ÍNDICE GENERAL

1. INTRODUCCION GENERAL	1
1.1. Introducción: Química Sostenible	3
1.2. Líneas de actuación en la Química Sostenible: a) intensificación de	7
procesos y b) transformaciones catalíticas	,
1.2.1. Intensificación de procesos	8
1.2.1.1. Transformaciones secuenciales o procesos "multi-step"	10
1.2.1.2. Reacciones en tándem (reacciones multidireccionales)	13
1.2.1.3. Reacciones multicomponente (RMC)	14
1.2.2. Catálisis: diseño molecular de catalizadores activos y selectivos	15
1.2.2.1. Nanopartículas metálicas (NPMs) como catalizadores	18
1.2.2.2. Formación y estabilización de NPMs	20
1.2.2.3. Formación y estabilización de NPMs por incorporación sobre un soporte	22
1.2.2.3.a) Métodos de formación y estabilización de NPMs	22
1.2.2.3.b) Importancia del tamaño y forma de las NPMs	25
1.2.2.3.c) Interacciones metal-soporte	29
-Influencia del soporte en las NPMs	30
-Influencia de las NPMs en el soporte	31
1.2.2.3.d) Sólidos básicos para la estabilización de NPMs: MgO, HT y HAP	33
-MgO	33
-Hidrotalcita (HT)	37
-Hidroxiapatita (HAP)	41
1.2.2.4. Formación y estabilización de NPMs por incorporación en un Líquido Iónico (LI)	44
1.2.2.4.a) Características y propiedades de LIs	44
1.2.2.4.b) Estabilización de NPMs en LIs	48
Referencias Bibliográficas	54
2. OBJETIVOS Y PERSPECTIVAS DE LA TESIS DOCTORAL	63
3. NPMs EN LÍQUIDOS IÓNICOS: REACCIÓN DE CICLOPROPANACIÓN DE ALQUENOS CATALIZADA POR Au	67
3.1. Introducción	69
3.2. Resultados y discusión	71
3.2.1. Reacciones de ciclopropanación catalizadas por NaAuCl ₄ y KAu(CN) ₂ utilizando LIs como disolventes	74
3.2.2. Estabilidad de los LIs en presencia de NaAuCl ₄ y KAu(CN) ₂	88
3.2.3. Reciclado y reusos de los catalizadores NaAuCl ₄ y KAu(CN) ₂ en el LI [BMIM][PF ₆]	93
3.3. Conclusiones	101

3.4. Procedimiento experimental				
3.4.1. Materiales y reactivos de partida				
3.4.2. Técnicas de caracterización utilizadas				
3.4.2.1. Espectroscopía de UV-vis				
3.4.2.2. Técnica Dispersión de Luz Dinámica (Equipo Nano Zetasizer)				
3.4.2.3. Espectroscopía de ¹ H y ¹³ C-RMN	104			
3.4.2.4. Análisis Químico	104			
3.4.3. Síntesis de nanopartículas de oro coloidales	104			
3.4.3.1. Síntesis de nanopartículas de Au estabilizadas con tioles (1- 3nm)	104			
3.4.3.2.Síntesis de nanopartículas de Au por la técnica del "sembrado"	106			
3.4.4. Procedimiento general para las reacciones de ciclopropanación en	109			
Lis				
3.4.4.1. Reacción de ciclopropanación en disolventes orgánicos	109			
3.4.4.2. Reacción de ciclopropanación con nanopartículas de Au (1- 3nm) en disolvente orgánico	110			
3.4.4.3. Reacción control de ciclopropanación en ausencia de agua	110			
3.4.4.4. Reacción control de ciclopropanación en presencia de HCl y HCN	110			
3.4.4.5. Recuperación y reciclado del catalizador	111			
3.4.4.6.Reacción control para detectar la posible formación de productos derivados de la reacción hidrolítica del PF ₆ , mediante el registro de espectros de RMN	111			
3.4.5. Análisis e identificación de los productos de reacción	111			
Referencias Bibliográficas	113			
4. NPMs SOBRE SOPORTES SÓLIDOS: REACCIÓN DE N-MONOALQUILACIÓN DE AMINAS CON ALCOHOLES A TRAVÉS DE UN PROCESO CASCADA CON CATALIZADORES BIFUNCIONALES METAL-BASE	117			
4.1. Introducción	119			
4.2. Resultados y discusión	121			
4.2.1. Estudio de la cinética de reacción	128			
4.2.2. Influencia del tamaño de cristal del metal en la reactividad	130			
4.2.3. Mecanismo de reacción	134			
4.2.4. Estudio espectroscópico de RMN para identificar la especie Pd-H	136			
4.2.5. Generalidad o alcance de la reacción	140			
4.2.6. Síntesis de piperazinas en condiciones de transferencia de hidrógeno	143			
4.2.7. Recuperación y reuso del catalizador	146			
4.3. Conclusiones	148			
4.4. Procedimiento experimental	150			
4.4.1. Preparación de catalizadores	150			
4.4.1.1. Preparación de los catalizadores bifuncionales (M)-MgO (M=Pd, Pt, Au)	151			

