

Requirements Modeling
for Multi-Agent Systems

María Lorena Rodriguez Viruel

DIRECTORES
Dr. Emilio Insfran Pelozo

Dr. Luca Cernuzzi

Master thesis in Software Engineering, Formal
Methods and Information Systems (ISMFSI)

Departamento de Sistemas Informáticos y
Computación (DSIC)

February 2011

ii

Agradecimientos

A mis directores de tesis Emilio Insfran y
Luca Cernuzzi por su esfuerzo, dedicación,

confianza y ayuda fundamental para la
concreción de este trabajo.

A la entidad Itaipu Binacional/Parque

Tecnológico Itaipu-Py por la beca otorgada
para la realización de los estudios del master.

Me gustaría también expresar mi sincero

agradecimiento a todo el grupo ISSI, por la
ayuda y concejos prestados.

A los buenos amigos que forme durante mi

estancia en Valencia, por el apoyo
incondicional y desinteresado. Por toda la

ayuda y cariño que me han dado.

Y, por supuesto, el agradecimiento más
profundo y sentido va para mi familia, por el

ánimo y cariño de siempre. A mis padres,
por la formación que me han permitido

obtener, por su ejemplo. A Maurizio, por el
apoyo, por estar a mi lado para que haya

podido realizar y finalizar esta etapa
académica.

iii

Abstract

Different approaches for building modern software systems in
complex and open environments have been proposed in the last few
years. Some efforts try to take advantage of the agent-oriented
paradigm to model/engineer complex information systems in terms
of independent agents. These agents may collaborate in a
computational organization (Multi-Agent Systems, MAS) by playing
some specific roles having to interact with others in order to reach a
global or individual goal. In addition, due to the complex nature of
this type of systems, dealing with the classical functional and
structural perspectives of software systems are not enough. The
organizational perspective, that describes the context where these
agents need to collaborate, and the social behavior perspective, that
describes the different ―intelligent‖ manners in which these agents
can collaborate, need to be identified and properly specified.

Several methodologies have been proposed to drive the
development of MAS (e.g., Ingenias, Gaia, Tropos) although most of
them mainly focus on the design and implementation phases and do
not provide adequate mechanisms for capturing, defining, and
specifying software requirements.

Poor requirements engineering is recognized as the root of
most errors in current software development projects, and as a means
for improving the quality of current practices in the development of
MAS, the main objective of this work is to propose a requirements
modeling process to deal with software requirements covering the
functional, structural, organizational, and social behavior
perspectives of MAS.

The requirements modeling proposed is developed within the
model-driven engineering context defining the corresponding
metamodel and its graphical syntax. In addition, a MAS requirements
modeling process is specified using the Object Management Group‘s
(OMG) Software Process Engineering Metamodel (SPEM). Finally, in
order to illustrate the feasibility of our approach, we specified the
software requirements of a strategic board game (the Diplomacy
game).

iv

Resumen

Diferentes enfoques se han propuesto en los últimos años para la
construcción de sistemas de software modernos en entornos
complejos y abiertos. Algunos esfuerzos intentan aprovechar el
paradigma orientado a agente para modelar/desarrollar sistemas de
información complejos en términos de agentes independientes. Estos
agentes pueden colaborar en una organización computacional
(Sistemas Multi-Agente, SMA) llevando a cabo roles específicos e
interactuando con otros para alcanzar un objetivo global o individual.
Además, debido a la naturaleza compleja de este tipo de sistemas,
tratar con las clásicas perspectivas funcionales y estructurales del
sistema de software no es suficiente. También es necesario identificar
y especificar correctamente la perspectiva organizacional, que describe
el contexto donde estos agentes necesitan colaborar, y la perspectiva
de comportamiento social, que describe los diferentes modos
―inteligentes‖ en que estos agentes pueden colaborar.

Varias metodologías se han propuesto para guiar el proceso
de desarrollo de un SMA (ej., Ingenias, Gaia, Tropos) sin embargo
muchas de estas propuestas se centran principalmente en las fases de
diseño e implementación y no proveen mecanismos apropiados para
capturar, definir, y especificar los requisitos del software.

Una aplicación pobre de la ingeniería de requisitos es
reconocida como la raíz de la mayoría de los errores en los
desarrollos de software actuales, por tanto para mejorar la calidad de
las prácticas actuales en el desarrollo de SMA, el objetivo principal de
este trabajo es proponer un proceso de modelado de requisitos para
tratar los requisitos de software cubriendo las perspectivas funcional,
estructural, organizacional y de comportamiento social de un SMA.

La propuesta de modelado de requisitos es desarrollada en el
contexto del desarrollo dirigido por modelos definiendo los
metamodelos correspondientes y su sintaxis gráfica. Además, se
especifica el proceso de modelado de requisitos de SMA utilizando el
Software Process Engineering Metamodel (SPEM) propuesto por el Object
Management Group (OMG). Por último, con el fin de ilustrar la
factibilidad de nuestro enfoque, se especifica los requisitos de
software de un juego estratégico de tablero (Diplomacia).

v

Resum
Diferents aproximacions han sigut proposades en els últims

anys per a la construcció de sistemes de programari moderns en
entorns complexes i oberts. Alguns d‘aquestos esforços tracten
d‘aprofitar el paradigma orientat a agents per tal de
modelar/desenvolupar sistemes d‘informació complexes en termes
d‘agents independents. Aquestos agents poden collaborar en una
organització computacional (Sistemes Multi-Agent, SMA) adoptant
rols específics e interactuant amb altres per tal d‘aconseguir un
objectiu global o individual. A més a més, donada la complexitat
d‘aquest tipus de sistema, no és suficient amb el tractament de la
perspectiva funcional i estructural del sistemes de programari. També
cal identificar i especificar correctament la perspectiva
organitzacional, la qual descriu el context on aquestos agents
necessiten collaborar, i la perspectiva de comportament social, que
descriu els diferents modes ―intelligents‖ de collaboració.

Diverses metodologies han sigut proposades per guiar el
procés de desenvolupament d‘un SMA (ex. Ingenias, Gaia, Tropos).
No obstant això, moltes d‘aquestes es centren principalment en les
fases de disseny i implementació, i no proveeixen de mecanismes
adequats per a capturar, i especificar els requisits del programari.

Donat que la pobra aplicació de l‘enginyeria de requeriments
ha sigut principalment identificada com l‘arrel de la majoria dels
errors en el desenvolupament de programari, i amb la mirada posada
en la millora de la qualitat de les pràctiques que s‘apliquen
actualment en el desenvolupament de sistemes multi-agent, l‘objectiu
principal d‘aquest treball és proposar un procés de modelatge de
requisits per a suportar la gestió i tractament de requisits de
programari, cobrint les perspectives funcional, estructural,
organitzacional i de comportament social d‘un SMA .

El model de requisits proposat es desenvolupa en el context
de l‘enginyeria dirigida per models, definint metamodels
corresponents i la sintaxi gràfica corresponent. A més, s‘especifica el
procés de modelatge de requisits per a sistemes multi-agent emprant
el Software Process Enginerring Metamodel (SPEM), proposat pel
Object Managment Group (OMG). Per últim, amb l‘objectiu
d‘illustrar la viabilitat de la nostra aproximació, s‘especifiquen els
requisits de programari d‘un joc de taula (Diplomàcia).

vi

Contents

Chapter 1 Introduction ... 1

1.1. Motivations .. 1

1.2. Objectives .. 4

1.3. Research context ... 4

1.4. Structure of the thesis .. 5

Chapter 2 Fundamentals and Technological Areas 7

2.1. Requirements Engineering .. 7

2.1.1 Definitions ... 7

2.1.2 RE Activities .. 10

2.2. Multi-Agent Systems .. 12

2.2.1 Definitions ... 13

2.2.2 Common abstractions ... 15

2.3. Model Driven Software Development 16

2.3.1 Models – The foundation of MDSD 17

2.3.2 Domain Specific Modeling Language (DSML) 18

2.3.3 Meta-Object Facility (MOF) 21

2.3.4 Model Driven Architecture (MDA) 22

2.4. Technological Areas .. 23

2.4.1 Eclipse .. 23

2.4.2 EMF .. 23

Chapter 3 Perspectives for Multi-agent Systems 25

3.1. Functional Perspective .. 25

3.2. Structural Perspective .. 26

3.3. Organizational Perspective .. 26

3.4. Social Behavior Perspective .. 28

Chapter 4 Related Work .. 31

4.1. Agent-Oriented Methodologies .. 31

vii

4.2. Agent-oriented Methodologies in the Context of Model
Driven Development .. 35

4.3. Modeling requirements for multi-agent systems 37

4.4. A Systematic Review of Requirements Engineering in the
Multi-Agent Systems .. 39

4.5. Discussion ... 40

Chapter 5 Modeling Requirements for Multi-Agent Systems 41

5.1. Proposal .. 41

5.1.1 Requirements Definition .. 42

5.1.2 Requirements Specification 44

Chapter 6 Requirements Metamodel for Multi-Agent Systems 47

6.1. Organizational Model ... 49

6.2. Role Model .. 50

6.3. Goal Model .. 52

6.4. Domain Model ... 54

6.5. Social Behavior Model ... 55

6.6. Environment Model .. 58

6.7. Organizational Rules Model ... 59

Chapter 7 Requirements for MAS Modeling Process 61

7.1. Introduction to SPEM 2.0 ... 61

7.2. Disciplines ... 65

7.2.1 Requirements Definition Discipline 65

7.2.2 Requirements Specification Discipline 66

7.3. Process ... 67

7.3.3 Requirements Definition .. 68

7.3.4 Requirements Specification 69

Chapter 8 Case Study .. 71

8.1. Diplomacy Game ... 71

8.2. Diplomacy Game with Agents .. 73

8.2.1 Requirements Definition .. 73

8.2.2 Requirements Specification 76

viii

8.3. Discussion ... 95

Chapter 9 Conclusions ... 97

9.1. Contributions ... 97

9.2. Future Work ... 101

9.3. Related Publications .. 102

Bibliography ... 106

ix

List of figures

Figure 2-1 Canonical View of an Agent-based System [39].............. 15

Figure 2-2 Cost prediction for DSL-based methodologies [21] 19

Figure 2-3 Example of MOF layers .. 21

Figure 5-1 Models of the proposal and its relationships 42

Figure 6-1 Requirements metamodel for MAS 48

Figure 6-2 Organizational Model .. 49

Figure 6-3 Organizational Model Graphical Syntax 50

Figure 6-4 Role Model ... 51

Figure 6-5 Role Model Graphical Syntax: Refinement Tree 52

Figure 6-6 Role Model Graphical Syntax: Inheritance relation
diagram.. 52

Figure 6-7 Goal Model ... 53

Figure 6-8 Goal Model Graphical Syntax ... 53

Figure 6-9 Domain Model .. 54

Figure 6-10 Domain Model Graphical Syntax 55

Figure 6-11 Social Behavior Model .. 56

Figure 6-12 Social Behavior Model Graphical Syntax: Social Behavior
Diagram ... 57

Figure 6-13 Social Behavior Model Graphical Syntax: Activity
Diagram ... 57

Figure 6-14 Environment Model ... 58

Figure 6-15 Environment Model Graphical Syntax 59

Figure 6-16 Organizational Rules Model .. 60

Figure 7-1 SPEM modeling primitives .. 62

Figure 7-2 Disciplines of the Requirements Modeling Process for
MAS ... 65

Figure 7-3 Requirement Definition Discipline 66

Figure 7-4 Requirement Specification Discipline 67

Figure 7-5 Requirements modeling process overview 68

x

Figure 7-6 Requirements Definition activity decomposed into tasks
and artifacts ... 69

Figure 7-7 Requirements Specification activity decomposed into tasks
and artifacts ... 70

Figure 8-1 Diplomacy Game Refinement Tree 74

Figure 8-2 Diplomacy Game Inheritance Diagram 75

Figure 8-3 Diplomacy game Domain Model 75

Figure 8-4 Social behavior diagram of the Initial Phase sub-
organization ... 76

Figure 8-5 Social behavior diagram of the Diplomatic Phase sub-
organization ... 77

Figure 8-6 Social behavior diagram of the Writing Order Phase sub-
organization ... 78

Figure 8-7 Social behavior diagram of the Order Resolution Phase
sub-organization .. 79

Figure 8-8 Social behavior diagram of the Retreat and Disband Phase
and Gaining and Loosing Units Phase sub-organizations 81

Figure 8-9 Activity Diagram of the Start the Game goal 83

Figure 8-10 Activity Diagram for the goals Make Alliance and Control
Negotiation Session ... 84

Figure 8-11 Activity Diagram for the goals Set Strategy and Control
Negotiation Session ... 85

Figure 8-12 Activity Diagram for the goals Make Order and Manage
Order ... 86

Figure 8-13 Activity Diagram for the goals Resolve Order Conflicts
and Follow Order ... 87

Figure 8-14 Activity Diagram for the goals Make Retreats, Manage
Retreats and Follow Retreats ... 88

Figure 8-15 Activity Diagram for the goals Make Adjustments,
Manage Adjustments and Follow Adjustments 89

Figure 8-16 Activity Diagram for the goals Determine Winner 90

Figure 8-17 Diplomacy game Environment Model 91

xi

List of tables

Table 6-1 Organizational Rules Model Graphical Syntax 60

Table 7-1 Subset of elements to model processes in SPEM 2.0 63

Table 8-1 Organizational Rules Model ... 92

Chapter 1

Introduction

Different approaches for building modern software systems in
complex and open environments have been proposed in the last few
years. Some efforts try to take advantage of the agent-oriented
paradigm to model/engineer complex information systems in terms
of independent agents. However, most of these methodologies focus
on the design and implementation phases within the software life
cycle, giving less support to the requirements activity, although poor
requirements activity is recognized as the root of most errors in
current software systems and has a direct impact on the quality and
cost of final product.

In addition, due to the complex nature of this type of systems,
dealing with the classical functional and structural aspects of
software systems are not enough. The organizational aspect, where
these agents need to collaborate, and the social behavior aspect, that
these agents need to incorporate, must also be properly identified and
specified.

As a means for improving the quality of current practices in
the development of multi-agent system, the main goal of the master
thesis is to define a requirements modeling process to deal with user
and software requirements, emphasizing both the social behavior and
the organizational aspects as key aspects for the development of
multi-agent systems.

In addition, model-driven software development techniques
are adopted with the aim of facilitating the integration of the
requirements models generated in our proposal with analysis and
design models, and thus facilitate maintainability, reusability,
interoperability and improved adaptation of technological change.

1.1. Motivations

Requirements Engineering (RE) is responsible for bridging the
gap between the informal world of the client and the formal world of
software engineering. RE plays a key role in software development.

Introduction

2

In fact, the inadequate management of system requirements is
a major cause of problems in software development [1]. RE is a
branch of software engineering and includes a set of activities
concerning the elicitation, specification, analysis, validation and
verification, and management of system requirements. In particular,
the purpose of requirements identification and specification is to
capture the main features of the software system-to-be in a precise
and accurate manner. The requirements specification should permit
the representation of system requirements so that any potential users
can review and understand them. However, the notation used in such
a representation is expected to be sufficiently accurate to serve as a
basis for subsequent phases [40].

New challenges have appeared in the field of software
engineering with the demand for systems in which complexity is
observed not only in magnitude but also in the dynamic
characteristics of the systems and changeable environment in which
they operate. Such open and dynamic systems stress the need for
mechanisms with which to represent interaction, pro-activeness,
negotiation, etc. among software components.

In response to these new challenges, Agent Oriented Software
Engineering (AOSE) has arisen as a new discipline for software
development. An agent is characterized as having its own flow
control which aims to achieve goals within an environment that may
be unpredictable, and in which it should ensure the achievement of
its goals by adapting when necessary. These agents often operate in
environments in which there are also other agents. A Multi-Agent
System (MAS) is a specific type of system that is composed of
multiple intelligent agents that interact with each other to achieve
certain objectives. These systems can be used to solve problems that it
is difficult or impossible for a monolithic or a single agent system to
resolve.

In recent years, various methodologies have been proposed to
guide the development of MAS, such as Gaia [73], Ingenias [31],
Tropos [29], etc. However, despite the importance of the
requirements phase in the development of software systems, many of
the proposed methodologies for the development of MAS do not
adequately cover the RE phase [13], focusing mainly on the design
and implementation phases. Moreover, a recent study on the

Requirements Modeling for Multi-Agent Systems

3

application of RE techniques in the development of a MAS [7] found
that 79% of the current methodologies for MAS development use RE
techniques which have been adapted from other paradigms (object
orientation, knowledge engineering, etc.) [7]. However, these
techniques and notations may not be sufficient to cover the nature of
MAS, since these systems need, along with their functional,
structural, or organizational properties, characteristics that are not
normally necessary in conventional software systems such as pro-
activity, adaptability, collaboration, truth, or disposition. Therefore,
the need for new methods and techniques that enable the appropriate
acquisition and treatment of MAS requirements thus arises.

Model-driven software development (MDSD) is a proposal to
maximize productivity, enhancing aspects such as software
reusability, interoperability and improved adaptation of
technological change. One of the most popular approaches is that of
Model Driven Architecture (MDA) [47] software development, which
is based on the set of standards proposed by the OMG [54]. MDA
advocates taking models as the main artifacts of software
development as a series of model transformations. It is worth noting
that this technology has recently been introduced into AOSE
literature and merged with software agent technology to support the
development of MAS [57]. In this scenario, the use of a MDSD
approach to model MAS requirements will benefit our work from the
advantages of the application of those techniques mentioned above,
along with bridging the gap between MAS requirements, captured as
requirements models, with analysis and design models. Also, is
useful to enhance the potential, improve the quality and efficiency of
our work, and consequently allow the proposal to be widely adopted
by researchers and practitioners in the software engineering
community.

Finally, agent technology is useful in many complex domains:
e-commerce, health, stock market, manufacturing, games, etc. In
particular, we are interested in the game development domain since
it comprises a set of characteristics such as collaboration, negotiation,
trust, reputation, etc., which specially can be dealed with a MAS.
According to Google Trends and the ESA annual report [22], games
development is one of the business markets that has undergone most
growth in the last few years. In addition, the agent-oriented paradigm

Introduction

4

is one of the most promising for modeling such business market due
to the social behavior characteristics (negotiation, cooperation, etc.) of
the agents and the complexity that MASs can support.

1.2. Objectives

The main objective of this master thesis is to propose a requirements
modeling process to deal with user and software requirements
emphasizing both the social behavior and the organizational aspects
as key aspects for the development of MAS. In order to obtain the
main objective, this thesis is broken down into the following research
tasks:

i) perform a literature review with which to investigate current
techniques, methods, and methodologies to develop MAS;

ii) perform a literature review with which to investigate current RE
techniques, methods, and methodologies with particular
emphasis on those techniques more appropriate to identify and
specify requirements for complex and dynamic systems;

iii) study and define the perspectives needed to adequately represent
a MAS;

iv) define the proposal for requirements modeling of MAS based on
previous studies in the related topics, and covering the
perspectives defined;

v) extend the proposal towards a MDSD approach, enabling
usability evaluations on model integration with other MAS
methodologies at different stages of development;

vi) specify the development process through a process modeling
language, to precisely specify how to use the proposed method
and artifacts to be generated;

vii) illustrate the feasibility of the approach by applying the
requirements modeling process to the development of the
strategic board Diplomacy Game [23];

1.3. Research context

This investigation work started in 2007 as part of the final thesis for
engineering degree at the ―Nuestra Señora de la Asunción‖ Catholic
University in Asuncion, Paraguay. The early work was included in
the following projects:

Requirements Modeling for Multi-Agent Systems

5

 ―Diseño y Modelado de Sistemas Agentes y Multi-Agentes:
Propuestas de Mejoras‖, funded for the ―Nuestra Señora de la
Asunción‖ Catholic University;

 MENSA ("Methodologies for the Engineering of complex
Software systems: Agent-based approach"), cooperation project
with three Italian universities (Alma Mater Studiorum -
Università di Bologna (Cesena branch), Università degli Studi di
Modena e Reggio Emilia, and Università degli Studi di Trento).

Currently we have continued research work in the ISSI group
(Ingeniería del Software y Sistemas de Información), and under a
scholarship in the ―College Scholarship Program and Support of the
Scientific and Technological Production‖, in the context of the Social
Responsibility Program of the ItaipuBinacional/ParqueTecnológico
Itaipu-Paraguay.

Resulting in this master thesis and as a contribution as invited
researcher in the Multi-modeling Approach for Quality-Aware
Software Product Lines (MULTIPLE) Project with ref. TIN2009-13838
(October 2009 - September 2013) funded by the Ministry of Science
and Innovation (Spain). Specifically, working in the domain of games,
using MAS.

1.4. Structure of the thesis

The structure of this master thesis is as follows:

Chapter 2 gives an overview of the background concepts of
this work. First, it defines the concepts necessary to understand the
context of AOSE. In addition, it includes the most important
definitions in the area of RE necessary for the understanding of this
proposal. Also, it includes a description of the MDSD context,
focusing on MDA, the OMG proposed architecture, and standards.
Finally, it introduces the technology space related to this thesis: the
Eclipse environment, and Eclipse Modeling Framework.

Chapter 3 describes the different perspectives proposed to be
considered when modeling MAS. The main purpose of the definition
of perspectives for MAS is to have a clear idea of which common and
special characteristics to capture in this kind of systems.

