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Commonly accepted, the conventional ionic model has been used for almost one century 
to describe inorganic solids in terms of cation-centred anionic polyhedrons. Unfortunately, 
the model is unable to either describe or understand why inorganic compounds adopt 
the structures they have. In this book, the author exposes the limitations of the ionic 
model and proposes new concepts, like the relation between oxidation and pressure 
and the extended Zintl-Klemm concept combined with Hoffmann’s isolobality concept, 
hypervalency and the equivalence between electrons pairs and anions, to obtain a much 
deeper understanding of the structures of inorganic. The experimental data discussed 
along the text under the light of these concepts allow us to conclude that the structures 
of elements and alloys are present in their oxides. Sometimes deformed, sometimes 
unchanged, or even transformed by the laws of the Zintl-Klemm concept, elemental 
structures are key to understand complex structures. 
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Prologue

The longer I live, the more I realize the impact of attitude on life.
Attitude, to me, is more important than facts.
It is more important than the past, the education, the money, than circumstances,
than failure, than successes, than what other people think or say or do.
It is more important than appearance, giftedness or skill.
It will make or break a company... a church... a home.
The remarkable thing is we have a choice everyday
regarding the attitude we will embrace for that day.
We cannot change our past... we cannot change the fact that people
will act in a certain way. We cannot change the inevitable.
The only thing we can do is play on the one string we have, and that is our attitude.
I am convinced that life is 10% what happens to me and 90% of how I react to it.
And so it is with you... we are in charge of our Attitudes.

Charles R. Swindoll

It is a pleasure to me and a great honor to write the prologue of this book of my 
friend and colleague, Dr. Ángel Vegas, who shows in this book the vast knowledge 
he has acquired during thirty years of hard work and that now, that he is retired, 
shares completely with us as a legacy to future generations.

I met Dr. Vegas eighteen years ago at the Max Planck Institute for Solid State 
Research in Stuttgart (Germany), where I was a postdoctoral researcher thanks to 
a “Marie Slodowska-Curie” fellowship of the European Union and where Dr. Vegas 
did one of his many international research stays. During the coffee breaks we had 
he talk to me about his new ideas about the chemical bond and how such ideas 
led him to Stuttgart in order to perform a series of high-pressure experiments in a 
family of compounds that will allow him to verify his predictions. I was surprised 
that his ideas elicited such a skepticism in the scientific community and that 
many journals with high impact factor closed their doors at his ideas, despite 
the observed structural relationships between different compounds exhibited the 
goodness of the affirmations, and even predictions, of Dr. Vegas.
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The idea of Dr.  Vegas that was more captivating to me, as a Solid State 
physicist devoted to the study of Materials at high pressures and expert in 
pressure-induced phase transitions, was the equivalence between pressure (as 
a physical magnitude) and oxidation (as a chemical pressure). I was struck to 
know that crystalline structures present at high pressure in simple elements or 
in their metallic alloys could be observed at room pressure or at low pressures in 
the oxides of such elements or of their alloys. The experimental confirmation of 
this paradigm in a number of compounds clearly showed that Dr. Vegas was right 
and suggested him the idea that the atoms of the different element do not lose 
their memory despite being surrounded by atoms of different elements; i.e., it is 
as if the different atoms could recognize each other and reach an agreement to 
preserve, although partially, its original identities.

Fortunately, those talks in Stuttgart derived with time in a deep friendship 
that allowed me to get closer to Dr. Vegas’ ideas. In particular, he showed me the 
Zintl-Klemm concept, and I remember how I was struck when the generalisation 
of this concept, proposed by Dr.  Vegas, revealed itself as a previous step to 
understand the crystal structures of a great number of compounds. Thanks to 
the generalisation of the Zintl-Klemm concept, Dr. Vegas has been able to infer 
that the crystal structure of a given compound is the result of a resonance among 
several crystalline structures. In other words, the crystalline structure of a given 
compound derives from the resonance of the electron charge densities present in 
the crystalline structures of several isoelectronic compounds related to the given 
compound.  

