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ABSTRACT 

α(R)-In2Se3 has been experimentally and theoretically studied under compression at 

room temperature by means of X-ray diffraction and Raman scattering measurements as 

well as by ab initio total-energy and lattice-dynamics calculations. Our study has 

confirmed the α (R3m) → β´ (C2/m) → β (R-3m) sequence of pressure-induced phase 

transitions and has allowed us to understand the mechanism of the monoclinic C2/m to 

rhombohedral R-3m phase transition. The monoclinic C2/m phase enhances its 

symmetry gradually until a complete transformation to the rhombohedral R-3m 

structure is attained above 10-12 GPa. The second-order character of this transition is 

the reason for the discordance in previous measurements. The comparison of Raman 

measurements and lattice-dynamics calculations has allowed us tentatively assigning 

most of the Raman-active modes of the three phases.  The comparison of experimental 

results and simulations has helped to distinguish between the different phases of In2Se3 

and resolve current controversies. 
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1. INTRODUCTION  

 

Indium selenide (In2Se3), a semiconductor with a direct bandgap of 1.45 eV,1 has led 

to plenty of studies for decades mainly focused on its multiple applications as 

thermoelectric material,2, 3 phase random access memories,4-6 photodetectors,7, 8 solar 

cells,9 ferroelectricity10, 11 and anisotropic photoconductivity.12, 13 Furthermore, it has 

been studied in the context of 2D materials, like graphene, and promising novel 

materials, like topological insulators (TIs).14, 15 In this regard, A2B3-type chalcogenides 

have recently attracted scientific interest since some of them are 3D TIs, like α-Sb2Te3, 

α-Bi2Se3, α-Bi2Te3 and SnBi2Te4 whose vibrational properties have been studied at high 

pressure.16-19  

In2Se3 is a polymorphic compound with at least five known stable and three 

metastable phases. Like many AIII
2BVI

3 compounds, some of these phases contain cation 

vacancies and can be classified depending on how vacancies are arranged in the unit 

cell. In particular, vacancies occur in structures where cations only have fourfold 

coordination because the sp3 hybridization of cations atoms imposes that the octet rule 

is satisfied only if 1/3 of cation positions remain unoccupied.20 In this way, In2Se3 has 

layered phases without vacancies (α, β´ and β) and other phases with vacancies (γ, δ, κ, 

α′ and γ′).21-39  The α-In2Se3 phase is the stable phase at room conditions;23-25 however, 

it has been reported that there are two α phases at ambient conditions: a rhombohedral 

α(R) phase and an hexagonal α(H) phase. Moreover, it has been lengthy discussed 

whether the α(R) phase belongs to the non-centrosymmetric rhombohedral space group 

(S.G.) R3m or to the centrosymmetric rhombohedral S.G. R-3m. On the other hand, the 

hexagonal α(H) phase was mainly suggested to correspond to S.G. P63/mmc, but the 

atomic parameters of this structure have not been solved yet.24, 26, 27  

The reason for the discrepancy in the α(R) phase between the S.G. R3m and R-

3m resides in the difficulty of powder X-ray diffraction (XRD) measurements to 

distinguish between both S.G.s. To resolve this controversy, Raman scattering (RS) 

measurements were carried out; however, it is not easy to perform RS measurements 
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because of the extraordinary high sensitivity of In2Se3, like many other chalcogenides 

that are good for phase change memories, to laser light. In this regard, several papers 

reporting RS measurements at room conditions have been published,30-33, 35, 36 but there 

are no clear conclusions about the nature of the α(R) phase since there is a lack of 

theoretical calculations to compare with experimental data.     

It is important to know the different arrangements of In and Se atoms in the 

different In2Se3 polytypes and to understand their different properties and their behavior 

at high temperatures and pressures in order to optimize the multiple applications of this 

interesting material. Noteworthy, the layered tetradymite (S.G. R-3m) structure of the 

β phase of In2Se3 has been found at room conditions in many compounds showing 3D 

TI properties, like α-Sb2Te3, α-Bi2Se3, α-Bi2Te3 and SnBi2Te4. In fact, in all these 

layered compounds, where layers are formed by quintuple (α-Sb2Te3, α-Bi2Se3, α-

Bi2Te3) or septuple (SnBi2Te4) atomic layers, the R-3m phase is composed of regular 

octahedral units around the cation in the binary compounds and around the Sn cation in 

the ternary compound.40, 41  

In the last years, the high-pressure (HP) behavior of α-In2Se3 has attracted 

considerable interest. A sequence of pressure-induced phase transitions: α → β′ → β →

defective cubic Th3P4 at 0.8, 5.0, and 32 GPa, respectively, was reported on the basis 

of powder HP-XRD measurements.39 Additionally, HP-RS measurements found a 

phonon with a negative pressure coefficient in the β (R-3m) phase.39 Curiously, this soft 

phonon was not observed in two previous HP-RS studies that, in turn, did not identify 

the intermediate β′ phase between the α and β phases.42, 43 In this context, it is worthy to 

note that HP-RS studies of vibrational properties of the tetradymite phase of α-Sb2Te3, 