4.4.1.2. Preparación de Pd-C (1 wt%Pd)	152				
4.4.1.3. Preparación de M/Hidroxiapatita (1 wt%M; M=Pd, Au)					
4.4.1.4. Preparación de M/Hidrotalcita (1 wt%M; M=Pd, Au, Ru)					
4.4.2. Reacciones catalíticas	153				
4.4.2.1. N-alquilación de aminas con alcoholes catalizadas por Pd-	152				
MgO	153				
4.4.2.2. Síntesis de piperazinas catalizada por Pd-MgO					
4.4.2.3. Estudio del mecanismo de la formación de la especie monohidruro o dihidruro	154				
4.4.2.4. Reacción control en medio básico catalizada por Pd-C					
4.4.2.5. Síntesis de la especie Pd-H "ex situ"					
4.4.2.6. Tratamiento de activación del catalizador Pd-MgO en los sucesivos reusos	155				
4.4.3. Cálculo del TOF	156				
4.4.3.1. Cálculo de las velocidades iniciales	156				
4.4.3.2. Cálculo TOF ("Turnover Frequency")	156				
4.5. Técnicas de caracterización	161				
4.5.1. Microscopía Electrónica de Transmisión (TEM)	161				
4.5.2. Espectroscopía Ultravioleta-visible (UV-vis)	161				
4.5.3. Espectroscopía de Resonancia Magnética Nuclear (RMN)	162				
4.5.4. Análisis Químico por Plasma de Acoplamiento Inductivo acoplado a Espectroscopio de Emisión (ICP-OES)	162				
4.5.5. Análisis elemental (EA)	162				
4.5.6. Difracción de rayos X en polvo (XRD)	163				
4.5.7. Experimentos de FTIR acoplada a tratamientos "in situ"	163				
4.5.8. Adsorción de nitrógeno	164				
Referencias Bibliográficas	165				
5. DETERMINACIÓN DE LA ETAPA CONTROLANTE DE REACCIÓN EN UN					
PROCESO ONE-POT: MONOALQUILACIÓN DE COMPUESTOS	169				
METILÉNICOS CON ALCOHOLES CATALIZADA POR NPMs SOPORTADAS	103				
SOBRE SÓLIDOS BÁSICOS					
5.1. Introducción	171				
5.2. Resultados y discusión	173				
 5.2.1. Reacción de α-monoalquilación selectiva de fenilacetonitrilo con alcoholes 	173				
5.2.2. Influencia de los soportes que componen el catalizador en la reacción one-pot	178				
5.3. Generalidad de la reacción	178				
5.4. Optimización del catalizador bifuncional Pd-MgO	184				
5.4.1. Estudio de la etapa limitante de velocidad en la $lpha$ -monoalquilación	184				
de fenilacetonitrilo con alcohol bencílico	10-7				
5.4.2. Determinación de las constantes de adsorción (K_{ads}), desorción (K_{des})	40-				
y reactividad (k,) en la etapa limitante de la reacción global: hidrogenación de P1 a partir del Pd-H	187				