On the light of the above-mentioned facts, Dr.  Vegas’ work deserves the 
greatest respect and the highest praise. Fortunately, he has found the collaboration 
of a few but renowned colleagues who have helped him in his noble and hard 
task. As an expert in Crystal chemistry, Dr. Vegas has studied the similitude’s and 
differences between the crystal structures of the elements and of the cationic 
subarrays in a number of compounds. In particular, he has analyzed the topology 
of the crystal structures and the values of the interatomic distances and has 
provided clear evidence that the crystal structures of compounds bear a close 
relationship with the crystal structures of the elements that form part of these 
compounds. Here comes the subtitle of the present book: “From the elements to 
the compounds”. 

The knowledge that Dr. Vegas has acquired during his long scientific career 
have allowed him to dip into the concept of the chemical bond and have led 
him to question the current paradigm of the ionic bond model formulated by 
Goldschmidt and Pauling, and based in the idea of cations and anions; i.e., atoms 
eager to lend or borrow charge. The questioning of the fundamentals of the ionic 
bond model, allows one to understand the skepticism with which the scientific 
community has received Dr. Vegas’ ideas. However, I encourage the readers to 
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study this book, which will allow them to better understand Dr. Vegas’ ideas than 
in the many individual scientific papers that Dr. Vegas has published. I am pretty 
sure that this book won’t leave any reader indifferent and that this book will be 
part of the basic texts of chemistry at pre-graduate level in the future.

It is often said that Spain is a “Land of Quixotes”. In this case, we are in front 
of one of them. Not least, Dr. Vegas was born “In a village of La Mancha, the name 
of which I have no desire to call to mind….”, the initial words of Cervantes’ book. In 
fact, one could establish a certain parallelism between Dr.  Vegas’ life and that 
of the ingenious Nobleman Don Quixote of La Mancha. Don Quixote devoted 
his life to fight for the justice, against tyranny, embodied in the windmills that 
became giants. In a similar way, Dr. Vegas’ work has not been fully recognized, 
it has been systematically underestimated both at a national and international 
level, and has bravely struggled for thirty years to defend his ideas in front of 
a scientific community that is resistant to change the paradigms related to 
the chemical bond in inorganic solids. Dr. Vegas has been out of the scientific 
mainstreams and has struggled against the tyranny of the scientific fashions, 
the big headlines, and big research groups managing big budgets and a lot of 
resources, as well as conditioned by Editors of the many of the most prestigious 
journals and publishers. Moreover, in the same way that the ingenious Nobleman 
Don Quixote of La Mancha struggled to bring justice to the world with the only 
help of his loyal squire (Sancho Panza) and a hungry horse (Rocinante), Dr. Vegas 
has given us a lesson about how to make groundbreaking science with a few 
human and material resources; i.e., with the collaboration of a few friends and 
colleagues and with the only access to scientific literature and to crystallographic 
databases. These conditionings have contributed to the publication of this book, 
with the support of one of his friends, at the press of the Universitat Politècnica 
de València; a university that is currently renowned by Chemical Engineering, 
Agronomy and Food Technology. Therefore, here is planted the seed that will 
blossom and grow in the future... like orange trees grow around us.

Valencia (Spain), November 2018.

Prof. Dr. Francisco Javier Manjón

Full Professor of Applied Physics
Universitat Politècnica de València
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Preface

On April 21st, 1912, in Munich, Walter Friedrich and Paul Knipping carried out 
an experiment designed by Max von Laue, which sought to demonstrate that 
crystals could diffract X-rays. The idea of diffracting capability by crystals was 
conceived by Laue, after discussions with Paul Ewald who told him his ideas 
about the lattice character of the crystalline aggregates (called crystals). 

Just a year later, in 1913, W. H. Bragg and his son W. L. Bragg, resolved the 
first crystal structure by X-ray diffraction in London. It was the cubic structure 
of NaCl that, surprisingly, coincided with the model that Barlow had predicted 
in 1883.

