UNIVERSIDAD POLITECNICA DE VALENCIA
E.T.S. INGENIERIA INFORMATICA

PrROYECTO FINAL DE CARRERA

Verificacion de
Aplicaciones Web Dinamicas

con WEB-TLR

ALUMNO: DIRECTORES:

Javier Espert Real Maria Alpuente Frasnedo
Daniel Omar Romero

Julio 2011

Direccién del autor:

E.T.S. Ingenieria Informética
Universidad Politécnica de Valencia
Camino de Vera, s/n

46022 Valencia

Espana

Abstract

WEB-TLR is a software tool designed for model-checking Web applications that is
based on rewriting logic. Web applications are expressed as rewrite theories that can
be formally verified by using the Maude built-in LTLR model-checker. Whenever
a property is refuted, it produces a counterexample trace that underlies the failing
model checking computation. However, the analysis (or even the simple inspection)
of large counterexamples may prove to be unfeasible due to the size and complexity
of the traces under examination.

This work aims to improve the understandability of the counterexamples ge-
nerated by WEB-TLR by developing an integrated framework for debugging Web
applications that integrates a trace-slicing technique for rewriting logic theories that
is particularly tailored to WEB-TLR. The verification environment is also provided
with a user-friendly, graphical Web interface that shields the user from unnecessary
information.

Trace slicing is a widely used technique for execution trace analysis that is ef-
fectively used in program debugging, analysis and comprehension. Our trace slicing
technique allows us to systematically trace back rewrite sequences modulo equa-
tional axioms (such as associativity and commutativity) by means of an algorithm
that dynamically simplifies the traces by detecting control and data dependencies,
and dropping useless data that do not influence the final result. Our methodology
is particularly suitable for analyzing complex, textually-large system computations
such as those delivered as counter-example traces by Maude model-checkers.

The slicing facility implemented in WEB-TLR allows the user to select the pieces
of information that she is interested into by means of a suitable pattern-matching
language supported by wildcards. The selected information is then traced back
through inverse rewrite sequences. The slicing process drastically simplifies the
computation trace by dropping useless data that do not influence the final result.
By using this facility, the Web engineer can focus on the relevant fragments of
the failing application, which greatly reduces the manual debugging effort and also
decreases the number of iterative verifications.

Keywords: Model checking, Web verification, Trace Slicing, Rewriting Logic,
Counterexample generation, Linear Temporal Logic of Rewriting, Web debugging.

v

Resumen

WEB-TLR es una herramienta software basada en logica de reescritura disenada
para la comprobacion basada en modelos (model checking) de aplicaciones Web. Las
aplicaciones Web se expresan como teorias de reescritura que pueden ser verificadas
formalmente utilizando el model checker LTLR integrado en Maude. Cuando una
propiedad es refutada, se genera la traza de un contraejemplo que subyace a la fallida
comprobacién del modelo. Sin embargo, el anédlisis (o la mera inspeccién) de con-
traejemplos de gran tamano resulta inviable debido a las dimensiones y complejidad
de las trazas bajo examen.

Este proyecto final de carrera pretende facilitar la comprensién de los contrae-
jemplos generados por WEB-TLR mediante el desarrollo de un entorno integrado
de depuracion de aplicaciones Web que incorpora una técnica de rebanado de trazas
(trace slicing) para teorias de logica de reescritura especialmente adaptada a WEB-
TLR. El entorno de verificacion también es provisto de una interfaz grafica Web
amigable que oculta la informacién innecesaria para el usuario.

El rebanado de trazas es una técnica de andlisis de trazas de ejecucién ampli-
amente utilizada en la depuracion, andlisis y comprensién de programas. Nuestra
técnica de rebanado nos permite obtener de manera sistematica la traza inversa
de secuencias de reescritura médulo axiomas ecuacionales (como la asociatividad y
la conmutatividad) mediante un algoritmo que simplifica las dindmicamente trazas
mediante la deteccién de dependencias de control y datos, descartando los datos que
no influyen en el resultado final. Nuestra metodologia es especialmente adecuada
para el analisis de computaciones en sistemas complejos y textualmente extensos,
tales como los contraejemplos generados por el model checker de Maude.

La funcionalidad de rebanado implementada en WEB-TLR permite al usuario
seleccionar los fragmentos de informacién que le interesen mediante un lenguaje de
ajuste de patrones (pattern matching) con soporte para comodines. La informacién
seleccionada es luego trazada hacia atras mediante secuencias de reescritura inver-
tidas. El proceso de rebanado simplifica drasticamente la traza de la computacién
al descartar datos prescindibles que no afectan al resultado final. Mediante esta
funcionalidad, el ingeniero Web puede centrarse en las partes relevantes de la apli-
caciéon que falla, reduciendo en gran medida el esfuerzo de depuracién y el nimero
de iteraciones en la verificacion.

Palabras clave: Model checking, Verificaciéon Web, Rebanado de trazas, Logica
de Reescritura, Generacion de Contraejemplos, Logica Temporal de Reescritura,
Depuracion Web.

vi

Resum

WEB-TLR és una ferramenta de programari basada en logica de reescriptura dis-
senyada per a la comprovacié basada en models WEB-TLR d’aplicacions Web. Les
aplicacions Web s’expressen com a teories de reescriptura que poden ser verificades
formalment utilitzant el model checker LTLR integrat en Maude. Quan una propi-
etat és refutada, es genera la traca d'un contraexemple que subjau a la fallida
comprovacié del model. No obstant aixo, 1’analisi (o la mera inspeccién) de con-
traexemples de grans mides resulta inviable a causa de les dimensions i complexitat
de les traces sota examen.

Este projecte final de carrera pretén facilitar la comprensié dels contraexem-
ples generats per WEB-TLR per mitja del desenrotllament d’un entorn integrat de
depuraci6é d’aplicacions Web que incorpora una tecnica de llescat de traces (trace
slicing) per a teories de logica de reescriptura especialment adaptada a WEB-TLR.
L’entorn de verificacié també és proveit d’una interficie grafica Web amigable que
oculta la informacié innecessaria per a 'usuari.

El llescat de traces és una tecnica d’analisi de traces d’execucio ampliament util-
itzada en la depuracid, analisi i comprensiéo de programes. La nostra tecnica de
llescat ens permet obtindre de manera sistematica la traca inversa de seqiiencies de
reescriptura modul axiomes equacionals (com l'asociatividad i la conmutatividad)
per mitja d’un algoritme que simplifica les dinamicament traces per mitja de la de-
teccié de dependencies de control i dades, descartant les dades que no influixen en
el resultat final. La nostra metodologia és especialment adequada per a I'analisi de
computacions en sistemes complexos i textualment extensos, com ara els contraex-
emples generats pel model checker de Maude.

La funcionalitat de llescat implementada en WEB-TLR permet a 'usuari selec-
cionar els fragments d’informacié que li interessen per mitja d’un llenguatge d’ajust
de patrons (pattern matching) amb suport per a comodins. La informaci6 selec-
cionada és després tracada cap arrere per mitja de seqiiencies de reescriptura in-
vertides. El procés de llescat simplifica drasticament la traga de la computacié al
descartar dades prescindibles que no afecten el resultat final. Per mitja d’esta fun-
cionalitat, I’enginyer Web pot centrar-se en les parts rellevants de ’aplicacié que
falla, reduint en gran manera l'esfor¢ de depuracié i el nombre d’iteracions en la
verificacio.

Paraules clau: Model checking, Verificaci6 Web, Llescat de traces, Logica de Ree-

scriptura, Generacié de Contraexemples, Logica Temporal de Reescriptura, Depu-
raci6 Web.

viil

Thanks

[t’s been two years. Or maybe five. Or a lifetime.
Who cares. It’s been great.

To those of you who have given me the opportunity to turn interest into work, and
work into passion. Who have offered me everything, from technical counselling to
unsolicited esthetic advice. Who have made me feel at home at ELP.

To those of you who have proven to be there in the worst moments, and never fail
to be in the greatest. Who put up with me, when I wouldn’t. Who supported me,
when I couldn’t.

To those of you who have always been by my side, and for whom words are simply
not enough.

Thank you.

Contents

Introduction

Preliminaries

2.1 Term Rewriting Systems L.
2.2 Rewriting Logic
2.3 Linear Temporal Logic of Rewriting (LTLR)
24 Model Checking

An Overview of WEB-TLR

3.1 A Running Example: the Electronic Forum Application
3.2 Web Application Specification
3.3 Model-checking Web Applications

An Interactive WEB-TLR System

4.1 Introductiono
4.2 An overview of the Web verification framework
4.3 The Web-TLR system
4.4 A case study of Web verification.

Backward Trace Slicing for Rewriting Logic Theories
5.1 Introduction
5.2 Rewriting Modulo Equational Theories
5.3 Backward Trace Slicing for Elementary Rewrite Theories
5.3.1 Labeling procedure for rewrite theories
5.3.2 The Backwards Trace Slicing Algorithm
5.4 Backward Trace Slicing for Extended Rewrite Theories
5.4.1 Dealing with collapsing and nonleft-linear rules
5.4.2 Built-in Operators
5.4.3 Associative-Commutative Axioms
5.4.4 Extended Soundnesso
5.5 Experimental Evaluation
5.6 Related Work oo

Debugging of Web Applications with WEB-TLR

6.1 Introduction
6.2 Extending the WEB-TLR System
6.3 Filtering Notation
6.4 A Debugging Session with WEB-TLR

x1i

7 Implementation

7.1 Implementation of Interactive WEB-TLR
7.1.1 Maudeo
7.1.2 Java Server Pages
7.1.3 Graphviz and SVG
714 XHTML

7.2 Implementation of the Slicing Facility in RWL
7.2.1 Metaprogramming
7.2.2 AC Pattern Matching
7.2.3 Equational Attributes
7.2.4 Flat/unflat Transformations

7.3 Organization of the source code
7.3.1 Rootfolder
7.3.2 Checker
7.3.3 Slicing oo
7.3.4 ParserModelChecking.jar

8 Conclusions
A Web Application Model Development by Example

Bibliography

CONTENTS

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1

6.1
6.2
6.3

List of Figures

The navigation model of an Electronic Forum 10
Maude representation of a Web state. 13
Specification of the electronic forum application in WEB-TLR 14
One Web state of the counter-example trace of Section 6.4. 15
The navigation model of an Electronic Forum 20
The model definition page L. 22
Snapshot of the slide show 23
A term slice and a possible concretization. 32
Trace slice T®. 47
Snapshot of the WEB-TLR System. 50

Snapshot of the WEB-TLR System for the case of no counter-examples. 51

A.1 The navigation model of an Webmail application 67

Xiv

LIST OF FIGURES

Introduction

In recent years, the automated verification of Web applications has become a major
field of research. Nowadays, a large number of corporations (including book retailers,
auction sites, travel reservation services, etc.) interact primarily through the Web by
means of Web applications that combine static content with dynamic data produced
“on-the-fly” by the execution of Web scripts (e.g., Java servlets, Microsoft ASP.NET
and PHP code). The inherent complexity of such highly concurrent systems has
turned their verification into a challenge [1, 23, 29].

In [8], a rich and accurate navigation model that formalizes the behavior of
Web applications in rewriting logic was formulated. That formulation allows one
to specify critical aspects of Web applications such as concurrent Web interactions,
browser navigation features (i.e., forward /backward navigation, page refreshing, and
window /tab openings), and Web script evaluations by means of a concise, high-level
rewrite theory. Such a formalization is particularly suitable for verification purposes
since it allows in-depth analyses of several subtle aspects of Web interactions to be
carried out. As shown in [8], real-size, dynamic Web applications can be efficiently
model-checked using the Linear Temporal Logic of Rewriting (LTLR), which is a
temporal logic specifically designed to model-check rewrite theories that combines
all the advantages of the state-based and event-based logics, while avoiding their
respective disadvantages [28].

WEB-TLR is a model-checking tool written in Maude that implements the theo-
retical framework of [8]. WEB-TLR focuses on the Web application tier (business
logic, and thus handles server-side scripts; no support is given for GUI verification
with Flash technology or other kinds of client-side computations). This work aims
to enhance WEB-TLR, equipping it with a freely accessible graphical Web inter-
face (GWI) written in Java, which allows users to introduce and check their own
specification of a Web application, together with the properties to be verified. In
the case when the property is proven to be false (refuted), an online facility can
be invoked that dynamically generates a counterexample (expressed as a navigation
trace), which is ultimately responsible for the erroneous Web application behavior.
In order to improve the understandability and usability of the system and since
the textual information associated to counterexamples is usually rather large and
poorly readable, the checker has been endowed with the capability to generate and

2 CHAPTER 1. INTRODUCTION

display on-the-fly slideshows that allow the erroneous navigation trace to be visu-
ally reproduced step by step. This graphical facility, provides deep insight into Web
application behavior and is extremely effective for debugging purposes.

Additionally, in order to improve the understandability of the counterexamples
generated by WEB-TLR, we have developed a complementary Web debugging fa-
cility that supports both the efficient manipulation of counterexample traces and
the interactive exploration of error scenarios. This facility is based on a backward
trace-slicing technique for rewriting logic theories we formalized in [5] that allows
the pieces of information that we are interested to be traced back through the in-
versed rewrite sequence. The slicing process drastically simplifies the computation
trace by dropping useless data that do not influence the final result.

We provide a convenient, handy notation for specifying the slicing criterion that
is successively propagated backwards at locations selected by the user. Preliminary
experiments reveal that the novel slicing facility of the extended version of WEB-
TLR is fast enough to enable smooth interaction and helps the users to locate the
cause of errors accurately without overwhelming them with bulky information. By
using the slicing facility, the Web engineer can focus on the relevant fragments of
the failing application, which greatly reduces the manual debugging effort.

The results in this work have been presented in several international fora. The
extended WEB-TLR system including the novel GWI was published in Proc. of
8th International Symposium on Automated Technology for Verification and Anal-
ysis (ATVA10, CORE A), held in September 2010 in Singapore [4]. The backward
trace-slicing technique formalized in Chapter 5 has been accepted at the 23nd In-
ternational Conference on Automated Deduction (CADE 2011, CORE A, CSCR
impact factor 0.93), to be held in August 2011 in Wroclaw, Poland [5]. Finally,
the adaptation of the slicing algorithm and subsequent development of a Web de-
bugging technique was presented at the 7th International Workshop on Automated
Specification and Verification of Web Systems (WWV 2011), held in June 2011 in
Reykjavik, Iceland [3], published in the EPTCS. A special issue of the best papers
of WWYV is forthcoming.

Plan of the manuscript. In Chapter 2, we recall the essential notions regarding
Term Rewriting Systems, Rewriting Logic, the Linear Temporal Logic of Rewriting,
and Model Checking. In Chapter 3, we introduce a leading example that allows
us to illustrate the use of rewriting logic for Web system specification, and use it
to give an overview of the WEB-TLR verification framework. Chapter 4 presents
the enhanced WEB-TLR system including the novel GWI interface. In Chapter 5,
we formalize a backward trace-slicing technique for the analysis of Rewriting Logic
theories. Chapter 6 describes an adaptation of the backward slicing technique to
WEB-TLR and develops a debugging technique based on it. Chapter 7 contains a
high-level description of the design and the implementation of the improved WEB-
TLR system. Chapter 8 concludes. Appendix A uses a Webmail application to

exemplify how to define a Web application model in WEB-TLR.

CHAPTER 1. INTRODUCTION

Preliminaries

2.1 Term Rewriting Systems

A many-sorted signature (3,S5) consists of a set of sorts S and a S* x S-indexed
family of sets ¥ = {¥5.}(5,5)e57xs, Which are sets of function symbols (or perators)
with a given string of argument sorts and result sort. Given an S-sorted set V =
{Vs | s € S} of disjoint sets of variables, Tx(V)s and Ty, are the sets of terms and
ground terms of sorts s, respectively. We write 7% (V) and 7% for the corresponding
term algebras.

An equation is a pair of terms of the form s = ¢, with s,t € Tx(V),. In order to
simplify the presentation, we often disregard sorts when no confusion can arise.

Terms are viewed as labelled trees in the usual way. Positions are represented
by sequences of natural numbers denoting an access path in a term. The empty
sequence A denotes the root position. By root(t), we denote the symbol that occurs
at the root position of t. We let Pos(t) denote the set of positions of ¢. By notation
wy.wsy, we denote the concatenation of positions (sequences) w; and wy. Positions
are ordered by the prefix ordering, that is, given the positions wq, we, w; < wo if
there exists a position x such that w;.z = w,. is the subterm at the position u of ¢.
t[r], is the term ¢ with the subterm rooted at the position u replaced by r. Given a
term t, we say that t is ground if no variables occur in t.

A substitution o is a mapping from variables to terms
{z1/t1,..., 2, /t,} such that ;0 =t¢; for i = 1,...,n (with x; # z; if i # j), and
xo = x for any other variable x. By ¢, we denote the empty substitution. Given a
substitution o, the domain of ¢ is the set Dom(c) = {z|xo # x}. By Var(t) (resp.
FSymbols(t)), we denote the set of variables (resp. function symbols) occurring in
the term t.

A conteat is a term 7y € Tyyqoy (V) with zero or more holes O, and O ¢ X. We
write 7] |, to denote that there is a hole at position u of 7. By notation 7[|, we
define an arbitrary context (where the number and the positions of the holes are
clarified in situ), while we write v[t1,...t,] to denote the term obtained by filling
the holes appearing in [| with terms ¢,...,t,. By notation t”, we denote the
context obtained by applying the substitution o = {x;/0,...,x,/0} to t, where
Var(t) = {x1 ..., 2.} (ie., t° = to).

6 CHAPTER 2. PRELIMINARIES

A term rewriting system (TRS for short) is a pair (X, R), where ¥ is a signature
and R is a finite set of reduction (or rewrite) rules of the form A — p, A, p € Tx(V),
A ¢V and Var(p) C Var()\). We often write just R instead of (X, R). A rewrite
step is the application of a rewrite rule to an expression. A term s rewrites to a
term t via r € R, s g t (or s -3 t), if there exists a position ¢ in s such that A
matches s, via a substitution o (in symbols, s, = Ao), and ¢ is obtained from s by
replacing the subterm s, = Ao with the term po, in symbols ¢t = s[po|;. The rule
A — p (or equation A = p) is collapsing if p € V; it is left-linear if no variable occurs
in A more than once. We denote the transitive and reflexive closure of — by —*.

2.2 Rewriting Logic

We assume some basic knowledge of term rewriting [38] and Rewriting Logic (RWL)
[27]. Let us first recall some fundamental notions which are relevant to this work.
The static state structure as well as the dynamic behavior of a concurrent system can
be encoded into a RWL specification encoding a rewrite theory. More specifically, a
rewrite theory is a triple R = (X, FE, R), where:

(i) (X, E) is an order-sorted equational theory equipped with a partial order <
modeling the usual subsort relation. X, which is called the signature, spec-
ifies the operators and sorts defining the type structure of R, while E is a
set of (possibly conditional) equational axioms which may include commuta-
tivity (comm), associativity (assoc) and unity (id). Intuitively, the sorts and
operators contained in the signature ¥ allow one to formalize system states as
ground terms of a term algebra 7, 5 which is built upon ¥ and E.

(i) R defines a set of (possibly conditional) labeled rules of the form (I : ¢t =
t" if ¢) such that [is a label, ¢, ¢’ are terms, and c is an optional boolean term
representing the rule condition. Basically, rules in R specify general patterns
modeling state transitions. In other words, R formalizes the dynamics of the
considered system.