α-Bi2Se3 and α-Bi2Te3 have not reported any experimental or theoretical soft mode in 

the R-3m phase.40 More recently, a HP study has revealed a superconductivity 

enhancement in α-In2Se3 under compression when it undergoes the transition to the 

defective cubic Th3P4 structure.44 Finally, a recent HP study has also reported the 

transition from γ-In2Se3 to β-In2Se3 under compression.45 

In order to shed light into: i) the nature of the α(R) phase; ii) the existence of an 

intermediate β´ phase between α and β phases; and iii) the presence of a soft phonon in 

the β phase, we performed ab initio calculations of In2Se3 with R3m, C2/m and R-3m 

structures. We found that our calculations did not support the existence of a soft phonon 

in the β (R-3m) phase. This result made us suspect that laser heating could be locally 
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damaging the sample used in Ref. 39, thus generating nanoclusters of selenium, which 

exhibit soft phonons, as previously reported in other selenide.46 Therefore, we have 

revisited in this work the behavior of α-In2Se3 at HP by conducting HP-XRD and HP-

RS measurements at room temperature and ab initio total-energy and lattice-dynamics 

calculations up to 20 GPa. Table 1 presents the main details of the α, β´ and β phases of 

In2Se3 involved in this work.21, 23, 24, 31, 37-39 In sections 2 and 3, we show the 

experimental and theoretical details. In section 4, we show the HP results of XRD and 

RS measurements and of ab initio calculations. In section 5, we discuss the mechanism 

involved in the C2/m to R-3m phase transition and comment on the previous difficulties 

in observing the intermediate β′ phase. Finally, in section 6 we summarize our results 

and provide some conclusions. We also show that our RS measurements provide clear 

evidence that the α(R) phase is the non-centrosymmetric R3m phase. Furthermore, our 

experimental and theoretical results provide clear evidence that there is an intermediate 

β´ phase with monoclinic C2/m symmetry between the α (R3m) and β (R-3m) phases. 

Moreover, the β’-to-β phase transition is of second-order and takes place above 10 GPa. 

Finally, we show that upon hydrostatic compression the sample likely reverts to the 

original phase on decompression, but with considerable disorder likely due to the strong 

first-order character of the α-to-β’phase transition. 

 
 
2. EXPERIMENTAL DETAILS  
 

α-In2Se3 powders used in this work are commercial In2Se3 powders purchased 

from Alfa Aesar Company (99.99%). In XRD and RS experiments, the samples were 

loaded in a DAC with a 4:1 methanol-ethanol mixture as a pressure-transmitting 

medium. The culet-size of the diamond anvils was 500 µm. We used an Inconel gasket, 

pre-indented to 50 µm, in which we drilled a 250 µm diameter hole. The 4:1 methanol-

ethanol mixture is hydrostatic up to 10 GPa and quasi-hydrostatic up to the maximum 

pressure reached in our experiments.47 In addition, we took precautions to minimize the 

deviatoric stresses induced in the experiments during the DAC loading.48  

HP-XRD measurements at room temperature up to 25 GPa were conducted at the 

BL04-MSPD beamline of ALBA synchrotron using the equation of state of copper 

powder mixed with the sample to determine the pressure inside the DAC. Incident 

monochromatic beam with wavelength of 0.4638 Å was focused to 20 x 20 µm.49 
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Images covering a 2θ range up to 20° were collected using a Rayonix SX165 CCD 

located at 240 mm from sample. One-dimensional diffraction profiles of intensity as a 

function of 2θ were obtained by integration of the observed intensities with the Fit2D 

software.50 Rietveld refinements were carried out with GSAS package software.51 The 

equation of state (EOS) of copper was used for pressure calibration.52  

HP-RS measurements were performed with a LabRAM HR UV microspectrometer 

coupled to a Peltier cooled CCD camera, using a 532 nm solid state laser excitation line 

with a power smaller than 1 mW and a spectral resolution better than 2 cm-1. In order to 

be sure that no heating effects occur during the measurements the sample were checked 

during all Raman experiment. Concerning the analysis of Raman spectra under pressure, 

Raman peaks have been fitted to Voigt profiles (Lorentzian profile convoluted by a 

Gaussian profile) where the spectrometer resolution is taken as the fixed Gaussian 

width. As already commented, two HP runs were performed in In2Se3 in order to obtain 

the spectra of the first phase since the transition is about 0.8 GPa. The pressure was 

determined by the ruby luminescence method;53 the shape and separation of the R1 and 

R2 ruby lines were checked at each pressure and neither a significant increase in width 

nor an overlapping of both peaks were detected. 

