

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/112204

Duro-Gómez, J.; Petit Martí, SV.; Sahuquillo Borrás, J.; Gómez Requena, ME. (2018).
Workload Characterization for Exascale Computing Networks. IEEE Computer Society. 383-
389. doi:10.1109/HPCS.2018.00069

http://doi.org/10.1109/HPCS.2018.00069

IEEE Computer Society

1

Workload Characterization for
Exascale Computing Networks

José Duro, Salvador Petit, Julio Sahuquillo and Marı́a E. Gómez Departamento de Informaática de Sistemas y
Computadores

Universitat Politècnica de València, Spain
Email: jodugo1@gap.upv.es

Abstract—Exascale computing is the next step in high perfor-
mance computing provided by systems composed of millions of
interconnected processing cores. In order to guide the design and
implementation of such systems, multiple workload characteri-
zation studies and system performance evaluations are required.

This paper provides a workload characterization study in
the context of the European Project ExaNeSt, which focuses,
among others, on developing the network technology required to
implement future exascale systems. In this work, we characterize
different ExaNeSt applications from the computer network per-
spective by analyzing the distribution of messages, the dynamic
bandwidth consumption, and the spatial communication patterns
among cores.

The analysis highlights three main observations; i) message
sizes are, in general, below 50 kB; ii) communication patterns
are usually bursty; and iii) spatial communication among cores
concentrate in hot spots for most applications. Taking into
account these observations, one can conclude that in order to
unclog congested network links, an exascale network must be
designed to briefly support higher-than-average bandwidths in
the vicinity of key network cores.

Keywords—Workload characterization; Exascale computing;
MPI.

I. INTRODUCTION

Exascale computing, which aims to reach exaflop (1018

floating-point operations per second) computing power, is the
next challenge for the supercomputing community. According
to the current growing computational trend, this goal is
expected to be achieved by 2020. In order to achieve such
a huge computing capability, systems will require millions
of interconnected computing elements that execute massive
parallel applications.

Exascale networks will be composed of thousands of
computing cores, so data transmission among them becomes
a major design concern. In this context, new requirements
rise, not only in terms of throughput, but also regarding
energy demands. In such systems, the underlying network
technology [1], [2] and topology are critical design choices.
The focus of the European Exascale System Interconnect and
Storage project (ExaNeSt) [3], [4], which is currently being
developed, is to provide a feasible implementation that meets
the mentioned requirements.

ExaNeSt simulation frameworks model electrical [5], [6]
and optical [7] interconnection networks. To perform a re-
alistic analysis of the entire system behavior, simulations
platforms must be fed either with real applications or traces

modeling the behavior of such applications. The main purpose
of this paper is to present a detailed characterization of the
ExaNeSt workloads in order to provide a deep knowledge of
the network requirements and to guide network designers in
decision taking.

To characterize the network requirements of the ExaNeSt
workloads, they were profiled to collect their execution time
and both point-to-point and MPI (Message Passing Interface)
collective messages [8]. The profiled information is used
to build traces that are analyzed to obtain insight about
distribution of message sizes, temporal evolution of band-
width utilization, and spatial communication patterns. The
characterization data will be useful to select and/or develop
suitable topologies and network technologies for a feasible
and efficient exascale network implementation.

The characterization study highlights three main observa-
tions; i) communication among cores are, in general, mostly
performed with messages whose size is lower than 50KB;
ii) although applications present a wide range of bandwidth
consumptions, communication patterns are usually bursty, and
iii) our analysis shows that spatial communication among
cores can concentrate in hot spots. As a result, we can
conclude that to avoid performance losses because of the
computer network, an exascale network should be designed to
support higher-than-average bandwidths in key network cores
at specific points of time.

The remainder of this paper is organized as follows. Sec-
tion II motivates this work in the context of the ExaNeSt
project. Section III gives a background about MPI collectives.
Section IV presents an overview of the studied workloads.
Sections V, VI, and VII analyze, respectively, the distribu-
tion of message sizes, the temporal evolution of bandwidth
consumption, and the spatial communication patterns of the
studied workloads. Finally, Section VIII presents some con-
cluding remarks.

