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Joaqúın Motos a,∗,1, Maŕıa Jesús Planells a, Jairo Villegas G b
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Abstract

In this paper we prove a number of results on sequence space representations and
embedding theorems of Hörmander-Beurling spaces. As a consequence and using
sharp results of Meise, Taylor and Vogt, a result of Kaballo on short sequences and
hypoelliptic operators is extended to ω-hypoelliptic differential operators and to the
vector-valued setting.
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1 Introduction and notations

It is well known that the Hörmander spaces Bp,k, B
loc
p,k(Ω) and Bc

p,k(Ω) play a
crucial role in the theory of linear partial differential operators (see [2,15,16]).
Our research pursues the study on Hörmander spaces and Hörmander spaces
in the sense of Beurling and Björck [2] (=Hörmander-Beurling spaces) car-
ried out in [2,8,14–16,19,40,45] and [5,29–31,36,37,44] (see also [18]). In this
paper we prove a number of results on sequence space representations and
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embedding theorems of Hörmander-Beurling spaces (extending corresponding
results of [29–31]) and as a consequence, and using results of Meise, Taylor
and Vogt [24], a result of Kaballo [19] on short sequences and hypoelliptic
differential operators is extended to ω−hypoelliptic differential operators and
to the vector-valued setting.

The organization of the paper is as follows. Section 2 contains some ba-
sic facts about scalar and vector-valued Beurling ultradistributions and the
definitions of the spaces which are considered in the paper. In Section 3 we
generalize to UMD spaces the Theorem 4.6 of [31], we prove an embedding
(and sequence spaces representation) theorem for vector-valued Hörmander-
Beurling spaces, we give a result of Rosenthal type [38] (every weakly compact
subset of Bloc

∞,k(Ω, E) is separable when E is a closed subspace of lN∞)(see Re-
mark 3.1.1), we prove an embedding theorem when E is non-separable Fréchet
space and we pose the following question: Is Bloc

∞,k(Ω, l∞) isomorphic to a com-
plemented subspace of lN∞? (see Remark 3.1.3). In Section 4 we show that, in
general, the topology induced by Bloc

p,k(Ω, E) on Bloc
p,k(Ω)

⊗
E is strictly finer

than the ε topology and strictly coarser than the π topology (our example ex-
tends to 1 < p < ∞, by using a different technique, the example studied in [31,
Remark 4.7.2]) and we pose another question: Are the spaces Bloc

∞,k(Ω, l∞) and

Bloc
∞,k(Ω)⊗̂εl∞ isomorphic? We also give a sequence space representation theo-

rem when E is a nuclear Fréchet space (for example it is shown that if E ≃ s
or sN then Bloc

p,k(Ω, E) is isomorphic to (DLp)N). Then, using results of Meise,
Taylor and Vogt [24], we extend a result of Kaballo [19] to ω−hypoelliptic
differential operators.

Notations. The linear spaces we use are defined over C. Let E and F be
locally convex spaces. Then Lb(E,F ) is the locally convex space of all contin-
uous linear operators equipped with the bounded convergence topology. The
(topological) dual of E is denoted by E ′ and is given the strong topology so
that E ′ = Lb(E, C). E⊗̂εF (resp. E⊗̂πF ) is the completion of the injective
(resp. projective) tensor product of E and F . If E and F are (topologically)
isomorphic we put E ≃ F . If E is isomorphic to a subspace (resp. comple-
mented subspace) of F we write E ⊂ F (resp. E < F ). We put E →֒ F if E
is a linear subspace of F and the canonical injection is continuous (we replace

→֒ by
d
→֒ if E is also dense in F ). If (En)∞n=1 is a sequence of locally convex

spaces,
∏∞

n=1 En (EN if En = E for all n) is the topological product of the
spaces En;

⊕∞
n=1 En (E(N) if En = E for all n) is the locally convex direct

sum of the spaces En. The Fréchet space defined by the projective sequence
of Fréchet spaces En and linking maps An will be denoted by proj(En, An) (or
projEn, for short). This projective limit is said to be reduced if ImP j = Ej

for j = 1, 2, ..., being Pj : proj(En, An) → Ej : (en)∞1 → ej. If the En are
Banach spaces and the maps An are surjective then proj(En, An) is said to be
a quojection (see e.g. [28]).

Let 1 ≤ p ≤ ∞, k : R
n → (0,∞) a Lebesgue measurable function, and E

a Fréchet space. Then Lp(E) is the set of all (equivalence classes of) Bochner
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measurable functions f : R
n → E for which ‖f‖p =

(∫
Rn ‖f(x)‖pdx

)1/p
is finite

(with the usual modification when p = ∞) for all ‖ · ‖ ∈ cs(E) (see, e.g. [10]).
Lp,k(E) denotes the set of all Bochner measurable functions f : R

n → E such
that kf ∈ Lp(E). Putting ‖f‖Lp,k(E) = ‖kf‖p for all f ∈ Lp,k(E) and for all
‖ · ‖ ∈ cs(E), Lp,k(E) becomes a Fréchet space isomorphic to Lp(E). When E
is the field C, we simply write Lp and Lp,k. If f ∈ L1(E) the Fourier transform

of f , f̂ or Ff , is defined by f̂(ξ) =
∫
Rn f(x)e−iξxdx. If f is a function on R

n

then f̃(x) = f(−x) for x ∈ R
n.

Finally we recall the definition of A∗
p functions. A positive, locally integrable

function ω on R
n is in A∗

p provided, for 1 < p < ∞,

sup
R

(
1

|R|

∫

R
ωdx

)(
1

|R|

∫

R
ω−p′/pdx

)p/p′

< ∞,

where R runs over all bounded n−dimensional intervals. The basic properties
of these functions can be found in [9].

2 Spaces of Beurling ultradistributions. Hörmander-Beurling spaces

In this section we collect some basic facts about vector-valued (Beurling) ul-
tradistributions and we recall the definitions of the vector-valued Hörmander-
Beurling spaces. Comprehensive treatments of the theory of (scalar or vector-
valued) ultradistributions can be found in [2,13,20,21]. Our notations are based
on [2] and [41].

Let M (or Mn) be the set of all functions ω on R
n such that ω(x) = σ(|x|)

where σ(t) is an increasing continuous concave function on [0,∞[ with the
following properties:
(i) σ(0) = 0,

(ii)
∫ ∞
0

σ(t)
1+t2

dt < ∞ (Beurling’s condition),
(iii) there exist a real number a and a positive number b such that

σ(t) ≥ a + b log(1 + t) for all t ≥ 0.

The assumption (ii) is essentially the Denjoy-Carleman non-quasianalyticity
condition (see [2]). The two most prominent examples of functions ω ∈ M are
given by ω(x) = log(1 + |x|)d, d > 0, and ω(x) = |x|β, 0 < β < 1.

