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Chapter 1

Introduction

1.1 Maritime Container Terminals

During the last decades, maritime transportation (liner shippings) is being increas-
ingly used to carry products to different countries by companies aroundthe world.
Container terminals generally serve as a transshipment on ships and land vehicles
(trains or trucks) for these products. These products are stored into containers in
order to facilitate their management (loading, unloading or transhipment).

Containers were standardized by the International Organization for Standard-
ization (ISO) based upon the US Department of Defense standards between 1968
and 1970, ensuring interchangeability between different modes of transportation
worldwide. The standard sizes and fitting and reinforcement norms that exist now
evolved out of a series of compromises among international shipping companies,
European railroads, U.S. railroads, and U.S. trucking companies.

Four important ISO recommendations standardised containerisation globally
[55]:

• R-668in January 1968 defined the terminology, dimensions and ratings;

• R-790in July 1968 defined the identification markings;

• R-1191in January 1970 made recommendations about corner fittings;

• R-1897in October 1970 set out the minimum internal dimensions of general-
purpose freight containers.

The termtwenty-feet-equivalent-unit(TEU) is used to refer to one container
with a length of twenty feet. Thereby, a container of 40 feet is expressedby 2
TEU. This measure is also used to identify the capacity of the vessels, e.g. the
vesselEMMA MÆRSK(built on 2006) is one of the largest vessels which can
carry 14770 TEU1.

1Updated on November 2010,
http://www.maerskline.com/link/?page=brochure&path=/our_services/vessels
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Henesey shows in [24] how this transshipment market is growing fast. Figure
1.1 indicates the growth in number of containers handled for Europe and Mediter-
ranean. The total transshipment has increased more than twofold over 1995-2004
and by 58 per cent over 2000-2004 to 22.5 million TEU.
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Figure 1.1: N. Europe/S. Europe/Mediterranean Container Throughput (million
TEU).

According to review done by Drewry Consultants [10], Global economic trends
means that container throughput at the world’s port fell for the firs time ever (Fig-
ure 1.2), from 524 million TEU in 2008 to 473 million TEU in 2009 (around 10%).
However, their forecast is that container throughput will increase globally by an av-
erage of 7.2% a year between 2009 and 2015, as the economic recoverytakes hold.
During this same six-year period, however, those container terminal expansion
projects that are considered to be confirmed will increase capacity by an annual
average of just 2.9%. The much slower rate of capacity growth relative to through-
put will inevitably increase terminal utilisation rates. In 2009 Drewry estimates
that around 62.9% of container terminal capacity was being utilised worldwide.

Figure 1.2: Public/private control of container terminals (million TEU).

Between 2009 and 2015, Drewry’s forecasting indicates that global container
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throughput will rise by a total of 246 million teu, from 473 million to 718 million
teu, an increase of just under 52%. The capacity of the world’s container terminals
is forecast to grow by 143 million teu during the same time frame, a rise of just
19%.

200

300

400

500

600

700

800

900

1000

Throghput

Capacity

0

100

200

300

400

500

600

700

800

900

1000

2009 2010 2011 2012 2013 2014 2015

Throghput

Capacity

(a) Throughput and Capacity (million TEU)

80

85

60

65

70

75

80

85

50

55

60

65

70

75

80

85

2009 2010 2011 2012 2013 2014 2015

50

55

60

65

70

75

80

85

2009 2010 2011 2012 2013 2014 2015

50

55

60

65

70

75

80

85

2009 2010 2011 2012 2013 2014 2015

50

55

60

65

70

75

80

85

2009 2010 2011 2012 2013 2014 2015

(b) Utilization (%)

Figure 1.3: Forecast supply and demand in the global container port market, 2009-
2015 (source [10]).

In November 2009, IHS Global Insight2, a recognized global leader in eco-
nomic and financial analysis and forecasting, completed an evaluation of theeco-
nomic contribution of the liner shipping industry using 2007 as a base year. Among
their conclusions, it can be remarked that:

• Cargo transported by the liner shipping industry represents about one-third
of the value of total global trade, equating to more than US$ 4.6 trillion worth
of goods;

• Liner shipping companies deployed more than 400 services providing reg-
ularly scheduled service, usually weekly, connecting all countries of the
world.

1.2 Optimization Problems in Container Terminals

Within a Container Terminal there are several handling activities dependent on
various related subsystems 1.4. The four main subsystems are [25]:

1. ship-to-shoremovements to unload the containers from ship to berth (or in
reverse order, to load them onto the ship);

2. transferbi-directional movement of containers from berth to stack (storage
area), from one stack to another stack and from the hinterland to a stack;

3. storagestack or area where containers are placed to wait until their next ship,
train or truck; and

2http://www.worldshipping.org/benefits-of-liner-shipping/global-economic-engine
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4. delivery/receiptmovement of containers from stack to the hinterland trans-
port, or vice versa.

Ship-to-Shore Transfer Storage
Delivery 

Receipt

Figure 1.4: Process of unloading and loading a vessel.

Depending on the Container Terminal, these activities will be focused on either
transshipment, import or export containers. They are briefly describedin [41].
With transshipment, containers are unloaded from a ship onto the storage yard
where they are stored for an amount of time. Then, they are loaded on a ship
again to continue on their way to their destination. With export, the container is
transported from the hinterland to the terminal, where it is stored for an amount
of time before being brought to the quay side where it is loaded onto a ship. For
import, this process is in the reversed order.

In Figure 1.4, these activities are illustrated following the steps one container
does when it is at one of these terminals. The whole process is described in[69].
Once a vessel arrives at the port, a berth has to be assigned to it as wellas a
number of Quay Cranes (QCs). The import containers have to be taken off from
that vessel employing these assigned QCs. They take the containers off the ship’s
hold or off the deck. Regarding these QCs, they must be manned since automated
vehicles do not have enough precission, for instance to position the spreader to pick
up one container. QCs leave these containers on vehicles, trailers or automated
guided vehicles (AGV) to take them to the stack (storage area). These vehicles are
responsible for internal transport within a Container Terminal (transfersubsystem).

