

Fishing for Errors in an Ocean Rather than a Pond

Wilson, John
 a
 and Te’eni, Dov

 b

a
Ivey Business School, University of Western Ontario, London N6G ON1, Canada,

b
Coller

School of Management, Tel Aviv University, Israel.

Abstract

In the internet age, a proliferation of services appear on the web. Errors in

using the internet service or app are dynamically introduced as new

devices/interfaces/software are produced and are found to be incompatible

with an app that is perfectly good for other devices. The number of users who

can detect various errors changes dynamically: for instance, there may be

new adopters of the software over time. It may also happen that an old user

might upgrade and thus run into new incompatibility errors. Allowing new

users and errors to enter dynamically poses considerable modeling and

estimation difficulties. In the era of Big Data, methods for dynamically

updating as new observations arise are important. Traditional models for

detecting errors have generally assumed a finite number of errors. We

provide a general model that allows for a procedure for finding maximum

likelihood estimators of key parameters where the number of errors and the

number of users can change.

Keywords: Errors in software apps; Big Data; reliability; software

development and testing.

2nd International Conference on Advanced Research Methods and Analytics (CARMA2018)
Universitat Politècnica de València, València, 2018

DOI: http://dx.doi.org/10.4995/CARMA2018.2018.8331

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 125

Fishing for Errors in an Ocean Rather than a Pond

1. Introduction

The internet and mobile have changed the way that software is distributed and used. Cloud

computing, open source software and continuous connectivity, in particular, allow for the

operation and connection of many services, many applications, many devices and many

users. The advent of the Internet of Things will magnify the criticality of securing

uninterrupted operation and connectivity. As early as the 1990s, there was a recognized

need for research in the economics of software development and maintenance (e.g. Banker

et al. 1998 and Chan et al.1994). Issues such as the timing of software releases, the

development and management of interoperability, and the allocation of resources to testing

are critical to management. Once software is released, it is important to have models that

track errors as software is being used. Real-time detection of errors encountered by users is

often the norm. There is a need, therefore, for research that builds on the new realities of

the software industry and that leads to practical tools.

We concentrate on the probability of errors in software, which must be a parameter of any

managerial model and can directly affect managerial decisions such as when to stop

software testing and how to it. We are interested in the behavior of errors over time because

software management is dynamic.

Finding errors is like fishing and open computer systems are analogous to a pond linked to

the ocean. Our proposed model describes fishing in an ocean rather than the pond of

previous models. In a pond, the rate of catching fish depends on how many are left in it.

When the pond is opened to an ocean, waves bring in new fish and will not find all the fish

when confronted with a practically infinite stream of fish coming in from the ocean. The

potential number of failures due to communication software, printers, operating systems

and I/O devices is practically infinite. In the new context of open systems, we distinguish

between errors of content and errors of incompatibility. The former are code contained in

the system that is incorrect with respect to its specification (e.g., an incorrect loop or a

select construct that does not cover all required cases). The latter are code that is

incompatible with conditions external to the specified system, e.g., problems in working

parallel to new versions of other packages.

In this paper, our focus is the interaction between the system and its environment: hence the

notion of incompatibilities. This shift has already occurred in industry. For example,

Mercury Interactive, a software testing company, realized back in 1998 that current

software, unlike the past, cannot be contained in a single system (see Forbes, 1998). A

similar shift is needed in the operations research modeling of error detection, for instance

by extending extant models to include different patterns of error behavior and detection that

break the assumptions of instant removal of detected errors and of no new sources of errors

126

Wilson, J.;Te’eni, D .

(e.g., Gaudoin, 1999; Yang et al., 2016). Another example is the distinct behavior of

performance errors that occur after release (Zaman et al., 2012).

A failure is an unexpected result of a program execution. Failures are the external

phenomena that the user experiences. An error (or fault) is incorrect code that, under

certain conditions, will produce a failure. Errors are hidden from the user but are perceived

as the cause of failures. Therefore the more failures experienced, the more errors assumed

to exist in the software. A failure is related to a specific error, called a detected error.

Several failures may be related to the same error, in which case there would only be one

detected error. In reliability growth models, for instance, the number of errors is supposed

fixed at the time a prototype is produced and the goal is to systematically eliminate them.

(See, e.g., Heydari and Sullivan, K. M. 2017).

Open systems are related one to another. An error may be the result of a combination of

conditions in two distinct applications that is incompatible with the code. Errors of

incompatibility are practically endless and cannot be determined as a function of the code

alone. This is different to traditional models.

We develop a general framework for modelling errors that are continually created. A

probabilistic model is formulated that can lead to the development of the likelihood

function from which estimates can be derived. This is a complex process since at any

period an error may have been introduced at any previous time. In addition, only some

users can detect a new error since they are the only ones to have upgraded and thus only

they can be exposed to a current error of incompatibility.

2. Model Development

The intuitive discussion is now formulated mathematically. Certain practices may blur

some of the theoretical distinctions made above. For instance, a Beta site may fall between

testing and production and actual reports of failures may entangle the two types of errors.