If ω ∈ M and E is a Fréchet space, we denote by Dω (E) the set of all func-
tions f ∈ L1 (E) with compact support, such that ‖f‖λ =

∫
Rn ‖f̂(ξ)‖eλω(ξ)dξ <

∞, for all λ > 0 and for all ‖ · ‖ ∈ cs(E). For each compact subset K of R
n,

Dω (K,E) = {f ∈ Dω(E) : suppf ⊂ K}, equipped with the topology induced
by the family of seminorms {‖ · ‖λ : ‖ · ‖ ∈ cs(E), λ > 0} , is a Fréchet space
and Dω (E) = ind−→

K

Dω (K,E) becomes a strict (LF)-space. If Ω is any open

set in R
n, Dω(Ω, E) is the subspace of Dω(E) consisting of all functions f

with suppf ⊂ Ω. Dω(Ω, E) is endowed with the corresponding inductive limit
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topology: Dω (Ω, E) = ind−→
K

Dω (K,E). Let Sω (E) be the set of all functions

f ∈ L1 (E) such that both f and f̂ are infinitely differentiable functions on
R

n with supx∈Rn eλω(x) ‖∂αf (x)‖ < ∞ and supx∈Rn eλω(x)‖∂αf̂(x)‖ < ∞ for all
multi-indices α and all positive numbers λ and all ‖ · ‖ ∈ cs(E). Sω (E) with
the topology induced by the above family of seminorms is a Fréchet space
and the Fourier transformation F is an automorphism of Sω (E). If E = C

then Dω (E) and Sω (E) coincide with the spaces Dω and Sω (see [2]). Let us
recall that, by Beurling’s condition, the space Dω is non-trivial and the usual
procedure of the resolution of unity can be established with Dω−functions

(see [2]). Furthermore Dω
d
→֒ D (see [2]) and Dω is nuclear [45]. On the other

hand, Dω = D ∩ Sω, Dω
d
→֒ Sω

d
→֒ S (see [2]) and Sω is nuclear too (see [13]).

If Eω is the set of multipliers on Dω, i.e., the set of all functions f : R
n → C

such that ϕf ∈ Dω, for all ϕ ∈ Dω, then Eω with the topology generated by
the seminorms {f → ‖ϕf‖λ =

∫
Rn |ϕ̂f(ξ)|eλω(ξ)dξ : λ > 0, ϕ ∈ Dω} becomes a

nuclear Fréchet space (see [45]) and Dω
d
→֒ Eω. Using the above results and [21,

Theorem 1.12] we can identify Sω(E) with Sω⊗̂εE. However, though Dω ⊗ E
is dense in Dω(E), in general Dω(E) is not isomorphic to Dω⊗̂εE (cf., e.g.
[12]). A continuous linear operator from Dω into E is said to be a (Beurling)
ultradistribution with values in E. We write D′

ω (E) for the space of all E-
valued (Beurling) ultradistributions endowed with the bounded convergence
topology, thus D′

ω(E) = Lb(Dω, E). D′
ω(Ω, E) = Lb(D

′
ω(Ω), E) is the space of

all (Beurling) ultradistributions on Ω with values in E. A continuous linear
operator from Sω into E is said to be an E−valued tempered ultradistribu-
tion. S ′

ω (E) is the space of all E-valued tempered ultradistributions equipped
with the bounded convergence topology, i.e., S ′

ω (E) = Lb(Sω, E). The Fourier
transformation F is an automorphism of S ′

ω(E).
If ω ∈ M, then Kω is the set of all positive functions k on R

n for which there
exists a positive constant N such that k (x + y) ≤ eNω(x)k (y) for all x and y
in R

n, cf. [2] (when ω(x) = log(1 + |x|) the functions k of the corresponding
class Kω are called temperate weight functions, see [16]). If k, k1, k2 ∈ Kω and
s is a real number then log k is uniformly continuous, ks ∈ Kω, k1k2 ∈ Kω and
Mk(x) = supy∈Rn

k(x+y)
k(y)

∈ Kω (see [2] ). If u ∈ Lloc
1 and

∫
Rn ϕ(x)u(x)dx = 0 for

all ϕ ∈ Dω, then u = 0 a.e. (see [2]). This result, the Hahn-Banach theorem
and [7, Chapter II, Corollary 7] prove that if k ∈ Kω, p ∈ [1,∞] and E is
a Fréchet space, we can identify f ∈ Lp,k(E) with the E−valued tempered
ultradistribution ϕ → 〈ϕ, f〉 =

∫
Rn ϕ(x)f(x)dx, ϕ ∈ Sω, and Lp,k(E) →֒

S ′
ω(E). If ω ∈ M, k ∈ Kω, p ∈ [1,∞] and E is a Fréchet space, we denote by

Bp,k(E) the set of all E−valued tempered ultradistributions T for which there

exists a function f ∈ Lp,k(E) such that 〈ϕ, T̂ 〉 =
∫
Rn ϕ(x)f(x)dx, ϕ ∈ Sω.

Bp,k(E) with the seminorms {‖T‖p,k = ((2π)−n
∫
Rn ‖k(x)T̂ (x)‖pdx)1/p : ‖ · ‖ ∈

cs(E)} (usual modification if p = ∞), becomes a Fréchet space isomorphic to
Lp,k(E). Spaces Bp,k(E) are called Hörmander-Beurling spaces with values in
E (see [2] for the scalar case and [44] for the vector-valued case). We denote by
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Bloc
p,k(Ω, E) (see [30]) the space of all E−valued ultradistributions T ∈ D′

ω(Ω, E)
such that, for every ϕ ∈ Dω(Ω), the map ϕT : Sω → E defined by 〈u, ϕT 〉 =
〈uϕ, T 〉, u ∈ Sω, belongs to Bp,k(E). The space Bloc

p,k(Ω, E) is a Fréchet space
with the topology generated by the seminorms {‖ · ‖p,k,ϕ : ϕ ∈ Dω(Ω), ‖ ·
‖ ∈ cs(E)}, where ‖T‖p,k,ϕ = ‖ϕT‖p,k for T ∈ Bloc

p,k(Ω, E), and Bloc
p,k(Ω, E) →֒

D′
ω(Ω, E). We shall also use the spaces Bc

p,k(Ω, E) which generalize the scalar
spaces Bc

p,k(Ω) considered by Hörmander in [16], by Vogt in [45] and by Björck
in [2]. If ω, k, p, Ω and E are as above, then Bc

p,k(Ω, E) =
⋃∞

j=1[Bp,k(E) ∩
E ′

ω(Kj, E)] (here (Kj) is any fundamental sequence of compact subsets of Ω
and E ′

ω(Kj, E) denotes the set of all T ∈ Dω(E) such that suppT ⊂ Kj). Since
for every compact K ⊂ Ω, Bp,k(E) ∩ E ′

ω(Kj, E) is a Fréchet space with the
topology induced by Bp,k(E), it follows that Bc

p,k(Ω, E) becomes a strict (LF)-
space (strict (LB)-space if E is a Banach space): Bc

p,k(Ω, E) = ind−→
j

[Bp,k(E) ∩

E ′
ω(Kj, E)]. These spaces are studied in [36] and [31].