II. MOTIVATION

The requirements for Exascale computing over the cur-
rent decade are expected to scale the network performance.
The ExaNeSt project is currently designing and building a
prototype network architecture capable of reaching Exascale
computing.

The aim of ExaNeSt is to develop a system that can be
scaled up to the tens of millions of interconnected low-power

2

(a) MPI Scatter (b) MPI AllGather

(c) MPI AlltoAll (d) MPI AlltoAllv

Fig. 1: MPI collectives.

consumption cores to solve large-scale scientific and big data
problems. In order to support a system of this size, ExaNeSt
is confronted with the huge challenge of designing an inter-
connect able to meet very strict performance, resilience, and
cost constraints for a range of computational challenges.

The ExaNeSt interconnect is a multi-tier interconnect
which can be divided into two distinct parts. The lower
tiers, which are physically fixed by means of boards and
backplanes, and the higher tiers which are fully reconfigurable
using custom-made FPGA-based [9] routers. This flexibility
allows to build any network topology, i.e. direct, indirect or
hybrid, or even the use of standard off-the-shelf commodity
switches.

In order to meet the requirements of such demanding
interconnect, we analyze in this work the real applications
that are being used to test the entire system (compute cores,
interconnection network, and storage).

III. BACKGROUND ON MPI COLLECTIVES

ExaNeSt applications consist of thousands of threads which
have been coded with message passing interface (MPI) col-
lectives. In order to help understanding the characterization
study this section identifies the MPI collectives used by the
studied workloads and describes how they work.

When profiling the ExaNeSt workloads, we found
the following set of primitives: MPI Bcast, MPI Scatter,
MPI Scatterv, MPI Gather, MPI Allgather, MPI Reduce,
MPI Allreduce, MPI Alltoall, MPI Alltoallv, and MPI Scan.

• MPI Bcast: this primitive allows a process (i.e. the root)
to send an array chunk to all processes in a communi-
cator (i.e. the set of cores involved in the collective).

• MPI Scatter: this collective is similar to MPI Bcast.
The main difference is that MPI Scatter sends different
equally-sized chunks of an array to different processes
(see Figure 1a).

• MPI Scatterv: a variation of the MPI Scatter collective
where chunks can present different sizes.

• MPI Gather: it implements the opposite behaviour of
MPI Scatter. Instead of spreading elements from one
process (root) to many processes, MPI Gather takes
elements from many processes and sends them to the
same single process (root).

• MPI Gatherv: as MPI Gather, but with chunks of dif-
ferent sizes.

• MPI Allgather: given a set of data elements distributed
across all processes, this collective sends all the elements
to all the processes. On the first stage, MPI Allgather
forwards the elements to the root process, and then, on
a second stage, this process sends the collected data to
all process (see Figure 1b).

• MPI Reduce: this primitive is similar to MPI Gather.
MPI Reduce takes an array of elements on each process
and returns a processed array of elements to the root
process. Thus, this primitive implies a computation with
the data of each element.

• MPI Allreduce: as MPI Reduce but the result of the
computation is distributed among all the processes.

• MPI Barrier: this primitive implements a barrier. Thus,
a process calling it stalls until all the processes in the
communicator have also called it. It is implemented as
MPI Bcast but with very short messages (i.e. tokens).

• MPI Alltoall: it is similar to MPI Scatter but in this
case, all processes divide input arrays with the same size
into equal chunks and send each chunk to all processes
in the communicator (see Figure 1c). With this primitive,
each process sends and receives the same amount of data.

• MPI Alltoallv: this primitive presents two main differ-
ences with respect to MPI Alltoall. On the one hand,
the input arrays can have different size and, on the other
hand, a process can receive differently-sized chunks from
each sender (or not receive anything from a particular
core) (see Figure 1d).