 

3. SIMULATION DETAILS 
 

 Structural and vibrational data were obtained by means of ab initio total-energy 

and lattice-dynamics calculations in the framework of the density functional theory 

(DFT).54 This method allows an accurate description of the physical properties of 

semiconductors at HP.55 The simulations were conducted with the Vienna Ab Initio 

Simulation Package (VASP).56 The projector-augmented wave scheme (PAW)57 was 

employed to take into account the full nodal character of the all-electron charge density 

in the core region. The plane waves basis set was extended to a cut off of 320 eV in 

order to have accurate results. The exchange-correlation energy was described in the 

generalized-gradient approximation (GGA) with the Perdew-Burke-Ernzenhof 

prescription.58 For each of the studied phases, integrations within the Brillouin zone 

(BZ) were performed with dense meshes of Monkhorst-Pack k-special points. In this 

way, a high convergence of 1 meV per formula unit was accomplished. At a set of 

selected volumes, the lattices parameters and atomics positions were fully optimized by 

calculating the forces on the atoms and the stress tensor. In the optimized resulting 
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structures, the forces on the atoms were lower than 0.002 eV/Å and the deviation of the 

stress tensor components from the diagonal hydrostatic form less than 0.1 GPa. In our 

simulations, after the relaxation process of the considered structure, we obtain a set of 

energies and volumes at different pressures.59  

Lattice-dynamic calculations were carried out at the center of the Brillouin zone (Γ 

point). The direct force-constant approach (or supercell method) 60 was employed. This 

method requires highly converged results on forces. The diagonalization of the 

dynamical matrix determines the frequencies of Raman- and infrared-active modes. 

From the calculations, the symmetries of the eigenvectors of the different vibrational 

modes are also identified at the Γ point. 

  

4. RESULTS 

 
4.1. HP-XRD measurements  
   

The α (R3m) structure of In2Se3 can be visualized as a layered structure 

composed of quintuple layers (Se-In-Se-In-Se) that are linked by weak van der Waals 

forces (see Fig. 1). In this structure, there are five inequivalent atoms occupying 3a 

Wyckoff sites (In1, In2, Se1, Se2 and Se3). The two inequivalent In1 and In2 atoms 

have sixfold and fourfold coordination, respectively. The three inequivalent Se atoms 

also have different coordinations. The Se atom in the center of the layer (Se2) is 

fourfold coordinated to three In1 and one In2 atoms, forming a distorted tetrahedron; 

while Se atoms at the layer surface (Se1 and Se3) have a threefold coordination.  

However, Se1 atoms linked to In1 atoms show bond distances above 2.7 Å at room 

pressure, while Se3 atoms linked to In2 atoms show smaller bond distances below 2.7 Å 

at room pressure. 
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Figure 1: Detail of the structure of the α In2Se3 phase. Right bottom corner: quintuple 

layer. Right top corner: three polyhedra centered in In2, In1 and Se2 atoms. 

 

HP-XRD measurements on powder samples were performed up to 20.2 GPa as 

shown in Fig. 2. XRD patterns below 0.5 GPa can be indexed with the α (R3m) phase, 

while those above 1.2 GPa can be indexed with the β′ phase. At 11.9 GPa, the XRD 

pattern can still be properly assigned to the β´ phase; however, patterns above 12.7 GPa 

can only be indexed with the β phase. Our results are in good agreement with those of 

Ref. 39, thus confirming the existence of the intermediate the β′ phase between α and β 

phases. The only difference with respect to Ref. 39 is the pressure at which we locate the 

β´→ β transition. One of the main characteristics of this transition is the merging of 

several Bragg peaks near 2θ = 15º (they correspond to a d-spacing in the range 1.68 - 

1.52 Å as shown in Fig. S1 of the Supporting Information). Zhao et al., pointed at this 

merging as the indication of the β´ → β transition at 5 GPa.39 However, the merging of 

the two peaks into a single one is smooth and keeps on up to higher pressures, making it 

difficult to accurately determine the transition pressure. In addition, to the peak 

merging, there are additional changes in the XRD pattern that help to determine more 

accurately the transition pressure. In particular, a weak peak present at 11.9 GPa (see 

inset of Fig. 2), but disappearing at 12.7 GPa, can be indexed with the β´ phase and not 

with the β phase. In addition, the R-values of the Rietveld refinements are smaller for 

the β´ phase than for the β phase at all pressures from 1.2 to 11.9 GPa, as it was also 

found in previous examples of two phases linked by a group-subgroup relationship.61-63 

We consider that this evidence supports that the transition pressure is around 12.7 GPa 
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and not around 5.0 GPa as previously assigned.39 The gradual transformation of β′ 

phase into β phase and the fact that there is no volume discontinuity suggests that the 

β´→ β phase transition is a second-order transformation,64 as the one observed under 

compression in the related compound InSe.65 We will show below that these 

conclusions are supported by our HP-RS measurements and ab initio calculations. 