Variables may appear in both equational axioms and rules. By notation z : S,
we denote that variable x has sort S. A context C is a term with a single hole,
denoted by [], which is used to indicate the location of a rewrite application. C|t]
is the result of placing ¢ in the hole of C'. A substitution o is a finite mapping from
variables to terms, to is the result of applying o to term ¢.

The system evolves by applying the rules of the rewrite theory to the system
states by means of rewriting modulo E, where E is the set of equational axioms.
This is accomplished by means of pattern matching modulo E. More precisely, given
an equational theory (X, F), a term ¢ and a term t’, we say that ¢t matches t' modulo
E (or that t E-matches t') via substitution o if there exists a context C' such that
Clto] =g t', where =p is the congruence relation induced by the equational theory

2.3. LINEAR TEMPORAL LOGIC OF REWRITING (LTLR) 7

(3, E). Hence, given a rule r = (I : t = t' if ¢), and two ground terms s; and so
denoting two system states, we say that s; rewrites to s, modulo E via r (in symbols
51—+ 8y), if there exists a substitution o such that s; E-matches t via o, s, = C[t'c]
and co holds (i.e. it is equal to true modulo F). A computation over R is a sequence

. T Tk .
of rewrites of the form sy = s1... = s3, with r1,...,7, € R, S¢,...,5; € TS.E-

2.3 Linear Temporal Logic of Rewriting (LTLR)

LTLR is a sublogic of the family of the Temporal Logics of Rewriting TLR* [28],
which allows one to specify properties of a given rewrite theory in a simple and
natural way. In particular, we chose the “tandem” LTLR/(%,, E,, R,).

LTLR extends the traditional Linear Temporal Logic (LTL) with state predicates
(SP) and spatial action patterns (I1). As explained in [9], state predicates are
predicates that are locally evaluated on the states of the system. Spatial actions
are the action atoms of TLR*. They generalize one-step proof terms, which can be
thought of as ground-instantiated spatial actions. Spatial actions describe patterns,
which in general specify not just a single one-step proof term, but a possibly infinite
set of such proof terms.

A LTLR formulae w.r.t. SP and II can be defined by means of the following
BNF-like syntax:

pu=0p|l-pleVeleAne| OeleUe|Op|Op
where € SP, p e Il, and p € LTLR(SP,1I)

Since LTLR generalizes LTL, the modalities and semantic definitions are entirely
similar to those for LTL (see, e.g., [25]). The key new addition is the semantics of
spatial actions; the relation R, (7,7) = d holds if and only if the proof term (0) of
a current computation is an instance of a spatial action pattern §.

In Section 3.3, we use a running example to give an intuitive introduction to
state predicates and spatial actions. An in-depth study on LTLR can be found in
[28].

2.4 Model Checking

Model Checking (MC) is an automatic technique for verifying finite state concurrent
systems. This technique has a number of advantages over traditional approaches to
this problem that are based on simulation, testing, and deductive reasoning.
Model checking is a powerful and efficient method that has been used to find
flaws in hardware designs, business processes, object-oriented software, and hyper-
media applications. One remaining major obstacle to a broader application of model
checking is its limited usability for non-experts. In the case of specification violation,
it requires much effort and insight to determine the root cause of errors from the

8 CHAPTER 2. PRELIMINARIES

counterexamples generated by model checkers [41]. In this work, we develop novel
techniques to deal with this problem in the context of Web verification.

Maude [16] features built-in support for the rewriting-based LTL model checking
of any computable rewrite theory. This facility is extended in [9], where a model
checker for LTLR, a subset of the temporal logic of rewriting TLR*, is presented.
The semantics of TLR* is given in terms of rewrite theories, so that the concurrent
systems on which the LTLR properties are model checked can be specified at a very
high level with rewrite rules. This LTLR model checker is the foundation of the
WEB-TLR verification back-end.

An thorough study of model checking can be found in [24].

An Overview of WEB-TLR

WEB-TLR is a Web verification engine that is based on the well-established Rewrit-
ing Logic—-Maude/LTLR tandem for Web system specification and model-checking.
In WEB-TLR, Web applications are expressed as rewrite theories that can be for-
mally verified by using the Maude built-in LTLR model checker. Whenever a pro-
perty is refuted, the tool delivers a counterexample trace that reveals an undesired,
erroneous navigation sequence. In this chapter, we use a running example to briefly
recall the main features of the Web verification framework proposed in [8], which
are essential for understanding this work. The original version of WEB-TLR, which
predates this work and is still preserved as the back-end of the newer versions, is
assumed.

3.1 A Running Example: the Electronic Forum
Application

Throughout this work, a Web application is thought of as a collection of related Web
pages that are hosted by a Web server and contain a mixture of (X)HTML code and
executable code (Web scripts), and links to other Web pages. A Web application
is accessed over a network such as the Internet by using a Web browser that allows
Web pages to be navigated by clicking and following links. Interactions between
Web browsers and the Web server are driven by the HT'TP protocol.

As a running example that allows us to illustrate the capabilities of our tool, let
us introduce a Web application that implements an electronic forum. The electronic
forum is a rather complex Web system that is equipped with a number of common
features, such as user registration, role-based access control including moderator and
administrator roles, and topic and comment management.

The navigation model (i.e., the intended semantics) of such an application can
be specified by means of the graph-like structure given in Figure 3.1. Web pages are
modeled as graph nodes. Each navigation link [is specified by a solid arrow that is
labeled by a condition ¢ and a query string ¢. Link [is enabled whenever ¢ evaluates
to true, while ¢ represents the input parameters that are sent to the Web server
once the link is clicked. For example, the navigation link that connects the Login

10 CHAPTER 3. AN OVERVIEW OF WEB-TLR

reg=yes

PR
reg=yes reg no
-— «—(€G-
o true __reg=no _
true

Login luser=x, Access Add-Comment
pass=y] &
Y
<&
(\
&S R s '$
N Yes
Q Q Q Q e

New-Topic Admin Delete-Topic View-Topic Delete-Comment

Figure 3.1: The navigation model of an Electronic Forum

and Access Web pages is always enabled and requires two input parameters (user
and pass). The dashed arrows model Web application continuations, that is, arrows
pointing to Web pages that are automatically computed by Web script executions.
Each dashed arrow is labeled by a condition, which is used to select the continuation
at runtime. For example, the Access Web page has got two possible continuations
(dashed arrows) whose labels are reg=yes and reg=no, respectively. The former
continuation specifies that the login attempt succeeds, and, thus, the Index Web
page is delivered to the browser; in the latter case, the login fails and the Login page
is sent back to the browser.

3.2 Web Application Specification

In our setting, Web applications are specified by means of a rewrite theory, which
accurately formalizes the entities in play (e.g., Web server, Web browsers, Web
scripts, Web pages, messages) by means of a rich Web state data structure that can
be interpreted as a snapshot of the system that captures the current configurations
of the active browsers (i.e., the browsers currently using the Web application), to-
gether with the server and the channel through which the browsers and the server
communicate via message-passing. A part of the Maude specification that formalizes
the internal representation of a generic Web state is given in Figure 3.2 (see [8] for a
complete specification). Formally, a Web state WebState is a triple [Browsers| [Mes-
sages| [Server] where Browsers, Messages, and Server are encoded by using suitable
Maude constructors. For instance, Browsers is a multiset of active browsers that is
built using the associative and commutative constructor _;_. Each active browser is
in turn formalized by a constructor term of the form

B(idy, id;, page, urls, session, sigma, Im, h; i)

where idp, is an identifier representing the browser; id; is an identifier modeling an
open windows/tab of browser idp; page is the name of the Web page that is currently
displayed on the Web browser; urls represents the list of navigation links that appear

3.3. MODEL-CHECKING WEB APPLICATIONS 11

in the Web page n; session is a list of pairs of the form (n,v) that is used to encode
the last session that the server has sent to the browser, where each n represents a
server-side variable whose value is v; sigma contains the information that is needed
to automatically fill in the forms in the Web pages; Im is the last message sent to the
server; h is a bidirectional list that records the history of the visited Web pages; and i
is an internal counter used to distinguish among several response messages generated
by repeated refresh actions (e.g., if a user pressed the refresh button twice, only the
second refresh is displayed in the browser window).

A formal description of the Web pages is encoded in the Server data structure,
together with the Web application’s scripts. It is worth noting that our scripting lan-
guage includes the main features of the most popular Web programming languages
such as built-in primitives for reading/writing session data (getSession, setSession),
accessing and updating data bases (selectDB, updateDB), capturing values contained
in the query strings sent by browsers (getQuery), etc.

The Web application behaviour is formalized by using labeled rewrite rules of the
form label : WebState = WebState that model the application’s navigation model
through suitable state transitions. For instance, the rule Evl shown below consumes
the first request message migp iar Of the queue fifo,eq, evaluates the message w.r.t. the
corresponding browser session (idp, {s}), and generates the response message that is
stored in the queue fifo,s, that is, the server queue that contains the responses to
be sent to the browsers.

Evl: [br][m][S(w, {BS(idy, {s}), bs}, {db}, (Midb idt, fiforeq), fifores)] =

[br][m][S(w, {BS(id, {s'}), bs}, {db'}, fiforeq, (fifores, m"))]
where (s',db’, m’) = eval(w, s, db, migp jqt)

3.3 Model-checking Web Applications

Formal properties of the Web application can be specified by means of the Lin-
ear Temporal Logic of Rewriting (LTLR), which is a temporal logic that extends
the traditional Linear Temporal Logic (LTL) with state predicates [28], i.e, atomic
predicates that are locally evaluated on the states of the system. Let us see some
examples. Consider again the electronic forum example of Section 3.1 along with the
Maude code in Figure 3.2 that describes our Web state structure. We can define the
state predicate curPage(idy, page) by means of a boolean-value function as follows,

[B(id, ids, page, urls, session, sigma, Im, h, i), br|[m][sv] |= curPage(id,, page) = true

which holds (i.e., evaluates to true) for any Web state such that page is the current
Web page displayed in the browser with identifier id,.

By defining elementary state predicates, we can build more complex LTLR for-
mulas that express mixed properties containing dependencies among states, actions,

12 CHAPTER 3. AN OVERVIEW OF WEB-TLR

and time. These properties intrinsically involve both action-based and state-based
aspects that are either not expressible or are difficult to express in other temporal
logic frameworks. For example, consider the administration Web page Admin of the
electronic forum application. Let us consider two administrator users whose iden-
tifiers are bibAlfred and bidAnna, respectively. Then, the mutual exclusion property
“no two administrators can access the administration page simultaneously” can be
defined as follows.

[O0—(curPage(bibAlfred, Admin) A curPage(bibAnna, Admin)) (3.1)

Any given LTLR property can be automatically checked by using the built-in
LTLR model-checker [28]. If the property of interest is not satisfied, a counter-
example that consists of the erroneous trace is returned. This trace is expressed
as a sequence of rewrite steps that leads from the initial state to the state that
violates the property. Unfortunately, the analysis (or even the simple inspection)
of these traces may be unfeasible because of the size and complexity of the traces
under examination. Typical counter-example traces in WEB-TLR consist in a se-
quence of around 100 states, each of which contains more than 5.000 characters.
As an example, one of the Web states that corresponds to the example given in
Section 6.4 is shown in Figure 3.4, which demonstrates that the manual analysis of
counterexample traces is generally impracticable for debugging purposes.

3.3. MODEL-CHECKING WEB APPLICATIONS

op ‘L_“T¢l_1°C_°]

Browser Message Server -> WebState [ctor]

op B
Id Id Qid URL Session Sigma Message History Nat
-> Browser [ctor]

op br-empty : -> Browser [ctor]

op _:_ : Browser Browser -> Browser
[ctor assoc comm id:br-emptyl

-—-—- message to server
op B2S : Id Id URL -> Message [ctor]
--- message to browser
op S2B : Id Id Qid URL Session -> Message [ctor]
op mes-empty : -> Message [ctor]
op _:_ : Message Message -> Message
[ctor assoc comm id:mes-emptyl

op S : Page UserSession DB -> Server [ctor]

Op ((_(’_(,l{_(}l,({_(}()

Qid Script Continuation Navigation -> Page [ctor]
op page-empty : -> Page
op _:_ : Page Page -> Page

[ctor assoc comm id:page-empty]

Figure 3.2: Maude representation of a Web state.

14 CHAPTER 3. AN OVERVIEW OF WEB-TLR

Formal description of the electronic forum Web pages:

Pindex = (Index, ingex, {0}, {(reg = no) — (Login?[(]) : (reg = yes) — (Logout?[@]) : (adm = yes) — (Admin?[(])
: (can-read = yes) — (View-Topic?[topic]) : (can-create = yes) — (New-Topic?[topic]))
: (mod = yes) — (Del-Topic?[topic])})
PLogin = (Login, skip, {0}, {(? — (Index?[@])) : (? — (Access?[user, pass]))})
PAccess = (ACCESS, QaccessScript s {((reg = yes) = Index) : ((reg = no) = LOgin)}1 {0})
I:)Logout = (LogOUtv Qlogout {((D = Index)}, {Q)})
Padmin = (Admin, Qadmin, {0}, {(0 — (Index?[0]))})
Paddcomment = (AddComment, skip, {0}, {(0 — ViewTopic?[0])})
(DelComment, skip, {0}, {(# — ViewTopic?[0])})
(ViewTopic, skip, {0}, {(0 — (Index?[D])) : ((can-write = yes) — (AddComment?[0]))
: ((mod = yes) — (DelComment?[0]))})
PnewTopic = (NewTopic, skip, {0}, {(0 — ViewTopic?[0])})
PDeITopit: = (DG|T0piC, skip, {0}7 {(0 - |Nde><?[@])})

PDelcomment =
PViewTopic =

Electronic forum Web scripts:

Qlaccess setSession("adm","no"); else

setSession("mod", "no") ; setSession("mod", "no")
setSession("reg", "no") ; fi fi fi

‘u := getQuery(’user) ; index setSession("adminPage", "free") ;
’p := getQuery(’pass) ; et default levels

’pl := selectDB(’u) ; ’r := getSession("reg") ;

’createlvl := selectDB("create-level") ; if (’r = null) then

’writelvl := selectDB("write-level") ; setSession("reg", "no") ;

‘readlvl := selectDB("read-level") ; setSession("mod", "no") ;

if (°p = ’p1) then setSession("adm", "no") ;
setSession("user", ’u) ; setSession("can-create", "no") ;

’r := selectDB(’u ’. "-role") ; setSession("can-write", "no") ;
setSession("reg", "yes") ; setSession("can-read", "no")

if (’createlvl = "reg") then fi

setSession("can-create", "yes") fi ; —--- Set capabilities available

if (Pwritelvl = "reg") then ‘createlvl := selectDB("create-level") ;
setSession("can-write", "yes") fi ; ‘writelvl := selectDB("write-level") ;
if (’readlvl = "reg") then ‘readlvl := selectDB("read-level") ;
setSession("can-read", "yes") fi ; if (’createlvl = "all") then

if (°r = "adm") then setSession("can-create", "yes")
setSession("adm" , "yes") ; fi

setSession("mod" , "yes") ; if (Pwritelvl = "all") then
setSession("can-create", "yes") ; setSession("can-write","yes")
setSession("can-write", "yes") ; fi ;

setSession("can-read", "yes") if (’readlvl = "all") then

else setSession("can-read", "yes")
setSession("adm" , "no") ; fi

if Cr = "mod") then setSession("reg", "no") ;
setSession("mod", "yes") ; setSession("mod", "no") ;

if (’createlvl = "mod") then
setSession("can-create", "yes") fi ;
if (Pwritelvl = "mod") then
setSession("can-write", "yes") fi ;
if (’readlvl = "mod") then
setSession("can-read", "yes") fi

setSession("adm", "no") ;
setSession("can-create", "no") ;
setSession("can-write", "no") ;
setSession("can-read", "no")

setSession("adminPage", "busy")

Figure 3.3: Specification of the electronic forum application in WEB-TLR

3.3. MODEL-CHECKING WEB APPLICATIONS 15

{C B(bidAlfred, tidalfred, ’Admin, ’Index ? query-empty, (s("adm"), s("yes")) : (s("adminPage"), s("busy"))
(s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"),
s("yes")), (’pass / "secretAlfred") : ’user / "alfred", m(bidAlfred, tidAlfred, ’Admin ? query-empty, 1), history-empty, 1)
B(bidAnna, tidinna, ’Admin, ’Index ? query-empty, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) : (s("can-create"),
s("yes")) : (s("can-read"), s("yes")) : (s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")), (’pass /

"secretAnna") : ’user / "anna", m(bidAnna, tidAnna, ’Admin ? query-empty, 1), history-empty, 1)]bra-empty[mes-emptyl [S((’Access,
setSession(s("adm"), s("no")); setSession(s("mod"), s("no")); setSession(s("reg"), s("no")); ’u := getQuery(’user); ’p :=
getQuery(’pass); ’pl := selectDB(’u); ’createlvl := selectDB(s("create-level")); ’writelvl := selectDB(s("write-level"));

‘readlvl := selectDB(s("read-level")); if ’p = ’pl then ’r := selectDB(’u ’. s("-role")); setSession(s("reg"), s("yes")); if
’createlvl = s("reg") then setSession(s("can-create"), s("yes"))fi ; if ’writelvl = s("reg") then setSession(s("can-write"),
s("yes"))fi ; if ’readlvl = s("reg") then setSession(s("can-read"), s("yes"))fi ; if ’r = s("adm") then setSession(s("adm"),
s("yes")); setSession(s("mod"), s("yes")); setSession(s("can-create"), s("yes")); setSession(s("can-write"), s("yes"));
setSession(s("can-read"), s("yes"))else setSession(s("adm"), s("no")); if ’r = s("mod") then setSession(s("mod"), s("yes"));
if ’createlvl = s("mod") then setSession(s("can-create"), s("yes"))fi ; if ’writelvl = s("mod") then setSession(s("can-write"),
s("yes"))fi ; if ’readlvl = s("mod") then setSession(s("can-read"), s("yes"))fi else setSession(s("mod"), s("no"))fi fi fi,

{(s("reg") ’== s("no") => ’Login) : (s("reg") ’== s("yes") => ’Index)}, { nav-empty}) : (’Add-Comment, skip, {cont-empty},
{(TRUE -> ’View-Topic ? query-empty)}) : (’Admin, setSession(s("adminPage"), s("busy")), {cont-empty}, {(TRUE -> ’Index

? query-empty)}) : (’Delete-Comment, skip, {cont-empty}, {(TRUE -> ’View-Topic ? query-empty)}) : (’Delete-Topic, skip,
{cont-empty}, {(TRUE -> ’Index ? query-empty)}) : (’Index, setSession(s("adminPage"), s("free")); ’r := getSession(s("reg"));
if ’r = null then setSession(s("reg"), s("no")); setSession(s("mod"), s("no")); setSession(s("adm"), s("no")); setSession(s(
"can-create"), s("no")); setSession(s("can-write"), s("no")); setSession(s("can-read"), s("no"))fi ; ’createlvl :=

selectDB(s("create-level")); ’writelvl := selectDB(s("write-level")); ’readlvl := selectDB(s("read-level")); if ’createlvl =
s("all") then setSession(s("can-create"), s("yes"))fi ; if ’writelvl = s("all") then setSession(s("can-write"), s("yes"))fi ; if
‘readlvl = s("all") then setSession(s("can-read"), s("yes"))fi, {cont-empty}, {(s("adm") ’== s("yes") -> ’Admin ? query-empty)
(s("can-create") ’== s("yes") -> ’New-Topic ? ’topic ’= "") : (s("can-read") ’== s("yes") -> ’View-Topic ? ’topic ’= "")
(s("mod") ’== s("yes") -> ’Delete-Topic ? ’topic ’= "") : (s("reg") ’== s("no") -> ’Login ? query-empty) : (s("reg") ’==
s("yes") -> ’Logout ? query-empty)}) : (’Login, skip, {cont-empty}, {(TRUE -> ’Access ? (’pass ’= "") : ’user ’= "") : (TRUE ->
’Index ? query-empty)}) : (’Logout, setSession(s("reg"), s("no")); setSession(s("mod"), s("no")); setSession(s("adm"), s("no"));
setSession(s("can-create"), s("no")); setSession(s("can-write"), s("no")); setSession(s("can-read"), s("no")), {(TRUE => ’Index)},
{nav-empty}) : (’New-Topic, skip, {cont-empty}, {(TRUE -> ’View-Topic ? query-empty)}) : (’View-Topic, skip, {cont-empty},
{(TRUE -> ’Index ? query-empty) : (s("can-write") ’== s("yes") -> ’Add-Comment ? query-empty) : (s("mod") ’== s("yes") ->
’Delete-Comment ? query-empty)}), us(bidAlfred, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) : (s("can-create"), s("yes"))
(s("can-read"), s("yes")) : (s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes"))) : us(bidAnna, (s("adm"),
s("yes")) : (s("adminPage"), s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-write"), s("yes"))
(s("mod"), s("yes")) : (s("reg"), s("yes"))), mes-empty, readymes-empty, (s("alfred") ; s("secretAlfred")) (s("alfred-role")
s("adm")) (s("anna") ; s("secretAnna")) (s("anna-role") ; s("adm")) (s("create-level") ; s("reg")) (s("marc") ; s("secretMarc"))
(s("marc-role") ; s("mod")) (s("maude") ; s("secretMaude")) (s("maude-role") ; s("mod")) (s("rachel") ; s("secretRachel"))
(s("rachel-role") ; s("reg")) (s("read-level") ; s("all")) (s("robert") ; s("secretRobert")) (s("robert-role") ; s("reg"))
(s("write-level") ; s("reg")))] , ’ReqFin}

Figure 3.4: One Web state of the counter-example trace of Section 6.4.

