been developed. This linking is performed by means of the
proposed MDD interoperability process, which is oriented to obtaining the
mechanisms for automatic generation of MDD-oriented conceptual models from
GORE models. The interoperability approach presented in this thesis provides a
suitable solution to take advantage of existing standards and technologies, which
facilitates the application of the presented proposal to different MDD
approaches. In addition, existing open-source tools, such as [58, 126, 134], can
be used to implement the required metamodels and model transformations.

Nevertheless, it is very difficult to find requirement editors that support the
standards that are considered in this proposal. For instance, we have not found an
i* editor that is compatible with the MOF specification or that supports
modeling extensions, in spite of this chapter shows the relevance of requirement
technologies that provide extension facilities to obtain an appropriate linking
with MDD approaches. Hence, we believe that appropriate requirement
modeling tools that are aligned with the capabilities provided by the current
standards and technologies for the specification of modeling languages should be
implemented.

In the next chapter a very relevant aspect of the interoperability in MDD
processes is analyzed. This is the need of assure the models defined with the
customized modeling languages are correctly defined for their transformation into
the corresponding MDD-oriented models. Therefore, a proposal for automatic
verification of the models involved in the MDD interoperability has been defined.
This proposal can be considered as an alternative to perform the third step of the
linking process defined in this chapter, which corresponds to the definition of
validation rules for the transformation of the i* models.

Chapter X. �
����������(�����������������	��
�����

� �������!��������"�

From the application of the interoperability scenarios developed in this thesis, we
have detected that the involved models can present issues that prevent an
appropriate transformation, and, hence, an incomplete interchange of the
modeling information is performed. Furthermore, in the context of the i* and
OO-Method interoperability, we have detected that the input requirement models
can be improved by fixing these interoperability issues. Thus, a more complete
requirement specification is obtained, which also produce a more complete
generation of the corresponding MDD models.

Thus in this chapter we present a proposal to guarantee the correct MDD
interoperability by means of the integration of verification mechanisms into the
involved modeling language. In particular, we present an approach based on the
i* framework and OO-method interoperability scenario. This verification
proposal is based on a specific process for the definition and implementation of i*
verification measures.

The results obtained from the application of the verification approach are
empirically validated to determine if the verification measures assure the
completeness of the i* model transformations in the MDD interoperability
context.

Automatic Verification of Models for MDD Interoperability

176

10.1. Introduction

The present software development context is rapidly moving to the Model-
Driven Development (MDD) paradigm [1], which has motivated the emergence
of multiple MDD approaches oriented to automating the final software product
generation by means of model compilation processes. Just as any software
development process does, MDD processes also require an appropriate
requirement elicitation activity to obtain software products that fit the customers’
needs. Integrating the requirements elicitation activity into the MDD processes,
it should be possible to obtain software products properly aligned with the
stakeholders’ needs [178]. In addition, it should be possible to estimate the
impact that the generated software systems have in the organizational objectives,
and to identify different alternatives for the configuration of the intended
software systems.

Among modeling approaches to requirement elicitation, the i* framework [6]
provides a suitable alternative for the analysis of complex scenarios. The i*
framework is a goal-oriented [179] approach used in several activities and
contexts of software engineering, and in particular, in the early phases of
requirements engineering [69]. The versatility and expressive power of i* is
extensively documented [180]. Thus, we consider that it is a good choice for the
requirement elicitation in MDD processes.

To achieve this goal, we have applied the MDD interoperability approach
presented in this thesis, which corresponds to the interoperability scenario
presented in the previous chapter (Chapter IX). However, we have detected that
input i* models may have modeling issues that prevent an appropriate model
transformation, thus producing an incomplete interchange of the involved
modeling information. Thus, to apply our interoperability approach to real
development contexts, additional verification mechanisms are required to assure
the correct specification of the involved models. This idea is applicable not only
to the i* and OO-method interoperability scenario, but also, to any
interoperability scenario where automatic transformation of the involved models
is necessary. Thus the goal of this chapter is present a verification approach to
assure the correct MDD interoperability execution. This verification approach is
presented and explained by using the i* and OO-Method interoperability as
reference. In particular, we present our proposal by considering the following
three element:

 Automatic Verification of Models for MDD Interoperability

 177

1. Definition: Presents a specific proposal for the systematic definition of i*
verification measures, which assure the completeness of the MDD models
that are generated from i* models. Thus, the verification measures act as
indicators of modeling issues, which identify the i* elements that need to be
fixed to assure the automatic generation of input models for MDD processes.

2. Integration: The three first steps of the proposed MDD interoperability
process are applied to integrate into the i* framework the defined verification
measures and the modeling information that is necessary to automatically
transform i* models into MDD models.

3. Evaluation: The verification proposal is empirical validated through a
laboratory experiment, which demonstrates that the measures obtained
provide support to achieve the completeness of the generated MDD model.
The execution of this experiment is also used to show how the verification
measures are applied to improve i* models in the OO-Method MDD context.

The rest of the chapter is organized as follows. Section 10.2 shows the main
concepts and elements that are involved in the definition of the verification
proposal. Section 10.3 details the proposed verification process. Section 10.4
explains how the verification measures can be used to fix and improve i* models.
Section 10.5 presents an empirical study performed to evaluate the efficacy of the
verification proposal. Section 10.6 presents an overall analysis of the proposal.
Finally, Section 10.7 presents our conclusions.

10.2. Background

In this section, the main metrology concepts used in this chapter are clarified.
Afterwards, the relevance of applying verification mechanisms for the application
of requirement models in MDD processes is briefly discussed.

10.2.1. Clarifying Verification and Measure Concepts

In the literature, there is no consensus for the concepts used in the software
measurement field. This has provoked that different concepts are used to refer to
the same things, or even the same concept is used to refer to different things.
Thus, we have carefully analyzed the measurement standards to properly use the

Automatic Verification of Models for MDD Interoperability

178

terms involved in this chapter, which are related to the concepts of verification
and measure.

Verification is defined in the International Vocabulary of Basic and General
Terms in Metrology [181] as “confirmation through examination of a given
item and provision of objective evidence that it fulfills specified requirements”. In
contrast, validation is defined in the same standard vocabulary as “confirmation
through examination of a given item and provision of objective evidence that it
fulfills the requirements for a stated intended use”. These definitions are also
agreed with the widely used Barry Boehm’s definitions to verification (doing the
system right) and validation (doing the right system) [182]. Thus, we use the
term verification instead of validation since we focus in the correct application of
the transformation guidelines defined to go from i* models to MDD-oriented
models.

Even though the most of referenced works related to software measurement
use the term metric instead of measure, we use the term measure because it is
more appropriate to the objectives of our approach (we measure i* elements) and
it prevents ambiguous interpretations. This term distinction is clearly presented
in the paper [183]. Extending the concept of measure we have introduce in this
paper the term verification measure.

It is important to clarify that a verification measure is not referring to a
verification mechanism by itself; it is a special measure that supports the
verification and improvement of an i* model by means of a proper analysis of the
information reported.

10.2.2. Requirement Models and MDD Processes

As we can observe in the systematic review about requirement engineering and
MDD presented in [184], several approaches (such as [84, 161, 178, 185]) have
encouraged the use of high-level analysis models (i.e., requirement models) as part
of a sound MDD process. A representative example is the MDA approach [10],
which proposes the definition of a Computation-Independent Model as starting
point of the development process [186]. However, most of the current
requirement approaches are not automatically applied, or are not based on
modeling standards [187]. Thus, an effective solution that includes requirement
models as part of a complete, standardized, and automatic MDD process [188] is
still an unsolved challenge [184].

 Automatic Verification of Models for MDD Interoperability

 179

Probably, one of the main issues to achieve this requirement modeling and
MDD linkage is the proper definition of the requirement models for the
automatic generation of domain-specific models [3] related to MDD processes.
Most of the proposals oriented to translate requirement models into MDD
models (such as [189] and [190]) are considering the input requirement models to
be properly defined to perform the translation. We know this idealist scenario is
not applicable in practice, and verification mechanisms are necessary to assure the
generation of the corresponding MDD models.

To assure the automatic requirement transformation, certain proposals
suggest the manual translation of the defined requirement documents to a
specific computable format [185, 191]. These approaches restrict the flexibility
of the original specification, which, together with the manual translation of the
requirements, may cause loss of information.

Other approaches suggest to add quantitative information to existing
requirement modeling approaches [192-194], which allows the automatic
measure and analysis of the defined models without restricting their original
specification. However, there is a lack of measures to support the verification of
requirement models for generation of domain-specific models [3] related to MDD
processes. Hence, to fill this gap, we have considered the approaches related to
object-oriented models verification [195, 196], and definition of measures to
verify the correct compilation of domain-specific models [197].

10.2.3. The Photography Agency i* Model

For the presentation of the proposed verification approach, we have used a
detailer version of the model presented in the i* and OO-Method interoperability
scenario (see Chapter IX), which is related to the management of work requests
in a Photography Agency (see Figure 70). This i* model is defined from the OO-
Method study presented in [158]. In order to simplify the i* model
representation, the soft goals are omitted in the example since this i* construct
does not participate in the generation of the target MDD models. Even though a
similar situation occurs for i* goals, this constructs are represented to be
consistent with the i* framework notation (see Figure 6 1.1 from the background
chapter). The organizational description related to the example i* model
definition is presented below:

The photography agency is dedicated to the management of photo reports and
their distribution to publishing houses. This agency operates with freelance

Automatic Verification of Models for MDD Interoperability

180

photographers, who must present a request to the production department of the
photography agency. This request contains: the photographer’s personal
information, a description about the equipment owned, and a brief curriculum
vitae. An accepted photographer is classified by the production department in one
of three possible levels for which minimum photography equipment is required.
The possible levels are defined by the commercial department, who establishes the
price that will be paid to the photographer and the price that will be charged to
the publishing house for each photo.

��������

�����

#���
��$

���� ���%

	�������

�����

#
�����

�

�&��
��
�&��
��

��������

�
�
��
��������

�
�����������

�&��
��

���%������&�������

��
����������
�
���

'��%

�&&�������$

!�������'��%�

��(����!������������

'��%���(����

'��%���(�����#��

!�������

!�������'��%�

��(����

!��
�������

��&�)

�����*��'��%�

��(����

�������'��%�

��(��������&��'��%�

��(����

!�������&���

+���������

!������(��&����

��������������
�

,��-��

����&��������

�������,��-��

������
�'��%�

��(����

���&��
�'��%�

��(����

�*�������'��%�

��(����

+���������

��&�)

�*����#��

������

����-�����
�*��

�������!�����

!����
!�������&����

�*��

!�������&����!����

!�-)�.�����!����

!�������&����

�*��

�������
�*��

���������(����
�

�(��&����

��()�!�����

�(��&����

Figure 70. Example i* SR Model.

In general terms, the presented i* model shows how the production
department depends on the reception of work requests (i.e. job applications) that
are produced by photographers that want a work opportunity. The work requests
are comprised by the photographer’s personal data. The production department is
the responsible for refusing or accepting the received work requests by indicating
the final work request status. For the accepted requests a photographer level is
assigned according to the information provided by the Commercial Department.

 Automatic Verification of Models for MDD Interoperability

 181

10.2.4. Transformation of i* Models

According to the i* and OO-Method interoperability scenario, a set of
transformation guidelines must be defined to generate appropriate MDD models
from the defined i* models. Table 12 summarizes a representative subset of
transformation guidelines (adapted from [20]) for i* and OO-Method, which have
been selected due to their applicability to other MDD approaches based on class
model specification. These guidelines are used to exemplify the proposed
verification approach throughout this chapter. The rationale of these guidelines is
presented in Appendix I. Table 12 shows the i* constructs that are involved in
the transformation, the additional information that is required to perform the
transformation and the target constructs of the class model.

Table 12. Guidelines for the transformation of i* models into OO-Method class models

i* Construct Additional Information Class Model Construct

Actor Class

Resource

Physical entity Class

Informational resource related to
a physical resource or an actor

An attribute of the class generated from the actor or
physical resource

Informational resource inside of
an actor boundary

An agent relationship between the class generated from
the actor and the attribute generated from the resource

Task

If generates an entity (physical
resource or actor)

An instance creation service of the class generated from
the corresponding entity

If affects the state of a resource
A service of the class generated from the resource or from
the owner physical resource.

If does not affect resources or
generate entities

A service of the actor that contains the task

If is decomposed in resources
Associations are automatically defined among the class
that contain the corresponding service and the classes
generated from the decomposed resources

Inside of an actor boundary
An agent relationship between the class generated from
the owner actor and the task

Resource
Dependency
Link

Associations are automatically defined among the class
generated from the dependum resource and the classes that
own the services generated from the involved tasks

Is-a Link
A generalization relationship is generated between the
classes generated from the involved actors

Automatic Verification of Models for MDD Interoperability

182

The guidelines presented in Table 12 can be combined, for example, a
physical resource that is a dependum in a dependency link generates a class and
associations among this class and the classes that own the services generated from
the tasks involved.

For the transformation guidelines related to tasks and dependency links,
when the resource involved corresponds to an informational resource, the rule is
applied to the physical resource related to the informational resource. For
instance, a task that affects the state of an informational resource is transformed
into a service of the class generated from the physical resource that owns the
attribute generated from the informational resource.

In the transformation guidelines presented in Table 12 it is possible to
observe a specific OO-Method construct: the Agent Relationship. This construct
corresponds to a binary relationship that indicates the visibility and execution
permissions that a class of the model has over other classes or over itself
(recursive agent relationship). The classes that have agent relationship to other
classes are named Agents of the modeled systems. This construct is relevant for
the specification of interaction models, such as the OO-Method presentation
model (see Section 1.1 from the background chapter). Even though the agent
construct is specific for OO-Method, its semantics can be generalized to other
MDD approaches that define system users and interaction aspects at conceptual
level.

Thus, for the automatic application of the transformation guidelines it is
important to determine if the defined i* models provide a proper specification,
and, hence, the verification of the i* models becomes necessary.

10.3. Integration of Verification Measures into the i*
Framework

This section explain the process for the definition and integration of verification
measures into the i* framework. For the elaboration of this process, we have
considered existing standards and modeling technologies to facilitate its
application for different MDD approaches. The technologies and standards
involved are: approaches for the specification of measures [183, 198, 199], the
last version of the i* framework [171], approaches for the definition of i*
measures [200, 201], OMG Standards for metamodeling [38] and model

 Automatic Verification of Models for MDD Interoperability

 183

extensions definition [51], and Eclipse Model Development Tools [134]. The
steps of the process are described below (see Figure 71).

Figure 71. Process for definition of i* verification measures.

10.3.1. Step 1: Measures Formulation.

The first step of the process considers the appropriate formulation of the i*
verification measures. This means identifying the i* constructs that participate in
the MDD model generation, and, from these, identifying the aspects that must be
verified for a correct i* model transformation.

To perform the identification of the involved i* elements, it is necessary to
know the transformation guidelines (or rules) related to the target MDD model
generation. In particular, we focus on the additional information that must be
specified by the analyst to perform the corresponding transformation, which is
the critical point that must be verified to assure that the transformation can be
performed correctly and automatically.

Figure 72. Application of the GQM approach.

Automatic Verification of Models for MDD Interoperability

184

The measures formulation is performed by applying the Goal-Question-
Metric (GQM) approach [198]. Figure 72 shows an excerpt of the application of
the GQM approach to the transformation guidelines presented in Table 12. For
the formulation of the questions related to the GQM approach, we suggest to
consider two verification levels. These levels are related to the following elements:

1. The i* elements that must be necessarily fixed because they cannot be
transformed or produce a wrong class model generation (i.e., Q1 in Figure
72).

2. The i* elements that can be correctly transformed, but they still can be
improved to obtain a more complete class model generation (i.e., Q2 in
Figure 72).

It is important to consider that the verification measures formulated in this
step are specific for the transformation guidelines presented in Table 12. Thus,
other MDD approaches with different transformation guidelines will require
different (or additional) verification measures. However, since we have intended
to select a representative set of transformation guidelines that can be generalized
for MDD-oriented class model generation, the resultant measures can provide
relevant verification information to other object-oriented MDD approaches.

The measures that are related to answer each of the presented GQM
questions are specified by considering the framework presented in [183]. This
framework specifies that the empirical world, the numerical world, the
measurement method, and the measurement procedure must be defined in the
design of measures. In the definition of the empirical world, the entity and the
attributes to be measured must be identified. An entity corresponds to an input
artifact used to perform a measurement, and the concepts related to that artifact
correspond to measurable attributes. In the definition of the numerical world, the
measurement scale must be defined. In the specification of the measurement
method, the measurement principle must be identified. Finally, in the
specification of the measurement procedure, details of the application of the
measurement method must be defined. This measure specification framework is
applied to the four measures previously formulated.

M1. Wrong Attribute Generation (WAG)

Rationale. The informational resources are involved in the generation of class
attributes (see Table 12). Therefore, for the correct generation of informational
resources, they must be related to a system entity (actor or a physical resource),

 Automatic Verification of Models for MDD Interoperability

 185

which is transformed into a class in the class model. Otherwise, it is impossible to
transform these resources into attributes because the class that contains them
cannot be identified. Table 13 details the characteristics related to this measure
according to the considered definition framework.

Table 13. Characteristics of measure Wrong Attribute Generation (WAG)

Characteristic Definition

Measurement Entity i* model

Measurement Scale Ratio scale

Attribute to be measured Informational resources not related to a physical resource nor to an actor

Measurement principle
An informational resource that is not related to a physical resource nor to an
actor is directly proportional to a wrong attribute generation in the MDD
model

Measurement procedure
The attributes to be measured must be counted to obtain the number of
informational resources that cannot be transformed into attributes

Following, the formula to obtain the measure M1 – WAG is presented:

M2. Wrong Service Generation (WSG)

Table 14. Characteristics of measure Wrong Service Generation (WSG)

Characteristic Definition

Measurement Entity i* model

Measurement Scale Ratio scale

Attribute to be
measured

Tasks that not generate entities nor affect resources and the related actor is not
marked for the generation of the intended system

Measurement principle
A task that not generates entities nor affects resources and it is related to an
actor not marked for the generation of the intended system is directly
proportional to wrong service generation in the generated MDD model

Measurement procedure
the attributes to be measured must be counted to obtain the number of wrong
services specified in the generated MDD model

Rationale. According to the transformation guidelines, the tasks that do not
generate entities (physical resources or actors) or that do not affect resources are

��

()
()�

�
�
�

=

=
¬∧¬=��

=
∧�∈ false x if 0,�

true x�if 1,�
Conv(x) e(r))�hysResourcrelatedToPctor(r)relatedToA(convWAG�

nal�Informatior�kind
Mresourcesr�

M

Automatic Verification of Models for MDD Interoperability

186

transformed into services of the class generated from the owner actor (according
to the corresponding actor boundary). Therefore, if the corresponding actor is not
marked for the generation of the intended system, the involved task cannot be
transformed since it is not possible to generate a service in the class model
without a class that contains it. See WSG characteristics in Table 14.