• MPI Scan: it calculates an incremental partial reduction
among participant processes. This means that each pro-
cess i calculates the reduction from process 0 to itself.
That is, the last process n will obtain the total reduction
among all the processes.

IV. EXANEST WORKLOADS AND TRACE ANALYSIS
METHODOLOGY

The ExaNeSt workloads consist of four main applica-
tions existing or developed by the ExaNeSt partners, namely
Lammps [10], RegCM [11], DPSNN [12] and Gadget [13].
Details about how each application works can be found in
each particular reference.

To provide insights on the relationship between the band-
width requirements and the network core count, different
workload sizes have been considered. More precisely, ExaN-
eSt partners provided 19 traces generated with real-hardware
using different network statistic collection tools such as
scalasca [14], which provide MPI primitives information in
addition to computation times and message timestamps.

3

TABLE I: Average bandwidth requirements for each trace.

Application
Execution Time

(cycles)

MB Transf

(Total)

MB/s

(average)

Lammps

24 Cores 43,754,790,287 24,644 1,126

48 Cores 21,713,810,259 31,141 2,868

96 Cores 10,887,071,229 40,934 7,520

192 Cores 5,983,794,523 55,338 18,496

384 Cores 152,820,600,368 71,924 941

768 Cores 322,882,228,358 97,993 607

RegCM

24 Cores 139,543.000,917 22,976 329

48 Cores 80,112,643,804 33,157 828

96 Cores 49,580,028,588 47,213 1,905

144 Cores 51,640,032,689 58,138 2,252

192 Cores 40,411,947,679 69,131 3,421

Gadget

24 Cores 316,651,890,866 152,567 964

48 Cores 257,497,854,652 267,104 2,075

72 Cores 207,637,515,308 415,640 4,004

DPSNN 32x32

32 Cores 8,795,221,526,254 34,533 8

64 Cores 4,568,949,694,490 45,690 20

128 Cores 2,744,786,342,258 65,125 47

DPSNN 64x64
64 Cores 23,829,773,201,115 170,572 14

128 Cores 12,287,105,198,156 199,951 33

These traces corresponding to 6 different executions (vary-
ing the core count from 24 to 768) from Lammps, 5 from
RegCM (from 24 to 192 cores), 5 from DSPNN (from 32 to
128 cores in the 32x32 neural columns configuration and from
64 to 128 cores in the 64x64 neural columns configuration),
and 3 from Gadget (from 24 to 72 cores). In this work we
present the analysis of a representative subset of the provided
traces.

The first step in the characterization study is to provide an
overall overview of the traces from the network bandwidth
perspective. For this purpose, we gathered two key parame-
ters: the execution time and the overall transferred data. From
them, we computed the average bandwidth consumed by each
application.

We consider all the transferred data, both header and
payload. The messages are split into packets of 72 bytes to
be injected on the network, where 64 bytes correspond to
payload and the remaining 8 bytes left are for the header.
More precisely, a 1KB-message is split into 16 packets
as done in some modern machines [15], incurring a 128B
overhead for the headers.

Table I shows the results. As observed, the obtained values
widely vary across the studied variables. The execution time
presents differences ranging from around 6 up to 23839
billion cycles. Bandwidth requirements exhibit high variations
regardless of the execution time. Since the traces do not

provide the processor frequency, we have assumed a 2 GHz
processor clock to calculate the average bandwidth in seconds.
The results show that there are applications with relatively
few bandwidth requirements (about 8 MBps) and applications
with huge bandwidth requirements (e.g. around 18.5GBps).
Note that when the number of cores exceeds 192 in Lammps,
the execution time increases. The reason is that the original
system used to generate these traces has less cores than
parallel threads are generated in these configurations, which
affects the execution time.