Chapter 4 presents the result of a literature review with which
to study the existing works in the interrelated field of RE, Agent-

Introduction

6

Oriented approaches, and MDSD. In particular, presents the most
relevant agent-oriented methodologies found in the literature,
approaches of agent-oriented methodologies in the MDSD context,
proposals of requirements modeling for MAS, and finally, the results
of a systematic review of the use of RE in the development of MAS.

Chapter 5 presents the proposal of a requirements modeling
for MAS. In particular, it describes the proposal phases, and outlines
the models needed to describe the problem in more specific aspects to
form the different perspectives of the MAS.

Chapter 6 continues with the proposal presenting the
metamodel defined for the proposed requirements modeling for
MAS. In particular we comment the metamodels developed for the
proposed requirements for MAS modeling and the corresponding
graphical syntax.

Chapter 7 completes the proposal describing the
methodological guide: a description of the successive steps, activities,
and guidelines for identify and specify the requirements of a MAS by
using the proposal. The OMG standard SPEM 2.0 is used for this
description.

To validate de feasibility of the proposal in Chapter 8 a case
study in the game domain is presented, the Diplomacy Game,
following the process presented in the previous chapter.

Finally, Chapter 9 concludes with the main contributions of
the thesis, introduces future research work, and presents the related
publications.

Chapter 2

Fundamentals and Technological

Areas

Great efforts in AOSE focus on the definition of methodologies for the
analysis, design and development of MAS. However, not all AOSE
methodologies proposed so far considered the requirements
elicitation, requirements are often neglected or treated only
superficially. However, the value of good RE, and the importance of
doing well, has dramatically increased with the size and complexity
of software systems. This is because a critical factor for the successful
development of such systems is to understand what customers need
and want the system to do, and RE is the area that focuses on the
identification and characterization of exactly that. Also, MDSD is a
proposal to maximize productivity, enhancing aspects such as
software reusability, interoperability and improved adaptation of
technological change. For these reasons, this work focuses on RE for
agent-oriented paradigm in the context of MDSD.

This chapter explains all the concepts, standards and tools that
are directly related to the work proposed along the thesis.
Specifically, we present the paradigm of RE, the paradigm of MAS,
MDSM and the technology related to the work.

2.1. Requirements Engineering

To address the problem of lack of coverage of a requirements phase
by current agent-oriented methodologies, first an analysis of what RE
currently offers is presented. It is presented below some definitions
found in the literature and a classification of the main activities
involved in the process of RE.

2.1.1 Definitions

Before going into detail about what is RE, it is important to give a
definition of the meaning of requirements, to be clear about what you
have to identify, model and analyze. There are many definitions of

Fundamentals and Technological Areas

8

requirements, the software engineering glossary of the IEEE [34]
defines requirement as:

“(1) A condition or capability needed by a user to solve a problem or
achieve an objective; (2) A condition or capability that must be met or
possessed by a system or system component to satisfy a contract, standard,
specification, or other formally imposed documents; (3) A documented
representation of a condition or capability as in (1) or (2).”

“The set of all requirements forms the basis for further development
of the system or system component.”

The requirements cover not only the functionality of a system,
but also address non-functional issues (e.g., performance, interface,
reliability requirements, etc.), designs constraints (e.g., operating in
conjunction with existing hardware or software), and implementation
constraints (e.g., cost, need to program in Java, etc.). These
requirements and restrictions must be represented in a manner that
meets the needs of different users. Moreover, some of the main
purposes of the RE activities are: reach agreement on the
requirements, provide a basis for software design, and provide a
benchmark for software validation [10].

RE discipline plays a major role in the software production
process, since it addresses a key problem: the definition of what is
desired to produce. Its main task is to generate correct specifications
that clearly, unambiguous, consistent and compact, describe the
behavior of the system thus seeks to minimize problems related to
systems development.

The need for proper implementation of RE and the
consequences of not doing it correctly, are extremely important. In
many cases the specification of requirements seems trivial, but it is
probably the stage of development, if its bad design, leads to failure
than any other stage. Moreover, the benefits of good RE include: the
agreement between developers, customers and users about the work
to be done and the system acceptance criteria, a sound basis for
resource estimation, improving the usability of the system,
maintenance, etc.

Requirements Modeling for Multi-Agent Systems

9

In the literature we find different definitions that provide
interesting concepts and new perspectives or serve to reaffirm the
existing ones.

“Software requirements engineering is the discipline for developing
a complete, consistent unambiguous specification – which can serve as a
basis for common agreement among all parties concerned – describing what
the software product will do (but not how it will do it, this is to be done in
the design specification).“ [9]

“Requirements engineering is the process by which the requirements
stated by customers, whether spoken or written, are transformed to precise,
unambiguous, consistent and complete specifications of the system behavior,
including functions, interfaces, performance and limitations”. [64]

In order to highlight its complexity, [51] discuss one of the
clearest definitions of requirements engineering applied to software:

“Requirements engineering is the branch of software engineering
concerned with the real-world goals for, functions of, and constraints on
software systems. It is also concerned with the relationship of these factors to
precise specifications of software behavior, and to their evolution over time
and across software families.” [74]

It highlights the importance of ―real-world goals‖ that
motivate the development of a software system. The reference to
―precise specifications‖ provide the basis for analyzing requirements,
validating that they are indeed what stakeholders want, defining
what designers have to build, and verifying that they have done so
correctly upon delivery. Also the definition refers to specifications‘
―evolution over time and across software families‖, emphasizing the
reality of a changing world and the need to reuse partial
specifications, as engineers often do in other branches of engineering.

RE is a complex, human-centered process, which comprises a
series of questions such as, the approach used, the number of steps
needed to complete the process, the interactions necessary to
establish sufficient requirements, the definition of how much is
enough, the process ‗participants, the role of each participant, the
form of communication between them, the representation to be used
for documentation, validation of knowledge gained, among others.
This is why the tools and techniques used in RE draw upon a variety

Fundamentals and Technological Areas

10

of disciplines, and the requirements engineer may be expected to
master skills from a number of different disciplines.

This phase of the software development process encompasses
a set of activities that usually take place within a social context,
therefore it is important to recognize that the system's success
depends upon the understanding of, what customers need, how
technology can alter their relations, facilitate negotiations and
improve the communication of their needs to developers. Also, as
already mentioned the requirements change during the development
process and evolve once the system is already running. Because of
this is that several approaches including models, languages,
methodologies and tools have been developed to support the
activities of requirements [51].

2.1.2 RE Activities

The activities of RE have been classified by different authors in
different ways [7], [16], [20]. Not having a clear agreement, a
classification that we consider simple and yet interesting is presented
in [14], and covers three main aspects: elicitation, modeling, analysis,
validation and verification, and requirements managements. This
decomposition must be considered as a description of the tasks that
must be carried out, but they do not necessarily have to be performed
in an order or at different periods of time. Different processes, which
are abstract descriptions of how to run this set of activities describing
the engineers‘ behavior, define different flow of activities. Generally,
these activities are more likely to occur simultaneously throughout
the RE process.

We discuss the most important activities in relation to this
work, including the main notations and techniques related to each of
them.

2.1.2.1 Elicitation

Requirements elicitation is usually the first stage of the RE process. It
covers the activities to understand the goals, objectives and
motivations for building the proposed software system. This includes
establishing the limits of the system, defined at a high level. This
limits are of the operational environment of the system. There are
many techniques and notations proposed to obtain this information:

Requirements Modeling for Multi-Agent Systems

11

 Stakeholders identification. The activity of acquiring the system
requirements may include the identification of stakeholders. The
term stakeholder refers to those who can affect or be affected by
the activities of a company. A stakeholder can be a customer,
developer or user.

 Goals. Denote the objectives a system must achieve. Identify high-
level goals early in the development of the system is a crucial task
in software development. The goal-oriented elicitation is an
activity where high-level requirements, as business goals, are
refined into lower-level goals, as technical goals, that eventually
will be operationalized in a system.

 Scenarios. Is another type of notation, consisting of partial and
specific descriptions of system behavior in a given situation.

 Non-functional requirements. Is another type of notation, also
known as quality requirements, since are a set of quality
characteristics that must be taken into account during the
development of a software system.

 Metaphors. Allow us to structure concepts from others concepts.

2.1.2.2 Modeling

The modeling allows expressing the requirement specification in
terms of one or more models. These models tend to be more accurate,
complete and clear that the models used for the requirements
elicitation. The process of creating accurate models helps to identify
details that were not identified in the requirements elicitation activity.
Modeling notations help to establish limits on levels of abstraction in
the descriptions of requirements, providing a vocabulary and
structural rules that match the entities, relationships and constraints
of the problem behavior being modeled. Among the modeling
notations are:

 Object modeling. Propose a description of a set of states, usually
finite, where each state represents a configuration of objects.

 Behavioral modeling. Provide abstract descriptions of expected
behavior of the system.

2.1.2.3 Analysis

These techniques include efforts to assess the quality of the
requirements specification. Some analyze malformation errors of the
specification, which is understood as ambiguity, inconsistency or

Fundamentals and Technological Areas

12

completeness. Other techniques discussed anomalies such as
unknown interactions between requirements, potential obstacles to
meeting the requirements and reasoning lost. This activity will
include techniques such as: checklists, consistency analysis, conflict
analysis, risk management and analysis of variability.

2.1.2.4 Validation and Verification

The requirements validation ensures that the models and
documentation correctly express the needs of stakeholders. The
validation is usually done subjectively typically, due to informal
requirements documentation. This type of validations requires the
user to actively participate in the validation process, reviewing the
artifacts directly.

In cases in which the requirements specification was made
formally, verification techniques can be applied to verify that it meets
the needs of stakeholders. Some verification techniques are:

 Model checking. Check the behavior of the model against a
temporal logic property in execution traces.

 Model satisfiability. It is verified that there are valid instances of
restricted object models, and that the object models operations
preserve the invariant.

2.1.2.5 Management

Requirements management is an activity that includes several
techniques to manage requirements, including the evolution of
requirements over time. An interesting issue is the tools and
techniques that give partial support to the task of identifying and
documenting the traceability relationships between requirements
artifacts and artifacts of design. The requirements management
activities also include techniques for determining the maturity and
stability of acquired requirements, so that the requirements that may
change can be isolated.

2.2. Multi-Agent Systems

Continuing with the background study of the proposal of this thesis,
we present the basic concepts and definitions needed to know about
the area of AOSE. It is presented below some definitions found in the
literature and the common abstractions used to model a MAS.

Requirements Modeling for Multi-Agent Systems

13

2.2.1 Definitions

AOSE was born as a new paradigm of software engineering with
which to design and develop complex software system. Different
approaches are based on diverse definitions of an agent or MAS. We
next examine some of the most relevant agent definitions in the
literature.

One key characteristic that differentiate agents from an
ordinary program is that the agent must be autonomous. Several
definitions of agents include this characteristic, among which we
mention:

“Most often, when people use the term „agent‟ they refer to an entity
that functions continuously and autonomously in an environment in which
other processes take place and other agents exist.”[62]

“An agent is an entity that senses its environment and acts upon it.” [61]

 “An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, in pursuit of its
own agenda and so as to effect what it senses in the future.” [26]

Although not stated explicitly, Russell‘s definition implies the
notion of autonomy as the agent will act in response to perceiving
changes in the environment. The other definitions explicitly state
autonomy. But all definitions add some other characteristics, among
which interaction with the environment is mentioned by most.

One of the most comprehensive definitions of agents is the
one given by Wooldridge and Jennings in [70]. A MAS is a system
composed of multiple autonomous software entities (agents) that
interact to achieve their goals. They propose the following features
for MAS:

 autonomy: agents operate without human intervention, and have
some control over their actions and internal state;

 social ability: agents interact with other agents and possibly
humans via some kind of communication language;

 reactivity: agents perceive their environment and respond to
changes;

 pro-activity: agents do not simply act in response to changes in
their environment, and are also able to act on their own initiative
to achieve their goals.

Fundamentals and Technological Areas

14

A MAS by nature represents a decentralized distributed
application environment where each agent maintains some level of
control or influence in the environment [71], [53]. In a MAS, each
agent is aware that it does not possess a global view of the problem
and that it cannot solve the problem by itself, thus relying on
interaction and coordination with others. It is however still
programmed to operate autonomously to compete for satisfaction of
its own self-interests, which it believes are benevolent to the goals of
the overall group. Fundamental to a MAS environment is this ability
for agents to demonstrate social interaction with other agents. As in
human social contexts, how agents go about interaction depends on
their role and the relationship they have with the target agent. This
relationship is described by [71]. Such awareness of the society within
which the MAS is operating requires knowledge of the organizational
context and structure in order for agents to form productive
interactions at runtime with other agents within its environment. This
human organization metaphor is proposed in [73] in with:

 A software system is conceived as the computational instantiation
of a group of interacting and autonomous individuals (agents);

 Each agent can be seen as playing one or more specific roles: it
has a well-defined set of responsibilities or goals in the context of
the overall system and is responsible for pursuing these
autonomously;

 Interactions are no longer merely an expression of
interdependencies, and are rather seen as a means for an agent to
accomplish its role in the system. Therefore, interactions are
clearly identified and localized in the definition of the role itself,
and they help characterize the overall structure of the
organization and the position of the agent in it;

 The evolution of the activities in the organization, deriving from
the autonomous execution of agents and from their interactions,
determines the achievement of the application goal, whether an a
priori identified global goal, or a goal related to the satisfaction of
individual goals, or both.

Requirements Modeling for Multi-Agent Systems

15

Environment

Agent

Interaction

Organizational
relationship

Sphere of visibility
and influence

Figure 2-1 Canonical View of an Agent-based System [39]

In summary, the essential concepts of agent-based computing
are agents, high-level interactions, social relationships, and

organizational relationships (see Figure 2-1). It can be seen that there
can be numerous agents wherein specific agents can interact amongst
themselves and/or have the same sphere of visibility and influence.
There can also be agents who act independently without any
interaction of other agents and unique sphere of influence.

2.2.2 Common abstractions

Within the AOSE area multiple methodologies have been proposed to
guide the MAS development process, such as: Gaia [73], Tropos [29],
INGENIAS [31], MaSE [20], MASSIVE [45], etc. Taking into account
several of this methodological proposals we can see that different
abstractions or terms have been proposed for the characterization of
the MAS, the abstractions most commonly identified are:

 Agents: autonomous and proactive software entities, which
achieve their objectives by interacting with each other and are in a
particular environment;

 Actors: It is an abstraction of autonomous behavior, internal or
external to the system, which has some interest on it and helps
define the roles;

Fundamentals and Technological Areas

16

 Roles: Define the behavior of the agent, and have associated goals
and specific tasks to be carried out within the context of the
organization;

 Goals: Define the objectives of both the general system of each
actor. Each goal may relate to functional aspects (associated with
the services) or functional (associated with quality of service);

 Tasks: A structured set of activities needed to achieve a goal;

 Restrictions: The restrictions are that allow us to define the desired
behavior for both the organization and for each agent;

 Interaction between agents: Typically, the agents operate within a
context in which they need to cooperate, compete or communicate
solely with them to achieve their own goals;

 Interactions with the environment: Agents are typically in an
environment with which they may have to interact (detect and
affect) depending on their roles, and their current status;

 Resources: These are specific components of interaction with the
environment;

Abstractions that characterize the MAS should be identified
based on clients requirements. That is why it is necessary the
requirements phase to carry out an analysis of client needs, aiming to
capture key elements that allow us to identify the abstractions that
define the system.

2.3. Model Driven Software Development

Model Driven Software Development (MDSD) is a software
development approach based on modeling. A model can define the
functionality, structure and / or behavior of a system. The models
allow working at a level of abstraction closer to the domain concepts,
instead of focusing on platform-oriented concepts as with traditional
software development. The objective of this proposal is to maximize
productivity, increasing the interoperability between systems,
facilitating the reuse and adaptation of technological change.

Moreover any software artifact is considered a model or
model element. While previous approaches used models for
documentation or communication of ideas, they are first class entities
throughout the whole model-driven engineering life cycle [36].
MDSD is an open and integrative approach not tied to a special
standard, therefore different implementations exist.

Requirements Modeling for Multi-Agent Systems

17

MDSD tries to capture what is often expressed in an informal
way as formal model based specifications. Key concepts to mitigate
current software engineering problem are models, metamodels,
technology spaces, domain specific modeling languages and different
kinds of model transformation like model to model or model-to-text.

2.3.1 Models – The foundation of MDSD

Models are the key artifact of MDSD. For that reason the term model
is defined first. A definition from the computer scientists Gerbé and
Bézivin [37] is used:

“A model is a simplification of a system built with an intended goal
in mind. The model should be able to answer questions in place of the actual
system.”

While this serves as a starting point, Kleppe et al. [42] gives a
definition even more directed to MDSD:

“A model is a description of a (part of) systems written in a well-
defined language. A well-defined language is a language with well-defined
form (syntax), and meaning (semantics), which is suitable for automated
interpretation by a computer.”

The word ―meta‖ is Greek and means ―above‖, therefore the
term metamodel can be interpreted as a model describing another
model. To understand the term metamodel a simple analogy to
languages is drawn. A language consists of words whose
combination is constraint by a grammar. If a sentence in a language is
seen as one possible model, the definition of its structure, the
grammar, can be seen as its metamodel. Earlier it was said that in
MDSD a metamodel defines how a model can lookalike, this can be
more precisely formulated as: a metamodel defines the constructs
and rules usable to create a class of models. This is consistent with the
following definition:

“A metamodel is a model of a set of models.” [38]

“A meta-model is a model that defines the language for expressing a
model.”[54]

Notice that a metamodel is itself a model. If this is true the
metamodel has also to be defined in a ―language‖ (needs a
metamodel). For that reason the metametamodel is introduced,

Fundamentals and Technological Areas

18

allowing specifying metamodels. The question which can be raised is
how the metametamodel is defined. To avoid an infinite stacking of
meta levels, metametamodels are often specified self-reflexive and
therefore the metamodel of the metametamodel is the
metametamodel itself.

Most approaches implementing MDSD define a three level
meta stack - model, metamodel, metametamodel. A metamodel can
be used to clearly define a class of models and the metametamodel
should allow the specification of all possible metamodels including
itself. Therefore one metametamodel should be enough.

The one metametamodel needs still to be defined. Currently
different models compete (e.g. [54], [41], [43], [49]) and different
approaches have already been made to bridge metametamodels to
instance (e.g. [27], [47]). Being the most important the
MetaObjectFacility (MOF) [54] and Model Driven Arquitecture
(MDA) [47], respectively.

2.3.2 Domain Specific Modeling Language (DSML)

The ideas behind Domain Specific Modeling Languages (DSML) and
Domain Specific Modeling are similar to the Domain Specific
Languages (DSL) concepts presented later but applied to the world of
models. Whereas in DSLs the language, its textual representation, is
domain specific, in DSM the models are domain specific. In
comparison with DSLs the representation is almost in every case
graphical. The gained benefits are similar, too.

UML according to its name a unified modeling languages tries
to offer a set of different model types able to describe every
imaginable domain. The recent version of UML allows the
modification by profiles, enabling specialization. Of greater
importance is the fact that UML diagram types are now based on a
single metamodel (MOF).

2.3.2.1 Domain Specific Language (DSL)

To understand the meaning of the term domain specific language or
more precisely domain specific programming language the term
programming language is defined. There exists no definition which
all authors agree upon. Watts therefore proposes [18] some criteria
which have to be fulfilled by a programming language:

Requirements Modeling for Multi-Agent Systems

19

 Must be universal (every problem must have a solution that can
be programmed in the language, if that problem can be solved at
all by computer);

 Must be implementable on a computer;

 Should also be reasonably natural for solving problems, at least
problems within its intended application area.

Programming languages in general can be grouped or
classified by different criteria. Possible criteria are the purpose, the
paradigm, the generation, whether it is imperative or declarative, and
domain specific or general purpose. General purpose languages
(GPLs) are less specialized and are suited for a wide area of
applications

On the other hand the term domain specific means that the
language is explicitly tailored to a target domain. Complex constructs
and abstraction of the domain are offered within the language
increasing its expressiveness in comparison to GPLs. It is possible to
express solutions for domain problems with a lesser effort. The
higher abstraction and the compactness and therefore better
readability and writability enables a larger group of people with less
programming knowledge to be productive using the DSL. This leads
to productivity gains in general and also to decreased maintenance
costs.

Mernik [48] defines domain specific language as:

“DSLs are languages tailored to a specific application domain. They
offer substantial gains in expressiveness and ease of use compared with
GPLs in their domain of application”.

T
o

ta
l
S

o
ft
w

a
re

 C
o

s
t

Software Life-Cycle

C2

C1
{Start-up

cost

Conventional

methodology

DSL-based

methodology

Figure 2-2 Cost prediction for DSL-based methodologies [21]

Fundamentals and Technological Areas

20

DSL offers different advantages. Productivity and
maintainability [57] are increased due to an appropriated domain
specific notation. DSLs are more suitable for end-user programming.
Domain experts are able to understand, validate, modify, and
develop within the language (better readability, writability and high
abstraction). The gains can be measured quantitatively and
qualitatively. Figure 2-2 shows the advantage of DSLs regarding to
long term cost.

Because of the concise nature and the domain fitting notation
DSLs are up to a certain degree self-documenting. This also facilitates
the embodying of domain knowledge which eases reuse [66] and
conservation.

Another advantage is the possibility to validate at domain
level [15]. While normal GPL compilers do not know about any
domain concept beyond the general language constructs, a DSL can
be checked for any domain specific constraint. Just as verification,
optimization can be done more effectively at the domain level [18].

