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Abstract

Time-delay systems are ubiquitous in many engineering applications, such as
mechanical or fluid transmissions, metallurgical processes or networked control
systems. Time-delay systems have attracted the interest of control researchers
since the late 50’s. A wide variety of tools for stability and performance analysis
has been developed, specially over the past two decades.

This thesis is focused on the problem of stabilizing systems that are affected by
delays on the actuator and/or sensing paths. More specifically, the contributions
herein reported aim at improving the performance of existing controllers in the
presence of external disturbances. Time delays unavoidably degrade the con-
trol loop performance. Disturbance rejection has been a matter of concern since
the first predictive controllers for time-delay systems emerged. The key idea of
the strategies presented in this thesis is the combination of predictive controllers
and disturbance observers. The latter have been successfully applied to improve
the disturbance rejection capabilities of conventional controllers. However, the
application of this methodology to time-delay systems is rarely found in the lit-
erature. This combination is extensively investigated in this thesis.

Another handicap of predictive controllers has to do with their implementation,
which can induce instability if not done carefully. This issue is related to the fact
that predictive control laws take the form of integral equations. An alternative
control structure that avoids this problem is also reported in this thesis, which
employs an infinite-dimensional observer, governed by a hyperbolic partial dif-
ferential equation.
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Resumen

Los sistemas con retardo temporal aparecen con frecuencia en el ámbito de la
ingeniería, por ejemplo en transmisiones hidráulicas o mecánicas, procesos met-
alúrgicos o sistemas de control en red. Los retardos temporales han despertado
el interés de los investigadores en el ámbito del control desde finales de los
años 50. Se ha desarrollado una amplia gama de herramientas para el análisis de
su estabilidad y prestaciones, especialmente durante las dos últimas décadas.

Esta tesis se centra en la estabilización de sistemas afectados por retardos tem-
porales en la actuación y/o la medida. Concretamente, las contribuciones que
aquí se incluyen tienen por objetivo mejorar las prestaciones de los controladores
existentes en presencia de perturbaciones. Los retardos temporales degradan, in-
evitablemente, el desempeño de un bucle de control. No es de extrañar que el
rechazo de perturbaciones haya sido motivo de estudio desde que emergieron
los primeros controladores predictivos para sistemas con retardo. Las estrate-
gias presentadas en esta tesis se basan en la combinación de controladores pre-
dictivos y observadores de perturbaciones. Estos últimos han sido aplicados
con éxito para mejorar el rechazo de perturbaciones de controladores conven-
cionales. Sin embargo, la aplicación de esta metodología a sistemas con retardo
es poco frecuente en la literatura, la cual se investiga exhaustivamente en esta
tesis.

Otro inconveniente de los controladores predictivos está relacionado con su im-
plementación, que puede llevar a la inestabilidad si no se realiza cuidadosa-
mente. Este fenómeno está relacionado con el hecho de que las leyes de con-
trol predictivas se expresan mediante una ecuación integral. En esta tesis se pre-
senta una estructura de control alternativa que evita este problema, la cual utiliza
un observador de dimensión infinita, gobernado por una ecuación en derivadas
parciales de tipo hiperbólico.
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Resum

Els sistemes amb retard temporal es troben amb freqüència a l’enginyeria, per
exemple en transmissions hidràuliques o mecàniques, processos metal·lúrgics o
sistemes de control en red. Els retards temporals han despertat el interés dels
investigadors de control des de finals dels anys 50. S’han desenvolupat una
àmplia gamma de ferramentes per a l’anàlisi de la seua estabilitat i prestacions,
especialment durant les dos últimes dècades.

Aquesta tesi s’ocupa de l’estabilització de sistemes afectats per retards temporals
en l’actuació o la mesura. Concretament, les contribucions que ací s’inclouen
tenen com a objectiu millorar les prestaciones dels controladors existents en
presència de pertorbacions. Els retards temporals degraden, inevitablement,
les prestacions d’un bucle de control. No és d’extranyar doncs, que el rebuig
de pertorbacions haja sigut motiu d’estudi d’ençà que van emergir els primer
controladors predictius per a sistemes amb retard. Les estratègies presentades
en aquesta tesi es basen en la combinació de controladors predictius amb ob-
servadors de pertorbacions. Aquests últims han sigut aplicats amb èxit per a
millorar el rebuig de pertorbacions de controladors convencionals. No obstant
això, l’aplicació d’aquesta metodologia a sistemes amb retard es poc freqüent a
la literatura, la qual s’investiga exhaustivament en aquesta tesi.

Un altre inconvenient dels controladors predictius està relacionat amb la seua
implementació, la qual pot ocasionar inestabilitat si no es realitza amb compte.
Aquest fenòmen està relacionat amb el fet que les lleis de control predictives
s’expressen mitjançant una eqüació integral. En aquesta tesi es presenta una
estructura de control alternativa que evita aquest problema, la qual fa servir un
observador de dimensió infinita, governat per una ecuació en derivades parcials
de tipus hiperbòlic.
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Motivation and thesis outline

One of the main difficulties when designing a control system is, undoubtedly,
the presence of time delays, specially if the system being controlled is open-loop
unstable. It should be remarked that delays are not necessarily intrinsic to the
process itself, but they can be originated when sensing and/or actuating. There-
fore, even if small, delays arise in any digitally implemented control system.

This thesis is focused on the design of robust control strategies for systems with
input and/or output delays. During the past two decades, the study of time-
delay has advanced significantly, so that ample tools for analysis and design are
now available. Most of the effort has been put towards finding less conservative
stability conditions. Regarding control strategies, predictive controllers are still
the cornerstone to stabilize exponentially unstable time-delay systems. Since
they emerged in the late 50’s, disturbance rejection has been an issue, which
is still a matter of research. Recall that most industrial processes operate on
regulatory basis, making disturbance rejection the central goal. Another concern
with predictive controllers has to do with their implementations, which may
lead to instability if not done carefully.

The objectives of this thesis can be summarized as follows:

• Improve disturbance attenuation of predictive controllers by using distur-
bance observers

• Develop stability conditions and design procedures that can be used to
tune the proposed controllers intuitively

• Explore control techniques that avoid distributed integral terms and see
how they can be combined with disturbance observers
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Thesis outline

This thesis is structured into three parts. Part I provides an introduction to time-
delay systems. Fundamental concepts regarding their solution, stability notions
and analysis tools are revisited. A special emphasis is put on the review of con-
trol strategies. Results reported in Part II are concerned with disturbance re-
jection improvement of predictor-based controllers. This part starts with an in-
troductory chapter that reviews disturbance observers and its limitations when
applied to time-delay systems. The rest of the chapters are based on publications
derived from this thesis, which are detailed in Section 3.3. Finally, Part III takes
a slightly different perspective, as it is based on the modeling of the delay phe-
nomenon by means of partial differential equations. An introductory chapter to
this approach is also given. The content of the rest of the chapters, which are
concerned with avoiding the implementation issues of predictive control laws,
is detailed in Section 8.3.
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Part I

Time-delay systems





Chapter 1

Introduction

Time-delay systems (TDSs) belong to a class of functional differential equations that are
infinite-dimensional, as opposed to ordinary differential equations (ODEs). Delays of-
ten arise in many engineering applications. They may be intrinsic to the process being
controlled (chemical reactions, drilling or milling processes) or originated when imple-
menting the control strategy at the sensor or actuator paths (communication delays,
jitter, slow actuators). Stability analysis of TDSs involves several challenges. In spite of
being linear systems, they possess in general an infinite number of poles, which makes
their analysis in the frequency domain complicated. This chapter is focused on the time-
domain approach. The generalization of the direct Lyapunov method for TDSs is pre-
sented, known as the Lyapunov-Krasovskii theorem. This approach leads to stability
conditions in terms of linear matrix inequalities, for which a short introduction is also
given. This chapter ends with some simple stability conditions, derived upon Lyapunov-
Krasovskii functions via the so-called descriptor method.
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Chapter 1. Introduction

1.1 Solution concept and state of a TDS

In many physical and biological phenomena, the rate of variation in the system
state depends on past states. Time delays have been also observed to occur in
many engineering systems, such as mechanical and fluid transmissions, met-
allurgical processes, exhaust gas recirculation in diesel engines or networked
control systems (Sipahi et al. 2011). Even if the process being controlled has no
inherent delays, they often appear in the digital implementation of the controller,
where sampling and actuation introduce delays. Delays are unavoidable when
performing measurements because of the sampling process, which can be signif-
icant if additional filtering techniques have to be computed. The computational
time that it takes for the processing unit to compute the control algorithm may
be also relevant in some cases. The communication between the processing unit
and the actuator is another source of delays (see Fig. 1.1).

System

Comm.

Actuator Sensor A/D

Comm.

ControllerD/A

Figure 1.1: Structure of a digital controller implementation

A general linear time-invariant (LTI) system with a single constant delay h > 0
has the form

ẋ(t) = Ax(t) + A1x(t − h), t ≥ 0 (1.1)

where x ∈ R
n and A, A1 ∈ R

n×n are constant matrices. A fundamental differ-
ence with respect to ODEs shows up when one tries to find the solution of (1.1).
Instead of an initial value x(0), an initial value function x(s) = φ(s), ∀s ∈ [−h, 0]
is needed to compute the solution of (1.1) over the interval [0, h]. Therefore, a
proper state for a TDS is given by a function

xt : [−h, 0] → Rn : xt(θ) = x(t + θ), ∀θ ∈ [−h, 0].

TDSs are then infinite-dimensional. Indeed, partial differential equations of trans-
port type can be used to model the delay phenomenon. The reader is referred to

4



1.1 Solution concept and state of a TDS

Part III of this thesis for further details about this approach. Another feature that
distinguish a TDS from an ODE is the fact that the solution of the former may
converge to zero in finite time (Fridman 2014).

The solution to (1.1) over the interval t ∈ [0, h] needs of the initial condition
x0(θ) = φ(θ). Once it has been obtained, the same procedure can be performed
for t ∈ [h, 2h], t ∈ [2h, 3h] and so forth.

Example 1.1. (Fridman 2014) Consider the TDS ẋ(t) = −x(t − h) with φ(θ) =
1, θ ∈ [−h, 0] and h = 1. The solution can be obtained by solving

t ∈ [0, h], ẋ(θ) = −φ(t − h) = −1, x(0) = 1,

which yields x(t) = 1 − t, ∀t ∈ [0, h]. The solution over the next interval can be
obtained by solving

t ∈ [h, 2h], ẋ(θ) = −x(θ − h) = −(1 − θ + h), x(h) = 0,

which yields x(t) = t2/2− 2t + 3/2, ∀t ∈ [h, 2h]. The method can be repeated leading
to polynomial in t solutions.

In order to obtain a general solution to (1.1), let us define the fundamental matrix
Φ(t) that satisfies the equation

Φ̇(t) = AΦ(t) + A1Φ(t − h), (1.2)

with the initial condition Φ(t) = 0, ∀t < 0 and Φ(t) = I, t = 0. Then, the
solution to (1.1) is given by (Bellman et al. 1963)

x(t) = Φ(t)φ(0) +
∫ 0

−h
Φ(t − θ − h)A1φ(θ)dθ. (1.3)

Among other ways, (1.3) can be proved using the Laplace transform, which is
defined by

F(s) = L{ f }(s) =
∫ ∞

0
e−st f (t)dt.

Taking the Laplace transform of (1.1), yields

sX(s)− φ(0) = AX(s) + A1[e
−shX(s) +

∫ 0

−h
e−s(θ+h)φ(θ)dθ].

5



Chapter 1. Introduction

which one can solve for X(s), leading to

X(s) = ∆−1(s)[φ(0) +
∫ 0

−h
e−s(θ+h)φ(θ)dθ], (1.4)

where ∆(s) = sI − A− A1e−sh. From (1.2), it can be seen that X(t) = L−1{∆−1}(t)
and thus L{X(t − θ − h)} = e−s(θ+h)∆−1(s). Taking the inverse Laplace trans-
form of (1.4) yields (1.3).

1.2 Systems with input and output delays

Delays often arise in practice when sensing and/or actuating. An LTI system
with a single input delay h > 0, can be represented in state-space form as

ẋ(t) = Ax(t) + Bu(t − h), (1.5)
y(t) = Cx(t). (1.6)

where x ∈ Rn, u ∈ Rm, y ∈ Rq and A, B, C are constant matrices of appropriate
dimensions. Most of the contributions reported in this thesis deal with systems
in such form. Systems with measurement delays can be represented in a similar
fashion,

ẋ(t) = Ax(t) + Bu(t), (1.7)
y(t) = Cx(t − h). (1.8)

Both (1.5)-(1.6) and (1.7)-(1.8) are input-output equivalent. An alternative repre-
sentation in the Laplace domain is given by

y(s) = G(s)e−shu(s), (1.9)

where G(s) = C(sI − A)−1B is the delay-free part of the plant. Also, the variable
ȳ(s) = G(s)u(s) is referred to as the non-delayed output.

6



1.3 Stability notions

1.3 Stability notions

A general retarded differential equation can be represented as

ẋ(t) = f (t, xt), ∀t ≥ t0, (1.10)

where f : R × C[−h, 0] → Rn is continuous in both arguments, locally Lipschitz
in the second argument and C[−h, 0] denotes the Banach space of continuous
functions equipped with the norm

‖xt‖C = max
θ∈[−h,0]

|x(t + θ)|.

It is assumed that f (t, 0) = 0, which guarantees that (1.10) has a trivial solution
x(t) ≡ 0. The trivial solution of (1.10) is (Fridman 2014):

• uniformly stable if ∀t0 ∈ R and ∀ǫ > 0, there exists a δ = δ(ǫ) > 0 such that
‖xt0‖C < δ(ǫ) implies |x(t)| < ǫ for all t ≥ t0

• uniformly asymptotically stable if it is uniformly stable and there exists a δa >

0 such that for any η > 0 there exists a T((δa , η) such that ‖xt0‖C < δa

implies |x(t)| < η for all t ≥ t0 + T(δa, η) and t0 ∈ R

• globally uniformly asymptotically stable if δa can be an arbitrarily large finite
number

For autonomous systems, that is, those which do not depend explicitly on time,
the term “uniform” can be dropped.

1.4 Frequency domain vs time domain

Frequency domain stability analysis is useful for linear systems. When applied
to TDSs, one faces the problem of studying the roots of a quasipolynomial, which
is a polynomial that contains exponential functions. In contrast to ODEs, the
characteristic equation of TDSs has generally an infinite number of solutions,
which points out their infinite-dimensional nature, as discussed above. This ap-
proach is not used throughout this thesis. The reader is referred to (Gu et al.
2003) and the references therein for additional information on this methodology.

As in ordinary (non-delayed) systems, a powerful method for stability and per-
formance analysis of TDS is based on the direct Lyapunov method. There are
two main direct Lyapunov methods: (Krasovskii 1963) and (Razumikhin 1956).

7
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All the stability analysis reported in this thesis are based on the Lyapunov-
Krasovskii approach. For additional information on the technique developed
by Razumikhin and its applications, the reader is referred to (Fridman 2014).

Time delays have various effects on stability. Most commonly, delays have a
destabilizing effect. Consider the simple time-delay system ẋ(t) = −x(t − h),
where h ≥ 0 is the time delay, whose solutions converge to zero only for h ∈
[0, π/2). However, delays may also have a stabilizing effect. For example, the
system ÿ(t) + y(t) + y(t − h) = 0 is unstable for h = 0 but asymptotically stable
for h = 1. The first scenario is the one considered in this thesis, where delays are
assumed to jeopardize stability. For delay-stabilizing applications, the reader is
referred to (Niculescu et al. 2004; Fridman et al. 2017) and the references therein.

1.5 Lyapunov-Krasovskii approach

A criterion for the stability of the trivial solution is given in the following theo-
rem.

Theorem 1.1 (Lyapunov-Krasovskii). Suppose that u, v, w : R+ → R+ are contin-
uous non-decreasing functions, u(s), v(s) are positive for s > 0 and u(0) = v(0) = 0.
The trivial solution of (1.10) is uniformly stable if there exists a continuous functional
V : R × C[−h, 0] → R+, which is positive definite, i.e.,

u(|x(t)|) ≤ V(t, xt) ≤ v(‖xt‖C), (1.11)

such that its derivative along (1.10) is non-positive in the sense that

V̇(t, xt) ≤ −w(|x(t)|). (1.12)

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable.
Furthermore, if lims→∞ u(s) = ∞, then it is globally uniformly asymptotically stable.

In some cases, functionals V(t, xt, ẋt), which depend also on the state derivative,
are useful to prove stability (Fridman 2014). Let us introduce the Banach space
W[−h, 0] of absolutely continuous functions with the norm

‖x‖W = ‖x‖C +
∫ 0

−h
|ẋ(s)|2 ds.

Theorem 1.1 is then extended to continuous functionals V : R × W[−h, 0] ×
L2(−h, 0) → R+ as follows:
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Theorem 1.2. Suppose that u, v, w : R+ → R+ are continuous non-decreasing func-
tions, u(s), v(s) are positive for s > 0 and u(0) = v(0) = 0. The trivial solution of
(1.10) is uniformly stable if there exists a continuous functional V : R × W[−h, 0]×
L2(−h, 0) → R+, which is positive definite, i.e.,

u(|x(t)|) ≤ V(t, xt, ẋt) ≤ v(‖xt‖W),

such that its derivative along (1.10) is non-positive in the sense that

V̇(t, xt, ẋt) ≤ −w(|x(t)|).

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable.
Furthermore, if lims→∞ u(s) = ∞, then it is globally uniformly asymptotically stable.

1.6 Linear matrix inequalities

The application of the direct Lyapunov method to the stability analysis of linear
systems leads to linear matrix inequalities (LMIs). The first LMI was obtained
by Lyapunov in about 1890, when he showed that the ODE ẋ(t) = Ax(t) was
asymptotically stable if and only if there exists a positive definite matrix P such
that ATP+ PA < 0. The solution of LMIs by computer via convex programming
was recognized in the early 80’s, while efficient interior-point methods were de-
veloped a few years later. See (Boyd et al. 1994) for a detailed historical perspec-
tive and extensive information about LMIs.

1.6.1 Standard LMI problems

An LMI has the form

F(x) = F0 +
m

∑
i=1

xiFi > 0, (1.13)

where x = [x1, ..., xm]T is the vector of decision variables and the symmetric
matrices Fi ∈ Rn×n are given. In control problems the decision variables are
usually matrices.

Example 1.2. Consider for example the LMI ATP + PA < 0. Let E1, ..., Em be a basis
for symmetric n by n matrices, where m = n(n + 1)/2. Then, P = ∑

m
i=1 xiEi, and the

LMI can be expressed as AT(∑m
i=1 xiEi) + (∑m

i=1 xiEi)A < 0, which is in the form of

(1.13) with F0 = 0 and Fi = −ATEi − Ei A. Therefore, one may refer to the matrix P as
the decision (matrix) variable.

9
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In most cases, one will be interested simply on studying the feasibility of (1.13).
The feasibility problem consists on finding x such that (1.13) holds. There are
several toolboxes available online to solve LMIs, which are actually convex op-
timization problems. In this thesis, all LMIs have been solved using the tool-
box Yalmip for MATLABr, which employs an optimization solver called Sedumi
(Sturm 1999; Lofberg 2004).

1.6.2 Schur complement

Nonlinear inequalities can be converted into LMIs using the Schur complement,
stated in the following lemma.

Lemma 1.1. Given matrices A = AT, B, C = CT of appropriate dimensions, the fol-
lowing holds:

M =

[
A B
BT C

]

> 0 ⇐⇒ C > 0 & A − BC−1BT
> 0. (1.14)

Proof. This result follows from the congruent transformation (which does not
change the sign of the eigenvalues)

[

I −BC−1

0 I

]

M

[
I 0

−C−1BT I

]

=

[

A − BC−1BT 0
0 C

]

.

Example 1.3. Consider for example the nonlinear matrix inequality ATP + PA +
PBR−1BTP + Q < 0, which is quadratic in P. Using Schur complement, it is equiva-
lent to the LMI [

−ATP − PA − Q PB
BTP R

]

> 0.

1.6.3 S-procedure

Sometimes one encounters the constraint that some quadratic function be neg-
ative whenever other quadratic functions are all negative. This is the case, for
example, when dealing with norm-bounded uncertainties.

Lemma 1.2. (Yakubovich 1977) Let F0 ∈ R
n×n and L1, ..., Lp ∈ R

n×n. If there exist
real scalars λi ≥ 0, such that

F0 −
p

∑
i=1

λiLi > 0,
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then xTF0x > for all 0 6= x ∈ R
n satisfying xT Lix ≥ 0 for all i = 1, ..., p.

Example 1.4. Consider the system ẋ(t) = Ax(t) + g(x) where |g(x)|2 ≤ xT Mx.
The Lyapunov analysis with V = xTPx shows that asymptotic stability is guaranteed if
there exists a matrix P > 0 such that

[
x g

]
[

ATP + PA PB
BTP 0

] [
x
g

]

< 0,

where g satisfies gTg ≤ xT Mx. Applying the S-procedure the latter is equivalent to the
existence of a λ ≥ 0 such that

[
ATP + PA + λM PB

BTP −λI

]

< 0.

1.7 Delay-independent stability conditions

The Lyapunov-Krasovskii approach (Theorem 1.1) is used here to develop delay-
independent stability conditions. These are obviously conservative conditions,
which guarantee the stability of (1.1) independently of the size of h. Let us con-
sider the LK functional

V(t, xt) = xT(t)Px(t) +
∫ t

t−h
xT(s)Qx(s)ds, (1.15)

where P, Q > 0. Note that (1.15) satisfies (1.11) with u(s) = λ(P)s2 and v(s) =
(λ(P) + hλ(Q))s2. The derivative of (1.15) is given by

V̇(t, xt) = 2xT(t)P[Ax(t) + A1x(t − h)] + xT(t)Qx(t)− xT(t − h)Qx(t − h),
(1.16)

and thus (1.12) holds if
[

ATP + PA + Q PA1
AT

1 P −Q

]

< 0, (1.17)

which guarantees (1.1) to be asymptotically stable, by Theorem 1.1. This simple
delay-independent condition implies that A and A ± A1 are Hurwitz. This is a
severe limitation, as it implies that this method cannot be applied, for example,
to prove stability of an open-loop unstable system with delayed feedback.
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1.8 Delay-dependent stability conditions

Delay-dependent stability conditions are derived using the relation

x(t − h) = x(t)−
∫ t

t−h
ẋ(s)ds,

which transforms (1.1) into

ẋ(t) = (A + A1)x(t)− A1

∫ t

t−h
ẋ(s)ds. (1.18)

First delay-dependent conditions were derived by substituting the term ẋ(t) in
(1.18) by (1.1), leading to the so-called first model transformation (Li et al. 1995;
Dambrine et al. 1995)

ẋ(t) = (A + A1)x(t)− A1

∫ t

t−h
[Ax(s) + A1x(s − h)]ds. (1.19)

However, this led to conservative conditions because (1.1) and (1.19) are not
equivalent in terms of stability (Kharitonov et al. 2000). The descriptor approach,
introduced in (Fridman 2001), mitigates this problem.

1.8.1 Descriptor approach

The descriptor model transformation is obtained by defining a new variable
y(t) = ẋ(t) and rewriting (1.18) as

ẋ(t) = y(t), (1.20)

0 = −y(t) + (A + A1)x(t)− A1

∫ t

t−h
y(s)ds. (1.21)

Also, when computing the derivative of the LK functional, the term ẋ(t) is not
substituted by the right hand side of (1.1). Furthermore, an additional term,
which is identically zero, is added to the functional derivative. To compensate
for the integral term, the following functional is proposed (Fridman et al. 2003) 1

V(t, xt, ẋt) = xT(t)Px(t) +
∫ 0

−h

∫ t

t+θ
ẋT(s)Rẋ(s)ds. (1.22)

1The double integral term in (1.22) can be alternatively expressed as
∫ t

t−h(h + s − t)ẋT(s)Rẋ(s)dx,
which is sometimes used in Part II.
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1.8 Delay-dependent stability conditions

whose derivative is given by

V̇(t, xt, ẋt) = 2xT(t)Pẋ(t)

+ 2[xT(t)PT
2 + ẋT(t)PT

3 ][−ẋ(t) + (A + A1)x(t)− A1

∫ t

t−h
ẋ(s)ds]

+ hẋT(t)Rẋ(t)−
∫ t

t−h
ẋT(s)Rẋ(s)ds. (1.23)

Note that the second term in (1.23) can be added because it is identically zero, as
it can be seen from (1.21). Jensen’s inequality is further used to bound

−
∫ t

t−h
ẋT(s)Rẋ(s)ds ≤ −1

h

∫ t

t−h
ẋT(s)dsR

∫ t

t−h
ẋ(s)ds. (1.24)

Using (1.24) into (1.23) yields V̇(t, xt, ẋt) ≤ ηT(t)Ψη(t) < 0 if Ψ < 0, where

Ψ =





PT
2 (A + A1) + (A + A1)P2 P − PT

2 + (A + A1)
TP3 −hPT

2 A1
(∗) −P3 − PT

3 + hR −hPT
3 A1

(∗) (∗) −hR



 , (1.25)

and η(t) = col
{

x(t), ẋ(t),
∫ t

t−h ẋ(s)ds
}

. The matrices P2, P3 are referred to as
“slack variables”. This methodology leads to less conservative results for uncer-
tain systems, even for systems without delay. The important feature in (1.25) is
that the matrix P does not multiply to the system matrices, which allows dealing
with polytopic uncertainties and also an efficient design procedure.

1.8.2 Improved conditions

The conditions derived above are sufficient and thus they can always be im-
proved. Consider a Lyapunov-Krasovskii functional with an additional term

V(t, xt, ẋt) = xT(t)Px(t) +
∫ t

t−h
xT(s)Sx(s)ds + h

∫ 0

−h

∫ t

t+θ
ẋT(s)Rẋ(s)ds,

whose derivative along (1.1) is given by

V̇(t, xt, ẋt) = 2xT(t)Pẋ(t)

+ 2[xT(t)PT
2 + ẋT(t)PT

3 ][−ẋ(t) + (A + A1)x(t)− A1

∫ t

t−h
ẋ(s)ds]

13
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+ h2ẋT(t)Rẋ(t)− h
∫ t

t−h
ẋT(s)Rẋ(s)ds

+ xT(t)Sx(t) − xT(t − h)Sx(t − h), (1.26)

where the descriptor method was applied. Jensen’s inequality (1.24) can be
rewritten as

− h
∫ t

t−h
ẋT(s)Rẋ(s)ds ≤ −[x(t)− x(t − h)]TR[x(t)− x(t − h)]. (1.27)

Using (1.27) into (1.26) yields V̇(t, xt, ẋt) ≤ ηT(t)Ξη(t) < 0 if Ξ < 0, where

Ξ =





PT
2 A + AP2 + S − R P − PT

2 + ATP3 PT
2 A1 + R

(∗) −P3 − PT
3 + h2R PT

3 A1
(∗) (∗) −S − R



 , (1.28)

and η(t) = col {x(t), ẋ(t), x(t − h)}. Note that (1.28) has more decision variables
than (1.25).

1.9 H∞-norm of TDSs

Consider the following LTI system

ẋ(t) = Ax(t) + Bw(t),
z(t) = Cx(t) + Dw(t),

where x ∈ R
n is the state vector, w ∈ R

m is a disturbance, z ∈ R
q is a controlled

output, A, B, C and D are real matrices with appropriate dimensions and G(s) =
C(sI − A)−1B + D is the transfer function matrix of the system.

Assuming that A is Hurwitz, the H∞-norm of the proper transfer function matrix
G(s) is defined as

‖G‖∞ = sup
ω∈R

σmax(G(jω)),

where σmax =
√

λmax(GT(−jω)G(jω)), is the maximum singular value of G(jω).
When G(s) is a scalar transfer function, the H∞-norm is given by

‖G‖∞ = sup
ω∈R

|G(jω)|.
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The H∞-norm has a nice interpretation in the time domain. Let w(t) be a square
integrable input signal. Then, one can show that the following equality holds
(Skogestad et al. 2007)

‖G‖∞ = sup
w 6=0

‖z‖2
L2

‖w‖2
L2

.

The right-hand side of the previous expression is called the induced L2-gain of
the system G(s). Consider now the linear perturbed TDS

ẋ(t) = Ax(t) + A1x(t − h) + Bw(t), (1.29)
z(t) = C0x(t) + C1x(t − h), (1.30)

with a constant delay h ≥ 0. The H∞-norm of this system is defined by ‖G‖∞,
where G(s) = (C0 + C1e−sh)(sI − A − A1e−sh)−1B.

1.10 Lyapunov-based L2-gain analysis

The Lyapunov method is also a powerful technique for performance analysis.
Consider the linear perturbed TDS (1.29)-(1.30), where w ∈ L2[0, ∞). For a given
γ > 0, let us introduce the performance index,

J =
∫ ∞

0
(zT(s)z(s)− γ2wT(s)w(s)ds. (1.31)

Conditions are sought such that J < 0 for all x(t) satisfying (1.29)-(1.30) with zero
initial condition x0 ≡ 0 and for all 0 6= w(t) ∈ L2[0, inf). The following lemma
provides the basis to derive a Lyapunov-based L2-gain analysis (Fridman 2014).

Lemma 1.3. Given γ > 0, if along (1.29) the inequality

V̇(t, xt, ẋt) + zT(t)z(t)− γ2wT(t)w(t) ≤ −α(|x(t)|2 + |w(t)|2), (1.32)

holds for all t ≥ 0 with some α > 0, then the system (1.29)-(1.30) is internally asymp-
totically stable and has L2-gain (H∞-norm) less than γ.

Using the same Lyapunov-Krasovskii functional as in Section 1.8.2 above, and
applying Schur complement to the quadratic term zT(t)z(t), one finds that (1.32)

15



Chapter 1. Introduction

holds along the trajectories of (1.29) if










| PT
2 B CT

0
Ξ | PT

3 B 0
| 0 CT

1
−− −− −− −− −− −−
(∗) (∗) (∗) | −γ2 I 0
(∗) (∗) (∗) | (∗) −I











< 0. (1.33)

Therefore, by Lemma 1.3, the following has been proved (Fridman 2014):

Theorem 1.3 (Bounded real lemma). Given scalars γ > 0 and h > 0, let there exist
positive definite matrices P, R, S and matrices P2, P3 that satisfy the LMI (1.33) where Ξ

is given by (1.28). Then, the system (1.29)-(1.30) is internally stable and has an L2-gain
less than γ.
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Chapter 2

Control strategies

Control of time-delay systems has been of great interest among researchers since the
late 50’s. One of the paradigms when controlling time-delay systems, introduced by
Otto J.M Smith in 1957, consists of removing the effect of the delay in the feedback loop.
In this way, all the design techniques available for delay-free systems can be applied.
Although this methodology seems ideal, it has some limitations and drawbacks, regard-
ing disturbance rejection performance and internal stability issues for unstable systems.
Many modifications and alternative control strategies have been proposed to overcome
with these problems, some of which are reviewed in this chapter.
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2.1 Predictor-based controllers

An ideal (but unfeasible) scenario is depicted in Fig. 2.1, where the non-delayed
output ȳ, is not accessible. In this sense, predictor-based controllers are probably
the most logic way to deal with stabilization of input-delayed systems. Indeed,
it was pointed out in (Mirkin et al. 2003) that state prediction is a fundamental
concept for time-delay systems, much like state observation for conventional
systems. The idea is to obtain a prediction of the output ȳ(s) = y(s)esh in (1.9),
or the state x(t + h) in (1.5), which are then used to control the system as if there
was no delay. Obviously, the latter expressions are non-causal and they cannot
be computed in a straightforward way. However, they can be reformulated into
causal expressions using the information of the input over the past h units of
time. Several approaches to do so have been reported in the literature, which are
reviewed next.

2.1.1 Smith Predictor (SP)

The Smith Predictor, introduced in (Smith 1957), aims to counteract the time
delay in the feedback loop so that a controller can be designed for the equivalent
delay-free system. The result is a delayed response of the delay-free system, as
if the delay was pushed out of the feedback loop. The structure of the Smith
Predictor is depicted in Fig. 2.2, where

Z(s) = G(s)− G(s)e−sh, (2.1)

is commonly referred to as the predictor block. Note that if h = 0, then Z(s) = 0,
resulting in a conventional feedback control structure. The purpose of the SP is
highlighted if one looks at the new controlled variable, denoted by ȳ, which is
given by ȳ(s) = Z(s)u(s) + y(s). This is the new controlled variable because the
controller acts on this signal, i.e., the control is computed as u(s) = C(s)[r(s) −

r +
K(s) G(s) e−hs

yu +

w

+ ȳ

+

−

n+

Figure 2.1: Structure of an ideal control loop (unfeasible)
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r +
C(s)

Z(s)

G(s) e−hs
yu +

d

++ ȳ

−

+

−

n+

Figure 2.2: Structure of the Smith Predictor

ȳ(s)]. It is easy to show, using (1.9) and (2.1), that the relation ȳ(s) = G(s)u(s)
holds. Therefore, the SP setup allows reconstructing a non-delayed output, so
that the controller can be designed simply for the delay-free plant G(s). This is
the celebrated feature of the SP. It also implies that the delay element is removed
from the denominators of all input-output transfer functions, given by

Gry(s) =
G(s)C(s)

1 + G(s)C(s)
e−sh, (2.2)

Gdy(s) =
G(s)

1 + G(s)C(s)
e−sh +

G(s)C(s)

1 + G(s)C(s)
Z(s)e−sh, (2.3)

Gnu(s) =
−C(s)

1 + C(s)G(s)
(2.4)

The SP has several limitations. It is only applicable to open-loop stable plants
because the unstable poles of G(s) cannot be removed from the disturbance re-
sponse Gdy(s) since they appear in Z(t). Integrative processes can be handled
but then constant disturbances cannot be rejected even if the controller has inte-
gral action. See Section 3.1 below for further details.

2.1.2 Dead-time compensators (DTCs)

The numerous modifications of the Smith Predictor are commonly referred to as
dead-time compensators (DTCs). These modifications aim at mitigating some of
the limitations of the SP. For example, it was well-known that the SP was not able
to reject constant disturbances for integrative processes. The modified schemes
introduced in (Watanabe et al. 1981a; Astrom et al. 1994; Matausek et al. 1999;
Zhong et al. 2002; García et al. 2008) solved this problem in different ways. The
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treatment of open-loop unstable systems was also addressed in several works
(Majhi et al. 2000; Lu et al. 2005; Liu et al. 2005b; García et al. 2006; Normey-Rico
et al. 2009). A survey on dead-time compensators is given in (Normey-Rico et al.
2008). See also the monograph (Normey-Rico 2007).

2.1.3 Finite spectrum assignment (FSA)

It was shown in (Manitius et al. 1979) that the control law

u(t) = Kx(t + h) = K

[

eAhx(t) +
∫ h

0
eAξ Bu(t − ξ)dξ

]

, (2.5)

applied to (1.5) yields a finite spectrum assignment of the closed-loop system.
This strategy was also developed in (Kwon et al. 1980) and (Artstein 1982) with
slightly different perspectives. The controller (2.5) has some drawbacks as well.
The predicted variable does not converge to the actual one in the presence of a
disturbance and thus it cannot be rejected in a straightforward manner. Another
handicap of state predictors lies on the fact that their implementation requires
the computation of a distributed integral term. Even more, the control law (2.5)
becomes an integral equation in u(t), provided that it appears on the lhs but also
on the rhs under an integral sign. For unstable systems, obtaining this integral
term as the solution to a differential equation must be discarded because it in-
volves unstable pole-zero cancellations when A is not Hurwitz. This has been a
matter of concern for some researchers (Mondié et al. 2002; Mondié et al. 2003;
Zhong 2004), as the discretization of the integral may lead to instability of the
closed loop.

2.2 PID-based controllers

In the previous section it was shown how predictive controllers achieve out-
standing performance for a time-delay system as they eliminate the effect of the
delay in the feedback loop. However, DTC structures are more complex and are
usually less intuitive to tune than traditional PIDs, which are used in about 90 %
of industrial applications (Åström et al. 2001). Let us consider a conventional
control loop as depicted in Fig. 2.3, where the controller is assumed to be a PID
in series form, given by

K(s) =
u(s)

e(s)
= K0(s)(1 + Tds), K0(s) = k

1 + Tis

Tis
. (2.6)
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r +
K(s) G(s) e−hs

yu +

d

+ ȳ

+

−

n+

Figure 2.3: Structure of a conventional control loop

The controller (2.6) has been written in such an unconventional form because the
term (1 + Tds) acting on e(s) may be interpreted as an approximate prediction
of the error Td units of time ahead. Therefore, selecting Td = h, the PI part of
the controller K0(s), can be tuned as if there was no delay. The approximation
eshe(s) ≈ (1+ hs)e(s) is only valid when the delay is smaller than the closed-loop
characteristic time constant (see Section 4.2 in (Normey-Rico 2007)).