V. ANALYSIS OF MESSAGE SIZES

The analysis of the message size was performed to discern
if message delivery could be improved by prioritizing either
latency or bandwidth. For instance, if there is a high amount
of short messages we could opt to prioritize latency over
bandwidth; however, upon large message sizes, we should
prioritize bandwidth to improve network and hence applica-
tion performance. Although 19 traces have been analyzed,
only the identified representative patterns are presented and
discussed for illustrative purposes.

Figure 2 shows the cumulative message size distribution
varying the core count across the studied traces. The Y-axis
indicates the amount of messages (both due to collective and
point-to-point MPI primitives) transferred and the X-axis the
message size distributed in ranges. The first column (labelled
as SYN) refers to the number of synchronization messages,
whose main characteristic is that they do not include payload;
however, they are also analyzed because, as results will show,
they can generate a considerable amount of traffic in some
applications.

Regarding message size distribution in Lammps (see Fig-
ures 2a-2c), it can be appreciated that most of the message
sizes fall in between 10KB and 50KB for a core count larger
or equal than 192. In contrast, for 48 cores, the dominating
message size ranges from 50KB to 100KB. In summary, on
average, the lower the core count, the larger message sizes
are used.

Figures 2d-2f plot the message size distribution in the
traces from the RegCM application. The message size in
this application is quite homogeneous when varying the core
count. The dominant size ranges from 100B to 1KB in all
traces, although the 192-core trace also presents a significant
amount of smaller messages (e.g from 0 to 10KB).

Gadget (Figures 2g-2i) shows a high percentage of syn-
chronization messages regardless of the number of cores. As
observed, a significant amount of messages (ranging from
30% to about 50%) present a size smaller than 1KB, although
around 20% of messages are bigger.

Finally, Figures 2j-2l depicts the message size distribu-
tion in the traces from DPSNN. The first plot (Figure 2j)
corresponds to the application working with 32x32 neural
columns (about 1.2M neurons and 2.6G synapses), while the
two remaining plots refer to the application with 64x64 neural
columns (about 5M neurons and 10G synapses). On average,
the traffic generated by synchronization messages represents
as high as by 60% of the total amount. Unlike the previous

4

(a) Lammps 48 cores (b) Lammps 192 cores (c) Lammps 768 cores

(d) RegCM 24 cores (e) RegCM 48 cores (f) RegCM 192 cores

(g) Gadget 24 cores (h) Gadget 48 cores (i) Gadget 72 cores

(j) DPSNN 32x32 32 cores (k) DPSNN 64x64 64 cores (l) DPSNN 64x64 128 cores

Fig. 2: Message size distribution.

analyzed traces, the traffic in this application is due to MPI
collectives instead of point-to-point messages.

VI. ANALYSIS OF TEMPORAL EVOLUTION

In Section IV (Table I) we showed the bandwidth consump-
tion for each studied trace averaged along the application
execution time. The aim of this section is to analyze the
dynamic bandwidth requirements in order to explore how
requirements evolve with time.

We analyze all traces of each application and we found
that the behavior of some applications changes when varying
the number of cores. For illustrative purposes, we show an

example of each of the multiple patterns exhibited by the
studied applications when varying the core count. To ease
the visual analysis and to homogenize the representation of
the plots, we divided the execution time of each application in
200 intervals of the same length. Then, we divided each inter-
val in 10M-cycle subintervals and calculated the bandwidth
consumption of each subinterval. These values are averaged
to obtain the bandwidth consumption of each interval, which
is labeled as Mean in the figures. In addition, the maximum
(Max) and minimum (Min) bandwidth consumptions among
the subintervals are also plotted to easily discern bursts
communication patterns.

5

(a) Lammps 192 cores (b) Lammps 768 cores

(c) RegCM 24 cores (d) RegCM 192 cores

(e) Gadget 24 cores (f) Gadget 72 cores

(g) DPSNN 64x64 128 cores (h) Zoomed Y axis of DPSNN 64x64 128 cores

Fig. 3: Temporal evolution of min, mean and max bandwidth.