3 An embedding theorem

In this section we generalize to UMD spaces the Theorem 4.6 of [31], we
prove an embedding theorem for vector-valued Hörmander-Beurling spaces
(Theorem 3.1, see also Remark 3.1.2) and we give a result of Rosenthal type
[38] (every weakly compact subset of Bloc

∞,k(Ω, E) is separable when E is a
closed subspace of lN∞; see Remark 3.1.1).

We shall need the following technical result.
Lemma 3.1 Let Ω be an open set in R

n, ω ∈ M, k ∈ Kω and 1 ≤ p ≤ ∞.
Let E = proj(Ej, Aj) be the reduced projective limit of the projective sequence
of Fréchet spaces Ej and linking maps Aj. Then the map

P : Bloc
p,k(Ω, E) −→ proj

(
Bloc

p,k(Ω, Ej), Aj

)
: T →

(
Pj ◦ T

)∞

1

is an isomorphism (Aj is the map Bloc
p,k(Ω, Ej+1) → Bloc

p,k(Ω, Ej) : T → Aj ◦ T )
and this projective limit is reduced if p < ∞. If E =

∏∞
j=1 Ej then the space

Bloc
p,k(Ω, E) is isomorphic to

∏∞
j=1 B

loc
p,k(Ω, Ej).

Proof. Although the proof of the lemma is straightforward, for the sake of

completeness we give here the proof of the surjectivity of P : Let
(
Tj

)∞

1
be any

element in proj
(
Bloc

p,k(Ω, Ej), Aj

)
. For each ϕ ∈ Dω(Ω) and each j ≥ 1, we have

Aj

(
〈ϕ, Tj+1〉

)
= 〈ϕ,Aj ◦Tj+1〉 = 〈ϕ, Tj〉 and so

(
〈ϕ, Tj〉

)∞

1
∈ proj(Ej, Aj). Let

T : Dω → E be defined by 〈ϕ, T 〉 :=
(
〈ϕ, Tj〉

)∞

1
for ϕ ∈ Dω(Ω). Let us prove

that T ∈ Bloc
p,k(Ω, E), i.e., that for every ϕ ∈ Dω(Ω) there is an f ∈ Lp,k(E) such

that
〈
θ, ϕ̂T

〉
=

∫
Rn θ(x)f(x)dx for all θ ∈ Sω. Given such a ϕ let fj ∈ Lp,k(Ej),

j = 1, 2, . . . , such that
〈
θ, ϕ̂Tj

〉
=

∫
Rn θ(x)fj(x)dx for all θ ∈ Sω. Then, for
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every θ ∈ Sω, we have
∫
Rn θ(x)Aj ◦ fj+1(x)dx = Aj

(∫
Rn θ(x)fj+1(x)dx

)
=

Aj

(
〈θ, (ϕTj+1)

∧〉
)

= 〈θ, Aj ◦ (ϕTj+1)
∧〉 = 〈θ, [ϕ(Aj ◦ Tj+1)]

∧〉 = 〈θ, (ϕTj)
∧〉 =∫

Rn θ(x)fj(x)dx, that is,
∫
Rn θ(x)[Aj ◦ fj+1(x)− fj(x)]dx = 0. Hence it follows

(see Section 2) that Aj ◦ fj+1(x) = fj(x) for almost all x ∈ R
n. Then, modify-

ing the functions fj in a nullset if necessary, we get
(
fj(x)

)∞

1
∈ proj(Ej, Aj)

for all x ∈ R
n. It is easy to verify that the function f(x) =

(
fj(x)

)∞

1
is

Bochner measurable. In fact, if φ ∈ E ′ we can find N ≥ 1 and (e′1, . . . , e
′
N) ∈

E ′
1 × · · · × E ′

N (see, e.g. [25]) such that 〈(ej)
∞
1 , φ〉 =

∑N
j=1〈ej, e

′
j〉, (ej)

∞
1 ∈ E.

Thus φ ◦ f =
∑N

j=1 e′j ◦ fj is measurable. Moreover, if Nj is a nullset such
that fj(R

n \ Nj) is separable, then f(Rn \
⋃

Nj) is also separable. Hence by
the Pettis’s measurability theorem (in Fréchet spaces, see e.g. [10]) it fol-
lows that f is Bochner measurable. Then, by using the properties of the fj,
j = 1, 2, . . . , we conclude that f ∈ Lp,k(E). Finally, since

∫
Rn θ(x)f(x)dx =(∫

Rn θ(x)fj(x)dx
)∞

1
=

(
〈θ, ϕ̂Tj〉

)∞

1
=

(
〈θ̂ϕ, Tj〉

)∞

1
= 〈θ̂ϕ, T 〉 = 〈θ, ϕ̂T 〉 for all

θ ∈ Sω, it follows that T ∈ Bloc
p,k(Ω, E). Thus P is surjective.

The next lemma generalizes to UMD spaces the Theorem 4.6 of [31]. We
will reason as we did in [31] but we will use Theorem 4.2 of [29] instead of
Corollary 4.2 of [29]. For convenience of the reader we will give a complete
proof. The following elementary fact will be used: “Let F = ind

→j
Fj be the

strict inductive limit of a properly increasing sequence F1 ⊂ F2 ⊂ . . . of
Banach spaces. Assume that every Fj is a complemented subspace of Fj+1

and that Gj is a topological complement of Fj in Fj+1. Then the mapping
F1⊕G1⊕G2⊕· · · → F : (f1, g1, g2, ...) → f1+g1+g2+ . . . is an isomorphism”.
We will also need the weighted Lp−spaces of vector-valued entire analytic

functions LK
p,k(E) and the operators SK(f) = F−1(χK f̂) (see [29] and [41]).

Lemma 3.2 Let Ω be an open set in R
n, p ∈ (1,∞) and k a temperate weight

function on R
n with kp ∈ A∗

p. Let E be a Banach space with the UMD-property.
Then the space Bloc

p,k(Ω, E) is isomorphic to
∏∞

j=0 Hj where H0 is isomorphic
to lp(E) and Hj is isomorphic to a complemented subspace of lp(E) for j =
1, 2, . . . .