This stack allows to store the containers during a certain period. It is composed
by a set of block where the containers are distributed in bays, rows and tiers (Figure
1.5). These lanes are managed by transfer cranes, straddle carriers(SCs) or rail-
mounted container gantry cranes (RMGs). These equipments maintain different
stacking capacity (see Figure 1.6 [32]). A description and a brief comparision of
the mentioned handling equipment is done in [25, 66].

Once the containers must be retrieved from the stack, the same vehicles or
cranes are used to transfer them to other transportation modes. Import containers

4



Figure 1.5: Schematic overview of one container block.

Figure 1.6: Different types of handling equipment and their stacking capacity.

will be transfered to barges, trucks or trains, and transshipment containers onto
deep sea vessels.

In case of export containers, this process is executed in reverse order. Thereby,
the containers from barges, trucks or trains are loaded onto the vessels.

Each of the activities described above results in different subprocesses (Fig-
ure 1.7). Shaded bubbles indicate the different decission problems whichmust be
faced by the Container Terminals. For instance, the Berthing Allocation problem to
decide where and when locate a vessel at the quay or the Routing and Scheduling
Problem to manage all the automated guided vehicles (AGVs) within a Container
Terminal. In [66] (an update of [67]) provide a comprehensive survey of the state
of the art of operations at a container terminal as well as the methods for their op-
timization. More information regarding transshipment operations can be seenin
[45, 69]. They distinguish decisions on container handling according to the time
horizon involved. A time horizon in decisions for the strategic, tactical, and opera-
tional level covers from one to several years, from a day to months, andonly a day,
respectively.

5



berth allocation problem

Crane Scheduling Problem
Block Stowage Problem

Routing and scheduling problem

Stack Configuration Problem 

Optimal space allocation

assigning import containers to 

storage locations

Determining storage locations 

for export containers

rehandling of containers

route straddle carriers 

through the stack

Scheduling the order in which 

containers are retrieved

Stowage Planning

Figure 1.7: Optimization Problems in Container Terminals.

1.3 Motivation

Competition between different Container Terminals around the world makes nec-
essary to handle more and more containers in short time and at low cost. Therefore,
Container Terminals are forcen to enlarge handling capacities and strive toachieve
gains in productivity. This purpose can be meet by:

1. Designing new terminals with advanced layouts [37], e.g. automatization in
particular regions with high labor cots.

2. The replacement of the older equipment with a more efficient one.

3. With the existing infrastructure and equipment, achieving higher profits by
means of powerful information technologiy and logistics control software
systems including optimization methods.

Another important issue for the success at any container terminal is to fore-
cast container throughput accurately [6]. With this data, they could develop better
operational strategies and investment plans.

Focusing on using both infrastructure and equipment efficiently, Operations
Research (OR) has been usually employed, it means, techniques like linearpro-
gramming or mixer-integer programming were employed to optimize the decission
problems. However, during the last years, artificial intelligence (AI) techniques
are proved to be efficient to manage these problems [19]. These techniques are
based on planning (e.g., metricFF [29] or LPG-TD [15] planners using thestan-
dard encoding languagePDDL[16]), scheduling [2, 49], metaheuristics (simulated
annealing [39], GRASP [13] or tabu search [18]), neural networks[4], and so on.

Generating efficient solutions for all these problems is necessary in order to
avoid accidents like the ones in Figure 1.8. In this accident, the containers were
damaged due to the fact that terminal operators did not consider the difference be-
tween the heights of the different rows. Deadlocks or idle times are other problems

6



Figure 1.8: Unbalanced yard-bay at one vessel.

that arise due to poor coordination between the handling equipment. For instance,
Figure 1.9 shows several trucks waiting for containers to be unloaded bythe Quay
Cranes.

Figure 1.9: Unproductive times loading/unloading vessels.

The overall goal collaboration between our group at the Technical University
of Valencia (UPV) and the maritime container terminal MSC (Mediterranean Ship-
ping Company S.A) is to offer assistance to help in planning and scheduling tasks
such as the allocation of spaces to outbound containers, to identify bottlenecks,
to determine the consequences of changes, to provide support in the resolution of
incidents, to provide alternative planning of vessel arrivals, etc.

Given all the decission problem a Container Terminal must face, in this work
we will focus our attention on problems related to the storage of the containersinto
the yard (Housekeeping and Container Stacking problem) in Chapter 2 andthe
arrival of the vessels (Berthing Allocation and Quay Crane Assignment Problems)
in Chapter 3. Next, in Chapter 4 we integrate of these two problems. The main

7



conclusions of this work as well as some guidelines for future work are presented
in Chapter 5. In this chapter, the publications that support this work are presented
as well.
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Chapter 2

Container Stacking Problem

2.1 Introduction

The container traffic has increased over the last decades. The liner shippings are
building larger vessels in order to be able to handle the traffic of millions of con-
tainers (TEU) around the world. The operating costs for these vessels are high
and it is very important to shorten their turn-around or berthing time in Container
Terminals.

Reducing the berthing time implies that the other activities in Container Ter-
minals work efficiently. One of these activities where the time might be reduced is
the loading and unloading of containers from/into containers yards.

In Container Terminals, the loading operation for export containers is pre-
planned. For load planning, a container-ship agent usually transfers aload profile
(an outline of a load plan) to a terminal operating company several days before a
ship’s arrival. The load profile specifies only the container group and not individ-
ual containers. In order to have an efficient load sequence, storagelayout of export
containers must have a good configuration.

Loading and offloading containers on the stacks is performed by cranes fol-
lowing a ’last-in, first-out’ (LIFO) storage. In order to access a container which
is not at the top of its pile, those above it must be relocated. It occurs sinceother
ships have been unloaded later or containers have been stacked in the wrong order
due to lack of accurate information. This reduces the productivity of the cranes.
Maximizing the efficiency of this process leads to several requirements:

1. Each incoming container should be allocated a place in the stack which
should be free and supported at the time of arrival.

2. Each outgoing container should be easily accessible, and preferablyclose to
its unloading position, at the time of its departure.

In addition, there exist a set of hard/soft constraints regarding the container loca-
tions, for example, small differences in height of adjacent yard-bays,dangerous

9



containers must be allocated separately by maintaining a minimum distance and so
on.