Tuning of PID controller has been also pursued by approximating prediction-
based controllers. The Smith Predictor controller in Section 2.1.1 can be cast into
the control structure depicted in Fig. 2.3 with K(s) = C(s)

1+G(s)C(s)(1−e−sh)
. There-

fore, one can always approximate the non-rational term by a Padé approxima-
tion e−sh ≈ (1 − 0.5hs)/(1 + 0.5hs). For low-order systems, a standard PID con-
troller can be obtained (Normey-Rico 2007). For higher-order systems, a trun-
cated Maclaurin series expansion of K(s) can be used to obtain a PID-like con-
troller (Lee et al. 2000).

Some authors have pointed out DTCs should be used when the dead-time of
the process dominates over its characteristic time (Ingimundarson et al. 2002). A
different analysis was presented in (Normey-Rico 2007), where it was shown the
improvement has more to do with the dead-time uncertainty rather than its size.

2.3 Integral-free prediction-based controllers

It was discussed above that a careless implementation of the state predictor (2.5)
may lead to instability . Over the past years, some effort has been put towards
finding control laws that handle large input delays but avoid integral terms.
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Chapter 2. Control strategies

2.3.1 Predictor in observer form

An approach that avoids the use of distributed terms was given in (Besancon et
al. 2007), introducing the so-called sequential predictors. This idea was further
developed in (Najafi et al. 2013) where an LMI-based H∞ controller design is
reported. The idea is described next in detail as it plays a key role in some of
the contributions of this thesis. Let us denote by z(t) the predicted state h units
of time ahead, i.e., z(t) = x(t + h). Differentiating z(t) and using (1.5)-(1.6), one
can easily derive that the following holds

ż(t) = Az(t) + Bu(t), (2.7)
y(t) = Cz(t − h). (2.8)

Then, in the light of (2.7)-(2.8), one can design an observer

˙̂z(t) = Aẑ(t) + Bu(t) + L(y(t)− Cẑ(t − h)), (2.9)

where L is the observer gain, which should be chosen such that the error dynam-
ics is stable. Differentiating the error e(t) = x(t) − ẑ(t − h) and using (1.5) and
(2.9) yields

ė(t) = Ae(t)− LCe(t − h). (2.10)

If (2.10) is stable, then limt→∞[x(t + h)− ẑ(t)] = 0 and consequently, one could
use the control law u(t) = Kẑ(t) into (1.5), leading to

ẋ(t) = (A + BK)x(t)− BKe(t). (2.11)

The closed-loop is composed of (2.10)-(2.11). The latter is stable simply by choos-
ing K such that A + BK is Hurwitz. If L is chosen such that A − LC is Hurwitz,
it is well known that (2.10) is stable for a sufficiently small h. From a conceptual
point of view, this is a novel method to obtain the predicted state via an observer
and thus, avoiding distributed integral terms. From a practical point of view,
there is not much benefit, since one could have also chosen u(t) = Kx(t) in the
first place, leading to ẋ(t) = Ax(t) + BKx(t − h), which is also stable for small
enough h if A + BK is Hurwitz.

The strategy described above is actually useful only when sequential observers
come into play. Recall that the problem of stabilizing (1.5)-(1.6) has been reduced
to finding an asymptotically stable observer for (2.7)-(2.8), in which the measure-
ment is delayed. The idea of sequential observers was originally introduced in
(Germani et al. 2002). It consists of constructing a chain of observers so that each
of the them estimates a prediction of the state over a period of time equal to a
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2.3 Integral-free prediction-based controllers

fraction of the delay. For example, let us define

z1(t) = x(t + h/2) and z2(t) = x(t + h).

Differentiating these variables and using (1.5)-(1.6), one can show that the fol-
lowing holds

ż1(t) = Az1(t) + Bu(t − h

2
),

ż2(t) = Az2(t) + Bu(t),

y(t) = Cz2(t − h) = Cz1(t −
h

2
).

Then, one can design the following chain of observers

˙̂z1(t) = Aẑ1(t) + Bu(t − h

2
) + L1(y(t)− Cẑ1(t −

h

2
)), (2.12)

˙̂z2(t) = Aẑ2(t) + Bu(t) + L2(ẑ1(t)− Cẑ2(t −
h

2
)). (2.13)

Differentiating the errors e1(t) = x(t)− ẑ1(t − h/2) and e2(t) = x(t)− ẑ2(t − h)
and using (1.5) and (2.12)-(2.13) yields

ė1(t) = Ae1(t)− L1Ce1(t −
h

2
), (2.14)

ė2(t) = Ae2(t)− L2e2(t −
h

2
) + L2e1(t −

h

2
). (2.15)

The application of the control law u(t) = Kẑ2(t) into (1.5) yields

ẋ(t) = (A + BK)x(t)− BKe2(t). (2.16)

Using a two-element sequential observer, the closed-loop is composed of (2.14)-
(2.16). The key difference with respect to the single-element observer is that
the delayed terms in the error dynamics are affected by a fraction of the delay.
In this case, a half. Then, the allowable delay is enlarged. This methodology
can be generalized to an arbitrarily large number of elements in the observer
chain, which allows dealing with large delays. Since the observers are actually
generating predictions of the state, this overall technique has been referred to
as sequential predictors in the literature (Najafi et al. 2013). This technique has
been exploited recently by many researchers (Léchappé et al. 2016; Cacace et al.
2016; Vafaei et al. 2016; Mazenc et al. 2016; Mazenc et al. 2017a; Zhou et al. 2017).
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Chapter 2. Control strategies

2.3.2 Other techniques

It was shown in (Mazenc et al. 2003) that a chain of integrators with input delay
can be stabilized by a saturated controller. This approach was also extended
to general feedforward systems in (Mazenc et al. 2004). Sliding mode control
for delay systems was studied in (Richard et al. 2001) and a robust design via
LMIs was introduced in (Gouaisbaut et al. 2002). Continuous pole placement
was also investigated in (Michiels et al. 2002) for systems with delay. In (Zhou
et al. 2012), a truncated predictor that ignores the infinite-dimensional part of
the controller (2.5) was proposed. Time-varying delays were considered and an
observer-based controller is also proposed for output-feedback stabilization of
systems without exponentially unstable modes. This requirement was removed
in the analysis reported in (Yoon et al. 2013), although the delay had to be upper
bounded by a sufficiently small constant. The truncated predictor has been also
reformulated to include higher-order terms (Zhou et al. 2014).
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Chapter 3

Introduction

Among traditional control objectives, disturbance rejection in time-delay systems de-
serves special attention because delays impose fundamental limitations no matter what
controller is used. Indeed, if a disturbance reaches the input at time t0, the informa-
tion lag will cause the system to run in an open-loop fashion over the time window
t ∈ [t0, t0 + h], where h is the time delay. The results reported in this part of the the-
sis are based on the combination of disturbance observers for and predictor to deal with
perturbed time-delay systems. An introduction to disturbance observer based control
is given in this chapter, with special emphasis on its drawbacks and limitations when
delays are present.
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Chapter 3. Introduction

3.1 Limitations of the Smith Predictor

The most celebrated strategy to compensate delays was proposed in 1957 with
the introduction of the Smith Predictor (SP), applicable to SISO open-loop stable
plants (Smith 1957). The SP exhibited drawbacks that were early detected. Let
us look at the disturbance response of the SP, given by (2.3). First of all, one
can see that the SP is only applicable to open-loop stable systems, provided that
Z(s), which contains the poles of G(s), appears explicitly in (2.3). Integrative
processes are a special case of unstable plants. These systems can be handled
by the SP because when G(s) has a pole at s = 0, it is canceled out by the zero
at the origin of 1 − e−sh and thus that pole does not appear in (2.3). Regarding
the disturbance rejection issues, let us assume that the controller contains an
integrator. Then, the steady-state response to a unit load disturbance is given by

lim
t→∞

yd(t) = lim
s→0

Gdy(s) = lim
s→0

G(s)[1 − e−sh], (3.1)

where it was used that, because of the integrator in C(s), the first term in (2.3)
vanishes in the limit and G(0)C(0)/(1 + G(0)C(0)) = 1. From (3.1), for asymp-
totically stable processes, limt→∞ yd(t) = 0, which is satisfactory. However, if an
integrative plant, such as G(s) = G0(s)/s with G0(s) stable, is considered, then
using L’Hôpital’s rule in (3.1) one has that

lim
t→∞

yd(t) = G0(0) lim
s→0

1 − e−sh

s
= hG0(0),

which implies that load disturbances are not rejected, even if the controller con-
tains integral action.

3.1.1 Modifications of the Smith Predictor

Many structures, commonly referred to as dead-time compensators (DTCs), were
developed to mitigate these issues (Wang et al. 2004; Normey-Rico et al. 2008),
either to achieve load disturbance rejection for pure integrating processes with
long dead-time (Watanabe et al. 1981a; Astrom et al. 1994; Matausek et al. 1999;
Normey-Rico et al. 2002; García et al. 2008; Uma et al. 2010; Chakraborty et al.
2017), or to control unstable time-delay systems (Majhi et al. 2000; Tan et al. 2003;
Hang et al. 2003; Liu et al. 2005a; Lu et al. 2005; García et al. 2006; Normey-Rico
et al. 2009; Tan 2010; Begum et al. 2017). These schemes commonly have an in-
ner stabilizing loop and employ more controllers. Furthermore, most solutions
are highly specific on the control goals and/or the plant structure, and they fail
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3.2 Disturbance observer based control

in completely removing the delay element from the feedback loop, making the
design process more complicated.

The underlying idea of the SP was extended to MIMO stable/unstable systems
with the finite spectrum assignment (FSA) technique (Manitius et al. 1979), also
known as the reduction-based approach (Artstein 1982). In contrast to the SP,
this strategy was formulated in the time domain with the introduction of a state
predictor. However, the disturbance rejection issues persisted, provided that
the predicted state would not converge to the actual one. A modified predictor
is given in (Léchappé et al. 2015) where additional delayed feedback was con-
sidered to reject constant disturbances (see Chapter 6 for details). The idea of
additional feedback had already been used in (García et al. 2008), although in
the frequency domain.

3.2 Disturbance observer based control

Many branches of control theory have emerged to handle the effects of unknown
disturbances and uncertainties, such as robust control, adaptive control, sliding
mode control or internal model control. Disturbance observer based control dif-
fers from the aforementioned approaches in the fact that it counteracts the distur-
bance actively in a feedforward fashion. During the past decades, disturbance
observers (also referred to as unknown input estimators) have gained popular-
ity through a variety of applications such as robotic manipulators (Chen et al.
2000; Katsura et al. 2007), high speed XY positioning (Kempf et al. 1999), missile
control (Chen 2003), or magnetic bearings (Chen et al. 2004), among others (Li
et al. 2016). Disturbance observers have been formulated both in the frequency
and state-space domains. See (Chen et al. 2016) for a review of the available
methods. The transfer function approach was the first proposed and its is often
used because of its simple logic when tuning the so-called Q-filter. In this thesis,
the state-space formulation is preferred. This is because, when applied to time-
delay systems, a wide variety of tools is available for analysis and design. Both
formulations are briefly reviewed next.
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Chapter 3. Introduction

3.2.1 Frequency domain formulation

Let us consider a minimum-phase SISO LTI system subject to an input distur-
bance, which is represented in the frequency domain by

Y(s) = G(s)[U(s) + D(s)], (3.2)

where U is the control input, Y is the output, D is the disturbance and G(s) is a
model of the plant. From (3.2), an estimation of the disturbance can be obtained
as

D̂(s) = Q(s)[G−1(s)Y(s) − U(s)
︸ ︷︷ ︸

D(s) from (3.2)

] = Q(s)U(s)− Q(s)

G(s)
Y(s), (3.3)

where the filter Q(s) is introduced to make the quotient Q(s)/G(s) realizable.
Then, the relative degree of Q(s) has to be greater or equal than that of G(s).
A diagram of the overall disturbance observer based control setup is depicted
in Fig. 3.1, where the control law is u(s) = C(s)[r(s) − y(s)]− d̂(s), being r the
set-point reference signal. It should be remarked that this scheme, as depicted in
the figure, is not implementable. The input-output transfer functions are easily
obtained as

Gry =
G(s)C(s)

1 + G(s)C(s)
,

Gdy =
G(s)

1 + G(s)C(s)
[1 − Q(s)].

From the expressions above it is evident that: i.) the set-point and disturbance
responses are decoupled, and ii.) the disturbance rejection performance mainly
depends on the design of the filter Q(s). The disturbance observer (DOB) devel-
oped above was first introduced in (Nakao et al. 1987).

3.2.2 Time-domain formulation

Let us consider a multiple-input LTI system, represented by

ẋ(t) = Ax(t) + B[u(t) + d(t)], (3.4)

where x ∈ Rn is the state, u ∈ Rm is the control action, d ∈ Rm is the distur-
bance and A, B are matrices of appropriate dimensions. A simple time-domain
formulation of a disturbance observer can be obtained as follows. Consider a
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r +
C(s) G(s)

y+

d

+u +

G−1(s)
−

+

Q(s)

+

d̂

−
n+

−

Figure 3.1: DOB structure in the frequency domain

disturbance estimation defined by

˙̂d(t) = −ωo d̂(t) + ωo[B
+ ẋ(t)− B+Ax(t)− u(t)
︸ ︷︷ ︸

d(t) from (3.4)

] (3.5)

where B+ denotes the left pseudo-inverse of B such that B+B = Im and ωo is to
be understood as the bandwidth, provided that (3.5) has the structure of a low-
pass filter driven by d(t). Now, to avoid the state derivative term, let us define
an auxiliary variable z(t) = d̂(t)− ωoB+x(t), which can be used to rewrite (3.5)
as

ż(t) = −ωo[z(t) + ωoB+x(t)] + ωoB+[Ax(t)− Bu(t)], (3.6)

d̂(t) = z(t) + ωoB+x(t). (3.7)

Note that, in contrast to (3.5), the state derivative does not appear in the ex-
pressions above and thus they are implementable. Selecting the control law
u(t) = Kx(t) − d̂(t), defining the estimation error as d̃(t) = d(t) − d̂(t) and
using (3.4)-(3.5), the closed-loop is governed by

ẋ(t) = (A + BK)x̂(t) + Bd̃(t), (3.8)
˙̃d(t) = −ωod̃(t) + ḋ(t). (3.9)

From (3.8)-(3.9), one can see that a separation principle holds also for the distur-
bance observer based control in the time domain, provided that K and ωo can be
selected independently. The observer developed here is equivalent to the uncer-

31



Chapter 3. Introduction

tainty and disturbance estimator (UDE), introduced in (Zhong et al. 2004) from
a frequency-domain perspective. The following observer

ż(t) = −LB[z(t) + Lx(t)] + L[Ax(t)− Bu(t)], (3.10)

d̂(t) = z(t) + Lx(t), (3.11)

was also reported in (Yang et al. 2010), which is equivalent to (3.6)-(3.7) if L =
B+ωo is chosen.

3.2.3 Disturbance observers for time-delay systems

The first application of disturbance observers for time-delay systems seems to
be the one reported in (Kempf et al. 1996). There, it was pointed out that the
standard DOB structure offers poor tolerance to time delays, which should be
then taken into account. Let us illustrate this point with a simple case.

Example 3.1. Consider a nominal plant Gn(s) = G(s)e−sh and the conventional DOB
structure depicted in Fig. 3.1, with the simple choice Q(s) = ωr

o/(s + ωo)r, where r
is the relative degree of G(s). The delay can be modeled as a multiplicative uncertainty

G(s) = Gn(s)(1 + ∆(s)), with ∆(s) = e−sh − 1. From Fig. 3.1, the open-loop gain is
given by L(s) = Q(s)/(1−Q(s)), which leads to a complementary sensitivity function
T(s) = L(s)/(1 + L(s)) = Q(s). Therefore, a robust stability criterion is given by
‖Q‖∞‖∆‖∞ < 1. One can show that |∆(jω)| < 1, ∀ω < ω∆, where ω&1/h. Then, a
simple robust criterion for stability is given by ωo < 1/h.

This example shows that a non-modeled time delay in the loop determines an
upper bound on ωo to guarantee stability and, consequently, it limits the achiev-
able performance of this technique. A suitable modification of the DOB is pro-
posed in (Kempf et al. 1996), by adding a delay block to the input signal.

Later, this modification was used in the context of disturbance rejection improve-
ment for time-delay systems (Zhong et al. 2002). Therein, integral processes
G(s) = G0(s)/s with G0(s) stable, were considered. This work was one of the
many others that aimed at improving the unsatisfactory disturbance rejection
performance of the Smith Predictor for integrating processes (Watanabe et al.
1981a; Astrom et al. 1994; Matausek et al. 1999). The overall strategy consisted of
an open-loop controller combined with the modified DOB, as depicted in Fig. 3.2.
The input-output transfer functions are obtained as

Gry =
G(s)C(s)

1 + G(s)C(s)
e−sh,
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Figure 3.2: DOB structure for time-delay systems (Zhong et al. 2002)

Gdy = G(s)e−sh[1 − Q(s)e−sh].

Rejection of different types of disturbances could be achieved by imposing con-
ditions on the term 1 − Q(s)e−sh, which yields requirements on Q(s). For ex-
ample, for constant disturbances to be rejected, Q(0) = 1 and Q̇(0) = h must
hold.

Other than the contribution discussed above, the DOB technique in the context
of time-delay systems did not raise much interest among researchers for many
years. A state-space DOB was used in (Chen et al. 2010) to deal with systems
with state delays. The UDE was also adapted to this scenario in (Stobart et al.
2011). However, input delays were not considered in any case. Special men-
tion deserves the work developed in (Kim et al. 2010), whose underlying idea is
the same as in most of the contributions reported throughout the next chapters,
namely, the combination of a predictor and a disturbance observer. The authors
of (Kim et al. 2010) seemed to be unaware of the modified DOB introduced in
(Kempf et al. 1996) for time-delay systems. Instead, they handle the delay us-
ing first order Padé approximation. Since such approach yields non-minimum
phase zeros, the inverse of the plant cannot be computed and a conveniently
modified DOB needs to be adopted.
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3.3 Contributions in this part

The contributions reported in the following chapters are summarized here.

Chapter 4 is based on (Sanz et al. 2017), published in ISA Transactions, where a
Generalized Smith Predictor (GSP) is introduced. The proposed control scheme
applies to stable/unstable minimum/non-minimum phase systems and it can
be easily tuned to yield an exact output prediction even in the presence of dis-
turbances. The design of the primary controller is then straightforward. This
is a unified solution in contrast to most previous approach that based ad-hoc
structures for specific plants and/or goals, as discussed in Section 3.1.1.

Chapter 5 is based on (Sanz et al. 2016), which was published in Automatica. In
this work, a new prediction is defined that makes use of a future estimation of
the disturbance. Such estimation is obtained by a truncated Taylor expansion
upon estimates of the disturbance and its derivatives, which are provided by
a modified disturbance observer. Disturbance attenuation improvement over
previous strategies is proved using a Lyapunov analysis.

Chapter 6 is based on (Sanz et al. 2018), which was published in International
Journal of Robust and Nonlinear Control. In contrast to previous contributions, this
work deals with output-feedback stabilization and mismatched disturbances.
An extended state observer is combined with a predictor in observer form. Rejec-
tion of mismatch disturbances with known dynamics is achieved while ensuring
attenuation of unmodeled components.

Chapter 7 is based on (Sanz et al. 2017), which was published in Transactions
on Industrial Electronics. This work addressed the problem discussed in Sec-
tion 3.2.3, regarding the poor tolerance of disturbance observers to delays. This is
a slightly different solution, which consists of running the disturbance observer
upon a predicted state. The results, both in simulations and experiments, show
that this approach allows a more aggressive tuning of the observer and thus an
improved disturbance rejection.
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A Generalized Smith Predictor

(GSP)

In this work, a generalization of the Smith Predictor (SP) is proposed to control linear
time-invariant (LTI) time-delay single-input single-output (SISO) systems. Similarly
to the SP, the combination of any stabilizing output-feedback controller for the delay-
free system with the proposed predictor leads to a stabilizing controller for the delayed
system. Furthermore, the tracking performance and the steady-state disturbance rejec-
tion capabilities of the equivalent delay-free loop are preserved. In order to place this
contribution in context, some modifications of the SP are revisited and recast under the
same structure. The features of the proposed scheme are illustrated through simulations,
showing a comparison with respect to the corresponding delay-free loop, which is here
considered to be the ideal scenario. In order to emphasize the feasibility of this approach,
a successful experimental implementation in a laboratory platform is also reported.
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4.1 Introduction

An LTI time-delay SISO process subject to input disturbances can be described
by

y(s) = G(s)e−hs[u(s) + w(s)] , ȳ(s)e−hs (4.1)

where y ∈ R is the measurable output, ȳ ∈ R is the unmeasurable non-delayed
output, u ∈ R is the control input, w ∈ R is an input disturbance, h ≥ 0 is a
constant time delay and G(s) = C(sI − A)−1B is referred to as the delay-free
system.

When controlling a time-delay system, an ideal scenario is depicted in Fig. 4.1.
It is “ideal” in the sense that the delay is pushed out of the feedback loop, the
non-delayed output ȳ is available, and thus the controller K(s) can be simply
designed for the rational part of the model, G(s), using conventional techniques.
Since ȳ is not accessible, a reasonable approach consists of constructing an output
prediction ˆ̄y, so that it can be used to control the system as in the ideal scenario.
The prediction should be based on the available input/output information, hav-
ing the following structure:

ˆ̄y(s) , F1(s)u(s) + F2(s)y(s) (4.2)

where the filters F1(s) and F2(s) must be stable and derived from the plant
model.

In the seminal work (Smith 1957), the Smith Predictor (SP) makes use of the
filter FSP

1 (s) , G(s)− G(s)e−sh, sometimes referred to as the SP block, whereas
FSP

2 (s) , 1. It is easy to verify that the prediction ˆ̄ySP(s) , FSP
1 (s)u(s)+ FSP

2 (s)y(s)
satisfies ˆ̄ySP(s) = G(s)u(s) = ȳ(s), if there are no disturbances. Indeed, the SP
removes the delay element from the denominators of all the closed-loop sensi-
tivity functions, reducing the control problem to that of a delay-free system. The
methodology described above has been referred to as the “Smith’s Principle” in
the literature. However, the SP cannot be applied to open-loop unstable plants
and regardless of the main controller, only constant disturbances can be rejected
(Guzmán et al. 2008). Some of the many SP modifications proposed in the liter-
ature have been reviewed in Section 3.1.1. For integrating and unstable systems,
none of them except those proposed in (Watanabe et al. 1981a; García et al. 2006;
Normey-Rico et al. 2009), fulfill the Smith’s Principle. Next, these schemes are
reviewed and recast under the same structure, in order to place the present work
in context.
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r +
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Figure 4.1: An ideal control loop (unfeasible)

4.1.1 The Smith’s Principle

As aforementioned, few schemes have been proposed to generalize the Smith
Predictor to unstable systems, avoiding the instability of the predictor block
while fulfilling the Smith’s Principle. The first attempt in this direction can
be found in (Watanabe et al. 1981a). In that work, the SP block was modified
by choosing FMSP

1 (s) , G†(s) − G(s)e−sh and FMSP
2 (s) = 1, where G†(s) ,

Ce−Ah(sI − A)−1B. However, it was later when this approach was generalized
and named as the Modified Smith Predictor (MSP) (Palmor 1996). The key fea-
ture of this scheme is that the MSP block can be computed in the time domain
as1 L−1{FMSP

1 (s)u(s)} = Ce−Ah
∫ h

0 eAξ Bu(t − ξ)dξ, which is a definite integral
and therefore, stable. Regarding disturbance rejection, the MSP alters the low
frequency gain of the primary controller because it has non-zero static gain, that
is, FMSP

1 (0) 6= 0. Consequently, constant disturbances cannot be rejected even
if the primary controller contains integral action. This drawback was already
addressed in (Watanabe et al. 1981a) by choosing G†(s) = −C

∫ h
0 e−Aξ dξB +

Ce−Ah(sI − A)−1B, with the inconvenient that G†(s) is no longer strictly-proper
and the corresponding controller may be more complicated.

Other proposals were developed inspired on the discrete-time framework. In
(Normey-Rico et al. 2009), the SP was complemented with an additional fil-
ter, FFSP

2 (s) , Fr(s), leading to the Filtered Smith Predictor (FSP). The result-
ing predictor block was FFSP

1 (s) , G(s) − G(s)Fr(s)e−sh, where the new filter
Fr(s) played a key role, being used to avoid the unstable modes in FFSP

1 (s). In
continuous-time, this pole-zero cancellation cannot be performed by the use of
polynomial division because the numerator of FFSP

1 (s) is a non-rational expres-
sion. However, in the discrete-time framework, this can be done analytically

1Here L−1{·} denotes the inverse Laplace transform operator.
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Figure 4.2: A general structure for predictor-based control schemes

Table 4.1: Filters in Fig. 4.2 for each scheme reviewed in Section 4.1.1

Scheme F1(s) F2(s) Proposed in
SP G(s)− G(s)e−sh 1 (Smith 1957)

MSP G†(s)− G(s)e−sh 1 (Watanabe et al. 1981a)
FSP G(s)− G(s)Fr(s)e−sh Fr(s) (Normey-Rico et al. 2009)
GP G(s)− G∗(s)e−sh G∗(s)/G(s) (García et al. 2006)

by solving a Diophantine equation. In the same process, the block can be also
adjusted to reject any class of disturbances (Santos 2016; Santos et al. 2017).

The Generalized Predictor (GP), originally proposed in (García et al. 2006), was
originated from a discrete-time reasoning. However, the formulation next pre-
sented is developed in continuous-time for the sake of comparison. Similarly
to the MSP, the instability of the GP block was avoided by selecting FGP

1 (s) ,
G(s)−G∗(s)e−sh with G∗(s) , CeAh(sI − A)−1B, whereas FGP

2 (s) = G∗(s)/G(s).
As a result, the GP block can be computed by L−1{FGP

1 (s)u(s)} = C
∫ h

0 eAξ Bu(t−
ξ) dξ, which is a stable block. In order to cancel the effect of constant distur-
bances, the GP made use of an extra loop, making the analysis more complicated
(García et al. 2013).

The schemes previously reviewed lead to a control structure as depicted in Fig. 4.2,
with filters given in Table 1.

In what follows, with special emphasis on transparency and design simplicity of
the resulting control strategy, a generalization of the SP is proposed to solve the
following problem:
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4.2 Problem reformulation

Problem 4.1. Consider a controller K designed to meet some requirements based on the
delay-free loop depicted in Fig. 4.1. Then, find a predictor, that is, design filters F1 and
F2, such that the same controller K in Fig. 4.2:
A) guarantees internal stability
B) achieves the same nominal tracking performance
C) achieves rejection of the same type of disturbances

4.2 Problem reformulation

As already mentioned, a celebrated feature of the SP is that it exactly reduces
the control problem to its delay-free counterpart, by constructing an “exact” pre-
diction. In what follows, a prediction ˆ̄y for the system (4.1) is said to be exact if
ˆ̄y(s) = ȳ(s) hold in the nominal case, that is, with known plant and no distur-
bances. It is easy to show that a prediction computed by (4.2) is exact if and only
if

F1(s) =
(
1 − F2(s)e

−hs
)
G(s). (4.3)

The main advantage of obtaining an exact prediction is that the design and anal-
ysis of the resulting control-loop are drastically simplified, which is a highly
appreciated feature of the original SP. This is formally stated by the following
proposition:

Proposition 4.1. If the output prediction computed by (4.2) is exact, then the input-
output transfer functions of the predictor-based control loop depicted in Fig. 4.2 satisfy:

Gr,y(s) = Ḡr,y(s) (4.4)

Gw,y(s) = Ḡw,y(s) + Ḡr,y(s)F1(s) (4.5)

Gn,y(s) = Ḡn,y(s)F2(s) (4.6)

Gn,u(s) = Ḡn,u(s)F2(s) (4.7)

where Ḡr,y, Ḡw,y, Ḡn,y and Ḡn,u are the input-output transfer functions of the ideal loop
in Fig. 4.1, given by

Ḡr,y =
G(s)K(s)e−hs

1 + G(s)K(s)
, Ḡw,y =

G(s)e−hs

1 + G(s)K(s)
,

Ḡn,y = −G(s)K(s)e−hs

1 + G(s)K(s)
, Ḡn,u = − K(s)e−hs

1 + G(s)K(s)
.

Proof. The proposition follows simply by solving the block diagrams in Figs. 4.1-
4.2 and using (4.3).
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Remark 4.1. Inspecting Table 1, the condition (4.3) holds for all the schemes reviewed
in Section 4.1.1 but the MSP, in which the controller has to be designed for the modified
plant G†(s). This can be an inconvenient in some cases, as already mentioned.

Now, Problem 1 is translated into finding a predictor with some constraints. To
that purpose, let us introduce the following assumption:

Assumption 4.1. The external disturbance can be expressed as w(s) = w̄w0(s), with
unknown amplitude w̄ ∈ R and known dynamics w0(s)

Assumption 1 implies that the type of disturbance to be rejected should be known,
e.g., step, ramp, or sine wave with a given frequency. Although this may seem
restrictive, some attenuation of disturbances not described by w0(s) is also ex-
pected. This can be analyzed in detail by looking at the bode plot of (4.5).

Lemma 4.1. Let us consider the control loop in Fig. 4.2 with a predictor such that:
i.) the prediction ˆ̄y is exact
ii.) the filters F1(s), F2(s) are stable
iii.) the following equivalent conditions hold (assuming that the limits involved exist)

lim
t→∞

(
ȳ(t)− ˆ̄y(t)

)
= 0 ⇐⇒ lim

s→0
sF1(s)w0(s) = 0

Then, that predictor solves Problem 1.

Proof. If i.) holds then Proposition 1 is valid and the control loop in Fig. 4.2 is
internally stable iff (4.4)-(4.7), the so-called “gang of four”, are stable . Recall
that K(s) is designed such that all transfer functions of the ideal loop, denoted
with an upper bar are stable, whereas the filters are stable by ii.). Then A) in
Problem 1 is fulfilled. Also, the set-point responses in (4.4) for both loops are the
same and thus B) is fulfilled. Finally, using (4.1)-(4.3), the output prediction error
due to the input disturbance satisfies

e(s) , ȳ(s)− ˆ̄y(s) = F1(s)w(s) (4.8)

The equivalence in iii.) follows from (4.8) and Assumption 1. Furthermore, no-
tice that if iii.) holds, from (4.5), the load disturbance response of the ideal loop is
recovered in steady-state, and then, C) is fulfilled. This completes the proof.
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4.3 Proposed generalized SP

4.3 Proposed generalized SP

The main contribution of this chapter, a generalized SP, is presented next.

Lemma 4.2 (GSP). Let us consider an arbitrary decomposition of the delay-free plant
such that

G(s) = Γ(s)G̃(s) (4.9)

where Γ(s) is proper, stable and may have non-minimum phase zeros; and G̃(s) =
C̃(sI − Ã)−1B̃ = Ñ(s)/D̃(s) is strictly proper, minimum phase and may have unstable
poles. Then, the computation of (4.2) with the stable filters

F1(s) = ΦG̃(s)Γ(s) F2(s) =
Ñ∗(s)
Ñ(s)

(4.10)

where G̃∗(s) = C̃eÃh(sI − Ã)−1B̃ = Ñ∗(s)/D̃(s) and

ΦG̃(s) = C̃
(

I − e−(sI−Ã)h
)

(sI − Ã)−1B̃,

provides an exact output prediction.

Proof. Let us consider the system (4.1) with w(t) = 0 and the decomposition
(4.9). The auxiliary variable v(t) is defined such that v(s) = Γ(s)u(s), which
implies that y(s) = G̃(s)e−shv(s). Let us also introduce the following internal
representation

{
ẋ(t) = Ãx(t) + B̃v(t)
y(t) = C̃x(t − h)

so that G̃(s) = C̃(sI − Ã)−1B̃. A non-delayed state prediction is given by

ˆ̄x(t) = eÃhx(t − h) +
∫ h

0
eÃξ B̃u(t − ξ)dξ (4.11)

Since the state is not accessible, an output prediction ˆ̄y(t) = C̃ ˆ̄x(t), is sought
instead. Using (4.11), it follows that

ˆ̄y(t) = C̃eÃhx(t − h) + C̃
∫ h

0
eÃξ B̃v(t − ξ)dξ (4.12)

It can be shown that (Zhong 2004)

C̃
∫ h

0
eÃξ B̃v(t − ξ)dξ = L−1{ΦG̃(s)v(s)} (4.13)
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where ΦG̃(s) , C̃
(

I − e−(sI−Ã)h
)

(sI − Ã)−1B̃. Also, since L{x(t − h)} = (sI −
Ã)−1B̃e−shv(s) and v(s) = G̃−1(s)eshy(s), one can write

CeÃhx(t − h) = L−1
{

G̃∗(s)
G̃(s)

y(s)

}

(4.14)

where G̃∗(s) = C̃eÃh(sI − Ã)−1B̃. Plugging (4.13)-(4.14) and v(s) = Γ(s)u(s)
into (9.120) yields

ˆ̄y(s) = L{ ˆ̄y(t)} =
G̃∗(s)
G̃(s)

y(s) + ΦG̃(s)Γ(s)u(s) (4.15)

The lemma follows by using the fact that G̃∗(s)/G̃(s) = Ñ∗(s)/Ñ(s) because the
transfer functions G̃∗(s) and G̃(s) have the same denominator.

Intuitively, Lemma 2 implies that, regarding prediction, the plant can be decom-
posed into: G̃(s), which is projected h units of time ahead by the operator ΦG̃(s);
and Γ(s), which appears explicitly in the predictor. The usefulness of the GSP
introduced above lies on the fact that the prediction is exact no matter what de-
composition is chosen. Therefore, Γ(s) can be appropriately selected so that F1(s)
has some desired properties.

Theorem 4.1. Let us consider the following decomposition

Γ(s) =
N+(s)N−

Γ
(s)

D−
Γ (s)

Q(s)

w0(s)
G̃(s) =

N−
G̃
(s)

D+(s)D−
G̃

w0(s)

Q(s)
(4.16)

where: i.) the unstable poles and non-minimum phase zeros of G(s) are collected in
D+(s) and N+(s), respectively; ii.) its stable poles D−(s), and minimum phase zeros
N−(s), are arbitrarily partitioned so that D−

Γ (s)D−
G̃
(s) = D−(s) and N−

Γ (s)N−
G̃
(s) =

N−(s); and iii.) Q(s) is a strictly-proper filter such that G̃(s) is strictly-proper and
Γ(s) is at least proper.

Then, the GSP introduced in Lemma 2 with Γ(s), G̃(s) given above, solves Problem 1.

Proof. Recall that Problem 1 is solved if the conditions in Lemma 1 are fulfilled.
By Lemma 2, the items i.) and ii.) hold. Using (4.8), the limit of the output pre-
diction error (if it exists) can be computed as limt→∞ e(t) = lims→0 sF1(s)w(s).
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4.4 Predictor-based control

Using (4.10), (4.16) and Assumption 1, it follows that

lim
t→∞

e(t) = lim
s→0

sΦG̃(s)
N+(s)N−

Γ
(s)

D−
Γ
(s)

Q(s)

w0(s)
w̄w0(s)

= lim
s→0

sΦG̃(s)
N+(s)N−

Γ
(s)

D−
Γ
(s)

Q(s)w̄ = 0 (4.17)

Notice that the limit always exists because all transfer functions in (4.17) are
stable, including ΦG̃(s). This completes the proof.

Remark 4.2. It should be remarked that although there are infinite choices for Q(s), its
relative degree, denoted by rq, is constrained. In order to fulfill the third condition in

Theorem 1 , it can be shown that rq ∈ [rq, rq] , [z+ + rw0 − p−, p + rw0 − 1], where

rw0 is the relative degree of w0(s), z+ is the number of non-minimum phase zeros, p
is the number of total poles and p− is the number of stable poles. A simple choice is
Q(s) = (s + ω)−rq , rq ∈ [rq, rq], which leaves only two parameters to be adjusted.

4.4 Predictor-based control

The main features of the control-loop resulting from applying the proposed pre-
dictor are discussed in this section. First, performance and robustness indices
are derived in comparison to those of the ideal delay-free loop. Later, the stabil-
ity of the digital implementation is thoroughly analyzed as it is a critical issue,
specially for unstable plants.