After a century of experience, we can proclaim that these experiments led 
to one of the most significant discoveries in physics. The ability to determine 
crystal structures has been a major contribution to the knowledge of condensed 
matter, with a breakthrough in solid state physics, in mineralogy, in all fields 
of chemistry (organic, inorganic and metal organic) and, later, in the structural 
determination of biological macromolecules (proteins, DNA, viruses, etc.). In 
recent years, we have even seen the resolution of structural cell components 
(corpuscles) as complex as ribosome. The results have been: ~ 500,000 entries 
in the crystallographic databases (CSD, PDB, ICSD and PCD), which contain 
the work of thousands of crystallographers worldwide in the last 100 years. 

The importance of crystallography is not limited to the resolution of the 
crystal structures. Advances in experimentation also helped solve structures 
of materials with low crystallinity such as polymers, amorphous materials or 
modulated structures with immeasurable cell parameters. In this field, we must 
outline the contribution of the convergent beam electron diffraction (QCBED) 
that together with the high-resolution electron microscopy (HREM), allowed for 
the structural determination of microcrystals. 

The breakthrough in structural determination was due to great facilities 
such as neutron sources in nuclear reactors, the most recent neutron facilities 
and the third-generation synchrotrons. In the latter, high intensity pulses of up to 
femtoseconds, have led to progress in the knowledge of the structural dynamics, 
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kinetics of reactions, reaction mechanisms and phase transitions. We would be 
remiss if we didn’t mention the new possibilities opened up by new sources such 
as XFEL (X-ray Free Electron Laser). 

The progress mentioned in these new X-ray sources, together with the 
development of new codes for data collection and structure determination, have 
made ​​of structural solution almost a routine process. 

We must also highlight the advances provided by the synchrotron diffraction 
studies under conditions of extreme pressure and/or temperature. In the past 20 
years, new phase transitions have been discovered; some of them have represented 
real challenges to existing theories and paradigms in current chemistry. This is a 
point to which we will devote special attention later in this book. 

All this material has aided in developing evolutionary algorithms, which, 
together with new QM calculation codes, have promoted the prediction of new 
crystal structures at ambient conditions and under extreme, high-pressures as well.

This text is aimed at students as for M. Sc and PhD students, although 
some students in their final year of Grade could also benefit whenever they have 
acquired the necessary background in inorganic crystal chemistry. It is assumed 
that the reader is familiar with concepts such as Pauling’s ionic bonding model, 
which interprets the structures of ionic solids as composed of anions and cations 
whose relative sizes are considered as one of the main factors determining their 
structures. It is here where the reader will find dissenting ideas, which hopefully 
will serve to better understand the structures. These ideas are only now gaining 
ground.

The main reason for this dissention is that the ionic model has not been able 
to explaining why the structures of inorganic solids are as they are. Following 
C. A. Coulson, any bonding theory should provide a satisfactory explanation of 
both energy and structure of a given compound. It is clear that the ionic model, 
based on the rules of the radius ratio, was insufficient to achieve that goal.

Throughout the text, we will make a survey of the alternative ideas. We will 
begin describing the pioneering work by O’Keeffe and Hyde (1985) in which 
the structures are described as oxygen-stuffed alloys. Subsequent works (1986-
2016), by several authors, have provided new insights that are truly challenging. 
Among them, we can mention: the maintenance of the topology and distances 
of the metal structures in their oxides, the correlation between oxidation and 
pressure and the applicability of the Zintl-Klemm Concept to the cation arrays in 
oxides. In all of them, the cation arrangements are regarded as the determining 
factor of the structure.  
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These new ideas are combined with older concepts that usually concern 
molecular chemistry. Among them, the Hoffmann’s isolobality concept, 
hypervalency, resonance structures, etc. What we are proposing in this text is 
a new way of looking at crystal structures by joining concepts that, up to now, 
had been limited to the molecular chemistry on one hand or to the solid state 
chemistry on the other hand. 

The structures are completely dissected, discovering structures existing in 
simpler compounds, even finding fragments of the elemental structures of their 
components: an autopsy that allows us to perceive the structures in a holistic 
way. 

In the last chapters, calculations of the ELF provide new data on why both 
bonding pairs and lone pairs can be identified with the O atoms in many of the 
structures considered. Throughout the text we have attempted to explain the 
structures in a simple way. The word “explanation” can be assigned a wide, 
sometimes ambiguous meaning. Contrarily, we try to describe the structures in 
terms of the simplest real arrays, i.e. the elemental structures.