Nowadays, the allocation of positions to containers is usually done manually.
Therefore, using appropriate Artificial Intelligent techniques is possibleto achieve
significant improvements of lead times, storage utilization and throughput.

Within Container Terminals, the design of the layout of container yards is an
influencial factor in productivity [37]. Figure 2.1 shows a common container yard.
Usually, a yard consists of several blocks, and each block consists of20-30 yard-
bays [38]. Each yard-bay contains several (usually 6) rows. Eachrow has a maxi-
mum allowed tier (usually tier 4 or tier 5 for full containers). Figure 2.1 also shows
the gantry cranes used to move a container within a stacking area or to another
location on the terminal. For safety reasons, it is usually prohibited to move the
gantry crane while carrying a container [43], therefore these movementsonly take
place in the same yard-bay.

Figure 2.1: A container yard with gantry cranes (MSC Valencia Port).

The main focus of this chapter is to present a planning system which opti-
mally reallocates outgoing containers for the final storage layout from which a
load planner can construct an efficient load sequence list. In this way, the objective
is therefore to plan the movement of the cranes so as to minimize the number of
unnecessary movements (reshuffles) of containers in a complete yard. To this end,
the yard is decomposed in yard-bays, so that the problem is distributed into aset of
subproblems. Thus, each yard-bay generates a subproblem, but containers of dif-
ferent yard-bays must satisfy a set of constraints among them, so that subproblems
will be sequentially solved taken into account the set of constraints with previously
solved subproblems.

10



2.2 Literature Review

Given the Container Stacking Problem, the first issue to tackle is the own design-
ing of the container layout of the Container Terminal. Thus, there are some stud-
ies where some methods are proposed methods for designing layouts of container
yards [37]. For evaluating this design, parameters as orientation of the blocks to
the quay (either parallel or perpendicular) and the number of lanes are taken into
consideration.

The Container Stacking Problem can be managed in two different ways accord-
ing to when it should be done the optimization:

1. minimizing the number of relocations during the pickup (or loading) opera-
tion, and

2. getting a desirable layout for the bay before the pickup operation is done
in order to minimize (or eliminate) the number of relocations during this
process (remarshalling).

Dekker et al. [12] explore different stacking policies for containers inauto-
mated terminals during the loading process by means of simulation. They distin-
guish between two strategies. The former one is based on categories (e.g.,having
the same destination, weight. . . ). Two containers of the same category can be in-
terchanged, and can thus be stacked on top of each other without the risk alower
container in a stack is needed before the ones on top of it have been removed. The
latter strategy focuses on the departure times of the containers: a containercan
only be stacked on top of containers that all have a latter (planned) departure time
than the departure time of the container to be stacked.

In [34], authors propose a methodology to estimate the expected number of
rehandles to pick up an arbitrary container and the total number of rehandles to
pick up all the containers in a bay for a given initial stacking configuration.In a
similar way, two methods to minimize the number of relocations during the pickup
operation are compared in [36], a branch-and-bound algorithm against a heuristic
rule based on an estimator.

Kim and Bae [35] also propose a methodology to convert the current layout
into the desirable layout by moving the fewest possible number of containers(re-
marshalling) and in the shortest possible travel distance. Although it takes a con-
siderable time since they use mathematical programming techniques. Cooperative
coevolutionary algorithms have been developed in [47] to obtain a plan for remar-
shalling in automated container terminals.

Within these automated container terminals, a solution based on simulated an-
nealing [8] rearranges all the containers to be loaded onto the vessels to ensure no
reshuffles when pickup operation is performed. This paper uses two non-crossing
stacking cranes to build a solution for the sequence of movements.

Following the same trend, Lee and Chao [42] consider only one bay in their
model by applying a neighborhood search heuristic. This heuristic is composed by
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different subroutines, being one of them a binary integer programming in order to
reduce, when it is possible, the needed movements.

Other techniques have been developed by reinforcement learning. Specifically,
Q-Learning has been employed to achieve a goal layout given by the shipping order
[27, 26].

This chapter is focused on the remarshalling process [33]. We presenta domain-
dependent planner to solve the remarshalling problem. In this chapter a newheuris-
tic with a set of optimization criteria is introduced. This heuristic achieves effi-
ciency and takes into account constraints that should be considered in real-world
problems.

The reminder of this chapter is organized as follows: the next section presents
the Container Stacking Problem and how is modeled. Section 2.4 describes the
developed planner. Section 2.5 and 2.6 introduce the different optimization criteria
added to the planner to be adapted to the real-world requirements. The nextsection
presents the necessary modifications to the planner in order to optimally manage
the container blocks. An analytic formula is given in Section 2.8 to estimate the
number of reshuffles of a container block. Finally, the last sections showthe results
as well as conclusions.

2.3 Problem description

The Container Stacking Problem can be viewed as a modification of theBlocks
World planning domain [70], which is a well-known domain in the planning com-
munity. This domain consists of a finite number of blocks stacked into towers on a
table large enough to hold them all. TheBlocks Worldplanning problem is to turn
an initial state of the blocks into a goal state, by moving one block at a time from
the top of a tower onto another tower (or on a table). The optimalBlocks World
planning problem is to do so in a minimal number of moves.

Blocks Worldproblem is closed to the Container Stacking Problem, but there
are some important differences:

• The number of towers is limited to 6 because a yard-bay contains usually 6
rows.

• The height of a tower is also limited to 4 or 5 tiers depending on the em-
ployed cranes.

• There exist a set of constraints that involve different rows such as balanced
adjacent rows, dangerous containers located in different rows, etc.

• The main difference is in the problem goal specification. In theBlocks World
domain the goal is to get the blocks arranged in a certain layout, specifying
the final position of each block. In the container stacking problem the goal
state is not defined as accurately, so many different layouts can be a solution
for a problem. The goal is that the most immediate containers to load are in
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the top of the towers, without indicating which containers must be in each
tower.