16

CHAPTER 3. AN OVERVIEW OF WEB-TLR

An Interactive WEB-TLR System

WEB-TLR is a software tool designed for model-checking Web applications which is
based on rewriting logic. Web applications are expressed as rewrite theories which
can be formally verified by using the Maude built-in LTLR model checker. This
chapter describes a first improved version of WEB-TLR (as published in [4]) that
promoted it from a console-line based, manual tool to a full-fledged Web application.
For covenience, we will refer to this version as Interactive WEB-TLR. In this en-
hanced version, whenever a property is refuted, an interactive slideshow is generated
that allows the user to visually reproduce, step by step, the erroneous navigation
trace that underlies the failing model checking computation. This provides deep
insight into the system behavior, which helps to debug Web applications.

4.1 Introduction

In recent years, the automated verification of Web applications has become a major
field of research. Nowadays, a number of corporations (including book retailers,
auction sites, travel reservation services, etc.) interact primarily through the Web by
means of Web applications that combine static content with dynamic data produced
“on-the-fly” by the execution of Web scripts (e.g. Java servlets, Microsoft ASP.NET
and PHP code). The inherent complexity of such highly concurrent systems has
turned their verification into a challenge [1, 23, 29].

In [8], a rich and accurate navigation model that formalizes the behavior of
Web applications in rewriting logic was formulated. This formulation allows to
specify critical aspects of Web applications such as concurrent Web interactions,
browser navigation features (i.e., forward /backward navigation, page refreshing, and
window /tab openings), and Web script evaluations by means of a concise, high-level
rewrite theory. This formalization is particularly suitable for verification purposes
since it allows in-depth analyses of several subtle aspects of Web interactions to
be carried out. It has been shown how real-size, dynamic Web applications can
be efficiently model-checked using the Linear Temporal Logic of Rewriting (LTLR),
which is a temporal logic specifically designed to model-check rewrite theories that
combines all the advantages of the state-based and event-based logics, while avoiding
their respective disadvantages [28].

18 CHAPTER 4. AN INTERACTIVE WEB-TLR SYSTEM

This chapter describes WEB-TLR, which is a model-checking tool that imple-
ments the theoretical framework of [8]. WEB-TLR is written in Maude and is
equipped with a freely accessible graphical Web interface (GWI) written in Java,
which allows users to introduce and check their own specification of a Web appli-
cation, together with the properties to be verified. In the case when the property
is proven to be false (refuted), an online facility can be invoked that dynamically
generates a counter-example (expressed as a navigation trace), which is ultimately
responsible for the erroneous Web application behavior. In order to improve the
understandability and usability of the system and since the textual information as-
sociated to counter-examples is usually rather large and poorly readable, the checker
has been endowed with the capability to generate and display on-the-fly slideshows
that allow the erroneous navigation trace to be visually reproduced step by step.
This graphical facility, provides deep insight into Web application behavior and is
extremely effective for debugging purposes.

WEB-TLR focuses on the Web application tier (business logic, and thus handles
server-side scripts; no support is given for GUI verification with Flash technology
or other kinds of client-side computations.

4.2 An overview of the Web verification frame-
work

In this section, we briefly recall the main concepts of the Web verification framework
proposed in [8], which are essential for understanding this tool description. A Web
application is thought of as a collection of related Web pages that are hosted by a
Web server and contain a mixture of (X)HTML code, executable code (Web scripts),
and links to other Web pages. A Web application is accessed over a network such
as the Internet by using a Web browser which allows Web pages to be navigated by
clicking and following links. Interactions between Web browsers and the Web server
are driven by the HTTP protocol.

A Web application is specified in our setting by means of a rewrite the-
ory, which accurately formalizes the entities in play (e.g., Web server, Web
browsers, Web scripts, Web pages, messages) as well as the dynamics of the sys-
tem (that is, how the computation evolves through HTTP interactions). More
specifically, the Web application behavior is formalized by using labeled rewrite
rules of the form label: WebState = WebState, where WebState is a triple!
||_ :(Browsers x Message x Server) — WebState that can be interpreted as a snap-
shot of the system that captures the current configurations of the active browsers
(i.e., the browsers currently using the Web application), together with the server and
the channel through which the browsers and the server communicate via message-
passing. Given an initial Web state stg, a computation is a rewrite sequence starting

LA detailed specification of Browsers, Message, and Server can be found in [8].

4.3. THE WEB-TLR SYSTEM 19

from sty that is obtained by non-deterministically applying (labeled) rewrite rules
to Web states.

Also, formal properties of the Web application can be specified by means of
the Linear Temporal Logic of Rewriting (LTLR), which is a temporal logic that
extends the traditional Linear Temporal Logic (LTL) with state predicates|28], i.e,
atomic predicates that are locally evaluated on the states of the system. Let us see
some examples. Assume that forbid is a session variable that is used to establish
whether a login event is possible at a given configuration. In LTLR, we can define
the state predicate userForbidden(bid), which holds in a Web state when a browser
bid? is prevented from logging on to the system, by simply inspecting the value of
the variable forbid appearing in the server session that is recorded in the considered
state. More formally,

browsers|channel|server(session((bid, {forbid = true})) |= userForbidden(bid) = true

In LTLR, we can also define the following state predicates as boolean functions:
failedAttempt(bid,n), which holds when browser bid has performed n failed login at-
tempts (this is achieved by recording in the state a counter n with the number of
failed attempts); curPage(bid,p), which holds when browser bid is currently display-
ing the Web page p; and inconsistentState, which holds when two browser windows
or tabs of the same browser refer to distinct user sessions. These elementary state
predicates are used below to build more complex LTLR formulas expressing mixed
properties that include dependencies among states, actions, and time. These proper-
ties intrinsically involve both action-based and state-based aspects which are either
not expressible or are difficult to express in other temporal logic frameworks.

4.3 The Web-TLR system

Our verification methodology has been implemented in the WEB-TLR system using
the high-performance, rewriting logic language Maude [16] (around 750 lines of code
not including third-party components). WEB-TLR is available online via its friendly
Web interface at http://users.dsic.upv.es/grupos/elp/soft.html. The Web
interface frees users from having to install applications on their local computer and
hides a lot of technical details of the tool operation. After introducing the (or
customizing a default) Maude specification of a Web application, together with an
initial Web state sty and the LTLR formula ¢ to be verified, ¢ can be automatically
checked at stg. Once all inputs have been entered in the system (see Figure 4.2 for
an example), we can automatically check the property by just clicking the button
Check, which invokes the Maude built-in operator tlr check[9] that supports model
checking of rewrite theories w.r.t. LTLR formulas.

In the case when ¢ is refuted by the model-checker, a counter-example is pro-
vided that is expressed as a model-checking computation trace starting from sty.

2We assume that the browser identifier uniquely identifies the user.

http://users.dsic.upv.es/grupos/elp/soft.html

20 CHAPTER 4. AN INTERACTIVE WEB-TLR SYSTEM

reg=yes

PR
reg=yes reg no
-— «—(€G-
o true __reg=no _
true
N

Login luser=x, Access Add-Comment
pass=y] &
Y
<&
(\
&S R s '$
N Yes
Q Q Q Q e

New-Topic Admin Delete-Topic View-Topic Delete-Comment

Figure 4.1: The navigation model of an Electronic Forum

The counter-example is graphically displayed by means of an interactive slideshow
that allows forward and backward navigation through the computation’s Web states
(see Figure 4.3). Each slide contains a graph that models the structure of (a part
of) the Web application. The nodes of the graph represent the Web pages, and
the edges that connect the Web pages specify Web links or Web script continua-
tions®. The graph also shows the current Web page of each active Web browser.
The graphical representation is combined with a detailed textual description of the
current configurations of the Web server and the active Web browsers.

4.4 A case study of Web verification.

We tested our tool on several complex case studies that are available at the WEB-
TLR web page and distribution package. In order to illustrate the capabilities of the
tool, in the following we discuss the verification of an electronic forum equipped with
a number of common features, such as user registration, role-based access control
including moderator and administrator roles, and topic and comment management.

The navigation model of such an application is formalized by means of the graph-
like structure given in Figure 4.1. Web pages are modeled as graph nodes. Each
navigation link [is specified by a solid arrow that is labeled by a condition ¢ and
a query string ¢q. [is enabled whenever ¢ evaluates to true, while g represents
the input parameters that are sent to the Web server once the link is clicked. For
example, the navigation link connecting the Login and Access Web pages is always
enabled and requires two input parameters (user and pass). The dashed arrows
model Web application continuations, that is, arrows pointing to Web pages that
are automatically computed by Web script executions. Each dashed arrow is labeled
by a condition, which is used to select the continuation at runtime. For example, the
Access Web page has got two possible continuations (dashed arrows) whose labels
are reg=yes and reg=no, respectively. The former continuation specifies that the

3To obey the stateless nature of the Web, the structure of Web applications has traditionally
been “inverted”, resembling programs written in a continuation—passing style [23].

4.4. A CASE STUDY OF WEB VERIFICATION. 21

login succeeds, and thus the Index Web page is delivered to the browser; in the
latter case, the login fails and the Login page is sent back to the browser.

Using the state predicates given in Section 4.2, we are able to define and check
sophisticated LTLR properties w.r.t. the considered Web application model. In the
following, we discuss a selection of the properties that we considered.

Concise and parametric properties. We can define and verify the login pro-
perty “Incorrect login attempts are allowed only k times; then login is denied”, which
is defined parametrically w.r.t. the number of login attempts:

O(curPage(A, Login) A O(OfailedAttempt(A, k))) — OuserForbidden(A)

Note the sugared syntax (which is allowed in LTLR) when using relational notation
for the state predicates which were defined as boolean functions above.

Unreachability properties. Unreachability properties can be specified as LTLR
formulas of the form [J— (State), where State is an undesired configuration that the
system should not reach. This unreachability pattern allows us to specify and verify
a wide range of interesting properties such as the absence of conflict due to multiple
windows, mutual exclusion, link accessibility, etc.

e Mutual exclusion: “No two administrators can access the administration page
simultaneously”.
O - (curPage(A, Admin) A curPage(B, Admin)).

e Link accessibility: “All links refer to existing Web pages” (absence of broken
links).
O = curPage(A, PageNotFound).

e No multiple windows problem: “We do not want to reach a Web application
state in which two browser windows refer to distinct user sessions”.
O —inconsistentState.

The detailed specification of the electronic forum, together with some example prop-
erties are available at http://users.dsic.upv.es/grupos/elp/soft.html.

http://users.dsic.upv.es/grupos/elp/soft.html

CHAPTER 4. AN INTERACTIVE WEB-TLR SYSTEM

Web application and state predicates

Load from file: | |[Browse... H Load]

INDEX = 'Index .
LOGIN = 'Login .
ACCESS = 'Access .
LOGOUT = ‘Logout .
ADMIN = 'Admin .

ADDCOMMENT

'Add-Comment .
‘Delete-Comment .
= 'View-Topic .
'New-Topic .

= 'Delete-Topic .

--- The index page lists the available topics.

--- In addition, it allows guest users to login, logged users to
--- log out, moderators to remove threads and administrators to
--- enter the administration page.
op indexPage :

Initial Web states

Load from file: | |[Browse... H Load]

>-PROPERTIES is inc W -CHECK . j

op users : -> DB .
eq users =
--- administrators

Selected inital state

[initial |

Property (LTLR formuia) to be checked

[[]-(Currentpage(bidAlfred,ADMIN) /\ currentPage(bidanna, ADMIN))]

Check the property !

Figure 4.2: The model definition page

Model checking results

Brief informatien

Date: Fri Jan 15 18:58:44 CET 2010

4.4. A CASE STUDY OF WEB VERIFICATION.

LTLR Formula: [1~(currentPage(bidAlfred, ADMIN) /\ currentPage(bidAnna, ADMIN))

Initial state: initial

slide 17 of 57

| First || previous || next || Last |

Delete-Topic

Delete-Conment

View-Topic

Add-Conment

B(bidAlfred, idAlfred, 'PageNameEmpty,
url-empty, (s("adm"), s("yes"))
(s("adminPage"), s("busy")) : (s("can-create"),
1 (s('can-read"), s("yes”) : (s("can-
"), s('yes)) : (s('mod”), s(*yes")) : (s('reg"),
s('yes"), Z, m(bidAffred, tidalfred, Index ? {‘";g:n:""a’
query-empty, 1), history-empty, 1) : B(bidAnna, |, ! .
Sa tidAnna, 'PageNameEmpty, url-empty, ndex ? (no change) RegFin
(s("adm”), s("yes")) : (s('adminPage"), guery-empty,
s("busy")) : (s("can-create"), s("yes")) : (s("can-
read”), s("yes") : (s("can-write"), s("yes")) :
(s('mod"), s("yes")) : (s('reg"), s("yes")), Z,
m(bidAnna, tidAnna, Index ? query-empty, 1),
history-empty, 1)
S(WebsSite, us(bidAlfred, (s("adm™), s("yes")) : (s("adminPage"),
s("busy") : (s("can-create"), s('yes")) : (s("can-read"), s("yes")) :
(s("can-write"), s("yes")) : (s("mod"), s("yes")) : (5("reg" 'yes")))
:us(bidAnna, (s("adm"), s("yes") : (s("adminPage”), s("busy”)) : |,
S |((eCEER, TESEHHY (s('can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can- SEHEE
write”), s("yes™) : (s('mod"), s('yes")) : (s("'reg"), s('yes"))),
m(bidaAlfred, tidAlfred, Index ? query-empty, 1) : m(bidAnna,
tidAnna, 'Index ? query-empty, 1), readymes-empty, Db)
S(WebSite, us(bidAlfred, (s("adm"), s("yes")) : (s("adminPage”),
s("busy")) : (s("can-create”), s('yes")) : (s('can-read”), s('yes”) :
(s("can-write"), s("yes")) : (s("'mod"), s("yes")) : (s("reg"), s('yes")))
us(bidAnna, (s("adm"), s("yes") : (s("adminPage"), 5("busy")) :
(s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-
write"), s(*yes")) : (s("mod"), s('yes")) : (s("reg"), s('yes"))),
m(bidAnna, tidAnna, Index ? query-empty, 1), rm(m(bidAlfred,
S45 | (no change) (no change) |tidAlfred, 'Index, (Admin ? query-empty) : (Delete-Topic ‘Reslni
‘topic'="") : (Logout ? query-empty) : (New-Topic ? 'topic' :
"View-Topic ? 'topi s("adm"), s("yes") : (s('adminPage"),
s("free")) : (s("can-create”), s('yes")) : (s("can-read"), s("yes"))
(s("can-write"), s('yes") : (s("mod"), s("yes")) : (s("reg”), s('yes")),
1), (s("adm"), s("yes")) : (s("adminPage"), s(*free")) : (s("can-
create"), s("yes") : (s("can-read"), s("yes")) : (s("can-write"),
s('yes")) : (s'mod), sC'yes™)) : (s(‘reg"), s('yes")), Dh), Db)

Figure 4.3: Snapshot of the slide show

23

24

CHAPTER 4. AN INTERACTIVE WEB-TLR SYSTEM

Backward Trace Slicing for Rewriting
Logic Theories

Trace slicing is a widely used technique for execution trace analysis that is effec-
tively used in program debugging, analysis and comprehension. In this chapter,
we present a backward trace slicing technique that can be used for the analysis of
Rewriting Logic theories. Our trace slicing technique allows us to systematically
trace back rewrite sequences modulo equational axioms (such as associativity and
commutativity) by means of an algorithm that dynamically simplifies the traces by
detecting control and data dependencies, and dropping useless data that do not
influence the final result. Our methodology is particularly suitable for analyzing
complex, textually-large system computations such as those delivered as counter-
example traces by Maude model-checkers.

5.1 Introduction

The analysis of execution traces plays a fundamental role in many program manip-
ulation techniques. Trace slicing is a technique for reducing the size of traces by
focusing on selected aspects of program execution, which makes it suitable for trace
analysis and monitoring [13].

Rewriting Logic (RWL) is a very general logical and semantic framework, which
is particularly suitable for formalizing highly concurrent, complex systems (e.g., bi-
ological systems [11, 37] and Web systems [4, 8]). RWL is efficiently implemented in
the high-performance system Maude [16]. Roughly speaking, a rewriting logic theory
seamlessly combines a term rewriting system (TRS) together with an equational the-
ory that may include sorts, functions, and algebraic laws (such as commutativity and
associativity) so that rewrite steps are applied modulo the equations. Within this
framework, the system states are typically represented as elements of an algebraic
data type that is specified by the equational theory, while the system computations
are modeled via the rewrite rules, which describe transitions between states.

Due to the many important applications of RWL, in recent years, the debugging
and optimization of RWL theories have received growing attention [2, 26, 32, 33].
However, the existing tools provide hardly support for execution trace analysis.

26 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

The original motivation for our work was to reduce the size of the counterexample
traces delivered by Web-TLR, which is a RWL-based model-checking tool for Web
applications proposed in [4, 8]. As a matter of fact, the analysis (or even the simple
inspection) of such traces may be unfeasible because of the size and complexity
of the traces under examination. Typical counterexample traces in Web-TLR are
75 Kb long for a model size of 1.5 Kb, that is, the trace is in a ratio of 5.000% w.r.t.
the model.