4.4.1 Performance and robustness

From (4.4) in Proposition 1, the proposed strategy recovers the tracking perfor-
mance of the ideal loop. Also, it can be verified from (4.5) that

S(s) = S̄(s)
(
1 + K(s)F1(s)

)
(4.18)

where S̄(s) and S(s) are the sensitivity functions of the control loops in Fig. 4.1
and Fig. 4.2, respectively. On the other hand, let us consider a multiplicative un-
certainty such that G(s) = G0(s)

(
1 + ∆(s)W∆(s)

)
with ‖∆‖∞ ≤ 1, and thus the

robust stability condition for Fig. 4.1 is ‖M̄(s)‖∞ ≤ 1 where M̄ = L̄(s)W∆(s)/
(
1+

L̄(s)
)

and L̄(s) = G0(s)K(s). Then, denoting by ‖M(s)‖∞ ≤ 1 the new robust
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Chapter 4. A Generalized Smith Predictor (GSP)

stability condition for the loop Fig. 4.2, it can be show that

M(s) = M̄(s)F2(s) (4.19)

The robustness with respect to a delay mismatch is also a matter of concern
(Michiels et al. 2003). Considering h = h0 + δh, the robust stability can be
checked by modeling it as multiplicative uncertainty (very conservative), or the
analytic bounds on δh can be computed by

max

{

−h0,
φ−

i

ωi

}

< δh < min
φ+

i

ωi
, (4.20)

where ωi are crossover frequencies at which L(jωi) = 1, φ+
i > 0, φ−

i < 0 are the
corresponding signed phase margins, and L(s) is the loop transfer function of
Fig. 4.2, given by

L(s) =
G(s)K(s)F2(s)e

−hs

1 + K(s)F1(s)
.

Since K(s) should be designed for the delay-free system, one can use (4.18)-(4.19)
along with Theorem 1 to design a filter Q(s) so that the desired disturbance
rejection performance and robustness are achieved, if possible. However, it is
worth mentioning that there are fundamental limitations (Normey-Rico 2007).
For example, it is not possible to achieve S̄(s) = S(s) at all frequencies because
F1(s) = 0 implies F2(s) = esh, which is not realizable. Also, M̄(s) = M(s) can
only be achieved for stable systems, because it implies that F2(s) = 1 and thus
F1(s) = G(s)

(
1 − e−hs

)
, which is the conventional Smith Predictor. It should be

also remarked that, although predictors achieve nominal stability for any h > 0,
there is a limitation on the achievable delay margin for unstable systems using
LTI controllers (Middleton et al. 2007). Therefore, above that value, an infinitesi-
mal delay would lead to instability, making the controller unfeasible in practice.

4.4.2 Discrete-time implementation

Some details regarding the digital implementation will be discussed next. Since
predictive schemes are sensitive to non-minimum phase zeros and unstable poles,
it is important to consider a discretized plant from the beginning. Let us define
the sampling period Ts > 0, and the discretized process model G(z) = Z{G(s)},
where Z{·} is the Z-transform operator. The delay is assumed to be a multiple
of the sampling period, i.e., h = Tsd for some d ∈ N. Then, the discrete-time
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counterpart of (4.1) is given by

y(z) = G(z)z−d[u(z) + w(z)] (4.21)

where G(z) = Cz(zI − Az)−1Bz. The discrete form of the proposed predictor for
the system (4.21) is introduced in the following lemma:

Lemma 4.3 (Discrete-time GSP). Let us consider an arbitrary decomposition of the
delay-free plant such that

G(z) = Γ(z)G̃(z) (4.22)

where Γ(z) is proper, stable and may have non-minimum phase zeros; and G̃(z) =
C̃z(zI − Ãz)−1B̃z = Ñ(z)/D̃(z) is strictly proper, minimum phase and may have
unstable poles. Then, the computation of

ˆ̄y(z) = F1(z)u(z) + F2(z)y(z) (4.23)

with the stable filters

F1(z) = ΦG̃(z)Γ(z) F2(z) =
Ñ∗(z)
Ñ(z)

(4.24)

where G̃∗(z) = C̃z Ãd
z (zI − Ãz)−1B̃z = Ñ∗(z)/D̃(z) and

ΦG̃(z) = C̃z

d

∑
j=1

Ã
j−1
z z−jB̃z,

provides an exact output prediction.

Proof. It can be readily seen that the following identity holds ∑
d
j=1 Ã

j−1
z z−j =

(

I − Ãd
zz−d

)

(zI − Ãz)−1. Pre-multiplying by C̃z and post-multiplying by B̃z in

the previous identity yields ΦG̃(z) = G̃(z)− G̃∗(z)z−d. Therefore, from (4.24),
if follows that F1(z) =

(
G̃(z) − G̃∗(z)z−d

)
Γ(z). Also, since G̃(z) and G̃∗(z)

have the same poles, then F2(z) = Ñ∗(z)/Ñ(z) = G̃∗(z)/G̃(z). Plugging these
expressions into (4.23) and after some manipulations, it follows that ˆ̄y(z) =
G(z)u(z) for the nominal case, i.e., w = 0. This completes the proof.

Remark 4.3. Notice that the decomposition introduced in Theorem 1 applies to the
discrete-time case, simply replacing the argument s of the transfer functions by z. It
is important to perform the decomposition of the plant using the discretized model, be-
cause additional zeros may be introduced during the discretization process.
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Remark 4.4. The digital implementation of the distributed terms arisen in F1(s) has
been a major concern for many years (Mondié et al. 2003). The implementation struc-
ture given in Lemma 3 mitigates this problem. Another implementation issue was de-
vised in (Zhong et al. 2004) for the case of systems with fast stable modes, where the
Unified Smith Predictor (USP) was proposed. This problem can be avoided in the pro-
posed scheme by placing the fast stable modes in Γ(s) and selecting Q(s) accordingly.

For the convenience of potential users, the set-up of the proposed strategy can
be summarized as follows: 1.) Obtain a discrete-time model of the plant as
shown in (16); 2.) Design a primary controller K(z), for the delay-free sys-
tem (using conventional design techniques); 3.) Find a suitable decomposi-
tion G(z) = Γ(z)G̃(z) satisfying the conditions in Theorem 1 (choosing Q(z)
as simple as possible, e.g., a low-pass filter, for design simplicity); 4.) Construct
the filters F1(z), F2(z) and implement the output predictor ŷ(z) as described in
Lemma 3; 5.) Use ŷ(z) as the input to the controller; and 6.) Adjust the parame-
ters in Q(z) to reach a trade-off between performance and robustness.

4.5 Simulations

In this section, simulations are carried out to validate the proposed strategy. Let
us consider (4.1), being

G(s) =
1

s − 1
and h = 1.5 s.

Remark 4.5. It should be remarked that this is a rather challenging example. To the best
of the authors’ knowledge, this system has not been robustly controlled with such a large
delay (Wang et al. 2004). Furthermore, it is pointed out in (Middleton et al. 2007) that
no LTI controller can stabilize this system for delays h > 2 s.

The equivalent ZOH sampled system (4.21), with a sampling period Ts = 0.01 s
is obtained as G(z) = bz/(z − az) with az = eTs , bz =

∫ Ts

0 eθ dθ = 1 − eTs and a
discrete delay d = 150. The controllers below are designed taking into account
only the delay-free system, using conventional procedures. The predictor is ad-
justed to yield zero steady-state prediction error for some type of disturbances.
Then it is showed how the straightforward combination of the predictor with the
main controller stabilizes the delayed system, keeping the same tracking perfor-
mance while maintaining the disturbance rejection capabilities.

46



4.5 Simulations

Table 4.2: Absolute performance and robustness for different values of τq

GM PM IAE/IAE∗ ωc δh

delay-free [0.79, inf] 35.9◦ 1 1.3 rad/s -
τq = 0.1 s [0.83, 1.20] 11.5◦ 1.04 51.3 rad/s ±0.02 s

τq = 0.75 s [0.87, 1.18] 7.71◦ 1.07 11.4 rad/s ±0.09 s
τq = 1.5 s [0.89, 1.18] 6.4◦ 1.12 8.5 rad/s ±0.12 s

τq = 2 s [0.91, 1.18] 5.9◦ 1.20 7.8 rad/s ±0.13 s
τq = 5 s [0.94, 1.18] 5.0◦ 2.10 6.5 rad/s ±0.15 s

4.5.1 Constant disturbance rejection

Rejection of constant disturbances is a typical requirement in practice, and it
is here chosen to illustrate the main features of the proposed strategy. Primary
controller design: A simple 2-DoF PI-controller K(s) with a set-point filter Fr(s) is
designed, in the Laplace domain for convenience, for the equivalent delay-free
system as follows

K(s) = k
tis + 1

tis
Fr(s) = Gr(s)/T(s)

with k = 2β + 1 and ti = k/β2, which yields a closed-loop characteristic polyno-
mial (s + β)2. For the prefilter,

T(s) =
G(s)K(s)

1 + G(s)K(s)
, Gr(s) =

1
τrs + 1

,

leading to a characteristic response time for the set-point tracking, τr. For the
simulations below, the parameters β = 1/8 and τr = 2 s are arbitrary selected.
Notice that this controller is able to reject constant disturbances in the delay-
free case and it has been designed without considering the time delay. Predic-
tor design: The predictive scheme is implemented according to Lemma 3, with
N−

Γ
(z) = bz, N−

G̃
(z) = 1, N+(z) = 1, D+(z) = (z + az), D−

Γ
(z) = 1, D−

G̃
(z) = 1

and w0(s) = 1/s, to reject constant disturbances. Notice that according to Re-
mark 1, in this case rq ∈ [1, 1] and thus the simplest possible choice for the filter
is taken, Q(s) = 1/(τqs + 1), being τq an adjustable parameter. The following
discretization can be obtained

Z
{

Q(s)

w0(s)

}

= Z
{

s

τqs + 1

}

=
z − 1

τqz + (Ts − τq)
(4.25)
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Figure 4.3: Relative robustness and performance indices as a function of τq

and thus, applying the decomposition in Theorem 1 yields

Γ(z) =
bz(z − 1)

τqz + (Ts − τq)
and G̃(z) =

τqz + (Ts − τq)

(z − 1)(z − az)
.

A state-space realization of G̃(z) = C̃z(zI − Ãz)−1B̃z is given by

C̃z = [Ts − τq, τq], Ãz =

[
0 1

1 + az −az

]

and B̃z =

[
0
1

]

.

According to Lemma 3, the filter F1(z) can be computed by

F1(z) = ΦG̃(z)
bz(z − 1)

τqz + (Ts − τq)

with ΦG̃(z) = C̃z ∑
d
j=1 Ã

j−1
z z−jB̃z and Ãz, B̃z, C̃z given above. In order to com-

pute F2(z), notice that, because of the canonical form of the state-space represen-
tation of G̃(z) = Ñ(z)/D̃(z), it follows that Ñ(z) = τqz+(Ts − τq) =

〈
C̃z, [1, z]

〉
,

where 〈·, ·〉 denotes the dot product. In other words, the coefficients of the nu-
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Figure 4.4: Nominal performance for different values of τq

merator of the transfer function are simply given by C̃z. Then, according to
Lemma 3, the numerator of G̃∗(z) is obtained as Ñ∗(z) =

〈

C̃z Ãd
z , [1, z]

〉

and
thus the filter F2(z) can be computed by

F2(z) =

〈
C̃z, [1, z]

〉

〈
C̃z Ãd

z , [1, z]
〉

In the current configuration, there is only one parameter left to be tuned, namely,
τq. Its influence can be illustrated through a plot like the one depicted in Fig. 4.3.
In this representation, one can see the phase margin reduction (green), the gain
margin reduction (red) and the integral absolute error (IAE) increment for a load
step disturbance (blue), all of them expressed as relative values over the corre-
sponding delay-free loop characteristics. According to the previous indicators,
lower values of τq increase both robustness and performance. However, the al-
lowable delay uncertainty (black) approaches to zero as τq → 0. The data shown
in Table 2 (absolute GM, absolute PM, relative IAE and absolute delay mismatch,
δh) illustrates with more details the same behavior depicted in Fig. 4.3. Further-
more, an additional measure is added, namely, the crossover frequency of the
transfer function (4.6), denoted by ωc. It can be concluded that the improvement
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Figure 4.5: Robustness to −10% gain variation for different values of τq

in GM, PM and IAE comes at the expense of more noise and less tolerance to
delay mismatch.

Therefore, a trade-off must be reached, which is mainly constrained by how ac-
curate the delay is known. From Fig. 4.3, for this particular example, values
τq > 2 should be discarded, as they reduce performance substantially (fast grow
of relative IAE) whereas the other indices are barely improved. On the other
hand, values in the range τq < 0.5 offer a tolerance of less than 5% to a delay
mismatch, and thus they should also be ruled out. An interval of interest in
practice for this example is hence given by 0.5 < τq < 2.

The discussion above is illustrated next through some simulations. The sys-
tem is driven by a step reference r(t) = 1, ∀t ≥ 10 s; and an input disturbance
w(t) = −0.1,∀t ≥ 100 s is applied. The first scenario is shown in Fig. 4.4, where
the different values of τq are simulated in nominal conditions. One can clearly
see how the disturbance rejection performance improves as τq is reduced. A sec-
ond simulation shows the effect of τq in the robust performance. The gain of the
actual plant is decreased by 10% while the delay is kept with its nominal value.
The results are shown in Fig. 4.5. It is verified that, as discussed before, if the
delay is accurately known, lower values of τq provide better robustness. The
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Figure 4.6: Robustness to −10% gain and +5% delay variations

output corresponding to τq = 1.5 s is not included here because it is almost un-
stable. The third simulation considers the same scenario as before but the actual
delay is increased by 5%. In this case, the value τq = 0.1 s leads to instability,
as it has a very small tolerance to a delay mismatch (see Table 2). However, the
performance for τq = 0.75 s, shown in Fig. 4.6, is satisfactory.

4.5.2 Sinusoidal disturbance rejection

The design process to reject a sinusoidal input disturbance is illustrated next. A
resonant controller K(s) with a set-point filter Fr(s) is designed for the equivalent
delay-free system as follows

K(s) = k
(s + ω)2

s2 + ω2 Fr(s) = Gr(s)/T(s) (4.26)

with k = 5, ω = 0.2 rad/s which yields a stable closed-loop with phase mar-
gin 60◦. The prefilter is the same as in the previous example, with τr = 2 s.
Notice that this controller is able to reject sinusoidal disturbances of frequency
ω = 0.5 rad/s in the delay-free case. The predictive scheme is implemented ac-
cording to Lemma 3, with the same decomposition as in the previous example
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Figure 4.7: Rejection of a sinusoidal input disturbance

but choosing w0(s) = ω/(s2 + ω2). Again, in this case rq ∈ [2, 2] according to
Remark 1, and thus the simple choice Q(s) = 1/(τqs + 1)2 is made, being τq an
adjustable parameter.

The simulation is shown in Fig. 4.7, where the adjustable parameter is selected
as τq = 1 s; the system is driven by a step reference r(t) = 1, ∀t ≥ 10 s; and
an input disturbance w(t) = −0.2 sin 0.2(t − 40), ∀t ≥ 40 s is applied. It can
be seen how the disturbance is finally rejected in spite of the large time delay,
as it happens in the delay-free case. Regardless of whether the frequency of
sinusoidal disturbances is accurately known in practice, the main purpose of
the previous simulation is to show that the proposed predictor can be easily
adjusted to keep the same steady-state disturbance rejection capabilities of the
corresponding delay-free loop.
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Figure 4.8: Experimental device

4.6 Experimental results

An experimental validation is reported using the 3D Hover laboratory platform
manufactured by Quanser c©, depicted in Fig. 4.8. It consists of a quadrotor-like
structure mounted on a 3-DoF pivot joint so that the body can freely rotate in
roll, pitch and yaw. The angular position is the controlled variable, which is
measured by a encoder with a resolution of 0.04 deg, while the input is the volt-
age sent to the motors. The experiment is performed in one of the roll/pitch
axes, which is modeled as a double integrator G(s) = 0.1/s2. The control loop is
implemented at T−1

s = 100 Hz, where Ts is the sampling period, using a POSIX
thread in a computer running Linux with a soft real-time patched kernel. An
artificial delay of h = 250 ms (or d = 25 sampling periods) is introduced by soft-
ware. The resulting controller is required to reject step disturbances. It should be
remarked that the double integrator model is just an approximation of the real
plant. In fact, the experimental device has a large uncertainty due to the motor
dynamics, which is neglected in the design process. Furthermore, although the
number of samples in the artificial delay is known, the actual delay depends on
the computational time, which is slightly varying and thus, another source of
uncertainty.

Following the Step 1, described at the end of Section 4, a discretization of the
plant, G(z) = 0.5T2

s (z + 1)/(z − 1)2, is obtained. In the Step 2, a primary PID-
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controller is designed

K(s) = kp

(

1 +
tds

τf s + 1
+

1
tis

)

with a set-point filter Fr(s) = 1/(τrs + 1) and τr = 2 s, kp = 50 V/rad, td =
ti = 0.5 s, with τf = 0.2, which leads to a large phase margin of 80◦ and fast
step disturbance rejection for the delay-free system. Following the Steps 3-4, the
predictor is implemented according to Lemma 3, with N−

Γ
(z) = 0.5T2

s , N−
G̃
(z) =

1, N+(z) = z + 1, D+(z) = (z − 1)2, D−
Γ
(z) = D−

G̃
(z) = 1. Notice that the zero

(z + 1) is treated as a non-minimum phase term in order to avoid numerical
issues. According to Remark 2, the relative degree of Q(s) needs to be rq = 2,
and thus

Q(z)

w0(z)
= Z

{
s

(τqs + 1)2

}

=
T(z − 1)e−T/τq

τ2
q (z − e−T/τq)2

.

The parameter τq is tuned online and finally set to τq = 0.25 s. Two experiments
with the same pattern are carried out. A step reference of 5 deg is commanded
at t = 1 s and an input disturbance of −4 V is applied at t = 20 s. One can see in
Fig. 4.9 that, the designed PID-controller in combination with the proposed pre-
dictor stabilizes the system and rejects load disturbances (full blue). An exper-
iment without the predictor is also reported, simply to illustrate that this delay
is large enough to be considered, as the designed PID-controller cannot stabilize
the system by itself (dashed red).
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Figure 4.9: Experimental results of the proposed scheme applied to an unstable plant with a
delay of h = 250 ms
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Chapter 5

Enhanced disturbance rejection

for LTI systems with input delay

In this chapter, a new predictor-based control strategy for LTI systems with input delay
and unknown disturbances is proposed. The disturbing signal and its derivatives up to
the r-th order are estimated by means of an observer, which are then used to construct a
prediction of the disturbance. Such prediction allows defining a new predictive scheme
taking into account its effect. Also, a suitable transformation of the control input is
presented and a performance analysis is carried out to show that, for a given controller,
the proposed solution leads to better disturbance attenuation than previous approaches
in the literature for smooth enough perturbations.
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5.1 Introduction

The problem considered in this chapter deals with possibly open-loop unstable
disturbed LTI systems, defined by

ẋ(t) = Ax(t) + B[u(t − h) + d(t)]

u(t) = u0(t) t ∈ [−h, 0) (5.1)
x(0) = x0

where x(t) ∈ Rn is the state, u(t) ∈ R is the control input, d(t) ∈ R is an
unknown input disturbance, h > 0 is a known and constant input delay, and
A ∈ R

n×n, B ∈ R
n are known matrices.

The Smith Predictor (Smith 1957), can be considered as the first predictor-based
control for open-loop stable linear systems. Later, the same concept was ex-
tended for open-loop unstable systems by introducing an h units of time ahead
state predictor, (Artstein 1982; Manitius et al. 1979):

x̂1(t + h) , eAhx(t) +
∫ t

t−h
eA(t−s)Bu(s)ds, (5.2)

referred to as the conventional prediction throughout this chapter. The variable
x̂1(t+ h) is understood as the projection of the state starting at x(t) driven by the
control history u(t + s), s ∈ [−h, 0]. In the absence of disturbances, the feedback
law u(t) = Kx̂1(t + h) achieves asymptotic stabilization for any h > 0 with a
proper choice of K.

However, in a disturbed system, an error is introduced in the prediction x̂1. Since
there is always an error between the exact and the approximated predictions, it
is not possible to remove constant disturbances even using integral action. Al-
though it is an interesting topic from a practical point of view (Krstic 2010a),
only few articles have addressed this problem. In an effort to predict the evolu-
tion of the disturbances, adaptive algorithms have drawn the attention of some
researchers. For example, sinusoidal disturbances of unknown frequency are
identified and rejected in (Pyrkin et al. 2010) for LTI systems with known delay,
and more recently in (Basturk et al. 2015) for systems with matched uncertain-
ties (see also the references therein). Also, adaptive schemes are used to estimate
and reject constant disturbances for unknown input delay in (Bresch-Pietri et al.
2012), and for known distributed delays in (Bekiaris-Liberis et al. 2013). Other
works avoid any a priori knowledge of the disturbance structure. For example, a
filtered version of the predicted state (5.2) is proved to minimize a cost functional
involving the disturbance in (Krstic 2008a; Krstic 2010a). Recently in (Léchappé
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et al. 2015), a simple solution is considered, where additional feedback from
the difference between the measured, x(t), and delayed predicted state, x̂1(t),
is used to define a new prediction

x̂2(t + h) = x̂1(t + h) + [x(t)− x̂1(t)] (5.3)

With this simple modification, it is proved that for a certain class of disturbing
signals, the new prediction leads to better attenuation than the conventional one.
However, perfect cancellation is only possible for constant disturbances, and the
attenuation depends entirely on the characteristics of the disturbance.

The main contribution reported in this chapter is a new predictive scheme that
takes into account a prediction of the disturbing signal, denoted by d̂(t + h).
Such prediction is constructed from estimates of the disturbance and its deriva-
tives up to the r-th order, which are obtained by means of a tracking differentia-
tor. The predicted disturbance is used to define a new state prediction, allowing
to compensate the effect of the disturbance in the overall system. A performance
analysis based on Lyapunov’s theory is carried out to prove that the proposed
scheme performs better than previous proposals in the literature, in the presence
of smooth enough time-varying disturbances, achieving perfect cancellation in
some particular cases.

5.2 Problem statement

Let us consider the system (5.1). Other than the accessibility to the full state, the
following assumptions are taken.

Assumption 5.1. The pair (A,B) is controllable.

Assumption 5.2. The unknown disturbance d(t) is uniformly bounded by |d(t)| ≤ D0
and it is (r + 1)-times continuously differentiable with |d(r+1)(t)| ≤ Dr+1, ∀t ≥ 0.

From (5.1), it can be seen that the actual projection of the state at time t + h is
given by

x(t + h) = eAhx(t) +
∫ t

t−h
eA(t−s)B[u(s) + d(s + h)]ds. (5.4)

Although (5.4) cannot be used in practice because the disturbance is unknown,
an approximated prediction of the state h units of time ahead for the system (5.1),
denoted by x̂(t + h), can be obtained by computing the conventional prediction
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(5.2). From (5.2) and (5.4), the prediction error is given by

x(t + h)− x̂1(t + h) =
∫ t

t−h
eA(t−s)Bd(s + h)ds. (5.5)

In the disturbance-free case, d(t) ≡ 0, it can be seen from (5.5) that stabilizing
x̂1 is equivalent to stabilize x because the prediction is exact. However, when
d(t) 6= 0, the predicted state x̂1 is corrupted. In such case, if the control law is
designed so that x̂1 tends to zero, then x will not tend to zero even for constant
perturbations. This fact is illustrated by the following proposition, taken from
(Léchappé et al. 2015):

Proposition 5.1. The asymptotic convergence of x̂1 to zero implies the asymptotic con-

vergence of x to
∫ t

t−h eA(t−s)Bd(s)ds.

For constant disturbances, the prediction x̂2 in (5.3) avoids this problem as stated
by the following proposition, also taken from (Léchappé et al. 2015):

Proposition 5.2. For constant disturbances, the asymptotic convergence of x̂2 to zero
implies the asymptotic convergence of x to zero.

However, both predictions share some drawbacks: their accuracy is only deter-
mined by the characteristics of the disturbance signal, and perfect cancellation of
time-varying disturbances is never possible. In the next section, a new prediction
that mitigates these problems, denoted by x̂3, is proposed.

5.3 Proposed Predictor-based control

Let us assume that a future estimation of the disturbance d̂(t + h), is available.
Then, a new predicted state which considers the effect of the disturbance can be
computed by

x̂3(t + h) , eAhx(t) +
∫ t

t−h
eA(t−s)B[u(s) + d̂(s + h)]ds. (5.6)

The disturbance prediction error is defined as

σ(t) , d(t)− d̂(t). (5.7)
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From (5.4), (5.6) and using the definition (5.7), the error of the new prediction is
given by

x(t + h)− x̂3(t + h) =
∫ t

t−h
eA(t−s)Bσ(s + h)ds. (5.8)

Proposition 5.3. If σ → 0 , then the asymptotic convergence of the new prediction x̂3
to zero implies the asymptotic convergence of x to zero.

Proof. If x̂3 tends to zero, from (5.8) it can be seen that x tends to
∫ t

t−h et−sBσ(s +

h)ds, and the proposition follows.

Therefore, with the proposed predictive scheme, the disturbance attenuation will
depend on the accuracy of the disturbance prediction estimation. To this pur-
pose, the methodology adopted here is based on (Zhong et al. 2004) where, for a
delay-free system, an estimation of the unknown uncertainties and disturbances
is obtained using the system model. Considering the input-delayed system (5.1),
the disturbance can be written as1

d(t) = B+ [ẋ(t)− Ax(t)]− u(t − h), (5.9)

which cannot be computed because the state derivative is unknown. However,
following the ideas in (Zhong et al. 2004), a filtered disturbance can be obtained
as d̂(t) = L−1 {G(s)D(s)}, where D(s) = B+ [sX(s)− AX(s)] − e−hsU(s), and
G(s) is a strictly-proper unity-gain filter. In the simplest case, G(s) can be chosen
as a first-order low-pass filter.

Note that because of the input delay, even if the disturbance was perfectly iden-
tified, it could not be counteracted until h units of time later, which would lead
to poor performance. To mitigate this problem, a strictly-proper filter H(s) is de-
signed such that an estimated prediction of the disturbance h units of time ahead
is obtained as

d̂(t + h) , L−1 {H(s)D(s)} . (5.10)

The underlying idea behind the filter H(s) is to make an estimation d̂0(t) of the
disturbance, and its derivatives up to the r-th order, gathered in

δ̂(t) , [d̂0(t), d̂1(t), . . . , d̂r(t)], (5.11)

1Here B+ , (BTB)−1BT denotes the pseudoinverse of B
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which are then used to construct a prediction h units of time ahead by using a
truncated Taylor series expansion

d̂(t + h) ,
r

∑
j=0

hj

j!
d̂j(t) , CH δ̂(t), (5.12)

with CH ,
[

1, h, . . . , hr

r!

]

. The following lemma introduces a linear tracking
differentiator which is used to prove the main result.

Lemma 5.1. Let us consider a signal ξ(t) and its derivatives up to the r-th order gath-

ered in the vector Ξ , [ξ(t), ξ̇(t), . . . , ξ(r)(t)]T satisfying |ξ(r+1)| < M, and an esti-

mation Ξ̂(t) , [ξ̂0(t), ξ̂1(t), . . . , ξ̂r(t)]T given by the following dynamic system ξ(t):

˙̂Ξ(t) =








−c0 1 0 . . . 0
−c1 0 1 . . . 0

...
...

. . .
...

−cr 0 0 . . . 0








︸ ︷︷ ︸

AH

Ξ̂(t) +








c0
c1
...

cr








︸ ︷︷ ︸

BH

ξ(t), (5.13)

with cj =
(

r + 1
j + 1

)

ω
j+1
o and ω0 > 0. Then (5.13) is exponentially stable and the following

holds lim
t→∞

|ξ(j)(t)− ξ̂ j(t)| ≤
cj−1
cr

M.

Proof. The system (5.13) can be alternatively expressed as

˙̂ξ j(t) = −cj ξ̂0(t) + ξ̂ j+1(t) + cjξ(t), j = 0, 1, . . . , r − 1
˙̂ξr(t) = −cr ξ̂0(t) + crξ(t). (5.14)

Let us denote the estimation error of the j-th derivative of the input signal as
ej(t) = ξ(j)(t)− ξ̂ j(t), which allows to rewrite (5.14) as

ėj(t) = −cje0(t) + ej+1(t), j = 0, 1, . . . , r − 1,

ėr(t) = −cre0(t) + ξ(r+1), (5.15)

or, in matrix form, ė(t) = AHe(t) + [0r−1 1]Tξ(r+1). Notice that AH has a unique
eigenvalue, −ωo, with multiplicity r + 1. Computing the analytic expression
for the transfer function of each channel, one can see that |ej(s)/ξ(r+1)(s)|

∞
=

cj−1/cr, which corresponds to the maximum amplification of the input on each
channel when t → ∞.
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Theorem 5.1. Let us consider a disturbance d(t) satisfying the Assumption 2 with
Dr+1 > 0, a filter given by

H(s) = CH(sI − AH)
−1BH, (5.16)

with bandwidth ωo > 0, and AH,BH and CH as defined in (5.12)-(5.13). The distur-
bance prediction (5.10) can be implemented through the following dynamic system

˙̂z(t) = AH ẑ(t) +
[
AHBHB+ − BHB+A

]
x(t)− BHu(t − h), (5.17)

d̂(t + h) = CH

[
ẑ(t) + BHB+x(t)

]
, (5.18)

with ẑ(t) being an auxiliary variable. Then, the disturbance prediction error (5.7) is ul-

timately bounded by σ∞ , Dr+1

(

β(ωo) +
hr+1

(r+1)!

)

, where β : (0,+∞) → R
+ satisfies

lim
ωo→∞

β(ωo) = 0.

Proof. Let us apply the tracking differentiator (5.13) to the disturbance d(t). Us-
ing the vector defined in (5.11), it follows that

˙̂δ(t) = AH δ̂(t) + BHd(t). (5.19)

Plugging (5.9) into (5.19), and performing the change of variable ẑ(t) , δ̂(t) −
BHB+x(t) in (5.19) and (5.12), yields (5.17) and (5.18), respectively. The transfer
function (5.16) follows directly as a realization of (5.12) and (5.19).

Now, using (5.7), (5.12) and the complete Taylor series representation d(t + h) =

∑
r
j=0

hj

j! d(j)(t)+ ǫr , one has that σ(t+ h) = ∑
r
j=0

hj

j! [d
(j)(t)− d̂j(t)]+ ǫr where ǫr is

the Taylor remainder that is known to be bounded by |ǫr| ≤ Dr+1 · hr+1/(r + 1)!.
Using the Lemma 5.1 one can bound lim

t→∞
|d(j)(t)− d̂j(t)| ≤ (cj−1/cr)Dr+1, and

thus lim
t→∞

|σ(t)| ≤ Dr+1

(

∑
r
j=0

hj

j! (cj−1/cr) + hr+1/(r + 1)!
)

. Using the factorial

expression for cj, the theorem follows with β(ωo) = ∑
r
j=0

hj

j!
(r+1)!

j!(r+1−j)!ω
j−r−1
0 .

Although the previous results regarding the new prediction x̂3 are rather gen-
eral, a particular control transformation is also proposed. Since a prediction of
the disturbance is already available, a suitable transformation is given by

v(t) , u(t) + d̂(t + h), (5.20)

where v(t) is the new control input to the system.
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5.4 Performance analysis

The Artstein’s reduction (Artstein 1982), is a useful tool to analyze time delay
systems as it transforms the original system into a delay-free one. It is easy to
show that the reduction of system (5.1) with the conventional predicted variable
z1(t) , x̂1(t + h) leads to

ż1(t) = Az1(t) + Bu(t) + eAhBd(t), (5.21)

while the reduced system using the alternative prediction z2(t) , x̂2(t + h), pro-
posed in (Léchappé et al. 2015), is derived as

ż2(t) = Az2(t) + Bu(t) + Bd(t) + eAhB[d(t)− d(t − h)]. (5.22)

Similarly, considering the proposed prediction (5.6) and the control transforma-
tion (5.20), the reduction with z3(t) , x̂3(t + h) is given by

ż3(t) = Az3(t) + Bv(t) + eAhBσ(t). (5.23)

An improvement of the proposal is already highlighted by Proposition 5.3, that
is, the new predictive scheme will cancel time-varying disturbances if σ(t) tends
to zero. From Theorem 5.1, σ(t) tends to zero if Dr+1 = 0. Hence, constant
disturbances can be perfectly canceled for r = 0; the same applies for r = 1 and
disturbances with linear growth; and so on.

In order to evaluate the attenuation for other time-varying disturbances, note
that all three reduced systems (5.21)-(5.23) have the generic form χ̇(t) = Aχ(t)+
Bϑ(t) + g(t), that is, a nominal system with a perturbation term. Since the pair
(A, B) is controllable, there exists a Lipschitz function f : R

n → R such that the
feedback law ϑ(t) = f (χ(t)) makes the origin of the nominal system (g(t) ≡ 0)
globally exponentially stable. Furthermore, if |g(t)| ≤ ḡ, ∀t ≥ t0, there exist
α, β, γ > 0 such that |χ(t)| ≤ β|χ(0)|e−αt + γḡ, ∀t ≥ 0. Hence, the following
ultimate bounds hold

lim
t→∞

|z1(t)| ≤ γ|B||eAh |D0, (5.24)

lim
t→∞

|z2(t)| ≤ γ|B|
[

|eAh|hD1 + D0

]

, (5.25)

lim
t→∞

|z3(t)| ≤ γ|B||eAh |σ∞. (5.26)

In order to obtain the bound on the actual state, the transformation has to be
undone. In (Léchappé et al. 2015), it is shown that |x(t)| ≤ |x̂1(t)|+ η|B|D0, and
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also that |x(t)| ≤ |x̂2(t)| + η|B|hD1, with η = |
∫ 0
−h eAs ds|. Similarly, from (5.8)

and Theorem 5.1, it is obtained that limt→∞ |x(t)| ≤ limt→∞ |x̂3(t)| + η|B|σ∞ .
Gathering these results and (5.24)-(5.26), the different predictive schemes lead to
the following ultimate bounds of the state:

lim
t→∞

|x(t)| ≤
[

η + γ|eAh|
]

|B|D0 , r1, (5.27)

lim
t→∞

|x(t)| ≤
[

η + γ|eAh|
]

|B|hD1 + γ|B|D0 , r2, (5.28)

lim
t→∞

|x(t)| ≤
[

η + γ|eAh|
]

|B|σ∞ , r3. (5.29)

Lemma 5.2. Consider the conventional prediction x̂1 leading to the bound (5.27) and
the proposed scheme leading to the bound (5.29). There exists a sufficiently large ωo > 0
such that r3 < r1, if

Dr+1

D0

hr+1

(r + 1)!
< 1 (5.30)

Proof. From (5.27), (5.29), the condition r3 < r1 is implied by σ∞ < D0. The pre-
vious condition is fulfilled if the observer bandwidth satisfies β(ωo) <

D0
Dr+1

−
hr+1

(r+1)! . Because of the properties of β(ωo), this is always possible with a suffi-
ciently large ωo > 0 if (5.30) holds.