We can model our problem by using the standard encoding language for classi-
cal planning tasks calledPDDL (Planning Domain Definition Language) [16]. The
purpose is to express the physical properties of the domain under consideration and
it can be graphically represented by means of tools as [23]. A classical Artificial
Intelligence planning problem can be defined by a tuple〈A, I,G〉, whereA is a set
of actions with preconditions and effects,I is the set of propositions in the initial
state, andG is a set of propositions that hold true in any goal state. A solution plan
to a problem in this form is a sequence of actions chosen fromA that when applied
transform the initial stateI into a state of whichG is a subset.

Following thePDDL standard, a planning task is defined by means of two text
files. Thedomain file, which contains the common features for problems of this
domain. Theproblem file describes the particular characteristics of each problem.
These two files will be described in the following subsections.

2.3.1 Domain specification

In this file, we will specify theobjectswhich may appear in the domain as well as
the relations among them (propositions). Moreover, in order to make changes to
the world state,actionsmust be defined.

• Object types: containersandrows, where the rows represent the areas in a
yard-bay in which a tower or stack of containers can be built.

• Types of propositions:

– Predicate for indicating that the container?x is on?y, which can be
another container or, directly, the floor of a row (stack).

on ?x - container ?y - (either row container)

– Predicate for indicating that the container?x is in the tower built on
the row?r.

at ?x - container ?r - row

– Predicate for stating that?x, which can be a row or a container, is clear,
if there are no containers stacked on it.

clear ?x - (either row container)

– Predicate for indicating that the crane used to move the containers is
not holding any container.

crane-empty

– Predicate for stating that te crane is holding the container?x.

holding ?x - container

13



– Predicates used to describe the problem goal. The first one specifies
the most immediate containers to load, which must be located on the
top of the towers to facilitate the ship loading operation. The second
one becomes true when this goal is achieved for the given container.
goal-container ?x - container and
ready ?x - container

– Numerical predicates. The first one stores the number of containers
stacked on a given row and the second one counts the number of con-
tainer movements carried out in the plan.
height ?s - row and
num-moves

• Actions:

– The crane picks the container?x which is in the floor of row?r.
pick (?x - container ?r - row)

– The crane puts the container?x, which is holding, in the floor of row
?r.
put (?x - container ?r - row)

– The crane unstacks the container?x, which is in row?r, from the
container?y.
unstack (?x - container ?y - container ?r - row)

– The crane stacks the container?x, which is currently holding, on con-
tainer?y in the row?r.
stack (?x - container ?y - container ?r - row)

– Finally, we have defined two additional actions that allow to check
whether a given (goal) container is ready, that is, it is in a valid po-
sition. When a container is clear:
fict-check1 (?x - container)

The container is under another (goal) container which is in a valid po-
sition.
fict-check2 (?x - container ?y - container)

As an example ofPDDL format, we show in Figure 2.2 the formalization of
the stack operator. Preconditions describe the conditions that must hold to apply
the action: crane must be holding container?x, container?y must be clear and at
row ?r, and the number of containers in that row must be less than 4. With this
constraint we limit the height of the piles. The effects describe the changesin the
world after the execution of the action: container?x becomes clear and stacked on
?y at row?r, and the crane is not holding any container. Container?y becomes
not clear and the number of movements and the containers in?r is increased in
one unit.
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(:action stack
:parameters (?x - container ?y - container ?r - row)
:precondition (and

(holding ?x) (clear ?y)
(at ?y ?r) (< (height ?r) 4))

:effect (and
(clear ?x) (on ?x ?y)
(at ?x ?r) (crane-empty)
(not (holding ?x))
(not (ready ?y))
(not (clear ?y))
(increase (num-moves) 1)
(increase (height ?r) 1)))

Figure 2.2: Formalization of thestackoperator inPDDL.

This domain specification is characterized by not prioritizing any container.
However, the domain can be changed to take into account different container groups
depending on their departure times [64]. In Figure 2.3, the different container
groups are identified by means of different colors: red, light gray, dark gray and
black, respectively. The red ones are the first ones to be loaded into thenext vessel
and, as it can be observed in the final layout in the figure, they are located on top
of the stacks to facilitate their loading.

Figure 2.3: Initial state example (left), and final layout achieved (right).

2.3.2 Problem specification

Once the problem domain has been defined, we can define problem instances.
These files describe the particular characteristics of each problem:

• Objects: the rows available in the yard-bay (usually 6) and the containers
stored in them.

• Initial state: the initial layout of the containers in the yard.

• The goal specification: the selected containers to be allocated at the top of
the stacks or under other selected containers.
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• The metric function: the function to optimize. In our case, we want to mini-
mize the number of relocation movements (reshuffles).

Figure 2.4 shows a simple example of a problem instance in PDDL. This prob-
lem describes a scenario with three containers (X1, X2 and X3) in the yard-bay
and the crane is not holding any of them. X2 is an export container which must be
relocated in order to be easily accessible at loading time of the next vessel.

(define (problem p1) (:domain CStackP)

;;Domain objects

(:objects  X1 X2 X3 - container S1 S2 S3 S4 S5 S6 - slot )

;;Initial state

(:init 

(clear X1)(clear X3)(clear S1)(clear S4)(clear S5)(clear S6)

(on X2 S2)(on X1 X2)(on X3 S3)(at X1 S2)(at X2 S2)(at X3 S3)

(= (height S1) 0)(= (height S2) 2)(= (height S3) 1)

(= (height S4) 0)(= (height S5) 0)(= (height S6) 0)

(= (num-moves) 0)(handempty)

(goal-container X2)

) 

;;Goal state

(:goal (and (handempty) (ready X2)) )

;;function to optimize

(:metric minimize (num-moves)) 

)

X2

X1

X3

S1 S2 S3 S4 S5 S6

Figure 2.4: Example of problem instance in Container Stacking domain.

Since the Container Stacking Problem can be formalized with these two files,
we can use a general domain independent planner to solve our problemasasMetric
FF [29]. The plan, which is returned by the planner, is a totally ordered sequence
of actions or movements which must be carried out by the crane to achieve the
objective. Figure 2.5 shows an example of the obtained plan for a given problem.
The performance of this general planner will be analyzed in Section 2.9, which
will be compared with the domain-oriented planner that will be presented in next
sections.