Following, the formula to obtain the measure M2 – WSG is presented:

M3. Non-Accessible Element (NAE).

Rationale. According to the presented transformation guidelines (see Table 12),
agent relationships are defined between the classes generated from actors and the
elements generated from services or informational resources contained in the
corresponding actor boundaries. However, if the involved actors are not selected
for the MDD model generation, the actor is not transformed in a class, and,
hence, the involved agent relationships are not defined. This produces that the
transformed tasks or informational resources (that are inside of the actor
boundary) cannot be executed or visualized in the final application.

Table 15. Characteristics of measure Non-Accessible Element (NAE)

Characteristic Definition

Measurement Entity i* model

Measurement Scale Ratio scale

Attribute to be
measured

Internal tasks or resources related to the system that are defined in the
boundary of an actor that is not related to the system

Measurement principle
An internal task or resource related to the system that is defined in the
boundary of an actor that is not related to the system is directly proportional to
the a non-accessible element in the generated MDD model

Measurement procedure
the attributes to be measured must be counted to obtain the number of non-
accessible elements in the generated MDD model

However, it is not mandatory to define an actor as part of the intended
system. For instance, the analyst could consider that the involved actor must not
be maintained in the final system. In this case, a new agent (special user) must be
defined at design time during the refinement of the generated class model to
execute and visualize the generated elements, such as an administrator user. See

�

()
ctor(t))�hasSystemA�ource(t)affectsRes�esource(t)generatesR(convWSG

M�tasks�t
M� ¬∧�¬�∧¬�=��

∈

 Automatic Verification of Models for MDD Interoperability

 187

NAE characteristics in Table 15. Following, the formula to obtain the measure
M3 – NAE is presented:

M4. Non-Instantiable Class (NIC)

Rationale. The system entities (physical resources or actors) without a
production task related are transformed into classes without an instance-creation
service (see Table 12). The service that produces new instances of a class takes
special relevance since without this service, the class is not properly defined (all
the defined classes must be capable of generating their instances). However, the
definition of production tasks for entities (actors or physical resources) is not
mandatory since this issue does not prevent the appropriate transformation of the
i* elements. Thus, specific instance-creation services can be defined at design time
for the classes generated without this kind of services. See NIC characteristics in
Table 16.

Table 16. Characteristics of measure Non-Instantiable Class (NIC)

Characteristic Definition

Measurement Entity i* model

Measurement Scale Ratio scale

Attribute to be
measured

Actors and physical resources without a task related to their production

Measurement principle
An actor or a physical resource without a related production task is directly
proportional to a non-instantiable class in the generated MDD model.

Measurement procedure
The attributes to be measured must be counted to obtain the number of non-
instantiable classes

Following, the formula to obtain the measure M4 – NIC is presented:

10.3.2. Step 2: i* Metamodel Statement

The second step corresponds to stating the target i* metamodel, which must be
defined according to the EMOF specification [38]. The use of EMOF is

(�)�
ctor(r))�hasSystemA��(�conv��ctor(t))�hasSystemA�(�conv�NAE��

M�tasks�t��
M� ¬�+��¬�=� �����

∈� (

�

)
(��)��=�

∧�∈

�
nalInformatio�rkind

M�

�

resources

�

r�

�

() ()
)ionTask(a)hasProduct�(conv)ionTask(r)hasProduct�(convNIC

Ma
)�(�

M�r�
M

¬+¬�= ��
∈

=
∧�∈ actors

Physicalr�kind
resouces

Automatic Verification of Models for MDD Interoperability

188

mandatory for the appropriate integration of the verification measures in the i*
framework [135]. Therefore, we have defined the EMOF i* Metamodel presented
in Figure 73. This figure only shows the structural representation of the
constructs that are necessary for the application of the proposed verification
approach. The complete structure of the defined i* metamodel is presented in
Appendix I.

Figure 73. EMOF i* Metamodel

10.3.3. Step 3: i* Verification Model Definition

The third step of the process consists in the definition of a verification model.
This is an EMOF model that includes the information required for the correct
application of the measures (see Figure 74).

The verification model must include those elements that are not present in
the reference i* metamodel, which are also relevant for the correct generation of
the corresponding MDD class models according to the transformation guidelines
presented in Table 12.

Figure 74 also shows the mapping information that indicates the
correspondences among the elements of the verification model and the i*
metamodel.

 Automatic Verification of Models for MDD Interoperability

 189

Figure 74. Verification Model and Mapping Information

10.3.4. Step 4: i* Measures Specification

The fourth step of the process corresponds to the OCL specification of the
measures, which must be included in the verification model. This specification is
performed by considering the modeling information that is contained in the
verification model. Figure 74 shows the names and outputs of the different OCL
rules defined. For the measure specification, we have applied the measure
patterns presented in [201], specifically, the aggregation and locator patterns. The
locator pattern is used to identify the elements involved in the measure evaluation,
and the aggregation pattern is used to return the final value of the measure. A
very useful aspect of the application of these patterns is that the i* elements that
must be fixed can be easily identified by means of the locator pattern. For
instance, the OCL definition of the measure WAG (Wrong Attribute
Generation) is comprised by two OCL rules (see Table 17), these are: the rule
WAGLocator that identifies the corresponding resources by returning a Boolean
value, and the OCL rule WAGAggregation that returns the final measure result
by aggregating those resources where the OCL rule WAGLocator returns true.

In addition, since the proposed measures have been defined for verification
purposes, we have introduced a new property in the measure specification, which
corresponds to the alert levels that are related to the defined measures. These
levels are the following:

1. Critical: Indicates that the situation identified by the measure prevents the
transformation of the corresponding i* elements.

SNode

STask

WSELocator() : Boolean

NAELocator() : Boolean

SActor

SResource

SPhysicalR

SInfoR

WAGLocator() : Boolean

NAELocator() : Boolean

VModel

WAGAggregation() : Integer

WSGAggregation() : Integer

NAEAggregation() : Integer

NICAggregation() : IntegerSEntity

NIELocator() : Boolean

model

ownedNode [0..1]

 [0..*]

boundary

ownedElement

 [0..1]

 [0..*]

affectedBy

affects [0..*]
 [0..1]

generates generatedBy
 [0..1]

 [0..*]

infoOf

relatedInfo

 [0..1]

 [0..*]

Automatic Verification of Models for MDD Interoperability

190

2. Warning: Indicates that there is a modeling issue that can be fixed to
improve the class model generated.

These two alert levels are derived from the separation proposed for the
definition of the questions related to the GQM application (see Step 1 of this
section). Thus, WAG and WSG measures have a critical level, and NAE and
NIE measures have a warning level.

Table 17. WAG measure specification in the OCL language.

Measure Subject of Measure Alert Level

M2: Wrong Attributes Generation (WAG) i* Informational Resources Critical

Context: VModel::WAGAggregation() : Integer

Body: result = self.ownedNode->select(irs|irs.oclIsKindOf(SInfoR))

 .oclAsType(SInfoR)->select(irs|irs.WAGLocator())->size() +

 self.ownedNode->select(act|act.oclIsKindOf(SActor))

 .oclAsType(SActor).ownedElement->select(irs|

 rs.oclIsKindOf(SInfoR)).oclAsType(SInfoR)

 ->select(irs|irs.WAGLocator())->size()

Context: SInfoR::WAGLocator() : Boolean

Body: result = self.infoOf->isEmpty()

10.3.5. Step 5: i* Extensions Generation.

Finally, in the fifth step of the process, the verification model and the OCL
specification of the measures are used to generate the metamodel extensions that
are necessary to integrate the proposed measures into the i* framework. These
extensions are implemented in a UML profile (see Figure 75), which is generated
by means of the proposals presented in [135] and [127]. In [127] is presented an
approach for the adaptation of metamodels for generation of UML profiles, and
[135] defines a set of transformation rules for automatic UML profile generation.
These novel approaches correspond to the Step 2 and Step 3 of the
interoperability process proposed (see Chapter IV), which are detailed in Chapter
V and Chapter VI. According to the defined interoperability process, these
proposals use the mapping information presented in Figure 74.

In general terms, the UML profile generation consists in the generation of
one stereotype for each class of the verification model, and the definition of one
tagged value for each property (attribute or association end) that has not

 Automatic Verification of Models for MDD Interoperability

 191

correspondence in the target i* metamodel (non-mapped properties). In particular,
for those abstract classes that have the child classes mapped to different classes of
the i* metamodel, only the extensions related to the child classes are represented
(stereotype Actor). Otherwise, if the abstract and the child classes are mapped to
the same class in the i* metamodel, only the extension of the concrete class is
represented (stereotype SResource) and the extensions related to the child classes
are omitted (stereotypes SPhysicalR and SInfoR). Additionally, the abstract
stereotype SNode is not represented since it does not introduces new properties
or operations into the i* metamodel.

Figure 75. UML Profile to extend the i* metamodel with the verification measures

The UML profile is a lightweight extension mechanism that does not change
the target metamodel, and it has a standardized definition [131] and interchange
format [40]. Therefore, it is a suitable alternative for the application of our
verification proposal. Other proposals have also considered the use of lightweight
extensions for goal-oriented modeling (e.g. [202]).

In the generated UML profile, the elements of the OCL specification must
be changed according to the mapped elements of the i* metamodel (see Figure
74), and the generated stereotypes and tagged values. For instance, the
specification for measure WAG (Wrong Attributes Generation) is finally defined
as follows:

Context: VModel::WAGAggregation() : Integer

Body: result = self.ownedNode->select(irs|irs.isStereotyped(SInfoR))

 .oclAsType(Resource)->select(irs|irs.WAGLocator())->size() +

 self.ownedNode->select(act|act.oclIsKindOf(Actor)).oclAsType(Actor)

 .ownedElement->select(irs|irs.isStereotyped(SInfoR))

 .oclAsType(Resource)->select(irs|irs.WAGLocator())->size()

Context: SInfoR::WAGLocator() : Boolean

Body: result = self.infoOf->isEmpty()

«stereotype»

VModel

WAGAggregation

WSGAggregation

NAEAggregation

NICAggregation

«stereotype»

SResource

«stereotype»

SActor

«stereotype»

SInfoR

infoOf : SEntity [0..1]

WAGLocator

NAELocator

«stereotype»

SPhysicalR

«stereotype»

STask

generates : SEntity [0..1]

affects : SResource [0..1]

WSELocator

NAELocator

«stereotype»

SEntity

generatedBy : STask [0..1]

NIELocator

«metaclass»

IStarModel

«metaclass»

Actor

«metaclass»

Resource

«metaclass»

Task

Automatic Verification of Models for MDD Interoperability

192

It is important to mention that the OCL operation isStereotype is not part of
the OMG specification and it must be defined or implemented according to the
OCL interpreter used. For instance, in ATL this operation can be implemented
as follows:

helper context UML!Element def : isStereotyped(name:String):Boolean =

not self.getAppliedStereotypes()->select(s|s.name=name)->isEmpty();

Finally, for the definition of i* models extended with the generated UML
profile, we have used the eclipse UML2 project. Thus, we take advantage of the
already implemented support for UML profiles that this tool provides.

10.4. Applying the i* Verification Measures

This section exemplifies how the proposed i* measures are used to verify and
improve the generation of the corresponding class model. The process to apply
the verification measures is presented in Figure 76.

Figure 76. Process for the application of verification measures.

To specify the i* models, the corresponding EMF editor has been generated
by using the i* metamodel that has been defined as reference (implemented with
the Eclipse UML2 tool [126]).

In order to improve the understanding of the i* models presented in this
chapter, the pictures of these models corresponds to manual transcriptions of the
defined EMF models using the i* notation. Therefore, the example i* model
presented in Figure 70 has been extended with the information that is required

�
&
&
���
�
��
�
�
��
��
/
�
��
��
�
�
��
�
�
�	
�
�
�
�
��
�

 Automatic Verification of Models for MDD Interoperability

 193

for the automatic measures application. Figure 77 shows the i* model extended
with the generated UML profile.

Figure 77. Example i* Model extended with the generated UML Profile.

Only those i* elements related to the intended system are considered in the
transformation process. These elements are the stereotyped elements.

Table 18 shows the results obtained from the measures evaluation by
indicating: 1) the result of the measure (the values obtained from the aggregation
OCLs); and 2) the i* elements that return true for evaluation of locator OCLs.

Table 18. Results obtained from measures evaluation.

Measure Alert Result (Aggregation) Locator

WAG Critical 3 Resources Curriculum, Photo Equipment, Personal Data

WSG Critical 3 Tasks
Assign Photo Price, Assign Required
Equipment, Assign Level

NAE Warning 15 Elements
All stereotyped informational resources and
tasks defined in actors’ boundaries (none
stereotyped actors in the model)

NIC Warning 1 Entity Photographer Level

Automatic Verification of Models for MDD Interoperability

194

Table 19 shows the values related to the tagged values of each stereotyped
element.

Table 19. Tagged values related to the example i* Model

TaggedValue Value TaggedValue Value

Curriculum Photographer Price

 .infoOf -- .infoOf Photographer Level

Photo Equipment Pub. House Price

 .infoOf -- .infoOf Photographer Level

PersonalData Assign Required Equipment

 .infoOf -- .affects --

Reception Date .generates --

 .infoOf Work Request Assign Date and Number

Serial Number .affects Work Request

 .infoOf Work Request .generates --

Assign Photo Price Assign Level

 .affects -- .affects --

 .generates -- .generates --

Present Work Request Refuse Work Request

 .affects -- .affects --

 .generates Work Request .generates Refused Work Request

Receive Work Request Accept Work Request

 .affects -- .affects --

 .generates Work Request .generates Accepted Work Request

Figure 78 shows the class model that may be generated (applying the
transformation guidelines presented in Table 12) from the example i* without
considering the information reported by the verification measures.

Figure 78. Class model generated from the example i* model

 Automatic Verification of Models for MDD Interoperability

 195

In Figure 78 can be observed that those elements identified by the critical
measures are not present, such as the resource Curriculum or the task Assign
Photo Price. Therefore, it is necessary to improve the defined i* model in order to
assure the transformation of all the selected i* elements; i.e., to fix the issues
related to elements identified by critical measures.

10.4.1. Improving the i* Models for MDD Model Generation

The results obtained from the measures application provide useful information to
fix the detected modeling issues. Thus, it is possible to identify specific fixing
guidelines for each measure formulated. For the four measures defined, the
alternative guidelines presented in Table 20 have been inferred.

Table 20. Fixing guidelines related to the verification measures

Measure Wrong Attribute Generation (WAG)

Guidelines

Associate the informational resources to a system entity (stereotyped actor or
physical resource).

Change the kind of the informational resource to physical resource.

Remove the resource from the intended system (un-stereotyped resource).

Measure Wrong Service Generation (WSG)

Guidelines

Define the owner actor as part of the intended system.

Indicate if the involved task participates in the generation or affect the state of a
system entity (stereotyped actors or physical resources).

Measure Non-Accessible Element (NAE)

Guidelines
Define the owner actor as part of the intended system.

Change the informational resource to physical resource.

Measure Non-Instantiable Class (NIC)

Guidelines

Define a new task in the model as production task of the involved entity
(stereotyped resource or physical resource).

Indicate a task that is already defined in the model as production task of the
entity (stereotyped resource or physical resource).

Change the physical resource to informational resource.

In addition to the guidelines presented, it is also possible to remove the
corresponding element from the intended system (i.e., remove the stereotype), or
even remove the element from the i* model.

Automatic Verification of Models for MDD Interoperability

196

However, independently of the guidelines that can be derived from the
different verification measures, this information is just a reference for analyst who
must decide the guidelines to apply to improve the i* model. Figure 79 shows the
i* model improved by the analyst after analyzing the results obtained from the
application of the verification measures.

In the improved i* model, the task Assign Level affects the state of the new
defined actor Accepted Photographer. The tasks Assign Photo Price and Assign
Photo Equipment are now related to the resource Photographer Level. Another
interesting change is the specification of the actor Req. Photo Equipment as
informational resource. Even though this resource has not been located by the
verification measures, the analyst has decided that it must be included in the
system as part of the Photographer Level.

Figure 79. Improved i* model

The informational resources located by the WAG measure are now defined
as information of the actor Photographer. The warning related to the NIE
measure has been solved by defining the task Establish Level as a generation task

 Automatic Verification of Models for MDD Interoperability

 197

for the resource Photographer Level. Table 21 shows the tagged values that have
been changed in the improved i* model.

It is important to note that solving the issues identified by the verification
measures, the stereotyped elements are properly performed, but also, an improved
and detailer requirement representation is obtained. Figure 80 shows the class
model generated from the improved i* model.

Table 21. Tagged values changed in the improved i* Model

TaggedValue Value TaggedValue Value

Curriculum Assign Required Equipment

 .infoOf Photographer .affects Photographer Level

Photo Equipment .generates

 .infoOf Photographer Assign Level

PersonalData .affects Accepted Photographer

 .infoOf Photographer .generates --

Req. Photo Equipment Establish Level

 .infoOf Photographer Level .affects --

Assign Photo Price .generates Photographer Level

 .affects Photographer Level

 .generates --

Figure 80. Class model generated from the improved i* model

Figure 80 shows that the class model generated from the improved i* model
has a more detailed system specification. Essential elements generated from the

Automatic Verification of Models for MDD Interoperability

198

improved i* model are the classes Photographer and AcceptedPhotographer. Also,
associations among classes have been generated. In summary, all the stereotyped
elements of the i* model have been transformed to conceptual constructs of the
target class model. Thus, the MDD model represents all the system requirements
considered.

Since the generated class model is an initial MDD model, it must be refined
at design time. Some possible refinements are the specification of the
specializations that exist between the class PhotoWorkRequest and the classes
AcceptedWorkRequest and RefusedWorkRequest. Also, the cardinality of the
associations and the appropriate specification of the services must be defined.

In the improved i* model, there still exist warning issues related to the NAE
measure. These warning issues are derived from the stereotyped resources and
tasks that are defined inside of the boundaries of the actors Production Dept. and
Commercial Dept., which are not considered as part of the system-to-be by the
analyst. In this case, the analyst has considered that an administrator user must be
specified at design time to visualize and execute the corresponding resources and
tasks. However, since the NAE measure is just a warning measure, it does not
prevent the correct transformation of the i* model. It just indicates that the
MDD constructs obtained from identified elements must be refined at design
time to obtain a complete specification.

10.5. Evaluating the Verification Approach

To evaluate the verification approach, we have focused on the efficacy of the
measures obtained with the proposed definition process to achieve the
completeness of the generated MDD model.

The ISO 9126 standard [203] distinguishes between two kinds of
completeness: 1) the completeness of a system with respect to the requirement
specification; and 2) the completeness of the functionality that a system must
supports. Thus, the first kind of completeness is related to the completeness of
the MDD models in relation to the system requirements that are defined in the i*
models. The second kind of completeness is related to the completeness of the
initial MDD model regarding to the functionality of the software system; i.e., the
completeness of the MDD model to perform the automatic model compilation.