On the other hand, a DSL has also potential shortcomings.
One drawback is the high development effort which is needed for a
new language. The language developer needs at least experience in
language design and knowledge about the target domain. He has to
find fitting abstractions, the right scope and balance between GPL
and DSL constructs. Furthermore the language must be implemented
and maintained.

Other problems are tooling, user training costs and
performance. While general purpose languages have a strong tool
support, corresponding tools for a new DSL have to be created.
Creating a tool for a DSL is a time consuming process which adds to
the total costs caused by language design and implementation.
Without a development methodology and suitable tools the risk is
high that the DSL development costs surpass the estimated saving by
using a DSL.

The mentioned training costs originate from the fact that
possible DSL users have by definition never used the language
before. However this is mitigated as in most cases the new language
should match the domain expert‘s expectations.

Requirements Modeling for Multi-Agent Systems

21

Often a DSL will suffer from a lower performance than a hand
written software. As long as performance is not critical the other DSL
benefits will make this a minor problem. Nevertheless in some cases
performance can be equal or faster because optimization is possible
on a high abstraction level but in most cases the potential is limited.

2.3.3 Meta-Object Facility (MOF)

As mention before different metametamodels exist. A well-known
one is described in the Object Management Group (OMG) Meta
Object Facility (MOF) standard [54]. The idea behind MOF is a four-

layered architecture as depicted in Figure 2-3.

M3
metametamodel

(MOF)

M2
metamodel

(UML metamodel)

M1
model

(UML class)

M0
object

Conforms to
instance of

Conforms to
instance of

Conforms to
instance of

Describes

Describes

Describes

Conforms to
instance of

Describes

Figure 2-3 Example of MOF layers

Sometimes it is referred to as a closed metamodeling
architecture because the defined metametamodel conforms to itself.
Currently with version 2.0 different flavors of the MOF exist: the
Complete MOF (CMOF), the Essential MOF (EMOF) and the
Semantic MOF. CMOF is the whole MOF whereas EMOF is only a
subset of the most important elements.

Fundamentals and Technological Areas

22

The widespread use of the Universal Modeling Language
(UML) is one of the reasons for the recent popularity of MOF. The
current version is the base for UML2. All different diagram types are
defined conforming to the metamodel. The MOF is the foundation for
OMG Model Driven Architecture (MDA), too.

2.3.4 Model Driven Architecture (MDA)

The Model-Driven Architecture (MDA) [47] is an approach to IT
systems specification defined by the OMG. MDA consists of a set of
guidelines which support MDE. These guidelines mainly concern the
structure of software specifications in the terms of models and their
transformations. OMG has also defined a standard language for
model transformation called Query View Transformation (QVT) [54].

MDA separates the system functionality specification and its
further implementation on a specific platform. MDA distinguishes
three abstraction levels of models:

 Computational Independent Model (CIM). A model of a system
that is focused on the environment of the system and on the
specific requirements of the system. Represents the computational
independent viewpoint, and hides the structural details and, of
course, the details related to the targeted platform.

 Platform Independent Model (PIM). A model of a system that is
independent of the platform or technology information that is
used to implement it.

 Platform Specific Model (PSM). A model of a system that includes
the specific technology information to be used for implementation
on a specific platform.

 Code Model (CM). Since the PSM is a platform, the code
generation can be automating.

Through such separation of the specification from the
implementation technology platform, the specification can be reused
for different technologies and multiple platforms. This provides
flexibility on changes in the implementation technologies or adopting
the system functionality to the current standards. Different
applications can be integrated with prepared models through
applying mappings to specific platforms.

MDA is based on four principles [5]:

Requirements Modeling for Multi-Agent Systems

23

 The models are expressed in a well-defined notation that is the
key to understanding the system-level solutions;

 The construction of the systems can be organized around a set of
models by imposing a series of transformations between them,
organized in a framework of layers and transformations;

 It supports the description of models in a set of meta-models that
facilitates the integration and transformation between models,
and is the basis for automation through tools.

 The adoption and acceptance of this modeling approach requires
industry standards to provide access to users and promote
competition among providers.

2.4. Technological Areas

At this point we present the technological areas related to the thesis.

2.4.1 Eclipse

The Eclipse community [65] is an open source community whose
projects are focused on creating an open development platform
comprised of extensible frameworks, tools for creating, deploying
and managing software across the lifecycle.

One of his most important projects is Eclipse. Eclipse is an
open source project, robust, with multiple features, commercial-
quality industry platform for the development of highly integrated
tools. Integrated Development Environment (IDE) uses different
modules to enhance its functionality; this is an advantage over other
monolithic environments where functionality is not configurable.

In short, the nature of this tool makes it an open, extensible
IDE for multiple purposes. This work will be of particular interest the
Eclipse Modeling Framework (EMF), a framework for managing
models and code generation from models described in XMI. EMF is
described in detail in the next subsection.

2.4.2 EMF

The EMF project is a modeling framework and code generation
facility for building tools and other applications based on structured
data models. It starts with a model specification described in XMI.
EMF provides tools to produce a set of Java classes for the model.

Fundamentals and Technological Areas

24

You can generate a set of adapter classes that enable views and
edition commands based on the model.

Models can be specified using annotated Java, XML
documents, or modeling tools like Rational Rose through which can
be imported to EMF. The most important thing is that EMF provides
the foundation for establishing interoperability with other tools and
applications based on EMF. With regard to the relationship of EMF to
OMG and MOF, EMF started out as an implementation of the MOF
specification matured from the experience gained in the development
of tools by the developers of Eclipse. EMF can be seen as an efficient
implementation of joint use of the MOF API. However, to avoid
confusion, the EMF metamodel based on the MOF core is called Ecore
[65].

Chapter 3

Perspectives for Multi-agent Systems

The importance of the requirements phase in software development
is widely known. However, capturing and modeling the
requirements of a system is not a trivial task. Moreover, a recent
study on the application of requirements engineering techniques in
the development of a multi-agent system [7] found that 79% of the
current methodologies for MAS development use requirements
engineering techniques which have been adapted from other
paradigms (object orientation, knowledge engineering, etc.).
However, these techniques and notations may not be sufficient to
cover the nature of MAS. In particular, MAS require abstractions,
techniques, and notations that have been specifically tailored to this
domain and to cover characteristics that are not normally necessary
in conventional software systems such as pro-activity, adaptability,
collaboration, truth, or disposition.

To capture common and special characteristics of a MAS we
propose four basic perspectives for the modeling of MAS
requirements: functional, structural, organizational, and social
behavior. In order to contextualize these perspectives, an overview of
them is presented in this chapter which emphasizes both
organizational and social behavior aspects, since these are key aspects
for the development of MASs.

3.1. Functional Perspective

The functional perspective shows the semantics associated with the
organizational roles‘ services that are motivated by the occurrence of
events. In this context, we understand an organizational role to be the
representation of an abstract entity that provides (multiple) system
methods or services. An event is something that occurs in the
environment and to which the organizational role reacts by running a
method or service. This perspective focuses to model the functional
requirements to be met by the roles in the future MAS.

Perspectives for Multi-agent Systems

26

3.2. Structural Perspective

The structural perspective shows the system architecture in terms of
entities and the static relationship between them. The modeling of
these entities and relationships provides an abstract structural view
of the system. We believe that this view is necessary to identify the
entities that will be needed to build the future MAS. If the static and
structural relationships are to be captured accurately, the
development method must include formalisms and techniques to
specify relationships of hierarchy (inheritance), semantic dependency
(association) and part-of relations (aggregation).

3.3. Organizational Perspective

In the organizational perspective, the organization is represented as a
system that has certain goals. The organization attains these goals
through consistent actions, which use system resources and alter the
desired system state [24]. To get a clearer idea of this perspective we
present two important definitions in the literature. Our work is based
on the second.

In the work presented in [25] an organization is seen as a
collection of agents that can be considered together in groups,
playing roles or regulated by organizational rules. The agents can
interact only inside a group in which they play roles. An agent can
play one or many roles and enter into one or many groups. A role is a
general concept to which a MAS architect can associate various
semantics. They define the followings features of organizations:

 An organization is constituted of agents that manifest a behavior;

 The overall organization may be partitioned into
suborganizations;

 Behaviors of agents are functionally related to the overall
organization activity (concept of role);

 Agents are engaged into dynamic relationships, which may be
―typed‖ using taxonomy of roles, tasks and protocols;

 Types of behavior are related through relationships between
roles, tasks and protocols.

An important element of organizations is the concept of role.
A role is a description of an abstract behavior of agents. A role
describes the constraints (obligations, requirements, skills) that an

Requirements Modeling for Multi-Agent Systems

27

agent will have to satisfy to obtain a role, the benefits (abilities,
authorization, profits) that an agent will receive in playing that role,
and the responsibilities associated to that role. A role is also the
placeholder for the description of patterns of interactions in which an
agent playing that role will have to perform.

Another important definition is presented in [61]. They
consider that the human organizational metaphor is very adequate
for systems which are situated in open and changing environments,
in which:

 A software system is conceived as the computational instantiation
of a (possibly open) group of interacting and autonomous
individuals (agents);

 Each agent can be seen as playing one or more specific roles: it
has a well-defined set of responsibilities or subgoals in the context
of the overall system and is responsible for pursuing these
autonomously. Such subgoals may be both altruistic (to
contribute to a global application goal) or opportunistic (for an
agent to pursue its own interests);

 Interactions are no longer merely an expression of
interdependencies, and are rather seen as a means for an agent to
accomplish its role in the system. Therefore, interactions are
clearly identified and localized in the definition of the role itself,
and they help characterize the overall structure of the
organization and the position of the agent in it;

 The evolution of the activities in the organization, deriving from
the autonomous execution of agents and from their interactions,
determines the achievement of the application goal, whether an a
priori identified global goal (as, e.g., in a workflow management
systems where altruistic agents contribute to the achievement of a
specific cooperative project), or a goal related to the satisfaction of
individual goals (as, for example, in agent-mediated auctions,
whose purpose is to satisfy the needs of buyer and seller agents),
or both (as, for example, in network enterprises exploiting market
mechanisms to improve efficiency).

Some simpler systems can be viewed as a single organization,
as soon as the complexity increases modularity and encapsulation
principles suggest dividing the system into different
suborganizations, with a subset of the agents being possibly involved

Perspectives for Multi-agent Systems

28

in multiple organizations. In each organization, an agent can play one
or more roles, to accomplish which agents typically need to interact
with each other to exchange knowledge and coordinate their
activities. These interactions occur according to patterns and
protocols dictated by the nature of the role itself (i.e., they are
institutionalized by the definition of the role). In addition, the MAS is
typically immersed in an environment (i.e., an ensemble of resources)
that the agents may need to interact with to accomplish their role.
Interactions with the environment occur via some sorts of sensors
and effectors (i.e., mechanisms enabling agents to perceive and act
upon some part of the environment). That portion of the environment
that agents can sense and effect is determined by the agent‘s specific
role, as well as by its current status.

3.4. Social Behavior Perspective

The social behavior perspective shows the possible sequences of
events or services to which an agent can respond or that occur in its
lifetime, along with interaction aspects such as communication
between agents, and this is often represented as state or activity
diagrams. As is discussed above, in addition to organizational,
structural, and functional properties, a MAS also requires
characteristics that are not normally required in conventional
software systems, such as pro-activity, adaptability, collaboration,
truth, or disposition. These characteristics are denominated as social
behavior. We therefore believe that covering this perspective in a
proposal for modeling requirements for MAS is an important
contribution towards the development of such systems, since the
essence of these systems is the performance of complex tasks that
other types of systems are not capable of solving.

3.4.1 Classification

In order to properly structure and organize the features of social
behavior requirements, we briefly present the classification scheme of
agent characteristics defined in [32]. According to the authors, three
main attributes of an agent are defined: (i) autonomy, which refers to
the fact that an agent should run independently, with little or no
human intervention, (ii) temporal continuity, which signifies that an
agent should run continuously rather than simply perform a task and
finish, and (iii) social skills, which signifies that an agent should

Requirements Modeling for Multi-Agent Systems

29

possess some form of social skills, since the agent‘s advantages lie in
its interactive communication with other agents. In addition to these
core attributes, an agent can also be classified according to the
following social behavior characteristics:

 Pro-activeness: this refers to how the agent reacts to -and reasons
about - its environment, and how it pursues its goals. The agent
can directly react to stimuli in its environment by mapping an
input from its sensors directly to an action, or it can take a purely
planning, or goal-oriented, approach to achieve its goals. This last
approach relies upon utilizing planning techniques.

 Adaptability: this describes an agent's ability to modify its
behavior over time. In fact, the term ―agent‖ is often taken to
implicitly mean ―intelligent agents‖, which combine traditional
artificial intelligence techniques to assist in the process of
autonomously performing tasks. This feature includes other sub-
features such as learning and sub-submission.

 Mobility: this refers to the agents‘ capability of transporting their
execution between machines on a network. This form of moving
can be physical, where the agent travels between machines on a
network, or logical, where an agent which is running on a single
machine is remotely accessed from other locations on the Internet.

 Collaboration: collaboration among agents underpins the success of
an operation or action in a timely manner. This can be achieved
by being able to coordinate with other agents by sending and
receiving messages using some form of agent communication
language, and permits a high degree of collaboration, thus
making social activities such as distributed problem solving and
negotiation possible. Moreover, it is possible for agents to
collaborate without actual communication taking place. The
interaction of agents with resources and their environment may
lead to the emergence of collaborative or competitive behavior.

 Veracity: this refers to the agent‘s ability to deceive other agents
via their messages or behavior. An agent can thus be truthful in
failing to intentionally deceive other players. Moreover, an agent
that is untruthful may try to deceive other agents, either by
providing false information or by acting in a misleading way.

 Disposition: this refers to the agent‘s ―attitude‖ towards other
agents, and its willingness to cooperate with them. An agent may
always attempt to perform a task when asked to do so

Perspectives for Multi-agent Systems

30

(benevolent), or may act in its own interests to collaborate with
other agents only when it is convenient to do (self-interested), or
it might try to harm other agents or destroy them in some way
(malevolent).

The above characteristics in the classification represent to
some extent abstraction of human social behavior, and are those that
differentiate agent paradigms from traditional software development.
In this work, we use this classification to study the characteristics of
social behavior and to propose mechanisms for the definition and
specification of requirements of these types. In particular, and as a
starting point, in this work we will focus on the following
characteristics: proactiveness, collaboration, veracity, and disposition.
Other characteristics such as adaptability or mobility will be
considered in future work.

Social behavior is a skill that must have an agent in a MAS.
Moreover, if we consider the organizational metaphor, an agent can,
at different times in its life-cycle, play one or more specific roles,
which in turn have a set of responsibilities and goals. We therefore
propose to identify these features of social behavior in the
requirements modeling process at role level, through an analysis of
the goals that need to be attained. Therefore, in the later phases of
the software development, when an agent has to be defined, the
corresponding roles of which a given agent will be composed will
determine the agent‘s complete social behavior.

Chapter 4

Related Work

This chapter presents the result of a literature review with which to
study the existing works in the interrelated field of RE, Agent-
Oriented approaches, and MDSD. In particular, it presents the most
relevant agent-oriented methodologies found in the literature,
approaches of agent-oriented methodologies in the MDSD context,
proposals of requirements modeling for MAS, and finally, the results
of a systematic review of the use of RE in the development of MAS.

4.1. Agent-Oriented Methodologies

Several complete methodologies for the analysis and design of MASs
have been proposed so far. We present in this section, some of the
most important proposals with the purpose of: analyze the approach
adopted, the general elements identified, the phases of software
development contemplated, and other features.

The Gaia methodology [73] addresses the analysis and design
of agent-based systems without directly dealing with: a particular
modeling technique, implementation issues, or the activities of the
requirements capturing and modeling, and specifically of early
requirements engineering. It considers the system as a society or
organization. The organization consists of a collection of roles, that
have relationships with one another, and that take part in interactions
with other roles. Each role is defined by four attributes:
responsibilities (its functionality, described as liveness and safety
properties), permissions (in terms of rights, identify the resources that
are available to the role, such as information resources), activities
(those computations that can be performed without interacting with
others), and protocols (the way that it can interact with other roles).
These protocols are further defined in the interaction model. Design
in Gaia produces two models: an agent model, which identifies agent
types (essentially, as aggregation of roles) and their instances in a
system, and a services model (functions of each agent). The Gaia
process starts with the analysis phase, whose aim is to collect and
organize the specification which is the basis for the design of the
computational organization. The output of the analysis phase is

Related Work

32

exploited by the design phase, which can be logically decomposed
into an architectural design phase and a detailed design phase. Once
the overall architecture of the system is identified, the detailed design
phase can begin.

The MASE (Multi-agent systems Software Engineering)
methodology [20] provides guidelines for developing MASs based on
a multistep process, most of them supported by the agentTool system
[19]. MaSE adopts the object-oriented paradigm (UML), by
considering agents as specialized proactive objects that coordinate by
means of conversations. In analysis, the requirements are used to
define use-cases and application goals and subgoals, followed by use
case analysis and the definition of the corresponding sequence
diagrams. From these diagrams, it is possible to derive roles and their
associated tasks. Roles in MaSE form the foundation for agent class
definition, represent system goals during the design phase, have to be
played by the agents, and have their interactions. The design phase in
MaSE produces an agent class diagram, by assigning roles to specific
agent classes, the conversations between agents, the design of internal
agent architectures, and the deployment of agents in a system,
leading to a complete architecture of the system. A conversation is a
coordination protocol between two agents, and it is described with
two finite state machines, one for each party (initiator and
responder). As explicitly acknowledged by the MaSE designers, the
methodology is suitable only for closed agent systems.

MESSAGE [12] is a proposal to integrate different
methodologies. It builds on five viewpoints, and is refined and
extended with INGENIAS [31]. INGENIAS takes into account the
analysis, design, and implementation stages of the software
development life cycle. The development of a MAS consists of
identifying elements for each viewpoint and then performing a set of
activities that are defined in the context of the Unified Process [35].
The agent viewpoint describes an agent‘s responsibilities with tasks
and roles. It also takes into account the control of the agent and
defines its goals and the mental states required during execution. The
organization viewpoint determines the architecture of a system.
Structural relationships are not restricted to hierarchies between
roles. These structures are delegated to specialized entities called
groups. In the organization model there are also power relationships

Requirements Modeling for Multi-Agent Systems

33

among groups, organizations, and agents. The functionality of the
organization is expressed using workflows. The environment
viewpoint defines the sensors and effectors of the agents. It also
identifies available resources as well as already existing agents and
applications. The tasks and goals viewpoint main purpose is to justify
the execution of tasks in terms of the goals. It also provides the
breakdown of tasks and goals. This viewpoint also provides low-level
details of tasks in the system, and describes which resources are
needed during an execution, which software modules are used
throughout the process, and which are the inputs and outputs.
Finally, the interaction viewpoint describes how coordination among
agents takes place. It goes a step further than UML sequence
diagrams since it reflects the motivation of the interaction and its
participants. It also includes information about the mental state
required in each agent throughout the interaction as well as tasks
executed in the process.

Tropos [29] is based on two key features. First, the notion of
agent and related mentalistic notions are used in all software
development phases, from the early requirements analysis down to
the actual implementation. Second, the methodology emphasizes
early requirements analysis, the phase that precedes the prescriptive
requirements specification. Tropos adopts i* model [72] which offers
actors (agents, roles, or positions), goals, and actor dependencies as
primitive concepts for modeling an application during early
requirements analysis. Tropos is intended to support four phases of
software development: early requirements analysis, concerned with
the understanding of a problem by studying its organizational
setting; late requirements analysis, where the system-to-be is
described within its operational environment, along with relevant
functions and qualities; architectural design, where the system's
global architecture is defined in terms of subsystems, interconnected
through data, control, and other dependencies; and detailed design,
where the behavior of each component is defined in further detail.

MASSIVE - Multi Agent SystemS Iterative View Engineering
[45] is a pragmatic method for the design and construction of MAS.
MASSIVE is based on a view-oriented approach: different phases can
be executed focusing on different aspects of the systems. In the
environment view, the environment of the target system is analyzed

Related Work

34

from the developer‘s perspective as well as from the systems
perspective. These two perspectives usually differ as the developer
has global knowledge whereas the system has only local knowledge.
In the Task view, the functional aspects of the target system are
analyzed and a task hierarchy is generated that is then used to
determine the basic problem solving capabilities of the entities in the
final system. Furthermore, the nonfunctional requirements of the
target system are defined and quantified as far as possible. The Role
view determines the functional aggregation of the basic problem
solving capabilities according to the physical constraints of the target
system. A role is an abstraction that links the domain dependent part
of the application to the agent technology that solves the problem
under consideration. In the interaction view, the MAS is considered
as an ensemble of interacting agents, in which various forms of
competition and cooperation, as well as non-traditional forms of

cooperation, may be identified. In the society view, the multiagent
systems is considered as a structured collection of agents, organized
according a particular organizational model. The Architecture view is
a projection of the target system onto the fundamental structural
attributes with respect to the system design. The major aspects that
are dealt with in this view are the system architecture as a whole and
the agent architecture. The System view, finally, deals with systems
aspects that affect several of the other views or even the system as a
whole. Overall, the MASSIVE process covers analysis, design,
implementation, verification and testing, and deployment. No
attention is paid to requirements elicitation.