 
Figure 2: HP-XRD patterns at selected pressures. Rietveld refinements are shown for: 

i) the phase I (rhombohedral structure, S.G. R3m) at 0.3 GPa; ii) the phase II 
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(monoclinic structure, S.G. C2/m) at 1.2 GPa and iii) the phase III (rhombohedral 

structure, S.G. R-3m) at 12.7 GPa. Experimental data are plotted as solid lines, 

calculated profiles as circles and residuals are also shown by solid lines in the bottom 

part of the refined patterns. The background has been removed from all XRD patterns. 

Vertical ticks indicate the position of Bragg reflections as well as the vertical ticks up 

indicate the position of cupper reflections. The inset shows the small changes associated 

to the conclusion of the second-order phase transition. 

For the sake of completeness, we show in Fig. 3 the pressure evolution of the 

experimental and theoretical lattice parameters and unit cell volume in the different 

phases (see numerical data in Table S1 of the Supporting Information). As observed, 

the change in volume from the α phase at 0.5 GPa (399 Å3 → V/Z = 133 Å3) to the β’ 

phase at 1.2 GPa (248.7 Å3 → V/Z = 124.35 Å3) implies a relative change ∆V/V = 6%. 

Note that a extrapolation of the α phase up to 1.2 GPa would yield a ∆V/V = 4% which 

is in good agreement with Ref. 39. On the other hand, the change in volume from the β’ 

phase at 11.9 GPa Å3 (216.3 → V/Z = 108.15 Å3) to the β phase at 12.7 GPa (319.9 Å3  

→ V/Z = 106.63 Å3) results in a ∆V/V = 1%. If we extrapolate the β’ phase up to 12.7 

GPa then we obtain a ∆V/V = 0, what agrees with the second-order character of the 

β’−β phase transition, as suggested in Ref. 39. As regards the α phase, it can be 

observed that there is a slightly larger compression of the experimental c lattice 

parameter and the volume than of the theoretical one. We think that this small 

difference is due to the fact that DFT calculations tend to overestimate compression for 

the van der Waals interaction between the layers. In any case, there is a rather good 

agreement between our experimental and theoretical values. 
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Figure 3: Pressure dependence of the experimental (symbols) and theoretical (line) 

lattice parameters and unit cell volume of the α, β’ and β phases in In2Se3. The inset 

shows the pressure dependence of the monoclinic β angle.  
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We have used a Birch-Murnaghan state equation of 2nd order in order to obtain the 

state equation parameters at room pressure for α, β′ and β phases of In2Se3 and to 

compare them with those reported in Ref. 39 (see Table 2). As can be seen in Table 2, 

the bulk modulus of the phase I and II are underestimated in Ref. 39. The 

underestimation of the bulk modulus in Ref. 39 can be caused by the fact that data points 

for the pressure region where phase coexistence is observed have been included in the 

EOS determination. In our case, we have carefully selected only data points for phase I 

where either phase I or phase II were detected as single phases, which make as 

confident in the EOS parameters determined in the present work. 

It must be stressed that the β (R-3m) phase can be transformed by group-

subgroup relationships into the β´ (C2/m) phase. In fact, C2/m is a translationengleiche 

subgroup of R-3m. This means that if some geometrical relations are satisfied by the 

unit-cell parameters in the β´ phase, the β´ phase can be reduced to the higher symmetry 

β phase. The relations are: 𝑎𝑎𝑚𝑚 = 2 𝑏𝑏𝑚𝑚 sin 120° and 𝛽𝛽 = sin−1 �1
4
� + 90° = 104.4775°, 

where am, bm, and β are unit-cell parameters of β´. Under these conditions, the 

monoclinic β´ structure becomes the rhombohedral β structure. The unit-cell of both 

structures are related by 𝑎𝑎𝑟𝑟 =  𝑏𝑏𝑚𝑚 and 𝑐𝑐𝑟𝑟 = 3 𝑐𝑐𝑚𝑚 sin𝛽𝛽, where subindexes r and m refer 

to the rhombohedral and monoclinic structures. From the analysis of the pressure 

dependence determined for the β´ phase, we confirmed that the “magic” relation 

between the unit-cell parameters that transform β´ into β in In2Se3 is achieved only at 

12.7 GPa. 

 

4.2. HP-RS measurements 
 

As already mentioned, a Raman mode with a negative pressure coefficient was 

observed in previous HP-RS measurements on α-In2Se3,30 which was not observed in 

other HP studies.31, 32 In this context, we want to stress that we observed the appearance 

of soft phonons that were attributed to the formation of nanocluster of Se atoms because 

of the local decomposition of the sample.33 Therefore, we assumed that the observation 

of a soft phonon in previous HP-RS measurements of In2Se3 could evidence thermal 

degradation of the sample by laser heating and could provide a distorted understanding 

of the pressure effects on α-In2Se3. Consequently, we decided to repeat HP-RS 

measurements in α-In2Se3 by taking into account the strong sensitivity of this material 
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to laser light. In this way, we could compare RS measurements with lattice dynamics 

calculations as a check to verify the goodness of our HP-RS measurements and 

calculations and also in order to understand why in previous HP-RS experiments 42, 43 

the β´ phase was not identified. 