 Automatic Verification of Models for MDD Interoperability

 199

The evaluation of our verification approach has been conducted as a
laboratory experiment, which has been designed using the framework proposed
by Wohlin et al. [204] for Empirical Software Engineering. The research
question addressed by the experiment is stated as:

RQ1: Is the completeness of the generated MDD model supported by the
measures obtained from the application of the proposed verification approach?

The rest of this section provides details of the design of the laboratory
experiment, as well as the results obtained from the experiment execution.

10.5.1. Subjects, Variables, and Hypothesis

Four subjects were selected to participate in the study: two i* analysts (identified
as ANA1 and ANA2) and two measurement experts (identified as EXP1 and
EXP2). These subjects are Computer Science PhD students from the
Universidad Politécnica de Valencia, which have similar backgrounds in the i*
framework and the OO-Method MDD approach.

The independent variables in the experiment correspond to the Photography
Agency i* models, which have been defined by the i* analysts. The first i* model
(called ISTAR1) is already detailed in Section 10.4 (see Figure 77). The second
defined i* model (called ISTAR2) is presented in Figure 81.

Figure 81. Second i* Model (ISTAR2) for Photography Agency Description

Automatic Verification of Models for MDD Interoperability

200

Table 22 presents the information related to the tagged values of ISTAR2
and Figure 82 presents the initial MDD model (MODEL2) generated from
ISTAR2 without the information of the verification measures.

Table 22. Tagged values related to the Second i* Model for Photography Agency

TaggedValue Value TaggedValue Value

Curriculum To Create Level

 .infoOf Photographer .affects --

Photo Equipment .generates --

 .infoOf Photographer To Receive Work Request

PersonalData .affects --

 .infoOf Cand. Employee .generates Work Request

Level Price To Assign Date

 .infoOf -- .affects Work Request

Proceedings Manual .generates --

 .infoOf -- To Register Photographer

Min. Photo Equip. .affects Photographer

 .infoOf -- .generates Photographer

Acceptance Date Bind Level to Photographer

 .infoOf -- .affects Photographer

Submission Date .generates --

 .infoOf Work Request To Assign Number

Serial Number .affects Work Request

 .infoOf Work Request .generates --

Pub. House Price Assign Work Request Level

 .infoOf -- .affects Accepted Work Request

 .generates --

The quantitative dependent variables considered in the experiment are the
following:

1. Number of informational resources that cannot generate the corresponding
class attributes in the initial MDD model. Obtained from WAG measure.

 Automatic Verification of Models for MDD Interoperability

 201

2. Number of tasks that cannot generate the corresponding service definitions in
the initial MDD model. Obtained from WSG measure.

3. Number of tasks and informational resource that generate non-accessible
elements in the initial MDD model. Obtained from NAE measure.

4. Number of actors and physical resources that generate non-instantiable
classes in the initial MDD model. Obtained from NIC measure.

Figure 82. Initial class model generated from ISTAR2 without improvements

The following hypotheses related to the critical measures and the warning
measures are considered to answer our research question:

HRCOM: The critical measures allow the verification of all the system
requirements that are defined in the extended i* model to generate the
corresponding MDD conceptual constructs.

HCCOM: The warning measures allow the verification of those i* elements that
can be improved to generate a more complete specification of the initial
MDD model, which represents the functionality of the final software
product.

To test HRCOM, each i* element related to the intended system (the
stereotyped elements in the extended i* model) must have a direct relation with
the constructs generated in the initial MDD model (the OO-Method class model
in the experiment).

To test HCCOM, the improvements performed to the i* model with the
information obtained from the warning verification measures must generate a
more detailed specification of the initial MDD model.

Automatic Verification of Models for MDD Interoperability

202

10.5.2. Instruments and Experimental Tasks

Figure 83 shows the tasks performed in the experiment, which are modeled with
the BPMN notation [205]. These tasks are described below.

Figure 83. Experimental tasks

Task 1. Definition of i* models. Each one of the two involved i* models (see
Figure 77 and Figure 81) is defined by one i* analyst, which considers the
organizational description presented Section 10.2.3. The defined i* models
include the information that is required for the automatic application of the
transformation guidelines, as described in Section 10.2.4.

Task 2. Generation of MDD models. Each measurement expert performs a class
model generation from one of the defined i* models by applying an ATL
transformation script. The verification measures are not applied in this task.

Task 3. Application of verification measures. Each measurement expert applies
the verification measures over its corresponding i* model.

��������������

�0���
���

	�
����������

����0���
���

�����
�

��������������

	�����
���

�����
�

�&&������������

/������������

	�������

+��&����������

����������
�

���������

	����������

�������

���������������

���
������

���������������

���
������

�� ��&��*�
�

	�
���

	�����&��*�

	�
���
/������������

	�������

�����
�	����������

�������

���������������

�1&��������

�����������$ ���

�������������

��
��$2

�� 	�
���

/������������

	�������

,�

3��

����!�������&�$�

�����$��&����������� �&&������������

/������������

	�������

��������������

	�����
���

	���	�
���
	�����������

�������

 Automatic Verification of Models for MDD Interoperability

 203

Task 4. Modification of i* models. The analysts use the results obtained from
Task 3 to improve their corresponding i* models.

Task 5. Second generation of MDD models. The measurement experts generate
a new class model from the improved version of the i* model that they have
transformed in Task 2.

Task 6. Second Application of verification measures. The measurement experts
apply the verification measures over the improved i* model.

Task 7. Comparison of results and assessment. The results obtained from Tasks
2, 3, 5, and 6 are compared and analyzed by the two measurement experts to
check the hypotheses proposed.

In addition to these sequential tasks, the measurement experts have
controlled all the experiment execution.

Regarding the instruments, in addition to the models themselves, the
instruments used in the experiment were: the Eclipse Model Development Tools
[134], the EMF editor for the i* metamodel extended with the UML profile
related to the verification measures and transformation extensions (see Figure
75), the ATL scripts to transform the i* models to MDD models according to
the transformation guidelines presented in Table 12, and tables filled according
to a predefined template to keep the results of the experiment.

10.5.3. Execution and Data Collection Procedures

To perform the experiment, the i* analysts were located in separated rooms to
avoid any kind of influence on each other’s results. The i* models were defined
manually to prevent that the use of the EMF editor (that does not provide i*
notation) affects to the appropriate analysis of the business. In tasks 2 and 5, the
measurement experts translate the hand-made i* models with the corresponding
EMF representation in order to apply the verification measures and to generate
the corresponding MDD models automatically. No time limit was set for any
experimental tasks, such as the EMF models specification, the generation of the
corresponding MDD models, the application of the verification measures, the
improvement of the i* models, etc.

Automatic Verification of Models for MDD Interoperability

204

In this study, data triangulation was considered (which refers to using more
than one data source or collecting the same data on different occasions) since we
used two sources (the two i* models). Thus, the following common steps were
defined to collect data from the two i* models in the study:

1. Each i* model was transformed into an OO-Method class model by
measurement experts applying an automatic transformation process.

2. Work diaries were completed by each measurement expert for each model
transformed. In those diaries, the information obtained from the verification
measures was registered.

10.5.4. Results: Analysis and Interpretation Issues

In the first generation of the MDD models, the resultant models suffered from
several defects related to their completeness. Table 23 shows the amount of
constructs of the i* models that must be transformed, which correspond to the
stereotyped elements. Also, Table 23 shows the amount of effectively
transformed elements. Thus, it is clear that not all the stereotyped elements were
transformed into constructs of the class models, i.e.; MDD models are not
complete regarding to the requirements.

Table 23. First generation of the MDD models.

i* Model
Stereotyped
Elements

Transformed
Elements

MDD Model MDD Elements

ISTAR1 19 13 MODEL1
4 classes, 4 attributes, 5 services.

 (Total = 13)

ISTAR2 23 17 MODEL2

5 classes, 6 attributes, 6 services,

1 association, 3 agent relationships,

1 generalization. (Total = 22)

Then, EXP1 and EXP2 apply the verification measures to the defined i*
models. The results obtained are presented in Table 24, which shows for each i*
model the measures applied, the alert level of the measures, the result of the
measure obtained from the evaluation of aggregation OCLs, and the i* elements
that return true from the evaluation of locator OCLs.

It is important to point that the verification measures can be used to define
additional measures to obtain relevant information of the defined i* models. For
instance, we have defined the following measure to obtain information about of
the completeness of the MDD model to be generated.

 Automatic Verification of Models for MDD Interoperability

 205

��� � ���� � �	
� �	��
��� � �� ���

The measure PTE (Percentage of Transformable Elements) obtains the
percentage of i* elements related to the intended system that are transformed in
elements of the target MDD model. PTE is calculated using TSE, WAG, and
WSG measures.

Table 24. Application of the verification measures to ISTAR1 and ISTAR2

Model Measure
Alert
Level

Measurement Result Locator

ISTAR1

WAG Critical 3 Resources
Curriculum, Photo Equipment,

Personal Data

WSG Critical 3 Tasks
Assign Photo Price, Assign Required
Equipment, Assign Level

NAE Warning 15 Elements
All stereotyped informational resources
and tasks defined in actors’ boundaries
(none stereotyped actors in the model)

NIC Warning 1 Entity Photographer Level

ISTAR2

WAG Critical 5 Resources

Level Price, Proceedings Manual,

Min. Photo Equip., Acceptance Date,
Pub. House Price

WSG Critical 1 Task To Create Level

NAE Warning 12 Nodes
All the stereotyped informational
resources and tasks defined in the
Production Dept. Boundary

NIC Warning 3 Entities
Cand. Employee, Accepted Work
Request, Refused Work Request

TSE (Total Stereotyped Elements) counts the elements identified to be part of
the intended system (the stereotyped elements). For ISTAR1, TSE = 19 and, for
ISTAR2, TSE = 23 (see Table 23).

WAG and WSG correspond to the critical verification measures. For
ISTAR1, WAG = 3 and WSG = 3. For ISTAR 2, WAG = 5 and WSG = 1
(see Table 24). Note that the sum of the critical measures (WAG and WSG) is
coincident with the difference of transformed i* elements (see Table 23).

Thus, for ISTAR1 we obtain PTE = 68,4 %. It means that only the 68,4%
of the i* stereotyped elements can be transformed in the MDD model generation.

Automatic Verification of Models for MDD Interoperability

206

i.e. 31,6% of elements related to the system requirements will not be represented
in the software model. For ISTAR2, we obtain PTE = 73,9 %.

The warning measures support the identification of those i* elements that can
be improved to obtain a more complete specification of the initial MDD model
generated. Thus, we have defined the following measure to identify this situation
in the improved i* models:

	�� � ������ � ������ �	
� �	��
����� � � ����
The measure Warning Improvement Percentage (WIP) returns the

percentage of new MDD constructs of the improved MDD models obtained with
the information of the warning measures. WIP is calculated using IMDD,
OMDD, WAG, and WSG.

IMDD (Improved MDD) corresponds to the number of MDD constructs
generated from the Improved i* model. OMDD (Original MDD) corresponds to
the number of MDD constructs generated from the original i* model. WAG and
WSG correspond to the critical measures previously defined. In the experiment,
the WIP measure is evaluated after the second generation of MDD models.

The next task in the experiment (Task 4) corresponds to improve the i*
models using the information obtained from the verification measures WAG,
WSG, NAE, and NIE. Following, we enumerate the improvements performed
by ANA1 to the model ISTAR1 (see Section 5.1):

1. 1 actor, 1 is-a relationship, and 1 task were added to the i* model.

2. 2 actors were added to the system requirements.

3. 4 resources and 4 tasks were modified in the i* model.

The same cognitive process explained in Section 10.4.1 to improve the
ISTAR1 model is applied by ANA2 to obtain the improved ISTAR2 model
(see Figure 84). The improvement actions performed were the following:

1. 2 actors were added to the system requirements

2. 1 goal, and 1 resource were added to the i* model.

3. 2 tasks and 6 resources were modified in the i* model.

4. 1 stereotype application was changed to physical resource in the i* model.

An interesting benefit that emerged while fixing the elements of ISTAR2
that are identified by the critical measures was that the analyst ANA2 detected a

 Automatic Verification of Models for MDD Interoperability

 207

mistake in the understanding of the organizational description. The analyst
initially defined the actor Production Department as responsible for the levels
definition. However, the actual responsible is Commercial Department. As a
consequence, the analyst defined a new physical resource Level, where the task
To Create Level is the production task for this physical resource. Thus, resources
Price Min., Photo Equip., and Pub. House Price are defined as informational
resources of the Level resource. Furthermore, in contrast to the reasoning
performed by the first analyst (ANA1), the second analyst (ANA2) considered
that all the actors involved in the i* model must be part of the system-to-be.
Thus, the improved i* model did not generate non-accessible elements in the
MDD model (measure NAE = 0). Additionally, the resource Proceeding manual
is changed from informational entity to physical entity. Figure 84 shows the
improved ISTAR2 model, Table 25 the tagged values changed, and Figure 85
shows the MDD model generated.

Figure 84. Second i* model (ISTAR2) improved with the verification measure results

'��%

�&&�������$
���$����	
�

(��)���*���

44������55

!������������

44�!�$������55

'��%���(����
!�������&����

'��%���(�����#��

!�������

���$�������(��)�

��*���

44������55

!��
�������

��&�)

��+���)

��������,��(��)�

��*���

���+���,��
���

��������(��)�

��*���

���$�������

!����
���(��)�

��*���

44������55

+��
)�

��&��$��

44������55

!�������&���

44������55

+���������

44������55

!�����

�(��&����

44������55

!������������

��+���)

���!����	�#�
�

44������55

��-�������

����

��-�

44������55

�������

,��-��

44�!�$������55

������
�'��%�

��(����

44�!�$������55

����&��
�'��%�

��(����

(��)���*���
�

.���/�	

44�!�$������55

�*��

��+���)

0�	����,���
��

$��
��������

'��%���(�����

#��!�������

�����/�����

(��)���*���

'��%���(�����#��

!�������

44�!�$������55

!�����
�����

	�����

��+���)

���!����	�1�/2��

��+���)

��������
���

$��
��������

44������55

	��)�!������(��&)

��+���)

!����	�(��)���*���
�

��,��

44������55

����&������

����

44������55

+���������

��&�)
!�������&����
�*���

	���������

��+
��)

�������
����,��

44������55

!�-)�.�����!���� 44������55

�*���!����

44�!�$������55

�*��

Automatic Verification of Models for MDD Interoperability

208

Table 25. Tagged values changed in the improved i* Model

TaggedValue Value TaggedValue Value

Level Price Acceptance Date

.infoOf Level .infoOf Photographer

Min. Photo Equip. To Create Level

.infoOf Level .affects --

Pub. House Price .generates Level

.infoOf Level

Figure 85. Class model obtained from the improved version of the second i* model

Table 26 shows the results obtained from the transformation of the improved
versions of the models ISTAR1 and ISTAR2.

Table 26. Second generation of the MDD models.

Improved i*
Model

Stereotyped
Elements

Transformed
Elements

Improved
MDD Model

MDD Elements

ISTAR1 23 23 MODEL1
6 classes, 8 attributes, 9 services,
2 associations, 4 agent rel.,

1 generalization (Total=30)

ISTAR2 25 25 MODEL2

9 classes, 9 attributes, 7 services

3 association, 16 agent rel.,

1 generalization (Total=45)

 Automatic Verification of Models for MDD Interoperability

 209

Table 27 shows the results obtained from the application of the verification
measures to the improved i* models. For ISTAR1, the measures WAG, WSG,
and NIC are equal to 0, which means that the improved model ISTAR1
generates correctly attributes, services, and instantiable entities. Only NAE was
greater to zero (NAE=16), which means that 16 elements of the generated MDD
model (MODEL1) do not have agent relationships defined.

For ISTAR2, the measures WAG, WSG and NAE are equal to 0, which
means that that the improved model ISTAR2 generates attributes, services, and
accessible elements correctly. Only NIC was greater to zero (NIC=6). In fact,
NIC’s value is even greater than the result obtained from the initial ISTAR2
model (NIC=3). This situation is produced by the two new actors defined as part
of the system, and the change in the stereotype application of the resource
Proceeding Manual, which is defined now as a physical resource. However, this
warning measure does not prevent the proper generation of the MDD model
(MODEL2).

Table 27. Experiment results

Measures ���� WAG WSG NAE NIC PTE WIP

First Generation (Initial i* Models)

ISTAR1 3 3 18 1 68,4% --

ISTAR2 5 1 13 3 73,9% --

Second Generation (Improved i* Models)

ISTAR1 0 0 16 0 100% 84,6%

ISTAR2 0 0 0 6 100% 77,3%

With the results obtained in the experiment we can test the hypotheses
HRCOM and HCCOM, and consequently answer our research question.

The experiment shows that by fixing the issues identified from the application
of the critical measures (WAG and WSG) in the improved i* models ISTAR1
and ISTAR2, the completeness of the resultant MDD models (improved
MODEL1 and MODEL2) is achieved according to the system requirements. In
both i* models, 100% of the stereotyped elements are transformed into the
corresponding MDD constructs (see PTE measure in Table 27). Therefore, we
can state that the Hypothesis HRCOM is demonstrated.

Also, the experiment results shows that fixing the issues identified by the
warning measures (NAE and NIC), the completeness of the MDD models in

Automatic Verification of Models for MDD Interoperability

210

relation to the system functionality is higher. This is observed in the amount of
MDD constructs generated from the improved i* models in relation to the
original i* models (see WIP measure in Table 27). For ISTAR1, we obtain that
the improvements performed from warning measures generate 84,6% of
additional MDD constructs. For ISTAR2, we obtain that the improvements
related to warning measures increase the number of generated MDD constructs
in 77,3%. Thus, since MDD constructs are directly representing functionality of
the final software system (such as system users), the hypothesis HCCOM is also
demonstrated with the results obtained.

10.6. Overall Analysis

A first element to comment is the relevance of using a measure definition process
as starting point of our verification approach instead of a direct and intuitive
definition of OCL verification rules. This decision comes from the maturity that
the measurement specification has in the software engineering context, where we
can found sound frameworks for the definition and implementation of measures.
This provides a more systematic and rigorous schema for appropriate
identification of properties that must be measured and, in the context of this
chapter, verified. In addition, we can take advantage of existing measures that are
already defined in the context of i* and object-oriented modeling.

Another relevant point to comment is related to the benefits that the
approach proposed for the integration of the verification measures in the i*
framework provides. One of the main advantages of this integration approach is
that the entire measure specification is performed by following the model-driven
philosophy, where the measures and the required modeling information are
specified in a verification model by using current metamodeling standards. The
extensions over the i* framework are defined by means of a UML profile that
does not alter the original i* metamodel specification, which permits the
compatibility with existing technologies that use the same metamodel as
reference. We have considered mechanisms to automate the generation of this
UML profile. With this, the main effort in the application of the verification
proposal is in the appropriate definition of the required measures, the correct
specification of the involved properties and OCL rules in the verification model,
and the definition of the mapping between the verification model and the target
i* metamodel. Thus, once the verification framework is defined for a particular

 Automatic Verification of Models for MDD Interoperability

 211

MDD method (like OO-method in this example scenario); it can be used with no
or little modification over and over in different projects.