Proof. Let (Kj) be a covering of Ω consisting of compact sets such that

Kj ⊂
◦

Kj+1, Kj =
◦

Kj and
◦

Kj has the segment property (we may also assume,
without loss of generality, that each Kj is a finite union of n−dimensional

compact intervals). Then Bc
p,k(Ω, E) = ind

→j

[
Bp,k(E) ∩ E ′(Kj, E)

]
. In this in-

ductive limit, the step Bp,k(E) ∩ E ′(Kj, E) is isomorphic (via Fourier trans-

form) to L
−Kj

p,k (E) and this space is isomorphic, by Theorem 4.2 and Corol-

lary 5.1 of [29], to lp(E). Furthermore, L
−Kj

p,k (E) is a complemented subspace

of L
−Kj+1

p,k (E) : L
−Kj+1

p,k (E) = L
−Kj

p,k (E) ⊕
[
ker S−Kj

∩ L
−Kj+1

p,k (E)
]
. Thus, the

space Gj = ker S−Kj
∩ L

−Kj+1

p,k (E) is isomorphic to an infinite-dimensional
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complemented subspace of lp(E). Then, by using the former result, we obtain
Bc

p,k(Ω, E) ≃ L−K1

p,k (E)⊕G1⊕G2⊕· · · ≃ lp(E)⊕G1⊕G2⊕. . . . Next, since 1/k̃ is

a temperate weight function on R
n such that 1/k̃p′ ∈ A∗

p′ and E ′ ∈ UMD (see
[39]), we see that Bc

p′,1/k̃
(Ω, E ′) ≃

⊕∞
j=0 Bj where B0 ≃ lp′(E

′) and Bj < lp′(E
′)

for j = 1, 2, . . . . Therefore, by Theorem 3.2 of [31] (see [16] also), we get

Bloc
p,k(Ω, E) ≃

(
Bc

p′,1/k̃
(Ω, E ′)

)′
≃

(⊕∞
j=0 Bj

)′
≃

∏∞
j=0 B′

j =
∏∞

j=0 Hj (here

Hj = B′
j) where H0 ≃ lp(E) and Hj < lp(E) for j = 1, 2, . . . , and the proof is

complete.
Remark. One can improve Lemma 3.2 by using [45]. Indeed, using the

arguments of [45] it can be shown that Bloc
p,k(Ω, E) ≃ (Bp,k(E) ∩ E ′(Q,E))N

where Q = [0, 1]n. Then, reasoning as in the lemma, we obtain the isomorphism
Bloc

p,k(Ω, E) ≃ (lp(E))N.

We now present the main result of this section, an embedding (and sequence
space representation) theorem for vector-valued Hörmander-Beurling spaces
(see also Remark 3.1). We also pose a related question (Remark 3.1.3): Is
Bloc
∞,k(Ω, l∞) isomorphic to a complemented subspace of lN∞? We will use the

Fréchet spaces lq+ =
⋂

p>q lp and Lq− =
⋂

p<q Lp([0, 1]) (these spaces have an
interest in the structure theory of Fréchet spaces and are primary and have
all nuclear Λ1(α)−spaces as complemented subspaces, see [27] and [3]).
Theorem 3.1 Let Ω be an open set in R

n, ω ∈ M, k ∈ Kω and 1 ≤ p, q ≤ ∞,
and let E be a Fréchet space.
(1) If p < ∞ and E is separable then Bloc

p,k(Ω, E) is isomorphic to a subspace

of
(
C([0, 1])

)N

and this space does not contain any complemented copy of

Bloc
p,k(Ω, E).

(2) If E is separable and infinite-dimensional and E 6≃ C
N then Bloc

∞,k(Ω, E) is
isomorphic to a subspace of lN∞ but this space does not contain any com-
plemented copy of Bloc

∞,k(Ω, E). If E ≃ C
N then Bloc

∞,k(Ω, E) is isomorphic
to lN∞.

(3) Suppose E ⊂ F N (resp. < F N) where F is a Banach space. Then lN1 <

Bloc
1,k(Ω, E) ⊂

(
l1(F )

)N

(resp. <
(
l1(F )

)N

). If F is a dual space and has

the Radon-Nikodým property, then lN∞ < Bloc
∞,k(Ω, E) ⊂

(
l∞(F )

)N

(resp. <
(
l∞(F )

)N

). If F has the UMD-property then lNp < Bloc
p,k(Ω, E) ⊂

(
lp(F )

)N

(resp. <
(
lp(F )

)N

) provided that 1 < p < ∞ and k is a temperate weight

with kp ∈ A∗
p; in particular, Bloc

p,k(Ω, lNp ) is isomorphic to lNp .
(4) Suppose 1 < p < ∞ and that k is a temperate weight with kp ∈ A∗

p, and
let E = lq+ with q < ∞ (resp. Lq−([0, 1]) with 1 < q). Let (qj)

∞
1 be any

sequence such that qjցq (resp. qjրq). Then Bloc
p,k(Ω, E) is isomorphic to a

subspace of G :=
(∏∞

j=1 lp(lqj
)
)N

(resp. H :=
(∏∞

j=1 lp(Lqj
([0, 1]))

)N

) but

G (resp. H) does not contain any complemented copy of Bloc
p,k(Ω, E).

(5) Let p, k, q and (qj)
∞
1 be as in 4. Let X be a Banach subspace of Bloc

p,k(Ω, lq+)

7



(resp. Bloc
p,k(Ω, Lq−([0, 1]))). Then X is isomorphic to a subspace of lp(lq1

⊕
· · · ⊕ lqm

) (resp. lp(Lq1
([0, 1]) ⊕ · · · ⊕ Lqm

([0, 1]))) for some integer m.
Proof. 1. The first claim is a consequence from the fact that every separa-

ble Fréchet space is isomorphic to a subspace of
(
C([0, 1])

)N

(see e.g. [1, p.51]).

Now suppose that
(
C([0, 1])

)N

contains a complemented copy of Bloc
p,k(Ω, E).

Then
(
C([0, 1])

)N

also contains a complemented copy of Bloc
p,k(Ω) since this

space is clearly isomorphic to a complemented subspace of Bloc
p,k(Ω, E). Hence

it follows, if p = 1, that
(
C([0, 1])

)N

contains a complemented copy of lN1 (the

proof given in [45] of the isomorphism Bloc
1,k(Ω) ≃ lN1 is also valid for weights

k ∈ Kω). Then l1 becomes isomorphic to a complemented subspace of C([0, 1])
(see e.g. [6])which contradicts Corollary 2 in [33]. In case p > 1 we can apply
Proposition 3.7 in [26] and obtain the isomorphism Bloc

p,k(Ω) ≃ C
N. This con-

tradicts the fact that Bloc
p,k(Ω) is a non-Montel Fréchet space (see [15, Theorem

2.3.9] and [16]). Consequently,
(
C([0, 1])

)N

does not contain any complemented

copy of Bloc
p,k(Ω, E).