This book is not aimed as a comprehensive description of crystal structures 
but to providing new insights that the readers can use for analyzing structures of 
interest for their research and/or teaching. It is worth mentioning that visualizing 
these structures and discovering within them their multiple components is not 
an easy task. Discovering how the different components complement each other 
and interconnect has required much effort and patience, which will facilitate the 
reader understanding of other compounds. 

Thinking in teachers and researchers, a basic knowledge in handling 
Crystallographic Databases and the codes used to represent the crystal structures 
are all-helpful in deepening the understanding of ideas developed in this text in 
the unveiling of new structural relationships. 

In this respect, the wealth of structural data offer immense possibilities for 
progress in the establishment of the laws governing the formation of structures 
and their resulting properties. The latter are less explored but are now starting 
to be “visited” by some crystal chemists. We align ourselves with the statement 
from Jack Dunitz, when he said that, “Crystal Structure Data Bases contain 
hundreds of thousands of answers waiting for questions”. Some of the questions 
we have posed to both ​​ICSD and PCD and some of those answers will be found 
by the reader in this book.

Madrid, 11th July 2012                         
Festivity of St. Benedict of Europe             
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Chapter 1
The basis of the classic  

crystal chemistry

1.1  Introduction
Crystal chemistry is a branch of science that studies atomic arrangements 
in crystals and the relationships between them. It was developed through 
experimental determination of the first inorganic crystal structures that were 
solved and hence, has dealt almost exclusively with inorganic solids, known as 
“ionic compounds”. 

Many of these earlier structures were those of simple inorganic compounds 
such as NaCl, ZnS, SiO2, TiO2, CaF2, etc.  In the 1920’s, when the first ideas about 
chemical bonding were drafted, chemists and physicists began investigating the 
formation of such closely packed structures of NaCl, which had been predicted 
by Barlow, in 1889 [1]. We can compare his blind prediction with Bragg’s three 
decades later. Both drawings are in Figure 1.1. 

(a) (b)
Figure 1.1  (a) Structure of NaCl as predicted by Barlow [1] [Reproduced from Barlow (1898), 
Figure 8]. The prediction was limited to the spatial distribution of Na and Cl atoms but not to 
their dimensions. (b) Representation of the structure determined by X-ray diffraction by the Bragg’s 
(1913). Only in the latter case do we know that the parameter of the cubic unit cell is a = 5.625 Å.

The experimental determination of the simple structures mentioned above led 
to the development of chemical and physical models, which proposed to explain 
these structures. These are known as bonding models. In the early stages, it was 
thought that inorganic solids, mostly oxides and halides, consist of positive ions 
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(cations) and negative ions (anions) whose opposing forces in the right structural 
arrangement would stabilize the structure by means of electrostatic forces. From 
this, the name “ionic model” was derived to describe this bonding model. As C. 
A. Coulson [2] states in his classic book “Valence”, any bonding theory must 
account for two observable facts: the energy and the structure. Therefore, in these 
first chapters, we will examine the extent in which the ionic model fits these two 
requirements.

1.2  The energy calculation
The early ionic model suggested that inorganic crystals were made up of anions 
and cations held together by electrostatic interactions. From these models Born and 
Landé (1918) concluded that the energy released when anions and cations came 
together to form the compound was the lattice energy ULat. The predominantly 
electrostatic contribution of lattice energy was quantified by the equation: 

	 /U 4 1 1 nd
NM Z Z e –Lat

0 0

2–

rf=
+

^ h � (1.1)

where N is Avogadro’s number, M the Madelung constant, Z+ and Z– the 
nominal charges of cation and anion respectively, e is the charge of the proton, 
ε0 the dielectric constant of a vacuum, d0 is the equilibrium distance between the 
cation and anion and finally n, the Born parameter, is introduced to account for 
the compressibility of the ions. 

This expression of lattice energy presents the formation of an ionic compound 
as the binding of ions of opposite sign that approach each other from infinity and 
minimize their energy at the equilibrium distance d0. This distance is the point at 
which the attractive and repulsive forces are balanced. Illustrations of this can be 
found in any textbook on Inorganic Chemistry.