Figure 2.5: The obtained plan solution to be carried out by the transfer crane.
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2.4 A Domain-Dependent Heuristically Guided Planner

Metric FF planner might obtain plans, but it is very inefficient. Therefore, we
propose a domain-dependent planner in order to provide more efficiency. It means,
at least reducing the number of crane operations required to achieve a desirable
layout.

The proposed planner is built on the basis of a local search domain-independent
planner calledSimplanner[65]. This planner has several interesting properties for
the container stacking problem:

• It is an anytime planning algorithm. This means that the planner can found
a first, probably suboptimal, solution quite rapidly and this solution is being
improved while time is available.

• It is complete, so it will always find a solution if exists.

• It is optimal, so that it guarantees finding the optimal plan if there is time
enough for computation.

It follows an enforced hill-climbing [28] approach with some modifications:

• It applies a best-first search strategy to escape from plateaux. This search is
guided by a combination of two heuristic functions and it allows the planner
to escape from a local minima very efficiently.

• If a plateau exit node is found within a search limit imposed, the hill-climbing
search is resumed from the exit node. Otherwise, a new local search iteration
is started from the best open node.

The initial approach, based onSimplanner, was firstly used to solve individual
subproblems (yard-bays) [58, 59]. To improve the solutions obtained bySimplan-
ner we have further developed a domain-dependent heuristic to guide the search in
order to accelerate and guide the search toward a optimal or sub-optimal solutions.

This heuristic (calledh1) was developed to efficiently solve one yard-bay [63].
h1 computes an estimator of the number of container movements that must be car-
ried out to reach a goal state (see Algorithm 1). The essential part of thisalgorithm
is to count the number of containers located on the selected ones, but also keeps
track of the containers that are held by the crane distinguishing between whether
they are selected containers or not. When the crane is holding a selected container,
the valueh has a smaller increase since, although this state is not a solution, this
container will be at the top of some row in the next movement.

2.5 Optimization criteria for one-bay yards

Despite we are able to obtain good solutions (layouts) fromSimplannerenhanced
with h1, we also need more realistic solutions for instance taking into account
safety standards.

17



Algorithm 1 : Pseudo-code of the domain-dependent heuristich1
Data: b: state of theyard-bay;
Result: h: heuristic value ofb;
h = 0;
Container hold by the craneif ∃x−container/Holding(x) ∈ b then

if GoalContainer(x) then
h = 0.1;

else
h = 0.5;

end
end
//Increasing the∆h value for r ← 1 to numRows(b) do

∆h = 0;
for x−container/ At(x, r) ∧ GoalContainer(x) ∈ b do

if ∄y−container/GoalContainer(y) ∧ On(y, x) ∈ b then
∆h = max(∆h,NumContainersOn(x));

end
end
h+ = ∆h;

end

From this heuristich1, we have developed some optimization criteria each of
them achieving one of the requirements we could face at Container Terminals.
These criteria are centered in the next issues:

1. Reducing distance of the goal containers to the cargo side (OC1d) [64].

2. Increasing the range of the move actions set for the cranes allowing to move
a container to 5th tier (OC1t) [60].

3. Applying different ways of balancing within the same bay in order to avoid
sinks(OC1b) [54].

These criteria have been easily incorporated in our planner by defining an
heuristic function as a linear combination of two functions:

h(s) = α · h1(s) + β · h2(s) (2.1)

whereh2 is a combination of above three criteria:

h2(s) = OC1d +OC1t +OC1b (2.2)

Note that although we want to guarantee balancing with this last optimization
criterion, unbalanced states (states withsinks) are allowed during this process of
remarshalling in order to get better solutions according to the number of reshuffles.
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2.5.1 OC1d: Allocating goal containers close to cargo side

Given an initial state, several different layouts can be usually achievedby making
the same number of reshuffles. However, some of them can be more interest-
ing than the others according to some important questions. In this case, sincethe
transfer crane is located at the right side of the yard-bay, we want to obtain a layout
where it is minimized the distance of the goal containers to this side of the yard-
bay. Achieving this we can spend considerably less time during the truck loading
operations.

Figure 2.6: Obtained plan with the initial domain-dependent heuristic.

Following the heuristic function presented in Equation 2.1:

• h1(s) is the main heuristic function, which estimates the number of move-
ments required to reach the goal layout (outlined in Algorithm 1). Since this
is the main optimization function,α value should be significantly higher than
β.

• h2(s) is the secondary function we want to optimize. In this case, it is just
OC1d. This means the sum of the distances of the selected containers to the
right side of the yard-bay, which can be computed as Algorithm 2 shows.

Algorithm 2 : Pseudo-code to calculate the distance
Data: s: state to evaluate
Result: d: distance value ofs
d = 0;
for r ← 1 to numRows(s) do

for x−container/ At(x, r) ∈ s ∧ GoalContainer(x) do
d = d+ (numRows(s)− r);

end
end

The benefits of using this combined heuristic function can be observed in Fig-
ure 2.6 and Figure 2.7. In the first one, we only want to minimize the number
of reshuffles, i.e. h(s) = h1(s). In the second one, we also want to mini-
mize the distance of the selected containers to the forklift truck, so we have set
h(s) = 9 ∗ h1(s) + h2(s). As a result, none of the selected containers (the red
ones) are placed in the most left rows, reducing the required time to load the truck.
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Figure 2.7: Obtained plan with the distance optimization function.

2.5.2 OC1t: Allowing the 5th tier during the remarshalling process

In this optimization criterion as well as the next ones, we will include the new
given heuristic value with the same factor as the initial one. One of the decisions
that must be done in Container Terminals is about what type of cranes must be
bought depending on how many tiers cranes work. This topic has been considered
in [59]. But, another approach is to reach the fifth tier only during the remarshalling
process. Thereby, there would be 4 tiers at the beginning and at the endof the
process keeping the first requirements.

Following this concept, we will use instances of problems< n, 4 > (wheren
is the number of containers) with a domain whose move actions allow 5 tiers at the
stacks. This function is showed in Algorithm 3 and it follows the same steps than
the original, but increasing the value ofh when the height of one of the stacks is
higher than4. Thereby, we assure that the final layout will always have 4 tiers.