The irreducible representations of the Raman active phonons at Γ for the three 

phases α (R3m), β′ (C2/m), and β (R-3m) phases (see Table 3) show that there are 

eight, six and four Raman-active modes corresponding to the α, β′ and β phases, 

respectively.  However, since the α phase is non-centrosymmetric, all Raman-active 

modes are also infrared-active and a TO-LO splitting could be observed.27 

Figure 4 shows the RS spectra of  In2Se3 compressed up to 20 GPa. As observed, 

there is no phonon mode that softens under pressure in the whole range of pressures 

studied. This result is in agreement with Refs. 42, 43 and in contrast to Ref. 39. In the RS 

spectrum at room pressure, all modes of the initial phase are indicated with arrows, with 

the exception of the E1 mode whose frequency is below our spectrometer range. 

Unfortunately, most of the modes are overlapped, so we show in Fig. S2 a detailed view 

with all resolved modes of α phase. A comparison of the pressure dependence of the 

experimental and theoretical Raman-active mode frequencies of α-In2Se3 is shown in 

Fig. 5. A good agreement is found between experimental and theoretical frequencies 

and pressure coefficients for this phase, with no soft phonon either in RS measurements 

or in calculations. 
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Figure 4: HP-RS spectra at different pressures. Spectra corresponding to α, β´ and β 

phases are shown in blue, red and orange colours, respectively.  

 

Our HP-RS measurements show that the transition to β′ phase occurs about 0.9 GPa 

because the RS spectrum at that pressure shows clearly the modes of the α phase with a 

new peak which corresponds to the next phase (see the asterisk symbol in Fig. 4). This 

indicates the onset of the transition to the new phase. We have adjusted the shape of the 

Raman peaks with pseudo-Voigt functions and in this way we have been able to resolve 
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the two peaks that we have tentatively assigned to the Ag
3 and Bg

2 modes (see RS 

spectrum at 3.8 GPa); and later, those assigned to the Ag
1 and Bg

1 (see RS spectrum at 

9.8 GPa) of the β′ phase. For more information, resolved Ag
3 and Bg

2 modes at 3.8, 5.3 

and 9.8 GPa are displayed in Fig. S3. A comparison of the pressure dependence of the 

experimental and theoretical Raman-active mode frequencies of β′-In2Se3 is shown in 

Fig. 5.  
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Figure 5: Pressure dependence of the experimental (symbols) and theoretical (lines) 

Raman-active mode frequencies of the α, β´ and β phases in blue, red and orange 

colours, respectively. Short dotted lines represent fitted experimental Raman modes. 
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The first thing to point out is the strong similarity of the calculated modes in the β′ 

and β phases. Ag
1 and Bg

1 modes of β′ phase are almost overlapped and difficult to 

distinguish of Eg
1 mode of β phase. The same happens with Ag

3 and Bg
2 modes of β′ 

phase and Eg
2 mode of β phase. On the other hand, Ag

2 modes of β´phase and A1g
1 of β 

phase are indistinguishable, as well as the Ag
4 of β´ phase and A1g

2 mode of β phase. 

Therefore, our calculations show that both phases are very similar and provide a 

valuable help to understand why previous HP-RS measurements have not been able to 

identify the intermediate β′ phase transition. Between 5 and 10 GPa calculations show 

an abrupt decrease of the highest frequency Ag
3 mode (see Fig. 5). 

According to our RS measurements and calculations, the β′-to-β phase transition 

takes place around 10-12 GPa and not around 5.0 GPa as suggested by previous HP-

XRD measurements.39 In order to corroborate experimentally the pressure at which the 

transition to the β phase is completed, we have plotted the full width at half maximum 

(FWHM) of the phonon Ag
2 in the β′ phase (see Fig. 6). The FWHM decreases with 

increasing pressure and stabilizes about 10-12 GPa. Therefore, this result reinforces the 

fact that the transition is completed around 10-12 GPa. In other words, it seems that this 

process is gradual and it takes a range of pressures to be completed.  
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Figure 6:  Pressure dependence of the FWHM of the Ag

2 mode in the β´ phase, which 

changes to the A1g
1 mode in the β phase above 10-12 GPa. 

 

Summing up, HP-RS results and its comparison to ab initio calculations have 

allowed us to assign most of the modes of the different phases. In Tables 4, 5 and 6 we 

have summarized experimental and theoretical Raman mode frequencies together with 

their pressure coefficients for the three phases. It should be noted that the E1 (α phase) 

mode is not observed in our setup owing to their low frequency. The same happens with 

the Bg1 and Ag
1 (β′ phase) which can be observed at about 7.0 GPa. Note that the Ag

4 

(β′ phase) mode is the only one whose pressure dependence is different in experiment 

and calculations. At present, we have no explanation for this fact as well as for the 

rather large difference between some experimental and theoretical absolute frequencies. 