Finally, it is important to mention that for the application of our verification
proposal, we did not find tools that provided transparent support for all the
modeling features considered, and hence, additional programming effort was
necessary. However, the current development of tools that provide support to the
standards considered (such as the Eclipse UML2 project [8]) and the increasing
number of research works that take advantage of these technologies are indictors
that improved tools will appear in a not-too-distant future. This also motivates
the emergence of new approaches for integration and verification to improve the
MDD capabilities and the quality of the generated software products.

10.7. Conclusions

The interoperability of i* models for requirements elicitation in MDD process is
a step beyond going from Model-Driven Development (MDD) to Model-Driven
Engineering (MDE) [13], where different modeling approaches can interoperate
to obtain improved software products [32]. This chapter has presented new
results in this direction by presenting a process for the definition and integration
of measures that guarantee the completeness of the MDD interoperability. The
main advantages of the proposed verification approach are the following:

1. The definition of the verification measures is driven by a systematic process
that helps in the correct identification of the elements that must be verified.

2. The evaluation of the verification measures is automatic, which implies a time
and effort reduction with respect to manual verifications.

3. Specific alert levels are defined to distinguish the constructs that must be
fixed from the constructs that can be improved.

4. The definition and implementation of the verification measures is performed
by using current technologies and standards.

It is important to remark that, although our validation framework goes one
step beyond in the MDD process by considering goal-oriented models as starting
point, we are not aiming at getting a fully automated transition from these types
of models into traditional conceptual models. Even though the evaluation of the
OCL rules related to the verification measures is automated, and the kind of

Automatic Verification of Models for MDD Interoperability

212

measure provides information about the problem and possible solutions, the
analyst is still responsible of determining the changes that are necessary to fix
critical issues, and to decide whether a change (model improvement) is necessary
in the case of warning issues.

The verification measures presented in this chapter are a subset of the
measures that we have defined for the application of i* models into the OO-
Method MDD process. The selected verification measures are presented with the
intention of clarifying and exemplifying the verification approach proposed.
These verification measures have been applied to OO-Method development
scenarios and validated by experts from requirement engineering and MDD areas.

Finally, it is important to remark the results obtained from the application of
the verification approach no only guarantee the interoperability of the i* models
into MDD process, but also, it validates the applicability of the MDD
interoperability approach presented in this thesis by means of empirical results.

Chapter XI. �
������
���
�

In the present software development context, where the model-driven paradigm is
the clear trend for current and future software development solutions, it is
possible to find several modeling approaches that are related to different
application domains.

Upon further examination of the specification of the modeling approaches,
equivalences among the defined conceptual constructs can be observed. The
number of equivalences should increase for those modeling approaches related to a
same application domain (such as requirement analysis, business processes,
software design, etc.). In this thesis, we have used these equivalences as
integration points to interchange modeling information among different
modeling approaches, thus achieving the interoperability in a MDD process.
Novel proposals have been defined to properly support this MDD
interoperability, thereby dealing with specific interoperability issues that may
prevent an appropriate interchange of modeling information.

This chapter summarizes the contributions obtained from the work performed
in this thesis. Future research lines and the publications generated during this
thesis are also detailed.

Conclusions

214

The work presented in this thesis clearly demonstrates that it is possible to
achieve MDD interoperability by applying an appropriate process, which
generates the necessary interoperability artifacts to integrate and interchange
modeling information. Moreover, current model-based standards and technologies
can be used to provide suitable support to the proposed MDD interoperability
with minor adaptations to the implemented tools.

In the application and verification of our proposal, we show the
interoperability of different modeling approaches that are related to the same
abstraction level. In particular, we apply the UML and OO-Method modeling
languages to define a suitable model specification, which can be compiled in the
final software product by means of the industrial tools implemented for the OO-
Method approach.

The interoperability among modeling solutions related to different
abstraction levels is also presented, where i* analysis models are used as a starting
point to automatically generate the design models related to the OO-Method
MDD approach. Thus, the requirement models are used as active artifacts in the
development process, and not just as reference documentation. With this multi-
level interoperability schema, the requirements, the design, and the
implementation stages of a MDD process are covered.

A model-driven proposal to verify the correct MDD interoperability is also
presented. This proposal is applied to assure the completeness of the
interoperability related to i* requirement models in the OO-Method MDD
process. The verification proposal has been empirically verified obtaining
successful results, not only for MDD interoperability but also for the
improvement of the requirement models involved and the MDD models
generated. The definition of this approach to verify the MDD interoperability is
oriented to support real development contexts, where the defined models may
present defects that prevent correct model transformations or compilation.

Even though we have obtained good results from the application of our
interoperability approach in the interoperability scenarios presented, we not
consider our approach to be the definitive solution for MDD interoperability.
Additional work and further research are needed to achieve this ambitious
objective. However, this thesis makes an important effort in this direction, which
can be used as a starting point to obtain a model-driven development process
closer to real model-driven engineering, which takes advantage of different
modeling approaches, standards, tools, and knowledge generated from different
research areas to improve the MDD processes.

 Conclusions

 215

The rest of this chapter is organized as follows: Section 11.1 indicates the
main contributions obtained in this thesis. Section 11.2 presents future research
lines. Finally, Section 11.3 details the publications generated from the work
presented in this thesis.

11.1. Thesis Contributions

In general terms, the contributions obtained from the work in this thesis are
directly related to the goals initially stated, and, hence, the main contribution is
the approach for the interoperability of different modeling languages in a
common MDD process. There are also additional contributions that are oriented
to achieving the specific objectives that support this main goal. Following, these
additional contributions are presented by indicating how they support the
specific objectives stated in the first chapter of this thesis.

C1. An MDD interoperability Model

This model states the elements that are necessary to achieve MDD
interoperability. According to the defined MDD interoperability model, MDD
interoperability is defined in terms of Technical, Semantic, and Syntactic
interoperability. Also, the proposed model indicates that MDD interoperability
can be automated if an appropriate procedure is used to coordinate the
applications, infrastructure, and data that are related to the different modeling
artifacts. The proposed MDD interoperability model is presented in Chapter IV.
An additional contribution has been obtained from the MDD interoperability
model, which corresponds to the following:

1. A MDD interoperability process. This process has been defined together
with a set of application guidelines to obtain a sound interoperability
procedure.

C2. The Integration Metamodel Proposal

This particular metamodel is defined to indicate the semantic equivalences among
the modeling languages to be integrated. These equivalences are specified by
means of metamodel mappings. Thus, the Integration Metamodel is used as a
pivot metamodel that fixes those mapping issues that may prevent an automatic

Conclusions

216

interchange of models. It also provides a suitable structure for the automatic
generation of metamodel extensions to integrate the modeling languages involved,
which is the key to prevent the loss of modeling information during the
interchange of models. The Integration Metamodel is presented in Chapter V.
For the specification of an appropriate Integration Metamodel, two additional
contributions have been generated. These contributions are the following:

1. A systematic approach for Integration Metamodel definition. This systematic
approach is based on an iterative process that guides the fixing of integration
problems and the specification of appropriate metamodels mappings. Thus, a
correct Integration Metamodel is obtained.

2. Verification rules to assure the modeling language integration. These rules
automatically identify the integration issues that exist between two modeling
languages by means of the analysis of the defined metamodel mappings.

C3. An approach for automatic UML profile generation

This approach uses an Integration Metamodel as input to generate the
lightweight metamodel extensions. These extensions are required to customize
the abstract syntax of a target modeling language with the modeling information
of the involved MDD approach so that the interchange of modeling information
between the customized modeling language and the MDD tools can be properly
performed. The proposal for the UML profile generation also generates the
necessary mappings to perform the model interchange by means of automatic
model transformations. The UML profile generation approach is presented in
Chapter VI.

C4. A proposal for automatic interchange of models.

During the definition of the Integration Metamodel and the generation of the
metamodel extensions, mapping information among the metamodels of involved
modeling languages and the metamodel of the target MDD approach is obtained.
Thus, the interchange proposal uses this mapping information as input for the
generation of model transformation rules, which can be implemented with
current model-to-model transformation technologies (such as ATL or QVT). In
other words, the generated transformation rules allow the modeling information
to be automatically interchanged, which supports the automatic interoperability
of the customized modeling language and the MDD process. This interchange
proposal is presented in Chapter VII.

 Conclusions

 217

C5. An interoperability framework for UML and MDD processes.

A specific interoperability framework has been obtained from the interoperability
scenario proposed for UML and OO-Method. This framework can be used as
reference for the interoperability of modeling languages that represent different
views of a model at the same abstraction level. Specifically, the level considered in
the interoperability scenario related to UML and OO-Method is the design level.
This interoperability framework is presented in Chapter VIII. Furthermore, the
development of this interoperability framework has produced additional
contributions, which correspond to the following:

1. Customization of the UML association for its application into MDD
processes. This customization has been performed by means of a UML
profile, which is automatically generated according to the application of the
MDD interoperability process proposed [206]. The generated UML profile
contains the extensions that are necessary to integrate the abstract syntax that
supports the OO-Method semantics into UML.

2. Definition of an EMOF metamodel for the OO-Method approach. The
industrial OO-Method implementation is based on an implicit metamodel
specification that is associated to the OO-Method model compiler. However,
an explicit OO-Method metamodel that is based on the current metamodel
standards has not yet been defined. Therefore, the OO-Method metamodel is
a relevant contribution that is generated from the interoperability scenarios
[32, 206]. This metamodel can be used as reference for other MDD
approaches and future research associated to the OO-Method approach.

3. Implementation of industrial tools for interchange of UML and OO-Method
models. In this thesis, two model transformation tools [132, 135] have been
implemented to support the exportation of OO-Method models to UML-
based tools and the importation of UML models into the OO-Method
modeling suite. These tools are currently part of the industrial suite for
management of OO-Method models, which is called Olivanova [64].

C6. An interoperability framework for Requirement Modeling and MDD

This framework is related to the scenario developed for the linking of i* models
with the OO-Method development process. It can be used as a reference for the
interoperability of modeling approaches that are related to different abstraction
levels. Specifically, the levels considered in the i* and OO-Method
interoperability scenario are the requirement and design levels. This

Conclusions

218

interoperability framework is presented in Chapter IX. Additional contributions
have been obtained from the i* and OO-Method interoperability. These
contributions are the following:

1. Definition of i* extensions and transformation rules for the generation of
MDD-oriented models from i* models. The i* extensions and transformation
rules provide suitable model-based support for the automatic interoperability
of goal-oriented requirement models and MDD-oriented models. These
elements can be used as a reference for MDD approaches that want to
integrate requirement models into their development processes.

2. Definition of an i* EMOF Metamodel. In the i* context, there is not a
standardized i* metamodel, and, in general terms, the existing metamodel
proposals are not EMOF compliant. Therefore, the EMOF metamodel that
is implemented in the context of the i* and OO-Method interoperability
scenario can be used as a reference for other MDD approaches. Specifically,
to facilitate the implementation of open-source tools based on the eclipse
development framework.

C7. An approach for verification of MDD interoperability

At the moment of applying the transformation rules that have been generated
from the application of the MDD interoperability process, we have detected that
there may be certain modeling issues in the defined models that prevent the
correct execution of the model transformations. Hence, a specific approach has
been defined to verify these interoperability issues. This verification approach is
based on the artifacts obtained from the application of the interoperability
process. It assures the correct interchange of model information through specific
verification measures, which are integrated into the customized modeling
languages for their automatic evaluation. This interoperability verification
approach is presented in Chapter X. Additional contributions have been obtained
from the development of this verification approach. These contributions are the
following:

1. A systematic approach for the generation of automatic verification measures.
This systematic approach has been defined to assure the correct definition of
verification measures, which guarantee the completeness of the
transformations that are involved in a MDD interoperability framework. This
systematic approach involves the definition of a verification model, which
allows the automatic integration of the verification measures into the
modeling languages by means of UML profile generation.

 Conclusions

 219

2. A set of verification measures for interoperability of i* and MDD. These
verification measures have been defined for the i* and OO-method
interoperability scenario. We have focused on the definition of a set of
verification measures that can be generalized to other object-oriented MDD
processes.

Finally, since models are the main resource of MDD processes, the MDD
interoperability approach proposed in this thesis could also achieve the
interoperability among different MDD processes by using the models as linking
point. Therefore, it is possible to take advantage of existing model-oriented
technologies and to facilitate the reuse of knowledge and experience across the
MDD community. The next section shows the future works that we have
planned to develop in this direction together with new proposals for the
improvement of MDD interoperability.

11.2. Future work

As future work, we plan to continue our research by focusing on three main lines:
the improvement of the MDD interoperability approach, the construction of
MDD tools that support the proposed interoperability model, and the application
of the interoperability proposal to new MDD interoperability scenarios. We have
started to address these three research lines in the following works.

Improvement of the MDD interoperability approach.

1. Patterns for Integration Metamodel definition. We are currently working on
a set of patterns to provide semi-automatic support to the generation of an
Integration Metamodel. These patterns solve the integration conflicts
identified by means of the rules presented in Chapter V.

2. Definition of a new lightweight customization mechanism. Even though
UML profiles provide suitable features for the application of the proposed
MDD interoperability approach, there are certain issues related to this
extension mechanism that must be fixed in order to obtain an improved
interoperability solution. Thus, we plan to define an improved lightweight
customization mechanism for MDD interoperability.

Conclusions

220

3. Empirical verification and validation. We are preparing new empirical
experiments to verify and validate our interoperability proposal. Specifically,
we are currently planning a case study in the context of the i* and OO-
Method approach. Furthermore, we plan to develop additional
experimentation related to new MDD interoperability scenarios.

Tools to support the MDD interoperability.

1. A tool for automatic application of the interoperability process. This tool
must provide specific wizards and automation facilities to simplify the
definition of integration metamodels and metamodel mappings. This also
reduces the potential errors that may be produced by a manual definition of
the involved interoperability artifacts. We plan to automate the patterns that
we are developing for the generation of an Integration Metamodel and the
rules related to the identification of integration conflicts.

2. An MDD interoperability suite for OO-Method. This OO-Method suite will
be implemented as an extension of the Eclipse UML2 tool. Thus, it will be
possible to obtain an effective MDD solution that takes advantage of the
UML extension capabilities and interchange standards and also take
advantage of the current open-source MDD technologies, such as model
transformation tools.

New MDD interoperability scenarios.

1. Interoperability of multiple requirement modeling approaches. We are
currently working on a collaborative Project with the Universidad
Politécnica de Cataluña. This project integrates different requirement
modeling approaches to improve MDD processes. The objective of this
project is the correct generation of Web services as well as the generation of
testing mechanisms to assure that the generated services are aligned to the
stakeholders’ needs.

2. Interoperability of MDD approaches. This extends the proposed
interoperability approach to support the coordination of multiple MDD
approaches. We are currently working on the interoperability of a novel
MDD approach related to early detection of defects in software systems with
proposals related to model compilation. Thus, the quality of the software
generated in MDD processes can be improved, and the cost of fixing software
faults in late development stages can be reduced.

 Conclusions

 221

11.3. Publications

This section shows the publications that are related to the development of this
thesis. These publications are divided in 17 international conferences, 1 national
conference, 3 international journals, and 1 book chapter. The publications are the
following:

1. Marín, B., Giachetti, G., Pastor, O.: Intercambio de Modelos UML y OO-
Method. X Workshop Iberoamericano de Ingeniería de Requisitos y
Ambientes de Software (IDEAS). 2007.

2. Giachetti G., Marín B., Condori-Fernández N., Molina J.C.: Updating OO-
Method Function Points. QUATIC 2007: 55-64

3. Marín, B., Giachetti, G., Pastor, O.: The Photography Agency: A case study
of the OO-Method Approach. Technical Report DSIC-II/13/08,
Universidad Politécnica de Valencia, Valencia, España (2008)

4. Marín B., Giachetti G., Pastor O.: Una herramienta industrial para la
medición del tamaño funcional de aplicaciones desarrolladas en entornos
MDA. CIbSE 2008: 357-362.

5. Marín B., Pastor O., Giachetti G.: Automating the Measurement of
Functional Size of Conceptual Models in an MDA Environment. PROFES
2008: 215-229

6. Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile
Generation for MDA Industrial Development. 4th International Workshop
on Foundations and Practices of UML (FP-UML) – ER Workshop.
Springer LNCS, 2008.

7. Giachetti, G., Marín, B., Pastor, O.: Perfiles UML y Desarrollo Dirigido por
Modelos: Desafíos y Soluciones para Utilizar UML como Lenguaje de
Modelado Específico de Dominio. V Taller sobre Desarrollo de Software
Dirigido por Modelos (DSDM) – Taller JISDB. 2008.

8. Giachetti, G., Marín, B., Pastor, O.: Integración de UML y DSMLs en
Entornos de Desarrollo Dirigido por Modelos. In: Proceedings of XII
Conferencia Iberoamericana en Software Engineering CIbSE. 2009.

9. Marín B., Giachetti G., Pastor O., Abran A.: Identificación de Defectos en
Modelos Conceptuales utilizados en Entornos MDA. CIbSE. 2009.

Conclusions

222

10. Alencar, F., Pastor, O., Marín, B., Giachetti, G., Castro, J.: Aligning Goal-
Oriented Requirements Engineering and Model-Driven Development. In:
Proceedings of 11th International Conference on Enterprise Information
Systems (ICEIS). 2009.

11. Giachetti, G., Marín, B., Pastor, O.: Using UML Profiles to Interchange
DSML and UML Models. In: Proceedings of Third International Conference
on Research Challenges in Information Science (RCIS). IEEE Computer
Society, 2009.

12. Giachetti, G., Marín, B., Pastor, O.: Using UML as a Domain-Specific
Modeling Language: A Proposal for Automatic Generation of UML Profiles.
In: Proceedings of CAiSE'09. Springer LNCS, 2009.

13. Giachetti, G., Marín, B., Pastor, O.: Integration of Domain-Specific Modeling
Languages and UML through UML Profile Extension Mechanism. In:
International Journal of Computer Science & Applications (IJCSA). 2009.

14. Marín, B., Giachetti, G., Pastor, O.: Applying a Functional Size Measurement
Procedure for Defect Detection in MDD Environments 16th European
Conference on Systems & Software Process Improvement and Innovation
(EuroSPI). 2009

15. Alencar, F., Marín, B., Giachetti, G., Pastor, O., Castro, J., Pimentel, J.H.:
From i* Requirements Models to Conceptual Models of a Model-Driven
Development Process. In: Proceedings of 2nd Working Conference on The
Practice of Enterprise Modeling (PoEM). Springer LNIBP, 2009.

16. Giachetti, G., Alencar, F., Marín, B., Pastor, O., Castro, J.: Beyond
Requirements: An Approach to Integrate i* and Model-Driven Development.
In: Proceedings of XIII Conferencia Iberoamericana en Software
Engineering (CIbSE 2010). 2010.