2. We know that E ⊂ lN∞ ([1, p.51]), that L∞ ≃ l∞ ([23]) and that L∞(L∞) ⊂(
L1(L1)

)′
≃ L′

1 ≃ L∞ (but L∞(L∞) 6≃ L∞, see [4]). Hence and from Lemma

3.1 it follows that Bloc
∞,k(Ω, E) ⊂ Bloc

∞,k

(
Ω, LN

∞

)
≃

(
Bloc
∞,k

(
Ω, L∞

))N

⊂
((

L∞(L∞)
)N

)N

≃
(
L∞(L∞)

)N

⊂ LN

∞ ≃ lN∞. However, if E 6≃ C
N, the space lN∞ can not con-

tain any complemented copy of Bloc
∞,k(Ω, E) by virtue of Proposition 3.12

in [26] (recall that E < Bloc
∞,k(Ω, E)). On the other hand, if E ≃ C

N then

Bloc
∞,k(Ω, E) ≃

(
Bloc
∞,k(Ω)

)N

≃
(
lN∞

)N

≃ lN∞ by Lemma 3.1 and [31, Theorem

4.2(3)].
3. By Lemma 3.1 and by [45] and [31, Theorem 4.2(2)], we have lN1 ≃ Bloc

1,k(Ω) <

Bloc
1,k(Ω, E) ⊂ (resp. <)Bloc

1,k

(
Ω, F N

)
≃

(
Bloc

1,k

(
Ω, F )

)N

≃
(
(l1(F )N

)N

≃
(
l1(F )

)N

.

If F is a dual space and has the Radon-Nikodým property then lN∞ ≃ Bloc
∞,k(Ω) <

Bloc
∞,k(Ω, E) ⊂ (resp. <)Bloc

∞,k

(
Ω, F N

)
≃

(
Bloc
∞,k

(
Ω, F )

)N

≃
(
(l∞(F )N

)N

≃
(
l∞(F )

)N

by virtue of Lemma 3.1 and [31, Theorem 4.2(3)].
Suppose now that F has the UMD-property, 1 < p < ∞ and kp ∈ A∗

p. By
using [31, Remark 4.7(1)] (see also [14]), Lemma 3.1 and Lemma 3.2, we

get lNp ≃ Bloc
p,k(Ω) < Bloc

p,k(Ω, E) ⊂ (resp. <)Bloc
p,k

(
Ω, F N

)
≃

(
Bloc

p,k

(
Ω, F )

)N

<
(
(lp(F )N

)N

≃
(
lp(F )

)N

. Hence and from [42, (1)p.331] it follows that Bloc
p,k

(
Ω, lNp

)
≃

lNp (see also [31, Remark 4.7(1)] or [14]).
4. Since the proofs of both claims are similar, we shall only proceed with the
proof of the second one.
Put E = Lq−([0, 1]) and let (qj) be a sequence such that qjրq. Then, tak-
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ing into account Lemma 3.1 and Lemma 3.2 (the spaces Lqj
([0, 1]) have the

UMD-property, see e.g. [39]), we have Bloc
p,k(Ω, E) ⊂ Bloc

p,k

(
Ω,

∏∞
j=1 Lqj

([0, 1])
)
≃

∏∞
j=1 B

loc
p,k

(
Ω, Lqj

([0, 1])
)

<
∏∞

j=1

(
lp

(
Lqj

([0, 1])
))N

≃


∏∞

j=1 lp
(
Lqj

([0, 1])
)



N

=

H. Furthermore, since all complemented subspace of a quojection is a quojec-
tion (see [28]), H is a quojection (actually H ≃

∏∞
r=1 Xr where each Xr coin-

cides with some lp(Lqj
([0, 1]))), E < Bloc

p,k(Ω, E) and E is not a quojection (see
[3]), it follows that H does not contain any complemented copy of Bloc

p,k(Ω, E).
5. Let X be a Banach subspace of Bloc

p,k(Ω, lq+) (resp. Bloc
p,k(Ω, Lq−([0, 1]))). By

using 4 we see that X is isomorphic to a subspace of
∏∞

r=1 Yr (resp.
∏∞

r=1 Xr)
where each Yr (resp. Xr) coincides with some lp(lqj

) (resp. lp(Lqj
([0, 1]))),

thus ([6]) X becomes isomorphic to a subspace of lp(lq1
⊕ · · · ⊕ lqm

) (resp.
lp(Lq1

([0, 1]) ⊕ · · · ⊕ Lqm
([0, 1]))) for some integer m.

Remark 3.1 1. In [38] Rosenthal showed that if (Ω, Σ, µ) is a finite measure
space then every weakly compact subset of L∞(µ) is norm separable. By using
this result it is easy to show that if E ⊂ lN∞ then every weakly compact subset
of Bloc

∞,k(Ω, E) (and hence every WCG subspace of Bloc
∞,k(Ω, E)) is separable.

In fact, let K be a weakly compact subset of Bloc
∞,k(Ω, E). Then K becomes a

weakly compact subset of
(
L∞([0, 1])

)N

(see the proof of Theorem 3.1(2) and

recall that l∞ ≃ L∞([0, 1])). Now the weak topology

σ
(
(L∞([0, 1]))N, ((L∞([0, 1]))N)′

)

is the product of the weak topologies (see, e.g. [17, p.167]). Consequently the
projection of K on every factor L∞([0, 1]) is weakly compact and, by the
Rosenthal’s result, is norm separable. Hence it follows that K is separable in
(L∞([0, 1]))N and so is separable in Bloc

∞,k(Ω, E).
2. Evidently it is possible to replace C([0, 1]) by l∞ in Theorem 3.1(1). In the
non-separable case we have the following extension:“Let p < ∞ be. Let E be a
non-separable Fréchet space and let I be a set such that cardI = densE. Then
Bloc

p,k(Ω, E) ⊂ (l∞(I))N and this space does not contain any complemented
copy of Bloc

p,k(Ω, E).” In fact, let (Ej)
∞
j=1 be a sequence of Banach spaces, with

densEj ≤ densE for all j, such that E is isomorphic to a subspace of
∏∞

j=1 Ej

(see, e.g. [1, p.34]). Since densLp(Ej) ≤ cardI, we get Lp(Ej) ⊂ l∞(I) ([1,
p.50]) and

Bloc
p,k(Ω, E)⊂Bloc

p,k(Ω,
∞∏

j=1

Ej) ≃
∞∏

j=1

Bloc
p,k(Ω, Ej) ⊂

∞∏

j=1

(Lp(Ej))
N

⊂
∞∏

j=1

(l∞(I))N ≃ (l∞(I))N.

Finally, since l∞(I) = C(βI) (βI is the Stone-Čech compactification of I re-
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garded in its discrete topology) and βI is extremally disconnected, we apply
[26, Proposition 3.12].
3. We finish this note by posing the following question: Let Ω be an open
set in R

n, ω ∈ M and k ∈ Kω. Is Bloc
∞,k(Ω, l∞) isomorphic to a comple-

mented subspace of lN∞? (If the answer to this question were yes, Bloc
∞,k(Ω, l∞)

would be isomorphic to lN∞ since Bloc
∞,k(Ω) ≃ lN∞ < Bloc

∞,k(Ω, l∞) < lN∞ implies
Bloc
∞,k(Ω, l∞) ≃ lN∞ in virtue of [42, (1) p.331]).