To the best of our knowledge, the presented algorithm is the first trace slicing
technique for RWL theories. The basic idea is to take a trace produced by the RWL
engine and traverse and analyze it backwards to filter out events that are irrelevant
for the rewritten task. The trace slicing technique that we propose is fully general
and can be applied to optimizing any RWL-based tool that manipulates rewrite
logic traces. Our technique relies on a suitable mechanism of backward tracing
that is formalized by means of a procedure that labels the calls (terms) involved in
the rewrite steps. The backward traversal is preferred to a forward one because a
causal relation is computed. This allows us to infer, from a term ¢ and positions of
interest on it, positions of interest of the term that was rewritten to t. Our labeling
procedure extends the technique in [12], which allows descendants and origins to
be traced in orthogonal (i.e., left-linear and overlap-free) term rewriting systems in
order to deal with rewrite theories that may contain commutativity/associativity
axioms, as well as nonleft-linear, collapsing equations and rules.

Plan of the chapter. In Section 5.2, we recall the essential notions concerning
rewriting modulo equational theories. In Section 5.3, we formalize our backward
trace slicing technique for rewriting logic theories, which computes the reverse de-
pendence among the symbols involved in a rewrite step and removes all data that
are irrelevant with respect to a given slicing criterion. Section 5.4 extends the trace
slicing technique of Section 5.3 by considering extended rewrite theories, i.e., rewrite
theories that may include collapsing, nonleft-linear rules, associative/commutative
equational axioms, and built-in operators. Section 5.5 describes a software tool that
implements the proposed backward slicing technique and presents an experimental
evaluation of the tool that allows us to assess the practical advantages of the trace
slicing technique. In Section 5.6, we discuss some related work.

5.2 Rewriting Modulo Equational Theories

An equational theory is a pair (X, E), where ¥ is a signature and F = AU B
consists of a set of (oriented) equations A together with a collection B of equational
axioms (e.g., associativity and commutativity axioms) that are associated with some
operator of X. The equational theory F induces a least congruence relation on the
term algebra 7%()), which is usually denoted by =g.

5.2. REWRITING MODULO EQUATIONAL THEORIES 27

A rewrite theory is a triple R = (3, E, R), where (3, E) is an equational theory,
and R is a TRS. Examples of rewrite theories can be found in [16].

Rewriting modulo equational theories [26] can be defined by lifting the standard
rewrite relation —x on terms to the FE-congruence classes induced by =g. More
precisely, the rewrite relation — g, for rewriting modulo E' is defined as =g o —p
o =p. A computation in R using —rua g is a rewriting logic deduction, in which
the equational simplification with A (i.e., applying the oriented equations in A to
a term ¢ until a canonical form ¢ | g is reached where no further equations can be
applied) is intermixed with the rewriting computation with the rules of R, using an
algorithm of matching modulo' B in both cases.

Formally, given a rewrite theory R = (X, F, R), where E = A U B, a rewrite
step modulo E on a term sy by means of the rule r : A — p € R (in symbols,
S0 —rua,B S1) can be implemented as follows: (i) apply (modulo B) the equations
of A on sy to reach a canonical form (sg lg); (i) rewrite (modulo B) (so 1r) to
term v by using r € R; and (7i7), apply (modulo B) the equations of A on v again
to reach a canonical form for v, s; =v |g.

Since the equations of A are implicitly oriented (from left to right), the equa-
tional simplification can be seen as a sequence of (equational) rewrite steps (—a/p).

Therefore, a rewrite step modulo E sq N RruA,B S1 can be expanded into a sequence
of rewrite steps as follows:

equational rewrite equational
simplification step/ B simplification
—_—

T
80 —A/B - —*A/B S0y E =B U RV —A/B - —A/B Vg = 51

Given a finite rewrite sequence & = sy —gruaB S1 —RUAB ... — S in the
rewrite theory R, the ezecution trace of S is the rewrite sequence T obtained by
expanding all the rewrite steps s; —rua.B Si+1 of S as is described above.

The computability of —rua,p as well as its equivalence w.r.t. — /g are assured
by enforcing some conditions on the considered rewrite theories [26, 40|, specifically,
coherence between the rules and the equations as well as the assumption of Church-
Rosser and termination properties of A modulo the equational axioms B2.

A rewrite theory R = (X, BUA, R) is called elementary if R does not contain
equational axioms (B = () and both rules and equations are left-linear and not
collapsing.

'A subterm of ¢ matches | (modulo B) via the substitution ¢ if t =5 w and u|, = lo for a
position ¢ of u.

2These conditions are quite natural in practical rewriting logic specifications, and can generally
be checked by using the Maude Church-Rosser, Termination, and Coherence tools [16].

28 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

5.3 Backward Trace Slicing for Elementary
Rewrite Theories

In this section, we formalize a backward trace slicing technique for elementary rewrite
theories that is based on a term labeling procedure that is inspired by [12]. Since
equations in A are treated as rewrite rules that are used to simplify terms, our
formulation for the trace slicing technique is purely based on standard rewriting. In
Section 5.4, we will drop all these restrictions in order to consider more expressive
rewrite theories.

5.3.1 Labeling procedure for rewrite theories

Let us define a labeling procedure for rules similar to [12] that allows us to trace
symbols involved in a rewrite step. First, we provide the notion of labeling for terms,
and then we show how it can be naturally lifted to rules and rewrite steps.

Consider a set A of atomic labels, which are denoted by Greek letters «, 3,
Composite labels (or simply labels) are defined as finite sets of elements of A. By
abuse, we write the label a5y as a compact denotation for the set {«, 5,~}.

A labeling for a term ¢t € Tx 0y (V) is a map L that assigns a label to (the symbol
occurring at) each position w of ¢, provided that root(t),) # O. If ¢ is a term, then
t! denotes the labeled version of ¢. Note that, in the case when t is a context,
occurrences of symbol O appearing in the labeled version of ¢ are not labeled. The
codomain of a labeling L is denoted by Cod(L) ={l | (w —[) € L}.

An initial labeling for the term ¢ is a labeling for ¢t which assigns distinct fresh
atomic labels to each position of the term. For example, given t = f(g(a, a),d), then
tl = f2(¢°(a",a’),0) is the labeled version of ¢ via the initial labeling L ={A ~ «,
1— 3, 1.1—~, 1.2+ 60}. This notion extends to rules and rewrite steps in a
natural way as shown below.

Labeling of Rules.

Let us introduce the notions of redex pattern and contractum pattern of a rule. Let
r: A — pbearule. We call the context A7 (resp. p") redex pattern (resp. contractum
pattern) of r.

Example Given the rule r : f(g(z,v),a)) — d(s(y),y), where a is a constant
symbol, the redex pattern of r is the context f(¢g(O0,0),a), while the contractum
pattern of r is the context d(s(0), O).

Definition (rule labeling) [12] Given a rule r : A — p, a labeling L, for r is defined
by means of the following procedure.

r1. The redex pattern A7 is labeled by means of an initial labeling L.

5.3. BACKWARD TRACE SLICING FOR ELEMENTARY REWRITE THEORIES 29

ro. A new label [is formed by joining all the labels that occur in the labeled
redex pattern A\” (say in alphabetical order) of the rule r. Label [is then
associated with each position w of the contractum pattern p“, provided that

root(pﬁu) # 0.

Example Consider the rule r of Example 5.3.1. The labeled version of rule r using
the initial labeling L = {(A — a,1 +— 3,2 +— ~} is as follows: f*(¢°(z,y),a”) —
A (s*(y), y).

The labeled version of r w.r.t. L, is denoted by rfr. Note that the labeling
procedure shown in Definition 5.3.1 does not assign labels to variables but only to
the function symbols occurring in the rule.

Labeling of Rewrite Steps.

Before giving the definition of labeling for a rewrite step, we need to formalize the
auxiliary notion of substitution labeling.

Definition (substitution labeling) Let o = {z1/t1,...,2,/t,} be a substitu-
tion. A labeling L, for the substitution ¢ is defined by a set of initial labelings
Lo = {Lasjtys- -5 Lo, e, } such that (i) for each binding (x;/t;) in the substitu-
tion o, t; is labeled using the corresponding initial labeling L, /,, and (ii) the sets
Cod(Lg,jt,),-- ., Cod(Ly,) are pairwise disjoint.

By using Definition 5.3.1, we can formulate a labeling procedure for rewrite steps
as follows.

Definition (rewrite step labeling) Let 7 : A — p be a rule, and p : ¢ % s be a
rewrite step using r such that ¢ = C[Ao], and s = C|po],, for a context C' and
position q. Let 0 = {x1/t1,...,x,/t,}. Let L, be a labeling for the rule r, Lc be
an initial labeling for the context C, and L, = {Ly,t,,-- ., La, 1, } be a labeling for
the substitution o such that the sets Cod(L¢), Cod(L,), and Cod(c) are pairwise
disjoint, where Cod(co) = ., Cod(Ly, 1)

The rewrite step labeling L, for y1 is defined by successively applying the following
steps:

s1. First, positions of ¢ or s that belong to the context C' are labeled by using the
initial labeling L.

5. Then positions of ¢, (resp. s),) that correspond to the redex pattern (resp.
contractum pattern) of the rule r rooted at the position ¢ are labeled according
to the labeling L,.

s3. Finally, for each term ¢;, 7 = {1,...,n}, which has been introduced in ¢ or s via
the binding z;/t; € o, with x; € Var()), t; is labeled using the corresponding
labeling L, 1, € Ly

30 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

The labeled version of a rewrite step yu w.r.t. L, is denoted by u’». Let us
illustrate it by means of a rather intuitive example.

Example Consider again the rule r : f(g(z,y),a)) — d(s(y),y) of Exam-
ple 5.3.1, and let u : C[Ag] = Clpo] be a rewrite step using r, where C[\o] =
A(f(9(a, h(b)), a), @), Clpo] = d(d(s(h(b)), h(b)), @), and & = {z/a, y/h(b)}.

Assume that r is labeled by means of the rule labeling of Example 5.3.1, that is

b f (g7 (2,y),) = (5" (y), y)

Let Lo = {A— 6, 2= €}, Lyg = {A = (}, and Ly = {A = 1,1 — 6}
be the labelings for C' and the bindings in o, respectively. Then, the corresponding
labeled rewrite step p” is as follows

e d5(f°‘(gﬂ(ag,h"(b9)), a’),a‘) — d‘s(do‘m(so‘ﬁ”(h"(bg)),h”(bg)), a“)

Now, we are ready to define our labeling-based, backward tracing relation on
rewrite steps.

Definition (origin positions) Let : t = s be a rewrite step and L be a labeling for
p where L, (resp. L) is the labeling of ¢ (resp. s). Given a position w of s, the set
of origin positions of w in ¢ w.r.t. 4 and L (in symbols, <lﬁw) is defined as follows:

<tw = {v € Pos(t) | Ip € Pos(s), (v = 1,) € Ly, (p—1,) € Ly s.t. p<w and I, C 1}

Roughly speaking, a position v in ¢ is an origin of w, if the label of the symbol
occurring in ¢ at position v is contained in the label of a symbol occurring in s” in

the path from its root to the position w.

Example Consider again the rewrite step u” : t*—s? of Example 5.3.1, and let w
be the position 1.2 of s*. The set of labeled symbols occurring in s* in the path
from its root to position w is the set z = {h7,d*#7,d°}. Now, the labeled symbols
occurring in t* whose label is contained in the label of one element of z is the set
{n" £ g’ av,d’}. By Definition 5.3.1, the set of origin positions of w in pl is
<gw={1.1.2, 1, 1.1, 1.2, A}.

Note that the origin positions of w in the rewrite step p : t — s are not the
antecedent positions of w in p [31]; one main difference is the fact that we consider
all positions of s in the path from its root to w for computing the origins, and we
use the labeling to trace back every relevant piece of information involved in the

step .

5.3. BACKWARD TRACE SLICING FOR ELEMENTARY REWRITE THEORIES 31

5.3.2 The Backwards Trace Slicing Algorithm

First, let us formalize the slicing criterion, which basically represents the information
we want to trace back across the execution trace in order to find out the “origins” of
the data we observe. Given a term t, we denote by O; the set of observed positions
of t, which point to the symbols of ¢ that we want to trace/observe.

Definition (slicing criterion) Given a rewrite theory R = (3, A, R) and an execu-
tion trace 7 : s —* t in R, a slicing criterion for 7T is any set O, of positions of the
term ¢.

In the following, we show how backward trace slicing can be performed by ex-
ploiting the backward tracing relation <lﬁ that was introduced in Definition 5.3.1.
Informally, given a slicing criterion Oy, for T :ty — to — ... — t,, at each rewrite
step t;_1 — t;, ¢ = 1,...,n, our technique inductively computes the backward trac-
ing relation between the relevant positions of ¢; and those in t;_;. The algorithm
proceeds backwards, from the final term %, to the initial term %y, and recursively
generates at step ¢ the corresponding set of relevant positions, P, .. Finally, by
means of a removal function, a simplified trace is obtained where each ¢; is replaced
by the corresponding term slice that contains only the relevant information w.r.t.
P,
Definition (sequence of relevant position sets) Let R = (X,A, R) be a rewrite
theory, and T : t Ity ... % ¢, be an execution trace in R. Let L; be the labeling
for the rewrite step t; — t;1 with 0 < i < n. The sequence of relevant position sets
in 7 w.r.t. the slicing criterion O,, is defined as follows:

relevant_positions(T, Oy,) = [Po, .. ., Py

h {Pn:Otn
where L; . .
P = Upeij <1(t;_>tj+1)p, with 0 <j<n

Now, it is straightforward to formalize a procedure that obtains a term slice from
each term ¢ in 7 and the corresponding set of relevant positions of . We introduce
the fresh symbol e ¢ ¥ to replace any information in the term that is not relevant
(i.e., those symbols that occur at any position of ¢ that is not above a relevant
position of the term), hence does not affect the observed criterion.

Definition (term slice) Let ¢t € Ty be a term and P be a set of positions of t. A
term slice of t with respect to P is defined as follows:
slice(t, P) = sl_rec(t, P, \), where

f(slorec(ty, P,p.1),. .., sl_rec(t,, P,p.n))
sl_rec(t, P,p) = if t = f(ty,...,t,) and there exists w s.t. (p.w) € P
e otherwise

32 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

N d. d
s f N a f ¢ f J
. g R a g a g a
a h ° h C h
b . c
term ¢ term slice ¢* of ¢ a concretization of ¢°®

wrt. {1.1.2, 1.2}
Figure 5.1: A term slice and a possible concretization.

In the following, we use the notation ¢* to denote a term slice of the term t.
Roughly speaking, the symbol e can be thought of as a variable, so that any term
t" € 7(X) can be considered as a possible concretization of ¢* if it is an “instance”
of [t*], where [t*] is the term that is obtained by replacing all occurrences of e in ¢*
with fresh variables.

Definition (term slice concretization) Given t' € Ty and a term slice t*, we de-
fine t* oc t' if [t*] is (syntactically) more general than t' (i.e. [t*]oc = ¢/, for some
substitution o). We also say that ' is a concretization of ¢°.

Figure 5.1 illustrates the notions of term slice and term slice concretization for
a given term t w.r.t. the set of positions {1.1.2,1.2}.
Let us define a sliced rewrite step between two term slices as follows.

Definition (sliced rewrite step) Let R = (X, A, R) be a rewrite theory and r a rule
of R. The term slice s* rewrites to the term slice t* via r (in symbols, s* = *) if
there exist two terms s and ¢ such that s® is a term slice of s, t* is a term slice of ¢,
and s = .

Using Definition 5.3.2, backward trace slicing is formalized as follows.

Definition (backward trace slicing) Let R = (X,A, R) be a rewrite theory, and
Tt > t;... 5 t, be an execution trace in R. Let O, be a slicing criterion for
T, and let [P, ..., P,] be the sequence of the relevant position sets of 7 w.r.t. O, .
A trace slice 7° of T w.r.t. O, is defined as the sliced rewrite sequence of term
slices t? = slice(t;, P;) which is obtained by glueing together the sliced rewrite steps
in the set

Ke={ts_ B |0<k<n At #t}

5.4. BACKWARD TRACE SLICING FOR EXTENDED REWRITE THEORIES 33

Note that in Definition 5.3.2, the sliced rewrite steps that do not affect the
relevant positions (i.e., t5_, —5 t3 with ¢§_, = t}) are discarded, which further
reduces the size of the trace.

A desirable property of a slicing technique is to ensure that, for any concretization
of the term slice 3, the trace slice 7° can be reproduced. This property ensures
that the rules involved in 7° can be applied again to every concrete trace 7' that
we can derive by instantiating all the variables in [t§] with arbitrary terms.

Theorem 5.3.1 (soundness) Let R be an elementary rewrite theory. Let T be an
execution trace in the rewrite theory R, and let O be a slicing criterion for T . Let
T 1] ot I8 t2 be the corresponding trace slice w.r.t. O. Then, for any
concretization ty of t, it holds that T : ty =5t} ... 3 ! is an ezecution trace in R,
and t3 o t, fori=1,...,n.

The proof of Theorem 5.3.1 relies on the fact that redex patterns are preserved
by backward trace slicing. Therefore, for i = 1,...,n, the rule r; can be applied to
any concretization t;_, of term ¢?_; since the redex pattern of r; does appear in t?_,,
and hence in #,_;. A detailed proof of Theorem 5.3.1 is included in [34].

5.4 Backward Trace Slicing for Extended Rewrite
Theories

In this section, we consider an extension of our basic slicing methodology that allows
us to deal with extended rewrite theories. An extended rewrite theory R = (X, E, R)
is a rewrite theory where the equational theory (3, E') may contain associativity and
commutativity axioms, and R may contain collapsing as well as nonleft-linear rules.
Moreover, we provide a further extension to deal with the built-in operators existing
in Maude, that is, operators that are not equipped with an explicit functional defi-
nition (e.g., Maude arithmetical operators and if-then-else conditional operators).
It is worth noting that all the proposed extensions are restricted to the labeling
procedure of Section 5.3.1, leaving the backbone of our slicing technique unchanged.

5.4.1 Dealing with collapsing and nonleft-linear rules

Collapsing Rules. The main difficulty with collapsing rules is that they have a
trivial contractum pattern, which consists in the empty context O; hence, it is not
possible to propagate labels from the left-hand side of the rule to its right-hand side.
This makes the rule labeling procedure of Definition 5.3.1 completely unproductive
for trace slicing.

In order to overcome this problem, we keep track of the labels in the left-hand
side of the collapsing rule r, whenever a rewrite step involving r takes place. This
amounts to extending the labeling procedure of Definition 5.3.1 as follows.

34 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

Definition (rewrite step labeling for collapsing rules) Let u : ¢ "% s be a rewrite
step s.t. 0 = {x1/t1,...,2,/t,}. Let L, be a labeling for the rule r. For the case
of a rewrite step given by using a collapsing rule r : A — x;, the labeling procedure
formalized in Definition 5.3.1 is extended as follows:

s4. Let t; be the term introduced in s via the binding z;/t; € o, for some i €
{1,...,n}. Then, the label [; of the root symbol of ¢; in s is replaced by a new
composite label [.l;, where [, is formed by joining all the labels appearing in
the redex pattern of r-.