In the Born-Landé equation, the Madelung constant M plays an important 
role. M is a geometrical factor that implicitly contains both attractive contributions 
between ions of opposite sign and repulsive forces between ions of the same sign. 
This constant is not characteristic of the compound, but rather of the structure 
type.  Its value is determined only by the geometry of the lattice and is independent 
of the ionic radii and of the ionic charge. Consequently, the calculation of lattice 
energy should be limited to simple ionic compounds that have been mentioned. 
Other structures such as orthosilicates (Mg2SiO4), phosphates (FePO4) and silica 
(SiO2), that contain strong covalent X-O bonds, need revised electrostatic models. 
In particular, compounds such as ZnS, will be treated later in this book.

1.3  The Born-Fajans-Haber Cycle
Proving the usefulness of the ionic model in calculating ULat required the use of 
a thermodynamic cycle based on experimental standard enthalpies of formation. 
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Born, Fajans and Haber [3] described this cycle as follows to calculate the lattice 
energy. Take CaO (NaCl type) as an example of this.  

Ca (solid) + C → Ca (g)	 C = enthalpy of atomization

½ O2 (g) + ½ D → O (g)	 D = dissociation enthalpy

Ca (g) + I1 → Ca+	 I1 = first ionization potential of Ca

Ca+ + I2 → Ca2+	 I2 = second ionization potential of Ca

O + AI → O–	 AI = first electron affinity of O

O– + AII → O2–	 AII = second electron affinity of O

ULat = Lattice energy released by binding Ca2+ and O2– ions approaching 
each other from infinity up to the equilibrium distance. 

ΔHf
0 = Standard Enthalpy of formation of CaO (solid) from Ca (solid) and 

O2 (gas), its elements in their standard states [4].

All these enthalpic processes are integrated in the following expression 
of the Born-Fajans-Haber cycle (1.2), from which, by applying Hess’s law, 
we can obtain the values of the lattice energy. This process only works when 
experimental data of the compound’s enthalpy of formation are available: 

	 ΔHf
0 = C + I1 + I2 + ½ D + AI + AII + ULat� (1.2)

Most of the enthalpies involved in the Born-Fajans-Haber cycle can be 
estimated experimentally with variable accuracy. For example, measuring 
the endothermic second electron affinity AII for oxygen is problematic and, 
therefore, the lattice energy ULat must be estimated theoretically by means of 
equation (1.1).

Scheme 1. The Born-Fajans-Haber cycle.

H∆ 0
f  

Ca (s) +  O2 (g)                    CaO (s) 
 

 D                                 ULat 
 C                     

AI +AII
  

              O (g)     O2–
 (g)

                      I1 + I2   + 
Ca (g)                                        Ca2+

(g) 



4 1.4 The Lack of a Bonding Model for Ionic Compounds

At this point, we must emphasize an important aspect associated with these 
thermodynamic cycles, i.e. they could be taken as a mere numbers game in 
virtue of the well-known thermodynamic principle saying that every chemical 
process is only marked by both the initial and the final states.

Thus, since 1917 the ideas of Madelung, Haber and Born, which were based 
on a predominantly electrostatic model, began to be accepted because of their 
ability to predict, within reason, the enthalpies of formation of some of those 
inorganic compounds. The metal atomization process C, the energy needed to 
dissociate molecules D together with the mutual ionization of unlike atoms can 
compel one to think that the model is founded on electrostatic attractive forces 
between ions of opposite charge, while the interactions between ions of the same 
charge, are assigned purely a repulsive character. 

The concept of point charges, that act through the electrostatic interactions, 
which are used to calculate the Madelung constant M and hence ULat, prompted 
the recognition of ions and the need of assigning them a size. These ionic 
sizes, which were considered as ionic radii, will be discussed in Chapters 2 
and 3. 	