AUML (Agent Unified Modeling Language) [4] is a graphical
modeling language that is being standardized by the Foundation for
Intelligent Physical Agents (FIPA) Modeling Technical Committee
(Modeling TC). It is important to explain that AUML is only a
modeling language, not a methodology, and, consequently, lacks the
definition of predefined steps for designing the diagrams. AUML
builds on the acknowledged success of UML in supporting industrial-
strength software engineering, evolving it into the agent‘s field. The
vision of an agent is presented as the next step from the concept of
object. AUML recaps the available interest to agent-oriented
development methodologies with the acceptance of UML. UML
provides an insufficient basis for modeling agents and agent-based

Requirements Modeling for Multi-Agent Systems

35

systems. Basically, this is due to two reasons. Firstly, compared to
objects, agents are active because they can take the initiative and have
control over whether and how they process external requests.
Secondly, agents do not only act in isolation but in cooperation or
coordination with other agents. Multiagent systems are social
communities of interdependent members that act individually.
AUML currently presents a set of extensions to UML: the
specification of agent interaction protocols, and the representation of
social and organizational structures among agents.

DESIRE (framework for DEsign and Specification of
Interacting REasoning components) [11] allows the system designer
to explicitly and precisely specify both the intra-agent functionality
(i.e., the expertise required to perform the domain tasks for which the
agent is responsible in terms of the knowledge requirements and the
reasoning capabilities) and the inter-agent functionality (i.e., the
expertise required to perform and guide coordination, cooperation
and other forms of social interaction in terms of the knowledge
requirements and the reasoning capabilities). DESIRE views both the
individual agents and the overall system as a compositional
architecture - hence all functionality is designed as a series of
interacting, task-based, hierarchically structured components. Tasks
are characterized in terms of their inputs, their outputs and their
relationship to other tasks. Interaction and coordination between
components, between components and the external world, and
between components and users 10 is specified in terms of information
exchange, sequencing information and control dependencies. The
components themselves can be of any complexity (from simple
functions and procedures up to whole knowledge-based systems)
and can perform any domain function (e.g. numerical calculations,
information retrieval, optimization, et cetera).

4.2. Agent-oriented Methodologies in the Context
of Model Driven Development

In this section we discuss some related contributions with regard to
MAS modeling in the context of model-driven development
approaches with the purpose of: analyze the main concepts modeled,
the existence of proposals for model transformation, and other
features.

Related Work

36

Gaia [73], [5] explicitly models the social aspects of open agent
systems, with particular attention on the social goals, social tasks and
organizational rules. The methodology is focused on the
organizational structure of the system. The main concept of Gaia is
the Agent, which is part of an Organization, collaborates with other
Agents, provides Services and plays several Roles that act in a
Communication, specifying a Protocol. The Gaia2JadeProcess [49]
shows how systems designed by following the GAIA methodology,
and its corresponding models, can be converted to JADE for
deployment.

PASSI [16] considers three different domains. The
ProblemDomain contains concepts such as Resource, Non-Functional
Aspects and Requirements that are connected with the Agent.
Requirements are represented with conventional use case diagrams.
The AgencyDomain covers aspect such as the Agent, which has a set of
Roles that provide a Service and solve Tasks that includes a set of
Actions. The Role is also connected to Communication, which works on
Agent Interaction Protocols with a set of Performatives. The
ImplementationDomain covers the FIPA-Platform Agent, Service
Description, and FIPA-Platform Task concepts. Collaboration features are
detected at the requirements level. ADELFE [59] specifies a
methodology to develop adaptive MAS by concentrating on
cooperative behavior. The main concept of ADELFE is the
CooperativeAgent which has Skills, Aptitudes, Characteristics, and
Communications. Furthermore, the agent observes CooperationRules.
An agent also possesses world representations, which are beliefs
concerning other agents and the physical environment.

INGENIAS [31] recognizes five metamodels that describe
MAS views. The AgentModel describes single agents, their tasks, goals,
initial mental state, and roles played. The InteractionModel describes
how interaction among agents takes place. The TasksandGoalsModel
describes relationships among goals and tasks, goal structures, and task
structures. The OrganizationModel describes how system components
(agents, roles, resources, and applications) are grouped together, which
tasks are executed in common, which goals they share, and what
constraints exists in the interaction among agents. Finally, the
EnvironmentModel defines the agent's perception in terms of existing
elements of the system. An update of INGENIAS, presented in [57],

Requirements Modeling for Multi-Agent Systems

37

introduces the INGENIAS Development Kit (IDK) as a means to
provide MDD tools for MAS development. This proposal provides
information on pro-activity and collaboration from the analysis level.

 In Tropos [29], systems are modeled as social structures that
contain collections of actors, and a set of dependencies between them.
These dependencies are defined in the Early Requirements Analysis. In
the Late Requirements Analysis, the system is represented as actors that
have dependencies with other actors and the organization. At the design
level, features are identified in more detail, such as the skills needed
by an actor to fulfill goals and plans. Tropos thus models the pro-
activity and collaboration with skills and plans, but only from the design
phase. Tropos methodology uses a modeling language named i* [72].
The proposal in [58] addresses the problem of linking requirements
analysis to detailed design and implementation in the Tropos, and
particularly focuses on building a Tropos metamodel as a Platform
Independent Model for an MAS and on how to automatically
transform it into a JADE metamodel as the Platform Specific Model.

4.3. Modeling requirements for multi-agent
systems

The importance of the requirements phase in software development
is widely known. However, capturing and modeling the
requirements of a system is not a trivial task. In particular, MAS
require abstractions, techniques, and notations that have been
specifically tailored to this domain. We consider the four basic
perspectives for modeling MAS requirements presented in the
previous chapter: functional, structural, organizational, and social
behavior. This section, presents some proposals for the acquisition
and modeling of requirements that cover these four perspectives of a
MAS.

The organizational perspective is supported in proposals such
as GBRAM [1]. GBRAM is a relevant traditional goal-oriented
requirements engineering proposal. It provides a procedural guide
for the identification and development of goals and introduces
techniques that assist in their methodical and systematic analysis.
GBRAM has a great deficiency in terms of formality. This includes
the lack of models, formal notations and tools that support the
modeling that the method uses. Nevertheless, the guidelines and the

Related Work

38

level of clarity it offers are very good. Moreover, GBRAM also
emphasize the verification of the requirements through its refinement
stage which specifies certain guidelines to follow, thus making this
process more reliable. Therefore it is possible to track the
requirements captured, and this is reflected in the traceability offered
by the method.

Another proposal for requirements modeling that supports
the organizational perspective is the i * framework [72]. This
framework has been established as the basis for the Tropos
methodology [29]. Tropos has been appropriately adapted to the
acquisition and modeling of the actors in the system and its
environment, i.e., the actors, goals, tasks, interactions, dependencies,
resources needed, etc. However, it does not permit a full
representation of constraints nor does it propose a modeling
environment. Since we consider goal orientation to be of particular
interest in the capturing of requirements for MAS, we believe that it is
necessary to analyze other methods which are complementary to this
approach.

The structural perspective is supported by proposals such as
AUML [52]. AUML tends to be asserted as a notational standard in
various methodologies; one of the most common proposals for the
requirements phase is the adoption of Use Case diagrams. This
formalism has shown good results for the representation of functional
requirements and is also a good tool for communication with
stakeholders. Nevertheless, Use Cases have limitations in capturing
qualitative aspects of the environment and interactions with it. In
addition, a interesting contribution of AUML is the Agents
Interaction Protocol (AIP), which constitutes a central aspect for
MAS, specified by means of protocol diagrams.

Another proposal that covers the structural perspective is
KAOS [68], a proposal for modeling requirements through goals.
KAOS consists of a specification language, a method of elaboration,
and the meta-level knowledge which is used as a guide. A KAOS
model contains goals, information system requirements, expectations
about the system environment, conflicts between goals, obstacles,
entities, agents, etc. One of the strengths of the proposal is that of its
use of formality to achieve correction. Moreover, the idea of
constraint is useful in identifying some of the external problems of

Requirements Modeling for Multi-Agent Systems

39

integrity, and this contributes to the robustness of the system.
However, the successful implementation of the method depends
heavily on the developer‘s experience in the domain and how well
defined the problem to be solved is [33].

Other proposals do not support the organizational and
structural perspective. This is the case of CREWS [46], which focuses
on the perspectives of functional and social behavior. CREWS is
based on system object models that are abstractions of the key
features of the different qualities of the problem domain. CREWS
uses these models to generate normal course scenarios, and it then
uses the theoretical and empirical research into cognitive science,
human-computer interaction, collaboration systems and software
engineering as a basis to generate alternative courses for these
scenarios. A potential weakness of the CREWS approach is that the
generation of scenarios is domain-oriented, in contrast with the goal-
oriented scenario analysis and the task-oriented Use Case modeling.
If the scenarios are intended to validate the requirements, these
requirements should be oriented towards the generation of scenarios.

In summary, the organizational perspective is covered by
proposals such as GBRAM and i *, and the structural perspective is
covered in proposals such as KAOS and AUML. Most of the
proposals presented in some way cover, either totally or partially, the
functional and social behavior perspective, as in the case of CREWS.

4.4. A Systematic Review of Requirements
Engineering in the Multi-Agent Systems

In [7] the authors present a systematic review to determine the
current research activity in RE for MAS development. This section
briefly presents the most important results obtained in the review,
and on which we base and motivate our work.

One of the more important research gap identified by the
review is that almost every requirement method proposed for MAS
development is adapted from other fields, and very few of them
proposed a new method to deal with requirements. Also, few of MAS
methodologies are focused on eliciting requirements, while most are
focused on modeling and analyzing them. Regarding the concepts
and notations, there are several works that use goals, NFR, scenarios,

Related Work

40

and role models. In addition, there is interest in the MAS field for the
use of patterns to model from an abstract level to a more detailed and
architectural design level. Additionally, there is a lack of work on
traceability among artifacts produced along the MAS development.
Better mechanisms and tools to deal with (pre and post) traceability
in the MAS methodologies could help to meet user needs, improve
their understanding of the system, and improve the overall quality of
the developed software.

4.5. Discussion

From a general interpretation of the literature review in the existing
works of the interrelated field of RE, Agent-Oriented approaches, and
MDSD, the conclusions that influence our work are the following:

 Most of the agent-oriented methodologies mainly focus on the
design and implementation phases and do not provide
mechanisms for capturing, defining, and specifying software
requirements;

 MDSD technology has recently been introduced into AOSE
literature and merged with software agent technology to support
the development of MAS;

 Considering the perspectives proposed in Chapter 3 to
adequately represent a MAS, to the best of our knowledge no
requirements modeling methods for MAS completely covers the
perspectives needed to adequately represent a MAS: functional,
structural, organizational, and social behavior. There is therefore
a need to develop RE methods covering all four properties of a
MAS;

 The results of the systematic review of [7], motivates our work to
propose a new method to deal with MAS requirements;

 Also, the results of the systematic review of [7], guides us
regarding the concepts and notations used to identify and model
the software systems requirements;

 Finally, lack of work on traceability among artifacts produced
along the MAS development identified in the systematic review
of [7] influence in the decision to support the traceability
including our work in a MDSD context.

Chapter 5

Modeling Requirements for Multi-Agent

Systems

The main objective of this thesis is to discuss and propose an
approach for the definition and specification of requirements for
MAS. This approach is being developed as a generic method of
requirements modeling for MAS and will provide a well-defined
framework not only for dealing with structural and functional aspects
of the systems, but also for dealing explicitly with organizational
aspects of the system and different types of social behavior aspects in
earlier phases of software development.

This chapter presents the requirements modeling proposal to
support the definition and specification of MAS requirements,
covering the functional, structural, organizational, and social
behavior perspectives of a MAS.

5.1. Proposal

The proposal is decomposed into two main phases: Requirements
Definition and Requirements Specification. The user‘s specific needs are
identified in the Requirements Definition phase. In particular it is
identified: the organizational structure of the system; the roles that
are required in each sub-organization; the roles goals; and relevant
entities of the environment. The detailed requirements for developers
are specified in the Requirements Specification phase. The specifications
extracted from the Requirements Definition activity are refined, and the
level of detail increased, in order to identify artifacts which are closer
to the analysis and development of the system: the social behavior
needed for the roles to carry out the role goals; activities and
interactions; resources of the system; the permissions that roles have
in those resources and organizational rules.

Moreover, the process is based on the definition of models
needed to describe the problem in more concrete aspects that form
the different perspectives of the system. Figure 5-1 shows an

Modeling Requirements for Multi-Agent Systems

42

overview of these models and their respective relations. In the
following two sections we describe in detail the models to be
identified in each of the phases proposed.

Role Model

Behavior Model

Domain Model

Environment
Model

Organizational
Rules Model

Requirements
Definition

Requirements
Specification

Goal Model

Organizational
Model

Figure 5-1 Models of the proposal and its relationships

5.1.1 Requirements Definition

The objective of the Requirements Definition phase is to acquire and
represent the software requirements. This phase starts with the
definition of the Organizational Model, partially the Role Model, and
the Goal Model (in the order listed). The information obtained when
defining this three models will serve to complete the Role Model and
to define the Domain Model. Finally, the output of this phase is used
as input for the construction of the Requirements Specification phase
models.

The Organizational Model establishes the Mission Statement,
which is the global goal of the organization, and determines the sub-
organizations that compose the global organization. The Role Model
determines the roles involved in each sub-organization, and is used
to detect inheritance relations between roles and reasoning about
structural relationships. The Goal Model determines the roles goals.
Finally, the Domain Model is used to identify entities that could be
used as resources of the organization.

Requirements Modeling for Multi-Agent Systems

43

In order to obtain a clear view of the models used, each of
them is presented as follows.

5.1.1.1 The Organizational Model

It consists of the Mission Statement, which is defined in natural
language, with a recommended extension of one or two paragraphs.
The Mission Statement is the root of a hierarchy, which is
successively refined to identify the system hierarchy of sub-
organizations. A sub-organization is a part of the system that aims to
achieve a goal in the system and weakly interacts with other parts of
the system (low coupling).

The Organizational Model allows us to identify elements of
the organizational perspective through the identification of the
Mission Statements and the decomposition of the system into sub-
organizations. Since the Mission Statement identifies the overall goal
within the organization as a whole, it also provides information about
the functional perspectives.

5.1.1.2 The Role Model

A role is the representation of an abstract entity that has (multiple)
system goals. As was previously mentioned, the Role Model
describes the roles that belong to the sub-organizations. Each sub-
organization is refined into the roles that compose it. The purpose of
this model is to represent the different roles found in each sub-
organization and to reason about their special relationships. The
special relationships between roles can serve to identify the common
properties between the roles in order to create a hierarchy of roles
using inheritance relationships.

Then, the resulting Role Model comprises the information of
the roles needed in each organization to carry out the goals of the
same, and information of the inheritance relations between roles.

The Role Model allows us to identify elements of the organizational
perspective by identifying the roles that make up the sub-
organizations, and elements of the structural perspective by
identifying inheritance relations between roles.

Modeling Requirements for Multi-Agent Systems

44

5.1.1.3 The Goal Model

A goal is a task or a process that involves a series of tasks, which is
carried out by a role in the sub-organization. The Goal Model
describes the goals that a role must accomplish. Each role is refined
into the goals to be met, these being the last level of the hierarchy of
mission statement, sub-organization, roles and goals.

The Goal Model allows us to identify elements of the
functional perspective by identifying the goals that each role has to
perform.

5.1.1.4 The Domain Model

Represents the entities identified in the problem domain. The
purpose of this is to identify key concepts and relationships, thus
representing a first structural view. First, the domain entities relevant
to the application domain are identified. An entity can be both a
physical entity as a concept. These entities are seen from the point of
view of the application domain, and implementation details are
therefore avoided at this level.

Associations and inheritance relationships between domain
entities are also represented. Finally, we can refine the model with
inheritance relationships.

The identification of these domain entities and their
relationships allows us to extract information for the structural
perspective and to partially extract information for the organizational
perspective.

5.1.2 Requirements Specification

The objective of the Requirements Specification phase is to specify the
software requirements base on the information previously identify in
the Requirements Identification phase. This phase starts with the
specification of the Behavior Model, using information identify in the
Role Model and the Goal Model of the previous phase. Then, the
specification of the Environment Model is constructed based on the
information identify in the Role Model and the Domain Model of the
previous phase, and finally the Organizational Rules Model is
specified based on the Behavior Model of the current phase and the
Organizational Model of the previous phase.

Requirements Modeling for Multi-Agent Systems

45

The Behavior Model represents the social behavior needed
between roles to accomplish their goals, and the decomposition of
goals into tasks and protocols in order to understand the internal
flow of a role to determine its responsibilities. The Environment
Model represents the permissions of the roles identified in the Role
Model with regard to the resources of the Domain Model. And finally
the Organizational Rules Model represents the constraints of the
organization‘s behavior.

In order to obtain a clear view of the models used, each of
them is presented as follows.

5.1.2.1 The Behavior Model

The first purpose of this model is to reason about the special
relationships needed between roles to accomplish their goals. The
special relationships between roles can serve to identify social
behavior relationships between roles in different sub-organizations.
In this proposal, we rely on the classification of social behavior
presented in the Chapter 3, and identified three types of social
behavior with their respective properties: collaboration
(communicative, non-communicative), disposition (benevolent, self-
interested, malevolent), and veracity (truthful, untruthful). A social
behavior relation between two roles could be of one or more
property, since the relation is dynamic, i.e. it may alter depending on
the agent that will eventually play the role.

The second purpose of this model is to shows a sequence of
steps that represent the flow of activities needed to achieve the goals
identified in the system. A representation of the flow of tasks could
be useful: to understand the logical flow of a role; to complement the
information regarding social behavior identified with the social
behavior relations; and to help to identify new information when one
role needs to work with others in order to accomplish a task.

The resulting Behavior Model comprises the information
represented in: one or more social behavior diagrams as needed for
each sub-organization for the social behavior relations between roles,
and one or more activities diagrams for each goal.

The information identified with the social behavior diagrams
allows us to express elements of the structural, organizational and

Modeling Requirements for Multi-Agent Systems

46

social behavior perspectives. The identification of the flow of
activities in the activity diagrams allows us to extract information for
the functional perspective, and the identification of interactions
between different roles in the same diagrams allows us to identify
information for the social behavior perspective.

5.1.2.2 The Environment Model

It represents the permissions of the roles with regard to the entities
identified in the Domain Model. For each role identified in the Role
Model, resources are established for those who can legitimately
access them. Finally the permissions (perceive or modify) are
established.

The identification of these permissions offers information of
the structural and functional perspectives of the system.

5.1.2.3 The Organizational Rules Model

It identifies and represents the general rules concerning the
organization‘s behavior. These rules can be viewed as general rules,
responsibilities, restrictions, the desired behavior, and the sequence
or order in such conduct. These rules will be represented by building
on GBRAM, in which two types of dependency relationships between
goals are distinguished: precedence and restriction, which are
represented by the symbols < and respectively, and by adding a
relationship to the proposal to represent general rules of the system,
which is represented with only natural language. The precedence
dependency relationship exists between two goals G1 and G2, if goal
G1 must be completed before goal G2 can be achieved. The constraint
dependency relationship exists between two goals G1 and G2, if goal
G1 is met, then goal G2 must be met too.

This information contributes to extract information for
organizational, structural and functional perspectives of the system.

Chapter 6

Requirements Metamodel for Multi-

Agent Systems

Model-driven software development is a proposal through which to
maximize productivity, enhancing aspects such as software
reusability, interoperability and improved adaptation of
technological change. Model Driven Architecture (MDA) [47] is one
of the most popular model-driven software development approaches
and is based on the set of standards proposed by the OMG [54]. MDA
advocates taking models as the main artifacts of software
development as a series of model transformations.

The OMG standard denominated as MOF [55] proposes a
modeling architecture based on four layers. In the top level, or M3,
resides the meta-metamodel which is used as languages to define
modeling languages. In the M2 level reside the metamodels, which
are models used to describe models. In the M1 level reside the
models, which are instances of level M2 metamodels. Finally, the
instances of these models reside in the M0 level.

This chapter presents a software requirements metamodel
(M2 level of the MOF architecture) for MAS and the associated
graphical syntax. Figure 6-1 shows the software requirements
metamodels for MAS. The aim of this metamodel is to define a
common set of requirements‘ core concepts for the development of
MAS in the context of MDE approaches, and thus bridging the gap
between MAS requirements, captured as requirements models, with
analysis and design models by defining the corresponding
transformations.

The metamodel represents each model of the proposal:
Organizational Model, Role Model, Goal Model, Domain Model,
Social Behavior Model, Environment Model, and Organizational
Rules Model.

Requirements Metamodel for Multi-Agent Systems

48

Figure 6-1 Requirements metamodel for MAS

Requirements Modeling for Multi-Agent Systems

49

6.1. Organizational Model

The Organizational Model allows the specification of the mission
statement of the system and the sub-organizations of which the
system is composed. A sub-organization is a part of the system that
aims to achieve goals in the system and weakly interacts with other
parts of the system. Figure 6-2 shows the Organizational Model
metaclasses and the relations with metaclasses of other models of the
proposal, in this case with the Role Model, and Organizational Rules
Model. In Figure 6-2 we can observe that the OrganizationalModel
metaclass is a container for the elements of this model. The
aggregation relationship between the OrganizationalModel and
MissionStatement metaclasses indicates that an OrganizationalModel is
composed of these elements. Also, the aggregation relationship
between the MissionStatement and SubOrganization metaclasses
indicates that a MissionStatement is composed of these elements.