Figure 3a and Figure 3b show the bandwidth patterns
of Lammps for 192 and 768 cores, respectively; which are
representative of all the patterns of this application. Figure 3a
shows the behavior exhibited for a core count less or equal
than 192 while the other figure shows the behavior exhibited
when the number of cores rises over 192. It can be appreciated

that in the former case, the studied variables many times
overlap each other. However, when the number of cores rises
over 192 there is a clear differentiation among the three
plotted variables. As expected (see Table I), the network
traffic is much less important in 768 cores than in 192.
Since the difference between the maximum and the average is

6

(a) Lammps 48 cores (b) RegCM 24 cores

(c) Gadget 24 cores (d) DPSNN 32x32 32 cores

Fig. 4: Communication matrix among cores.

relatively large, we made a further refinement by focusing on
the most critical interval, that is, the interval with the highest
difference.

The RegCM application exhibits similar bandwidth patterns
regardless of the core count with the only exception of the
24-core trace. Figure 3c and Figure 3d show both patterns.
We chose the 192-core trace which is the one presenting the
highest average bandwidth.

Compared to Lammps, RegCM presents much higher
bandwidth requirements; more than 8x on average and a
similar factor for the maximum bandwidth. An interesting
observation is that bandwidth experiences a sharp rise at the
end of the execution in both exhibited behaviors. Regard-
ing Figure 3d, RegCM shows on average less bandwidth

requirements than Lammps (by 40%) and similar maximum
bandwidth requirements.

Figure 3e and Figure 3f show the temporal evolution of
Gadget. This application presents a huge difference between
the average and the maximum, which implies a bursty com-
munication pattern; that is, there are sub-intervals with high
communication requirements and others presenting very low
traffic.

DPSNN exhibits an homogeneous behavior across all the
studied traces. Because of this reason, we chose the trace
presenting the highest bandwidth requirements, that is, a
64x64 neural matrix with 128 cores. Figure 3g shows the
results. In comparison to the previous applications, it can
be observed that DPSNN has low bandwidth requirements
during almost all the execution. However, in the first intervals,

7

DPSNN presents huge bandwidth consumptions. Because of
this fact, we had to reduce the Y axis in Figure 3g to
appreciate the average as shown in Figure 3h.

VII. ANALYSIS OF SPATIAL COMMUNICATION

Once the applications across the execution time have been
analyzed, this section studies the amount of traffic that each
core sends/receives to/from each other. In other words, the
spatial distribution of communication among cores (matrix
source-destination).

Figure 4 shows the resulting matrix of communications for
the four studied applications. The darker the color the higher
the amount of transferred bytes. It can be seen that the traffic
concentrates on a small percentage of cores in Lammps and
RegCM, whereas it spreads among all the cores in DSPNN
and Gadget. In DSPNN the traffic follows a regular pattern
(darker in the central cores and lighter in the top and bottom
cores), while in Gadget cores communicate all-to-all in a
random way.

VIII. CONCLUSIONS

Workload characterizations are required to guide re-
searchers in the design of new systems. In this paper, we
have analyzed real traces of applications used in the European
project ExaNeSt, which are being used to design and imple-
ment the interconnection network for an exascale system.

The analysis has been performed taking into account three
main characteristics: the distribution of message types and
sizes, the bandwidth consumed during the execution time and
the spatial communication among cores.

Regarding the analysis of distribution of messages, most
applications (three out of the four studied) present a higher
amount of point-to-point messages, although one of the ap-
plications (DPSNN) is completely dominated by MPI collec-
tives. In general, most messages are below 50KB regardless
of the workload size.

The analysis of the bandwidth consumed during execution
time indicates that applications present a wide range of
average bandwidth requirements; however, most applications
present bursty communications patterns that can stress the
interconnection network at given points of time.