Lemma 5.3. Consider the alternative prediction x̂2 leading to the bound (5.28) and the
proposed scheme leading to the bound (5.29). There exists a sufficiently large ωo > 0
such that r3 < r2, if

Dr+1

D1

hr

(r + 1)!
< 1 (5.31)

Remark 5.1. Let us consider sinusoidal disturbances d(t) = D0 sin ωt. From (5.30),
the new proposal can lead to better attenuation than the conventional prediction simply
with r = 0 if ω < 1/h. Similarly, from (5.31), the proposal in (Léchappé et al. 2015)
can be outperformed with r = 1 if ω < 2/h. Notice also that in the limit r → ∞, the
new prediction improves attenuation for sinusoidal disturbance with arbitrarily large
frequency.
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Figure 5.1: Simulations for x(0) = [1.5 1]T, h = 0.5 s and sinusoidal perturbation

5.5 Numerical validation

In order to validate the bounds derived in the previous section, let us consider
the system (Léchappé et al. 2015),

ẋ(t) =

[
0 1
−9 3

]

x(t) +

[
0
1

]

u(t − h) +

[
0

d(t)

]

. (5.32)

The simulation considers the same scenario in (Léchappé et al. 2015), with an
input delay h = 0.5 s, the system starting from x(0) = [1.5, 1]T and a sinusoidal
disturbance d(t) = 3 sin(0.5t). The predictor-based control law in (Léchappé
et al. 2015) is u(t) = −[kp, kd] x̂2(t + h) with kp = 45, kd = 18. The same con-
trol law is selected for the proposed scheme by computing (5.20) with v(t) =
−[kp, kd] x̂3(t + h). The observer is calculated according to the Theorem 5.1 with
r = 1. In this case, the attenuation can be improved because the condition (5.31)
is fulfilled for h = 0.5 s and ω = 0.5 rad/s. The simulation in Fig. 5.1 shows the
limit case (same attenuation), along with a larger value ωo = 10 rad/s (better
attenuation).
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Chapter 6

Rejection of mismatched

disturbances for input-delayed

systems

The problem of output stabilization and disturbance rejection for input-delayed systems
is tackled in this chapter. First, a suitable transformation is introduced to translate mis-
matched disturbances into an equivalent input disturbance. Then, an extended state
observer is combined with a predictive observer structure to obtain a future estimation
of both the state and the disturbance. A disturbance model is assumed to be known
but attenuation of unmodeled components is also considered. Stability is proved via
Lyapunov-Krasovskii functionals, leading to sufficient conditions in terms of linear ma-
trix inequalities for the closed-loop analysis and parameter tuning. The proposed strat-
egy is illustrated through a numerical example.
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Chapter 6. Rejection of mismatched disturbances for input-delayed systems

6.1 Introduction

In this chapter, the asymptotic stabilization of linear time delay systems in the
presence of external mismatched disturbances is considered. In order to esti-
mate the disturbance, a structure similar to the one presented in (Guo et al. 2005)
is adopted, consisting of an extended state observer (ESO) that contains both the
plant and disturbance models. The main contribution of the present work lies
on extending the applicability of the ESO to input-delayed systems using a pre-
dictor in observer form (Najafi et al. 2013). As a result, a prediction h units of
time ahead of both the state and the disturbance is obtained. Also, attenuation
of unmodeled components of the disturbance is considered, which is a depar-
ture from (Guo et al. 2005). Furthermore, the proposed strategy is designed to
deal with mismatched uncertainties and partial state measurement, in contrast
to (Krstic 2008a; Léchappé et al. 2015; Sanz et al. 2016; Basturk et al. 2015). The
regulation problem is translated into a conventional H∞ stabilization problem
and sufficient stability conditions in terms of linear matrix inequalities are de-
rived.

6.2 Problem statement

The developments presented in this chapter consider a class of disturbed single-
input time delay systems given by

Ẋ (t) = AX (t) + Bu(t − h) + ∆ld(t) (6.1)
y(t) = CX (t) (6.2)
z(t) = DX (t), (6.3)

where A ∈ Rn×n, B ∈ Rn, C ∈ Rp×n, D ∈ Rq×n are known matrices, X ∈ Rn

is the state, y ∈ R
p is the measured output, z ∈ R

q is the regulated variable,
d : R≥0 → R is an unknown external disturbance and u ∈ R the actuator signal,
affected by a delay of h units of time. The vector ∆l ∈ R

n is defined such that its
lth entry is equal to one while the rest are zero, being l ∈ [1, n]. The following
assumptions are made:

Assumption 6.1. The pair (A, C) is detectable and the pair (A, B) is controllable.
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6.2 Problem statement

Assumption 6.2. The external disturbance can be represented by d(t) = ν(t) + η(t),
where

ξ̇d(t) = Aξξd(t) (6.4)
ν(t) = Cξξd(t), (6.5)

the matrices Aξ ∈ Rr×r, Cξ ∈ R1×r are known (the so-called exogenous system) and
form a completely observable pair, ξd ∈ R

r is the generator vector with unknown initial
condition ξd(0), and η : R≥0 → R is an unknown bounded signal that represents the
unmodeled disturbance components and satisfies η(t) ∈ L2[0, ∞).

Assumption 6.3. The pair

([
A BCξ

0 Aξ

]

, [C, 0]
)

is detectable.

Assumption 6.4. The matrix D ∈ R
q×n has the structure D = [D̄, 0], with D̄ ∈

R
q×l.

The first part of Assumption 6.1 is necessary for the stabilization of the system
via error feedback while the second part is assumed for simplicity. Assump-
tion 6.2 is similar to that of the output regulation theory (Fridman 2003; Isidori
et al. 1990). The eigenvalues of the matrix Aξ usually lie on the imaginary axis,
which means that for η(t) = 0, the model (6.4)-(6.5) can represent sinusoidal
disturbances or piecewise-continuous signals of polynomial growth. Assump-
tion 6.3 does not imply loss of generality because it can always be fulfilled if
(C, A) is detectable, by changing the dimension of the exogenous model (Isidori
et al. 1990). Finally, Assumption 6.4 simply points out that the effect of mis-
matched disturbances cannot be completely removed from all states if l 6= n.

The goal is to find a control strategy that, in spite of the input delay, achieves
cancellation of mismatched disturbances accurately modeled by (6.4)-(6.5), that
is, when η(t) = 0. Also, some attenuation level characterized by the L2-gain (de-
noted by γ > 0) should be guaranteed when there are unmodeled components
in the disturbance, that is, when η(t) 6= 0. This is cast into an H∞ problem as
follows:

Problem 6.1. Under Assumptions 6.1-6.4, find a dynamic output control law that in-
ternally stabilizes (6.1)-(6.2) and guarantees ‖z(t)‖2 ≤ γ‖η(t)‖2 for all 0 6= η(t) ∈
L2[0, ∞) and some γ > 0, assuming X0 = 0.

Before introducing the proposed strategy to solve this problem, the system (6.1)-
(6.3) is reformulated in a more convenient form. By virtue of Assumption 6.1
and without loss of generality, let us consider the pair (A, B) to be given in the
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Chapter 6. Rejection of mismatched disturbances for input-delayed systems

canonical controllable form, that is, with

A =










0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a1 a2 a3 . . . an










, B =










0
0
...
0
b










. (6.6)

The disturbance d(t) in (6.1) can be mismatched (if l 6= n), meaning that it affects
the state through channels in which the input has no influence. In order to obtain
an equivalent input disturbance, let us consider the following change of variable
(Ding 2003):

xj(t) = Xj(t), ∀j ∈ {1, . . . , l},

xj(t) = Xj(t) + ν(j−l−1)(t), ∀j ∈ {l + 1, . . . , n}, (6.7)

which can be used to transform the system (6.1)-(6.3) into

ẋ(t) = Ax(t) + B[u(t − h) + w(t)] + ∆lη(t), (6.8)
y(t) = Cx(t), (6.9)
z(t) = Dx(t), (6.10)

where

w(t) =
1
b

(

ν(n−l)(t)−
n

∑
j=l+1

ajν
(j−l−1)(t)

)

. (6.11)

Proposition 6.1. The exogenous model (6.4)-(6.5) is also a generator of the equivalent
input disturbance defined in (6.11), i.e., it can be represented by

ξ̇w(t) = Aξξw(t), (6.12)
w(t) = Cξξw(t), (6.13)

where ξw ∈ R
r is a generator vector with unknown initial condition ξw(0).

Proof. Let us rewrite (6.11) as w(t) = ∑
k̄
k=0 cjν

(k)(t) where j = k + l + 1 being k

a new summation index with k̄ = n − l, and the coefficients cj = −aj/b, ∀j ∈
[l + 1, n], cn+1 = 1/b have been defined for convenience. From, (6.4)-(6.5), the
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6.3 Proposed control strategy

following identities hold

w(t) =
k̄

∑
k=0

cjν
(k)(t) =

k̄

∑
k=0

cjCξ Ak
ξξd(t) = Cξξw(t),

where the definition ξw(t) , ∑
k̄
k=0 cj A

k
ξξd(t) has been used in the last equality.

Differentiating ξw(t) and using (6.4) it is easy to see that (6.12) holds, which
completes the proof.

The term w ∈ R should be understood as an equivalent input disturbance. Note
that the triplet (A, B, C) is not modified by this transformation and thus control-
lability and detectability are preserved. Intuitively, the components of the dis-
turbance are pushed through the chain of integrators by considering their higher
derivatives. It should be remarked that the change of variable (6.7) is only used
for analysis purposes and it is not needed for the implementation of the pro-
posed control strategy. In what follows, the equivalent system (6.8)-(6.10) along
with the generator model (6.12)-(6.13) are considered.

Remark 6.1. The transformation (6.7) is not well defined if l = n because in such case
the model (6.1)-(6.3) is already in the form of (6.8)-(6.10) and the subsequent analysis
can be directly applied.

Remark 6.2. Although the generalization to MIMO systems seems feasible, it cannot be
derived in an easy way from the proposed strategy. On one hand, having multiple inputs
usually implies having multiple time delays as well. In that case, the extension of the
predictor-observer introduced in the next section is not trivial. On the other hand, the
derivation of the transformation (6.7) is not straightforward for the general MIMO case,
as it would require using the concept of Brunowski canonical form and vector relative
degree.

6.3 Proposed control strategy

The proposed solution to Problem 6.1 is given in this section. The observer-
based controller structure is introduced and the closed-loop equations are de-
rived. Then, sufficient stability conditions are given in terms of linear matrix
inequalities.
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Chapter 6. Rejection of mismatched disturbances for input-delayed systems

6.3.1 Observer-based predictive controller

Let us represent the system dynamics by defining an augmented state ζ(t) =
[xT(t), ξw(t)]T , which includes the exosystem model. Using (6.8)-(6.9) and (6.12)-
(6.13), the dynamics in terms of ζ(t) is derived as

ζ̇(t) =

[
A BCξ

0 Aξ

]

︸ ︷︷ ︸

Az

ζ(t) +

[
B
0

]

︸︷︷︸

Bz

u(t − h) +

[
∆l

0

]

︸︷︷︸

Bη

η(t), (6.14)

y(t) =
[
C 0

]

︸ ︷︷ ︸

Cz

ζ(t), (6.15)

where Az ∈ R
(n+r)×(n+r), Bz ∈ R

(n+r), Cz ∈ R
q×(n+r). The main idea introduced

in this work is to construct an observer to obtain an estimation of the augmented
state h units of time ahead ζ(t + h), denoted by ζ̄(t) , [x̄T(t), ξ̄w(t)]T . In this
way, the observer forecasts both the state and the disturbance, which can be
computed as w̄(t) = Cξ ξ̄w(t). Note that, because of the input delay, the latter
is needed to effectively counteract the disturbance, as pointed out in (Sanz et al.
2016). Following the ideas in (Najafi et al. 2013), a plausible observer is given by

˙̄ζ(t) = Azζ̄(t) + Bzu(t) + L
(
y(t)− Czζ̄(t − h)

)
, ζ̄0 = 0. (6.16)

The estimation error is defined by1

e(t) , [eT
x (t), eT

ξ (t)]
T , ζ(t)− ζ̄(t − h), (6.17)

where ex ∈ R
n and eξ ∈ R

r. Differentiating (6.17) and using (6.14)-(6.15), the
error dynamics is given by

ė(t) = Aze(t)− LCze(t − h) + Bηη(t). (6.18)

Assuming that L is chosen such that (6.18) is stable, the control law can be se-
lected analogous to that of conventional controllers compensating for matched
uncertainties (Chen et al. 2016):

u(t) = −Kx̄(t)− w̄(t) = −Kx̄(t)− Cξ ξ̄w(t) = −[K, Cξ ]ζ̄(t). (6.19)

1Intuitively, the estimation error should be defined as ζ(t + h) − ζ̄(t), provided that ζ̄(t) is supposed
to be a future estimation of ζ(t). However, the definition (6.17) is arbitrarily chosen to avoid non-causal
terms in subsequent derivation.
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6.3 Proposed control strategy

Plugging (6.19) into (6.8) and using (6.13), (6.17), leads to

ẋ(t) = (A − BK)x(t) + [BK, BCξ ]e(t). (6.20)

For convenience, let us define µ(t) , [xT(t), eT(t)]T and rewrite the dynamics
(6.18) and (6.20) along with the regulated variable as

µ̇(t) =

[
A − BK [BK, BCξ ]

0 Az

]

︸ ︷︷ ︸

A0

µ(t) +

[
0 0
0 −LCz

]

︸ ︷︷ ︸

A1

µ(t − h) +

[
∆l

Bη

]

︸ ︷︷ ︸

B0

η(t), d

(6.21)
z(t) =

[
D 0

]

︸ ︷︷ ︸

D0

µ(t). (6.22)

Then Problem 6.1 has been then translated into an H∞ stabilization problem of
the closed-loop defined by (6.21)-(6.22), which is tackled next.

6.3.2 Closed-loop disturbance rejection

Lemma 6.1. Given gains K, L and γ > 0, h̄ > 0, let there exist symmetric positive

definite matrices P, Q, R ∈ R(2n+r)×(2n+r) and matrices P2, P3 ∈ R(2n+r)×(2n+r) that
satisfy the LMI

Φ1 =









Φ1(1, 1) P − PT
2 + AT

0 P3 Re−2δh̄ + PT
2 A1 PT

2 B0 DT
0

(∗) −P3 − PT
3 + h̄2R −PT

3 A1 PT
3 B0 0

(∗) (∗) −(S + R)e−2δh̄ 0 0
(∗) (∗) (∗) −γ2 I 0
(∗) (∗) (∗) (∗) −I









< 0, (6.23)

where Φ1(1, 1) = AT
0 P2 + PT

2 A0 + 2δP + Q − Re−2δh̄. Then the system (6.21)-(6.22)
is exponentially stable with a decay rate δ > 0 for any delay 0 ≤ h ≤ h̄ and achieves
‖z(t)‖2 ≤ γ‖η(t)‖2 for any 0 6= η(t) ∈ L2[0, ∞).

Proof. The proof is derived using the Lyapunov-Krasovskii functional (LKF)

V(µt, µ̇t) = µT(t)Pµ(t) + h
∫ t

t−h
e2δ(s−t)µT(s)Sµ(s)ds

+h
∫ 0

−h

∫ t

t+θ
e2δ(s−t)µ̇T(s)Rµ̇(s)dsdθ, (6.24)
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Chapter 6. Rejection of mismatched disturbances for input-delayed systems

which is a slightly simplified version of the one presented in (Fridman et al.
2009). The statement of Lemma 6.1 holds true if it can be shown that (Fridman
2014)

V̇(µt, µ̇t) + 2δV(µt, µ̇t) + zT(t)z(t)− γ2|η(t)|2 ≤ 0. (6.25)

Differentiating (6.24), one finds

V̇(µt, µ̇t) + 2δV(µt, µ̇t) ≤ 2µT(t)Pµ̇(t) + 2δµT(t)Pµ(t) + h2µ̇T(t)Rµ̇(t)

−he−2δh
∫ t

t−h
µ̇T(s)Rµ̇(s)ds + µT(t)Sµ(t)

−e−2δhµT(t − h)Sµ(t − h)

+2[µT(t)PT
2 + µ̇T(t)PT

3 ] · [RHS of (6.21)− µ̇(t)].
(6.26)

The last term in (6.26), which is identically zero, follows from the application of
the descriptor method (Fridman 2014). The Jensen’s inequality is employed to
bound

−h
∫ t

t−h
µ̇T(s)Rµ̇(s) ≤ −[µ(t)− µ(t − h)]T R [µ(t)− µ(t − h)]. (6.27)

Let us define q(t) = [µT(t), µ̇T(t), µT(t − h), w(t)]T . Using (6.26)-(6.27), it fol-
lows that (6.25) holds if (6.23) is satisfied, completing the proof.

Theorem 6.1. Given γ > 0, h̄ > 0 and tuning parameters α > 0, δ > 0, ǫ > 0, let

there exist symmetric positive definite matrices P, Q, R ∈ R(2n+r)×(2n+r), S ∈ Rn×n

and matrices P21 ∈ Rn×n, P22 ∈ R(n+r)×(n+r), X ∈ R1×n that satisfy the following
LMIs:

Φ2 =













Φ2(1, 1) P − PT
2 + AT

0 ǫP2 Re−2δh̄ +

[
0 0
0 YCz

]

PT
2 B0 DT

0

(∗) −ǫP2 − ǫPT
2 + h̄2R −ǫ

[
0 0
0 YCz

]

ǫPT
2 B0 0

(∗) (∗) −(S + R)e−2δh̄ 0 0
(∗) (∗) (∗) −γ2 I 0
(∗) (∗) (∗) (∗) −I













< 0,

(6.28)

SAT + XTBT + AS + BX + 2αS < 0, (6.29)
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6.4 Trajectory tracking

where Φ2(1, 1) = AT
0 P2 + PT

2 A0 + 2δP + Q − Re−2δh̄ and P2 = diag{P21, P22}.

Then, the control law (6.19) computed by means of the observer (6.16) with K = XS−1

and L = (PT
22)

−1Y, solves Problem 6.1.

Proof. In order to partially linearize the LMI (6.23), let us assume a diagonal
structure for P2 = diag{P21, P22} and, following (Fridman 2014), P3 = ǫP2. Defin-
ing Y = PT

22L, and after some straightforward calculations, the LMI (6.23) is
transformed into (6.28). From the triangular structure of the state matrices in
(6.21), A − BK needs to be Hurwitz to ensure the stability of the overall system,
which is guaranteed by (6.29).

Remark 6.3. The problem posed in Theorem 6.1 has to be solved sequentially, obtaining
first K from (6.29) and then L from (6.28). The parameter α > 0 is user-supplied and
determines how aggressive the resulting controller will be. The value of γ can be supplied
or, alternatively, defining β = γ2, the problem can be cast into minimizing β subject to
(6.28). The parameter ǫ > 0 needs to be supplied and it should be iteratively adjusted
to reach the best value of β in the minimization problem just described (there is a convex
behavior of β with respect to ǫ as explained in (Fridman et al. 2002)).

6.4 Trajectory tracking

In this section, it is shown how the proposed method can be easily adapted to
solve the problem of trajectory tracking. First, the following assumption is made:

Assumption 6.5. The desired trajectory r(t) is bounded and sufficiently smooth so that
r(t) ∈ Cn.

Problem 6.2. Under Assumptions 6.1-6.5, find a dynamic output control law that in-
ternally stabilizes (6.1)-(6.2) and guarantees ‖z(t) − r(t − h)‖2 ≤ γ‖η(t)‖2 for all
0 6= η(t) ∈ L2[0, ∞), assuming X0.

In what follows, the tracking problem is reduced to a stabilization problem so
that the methodology described in Section 6.3 can be directly applied. To that
end, let us introduce an auxiliary reference system

ẋr(t) = Axr(t) + Bur(t), yr(t) = Cxr(t − h), zr(t) = Dxr(t − h), (6.30)

where the auxiliary state xr ∈ Rn has zero initial condition xr0 = 0, the matrices
A, B, D are the same as in (6.1)-(6.2) and ur ∈ R is to be designed such that
the auxiliary system is internally stable and limt→∞

(
zr(t)− r(t)

)
= 0. It can be
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easily verified, because of the canonical structure of (A, B), that the control signal

ur(t) = −1
b

n

∑
j=1

ajxrj
+

1
b

n

∑
j=1

(

krj

(
r(j−1)(t)− xj(t)

)
+ r(n)(t)

)

(6.31)

achieves that goal for any set of gains krj
> 0. Now, let us define the following

variables

x̃(t) , x(t)− xr(t − h), ỹ(t) , y(t)− yr(t), z̃(t) , z(t)− zr(t). (6.32)

Differentiating x̃(t) and using (6.8)-(6.9), (6.30) and (6.32) leads to

˙̃x(t) = Ax̃(t) + B[ũ(t − h) + w(t)] + ∆lη(t), (6.33)
ỹ(t) = Cx̃(t), z̃(t) = Dx̃(t), (6.34)

where the variable ũ(t) , u(t) − ur(t) has been defined. After this transfor-
mation, the new control objective is to drive z̃(t) to zero. Note that (6.33)-(6.34)
has the same structure as (6.8)-(6.9). Therefore, the tracking problem has been
reduced to the stabilization problem solved in Section 6.3. This result is summa-
rized in the following theorem, which is given without proof:

Theorem 6.2. Under conditions of Theorem 6.1, let K, L be given, which are found
from LMIs (6.28)-(6.29). Then, given any set of positive gains krj

> 0, j = 1, . . . , n, the

control law

u(t) = ũ(t) + ur(t) = −[K, Cξ ]ζ̄(t) + ur(t), (6.35)

with ur(t) given by (6.31) and ζ̄(t) computed by means of the observer

˙̄ζ(t) = Az ζ̄(t) + Bzũ(t) + L
(
ỹ(t)− Czζ̄(t − h)

)
, ζ̄0 = 0, (6.36)

solves Problem 6.2.

Remark 6.4. The auxiliary control signal ur(t) can be chosen arbitrarily as long as
limt→∞

(
zr(t)− r(t)

)
= 0. Therefore, alternative expressions to (6.31) are plausible.

The tuning of the resulting strategy is intuitive because the tracking performance is
decoupled from the stability, as it happens with a conventional two degrees of freedom
PID controller. This can be seen from the control law (6.35), where the feedback term
depends only on K, and ur is a feed-forward term generated by the auxiliary system
(6.30), which has no influence on the stability. The gains krj

can be thus arbitrarily

adjusted without jeopardizing the stability.
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6.5 Simulations
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Figure 6.1: Simulation with accurate disturbance model: output and unmodeled component
(top), internal states and mismatched disturbance (center), equivalent input disturbance and
its delayed prediction (bottom)

6.5 Simulations

Let us consider an electromechanical system described by

Ẋ (t) =





0 1 0
0 0 1
0 0 −k



X (t) +





0
0
k



 u(t − h) +





0
1
0



 d(t), (6.37)

y(t) =
[
1 0 0

]
X (t), z(t) =

[
1 0 0

]
X (t) (6.38)

where X1,X2 are position and velocity, X3 represents the actuator dynamics, u is
the control input and d can be generated by an external force or torque. In this
example, the delay is taken as h = 0.1 s, and it is assumed that d(t) is a biased
sinusoidal disturbance with known frequency, ω = 0.8 rad/s. The controller is
designed according to Theorem 6.1. Choosing α = 1 and solving (6.29) yields

S =





0.47 −0.55 0.31
−0.55 0.89 −1.06
0.31 −1.06 3.15



 , X =
[
−0.75 2.10 0.50

]
, (6.39)
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and thus K = XS−1 =
[
15.66 17.18 4.37

]
. Choosing δ = 0.8 the LMI (6.28) is

found to be feasible with a minimum γ = 11.5 for ǫ = 0.3. In this configuration,
the observer gain is given by

LT =
[
9.14 36.83 76.42 53.89 89.20 44.12

]
. (6.40)

The results of the first simulation are shown in Fig. 6.1. It can be seen in the top
plot how the proposed strategy achieves cancellation of the disturbance effect in
the output, as stated in Theorem 6.1. The disturbance signal is given by {d(t) =
0, ∀t ∈ [0, 10); d(t) = 1, ∀t ∈ [10, 20); d(t) = 1 + sin 0.8t, ∀t ≥ 20}. One can
see in the bottom plot that the equivalent input disturbance (dashed black) is
accurately predicted by the observer (blue).

Remark 6.5. As mentioned above, the linearized LMI in Lemma 6.1 leads to a very
conservative value of γ. If the resulting system is analyzed using Lemma 6.1 with K
and L given by (6.39)-(6.40), a tighter value γ = 0.74 is obtained. The exact minimum

can be obtained by inspecting the magnitude plot of the transfer function Tη→z(s) ,

D0
(
sI − A0 − A1e−sh

)−1
B0, which reveals that |Tη→z(s)|∞ = 0.63. The system is

thus contractive, i.e., unmodeled components are attenuated at all frequencies.

The second simulation shows the effect of adding an unmodeled disturbance
component. In this case, a sinusoidal of higher frequency and smaller ampli-
tude, η(t) = 0.5 sin 5t, ∀t ≥ 30, is added to the previous disturbance signal. The
simulation results are shown in Fig. 6.2 where it can be seen that the known
components of the disturbance are still canceled out while the unmodeled com-
ponent is attenuated by a factor of |Tη→z(5i)| = 0.13. In this case the equivalent
input disturbance cannot be exactly predicted, as expected.

Finally, the third simulation demonstrates the trajectory tracking capabilities of
the proposed strategy. The signal ur is computed using (6.31), with kr1 = ω3

r /b,
kr2 = 3ω2

r /b, kr3 = 3ωr/b and ωr = 10 rad/s. The tracking signal is chosen
as r(t) = sin t. The results are shown in Fig. 6.3, where the system starts from
the origin and the same disturbance signal as in the first simulation, depicted in
Fig. 6.1, is used. One can see how the output of the system tracks the reference
in spite of the disturbance.
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Figure 6.2: Simulation with inaccurate disturbance model: output and unmodeled component
(top), internal states and mismatched disturbance (center), equivalent input disturbance and
its delayed prediction (bottom)

79



Chapter 6. Rejection of mismatched disturbances for input-delayed systems

Time (s)
0 5 10 15 20 25 30 35 40

X
1
,r

-1.5

-1

-0.5

0

0.5

1

1.5

X1(t) r(t− h)

Time (s)
0 5 10 15 20 25 30 35 40

z̃
(t
)
=

X
1
−

r(
t)

-0.4

-0.2

0

0.2

0.4

Figure 6.3: Simulation with trajectory tracking: output and reference (top), tracking error
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Chapter 7

Improving performance of

disturbance observers via

predictive feedback

In this chapter, a new robust control strategy based on a predictor and the uncertainty
and disturbance estimator (UDE) is developed for a class of uncertain nonlinear systems
with input/output delays. The closed-loop system is analyzed and sufficient stability
conditions are derived based on Lyapunov analysis. The proposed strategy is applied to
the particular case of quadrotor systems and validated through extensive simulations to
evaluate performance and robustness. The controller is also implemented in a quadrotor
prototype and validated in flight tests.
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7.1 Introduction

Aerial Vehicles (UAVs) have gained an enormous interest for their civil poten-
tial applications. Among different UAVs, quadrotors are remarkably popular
and have been used extensively in research over the past decade (Castillo et al.
2004; Mahony et al. 2012). A high-performance attitude control is a prerequisite
for developing any other high-level control tasks (Bouabdallah et al. 2007). The
quadrotor dynamics involves challenges such as parametric uncertainties, non-
linearity, coupling and external disturbances. Although many solutions have
been proposed in the literature, very few of them have been validated in real
flight tests and the most popular techniques are still based on classical control
strategies (Bouabdallah et al. 2004; Castillo et al. 2005; Sanchez et al. 2008; Lim et
al. 2012). This is mainly due to the constraints imposed by the limited computa-
tional resources of the embedded systems, which are typically micro-controllers.
Also, and perhaps more importantly, because of the unstable nature of quadro-
tors, controllers must run typically at very high frequencies (Tomic et al. 2012).

Robust control for quadrotors is still an active field of research (Zheng et al.
2011; Islam et al. 2015; Zhao et al. 2015) because the aerodynamic effects are
extremely hard to be accurately modeled (Hoffmann et al. 2007) and, specially in
outdoor applications, a UAV is constantly perturbed by wind gusts (Waslander
et al. 2009). Disturbance observers have drawn the attention of many researchers
(Dong et al. 2014; Islam et al. 2015; Lee et al. 2014) as a tool for facing these prob-
lems.

Several approaches exist in the literature related to control based on the esti-
mation of uncertainties and external disturbances, for example, adaptive robust
control (Sun et al. 2013), uncertainty and disturbance estimator (UDE) (Zhong et
al. 2004; Zhong et al. 2011), extended state observer based control (Yao et al. 2014)
, disturbance observer based control (DOBC) (Ohishi et al. 1987), active distur-
bance rejection control (ADRC) (Han 2009), etc. The UDE strategy has demon-
strated remarkable performance in handling uncertainties and disturbances in
practical applications (Kolhe et al. 2013; Zhu et al. 2015; Ren et al. 2015; Kuper-
man et al. 2015).

Among the different problems that must be overcome in real implementations,
time delays (Zhong 2006) deserve a special attention. In a micro-aerial vehicle,
the angular position and velocity are typically estimated by means of filters re-
sulting in delayed measurements (Sanz et al. 2014). Most control strategies can
fail even for very small delays, which unavoidably appear in practical imple-
mentations due to the computational time, communications or actuator delays,
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mainly if fast disturbances are expected. In order to extend the applicability of
these strategies to time delay systems, some modifications are needed.

The main contribution of this chapter is a new robust control strategy for a
class of nonlinear time-delay systems, with a particular application to real-time
quadrotor attitude control. The proposed control law combines a modified UDE
with a state predictor that can be applied to control systems with measurement
or actuation delays. The proposed method not only remains stable under the
presence of large time delays, but it also results in a much better performance
when small delays are present, as it is the case of any digital control system
(Lozano et al. 2004). Sufficient conditions for the closed-loop stability are de-
rived. The control law is validated through simulations and in real-time experi-
ments with quadrotors.

7.2 Problem formulation and preliminaries

Consider the following class of nonlinear systems

ẋ(t) = Ax(t) + B[u(t − h1) + d(t)] + f (x(t))

y(t) = x(t − h2)
(7.1)

where x ∈ Rn and u ∈ Rm are the state and control variables respectively, f :
R

n → R
n is an unknown possibly non-linear function, and d : R≥0 → R

m is the
vector of external disturbances. It is assumed that there is a constant input delay
h1, and also that the state of the plant is fully accessible with a measurement
delay h2. The total delay in the loop is denoted by h = h1 + h2. A representation
of such system is depicted in Fig. 7.1(a). The following assumptions are taken:

Assumption 7.1. The pair (A, B) is controllable

Assumption 7.2. The time delay h ≥ 0 is constant and known

Assumption 7.3. The uncertainty f (x) belongs to the column space of B, i.e., there
exists a vector d f (x) ∈ Rm such that f (x) = Bd f (x)

Assumption 7.4. There is a region D = {x ∈ R
n : |x| ≤ rx} where: i.) d f (x) is lo-

cally bounded, ii.) d f (0) = 0 and iii.) its derivative is locally bounded by |∇d f (x)| ≤ cx

Assumption 7.5. The initial condition for (7.1) given by x(s) = ϕ(s), ∀s ∈ [−h, 0]
with ϕ : [−h, 0] → Rn, is entirely contained in D, that is, |ϕ|∞ < δ for some δ < rx
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+ delay

h2+

+ yu

(b) Equivalent system (3)

Figure 7.1: System representations

Assumption 7.6. The unforced system (7.1) starting from x(s) = ϕ(s), ∀s ∈ [−h, 0]
satisfies1 |x(ξ)| < ∞, ∀ξ ∈ [0, h]

Assumption 7.7. The input disturbance d(t) is uniformly bounded and its derivative
is bounded by ||ḋ(t)|| ≤ cd, ∀t ≥ 0

Let us define the lumped term w(x(t), t) ∈ Rm, to contain all the model uncer-
tainties and external disturbances as follows

w(x(t), t) , d f (x(t)) + d(t). (7.2)

Using (7.2) and the Assumption 7.3, the model (7.1) can be represented as shown
in Fig. 7.1(b), that is

ẋ(t) = Ax(t) + B[u(t − h1) + w(x(t), t)]

y(t) = x(t − h2).
(7.3)

The underlying idea behind the original UDE (Zhong et al. 2004) is that the un-
known lumped signal w(x(t), t) along the solutions of (7.3), denoted hereafter
simply by w(t), can be accurately estimated and counteracted. However, as
aforementioned, in the presence of input/output delays this strategy has limi-

1For nonlinear systems that exhibit finite escape time, there is a limit above which the system cannot be
controlled (Krstic 2008b). The Assumption 7.6 prevents the unforced system from exhibiting finite escape
time smaller than h.
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tations and needs to be improved. The extension of this methodology to time
delay systems is presented in the next section. To this end, a conventional state
prediction (see for example (Krstic 2010a)) is computed by using the nominal
model as

x̂(t + h1) = eAhx(t − h2) +
∫ h

0
eAξ Bu(t − ξ)dξ. (7.4)

However, the model used to predict the state may be inaccurate because of
model uncertainties or external disturbances, as stated in the following proposi-
tion.

Proposition 7.1. The error between the nominal prediction and the actual projection of
the state is given by

x(t + h1)− x̂(t + h1) =
∫ h

0
eAξ Bw(t − ξ + h1)dξ (7.5)

Proof. Using the actual model (7.3), the actual projected state is given by

x(t + h1) = eAhx(t − h2) +
∫ h

0
eAξ Bu(t − ξ)dξ

+
∫ h

0
eAξ Bw(t − ξ + h1)dξ.

(7.6)

The proposition follows subtracting (7.6) and (7.4).

7.3 Proposed control strategy

7.3.1 Control law development

The goal is to regulate the state x(t) of the closed-loop system so that it asymp-
totically tracks the state of the reference model with the desired dynamics given
by

ẋm(t) = Amxm(t) + Bmr(t − h1), (7.7)

where Am ∈ Rn×n, is Hurtwitz, Bm ∈ Rn×m, xm ∈ Rn and r(t) ∈ Rm.

Assumption 7.8. The input reference command r(t) is bounded by |r(t)| ≤ ρ, ∀t ≥ 0

Now, the following feedback law is proposed (see Fig. 7.2)

u(t) , −Fx̂(t + h1) + Mr(t) + uw(t), (7.8)

85



Chapter 7. Improving performance of disturbance observers via predictive feedback

M
delay

h1

w

+
B

∫

A

+ delay

h2

x

+

UDE

+u y+

uw

PredictorF

r +

x̂

−

Figure 7.2: Proposed control strategy

where the matrices are chosen such that

A − BF = Am, BM = Bm, (7.9)

and the term uw(t), defined further below, will be used to compensate the un-
certainties. Introducing (7.8) into the system (7.3) and using (7.9) yields

ẋ(t) = Amx(t) + Bmr(t − h1) + B[uw(t − h1) + ∆(t)],
y(t) = x(t − h2),

(7.10)

where the term

∆(t) , w(t) + F
∫ h

0
eAξ Bw(t − ξ)dξ, (7.11)

has been introduced to gather the original uncertainties of the system along with
the error introduced by the predictor, both of them unknown. Once the effect of
the delay has been counteracted, an observer based on the UDE is adopted in an
outer loop to handle the overall uncertainties and disturbances. This approach
might resemble the one-loop-at-a-time design procedure widely used in aircraft
control, where an inner loop referred to as stability augmentation system (SAS) is
used to increase stability, and outer loops are used to provide additional features
for maneuvering (Schmidt 2012).

The new control input uw(t) should be chosen to cancel out the term ∆(t) which,
despite being unknown, can be expressed using (7.10) as

∆(t) = B+ [ẋ(t)− Amx(t)− Bmr(t − h1)− Buw(t − h1)] . (7.12)
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7.3 Proposed control strategy

Equation (7.12) is not implementable because the state x(t) is not accessible at
time t. Instead of (7.12), consider the signal

∆(t − h2) = B+ [ẏ(t)− Amy(t) + Bmr(t − h)− Buw(t − h)] , (7.13)

which is the result of delaying ∆(t) by h2 units of time. In this way, the measure-
ment y(t) = x(t − h2) appears in the signal to be estimated. Another handicap is
that the term ẏ(t) is not realizable, but it can be approximated in the frequency
domain by using a strictly-proper low-pass filter2 G f (s) = 1/(Tf s + 1) (Zhong
et al. 2004). Then, the estimated uncertainty can be defined as

∆̂(t − h2) , L−1{G f (s)} ∗ ∆(t − h2), (7.14)

where G f (s) = G f (s)Im. And thus, selecting

uw(t) , −∆̂(t − h2), (7.15)

and plugging it into (7.10) results in the closed-loop system

ẋ(t) = Amx(t) + Bmr(t − h1) + Be(t), (7.16)

where e(t) is the cancellation error defined as

e(t) , ∆(t)− ∆̂(t − h). (7.17)

Remark 7.1. In the nominal disturbance-free case e(t) ≡ 0 and thus the closed-loop
system (7.16) has the desired dynamics specified by the reference model (7.7).

In order to analyze the stability in the presence of uncertainties, the dynamics of
the error (7.17) has to be derived. According to (7.14), the estimator dynamics
can be expressed as

˙̂∆(t − h) = − 1
Tf

∆̂(t − h) +
1

Tf
∆(t − h). (7.18)

Differentiating (7.17), using (7.18), and adding and subtracting 1
Tf

∆(t), the dy-
namics of the cancellation error can be written as

ė(t) = − 1
Tf

e(t) + g(t), (7.19)

2The Laplace transformation is introduced to facilitate the manipulation of expressions.
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where
g(t) , ∆̇(t) +

1
Tf

[∆(t)− ∆(t − h)]. (7.20)

The initial condition for (7.19) is e(s) = ∆(s), ∀s ∈ [−h, 0] by (7.17), assuming
that the observer starts from zero, that is ∆̂(s) = 0, ∀s ∈ [−h, 0].