Moreover, the aggregation relationship between the
SubOrganization and Role metaclasses indicates that a SubOrganization
is composed of these elements. The Role metaclass is part of the Role
Model. The relationship between the OrganizationalModel and the
OrganizationalRulesModel indicates that an Organizational Model is
related to a Organizational Rules Model. The
OrganizationalRulesModel metaclass is part of the Organizational
Rules Model.

Figure 6-2 Organizational Model

Requirements Metamodel for Multi-Agent Systems

50

A Refinement Tree is used for the graphical syntax of this
model (see Figure 6-3), which is used to represent a hierarchy, based
on a decomposition which is independent of the future software
structure. The MissionStatement is the root of the tree, and following
with a decomposition of the MissionStatement into a hierarchy of
SubOrganizations.

SubOrganization1 SubOrganization2 SubOrganization3

MissionStatement

Figure 6-3 Organizational Model Graphical Syntax

6.2. Role Model

The Role Model, as was previously mentioned, represents the roles
involved in each sub-organization. A role is the representation of an
abstract entity that has (multiple) system goals in one or more sub-
organizations of the system. In addition to all the roles identified, it is
also necessary to define the inheritance relations between roles.

Figure 6-4 shows the Role Model metaclasses and the relations
with metaclasses of other models of the proposal, in this case with the
Organizational Model, Goal Model, Social Behavior Model, and
Environment Model. In Figure 6-4 we can observe that the RoleModel
metaclass is a container for the elements of the same model. It is
composed of roles, and one inheritance diagram represented in the
metamodel by the aggregation relationship between the RoleModel
and the Role metaclasses, and the aggregation relationship between
the RoleModel and the InheritanceDiagram. The InheritanceDiagram
metaclass is composed of a set of roles and a set of generalization
relations between roles, represented in the metamodel as an
aggregation relationship between the InheritanceDiagram and Role
metaclasses, and the InheritanceDiagram and RoleGeneralization
metaclasses, and as a two association relation between
RoleGeneralitation and Role metaclasses, in which the source of the
relation is represented with the association labeled from, and the
target of the relation is represented with the association labeled to.

Requirements Modeling for Multi-Agent Systems

51

Figure 6-4 Role Model

Moreover, the aggregation relationship between the
SubOrganization metaclass from the Organizational Model and the
Role metaclass, represents the set of roles that a sub-organization
contains. The aggregation relationship between the Role metaclass
and the Goal metaclass from the Goal Model, indicates that a Role is
composed of these elements. The aggregation relationship between
the SocialBehaviorDiagram and Role metaclasses indicates that the
diagram is composed of these elements. And the two relationships
between the RoleBehaviorRelation and Role metaclasses with the label
to, and from, indicate that the role is the source and target element of
the relation. Finally, the aggregation relationship between the
EnvironmentModel and Role metaclasses indicates that the
Environment Model is composed of these elements. And the

Requirements Metamodel for Multi-Agent Systems

52

relationship between the PermissionRelation and Role metaclasses with
the label from indicates that the role is the source element of the
relation.

A Refinement Tree is used for the graphical syntax of this
model, to represents the roles that each sub-organization contains
(see Figure 6-5). After defining the decomposition of the
MissionStatement into a hierarchy of SubOrganizations we then define
the decomposition of each SubOrganization into Roles. Also, the UML
Use Case Diagram is used to represent the inheritance relations
between roles (see Figure 6-6). In this diagram the roles are
represented as actors which are labeled with the stereotype «role». In
addition, the inheritance relations are represented with the
corresponding diagram relation.

Figure 6-5 Role Model Graphical Syntax: Refinement Tree

Figure 6-6 Role Model Graphical Syntax: Inheritance relation diagram

6.3. Goal Model

The Goal Model represents the goals associated with each role. Goals
are tasks which are carried out by a role in a sub-organization. Figure
6-7 shows the Goal Model metaclasses and the relations with
metaclasses of other models of the proposal, in this case with the Role

Requirements Modeling for Multi-Agent Systems

53

Model, and Social Behavior Model. In Figure 6-7 it is possible to
observe that the GoalModel metaclass is a container for the element of
this model. As mentioned previously, a role has a set of goals which
are represented in the metamodel as an aggregation relationship
between the Role metaclass from the Role Model, and the Goal
metaclass. Moreover, from the Social Behavior Model an
ActivityDiagram metaclass correspond to zero or more Goals,
represented with the relationship between the metaclasses.

Figure 6-7 Goal Model

A Refinement Tree is used for the graphical syntax of this
model, to represents the goals that each role has to fulfill (see Figure

6-8). After defining the decomposition of the SubOrganizations into a
hierarchy of Roles we then define the decomposition of each Role into
Goals.

SubOrganization1 SubOrganization2 SubOrganization3

Role1 Role2 Role3 Role4

MissionStatement

Goal4 Goal5Goal2Goal1 Goal3

Figure 6-8 Goal Model Graphical Syntax

Requirements Metamodel for Multi-Agent Systems

54

6.4. Domain Model

The Domain Model represents the entities identified in the problem
domain which could be used as the organization‘s resources.
Associations and inheritance relationships between domain entities
are also represented. Figure 6-9 shows the Domain Model metaclasses
and the relations with metaclasses of other models of the proposal, in
this case with the Environment Model. In Figure 6-9, the
DomainModel metaclass is a container for the elements of this model.
It is composed of entities and relations, represented in the metamodel
with the Entity and Relation metaclasses. The Relation metaclass is an
abstract class representing the concept of relation between two
entities. A relation can specialize in a generalization or association,
represented in the metamodel by the Generalization and Association
metaclasses. The Association metaclass can be annotated with
multiplicity (source and target): zero, one, many or a constant. The
relationship between the Entity metaclass and the Resource metaclass
from the Environment Model indicates that a resource is related to an
entity from the Domain Model.

Figure 6-9 Domain Model

The UML Class Diagram is used for the graphical syntax of
this model, to represent the entities and the relations between entities
(see Figure 6-10).

Requirements Modeling for Multi-Agent Systems

55

Figure 6-10 Domain Model Graphical Syntax

6.5. Social Behavior Model

The Social Behavior Model represents the decomposition of goals into
tasks and protocols in order to understand the internal flow of a role
to determine its responsibilities.

Figure 6-11 shows the Social Behavior Model metaclasses and
the relations with metaclasses of other models of the proposal, in this
case with the Role Model, and Goal Model. The SocialBehaviorModel
metaclass is a container for the elements of this model (see Figure
6-11). It is composed of social behavior diagrams and activity
diagrams, represented as an aggregation relation between the
SocialBehaviorModel and SocialBehaviorDiagram metaclasses, and
SocialBehaviorModel and ActivityDiagram metaclasses. The
SocialBehaviorDiagram metaclass is composed of a set of roles and a set
of role behavior relations between roles, represented in the
metamodel as an aggregation relationship between the
SocialBehaviorDiagram and Role metaclasses from the Role Model,
SocialBehaviorDiagram and RoleBehaviorRelation metaclasses, and as a
two association relation between RoleBehaviorRelation and Role
metaclasses from the Role Model, in which the source of the relation
is represented with the association labeled from, and the target of the
relation is represented with the association labeled to. On the other
hand, the ActivityDiagram metaclass is a container of activities. It is
composed of different partitions, represented in the metamodel as the
ActivityPartition metaclass. A partition is, in turn, composed of nodes,
edges and comments. This relation is represented as aggregation
relations from the ActivityPartition metaclass to the ActivityNode,

Requirements Metamodel for Multi-Agent Systems

56

ActivityEdge, and Comment metaclasses. The ActivityNode metaclass is
an abstract class which can specialize in an Activity or ControlNode.
Each activity diagram represents the task to be performed to fulfill a
goal. This relation is represented as the relation from ActivityDiagram
metaclass to the Goal metaclass from the Goal Model.

Figure 6-11 Social Behavior Model

The UML Use Case Diagram is used as the graphical syntax to
represent the Social Behavior Diagram (see Figure 6-12). The roles are
represented as actors which are labeled with the stereotype «role». In
addition, the social behavior relations are represented as relations
labeled with the stereotypes «collaboration», «disposition» and
«veracity». We propose naming the relations with the corresponding
property (i.e. for the social behavior relation collaboration the relation
is named as ―communicative‖, ―non-communicative‖ or both, for the
social behavior relation disposition the relation is named as

Requirements Modeling for Multi-Agent Systems

57

―benevolent‖, ―self-interested‖, ―malevolent‖ or the combinations,
and finally for the social behavior relation veracity the relation is
named as ―truthful‖, ―untruthful‖ or both).

The UML Activity Diagram is used as the graphical syntax to

represent Activity Diagram (see Figure 6-13). Regarding the parts we
use in the activity diagram, we use the initial node, the end node, an
activity, flow of control, branch elements (fork and join), decision
node, activity partition (one for each role), send signal action (for
initiator protocol), and accept event action (for responder protocol).

Figure 6-12 Social Behavior Model Graphical Syntax: Social Behavior Diagram

Figure 6-13 Social Behavior Model Graphical Syntax: Activity Diagram

Requirements Metamodel for Multi-Agent Systems

58

6.6. Environment Model

The Environment Model represents the permissions of the roles
identified in the Role Model with regard to the resources of the
Domain Model. For each role identified in the Role Model, resources
are established for those who can legitimately access them. Finally,
the permissions (perceive or modify) are established.

Figure 6-14 shows the Environment Model metaclasses and
the relations with metaclasses of other models of the proposal, in this
case with the Role Model, and Domain Model. In Figure 6-14 it is
possible to observe that the EnvironmentModel metaclass is a container
for the elements of this model. The EnvironmentModel metaclass is
composed of resources, permissions and roles, represented
respectively by the aggregation relations between the
EnvironmentModel metaclass and the Resource,and PermissionRelation
metaclasses and Role metaclass from Role Model. The permissions are
represented as relations between the role and the resource it can
access, and can be of two types: perceive or modify. This is
represented as one association relation between the PermissionRelation
metaclass and Role metaclass from the Role Model, and one
association relation between the PermissionRelation and Resource
metaclasses, in which the source of the relation is represented with
the association labeled from, and the target of the relation is
represented with the association labeled to. The Resource metaclass
has a relation with the Entity metaclass from the Domain Model, to
represent the evolution of an entity from de Domain Model into a
resource in the Environment Model.

Figure 6-14 Environment Model

Requirements Modeling for Multi-Agent Systems

59

The UML Use Case Diagram is used as the graphical syntax to
represent this information (see Figure 6-15). The roles are represented
as actors which are labeled with the stereotype «role», the resources
are represented as classes, and the permissions as relations between
the role and the entity, which are labeled with the stereotypes
«perceive», and «modify».

Resource1

Resource2

«role»
Role1

«modify»

«perceive»

Figure 6-15 Environment Model Graphical Syntax

6.7. Organizational Rules Model

The Organizational Rules Model represents the constraints of the
organization‘s behavior. These rules can be viewed as general rules,
responsibilities, restrictions, the desired behavior, and the sequence
or order in such conduct. Three types of rules are distinguished:
precedence, restriction and general. Figure 6-16 shows the
Organizational Rules Model metaclasses and the relations with
metaclasses of other models of the proposal, in this case with the
Organizational Model. The OrganizationalRulesModel metaclass is a
container for the elements of this model (see Figure 6-16). It is
composed of a set of rules that form the model. This is represented as
an aggregation relation between the OrganizationalRulesModel and
Rule metaclasses. The relation from the OrganizationalRulesModel
metaclass and the OrganizationalModel metaclass from the
Organizational Model represents that a relation between them must
exist.

Requirements Metamodel for Multi-Agent Systems

60

Figure 6-16 Organizational Rules Model

We propose a table schema for the graphical syntax of this
model to represent a set of rules in which each rule is defined by a
natural language description of the relationship, the type of rule, and
the corresponding formula if necessary (see Table 6-1).

Table 6-1 Organizational Rules Model Graphical Syntax

Rule Type Formula

Description rule 1 Precedence G1 < G2

Description rule 2 Restriction G2 G4

Description rule 2 General

Chapter 7

Requirements for MAS Modeling

Process

Software applications are complex products very difficult to develop
and verify. For this reason, researchers put special attention on
understanding and improving the quality of developed software.
One of these research directions is based on the study and
improvement of the software development process. A direct
relationship between the process quality and the software quality it is
assumes. The research area related to these aspects refers to these
processes using the term processing software.

A software process is a coherent set of policies, organizational
structures, technologies, procedures, and artifacts that are needed to
design, develop, install and maintain a software product [27]. A
software development process aims at an effective and efficient
production of a software product that meets customer needs. The
software process models facilitate the understanding of the project to
be carried out.

On the other hand, [63] defines software process model as: “A
simplified representation of a software process, represented from a specific
perspective. By their simplified nature, a software process model is an
abstraction of a real process”.

This chapter presents the process of development proposed
for modeling the requirements of a MAS, using SPEM 2.0. This guide
covers both phases of definition and specification of system
requirements.

7.1. Introduction to SPEM 2.0

SPEM 2 (Software & Systems Process Engineering Metamodel
Specification, v2.0) [56] is a metamodel used to define software and
systems development processes and their components. The scope of
SPEM is purposely limited to the minimal elements necessary to
define any software and systems development process, without

Requirements for MAS Modeling Process

62

adding specific features for particular development domains or
disciplines. The goal is to accommodate a large range of development
methods and processes of different styles, cultural backgrounds,
levels of formalism, lifecycle models, and communities. However, the
focus of SPEM is development projects.

SPEM 2.0 does not aim to be a generic process modeling
language, nor does it even provide its own behavior modeling
concepts. SPEM 2.0 rather defines the ability for the implementer to
choose the generic behavior modeling approach that best fits their
needs. It also provides specific structures to enhance such generic
behavior models that are characteristic for describing development
processes.

The central idea of SPEM 2 to represent processes is based on
three basic elements: role, work product and task. Tasks represent the
effort to do, roles represent who does the work and work products
represent the inputs used in the work and outputs produced. In this

way, it is specified: “who (roles) does what (tasks) in order to get

outputs (work products) from inputs (work products)”.

Figure 7-1 SPEM modeling primitives

When defining a process, SPEM 2 distinguishes two stages
(see Figure 7-1):

Requirements Modeling for Multi-Agent Systems

63

 Define the essential elements that provide content to the process.
These elements (roles, tasks, work product) compose the
repository called Method Content;

 These elements are combined and reused to assemble processes
and activities, defining the workflow between them.

Table 7-1 describes the most commonly used modeling
primitives when defining a process.

Table 7-1 Subset of elements to model processes in SPEM 2.0

Icon Name Description

Process

Represents a complete process. Is a set of
internally consistent process descriptions
that can be reused to define major
processes.

Activity

Phase

Iteration

Representing a set of tasks that run within
the process, along with their roles and
related products. If you only want to
represent a group of tasks, you can use the
―Activity‖ item or ―Phase‖, or if it is a set of
tasks that repeats a certain number of times,
you can use the element ―Iteration‖.

Role Definition
Is a set of skills, capabilities and
responsibilities of an individual or group.

Task Definition

Describes a unit of work allocated and
managed, identifying the work being
performed by roles.
Can be divided into several steps.

Work Product
Definition

It is the product used or produced by a
―Task‖. There are two types of products:
tangible nature artifact and package
products for delivery. You can associate
each other through aggregation
relationships, composition and impact.

Category

Classified items such as ―Tasks‖, ―Roles‖
and ―Products‖ based on the criteria the
process engineer wishes. There are various
types of categories: ―Set of Roles‖,
―Discipline‖, and ―Domain‖.

Requirements for MAS Modeling Process

64

Icon Name Description

Discipline

Collection of ―Tasks‖ that are related to a
major area of effort within an entire project.

Role Set
Is used to group ―Roles‖ that have
something in common (e.g., they use similar
techniques require similar skills)

Domain
Allow to establish a hierarchy of domains,
to classify ―Work Products‖ with as many
levels as desired.

Role Use
Represents the role that performs a task or
activity within a given process. Refers to a
―Role Definition‖.

Task Use

Represents an atomic task within a given
process. Refers to a ―Task Definition‖.

Work Product
Use

Represents a "Work Product" input or
output related to an activity or task. Refers
to a definition of a ―Work Product‖.

Process Package
Represents a package grouping all the
elements of the process.

By using a framework such as that offered by SPEM 2
provides many advantages, since you can have software processes
models in computer-processable format, which in turn provides
capabilities for:

 Facilitate understanding and communication between people,
because it provides a common framework where the concepts
have a formal definition, thus promoting a uniform knowledge.

 Facilitate reuse, because the definition of a process can be
integrated as parts or patterns of other process models.

 To support process improvement, because the formally defined
activities facilitate their evaluation through measurement
processes, which provide feedback to help improve these
processes.

 To support processes management, because it provides a
repository with the content of the process, which facilitates access
by the various involve persons.

Requirements Modeling for Multi-Agent Systems

65

 To guide the process automation and support for automatic
execution through the creation of workflows that can be
implemented in tools.

7.2. Disciplines

As mentioned before, to define the Method Content the process
engineer can classify items such as Tasks, Roles and Products. A
discipline is defined as a collection of tasks related to an area of interest
in the overall project. The partitioning of tasks in this way implies
that the associated roles and resulting work products are categorized
under the same theme. The grouping of tasks in disciplines helps to
understand a project from the traditional waterfall project view.

Requirements
Definition

Requirements
Specification

Figure 7-2 Disciplines of the Requirements Modeling Process for MAS

In our proposal there are two disciplines, as shown in Figure
7-2:

 Requirements Definition: this discipline includes all tasks
necessary to build a requirement specification.

 Requirements Specification: the goal of this discipline is to refine
the artifacts produced in the Requirements Definition discipline
and finish building a final specification of requirements.

7.2.1 Requirements Definition Discipline

In the Requirements Definition discipline shown in Figure 7-3 the
Requirement Engineering role is involved. This role will be
responsible for carrying out the following activities: Build Refinement
Tree, Refine Roles, and Define Entities.

In this discipline the work products are all models:
Organizational Model, Role Model, Goal Model, and Domain Model.

Requirements for MAS Modeling Process

66

As can be seen in the Figure 7-3, the outputs of the task Build
Refinement Tree are the Organizational Model, Role Model and Goal
Model, since the construction of the refinement tree is intended to
represent the information of these three models. The task Refine
Roles needs the Role Model as input, and the output is the Role
Model updated. Finally, the output of the Define Entities task is the
Domain Model.

Build
Refinement Tree Refine Roles Define Entities

Organizational
Model

Role
Model

Goal
Model

Domain
Model

Requirement
Engineering

«performs, primary»

«performs, primary» «performs, primary»

«mandatory, output»

«mandatory, output»

«mandatory, output»

«mandatory,input»

«mandatory,input» «mandatory, output»

Figure 7-3 Requirement Definition Discipline

7.2.2 Requirements Specification Discipline

In the Requirements Specification discipline shown in Figure 7-4 the
Requirement Engineering role is involved. This role will be
responsible for carrying out the following activities: Create Social
Behavior Model, Create Environment Model, and Define
Organizational Rules.

In this discipline the work products are all models:
Organizational Model, Role Model, Goal Model, Domain Model,
Behavior Model, Environment Model, and Organizational Rules
Model.

As can be seen in the Figure 7-4, the task Create Social
Behavior Model needs the Organizational Model, Role Model, and
Goal Model as input, and the output is the Behavior Model. The task

Requirements Modeling for Multi-Agent Systems

67

Create Environment Model needs the Role Model, and Domain
Model as input, and the output is the Environment Model. Finally,
the task Define Organizational Rules needs the Role Model as input,
and the output is the Organizational Rules Model.

Figure 7-4 Requirement Specification Discipline

7.3. Process

As was mentioned earlier, the requirements modeling process
proposed involves two phases: Requirements Definition and
Requirements Specification. Figure 7-5 shows an overview of this
process. Each activity of the process produces a document that is
composed of the sum of all the models and documents of the working
definition that is included in each activity.

The Requirements Definition activity tasks are performed
first, thus producing the requirements specification. The
Requirements Specification activity tasks are then performed, using
the requirements specification produced in the previous activity as
input and resulting in the production of the refined requirements
specification. At this point the Requirements Definition activity can
again be performed in case some kind of inconsistency or
incompleteness is encountered in the specification, or the process
may end.

Requirements for MAS Modeling Process

68

Requirements
Specification

Refined
Requirements
Specification

Requirements
Definition

Requirements
Specification

[valid]

[not valid]

Figure 7-5 Requirements modeling process overview

7.3.3 Requirements Definition

The Requirements Definition activity consists of three tasks whose
aim is to identify the models of the phase, as is it shown in Figure 7-6.
The first task is to Create Refinement Tree, beginning with the
definition of the Mission Statement, which is then broken into sub-
organizations, roles and goals. This information is part of the
Organizational Model, Role Model and Goal Model. The list of roles
identified in the previous task will be used as input for the next task:
Refine Roles. Here we discuss possible structural similarities in order
to identify inheritance relationships. If deemed appropriate, it is
possible to return to the previous task in order to update the
Refinement Tree, or the next task can be performed. In the last task,
Define Entities, the Domain Model is constructed from the identified
entities, and association and inheritance relationships among them
are defined.

Requirements Modeling for Multi-Agent Systems

69

Refinement Tree

Create Refinement
Tree

Refine
Roles

Define
Entities

Organizational
Model

Role
Model

Domain
Model

Role
Model

Goal
Model

Figure 7-6 Requirements Definition activity decomposed into tasks and artifacts

7.3.4 Requirements Specification

The Requirements Specification activity involves the creation of three
models: Behavior Model, Environment Model and Organizational
Rules Model, and therefore consists of three tasks for the creation of
the models, as is shown in Figure 7-7.