The mathematical formulation ignores such difficulties and assumes, for simplicity, some

additional constraints as discussed below. Moreover, one general functional form is built,

which will describe both pre and post-release stages. For clarity of presentation, we use the

term users to denote both units of testing and units of use, although the former relates to the

pre-release stage and the latter to the post-release stage.

There are three aspects to modelling this problem: (1) The process whereby customers,

internet users, arrive to use the app and perhaps cancel their subscriptions at a later time; (2)

The modelling of who upgrades their software/equipment and thus may encounter new

errors of incompatibility; (3) The error detection process which involves modelling the

arrival of new errors into the system and the number of users who can detect them.

127

Fishing for Errors in an Ocean Rather than a Pond

The description will be given for a general continuous time process. (Unfortunately, in

order to capture the real time complexity of the various processes, a lot of notation and

definitions are involved.) Then, the simpler case of discrete time periods will be considered.

2.1. The Arrival and Cancellation Processes

Suppose the denotes the number of new customers who use the software at time . For

instance, could represent the number of people who sign up at time for an online

transcription service such as that provided by Nuance. Over time, some subscribers will

cancel and no longer use the service. Let denote the time a customer who signed up at

time cancels the service. (A very large value for means that the customer never

cancels.)

2.2. The Upgrade Process

For an individual completely current at time (i.e. someone who is “new” at time or who

has been using the system before time and upgrades at time), let denote the time this

customer next upgrades. (A very large value for means that the customer never

upgrades.)

Let denote the number of people who were current at time , did not upgrade

between times and , but did upgrade at time . The quantity is a function of ,

 and for .

2.3. The Error and Detection Processes

At time , let denote the number of new errors that are introduced into the system. For

instance, a new version of the iPad might be introduced at time . A subscriber using the

software with this device might ultimately encounter an incompatibility error: the software

works perfectly well but there is an as yet undiscovered error when the new device is used.

Prior to the introduction of the new iPad, this error did not exist.

Let denote the number of users who can detect new errors introduced at time . (

will depend on the variables , and) If one assumes that users who adopted

prior to time cannot detect errors introduced at time , then is simply equal to ,

the number of new users introduced at time . This can be a reasonable assumption if one

assumes that most users will not upgrade to new technology until a fair amount of time has

elapsed. However, it is not necessary to make this assumption: any upgrade pattern can be

accommodated.

For an error introduced at time , let denote the probability that a user current at

time detects an error during period number given that the user has not detected it

prior to this period.

128

Wilson, J.;Te’eni, D .

2.4. Analysis for Discrete Time Periods

In this paper, we will concentrate on the special but useful case where tracking is done over

discrete periods. This is often the most realistic way to proceed and gives some useful

practical and theoretical results. In order to make this clear the notations , ,

) and will be replaced, respectively, by , , , and , where

 denotes the period (correponds to release of the app, corresponds to

the end of the first period, etc. The quantity will be replaced by and where and

 with are period numbers.

2.5. Example: Discrete Time Periods

Assume that no one cancels a subscription. Suppose that, at the beginning of any time

period, a user who is current in the prior period will upgrade with probability 0.1 (i.e. is an

“early adopter”) , a customer who was last current two periods ago will upgrade with

probability .15, those last current three periods ago will upgrade with probability 0.3 and

those current more than three four periods ago will definitely upgrade. Then the probability

distribution for , the time at which a customer current at time will upgrade is given by:

 {

 with pro a ility .
 with pro a ility (.)(.) .

 with pro a ility (.)(.)(.) .

 with pro a ility

Let denote the value of a Binomial random variable with parameters and . The

number who can detect errors at time 0 is , the initial number of subscribers. At the end

of period 1, the number of people who can detect new errors at time 1 equals the number of

new subscribers plus the number who have upgraded from form time - , i.e

 .

Using a similar argument, the number of subscribers who can detect errors at any time can

be found. For instance, the values of and are as follows:

 + () .

Values for can also be found. is the number of customers who were current at

time and upgrade at time and thus equals . is the number of

people current at time who do not upgrade at time but do upgrade at time and

thus equals . Similarly, =

and = .

129

Fishing for Errors in an Ocean Rather than a Pond

3. Discrete Time Periods and Constant Error Detection Probability

In this section, the problem will be simplified. We assume that and that

 . Ultimately, The goal is to estimate the quantities , and

 or, equivalently, . (In the case of a subscription service is known but in other

cases-for instance “free” software, the num er of initial users may not e known.)

Consider a particular user who has the potential to discover a particular error. Then

denotes the probability that this user discovers this error during any given period. All users

and all errors are assumed to be independent. (In a more general setting non-indepence may

be allowed. For instance, , the number of errors introduced at time , could have a

distribution where the number if errors introduced in a given period depends on those

introduced in a prior period. However, here we will focus on the simpler case of indepence

which is difficult in its own right.) The , however, may have interpretations that depend on

the context: one may be used for errors of content while a different might be used for

errors of incompatibility. Let denote the probability that an error introduced at time

k is detected for the first time during period i. This quantity can be shown to satisfy the

following (proof omitted):

 ,

where ∑
) and

∑
).