The closed-loop system is thus composed of (7.16) and (7.19), which can be ex-
pressed altogether as

η̇(t) = Aηη(t) +

[
0

g(t)

]

+

[
Bm

0

]

r(t − h1), (7.21)

where η(t) = [x(t), e(t)]T is an augmented state and the matrix Aη is given by

Aη =

[

Am B

0 − 1
Tf

Im

]

.

7.3.2 Closed-loop stability

As Aη is Hurtwitz, the main issue to analyze the stability is the boundedness of
the term g(t) that drives the error dynamics. This is addressed by the following
lemma.

Lemma 7.1. Under Assumptions 7.4 and 7.7, the term g(t) defined in (7.20) satisfies
|g(t)| ≤ γx|x(t)| + γe|e(t)| + γ0, ∀x ∈ D, with constants γx, γe, γ0 subsequently
defined.

Proof. Let us first introduce the following notation αm , |Am|, βm , |Bm| and
β , |B|. According to the definition (7.20), g(t) can be bounded as

|g(t)| ≤ |∆̇(t)|+ 1
Tf

|∆(t)− ∆(t − h)|. (7.22)

The first term in (7.22) is obtained by differentiating (7.11) as

∆̇(t) = ∇d f · ẋ(t) + F
∫ h

0
eAξ B∇d f · ẋ(t − ξ)dξ

+ ḋ(t) + F
∫ h

0
eAξ Bḋ(t − ξ)dξ.

(7.23)
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By Assumptions 7.4 and7.7, (7.23) can be bounded by

|∆̇(t)| ≤ cx|ẋ(t)|+ µcx sup
ξ∈[t−h,t]

|ẋ(ξ)|+ cd + µcd, (7.24)

where µ , |F|
(∫ h

0 |eAξ |dξ
)

β. From (7.16), one has that |ẋ(t)| ≤ αm|x(t)| +
β|e(t)| + βmρ. Assume now that there exist qe, qx > 1 such that |x(t + ξ)| ≤
qx|x(t)| and |e(t + ξ)| ≤ qe|e(t)| ∀ξ ∈ [−h, 0], (Trinh et al. 1997). Note that this
assumption does not imply a priori the stability of the system. Then, it follows
that supξ∈[t−h,t] |ẋ(ξ)| ≤ αmqx|x(t)| + βqe|e(t)| + βmρ and thus (7.24) is finally
bounded by

|∆̇(t)| ≤ cxαm (1 + µqx) |x(t)|+ cx β (1 + µqe) |e(t)|
+ (1 + µ)(cd + cxβmρ).

(7.25)

The second term in (7.22) can be bounded using the Leibniz-Newton formula
and the Young’s inequality as follows

1
Tf

|∆(t)− ∆(t − h)| ≤ 1
Tf

∫ t

t−h
|∆̇(ξ)|dξ

≤ h

Tf
sup

ξ∈[t−h,t]
|∆̇(ξ)|.

(7.26)

Proceeding similarly as above, from (7.25) it is easy to obtain that

sup
ξ∈[t−h,t]

|∆̇(ξ)| ≤ cxαm (1 + µqx) qx|x(t)|

+ cxβ (1 + µqe) qe|e(t)|
+ (1 + µ)(cd + cxβmρ).

(7.27)
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Gathering (7.22) and (7.25)-(7.27) yields

|g(t)| ≤ cxαm (1 + µqx)

(

1 +
hqx

Tf

)

|x(t)|

+ cx β (1 + µqe)

(

1 +
hqe

Tf

)

|e(t)|

+ (cd + cxβmρ) (1 + µ)

(

1 +
h

Tf

)

, γx|x(t)|+ γe|e(t)|+ γ0.

(7.28)

This allows stating the following result:

Theorem 7.1. Under Assumptions 1-6, the system (1) having no external inputs, i.e,
d(t) = r(t) ≡ 0, controlled by (7.8) is asymptotically stable for some δ > 0 and for
any delay 0 ≤ h ≤ h∗ if there exist a positive definite symmetric matrix P such that
PAη + AT

η P = −Im+n and positive constants qx , qe > 1 such that 2|P2|(γx + γe) < 1

where γx = cxαm (1 + µqx)
(

1 + h∗qx
Tf

)

, γe = cx β (1 + µqe)
(

1 + h∗qe
Tf

)

and µ =

|F|
(∫ h∗

0 |eAξ |dξ
)

β.

Proof. Let us choose the Lyapunov candidate function V(η) = ηT Pη whose
derivative along the trajectories of (7.21), with r(t) ≡ 0, is given by

V̇(η) = ηT(PAη + AT
η P)η + 2ηT P2g(t)

≤ −|η|2 + 2|η||P2 ||g|.
(7.29)

Setting d(t) = r(t) ≡ 0 in Lemma 1, that is cd = ρ = 0, the term γ0 vanishes and,
provided that γx, γe > 0, then |g(t)| ≤ γx|x(t)| + γe|e(t)| ≤ (γx + γe)|η(t)|. It
follows then that for any |η| < rx (which implies x ∈ D), (7.29) is bounded by

V̇(η) ≤ −|η|2 + 2|P2|(γx + γe)|η|2
≤ 0, if 2|P2|(γx + γe) < 1,

(7.30)

and thus the system is asymptotically stable for h∗ if 2|P2|(γx + γe) < 1 hold.
Note that V(t) is always decreasing because its derivative is negative in |η| < rx

by (7.30), and hence |η(t)| is always decreasing because V(η) = |P||η|2 . That
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implies that limt→∞ |η(t)| = 0 if |η(0)| < rx, which can always be achieved by
choosing a small enough δ in Assumption 7.5. Furthermore, the terms γx, γe

grow monotonically with the delay an hence any 0 ≤ h ≤ h∗ will also satisfy the
condition, which completes the proof.

Corollary 7.1. If there is no delay, that is h = 0, it is always possible to find a choice
for Am ≺ 0, Tf > 0 such that the system is asymptotically stable.

Proof. Setting h = 0, the constants in Lemma 1 are simplified to γx = cxαm

and γe = cxβ, and thus the stability condition of Theorem 1 is simply given by
2|P2|cx(β + αm) < 1. Note that P is the solution to PAη + AT

η P = −Im+n. The
matrix Aη is upper triangular and its eigenvalues are the collection of those of
Am and −1/Tf Im. Hence, |P| can be arbitrarily reduced by choosing Am, Tf

properly.

Remark 7.2. Note that, for given a controller tuning Am and Tf , which satisfy the
conditions of Theorem 1, the admissible delay is upper bounded by h∗. If the delay was
larger, one would try to reduce |P| as indicated by Corollary 1 to keep the system stable,
but doing so would have the opposite effect on (γx + γe). Hence there is a maximum tol-
erable delay above which the system cannot be stabilized (this is well known for uncertain
time-delay LTI systems).

Theorem 7.2. The system (1) controlled by (7.8), with an external disturbance d(t) 6= 0
satisfying Assumption 7.7, and a reference command satisfying Assumption 7.8, will
be stable for some δ > 0 and any delay 0 ≤ h ≤ h∗ if the conditions in Theorem 1

hold and
2|P2 |(γ0+ρβm)

1−2|P2|(γx+γe)
< rx where γ0 = (cd + cx βmρ) (1 + µ)

(

1 + h∗
Tf

)

and µ =

|F|
(∫ h∗

0 |eAξ |dξ
)

β.

Proof. Considering external inputs, the term γ0 in Lemma 1 does not vanish.
Choosing the same Lyapunov function as in the proof of Theorem 1, the deriva-
tive along the new trajectories of (21) is given by

V̇(η) ≤ (2|P2|(γx + γe)− 1)) |η|2
+ 2|P2|(γ0 + ρβm)|η|
≤ 0, if |η| > rη,

(7.31)

with rη , 2|P2 |(γ0+ρβm)
1−2|P2|(γx+γe)

. Note that 1 − 2|P2|(γx + γe) > 0 if the conditions
of Theorem 1 are met. Then, according to (7.31), the region defined by Ωη =
{η ∈ R

n+m : |η| ≤ rη} is positively invariant, which means that any trajectory
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starting from outside will eventually reach Ωη and remain inside for all future
time (Khalil et al. 1996). The parameter rη should be understood as how far from
the origin the system is steered because of the inputs. Using Theorem 4.18 in
(Khalil et al. 1996), if rη < rx, there exists a class KL function γ and a finite
T ≥ 0 for the initial state |η(0)| ≤ rx, such that the solution satisfies |η(t)| ≤
γ(|η(0)|, t), ∀ 0 ≤ t ≤ T and |η(t)| ≤ rη , ∀t ≥ T.

7.3.3 Digital implementation

Recall that the proposed control law is given by (7.8). Regarding the computation
of uw(t), using (15)-(17), the following expression for the UDE control action can
be obtained (see Fig. 7.2)

Uw(s) = [I − G f (s)]
−1G f (s)B+[(sI − Am)Y(s) + BmR(s)],

which can be easily discretized and implemented in a digital micro-controller.

The other key variable to be computed is the predicted state x̂(t+ h1). Its analytic
expression is given in (7.4). The implementation of the distributed integral re-
quires some attention (Zhong 2004; Zhong 2005). The predictor is implemented
in discrete-time form as in (Lozano et al. 2004),

xk+d1 = Akxk−d2 +
d−1

∑
j=0

A
h−j−1
k Bkuk+j−h,

where (Ak , Bk) is a discretization of (A, B) and d1, d2, d3 ∈ N are defined as
d1 = h1/Ts, d2 = h2/Ts, d = d1 + d2, being Ts the discretization time.

To summarize the tuning procedure, four decisions are considered: the sample
time Ts, the filter time constant Tf , the prediction horizon h, and the desired
reference model.

7.4 Application to Quadrotor Aircraft

In this section, the performance and robustness of the proposed strategy are il-
lustrated through several simulations using a quadrotor model. These results
are validated experimentally in flight tests with a quadrotor prototype.

92



7.4 Application to Quadrotor Aircraft

7.4.1 Modeling of quadrotor systems

A fairly accurate3 model of a quadrotor is given by the following set of nonlinear
equations (Bouabdallah et al. 2004)

φ̈(t) =
Iy − Iz

Ix
θ̇(t)ψ̇(t)− J

Ix
Ωθ̇(t) +

uφ(t − h)

Ix
,

θ̈(t) =
Iz − Ix

Iy
ψ̇(t)φ̇(t) +

J

Iy
Ωφ̇(t) +

uθ(t − h)

Iy
,

ψ̈(t) =
Ix − Iy

Iz
φ̇(t)θ̇(t) +

uψ(t − h)

Iz
,







(7.32)

z̈(t) = cos φ(t) cos θ(t)
uz(t − h)

m
− g, (7.33)

where φ, θ and ψ are the roll, pitch and yaw Euler angles, Ii, i = {x, y, z} are the
moments of inertia and ui, i = {φ, θ, ψ} are the input torques, all of them defined
along the axes of a body-fixed reference frame, z is the height, m is the mass of
the vehicle, g is the gravity acceleration, uz is the input total thrust, J is the inertia
of the propellers and Ω is the sum of the angular velocities of the motors (taking
the sign into account). An input delay h is also considered. This delay may
be caused by the communications with the Electronic Speed Controller of the
motors, their response time and also because of the digital implementation of
the control law.

The uncertainty in the rotational subsystem (7.32) satisfies Assumption 7.3 be-
cause it can be written in terms of (7.3) with

A =

[
03 I3
03 03

]

B =

[
03
I

]

d f (x) =





(Iy − Iz)θ̇ψ̇ − JΩθ̇
(Iz − Ix)φ̇ψ̇ + JΩφ̇

(Ix − Iy)φ̇θ̇





being x = [φ, θ, ψ, φ̇, θ̇, ψ̇]T the state vector, J , diag{I−1
x , I−1

y , I−1
z } and u =

[uφ, uθ , uψ]T . The matched uncertainty is locally bounded and vanishes at the
origin. Furthermore, its gradient is given by ∇d f (x) = [03 ∇12] with

∇12 ,





0 (Iy − Iz)ψ̇ − JΩ (Iy − Iz)θ̇
(Iz − Ix)ψ̇ + JΩ 0 (Iz − Ix)φ̇

(Ix − Iy)θ̇ (Ix − Iy)φ̇ 0



 (7.34)

3The rotational kinematic model used to derive (32) is linearized around the origin. Note that because
of the singularity of the Euler representation, the linearization is only valid for |θ| < π/2.
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which is also locally bounded, thus satisfying the Assumption 7.4. Similarly, the
height subsystem (7.33) satisfies the Assumption 7.3 because it can be written in
terms of (7.3) with

A =

[
0 1
0 0

]

B =

[
0

1/m

]

d(t) = mg

and u = uz cos θ cos φ. Note that the disturbance d(t) is constant and satisfies
Assumption 7.7, while in this case d f (x) ≡ 0 thus satisfying Assumption 7.4.
Regarding the finite-escape condition, the unforced system (7.32) is reduced to
the Euler’s equations that describe the free rotation of a rigid body. As the con-
sequence of conservation of the energy and angular momentum, the solution to
this set of equations is bounded in time (Fowles et al. 2004). Also, setting uz = 0
in (7.33) yields a linear equation. Therefore, there is not finite escape time and
Assumption 6 holds.

Remark 7.3. From the arguments presented above, the proposed controller applied to
quadrotor systems can only be proven to be locally stabilizing around the origin (in spite
of uncertainties, external disturbances and input delay)

7.4.2 Simulations

For the sake of clarity, the performance and robustness are first illustrated using a
SISO model. At the end of this section the control strategy is validated using the
full nonlinear MIMO quadrotor model. The performance and robustness of the
proposed strategy are illustrated next using one of the axes. Any of the equations
in (7.32) can be seen as ÿ = bu(t − h) + w(t) or alternatively, in state-space form
as

ẋ =

[
0 1
0 0

]

x +

[
0
b

]

u(t − h) +

[
0

w(t)

]

, (7.35)

where w(t) represents the interaction with the missing states, uncertainties in
the parameter b or external disturbances like wind gusts.

The controller is implemented as suggested in Section 7.3.3, with Ts = 10 ms and
the reference model given by

ẋm =

[
0 1

−ω2
c −2ωc

]

xm +

[
0

ω2
c

]

yref(t), (7.36)

where ωc is the desired closed-loop bandwidth. The parameters Tf and h will be
changed throughout this section.
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Figure 7.3: Simulations comparing the original UDE (Zhong et al. 2004) and the proposed
strategy for a delay h = 70 ms.

Stability: Fig. 7.3 shows a comparison of the original UDE-based control without
considering the delays (Zhong et al. 2004) and the proposed strategy. The filter is
tuned with Tf = 0.1 s and the delay is h = 70 ms. One can see how the proposed
strategy can deal with that delay, ensures the matching of the reference model,
and rejects input load disturbances. Performance: the proposed strategy is com-
pared with a PID controller u(s) = Kc

(

1 + Tds
αTds +

1
Tis

)

e(s), with a prefilter such

that e(s) = Fr(s)r(s)− y(s), with Fr(s) =
1

TdTis
2+Tis+1 , and Kc =

0.17
bh2 , Ti = 8.51h,

Td = 2.87h, α = 0.1, as suggested by (Ali et al. 2010). These are, to the best of
our knowledge, the simplest PID tuning rules for time delay systems in terms of
performance. The comparison is shown in Fig. 7.4 for a delay h = 100 ms, where
it can be seen that the proposed control law outperforms the PID controller. In
order to test the robustness against modeling errors in the delay, if an increment
in the time delay of 50% is assumed, the proposal in (Ali et al. 2010) becomes
unstable whereas the proposed strategy remains stable, as shown in Fig. 7.5.

Another simulation shows the influence of the filter time constant Tf in Fig. 7.6,
where a wind disturbance is simulated between t = 2 s and t = 5 s. The wind
disturbance is simulated by passing a white noise signal through a low-pass fil-
ter. It can be clearly seen how the lower the Tf , the better the disturbance rejec-
tion performance. It is also important that the choice of Tf does not affect the
reference tracking performance, which is always desirable for an easier tuning.
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Figure 7.4: Performance comparison with a conventional PID controller (Ali et al. 2010) with
a delay h = 100 ms (Tf = 0.1 s)
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Figure 7.5: Robustness conventional PID controller (Ali et al. 2010) with a +50% delay error
(filter tuned with Tf = 0.1 s)
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Figure 7.6: Simulations showing the influence of the parameter Tf in external disturbance
rejection performance

Robustness: robustness with respect to uncertainties in the delay h is investigated.
Fig. 7.7 shows different simulations with a percentage of uncertainty in the delay
h around a nominal value of h = 200 ms.

Nonlinear multivariable model: once the properties of the proposed strategy have
been illustrated, the full control of a nonlinear quadrotor model in (7.32) is pre-
sented next. Comparing to the model in (7.7), it can be seen that for this particu-
lar case x = [φ, θ, ψ, φ̇, θ̇, ψ̇]T,

A =

[
03 I3
03 03

]

, B =

[
03
I3

]

, (7.37)

and
f (x, t) =

[
0, 0, 0, θ̇ψ̇ − θ̇, ψ̇φ̇ + φ̇, φ̇θ̇

]T . (7.38)

For simplicity, every axis is designed with the same closed-loop dynamics, by
specifying the following reference model

A =

[
03 I3

−ω2
c I3 −2ωcI3

]

, B =

[
03

ω2
c I3

]

, (7.39)
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Figure 7.7: Simulations showing robustness with respect to the uncertainty in the delay
around a nominal value of h = 200 ms (filter tuned with Tf = 0.1 s)

and selecting ωc = 5 rad/s. A delay of h = 150 ms is considered and a filter time
constant Tf = 0.1 s is chosen. The simulation in Fig. 7.8 reproduces a real situ-
ation where the vehicle is perturbed by wind gusts and the goal is to keep it at
hovering (zero reference in roll and pitch) while tracking a square reference sig-
nal in the yaw axis. The proposed controller is compared with that in (Sanahuja
et al. 2010), with ux(t) = −σx1(kpx) − σi2(kd ẋ) for each axis x = {φ, θ, ψ} and
the saturation function is defined as

σbi
(s) =







−bi, s < bi

s, −bi ≤ s ≤ bi

bi, s > bi

.

The controller is tuned with kp = ω2
c and kd = 2ωc, for the sake of comparison,

and the saturation bounds are chosen as bφ1 = bθ1 = 4, bφ2 = bθ2 = 5 and bψ1 =
50, bψ2 = 60. The bounds on the yaw axis have to be larger to allow good tracking
performance. The benefit of this controller is that it allows to bound some of the
states, thus limiting the size of the nonlinearities which depend on those states.
However, in practice, small saturations make the system convergence very slow,
leading to poor performance, as shown in Fig. 7.8, while the proposed controller
is able to achieve satisfactory tracking and disturbance rejection in spite of the
delay and nonlinearities.
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Figure 7.8: Simulations showing hover flight and tracking performance in the yaw axis under
the presence of wind disturbances (nonlinear MIMO system time delay h = 150 ms and filter
tuned with Tf = 0.1 s)

Figure 7.9: Quadrotor prototype used in experiments

7.4.3 Experimental validation in flight tests

There are some handicaps to overcome in real flights, e.g., large model uncer-
tainties, measurement noise, flapping and ground effects, wind gusts, etc. The
quadrotor prototype used for the experiments has a distance of 41 cm between
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Table 7.1: Controller Parameters in Flight Tests

b [deg/s2] ωc [rad/s] Tf [s] h [ms]
φ 1500 2.5 0.6 25
θ 1500 2.5 0.6 25
ψ 1000 4 1 25
z 3000 2.5 0.6 250

rotors, weighting about 1.3 kg without battery. The basic hardware consists of a
MikroKopter frame, YGE 25i electronic speed controllers, RobbeRoxxy 2827-35
brushless motors and 10x4.5 plastic propellers. All the computations are car-
ried out on-board at 400 Hz using an Igep v2 board running Xenomai real-time
operating system. In this system, the delays in the control loop come from: i)
the Kalman filter algorithm which introduces a small delay due in the measure-
ments, and ii) the response time of the motors drivers.

For the controller synthesis, each axis is modeled by a double integrator as in
(7.35). The controller is implemented with a sample time Ts = 2.5 ms and a ref-
erence model as in (7.36) is proposed. The controller tuning is shown in Table 7.1.

The first experiment consists of applying yaw and height step references during
stationary flight (roll and pitch references set to zero). The result of this exper-
iment is shown in the Fig. 7.10. One can see how the roll and pitch angles are
kept very close to zero. Their root mean squared errors are 0.6 deg and 0.7 deg
for roll and pitch, respectively. The tracking performance of the yaw angle is
very good. The performance in the height control is also remarkable, because it
is more challenging due to the large delay of the ultrasonic sensor and the huge
mass of the vehicle.

In the second experiment, disturbances are applied to the quadrotor in stationary
flight. These disturbances are generated by hitting the vehicle in the pitch axis.
The result of this experiment is shown in the Fig. 7.11 where it can be seen that
the vehicle recovers successfully. It is remarkable that the quadrotor is deviated
more than 30 deg from its equilibrium point and yet it remains stable.
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Figure 7.10: Tracking performance in a real flight.
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Figure 7.11: Disturbance rejection in a real flight. A video of this experiment is available at
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Time-delay systems in the PDE

framework





Chapter 8

Introduction

This chapter serves as an introduction to the third part of the thesis, which is based
on the study of time delay systems within the framework of partial differential equa-
tions (PDEs). Indeed, delay systems belong to the broad class of distributed parameter
systems. In particular, delay is a phenomenon that can be represented by a first-order
hyperbolic PDE. The PDE framework provides ample and rigorous tools for analysis
and design, not only for time-delay systems, but also for other systems with infinite-
dimensional actuator or sensor dynamics. Some of those tools are reviewed in this chap-
ter.

105



Chapter 8. Introduction

8.1 ODEs with transport dynamics

In this section it shown how time-delay systems can be modeled as the intercon-
nection of an ODE (plant dynamics) and a PDE of transport type (delay dynam-
ics) Krstic 2010a. Then the backstepping approach developed in (Krstic et al.
2008) for first-order hyperbolic PDEs is applied, showing that a predictor con-
troller is obtained. For educational purposes, a finite backstepping example is
presented and a link with its infinite-dimensional counterpart is established. Fi-
nally, an infinite-dimensional observer for systems with measurement delay, re-
ported also in (Krstic et al. 2008), is introduced.

8.1.1 Time-delay systems as ODE-PDE cascades

The delay phenomenon can be represented as a partial differential equation of
transport type. For example, a delayed signal φ(t − D) can be represented by
φ(t − D) = u(0, t), where u(x, t) is the PDE state variable satisfying

ut(x, t) = ux(x, t), (8.1)
u(D, t) = φ(t), (8.2)

for all x ∈ [0, D] and all t ≥ 0. The equation (8.1) is a first-order hyperbolic PDE
with unity propagation speed and whose boundary condition is given by (8.2).
The variable x is commonly referred to as the spatial coordinate. In this context,
however, it should be understood as a time-like variable. To see this, observe
that the solution of (8.1)-(8.2) is given by

u(x, t) = φ(t + x − D), (8.3)

which can be alternatively written as u(x, t) = φ(t − h(x)), with h(x) = D − x.
Therefore, for a given t, the solution (8.3) consists of a distribution of the signal
φ(t − h(x)), ∀x ∈ [0, D], that is, over the time window [t − D, t]. This is why
x is referred to a time-like variable. Evaluating (8.3) at x = 0 yields u(0, t) =
φ(t − D), which is the result claimed above.

This representation can be now applied to the input-delay system

Ẋ(t) = AX(t) + BU(t − D), (8.4)

with D ≥ 0, which can be alternatively represented as the ODE-PDE cascade

Ẋ(t) = AX(t) + Bu(0, t), (8.5)
ut(x, t) = ux(x, t), (8.6)

106



8.1 ODEs with transport dynamics

u(D, t) = U(t). (8.7)

8.1.2 Backstepping controller design

The central idea when designing controllers for infinite-dimensional systems is
to find a backstepping transformation

w(x, t) = u(x, t)−
∫ x

0
q(x, y)u(y, t)dy − γ(x)TX(t), (8.8)

that maps the system (8.5)-(8.7) into the target system

Ẋ(t) = (A + BK)X(t) + Bw(0, t), (8.9)
wt(x, t) = wx(x, t), (8.10)
w(D, t) = 0. (8.11)

The functions q(x, t) and γ(x) in (8.8) must be computed so that (8.5)-(8.7) hold.
After some calculations, the following functions are obtained

q(x, y) = KeA(x−y)B and γ(x)T = KeAx, (8.12)

and thus (8.8) becomes

w(x, t) = u(x, t)− K

(

eAxX(t) +
∫ x

0
eA(x−y)Bu(y, t)dy

)

. (8.13)

Evaluating (8.13) at x = D, the control law is obtained as

U(t) = u(D, t) = K

(

eADX(t) +
∫ D

0
eA(D−y)Bu(y, t)dy

)

. (8.14)

The controller (8.14) derived with the backstepping approach is equivalent to the
one early derived in (Manitius et al. 1979; Kwon et al. 1980; Artstein 1982). This
can be better seen by plugging the PDE solution u(y, t) = U(t + y − D), into
(8.14) and using the change of variable θ = t + y − D to obtain

U(t) = K

(

eADX(t) +
∫ t

t−D
eA(t−θ)BU(θ)dθ

)

.
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8.1.3 Relation with finite backstepping

In order to understand the infinite-backstepping transformation, a finite exam-
ple taken from (Krstic 2010a) is exposed here. The idea of backstepping control
applies to systems in strict-feedback form. Let us consider the following simple
system

Ẋ(t) = AX(t) + Bu(t), (8.15)
u̇(t) = U(t), (8.16)

where the actuator is modeled by a simple integrator. Although it may be con-
fusing, the notation u(t), U(t) is chosen to keep the analogy with the system
(8.5)-(8.7). A reasonable backstepping transformation is given by w(t) = u(t)−
KX(t), which is desired to map (8.15)-(8.16) into

Ẋ(t) = (A + BK)X(t) + Bw(t), (8.17)
ẇ(t) = −cw(t), (8.18)

with c > 0. Differentiating w(t), using (8.15)-(8.16), imposing (8.18), and solving
for U(t) yields

U(t) = K(cX(t) + Ẋ(t))− cu(t),

which completes the backstepping design.

One may wonder, however, where is strict-feedback structure hidden in (8.5)-
(8.7). The following example is derived with the aim of providing some insight
into this fact. Let us consider a discretization of the x domain such that uj(t) =
u(jh, t) with h = D/N and j ∈ {0, 1, . . . , N}. For this example, let us choose
N = 2, which leads to a partition {u0(t), u1(t), u2(t)} and h = D/2. Note that
u2(t) = u(D, t) = U(t) by (8.7). Discretizing the transport PDE (8.6) in the
spatial variable x with a first-order approximation of the derivative and defining
a vector z(t) = [XT(t), u0(t), u1(t)]

T , the following is obtained

ż(t) =





A B 0
0 − 1

h
1
h

0 0 − 1
h



 z(t) +





0
0
1
h



U(t). (8.19)

A strict-feedback structure is now evident in (8.19), where the spatial approxi-
mation has lead to a interconnection of first-order systems with time constant
equal to the inverse of the discretization step. We find a backstepping transfor-
mation (X, uj) 7→ (X, wj) such that the system in the transformed variables takes
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the form

ζ̇(t) =





A + BK B 0
0 − 1

h
1
h

0 0 − 1
h



 ζ(t), (8.20)

where ζ(t) = [X(t)T , w0(t), w1(t)]
T . Defining w0(t) = u0(t)− KX(t), differenti-

ating, using the first and second rows in (8.19), imposing the second row in (8.20)
and solving for w1(t), leads to

w1(t) = u1(t)− K(X + hẊ(t)). (8.21)

Differentiating (8.21), using the first and third row in (8.19), imposing the third
row in (8.20) and solving for U(t), leads to

U(t) = K
(

X(t) + 2hẊ(t) + h2Ẍ(t)
)

= K

(

X(t) + DẊ(t) +
D2

4
Ẍ(t)

)

. (8.22)

The term between brackets in (8.22) can be regarded as a pseudo-prediction of
the state D units of time ahead, while the one in (8.14) is an exact prediction.
However, the similarity between both controllers is evident. The same happens
between (8.21) and the backsteeping transformation (8.13), where both terms in
brackets are predictions over a fraction of the total delay. However, the infinite
backstepping transformation seems the appropriate way to follow, provided that
(8.6) is infinite-dimensional, in the first place.

8.1.4 PDE observer for systems with measurement delay

The following developments were introduced in (Krstic et al. 2008). They can
also be found in the monograph (Krstic 2009c). Consider the system

Ẋ(t) = AX(t) + BU(t), (8.23)
Y(t) = CX(t − D), (8.24)

with D ≥ 0 a constant measurement delay. The output equation (8.24) can be
represented by the following PDE system

ut(x, t) = ux(x, t), (8.25)
u(D, t) = CX(t), (8.26)

Y(t) = u(0, t). (8.27)
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The following result introduces a novel observer with an ODE-PDE cascade
structure that estimates both the state of the ODE and the so-called sensor state,
i.e., the PDE state.

Theorem 8.1. (Krstic et al. 2008) The observer

˙̂X(t) = AX̂(t) + eADL (Y(t)− û(0, t)) , (8.28)

ût(x, t) = ûx(x, t) + CeAxL (Y(t)− û(0, t)) , (8.29)

û(D, t) = CX̂(t), (8.30)

where L is chosen such that A − LC is Hurwitz, guarantees that the observer error is
exponentially stable in the sense of the norm

|X(t)− X̂(t)|2 +
∫ D

0
|u(x, t)− û(x, t)|2 dx.

It was mentioned before that the control derived by means of the backstepping
approach was equivalent to those originally derived in (Manitius et al. 1979;
Kwon et al. 1980; Artstein 1982). However, the observer (8.28)-(8.30) is substan-
tially different from the classical delay-compensating observer results in (Watan-
abe et al. 1981b; Klamka 1982). Those were based on estimating the delayed state
and then advancing it D seconds ahead, as follows

Ξ̇(t) = AΞ(t) + BU(t − D) + L(Y(t) − CΞ(t)), (8.31)

X̂(t) = eADΞ(t) +
∫ t

t−D
eA(t−θ)BU(θ)dθ. (8.32)

A reduced-order version of (8.31)-(8.32) is easily obtained as

˙̂X(t) = AX̂(t) + BU(t)

+ eADL

(

Y(t)− Ce−ADX̂(t) + C
∫ t

t−D
eA(t−D−θ)BU(θ)dθ

)

, (8.33)

which is the original form reported in (Watanabe et al. 1981b; Klamka 1982).

Remark 8.1. The observer (8.28)-(8.30) does not contain distributed integral terms, in
contrast to (8.31)-(8.32) and (8.33). Instead, the infinite-dimensionality is represented
by a partial differential equation. This is a crucial fact that is recurrently exploited by
the contributions reported in the following chapters.
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8.2 ODEs with diffusive dynamics

The problem of compensating actuator or sensor dynamics dominated by diffu-
sion was addressed in (Krstic 2009b). A system with diffusive actuator dynamics
can be modeled by the following ODE-PDE cascade

Ẋ(t) = AX(t) + Bu(0, t), (8.34)
ut(x, t) = uxx(x, t), (8.35)
ux(0, t) = 0, (8.36)
u(D, t) = U(t), (8.37)

where X ∈ Rn is the ODE state, U is the control input and u is the PDE state.
While the ODE with input delay (8.5)-(8.7) has a transfer function representation

X(s) = (sI − A)−1Be−sDU(s),

the ODE-PDE cascade (8.34)-(8.37) is represented by

X(s) = (sI − A)−1B
1

cosh(D
√

s)
U(s).

In the rest of this section, an infinite-dimensional controller for compensation of
actuator diffusive dynamics is introduced. The controller is obtained as a direct
application of the backstepping techniques developed in (Smyshlyaev et al. 2004;
Smyshlyaev et al. 2005) for parabolic systems. An observer is also introduced for
systems with diffusive sensor dynamics.

8.2.1 Backstepping controller design

The backstepping procedure with the same candidate transformation (8.8) above
can be applied to the diffusive case. The reader is referred to (Krstic 2009b) or
(Krstic 2009c) for details. The resulting compensating controller has the form

U(t) = K
[
I 0

]
{

M(D)

[
I
0

]

X(t) +
∫ D

0

(∫ D−y

0
M(ξ)dξ

) [
I
0

]

Bu(y, t)dy

}

(8.38)
where

M(x) = e

[

0 A
I 0

]

x

.
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Remark 8.2. It was recently shown in (Sanz et al. 2018c), one of the contributions
of this thesis, that the control law above can be alternatively written as (see proof of
Lemma 9.4)

U(t) = K

{

cosh(D
√

A)X(t) +
∫ D

0

(∫ D−y

0
cosh(ξ

√
A)dξ

)

Bu(y, t)dy

}

.

8.2.2 PDE observer for systems with diffusive sensor dynamics

The observer introduced in the following theorem is the counterpart of the one
in Theorem 8.1 for systems with diffusive sensor dynamics.

Theorem 8.2. (Krstic 2009b) The observer

˙̂X(t) = AX̂(t) + M(D)L (Y(t)− û(0, t)) , (8.39)
ût(x, t) = ûxx(x, t) + CM(x)L (Y(t)− û(0, t)) , (8.40)
ûx(0, t) = 0, (8.41)

û(D, t) = CX̂(t), (8.42)

where L is chosen such that A − LC is Hurwitz, guarantees that the observer error is
exponentially stable in the sense of the norm

|X(t)− X̂(t)|2 +
∫ D

0
|u(x, t)− û(x, t)|2 dx.

Remark 8.3. Note that, again, the observer resulting from the application of the back-
stepping approach does not contain distributed integral terms. This fact is exploited in
Chapter 9 to derive an observer-based controller, different from (8.38), which avoids the
integral terms.

8.3 Contributions in this part

The contributions reported in the following chapters are summarized here.

Chapter 9 is based on both (Sanz et al. 2018a), accepted to be presented at the
American Control Conference 2018 and its journal version (Sanz et al. 2018c), pro-
visionally accepted for its publication in Transactions of Automatic Control. This
work is also focused on avoiding integral terms in the control law (see Sec-
tion 2.3.1). Observer-based controllers are proposed for systems with delay or
diffusive dynamics. In contrast to other similar approaches developed for input-
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delayed systems, this novel method allows stabilization of exponentially unsta-
ble plants with arbitrarily large input-delay.

Chapter 10 is based on (Sanz et al. 2018b), submitted to Automatica and currently
under review. In this work, the infinite-dimensional observer (8.28)-(8.30) is ex-
tended to systems with time-varying matrices and/or time-varying delays. The
observer is further exploited to develop an exponentially stabilizing controller.
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Chapter 9

Observer-based compensation of

infinite-dimensional actuator

dynamics

This chapter deals with robust observer-based output feedback stabilization of systems
whose actuator dynamics can be described in terms of partial differential equations.
More specifically, delay dynamics (first-order hyperbolic PDE) and diffusive dynam-
ics (parabolic PDE) are considered. The proposed controllers have a PDE observer-based
structure. The main novelty is that stabilization for an arbitrarily large delay or dif-
fusion domain length is achieved, while distributed integral terms in the control law
are avoided. The exponential stability of the closed-loop in both cases is proved using
Lyapunov-Krasovskii functionals, even in the presence of small uncertainties in the time
delay or the diffusion coefficient.
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9.1 Introduction

Traditional predictor-based controllers, as developed in (Manitius et al. 1979;
Kwon et al. 1980; Artstein 1982), use infinite-dimensional feedback laws, whose
discretization may cause problems in their practical implementation, as discussed
in the literature (Mondié et al. 2003; Zhong 2004). More recently, the application
of backstepping techniques developed for first-order hyperbolic PDEs has also
led to controllers with distributed integrals, when applied to time delay sys-
tems (Krstic et al. 2008). Modeling the delay phenomenon as a transport PDE
has been shown to provide a solid framework with ample tools for analysis and
design (Krstic 2009c). In this context, input-delay systems are just a particular
case of a broader class of systems with infinite-dimensional actuator dynam-
ics, which have attracted attention recently, and whose stabilizing controllers
also involve distributed (sometimes double) integrals of the actuator state (Krstic
2009b; Krstic 2009a).

Stabilization of input-delayed systems without distributed terms has been pur-
sued in different directions. A successful approach consists of ignoring the dis-
tributed terms in the traditional predictor leading to a static feedback control law.
Following this idea, the truncated predictor feedback, introduced in (Zhou et al.
2012), achieves stabilization of marginally stable systems. The pseudo-predictor
feedback further extends this technique to exponentially unstable systems, al-
though arbitrarily large delays can only be handled for polynomially unstable
systems (Zhou 2014).