Example Consider again the labeled collapsing rule f®(a”,z) — z, together with
the rewrite step u : f(a, h(b)) — h(b) and matching substitution o = {z/h(b)}. Let
L, ={{A 7, 1+ 0}} be the labeling for o. Then, by applying Definition 5.4.1,
the labeling of p is

f(a?, W (%)) = ho (0°)

and the trace slice for f(a, h(b)) — h(b) w.r.t. the slicing criterion {A} is f(a, h(e)) —
h(e).

Note that if we had merely applied Definition 5.3.1 instead of Definition 5.4.1,
we would have got the following labeling for pu: f“(a®, h?(b%)) — hY(b°), which is
undesirable since it does not correctly record the redex pattern information that we
need for backward trace slicing: e.g. if we slice the rewriting step p w.r.t. {A} using
this wrong labeling, we would get f(e,h(e)) — h(e).

Nonleft-linear Rules. The trace slicing technique we described in Section 5.3
does not work for nonleft-linear TRS. Consider the rule: r : f(z,y,x) — g(z,y) and
the one-step trace T : f(a,b,a) — g(a,b). If we are interested in tracing back the
symbol g that occurs in the final state g(a,b), we would get the following trace slice
T* : f(e,0,0) — g(e e). However, f(a,b,b) is a concretization of f(e, e e) that
cannot be rewritten by using r. In the following, we augment Definition 5.4.1 in
order to also deal with nonleft-linear rules.

Definition (rewrite step labeling procedure for nonleft-linear rules) Let pu : ¢ ™% sbe
a rewrite step s.t. 0 = {z1/t1,..., 2, /tn}. Let L, = {x1/t1,...,2,/t,} be alabeling
for the substitution o. For the case of a rewrite step given by using a nonleft-linear
rule 7, the labeling procedure formalized in Definition 5.4.1 is extended as follows:

s5. For each variable z; that occurs more than once in the left-hand side of the
rule 7, the following steps should be performed:

— we form a new label [,; by joining all the labels in Cod(L,,/) where
L[L’j/t E LO’)

— let I be the label of the root symbol of s. Then, [, is replaced by a new
composite label [, ;.

5.4. BACKWARD TRACE SLICING FOR EXTENDED REWRITE THEORIES 35

Example Consider the nonleft-linear (labeled) rule f*(x,y,x) — g*(x,y) together
with the rewrite step u : f(g(a), b, g(a)) — g(g(a),b), and matching substitution o =
{x/g(a),y/b}. Then, for the labeling L, = {Ly/g(a), Lyn}, With Ly/g@y = {A —
B, 1=~} and Ly, = {A — 6}, the labeled version of p is

F(g%(a"), b g% (")) = " (9" (a”),).

Finally, by considering the criterion {1}, we can safely trace back the symbol g at
the position 1 of the term g(g(a),b) and obtain the following trace slice

f(g(a),e,g(a)) = g(g(e),e).

5.4.2 Built-in Operators

In practical implementations of RWL (e.g., Maude [16]), several commonly used
operators are pre-defined (e.g., arithmetic and boolean operators, if-then-else con-
structs). Obviously, backward trace slicing of function calls involving built-in op-
erators is not supported by our basic technique. This would require an explicit
(rule-based or equational) specification of every single operator involved in the exe-
cution trace. To overcome this limitation, we further extend the labeling procedure
of Definition 5.4.1 in order to deal with built-in operators.

Definition (rewrite step labeling procedure for built-in operators) For the case of a
rewrite step u : Clop(ty, ..., t,)] = C[t'] involving a call to a built-in, n-ary operator
op, we extend Definition 5.4.1 by introducing the following additional case:

sg. Given an initial labeling L, for the term op(t1,...,t,),

— each symbol occurrence in t' is labeled with a new label that is formed
by joining the labels of all the (labeled) arguments t1, ..., t, of op;

— the remaining symbol occurrences of C[t'] that are not considered in the
previous step inherit all the labels appearing in Clop(t1,...,t,)].

For example, by applying Definition 5.4.2, the addition of two natural numbers
implemented through the built-in operator + might be labeled as +2(77,87) — 15°7.

5.4.3 Associative-Commutative Axioms

Let us finally consider an extended rewrite theory R = (X, AU B, R), where B is a
set of associativity (A) and commutativity (C) axioms that hold for some function
symbols in 3. As described in Section 5.2, an execution trace in R may contain
rewrite steps modulo B that have the form t =5 t' — t”, where =p is the congru-
ence relation induced by the set of axioms B. Now, since B only contains associa-
tivity /commutativity (AC) axioms, terms can be represented by means of a single

36 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

representative of their AC congruence class, called AC canonical form [18]. This
representative is obtained by replacing nested occurrences of the same AC operator
by a flattened argument list under a variadic symbol, whose elements are sorted by
means of some linear ordering. In other words, if a function symbol f is declared
to be associative, then the subterms rooted by f of any term t are flattened; and
if f is also commutative, the subterms are sorted with respect to a fixed (internal)
ordering 3.

The inverse process to flat transformation is unflat transformation, which is
nondeterministic in the sense that it generates all the unflattended terms that are
equivalent (modulo AC) to the flattened term.

For example, consider a binary AC operator f together with the standard lex-
icographic ordering over symbols. Given the B-equivalence f(b, f(f(b,a),c)) =g
f(f(b,e), f(a,b)), we can represent it by using the “internal sequence”
fO, f(f(b,a),¢)) =, fa;b,b,¢) =hau, f(f(bc), f(a,b)), where the first one
corresponds to the flattening transformation sequence that obtains the AC canoni-
cal form, while the second one corresponds to the inverse, unflattening one.

These two processes are typically hidden inside the B-matching algorithms®* that
are used to implement rewriting modulo B.

The key idea for extending our labeling procedure in order to cope with B-
equivalence =p is to exploit the flat transformation (=%,) and unflat transfor-
mation (=74, ,) mentioned above. Without loss of generality, we assume that
flat/unflat transformations are stable w.r.t. the lexicographic ordering over posi-
tions C° (i.e., the relative ordering among the positions of multiple occurrences of
a term is preserved).

This assumption allows us to trace back arguments of commutative operators,
since multiple occurrences of the same symbol can be precisely identified.

Definition (AC Labeling.) Let f be an associative-commutative operator and B
be the AC axioms for f. Consider the B-equivalence t; =g t5 and the corresponding
(internal) flat/unflat transformation T : ¢y =%, S —*ya0a, to- Let L be an initial
labeling for ¢;. The labeling procedure for ¢t; =g t5 is as follows.

1. (flattening) For each flattening transformation step £, —fiat,, tTU in 7 for the
symbol f, a new label [y is formed by joining all the labels attached to the
symbol f in any position w of ¥ such that w = v or w > v, and every symbol
on the path from v to w is f; then, label [} is attached to the root symbol of
t/

v

3Specifically, Maude uses the lexicographic order of symbols.

4See [15] (Section 4.8) for an in-depth discussion on matching and simplification modulo AC in
Maude.

5The lexicographic ordering C is defined as follows: A T w for every position w, and given the
positions w1 = i.w} and we = jwh, wy C ws iff i < j or (i = j and wj C w}). Obviously, in a prac-
tical implementation of our technique, the considered ordering among the terms should be chosen
to agree with the ordering considered by flat/unflat transformations in the RWL infrastructure.

5.5. EXPERIMENTAL EVALUATION 37

2. (unflattening) For each unflattening transformation step ¢, —unfiat,, tiy in T
for the symbol f, the label of the symbol f in the position v of t* is attached
to the symbol f in any position w of ¢’ such that w = v or w > v, and every
symbol on the path from v to w is f.

3. The remaining symbol occurrences in ¢’ that are not considered in cases 1 or
2 above inherit the label of the corresponding symbol occurrence in .

Example Consider the transformation sequence

f, F (b, f(a;¢))) =ar, Fa;0,6,¢) = par, S(S(b;€), fla,b))

by using Definition 5.4.3, the associated transformation sequence can be labeled as
follows:

FEO8, 100, £9(aS, €M) =, TS 07,0°,€T) = oy,
fawe(fawe(b67 Cn)’ fa'ye(ag“’ bé))

Note that the original order between the two occurrences of the constant b is not
changed by the flat/unflat transformations. For example, in the first term, &° is in
position 1 and ¥° is in position 2.1 with 1 C 2.1, whereas, in the last term, b° is in
position 1.1 and #? is in position 2.2 with 1.1 C 2.2.

Finally, observe that the methodology described in this section can be easily
extended to deal with other equational attributes such as identity (U) by explicitly
encoding the internal transformations performed by Maude via suitable rewrite rules.

5.4.4 Extended Soundness

Soundness of the backward trace slicing algorithm for the extended rewrite theories
is established by the following theorem which properly extends Theorem 5.3.1. The
proof of such an extension can be found in [34].

Theorem 5.4.1 (extended soundness) Let R = (X, E, R) be an extended rewrite
theory. Let T be an execution trace in the rewrite theory R, and let O be a slicing
criterion for T. Let T* : t§ 5 ... ™ t* be the corresponding trace slice w.r.t.
O. Then, for any concretization ty of g, it holds that T' : th > ¢\ ... 3t is an
execution trace in R, and t? o t,, fori=1,...,n.

5.5 Experimental Evaluation

We have developed a prototype implementation of our slicing methodology which
is publicly available at http://users.dsic.upv.es/grupos/elp/soft.html. The
implementation is written in Maude and consists of approximately 800 lines of code.

http://users.dsic.upv.es/grupos/elp/soft.html

38 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

Maude is a high-performance, reflective language that supports both equational and
rewriting logic programming, which is particularly suitable for developing domain-
specific applications [19, 20]. The reflection capabilities of Maude allow metalevel
computations in RWL to be handled at the object-level. This facility allows us to
easily manipulate computation traces of Maude itself and eliminate the irrelevant
contents by implementing the backward slicing procedures that we have defined in
this chapter. Using reflection to implement the slicing tool has one important ad-
ditional advantage, namely, the ease to rapidly integrate the tool within the Maude
formal tool environment [17], which is also developed using reflection.

The prototype takes a Maude execution trace and a slicing criterion as input,
and delivers a trace slice together with some quantitative information regarding
the reduction achieved. The outcome is formatted in HTML, so it can be easily
inspected by means of a Web browser.

In order to evaluate the usefulness of our approach, we benchmarked our proto-
type with several examples of Maude applications:

War of Souls (WoS). WoS is a nontrivial producer/consumer example that is
modeled as a game in which an angel and a daemon fight to conquer the souls
of human beings. Basically, when a human being passes away, his/her soul is
sent to heaven or to hell depending on his/her faith as well as the strength of
the angel and the daemon in play.

Fault-Tolerant Communication Protocol (FTCP). FTCP is a Maude speci-
fication borrowed from [28] that models a fault-tolerant, client-server commu-
nication protocol. There can be many clients and many servers, where a server
can serve many clients; however, each client communicates with a single server.
Also, the communication environment might be faulty —that is, messages can
arrive out of order, can be duplicated, or can be lost.

Web-TLR: the Web application verifier. Web-TLR [8, 4] is a software tool de-
signed for model-checking real-size Web applications (Web-mailers, Electronic
forums, etc.) which is based on rewriting logic. Web applications are expressed
as rewrite theories which can be formally verified by using the Maude built-in

LTL(R) model checker [9].

A detailed description of these Maude applications and the Maude code are available
at the URL mentioned above.

We have tested our tool on some execution traces which were generated by the
Maude applications described above by imposing different slicing criteria. For each
application, we considered two execution traces that were sliced using two different
criteria. Table 5.1 summarizes the results we achieved.

As for the WoS example, we have chosen criteria that allow us to backtrace both
the values produced and the entities in play — e.g., the criterion WoS.7;.05 isolates
the angel and daemon behaviours along the trace 7;.

5.6. RELATED WORK

Examole Example | Original | Slicing Sliced %
p trace trace size | criterion | trace size | reduction

WoS.T1.01 201 74.10%
o WoS. 7y 776 —— 133 82.22%
WoS.T3.01 404 58.48%
WoS. 7, 997 —— 174 82.55%
FTCP.T7.01 895 63.39%
crop FICP.Ty 2445) 693 T1.45%
FTCP.73.01 364 84.63%
FTCP. T2 2369 ——— 707 70.16%
Web-TLR.7;.01 1949 93.88%
. Web-TLRTy | 31820 o T 1598 94.97%
) Web-TLR.73.01 9090 87.39%
Web-TLR.7, 72098 Web-TLR.73.05 7119 90.13%

39

Table 5.1: Summary of the reductions achieved.

Execution traces in the FTCP example represent client-server interactions. In
this case, the chosen criteria aim at (i) isolating a server and/or a client in a sce-
nario which involves multiple servers and clients (FTCP.75.0;), and (ii) tracking the
response generated by a server according to a given client request (FTCP.7;.0;).

In the last example, we have used Web-TLR to verify two LTL(R) properties
of a Webmail application. The considered execution traces are much bigger for
this program, and correspond to the counterexamples produced as outcome by the
built-in model-checker of Web-TLR. In this case, the chosen criteria allow us to
monitor the messages exchanged by the Web browsers and the Webmail server, as
well as to focus our attention on the data structures of the interacting entities (e.g.,
browser/server sessions, server database).

For each criterion, Table 5.1 shows the size of the original trace and that of the
computed trace slice, both measured as the length of the corresponding string. The
%reduction column shows the percentage of reduction achieved. These results are
very encouraging, and show an impressive reduction rate (up to ~ 95%). Actually,
sometimes the trace slices are small enough to be easily inspected by the user,
who can restrict her attention to the part of the computation she wants to observe
getting rid of those data which are useless or even noisy w.r.t. the considered slicing
criterion.

5.6 Related Work

Our backward tracing relation (Definition 5.3.1) extends a previous tracing relation
that was formalized in [12] for orthogonal TRSs. In [12], a label is formed from

40 CHAPTER 5. BACKWARD TRACE SLICING FOR REWRITING LOGIC THEORIES

atomic labels by using the operations of sequence concatenation and underlining,
which are used to record every rule application (e.g., a, b, ab, abed, are labels).
Collapsing rules are simply avoided by coding them away. This is done by replacing
each collapsing rule A — x with the rule A\ — &(x), where € is a unary dummy
symbol. Then, in order to lift the rewrite relation to terms containing € occurrences,
infinitely many new extra-rules are added that are built by saturating all left-hand
sides with £(z). In contrast to [12], we use a more sophisticated notion of labeling,
where composite labels are interpreted as sets of atomic labels, which allows us to
deal with collapsing as well as nonleft-linear rules in an effective way.

Tracing techniques have been extensively used in functional programming to
implement debugging tools [14]. For instance, Hat [39] is an interactive system that
enables exploring a computation backwards, starting at the program output or an
error message (with which the computation aborted). Backward tracing in Hat is
carried out by navigating a redex trail —that is, a graph-like data structure that
records dependencies among function calls. Our approach is somehow lighter, since
it does not require the construction of any complex, auxiliary data structure.

The work that is most closely related to ours is [21]. [21] formalizes a notion of
dynamic dependence among symbols by means of contexts and studies its applica-
tion to program slicing of TRSs that may include collapsing as well as nonleft-linear
rules. Both the creating and the created contexts associated with a reduction (i.e.,
the minimal subcontext that is needed to match the left-hand side of a rule and the
minimal context that is “constructed” by the right-hand side of the rule, respec-
tively) are tracked. Intuitively, these concepts are similar to our notions of redex
and contractum patterns. The main differences with respect to our work are as
follows. First, in [21] the slicing is given as a context, while we consider term slices.
Second, the slice is obtained only on the first term of the sequence by the transitive
and reflexive closure of the dependence relation, while we slice the whole execution
trace, step by step. Obviously, their notion of slice is smaller, but we think that our
approach can be more useful for trace analysis and program debugging.

An extension of the method is described in [38], which provides a generic defini-
tion of labeling that works not only for orthogonal TRSs as is the case of [21] but for
the wider class of all left-linear TRSs. Specifically, [38] describes a methodology of
static and dynamic tracing which is mainly based on the notion of sample of a traced
proof term —i.e., a pair (u, P) that records a rewrite step p = s — ¢, and a set P of
reachable positions in ¢ from a set of observed positions in s. The tracing proceeds
forward, while ours employs a backward strategy which is particularly convenient
for trace analysis.

Finally, [21] and [38] apply to TRSs whereas we deal with the richer framework
of RWL that considers equations and equational axioms, namely rewriting modulo
equational theories.

Debugging of Web Applications with
WEB-TLR

WEB-TLR is a Web verification engine that is based on the well-established Rewrit-
ing Logic—Maude/LTLR tandem for Web system specification and model-checking.
In WEB-TLR, Web applications are expressed as rewrite theories that can be for-
mally verified by using the Maude built-in LTLR model checker. Whenever a pro-
perty is refuted, the tool delivers a counterexample trace that reveals an undesired,
erroneous navigation sequence. Unfortunately, the analysis (or even the simple
inspection) of such counterexamples may be unfeasible because of the size and com-
plexity of the traces under examination. In this chapter, we delve into a debugging
facility of WEB-TLR especially focused on tackling these cases. This facility is
based on the backward trace-slicing technique described in Chapter 5 for rewriting
logic theories, which allows the pieces of information that we are interested into to
be traced back through inverted rewrite sequences. The slicing process drastically
simplifies the computation trace by dropping useless data that do not influence the
final result. By using this facility, the Web engineer can focus on the relevant frag-
ments of the failing application, which greatly reduces the manual debugging effort
and also decreases the number of iterative verifications.

6.1 Introduction

Model checking is a powerful and efficient method for finding flaws in hardware
designs, business processes, object-oriented software, and hypermedia applications.
One remaining major obstacle to a broader application of model checking is its lim-
ited usability for non-experts. In the case of specification violation, it requires much
effort and insight to determine the root cause of errors from the counterexamples
generated by model checkers [41].

WEB-TLR [8] is a software tool designed for model-checking Web applications
that is based on rewriting logic [26]. Web applications are expressed as rewrite
theories that can be formally verified by using the Maude built-in LTLR model-
checker [9]. Whenever a property is refuted, a counterexample trace is delivered
that reveals an undesired, erroneous navigation sequence. WEB-TLR is endowed

42 CHAPTER 6. DEBUGGING OF WEB APPLICATIONS WITH WEB-TLR

with support for user interaction in Chapter 4 (and [4]), including the successive ex-
ploration of error scenarios according to the user’s interest by means of a slideshow
facility that allows the user to incrementally expand the model states to the desired
level of detail, thus avoiding the rather tedious task of inspecting the textual repre-
sentation of the system. Although this facility helps the user to keep the overview
of the model, the analysis (or even the simple inspection) of the delivered coun-
terexamples is still unfeasible because of the size and complexity of the traces under
examination. This is particularly serious in the rewriting logic context of WEB-
TLR because Web specifications may contain equations and algebraic laws that are
internally used to simplify the system states, and temporal LTLR formulae may
contain function symbols that are interpreted in the considered algebraic theory.
All of this results in execution traces that may be difficult to understand for users
who are not acquainted with rewriting logic technicalities.