In Fig. S4 of the Supporting Information, we show the RS data on downstroke. Despite 

the difficulty on the discrimination between β´ and β phases due to the second-order 

character of this phase transition, we can appreciate by looking at the A1g
1 mode of the 
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β phase a sign of the back transformation to the Ag
2 mode of β´ phase. Note that this 

mode becomes more intense and defined below 10 GPa.  

Finally, we must comment that the RS spectrum of the released sample appears 

to be that of an amorphous or disordered-like α phase since the position of the broad 

bands is similar to the frequencies of the Raman-active phonons in the α phase (see Fig. 

S5). However, our RS spectrum of the released sample does not look similar to that of 

previous amorphous In2Se3.66 Our RS spectrum clearly reflects a similarity with the RS 

spectrum of the α phase while that of Weszka et al. shows much close similarity to 

those of Se clusters, as already commented by Weszka et al., likely due to thermal 

heating of their nm-size samples with the green and blue lasers.66 Besides, we have to 

stress that our result shows the irreversibility of the compression process in α-In2Se3. 

This makes sense if we consider that there is a considerable rearrangement of cations, 

especially at the α → β´transition (7% volume reduction and “average” fivefold to 

sixfold coordination change for In atoms), and that the β´ phase cannot be recovered at 

ambient conditions in equilibrium conditions. Note the two infrared modes (Au
1 and 

Bu
1) with imaginary frequency at ambient pressure in Fig S6 of the Supporting 

Information. For the sake of completeness, Fig. S6 shows the IR active modes obtained 

by our ab initio calculations. Interestingly, it shows a monotone progression from β′ to 

β IR modes around 10 GPa; we even see how the two lowest β′ soft IR modes coincide 

with the lowest IR mode of the β phase at 10 GPa. Concluding, we can say that the 

Raman modes of all these phases are not easy to discern, especially those of the β′ and β 

phases; however, we have been able to discern the phonons associated with both β′ and 

β phases and show that the β′→ β transition is completed around 10 GPa. 

 

5. DISCUSSION 
 

In order to shed light on the mechanisms of pressure-induced phase transitions in 

α-In2Se3, we have plotted two images of three phases involved by using the VESTA 

software (see Fig. 7).67  In the images at the top, we highlight the polyhedra associated 

with In atoms, while in the image at the bottom the polyhedra associated with Se atoms. 

From these theoretical structures, we have obtained the bond distances associated with 

these polyhedra as a function of pressure. Figures 8a and 8b show the evolution of the 
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bond distances versus pressure of the polyhedra associated with the In and Se atoms of  

α, β’ and β phases in Fig. 7.  

 
Figure 7: Schematic view of the phases of In2Se3 as a function of pressure. a), b), and c) 

images show the different polyhedra associated with In atoms in the α, β′, and β phases, 

respectively; while d), e), and f) images show the polyhedra associated with Se atoms at 

the centre of the quintuple layers in each phase. 
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As can be seen in Fig. 8a and 8b, the α → β′ phase transition implies a 

discontinuity in the bond distances of the polyhedra associated with In and Se atoms 

which highlights the change in coordination for In and Se atoms already commented.  

On the other hand, Fig. 9 shows two units of β′ phase highlighting the polyhedra 

associated with In and Se atoms. The quintuple block is showed at the bottom right 

corner. The β′ phase is characterized by one irregular octahedron associated with Se 

atoms, in the middle of the quintuple block, and another irregular octahedron associated 

with In atoms. These two irregular octahedra are plotted separately at the right top 

corner. Polyhedra associated with the In atoms has four different bond distances 

whereas that related to the Se atoms has only two different bond distances (see Fig. 8a 

and 8b). It is noted that in β′ phase, the two polyhedra associated with In1 and In2 

atoms (a tetrahedron and an octahedron) of the α phase become equivalent since the 

effective coordination number of In1 atom increased. The polyhedron associated with 

the Se atom also increased its coordination. In other words, these two polyhedra become 

sixfold coordinated. 
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Figure 8: Pressure dependence of the In-Se bond distances for the different phases α, β’ 

and β. a) In-Se distances associated with the polyhedral units around In atoms of Fig. 7: 

α phase: octahedron (empty triangle symbol) and tetrahedron (empty square symbol); β´ 

phase: irregular octahedron (empty rhombus symbol); β phase: regular octahedron 

(asterisk symbol). b) In-Se distances associated with the polyhedral units around Se 

atoms of Fig. 7: α phase: irregular tetrahedron (empty triangle symbol); β´ phase: 

irregular octahedron (empty rhombus symbol); β phase: regular octahedron (asterisk 

symbol). 

 



23 
 

 
Figure 9: Detail of two unit cells of β′-In2Se3. Right bottom corner: the quintuple layer. 

Right top corner: the two irregular octahedra associated with In and Se atoms. 