Another approach is based on designing observers to estimate the predicted
state, rather than explicitly computing it. Let us briefly develop this idea. Given
the LTI system Ẋ (t) = AX (t) + BU (t − D) with input delay D ≥ 0 and out-
put measurement Y(t) = CX (t), the predicted state, P(t) = X (t + D), can be
shown to satisfy the equation Ṗ(t) = AP(t) + BU (t), while the output can be
expressed as Y(t) = CP(t − D). Therefore, the stabilization problem can be
solved by generating an asymptotically convergent estimate, P̂(t), through the
delayed measurement Y(t) and then applying the control law U (t) = KP̂(t),
such that A + BK is Hurwitz. The problem of state observation via a delayed
output measurement has been recurrently approached in the literature without
the need of integral terms (Germani et al. 2002; Ahmed-Ali et al. 2009; Ahmed-
Ali et al. 2012). In these works, a chain of sequential observers is used, in which
each of the components estimates a prediction of the stated over an interval,
whose length equals a fraction of the delay, achieving asymptotic stability for
arbitrarily large delays as the number of sequential predictors goes to infinity.
However, it has been only recently that this fact has gained increasing attention
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among researchers to deal with input-delayed systems. This idea was first de-
vised in (Besancon et al. 2007) and further extended with an LMI-based design
methodology in (Najafi et al. 2013). In the past few years, this technique has been
extended to time-varying delays (Léchappé et al. 2016), input and output delays
(Zhou et al. 2017) and nonlinear time-varying systems (Mazenc et al. 2017b).

9.1.1 Problem statement

This chapter deals with two classes of systems whose actuator dynamics can
be described in terms of PDEs. The first type of systems considered are those
described by

Ẋ(t) = AX(t) + Bu(0, t), (9.1)
ut(x, t) = ux(x, t), (9.2)
u(D, t) = U(t), (9.3)

Y(t) = CX(t), (9.4)

where D ≥ 0 is the spatial domain length and A, B, C are matrices with appro-
priate dimensions. As discussed in see Section 8.1.2, it is a well-known result
that, if the whole state is available, the stabilization of (9.1)-(9.3) can be achieved
by the predictive feedback control law

U(t) = KP(t),

P(t) = eADX(t) +
∫ D

0
eA(D−y)Bu(y, t)dy, (9.5)

where the vector K is such that A + BK is Hurwitz.

The second type of systems treated here are those described by

Ẋ(t) = AX(t) + Bu(0, t), (9.6)
ut(x, t) = uxx(x, t), (9.7)
ux(0, t) = 0, (9.8)
u(D, t) = U(t), (9.9)

Y(t) = CX(t). (9.10)

where D ≥ 0 is the spatial domain length. In this case, the actuator dynamics
(9.7) is governed by a parabolic PDE, the so-called heat equation. Therefore, the
control action undergoes a diffusive process before reaching the ODE. Since the
spatial domain length is arbitrary, the diffusion coefficient is taken to be unity
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without loss of generality. As described in Section 8.2.1, if the whole state is
accessible, a stabilizing control law for (9.6)-(9.9) is given by

U(t) = KΠ(t),

Π(t) = M(D)X(t) +
∫ D

0
m(D − y)Bu(y, t)dy, (9.11)

where the vector K is again to be chosen such that A + BK is Hurwitz, and

m(s) =
∫ s

0
M(ξ)dξ, (9.12)

M(ξ) =
[
I 0

]
e

[

0 A
I 0

]

ξ [ I
0

]

. (9.13)

While P(t) in (9.5) is the predicted state D units of time ahead, i.e., P(t) = X(t +
D), the meaning of Π(t) in (9.11) is more difficult to interpret in the time domain.
Note that, in the Laplace domain, the PDE system (9.2)-(9.3) is represented by
u(0, s) = e−sDU(s), and thus P(s) = esDX(s) cancels out the effect of the actuator
dynamics. Analogously, noting that the PDE system (9.7)-(9.9) has a transfer
function representation u(0, s) = U(s)/ cosh(

√
sD), as pointed out in (Krstic

2009b), it can be drawn that Π(s) = cosh(
√

sD)X(s), for the actuator dynamics
to be counteracted. We shall refer to Π(t) as the “anti-diffused” state.

9.1.2 Motivation

An obvious limitation of the control laws (9.5) and (9.11) is that they require full
state measurement. To overcome this issue, the control laws can be alternatively
computed using estimates X̂(t) and û(x, t), generated by a suitable observer.
However, another handicap lies in the fact that these control laws are actually
integral equations, since the control action appears explicitly on the LHS and
under an integral sign on the RHS. Therefore, the discretization of the integral
term for its implementation can lead to instability (Zhong 2004).

In what follows, an output-based control strategy is introduced, which achieves
exponential stabilization while avoiding the distributed integral terms. The key
idea behind the proposed control laws is to design observers to estimate the
predicted state P(t) for a system with delay actuator dynamics, or the “anti-
diffused” state Π(t), for a system with diffusive actuator dynamics. Robustness
under uncertainties in the delay size or the diffusion coefficient are also consid-
ered.
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9.2 Delay dynamics

The observer-based controller for the case of delay actuator dynamics is intro-
duced in this section. The case of perfectly known delay is presented next, while
robustness is addressed below in 9.2.2

9.2.1 Nominal case

Let us define

v(x, t) = CeAxX(t) + C
∫ x

0
eA(x−y)Bu(y, t)dy. (9.14)

Computing the time derivative of (9.5) and the spatial and temporal derivatives
of (9.14), using (9.1)-(9.4), one arrives at the following ODE-PDE cascade system

Ṗ(t) = AP(t) + BU(t), (9.15)
vt(x, t) = vx(x, t), (9.16)
v(D, t) = CP(t), (9.17)

Y(t) = v(0, t), (9.18)

where an integration by parts in the variable y and the fact that A and eAx com-
mute for all x was used in (9.15)-(9.16), while (9.17)-(9.18) follow simply by eval-
uating (9.14) at x = D and x = 0, respectively. The original input-delay system
(9.1)-(9.4) has been then mapped through the transformation (X, u) 7→ (P, v)
into the virtual system (9.15)-(9.18), in which the delay is affecting the output.

Theorem 9.1. Given matrices K and L such that A + BK and A − LC are Hurwitz,
the closed-loop system composed of (9.1)-(9.4) and

˙̂P(t) = AP̂(t) + BU(t) + eADL
(
Y(t) − v̂(0, t)

)
, (9.19)

v̂t(x, t) = v̂x(x, t) + CeAxL
(
Y(t)− v̂(0, t)

)
, (9.20)

v̂(D, t) = CP̂(t), (9.21)

U(t) = KP̂(t), (9.22)

is exponentially stable in the sense of the norm

(

|X(t)|2 + ‖u(t)‖2 + |P̂(t)|2 + ‖v̂(t)‖2
)1/2

.
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Proof. Let us introduce the mapping (P, v) → (P̃, ṽ), by defining the error vari-
ables

P̃(t) , P(t)− P̂(t), (9.23)

ṽ(x, t) , v(x, t)− v̂(x, t). (9.24)

Differentiating (9.23)-(9.24) and using (9.19)-(9.21), the observer error system is
obtained as

˙̃P(t) = AP̃(t)− eAD Lṽ(0, t), (9.25)

ṽt(x, t) = ṽx(x, t)− CeAxLṽ(0, t), (9.26)

ṽ(D, t) = CP̃(t). (9.27)

On the other hand, using (9.22) and (9.23), the system (9.1)-(9.3) can be written
as

Ẋ(t) = AX(t) + Bu(0, t), (9.28)
ut(x, t) = ux(x, t), (9.29)

u(D, t) = KP(t)− KP̃(t), (9.30)

Now, let us introduce the mappings (X, u) 7→ (X, w) and (P̃, ṽ) 7→ (P̃, w̃), de-
fined by the backstepping transformations

w(x, t) = u(x, t)− KeAxX(t)

−
∫ x

0
KeA(x−y)Bu(y, t)dy, (9.31)

w̃(x, t) = ṽ(x, t)− CeA(x−D)P̃(t), (9.32)

respectively, which transform (9.25)-(9.27) and (9.28)-(9.30) into

Ẋ(t) = (A + BK)X(t) + Bw(0, t), (9.33)
wt(x, t) = wx(x, t), (9.34)

w(D, t) = −KP̃(t), (9.35)
˙̃P(t) = (A − eADLCe−AD)P̃(t)− eADLw̃(0, t), (9.36)

w̃t(x, t) = w̃x(x, t), (9.37)
w̃(D, t) = 0, (9.38)

where (9.34) followed from an integration by parts and (9.37) used the fact that A
and eAx commute for all x. The overall transformation (X, u, P̂, v̂) 7→ (X, w, P̃, ŵ)
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can be written as

w(x, t) = u(x, t)− KeAxX(t)−
∫ x

0
KeA(x−y)Bu(y, t)dy, (9.39)

P̃(t) = eADX(t) +
∫ D

0
eA(D−y)Bu(y, t)dy − P̂(t), (9.40)

w̃(x, t) = CeA(x−D)P̂(t)− v̂(x, t)− C
∫ D

x
eA(x−y)Bu(y, t)dy. (9.41)

while its inverse is given by

u(x, t) = w(x, t) + Ke(A+BK)xX(t) +
∫ x

0
Ke(A+BK)(x−y)Bw(y, t)dy, (9.42)

P̂(t) = eADX(t)− P̃(t) +
∫ D

0
eA(D−y)Bw(y, t)dy

+

(∫ D

0
eA(D−y)BKe(A+BK)y dy

)

X(t)

+
∫ D

0

(∫ D

z
eA(D−y)BKe(A+BK)(y−z) dy

)

Bw(z, t)dz, (9.43)

v̂(x, t) = CeAxX(t)− CeA(x−D)P̃(t)− w̃(x, t) + C
∫ x

0
eA(x−y)Bw(y, t)dy

+ C

(∫ x

0
eA(x−y)BKe(A+BK)ydy

)

X(t)

+ C
∫ x

0

(∫ x

z
eA(x−y)BKe(A+BK)(y−z) dy

)

Bw(z, t)dz. (9.44)

In order to assess stability, let us choose the Lyapunov-Krasovskii functional

V(t) = X(t)TS1X(t) +
a

2

∫ D

0
(1 + x)w(x, t)2 dx

+ bP̃(t)TTTS2TP̃(t) +
c

2

∫ D

0
(1 + x)w̃(x, t)2 dx (9.45)

where the constants a, b, c > 0 are specified in the subsequent analysis, T = e−AD

is defined for the sake of brevity, and S1 = ST
1 > 0, S2 = ST

2 > 0 are the solutions
to the Lyapunov equations

S1(A + BK) + (A + BK)TS1 = −Q1, (9.46)

S2(A − LC) + (A − LC)TS2 = −Q2, (9.47)
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for some symmetric positive definite matrices Q1 and Q2, respectively. Using
integration by parts and the fact that T and A commute, the time derivative of
(9.45) along the trajectories of (9.33)-(9.38) can be written as

V̇ = −XTQ1X + 2XTS1Bw(0, t)

+
a

2
(1 + D)w(D, t)2 − a

2
w(0, t)2 − a

2

∫ D

0
w(x, t)2 dx

− bP̃TTTQ2TP̃ − 2bP̃TTTS2Lw̃(0)

− c

2
w̃(0, t)2 − c

2

∫ D

0
w̃(x, t)2 dx, (9.48)

which can be bounded by

V̇ ≤ −λ(Q1)

2
|X|2 + 2|S1B|2

λ(Q1)
w(0, t)2

+
a

2
(1 + D)w(D, t)2 − a

2
w(0, t)2 − a

2

∫ D

0
w(x, t)2 dx

− b
λ(Q2)

2
|TP̃|2 + 2b|S2 L|2

λ(Q2)
w̃(0, t)2

− c

2
w̃(0, t)2 − c

2

∫ D

0
w̃(x, t)2 dx

≤ −λ(Q1)

2
|X|2 +

(
2|S1B|2
λ(Q1)

− a

2

)

w(0, t)2

+

(
a

2
(1 + D)|KT−1|2 − b

λ(Q2)

2

)

|TP̃|2

− a

2

∫ D

0
w(x, t)2 dx − c

2

∫ D

0
w̃(x, t)2 dx

+

(
2b|S2 L|2
λ(Q2)

− c

2

)

w̃(0, t)2. (9.49)

Choosing

a =
4|S1B|2
λ(Q1)

, b =
2a(1 + D)|KT−1|2

λ(Q2)
, c =

4b|S2L|2
λ(Q2)

,

leads to

V̇ ≤ −λ(Q1)

2
|X|2 − a

2

∫ D

0
w(x, t)2 dx
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− b
λ(Q2)

4
|TP̃|2 − c

2

∫ D

0
w̃(x, t)2 dx.

Next, observe that

V̇ ≤ − λ(Q1)

2λ(S1)
X(t)TS1X(t)

− 1
1 + D

a

2

∫ D

0
(1 + x)w(x, t)2 dx

− λ(Q2)

4λ(S2)
bP̃(t)TTTS2TP̃(t)

− 1
1 + D

c

2

∫ D

0
(1 + x)w̃(x, t)2 dx. (9.50)

Therefore, from (9.45) and (9.50) it follows that

V̇(t) ≤ −µV(t), (9.51)

where

µ = min
{

λ(Q1)

2λ(S1)
,

λ(Q2)

4λ(S2)
,

1
1 + D

}

.

Now, from (9.45), one can find that

ψ1Ξ(t) ≤ V(t) ≤ ψ2Ξ(t), (9.52)

where
Ξ(t) = |X(t)|2 + ‖w(t)‖2 + |P̃(t)|2 + ‖w̃(t)‖2,

and

ψ1 = min
{

λ(S1),
a

2
, bλ(TTS2T),

c

2

}

,

ψ2 = max
{

λ(S1),
a(1 + D)

2
, bλ(TTS2T),

c(1 + D)

2

}

.

Hence, from (9.51)-(9.52) and the comparison principle, the following exponen-
tial stability estimate is obtained for the transformed system

Ξ(t) ≤ ψ2

ψ1
Ξ(0)e−µt, ∀t ≥ 0. (9.53)
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Now, it is necessary to show the exponential stability of the original system, that
is, in the sense of the norm

Υ(t) = |X(t)|2 + ‖u(t)‖2 + |P̂(t)|2 + ‖v̂(t)‖2.

Using (9.39)-(9.41) and (9.42)-(9.44), one can show there exist constants αi, βi such
that

Ξ(t) ≤ α1|X|2 + α2‖u‖2 + α3|P̂|2 + α4‖v̂‖2,

Υ(t) ≤ β1|X|2 + β2‖w‖2 + β3|P̃|2 + β4‖w̃‖2,

for all t ≥ 0, from which it follows that

φ1Υ(t) ≤ Ξ(t) ≤ φ2Υ(t), (9.54)

being φ1 = 1/ max βi and φ2 = max αi. Therefore, one gets the exponential
stability estimate

Υ(t) ≤ ψ2

ψ1

φ2

φ1
Υ(0)e−µt, ∀t ≥ 0,

thus completing the proof.

9.2.2 Robustness to delay mismatch

Let us consider now that the input delay size is not accurately known. Such
scenario can be modeled by the following ODE-PDE cascade

Ẋ(t) = AX(t) + Bu(∆D, t), (9.55)
ut(x, t) = ux(x, t), (9.56)

u(D0, t) = U(t), (9.57)
Y(t) = CX(t), (9.58)

where X ∈ Rn is the ODE state, A, B and C are matrices with appropriate di-
mensions and u ∈ C1 is the PDE state, whose spatial domain is given by

x ∈ [x, D0], x = min{0, ∆D}.

The system (9.55)-(9.57) is equivalent to an LTI system with input delay of D =
D0 − ∆D units of time, where D0 ≥ 0 is the assumed plant delay and ∆D is
a bounded delay mismatch. If the whole state is available and ∆D is known,
the global asymptotic stabilization to zero of (9.55)-(9.57) can be achieved by the

124



9.2 Delay dynamics

predictive feedback control law U(t) = KP(t), where

P(t) = eADX(t) +
∫ D0

∆D
eA(D0−y)Bu(y, t)dy, (9.59)

and the vector K is such that A + BK is Hurwitz. Let us also define

v(x, t) = CeA(x−∆D)X(t) + C
∫ x

∆D
eA(x−y)Bu(y, t)dy. (9.60)

Computing the time derivative of (9.59) and the spatial and temporal derivatives
of (9.60), and using (9.55)-(9.58), one arrives at the following ODE-PDE cascade
system

Ṗ(t) = AP(t) + BU(t), (9.61)
vt(x, t) = vx(x, t), (9.62)

v(D0, t) = CP(t), (9.63)
Y(t) = v(∆D, t), (9.64)

where an integration by parts in the variable y and the fact that A and eAx com-
mute for all x was used in (9.61)-(9.62), and (9.63)-(9.64) follow simply by evalu-
ating (9.60) at x = D0 and x = ∆D, respectively. The original input-delay system
(9.55)-(9.58) has been then mapped into the virtual system (9.61)-(9.64), in which
the delay is affecting the output. Let us introduce the error variables

P̃(t) , P(t)− P̂(t), (9.65)

ṽ(x, t) , v(x, t)− v̂(x, t). (9.66)

Differentiating (9.65)-(9.66), using (9.93)-(9.95) and (9.61)-(9.64), and adding and
subtracting v(0, t), the observer error system can be written as

˙̃P(t) = AP̃(t)− eAD0 Lṽ(0, t)− eAD0 LI(t), (9.67)

ṽt(x, t) = ṽx(x, t)− CeAx Lṽ(0, t)− CeAx LI(t), (9.68)

ṽ(D0, t) = CP̃(t). (9.69)

where I(t) = v(∆D, t)− v(0, t) =
∫ ∆D

0 vx(x, t)dx, which follows from the Newton-
Leibniz formula. Now, let us introduce the mappings (X, u) 7→ (X, w) and
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(P̃, ṽ) 7→ (P̃, w̃), defined by the backstepping transformations

w(x, t) = u(x, t)− KeA(x−∆D)X(t)−
∫ x

∆D
KeA(x−y)Bu(y, t)dy, (9.70)

w̃(x, t) = ṽ(x, t)− CeA(x−D0)P̃(t). (9.71)

Using (9.96) and the transformations (9.70)-(9.71), the systems (9.55)-(9.57), (9.67)-
(9.69) are mapped into

Ẋ(t) = (A + BK)X(t) + Bw(∆D, t), (9.72)
wt(x, t) = wx(x, t), (9.73)

w(D0, t) = −KP̃(t), (9.74)
˙̃P(t) = (A − eAD0 LCe−AD0)P̃(t)− eAD0 Lw̃(0, t)

− eAD0 LI(t), (9.75)
w̃t(x, t) = w̃x(x, t), (9.76)

w̃(D0, t) = 0, (9.77)

respectively, where (9.73) followed from an integration by parts, (9.75) used
(9.71) with x = 0, and (9.76) used the fact that A and eAx commute for all x.
Also, using (9.96) and (9.65), the system (9.61)-(9.63) can be written as

Ṗ(t) = (A + BK)P(t)− BKP̃(t), (9.78)
vt(x, t) = vx(x, t), (9.79)

v(D0, t) = CP(t). (9.80)

Remark 9.1. In the nominal case, i.e., ∆D = 0, the coupling term I(t) would vanish
and thus the stability of (9.72)-(9.77) could be proved without taking (9.78)-(9.80) into
account, as it was done before in Section 9.2.1. Since this is not the case, the three
subsystems are analyzed altogether in the proof of the Theorem 9.2 below. The following
lemma is introduced first for the sake of clarity.

Lemma 9.1. The overall transformation (X, u, P̂, v̂) 7→ (X, w, P̃, w̃, P, v) can be writ-
ten as

w(x, t) = u(x, t)− KeA(x−∆D)X(t)−
∫ x

∆D
KeA(x−y)Bu(y, t)dy, (9.81)

P̃(t) = eADX(t) +
∫ D0

∆D
eA(D0−y)Bu(y, t)dy − P̂(t), (9.82)

w̃(x, t) = CeA(x−D0) P̂(t)− v̂(x, t)− C
∫ D0

x
eA(x−y)Bu(y, t)dy. (9.83)
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P(t) = eADX(t) +
∫ D0

∆D
eA(D0−y)Bu(y, t)dy (9.84)

v(x, t) = CeA(x−∆D)X(t) + C
∫ x

∆D
eA(x−y)Bu(y, t)dy. (9.85)

while its inverse transformation is given by

u(x, t) = w(x, t) + Ke(A+BK)(x−∆D)X(t) +
∫ x

∆D
Ke(A+BK)(x−y)Bw(y, t)dy, (9.86)

P̂(t) = P(t)− P̃(t), (9.87)

v̂(x, t) = v(x, t)− w̃(x, t)− CeA(x−D0) P̃(t). (9.88)

Proof. Only the fact that (9.86) is the inverse of (9.81) is proved here since the
other expressions follow from straightforward manipulations. The transforma-
tion (9.81) can be compactly written as

w(x, t) = u(x, t)− f (x − ∆D)X(t)− (g ⋆ u)(x, t) (9.89)

where f (x) = KeAx, g(x) = KeAxB and ⋆ denotes the convolution operator in
the x variable, i.e., (g ⋆ u)(x, t) =

∫ ∞

−∞
g(x − y)u(y, t)dy. Note that the lim-

its of the integral can be truncated assuming that g : [0, ∞) and provided that
u : [∆D, D0]× [0, ∞). Taking the Laplace transform of (9.89) yields

w(σ, t) = Γu(σ, t)− K(σI − A)−1e−∆DσX(t) (9.90)

where σ is the Laplace argument and Γ = I − K(σI − A)−1B. Solving (9.90) for
u(σ, t) yields

u(σ, t) = Γ−1w(σ, t) + Γ−1K(σI − A)1e−∆DσX(t) (9.91)

where Γ−1 = I + K(σI − A − BK)−1B, which follows by the Woodbury iden-
tity. Adding and subtracting K(σI − A − BK)−1 to Γ−1K(σI − A)1 and using the
identity (σI − A − BK)−1(I − BK(σI − A)−1) = (σI − A)−1 leads to

Γ−1K(σI − A)1 = K(σI − A − BK)−1. (9.92)

Finally, plugging (9.92) into (9.91) and taking the inverse Laplace transform yields
(9.86), which completes the proof.

Theorem 9.2. Consider the closed-loop system composed of (9.55)-(9.58) and

˙̂P(t) = AP̂(t) + BU(t) + eAD0 L
(
Y(t)− v̂(0, t)

)
, (9.93)
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v̂t(x, t) = v̂x(x, t) + CeAx L
(
Y(t)− v̂(0, t)

)
, (9.94)

v̂(D0, t) = CP̂(t), (9.95)

U(t) = KP̂(t), (9.96)

where K and L are such that A + BK and A − LC are Hurwitz. Then, there exists a
δ > 0 such that for all |∆D| ≤ δ, i.e., for all D ∈ [D0 − δ, D0 + δ], the zero solution of
the (X, u, P̂, v̂)-system is exponentially stable, that is, there exist positive constants R
and ρ such that for all initial conditions

(X0, u0, P̂0, v̂0) ∈ R
n × L2(x, D0)× R

n × H1(x, D0),

it holds that Υ(t) ≤ RΥ(0)e−ρt, where

Υ(t) = |X(t)|2 + ‖u(t)‖2
L2 [x,D0]

+ |P̂(t)|2 + ‖v̂(t)‖2
H1 [x,D0]

.

Proof. In order to assess stability, let us choose the Lyapunov-Krasovskii func-
tional

V(t) = V1(t) + V2(t) + V3(t), (9.97)

where

V1(t) = X(t)TS1X(t) +
a1

2

∫ D0

∆D
exw(x, t)2 dx +

a1

4

∫ ∆D

x
exw(x, t)2 dx,

V2(t) = b0P(t)TS1P(t) +
b1

2

∫ D0

x
exv(x, t)2 dx +

b2

2

∫ D0

x
exv2

x(x, t)dx,

V3(t) = c0P̃(t)TTTS2TP̃(t) +
c1

2

∫ D0

0
exw̃(x, t)2 dx

+
c1

4

∫ 0

x
exw̃2(x, t)dx +

∫ D0

x
exw̃2

x(x, t)dx,

the constants ai, bi, ci > 0 are specified in the subsequent analysis, T = e−AD0 is
defined for the sake of brevity, and S1 = ST

1 > 0, S2 = ST
2 > 0 are the solutions

to the Lyapunov equations

S1(A + BK) + (A + BK)TS1 = −Q1, (9.98)

S2(A − LC) + (A − LC)TS2 = −Q2, (9.99)
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for some symmetric positive definite matrices Q1 and Q2, respectively. Using
integration by parts1, the time derivative of V1(t) along the trajectories of (9.72)-
(9.77) is given by

V̇1(t) = −XTQ1X + 2XTS1Bw(∆D, t)

+
a1

2
eD0 w(D0, t)2 − a1

2
e∆Dw(∆D, t)2

− a1

2

∫ D0

∆D
exw(x, t)2 dx +

a1

4
e∆Dw(∆D, t)2

− a1

4
exw(x, t)2 − a1

4

∫ ∆D

x
exw2(x, t)dx

≤ −λ(Q1)

2
|X|2 +

(
2|S1B|2
λ(Q1)

− a1

4
e∆D

)

w(∆D, t)2

+
a1

2
eD0 |K|2|P̃|2 − a1

2

∫ D0

∆D
exw(x, t)2 dx

− a1

4

∫ ∆D

x
exw(x, t)2 dx (9.100)

where (9.98) was used and Young’s inequality was employed to upper bound
the second term. Proceeding in a very similar fashion, the derivative of V2(t)
along the trajectories of (9.78)-(9.80) is obtained as

V̇2 = −b0PTQ1P − 2b0PTS1BKP̃

+
b1

2
eD0 v(D0, t)2 − b1

2
exv2(x, t)− b1

2

∫ D0

x
exv(x, t)2dx

+
b2

2
eD0 vt(D0, t)2 − b2

2
exvt(x, t)2 − b2

2

∫ D0

x
exv(x, t)2dx

≤
(

− b0λ(Q1)

2
+

b1

2
eD0 |C|2 + b2

2
eD0κ1

)

|P|2

+

(
2b0|S1BK|2

λ(Q1)
+

b2

2
eD0κ2

)

|P̃|2

− b1

2

∫ D0

x
exv(x, t)2dx − b2

2

∫ D0

x
exvx(x, t)2dx, (9.101)

1By the differentiation under the integral sign rule one has that d
dt

∫ b
a exw(x, t)2 dx =

∫ b
a 2exw(x, t)wx(x, t)dx, where (9.76) was used. Then, applying integration by parts leads to

d
dt

∫ b
a exw(x, t)2 dx = ebw(b, t)2 − eaw(a, t)2 −

∫ b
a exw(x, t)2 dx.
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where the bound

vt(D0, t)2 ≤ κ1|P|2 + κ2|P̃|2,

with κ1 = 2|C(A + BK)|2 and κ2 = 2|CBK|2 was employed, which follows
by differentiating (9.64), plugging (9.61) in, squaring both sides and then using
Young’s inequality. Similarly, the time derivative of V3(t) along the trajectories
of (9.72)-(9.77) can be written as

V̇3 = −c0P̃TTTQ2TP̃ − 2c0P̃TTTS2Lw̃(0, t)− 2c0P̃TTTS2LI(t)

− c1

2
w̃(0, t)2 − c1

2

∫ D0

0
exw̃(x, t)2 dx

+
c1

4
w̃(0, t)2 − c1

4
exw̃(x, t)2 − c1

4

∫ 0

x
exw̃(x, t)2 dx

− exw̃x(x, t)2 −
∫ D0

x
exw̃2

x(x, t)dx

≤ − c0λ(TTQ2T)

4
|P̃|2 + 4c0|TTS2L|2

λ(TTQ2T)
I(t)2

+

(
2c0|TTS2L|2
λ(TTQ2T)

− c1

4

)

w̃(0, t)2 −
∫ D0

x
exw̃2

x(x, t)dx

− c1

2

∫ D0

0
exw̃(x, t)2 dx − c1

4

∫ 0

x
exw̃(x, t)2 dx (9.102)

where the fact that T and A commute was taken into account, (9.99) was used,
and Young’s inequality was employed to upper bound the second term (2aTb ≤
|a|2/2 + 2|b|2) and the third one (2aTb ≤ |a|2/4 + 4|b|2). Gathering (9.100),
(9.101) and (9.102), and choosing

b0 =
c0λ(TTQ2T)λ(Q1)

16|S1BK|2 , c0 =
8a1eD0 |K|2
λ(TTQ2T)

,

a1 =
8|S1B|2

λ(Q1)e∆D
, b1 =

b0λ(Q1)

2eD0 |C|2 , c1 =
8c0|TTS2L|2
λ(TTQ2T)

,

the derivative of (9.97) is given by

V̇(t) ≤ −λ(Q1)

2
|X|2 − a1

2

∫ D0

∆D
exw(x, t)2 dx

− a1

4

∫ ∆D

x
exw(x, t)2 dx
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−
(

b0λ(Q1)

4
− b2

2
eD0κ1

)

|P|2

− b1

2

∫ D0

x
exv(x, t)2dx

−
(

c0λ(TTQ2T)

16
− b2

2
eD0κ2

)

|P̃|2

− c1

2

∫ D0

0
exw̃(x, t)2 dx − c1

4

∫ 0

x
exw̃(x, t)2 dx

+

(
4c0|TTS2L|2
λ(TTQ2T)

δeδ − b2

2

) ∫ δ

x
exv2

x(x, t)dx

− b2

2

∫ D0

δ
exv2

x(x, t)dx −
∫ D0

x
exw̃2

x(x, t)dx (9.103)

in which the following bound was used

I(t)2 ≤ |∆D|
∫ max{0,∆D}

min{0,∆D}
v2

x(x, t)dx

≤ δ

∫ δ

x
v2

x(x, t)dx ≤ δeδ
∫ δ

x
exv2

x(x, t)dx,

where the first inequality follows from Jensen’s, the second holds because the
integral of a positive function is an increasing function of its upper limit and
|∆D| ≤ δ, and the third one follows from the fact that eδex ≥ 1, ∀x ∈ [x, δ]. Next,
choosing

b2 <
1

4eD0
min

{
b0λ(Q1)

κ1
,

c0λ(TTQ2T)

4κ2

}

,

and selecting δ such that

δeδ
<

b2λ(TTQ2T)

8c0|TTS2L|2 ,

it follows from (9.103) and (9.97) that

V̇(t) ≤ −µV(t), (9.104)

where

µ = min
{

λ(Q1)

8λ(S1)
,

λ(TTQ2T)

32λ(S2)
,
(

8c0|TTS2L|2
b2λ(TTQ2T)

δeδ − 1
)}

.
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From (9.97), one can find that

ψ1Ξ(t) ≤ V(t) ≤ ψ2Ξ(t), (9.105)

where
Ξ(t) = |X|2 + ‖w‖2 + |P|2 + ‖v‖2

H1
+ |P̃|2 + ‖w̃‖2

H1
,

and

ψ1 = max
{

λ(S1), b0λ(S1), c0λ(TTS2T),
a1ex

4
,

b1ex

2
,

b2ex

2
,

c1ex

4
, ex

}

,

ψ2 = max
{

λ(S1), b0λ(S1), c0λ(TTS2T),
a1eD0

2
,

b1eD0

2
,

b2eD0

2
,

c1eD0

2
, eD0

}

.

Integrating (9.104) and then using (9.105), the following exponential stability es-
timate is obtained for the transformed system

Ξ(t) ≤ ψ2

ψ1
Ξ(0)e−µt, ∀t ≥ 0. (9.106)

Now, it is necessary to show the exponential stability of the original system, that
is, in the sense of the norm

Υ(t) = |X|2 + ‖u‖2 + |P̂|2 + ‖v̂‖2
H1

.

Using (9.81)-(9.83) and (9.86)-(9.88), one can show there exist constants αi and βi

in [1, ∞) such that

Ξ(t) ≤ α1|X|2 + α2‖u‖2 + α3|P̂|2 + α4‖v̂‖2
H1

,

Υ(t) ≤ β1|X|2 + β2‖w‖2 + β3|P|2 + β4‖v‖2
H1

+ β5|P̃|2 + β6‖w̃‖2
H1

,

for all t ≥ 0, from which it follows that

φ1Υ(t) ≤ Ξ(t) ≤ φ2Υ(t), (9.107)

being φ1 = 1/ max βi and φ2 = max αi. Therefore, one gets the exponential
stability estimate

Υ(t) ≤ ψ2

ψ1

φ2

φ1
Υ(0)e−µt, ∀t ≥ 0,

thus completing the proof.
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9.3 Diffusive dynamics

The methodology developed in this section is analogous to the one introduced
above for systems with delay actuator dynamics. The nominal case is presented
first, for the sake of clarity. Then, an uncertainty in the diffusion coefficient is
considered below in Section 9.3.2, which needs of a stability proof substantially
more complicated.

9.3.1 Nominal case

Let us define

ν(x, t) = CM(x)X(t) + C
∫ x

0
m(x − y)Bu(y, t)dy. (9.108)

Lemma 9.2. The original system (9.6)-(9.10) is mapped through (9.11) and (9.108) into
the virtual system

Π̇(t) = AΠ(t) + BU(t), (9.109)
νt(x, t) = νxx(x, t), (9.110)
ν(D, t) = CΠ(t), (9.111)
νx(0, t) = 0, (9.112)

Y(t) = v(0, t). (9.113)

Proof. Let us introduce

q(x, y) =
∫ x−y

0
M(ξ)dξ, (9.114)

to rewrite (9.11), (9.108) in a more compact notation

Π(t) = M(D)X(t) +
∫ D

0
q(D, y)Bu(y, t)dy, (9.115)

ν(x, t) = CM(x)X(t) + C
∫ x

0
q(x, y)Bu(y, t)dy. (9.116)

Note that (9.114) satisfies the following relations

qxx(x, y) = qyy(x, y), (9.117)

q(x, x) = 0, (9.118)
qy(x, y) = −M(x − y). (9.119)
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Differentiating (9.115), using (9.6)-(9.7) and integrating twice by parts, yields

Π̇(t) = M(D)[AX(t) + Bu(0, t)]− q(D, 0)Buy(0, t)

− qy(D, D)Bu(D, t) + qy(D, 0)Bu(0, t)

+
∫ D

0
qyy(D, y)Bu(y, t)dy. (9.120)

Using (9.8) and (9.119) one can simplify (9.120) to

Π̇(t) = AX(t) + Bu(D, t)

+
∫ D

0
qyy(D, y)Bu(y, t)dy. (9.121)

On the other hand, direct computations on (9.13) show that

M(0) = I, (9.122)

M′(0) = 0, (9.123)

M′′(ξ) = AM(ξ). (9.124)

Integrating (9.124) from 0 to x − y on both sides and using (9.123) yields

M′(x − y) = A
∫ x−y

0
M(ξ)dξ,

, and thus by (9.114) it follows that

M′(x − y) = Aq(x, y). (9.125)

Differentiating (9.119) and using (9.125) leads to

qyy(x, y) = M′(x − y) = Aq(x, y). (9.126)

Plugging (9.126) into (9.121) and using (9.115) yields (9.109). On the other hand,
(9.110) can be obtained by computing the first-in-time and second-in-space deriva-
tives of (9.116), subtracting them, and using (9.117)-(9.119), (9.122)-(9.124). Fi-
nally, (9.112)-(9.113) follow simply by evaluating (9.108) at x = D and x = 0,
respectively.

Theorem 9.3. Given matrices K and L such that A + BK and A − LC are Hurwitz,
the closed-loop system composed of (9.6)-(9.9) and

˙̂Π(t) = AΠ̂(t) + BU(t) + M(D)L
(
Y(t)− ν̂(0, t)

)
, (9.127)
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ν̂t(x, t) = ν̂xx(x, t) + CM(x)L
(
Y(t) − ν̂(0, t)

)
, (9.128)

ν̂x(0, t) = 0, (9.129)

ν̂(D, t) = CΠ̂(t), (9.130)

U(t) = KΠ̂(t), (9.131)

is exponentially stable in the sense of the norm

(

|X(t)|2 + ‖u(t)‖2 + |Π̂(t)|2 + ‖ν̂(t)‖2
)1/2

.