1.4  The Lack of a Bonding Model for Ionic Compounds
We believe a model that is based on the atomization of metals, followed by 
their ionization at the infinity, and later ready to be brought together in an 
“ionized” solid, is intuitive but far from reality. For this reason, attempts ​​to 
match the calculated ULat energies with the experimental ones began including 
covalent contributions, polarizability of ions, etc., leading us to conclude as 
Waddington [5] that “...the development of lattice energy is largely an account 
of the development of the ideas about non-electrostatic forces”. In this line, 
Aslanov [6] placed attractive van der Waals forces between anions to justify 
the values ​​of the lattice energy in compounds with the NaCl- and CsCl-type 
structures. Interactions between ions of the same sign, in particular anions, 
have been the subject of recent studies [7] that will be discussed in further 
chapters.

O’Keeffe [8] after a detailed analysis of many of these aspects, including 
energetics, bonding, polarizabilities and coordination numbers in ionic solids 
acknowledges the impossibility of drawing firm conclusions about the validity 
of the ionic model. He concludes that “when we say that a crystal is ionic what 
is implied is that some simple properties of the crystal are well described by 
the ionic model”. He notes that “some quantities such as ionic radii or ionicity 
are sometimes useful concepts but are in principle not determinable”.  Some of 
these aspects will be further considered in Chapters 2 and 3.    

The fact that the calculation of the lattice energy had to be done by means 
of the Born-Fajans-Haber cycle, seems to indicate that the “ionic model”, rather 
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than a bonding model, should be regarded as a “thermodynamic model”, in 
which every chemical process is marked by the initial [Ca(s) and O2(g)] and 
final [CaO(s)] states. Intermediate processes are ideals, serving only as tools to 
calculate the thermodynamic state functions as the enthalpy of the process. The 
enthalpy of atomization C could be the most significant example of such ideal 
processes.

QM calculations also provide reliable values of the enthalpy of formation. 
However, like in the ionic model, these methods also need the information 
about the structure of the compound. Nevertheless, QM calculations have the 
advantage of supplying additional “a posteriori” information on the bonding 
nature and other physical properties, data that the ionic model cannot provide.

1.5  The contribution of the Volume Based Thermodynamics 
The problem associated with the magnitudes involved in the Born cycle can 
be prevented if we make use of the so-called Volume-based thermodynamics 
(VBT) model, recently developed by Jenkins and his co-workers [9]. This model 
which recognizes a new relationship between the formula unit volume, Vm and 
thermodynamic quantities such as lattice energy, ULat and entropy, S, is a link 
that serves to furnish us with a previously unappreciated connection between 
crystal structure data (via unit cell volume, Vm = Vcell /Z) and thermodynamics. 

What makes the VBT model interesting is that the values of ΔHf
0 can 

be obtained from the unit cell volumes, making the intricate experimental 
determination of some magnitudes unnecessary. At the same time, it circumvents 
conceptual problems like atomization of metal structures, as well as the role of 
electrostatic forces and the covalency inherent to some atomic groups such as 
SiO4 and PO4 among other. The model requires no structural details whatsoever 
but only a known volume of the formula unit involved. Its usefulness is that 
it provides a relative measure of stability in the structures. Numerous papers 
explain this development in considerable detail [9, 10]. For example, we can 
highlight its ability to predict the thermodynamic stability of the non-existing 
Na2SO2 and Na2SeO2 compounds [11] and how the (SO2)2– anion has been 
detected in solution [12, 13] so, opening the possibility of isolating the salts. 
This point will be considered in detail in Chapter 18.

1.6  The energy calculated by Quantum Mechanical methods
The above sections present us with a new problem: there is no bonding model for 
ionic compounds that is intimately linked to the uncertainties of the structures. 
It could be argued that prediction proves unnecessary if hundreds of thousands 
of structures that have been experimentally determined are available in the 
databases. However, eventually, all these structures had to be solved because 
they were, first, not predicted by the existing models. 
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The difficulty in predicting inorganic structures contrasts with the greater 
advances in observing molecular compounds. The latter has been facilitated 
by the existence of bonding models like the Pauling’s Valence Bond model 
(VB) or in the molecular orbital theory (MO) of Hund, Mulliken, Slater 
and Lennard-Jones. It is also true that molecular mechanics also helped in 
determining the molecular conformations. 