This chapter aims at improving the understandability of the counterexamples
generated by WEB-TLR. This is achieved by means of a complementary Web de-
bugging facility that supports both the efficient manipulation of counterexample
traces and the interactive exploration of error scenarios. This facility is based on a
backward trace-slicing technique for rewriting logic theories formalized in Chapter 5
(and [5]) that allows the pieces of information that we are interested into to be traced
back through the inverse rewrite sequence. The slicing process drastically simplifies
the computation trace by dropping useless data that do not influence the final result.
We provide a convenient, handy notation for specifying the slicing criterion that is
successively propagated backwards at locations selected by the user. Preliminary
experiments reveal that the novel slicing facility of the extended version of WEB-
TLR is fast enough to enable smooth interaction and helps the users to locate the
cause of errors accurately without overwhelming them with bulky information. By
using the slicing facility, the Web engineer can focus on the relevant fragments of
the failing application, which greatly reduces the manual debugging effort.

Plan of the chapter. In Section 6.2 we motivate the need for an improved
WEB-TLR and introduce a novel slicing facility. Section 6.3 introduces a pattern-
matching language that allows the selection of the slicing criterion. In Section 6.4,
we illustrate our methodology for interactive analysis of counterexample traces and
debugging of Web Applications.

6.2 Extending the WEB-TLR System

WEB-TLR is a model-checking tool that implements the theoretical framework
of [8]. The WEB-TLR system is available online via its friendly Web interface
at http://users.dsic.upv.es/grupos/elp/soft.html. The Web interface frees
users from having to install applications on their local computer and hides unnec-
essary technical details of the tool operation. After introducing the (or customizing

http://users.dsic.upv.es/grupos/elp/soft.html

6.2. EXTENDING THE WEB-TLR SYSTEM 43

a default) Maude specification of a Web application, together with an initial Web
state sty and the LTLR formula ¢ to be verified, ¢ can be automatically checked at
stg. Once all inputs have been entered in the system, we can automatically check
the property by just clicking the button Check, which invokes the Maude built-in
operator tlr check[9] that supports model checking of LTLR formulas in rewrite the-
ories. If the property is not satisfied, an interactive slideshow that illustrates the
corresponding counterexample (expressed in the form of an execution trace) is ge-
nerated. The slideshow supports both forward and backward navigation through
the execution trace and combines a graphical representation of the application’s
navigation model with a detailed textual description of the Web states.

Although Web-TLR provides a complete picture of both, the application model
and the generated counterexample, this information is hardly exploitable for de-
bugging Web applications. Actually, the graphical representation provides a very
coarse-grained model of the application’s dynamics, while the textual description
conveys too much information (e.g., see Figure 3.4). Therefore, in several cases
both representations may result in limited use.

In order to assist Web engineers in the debugging task, we extend WEB-TLR by
including a trace-slicing technique whose aim is to reduce the amount of information
recorded by the textual description of counterexamples. Roughly speaking, this
technique (originally described in [5]) consists in tracing back, along an execution
trace, all the symbols of a (Web) state that are of interest (target symbols), while
useless data are discarded. The basic idea is to take a Rewriting Logic execution
trace and traverse it backwards in order to filter out data that are definitely related
to the wrong behavior. This way, we can focus our attention on the most critical
parts of the trace, which are eventually responsible for the erroneous application’s
behaviour. It is worth noting that our trace slicing procedure is sound in the sense
that, given an execution trace 7T, it automatically computes a trace slice of 7 that
includes all the information needed to produce the target symbols of 7 we want
to observe. In other words, there is no risk that our tool eliminates data from the
original execution trace 7 which are indeed relevant w.r.t. the considered target
symbols. Soundness of backward trace slicing has been formally proven in [6].

We have implemented the backward trace-slicing technique as a stand-alone ap-
plication written in Maude that can be used to simplify general Maude traces (e.g.,
the ones printed when the trace is set on in a standard rewrite). Furthermore,
we have coupled the on-line WEB-TLR system with the slicing tool in order to
optimize the counterexample traces delivered by WEB-TLR. To achieve this, the
external slicing routine is fed with the given counterexample, the selected Web state
s where the backward-slicing process is required to start, and the slicing criterion
for s —that is, the symbols of s we want to trace back. It is worth noting that, for
model checking Web applications with Web-TLR, we have developed a specially—
tailored, handy filtering notation that allows us to easily specify the slicing criterion
and automatically select the desired information by exploiting the powerful, built-in
pattern-matching mechanism of Rewriting Logic. The outcome of the slicing pro-

44 CHAPTER 6. DEBUGGING OF WEB APPLICATIONS WITH WEB-TLR

cess is a sliced version of the textual description of the original counterexample trace
which facilitates the interactive exploration of error scenarios when debugging Web
applications.

6.3 Filtering Notation

In order to select the relevant information to be traced back, we introduce a simple,
pattern-matching filtering language that frees the user from explicitly introducing
the specific positions of the Web state that s/he wants to observe !. Roughly speak-
ing, the user introduces an information pattern p that has to be detected inside
a given Web state s. The information matching p that is recognized in s, is then
identified by pattern matching and is kept in s°, whereas all other symbols of s
are considered irrelevant and then removed. Finally, the positions of the Web state
where the relevant information is located are obtained from s°®. In other words, the
slicing criterion is defined by the set of positions where the relevant information is
located within the state s that we are observing and is automatically generated by
pattern-matching the information pattern against the Web state s.

The filtering language allows us to define the relevant information as follows: (7)
by giving the name of an operator (or constructor) or a substring of it; and (i)
by using the question mark “?” as a wildcard character that indicates the position
where the information is considered relevant. On the other hand, the irrelevant
information can be declared by using the wildcard symbol “.” as a placeholder for
uninteresting arguments of an operator.

Let us illustrate this filtering notation by means of a rather intuitive example.
Let us assume that the electronic forum application allows one to list some data
about the available topics. Specifically, the following term ¢ specifies the names of
the topics available in our electronic forum together with the total number of posted
messages for each topic.

topic_info(topic(astronomy, iposts(520)), topic(stars, posts(58)),
topic(astrology, fposts(20)), topic(telescopes, fposts(290)))

Then, the pattern topic(astro, fposts(?)) defines a slicing criterion that allows us
to observe the topic name as well as the total number of messages for all topics
whose name includes the word astro. Specifically, by applying such a pattern to the
term t, we obtain the following term slice

topic_info(topic(astronomy, §posts(520)), e, topic(astrology, tposts(20)), e)

which ignores the information related to the topics stars and telescopes, and induces
the slicing criterion

{A.11, A1.2.1, A3.1, A3.2.1}.

ITerms are viewed as labeled trees in the usual way. Positions are represented by sequences
of natural numbers denoting an access path in a term. The empty sequence A denotes the root
position of the term.

6.4. A DEBUGGING SESSION WITH WEB-TLR 45

Note that we have introduced the fresh symbol e to approximate any output
information in the term that is not relevant with respect to a given pattern.

6.4 A Debugging Session with WEB-TLR

In this section, we illustrate our methodology for interactive analysis of counterex-
ample traces and debugging of Web applications.

Let us consider an initial state that consists of two administrator users whose
identifiers are bidAlfred and bidAnna, respectively. Let us also recall the mutual
exclusion Property 3.1 of Chapter 3

[0 = (curPage(bidAlfred, Admin) A curPage(bidAnna, Admin))

which states that “no two administrators can access the administration page simul-
taneously”. Note that the predicate state curPage(bidAlfred, Admin) holds when the
user bidAlfred logs into the Admin page (a similar interpretation is given to predicate
curPage(bidAnna, Admin)). By verifying the above property with WEB-TLR, we get
a huge counterexample that proves that the property is not satisfied. The trace size
weighs around 190kb.

In the following, we show how the considered Web application can be debugged
using WEB-TLR. First of all, we specify the slicing criterion to be applied on the
counterexample trace. This is done by using the wildcard notation on the terms
introduced in Section 6.3. Then, the slicing process is invoked and the resulting
trace slice is produced. Finally, we analyze the trace slice and outline a methodology
that helps the user to locate the errors.

Slicing Criterion

The slicing criterion represents the information that we want to trace back through
the execution trace 7 that is produced as the outcome of the WEB-TLR model-
checker.

For example, consider the final Web state s shown in Figure 3.4. In this Web
state, the two users, bidAlfred and bidAnna, are logged into the Admin page. There-
fore, the considered mutual exclusion property has been violated. Let us assume that
we want to diagnose the erroneous pieces of information within the execution trace
T that produce this bug. Then, we can enter the following information pattern as
input,

B(?7 - ?7)Ty Y Y Y *)

where the operator B restricts the search of relevant information inside the browser
data structures, the first question symbol ? represents that we are interested in
tracing the user identifiers, and the second one calls for the Web page name. Thus,
by applying the considered information pattern to the Web state s, we obtain the

46 CHAPTER 6. DEBUGGING OF WEB APPLICATIONS WITH WEB-TLR

slicing criterion {A.1.1.1, A.1.1.3, A.1.2.1, A.1.2.3} and the corresponding sliced
state

s* = [B(bibAlfred, e, Admin, e e e e e e): B(bibAnna,e, Admin,e e e e e e)|[e] e]

Note that A.1.1.1 and A.1.2.1 are the positions in s* of the user identifiers
bidAlfred and bidAnna, respectively, and A.1.1.3 and A.1.2.3 are the positions
in s* that indicate that the users are logged into the Admin page.

Trace Slice

Let us consider the counterexample execution trace 7 = sy — $1 — ... — S, Where
s, = s. The slicing technique proceeds backwards, from the observable state s,, to
the initial state sg, and for each state s; recursively generates a sliced state s? that
consists of the relevant information with respect to the slicing criterion.

By running the backward-slicing tool with the execution trace 7 and the slicing
criterion given above as input, we get the trace slice 7* as outcome, where useless
data that do not influence the final result are discarded. Figure 6.1 shows a part of
the trace slice T°.

It is worth observing that the slicing process greatly reduces the size of the
original trace T, and allows us to center on those data that are likely to be the
source of an erroneous behavior.

Let |7 | be the size of the trace 7, namely the sum of the number of symbols of
all trace states. In this specific case, the size reduction that is achieved on the the
subsequence s(,_¢) . .. s, of T, in symbols 7Ts<n_6)~sn} is:

‘ [Szn—(a)'“sﬁ]’ _ 121
"ES(H_G)...SH] ’ 1458

= 0.083 (i.e., a reduction of 91.7%)

Trace Slice Analysis

Let us analyze the information recorded in the trace slice 7°. In order to facili-
tate understanding, the main symbols involved in the description are underlined in
Figure 6.1.

- The sliced state s? is the observable state that records only the relevant infor-
mation defined by the slicing criterion.

- The slice state s;_; is obtained from s, by the flat/unflat transformation.

- In the sliced state s?_,, the communication channel contains a response
message for the user bidAlfred. This response message enables the user
bidAlfred to log into the Admin page. Note that the identifier tidAlfred
occurs in the Web state. This identifier signals the open window that the

6.4. A DEBUGGING SESSION WITH WEB-TLR 47

ScriptEval flat/unflat ResIni
o _ [] [] o [] []
T®=5)... = s ¢ sy _s Sy _4 Sy _q

flat/unflat < Rest’n} o flat/unflat g0

n—2 n—1 n
where
sy = [B(bidAlfred, x, Admin, *, , %, %, %, %) : B(bidAnna, *, Admin, x, *, *, %, %, *)] * [*][*]
sy, = |[B(bidAnna, %, Admin, %, *, *, %, %, %) : B(bidAlfred, *, Admin, *, %, *, %, %, %)] % [%][*]
sy_o = [B(bidAnna, *, Admin, , %, %, *, %, %) : B(bidAlfred, tidAlfred, %, , *, %, %, %, 1)]*

S2B(bidAlfred, tidAlfred, Admin, *, , 1) : *|[x]

st _o = [B(bidAlfred, tidAlfred, *,*,*,*,*,%,1) : B(bidAnna, %, Admin, %, x, *, *, %, *)]*
% : 32B(bidAlfred, tidAlfred, Admin, *, x, 1)][]

sy 4= |[B(bidAlfred,tidAlfred,*,*,*,*, %, , 1) : B(bidAnna, %, Admin, *, %, %, %, *, %)]| % [%]
S(x,* : us(bidAlfred,), *, (rm(S2B(bidAlfred, tidAlfred, Admin, *, %, 1), %, %) : %), %]

sy_s = [B(bidAlfred, tidAlfred,*,*,*,*,%,%, 1) : B(bidAnna, %, Admin, %, x, %, %, %,)] * [¥]
S(x,us(bidAlfred, %) : %, , (* : evalScript(WEB-APP, SESSION,
B2S(bidAlfred, tidAlfred, Admin’query-empty, 1),DB)),)]

sy_¢ = [B(bidAlfred,tidAlfred, *,*,*,*,%,%, 1) : B(bidAnna, %, Admin, %, , %, *, %,)] * []
[S(WEB-APP, (* : us(bidAlfred, SESSION)),
B2S(bidAlfred,tidAlfred, Admin?query-empty, 1) : *, %, DB]

Figure 6.1: Trace slice T°.

response message refers to. Also, the number 1 that occurs in the sliced state
sy _, represents the ack (acknowledgement) of the response message. Finally,
the reduction from s?_, to s?_, corresponds again to a flat/unflat transforma-

tion.

- In the sliced state s;_,, we can see the response message stored in the server

that is ready to be sent, whereas, in the server configuration of the sliced
state s?_, the operator evalScript occurs. This operator takes the Web
application (WEB-APP), the user session (SESSION), the request message, and
the database (DB) as input. The request message contains the query string
that has been sent by the user bidAlfred to ask for admission into the Admin
page. Observe that the response message that is shown in the slice state s?_,
is the one given as the outcome of the evaluation of the operator evalScript

in the sliced state s} _;.

- Finally, the sliced state s;,_, shows the request message waiting to be evalu-
ated.

48 CHAPTER 6. DEBUGGING OF WEB APPLICATIONS WITH WEB-TLR

Note that the outcome delivered by the operator evalScript, when the script
Qadmin 1S evaluated, is not what the user would have expected, since it allows the
user to log into the Admin page, which leads to the violation of the considered
property. This identifies the script augmin as the script that is responsible for the
error. Note that this conclusion is correct because a,gmin has not implemented a
mutual exclusion control (see Figure 3.3). A snapshot of WEB-TLR that shows the
slicing process is given in Figure 6.2.

This bug can be fixed by introducing the necessary control for mutual exclusion
as follows. First, a continuation (”adminPage” = "busy”) — Index?[()]) is added to
the Admin page, and the a,gmin is replaced by a new Web script that checks whether
there is another user in the Admin page. In the case when the Admin page is busy
because it is being accessed by a given user, any other user is redirected to the Index
page. If the Admin page is free, the user asking for permission to enter is authorized
to do so (and the page gets locked). Furthermore, the control for unlocking the
Admin page is added at the beginning of the script ajngex- Hence, the fixed Web
scripts are as follows:

PAdmin = (Admin,aadminy
{(”adminPage” = "busy”) — Index?[0])},
{(0 — (Index?[0]))})

where the new aagmin 1S:

’u := getSession("user") ;

’adm := selectDB("adminPage") ;

if (’adm != ’u) then
setSession("adminPage", "busy")
else

setSession("adminPage", "free")) ;
updateDB("adminPage", ’u))

fi

and the piece of code that patches qingex is:

’adm := getSession("adminPage") ;

if (Padm = "free") then
updateDB("adminPage", "free")
fi ;

Finally, by using WEB-TLR again we get the outcome “Property is fulfilled, no
counter-example given", which guarantees that now the Web application satisfies
Property 3.1. Figure 6.3 shows a snapshot of WEB-TLR for the case when a
property is fulfilled.

6.4. A DEBUGGING SESSION WITH WEB-TLR

49

Slicing Process

Selected State

State Browser

Messages

B(bidAlfred, tidAlfred, 'Admin, url-empty, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-write"),
s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")), Z, m(bidAlfred, tidAlfred, 'Index ?

S(WebSite, us(bidAlfred, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) :

x| (S"can-wite"), s('yes") (s(mod"), s('yes") : (s('reg”). S(yes")

tidAlfred, 'Index

S41 | query-empty, 1), history-empty, 1) : B(bidAnna, tidAnna, 'Admin, 'Index ? query- 2 query-empty, : us(bidAnna, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) : ‘Reqlni
empty, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) : (s("can-create"), s("yes")) : 1'> ' | (s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-
(s("can-read"), s("yes")) : (s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes"))),
s("yes")), Z, m(bidAnna, tidAnna, 'Admin ? query-empty, 1), history-empty, 1) mes-empty, readymes-empty, Db)

Filtering

Filterin £ A

vattoms (B %) (_Check)

Trace Slice

Positions: {A\, A.1.1.1, A.1.1.3, A.1.2.1,A.1.2.3}

State State detail Rule
s* ((:(B(bidAlfred tidAlfred,**, *,*,*,*,5(0)),B(bidAnna, tidAnna,*,*,**,*,*, 5(0))),*,*,S(WebSite,:(us(bidAlfred, Start
n-15 Session),us(bidAnna,Session)),m(bidAnna,tidAnna,?(Admin,query-empty),s(0)),rm(m(bidAlfred, tidAlfred,Admin,?(*,*),*,s(0)),*,*),DB)))
s* ((:(B(bidAlfred, tidAlfred,**,*, *,**,5(0)),B(bidAnna,tidAnna, ******s(0))), *,*,S(WebSite,:(us(bidAlfred,Session),us(bidAnna,Session)),: EquationalSimplification-
n-14 (m(bidAnna,tidAnna,?(Admin, query-empty),s(0)),*),rm(m(bidAlfred, tidAlfred, Admin,?(*,*),*,s(0)),*,*),DB))) Flat-UnFlat
. ((:(B(bidAlfred tidAlfred,**, *,***,5(0)),B(bidAnna, tidAnna,*,*,**,*,*, s(0))),*,*,S(*,:(us(bidAlfred, *),us(bidAnna,*)),*,:(rm(m(bidAlfred, ScriptEval
Sn13 tidAlfred, Admin,?(*,*),*,s(0)),*,*),evalScript(WebSite,Session,m(bidAnna, tidAnna,?(Admin,query-empty),s(0)),DB)), *))) P!
o ((:(B(bidAlfred,tidAlfred,**, *,*,*,*,s(0)),B(bidAnna, tidAnna,**,*,*,*,*, s(0))),*,*,S(*,:(us(bidAnna, *),us(bidAlfred,*)),*,:(rm(m(EquationalSimplification-
$"n-12 | bidAlfred tidAlfred,Admin,2(*,*), *:5(0)),*,*).rm(m(bidAnna, tidAnna,Admin,2(*,*),*,s(0)). **)).*))) Flat-UnFlat
S%n-11 Reslni
s ((:(B(bidAlfred, tidAlfred,* **, ** * 5(0)),B(bidAnna tidAnna, *,*** * *,s(0))), *,m(bidAlfred, tidAlfred,Admin,?(*, *),*,s(0)),S(*,:(*,us(bidAnna,*)),* EquationalSimplification-
n-10 (rm(m(bidAnna,tidAnna, Admin,?(*,*),*,s(0)),*, *),*),*))) Flat-UnFlat
< ((:(B(bidAlfred,tidAlfred,* *, *,* * * 5(0)),B(bidAnna, tidAnna,* *** * *, s(0))),* :(m(bidAlfred tidAlfred,Admin, 2(*,*),*,s(0)),m(bidAnna, Resini
19 | tidAnna,Admin,2(*,*),*,s(0))), *))
s® ((:(B(bidAnna,tidAnna,*,*, *,*,* * s(0)),B(bidAlfred, tidAlfred,* *,*,* *,*, s(0))),*,:(m(bidAlfred,tidAlfred, Admin, ?(*,*),*,5(0)),m(bidAnna, EquationalSimplification-
18 | tidAnna,Admin,2(*,%),,s(0))), *)) Flat-UnFlat
S®h7 | (((B(bidAnna,tidAnna,* * * * *, *:5(0)),B(bidAlfred,* Admin,2(*,*),*,* ***)), * m(bidAnna tidAnna,Admin,?(* %), *,5(0)),")) ResFin
S®6 | ((:(B(bidAlfred,* Admin,2(* *), *,** **),B(bidAnna, idAnna,* * * ** ¥, 5(0))), :(m(bidAnna,tidAnna,Admin,2(**),* 5(0)),*),")) ﬁ;‘:_alj'r‘l’gf‘a"s'mp""ca"""'
S®n5 | (((B(bidAlfred, * Admin,2(*,*),**, * *,*),B(bidAnna,* Admin,2(*,*),*,* ** ")), **.*)) ResFin
. . . . EquationalSimplification-
. . » Dk F) K xk * (D[RR K KA A RN £k
S®n-4 | ((:(B(bidAnna,*,Admin,?(*,*), *,*,*,*,*),B(bidAlfred, *,Admin,:(*,?(*,*)).*, *.**,*)),*,".")) Elat-UnFlat
S*n3 | (((B(bidAnna, *, Admin,?(*,*),*,*, **,*),B(bidAlfred,* Admin, **** **)),*, *,*)) Regqlni
. . . . EquationalSimplification-
. . » *x ok n * L(xP(F)) KR A AN E ko
S%n2 [((:(B(bidAlfred,*, Admin,***,***), B(bidAnna,*, Admin,:(*,2(*, *)),,**,*,*)).",) Flat-UnFlat
S%n1 | ((:(B(bidAlfred,*, Admin,***, *,**),B(bidAnna,* Admin, ***,***)),*, *,*)) Reqlni
o EquationalSimplification-
8% | deleted Flat-UnFlat

Figure 6.2: Snapshot of the WEB-TLR System.