17. Pastor, O., Giachetti, G.: Linking Goal-Oriented Requirements and Model-
Driven Development. Intentional Perpectives on Information Systems
Engineering. Springer Book. 2010.

18. Marín B., Giachetti G., Pastor O., Vos T.E.J., Abran A.: Evaluating the
usefulness of a functional size measurement procedure to detect defects in
MDD models. ESEM 2010.

19. Alencar, F., Marín, B., Giachetti, G., Pastor, O., Castro, J., Franch, X.,
Pimentel, J.: From i* to OO-Method: Problems and Solutions Fourth

 Conclusions

 223

International i* Workshop (istar 2010) - CAiSE Workshops, vol. 586.
CEUR Workshop Proceedings. 2010.

20. Giachetti, G., Albert, M., Marín, B., Pastor, O.: Linking UML and MDD
Through UML Profiles: A Practical Approach based on the UML
Association. Journal of Universal Computer Science (J.UCS). 2010

21. Marín, B., Giachetti, G., Pastor, O., Abran, A.: A Quality Model for
Conceptual Models of MDD Environments. Advances in Software
Engineering 2010 Special Issue: New Generation of Software Metrics, ID
307391 (2010)

22. Marín, B., Giachetti, G., Pastor, O., Vos, T.E.J.: A Tool for Automatic
Defect Detection in Models used in Model-Driven Engineering. 7th
International Conference on the Quality of Information and Communications
Technology (QUATIC), pp. 242–247. IEEE (2010)

23. Marín, B., Vos, T., Giachetti, G., Baars, A., Tonella, P.: Towards Testing
Future Web Applications. 5th IEEE International Conference on Research
Challenges in Information Science (RCIS). IEEE (2011)

Table 28. Publication Summary

Type Publication Place Number

National Conference DSDM (JISBD Workshop) 1

International Conference

CAISE, RCIS, POEM, EuroSPI, ICEIS, ESEM,
FP-UML (ER Workshop), QUATIC, PROFES,
IDEAS, CIBSE, i* Workshop (CAISE
Workshop)

17

Journals JUCS, IJCSA, ASE 3

Book Chapter Springer Book 1

���������
�

1. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, vol. 20,
pp. 19–25 (2003)

2. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki, K.: Model-Driven
Software Development: Technology, Engineering, Management. Wiley (2007)

3. Pohjonen, R., Kelly, S.: Domain-Specific Modeling. Dr. Dobb’s Journal (2002)

4. Luoma, J., Kelly, S., Tolvanen, J.-P.: Defining Domain-Specific Modeling
Languages: Collected Experiences. 4th OOPSLA Workshop on Domain-Specific
Modeling (DSM’04), (2004)

5. OMG: UML 2.1.2 Superstructure Specification.

6. Yu, E.: Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
also Tech. Report DKBS-TR-94-6. Dept. of Computer Science. University of
Toronto, Toronto, Canada (1995)

7. Ayala, C., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X.,
Mayol, E., Quer, C.: A Comparative Analysis of i*-Based Goal-Oriented Modelling
Languages. International Workshop on Agent-Oriented Software Development
Methodologies (AOSDM'05), at the SEKE Conference, pp. 657–663, Taipei,
Taiwán; China. (2005)

8. Watson, A.: UML vs. DSLs: A false dichotomy. Object Management Group (2008)

9. Bruneliere, H., Cabot, J., Clasen, C., Jouault, F., Bezivin, J.: Towards Model Driven
Tool Interoperability: Bridging Eclipse and Microsoft Modeling Tools. 6th
European Conference on Modelling Foundations and Applications (ECMFA
2010), vol. LNCS 6138, pp. 32–47. Springer (2010)

10. OMG: MDA Guide Version 1.0.1. (2003)

11. Booch, G., Brown, A.W., Iyengar, S., Rumbaugh, J., Selic, B.: An MDA Manifesto.
Business Process Trends/MDA Journal (2004)

References

226

12. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software
Production Environment Based on Conceptual Modeling. Springer, New York
(2007)

13. Kent, S.: Model Driven Engineering. Integrated Formal Methods (IFM), pp. 286–
298. Springer, London, UK (2002)

14. Albert, M.: Tratamiento de Asociaciones en Entornos de Producción Automática de
Código. Departamento de Sistemas Informáticos y Computación, vol. Ph.D Thesis.
. Universidad Politécnica de Valencia (2006)

15. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modeling.
Requirements Engineering 4, 169–187 (1999)

16. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for
Information Systems Modelling: From Object-Oriented Conceptual Modeling to
Automated Programming. Information Systems, vol. 26, pp. 507–534. Elsevier
Science (2001)

17. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using
UML. 10th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pp. 2–9 (2007)

18. Giachetti, G., Marin, B., Pastor, O.: Integration of Domain-Specific Modeling
Languages and UML through UML Profile Extension Mechanism International
Journal of Computer Science and Applications 6, 145–174 (2009)

19. Wimmer, M., Schauerhuber, A., Strommer, M., Schwinger, W., Kappel, G.: A
Semi-automatic Approach for Bridging DSLs with UML. 7th OOPSLA
Workshop on Domain-Specific Modeling (DSM), pp. 97–104 (2007)

20. Alencar, F., Marín, B., Giachetti, G., Pastor, O., Castro, J., Pimentel, J.H.: From i*
Requirements Models to Conceptual Models of a Model Driven Development
Process. 2nd Working Conference on The Practice of Enterprise Modeling
(PoEM 2009), vol. LNIBP 39, pp. 99–114. Springer (2009)

21. Giachetti, G., Alencar, F., Marín, B., Pastor, O., Castro, J.: Beyond Requirements:
An Approach to Integrate i* and Model-Driven Development. XIII Conferencia
Iberoamericana en Software Engineering (CIbSE 2010), (2010)

22. Falleri J.-R., H.M., Mathieu L., Nebut C. : Metamodel Matching for Automatic
Model Transformation Generation. 11th International Conference on Model

 References

 227

Driven Engineering Languages and Systems (MoDELS 2008), vol. LNCS 5301,
pp. 326–340. Springer (2008)

23. http://pros.upv.es/

24. Universidad Politécnica de Valencia, http://www.upv.es/

25. Generalitat Valenciana, http://www.gva.es/

26. ProS Research Center, http://www.pros.upv.es/index.php/es/proyectos/149-
prosreq

27. Ministerio de Ciencia e Innovación, http://www.micinn.es/

28. GESSI, http://www.essi.upc.edu/~gessi/

29. IEEE: Standard Glossary of Software Engineering Terminology. Standard 729-
1983. IEEE Computer Society (1983)

30. Staron, M., Wohlin, C.: An Industrial Case Study on the Choice Between
Language Customization Mechanisms. Product-Focused Software Process
Improvement (PROFES), pp. 177–191. Springer (2006)

31. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development
using uml 2.0: Promises and pitfalls. IEEE Computer, vol. 39, pp. 59–66 (2006)

32. Pastor, O., Giachetti, G.: Linking Goal-Oriented Requirements and Model-Driven
Development. In: Nurcan, S., Salinesi, C., Souveyet, C., Ralyté, J. (eds.) Intentional
Perpectives on Information Systems Engineering, pp. 257–276. Springer-Verlag
(2010)

33. Bruck, J., Hussey, K.: Customizing UML: Which Technique is Right for You?
IBM (2007)

34. http://www.omg.org/

35. OMG: UML 2.3 Infrastructure Specification. (2010)

36. OMG: UML 2.1.1 Infrastructure Specification.

37. OMG: Object Constraint Language 2.2 Specification. (2010)

38. OMG: MOF 2.0 Core Specification. (2006)

References

228

39. OMG: UML 2.2 Infrastructure Specification.

40. OMG: XMI 2.1.1 Specification.

41. OMG: UML 2.2 Superstructure Specification.

42. Pardillo, J.: A Systematic Review on the Definition of UML Profiles. 13th
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2010), vol. LNCS 6394, pp. 407–422. Springer-Verlag (2010)

43. OMG: Catalog of UML Profile Specifications.

44. Moreno, N., Fraternali, P., Vallecillo, A.: WebML Modeling in UML. IET
Software, vol. 1, pp. 67–80 (2007)

45. Molina, J.C., Pastor, O.: MDA, OO-Method y la Tecnología OLIVANOVA Model
Execution. I Taller sobre Desarrollo de Software Dirigido por Modelos, MDA y
Aplicaciones (DSDM'04), (2004)

46. OMG: SysML Final Adopted Specification v1.0.

47. http://www.omgsysml.org/

48. Harel, D., Rumpe, B.: Meaningful Modeling: What's the Semantics of "Semantics"?
IEEE Computer, vol. 37, pp. 64–72 (2004)

49. Fabro, M.D.D., Valduriez, P.: Towards the efficient development of model
transformations using model weaving and matching transformations. Software and
Systems Modeling 8, 305–324 (2009)

50. http://www.eclipse.org/gmf/

51. Fuentes-Fernández, L., Vallecillo, A.: An Introduction to UML Profiles. The
European Journal for the Informatics Professional (UPGRADE), vol. 5, pp. 5–13
(2004)

52. http://www.omg.org/mof/

53. Selic, B.: The Theory and Practice of Modeling Language Design for Model-Based
Software Engineering—A Personal Perspective. 4th Summer School on
Generative and Transformational Techniques in Software Engineering (GTTSE
2009), vol. LNCS 6491, pp. 290–321. Springer-Verlag, Braga, Portugal (2009)

 References

 229

54. Lagarde, F., Espinoza, H., Terrier, F., Gérard, S.: Improving UML Profile Design
Practices by Leveraging Conceptual Domain Models. 22th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 445–
448 (2007)

55. Mallet, F., Lagarde, F., André, C., Gérard, S., Terrier, F.: An automated process for
implementing multilevel domain models. 2nd International Conference on
Software Language Engineering (SLE'09), vol. LNCS 5969, pp. 314–333.
Springer-Verlag (2009)

56. Robert, S., Gérard, S., Terrier, F., Lagarde, F.: A Lightweight Approach for
Domain-Specific Modeling Languages Design. 35th Euromicro Conference on
Software Engineering and Advanced Applications, pp. 155–161. IEEE (2009)

57. http://www.eclipse.org/emf/

58. http://www.eclipse.org/m2m/atl/

59. OMG: QVT 1.0 Specification. (2008)

60. Henderson-Sellers, B., Gonzalez-Perez, C.: Uses and Abuses of UML Profile
Extension Mechanism in UML 1.x and 2.0. In: al, O.N.e. (ed.) MoDELS 2006,
vol. LNCS 4199, pp. 16–26. Springer-Verlag Berlin Heidelberg (2006)

61. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for
Information Systems Modelling: From Object-Oriented Conceptual Modeling to
Automated Programming. Information Systems 26, 507–534 (2001)

62. Pastor, O., Molina, J.C., Iborra, E.: Automated production of fully functional
applications with OlivaNova Model Execution. ERCIM News (2004)

63. Gómez, J., Insfrán, E., Pelechano, V., Pastor, O.: The Execution Model: a
component-based architecture to generate software components from conceptual
models. Workshop on Component-based Information Systems Engineering, Pisa,
Italia (1998)

64. http://www.care-t.com/

65. OMG: UML 2.1.2 Superstructure Specification. (2007)

66. Molina, P.: Especificación de interfaz de usuario: De los requisitos a la generación
automática. Universidad Politécnica de Valencia, Valencia, España (2003)

References

230

67. Martínez, A.: Conceptual Schemas Generation from Organizational Models in an
Automatic Software Production Process. Ph.D. thesis. Universidad Politécnica de
Valencia, Valencia, Spain (2008)

68. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Thesis.
University of Toronto, Toronto, Canada (1995)

69. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. 3rd IEEE Int. Symp. on Requirements Engineering (RE'97), pp.
226–235 Washington D.C., USA (1997)

70. Yu, E., Liu, L., Li, Y.: Modelling Strategic Actor Relationships to Support
Intellectual Property Management. 20th International Conference on Conceptual
Modeling (ER-2001), vol. LNCS 2224, pp. 164–178 Spring Verlag, Yokohama,
Japan (2001)

71. Elvesæter, B., Hahn, A., Berre, A.-J., Neple, T.: Towards an Interoperability
Framework for Model-Driven Development of Software Systems. 1st Interntional
Conference on Interoperability of Enterprise Software and Applications
(INTEROP-ESA'05), pp. 409–420. Springer (2006)

72. Kitchenham, B.A.: Guidelines for performing systematic literature reviews in
software engineering. EBSE Technical Report EBSE-2007-001 (2007)

73. Petticrew, M., Roberts, H.: Systematic Reviews in the Social Sciences: A Practical
Guide. (2005)

74. Roser, S., Bauer, B.: Improving Interoperability in Collaborative Modelling. 3rd
International Conference on Interoperability of Enterprise Software and
Applications (I-ESA 2007), vol. Enterprise Interoperability II, pp. 139–150.
Springer-Verlag (2007)

75. Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration using matching
transformations and weaving models. 2007 ACM symposium on Applied
computing (SAC '07), pp. 963–970. ACM New York (2007)

76. Tran, H., Zdun, U., Dustdar, S.: View-Based Reverse Engineering Approach for
Enhancing Model Interoperability and Reusability in Process-Driven SOAs 10th
International Conference on Software Reuse (ICSR 2008), vol. LNCS 5030, pp.
233–244. Springer (2008)

 References

 231

77. Demirezen, Z., Sun, Y., Gray, J., Jouault, F.: Enabling tool reuse and
interoperability through model-driven engineering. Journal of Computational
Methods in Science and Engineering 20, 187–202 (2010)

78. Kappel, G., Wimmer, M., Retschitzegger, W., Schwinger, W.: Leveraging Model-
Based Tool Integration by Conceptual Modeling Techniques. The Evolution of
Conceptual Modeling, vol. LNCS 6520, pp. 254–284. Springer-Verlag (2011)

79. Fabro, M.D.D., Valduriez, P.: Towards the Efficient Development of Model
Transformations using Model Weaving and Matching Transformations. Software
and Systems Modeling (SoSyM) 8, 305–324 (2009)

80. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool.
Science of Computer Programming 72, 31–39 (2008)

81. Klar, F., Rose, S., Schürr, A.: A Meta-model-Driven Tool Integration Development
Process. 2nd International United Information Systems Conference
(UNISCON'2008), vol. LNBIP 5, pp. 201–212. Springer (2008)

82. Guerra, E., Lara, J.d., Orejas, F.: Inter-modelling with patterns. Software and
Systems Modeling (SoSym) (2011)

83. Seifert, M., Wende, C., Aßmann, U.: Anticipating Unanticipated Tool
Interoperability using Role Models. 1st Workshop on Model Driven
Interoperability, pp. 52–60. ACM (2010)

84. Insfrán, E., Pelechano, V., Pastor, O.: Conceptual Modeling in the eXtreme
Information & Software Technology - INFSOF 44, 659–669 (2002)

85. Agostinho, C., Correia, F., Jardim-Goncalves, R.: Interoperability of Complex
Business Networks by Language Independent Information Models. 17th ISPE
International Conference on Concurrent Engineering (CE 2010), vol. Advanced
Concurrent Engineering, pp. 111–124. Springer-Verlag (2011)

86. Radjenovic, A., Paige, R.F.: Behavioural Interoperability to Support Model-Driven
Systems Integration. 1st Workshop on Model Driven Interoperability (MDI
2010), pp. 98–107. ACM (2010)

87. Polgár, B., Ráth, I., Szatmári, Z., Horváth, Á., Majzik, I.: Model-based Integration,
Execution and Certification of Development Tool-chains. Second European
Workshop on Model Driven Tool and Process Integration (MDTPI), vol. WP09-
05, pp. 35-46. CTIT Workshop Proceedings Series (2009)

References

232

88. Kolovos, D., Paige, R., Rose, L., Polack, F.: The Epsilon Book. Eclipse Foundation
(2010)

89. Crnkovic, I., Malavolta, I., Muccini, H.: A Model-Driven Engineering Framework
for Component Models Interoperability. International Symposium on Component
Based Software Engineering (CBSE), vol. LNCS 5582, pp. 36–53. Springer-
Verlag (2009)

90. Ziemann, J., Ohren, O., Jäkel, F.-W., Kahl, T., Knothe, T.: Achieving Enterprise
Model Interoperability Applying a Common Enterprise Metamodel. 2nd
International Conference on Interoperability of Enterprise Software and
Applications (I-ESA 2006), vol. Enterprise Interoperability, pp. 199–208.
Springer-Verlag, Bordeaux, France (2007)

91. Jankovic, M., Ivezic, N., Knothe, T., Marjanovic, Z., Snack, P.: A Case Study in
Enterprise Modelling for Interoperable Cross-Enterprise Data Exchange. 3rd
International Conference on Interoperability of Enterprise Software and
Applications (I-ESA 2007), vol. Enterprise Interoperability II, pp. 541–552.
Springer-Verlag (2007)

92. Ohren, O.P., Chen, D., Grangel, R., Jaekel, F.-W., Karlsen, D., Knothe, T.,
Rolfsen, R.K.: ATHENA-A1, Deliverable DA1.5.2: Report on Methodology
description and guidelines definition. (2005)

93. Baumgart, A.: A common meta-model for the interoperation of tools with
heterogeneous data models. 3rd European Workshop on Model Driven Tool and
Process Integration (MDTPI), (2010)

94. Mahé, V., Brunelière, H., Jouault, F., Bézivin, J., Talpin, J.-P.: Model-Driven
Interoperability of Dependencies Visualizations. 3rd European Workshop on
Model Driven Tool and Process Integration (MDTPI), (2010)

95. Berger, S., Grossmann, G., Stumptner, M., Schrefl, M.: Metamodel-Based
Information Integration at Industrial Scale. 13th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2010), vol. LNCS
6395, pp. 153–167. Springer-Verlag (2010)

96. Vallecillo, A.: On the Combination of Domain Specific Modeling Languages. 6th
European Conference on Modelling Foundations and Applications (ECMFA
2010), vol. LNCS 6138, pp. 305–320. Springer (2010)

 References

 233

97. Coutinho, L., Brandão, A., Sichman, J., Boissier, O.: Model-Driven Integration of
Organizational Models. (AOSE 2008), vol. LNCS 5386, pp. 1–15. Springer
(2009)

98. Moreno, N., Vallecillo, A.: Towards Interoperable Web Engineering Methods.
Journal of the American Society for Information Science and Technology 59,
1073–1092 (2008)

99. Giachetti, G., Alencar, F., Franch, X., Marín, B., Pastor, O.: Technical Report
ProS-TR-2011-07: Automatic Verification of Requirement Models for Their
Interoperability in Model-Driven Development Processes. Universidad Politécnica
de Valencia (2011)

100. Biehl, M., Sjöstedt, C.-J., Törngren, M.: A Modular Tool Integration Approach -
Experiences from two Case Studies. 3rd European Workshop on Model Driven
Tool and Process Integration (MDTPI), (2010)