The first task in this activity is Create Social Behavior Model.
The Organizational Model, Role Model, Goal Model of the
Requirements Definition activity are used as input. We analyze the
goals to be attained by each role in each sub-organization in order to
identify the social behavior relationships between them and the
necessary Social Behavior Diagrams are created. Also, the necessary
Activity diagrams are created as a result of analyzes the flow of tasks
to be performed by a role to achieve each goal.

When this has been completed, the next task is performed:
Create Environment Model. The Role Model and the Domain Model
of the Requirements Definition phase are taken as input.

Requirements for MAS Modeling Process

70

Then, the Define Organizational Rules task is performed,
taking as input the Role Model of the Requirements Definition
activity. The Organizational Rules Model is produced as a result of
this. Finally, the artifacts generated during the process can relate to
analysis and design artifacts from other methodologies by
establishing a traceability framework. This will increase the overall
quality of the system to be.

Create Social
Behavior Model

Behavior
Model

Organizational
Model

Role
Model

Goal
Model

Create Environment
Model

Define
Organizational Rules

Domain
Model

Environment
Model

Organizational Rules
Model

Figure 7-7 Requirements Specification activity decomposed into tasks and artifacts

Chapter 8

Case Study

Agent technology is useful in many complex domains: ecommerce,
health, stock market, manufacturing, games, etc. In particular, we are
interested in the game development domain since it comprises a set
of characteristics such as collaboration, negotiation, trust, reputation,
etc., which specially can be related with a MAS. According to Google
Trends and the ESA annual report [22], games development is one of
the business markets that have undergone most growth in the last
few years.

In addition, the agent-oriented paradigm is one of the most
promising for modeling such business market due to the social
behavior characteristics (negotiation, cooperation, etc.) of the agents
and the complexity that MASs can support. For this reason, this
chapter illustrates the feasibility of our approach by applying the
requirements modeling process to the development of the strategic
board Diplomacy Game [23].

8.1. Diplomacy Game

We have used the Diplomacy Game to verify the feasibility of our
approach in areas such as negotiation, argumentation, trust and
reputation [23] in the game development domain. Many interesting
features make the Diplomacy Game compelling for applying the
agent technology: the absence of random movements, all players
move their units simultaneously, all units are equally strong so when
one attacks another the winner of the battle is decided by considering
solely the number of units helping one another, etc. Accordingly,
from a player‘s point of view, the most important feature of the game
is the negotiation process: deciding allies, selecting who to ask for
help, arguing with other players to obtain information about their
objectives or to discover what they know, and so on. We have used
the rulebook of the Diplomacy Game [69] as a description of the
system to be modeled with the process proposed in this work. The
most relevant aspects of the game are provided as follows.

Case Study

72

The Diplomacy Game is played by seven players and a Game
Master. Each player represents one of the seven ―Great Powers of
Europe‖ in the years prior to World War I. These Great Powers
consist of England, Germany, Russia, Turkey, Italy, France, and
Austria. At the start of the game, the players randomly decide which
Great Power each will represent. This is the only element of chance in
the game. As soon as one Great Power controls 18 supply centers, it is
considered to have gained control of Europe. The player representing
that Great Power is the winner.

Diplomacy is a game of negotiations, alliances, promises kept,
and promises broken. In order to survive, a player needs help from
others. In order to win the game, a player must eventually stand
alone. Knowing who to trust, when to trust them, what to promise,
and when to promise it is the heart of the game.

At the beginning of each turn, the players meet together in
small groups to discuss their plans and suggest strategies. Alliances
between players are made openly or secretly, and orders are
coordinated. Immediately following this period of ―diplomacy,‖ each
player secretly writes an order for each of his or her units on a slip of
paper. When all the players have written their orders, the orders are
simultaneously revealed, and are then all resolved. Some units are
moved, some have to retreat, and some are removed. Resolving
orders is the most challenging part of the rules and requires complete
knowledge of the rules. Each turn represents six months of time. The
first turn is called a Spring turn and the next a Fall turn. After each
Fall turn, each Great Power must reconcile the number of units it
controls with the number of supply centers it controls. At this time
some units are removed and new ones are built. The purpose of the
Game Master is to keep time for the negotiation sessions, collect and
read orders, resolve issues, and make rulings when necessary. This
role should be strictly neutral.

Each turn has a series of phases: (i) Spring four-phase turn:
Diplomatic phase, Order Writing phase, Order Resolution phase,
Retreat and Disbanding phase; (ii) Fall five-phase turn: Diplomatic
phase, Order Writing phase, Order Resolution phase, Retreat and
Disbanding phase, Gaining and Losing Units phase. After a Fall turn,
if one Great Power controls 18 or more supply centers, the game ends
and that player is declared the winner.

Requirements Modeling for Multi-Agent Systems

73

8.2. Diplomacy Game with Agents

Based on the tasks of the Requirements Definition and Requirements
Specification activities proposed, and which were presented in the
previous section, the development of the case study is presented
below.

8.2.1 Requirements Definition

As explained in the previous chapter, the requirements modeling
process starts with the Requirements Definition activity, which is
composed of three tasks: Create Refinement Tree, Refine Role Model,
and Create Entities (see Figure 7-6), developed below.

8.2.1.1 Create Refinement Tree

This activity starts with the first task: Create Refinement Tree to
represent the Organizational Model, partially the Role Model, and the
Goal Model. First the Mission Statement of the system must be
defined, which in this case is simple and is the Management of the
Diplomacy Game. Then, the system Mission Statement has to be
refined in sub-organizations. For the definition of the sub-
organizations of the system we decided that the problem naturally
leads to a conception of the whole system as a number of different
MAS sub-organizations, one for each phase of the game, and one
extra sub-organization representing the start of the game. The
resulting sub-organizations are: Initial phase, Diplomatic phase, Writing
Order Phase, Order Resolution phase, Retreat and Disband phase and
Gaining and Losing Units phase. This concept of representing the sub-
organizations of the system as phases was also used in the
Conference Management System case study presented in [73].

The roles that are part of each sub-organization are then
defined, resulting in three roles: Great Power, Game Master and Unit
which, depending on which sub-organization they are, have different
goals.

Finally the roles are refined with the goals they need to attain
in order to fulfill each sub-organization‘s objective. In the Initial Phase
sub-organization, the Great Power role has the goal of Start the Game.
In the Diplomatic Phase sub-organization, the Great Power role has the
goals of Male Alliance, and Set Strategy. In the same sub-organization

Case Study

74

the Game Master role has the goal of Control Negotiation Session. In the
Writing Order Phase sub-organization the Great Power role has the goal
of Make Orders, and the Game Master role has the goal of Manage
Orders. In the Order Resolution Phase sub-organization the Game Master
role has the goal of Resolve Order Conflicts, and the Unit role has the
goal of Follow Orders. In the Retreat and Disband Phase sub-
organization the Great Power role has the goal of Make Retreats, the
Game Master role has the goal of Manage Retreats, and the Unit role
has the goal of Follow Retreats. Finally, in the Gaining and Losing Units
Phase sub-organization the Great Power role has the goal of Make
Adjustments. The Game Master role ha the goals of Manage Adjustments
and Determine Winner. The Unit role has the goal of Follow
Adjustments. Figure 8-1 shows the complete resulting Refinement
Tree.

Figure 8-1 Diplomacy Game Refinement Tree

8.2.1.2 Refine Role Model

The second task, Refine Role Model, is performed to complete the
Role Model based on the information defined in the Refinement Tree.
Possible inheritance relationships between roles can be specified in
this task. The current case study presents no inheritance relations, just
three roles without hierarchy (see Figure 8-2).

Requirements Modeling for Multi-Agent Systems

75

«role»
Great Power

«role»
Game Master

«role»
Unit

Figure 8-2 Diplomacy Game Inheritance Diagram

Figure 8-3 Diplomacy game Domain Model

8.2.1.3 Create Entities

The third task, Create Entities, is performed to define the Domain

Model. Figure 8-3 shows the Domain Model generated. Briefly, the
domain consists of a Map that is composed of many Countries, which
in turn have Boundaries and Provinces. A Province can be an Inland,
Coastal or Water province. A Supply Center is in a Province, but a
Province may or may not have a Supply Center. Furthermore, a Unit is

Case Study

76

in a Province, but a Province may or may not have a Unit. A Unit can
be an Army or a Fleet. Both a Province and a Unit belong to a Great
Power, which in turn is a Country, but not all Countries are Great
Powers. A Great Power has many Documents, Orders, Retreats and
Adjustments, and they all belong to only one Great Power. Orders,
Retreats and Adjustments are all for one Unit and a Unit follows many
Orders, Retreats and Adjustments.

As a result of performing the Requirements Definition activity
we obtain the Refinements Tree shown in Figure 8-1, which
represents the Organizational Model, partially the Role Model and
Goal Model. Also, we obtained an inheritance diagram, shown in
Figure 8-2, to complement the information of the roles in the
Refinement Tree. Finally, diagram relating the entities identified in
the domain to represent the Domain Model is shown in Figure 8-3.

8.2.2 Requirements Specification

The second activity, in the requirements modeling process, is to
perform the Requirements Specification, which is composed of three
tasks: Create Social Behavior Model, Create Environment Model, and
Define Organizational Rules (see), developed below.

8.2.2.1 Create Social Behavior Model

This activity starts with the first task, Create Social Behavior Model,
in order to specify the Behavior Model using the information from
the Organizational Model, Role Model, and Goal Model generated in
the Requirements Definition activity as input. This task is composed
in turn of two parts, first a social behavior diagram must be created
for each sub-organization, and then an activity diagram must be
created for each goal.

Figure 8-4 Social behavior diagram of the Initial Phase sub-organization

Requirements Modeling for Multi-Agent Systems

77

The goals of each role in each sub-organization are reviewed
in order to identify whether the role needs social behavior
relationships in any sub-organization. The social behavior
relationships can be of three types of social behavior with their
respective properties: collaboration (communicative, non-
communicative), disposition (benevolent, self-interested, malevolent),
and veracity (truthful, untruthful). Following a social behavior
diagram for each sub-organization identified in the case study is
presented.

Upon analyzing the goal of the role of the Initial Phase sub-
organization, we identified that the Great Power role needs to have a
disposition relation to attain its Start the Game goal, and more
specifically, the role needs to be benevolent with the Game Master role.

Also the Great Power role needs to have a disposition relation
to attain its Start the Game goal, and more specifically, the role needs

to be truthful with the Game Master role. Figure 8-4 shows the social
relation diagram for the organization analyzed.

Figure 8-5 Social behavior diagram of the Diplomatic Phase sub-organization

Upon analyzing the goals of the roles of the Diplomatic Phase
sub-organization, we identified that the Great Power role needs to
have the collaboration relation to attain all of its goals in the sub-
organization analyzed, and more specifically, the role needs to be
communicative with other instances of the Great Power role and with
the Game Master role. The same applies in the case of the Game Master
role fulfilling its Control Negotiation Session goal; the collaborative
relationship will be with the Great Power role. The collaborative

Case Study

78

relationship between Great Power and Game Master will therefore be
on both sides, represented with a non-directional arrow.

Moreover, if the Great Power role is to fulfill all of its goals in
the sub-organization analyzed, it needs to have a disposition relation;
more specifically, it needs to be benevolent, self-interested or malevolent
with regard to another instance of the Great Power role, depending on
the agent‘s intentions. In this sub-organization, negotiation,
persuasion and trust are keys to the Great Power role. Also, the Great
Power role in the sub-organization analyzed is in all cases benevolent
with regard to the Game Master role, and vice versa.

Finally, if the Great Power role is to fulfill all of its goals in the
sub-organization analyzed, it is necessary for the veracity relation
between the Great Power role and other instance of the same role to be
truthful or untruthful, again depending on the intentions of the agent
playing the role. We also believe that it is necessary for the veracity
relation between the Great Power role and the Game Master role to be

truthful in both directions. Figure 8-5 shows the social relation
diagram for the organization analyzed.

Figure 8-6 Social behavior diagram of the Writing Order Phase sub-organization

Upon analyzing the goal of the role of the Writing Order Phase
sub-organization, we identified that the Great Power role needs to
have a collaboration relation to attain its Make Order goal, and more
specifically, the role needs to be communicative with the Game Master
role. The same applies in the case of the Game Master role fulfilling its
Manage Order goal; the collaborative relationship will be with the
Great Power role. The collaborative relationship between Great Power

Requirements Modeling for Multi-Agent Systems

79

and Game Master will therefore be on both sides, represented with a
non-directional arrow.

Moreover, if the Great Power role is to fulfill its goal in the sub-
organization analyzed it needs to have a disposition relation, more
specifically, it needs to be benevolent with regard to the Game Master
role, and vice versa.

Finally, if the Great Power role is to fulfill its goal in the sub-
organization analyzed, it is necessary for the veracity relation
between the Great Power role and other instance of the same role to be
truthful or untruthful, again depending on the intentions of the agent
playing the role. We also believe that it is necessary for the veracity
relation between the Great Power role and the Game Master role to be

truthful in both directions. Figure 8-6 shows the social relation
diagram for the organization analyzed.

Figure 8-7 Social behavior diagram of the Order Resolution Phase sub-organization

Upon analyzing the goal of the role of the Order Resolution
Phase sub-organization, we identified that the Game Master role needs
to have a collaboration relation to attain its Resolve Order Conflicts
goal, and more specifically, the role needs to be communicative with
the Unit role. The same applies in the case of the Unit role fulfilling its

Case Study

80

Follow Orders goal; the collaborative relationship will be with the
Game Master role. The collaborative relationship between Game Master
and Unit will therefore be on both sides, represented with a non-
directional arrow.

Moreover, if the Game Master role is to fulfill its goal in the
sub-organization analyzed it needs to have a disposition relation,
more specifically; it needs to be benevolent with regard to the Unit
role, and vice versa. Also, the Game Master role needs to be self-
interested with regards to the Great Power role. And, the Unit role
needs to be benevolent with regards to the Great Power role.

Finally, if the Game Master role is to fulfill its goal in the sub-
organization analyzed, it is necessary for the veracity relation
between the Game Master role and the Great Power role to be truthful.
Also, the Unit role needs to be benevolent with regards to the Great
Power role. We also believe that it is necessary for the veracity relation
between the Game Master role and the Unit role to be truthful in both
directions. Figure 8-7 shows the social relation diagram for the
organization analyzed.

Requirements Modeling for Multi-Agent Systems

81

Figure 8-8 Social behavior diagram of the Retreat and Disband Phase and Gaining

and Loosing Units Phase sub-organizations

Upon analyzing the goals of the roles of the Retreat and
Disband Phase sub-organization, we identified that the Great Power
role needs to have the collaboration relation to attain its Make Retreat
goal, and more specifically, the role needs to be communicative with
the Game Master role and with the Unit role, and vice versa. The same
applies in the collaboration relation between the Game Master role and
the Unit role, to fulfill its Manage Retreat goal and Follow Retreat goal,
respectively.

Moreover, if the Great Power role is to fulfill its goal in the sub-
organization analyzed, it needs to have a disposition relation, more
specifically, it needs to be benevolent, self-interested or malevolent with
regard to another instance of the Great Power role, depending on the
agent‘s intentions. Also, the Great Power role in the sub-organization
analyzed is in all cases benevolent with regard to the Game Master role,
and is also in all cases benevolent with regards to the Unit role, and

Case Study

82

vice versa. On the other hand, the Game Master role is self-interested
with regards to the Great Power role and the Unit role.

Finally, if the Great Power role is to fulfill all of its goals in the
sub-organization analyzed, it is necessary for the veracity relation
between the Great Power role and other instance of the same role to be
truthful or untruthful, again depending on the intentions of the agent
playing the role. We also believe that it is necessary for the veracity
relation between the Great Power role and the Game Master role, and
between the Great Power role and the Unit role to be truthful in both
cases in both directions. The same applies in the veracity relation

between the Game Master role and the Unit role. Figure 8-8 shows the
social relation diagram for the organization analyzed.

Upon analyzing the goals of the roles of the Gaining and Losing
Units Phase sub-organization, we identified that the collaboration,
disposition, and veracity relation between the Great Power, Game
Master, and Unit roles are the same as the social behavior relations

shown in Figure 8-8.

The second part of the tasks Create Social Behavior Model is
to analyze the goals of each role in each sub-organization in order to
identify the sequence of steps that represent the flow of activities
needed to achieve these goals. Following, the activity diagrams
identified in the case study will be illustrated, and presented
according to the order of sub-organizations.

Upon analyzing the goal of the Initial Phase sub-organization,
we identified one activity diagram that specifies the activities and
protocols performed by the Great Power role to attain the Start the
Game goal.

As is shown in Figure 8-9, the flow of actions performed by
the Great Power active role to attain the Start the Game goal begins
with performing the Choose county activity, and second and last the
Place units at starting positions activity.

Requirements Modeling for Multi-Agent Systems

83

Figure 8-9 Activity Diagram of the Start the Game goal

Upon analyzing the goal of the Diplomatic Phase sub-
organization, we identified two activity diagrams that specify: i) the
activities and protocols performed by the Great Power role to attain
the Make Alliance goal, and the activities and protocols performed by
the Game Master role to attain the Control Negotiation Sessions goal; ii)
the activities and protocols performed by the Great Power role to
attain the Set Strategy goal, activities and protocols performed by the
Game Master role to attain the Control Negotiation Sessions goal.

As the Make Alliance goal and the Set Strategy goal are related
to the Control Negotiation Session goal, we decide to specify their
activity diagrams in the following way: i) one diagram with tree
swim lines, two for the interaction between the two instances of the
Great Power role (active and passive) to attain the Make Alliance goal,
and the third swim line for the interaction between the Game Master
role and the instances of the Great Power role to attain the Control
Negotiation Sessions goal; ii) one diagram with two swim lines, one for
the Set Strategy activities and protocols, and one for the interaction
between the Game Master role and the instance of the Great Power role
to attain the Control Negotiation Sessions goal.

As is shown in Figure 8-10, the flow of actions performed by
the Great Power active role to attain the Make Alliance goal begins with
a fork that gives the control to one initiator protocol: Meet in private
groups, and to one reactive protocol: Interrupt negotiation session
(reaction to the Game Master active protocol). The first protocol is

Case Study

84

initialized by the Great Power active role and result in the reactive
protocol Meet in private groups (Active:Great Power) of the Great Power
passive role, while the other is a reaction of the Great Power role to the
Interrupt negotiation session protocol initialized by the Game Master
role if the negotiation time has ended. If this protocol is performed,
the Great Power active role must terminate the flow of action.

After the Meet in private groups protocol has been performed,
the Great Power active role must perform the Decide who to trust
activity in order to attain the Make Alliance goal. The Great Power
passive role has the same flow of actions as the Great Power active
role, with the difference that its Meet in private groups protocol is a
reaction to the Meet in private groups protocol initialized by the Great
Power active role, and since this is a passive instance of the Great
Power role, it does not end the flow of actions.

Figure 8-10 Activity Diagram for the goals Make Alliance and Control Negotiation

Session

As is shown in Figure 8-11, the flow of actions performed by
the Great Power role to attain the Set Strategy goal begins with a fork
that gives the control to one activity: Write Documents, and to one
reactive protocol: Interrupt negotiation session (reaction to the Game
Master active protocol). After the Write documents activity has been
performed, the Great Power role must perform the Make public
statements activity in order to attain the Set Strategy goal. The reactive

Requirements Modeling for Multi-Agent Systems

85

protocol is a reaction of the Great Power role to the Interrupt negotiation
session protocol initialized by the Game Master role if the negotiation
time has ended. If this protocol is performed, the Great Power active
role must terminate the flow of action.

Figure 8-11 Activity Diagram for the goals Set Strategy and Control Negotiation

Session

Upon analyzing the goal of the Writing Order Phase sub-
organization, we identified one activity diagrams that specify the
activities and protocols performed by the Great Power role to attain
the Make Order goal, and the activities and protocols performed by
the Game Master role to attain the Manage Order goal. As the Make
Order goal and the Manage Order goal are related, we decide to
specify their activity diagrams in one diagram with two swim lines
for the interaction between the Great Power role and Game Master role
to attain the Make Order, and Manage Order goals, respectively.

As is shown in Figure 8-12, the flow of actions performed by
the Great Power role to attain the Make Order goal begins with the
Write documents activity, and following with the Reveal order active
protocol. The active protocol generates a reaction protocol of the
Game Master role: Collect order. After the Collect order protocol has
been performed, the Game Master role must perform the Read order
activity in order to attain the Manage Order goal.

Case Study

86

Figure 8-12 Activity Diagram for the goals Make Order and Manage Order

Upon analyzing the goal of the Order Resolution Phase sub-
organization, we identified one activity diagrams that specify the
activities and protocols performed by the Game Master role to attain
the Resolve Order Conflicts goal, and the activities and protocols
performed by the Unit role to attain the Follow Order goal. As the
Resolve Order Conflicts goal and the Follow Order goal are related, we
decide to specify their activity diagrams in one diagram with two
swim lines for the interaction between the Game Master role and Unit
role to attain the Resolve Order Conflicts, and Follow Order goals,
respectively.