The energy of any molecule can be obtained by solving the Schrödinger 
equation that is independent of time [14]:

	 HΨ = EΨ� (1.3)

The wave function of a molecule depends on its conformation and if 
we know this, we can determine its wave function Ψ and hence calculate its 
energy. 

From this viewpoint, molecular chemistry is closer to prediction and, 
above all, to explaining the structures than is solid-state chemistry. However, 
in inorganic solids models based on valence bond or molecular orbital theories, 
have not served to provide hints for their structural skeletons. Thus, the 
difficulties in anticipating inorganic structures on the basis of directional bonds 
has probably prompted the search for predictive methods founded in ab initio 
computations as well as in topological similarities with related compounds. 
Predicting crystal structures has become one of the most important challenges 
in solid-state chemistry.

1.7  Can structures be predicted?
That these predictive models do not reliably predict structure, even for simple 
solids, remains a controversy among some. Maddox [15] in particular called this 
a “scandal in the physical sciences” and Gavezzotti [16] abounds with similar 
ideas. The reasons for such a failure are partly due to the inverse relationships 
between order and energy and between the dimensionality and diversity of the 
plausible crystal structures. The chances that a random search will find the 
ground state decrease exponentially by increasing the number of atoms involved 
in the structure. 

Even though the challenge remains nowadays, there have been significant 
advances toward this cause with the increase in computing capabilities and the 
development of new first-principles QM codes and global searching methods 
as well. It is not our aim here to make a detailed description of the different 
methods but just to enumerate briefly the most significant contributions to 
Crystal Structure Prediction (CSP) in the following section. The reader can find 
complete summaries of these methods in references [17-19].
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1.8  The predictive methods
There are two methods that ought to be distinguished: the structure modelling 
and the structure prediction. Modelling consists of the minimization of the 
lattice energy based on interatomic potentials. This technique is now routine 
work and, when applied to inorganic solids, manages to calculate unit cell 
parameters within 1%. It should be stressed, however, that such calculations are 
not predictions.

On the contrary, predictions must start from no empirical information on 
the atomic positions in the unit cell. Moreover, a genuine predictive method 
should not include the experimentally determined lattice parameters, although 
less restrictive methods arrive at the unit cell constants with the only input data 
being the cell contents. 

Here we will describe some methods used for Crystal Structure 
Prediction (CSP):

1.	 Random sampling. - Freeman and Catlow [20] pioneered this method 
that was followed later by van Eijck and Kroon [21] and by Pickard and 
Needs (2006) [22, 23]. The method is no-learning and works well for small 
clusters (about 10 atoms). Thus, energy landscapes of (MX)12 clusters were 
obtained for materials with tetrahedral skeletons (wurtzite or sphalerite) 
such as LiF, BeO, BN, AlN, among others. A similar study was reported on 
CuF, a much-debated compound in the past century. It was reported that CuF 
had the sphalerite structure but the synthesis could never be reproduced. 
Instead, theoretical predictions [24] assign to CuF a cinnabar-like (HgS) 
structure to CuF.

2.	 Simulated annealing. - The system is no-learning and it derives from 
simple concepts on physical annealing [25-27]. When a molten metal, is 
slowly cooled, the atoms may crystallize reaching the global minimum. 
Within the molecular dynamics simulation (Metropolis criterion) the initial 
temperature is chosen high enough to allow the system to overcome easily 
energy barriers between local minima. This method has been used to assist 
in the synthesis planning [27, 28].

3.	 Genetic algorithm methods. - These are “learning” procedures, based on 
evolutionary algorithms acting on a population of structures. They are 
conceived to avoid the problems associated with a single starting point. 
The algorithm works by mimicking Darwinian or Lamarckian evolution 
[29-33]. The code USPEX [34] uses a hybrid evolutionary algorithm. 