50 CHAPTER 6. DEBUGGING OF WEB APPLICATIONS WITH WEB-TLR

Model checking results

Brief information
Date: Mon May 16 19:17:07 CEST 2011
Formula: []~(currentPage(bidAlfred,ADMIN) /\ currentPage(bidAnna,ADMIN))
Initial state: initial

Property is fulfilled, no counter-example given.

Figure 6.3: Snapshot of the WEB-TLR System for the case of no counter-examples.

Implementation

The WEB-TLR system described along this work has been implemented as a Web
application. This chapter gives an overview of the implementation of the latest
version of WEB-TLR, which includes all the features enumerated in this work.

Functionally, WEB-TLR is composed of three parts. The first one contains
Maude definitions of a DSL for Web applications and another DSL for Web scripts,
combined with the provisions necessary to perform model checking over them; for
convenience, we will refer to this part as simply ‘the model checker’. The second
part is the slicing algorithm, which has been completely programmed in Maude.
Finally, the third part contains both the GWI and a set of post-processing filters
that simplify the generated counterexamples before they are presented to the user.

Most of WEB-TLR has been implemented in a combination of the programming
languages Java and Maude. In figures, the code base of WEB-TLR consists of
approximately:

e 1,600 lines of Maude code for the model checker.

1,300 lines of Maude code for the slicing facility.

225 lines of Maude code for post-processing.

150 lines of JavaScript code for the client-side GWI.

2,700 lines of Java code for the server-side GWI and post-processing.

The latest version of WEB-TLR (including its source code) can be found at
http://users.dsic.upv.es/grupos/elp/soft.html. The system can be used
from any modern web browser and examples are provided on-line so the user can
test the platform without needing to perform any sort of installation or download.

http://users.dsic.upv.es/grupos/elp/soft.html

52 CHAPTER 7. IMPLEMENTATION

7.1 Implementation of Interactive WEB-TLR

Since the input/output capabilities of Maude are very limited, most of the new
code in Interactive WEB-TLR has been written in Java, including the server-side
JSP scripts, parsing of the model checker output, and execution of external programs
(Graphviz). However, we have taken benefit of Maude’s high-level abstraction where
practical, such as the implementation of a post-processing filter which removes re-
dundant or static information.

The GWI design is focused on simplicity. A linear input form collects the infor-
mation about the Web application model, the state predicates, and the formula to
be checked. If the property is true, a message is shown. Otherwise, the tool presents
a slide show representing a counterexample that refutes the property.

7.1.1 Maude

As presented in [36], Maude is a high-performance reflective language and system
supporting both equational and rewriting logic specification and programming for
a wide range of applications. Maude has been influenced in important ways by
the OBJ3 language, which can be regarded as an equational logic sublanguage.
Besides supporting equational specification and programming, Maude also supports
rewriting logic computation.

Since the original implementation of WEB-TLR was coded completely in Maude,
its selection as a development language was easy. Nevertheless, Maude has proven to
be a worthy choice for our purposes. Thanks to having a built-in model checker, we
have been able to combine in a single environment the specification of the dynamic
parts (Web scripts) of our model and their model checking.

A new module was added to the WEB-TLR model checker, in file parser .maude.
It implements a post-processing filter which purges the generated counterexamples
of redundant information, improving its readability.

7.1.2 Java Server Pages

Java Server Pages (JSP) is a technology for developing dynamic Web pages. They
manage so by combining a plain HTML page with Java code which generates content
depending on a variety of factors; in our case, the information provided by the user.
This information represents the Web application model that is to be checked.

JSP was chosen out of the familiarity of the authors with the Java programming
language. We use the Apache Tomcat server due to its simplicity.

The JSP files only contain simple logic. All heavy-weight processing is concen-
trated in ParserModelChecking. jar.

7.2. IMPLEMENTATION OF THE SLICING FACILITY IN RWL 53

7.1.3 Graphviz and SVG

As introduced in [35], the Graphviz layout programs take descriptions of graphs in a
simple text language, and make diagrams in useful formats, such as images and SVG
for web pages, PDF or Postscript for inclusion in other documents; or display in an
interactive graph browser. Graphviz has many useful features for concrete diagrams,
such as options for colors, fonts, tabular node layouts, line styles, hyperlinks, rolland
custom shapes.

The biggest handicap of using Graphviz was its inability to generate incremen-
tal graphs, which we needed. When advancing slides, the visual effect of non-
incremental graphs is awful. We solved this issue with a combination of some pre-
computation, unnecessary whitespace, and monospaced fonts, tricking Graphviz into
repeating the same layout for every graph.

We opted for the SVG output of Graphviz in order to inline it in XHTML code,
as explained in the next section.

7.1.4 XHTML

XHTML was chosen instead of HTML due to its ability to inline SVG images in its
code. This feature was important to simplify the server-side implementation. Since
temporal files to store the generated images were made unnecessary, so was the need
to control their lifetime and deletion.

While SVG and XHTML are W3C standards, these choices pose a compatibil-
ity problem with old versions of Microsoft Internet Explorer (IE), which lack the
required level of support. Thankfully, starting from version 9, IE fully supports
XHTML and inline SVG. Of the remaining browsers, the most popular — Mozilla
Firefox, Google Chrome, Apple Safari, and Opera — all render the page successfully.

7.2 Implementation of the Slicing Facility in RWL

The enhanced verification methodology described in Chapter 6 has been imple-
mented in the WEB-TLR system using the high-performance, rewriting logic lan-
guage Maude [16]. In this section, we discuss some of the most important features
of the Maude language that we have been conveniently exploited for the optimized
implementation of WEB-TLR.

Maude is a high-performance, reflective language that supports both equa-
tional and rewriting logic programming, which is particularly suitable for developing
domain-specific applications [19, 20]. In addition, the Maude language is not only
intended for system prototyping, but it has to be considered as a real programming
language with competitive performance. The salient features of Maude that we used
in the implementation of our framework are as follows.

54 CHAPTER 7. IMPLEMENTATION

7.2.1 Metaprogramming

Maude is based on rewriting logic [26], which is reflective in a precise mathematical
way. In other words, there is a finitely presented rewrite theory U that is universal
in the sense that we can represent any finitely presented rewrite theory R (including
U itself) in U (as a datum), and then mimick the behavior of R in U.

In the implementation of the extended WEB-TLR system, we have exploited
the metaprogramming capabilities of Maude in order to provide the system with our
backward-tracing slicing tool for RWL theories in RWL itself. Specifically, during
the backward-tracing slicing process, all input WEB-TLR modules are raised to the
meta-level and handled as meta-terms, which are meta-reduced and meta-matched
by Maude operators.

7.2.2 AC Pattern Matching

The evaluation mechanism of Maude is based on rewriting modulo an equational
theory E (i.e., a set of equational axioms), which is accomplished by performing
pattern matching modulo the equational theory E. More precisely, given an equa-
tional theory F, a term ¢ and a term u, we say that ¢ matches u modulo E (or that ¢
E-matches u) if there is a substitution o such that o (t)=g u, that is, o (t) and u are
equal modulo the equational theory E. When E contains axioms that express the
associativity and commutativity of one operator, we talk about AC pattern match-
ing. We have exploited the AC pattern matching to implement both the filtering
language and the slicing process.

7.2.3 Equational Attributes

Equational attributes are a means of declaring certain kinds of equational axioms
in a way that allows Maude to use these equations efficiently in a built-in way.
Semantically, declaring a set of equational attributes for an operator is equivalent to
declaring the corresponding equations for the operator. In fact, the effect of declaring
equational attributes is to compute with equivalence classes modulo these equations.
This avoids termination problems and leads to much more efficient evaluation.

In the signature presented in Figure 3.2, the overloaded operator _:_ is given
with the equational attributes assoc, comm, and id. This allows Maude to handle
simple objects and multisets of elements in the same way. For example, given two
terms b; and b, of sort Browser, the term b; : b, belongs to the sort Browser as well.
Also, these equational attributes allow us to get rid of parentheses and disregard the
ordering among elements. For example, the communication channel is modeled as
a term of sort Message where the messages among the browsers and the server can
arrive out of order, which allows us to simulate the HT'TP communication protocol.

7.3. ORGANIZATION OF THE SOURCE CODE 55

7.2.4 Flat/unflat Transformations

In Maude, AC pattern matching is implemented by means of a special encod-
ing of AC operators, which allows us to represent AC terms terms by means of
single representatives that are obtained by replacing nested occurrences of the
same AC operator by a flattened argument list under a variadic symbol, whose
elements are sorted by means of some linear ordering!. The inverse of the flat
transformation is the unflat transformation, which is nondeterministic in the sense
that it generates all the unflattended terms that are equivalent (modulo AC)
to the flattened term. For example, consider a binary AC operator f together
with the standard lexicographic ordering over symbols. Given the AC-equivalence
fb, f(f(bya),c)) =ac f(f(b,c), f(a,b)), we can represent it by using the “internal
sequence” f(b, f(f(b,a),c)) _>]tlatAC fla,b,b,c) _>Znﬂat,40 f(f(b,c), f(a,b)), where
the first subsequence corresponds to the flattening transformation that obtains the
AC canonical form of the term, whereas the second one corresponds to the inverse,
unflattening transformation.

These two processes are typically hidden inside the AC-matching algorithms?
that are used to implement the rewriting modulo relation. In order to facilitate
the understanding of the sequence of rewrite steps, we exposed the flat and un-
flat transformations visibly in our slicing process. This is done by breaking up a
rewrite step and adding the intermediate flat/unflat transformation sequences into
the computation trace delivered by Maude.

7.3 Organization of the source code

The files composing the source code of WEB-TLR are organized into four locations.
The first is the root folder, which stores the presentation layer; it includes all the
JSP, XHTML, and JavaScript files. The second is the folder checker, which stores
the Maude code corresponding to the WEB-TLR model-checking back-end. A third
folder, named slicing, contains the Maude implementation of the slicing facility
described in Chapter 5 and Chapter 6. Finally, there is ParserModelChecking. jar,
a Java Archive (JAR) file that provides the facilities necessary for slide generation,
including the safe execution of external programs.

7.3.1 Root folder

checker.css

Cascading Style Sheet (CSS) used by checker.html.

ISpecifically, Maude uses the lexicographic order of symbols.
2See [15] (Section 4.8) for an in-depth discussion on matching and simplification modulo AC in
Maude.

56 CHAPTER 7. IMPLEMENTATION

checker.html

This Web page introduces the user to the model checker, allows the user to define a
Web application model, and explains how to codify LTLR formulas. The model is
verified when the user presses the ‘Check’ button.

checker.js

JavaScript code used by checker.html.

debug.jsp
Graphical Web Interface for the debugging and slicing facility described in Chapter 6.

index.html

Home page of WEB-TLR. It describes the tool, but has no source code itself.

modcheck.css

Cascading Style Sheet (CSS) used by the slide shows generated by modcheck. jsp.

modcheck.js

JavaScript code used by modcheck. jsp.

7.3.2 Checker

parser.maude

Maude-based filter that simplifies the output of the model checker before it is passed
to the Java front-end.

script.maude

Maude definition of a Domain Specific Language (DSL) that is powerful enough to
model the dynamics of complex Web applications by encompassing the main features
of the most popular Web scripting languages (e.g. PHP, ASP, Java Servlets).

A brief description of this DSL can be found in the preliminaries. The full
formalization of the operational semantics of this scripting language can be found
in [7].

tlr.maude

This file implements the LTLR model checker for Maude developed by Kyungmin
Bae and José Meseguer. It has been described in [10] and [30].

7.3. ORGANIZATION OF THE SOURCE CODE o7

web.maude

This file specifies a Domain Specific Language (DSL) by defining a set of operators
that allow the algebraic modelling of Web applications in Maude. An introduction
to this DSL can be found in the preliminaries. A more detailed description of this
language can be found in [7].

7.3.3 Slicing

slice.maude

This is a large file, comprising about 1,300 lines of Maude code. Inside it resides a
single module, BackwardSlicing, which implements the slicing algorithm presented
in Chapter 6, which is itself an adaptation of the more general algorithm described
in Chapter 5.

webtlrtrace.maude

This file contains the Maude module webtrace, which extends the module
BackwardSlicing in slice.maude with definitions that improve its usability.

7.3.4 ParserModelChecking.jar

Browser.java

Defines a class that represents a browser.

A constructor Browser (state) has been defined which takes an string describing
a browser state, in the format provided by the Maude WEB-TLR back-end. In
addition, since our Web model allows for more than one browser per state, an static
method parseSection(section) has been defined for convenience. It returns an
array with all the browser objects that appear in the corresponding section of the
model checker state, as provided by Maude. In order to do so, it splits the input into
strings corresponding to each browser, which are then fed to the Browser constructor
and returned as an array.

Access to the object attributes is done, as usual, with getter methods. As the
object is immutable, setter methods are not provided.

BrowserGraph.java

This class includes the functionality needed to generate the series of incremental
graphs which show which pages are being viewed by which browsers at any given
time. Graphviz is used for graph rendering. The output is a set of SVG files, each
representing one graph.

Broadly speaking, the BrowserGraph constructor takes the list of pages, nodes,
continuations and navigations of the Web application as input arguments. Then, for

58 CHAPTER 7. IMPLEMENTATION

each state, all the browsers are related to the pages they are currently navegating
by means of the addBrowser(page, browser) method. When a state has been
completely processed, newStep() is invoked, and we proceed with the next one.
When all states have been processed, a call to the draw() method generates the
SVG files.

InterruptScheduler.java

This is an auxiliary class used by Utils. java to specify timeouts for the invoca-
tion of external programs. This helps avoid crashes and hangs when dealing with
excessively large data sets.

Parser.java

The Parser class contains methods for parsing the output of the Maude WEB-TLR
back-end, especially its counter-examples.

The Parser (input) constructor takes as argument the textual representation of
the counter-example generated by the WEB-TLR back-end, which is immediately
processed by several private methods. Then, the graphs are generated.

The components of the counter-example and the generated SVG files can all be
recovered using public getter methods:

e getFirstStates returns an array of an array containing the path of states in
the counter-example leading to the cycle. The additional level of indirection
is necessary because states sharing the same graph are grouped together.

e getCycleStates is analogous to getFirstStates, for the cyclical part of the
counter-example.

e getResultType returns the result type of the model-checking process. It can
be one of: property is true, a counter-example was found, and the model-
checker deadlocked.

e getNumberOfStates returns the total number of states.

e getStart0fCycle returns the position of the state that starts the cycle.

State.java

Class representing a single state in the counter-example.

It has a constructor State(data) with a single argument: a string describing the
state in the WEB-TLR back-end output format. The string is decomposed into its
components, which are then processed individually by a series of simple functions.
Access to those components can be later done via getter methods. The object is
immutable, so no setter methods are provided.

7.3. ORGANIZATION OF THE SOURCE CODE 59

Utils.java

This file contains a variety of auxiliary functions.

e 10 wrappers (readFile, saveFile).

Output beautifiers (beautify).

Execution of external programs (executeCmd).

A hand-coded parser that explores a string for matching parenthesis, brackets
and curly braces (tryParseUntil, parseUntil).

A variety of string manipulation functions.

60

CHAPTER 7.

IMPLEMENTATION

Conclusions

WEB-TLR is the first verification engine based on the versatile and well-established
Rewriting Logic/LTLR tandem for specifying Web systems and checking of Web
properties. WEB-TLR distinguishes itself from related tools in two salient aspects:
() the rich Web application core model that considers the communication protocol
underlying Web interactions as well as common browser navigation features; and (i)
efficient and accurate model-checking of dynamic properties —e.g., reachability of
Web pages generated by means of Web script executions— at low cost. Verification
includes both analysis (checking whether properties are satisfied) and diagnostic
traces demonstrating why a property does not hold.

The contributions of this work are twofold and consist in two major enhance-
ments to the WEB-TLR system that are intended to improve its understandability
and usability.

The first improvement is the promotion of WEB-TLR from a console-line based,
manual tool to a full-fledged Web application capable of visualizing counterexamples
via an interactive slideshow generated on-the-fly. This slideshow allows the user to
explore the model by performing forward and backward transitions. At each slide,
the interface shows a graph that relates the browsers to the Web pages they are
currently exploring together with the values of relevant variables of the Web state.
This exploration does not require installation of the checker itself and is provided
entirely by the GWI.

The second enhancement to WEB-TLR is the inclusion of our backward trace-
slicing facility that eases the interactive debugging of Web applications. The pro-
posed slicing technique allows that the size of the counterexample trace be greatly
reduced, making their analysis feasible even in the case when complex, real-size Web
systems are considered.

In addition, we have presented a backward slicing technique for rewrite theo-
ries. The key idea behind our slicing technique consists in tracing back —through
the rewrite sequence— all the relevant symbols, defined by the slicing criterion, of
the final state that we are interested in. The trace slicing technique can be ap-
plied to execution trace analysis of sophisticated rewrite theories, which can include
equations and equational axioms as well as nonleft-linear and collapsing rules.

While WEB-TLR was the motivation behind the development of this algorithm,

62 CHAPTER 8. CONCLUSIONS

its applicability transcends WEB-TLR itself. To the best of our knowledge, no trace
slicing methodology for rewriting logic theories has yet been proposed.

We also provide a tool that implements our backward slicing technique. This
tool provides a complete description of all events and locations involved in a selected
error scenario, and the user can analyze different error scenarios in an incremental,
step-by-step manner.