Proof. Let us introduce another transformation, (Π, ν) → (Π̃, ν̃), by defining the
error variables

Π̃(t) , Π(t)− Π̂(t), (9.132)

ν̃(x, t) , ν(x, t)− ν̂(x, t). (9.133)

Differentiating (9.132)-(9.133) and using (9.127)-(9.130), the observer error sys-
tem is obtained as

˙̃Π(t) = AΠ̃(t)− M(D)Lν̃(0, t), (9.134)
ν̃t(x, t) = ν̃xx(x, t)− CM(x)Lν̃(0, t), (9.135)
ν̃x(0, t) = 0, (9.136)

ν̃(D, t) = CΠ̃(t). (9.137)

On the other hand, using (9.131) and (9.132), the system (9.6)-(9.9) can be written
as

Ẋ(t) = AX(t) + Bu(0, t), (9.138)
ut(x, t) = uxx(x, t), (9.139)
ux(0, t) = 0, (9.140)

u(D, t) = KΠ(t)− KΠ̃(t). (9.141)

Let us introduce the mappings (X, u) 7→ (X, w) and (Π̃, ν̃) 7→ (Π̃, w̃), defined by
the backstepping transformations

w(x, t) = u(x, t)− KM(x)X(t)

− K
∫ x

0
m(x − y)Bu(y, t)dy, (9.142)

w̃(x, t) = ν̃(x, t)− CM(x)M(D)−1Π̃(t), (9.143)
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respectively, which transform (9.134)-(9.137) and (9.138)-(9.141) into

Ẋ(t) = (A + BK)X(t) + Bw(0, t), (9.144)
wt(x, t) = wxx(x, t), (9.145)
wx(0, t) = 0, (9.146)

w(D, t) = −KΠ̃(t), (9.147)
˙̃Π(t) = (A − M(D)LCM(D)−1)Π̃(t)

− M(D)Lw̃(0, t), (9.148)
w̃t(x, t) = w̃xx(x, t), (9.149)
w̃x(0, t) = 0, (9.150)
w̃(D, t) = 0, (9.151)

where (9.145) followed after two integrations by parts, (9.123) was used to ob-
tain (9.146) and (9.150), while (9.149) used (9.124) and the fact that A and M(x)
commute for all x. As described in Appendix C, the overall transformation
(X, u, Π̂, ν̂) 7→ (X, w, Π̃, w̃) can be written as

w(x, t) = u(x, t)− KM(x)X(t)

− K
∫ x

0
m(x − y)Bu(y, t)dy, (9.152)

Π̃(t) = M(D)X(t) +
∫ D

0
m(D − y)Bu(y, t)dy

− Π̂(t), (9.153)

w̃(x, t) = CM(x)M(D)−1Π̂(t)− ν̂(x, t)

+ C
∫ x

0
m(x − y)Bu(y, t)dy

− CM(x)M(D)−1
∫ D

0
m(D − y)Bu(y, t)dy, (9.154)

while the inverse of (9.152)-(9.154) is given by

u(x, t) = w(x, t) + KN(x)X(t)

+ K
∫ x

0
n(x − y)Bw(y, t)dy, (9.155)

Π̂(t) = M(D)X(t)− Π̃(t)

+
∫ D

0
m(D − y)Bw(y, t)dy
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+

(∫ D

0
m(D − y)BKN(y)dy

)

X(t)

+
∫ D

0

(∫ D

z
m(D − y)BKn(y − z)dy

)

× Bw(z, t)dz, (9.156)

ν̂(x, t) = CM(x)X(t)− CM(x)M(D)−1Π̃(t)− w̃(x, t)

+ C
∫ x

0
m(x − y)Bw(y, t)dy

+ C

(∫ x

0
m(x − y)BKn(x − y)dy

)

X(t)

+ C
∫ x

0

(∫ x

z
m(x − y)BKn(y − z)dy

)

× Bw(z, t)dz (9.157)

In order to assess stability, let us choose the Lyapunov-Krasovskii functional

V(t) = XTS1X +
a

2
‖w‖2

+ bΠ̃T M−TS2 M−1Π̃ +
c

2
‖w̃‖2 (9.158)

where M = M(D) for the sake of brevity and S1 = ST
1 > 0, S2 = ST

2 > 0 are the
solutions to the Lyapunov equations

S1(A + BK) + (A + BK)TS1 = −Q1, (9.159)

S2(A − LC) + (A − LC)TS2 = −Q2. (9.160)

for some Q1 = QT
1 , Q2 = QT

2 . Using integration by parts, the time derivative of
(9.158) along the trajectories of (9.144)-(9.151) is computed as

V̇(t) = −XTQ1X + 2XTS1Bw(0, t)

+ aw(D)wx(D)− a‖wx‖2 − c‖w̃x‖2

− bΠ̃T M−TQ2M−1Π̃ − 2bΠ̃T M−TS2Lw̃(0),

which can be bounded by

V̇(t) ≤ −λmin(Q1)

2
|X|2 + 2|S1B|2

λmin(Q1)
w(0, t)2
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+ 2aw(D, t)2 +
a

2
wx(D)2 − a‖wx‖2 − c‖w̃x‖2

− b
λmin(Q2)

2
|M−1Π̃|2 + 2b|S2 L|2

λmin(Q2)
w̃(0, t)2.

(9.161)

To proceed, note that the following bound holds

w(0, t)2 ≤ w(D, t)2 + 2‖w‖‖wx‖
≤ w(D, t)2 + ‖w‖2 + ‖wx‖2

≤ 2w(D)2 + (4D2 + 1)‖wx‖2, (9.162)

where the first inequality is Agmon’s, the second follows from Young’s and the
last one follows by applying Poincaré’s inequality, that is, ‖w‖2 ≤ w(D, t)2 +
4D2‖wx‖2. Using (9.162), the inequality (9.161) can be further bounded as

V̇(t) ≤ −λmin(Q1)

2
|X|2 + 2(4D2 + 1)|S1B|2

λmin(Q1)
‖wx‖2

+

(

2a +
4|S1B|2

λmin(Q1)

)

w(D, t)2 − a

2
‖wx‖2

− c‖w̃x‖2 − b
λmin(Q2)

2
|M−1Π̃|2

+
2b|S2L|2
λmin(Q2)

w̃(0, t)2 (9.163)

Let us choose

a =
8(4D2 + 1)|S1B|2

λmin(Q1)
, (9.164)

and use the fact that −4D2‖wx‖2 ≤ −‖w‖2 + w(D, t)2, to write

V̇(t) ≤ −λmin(Q1)

2
|X|2 − a

16D2 ‖w‖2 +
a

16D2 w(D, t)2

+

(

2a +
4|S1B|2

λmin(Q1)

)

w(D, t)2 − c‖w̃x‖2

− b
λmin(Q2)

2
|M−1Π̃|2 + 2b|S2L|2

λmin(Q2)
w̃(0, t)2.

(9.165)
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Using (9.147) and the fact that w̃(0, t)2 ≤ 4D‖w̃x‖2, which follows also from
Agmon’s and Poincaré’s inequalities provided that w̃(D, t) = 0, (9.165) can be
further bounded by

V̇(t) ≤ −λmin(Q1)

2
|X|2 − a

16D2 ‖w‖2

+

(

χ − b
λmin(Q2)

2

)

|M−1Π̃|2

+

(
8Db|S2 L|2
λmin(Q2)

− c

)

‖w̃x‖ (9.166)

where χ = |KM|2
((

2 + 1
16D2

)

a + 4|S1B|2
λmin(Q1)

)

. Choosing

b =
4χ

λmin(Q2)
, c =

16Db|S2L|2
λmin(Q2)

, (9.167)

leads to

V̇(t) ≤ −λmin(Q1)

2
|X|2 − a

16D2 ‖w‖2

− λmin(Q2)

4
b|M−1Π|2 − c

2
‖w̃x‖2. (9.168)

Next, we observe that

V̇(t) ≤ − λmin(Q1)

2λmax(S1)
XTS1X − 1

8D2
a

2
‖w‖2

− λmin(Q2)

4λmax(S2)
ΠT M−TS2 M−1Π − 1

2D

c

2
‖w̃‖2.

where Poincaré’s inequality has been used. Therefore, it follows that

V̇(t) ≤ −µV(t), (9.169)

where

µ = min
{

λmin(Q1)

2λmax(S1)
,

λmin(Q2)

4λmax(S2)
,

1
8D2 ,

1
2D

}

.

Now, from (9.158), one can find that

ψ1Ξ(t) ≤ V(t) ≤ ψ2Ξ(t), (9.170)
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where
Ξ(t) = |X(t)|2 + ‖w(t)‖2 + |Π̃(t)|2 + ‖w̃(t)‖2,

and

ψ1 = min
{

λmin(S1),
a

2
, b|M−1|2λmin(S2),

c

2

}

,

ψ2 = max
{

λmax(S1),
a

2
, b|M−1|2λmax(S2),

c

2

}

.

Hence, the following exponential stability estimate is obtained for the trans-
formed system

Ξ(t) ≤ ψ2

ψ1
Ξ(0)e−µt, ∀t ≥ 0. (9.171)

Now, an estimate is derived in terms of

Υ(t) = |X(t)|2 + ‖u(t)‖2 + |Π̂(t)|2 + ‖ν̂(t)‖2.

Using (9.152)-(9.154) and (9.155)-(9.157), one can show there exist constants αi, βi

such that

Ξ(t) ≤ α1|X|2 + α2‖u‖2 + α3|Π̂|2 + α4‖ν̂‖2,

Υ(t) ≤ β1|X|2 + β2‖w‖2 + β3‖Π̃‖2 + β4‖w̃‖2,

for all t ≥ 0, from which it follows that

φ1Υ(t) ≤ Ξ(t) ≤ φ2Υ(t), (9.172)

being φ1 = 1/ max βi, φ2 = max αi. Therefore, from (9.171)-(9.172), one gets the
exponential stability estimate

Υ(t) ≤ ψ2

ψ1

φ2

φ1
Υ(0)e−µt, ∀t ≥ 0,

completing the proof.
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9.3.2 Robustness to diffusion coefficient mismatch

In this section, an uncertainty in the diffusion coefficient is considered. Such an
scenario can be represented by the following ODE-PDE cascade

Ẋ(t) = AX(t) + Bu(0, t), (9.173)
ut(x, t) = ǫuxx(x, t), (9.174)
ux(0, t) = 0, (9.175)
u(D, t) = U(t), (9.176)

Y(t) = CX(t). (9.177)

where D ≥ 0 is the spatial domain length, ǫ = ǫ0 +∆ǫ is the diffusion coefficient,
in which ǫ0 6= 0 is known and ∆ǫ > −ǫ0 is a small additive uncertainty. If the
whole state is available and ǫ is known, a stabilizing control law for (9.6)-(9.9) is
given by U(t) = KΠ(t), where

Π(t) = M(D)X(t) +
∫ D

0
m(D − y)Bu(y, t)dy, (9.178)

the vector K is again to be chosen such that A + BK is Hurwitz, and

m(s) =
1
ǫ

∫ s

0
M(ξ)dξ, (9.179)

M(ξ) =
[
I 0

]
e

[

0 A
ǫ

I 0

]

ξ [
I
0

]

. (9.180)

This result is a slightly modified version of Theorem 1 in Krstic 2009b. Let us
also define

ν(x, t) = CM(x)X(t) + C
∫ x

0
m(x − y)Bu(y, t)dy. (9.181)

Lemma 9.3. The original system (9.173)-(9.177) is mapped through (9.178) and (9.181)
into the virtual system

Π̇(t) = AΠ(t) + BU(t), (9.182)
νt(x, t) = ǫνxx(x, t), (9.183)
ν(D, t) = CΠ(t), (9.184)
νx(0, t) = 0, (9.185)

Y(t) = v(0, t), (9.186)
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Proof. Let us introduce

q(x, y) =
1
ǫ

∫ x−y

0
M(ξ)B dξ, (9.187)

to rewrite (9.178), (9.181) in a more compact notation

Π(t) = M(D)X(t) +
∫ D

0
q(D, y)u(y, t)dy, (9.188)

ν(x, t) = CM(x)X(t) + C
∫ x

0
q(x, y)u(y, t)dy. (9.189)

Note that (9.187) satisfies the following relations

qxx(x, y) = qyy(x, y), (9.190)

q(x, x) = 0, (9.191)
ǫqy(x, y) = −M(x − y)B. (9.192)

On the other hand, direct computations on (9.180) show that

M(0) = I, (9.193)

M′(0) = 0, (9.194)

M′′(ξ) = ǫ−1AM(ξ). (9.195)

Differentiating (9.188), using (9.173)-(9.174) and integrating twice by parts, yields

Π̇(t) = M(D)[AX(t) + Bu(0, t)] +

(

qy(D, 0)u(0, t)

− qy(D, D)u(D, t)− q(D, 0)ux(0, t)

+
∫ D

0
qyy(D, y)u(y, t)dy

)

ǫ. (9.196)

Using (9.175), (9.192) and (9.193), one can simplify (9.196) to

Π̇(t) = M(D)AX(t) + Bu(D, t)

+
∫ D

0
qyy(D, y)Bu(y, t)dy. (9.197)
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Now, integrating (9.195) from 0 to x − y on both sides and using (9.194) yields

M′(x − y) = ǫ−1A
∫ x−y

0
M(ξ)dξ = Aq(x, y). (9.198)

where the last equality follows from (9.187). Differentiating (9.192) and using
(9.198) leads to

ǫqyy(x, y) = Aq(x, y). (9.199)

Plugging (9.199) evaluated at x = D into (9.197) and using (9.188) yields (9.182).
On the other hand, (9.183) can be obtained by computing the first-in-time and
second-in-space derivatives of (9.189), subtracting them, and using (9.190)-(9.192),
(9.193)-(9.195). Finally, (9.185)-(9.186) follow simply by evaluating (9.181) at x =
D and x = 0, respectively.

Let us define the error variables as

Π̃(t) , Π(t)− Π̂(t), (9.200)

ν̃(x, t) , ν(x, t)− ν̂(x, t). (9.201)

Differentiating (9.200)-(9.201) and using (9.232)-(9.235), the observer error sys-
tem is obtained as

˙̃Π(t) = AΠ̃(t)− M0(D)Lν̃(0, t), (9.202)
ν̃t(x, t) = ǫ0ν̃xx(x, t)− CM0(x)Lν̃(0, t) + ∆ǫνxx(x, t), (9.203)
ν̃x(0, t) = 0, (9.204)

ν̃(D, t) = CΠ̃(t). (9.205)

Now, let us introduce the backstepping transformations

w(x, t) = u(x, t)− KM(x)X(t)

− K
∫ x

0
m(x − y)Bu(y, t)dy, (9.206)

w̃(x, t) = ν̃(x, t)− CM0(x)M0(D)−1Π̃(t), (9.207)
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Using (9.236) and the transformations (9.206)-(9.207) the systems (9.173)-(9.176)
and (9.202)-(9.205) are mapped into

Ẋ(t) = (A + BK)X(t) + Bw(0, t), (9.208)
wt(x, t) = ǫwxx(x, t), (9.209)
wx(0, t) = 0, (9.210)

w(D, t) = −KΠ̃(t), (9.211)
˙̃Π(t) = (A − M0(D)LCM0(D)−1)Π̃(t)

− M0(D)Lw̃(0, t), (9.212)
w̃t(x, t) = ǫ0w̃xx(x, t) + ∆ǫνxx, (9.213)
w̃x(0, t) = 0, (9.214)
w̃(D, t) = 0, (9.215)

where (9.209) followed after two integrations by parts, (9.194) was used to obtain
(9.210) and (9.214), while (9.213) used that M′′

0 (x) = ǫ−1
0 AM0(x) and the fact

that A and M0(x) commute for all x. Also, using (9.236) and (9.200), the system
(9.182)-(9.185) can be written as

Π̇(t) = (A + BK)Π(t)− BKΠ̃(t), (9.216)
νt(x, t) = ǫνxx(x, t), (9.217)
νx(0, t) = 0, (9.218)
ν(D, t) = CΠ(t). (9.219)

Lemma 9.4. The overall transformation (X, u, Π̂, ν̂) 7→ (X, w, Π̃, w̃, Π, ν) can be writ-
ten as

w(x, t) = u(x, t)− KM(x)X(t)

− K
∫ x

0
m(x − y)Bu(y, t)dy, (9.220)

Π̃(t) = M(D)X(t) +
∫ D

0
m(D − y)Bu(y, t)dy

− Π̂(t), (9.221)

w̃(x, t) = CM0(x)M0(D)−1Π̂(t)− ν̂(x, t)

+ CM(D)X(t) + C
∫ x

0
m(x − y)Bu(y, t)dy

− CM0(x)M0(D)−1
(

M(D)X(t)

144



9.3 Diffusive dynamics

+
∫ D

0
m(D − y)Bu(y, t)dy

)

, (9.222)

Π(t) = M(D)X(t) +
∫ D

0
m(D − y)Bu(y, t)dy, (9.223)

ν(x, t) = CM(x)X(t) + C
∫ x

0
m(x − y)Bu(y, t)dy, (9.224)

while its inverse transformation is given by

u(x, t) = w(x, t) + KN(x)X(t)

+ K
∫ x

0
n(x − y)Bw(y, t)dy, (9.225)

Π̂(t) = Π(t)− Π̃(t), (9.226)

ν̂(x, t) = ν(x, t)− CM0(x)M(D)−1Π̃(t)− w̃(x, t). (9.227)

where

n(s) =
1
ǫ

∫ s

0
N(ξ)dξ,

N(ξ) =
[
I 0

]
e

[

0 A+BK
ǫ

I 0

]

ξ [
I
0

]

.

Proof. Again, only the proof of (9.225) is given as the other expressions are eas-

ily obtained. Let us define R =

[
A 0
0 I

]

. Because of the anti-diagonal struc-

ture of R, it is verified that ΦTR2j+1Φ = 0 and ΦTR2jΦ = (A/ǫ)j , for all
j ∈ {0, 1, . . . , ∞}. Therefore, using the Taylor expansion of the matrix exponen-
tial we have that ΦTeRxΦ = ∑

∞
n=0(Φ

TRnΦ)xn/n! = ∑
∞
n=0(A/ǫ)nx2n/(2n)! =

∑
∞
n=0(x

√
A/ǫ)2n/(2n)! = cosh(x

√
A/ǫ). Then, one can compactly rewrite (9.220)

as
w(x, t) = u(x, t)− f (x)X(t) − (g ⋆ u)(x, t) (9.228)

where f (x) = K cosh(x
√

Aǫ), g(x) = ǫ−1K
∫ x

0 f (ξ)dξB and ⋆ denotes the con-
volution operator in the x variable. Taking the Laplace transform of (9.228) yields

w(σ, t) = Γu(σ, t)− Kσ(σ2 I − A/ǫ)−1X(t) (9.229)
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where σ is the Laplace argument and Γ = I − ǫ−1K(σ2 I − A/ǫ)−1B. Solving
(9.229) for u(σ, t) yields

u(σ, t) = Γ−1w(σ, t) + Γ−1Kσ(σ2 − A/ǫ)−1X(t) (9.230)

where Γ−1 = I + ǫ−1K(σ2 I − (A + BK)/ǫ)−1B, which follows by the Woodbury
identity. Now, adding and subtracting Kσ(σ2 I − (A + BK)/ǫ)−1 to Γ−1Kσ(σ2 −
A/ǫ)−1 and using the identity

(σ2 I − (A + BK)/ǫ)−1
[

I − ǫ−1BK(σ2 I − Aǫ)−1
]

= (σ2 I − Aǫ)−1

leads to
Γ−1Kσ(σ2 − A/ǫ)−1 = Kσ(σ2 I − (A + BK)/ǫ)−1. (9.231)

Finally, plugging (9.231) into (9.230) and taking the inverse Laplace transform
yields (9.225), which completes the proof.

Theorem 9.4. Consider the closed-loop system composed of (9.173)-(9.177) and

˙̂Π(t) = AΠ̂(t) + BU(t) + M0(D)L
(
Y(t)− ν̂(0, t)

)
, (9.232)

ν̂t(x, t) = ǫ0ν̂xx(x, t) + CM0(x)L
(
Y(t)− ν̂(0, t)

)
, (9.233)

ν̂x(0, t) = 0, (9.234)

ν̂(D, t) = CΠ̂(t), (9.235)

U(t) = KΠ̂(t), (9.236)

where

M0(x) =
[
I 0

]
e




0 A

ǫ0
I 0



x [
I
0

]

,

the matrices K and L are such that A + BK and A − LC are Hurwitz and ǫ0 > 0. Then,
there exists a δ > 0 such that for all |∆ǫ| ≤ δ, i.e., for all ǫ ∈ [ǫ0 − δ, ǫ0 + δ], the zero
solution of the (X, u, Π̂, ν̂)-system is exponentially stable, that is, there exist positive
constants R and ρ such that for all initial conditions

(X0, u0, Π̂0, ν̂0) ∈ R
n × H1(0, D)× R

n × H1(0, D),

it holds that Υ(t) ≤ RΥ(0)e−ρt, where

Υ(t) = |X(t)|2 + ‖u(t)‖2
H1 [0,D] + |P̂(t)|2 + ‖v̂(t)‖2

H1 [0,D].
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Proof. In order to assess stability, let us choose the Lyapunov-Krasovskii func-
tional

V(t) = V1(t) + V2(t) + V3(t) (9.237)

where

V1(t) = a0XTS1X +
a1

2ǫ
‖w‖2 +

a2

2ǫ
‖wx‖2

V2(t) = b0ΠTS1Π +
b1

2ǫ
‖ν‖2 +

b2

2ǫ
‖νx‖2

V3(t) = Π̃T M−T
0 S2 M−1

0 Π̃ +
c1

2ǫ0

(

‖w̃‖2 + ‖w̃x‖2
)

,

where M0 = M0(D) for the sake of brevity and S1 = ST
1 > 0, S2 = ST

2 > 0 are
the solutions to the Lyapunov equations

S1(A + BK) + (A + BK)TS1 = −Q1, (9.238)

S2(A − LC) + (A − LC)TS2 = −Q2. (9.239)

for some symmetric positive definite matrices Q1 and Q2. Using integration by
parts2, the time derivative of V1(t) along the trajectories of (9.208)-(9.211) can be
written as

V̇1(t) = −a0XTQ1X + 2a0XTS1Bw(0, t)

+ a1w(D, t)wx(D, t)− a1‖wx‖2

+ a2wx(D, t)wxx(D, t)− a2‖wxx‖2

≤ − a0λ(Q1)

2
|X|2 + 2a0|S1B|2

λ(Q1)
w(0, t)2

+
Da2

1
a2

w(D, t)2 +
a2

4D
wx(D, t)2

+
a2

4D
wx(D, t)2 + Da2wxx(D, t)2

− a1‖wx‖2 − a2‖wxx‖2 (9.240)

where Young’s inequality was used conveniently used multiple times. To pro-
ceed, some inequalities are derived next. By the fundamental theorem of cal-

2By the differentiation under the integral sign rule one has that d
dt

1
2 ‖w(t)‖2 =

∫ D
0 w(x, t)wxx(x, t)dx,

where (9.213) was used. Then, applying integration by parts leads to d
dt

1
2‖w(t)‖2 = w(D, t)wx(D, t) −

w(0, t)wx(0, t)− ‖wx(t)‖2.
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culus and Jensen’s inequality,
(
w(D, t)− w(0, t)

)2
=
(∫ D

0 wx dx
)2

≤ D‖wx‖2,
and then expanding the squared difference and employing Young’s inequality
to upper bound the cross term leads to

w(0, t)2 ≤ 2w(D, t)2 + 2D‖wx‖2, (9.241)

Proceeding in a similar way with wx and w̃, and using (9.210) and (9.215), re-
spectively, yields

wx(D, t)2 ≤ D‖wxx‖2, (9.242)

w̃(0, t)2 ≤ D‖w̃x‖2. (9.243)

Integrating ‖w‖2 by parts and using Young’s inequality conveniently, leads to
‖w‖2 ≤ 2Dw(D, t)2 + 4D2‖wx‖2, from which we get

− ‖wx‖2 ≤ 1
2D

w(D, t)2 − 1
4D2 ‖w‖2, (9.244)

follows. Using the same procedure with ‖wx‖2 and taking (9.210) into account
yields

− ‖wxx‖2 ≤ − 1
4D2 ‖wx‖2. (9.245)

Using (9.241)-(9.242) into (9.240) and selecting

a1 =
8Da0|S1B|2

λ(Q1)
,

yields

V̇1(t) ≤ − a0λ(Q1)

2
|X|2 + Da2wxx(D, t)2

+

(

4a0|S1B|2
λ(Q1)

+
Da2

1
a2

)

w(D, t)2

− a1

2
‖wx‖2 − a2

2
‖wxx‖2 (9.246)

Now, using (9.244)-(9.245) into (9.246), one can write

V̇1(t) ≤ − a0λ(Q1)

2
|X|2 + Da2wxx(D, t)2

148



9.3 Diffusive dynamics

+

(

4a0|S1B|2
λ(Q1)

+
Da2

1
a2

+
a1

4D

)

w(D, t)2

− a1

8D2 ‖w‖2 − a2

8D2 ‖wx‖2 (9.247)

Furthermore, using (9.209), (9.211) and (9.212),

wxx(D, t)2 ≤ κ1|Π̃|2 + κ2w̃(0, t)2 (9.248)

where κ1 = 2ǫ−2|K(A − M0LCM−1
0 )|2 and κ2 = 2ǫ−2|KM0L|2. Using (9.211),

(9.243) and (9.248) into (9.247) yields

V̇1(t) ≤ − a0λ(Q1)

2
|X|2 + D2a2κ2‖w̃x‖2

+

((

4a0|S1B|2
λ(Q1)

+
Da2

1
a2

+
a1

4D

)

|K|2

+ Da2κ1

)

|Π̃|2 − a1

8D2 ‖w‖2 − a2

8D2 ‖wx‖2 (9.249)

Similarly as before, using integration by parts and Young’s inequality, the time
derivative of V2(t) along the trajectories of (9.216)-(9.218) can be bounded by

V̇2(t) = −b0ΠTQ1Π − 2b0ΠTS1BKΠ̃

+ b1ν(D, t)νx(D, t)− b1‖νx‖2

+ b2νx(D, t)νxx(D, t)− b2‖νxx‖2

≤ − b0λ(Q1)

2
|Π|2 + 2b0|S1BK|2

λ(Q1)
|Π̃|2

+
Db2

1
b2

ν(D, t)2 +
b2

4D
νx(D, t)2

+
b2

4D
νx(D, t)2 + Db2νxx(D, t)2

− b1‖νx‖2 + b2‖νxx‖2
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≤ −
(

b0λ(Q1)

2
+

Db2
1|C|2
b2

+
b1|C|2

2D
+ Db2κ3

)

|Π|2

+

(
2b0|S1BK|2

λ(Q1)
+ Db2κ4

)

|Π̃|2

− b1

4D2 ‖ν‖2 − b2

2
‖νxx‖2 (9.250)

where the inequalities

νx(D, t)2 ≤ D‖νxx‖2 (9.251)

−‖νx‖2 ≤ 1
2D

ν(D, t)2 − 1
4D2 ‖ν‖2, (9.252)

νxx(D, t)2 ≤ κ3|Π|2 + κ4|Π̃|2, (9.253)

with κ3 = 2ǫ−2|C(A + BK)|2 and κ4 = 2ǫ−2|CBK|2 were used. Note that (9.251)
and (9.252) follow by the same procedures used to derive (9.242) and (9.244),
respectively, whereas (9.253) follows from (9.216)-(9.219). Choosing

b1 = min

{√

b0λ(Q1)b2

8D|C|2 ,
b0λ(Q1)D

4|C|2

}

, (9.254)

in (9.250) yields

V̇2(t) ≤ −
(

b0λ(Q1)

4
+ Db2κ3

)

|Π|2

+

(
2b0|S1BK|2

λ(Q1)
+ Db2κ4

)

|Π̃|2

− b1

4D2 ‖ν‖2 − b2

2
‖νxx‖2. (9.255)

Again, integrating by parts, using Young’s inequality and (9.243), the derivative
of V3(t) along the trajectories of (9.212)-(9.215) can be bounded by

V̇3(t) = −λ(M−T
0 Q2 M−1

0 )|Π̃|2 − 2M−T
0 S2Lw̃(0, t)

− c1‖w̃x‖2 + c1
∆ǫ

ǫ0

∫ D

0
w̃(x, t)νxx(x, t)dx

− c1‖w̃xx‖2 + c1
∆ǫ

ǫ0

∫ D

0
w̃x(x, t)νxx(x, t)dx
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≤ −λ(M−T
0 Q2M−1

0 )

2
|Π̃|2

+

(

8D|M−T
0 S2L|2

λ(M−T
0 Q2M−1

0 )
− c1

)

‖w̃x‖2

+ c1
∆ǫ

ǫ0

∫ D

0
w̃(x, t)νxx(x, t)dx

− c1‖w̃xx‖2 + c1
∆ǫ

ǫ0

∫ D

0
w̃x(x, t)νxx(x, t)dx (9.256)

Integrating ‖w̃‖2 and ‖w̃x‖2 by parts, using Young’s inequality and taking (9.214)-
(9.215) into account, one can show that

‖w̃‖2 ≤ 4D2‖w̃x‖2, ‖w̃x‖2 ≤ 4D2‖w̃xx‖2. (9.257)

Using Cauchy-Schwartz, Young and (9.257), the following bounds are derived

∆ǫ

ǫ0

∫ D

0
w̃νxx dx ≤ 1

4
‖w̃x‖2 + 4D2

(
∆ǫ

ǫ0

)2
‖νxx‖2

∆ǫ

ǫ0

∫ D

0
w̃xνxx dx ≤ 1

2
‖w̃xx‖2 + 2D2

(
∆ǫ

ǫ0

)2
‖νxx‖2,

which plugged into (9.256) and after choosing

c1 =
16D|M−T

0 S2L|2
λ(M−T

0 Q2M−1
0 )

,

yield

V̇3(t) ≤ −λ(M−T
0 Q2M−1

0 )

2
|Π̃|2

− c1

4
‖w̃x‖2 − c1

2
‖w̃xx‖2

+ 6D2
(

∆ǫ

ǫ0

)2
c1‖νxx‖2 (9.258)

Gathering (9.249), (9.255) and (9.258), and selecting

a1 = min







√

a2λ(M−T
0 Q2M−1

0 )

24D|K|2 ,
λ(M−T

0 Q2M−1
0 )D

6|K|2






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a0 =
λ(M−T

0 Q2 M−1
0 )λ(Q1)

72|S1B|2|K|2 ,

b0 =
λ(M−T

0 Q2M−1
0 )λ(Q1)

24|S1BK|2 ,

leads to

V̇(t) = − a0λ(Q1)

2
|X|2 −

(
b0λ(Q1)

4
− Db2κ3

)

|Π|2

−
(

λ(M−T
0 Q2M−1

0 )

4
− Db2κ4 − Da2κ1

)

|Π̃|2,

− a1

8D2 ‖w‖2 − a2

8D2 ‖wx‖2

− b1

4D2 ‖ν‖2 −
(

b2

2
− 6D2

(
∆ǫ

ǫ0

)2
c1

)

‖νxx‖2

−
( c1

4
− D2a2κ2

)

‖w̃x‖2 − c1

2
‖w̃xx‖2 (9.259)

Now, choosing

a2 =
1

8D
min

{

c1

Dκ2
,

λ(M−T
0 Q2M−1

0 )

2κ1

}

,

b2 =
1

8D
min

{

b0λ(Q1)

κ3
,

λ(M−T
0 Q2 M−1

0 )

2κ4

}

,

into (9.259) yields

V̇(t) = − a0λ(Q1)

2
|X|2 − b0λ(Q1)

8
|Π|2

− λ(M−T
0 Q2 M−1

0 )

8
|Π̃|2

− a1

8D2 ‖w‖2 − a2

8D2 ‖wx‖2

− b1

4D2 ‖ν‖2 −
(

b2

2
− 6D2

(
∆ǫ

ǫ0

)2
c1

)

‖νxx‖2

− c1

8
‖w̃x‖2 − c1

2
‖w̃xx‖2. (9.260)
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Integrating ‖νx‖2 by parts, using Young’s inequality and taking (9.214) into ac-
count, one gets ‖νx‖2 ≤ 4D2‖νxx‖2, which can be used, along with (9.257), to
further bound (9.260) as

V̇(t) = − a0λ(Q1)

2
|X|2 − b0λ(Q1)

8
|Π|2

− λ(M−T
0 Q2M−1

0 )

8
|Π̃|2

− a1

8D2 ‖w‖2 − a2

8D2 ‖wx‖2

− b1

4D2 ‖ν‖2 −
(

b2

2
− 6D2

(
∆ǫ

ǫ0

)2
c1

)

1
4D2 ‖νx‖2

− c1

32D2 ‖w̃‖2 − c1

8D2 ‖w̃x‖2. (9.261)

Assuming |∆ǫ| ≤ δ and selecting

δ <
ǫ0

2D

√

b2

3c1
,

it follows from (9.237) and (9.3.2) that

V̇(t) ≤ µV(t)

where

µ = min

{

λ(Q1)

8λ(S1)
,

λ(M−T
0 Q2M−1

0 )

8λ(M−T
0 S2 M−1

0 )
,

(
1
2
− 6D2(∆ǫ/ǫ0)

2c1

b2

)
ǫ

2D2 ,
ǫ0

16D2

}

.

Now, from (9.237), one can find that

ψ1Ξ(t) ≤ V(t) ≤ ψ2Ξ(t), (9.262)

where

Ξ(t) = |X|2 + ‖w‖2
H1

+ |Π̃|2 + ‖w̃‖2
H1

+ |Π|2 + ‖ν‖2
H1

,
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and

ψ1 = min
{

a0λ(S1), b0λ(S1), λ(M−T
0 S2 M−1

0 ),

1
2ǫ

min{a1, a2, b1, b2},
c1

2ǫ0

}

,

ψ2 = max
{

a0λ(S1), b0λ(S1), λ(M−T
0 S2 M−1

0 ),

1
2ǫ

max{a1, a2, b1, b2},
c1

2ǫ0

}

.

Hence, the following exponential stability estimate is obtained for the trans-
formed system

Ξ(t) ≤ ψ2

ψ1
Ξ(0)e−µt, ∀t ≥ 0. (9.263)

Now, an estimate is derived in terms of

Υ(t) = |X|2 + ‖u‖2
H1

+ |Π̂|2 + ‖ν̂‖2
H1

.

Using (9.220)-(9.224) and (9.225)-(9.227), one can show there exist constants αi, βi

such that

Ξ(t) ≤ α1|X|2 + α2‖u‖2
H1

+ α3|Π̂|2 + α4‖ν̂‖2
H1

,

Υ(t) ≤ β1|X|2 + β2‖w‖2
H1

+ β3‖Π̃‖2 + β4‖w̃‖2
H1

+ β5|Π|2 + β6‖ν‖2
H1

,

for all t ≥ 0, from which it follows that

φ1Υ(t) ≤ Ξ(t) ≤ φ2Υ(t), (9.264)

being φ1 = 1/ max βi, φ2 = max αi. Therefore, from (9.263)-(9.264), one gets the
exponential stability estimate

Υ(t) ≤ ψ2

ψ1

φ2

φ1
Υ(0)e−µt, ∀t ≥ 0,

completing the proof.
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9.4 Simulations

The proposed control strategies are illustrated in this section using a second-
order system defined by

A =

[
0 1
1 0

]

, B =

[
0
1

]

and C =
[
1 0

]
,

which has an exponentially unstable mode (the poles of the system are located
at s = ±1). The feedback gain matrices are chosen as K = LT = [−2, −2], which
guarantee A + BK and A − LC Hurwitz, being all their poles located at s = −1.

9.4.1 Delay case

First, we consider the case modeled by (9.55)-(9.58), in which the input is affected
by a delay D = 1. The control law (9.93)-(9.96) is implemented using an upwind
scheme (first order accurate both in time and space) for the PDE discretization.
Simulation results are shown in Fig. 1 for the nominal case, that is, with D0 = 1.
Note that the system (solid blue) runs in an open-loop fashion until the control
action reaches the system at t = D. The observer estimates P̂1 and P̂2, which are
actually D units of time ahead predictions, are shown delayed by D units of time
(dashed red), to match the actual state (blue). One can also see that the value of v̂
at the spatial location x = 0 contains an actual estimation of the output (dashed
black), as expected. The bottom plot shows the control law (blue) and the actual
signal that reaches the ODE (black), which is simply delayed by D units of time.

Robustness is also illustrated in Fig. 2, where a +5% additive disturbance in the
time delay is considered, that is, D = 1.05. One can see that the asymptotic
stability is preserved in spite of the uncertainty.