2.5.3 OC1b: Balancing one yard-bay

In this section, we present an extension for the heuristich1 (Algorithm 1) to include
the balancing of the stacks within one yard-bay as a requirement. It is considered
that there is asink when the height difference between two adjacent stacks in the
same yard-bay is greater than a maximum number of containers, in our case two
containers.

Considering the time when the goal containers are removed from the yard,
we can distinguish three ways to get balanced one yard-bay presented inthe next
subsections. The last mode is the consequence of applying the first two ones.

1. Balanced before loading operation.In this case, we consider that thelay-
out must be balanced before the goal containers are removed from thatyard-
bay. This function is showed in Algorithm 4. It compares the height of each
row of the yard-bay with the next one, and if the difference is higher than2,
the value heuristich is increased. As it appears in Figure 2.8, this criterion
avoids thesinks in the final layout while all the containers are still in the
yard-bay.
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Algorithm 3 : Pseudo-code of the domain-dependent heuristic function to
allow 5 tiers

Data: s: state to evaluate
Result: h: heuristic value ofs
h = 0;
if ∃x−container/Holding(x) ∈ s then

if GoalContainer(x) then
h = 0.1;

else
h = 0.5;

end
end
for r ← 1 to numRows(s) do

∆h = 0;
if Height[r, s] > 4 then

if x−container/ Clear(x, r) ∈ s ∧ GoalContainer(x) then
∆h = 0.5;

else
∆h = 1;

end
end
for x−container/ At(x, r) ∈ s ∧ GoalContainer(x) do

if ∄y−container/GoalContainer(y) ∧ On(y, x) ∈ s then
∆h = max(∆h,NumContainersOn(x));

end
end
h+ = ∆h;

end

However, when these containers are removed, it might cause that the new
layout is unbalanced as it happens in Figure 2.8(c).

Algorithm 4 : Pseudo-code to balance before the goal containers are removed
Data: s: state to evaluate;h: Initial heuristic;
Result: h: heuristic value ofs;
for r ← 1 to numRows(s)− 1 do

∆h = Abs(Height[r, s]− Height[r + 1, s]);
if ∆h > 2 then

h = h+∆h− 2;
end

end

2. Balanced after loading operation.In contrast to the method seen above, we
can consider that thelayout must remain balanced after the goal containers
are removed from the yard-bay. Figure 2.9 shows the layouts we get after
execute the plan returned by our planner.

Algorithm 6 shows this function. It uses the FunctionHeightsWithoutGoals
(Algorithm 5) in order to calculate for the yard-bayb the height for each
stack where the first no-goal container is. These values are employed toget
the difference of height between two adjacent stacks once the goal contain-
ers have been removed from the yard. Heights of each row are stored as
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(a) Initial Layout (b) With goal containers (c) Without goal containers

Figure 2.8: Effects of using function seen in Algorithm 4.

Algorithm 5 : FunctionHeightsWithoutGoals to calculate heights of each
row without taking into account the goal containers at the top

Data: b: state of theyard-bay;
Result: MinHeight, heights calculated;
for r ← 1 to numRows(b) do

MinHeight[r, b] = Height[r, b];
//Decrease till the first nogoal-container
while MinHeight[r, b] > 0 ∧ GoalContainer(MinHeight[r, b], r) ∈ b do

MinHeight[r, b]−−;
end

end

soon as the planner gets the final solution plan for one yard-bay. After we
obtain these values, we increase the heuristic valueh according to wether
or not there are goal containers on the floor. Then, we use the values given
by HeightsWithoutGoalsto calculate the difference between two adjacent
stacks, when this difference is higher than2, we consider that there is asink,
soh is increased again.

However, this process might also cause some unbalanced layouts (Figure
2.9(b)). But in this case, non-desirable layouts will appear while the goal
containers are in the yard-bay. Once they have been removed from it, these
layouts will be balanced ones (Figure 2.9(c)).

(a) Initial Layout (b) With goal containers (c) Without goal containers

Figure 2.9: Effects of using function seen in Algorithm 6.

3. Balanced before and after loading operation.Finally, we present an opti-
mization criterion which obtains alayout where is balanced both before and
after the goal containers are removed from this yard-bay. With this function

22



Algorithm 6 : Pseudo-code to balance after the goal containers are removed
Data: s: state to evaluate;h: Initial heuristic;
Result: h: heuristic value ofs;
HeightsWithoutGoals(s);
∆h = 0;
//Not allow containers on the floor
for r ← 1 to numRows(s) do

if ∃x−container/On(x, r) ∧ GoalContainer(x) then
∆h = ∆h+ NumContainersOn(x);

end
end
h = h+∆h;
for r ← 1 to numRows(s)− 1 do

∆h = Abs(MinHeight[r, s]− MinHeight[r + 1, s]);
if ∆h > 2 then

h = h+∆h− 2;
end

end

we want to solve the problems seen in the last subsections as we can see it in
Figure 2.10.

This function (Algorithm 7) is a mixture of the last two ones. First, we
increaseh when there are goal containers on the floor. When this is achieved,
we increaseh when the difference between the heights values obtained by
the functionHeightsWithoutGoals(Algorithm 5) are higher than2 for two
contiguos rows. And finally, ifh value is low enough (in our case lower than
1), we increaseh again if the difference between the actual heights of two
contiguos rows is higher than 2.

(a) Initial Layout (b) With goal containers (c) Without goal containers

Figure 2.10: Effects of using function seen in Algorithm 7.

