Índice general

Índice	I		
Índice de figurasl			
Índice			
1. Introducción	1		
1.1. El desarrollo reproductivo en tomate: floración	1		
1.1.1. Transición a la floración	1		
1.1.2. Especificación de la identidad de los órganos florales	3		
1.1.3. Desarrollo de la anteras y del gametofito masculino	5		
1.1.3.1. Componentes genéticos relacionados con el desarrollo de las anteras	5		
1.1.3.2. Componentes genéticos relacionados con el desarrollo del polen	7		
1.1.4. Desarrollo de los ovarios y del gametofito femenino	11		
1.2. El proceso reproductivo en tomate: fructificación	14		
1.2.1. El proceso de polinización y fertilización	14		
1.2.2. Fases del desarrollo del fruto	16		
1.2.3. Componentes genéticos y hormonales relacionados con la transición de ovario a fruto	19		
1.2.3.1. Papel de las auxinas en el cuajado del fruto	20		
1.2.3.2. Papel de las giberelinas en el cuajado de fruto	25		

1.2.3.3. Papel de las citoquininas en el cuajado de fruto	28
1.2.3.4. Integración de los diferentes componentes implicados en el cuajado del fruto	29
1.2.3.5. Quinasas dependientes de ciclina y cuajado del fruto	31
1.2.4. Componentes genéticos y hormonales relacionados con la maduración del fruto	33
1.2.4.1. Regulación de la síntesis de etileno durante el desarrollo del fruto	33
1.2.4.2. La ruta de señalización de etileno en tomate	34
1.2.4.3. Los sistemas 1 y 2 que conducen a la transición de la maduración	37
1.2.4.4. Control transcripcional de la maduración del fruto	37
2. Antecedentes y Objetivos	43
3. Materiales y Métodos	47
3.1. Material vegetal	47
3.2. Técnicas básicas de cultivo in vitro	47
3.2.1. Esterilización de las semillas	47
3.2.2. Germinación y obtención de plántulas axénicas	48
3.2.3. Cultivo de explantes primarios	48
3.2.4 Inducción de organogénesis	48
3.2.5. Enraizamiento de brotes y propagación clonal de las plantas	49
3.2.6. Evaluación del desarrollo radicular <i>in vitro</i>	49
3.2.7. Evaluación <i>in vitro</i> de la tolerancia a estrés hídrico	49
3.2.8. Análisis de la resistencia-sensibilidad a la kanamicina	50
3.3. Aclimatación y transplante	50
3.4. Obtención de progenies a partir de plantas mutantes	51
3.5. Análisis genético de líneas T-DNA y determinación de co- segregación	51
3.6. Caracterización de líneas T-DNA	51
3.6.1. Caracterización del desarrollo reproductivo	52
3.6.1.a. Caracterización de flores: estadios del desarrollo floral	52
3.6.1.b. Evaluación del tamaño del ovario	53
3.6.1.c. Análisis de la viabilidad de los granos de polen	53

	3.6.1.d. Análisis histológicos	54
	3.7. Injertos	55
	3.8. Emasculación de flores	56
	3.9. Evaluación de la producción	56
	3.10. Cuantificación endógena de hormonas	56
	3.11. Análisis de expresión de genes mediante PCR cuantitativa a tiempo real (RT-qPCR)	57
	3.12. Tratamiento estadístico de los datos	58
4.	Resultados	59
	4.1. Lower fruit setting 2084 (Lsf2084): comentarios previos	59
	4.1.1. Caracterización del mutante <i>Lfs2084</i>	60
	4.1.2. Identificación de un inserto responsable del fenotipo mutante	63
	4.1.3. Pruebas de viabilidad de polen <i>in vitro</i> y análisis de histología en flores	67
	4.1.4. Análisis de viabilidad de polen <i>in vivo</i>	69
	4.1.5. Contenido endógeno de algunas hormonas en el mutante Lfs2084	74
	4.1.6. Expresión de genes implicados en el cuajado de fruto	75
	4.2. Lower fruit setting 2448 (Lsf2448): comentarios previos	77
	4.2.1. Caracterización del mutante <i>Lfs2448</i>	77
	4.2.2. Caracterización de progenies procedentes de autofecundación del mutante <i>Lfs2448</i>	79
	4.2.3. Pruebas de viabilidad de polen <i>in vitro</i> y análisis histológicos en	
	flores	81
	4.2.4. Análisis de viabilidad de polen <i>in vivo</i>	85
	4.2.5. Caracterización molecular de la mutación <i>Lfs2448</i>	86
	4.3 Arlequín: antecedentes	89
	4.3.1. La expresión ectópica de <i>ALQ</i> altera el patrón de crecimiento vegetativo	90
	4.3.2. Evaluación de la tasa de cuajado del mutante <i>Alq</i>	99
	4.3.3. El mutante <i>Alq</i> exhibe partenocarpia facultativa	100
	4.3.4. Los ovarios del mutante <i>Alq</i> experimentan cuajado prematuro	103
	4.3.5. Expresión de genes implicados en el cuajado de fruto	106

	4.3.6. Contenido endogeno de normonas en ovarios del mutante Aiq	113		
	4.3.7. Cuajado de fruto en plantas con menores niveles del gen ALQ	115		
	4.3.8. Cuajado de fruto del mutante <i>Alq</i> en condiciones de moderada salinidad	116		
5.	. Discusión	121		
	5.1. Los mutantes <i>Lfs2084</i> y <i>Lfs2448</i> exhiben menor tasa de cuajado de fruto	121		
	5.2. Las mutaciones <i>Lfs2084</i> y <i>Lfs2448</i> conducen a letalidad del gameto masculino	122		
	5.3. La mutación <i>Lfs2084</i> altera la ruta MEP	124		
	5.4. La mutación <i>Lfs2084</i> altera la expresión de genes implicados en el cuajado	129		
	5.5. El menor cuajado de fruto en el mutante <i>Lfs2448</i> está relacionado con la alteración de citocromos P450 (CYP450)	131		
	5.6. La mutación <i>Alq</i> tiene efectos sobre el crecimiento vegetativo	133		
	5.7. La mutación <i>Alq</i> promueve cambios en la configuración espacial del sistema radicular	135		
	5.8. La mutación <i>Alq</i> conduce a un mayor cuajado de fruto	136		
	5.8.1. La mayor tasa de cuajado se debe a un cuajado prematuro del fruto	137		
	5.8.2. El cuajado prematuro del fruto parece estar relacionado con la mayor expresión de genes implicados en el ciclo celular	138		
	5.8.3. La mayor concentración endógena de citoquininas en los ovarios conduce a un cuajado prematuro del fruto en el mutante <i>Alq</i>	139		
	5.8.4. El cuajado de fruto es menor en plantas que tienen silenciado el gen <i>ALQ</i>	140		
5.	9. El mutante Alq mantiene la producción de fruto en condiciones de			
m	oderada salinidad	141		
6.	. Conclusiones			
7.	. Bibliografía	145		