5.5. Influencia de la naturaleza del metal en la reacción de α- monoalquilación de fenilacetonitrilo con alcohol bencílico	190
5.6. Influencia del tamaño de nanopartícula metálica: Reacción sensible	
a la estructura	191
5.7. Mecanismo de reacción: estudio de la especie dihidruro de paladio	195
5.7.1. Mecanismo de reacción (apartado 4.2.3 y 4.2.4 del capítulo 4 de	197
esta memoria).	
5.8. Recuperación y reutilización del catalizador	198
5.9. Conclusiones	201
5.10. Procedimiento experimental	202
5.10.1. Síntesis de catalizadores	202
5.10.1.1. Preparación de catalizadores bifuncionales (M)-MgO (M=Pd, Pt, Au)	203
5.10.1.2. Preparación de Pd-C (1wt% Pd)	204
5.10.1.3. Preparación de M/Hidroxiapatita (1 wt%M; M=Pd, Au)	204
5.10.1.4. Preparación de M/Hidrotalcita (1 wt%M; M=Pd, Au, Ru)	204
5.10.2. Reacciones experimentales	205
5.10.2.1. α-monoalquilación de fenilacetonitrilo con alcohol bencílico catalizado por Pd-MgO	205
5.10.2.2. α-monoalquilación de malonato de dietilo con alcohol bencílico catalizado por Pd-MgO	205
5.10.2.3. α-monoalquilación de nitrometano con alcohol bencílico catalizado por Pd-MgO	205
5.10.2.4. Experimentos cinéticos	206
5.10.2.5. Gráficos de r_0 en función de [PhCH ₂ OH] y [PhCH ₂ CN]	206
5.10.3. Datos de caracterización de los productos de reacción	209
5.10.4. Estudio de los experimentos cinéticos y tablas de resultados	210
5.11. Técnicas de caracterización	216
Referencias Bibliográficas	217
6. ESTUDIO TEÓRICO-EXPERIMENTAL SOBRE EL MECANISMO DE	
OXIDACIÓN SELECTIVA DE ALCOHOL A ALDEHÍDO CATALIZADA POR	221
Au-MgO	
6.1. Introducción	223
6.2. Resultados y discusión	225
6.2.1. Estudios teóricos del mecanismo de reacción	225
6.2.2. Estudios cinéticos del mecanismo de reacción	239
6.3. Conclusiones	253
6.4. Sección experimental	254
6.4.1. Catalizadores modelo y detalles computacionales	254
6.4.2. Preparación de catalizadores	257
6.4.2.1. Caracterización de los catalizadores	258
6.4.3. Experimentos cinéticos	260
Referencias Bibliográficas	261

7. CONCLUSIONES GENERALES					
8. APÉNDICE	269				
8.1. Técnicas para medir el tamaño de NPs de Au en LI					
8.1.1. Fundamento del equipo Nano Zetasizer					
8.1.1.1. Dispersión de Luz Dinámica (DLS)	271				
8.1.1.2. Principios de la técnica	272				
8.1.1.3. Medidor del potencial zeta utilizando un Láser Doppler Electroforesis (LDE)					
8.1.2. Distribución de tamaño de NPs de oro caracterizado por la técnica DLS	274				
8.1.2.1. NPs de oro estabilizadas en L.I. a partir de Na $AuCl_4$	274				
8.1.2.2. NPs de oro estabilizadas en L.I. a partir de $KAu(CN)_2$	276				
8.1.2.3. Distribución de tamaños de NPs de oro preparadas por el método de Brust [0.8 ± 0.06] nm	278				
8.1.3. Estudio y caracterización del sistema catalítico en el transcurso de					
la reacción de ciclopropanación: influencia del tamaño de NPs de Au	278				
estabilizadas en el LI [BMIM][PF ₆]					
8.1.3.1. Síntesis de NPs de Au de diferentes tamaños adicionando					
EDA como agente reductor, y variando el tiempo y la temperatura: estudio experimental del EDA como agente reductor	279				
8.1.3.2. Distribución de tamaños de NPs de Au generadas con EDA como agente reductor, variando la concentración del LI	281				
(como agente estabilizante)					
8.1.3.3. Distribución de tamaños de NPs de Au generadas con EDA:a) adicionado de golpe desde el comienzo de la reacción, yb) adicionado en el transcurso de 8h de reacción	286				
8.1.4. Distribución de tamaños de NPs de oro estabilizadas en LI,	200				
preparadas a partir de la técnica del "sembrado"	290				
8.1.5. Comparación entre las técnicas de caracterización TEM y DLS	291				
8.2. Curvas de ajuste del modelo cinético planteado en el capítulo 5	293				
8.3. Teoría Funcional de la Densidad (DFT)	295				
8.4. Relación Brønsted-Evans-Polanyi (BEP)	295				
Referencias bibliográficas	296				

ANEXOS

ANEXO I: Índice de Figuras. ANEXO II: Índice de Tablas. ANEXO III: Índice de Esquemas.

ANEXO IV: Lista de acrónimos y abreviaturas.

RESUMEN-ABSTRACT-RESUM