We have tested our tool on several complex case studies that are available at
the WEB-TLR Web page and within the distribution package, including a Webmail
application, a producer/consumer system and a sophisticated formal specification
of a fault-tolerant communication protocol. The results obtained are very encour-
aging and show impressive reduction rates in all cases, ranging from 90% to 95% in
reasonable time (max. 0.5s on a Linux laptop equipped with an Intel Core 2 Duo
2.26GHz and 4Gb of RAM memory). Moreover, sometimes the trace slices are so
small that they can be easily inspected by the user who can keep a quick eye on
what’s going on behind the scenes.

As future work, we plan to extend WEB-TLR by considering the problem of
synthesizing correct-by-construction Web applications. We also plan to deal with
client-side scripts defined for example by JavaScript-like languages. In addition,
there has been external interest in adapting the framework to deal with Represen-
tational State Transfer (REST) architectures [22]. Respecting the slicing algorithm,
we are working on increasing the efficiency of the tool. Also, as future work, we plan
to deal with the execution traces of more sophisticated theories that may include
membership and conditional equations.

This work has been developed in joint work with my supervisors M. Alpuente
and D. Romero. The theoretical results are the core of D. Romero’s Ph.D. Thesis
[34]. The integration of the generic slicing techniques into Web-TLR has been done
in joint work with F. Frechina.

To conclude, and the specific goals of this work notwithstanding, we also like
to think of this work as part of a bigger, inspiring picture. Formal methods are
a powerful toolset that has a great potential to improve the quality, security, and
safety of Web applications. We hope that contributions like ours help to promote
the use of formal methods in software engineering in general, and in the area of Web
applications in particular.

Appendices

Web Application Model
Development by Example

Throughout this work, we have used the Electronic Forum described in Chapter 3
as a running example. In this appendix, we will introduce a Webmail application to
show by example how we can specify a Web application model in WEB-TLR that
can be verified later by means of the technique described in Chapter 6.

Introduction

We will now introduce the Webmail application model presented in [8]. Starting
from the welcome page, the user must enter his user and password. At home, the
user can access his email list and then see a particular message. The user might also
check another email account, after entering a new user and password. The users
with role admin may access the administration page. Finally, the logout page is
self-descriptive.

home changelogin=no

- ~

welcome .-~
»

@ ,luser=x,pass=y]

logout emailList viewEmail adminLogout administration

Figure A.1: The navigation model of an Webmail application

66 APPENDIX A. WEB APPLICATION MODEL DEVELOPMENT BY EXAMPLE

The Web application and state predicates

The first text area in the input form should have two functional modules. The first
module contains the definition of the web application itself: the set of available
pages, the continuations, the navigations, and the scripts associated to each Web
page. The second module contains the definition of the state predicates, which are
used in the property to be checked (a LTLR formula).

The following code listing shows the skeleton of this component.

mod WEBAPP is inc PROTOCOL
--- Your Web application definition here!
endm

mod WEBAPP-CHECK is including MODEL-CHECKER + WEBAPP
--- Your state predicates here!
end

Defining the page identifiers

It is customary to start by defining in the WEBAPP module the identifiers of all the
pages that we are going to use. For our Webmail example, this would be:

ops WELCOME
HOME
EMAIL-LIST
VIEW-EMAILCHANGE -ACCOUNT
ADMINISTRATION
ADMIN-LOGOUT
LOGOUT
-> Qid

Notice that the identifiers have been defined as constants, but literals would have
been as valid. Indeed, we can assign more readable values to the operators that we
have just defined:

eq WELCOME = ’Welcome

eq HOME = ’Home

eq EMAIL-LIST = ’Email-list

eq VIEW-EMAIL = ’View-email

eq CHANGE-ACCOUNT = ’Change-account
eq ADMINISTRATION = ’Administration
eq ADMIN-LOGOUT = ’Admin-Logout

eq LOGOUT = ’Logout

67

Defining a script

We show here the script of the home page as an example. A thorough description
of the scripting language can be found in [7].

op sHome : -> Script
eq sHome =
’login := getSession(s("login")) ;
if (’login = null) then
’u := getQuery(’user) ;
’p := getQuery(’pass) ;
’pl := selectDB(’u) ;
if (’p = ’pl) then
’r := selectDB(’u ’. s("-role")) ;
setSession(s("user") , ’u) ;
setSession(s("role") , ’r) ;
setSession(s("login") , s("ok"))
else
setSession(s("login") , s("no"))
fi

fi

Defining a page

Recalling the DSL presented in Chapter 3, in WEB-TLR a Web page is a tuple
containing an identifier, an script that is executed on entry, a set of continuations,
and a set of navigations. All fields must be set. If a Web page does not have an
associated script, skip must be used. The operators cont-empty and nav-empty
perform the same function for continuations and navigations, respectively. The most
simple Web page is, therefore:

op trivialPage: -> Page
eq trivialPage =

(TRIVIAL-PAGE , skip, { cont-empty } , { nav-empty 1})

A more realistic example would be the e-mail list page:

op emaillistPage : -> Page
eq emaillListPage =
(
EMAIL-LIST ,
sEmaillList ,
{ cont-empty } ,
{
(TRUE -> (VIEW-EMAIL ? (’idEmail ’= "")))
(TRUE -> (HOME 7?7 query-empty))

68 APPENDIX A. WEB APPLICATION MODEL DEVELOPMENT BY EXAMPLE

Notice how the colon operator is used to separate navigations. Albeit not shown
in the example, it is also used to separate continuations.

Defining a state predicate

State predicates should be defined in the WEBAPP-CHECK module. We can define state
predicates in order to evaluate propositions on the states. For example, consider the
two following state predicates where: (i) currentPage evaluates to true when a
given page passed as parameter is being displayed in the browser; (ii) requestHome
holds when there is a requirement to go to the home page. These predicates can be
defined as follows:

subsorts WebState < State

vars idb idw : Id

vars page : Qid

vars url : URL

vars z : Sigma

vars lms ms : Message
vars brs : Browser
vars sv : Server

vars q : Query

vars i : Nat

--- current page
op currentPage : Id Qid -> Prop
eq [B(idb, idw, page, urls, z, 1lms, h, n, idlm) : brs]
[ms 1 [sv]
|= currentPage (idb, page)
eq [brs] [ms] [sv]
|= currentPage (idb, page)

true

false [owisel

--- request to go to home

op requestHome : Id -> Prop

eq [brs 1 [m(idb, idw, (HOME ? q), i) : ms] [sv]
|= requestHome (idb) = true

eq [brs] [ms] [sv]
|= requestHome (idb) = false [owise]

Initial Web states

This section includes the definition of the initial states, including the available
browsers, the substitution (predefined answers used to simulate user input in forms)
associated to each of them, and its database configuration. The initial state de-
scribes the system at the start of the model checking process. More than one initial

69

state can be defined but only one can be selected for checking the property. The
initial Web states should be contained in a module named WEBAPP-PROPERTIES.

mod WEBAPP-PROPERTIES is inc WEBAPP-CHECK

ops idA idwl : -> Id
op brA : -> Browser
eq brA = newBrowser (idA,idwl, (WELCOME 7 query-empty),zA)
op zA : -> Sigma
eq zA = (’user / "alice")
(’pass / "secretAlice")
(’idEmail / "email2")
op initial-1 : -> WebState
eq initial-1 = [brA] bra-empty [mes-empty] [sv]

endm

Property specification

The translation of LTLR formulas into their Maude representation is straightfor-

ward.

A LTLR formula can include the following operators: [] means “always”;

<> means “eventually”; 0 (capital letter) means “in the next state.”; /\ expresses
conjuntion; \/ expresses disjuntion; and expresses negation. More information can
be found in The Linear Temporal Logic of Rewriting Model Checker by Kyungmin
Bae and José Meseguer.

As an example, the following formula verifies (or not) if only one user can visit
the administration page at the same time:

1«

((currentPage (idA,ADMIN) /\ currentPage (idB,ADMIN))

70 APPENDIX A. WEB APPLICATION MODEL DEVELOPMENT BY EXAMPLE

1]

Bibliography

M. H. Alalfi, J. R. Cordy & T. R. Dean (2009): Modelling methods for web ap-
plication verification and testing: state of the art. Software Testing, Verification
and Reliability 19, pp. 265-296.

M. Alpuente, D. Ballis, M. Baggi & M. Falaschi (2010): A Fold/Unfold Trans-
formation Framework for Rewrite Theories extended to CCT. In: Proc. 2010
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
(PEPM 2010), ACM, pp. 43-52.

M. Alpuente, D. Ballis, J. Espert, F. Frechina & D. Romero (2011): Debug-
ging of Web Applications with WEB-TLR. In: Proc. 7th Int’l Workshop on
Automated Specification and Verification of Web Systems (WWYV 2011).

M. Alpuente, D. Ballis, J. Espert & D. Romero (2010): Model-checking Web
Applications with Web-TLR. In: 8th Int’l Symposium on Automated Technol-
ogy for Verification and Analysis (ATVA 2010), Lecture Notes in Computer
Science 6252, Springer, pp. 341-346.

M. Alpuente, D. Ballis, J. Espert & D. Romero (2011): Backward Trace Slicing
for Rewriting Logic Theories. In: The 23rd Int’l Conference on Automated
Deduction (CADE 2011), LNCS/LNAI, Springer. To appear.

M. Alpuente, D. Ballis, J. Espert & D. Romero (2011): Dynamic Backward
Slicing of Rewriting Logic Computations. ArXiv e-prints. Available at http:
//arxiv.org/abs/1105.2665v1.

M. Alpuente, D. Ballis & D. Romero (2009): A Rewriting Logic Framework
for the Specification and the Analysis of Web Applications. Technical Report
DSIC-11/01/09, Technical University of Valencia. Available at: http://www.
dsic.upv.es/~dromero/web-tlr.html.

M. Alpuente, D. Ballis & D. Romero (2009): Specification and Verification
of Web Applications in Rewriting Logic. In: Formal Methods, Second World

Congress (FM 2009), Lecture Notes in Computer Science 5850, Springer, pp.
790-805.

K. Bae & J. Meseguer (2008): A Rewriting-Based Model Checker for the Linear
Temporal Logic of Rewriting. In: Proc. of the 9th Int’l Workshop on Rule-Based
Programming (RULE’08), Electronic Notes in Theoretical Computer Science,
Elsevier.

http://arxiv.org/abs/1105.2665v1
http://arxiv.org/abs/1105.2665v1
http://www.dsic.upv.es/~dromero/web-tlr.html
http://www.dsic.upv.es/~dromero/web-tlr.html

72

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

Kyungmin Bae & José Meseguer (2010): The Linear Temporal Logic of Rewrit-
ing Maude Model Checker. 1In Olveczky [30], pp. 208-225. Available at
http://dx.doi.org/10.1007/978-3-642-16310-4_14.

M. Baggi, D. Ballis & M. Falaschi (2009): Quantitative Pathway Logic for
Computational Biology. In: Proc. of 7th Int’l Conference on Computational
Methods in Systems Biology (CMSB’09), Lecture Notes in Computer Science
5688, Springer, pp. 68-82.

I. Bethke, J. W. Klop & R. de Vrijer (2000): Descendants and origins in term
rewriting. Inf. Comput. 159(1-2), pp. 59-124.

F. Chen & G. Rosu (2009): Parametric Trace Slicing and Monitoring. In: 15th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’09), Lecture Notes in Computer Science 5505,
Springer, pp. 246-261.

O. Chitil, C. Runciman & M. Wallace (2000): Freja, Hat and Hood - A Compar-
ative FEvaluation of Three Systems for Tracing and Debugging Lazy Functional
Programs. In: Implementation of Functional Languages, 12th International
Workshop (IFL 2000), Lecture Notes in Computer Science 2011, Springer, pp.
176-193.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer &
C. Talco (2009): Maude Manual (Version 2.4). Technical Report, SRI Int’]
Computer Science Laboratory. Available at: http://maude.cs.uiuc.edu/
maude2-manual/.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer & C. Tal-
cott (2007): All About Maude: A High-Performance Logical Framework. Lec-
ture Notes in Computer Science 4350, Springer-Verlag.

M. Clavel, F. Duran, J. Hendrix, S. Lucas, J. Meseguer & P. C. Olveczky (2007):
The Maude Formal Tool Environment. In: Algebra and Coalgebra in Computer
Science (CALCO’07), Lecture Notes in Computer Science 4624, Springer, pp.
173-178.

S. Eker (2003): Associative-Commutative Rewriting on Large Terms. In: Proc.
of 14th Int’l Conference, Rewriting Techniques and Applications (RTA ’03),
Lecture Notes in Computer Science 2706, Springer, pp. 14-29.

S. Eker, J. Meseguer & A. Sridharanarayanan (2003): The Maude LTL model
checker and its implementation. In: Model Checking Software: Proc. 10 th
Intl. SPIN Workshop, Lecture Notes in Computer Science 2648, Springer, pp.
230-234.

http://dx.doi.org/10.1007/978-3-642-16310-4_14
http://maude.cs.uiuc.edu/maude2-manual/
http://maude.cs.uiuc.edu/maude2-manual/

BIBLIOGRAPHY 73

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[30]

S. Escobar, C. Meadows & J. Meseguer (2006): A Rewriting-Based Inference
System for the NRL Protocol Analyzer and its Meta-Logical Properties. Theo-
retical Computer Science 367(1-2), pp. 162-202.

J. Field & F. Tip (1994): Dynamic Dependence in Term rewriting Systems and
its Application to Program Slicing. In: Proc. of the 6th Int’l Symposium on
Programming Language Implementation and Logic Programming (PLILP’94),
Springer-Verlag, London, UK, pp. 415-431.

Roy Thomas Fielding (2000): Architectural Styles and the Design of Network-
based Software Architectures. Ph.D. thesis, University of California, Irvine,
Irvine, California. Available at http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm.

P. Graunke, R. Findler, S. Krishnamurthi & M. Felleisen (2003): Modeling Web
Interactions. In: 12th European Symposium on Programming (ESOP 2003),
Lecture Notes in Computer Science 2618, Springer, pp. 238-252.

Edmund M. Clarke Jr., Orna Grumberg & Doron A. Peled (1999): Model
Checking. The MIT Press. Available at http://www.amazon.com/
Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionIdy
3D13CT5CVB8OYFWJEPWS027,26tag%3Dws%261inkCode’3Dxm27%26 camp%3D2025%
26creative’,3D165953%26creativeASINY3D0262032708.

Z. Manna & A. Pnueli (1992): The temporal logic of reactive and concurrent
systems. Springer-Verlag New York, Inc., New York, NY, USA.

N. Marti-Oliet & J. Meseguer (2002): Rewriting Logic: Roadmap and Bibliog-
raphy. Theoretical Computer Science 285(2), pp. 121-154.

J. Meseguer (1992): Conditional Rewriting Logic as a Unified Model of Con-
currency. Theoretical Computer Science 96(1), pp. 73-155.

J. Meseguer (2008): The Temporal Logic of Rewriting: A Gentle Introduction.
In: Concurrency, Graphs and Models: Essays Dedicated to Ugo Montanari on
the Occasion of his 65th Birthday, 5065, Springer-Verlag, Berlin, Heidelberg,
pp. 354-382.

R. Message & A. Mycroft (2008): Controlling Control Flow in Web Applica-
tions. In: 4th Int’l Workshop on Automated Specification and Verification of
Web Sites (WWV’08), Electronic Notes in Theoretical Computer Science 200,
pp. 119-131.

Peter Csaba Olveczky, editor (2010): Rewriting Logic and Its Applications -
8th International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS
2010, Paphos, Cyprus, March 20-21, 2010, Revised Selected Papers. Lecture

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708
http://www.amazon.com/Model-Checking-Edmund-Clarke-Jr/dp/0262032708%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0262032708

74

[31]

[32]

[33]

[36]
[37]

[38]
[39]

[40]

[41]

BIBLIOGRAPHY

Notes in Computer Science 6381, Springer. Available at http://dx.doi.org/
10.1007/978-3-642-16310-4.

P. Réty (1987): Improving basic narrowing techniques. In: Conference on
Rewriting techniques and applications, Lecture Notes in Computer Science 256,
Springer-Verlag, London, UK, pp. 228-241.

A. Riesco, A. Verdejo, R. Caballero & N. Marti-Oliet (2009): Declarative De-
bugging of Rewriting Logic Specifications. In: Recent Trends in Algebraic De-
velopment Techniques, 19th Int’l Workshop (WADT 2008), Lecture Notes in
Computer Science 5486, Springer, pp. 308-325.

A. Riesco, A. Verdejo & N. Marti-Oliet (2010): Declarative Debugging of Miss-
ing Answers for Maude. In: 21st Int’l Conference on Rewriting Techniques and
Applications (RTA 2010), LIPIcs 6, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pp. 277-294.

Daniel Omar Romero (2011): Rewriting-based Verification and Debugging of
Web Systems. Ph.D. thesis, Universidad Politécnica de Valencia.

Graphviz Graph Visualization Software: Available at:
http://www.graphviz.org/.

The Maude System: Available at: http://maude.cs.uiuc.edu/.

C. Talcott (2008): Pathway Logic. Formal Methods for Computational Systems
Biology 5016, pp. 21-53.

TeReSe, editor (2003): Term Rewriting Systems. Cambridge University Press,
Cambridge, UK.

HAT The Haskell tracer: Available at: http://www.cs.york.ac.uk/fp/ART/.

P. Viry (1994): Rewriting: An Effective Model of Concurrency. In: Proceedings
of the 6th Int’l PARLE Conference on Parallel Architectures and Languages
Europe, Springer-Verlag, London, UK, pp. 648-660.

F. Weitl, S. Nakajima & B. Freitag (2010): From Counterexamples to Incremen-
tal Interactive Tracing of Errors (Schrittweise Fehleranalyse auf der Grundlage
von Model-Checking). it - Information Technology 52(5), pp. 295-297.

http://dx.doi.org/10.1007/978-3-642-16310-4
http://dx.doi.org/10.1007/978-3-642-16310-4

	Introduction
	Preliminaries
	Term Rewriting Systems
	Rewriting Logic
	Linear Temporal Logic of Rewriting (LTLR)
	Model Checking

	An Overview of Web-TLR
	A Running Example: the Electronic Forum Application
	Web Application Specification
	Model-checking Web Applications

	An Interactive Web-TLR System
	Introduction
	An overview of the Web verification framework
	The Web-TLR system
	A case study of Web verification.

	Backward Trace Slicing for Rewriting Logic Theories
	Introduction
	Rewriting Modulo Equational Theories
	Backward Trace Slicing for Elementary Rewrite Theories
	Labeling procedure for rewrite theories
	The Backwards Trace Slicing Algorithm

	Backward Trace Slicing for Extended Rewrite Theories
	Dealing with collapsing and nonleft-linear rules
	Built-in Operators
	Associative-Commutative Axioms
	Extended Soundness

	Experimental Evaluation
	Related Work

	Debugging of Web Applications with Web-TLR
	Introduction
	Extending the Web-TLR System
	Filtering Notation
	A Debugging Session with Web-TLR

	Implementation
	Implementation of Interactive Web-TLR
	Maude
	Java Server Pages
	Graphviz and SVG
	XHTML

	Implementation of the Slicing Facility in RWL
	Metaprogramming
	AC Pattern Matching
	Equational Attributes
	Flat/unflat Transformations

	Organization of the source code
	Root folder
	Checker
	Slicing
	ParserModelChecking.jar

	Conclusions
	Web Application Model Development by Example
	Bibliography