101. Jouault, F., Guéguen, T.: Integration by Model-driven Virtual Tool. 2nd European
Workshop on Model Driven Tool and Process Integration (MDTPI 2009), vol.
WP09-05. CTIT Workshop Proceedings Series (2009)

102. Brambilla, M., Fraternali, P., Tisi, a.M.: A Transformation Framework to Bridge
Domain Specific Languages to MDA. Models in Software Engineering Workshops
and Symposia at MODELS 2008, vol. LNCS 5421, pp. 167–180. Springer-
Verlag (2008)

103. Lukácsy, G., Szeredi, P., Benk�, T.: Towards automatic semantic integration. 3rd
International Conference on Interoperability of Enterprise Software and
Applications (I-ESA 2007), vol. Enterprise Interoperability II, pp. 795–806.
Springer-Verlag (2007)

104. Hein, C., Ritter, T., Wagner, M.: Model-Driven Tool Integration with ModelBus.
1st International Workshop on Future Trends of Model-Driven Development
(FTMDD 2009), (2009)

105. Blanc, X., Gervais, M.-P., Sriplakich, P.: Model Bus: Towards the Interoperability
of Modelling Tools. Model-Driven Architecture: Foundations and Applications
(MDAFA), vol. LNCS 3599, pp. 17–32. Springer-Verlag Berlin Heidelberg
(2004)

106. Höfferer, P.: Achieving Business Process Model Interoperability Using Metamodels
and Ontologies. 15th European Conference on Information Systems (ECIS 2007),
(2007)

References

234

107. Sunindyo, W.D., Moser, T., Winkler, D., Biffl, S.: A Process Model Discovery
Approach for Enabling Model Interoperability in Signal Engineering. 1st
Workshop on Model Driven Interoperability, pp. 15–21. ACM (2010)

108. Berre, A.-J., Liu, F., Xu, J., Elvesaeter, B.: Model Driven Service Interoperability
through use of Semantic Annotations. International Conference on Interoperability
for Enterprise Software and Applications China (IESA '09), pp. 90–96 IEEE
(2009)

109. Barnickel, N., Fluegge, M.: Towards a Conceptual Framework for Semantic
Interoperability in Service Oriented Architectures. 1st International Conference on
Intelligent Semantic Web-Services and Applications. ACM (2010)

110. Opdahl: Incorporating UML Class and Activity Constructs into UEML.
International conference on Advances in conceptual modeling: applications and
challenges - ER 2010 Workshops, vol. LNCS 6413, pp. 244–254. Springer-
Verlag (2010)

111. Anaya, V., Berio, G., Harzallah, M., Heymans, P., Matulevicius, R., Opdahl, A.L.,
Panetto, H., Verdecho, M.J.: The Unified Enterprise Modelling Language -
Overview and further work. Computers in Industry 61, 99–111 (2010)

112. Costa, R., Garcia, O., Nuñez, M., Maló, P., Gonçalves, R.: Integrated solution to
support enterprise interoperability at the business process level on e-Procurement.
3rd International Conference on Interoperability of Enterprise Software and
Applications (I-ESA 2007), vol. Enterprise Interoperability II, pp. 89–100.
Springer (2007)

113. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting Metamodels to Ontologies: A Step to the
Semantic Integration of Modeling Languages. 9th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2006), vol. LNCS
4199, pp. 528–542. Springer (2006)

114. IEEE: IEEE Standard Computer Dictionary: Compilation of IEEE Standard
Computer Glossaries. (1990)

115. Nilsson, M., Baker, T., Johnston, P.: Interoperability Levels for Dublin Core
Metadata. Dublin Core Metadata Initiative (2009)

116. Wang, W., Tolk, A., Wang, W.: The levels of conceptual interoperability model:
applying systems engineering principles to M&S. 2009 Spring Simulation

 References

 235

Multiconference (SpringSim '09). Society for Computer Simulation International
(2009)

117. E.U.: European Interoperability Framework for European Public Services (EIF)
Version 2.0 (Draft). European Commission (2008)

118. A.W.P.: Levels of Information Systems Interoperability (LISI). Department of
Defense - United Sates of America (1998)

119. Haslhofer, B., Klas, W.: A survey of techniques for achieving metadata
interoperability. ACM Computing Surveys (CSUR) 42, (2010)

120. Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems.
ACM SIGMOD 28, 5–12 (1999)

121. Sarantis, D., Charalabidis, Y., Psarras, J.: Towards Standardising Interoperability
Levels for Information Systems of Public Administrations. eJETA Special Issue
on “Interoperability for Enterprises and Administrations Worldwide”. Yannis
Charalabidis, Hervé Panetto, Euripidis Loukis, Kai Mertins (2008)

122. OMG: UML 2.3 Superstructure Specification. (2010)

123. Abdulhadi, S.: i* Guide version 3.0. (2007)

124. http://www.w3.org/XML/

125. http://www.eclipse.org/modeling/

126. http://www.eclipse.org/uml2/

127. Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile
Generation for MDA Industrial Development. In: Workshops, E. (ed.) 4th
International Workshop on Foundations and Practices of UML (FP-UML) – ER
Workshop, vol. LNCS 5232, pp. 113–122. Springer (2008)

128. White, S.A., Miers, D.: BPMN Modeling and Reference Guide: Understanding and
Using BPMN. Future Strategies Inc., FL, USA (2008)

129. Henderson-Sellers, B.: On the Challenges of Correctly Using Metamodels in
Software Engineering. 6th Conference on Software Methodologies, Tools, and
Techniques (SoMeT), pp. 3–35 (2007)

References

236

130. Abouzahra, A., Bézivin, J., Fabro, M.D.D., Jouault, F.: A Practical Approach to
Bridging Domain Specific Languages with UML profiles. Best Practices for Model
Driven Software Development (OOPSLA’05), (2005)

131. OMG: UML 2.1.2 Infrastructure Specification.

132. Marín, B., Giachetti, G., Pastor, O.: Intercambio de Modelos UML y OO-Method.
X Workshop Iberoamericano de Ingeniería de Requisitos y Ambientes de Software
(IDEAS), pp. 283–296, Isla Margarita, Venezuela (2007)

133. Queralt, A., Teniente, E.: Decidable Reasoning in UML Schemas with Constraints.
20th Conference on Advanced Information Systems Engineering (CAiSE'08), vol.
LNCS 5074, pp. 281–295. Springer (2008)

134. http://www.eclipse.org/modeling/mdt/

135. Giachetti, G., Marín, B., Pastor, O.: Using UML as a Domain-Specific Modeling
Language: A Proposal for Automatic Generation of UML Profiles. 21st
International Conference on Advanced Information Systems (CAiSE 2009), vol.
LNCS 5565, pp. 110–124. Springer (2009)

136. Giachetti, G., Marín, B., Pastor, O.: Using UML Profiles to Interchange DSML
and UML Models. Third International Conference on Research Challenges in
Information Science (RCIS), pp. 385–394. IEEE Computer Society (2009)

137. Giachetti, G., Marín, B., Condori-Fernández, N., Molina, J.C.: Updating OO-
Method Function Points. 6th IEEE International Conference on the Quality of
Information and Communications Technology (QUATIC 2007), pp. 55–64,
Lisboa, Portugal (2007)

138. Marín, B., Giachetti, G., Pastor, O.: Automating the Measurement of Functional
Size of Conceptual Models in an MDA Environment. Product-Focused Software
Process Improvement (PROFES), vol. LNCS, pp. 215–229. Springer (2008)

139. Marín, B., Giachetti, G., Pastor, O.: Una Herramienta Industrial para la Medición
del Tamaño Funcional de Aplicaciones Desarrolladas en Entornos MDA. XI
Workshop Iberoamericano de Ingeniería de Requisitos y Ambientes de Software
(IDEAS), Recife, Brasil (2008)

140. ISO/IEC, (20926): Software Engineering – IFPUG 4.1 Unadjusted Functional
Size Measurement Method – Counting Practices Manual. (2003)

141. http://www.omg.org/mda/committed-products.htm

 References

 237

142. Milicév, D.: On the Semantics of Associations and Association Ends in UML. IIEE
Transactions on Software Engineering 33, (2007)

143. Graham, I., Bischof, J., Henderson-Sellers, B.: Associations considered a bad thing.
Journal of Object-oriented Programming 9, 1–48 (1997)

144. Snoeck, M., Dedene, G.: Core modeling concepts to define aggregation. L’objet 7,
281–306 (2001)

145. Albert, M., Pelechano, V., Fons, J., Ruiz, M., Pastor, O.: Implementing UML
Association, Aggregation, and Composition. A Particular Interpretation Based on a
Multidimensional Framework 15th Conference on Advanced Information Systems
Engineering (CAISE’03), pp. 143–158 (2003)

146. Guéhéneuc, Y., Albin-Amiot, H.: Recovering binary class relationships: Putting
icing on the UML cake Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA’04), pp. 301–314 (2004)

147. Diskin, Z., Dingel, J.: Mappings, Maps and Tables: Towards Formal Semantics for
Associations in UML2. MoDELS 2006, pp. 230–244. LNCS (2006)

148. Génova, G., Llorens, J., Fuentes, J.M.: UML Associations: A Structural and
Contextual View Journal of Object Technology 3, (2004)

149. OMG: UML 1.4.2 Specification.

150. Henderson-Sellers, B., & Barbier, F.: What is this thing called aggregation? In: In
A. C. Wills, J.B., R. Mitchell, & B. Meyer (Eds.) (ed.) TOOLS 29, pp. 216–230.
IEEE Computer Society (1999)

151. Henderson-Sellers, B., Barbier, F.: Black and white diamonds. In: (Eds.), I.R.F.B.R.
(ed.) UML’99, pp. 550–565. LNCS (1999)

152. Opdahl, A.L., Henderson-Sellers, B., Barbier, F.: Ontological analysis of whole-part
relationships in OO-models. Information and Software Technology 387–399
(2001)

153. Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M.:
Formalization of the Whole-Part Relationship in the Unified Modeling Language.
IEEE Transactions on Software Engineering 29, 459–470 (2003)

References

238

154. Belloir, N., Bruel, J.-M., Barbier, F.: Whole-Part Relationships for Software
Component Combination. 29th EUROMICRO Conference (EUROMICRO’03),
pp. 86–91. IEEE Computer Society (2003)

155. Stevens, P.: On the interpretation of binary associations in the Unified Modelling
Language. Journal on Software and System Modeling 1, 68–79 (2002)

156. Akehurst, D.H., Howells, W.G.J., McDonald-Maier, K.D: Implementing
Associations: UML 2.0 to Java 5. Journal of Software and Systems Modeling 6, 1–
33 (2006)

157. Gessenharter, D.: Mapping the UML2 Semantics of Associations to Java Code
Generation Model. 11th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2008), vol. LNCS 5301, pp. 813–827 (2008)

158. Marín, B., Giachetti, G., Pastor, O.: The Photography Agency: A case study of the
OO-Method Approach. Technical Report DSIC-II/13/08. Universidad
Politécnica de Valencia (2008)

159. Sunyé, G., Pennaneac’h, F., Ho, W.-M., Guennec, A.L., Jézéquel, J.-M.: Using
UML Action Semantics for Executable Modeling and Beyond. CAiSE 2001, vol.
LNCS 2068, pp. 433–447. Springer, Interlaken, Switzerland (2001)

160. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education (2003)

161. Lamsweerde, A.v.: Systematic Requirements Engineering - From System Goals to
UML Models to Software Specifications. Wiley (2008)

162. Nuseibeh, B., Easterbrook, S.M.: Requirements Engineering: A Roadmap. In The
Future of Software Engineering IEEE Computer Society Press (2000)

163. Shuichiro, Y., Haruhiko, K., Karl, C., Steven, B.: Goal Oriented Requirements
Engineering: Trends and Issues. IEICE - Trans. Inf. Syst. E89-D, 2701–2711
(2006)

164. Lamsweerde, A.v.: Goal-oriented requirements engineering: a roundtrip from
research to practice. 12th IEEE Joint International Requirements Engineering
Conference, pp. 4–8. IEEE Computer Science Press (2004)

165. Lamsweerde, A.v.: Goal-oriented requirements engineering: A guided tour. 5th
IEEE International Symposium on Requirements Engineering (RE’01), (2001)

 References

 239

166. Rolland, C., Prakash, N.: From conceptual modelling to requirements engineering.
Annals of Soft. Eng 10, 151–176 (2000)

167. Rolland, C., Souveyet, C., Achour, C.B.: Guiding Goal Modelling Using Scenarios.
IEEE Transactions on Software Engineering (IEEE TSE), Special Issue on
Scenario Management 24, 1055–1071 (1998)

168. Maiden, N.A.M., Jones, S.V., S.Manning, Greenwood, J., Renou, L.: Model-Driven
Requirements Engineering: Synchronising Models in an Air Traffic Management
Case Study. CaiSE’2004, pp. 368–383. Springer-Verlag LNCS 3084 (2004)

169. Jouault, F., Kurtev, I.: Transforming Models with ATL. Satellite Events at the
MoDELS 2005 Conference, vol. LNCS 3844, pp. 128–138 Springer (2006)

170. Martínez, A., Castro, J., Pastor, O., Estrada, H.: Closing the gap between
Organizational Modeling and Information System Modeling. 6th Workshop on
Requirements Engineering (WER'03), pp. 93–108, Piracicaba, Brazil (2003)

171. http://istar.rwth-aachen.de/, last Accessed October 2009

172. Lucena, M., Santos, E., Silva, M.J., Silva, C., Alencar, F., Castro, J.F.B.: Towards a
Unified Metamodel for i*. 2nd IEEE Int. Conference on Research Challenges in
Information Science (RCIS 2008), pp. 237–246 IEEE (2008)

173. Spanoudakis, G., Zisman, A: Software Traceability: A Roadmap. Handbook of
Software Engineering and Knowledge Engineering, Vol. III: Recent
Advancements, pp. 395–428. World Scientific Publishing Co. (2005)

174. Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem.
1st International Conference on Requirements Engineering (ICRE'94), pp. 94–
101, Colorado Springs (1994)

175. Santander, V., Castro, J.: Deriving Use Cases from Organizational Modeling. In:
10th Anniversary IEEE Joint International Conference on Requirements
Engineering (RE 2002), pp. 32–42. (Year)

176. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and
Scenario Modeling Approach. Information Systems 29, 187–203 (2004)

177. Alencar, F.M.R., Pedroza, F.P., Castro, J., Amorim, R.C.O.: New Mechanisms for
the Integration of Organizational Requirements and Object Oriented Modeling.
6th Workshop on Requirements Engineering (WER’03), pp. 109–123, Brasil.
Piracicaba-SP (2003)

References

240

178. Cabot, J., Yu, E.: Improving Requirements Specifications in Model-Driven
Development Processes. 1st Int. Workshop on Challenges in Model-Driven
Software Engineering (MoDELS'08), (2008)

179. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements
Acquisition. Science of Computer Programming 20, 3–50 (1993)

180. Eric Yu, P.G., Neil Maiden and John Mylopoulos: Social Modeling for
Requirements Engineering (2011)

181. ISO: International vocabulary of basic and general terms in metrology (VIM).
International Organization for Standarization (2004)

182. Boehm, B.W.: Software Engineering Economics. Prentice-Hall Inc., Englewood
Cliff, New Jersey (1981)

183. Habra, N., Abran, A., Lopez, M., Sellami, A.: A framework for the design and
verification of software measurement methods. Journal of Systems and Software 81,
633–648 (2008)

184. Loniewski, G., Insfran, E., Abrahao, S.: A Systematic Review of the Use of
Requirement Engineering Techniques in Model-Driven Development. 13th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2010), vol. LNCS 6395, pp. 213–227. Springer-Verlag (2010)

185. Lu, C.-W., Chang, C.-H., Chu, W.C., Cheng, Y.-W., Chang, H.-C.: A
Requirement Tool to Support Model-Based Requirement Engineering. 32nd
Computer Software and Applications Conference (COMPSAC '08), pp. 712–717
IEEE (2008)

186. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-
Driven Architecture. Addison-Wesley Professional (2004)

187. Gross, D., Yu, E.: From Non-Functional Requirements to Design through
Patterns. Requirements Engineering Journal 6, 18–36 (2001)

188. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45, (2006)

189. Laguna, M.A., Gonzalez-Baixauli, B.: Requirements variability models: metamodel
based transformations. Symposia on Metainformatics (MIS ’05). ACM (2005)

 References

 241

190. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. Conference of the Center for Advanced Studies
on Collaborative Research (CASCON 2006). ACM (2006)

191. Lamsweerde, E.L.a.A.v.: Deriving Operational Software Specifications from System
Goals. 10th ACM SIGSOFT Symp. on the Foundations of Software Engineering
(FSE’10). ACM (2002)

192. Pardillo, J., Molina, F., Cachero, C., Toval, A.: A UML Profile for Modelling
Measurable Requirements. In: 4th International Workshop on Foundations and
Practices of UML (FP-UML) – ER Workshop, pp. 123–132. Springer-Verlag,
(Year)

193. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented Requirement Analysis for Data
Warehouse Design. 8th Int. Workshop on Data Warehousing and OLAP, pp.
47–56. ACM Press (2005)

194. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.:
Evaluating goal models within the goal-oriented requirement language. To appear
In: International Journal of Intelligent Systems (IJIS) (2010)

195. Tong, Y., Fangjun, W., Chengzhi, G.: A comparison of metrics for UML class
diagrams. ACM SIGSOFT Software Engineering Notes 29, (2004)

196. Genero, M., Piattini, M., Calero, C.: A Survey of Metrics for UML Class Diagrams.
Journal of Object Technology 4, (2005)

197. Marín, B., Giachetti, G., Pastor, O.: Applying a Functional Size Measurement
Procedure for Defect Detection in MDD Environments 16th European Conference
on Systems & Software Process Improvement and Innovation (EuroSPI 2009).
Springer (2009)

198. Basili, V., Caldeira, G., Rombach, H.D.: The Goal Question Metric Approach.
Encyclopedia of Software Engineering, Wiley (1994)

199. Basili, V., Rombach, H.: The TAME Project: Towards Improvement Oriented
Software Environments. IEEE Transactions on Software Engineering 14, 758–
773 (1988)

200. Franch, X.: A Method for the Definition of Metrics over i* Models. 21st
International Conference on Advanced Information Systems (CAiSE 2009), pp.
201-215. Springer-Verlag LNCS (2009)

References

242

201. Franch, X., Grau, G.: Towards a Catalogue of Patterns for Defining Metrics over i*
Models. 20th International Conference on Advanced Information Systems (CAiSE
2008), pp. 197–212. Springer (2008)

202. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A Lightweight GRL Profile for
i* Modeling. 3rd International Workshop on Requirements, Intentions and Goals
in Conceptual Modeling (RIGIM) - ER Workshops, vol. LNCS 5833, pp. 254–
264. Springer-Verlag (2009)

203. ISO/IEC: ISO/IEC 9126-1, Software Eng. – Product Quality – Part 1: Quality
model. (2001)

204. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering - An Introduction. Kluwer Academic
(2000)

205. OMG: Business Process Modeling Notation version 1.1. (2008)

206. Giachetti, G., Albert, M., Marín, B., Pastor, O.: Linking UML and MDD Trough
UML Profiles: A Practical Approach based on the UML Association. Journal of
Universal Computer Science (J.UCS) 16, (2010)

207. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Springer (1999)

208. Franch, X.: Incorporating Modules into the i* Framework. 22nd International
Conference on Advanced Information Systems (CAiSE 2010), vol. LNCS 6051,
pp. 439–454. Springer-Verlag Berlín Heidelberg, Hammamet, Tunisia (2010)

209. Amyot, D.: New draft Recommendation Z.151: User Requirements Notation
(URN). (2008)

210. http://ais.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=279 last
updated August 20, 2009

211. Takeda, H., Veerkamp, P., Tomiyama, T., Yoshikawam, H.: Modeling Design
Processes AI Magazine Winter 37–48 (1990)

212. Giachetti, G., Marín, B., Pastor, O.: Perfiles UML y Desarrollo Dirigido por
Modelos: Desafíos y Soluciones para Utilizar UML como Lenguaje de Modelado
Específico de Dominio. V Taller sobre Desarrollo de Software Dirigido por
Modelos (DSDM), (2008)

 References

 243

213. Dobing, B., Parsons, J.: How Used is UML. Communications of the ACM 49,
109–113 (2006)

Appendix I. �
����
������������������	��
������� &

'������	���	��
�

A good understanding of system requirements has a high impact in the successful
development of software products. Therefore, an appropriate requirement model
must provide a comprehensive structure for what must be elicited, evaluated,
specified, consolidated, and modified, instead of just providing facilities for
software specifications. Since there is a well-known gap between requirements
specifications and final software products, we propose the integration of Goal-
Oriented Requirements Engineering (GORE) and Model-Driven
Development (MDD) to solve this gap. This appendix shows the elements that
are the foundations to achieve the integration of i* and OO-Method presented in
this thesis as proof of concepts for the interoperability in MDD processes. These
elements correspond to 1) a set of transformation guidelines to obtain from an i*
model an initial version of a model-driven development model; 2) the structural
definition of the i* metamodel that is used in the definition of the transformation
guidelines involved; and 3) the organizational description of the photography
agency, which is the software project used as reference to perform the proof of
concepts of our proposal.