4 On sequence space representations of Hörmander-Beurling spaces

and applications

In this section a number of results on sequence space representations of
vector-valued Hörmander-Beurling spaces are given (Theorem 4.1; see also
Lemma 3.2, [30] and [31]). As a consequence, and using sharp results of Meise,
Taylor and Vogt [24], a result of Kaballo (see [19]) on short sequences and hy-
poelliptic differential operators is extended to ω-hypoelliptic differential oper-
ators and to the vector-valued setting.
Lemma 4.1 Let Ω be an open set in R

n, ω ∈ M, k ∈ Kω and 1 ≤ p < ∞. Let
E be a Fréchet space. Then the topology induced by Bloc

p,k(Ω, E) on Bloc
p,k(Ω)⊗E

is intercalated between the ε and π topologies.
Proof. Taking into account the corresponding fundamental systems of

seminorms the proof is immediate since, for every ϕ ∈ Dω(Ω) and every
‖ · ‖ ∈ cs(E), we have

‖T‖p,k,ϕ ≤ inf

{
m∑

1

‖uj‖p,k,ϕ ‖ej‖ : T =
m∑

1

uj ⊗ ej

}

for all T ∈ Bloc
p,k(Ω) ⊗ E, and, for every neighborhood U of 0 in Bloc

p,k(Ω) and
every ‖ · ‖ ∈ cs(E), we have

sup
(ξ,e′)∈U0×V 0

∣∣∣∣∣
m∑

1

〈uj, ξ〉〈ej, e
′〉

∣∣∣∣∣ ≤ max
1≤i≤r

‖T‖p,k,ϕi

(here ϕ1, . . . , ϕr ∈ Dω(Ω) generate U and V = {e ∈ E : ‖e‖ ≤ 1}) for all
T =

∑m
1 uj ⊗ ej ∈ Bloc

p,k(Ω) ⊗ E.

Remark 4.1 1. Note that, in general, the topology induced by Bloc
p,k(Ω, E) on

Bloc
p,k(Ω) ⊗ E is strictly finer than the ε topology and strictly coarser than the

π topology: In fact let 1 < p < ∞, let k a temperate weight function on R
n

with kp ∈ A∗
p and assume that Bloc

p,k(Ω, lp) contains a complemented copy of

Bloc
p,k(Ω)⊗̂εlp. Then, by [31, Remark 4.7(1)] (see also Theorem 3.1(3)) and [22,

(5) p.282], we get Bloc
p,k(Ω)⊗̂εlp ≃ lNp ⊗̂εlp ≃

(
lp⊗̂εlp

)N

< Bloc
p,k(Ω, lp) ≃ lNp . Hence

and from [6] it follows that lp⊗̂εlp < lp, that is to say (since lp is prime [23,
Theorem 2.4.3]), that lp⊗̂εlp ≃ lp. But this is false since lp⊗̂εlp fails to have the
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uniform approximation property (UAP, for short; see [34, p.350]) whereas lp ∈
UAP by [35]. Therefore, Bloc

p,k(Ω)⊗̂εlp can not be isomorphic to a complemented
subspace of Bloc

p,k(Ω, lp). In particular, since Bloc
p,k(Ω) ⊗ lp is dense in Bloc

p,k(Ω, lp),
the ε topology is strictly coarser than the topology induced by Bloc

p,k(Ω, lp). (A
different proof, for the case 2 ≤ p < ∞, is given in [31, Remark 4.7(2)]). In
a similar way it can be shown that the topology induced by Bloc

p,k(Ω, lp) on

Bloc
p,k(Ω) ⊗ lp is strictly coarser than the π topology (recall that lp⊗̂πlp /∈ UAP

[34, p.350]).
2. If p = 1 and k is any weight in Kω one can argue as in 1 (by using [31,
Theorem 4.2(2)] and the well known fact that l1⊗̂εl1 is not isomorphic to
l1 [7, Chapter VIII]) and show that the topology induced by Bloc

1,k(Ω, l1) on
Bloc

1,k(Ω) ⊗ l1 is strictly finer than the ε topology.
3. The assertions in the above notes continue to hold when one replaces lp by
lNp in 1 and l1 by lN1 in 2.
4. Notice also that if the answer to the posed question in Remark 3.1.3 were
affirmative, then Bloc

∞,k(Ω)⊗̂εl∞ would not be isomorphic to Bloc
∞,k(Ω, l∞) for any

k ∈ Kω. In fact, if these spaces were isomorphic then, by [31, Theorem 4.2(3)],
[22, (5) p.282], [22, (2) p.287] and a result of Cembranos and Freniche [4, The-

orem 3.2.1], we would have lN∞ ≃ lN∞⊗̂εl∞ ≃
(
l∞⊗̂εl∞

)N

≃
(
C(βN)⊗̂εl∞

)N

≃
(
C(βN, l∞)

)N

> cN

0 . Therefore c0 would become a complemented subspace of

l∞ which contradicts a classical result of Phillips (see e.g. [4, Corollary 1.3.2]).

Theorem 4.1 Let Ω be an open set in R
n, ω ∈ M, k ∈ Kω and 1 ≤ p < ∞.

Let E be a nuclear Fréchet space. Then
(a) Bloc

p,k(Ω, E) = Bloc
p,k(Ω)⊗̂εE

(b) if p = 1, or, 1 < p < ∞ and k is a temperate weight with kp ∈ A∗
p, then

Bloc
p,k(Ω, E) ≃

(
lp(E)

)N

(c) if p = 1, or, 1 < p < ∞ and k is a temperate weight with kp ∈ A∗
p, and

E ≃ s or sN, then Bloc
p,k(Ω, E) ≃ (DLp)N

(d) if E is infinite dimensional and E 6≃ C
N, then Bloc

p,k(Ω, E) is isomorphic to
a (non complemented) subspace of (Lp([0, 1]))N

(e) if E is a power series space of finite type, then Bloc
p,k(Ω, E) is isomorphic to

a complemented subspace of Bloc
p,k(Ω, lq+) (resp. Bloc

p,k(Ω, Lq−([0, 1]))) for any
q ∈ [1,∞[ (resp. q ∈]1,∞])

(f) if X is a Banach subspace of Bloc
p,k(Ω, E), then X is isomorphic to a subspace

of Lp([0, 1])
(g) if p = 1, or, 1 < p < ∞ and k is a temperate weight with kp ∈ A∗

p, and X
is a Banach subspace of Bloc

p,k(Ω, E), then X is isomorphic to a subspace of
lp

(h) if 1 < p1, p2 < ∞, and k1, k2 are temperate weights such that kp1

1 ∈ A∗
p1

,
kp2

2 ∈ A∗
p2

, then Bloc
p1,k1

(Ω, E) ≃ Bloc
p2,k2

(Ω, E) if and only if p1 = p2

(i) Bloc
p,k(Ω, E) is quasinormable, and if p > 1 every quotient of Bloc

p,k(Ω, E) by a
closed subspace is reflexive
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(j) every exact sequence 0 −→ Bloc
p,k(Ω) −→ G −→ E −→ 0 where G is a Fréchet

space, 1 < p < ∞ and k is a temperate weight with kp ∈ A∗
p, splits.