As is shown in Figure 8-13, the flow of actions performed by
the Game Master role to attain the Resolve Order Conflicts goal begins
with the Does conflicts exist? decision node. If an order conflict does
exist, the Game Master role must perform the Resolver Order Conflict
activity; else, the Game Master role must perform the Follow Order
active protocol in order to attain the Resolve Order Conflicts goal. The
active protocol generates a reaction protocol of the Unit role: Follow
Order, which in turn follows with the Type of Order decision node.
Depending on the type of order, the Unit role must perform one of
the following activities: Hold, Support, Move, or Convoy in order to
attain the Follow Orders goal.

Requirements Modeling for Multi-Agent Systems

87

Figure 8-13 Activity Diagram for the goals Resolve Order Conflicts and Follow

Order

Upon analyzing the goal of the Retreat and Disband Phase sub-
organization, we identified one activity diagram that specify the
activities and protocols performed by the Great Power role to attain
the Make Retreats goal, the activities and protocols performed by the
Game Master role to attain the Manage Retreats goal, and the activities
and protocols performed by the Unit role to attain the Follow Retreats
goal. As these three goals are related, we decide to specify their
activity diagrams in one diagram with three swim lines for the
interaction between the Great Power role and Game Master role to
attain the Make Retreats, and Manage Retreats goals, respectively, and
for the interaction between the Game Master role and Unit role to
attain the Manage Retreats, and Follow Retreats goals, respectively.

As is shown in Figure 8-14, the flow of actions performed by
the Great Power role to attain the Make Retreats goal begins with the
Write retreat activity, and following with the Reveal retreat active
protocol. The active protocol generates a reaction protocol of the
Game Master role: Collect retreat. After the Collect retreat protocol has
been performed, the Game Master role must perform the Read retreat
activity. Then, the Game Master role must perform the Follow Order
active protocol in order to attain the Manage Retreats goal. The active

Case Study

88

protocol generates a reaction protocol of the Unit role: Follow retreat,
which in turn follows with the Type of retreat decision node.
Depending on the type of retreat, the Unit role must perform one of
the following activities: Retreat, Disband, or Dislodge in order to attain
the Follow Retreats goal.

Figure 8-14 Activity Diagram for the goals Make Retreats, Manage Retreats and

Follow Retreats

Upon analyzing the goal of the Gaining and Losing Units Phase
sub-organization, we identified two activity diagrams: i) one activity
diagram that specify the activities and protocols performed by the
Great Power role to attain the Make Adjustments goal, the activities and
protocols performed by the Game Master role to attain the Manage
Adjustments goal, and the activities and protocols performed by the
Unit role to attain the Follow Adjustments goal. As these three goals
are related, we decide to specify their activity diagrams in one
diagram with three swim lines for the interaction between the Great
Power role and Game Master role to attain the Make Adjustments, and
Manage Adjustments goals, respectively, and for the interaction
between the Game Master role and Unit role to attain the Manage
Adjustments, and Follow Adjustments goals, respectively; ii) one
activity diagram that specify the activities and protocols performed
by the Game Master role to attain the Determine Winner goal.

Requirements Modeling for Multi-Agent Systems

89

As is shown in Figure 8-15, the flow of actions performed by
the Great Power role to attain the Make Adjustments goal begins with
Check supply activity, and based on the number of supply left the
Great Power role must perform the Write adjustment activity, and
following with the Reveal adjustment active protocol. The active
protocol generates a reaction protocol of the Game Master role: Collect
adjustment. After the Collect adjustment protocol has been performed,
the Game Master role must perform the Read adjustment activity. Then,
the Game Master role must perform the Follow adjustment active
protocol in order to attain the Manage Adjustments goal. The active
protocol generates a reaction protocol of the Unit role: Follow
adjustment, which in turn follows with the Type of adjustment decision
node. Depending on the type of adjustment, the Unit role must
perform one of the following activities: Retreat, Disband, or Dislodge in
order to attain the Follow Adjustments goal.

Figure 8-15 Activity Diagram for the goals Make Adjustments, Manage Adjustments

and Follow Adjustments

As is shown in Figure 8-16, the flow of actions performed by
the Game Master role to attain the Determine Winner goal begins with
the 18 supply center? decision node. This decision node means that the
Game Master role must count the supply centers left for each Great
Power role, and if Great Power role does have 18 supply centers, the

Case Study

90

Game Master role must perform the Reveal winner activity; else, the
Game Master role must perform the Back to Diplomatic Phase active
protocol in order to attain the Determine Winner goal. If a winner is
determine then the game is finish, else, the goals of the Diplomatic
Phase sub-organization must be perform.

Figure 8-16 Activity Diagram for the goals Determine Winner

The second task that must be performed in the Requirements
Specification activity is Create Environment Model using the
information from the Role Model and Domain Model generated in

the Requirements Definition activity as input. Figure 8-17 shows the
permissions of the Great Power, Game Master and Unit roles with
regard to the Domain Model resources that each role needs to perceive
or modify in order to attain its goals. The Great Power role perceives the
following entities in the system: other instances of Great Power, Units,
Map, Provinces, Boundary and Country; and can modify: Supply Center,
Document, Order, Retreat and Adjustment. The Game Master role
perceives the following entities in the system: Great Power, Units, Map,
Provinces, Supply Center, Boundary and Country; and can modify: Order,
Retreat and Adjustment; but cannot perceive or modify the Document
entity. Finally the Unit role perceives the following entities in the
system: Great Power, Map, Provinces, Boundary, Country, Document,

Requirements Modeling for Multi-Agent Systems

91

Order, Retreat and Adjustment; but cannot perceive or modify the
following entities: other instances of Unit and Supply Center.

Figure 8-17 Diplomacy game Environment Model

The third task that must be performed in the Requirements
Specification activity is to Define Organizational Rules, using the
information from the Domain Model generated in the Requirements
Definition activity and the Behavior Model of the current activity as
input. In the current domain, the important rules to identify are the
general rules of the game, the number of players, the rules concerning
the movement of the units depending on the type of unit and on the
type of provinces the move take place in, etc. Table 1 shows an extract
from the Organizational Rules Model.

Case Study

92

Table 8-1 Organizational Rules Model

Rule Type Formula
The game is divided into a two year tour: Spring

four-phase turn and Fall five-phase turn

General

Spring four-phase turn has phases: Diplomatic, Order

Writing, Order Resolution and Retreat and

Disbanding

General

Fall five-phase turn has phases: Diplomatic, Order

Writing, Order Resolution and Retreat and

Disbanding, Gaining an Losing

General

Only seven players may perform the role of "Great

Power"

General

When 18 supply centers belongs to a "Great Power"

the game ends and the winner is that "Great Power"

General

At the start of the game each “Great Power”, except

Russia, controls 3 supply centers

General

At the start of the game, the “Great Power” Russia

controls 4 supply centers

General

Maximum time in the first diplomatic phase is 30

minutes

General

Maximum time in the next diplomatic phase is 15

minutes

General

All units hace the same strenght General
Only fleets can be ordered to convoy General
An army can be ordered to move into an adjacent

inland or coastal province, not to a water provinces

General

A fleet can be ordered to move to an adjacent water

province or coastal province, not to a inland province

General

Any location in the map that isn´t named can´t be

occupied

General

Islands can´t be occupied, with the exception of

England

General

Units of equal strength trying to occupy the same

province cause all units to remain in their original

provinces, this is call a “stanfoff”

General

A standoff doesn’t dislodge a unit already in the

province where the standoff took place

General

One unit not moving can stop a unit or series of units

from moving

General

Units can’t trade places without the use of convoy General
Three or more units can rotate provinces during a

turn provided none directry trade places

General

The province that a unit is providing support to must

be one that the supporting unit could hace legally

General

Requirements Modeling for Multi-Agent Systems

93

moved to during the turn

A unit not ordered to move can be supported by a

support order that only mentions its provinces

General

A unit ordered to move can only be supported by a

support order that matches the move the unit is trying

to make

General

A dislodge unit can still cause a standoff in a

province different from the one that dislodge it

General

A dislodge unit, even with support, has no effect on

the province that dislodge it

General

Support is cut if the unit giving support is attacked

from any province except the one where support is

being given

General

Support is cut if the unit giving support is dislodged General
A unit being dislodged by one province can still cut

support in another province

General

A Fleet in a water province can convoy an Army

from any coastal province adjacent to that water

province to any other coastal province adjacent to

that water province

General

For a Fleet to Convoy an Army, the Army must be

ordered to move to the intender province and the

Fleet must be ordered to convoy it

General

A Fleet can’t convoy more than one Army during the

same turn

General

Only Army can be convoy General
Support can’t be transported from one Army via a

convoy to another unit

General

If Fleet occupy adjacent water provinces, an Army

can be convoyed through all these water provinces

on one turn

General

Dislodgment of a Fleet in a convoy causes the

convoy to fail

General

A convoy that causes the convoyed Army to standoff

at its destination results in that Army remaining in its

original provinces

General

A country can’t dislodge or support the dislodgment

of one of its own units, even if that dislodgment is

unexpected

General

A country can create a standoff by ordering two

equally-supported attacks on the same province

General

An attack by a country on one of its own units

doesn’t cut support

General

Two units can exchange places if either or both are

convoyed

General

Case Study

94

An army convoyed using alternate convoy orders

reaches its destination as long as at least one convoy

route remains open

General

A convoyed Army doesn’t cut the support of a unit

supporting an attack against one of the Fleets

necessary for the Army to convoy

General

An Army with at least one succesful convoy route

will cut the support given by a unit in the destinaion

province that is trying to support an attack on a Fleet

in an alternate route of the convoy

General

A dislodge unit can retreat to an adjacent province

that it could ordinary move to if unopposed by other

units

General

A unit can’t retreat to: a provinces that is occupied;

the province from wich the attacher came; a province

that was left vacant by a standoff during the same

turn

General

If there is no available province to retreat to, the

dislodged unit is immediately disbanded and

removed from the map

General

Retreats can’t be convoy or supported General
If one or more units are ordered to retreat to the same

provinces, they all must be disbanded

General

If a player fails to order a retreat when necessary, the

unit is disbanded

General

A country controls a owns a supply center when one

of its units occupies that supply center province after

a turn has been played and completed

General

If a country has more supply centers than units, it

must disband the excess number of units

General

If a country has more supply centers than units, it can

place new units in each unoccupied supply center of

its home country that it still controls

General

A country can’t build a supply center outside its

home country

General

Finally, as a result of performing the Requirements
Specification activity we obtain the Behavior Model which is
composed with: all the Social Behavior diagrams (e.g. Figure 8-5), and
all the Activity diagrams (e.g. Figure 8-11). We also obtain the
Environment Model (see Figure 8-17) as well as a table representing
the Organizational Rules Model (see Table 8-1).

Requirements Modeling for Multi-Agent Systems

95

8.3. Discussion

With the definition of the Diplomacy Game Refinement Tree (see
Figure 8-1), the requirements engineer is able to identify the overall
goal of the system, the decomposition of the system in a hierarchy of
sub-organizations, roles involved in each sub-organization, and the
goals that are carried out by each role in the corresponding sub-
organization. The Diplomacy Game Refinement Tree provides
information for the organizational, functional, and structural
perspectives of the case study system. Moreover, the relevant entities
of the environment of the game are identified in the Diplomacy Game
Domain Model (see Figure 8-3), providing information for the
organizational and structural perspective.

In addition, the social behavior needed for each role to carry
out their goals is specified by mean of one social behavior diagram
for each sub-organization (e.g. Figure 8-5). The case study presents a
variety of social characteristics that allow to fully evaluating the
proposed social behavior diagram. In particular, we identified
relationships of collaboration, disposition and veracity. The social
behavior diagrams provide information for the social behavior
perspective. With the construction of one activity diagram for each
goal, the requirements engineer is able to refine each goal in activities
and protocols, and also to refine the social behavior identified in the
previous activity. It is proper to mention that the collaboration
relationships identified in the social behavior diagrams is refined in
the Activity diagrams. As an example, the initiator protocols and
reactive protocols in Figure 8-10 show the specification of the
collaboration relation identified in the Social behavior diagram of
Figure 8-5. The Activity diagrams also provide information for the
functional and social behavior perspectives.

Furthermore, the Diplomacy game Environment Model (see
Figure 8-17), identifies the resources of the system, and defines the
permissions that roles have in those resources, providing information
for the structural and functional perspectives. The organizational
rules of the game are specified (see Table 8-1), providing information
for the organizational, structural and functional perspectives.

Due to its characteristics, the Diplomacy game case study
offers a good example to validate the feasibility of our approach to

Case Study

96

model the requirements of a MAS covering its organizational,
structural, functional, and social behavior properties.

Also, the use of our proposal to model the requirements of a
case study with medium complexity characteristics, has served to
qualitatively assess the process and the models proposed. With
respect to the process, we propose a process that consists of only two
main activities, in turn each activity consists of no more than three
steps, and also, provides freedom to return to the previous phase if
feedback is necessary. In our particular case, that freedom was useful
to define the goals at a suitable level of abstraction after several
iterations. Taking the refinement tree already created in the
identification phase, and when trying to create the activity diagrams
in the specification phase for each goal identified, we could assess
whether the goals identified had an adequate level of abstraction or
not, and if necessary go back to the identification phase to modified
it. On the other hand, with respect to the models generated, we
propose the use of simple and familiar diagrams (most of the
notations are stereotyped UML standards), suitable for the
identification and specification of MAS requirements. In particular,
the greatest contribution is the explicit representation of social
behavior, with the Social Behavior Diagram and the Activity
Diagram. Having this information as a part of a model, not just a
textual description, provides a step forward to validation and
automation of such important characteristics in the domain.

Chapter 9

Conclusions

This chapter presents the main contributions of the work, future lines
of work, and publications derived from the research work performed
in this thesis.

9.1. Contributions

In recent years, various methodologies have been proposed to guide
the development of multi-agent systems (MAS), such as Tropos [29],
Ingenias [31], Gaia [73], etc. However, despite the importance of the
requirements phase in the development of software systems, many of
the proposed methodologies for the development of MAS do not
adequately cover the requirements engineering phase [13], focusing
mainly on the design and implementation phases. Moreover, a recent
study on the application of requirements engineering techniques in
the development of a multi-agent system [7] found that 79% of the
current methodologies for MAS development use requirements
engineering techniques which have been adapted from other
paradigms (object orientation, knowledge engineering, etc.) [7].

However, these techniques and notations may not be
sufficient to cover the nature of MAS, since these systems need, along
with their organizational, structural, or functional properties,
characteristics that are not normally necessary in conventional
software systems. Therefore, the main objective of this master thesis
is to propose a requirements modeling process to deal with user and
software requirements emphasizing on the special aspects of MAS,
satisfying the objectives established at the start of work:

i) perform a literature review with which to investigate current
techniques, methods, and methodologies to develop MAS;

ii) perform a literature review with which to investigate current RE
techniques, methods, and methodologies with particular
emphasis on those techniques more appropriate to identify and
specify requirements for complex and dynamic systems;

iii) study and define the perspectives needed to adequately represent
a MAS;

Conclusions

98

iv) define the proposal for requirements modeling of multi-agent
systems based on previous studies in the related topics, and
covering the perspectives defined;

v) extend the proposal towards a model-driven development
approach, enabling usability evaluations on model integration
with other MAS methodologies at different stages of
development;

vi) specify the development process through a process modeling
language, to precisely specify how to use the proposed method
and artifacts to be generated;

vii) illustrate the feasibility of the approach by applying the
requirements modeling process to the development of the
strategic board Diplomacy Game [23];

This investigation work started in 2007 and from the previous
work, the acceptance of the results, as well as the experience gained,
is taken into account as a starting point of this master thesis.

With the starting experience, we perform a literature review
on current techniques, methods, and methodologies to develop MAS,
and current RE techniques, methods, and methodologies with
particular emphasis on those techniques more appropriate to identify
and specify requirements for complex and dynamic systems.

Then, to have a clear idea of which common and special
characteristics to capture in a MAS we propose four basic
perspectives for the modeling of MAS requirements: functional,
structural, organizational, and social behavior. Being the
organizational and social behavior perspectives the most important to
the topic.

The social behavior classification presented, represent to some
extent abstraction of human social behavior, and are those that
differentiate agent paradigms from traditional software development.
In this work, we use this classification to study the characteristics of
social behavior and to propose mechanisms for the definition and
specification of requirements of these types. In particular, in this
work we focus on the proactiveness, collaboration, veracity, and
disposition following characteristics. Social behavior is a skill that
must have an agent in a MAS. Moreover, if we consider the
organizational metaphor, an agent can, at different times in its life-

Requirements Modeling for Multi-Agent Systems

99

cycle, play one or more specific roles, which in turn have a set of
responsibilities and goals. We therefore propose to identify these
features of social behavior in the requirements modeling process at
role level, through an analysis of the goals that need to be attained.
Therefore, in the later phases of the software development, when an
agent has to be defined, the corresponding roles of which a given
agent will be composed will determine the agent‘s complete social
behavior.

After having defined the MAS perspectives, we proposed a
requirements modeling process for MAS. The approach is organized
into two main activities: Requirements Definition and Requirements
Specification. In the Requirements Definition activity the following is
modeled:

 organizational structure and structural properties of the system;

 functional behavior of the system;

 domain entities and their relationships.

In the Requirements Specification activity the requirements
specifications are refined, identifying:

 interactions on which the social behavior of the system is based;

 mains activities which conform the functional behavior of each
role;

 permissions of the roles in the domain entities;

 structural and functional behavior.

This process supports the four perspectives that characterize a
MAS: organizational, structural, functional and social behavior
(proactiveness, collaboration, veracity, and disposition). We believe
that this proposal addresses the need for a requirements modeling
process for MAS because it incorporates specific abstractions needed
to capture and specify these four perspectives. In particular, the
definition and specification of features of social behavior at the
requirements level will increase the quality of specifications, thus
providing the expressiveness needed by the MAS in an early stage of
the software development process.

We also propose an extension of the proposal for MAS
requirements modeling for a model-driven development approach.
We define a metamodel (level M2 of the MOF architecture) for the

Conclusions

100

requirement modeling for MAS proposal. We present a description of
the metamodel and the associated graphical syntax. The metaclasses
of the metamodel presented are organized in different interrelated
models and represent all the information identified in the
Requirements Definition and Requirements Specification phases of
the approach MAS. In the context of AOSE, we have identified certain
advantages of our approach. The metamodel presented defines a
common set of requirements core concepts for the development of
MAS through models that provides information which is necessary to
cover the different perspectives of a MAS. In particular, the modeling
of features of social behavior at the requirements level will increase
the quality of specifications, thus providing the expressiveness
needed by the MAS developer in an early stage of the software
development process. In addition, the model-driven development
approach provides a better means to address and solve
interoperability issues, quality of reuse, maintainability, etc. We thus
move towards bridging the gap between MAS requirements,
captured as requirements models, and analysis and design models.
The use of a model-driven development approach to develop MAS is
also useful to enhance the potential, improve the quality and
efficiency of AOSE, and consequently allow AOSE to be widely
adopted by researchers and practitioners in the software engineering
community.

The next step was to define the software development process.
The quality of the development process used has a direct impact on
final product quality. Therefore it is necessary a precise definition of
the processes to be followed to implement the proposed method. We
used SPEM as a process modeling language. SPEM is a meta-model
proposed as a notation for defining software development processes
and components. It was selected by the advantage of being a
standard proposed by the OMG, being easy to integrate with the rest
of OMG standards, and UML profiles can be utilized to benefit from
the tools that support UML modeling. In the process specification, the
disciplines involved in the proposed process were included;
indicating for each the group of tasks, and models generated in the
process. Also, was stated in the description of the process, the phases
involved in the process and the order in which tasks must be applied
to implement our proposal. Input and output models were also

Requirements Modeling for Multi-Agent Systems

101

included for each task, allowing the identification of dependencies
between activities and models.

Finally, the proposal was validated using the requirements
modeling of the Diplomacy Game as a case study. In particular, the
social behavior characteristics and complexity of this game make
them appropriate subjects for resolution with the agent-oriented
paradigm. Also, the game development domain, in general, given its
characteristics, particularly allows us to observe and reason about
different ways in which to identify, define, and specify requirements
of social behavior, in addition to the organizational (because of the
various phases of which a game is composed), the structural (owing
to the different types of elements used), and the functional (because
of the different actions to be performed).

9.2. Future Work

This work opens five future research lines: improvement of the
modeling requirements for MAS proposed, to cover the complete list
of social behavior characteristics, definition of model transformations,
CASE tool development, empirical studies to validate the proposal,
and integration within a Product Line approach.

The first line of research is to include identification and
specification of the characteristics of social behavior not covered in
the current work: adaptability and mobility. It is also planned to
perform the integration of the integration of the two characteristics in
the MDSD context.

The second line of research is to complete the integration of
the proposal with the MDSD approach by defining the
transformations necessaries so that, through the implementation of a
transformation engine, the artifacts of the requirements specification
can be obtained starting from the artifacts in the requirements
specification. In addition, we plan to define model transformations
that will allow the MAS requirements models generated to be
transformed into MAS analysis and design models, and provide the
infrastructure needed to generate source code from platform
independent models.

The third line of research is to build a graphical editor in order
to support the overall process defined, and help users to define the

Conclusions

102

different models proposed in our approach, using the Eclipse
Graphical Framework [65].

The fourth line of research is to empirically validate our
approach through a series of experiments using game development
experts as subjects. In particular, specifying the requirements of
different game applications, following the model-driven and agent-
based technology as a means to validate and improve our approach.