Transformation of i* Models into MDD-Oriented Models

246

A1.1. Introduction

The success of computer applications increasingly depends on a good
understanding of the system requirements. Currently, a requirement specification
should include, in addition to software specifications, business models, domain
models and other kinds of information that describe the context in which the
intended system will operate. During early stages of requirement engineering
process, it is necessary to identify and specify how the intended system meets the
organizational goals, why the system is needed, what alternatives were
considered, what the implications of the alternatives are for the stakeholders, and
how the interests and concerns of the stakeholders might be addressed.

Hence, Goal-Oriented Requirements Engineering (GORE) stood out because
it is mainly concerned with the stakeholder’s intentions and their rationales.
Several works on GORE have being proposed: KAOS [179], i* framework [6],
MAPS [15], Non-Functional Requirements (NFR) framework [207]. In all of
them, requirement modeling appears to be a core process. However, how to go
from requirement models to the corresponding software products is still an open
question. To answer this question, we advocate the combined use of GORE and
Model-Driven Development (MDD) [1], two complementary model-based
approaches.

Thus, it is necessary to use a requirement modeling approach that facilitates
the specification of model transformations for the automatic generation of MDD-
oriented models. Since present-day technologies (such as ATL or QVT) propose
the specification of model transformations driven by metamodels, the use of the i*
approach is a suitable alternative because it has a well-defined syntax [171] and it
is possible to find metamodel specifications [7, 172], which can be used as
reference for the definition of modeling transformations.

In this appendix, we propose guidelines to generate from an i* requirement
model a conceptual model that is used as input of a MDD process. This MDD
process is based on the OO-Method approach [12]. We have chosen OO-Method
as a reference MDD technology because it allows the complete generation of the
final application from a model definition, and it has been successfully applied to
industrial software development by means of the OlivaNova tools [64].

Therefore, this work proposes the generation of an initial OO-Method model
from an i* requirement model. This generation is performed by means of a set of
transformation guidelines. These transformation guidelines are defined according
to an i* metamodel that has been defined according to the EMOF specification.

 Transformation of i* Models into MDD-Oriented Models

 247

To illustrate the transformation guidelines, we have selected a real software
project that has been developed in the context of the PROS Research Center
[12]: The Photography Agency System [158].

This appendix is organized as follows: Section A1.2 introduces the
Photography agency project. Section A1.3 shows the the i* metamodel that has
been defined for the specification of the transformation guidelines. Section A1.4
presents the guidelines to perform the transformation of i* models into intial OO-
Method models. Finally, Section A1.5 shows relevant conclusions obtained.

A1.2. The Photography Agency Project

This section presents the photography agency project that has been developed in
the context of the OO-method approach to demonstrate the applicability of the
Model-Driven Development, and the automatic model compilation that is
performed through the OO-Method industrial technology. We have detailed the
development of this software project in the technical report that is presented in
[158]. A subset of the organizational description of the photography agency is
used to evaluate the proposal for linking i* modeling and MDD processes. It is
important to note that this software project has been defined before to the
interoperability scenario related to i* and OO-Method and before to the
interoperability approach presented in this thesis. This is relevant because it
assures that the development of the software project has been not affected by the
definition of transformation guidelines, verification mechanisms, and metamodels
involved in the interoperability approach. Following, the description of the
photography agency operation that is considered in thesis is presented.

The photography agency is dedicated to the management of photo reports
and their distribution to publishing houses. This photography agency operates
with freelance photographers, which must present a request to the production
department of the agency. This request contains: the photographer personal
information, a description about the owned equipment, and a brief curriculum.
An accepted photographer is classified in one of three possible levels for which
minimum photography equipment is required. For this, the production
department creates a new record for the photographer indicating the level
established for the photographer. The possible levels are defined by the
commercial department. Furthermore, the commercial department establishes for

Transformation of i* Models into MDD-Oriented Models

248

each level, the price that will be paid to the photographers and the price that will
be charged to the publishing house for each photo.

For the proof of concepts related to the i* and OO-method linking, we have
developed the i* SR model for the organizational scenario related to the
management of work requests. This i* model is presented in Figure 86.

Figure 86. i* SR model related to photographer work request

The SR model that is presented in Figure 86 captures some of the rationales
involved in the processing of a photographer´s work request. For instance, a
photographer must present a Work Request to the Production Department in
order to achieve the goal Work Opportunity. This is represented by the resource
dependency link between the actor Photographer and the actor Production Dept.
To achieve this goal, the photographer must compose a work request that
contains: a description of his/her equipment, a brief curriculum, and a book with
his/her photographic reports. Finally, this request is processed by the Production
Dep. actor.

'��%

�&&�������$

���!�������!����)�

'��%���(����

!������������

'��%���(����

'��%���(�����#��

!�������

���!�������

'��%���(����

!��
�������

��&�)

��������*��

'��%���(����

����������

'��%���(����

�������&��

'��%���(����

+��
)�

��&��$��

!�������&���

+���������

!�����

�(��&����
!������������

����������

����&����������

��
�,��-��

����&��������

����

�������

,��-��

!�����
�����

	�����

������
�'��%�

��(����

���&��
�'��%�

��(����

����*�������

'��%���(����

������������

!�������&���

+���������

��&�)

�*����#��������

�������-�����

�*��

����������

!�����!����

!�������&����

�*��

!�������&����

!����

!�-)�.�����

!����

!�������&����

�*��

����������
�*��

����������

��(����
�

�(��&����

��()�!�����

�(��&����

��������

�����

#���
��$

���� ���%

	�������

�����

#
�����

�

�&��
��
�&��
��

��������

�
�
��
��������

�
�����������

�&��
��

���%������&�������

��
����������
�
���

����

 Transformation of i* Models into MDD-Oriented Models

 249

A1.3. The i* Metamodel

The goal-oriented modeling has proved to be an efficient means of capturing the
‘Whys’ and establishing a close relationship with the ‘Whats’ [10][16] of the
intended systems. GORE is concerned with the use of goals for eliciting,
elaborating, structuring, specifying, analyzing, negotiating, documenting, and
modifying requirements.

The EMOF metamodel defined for the i* framework has been developed by
taking the proposals presented in [7], [208], [172], and [172] as reference. It also
has been considered the specification presented in the i* guide v3.0 [123], and the
metamodel related to the User Requirements Notation (URN) [209], which is a
variant of the i* Framework. The resultant metamodel is presented in Figure 87.
This metamodel only considers the structural specification of the i* constructs,
which provide all the necessary information for the application of the
interoperability scenarios developed in this thesis and the transformation
guidelines presented in this appendix.

For the definition of the presented i* metamodel, the constructs that are
related to the i* Strategic Rationale (SR) model have been considered. The SR
model (such as the example i* model presented in Figure 86) expands the de-
scription of a given actor and all the rationale involved on its intentions,
providing support for modeling the reasoning of each actor about its intentional
relationships. Therefore, the SR model provides additional modeling information
(in relation to the SD model), which is useful for the definition of automatic
transformation guidelines. The constructs that are considered in the proposed i*
metamodel are defined according to the i* guide [123] that is published in the
official i* Wiki [171]. In this guide, can also be found the corresponding notation
for each i* construct. Following, the constructs that are involved in the proposed
i* example are presented.

Actor

An actor represents any unit for which intentional dependencies can be ascribed.
Actors carry out activities, produce entities, and have desires and needs. Actors
are focused on meet their immediate goals and they are concerned about longer-
term implications of their structural relationships with other actors, for instance,
opportunities and vulnerabilities. Agents, Roles and Positions are sub-units of a
complex social actor, each of which is an actor in a more specialized sense.

Transformation of i* Models into MDD-Oriented Models

250

Figure 87. i* Metamodel

 Transformation of i* Models into MDD-Oriented Models

 251

IS-A Association

The IS-A association represents a generalization, with an actor being a
specialized case of another actor. This association can be applied between any two
instances of the same type of actor.

Dependency Link

A dependency link indicates that exist certain kind of dependency between two
actors. The dependency links consist of three elements, the dependum, the
dependee and depender. The dependum is the element that generates the
dependency between the actors, the depender actor is the actor that requires the
dependum, and the dependee is the actor responsible for providing the dependum
element to the depender actor. The dependency links are specialized according to
the type of the dependum. Thus, it is possible to observe four types of dependency
links: goal, resource, task, and softgoal.

Goal

A goal in the i* context is a condition or state of concerns that the actor would
like to obtain. It represents an intentional desire of an actor, the specifics of how
the goal is to be satisfied is not described by the goal. This can be described
through task decomposition.

Resource

A resource is a physical or informational entity that must be available for an
actor. This type of element assumes that there are no open issues or questions
concerning about how the entity will be produced or provided.

Resource Dependency

In a resource dependency, the depender depends on the dependee for the
availability of an entity (physical or informational). By establishing this
dependency, the depender gains the ability to use this entity as a resource. A
resource is the final product of some deliberation-action process. In a resource
dependency, it is assumed that there are no open issues to be addressed or
decisions to be made about the provision or achievement of the Resource entity
involved.

Transformation of i* Models into MDD-Oriented Models

252

Task

A task specifies a particular way of doing something. A more specific description
of tasks can be performed by decomposing the tasks involved into further sub-
elements.

Means-End Links

These links indicate a relationship between an end, and a means for achieving this
end. The “means” is expressed in the form of a task since the notion of task
embodies how to do something. The “end” is expressed as a goal.

Task Decomposition

Task decomposition is a link that describes a particular course of action that must
be done to perform a certain task. A task element is linked to its component
nodes by means of decomposition links. A task can be decomposed into four types
of elements: a subgoal, a subtask, a resource, and/or a softgoal. These decomposed
elements can also be part of dependency links when the reasoning goes beyond of
an actor's boundary.

A1.4. The i* Transformation Process

For the formulation and proper application of the i* transformation guidelines,
we have proposed a specific transformation process to obtain an initial MDD
model as output of the i* model transformation. This process consists in the
analysis of the goals defined in the i* SR model to capture the organizational
processes that must be automated in the software system that is required. Then,
the intentional elements that are related to these processes are selected (marked).
These intentional elements are related to the i* resources (informational or
physical entities) that must be stored in the intended system, and the tasks that
must be automated by the system. Finally, the transformation guidelines are
applied over the identified elements to obtain an initial conceptual model. This
transformation process is graphically depicted in Figure 88 by means of the
BPMN [128] notation.

 Transformation of i* Models into MDD-Oriented Models

 253

Figure 88. The transformation process modeled with BPMN

A1.4.1. The i* Model Analysis

According to the transformation process (see Figure 88), this phase is comprised
of the following activities: 1) identification of processes to be automated in the
intended information system from the i* SR model; and 2) highlighting of
essential elements that are related to the identified process, which must be
considered in the software system implementation.

Activity 1: Identification of the process to be automated

In this activity, the goals that are defined in the i* SR model are analyzed to
identify tasks in a means-end links that operationalize these goals. These tasks are
the processes to be automatized in the intended system. In the presented i* SR
model, the identified goals are the following: Work opportunity for the
Photographer actor; and, A photographer´s work request to be processed by the
Production Dep. actor. The tasks that are means to reach these goals are: To
present a work request and To process a work request. The last of these two tasks

�

Transformation of i* Models into MDD-Oriented Models

254

is the process that we have decided to automate to exemplify the i*
transformation guidelines.

Activity 2: Highlighting the essential elements

In the second activity related to the i* model analysis, for each process to be
automated, we analyze the respective task-decomposition tree inside the actor
boundary. Through this analysis, we select all essential elements that must be
considered in the implementation of the intended system. Figure 89 shows the
selected (marked) elements for the reference i* model presented in this annex.

Figure 89. Reference i* SR model with marked elements to be automated

The selected elements in the i* SR model are those related with the process
to be automated. These selected elements will be translated to elements of the
target MDD model using the transformation guidelines presented below. In this

 Transformation of i* Models into MDD-Oriented Models

 255

transformation proposal, the target MDD model corresponds to the class model
of the OO-Method approach.

A1.4.2. The i* Transformation Guidelines

In this stage, the guidelines to obtain the corresponding OO-Method class
model from an i* SR model are presented. These guidelines are grouped in four
activities Identification of classes, Identification of class attributes, Identification
of class services, and Identification of relationships among classes. Figure 90
shows the class model obtained after the application of the transformation
guidelines to the reference i* model.

Figure 90. Class model obtained from the application of the proposed guidelines

Activity 1: Identification of classes

This activity deals with the identification of the main classes that should be in the
class model. The constructs of the i* framework that must be considered are the
actors and the resource elements that are representing physical entities. The

Transformation of i* Models into MDD-Oriented Models

256

actors are considered for the generation of classes in the target class model
because, by definition [18], an actor is an active entity that carries out actions to
achieve goals by using its capabilities. In the case of resources, a resource can
represent a physical or informational entity. The physical entities are elements of
the real world that have multiple properties. This includes electronic entities such
as electronic documents i.e. an electronic invoice. Therefore, the concept of actor
and physical entities can be matched to the concept of object in a class model,
which implies that both i* elements are related with the class definition. Thus, for
these two i* constructs, we have obtained the following two transformation
guidelines.

Guideline 1.1: An i* Actor is transformed into a Class of the target class model.
The name of the generated Class is obtained from the name of the Actor. In the
marked i* model (see Figure 89) the involved actors are the following:

• Cand. Employee (Candidate Employee)

• Photographer

• Production Dept.

• Commercial Dep.

Guideline 1.2: An i* Resource that represents a physical entity is transformed
into a Class of the target class model. The name of the generated Class is
obtained from the name of the Resource. In the marked i* model (see Figure 89)
the involved resources are the following:

• Work Request

• Refused Work Request

• Accepted Work Request

• Proceedings Manual

• Photographer Level

Activity 2: Identification of class attributes

For each class obtained by the application of the first two transformation
guidelines, it is necessary to identify those i* element that can be used to infer
attributes of the generated classes. To do this, the resources that represent an

 Transformation of i* Models into MDD-Oriented Models

 257

informational entity will be our main target because they represent properties of
physical resources or actors. Thus, these informational resources are transformed
into attributes of the classes generated from the corresponding actors or physical
resources. For the generation of attribute the following transformation guidelines
are defined.

Guideline 2.1: If an i* Resource represents an informational entity related to an
actor of the i* model, then the informational resource is transformed into one
attribute of the class generated from the Actor involved. The name of the
attribute is obtained from the name of the informational resource. The resources
of the reference i* model (see Figure 89) that are affected by this transformation
guideline are the following:

• Personal Data (related to Cand. Employee)

• Curriculum (related to Photographer)

• Photo Equipment (related to Photographer)

Guideline 2.1: If an i* Resource represents an informational entity (informational
resource) related to a resource (physical resource) of the i* model, then the
informational resource is transformed into an attribute of the class generated from
the physical resource involved. The name of the attribute is obtained from the
name of the informational resource. The resources of the reference i* model (see
Figure 89) that are affected by this transformation guideline are the following:

• Serial Number (related to Work Request)

• Reception Date (related to Work Request)

• Photographer Price (related to Photographer Level)

• Pub. House Price (related to Photographer Level)

• Req. Photo Equipment (related to Photographer Level)

Activity 3: Identification of class services

At this point, the tasks of the i* SR model and their possible decompositions are
inspected (deep search). In the i* framework, a task specifies a particular way of
doing something. When a task is described as a subcomponent of a (higher) task,
in a hierarchy of tasks, this restricts the higher task to that particular course of
action (a task-decomposition link at the SR model). Moreover, from the practical

Transformation of i* Models into MDD-Oriented Models

258

experience, a task in the i* model generally is responsible for achieving a goal
and/or for producing a resource. For the identification of class services we
consider that a task can be represented by means of a service in the class model. A
service of the class model describes a specific behavior of the objects of a class. In
the OO-Method approach, a service can be atomic (Event) or a composition of
other services (Transaction). The i* framework do not provides enough modeling
information to determine if a task corresponds to an atomic or composite service,
and, hence, the transformation guidelines presented for services generation only
produce services as transactions. Additionally, if the task represents a service that
groups other services, then this task is transformed into a transaction that is
comprised by the grouped transactions. The inferred transactions must be refined
later, at design time, to indicate the corresponding events. The services related to
creation, deletion, and modification of class instances are created by default when
this kind of services cannot be obtained from the application of the
transformation guidelines. It is important to remark that the service generation
guidelines only consider those tasks that are marked for their automation in the
final software system. The guidelines for services identification are the following:

Guideline 3.1: A task that only affects the values of informational resources
related to an actor is transformed into a transaction of the class generated from
the corresponding actor. The name of generated transaction is inferred from the
name of the task. The related resources are defined as arguments of the
transaction. If the task is also decomposed in subtasks, then the decomposed
subtasks are included in the formula of the transaction generated.