9.4.2 Diffusion case

Now, we consider the case modeled by (9.173)-(9.177), in which the input un-
dergoes a diffusive process through a domain of length D = 1 with a diffusive
coefficient ǫ = 1. The control law (9.232)-(9.236) is implemented using a first-
order-in-time and second-order-in-space discretization for the PDE. Simulation
results are shown in Fig. 3 for the nominal case, that is ǫ0 = ǫ = 1. The system
states are depicted at the top and central plots (blue). Recall that Π̂1 and Π̂2,
are actually the “anti-diffused” state estimates, as discussed in Remark 1. Then,
we plot the observer estimates after undergoing a diffusion process through a
domain of length D = 1 and with ǫ = 1 (dashed red), to see that they match
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Figure 9.1: Nominal simulation of a plant with delay actuator dynamics, where X(0) =
[1, 2]T, P̂(0) = [0, 0]T and v̂(x, 0) = 0, ∀x ∈ [0, 1)
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Figure 9.2: Robust simulation of a plant with delay actuator dynamics, where X(0) = [1, 2]T ,
P̂(0) = [0, 0]T and v̂(x, 0) = 0, ∀x ∈ [0, 1)
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Figure 9.3: Nominal simulation of a plant with diffusive actuator dynamics, where X(0) =
[1, 2]T, Π̂(0) = [0, 0]T and ν̂(x, 0) = 0, ∀x ∈ [0, 1)

the actual state (blue). One can also see that the value of v̂ at the spatial location
x = 0 contains an actual estimation of the output (dashed black), as expected.
The bottom plot shows the control law (blue) and the actual signal that reaches
the ODE (black).

Robustness is also illustrated for this case, performing one more simulation in
which ǫ = 2 while we keep ǫ0 = 1. The results are shown in Fig. 4, where it can
be seen that small oscillations appear but stability is preserved.
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Figure 9.4: Robust simulation of a plant with diffusive actuator dynamics, where X(0) =
[1, 2]T, Π̂(0) = [0, 0]T and ν̂(x, 0) = 0, ∀x ∈ [0, 1)
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Chapter 10

LTV systems with time-varying

measurement delay

This chapter deals with output-feedback stabilization of linear time-varying (LTV) sys-
tems with time-varying measurement delay. An important result is the extension of the
PDE-ODE observer reported in the previous chapter to LTV systems with time-varying
delays. The exponential stability of the estimation error is established for arbitrarily
large time-varying delays. Then, an observer-based controller is also introduced and the
closed-loop stability is proved. The separation principle holds and the design of both the
observer and controller gains can be done as if there was no delay. Some simulations
illustrate the feasibility of this approach.
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Chapter 10. LTV systems with time-varying measurement delay

10.1 Introduction

The state estimation problem in the presence of delayed measurements is ubiq-
uitous in engineering applications and it has attracted attention over the past
decades (Watanabe et al. 1981b; Klamka 1982; Souza et al. 2001; Germani et al.
2002; Fridman et al. 2003; Krstic et al. 2008). The problem of stabilizing an LTV
system is also of interest in practice, as it arises in trajectory tracking of nonlin-
ear systems (Rugh et al. 2000). See (Zhou 2016) for recent results on stability of
LTV systems. Only a few works have been reported in which LTV systems with
measurement delay are considered (Pila et al. 1999; Basin et al. 2010; Song et al.
2017)

As shown in (Krstic et al. 2008), time-delay systems can be modeled as the in-
terconnection of an ODE (plant dynamics) and a first-order hyperbolic PDE (de-
lay dynamics). In this framework, the approach consists of finding an invert-
ible backstepping transformation that maps the ODE-PDE cascade into an expo-
nentially stable target system (Smyshlyaev et al. 2004; Smyshlyaev et al. 2005).
This methodology has been shown to be very useful when dealing with time-
delay systems, providing rigorous tools for analysis and design, which have
been exploited in many ways (Krstic 2009c; Krstic 2010b; Bresch-Pietri et al. 2014;
Ahmed-Ali et al. 2018; Sanz et al. 2018c). A tutorial on compensating infinite-
dimensional actuator and sensor dynamics is given in (Krstic 2010a). When ap-
plied to input-delay systems, the backstepping approach has led to predictor-
based controllers, equivalent to those originally derived in (Manitius et al. 1979;
Kwon et al. 1980; Artstein 1982). However, when applied to systems with mea-
surement delays, the resulting observer is substantially different (see Remarks
4-7 in (Krstic et al. 2008) for a discussion) from those originally proposed in
(Watanabe et al. 1981b; Klamka 1982), which involved distributed integral terms.

In the context of systems with measurement delays, a common approach consists
of using a conventional observer structure and then estimating upper bounds on
the admissible delay, for which powerful techniques are available (Souza et al.
2001; Fridman et al. 2003; Zhang et al. 2008); see also the monograph (Fridman
2014). A different strategy consists of proposing new observers that specifically
handle the delay. Early results were based on estimating a delayed state and
then projecting it ahead via a state predictor (Watanabe et al. 1981b; Klamka
1982). This approach can be also applied when the delay is time-varying, see
Section 6.3 in (Krstic 2009c). In (Pila et al. 1999), an H∞ filter is derived for LTV
systems with constant measurement delay. However, these approaches need the
online computation of a distributed integral over the past control actions, whose
approximation may lead to instability (Van Assche et al. 1999; Zhong 2004). A
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new approach for state observation with long constant delays was introduced
in (Germani et al. 2002), where a chain of observers was employed. The idea
is that each of the observers in the chain is in charge of predicting the system
state over a fraction of the total delay. This novel idea has been also extended
to time-varying delays (Cacace et al. 2010; Cacace et al. 2013; Cacace et al. 2014),
achieving prescribed exponential stability, if the delay size is below a suitable
bound. A different technique was used in (Zhou et al. 2013), based on a trun-
cated predictor that neglects the integral term. Stabilization of systems with in-
put/output delays whose eigenvalues are located on the closed left-half plane
was achieved. A similar approach, although from a different perspective, is pro-
posed in (Cacace et al. 2015). As mentioned before, a novel observer with an
ODE-PDE cascade structure was introduced in (Krstic et al. 2008), which han-
dled arbitrarily large constant delays. Among the aforementioned works, only
(Pila et al. 1999) considers LTV systems.

In this chapter, a generalization of the observer derived in (Krstic et al. 2008)
is proposed, with a twofold contribution. One one hand, time-varying delays
are considered and, on the other hand, the observer is also adapted to deal with
LTV systems. The open-loop plant is allowed to contain exponentially unstable
modes and arbitrarily large time-varying delays can be handled. To the best of
the author’s knowledge, this is a departure from previous works, even for LTI
systems. Furthermore, the proposed observer is used to derive an exponentially
stabilizing output-feedback controller for LTI/LTV systems with time-varying
measurement delay.

10.2 Time-varying delays in the PDE framework

Time-varying delays can be also modeled by means of PDEs. Let φ(t) be a con-
tinuously differentiable function that incorporates a measurement delay. One
can express the function φ(t) in a more standard form φ(t) = t − D(t), where
D(t) is a time-varying delay. Consider now the system

Ẋ(t) = AX(t) + BU(φ(t)), (10.1)

which we would like to express in the PDE framework. Let us introduce the
following choice for the PDE state

u(x, t) = U(φ(t + x(φ−1(t)− t))). (10.2)
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It is readily verified that u(0, t) = U(φ(t)) and u(1, t) = U(t). Therefore, the
system (10.1) can be represented as

Ẋ(t) = AX(t) + BU(φ(t)), (10.3)
ut(x, t) = π(x, t)ux(x, t), (10.4)
u(1, t) = U(t). (10.5)

where π(x, t) is the the speed of propagation, given by

π(x, t) =
1 + x

(
d(φ−1(t))

dt − 1
)

φ−1(t)− t
.

Note that the latter follows from the quotient between the temporal and spatial
derivatives of (10.2). The following assumptions are needed to obtain a mean-
ingful stability analysis.

Assumption 10.1. The delay function φ satisfies

t − φ(t) > 0, ∀t ≥ 0.

Note that Assumption 10.1 can be alternatively stated as φ−1(t)− t > 0. In both
cases, it implies that the time-varying delay is strictly greater than zero. This is
needed because, if D(t) = 0 for any t, then the propagation speed is infinite (see
the denominator of π(x, t) above) and the transport PDE representation does not
make sense.

Assumption 10.2. The delay function φ is continuously differentiable and satisfies

φ̇(t) > 0, ∀t ≥ 0.

This assumption implies that φ(t) is strictly-increasing, which guarantees the
existence of its inverse.

10.2.1 Predictor-based controller for time-varying input delay

The time-varying predictor controller takes the form

U(t) = K

(

eA(φ−1(t)−t)X(t) +
∫ φ−1(t)

t
eA(φ−1(t)−s)BU(φ(s))ds

)

(10.6)
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It was proved in (Krstic 2010b) that this controller guarantees the exponential
stability of the resulting closed-loop in the sense of the norm |X(t)|2 + ‖u(t)‖2 .
Although the proof is not presented here, it is pointed out that many technical
aspects are borrowed from it in the proof of the proposed observers introduced
further below.

10.2.2 Predictor-based observer for time-varying measurement delay

As discussed in Section 8.1.4, one of the approaches to deal with measurement
delays is to design an observer for the delayed state and then project it ahead
in an open-loop manner. The following observer-predictor, introduced in (Krstic
2010b),

Ξ̇(t) = φ̇(t)[AΞ(t) + BU(φ(t)) + L(Y(t) − CΞ(t)], (10.7)

X̂(t) = eA(t−φ(t))Ξ(t) +
∫ t

φ(t)
eA(t−s)BU(s)ds, (10.8)

is the counterpart of (8.31)-(8.32) for time-varying delays

10.2.3 A new PDE observer for time-varying measurement delay

The observer introduced next is one of the contributions of this thesis. Inspired
by (10.7)-(10.8), the following observer is proposed

˙̂X(t) = AX̂(t) + BU(t) + φ̇(t)eA(t−φ(t))L
(
Y(t)− û(0, t)

)
, (10.9)

ût(x, t) = π(x, t)ûx(x, t) + Cφ̇(t)eAx(t−φ(t))L
(
Y(t)− û(0, t)

)
, (10.10)

û(1, t) = CX̂(t), (10.11)

which is the extension of (8.28)-(8.30) for the case of time-varying delays. The
proof can be found below in Corollary 10.1, although the observer is presented
here for completeness. The novel observer (10.9)-(10.11) has the advantage of
avoiding distributed integral terms over the past control actions, in contrast to
(10.7)-(10.8).
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10.3 Linear time-varying systems

Consider the following LTV system with measurement delay

Ẋ(t) = A(t)X(t) + B(t)U(t), (10.12)
Y(t) = C(φ(t))X(φ(t)), (10.13)
X(θ) = X0(θ), ∀θ ∈ [φ(t0), t0], (10.14)

where X(t) ∈ R
n is the state, U(t) ∈ R

m is the control action, the system matrices
A : R → Rn×n, B : R → Rn×m and C : R → Rq×n are piecewise-continuous
uniformly-bounded functions, φ : R≥0 → R>0 is a continuously differentiable
function that incorporates the measurement delay, X0 : [φ(t0), t0] → R

n denotes
the initial condition and t0 ≥ 0 is the initial time.

Assumption 10.3. The delay function φ is known, continuously differentiable and there
exist D, D, c1, c2 > 0 such that

D < t − φ(t) ≤ D,

and
c1 < φ̇(t) ≤ c2,

hold for all t ≥ 0.

Assumption 10.4. There exists a time-varying matrix function L : R → Rn×q such
that the origin of Ẋ (t) =

(
A(t)− L(t)C(t)

)
X (t) is uniformly exponentially stable

for all t ≥ φ(t0). In other words, there exist positive definite, bounded, symmetric,
time-varying matrices W1(t), Q1(t) : R → R

n×n such that Ẇ1(t) + W1(t)F1(t) +
FT

1 W1(t) ≤ −Q1(t), ∀t ≥ φ(t0), where F1(t) = A(t)− L(t)C(t).

The function φ(t) can be expressed as φ(t) = t − D(t), where D : R≥0 → R>0 is
the measurement delay. Since both c2 and D are allowed to be arbitrarily large,
the main limitations imposed by Assumption 1 are ḋ(t) < 1 and D(t) > D.
The former is a common assumption when dealing with time-varying delays
(Zhou et al. 2013), while the latter has to do with the PDE representation of the
delay, in which the propagation speed becomes infinity if the delay is zero (Krstic
2010b). On the other hand, Assumption 2 is needed in the subsequenty analysis
to guarantee the stabilization of the LTV system.

Recall that any solution of the homogeneous equation Ẋ(t) = A(t)X(t) can be
written as X(t) = Φ(t, t0)X(t0), where

Φ(t, t0) = P(t)P−1(t0), (10.15)
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is the so-called state transition matrix, and P : R → R
n×n is the solution of

the matrix initial value problem Ṗ(t) = A(t)P(t), P(0) = I. The methodology
here developed is based on representing the time-varying measurement delay
as a transport phenomenon, which is modeled by a first-order hyperbolic PDE.
Similarly to (Krstic 2010b), let us introduce the following state for the transport
equation

u(x, t) = C(ϕ(x, t))X(ϕ(x, t)), ∀x ∈ [0, 1] (10.16)

where
ϕ(x, t) = φ(t) + x(t − φ(t)), (10.17)

leading to the boundary values u(0, t) = Y(t) and u(1, t) = C(t)X(t). The sys-
tem (10.12)-(10.13) can be then represented by the following ODE-PDE cascade

Ẋ(t) = A(t)X(t) + B(t)U(t), (10.18)
ut(x, t) = π(x, t)ux(x, t), (10.19)
u(1, 0) = C(t)X(t), (10.20)

Y(t) = u(0, t), (10.21)

with

π(x, t) =
φ̇(t) + x(1 − φ̇(t))

t − φ(t)
. (10.22)

Remark 10.1. Note that the PDE observer state is nothing but u(x, t) = Y(φ−1(ϕ(x, t))),
which can be seen from (10.13) and (10.16). Then, the PDE observer state con-
tains a prediction of the output over the interval [t, φ−1(t)]. As an example, let
us consider φ(t) = t − D, which represents a constant delay D > 0, leading
to u(x, t) = Y(t + xD), ∀x ∈ [0, 1], that is, a prediction of Y(t) over the time
window [0, D].

10.3.1 PDE observer for LTV systems with time-varying delay

The main result is stated in the following theorem. Note that, for the sake of
clarity, in what follows ϕ(x, t) and φ(t) are often denoted simply by ϕ and φ,
respectively.
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Chapter 10. LTV systems with time-varying measurement delay

Theorem 10.1. The observer

˙̂X(t) = A(t)X̂(t) + B(t)U(t)

+ φ̇(t)Φ(t, φ)L(φ)
(
Y(t)− û(0, t)

)
, (10.23)

ût(x, t) = π(x, t)ûx(x, t)

+ φ̇(t)C(ϕ)Φ(ϕ, φ)L(φ)
(

Y(t)− û(0, t)
)
, (10.24)

û(1, 0) = C(t)X̂(t). (10.25)

is uniformly exponentially convergent, in the sense that, there exist M, µ > 0, such that

Υ(t) ≤ MΥ(t0)e
−µ(t−t0), ∀t ≥ t0 ≥ 0, where

Υ(t) = |X(t)− X̂(t)|2 +
∫ 1

0
|u(x, t)− û(x, t)|2 dx.

Proof. Let us define the errors

X̃(t) = X(t)− X̂(t) (10.26)
ũ(x, t) = u(x, t)− û(x, t). (10.27)

Differentiating (10.26)-(10.27) and using (10.18)-(10.21) and (10.23)-(10.25), the
error system is obtained as

˙̃X(t) = A(t)X̃(t)− φ̇(t)Φ(t, φ)L(φ)ũ(0, t), (10.28)
ũt(x, t) = π(x, t)ũx(x, t)

− φ̇(t)C(ϕ)Φ(ϕ, φ)L(φ)ũ(0, t), (10.29)

ũ(1, t) = C(t)X̃(t). (10.30)

To proceed, let us recall the following properties of the state transition matrix

Φ(t, t) = I, (10.31)
Φt(t, τ) = A(t)Φ(t, τ), (10.32)
Φτ(t, τ) = −Φ(t, τ)A(τ), (10.33)
Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0). (10.34)

Using (10.32)-(10.33), the partial derivatives of (10.15) can be written as

Φx(ϕ, t) = ϕx(x, t)A(ϕ)Φ(ϕ, t), (10.35)
Φt(ϕ, t) = ϕt(x, t)A(ϕ)Φ(ϕ, t) − Φ(ϕ, t)A(t), (10.36)
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10.3 Linear time-varying systems

where the chain differentiation rule was employed. Furthermore, evaluating
(10.36) at x = 0 and using that ϕ(0, t) = φ(t) yields

Φt(φ, t) = φ̇(t)A(φ)Φ(φ, t) − Φ(φ, t)A(t). (10.37)

Let us consider the transformation

Z̃(t) = Φ(φ(t), t)X̃(t), (10.38)

w̃(x, t) = ũ(x, t)− C(ϕ(x, t))Φ(ϕ(x, t), t)X̃(t), (10.39)

which, as it will be shown next, maps (10.28)-(10.30) into the exponentially stable
target system

˙̃Z(t) = φ̇(t)F1(φ)Z̃(t)− φ̇(t)L(φ)C(φ)w̃(0, t), (10.40)
w̃t(x, t) = π(x, t)w̃x(x, t), (10.41)
w̃(1, t) = 0, (10.42)

where F1(t) was defined in Assumption 2. The time derivative of (10.38) is given
by

˙̃Z(t) = Φt(φ, t)X̃(t) + Φ(φ, t) ˙̃X(t)

= φ̇(t)A(φ)Z̃(t)− φ̇(t)L(φ)ũ(0, t) (10.43)

where (10.28), (10.31), (10.34) and (10.37) were employed in the second row. Eval-
uating (10.39) at x = 0 and using (10.38) yields

ũ(0, t) = w̃(0, t) + C(φ)Z̃(t),

which can be plugged into (10.43), leading to (10.40). On the other hand, com-
puting the spatial and temporal derivatives of (10.39) yields

w̃t(x, t) = π(x, t)ũx(x, t) + φ̇(t)Φ(ϕ, φ)L(φ)ũ(0, t)

− ϕtC
′(ϕ)Φ(ϕ, t)X̃(t)− C(ϕ)Φt(ϕ, t)X̃(t)

− C(ϕ)Φ(ϕ, t)[A(t)X̃(t)

− φ̇(t)Φ(t, φ)L(φ)ũ(0, t)],

w̃x(x, t) = ũx(x, t)− ϕxC′(φ)Φ(ϕ, t)X̃(t)

− C(φ)Φ(ϕ, t)X̃(t),
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and thus one can see that (10.41) holds if

π(x, t)ϕx(x, t)− ϕt(x, t) = 0,
π(x, t)Φx(ϕ, t)− Φt(ϕ, t)− Φ(ϕ, t)A(t) = 0,

Φ(ϕ, φ)− Φ(ϕ, t)Φ(t, φ) = 0.

The first identity is readily verified from (10.17) and (10.22). Plugging (10.35)-
(10.36) into the left side of the second identity yields

(
π(x, t)ϕx(x, t)− ϕt(x, t)

)
A(ϕ)Φ(ϕ, t),

which is zero provided that so is the term in brackets. The last identity follows
from the property (10.34). Finally, evaluating (10.39) at x = 1 and using (10.30),
one can see that (10.42) holds if Φ(ϕ(1, t), t) = I, which follows from the fact that
ϕ(1, t) = t and the property (10.31).

Then, the (invertible) transformation (10.38)-(10.39) maps the error system (10.28)-
(10.30) into the target system (10.40)-(10.42), which is next proved to be exponen-
tially stable. Let us consider the functional

V1(t) =
∫ 1

0
ebx|w̃(x, t)|2 dx. (10.44)

The time-derivative of (10.44) along the trajectories of (10.29)-(10.30) is given by

V̇1(t) =
∫ 1

0
2ebxπ(x, t)w̃(x, t)Tw̃x(x, t)dx

= −π(0, t)|w̃(0, t)|2 −
∫ 1

0
σ(x, t)ebx|w̃(x, t)|2 dx, (10.45)

where integration by parts was applied and σ(x, t) = bπ(x, t) + πx(x, t). Ob-
serve that

π(0, t) =
φ̇(t)

t − φ(t)
, (10.46)

and

σ(x, t) =
1 + (b − 1)φ̇(t)− bx(φ̇(t)− 1)

t − φ(t)
, (10.47)

which follow from (10.22). From (10.46), one has that

π(0, t) ≥ c1

D
. (10.48)
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On the other hand, since (10.47) is a linear function of x, its minimum occurs
either at x = 0 or x = 1, and thus

σ(x, t) ≥ min{1 + (b − 1)φ̇(t)
t − φ(t)

,
1 − φ̇(t) + b

t − φ(t)
}. (10.49)

Choosing b ≥ max{1, c2} in (10.49), yields

σ(x, t) ≥ β∗

D
, (10.50)

with β∗ = min {1 + (b − 1)c1, 1 − c2 + b} > 0 , and thus plugging (10.48) and
(10.50) into (10.45) leads to

V̇1(t) ≤ − c1

D
|w̃(0, t)|2 − β∗

D

∫ 1

0
ebx|w̃(x, t)|2 dx. (10.51)

Now, let us look at the Lyapunov function

V2(t) = Z̃(t)TW1(φ(t))Z̃(t), (10.52)

whose derivative along the trajectories of (10.40) can be bounded, using Young’s
inequality, by

V̇2(t) = φ̇(t)Z̃T
(
W1(φ)F1(φ) + FT

1 (φ)W1(φ)

+ Ẇ1(φ)
)

Z̃ + 2φ̇(t)Z̃TW1(φ)L(φ)C(φ)w̃(0, t)

≤ −c1q1|Z̃|2 + 2c2τ1|Z̃||w̃(0, t)|

≤ − c1q1

2
|Z̃|2 + 2c2

2τ2
1

c1q1
|w̃(0, t)|2, ∀t ≥ t0, (10.53)

where τ1 = ‖W1(t)L(t)C(t)‖∞ , Assumptions 1-2 were used and q1 > 0 is defined
such that Q(t) ≥ q1 I, ∀t ≥ φ(t0). Let us choose now

V0(t) =
2Dc2

2τ2
1

c2
1q1

V1(t) + V2(t), (10.54)

whose derivative can be bounded using (10.51) and (10.53) by

V̇0(t) ≤ − c1q1

2
|Z̃|2 − 2β∗c2

2τ2
1

c2
1q1

∫ 1

0
ebx|w̃(x, t)|2 dx, (10.55)
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for all t ≥ t0. From (10.54)-(10.55), one has that V̇0(t) ≤ −µV0(t), ∀t ≥ t0 and
thus, by the comparison principle,

V0(t) ≤ e−µ(t−t0)V0(t0), (10.56)

where µ = min
{

c1q1
2w2

, β∗

D

}

, and w1, w2 > 0 are defined such that w1 I ≤ W1(t) ≤
w2 I. Let us denote Ξ(t) = |Z̃(t)|2 +

∫ 1
0 w̃2(x, t)dx. The following relation holds

ψ1Ξ(t) ≤ V0(t) ≤ ψ2Ξ(t), (10.57)

where

ψ1 = min{w1,
2Dc2

2τ2
1

c2
1q1

},

ψ2 = max{w2,
2Dc2

2τ2
1 eb

c2
1q1

}.

Therefore, using (10.56) and (10.57) yields

Ξ(t) ≤ ψ2

ψ1
e−µ(t−t0)Ξ(t0), ∀t ≥ t0. (10.58)

Let us denote Υ(t) = |X(t)|2 +
∫ 1

0 ũ(x, t)dx and write the inverse of (10.38)-
(10.39) as

X̃(t) = Φ(t, φ(t))Z̃(t), (10.59)

ũ(x, t) = w̃(x, t) + C(ϕ(x, t))Φ(ϕ(x, t), φ(t))Z̃(t). (10.60)

From (10.38)-(10.39) and (10.59)-(10.60), one can show that there exist ρ1, ρ2 > 0
such that

ρ1Υ(t) ≤ Ξ(t) ≤ ρ2Υ(t), (10.61)

and thus the exponential stability estimate

Υ(t) ≤ ρ2

ρ1

ψ2

ψ1
e−µ(t−t0)Υ(t0), ∀t ≥ t0,

follows from (10.58) and (10.61), which completes the proof.

Remark 10.2. Following Remark 3, one can define Ŷ(φ−1(ϕ(x, t)) = û(x, t),
Ỹ(t) = Y(t) − Ŷ(t) and use the change of variable s = φ−1(ϕ(x, t)), to rewrite
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Υ(t) as

Υ(t) = |X̃(t)|2 + 1
D(t)

∫ φ−1(t)

t
|Ỹ(s)|2φ̇(s)ds.

The latter points out the fact that the proposed observer produces an exponen-
tially convergent prediction of the output over the time window [t, φ−1(t)], ∀t ≥
t0.

The particular case of LTI systems is highlighted in the following corollary. To
the best of the author’s knowledge, exponentially stable observers for LTI sys-
tems with arbitrarily large time-varying delays have not been yet proposed in
the literature and thus this result is also novel.

Corollary 10.1. For an LTI system, that is, with A(t) = A, B(t) = B and C(t) = C,
the observer (10.9)-(10.11) where L is chosen such that A − LC is Hurwitz, guarantees
that X̂, û exponentially converge to X, u, in the sense that, there exist M, µ > 0, such
that Υ(t) ≤ MΥ(0)e−µt, ∀t ≥ 0.

Proof. The state transition matrix of an LTI system is given by Φ(t, t0) = eA(t−t0).
Then, one has that Φ(t, φ) = eA(t−φ(t)), Φ(ϕ, φ) = eAx(t−φ(t)) and thus the corol-
lary follows from (10.23)-(10.25). �

10.3.2 Observer-based controller

The following assumption is needed, which is the counterpart of Assumption 2,
for control purposes.

Assumption 10.5. There exists a time-varying matrix function K : R → Rm×n such
that the origin of Ẋ (t) =

(
A(t) + B(t)K(t)

)
X (t) is uniformly exponentially sta-

ble for all t ≥ t0. In other words, there exist positive definite, bounded, symmetric,
time-varying matrices W2(t), Q2(t) : R → R

n×n such that Ẇ2(t) + W2(t)F2(t) +
F2(t)

TW2(t) ≤ −Q2(t), ∀t ≥ t0, where F2(t) = A(t) + B(t)K(t).

Theorem 10.2. The closed-loop composed of the system (10.12)-(10.13), the observer
(10.23)-(10.25) and the control law

U(t) = K(t)X̂(t), (10.62)

is uniformly exponentially stable in the sense that, there exist R, ρ > 0 such that for all
initial conditions (X0(·), X̂0, û0(·, t0)) ∈ L2(φ(t0), t0)× R

n × L2(0, 1), the following
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holds Γ(t) ≤ RΓ(t0)e
−ρ(t−t0), where

Γ(t) = |X(t)|2 + 1
D(t)

∫ t

φ(t)
|C(θ)X(θ)|2 dθ

+ |X̂(t)|2 +
∫ 1

0
û(x, t)2 dx.

Proof. Let us plug (10.62) into (10.12) and use (10.26) and (10.59) to obtain

Ẋ(t) = F2(t)X(t)− B(t)K(t)Φ(t, φ(t))Z̃(t). (10.63)

Let us consider L1(t) = γ
∫ 1

0 ebx|u(x, t)|2 dx, with γ > 0. Using similar argu-
ments to those in the proof of Theorem 4, the derivative of L1(t) along the trajec-
tories of (10.18)-(10.20) can be bounded by

L̇1(t) ≤ γebD‖C‖2
∞|X|2 − γβ∗

D

∫ 1

0
ebx|u(x, t)|2 dx (10.64)

Now, let us consider also L2(t) = κX(t)TW2(t)X(t) with κ > 0, whose derivative
along (10.63) can be bounded by

L̇2(t) ≤ −κq2|X|2 + 2κ|XTW2BKΦ(t, φ)Z̃|

≤ −κq2

2
|X|2 + 2κτ2

2
q2

|Z̃|2, ∀t ≥ t0, (10.65)

where τ2 = ‖W2(t)B(t)K(t)Φ(t, φ(t))‖∞ and Assumption (10.5) was used, which
implies the existence of a q2 > 0 such that Q2(t) ≥ q2 I, ∀t ≥ t0. Defining
L0(t) = L1(t) + L2(t), using (10.64)-(10.65) and choosing γ = κq2/(4ebD‖C‖2

∞),
yields

L̇0(t) ≤ −κq2

4
|X|2 + 2κτ2

2
q2

|Z̃|2

− γβ∗

D

∫ 1

0
ebx|u(x, t)|2 dx, ∀t ≥ t0. (10.66)

Now, let us choose the a composite Lyapunov function V(t) = L0(t) + V0(t),
whose derivative can be bounded, using (10.55) and (10.66), and selecting κ =
c1q1q2/(8τ2

2 ), by

V̇(t) ≤ −κq2

4
|X|2 − c1q1

4
|Z̃|2 − γβ∗

D

∫ 1

0
ebx|u(x, t)|2 dx
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− 2β∗c2
2τ2

1
c2

1q1

∫ 1

0
ebxw̃2(x, t)dx.

Then V̇(t) ≤ −ρV(t), ∀t ≥ t0 and an exponential stability estimate V(t) ≤
e−ρ(t−t0)V(t0), ∀t ≥ t0, in terms of (X, Z̃, u, w̃), is established. Proceeding as
in the proof of Theorem 2, this estimate can be related to the original variables
(X, X̃, u, ũ) using the inverse transformation (10.59)-(10.60) and then to (X, X̂, u, û)

using (10.26)-(10.27), leading to Γ(t) ≤ RΓ(t0)e
−ρ(t−t0), ∀t ≥ 0, with Γ(t) =

|X(t)|2 +
∫ 1

0 |u(x, t)|2 dx + |X̂(t)|2 +
∫ 1

0 |û(x, t)|2 dx. This is is omitted here for
brevity. Finally, introducing (10.16) into Γ(t) and performing the change of vari-
able θ = ϕ(x, t) completes the proof. �

10.4 Simulations

Let us consider (10.12)-(10.13) with A(t) = (2 + t2)/(1 + t2), φ(t) = t − D(t)
and D(t) = 1 − 0.5 sin t. Note that A : [0, ∞) → [2, 1), and thus the open-loop
system is potentially unstable. The control of such a system is challenging, even
for constant delay and constant coefficient (Middleton et al. 2007). Since φ̇(t) =
1 + 0.5 cos t, Assumption 1 is satisfied with D = 0.5, D = 1.5, c1 = 0.5 and c2 =
1.5. It is readily verified that P(t) = et+atan t is a fundamental matrix and thus
Φ(t, t0) = et−t0+atan t−atan t0 . Choosing W1(t) = W2(t) = 1/2, Assumptions 2
and 7 are fulfilled with any L > ‖A‖∞ and any K < ‖A‖∞, respectively, and thus
the gains are selected as L = −K = 2. The initial time is set to t0 = 0 and the
initial condition is arbitrary chosen as X0(θ) = {0, ∀θ ∈ [φ(0), 0); X0(0) = 1}.
The control law (10.62) with the observer (10.23)-(10.25) is implemented, where

π(x, t) =
1 + (1 − x)0.5 cos t

1 − 0.5 sin t
.

A first-order approximation both in time (∆t) and space (∆x) is used for the
discretization. The so-called Courant-Friedrichs-Lewy (CFL) condition, ∆x >

∆t supx,t |π(x, t)|, must hold in order to guarantee numerical stability. The time
step is arbitrarily selected as ∆t = 0.005 s and thus ∆x = 0.015, provided that
the bound supx,t |π(x, t)| ≤ 3 is easily obtained from π(x, t) above.

The simulation results are shown in Fig. 1. One can see how the system runs
in open-loop over a period of time, during which there is no measurable infor-
mation about the system (see dotted line). The exact time can be computed by
solving φ(t) = 0 for t ≥ 0, which yields t ≈ 1.5. After that, one can see how
the estimated state (dashed) converges to the actual one (full), which in turn, is
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Figure 10.1: Simulation results. Actual state, estimated state and output (top); control action
(center); time-varying delay (bottom)

driven exponentially to zero. The control action and the time-varying delay are
also depicted in the central and bottom plots, respectively.
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Conclusions

In this thesis, the problem of robustly stabilizing systems with input/output de-
lays has been investigated. The contributions herein reported have been focused
on two objectives: i.) improving disturbance rejection performance, and ii.) over-
coming the implementation issues of conventional predictive controllers. The
first goal has been achieved by combining disturbance observers with predictor-
based controllers. The second goal has been pursued by exploiting the so-called
sequential predictor approach, which has gained popularity over the past years.
Provided that this strategy uses a predictor in observer form, it is well-suited to
be combined with disturbance observers, leading to a solution that achieves the
two objectives stated above. A summary of the different strategies reported in
this thesis can be found in Table 10.1.

The performance improvement of a predictive controller equipped with a dis-
turbance observer over other strategies has been proved in Chapter 5. This is an
important result of this thesis, as it guarantees from a mathematical standpoint
that the increment in complexity of the controller is paid back in terms of perfor-
mance. In practice, not only the achievable performance has to be taken into ac-
count, but also the simplicity when tuning the controller. In Chapters 4, 5 and 7,
it was shown both in simulations and experiments, how the reference and dis-
turbance responses are decoupled. The tuning of the primary controller can be
performed using conventional design techniques, while the observer is adjusted
to reach a trade-off between disturbance rejection performance and robustness.
This is a highly celebrated feature for control engineers. In this context, the gen-
eralization of the Smith Predictor introduced in Chapter 4 should be empha-
sized, which is well-suited for its applicability in industry.

The potential of LMI-based design was also illustrated in Chapter 6. This is a
remarkable result in which asymptotic trajectory tracking and rejection of dis-
turbances with known dynamics is achieved, while guaranteeing a prescribed
level of attenuation of unmodeled disturbances. This is the result of applying ex-
isting LMI-based H∞ design techniques. Furthermore, recall that this approach
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Table 10.1: Summary of the different strategies reported in this thesis. System: Linear time-
invariant (LTI), Linear Time-Varying (LTV), Nonlinear (NL); Disturbance: Matched (M), Mis-
matched (MM); Delay: Input (I), Output (O), Constant (C), Time-varying (TV); Delay compen-
sation: Smith Predictor (SP), Finite Spectrum Assignment (FSA), Sequential predictors (SSPs),
Sequential observers (SSOs), Partial differential equation (PDE); Control: State feedback (SF),
Output feedback (OF); Disturbance compensation: General purpose input/output estimator
(GPIO), Extended state observer (ESO), Uncertainty and disturbance estimator (UDE)

System Dist. Delay Delay comp. Control Dist. comp.
Ch. 4 LTI M I/C SP-like OF Any
Ch. 5 LTI M I/C FSA SF GPIO
Ch. 6 LTI MM I/C SSPs OF ESO
Ch. 7 NL M I & O / C FSA SF UDE
Ch. 9 LTI - I/C SSPs PDE OF -

Ch. 10 LTV - O/TV SSOs PDE OF -

makes use of sequential predictors, whose implementation is straightforward,
thus achieving the two objectives aforementioned. This result may be less at-
tractive for practitioners, however, due to the need of implementing complex
LMIs for tuning.

A slightly different line of work has consisted of pushing forward the sequential
predictor approach to deal with arbitrarily large delays. This has been achieved
by exploiting the modeling of the delay phenomenon by means of partial differ-
ential equations in Part III of this thesis. In Chapter 9, an observer-based con-
troller has been proposed to compensate arbitrarily large input delays, in which
the observer is infinite-dimensional. Furthermore, this technique has been ex-
tended also to systems with diffusive actuator dynamics. Its extension to other
types of PDEs, like the wave dynamics, seems also feasible.
Chapter 10 is focused on output delays. In this context, the proposed strategy
resembles the sequential observer approach. An infinite-dimensional observer is
proposed that achieves exponential stabilization of the estimation error for sys-
tems with time-varying matrices and/or time-varying delays.
A reasonable continuation of this work is to use the results in Chapter 12 as
the basis to propose an observer-based controller for time-varying systems with
time-varying input delay. Although preliminary studies show some technical
difficulties, this is a feasible line of research in the future.

The results of this thesis can be extended in several directions, some of which
have been already pointed out. Among the limitations of the proposed con-
trollers, there is one that should deserve special attention in future research,
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namely, the robustness to delay mismatch. Bounds on admissible delay uncer-
tainty can often be computed, as in Chapter 5, which is a crucial design require-
ment when tuning the controller. However, for unstable systems, these bounds
are, in any case, small. Delay-adaptive strategies have been proposed in the lit-
erature. It would be interesting to study whether they can be used to increase
the tolerance of the proposed controllers to uncertain delays.
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