 

In turn, the β´→ β phase transition proceeds with a progressive regularization of  the 

octahedral units associated with the In and Se atoms as pressure increases. When the 

transition is completed, the octahedron associated with In atoms continues being 

irregular but only with two different bond distances. Contrary, the octahedron 

associated with Se atom becomes regular (see the Figs. 8a and 8b). It is worthy to note 

that values of bond distances from about 6.0 to 9.0 GPa are very close but the transition 

is not completed up to approximately 10 GPa according to the calculation. This pressure 

again is slightly higher than reported in XRD experiment of Zhao in Ref. 39 and in 

accordance with our results of HP- XRD and RS.   

We can conclude that the progressive regularization of the octahedra of both In and 

Se atoms without any discontinuity in the bond distance is an indication of the second-

order character of the β’-β phase transition. The full regularization of the octahedron of 

the Se atom indicates the end of the transition to the R-3m phase. Both β’and β phases 

are energetically competitive, as it can be seen from the enthalpy difference versus 

pressure at a temperature 0 K of the three phases (Fig. 10). Despite these enthalpies are 

calculated at 0 K, the pressure values of the α-βʹ and βʹ-β transitions are quite close to 

values obtained experimentally. 
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 Figure 10: The enthalpy difference versus pressure at 0 K for the α, β′ and β phases of 

In2Se3. 
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Figure 11. Detail of the hexagonal unit cell of β-In2Se3. Right bottom corner: quintuple 

layer. Right top corner: two polyhedra centered in In and Se atoms. 

 

In addition, Figs. 12a and 12b show the pressure dependence of the mean or 

“effective” coordination number  (ECoN) of the octahedra of In and Se atoms in the β′ 

and β phases. Several proposals have been made for the calculation of ECoN by adding 

all surrounding atoms with number between 0 and 1. We have used that adopted in the 

VESTA software68-70 whose definition is given at the Supporting Information. These 

two figures support that the transition from β′ to β phase is gradual and completed 

around 10 GPa. It is worthy to note that the effective coordination number of the 

octahedron associated with Se atoms reaches a constant value equal to 6, indicating the 

regularization of these octahedra and supporting that phase transition to the β phase is 

completed about 10 GPa.  
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Figure 12. Pressure dependence of the effective coordination index of the octahedron 

associated with a) In atom and b) Se atom in β′ (empty rhombus symbol) and β (asterisk 

symbol) phases.  

We have visualized in Fig. 13 the atomic vibrations which are responsible for the 

Ag
2 (β′ phase) and A1g

1 (β phase) modes with the program Jmol.71 As observed, the 

central Se layer of quintuple layers keeps fixed in them and Se and In symmetric layers 

compress out-plane in the Ag2 mode of the β′ phase (Fig. 13 a)) ; however, in the A1g
1 

mode of the β phase, they stretch the quintuple layers (Fig. 13 b)). 



28 
 

 
Figure 13. a) Schematic atomic displacement of Ag

2 mode of the β´phase. b) Schematic 

atomic displacement of A1g
1 mode of the β phase. 

 

We can conclude that the monoclinic β′ phase symmetrizes gradually until it reaches 

a relationship of network parameters that makes the structure rhombohedral. Once 

reached the high symmetry, the structure remains stable up to the highest pressure 

covered by our studies. A consequence of the transition mechanism is that the nature of 

the transition is second-order (no volume discontinuity). The fact that the β´→ β phase 

transition is very subtle might be the reason why Zhao et al. gave a transition pressure 

lower than us, and why Rasmussen et al. conclude from their RS experiment that the α 

 β phase transition occurs directly at about 0.7 GPa,42 despite XRD measurements 

were properly conducted. Similar conclusion was reached by Ke et al. 43 arguing that 

there is a shear shift of planes in an attempt to explain the mechanism that leads directly 

from α to β phase. Such a claim is not plausible, given that, as we have seen above in 

the descriptions of the different phases, the α phase is formed by sheets of octahedra 

and tetrahedra centred at the In1 and In2 atoms while β phase only contains octahedra 

associated with In atoms. Therefore, a shift of planes cannot lead from α to β. Besides, 

the lack of full reversibility to the α phase clearly indicates the reconstructive character 

of the α → β´phase transition. 

 

6. CONCLUSIONS 
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We have performed a joint experimental and theoretical study of the structural and 

vibrational properties of α(R)-In2Se3 under compression by means of X-ray diffraction 

and Raman scattering measurements as well as by ab initio total-energy and lattice-

dynamics calculations. Our study has confirmed the R3m nature of the α(R) phase and 

the α → β′ → β  sequence of pressure-induced phase transitions. Moreover, our study 

has allowed us to understand that the reason for the discordance in previous 

measurements is the second-order character of the β’-β phase transition (both phases are 

energetically very close in a narrow pressure region) and the difficulty to discern 

between both phases from the experimental point of view. In fact, both our experimental 

and theoretical techniques clearly indicate that the β’-β phase transition occurs about 

10-12 GPa by a gradual symmetrization of the monoclinic β’ phase until it reaches a 

relationship of network parameters that makes the structure rhombohedral (β phase). 