Finally, the analysis of the spatial communications matrix
for the different applications shows very different spatial com-
munication patterns among applications. For instance, in some
applications the traffic is spread among all the cores whereas
in some others bandwidth consumption is concentrated in hot
spots. This means that, in order to support communication
bursts and unclog congested network links, a suitable exascale
network must provide higher-than-average bandwidth in the
surroundings of key cores at specific points of time.

ACKNOWLEDGMENTS

This work was supported by the ExaNest project, funded
by the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 671553, and
by the Spanish Ministerio de Economı́a y Competitividad
(MINECO) and Plan E funds under Grant TIN2015-66972-
C5-1-R.

REFERENCES

[1] A. K. Kodi, B. Neel, and W. C. Brantley, “Photonic interconnects for
exascale and datacenter architectures,” IEEE Micro, vol. 34, no. 5, pp.
18–30, 2014.

[2] S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and
K. Bergman, “Silicon photonics for exascale systems,” Journal of
Lightwave Technology, vol. 33, no. 3, pp. 547–562, 2015.

[3] M. Katevenis, N. Chrysos, M. Marazakis, I. Mavroidis, F. Chaix,
N. Kallimanis, J. Navaridas, J. Goodacre, P. Vicini, A. Biagioni et al.,
“The exanest project: Interconnects, storage, and packaging for exascale
systems,” in Digital System Design (DSD), 2016 Euromicro Conference
on. IEEE, 2016, pp. 60–67.

[4] (2018, May) ExaNeSt website. [Online]. Available: http://exanest.eu
[5] F. J. Ridruejo Perez and J. Miguel-Alonso, “Insee: An interconnection

network simulation and evaluation environment,” in Proceedings of the
11th International Euro-Par Conference on Parallel Processing, ser.
Euro-Par’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 1014–
1023.

[6] J. Navaridas, J. Miguel-Alonso, J. A. Pascual, and F. J. Ridruejo,
“Simulating and evaluating interconnection networks with {INSEE},”
Simulation Modelling Practice and Theory, vol. 19, no. 1,
pp. 494 – 515, 2011, modeling and Performance Analysis
of Networking and Collaborative Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1569190X1000184X

[7] J. Duro, S. Petit, J. Sahuquillo, and M. E. Gómez, “Modeling a photonic
network for exascale computing,” in High Performance Computing &
Simulation (HPCS), 2017 International Conference on. IEEE, 2017,
pp. 511–518.

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. MIT press, 1999,
vol. 1.

[9] C. Concatto, J. A. Pascual, J. Navaridas, J. Lant, A. Attwood, M. Lujan,
and J. Goodacre, “A cam-free exascalable hpc router,” ser. Architecture
of Computing Systems (ARCS), 2018, p. to appear.

[10] S. Plimpton, “Fast parallel algorithms for short-range molecular dy-
namics,” Journal of computational physics, vol. 117, no. 1, pp. 1–19,
1995.

[11] F. Giorgi, E. Coppola, F. Solmon, L. Mariotti, M. Sylla, X. Bi, N. El-
guindi, G. Diro, V. Nair, G. Giuliani et al., “Regcm4: model description
and preliminary tests over multiple cordex domains,” Climate Research,
vol. 52, pp. 7–29, 2012.

[12] P. S. Paolucci, R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero,
A. Lonardo, E. Pastorelli, F. Simula, L. Tosoratto, and P. Vicini,
“Distributed simulation of polychronous and plastic spiking neural
networks: strong and weak scaling of a representative mini-application
benchmark executed on a small-scale commodity cluster,” arXiv
preprint arXiv:1310.8478, 2013.

[13] V. Springel, “The cosmological simulation code gadget-2,” Monthly
notices of the royal astronomical society, vol. 364, no. 4, pp. 1105–
1134, 2005.

[14] (2018, May) scalasca website. [Online]. Available:
http://www.scalasca.org

[15] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, and F. W. Atos,
“The bxi interconnect architecture,” in High-Performance Interconnects
(HOTI), 2015 IEEE 23rd Annual Symposium on. IEEE, 2015, pp. 18–
25.