2.6 Optimization criteria for one block

This initial heuristic (h1) was unable to solve a complete yard or block (in our case,
one block consists of 20 yard-bays) due to the fact that they only solve individual
yard-bays. In this section, we have also developed two optimization criteria that
include new constraints that involve several yard-bays [50]. These constraints are:

• Balancing contiguous yard-bays: rows of adjacent yard-bays must be bal-
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Algorithm 7 : Pseudo-code to balance the yard-bay before and after the goal
containers are removed

Data: s: state to evaluate;h: Initial heuristic;
Result: h: heuristic value ofs;
HeightsWithoutGoals(s);
∆h = 0;
//Not allow containers on the floor
for r ← 1 to numRows(s) do

if ∃x−container/ On(x, r) ∧ GoalContainer(x) then
∆h = ∆h+ NumContainersOn(x);

end
end
h = h+∆h;
if h == 0 then

∆h = 0;
//Balancing with containers which are not objective
for r ← 1 to numRows(s)− 1 do

∆h = Abs(MinHeight[r, s]− MinHeight[r + 1, s]);
if ∆h > 2 then

h = h+ (∆h− 2)/2;
end

end
if h < 1 then

//Balancing with containers which are objective
for r ← 1 to numRows(s)− 1 do

∆h = Abs(Height[r, s]− Height[r + 1, s]);
if ∆h > 2 then

h = h+ (∆h− 2)/2;
end

end
end

end

anced, that is, the difference between the number of containers of rowj in
yard-bayi and rowj in yard-bayi − 1 must be lower than a maximum (in
our case lower than 3). Figure 2.11 shows which rows must be get balanced
when we consider one yard-bay and Figure 2.12 left shows an example of
non-balanced yard-bays (rows in dotted points).

• Dangerous containers: two dangerous containers must maintain a minimum
security distance. Figure 2.12 right shows an example of two dangerous
containers that does not satisfy the security distance constraint.

These constraints interrelate the yard-bays so the problem must be solvedas
a complete problem. However, it is a combinatorial problem and it is not pos-
sible to find an optimal or sub-optimal solution in a reasonable time. Following
the previous philosophy of solving each subproblem independently (each yard-
bay separately), we can distribute the problem into subproblems and solve them
sequentially taken into account related yard-bays. Thus a solution to the first yard-
bay is taken into account to solve the second yard-bay. A solution to the second
yard-bay is taken into account to solve the third yard-bay. Furthermore,if there
exist a dangerous container in a first bay, its location is taken into accountto solve
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Figure 2.11: Balancing scheme.

a dangerous container located in the third yard-bay (if it exists); and so on. Taken
into account this distributed and synchronous model, we present two different op-
timization criteria to manage these type of constraints.

These two criteria are added to the heuristic function presented in Equation 2.1
ash3 (Equation 2.3); and Equation 2.4 shows the exact combination of them. This
makes possible to follow a criterion with major priority than the other one.

h = α · h1 + β · h2 + γ · h3 (2.3)

h3 = δ1 ·OCnB + δ2 ·OCnD (2.4)

Following the proposed model and depending on the sequence of yard-bays
to be analyzed, it is possible that no solutions exists. Moreover, as mentioned in
Section 2.5, although we want to guarantee balancing and/or minimum distance be-
tween dangerous containers, during relocation of container process,we will allow
the presence of non-desirable sates, e.g. with somesinksbetween two contiguous
rows or bays. These intermediate states are allowed because through themwe will
be able to get better solutions taking into account as metric function the number of
reshuffles done.

2.6.1 OCnB: Balancing contiguous yard-bays

In this section we present an extension for the heuristich1 (Algorithm 1) to include
the balancing of continuous yard-bays as a requirement. As we have pointed out
before, it is considered that there is asinkwhen a difference higher than two con-
tainers exists between two adjacent rows in contiguous yard-bays. This criterion
is an extension of thebalanced heuristicpresented in Algorithm 7, which avoids
sinksin the same yard-bay (horizontal balance) both before and after the outbound
containers have been removed from the yard. However, in this case asink repre-
sents a constraint between two subproblems. Thus, we also consider thatthere is
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Figure 2.12: (Left) Non-balanced yard-bays. (Right) Proximity of two dangerous
containers.

a sink when a difference of two exits between the same rowr in two contiguous
yard-bays (vertical balance).

This process is showed in Algorithm 8. It also uses the FunctionHeightsWith-
outGoals(Algorithm 5) in order to calculate for the yard-bayb the height for each
stack where the first no-goal container is. Heights of each row are stored as soon
as the planner gets the final solution plan for one yard-bay.

First, we apply the criterion seen in Algorithm 7 on the yard-bayb. Through
heights’ calculated by Algorithm 5 and the real heights of the actual yard-bay
we obtain the differences between the rowr andr − 1 to calculate the value ofh.
When this value is zero (the yard-bayb is horizontally balanced), then we introduce
our function to balance it with respect to the last yard-baybl. To do so, we must
also calculate theheights’ through the Algorithm 5 overbl and use the real
heights of it in order to obtain the differences between the rowr situated inb andbl.
When these differences are higher than 2 we increaseh proportionally. After that
process,b will be balanced horizontally with respect to their rows, and vertically
with respect to the last yard-bay. Repeating this process for each yard-bay in the
block, this will be completely balanced.

2.6.2 OCnD: Dangerous containers

Within a block, there are different types of containers depending on the goods they
transport, being some of them dangerous. If they do not satisfy certain restrictions,
it may become a hazard situation for the yard since e.g. if one of them explodes
and they are not far enough between them, it will set off a chain of explosions.

With this added objective, the next optimization criterion (Algorithm 9) ensures
a minimum distance (Dmin) between every two dangerous containers (Cd) in the
yard. Dmin is set as one parameter for the planner and the distance is calculated
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Algorithm 8 : Pseudo-code to balance two adjacentyard-bays
Data: b: state of the actualyard-bay; h: Initial heuristic;bl: lastyard-bay;
Result: h: heuristic value ofb
//Getting the balance horizontallyHeightsWithoutGoals(b);
h+ = BalBeforeAfter(b);
//This heuristic will be executed after a partial solution
if h == 0 ∧ b 6= 1 then

∆h = 0;
HeightsWithoutGoals(bl);
//Balancing with containers which are not objective
for r ← 1 to numRows(b) do

∆h = Abs(MinHeight[r, bl]− MinHeight[r, b]);
if ∆h > 2 then

h = h+ (∆h− 2)/2;
end

end
if h < 1 then

//Balancing with containers which are objective
for r ← 1 to numRows(b) do

∆h = Abs(Height[r, bl]− Height[r, b]);
if ∆h > 2 then

h = h+ (∆h− 2)/2;
end

end
end

end

as the Euclidean distance, considering each container located in a 3-dimensional
space (X,Y,Z) where X is the number of yard-bays, Y is the number of rowsand Z
is the tier.