The changes in the X-ray diffraction patterns and Raman-active modes during the β’-β 

phase transition are very subtle and consequently difficult to detect experimentally. That 

is the reason for the discordance between previous measurements. Furthermore, our 

Raman results and its comparison to ab initio calculations have allowed us to assign 

most of the modes of the three different phases. We hope the present work will 

stimulate further experiments at both high pressure and high temperature in order to 

clarify the thermodynamic equilibrium between β’ and β phases.  
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TABLES  

 

Table 1. Crystal structure, S.G., number of α, β′ and β phases 

 

Phase Crystal structure S.G. Number Refs. 
α  Rhombohedral R3m 160 23, 24, 31 
β′ Monoclinic C2/m 12 37-39 
β  Rhombohedral R-3m 166 21, 23, 24 

 

Table 2: Birch-Murnaghan 2nd order state equation parameters at ambient pressure 

obtained for α, β′ and β phases of In2Se3 and its comparison with a previous study.   

 
 Phase I Phase II Phase III  

V0 (Å3) 403.8(5) 256(1) 375(2) 
This work 

B0 (GPa) 40(2) 48(4) 60(6) 

V0 (Å3) 407.9 260.1 369.8 
Ref. 39 

B0 (GPa) 31 35 66 

 
 

Table 3. The irreducible representations of the Raman active phonons in Γ for the α, β′ 

and β phases. 

 

Phase Raman-active modes in the centre zone Γ 

α Г =  4A1 + 4E 

β′ Г =  4Ag + 2Bg 

β Г =  2A1g + 2Eg 
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Table 4.  Experimental and theoretical Raman-active mode frequencies and their 

pressure coefficients as derived from a fit to ω(P) = ω0 + a(P − Po) of the α phase (Po 

= 0 GPa). 

Mode ωo (exp) 
(cm-1) 

a (exp) 

(cm-1 GPa-1) 
ωo (th) 
(cm-1) 

a (th) 

(cm-1 GPa-1) 
E1 27a  21.7 2.68 

E2 89.2 3.28 88.5 3.85 

A11  103.5 4.77 92.5 5.09 

E3 158.7 2.98 147.0 3.19 

E4 179.8 2.80 169.5 2.69 

A12 182.3 6.36 169.2 6.16 

A13 192.8 1.33 185.6 1.42 

A14 247.5 2.98 233.2 2.71 
 

a This E-type mode was observed in Ref. 26 in good agreement with our theoretical data. 

 

Table 5. Experimental and theoretical Raman-active mode frequencies of the β′ phase 

and their pressure coefficients derived from a primer order fit ω(P) = ω0 + a(P − Po)  

or to ω(P) = ω0 + a(P − Po) + b(P − Po)2  (Po = 0.9 GPa). 

 

Mode ωo (exp) 
(cm-1) 

a (exp) 

(cm-1 GPa-1) 
b (exp) x 100 
(cm-1 GPa-1) 

ωo (th) 
(cm-1) 

a (th) 

(cm-1 GPa-1) 
b (th) x 100 
(cm-1 GPa-1) 

Bg1 39.3 2.47  43.9 2.90  

Ag
1  44.4 2.44  45.9 2.69  

Ag
2  99.9 3.23  91.3 3.65  

Bg2 177.3 4.43 -6.8 164.9 4.31 -14.9 

Ag
3  167.9 5.54 -13.1 165.6 5.41 -32.6 

Ag
4  207.9 2.3  190 4.46 -43 
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Table 6. Experimental and theoretical Raman-active mode frequencies of the β phase 

and their pressure coefficients as derived from a fit to ω(P) = ω0 + a(P − Po)  or to 

ω(P) = ω0 + a(P − P0) + b(P − P0)2 (P0 = 10 GPa). 

 

 Mode ωo (exp) 
(cm-1) 

a (exp) 

(cm-1 GPa-1) 
ωo (th) 
(cm-1) 

a (th) 

(cm-1 GPa-1) 
Eg1 72.6 1.74 72.1 1.41 

A1g1  132.9 2.39 127.1 1.86 

Eg2 212.3 2.07 197.7 1.81 

A1g2  227.7 2.20 207.7 2.05 
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The scheme shows X-ray diffraction and Raman scattering measurements at different 

pressures that correspond to the α (R3m) → β´ (C2/m) → β (R-3m) sequence of 

pressure-induced phase transitions in α−In2Se3. The α (R3m) → β´ (C2/m) first-order 

phase transition occurs about 0.9 GPa and the β´ (C2/m) → β (R-3m) second-order 

phase transition occurs above 10 GPa due to the gradual symmetry increase of the 

monoclinic C2/m phase. 