Proof. (a) This is an immediate consequence of Lemma 4.1, the nuclearity
of E, the denseness of Dω(Ω)⊗E in Bloc

p,k(Ω, E) (use [36, Proposition 3.4]) and
the completeness of Bloc

p,k(Ω, E).
(b) By using (a), [31, Theorem 4.2], [31, Remark 4.7(1)], [22, (5) p.282], [22,
(5) p.198] and [22, (5) p.291], we get Bloc

p,k(Ω, E) = Bloc
p,k(Ω)⊗̂εE ≃ lNp ⊗̂εE ≃

(
lp⊗̂εE

)N

≃
(
lp(E)

)N

.

(c) By Valdivia [43] and Vogt [45], we know that DLp is isomorphic to lp⊗̂εs.

Hence and from (b) and [22, (5) p.282] it follows that Bloc
p,k(Ω, s) ≃

(
lp⊗̂εs

)N

≃

(DLp)N and Bloc
p,k(Ω, sN) ≃

(
lp⊗̂εs

N

)N

≃
(
(lp⊗̂εs)

N

)N

≃
(
lp⊗̂εs

)N

≃ (DLp)N.

(d) The space E is isomorphic to a subspace of
(
Lp([0, 1])

)N

(see e.g. [17,

p.483]). Hence and from Lemma 3.1 it follows that

Bloc
p,k(Ω, E)⊂Bloc

p,k

(
Ω,

(
Lp([0, 1])

)N
)
≃

(
Bloc

p,k

(
Ω, Lp([0, 1])

))N

⊂
((

Lp(Lp([0, 1]))
)N

)N

≃
((

Lp([0, 1])
)N

)N

≃
(
Lp([0, 1])

)N

.

Now we prove that Bloc
p,k(Ω, E) can not be isomorphic to a complemented sub-

space of
(
Lp([0, 1])

)N

. If this were not the case, E would also be isomorphic to

a complemented subspace of
(
Lp([0, 1])

)N

. Then E would become a quojection

(see e.g. [26]) and thus E ≃ C
N (see again [26]), a contradiction.

(e) We know that all nuclear Λ1(α)−spaces are complemented subspaces of
lq+ when 1 ≤ q < ∞ [27] and of Lq−([0, 1]) when 1 < q ≤ ∞ [3]. Thus, if
E = Λ1(α), we have Bloc

p,k(Ω, Λ1(α)) < Bloc
p,k(Ω, lq+) (resp. < Bloc

p,k(Ω, Lq−([0, 1]))).

(f) By (d) X is isomorphic to a subspace of
(
Lp([0, 1])

)N

and thus (see [6])

isomorphic to a subspace of Lp([0, 1]).
(g) Since E is isomorphic to a subspace of lNp [17, p.483], we may apply The-
orem 3.1(3) and conclude that X is also isomorphic to a subspace of lNp . Thus
[6] X becomes isomorphic to a subspace of lp.
(h) (⇒) From [31, Remark 4.7(1)], the hypothesis and (g) it follows that
lp1

⊂ lp2
(and lp2

⊂ lp1
). As is well known this implies p1 = p2. (⇐) It suffices

to apply (b).
(i) Taking into account (b) and recalling that the product of a family of quasi-
normable spaces is quasinormable [11, p.107] and that the tensor product ⊗̂ε

of a Banach space and a nuclear space is also quasinormable [12, Ch. II, Propo-
sition 13 p.76], we see that Bloc

p,k(Ω, E) becomes a quasinormable space. Finally,
since Bloc

p,k(Ω, E) ⊂ (Lp([0, 1]))N (see the proof of (d)), we conclude the proof
by virtue of [11, Corollary p.101].
(j) Since the Fréchet space Bloc

p,k(Ω) is a quojection (we know that this space
is isomorphic to lNp , see [31] or [14]) it suffices to apply [46, Theorems 5.2 and
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1.8].

Remark 4.2 1. Concerning Theorem 4.1 (c) let us recall that a large number
of standard spaces of test functions are isomorphic to s or sN. For example,

S(Rn) ≃ s [42,25], D(K) ≃ s (K is a compact set in R
n such that

◦

K 6= ∅;
see [42] and [45]), C∞(Ω) ≃ sN (Ω is an open set in R

n; see [42] and [45]),
C∞(V ) ≃ s (V is an n−dimensional compact C∞−differentiable manifold; see
[42]), C∞(W ) ≃ sN (W is an n−dimensional C∞−differentiable manifold not
compact and countable at infinity; see [42]).
2. It is well known (see [25]) that the space A(Cd) of all entire analytic functions
can not be isomorphic to either s or sN but it is isomorphic to a complemented
subspace of s. However, if p and k are as in Theorem 4.1 (c), Bloc

p,k(Ω, A(Cd))
and (DLp)N are isomorphic. In fact, we know that

Bloc
p,k(Ω, A(Cd)) ≃ Bloc

p,k(Ω)⊗̂εA(Cd)) ≃ lNp ⊗̂εA(Cd) ≃
(
lp⊗̂εA(Cd)

)N

and that A(Cd) ≃ Λ∞(α) with αn = n1/α. But, by [47, 1.1 Proposition] (the
proof given there works for any p ≥ 1) we have lp⊗̂εA(Cd) ≃ lp⊗̂εs, therefore
Bloc

p,k(Ω, A(Cd) ≃ (DLp)N.