Guideline 3.2: A task that only affects informational resources related to a
physical resource is transformed into a transaction of the corresponding physical
resource. The name of generated transaction is inferred from the name of the task.
The related resources are defined as arguments of the transaction. If the task is
also decomposed in subtasks, then the decomposed subtasks are included in the
formula of the generated transaction. This guideline is applied to the following
tasks of the reference i* model (see Figure 89):

• To Assign Reception Date and Number (affects Reception Date and Serial
Number from Work Request)

• To Assign Photo Price (affects Pub. House Price from Photographer Level)

• To Assign Required Equipment (affects Req. Photo Equipment from
Photographer Level)

 Transformation of i* Models into MDD-Oriented Models

 259

Guideline 3.3: A task that only affects one entity (physical resource or actor) is
transformed into a service of the corresponding entity. The name of generated
transaction is inferred from the name of the task. If the task is also decomposed in
subtasks, then the decomposed subtasks are included in the formula of the
generated transaction. In the reference i* model (see Figure 89), the tasks affected
by this guideline are the following:

• To Receive Work Request (affects Work Request)

• To Register Photographer (affects Photographer)

• To Assign Level (affects Photographer)

• To Accept Work Request (affects Work Request)

• To Refuse Work Request (affects Work Request)

• To Establish Level (affects Photographer Level)

Guideline 3.4: A task that affects different physical resources or affects
informational resources related to different physical resources is transformed into
a transaction of the class generated from the actor that contains such task
(according to the corresponding actor boundary). The name of the generated
transaction is inferred from the name of the task. The related resources are
defined as arguments of the transaction. If the task is also decomposed in
subtasks, then the decomposed subtasks are included in the formula of the
generated transaction.

Guideline 3.5: A task that does not affect any entity (physical resource or actor) is
transformed into a transaction of the class generated from the actor that contains
such task (according to the corresponding actor boundary). If the task is also
decomposed in subtasks, then the decomposed subtasks are included in the
formula of the generated transaction. The name of the generated transaction is
inferred from the name of the task. This guideline is applied to the task To
Process Work Request in the reference i* model (see Figure 89).

Guideline 3.6: The tasks that participate in a resource dependency, where the
dependum resource corresponds to a physical resource, are transformed into
transactions of the class generated from the dependum resource. The names of the
generated transactions are inferred from the names of the corresponding tasks. It

Transformation of i* Models into MDD-Oriented Models

260

is not applicable when the guidelines 3.3 and 3.4 are applied to the involved
tasks.

Guideline 3.7: A task that is involved in the generation of an entity (physical
resource or actor) is transformed into a creation transaction of the class generated
from the corresponding entity. The name of the generated transaction is inferred
from the name of the task involved. This guideline is complementary to the
guideline 3.3. It is not applicable when the guideline 3.4 is applied to the task
involved. This guideline is applied to the following tasks:

• To Receive Work Request (generates Work Request)

• To Register Photographer (affects Photographer)

• To Establish Level (affects Photographer Level)

Activity 4: Identification of relationships among classes

In this activity, the three basics relationships of object-oriented approaches are
considered: generalization and associations. However, it is important to remark
that i* mainly focuses on representing strategic concerns by means of intentional
elements and their relationships. Therefore, the information of each relationship
of the i* model must be analyzed to derivate the kind of relationships among the
generated classes.

The i* framework offers a concept similar to generalization for the definition
of relationship between actors, which is the is-a relationship. This i* construct has
a direct correspondence in the class model. However, for those resource that
represent physical entities there is not a clear representation in the i* framework
to determine the occurrence of generalizations. Therefore, it is necessary the
expertise of the analyst to determinate when generalizations are present between
those physical resources transformed into classes according to the guidelines of
Activity 1.

The generation of associations among classes is very limited from i* models,
since the i* framework does not provide enough information to determinate
properties like the cardinality of an association. Thus, for the association
relationship it must be necessary to add the cardinality information, the role of
each association end, and the name of the association at design time. The
transformation guidelines related to associations are the following:

 Transformation of i* Models into MDD-Oriented Models

 261

Guideline 4.1: If there is a generalization relationship (is-a relationship) between
two actors of the i* model that were transformed into classes, then a
generalization relationship is defined between the corresponding classes in the
class model. In the reference i* model (see Figure 89), the is-a relationship
defined between the actors Cand. Employee and Photographer is affected by this
transformation guideline.

Guideline 4.2: If a physical resource of the i* model is derived from another
physical resource, then a generalization relationship is defined from the derived
resource to the original resource. This derivation is not explicitly defined in the i*
model, therefore, it is necessary that the analyst indicates the physical resources
that hold with this condition. In the reference i* model (see Figure 89), this
situation is present for the resources Accepted Work Request and Refused Work
Request, which are derived from Work Request. Thus, two generalization
relationships are generated, one between Accepted Work Request and Work
Request and another one between Refused Work Request and Work Request.

Guideline 4.3: If there exist a resource dependency link where the dependum, is
transformed into a class, then associations are automatically defined among the
class generated from the dependum resource and the classes that own the services
generated from the tasks involved. If one of the participant tasks is not involved
in the transformation process, then the association is defined by considering the
actor that owns the corresponding task. In the reference i* model (see Figure 89),
this rule is applied to the resource dependency related to Work Request and to
the resource dependency related to Photographer Level.

Guideline 4.4: For a resource dependency link where the dependum is
transformed into a class attribute and the depender and dependee actors are
transformed into classes, associations are generated among the class that has the
attribute generated from the involved resource and the classes that own the
services generated from the tasks involved. In the reference i* model (see Figure
89), this rule is applied to the resource dependency related to Personal Data.
However, since the generated services are defined in the class Photographer, no
new associations are generated.

The OO-Method approach defines a particular relationship to indicate the
visibility that a class has over services or attributes of other classes in the model.
This particular relationship is called agent relationship, and it is fundamental to

Transformation of i* Models into MDD-Oriented Models

262

allow the correct execution of the services defined in the class model. The
guidelines defined for the agent relationship generation are the following:

Guideline 4.5: For an attribute resulting from the transformation of an
informational resource that is defined inside of an actor boundary (internal
resource), an agent relationship is created from the class resulting from the trans-
formation of the respective actor (the one that contains the resource) and the
attribute related to the informational resource. In the reference i* model (see
Figure 89), the informational resources affected by this guideline are the
following:

• Personal Data (related to Photographer boundary)

• Curriculum (related to Photographer boundary)

• Photo Equipment (related to Photographer boundary)

• Serial Number (related to Production Dept. boundary)

• Reception Date (related to Production Dept. boundary)

• Photographer Price (related to Commercial Dept. boundary)

• Pub. House Price (related to Commercial Dept. boundary)

• Req. Photo Equipment (related to Commercial Dept. boundary)

Guideline 4.6: For the services generated form tasks defined inside of an actor
boundary, an agent relationship is generated from the class generated from the
actor involved and the services generated from the corresponding tasks. Agent
relationships are also defined from the class generated from the involved actor
and the attributes or classes generated from the resources required by the
transformed tasks. In the reference i* model (see Figure 89), the tasks affected by
this guideline are the following:

• To Process Work Request (related to Production Dept. boundary)

• To Receive Work Request (related to Production Dept. boundary)

• To Assign Reception Date and Num. (related to Production Dept. boundary)

• To Accept Work Request (related to Production Dept. boundary)

• To Refuse Work Request (related to Production Dept. boundary)

• To Register Photographer (related to Production Dept. boundary)

 Transformation of i* Models into MDD-Oriented Models

 263

• To Assign Level (related to Production Dept. boundary)

• To Establish Level (related to Commercial Dept. boundary)

• To Assign Photo Price (related to Commercial Dept. boundary)

• To Assign Required Equipment (related to Commercial Dept. boundary)

A1.5. Conclusions

In this annex, we have presented the main elements considered to go from i*
requirement models to an initial class model of a MDD approach. In particular,
the structural specification of the i* metamodel considered in this thesis is
presented. Furthermore, a set of transformation guidelines are presented to
perform the transformation of i* models (that are based on the defined i*
metamodel) into the corresponding OO-Method class model. These guidelines
were systematically designed in accordance with the i* framework [10]. To
illustrate the application of these guidelines, we have manually transformed the
presented Photography Agency i* model into the corresponding OO-Method
class model.

Even though the transformation guidelines have been designed in the OO-
Method MDD context, the conceptual constructs of the OO-Method class model
can be generalized to other object-oriented MDD approaches.

It is important to remark that the class model obtained from the
transformation of an i* model is an incomplete model, which must be refined to
obtain a complete representation of the final software system. Thus, the
automatic generation of the final software products can be performed by means
of a precise model compilation process.

From the application of the transformation guidelines, we have observed that
additional modeling information (that is not present in the i* framework) is
necessary to apply the proposed guidelines properly. Therefore, it is not possible
to automate the transformation of the i* models with the current definition of the
guidelines and only with the information present in the i* models. This is the
reason why the interoperability approach presented in this thesis has been applied
to achieve the automatic linking of i* models and MDD approaches.

Appendix II. �
 �����������
�
� �����!�����

This doctoral thesis has been developed according to the Design Research
methodology. This methodology corresponds to a set of analytical techniques and
perspectives to perform research in the information systems area. This appendix
introduces the design research methodology and shows its application to the
development of this doctoral thesis.

Doctoral Thesis Development

266

Design research involves the analysis of the use and the performance of designed
artifacts to understand, explain and very frequently to improve aspects of
information systems. In this context, the design research methodology has been
selected for the elaboration and improvement of the artifacts that are required
performing the interoperability of modeling approaches in MDD processes,
which is the central objective of this doctoral thesis. Next, the main aspects of
the design research approach are presented.

A2.1. The Design Research

In a simplified view, research can be considered as an activity that contributes to
the understanding of a phenomenon, which is a set of behaviors of some entities
that are interesting by a researcher or by a research community [210]. In the
design research, the understanding of these phenomena is explained by means of
the development of artifacts oriented to satisfy specific functional requirements.
Thus, design can be considered as a mapping from function space – a functional
requirement constituting a point in this multidimensional space – to attribute
space, where an artifact satisfying the mapping constitutes a point in that space
[211]. Design then, is knowledge in the form of techniques and methods for
performing this mapping – the know-how for implementing an artifact that
satisfies a set of functional requirements.

Figure 91. Design research application schema

 Doctoral Thesis Development

 267

Figure 91 shows the general schema of the design research application
process, by indicating the different outputs that are obtained in each step of the
process. The five steps of the action research methodology and the related
outputs are explained below (extracted from [210]):

1. Awareness of Problem: An awareness of an interesting problem may come
from multiple sources: new developments in industry or in a reference
discipline. Reading in an allied discipline may also provide the opportunity
for application of new findings to the researcher’s field. The output of this
phase is a Proposal, formal or informal, for a new research effort.

2. Suggestion: The Suggestion phase follows immediately behind the proposal
and is intimately connected with it as the dotted line around Proposal and
Tentative Design (the output of the Suggestion phase) indicates. Moreover, if
after consideration of an interesting problem a Tentative Design does not
present itself to the researcher; the idea (Proposal) will be set aside.
Suggestion is an essentially creative step where new functionality is
envisioned based on a novel configuration of either existing or new elements.

3. Development: The Tentative Design is implemented in this phase. The
techniques for implementation will of course vary depending on the artifact
to be constructed. An algorithm may require construction of a formal proof.
An expert system embodying novel assumptions about human cognition in an
area of interest will require software development, probably using a high-level
package or tool. The implementation itself can be very pedestrian and need
not involve novelty beyond the state-of-practice for the given artifact; the
novelty is primarily in the design, not the construction of the artifact.

4. Evaluation: Once constructed, the artifact is evaluated according to criteria
that are always implicit and frequently made explicit in the Proposal
(Awareness of Problem phase). Deviations from expectations, both
quantitative and qualitative are carefully noted and must be tentatively
explained. That is, the evaluation phase contains an analytic sub-phase in
which hypotheses are made about the behavior of the artifact. The evaluation
phase results and additional information gained in the construction and
running of the artifact are brought together and fed back to another round of
Suggestion (the circumscription arrow of Figure 91). This suggests a new
design, frequently preceded by new library research in directions suggested
by deviations from theoretical performance.

Doctoral Thesis Development

268

5. Conclusion: This phase is the finale of a specific research effort. Not only are
the results of the effort consolidated and “written up” at this phase, but the
knowledge gained in the effort is frequently categorized as either “firm” -
facts that have been learned and can be repeatedly applied or behavior that
can be repeatedly invoked - or as “loose ends” – anomalous behavior that
defies explanation and may well serve as the subject of further research.

A2.2. Applying the Design Research

The following outputs were obtained from the application of the design research
methodology to the development of this doctoral thesis according to the schema
presented in Figure 91.

Step 1: Awareness of Problem ���� Proposal. In the context of our research, we
have found that a proposal for the interoperability among different modeling
approaches in a MDD environment does not exist yet. Therefore, in this thesis we
propose a solution that allows this interoperability possible by means of the
automatic generation of the required metamodels extension for customization of
the modeling languages and the transparent interchange of the models involved.

Step 2: Suggestion ���� Tentative Design. For the elaboration of an appropriate
MDD interoperability approach is necessary to obtain a solution aligned with the
proposal defined. In this process we must consider different artifacts related to
the correct interoperability, these artifacts are:

• A mechanism that allows the identification of equivalences among modeling
approaches to interoperate.

• A mechanism that allows the differences among modeling languages to be
managed to prevent the loss of information during the interchange of models.

• A mechanism for the automatic generation of the modeling languages
extensions that solve the differences among modeling languages.

• A mechanism for automatic interchange of models that allows the automatic
modeling languages interoperability to be obtained.

For the specification of the modeling languages, the definition of metamodels
is used by taking as reference the MOF standard [38]. Figure 92 shows the
tentative design of the interoperability process by indicating the different

 Doctoral Thesis Development

 269

artifacts involved. The basis for the elaboration of this tentative design has been
presented in [212].

Figure 92. Interoperability Process – Tentative Design

Step 3: Development ���� Artifacts. With the development of the artifacts defined
in the tentative design presented above, a first version of our interoperability
proposal is obtained (see [18]). For the implementation of these artifacts, different
aspects has been considered such as definition of UML profiles from DSML
metamodels [17, 19, 51, 54], correct use of metamodels in software engineering
[129], UML profile implementations [43], interchange between modeling
approaches [130, 136], implementation of model interchange tools [132], and
new UML profile features [39].

The artifacts obtained were the following:

• MDD Interoperability Process. This process integrates different modeling
languages by means of metamodels extensions implemented through an
automatically generated UML profile and models transformation that are
driven by the interchange information obtained during the UML profile
generation. Thus, it is possible to observe that the automatic generation of
the required metamodel extensions is the core of the interoperability process.

• Integration Metamodel. The integration metamodel is the solution developed
to provide a mechanism for managing the differences between the modeling
languages that will be integrated, and to identify the equivalences between
these modeling languages. The initial specification of the Integration
Metamodel and the systematic approach proposed for its definition have been

Doctoral Thesis Development

270

presented in [127]. However, this initial specification has been improved
throughout the development of this doctoral thesis to obtain a better
integration solution for multiple modeling languages.

• Automatic UML Profile Generation. This artifact corresponds to the
mechanism implemented for the definition of modeling languages extensions.
This is a two steps process that automatically generates a UML profile from
an Integration Metamodel (see section 3.1). The two steps that comprise the
UML profile generation are:

1. Metamodels Comparison: Identifies the differences between an Integration
Metamodel and the metamodel of the modeling language to be customized to
obtain the metamodels extensions that must be implemented.

2. Integration Metamodel Transformation: A set of transformation rules that
are defined to automatically transform the Integration Metamodel in the
UML profile that implements required metamodel extensions.

• Models interchange approach. This approach provides the transformation
mechanisms for the interchange of models that are defined with the
integrated modeling languages. The interchange approach is based on the
information obtained during the UML profile generation, and a set of
transformation rules [18].

Step 4: Evaluation ���� Performance Measures: The evaluation of the integration
process and the rest of the developed related artifacts is performed by means of
the linking of i* framework and UML with the OO-Method MDD development
process.

UML has been chosen due to the relevance of this modeling language in the
information science community and because UML provides a standard
customization mechanism to adapt its syntax to specific domains [33]. In
particular, we have considered the use of the UML class model, which is the
most used UML model [213]. The UML class model is very close to class model
of the MDD approach considered in this thesis (the OO-method class model), and
both modeling approaches are at the same abstraction level. In fact, the OO-
Method class model could be considered as a subset of the UML class model that
introduces new properties for the automatic model compilation process. This
prevents the complexity that may arise in the integration of modeling approaches
of different domains and abstraction levels. Therefore, the use of UML class
model is relevant to obtain an initial approach for modeling languages integration.

 Doctoral Thesis Development

 271

The i* framework [6] has been chosen since it is one of the most widespread
modeling and reasoning frameworks [162-164] and it is also well documented
[168]. The i* framework is framed in the context of Goal-Oriented Requirement
Engineering (GORE) [165]. Thus, we want to tackle the linking of requirement
modeling with existing MDD processes. The use of i* introduces a new
complexity aspect to the improvement of the interoperability approach, which is,
the linking of modeling languages at different abstraction levels [166]; i* models
are at analysis level while most of the MDD-oriented models, such as the OO-
Method conceptual model, are at design level. Additionally, at difference of UML
and OO-method class models, the constructs provided by the i* framework are
quite different than the constructs of class models, which demands that the
application framework for the interoperability approach be improved to support
these differences.

Figure 93 shows the general integration schema for the linking of these three
modeling languages (i*, UML, and OO-Method) by using the interoperability
process proposed in thesis. Thus, it is possible to achieve the automatic
interoperability of i* and UML in the OO-Method MDD process.

Figure 93. Schema for the integration of i*, OO-Method, and UML.

The results obtained from the application of the proposed integration
approach have provided valuable information for the improvement of the

Doctoral Thesis Development

272

interoperability in MDD processes. The capability of improving interoperability
approach by means of the application the interoperability artifacts defined is one
of the main aspects that we have considered for the selection of the design
research methodology. This corresponds to the circumscription arrow presented
in Figure 91. In addition, the interoperability scenarios developed in the context
of an industrial MDD process have provided relevant information to answers
many open questions in relation to: the automatic linking of requirement models
in MDD environments [32], the definition of a complete process to automate the
generation of modeling languages extensions [127, 135], the automatic
interchange of models to support different modeling perspectives [136], and the
application of current modeling technologies to obtain automatic software
products by means of automatic compilation processes [18, 138, 212].

Step 5: Conclusion ���� Results. Finally, after the evaluation of the developed
artifacts and the improvement of the initial interoperability approach (obtained in
the tentative design), the resultant integration solution proposed in this doctoral
thesis is obtained. From the evolving nature of the selected research methodology,
further research lines for the development of new artifacts, new interoperability
objectives, and further improvements are obtained.