This quantity is key to writing down the likelihood. Suppose one has collected the data

 —the numbers of errors observed during each of the first periods. Then the goal

is to find the values of , and that maximize the probability of observing this data

stream. For given values of the parameters, it is necessary to construct an expression for

 , the probability of observing . Note that

 ∏

where is the probability of serving x1 errors during the first period and

 is the conditional probability of observing errors during period given

that were discovered during the previous periods. (These probabilities, of course,

depend on the values of the parameters , and .) From the expression above for

and noting that the number of errors observed in a given period is binomial with number of

trials equal to the number of people who can detect an error, the above likelihood may be

calculated. (It is somewhat complex since, during a given period one has to keep track of

when errors were introduced and which consumers can see them.) In the worst case

scenario, a grid search can be performed over the possible values for the quantities , and

130

Wilson, J.;Te’eni, D .

 in order to find maximum likelihood estimates. For given values of the quantities , and

 , the arrival of new data entails only a minor calculation to update the likelihood values.

Thus in a big data context, the size of the data set does not hinder computational efficiency.

From the expression for the expected number of errors detected during period

equals

 ∑

The variance of the number of errors detected in period is given by

 ∑

Note that for given values of , and , the above expressions are straightforward to

evaluate.

From a management viewpoint, the above expressions can become effective tools. For

many processes, control charts have become an important managerial tool for tracking

quality, including software maintenance (Haworth, 1996). Control charts can be

constructed tracking software errors: at the end of each period, compute the maximum

likelihood estimate for the parameters; then compute the mean curve for the number of

errors and the upper and lower control limits using the above expressions. Most

applications of control charts are relatively straightforward and result in a constant central

line. For software error tracking, however, the situation is more complex. For instance, the

central line of a control chart based on the above expressions are not constant but its

interpretation is similar to those of industrial applications. Points outside the upper and

control limits indicate to the manager that the process is “out of control.” This would

happen, for instance, if any of the assumptions of the software error model were suddenly

violated. The above expressions for mean and variance are therefore useful not only for

predicting the flow of software errors but can also be used to warn a manager that the

underlying marketplace is changing in an unexpected manner.

4. Conclusions

Traditionally, errors were defined within the system’s oundaries. Goel () suggests

that “software faults can e attri uted to an ignorance of the user requirements, ignorance

of the rules of the computing environment, and to poor communication of software

requirements etween user and the programmer …” (i id. p. 4). This perspective

focuses on mistaken code and is manifested in the quests for estimating error frequency

according to various characteristics of the code. Now, with software being used by many

131

Fishing for Errors in an Ocean Rather than a Pond

users on the internet and mobile, errors rather than being drawn from a finite pool are

constantly being introduced. In this paper, we shift the focus to the interaction between the

system and its environment which leads to the notion of incompatibilities. The importance

of incompatibility errors will grow with the growing impact of cloud computing and Big

Data (Wang and Wu, 2016) as well as the Internet of Things (Prehofer, 2015). We

formulate a robust and general model. In a Big Data setting, there is more freedom in

allowing for more complex models since estimation of certain quantities (such as

cancellation patterns and customer flow) is now much easier due to the sheer size of the

data set. Error detection, even in a Big Data, context requires careful modelling since by

design, even in large data sets, there is (and should be) a paucity of observations. We show

how to calculate key quantities needed to construct the likelihood equation from which

maximum likelihood estimators may be derived. A follow-up paper, rather than considering

a grid search for finding these estimators will provide an algorithmic procedure that

removes the need for a grid search. The important special case of discrete time periods and

a constant rate of error introduction has been condidered in detail.

References

Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software development practices,

software complexity, and software maintenance performance: A field study.

Management science, 44(4), 433-450.

Chan, T., Chung, S., & Ho, T. (1994). Timing of software replacement. ICIS 1994

Proceedings, 22.

Forbes. Shake those bugs out by A. Linsmayer. Forbes, May 18, 1998; 198-199.

Goel AL. Software reliability models. Assumptions, limitations and applicability. IEEE

Transactions on Software Engineering, 1985. SE-11;(12); 1411-1423.

Gaudoin, O. (1999). Software reliability models with two debugging rates. International

Journal of Reliability, Quality and Safety Engineering, 6(01), 31-42.

Harworth D. A. Regression control charts to manage software maintenance. Software

Maintenance: Research and Practice, 1996;8; 35-48.

Heydari, M., & Sullivan, K. M. (2017). An Integrated Approach to Redundancy Allocation

and Test Planning for Reliability Growth. Computers & Operations Research.

Prehofer, C., & Chiarabini, L. (2015, July). From internet of things mashups to model-

based development. In Computer Software and Applications Conference (COMPSAC),

2015 IEEE 39th Annual (Vol. 3, pp. 499-504). IEEE.

Wang, J., & Wu, Z. (2016). Study of the nonlinear imperfect software debugging

model. Reliability Engineering & System Safety, 153, 180-192.

Zaman, S., Adams, B., & Hassan, A. E. (2012, June). A qualitative study on performance

bugs. In Mining Software Repositories (MSR), 2012 9th IEEE Working Conference

on(pp. 199-208). IEEE.

132