The use of computational techniques as a tool in structural studies of 
complex solids is increasingly the standard, and genuine predictions are now 
being reported for several classes of materials. However, following Woodley 
and Catlow [17] structure prediction will continue to challenge our ingenuity 
for many years to come. 
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1.9  The structures remain unexplained 
In many instances, CSP is founded in data mining and also in structure 
similarities with related compounds. See, for example, the predictions of new 
Li2S and Na2S phases [28, 35-37]. The prediction of a new high-pressure phase 
for nitrogen that reproduces the pseudo-P skeleton of Si–1 charged atoms in the 
SrSi2 Zintl phase [38] and the possible stabilisation of the Bc8 structure for 
carbon at pressures of the order of TPa [39]. This structure is formed by Si and 
Ge at much more lower pressures [40].

So far, we have described aspects concerning the calculation of the lattice 
energy of compounds, a problem that can be presently afforded by QM and also 
by means of the VBT methods [9], which enable us to deduce the stability of an 
unknown compound. In this context, it is pertinent to bring Coulson’s ideas to 
the table involving the two observable facts that a bonding model must account 
for: the energy and the structure. Reasonable values of ΔHf

0 and ULat can be 
obtained for simple compounds. However, the second main problem, that is 
the structure, remains unsolved. As we will see in Chapter 2, nobody has been 
able so far to explain why the structures are as they are or to predict the structure 
type that a new compound will adopt. 

In conclusion, despite the efforts made by solid-state theoreticians after one 
whole century of X-ray diffraction, the reasons why NaCl, SiO2, TiO2, ZnO, 
ZnS, etc. adopt the structures they do remain unknown to us. The hundreds of 
thousands of structures we know so far had to be determined because they could 
not be predicted but even if prediction were possible we have their explanations. 
Prediction and explanation of structures are still a challenge that makes it 
difficult to hold the “ionic model” as a true bonding model. 

Summary
Since the 1920’s, inorganic solids, mostly oxides, are thought to be formed 
by positive cations and negative anions whose structure is stabilized 
by electrostatic interactions. This model, generally accepted by its 
capability of predicting both ΔHf

0 and the lattice energy ULat by means 
of the Born-Haber-Fajans cycle, is unable of predicting the structures of 
the compounds. Because any bonding model should account for both the 
energy and the structure of a given compound, the ionic model rather 
than a bonding model is a thermodynamic model. QM calculations and 
Volume Based Thermodynamics also provide reliable values of the energy 
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Chapter 2
The second basis of the 

ionic model: Close packed anionic 
array and the sizes of ions 

2.1  The first crystal structures solved: Their influence on 
the ionic model

The ionic model describes the structures as closest-packed arrays of bulky 
anions with small cations occupying interstices of that anionic array. As it was 
discussed in Chapter 1, this descriptive model was derived from concepts like 
the Madelung constant M and also from experimental results such as the crystal 
structure determination of NaCl by the Bragg’s in 1913 as well as other crystal 
structures that were solved in following years. 

At that time (1916) Lewis and Langmuir published the concept of covalent 
bond, which was defined as a pair of electrons shared by the two bonded atoms, 
so that each atom completes one octet in its valence shell. Thus, the sharing 
of electron pairs and the octet rule were two of the most fruitful ideas at that 
time. Although compounds like NaCl, could be thought of as formed by discrete 
Na-Cl molecules bonded by covalent bonds, the experimental results showed 
that Na+ cations and Cl– anions formed a three-dimensional structure that could 
be explained through electrostatic attractions.  

It is important to bear in mind the structures solved in the early years of 
the X-ray crystallography, listed in Table 2.1. Some of them (C, Si, Sn and Sb) 
represented a valuable test to the concept of covalence and the fulfilment of the 
octet rule. Many others (NaCl, CaF2, Fe3O4, MgAl2O4, NiO, NaF, etc.) were 
regarded as an evidence of the existence of ions that decisively influenced the 
development of the ionic model. Several of these structures could be described as 
close-packed anionic arrays in which cations occupied octahedral or tetrahedral 
voids. 

For example, in NaCl, bulky Cl– anions form a cubic closest packed array, 
with all the octahedral voids filled with Na+ cations. In spinel (MgAl2O4) a 
slightly distorted f.c.c.-array of O atoms had ½ of the octahedral holes occupied 
by the Al3+ cations while ⅛ of the tetrahedral voids were filled with Mg2+ cations.

Table 2.1, continues on next page
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