Finally, the fifth line of research aims to integrate and extend
the RE for MAS approach proposed within a development
framework for Software Product Lines. Software Product Lines (SPL)
is a software development approach that promotes the reuse of assets
in a family of products by identifying and specifying those
characteristics that are common and variable product family.

9.3. Related Publications

During the development of the present master thesis, different
publications were accomplished. The following list gathers these
publications:

 XI Workshop Iberoamericano de Ingeniería de Requisitos y
Ambientes de Software. CIbSE 2008. (full paper published)

Rodriguez, L., Hume, A., Cernuzzi, L., Insfrán, E.: Análisis
Comparativo de Métodos de Elicitación de Requisitos para Sistemas
Basados en Agentes. XI Iberoamerican Workshop on
Requirements Engineering and Software Environments
(CIbSE 2008), 253-266, 11-15 de Febrero, 2008, Recife,
Pernambuco, Brasil, ISBN: 85-7084-134-5 pp. 253-266

This article presented the results of a requirements method
comparison, in particular identifying a common set of MAS
abstractions and some desirable qualities for the elicitation of
requirements. In particular, was considered the approaches
proposed by Agentis, GBRAM and RETO.

This is one of the most important conferences in Latin
America in the area of Software Engineering. The official

Requirements Modeling for Multi-Agent Systems

103

languages are English, Portuguese and Spanish. All articles
are externally peer reviewed. All the articles are of
investigation, and the Scientific Committee is international
composed of professors and researchers from Latin America.
Articles from this conference are indexed in DBLP which gives
wider dissemination.

 9th International Conference on Quality Software. QSIC
2009. (short paper published)

Rodriguez, L., Hume, A., Cernuzzi, L., Insfrán, E.: Improving
the Quality of Agent-Based Systems: Integration of Requirements
Modeling into Gaia. 9th International Conference on Quality
Software (QSIC 2009), 278-283, August 24-25, 2009, Jeju Island,
Korea, IEEE Press. ISBN: 978-0-7695-3828-0. pp. 278-283

This article presented a requirements modeling phase to
extend Gaia methodology, one of the most recognized agent-
oriented methodologies. The proposal includes the adoption
of techniques from goal-oriented and functional-oriented
approaches for the modeling of requirements. It described
how these complementary proposed techniques contribute to
the models provided by Gaia in its analysis and design phase
establishing a clear traceability framework.

QSIC is listed in CORE conference ranking
(www.core.edu.au), as type A congress in 2007. Belongs to the
Quality Software area of research, and is one of the most
important conferences in the area. The language is English. All
the articles are of investigation, and the Scientific Committee
is international. All articles are externally peer reviewed.

 XXXVI Conferencia Latinoamericana de Informática. CLEI
2010. (full paper published)

Rodriguez, L., Blanes, D., Insfran, E., Cernuzzi, L.: Requisitos de
Comportamiento Social para Sistemas Multi-Agente. XXXVI
Conferencia Latinoamericana de Informática (CLEI 2010), 18-

Conclusions

104

22 de octubre, 2010, Asunción, Paraguay, ISBN: 978-99967-612-
0-1

This article discussed and proposed a preliminary approach
for the definition and specification of special social behaviour
features of a MAS (e.g., pro-activity, adaptability,
collaboration, etc.) that should be dealt with from earlier
stages of software development.

This is one of the most important conferences in Latin
America in the area of Software Engineering. The official
languages is English, Portuguese and Spanish. All articles are
externally peer reviewed. All the articles are of investigation,
and the Scientific Committee is international composed of
professors and researchers from Latin America, USA, and
Europe. In the year 2010 had an acceptance rate of 28%.

 Multi-Agent Systems. (Book chapter in press)

Rodriguez, L., Insfran, E., and Cernuzzi, L.: Requirements
Modeling for Multi-Agent Systems. In: Multi-Agent Systems.
ISBN: 978-953-307-568-6, Intech

This book chapter presented the main contribution of this
master thesis: the requirements modeling proposal
emphasizing both the social behavior and the organizational
aspects as key aspects for the development of MAS. Also, to
illustrate the feasibility of the proposal, described the
application of the requirements modeling process to the
development of the strategic board game called Diplomacy.

InTech is an international publisher. The language is English.
All the articles are of research, and the Scientific Committee is
international composed of researchers from Europe, USA and
Asia. All articles are externally peer reviewed.

Requirements Modeling for Multi-Agent Systems

105

 23rd International Conference on Advanced Information
Systems Engineering. CAiSE 2011. (full paper sent)

Rodriguez, L., Insfran, E., and Cernuzzi, L., Ghose, A.: A
Software Requirements Metamodel for Multi-Agent Systems, Sent
to: 23rd International Conference on Advanced Information
Systems Engineering, London, United Kingdom

This paper presents the software requirements metamodel for
MAS based on the requirements modeling for the MAS
approach presented as main proposal of this master thesis.
The metamodel captures the organizational, structural,
functional, and social behavior properties of a MAS.

CAiSE is listed in CORE conference ranking
(www.core.edu.au), as type A congress in 2008. Belongs to the
Software Engineering and Information Systems area of
research, and is one of the most important conferences in the
area. The language is English. All articles are externally peer
reviewed.

Bibliography

[1] Anton, A. (1996). Goal-based requirements analysis. Proceedings of the 2nd
International Conference on Requirements Engineering (ICRE '96), pp.136–
144, ISBN: 0-8186-7252-8, Colorado Springs, April 1996, IEEE Computer
Society, Colorado

[2] Argente, E., Botti, V., & Julián, V. (DCAI 2009). Organizational-Oriented
Methodological Guidelines for Designing Virtual Organizations.
International Symposium on Distributed Computing and Artificial
Intelligence. 2, pp. 154-162. Salamanca, Spain: LNCS Springer

[3] Basu, A., Hayden, M., Morrisett, G., and von Eicken. T. (1997). A Language-
Based Approach to Protocol Construction. In Proc. ACM SIGPLAN
Workshop on Domain Specific Languages

[4] Bauer, B., Muller, J. P., and Odell, J. (2001). Agent UML: A formalism for
specifying multiagent software systems. International Journal of Software
Engineering and Knowledge Engineering, 11(3):207

[5] Bernon, C., Cossentino, M., Gleizes,M. P., Turci, P., Zambonelli, F.(2005). A
study of some multi-agent meta-models. In:Odell, J., Giorgini,P.,Müller,J.
(eds.) AOSE 2004.LNCS, vol. 3382, pp. 62–-67. Springer-Verlag

[6] Beydeda, S., Book, M., & Gruhn, V. (2005). Model-Driven Software
Development. New York, USA: Springer

[7] Blanes, D.; Insfrán, E.; Abrahão, S. (2009) a. Requirements Engineering in
the Development of Multi-Agent Systems: A Systematic Review.
Proceedings of the International Conference on Intelligent Data Engineering
and Automated Learning (IDEAL), pp. 510 – 517, ISBN: 0302-9743, Burgos,
Spain, September 2009, Springer-Verlag, Berlin, Heidelberg

[8] Blanes, D.; Insfrán, E.; Abrahão, S. (2009) b. RE4Gaia: A Requirements
Modeling Approach for the Development of Multi-Agent Systems.
International Conference on Advanced Software Engineering and Its
Applications (ASEA‘09), pp. 245 – 252, ISBN: 978-3-642-10618-7, Jeju Island,
Korea, December 2009, Springer, Berlin

[9] Boehm, B.W. (1979). Guidelines for verifying and validating software
requirements and design specifications, EURO IFIP 79, North Holland 1979,
S. 711-719

[10] Brackett, John W. (1990). Software Requirements. SEI Curriculum Module
SEI-CM-19-1.2. Boston University

[11] Brazier, F.M.T., Dunin Keplicz, B.M., Jennings, N.R. and Treur, J. (1997).
DESIRE: modelling multi-agent systems in a compositional formal
framework, In M. Huhns, M. Singh, (Eds.), International Journal of
Cooperative Information Systems, special issue on Formal Methods in
Cooperative Information Systems: Multi-Agent Systems

[12] Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gómez-Sanz, J., Pavón,
J., Kerney, P., Stark, J., and Massonet, P. (2001). Agent oriented analysis
using MESSAGE/UML. In Wooldridge, M., Weiß, G., and Cianciarini, P.,
editors, Agent-Oriented Software Engineering II: 2nd International
Workshop, LNCS 2222, pages 119–135. Springer Verlag

Requirements Modeling for Multi-Agent Systems

107

[13] Cernuzzi, L.; Cossentino, M.; Zambonelli, F. (2005). Process models for
agent-based development. Engineering Applications of Artificial
Intelligence, 18, 2, (March 2005) page numbers (205 – 222), ISSN: 0952-1976

[14] Cheng, B., & Atlee, J. (2007). Research directions in Requirements
Engineering. Future of Software Engineering,. Volume , Issue , Page(s):285 –
303

[15] Consel, C., Hamdi, H., Réveillère, L., Singaravelu, L., Yu, H., and Pu. C.
(2002). Spidle: A DSL approach to specifying streaming applications.
Technical Report RR1282-02, LaBRI, Bordeaux, France

[16] Cossentino, M. (2005). From requirements to code with the PASSI
methodology.In: Henderson-Sellers, B., Giorgini, P. (Eds.) Agent-Oriented
Methodologies, Idea Group Publishing, 79--106

[17] Davis, A. (1996). Private communication
[18] David A. Watt. (1990). Programming language concepts and paradigms.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990. ISBN 0-13-728874-3
[19] DeLoach, S. (2001). Analysis and Design using MaSE and agenTool. In Proc.

of the 12th Midwest Artificial Intelligence and Cognitive Science Conferece
(MAICS), Miami University. Miami University Press.

[20] DeLoach, S. A., Wood, M. F., & Sparkman, C. H. (2001). Multiagent Systems
Engineering. International Journal of Software Engineering and Knowledge
Engineering 11(3) , 231-258

[21] Devanbu, P., and Poulin J., editors. Modular Domain Specific Languages
and Tools, 1998. IEEE Computer Society Press.

[22] ESA (2010). Entertainment Software Association, Industry Facts. Last
accessed on September 14, 2010, en
http://www.theesa.com/facts/index.asp

[23] Fabregues, A.; Navarro D.; Serrano A.; Sierra C. (2010). dipGame: a Testbed
for Multiagent Systems, Proceeding of the ninth International Conference of
Autonomous Agents and Multi-Agent Systems, Toronto, Canada, May 2010

[24] Falkenberg, E.D.; Hesse, W.; Lindgreen, P.; Nilsson, B. E.; Oei, J.L.H.;
Rolland, C.; Stamper, R. K.; Van Assche, F.J.M.; Verrijn-Stuart, A. A.; Voss.,
K. (1998). FRISCO - A framework of information system concepts — The
FRISCO Report. Task Group FRISCO, ISBN: 3-901882-01-4

[25] Ferber, J., Gutknecht, O., & Michel, F. (2004). From Agents to Organizations:
An Organizational View of Multi-Agent Systems. In P. Giorgini, J. Müller,
J.Odell (Eds.), Agent-Oriented Software Engineering (AOSE) IV (pp.214-
230). LNCS 2935, Springer

[26] Franklin,S. and A. Gasser. (1997). Is it an agent, or just a program?: A
taxonomy for autonomous agents. In Muller, Wooldridge, and Jennings,
eds. Intelligent Agents III. Agent Theories, Architectures, and Languages.
Springer Verlag, 1997. p.21-35

[27] Fuggetta, A. (2000). Software process: a roadmap. International Conference
on on Software Engineering, Future of Software Engineering Track (pp. 25-
34). Limerick, Ireland: ACM

[28] Gerber, A., and Raymond, K. MOF to EMF: there and back again. In eclipse
‘03: Proceedings of the 2003 OOPSLA workshop on eclipse technology
eXchange, pages 60–64, New York, NY, USA, 2003. ACM Press.

http://www.theesa.com/facts/index.asp
http://www.iiia.csic.es/es/individual/angela-fabregues
http://www.iiia.csic.es/es/node/3719
http://www.iiia.csic.es/es/node/3720
http://www.iiia.csic.es/es/individual/carles-sierra
http://www.iiia.csic.es/es/publications/dipgame-a-testbed-multiagent-systems
http://www.iiia.csic.es/es/publications/dipgame-a-testbed-multiagent-systems

Bibliography

108

[29] Giorgini, P.; Kolp, M.; Mylopoulos, J.; Castro, J. (2005). Tropos: A
Requirements-Driven Methodology for Agent-Oriented Software. In: Agent-
Oriented Methodologies, Brian Henderson-Sellers; Paolo Giorgini, page
numbers (20-45), Idea Group , ISBN: 1591405815, USA

[30] Giret, A., Botti, V. J., & Valero, S. (2005). MAS Methodology for HMS.
Holonic and Multi-Agent Systems for Manufacturing, Second International
Conference on Industrial Applications, of Holonic and Multi-Agent
Systems, HoloMAS 2005 (pp. 39-49). Copenhagen, Denmark: Lecture Notes
in Computer Science

[31] Gómez-Sanz, J.; Pavón, J. (2003). Agent Oriented Software Engineering with
INGENIAS, Proceedings of the 3rd Central and Eastern Europe Conference
on Multiagent Systems (CEEMAS ‗03), pp. 394 – 403, ISBN: 3-540-40450-3,
Prague, june 2003, Springer-Verlag, Prague

[32] Hector, A.; Lakshmi Narasimhan, V. (2005). A New Classification Scheme
for Software Agents. Proceedings of the Third International Conference on
Information Technology and Applications (ICITA‘05), pp. 191 – 196, ISBN:
0-7695-2316-1, Sydney, Australia, July 2005, IEEE Computer Society,
Washington, DC

[33] Huzam S. F. Al-Subaie; Maibaum Tom S. E. (2006). Evaluating the
Effectiveness of a Goal-Oriented Requirements Engineering Method.
Proceedings of the Fourth International Workshop on Comparative
Evaluation in Requirements Engineering, pp. 8 - 19, ISBN: 0-7695-2712-4,
Minneapolis/St. Paul, Minnesota, September 2006, IEEE Computer
Society Washington, DC

[34] IEEE. IEEE Standard Glossary of Software Engineering Terminology. New
York: IEEE. ANSI/IEEE Std 729-1983

[35] Jacobson, I., Rumbaugh, J., and Booch, G. (1999). The Unified Software
Development Process. Addison-Wesley

[36] Jean Bézivin. (2005). On the unification power of models. Software and
Systems Modeling, 4(2):171–188

[37] Jean Bézivin and Olivier Gerbé. (2001). Towards a Precise Definition of the
OMG/MDA Framework. In ASE ‘01: Proceedings of the 16th IEEE
international conference on Automated software engineering, page 273,
Washington, DC, USA, 2001. IEEE Computer Society

[38] Jean M. Favre. (2004). Towards a Basic Theory to Model Model Driven
Engineering. Workshop on Software Model Engineering

[39] Jennings, N. R. (2001). An agent-based approach for building complex
software systems. Commun. ACM, 44, 4 (Apr.), 35–41

[40] Jitnah, D., Han, J., Steele, P. (1995). Software Requirements Engineering: An
Overview, Technical Report 95-04, Peninsula School of Computing and
Information Technology, Monash University, Melbourne, Australia

[41] Jouault, F., and Bézivin, J. (2006). KM3: a DSL for Metamodel Specification.
Pages 171–185

[42] Kleppe A., Warmer, J., and Bast, W. (2003). MDA Explained. The Model
Driven Architecture: Practice and Promise. Addison-Wesley

[43] Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W., and

Requirements Modeling for Multi-Agent Systems

109

Schwinger, W. (2006). Towards a semantic infrastructure supporting model-
based tool integration. In GaMMa ‘06: Proceedings of the 2006 international
workshop on
Global integrated model management, pages 43–46, New York, NY, USA

[44] Leite, J.C.S.P. (1987). A survey on requirements analysis. Technical Report
RTP-071, Department of Information and Computer Science, University of
California at Irvine, Irvine, CA 92717

[45] Lind, J. (2001). Iterative Software Engineering for Multiagent Systems, the
MASSIVE Method

[46] Maiden, N. (1998). CREWS-SAVRE: Scenarios for Acquiring and Validating
Requirements. Automated Software Engineering, 5, 4, (October 1998) page
numbers (419 - 446), ISSN: 0928-8910

[47] Mellor,S. J., Scott,K.,Uhl,A., Weise, D. (2004). MDA Distilled, Addison-
Wesley

[48] Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, ISSN 0360-
0300. URL http://portal.acm.org/citation.cfm?id=1118890.1118892

[49] Moraitis, P., Spanoudakis, N. I. (2006). The Gaia2Jade process for multi-
agent systems development. J. Appl. Artif. Intell. 20, 251--273

[50] Muller Pierre-Alain. (2005). Weaving Executability into Object-Oriented
Meta-Languages. In MODELS/UML‘2005, pages 264–278. Springer

[51] Nuseibeh,B.A. and Easterbrook,S.M. (2000). Requirements Engineering: A
Roadmap. In A. C.W. Finkelstein (ed) ―The Future of Software
Engineering‖. (Companion volume to the Proc. of the 22nd Int. Conf. on
Software Engineering, ICSE00) IEEE Computer Society Press, pp. 35-46.

[52] Odell, J.; Parunak, H. V. D.; Bauer, B. (2000). Extending UML for agents.
Proceeding of the 2nd Int. Workshop on Agent-Oriented Information
Systems, pp. 3 – 17, Berlin, iCue Publishing

[53] O'Hare, G. M. P. and Jennings, N. R. (1996), Foundations of distributed
artificial intelligence, John Wiley & Sons, ISBN 0-471-49691-X

[54] Object Management Group. (2009, 11 1). Retrieved 11 1, 2010, from

http://www.omg.org/

[55] Object Management Group. (2004). Meta Object Facility (MOF) 2.0 Core

Specification. Object Management Group, Inc.

[56] OMG (Object Management Group). Software Process Engineering Meta-
Model (SPEM), version 2.0. Last accessed on January, 2011, in
http://www.omg.org/spec/SPEM/2.0/PDF/

[57] Pavón, J., Gómez-Sanz, J. J., Fuentes, R. (2006). Model driven development
of multi-agent systems. In Rensink, A., Warmer, J. (Eds.), ECMDA-FA 2006.
LNCS, vol. 4066, pp. 284--298. Springer

[58] Penserini, L., Perini, A., Susi, A. and Mylopoulos, J. (2005). From
Stakeholder Intentions to Agent Capabilities. Technical report, ITC-irst,
Trento, Italy

[59] Picard, G.,Gleizes, M. P. (2004). The ADELFE methodology. In:
Methodologies and Software Engineering for Agent Systems, The Agent-
oriented Software Engineering Handbook. Kluwer Academic Publishers

http://citeseer.nj.nec.com/odell00extending.html
http://www.omg.org/

Bibliography

110

[60] Rodriguez L.; Hume, A.; Cernuzzi, L.; Insfrán, E. (2009). Improving the
Quality of Agent-Based Systems: Integration of Requirements Modeling into
Gaia. Proceedings of the Ninth International Conference on Quality
Software (QSIC ‗09), pp. 278 – 283, ISBN: 978-0-7695-3828-0, Jeju, Korea,
August 2009, IEEE Computer Society Washington, DC

[61] Russell,S.J. (1997). Rationality and intelligence. Artificial Intelligence, Vol.
94, 1997. p.57-77

[62] Shoham,Y. (1993). Agent-oriented programming. Artificial Intelligence, Vol.
60, 1993.p.51-92

[63] Sommerville, I. (2002). Ingeniería de Software. Pearson Educación
[64] Southwell, K., J. James, et al. (1987). Requirements Definition and Design.

The STARTS Guide, Second Edition, Vol. 1, National Computing Center.
[65] The Eclipse Foundation. Last accessed on September 2010, from

http://www.eclipse.org
[66] Thibault, S., Marlet, R., and Consel, C. (1999). Domain-Specific Languages:

From Design to Implementation Application to Video Device Drivers
Generation. Software Engineering, 25(3):363–377

[67] van Deursen, A., and Klint, P. (1997). Little languages: little maintenance? In
62, page 17. Centrum voorWiskunde en Informatica (CWI), ISSN 1386-369X,
30

[68] Van Lamsweerde, A.; Darimont, R.; Letier, E. (1998). Managing conflicts in
goal-driven requirements engineering. IEEE Transactions on Software
Engineering, 24, 11, (November 1998) page numbers (908 – 926), ISSN: 0098-
5589

[69] Wizards (2010). The rules of Diplomacy. The game of international intrigue.
Last accessed on September 14, 2010
http://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf

[70] Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and
practice. Knowl. Eng. Rev. 10, 2, 115–152

[71] Wooldridge M. (2002), An Introduction to Multi-Agent Systems, John Wiley
& Sons

[72] Yu, E. (1997). Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering. Proceedings of the 3rd IEEE Int. Symp. on
Requirements Engineering (RE ‗97), pp. 226 – 235, ISBN: 0-8186-7740-6,
Washington D.C., USA, January 1997

[73] Zambonelli, F.; Jennings, N.; Wooldridge, M. (2003). Developing
Multiagent Systems: The Gaia Methodology. ACM Transactions on
Software Engineering and Methodology (TOSEM), 12, 3, (July 2003) page
numbers (317 – 370), ISSN: 1049-331X

[74] Zave, P. (1997) Classification of Research Efforts in Requirements
Engineering. ACM Computing Surveys, 29(4): 315-32

http://www.eclipse.org/
http://www.wizards.com/avalonhill/rules/diplomacy_rulebook.pdf