In [19] Kaballo showed that the short sequence 0 −→ N(P (D)) −→ Bloc
p,kP ′(Ω)

−→ Bloc
p,k(Ω) −→ 0 is an (ǫL)−triple when the differential operator P (D) is

hypoelliptic and it does not split when P (D) is elliptic (recall that a short ex-

act sequence of locally convex spaces 0 −→ E −→ F
q

−→ G −→ 0 is called an
(ǫL)−triple, if for every Banach space X the mapping q⊗̂ǫid : F ⊗̂ǫX → G⊗̂ǫX
is surjective). In the next theorem this result is extended to ω-hypoelliptic
differential operators and to the vector-valued setting. The extension is essen-
tially a consequence of results of Meise, Taylor and Vogt [24, Theorem 2.10,
Corollary 2.16] (see also Vogt [46]) and Theorem 4.1. We will consider weights
in the class M∗ (ω ∈ M∗ if ω(x) = σ(|x|) ∈ M and σ is as in [24, Definition
1.1]). For example, the weight ω(x) = |x|β belongs to M∗ when 0 < β < 1.
On the other hand, if P (x) =

∑
|α|≤m aαxα is a complex polynomial in n vari-

ables then P ′(x) denotes the function x →
(∑

|α|≥0 |∂
αP (x)|2

)1/2

. An open set

Ω ⊂ R
n is called P–convex (P–convex for supports in [16, Definition 10.6.1])

if to every compact set K ⊂ Ω there exists another compact set K ′ ⊂ Ω such
that φ ∈ D(Ω) and supp P (−D)φ ⊂ K implies supp φ ⊂ K ′. Finally we refer
the reader to [2,15,16] for the theory of linear partial differential operators.
Theorem 4.2 Let P (D) be a linear partial differential operator with constant
coefficients in R

n (n ≥ 2), Ω an open subset of R
n, ω ∈ M∗, k ∈ Kω and

1 ≤ p < ∞.
(1) If P (D) is ω−hypoelliptic and Ω is P−convex, then the short sequence

0 −→ N(P (D)) −→ Bloc
p,kP ′(Ω)

P (D)
−→ Bloc

p,k(Ω) −→ 0

13



is exact, it does not split and it is an (ǫL)−triple (here N(D) is the kernel
of P (D)). The dual sequence

0 −→
(
Bloc

p,k(Ω)
)′ tP (D)

−→
(
Bloc

p,kP ′(Ω)
)′

−→
(
N(P (D))

)′
−→ 0

is topologically exact and it does not split either.
(2) If P (D) is ω−hypoelliptic, Ω is P̃−convex and 1 < p < ∞, there exist a

short sequence

0 −→ Bc
p,k(Ω) −→ Bc

p,k/P ′(Ω) −→
(
N(P (−D))

)′
−→ 0

which is topologically exact and it does not split.
(3) If P (D) is ω−hypoelliptic, Ω is P−convex and E is a nuclear Fréchet

space, the short sequence

0 −→ N(PE(D)) −→ Bloc
p,kP ′(Ω, E)

PE(D)
−→ Bloc

p,k(Ω, E) −→ 0

is exact and an (ǫL)−triple (here PE(D) : D′
ω(Ω, E) → D′

ω(Ω, E) is
defined by 〈ϕ, PE(D)T 〉 = 〈P (−D)ϕ, T 〉 for all ϕ ∈ Dω(Ω) and all T ∈
D′

ω(Ω, E)).
Proof. 1. It follows from the hypothesis and [2, Theorem 3.3.3] that P (D)

is a continuous linear operator of Bloc
p,kP ′(Ω) (resp. Eω(Ω)) onto Bloc

p,k(Ω) (resp.
Eω(Ω)). Furthermore N(P (D)) coincides, algebraic and topologically, with the
subspace {f ∈ Eω(Ω) : P (D)f = 0} of Eω(Ω) in virtue of [2, Theorem 4.1.1],
the embedding Eω(Ω) →֒ Bloc

p,kP ′(Ω) [2, Theorem 2.3.5] and the closed graph
theorem; thus N(P (D)) is a nuclear Fréchet space (Eω(Ω) is nuclear by [45]).
It is then clear that the diagram

0 - P (D)-

0

id
P (D)

N(P (D))

- Eω(Ω)

6 6

Bloc
p,k(Ω)

6

- 0

6

N(P (D)) 0

−→ Bloc
p,kP ′(Ω)

- -−→ Eω(Ω)

is commutative. Since, by the Meise-Taylor-Vogt theorem [24, Theorem 2.10,
Corollary 2.16], the second row of this diagram does not split, it follows that
the first row does not split either (see [32]). The first row is an (ǫL)−triple
by the nuclearity of N(P (D)) and [19, Theorem 2.9]. Next consider the dual
diagram

14



0 -
tP (D) -

0

id
tP (D)

(
Bloc

p,k(Ω)
)′

-

-

(N(P (D)))′
?

(N(P (D)))′

?

- 0

?
-E ′

ω(Ω) 0

(
Bloc

p,kP ′(Ω)
)′

- -E ′
ω(Ω)

This diagram is also commutative and since N(P (D)) is quasinormable (see
e.g. [25, Corollary 28.5]) its rows are topologically exact sequences (use [25,
Proposition 26.18]). Its second row does not split because the second row of
the previous diagram does not split either and the space Eω(Ω) is reflexive (see
[32]). Hence it follows that the first row does not split either.
2. Since P̃ (D) = P (−D) and Ω is P̃−convex, it follows from 1 that the short

sequence 0 −→
(
Bloc

p′,1/k̃
(Ω)

)′ tP (D)
−→

(
Bloc

p′, 1
k̃
P̃ ′

(Ω)
)′

−→
(
N(P (−D))

)′
−→ 0 is

topologically exact and it does not split. Using the isomorphisms [31, Theorem

3.2]
(
Bloc

p′,1/k̃
(Ω)

)′

≃ Bc
p,k(Ω),

(
Bloc

p′, 1
k̃
P̃ ′

(Ω)
)′

≃ Bc
p,k/P ′(Ω) one easily concludes

the proof.

3. According to 1 we have the exact sequence 0 −→ N(P (D)) −→ Bloc
p,kP ′(Ω)

P (D)
−→

Bloc
p,k(Ω) −→ 0 then also 0 −→ N(P (D))⊗̂εE −→ Bloc

p,kP ′(Ω)⊗̂εE
P (D)⊗̂εid
−→

Bloc
p,k(Ω)⊗̂εE −→ 0 is exact (the second arrow is injective by [22, Proposi-

tion 5 p.277] and P (D)⊗̂εid is surjective by the nuclearity of E and [22,
Proposition 7 p.189]). On the other hand from [22, Proposition 7 p.189]
and [22, Proposition 7 p.174] it follows that N(PE(D)) = N(P (D)⊗̂εid) =

N(P (D)) ⊗ E
Bloc

p,kP ′
(Ω)⊗̂εE

= N(P (D))⊗̂εE. Furthermore, by virtue of Theo-
rem 4.1(a), we have Bloc

p,kP ′(Ω)⊗̂εE = Bloc
p,kP ′(Ω, E) and Bloc

p,k(Ω)⊗̂εE = Bloc
p,k(Ω, E).

Therefore we have the exact sequence 0 −→ N(PE(D)) −→ Bloc
p,kP ′(Ω, E)

PE(D)
−→

Bloc
p,k(Ω, E) −→ 0. Finally the nuclearity of N(PE(D)) and Theorem 2.9 in [19]

show that this sequence is also an (ǫL)−triple.

Remark. For results on the splitting of partial differential operators be-
tween Bloc

p,k–spaces in the temperate case see also [14].
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[33] A. Pelczyński, Projections in certain Banach spaces, Studia Math. 19 (1960)
209-228.
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