Generally, in container terminals, at most, there is only one dangerous con-
tainer in two contiguous yard-bays, so that we take into account this assumption in
the development of this function.

This function increasesh value when a dangerous containerCd1 exists in a
yard-bayb and the distance constraints between dangerous containers are not hold.
Thereby, for each dangerous containerCd2 allocated in the previousDmin yard-
bays is calculated by Euclidean distance toCd1. If this distance is lower than
Dmin, for any dangerous containerCd2, thenh value is increased with the number
of containersn on Cd1 because it indicates that removing thosen containers is
necessary to reallocate the containerCd1.

2.7 An Ordered Yard-Based Planner

In this section we improve the above planner to efficiently manage a full container
yard [61]. A block of containers is decomposed of several yard-bays, so that the
problem is distributed into a set of subproblems. Thus, each yard-bay generates
a subproblem. The order of execution of yard-bays can be sequentialor it can be
ordered by tightness. Figure 2.13 shows two different ways to manage a complete
yard. Figure 2.13 (upper) shows a sequential order of execution of yard bays (Plan-
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Algorithm 9 : Pseudo-code to avoid locating two dangerous containers closer
to a distanceDmin

Data: B: wholeblock; b: state of the actualyard-bay; h: Initial heuristic; Dmin: Minimum
distance;NC: Number of containers;

Result: h: heuristic value ofb;
nBay = NumBay(b);
if nBay > 1 ∧ h < NC ∧ ∃Cd1 ∈ b then

∆h = 0;
L1 = Location(Cd1);
foreachbl ∈ Y/NumBay(bl) ∈ {max(nBay −Dmin + 1, 1), nBay − 1} do

if ∃Cd2 ∈ bl then
L2 = Location(Cd2);
dist = EuclideanDistance(L1, L2);
if dist < Dmin then

∆h = ∆h+ NumContainersOn(Cd1);
end

end
end
h+ = ∆h;

end

Algorithm 10 : Sinks within a whole block
Data: B: wholeblock;
Result: nSinks: number of Sinks;
nSinks = 0;
for b← 1 to numYards(B) do

for r ← 1 to numRows(b)− 1 do
∆h = Abs(Height[r, b]− Height[r + 1, b]);
if ∆h > 2 then

nSinks++;
end

end
if NumBay(b) > 1 then

for r ← 1 to numRows(b) do
∆h = Abs(Height[r, b]− Height[r, b− 1]);
if ∆h > 2 then

nSinks++;
end

end
end

end

ner H1 Sequential). Following the optimization criteriaOCnB (Section 2.6.1).
Thus, the planning of a yard-bay is carried out taken into account the solution ob-
tained by the previous yard-bay (see Figure 2.14). Thus a first plan is obtained for
the first yard-bay. Then a new plan is carried out for the second yard-bay taken
into account the balance constraints generated with the solution obtained forthe
first yard-bay, and so on.

Figure 2.13 (lower) shows a different order of execution of yard-bays (Planner
H1 Ordered). The tightest yard-bays (yard-bays with more export containers) are
analyzed first. Thus, the number of reshuffles is minimized due to the fact that
the tightest yard-bays are solved without the need of satisfying the balance con-
straints with the contiguous ones, meanwhile their neighbour yard-bays mustbe
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Algorithm 11 : Unfeasible relationships between two dangerous containers
within a whole block

Data: B: wholeblock;
Result: nDang: number of Sinks;
nDang = 0;
for b← 1 to numYards(B) do

nBay = NumBay(b);
if nBay > 1 ∧ ∃Cd1 ∈ b then

L1 = Location(Cd1);
foreachbl ∈ Y / NumBay(bl) ∈ {max(nBay −Dmin + 1, 1), nBay − 1} do

if ∃Cd2 ∈ bl then
L2 = Location(Cd2);
dist = EuclideanDistance(L1, L2);
if dist < Dmin then

nDang ++;
end

end
end

end
end
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Yard-bays
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Yard-bays

Order o f execution  of yard-bays

Figure 2.13: Order of execution of yard-bays.

committed to these tasks. Thus, following the example of Figure 2.13, the yard-
bay 11 is executed first without balance constraints because it has 9 goal containers
meanwhile yard-bays 10 and 12 are executed later taken into account the balance
constraints generated by the solution of yard-bay 11. In the evaluation section we
will compare the behavior of two alternatives. In general the order of execution of
yard-bays is directly related with the efficiency of our planning tool. The ordering
of yard-bays by tightness improves the efficiency our planning tool.

Furthermore, containers of different yard-bays must satisfy other constraints
among them such as dangerous containers that must maintain a minimum security
(Euclidian) distance among them (Planner H1DC). In order to insert our planner
in the integrated system, we have improved our version to minimize the number of
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Figure 2.14: The balance constraints for continuous yard-bays.

reshuffles for a set of out containers to be loaded in different vessels. Initially our
planner was developed to minimize the number of reshuffles for a vessel (vessel
A in Figure 2.13). However, the order of the rest of containers in the yard-bay
did not matter. Our new planner takes into account these features and it is able
to organize the bay in order to adapt to the berth schedule. Thus, the reshuffles
needed to allocate the out containers for a vessel are carried out takeninto account
the out containers for the following vessel to berth.

2.8 Analytic Formula to Estimate the number of Reshuf-
fles

As we have pointed out, solving the CStackP is a NP-complete combinatorial opti-
mization problem. Once the BAP returns a possible schedule of vessels to berth in
the port, the study of yard reshuffles must be carried out for each vessel. This is a
very hard task so that a general formula that estimates the number of reshuffles for
each vessel remains necessary. Once the best solution is achieved, theplanning tool
is executed to obtain the optimal plan for the yard reshuffles. To this end, wehave
identified the main parameters that affect the number of reshuffles in a yard-bay:

1. Number of total slots in a yard-bay (P1). For instance, a yard-bay with tier
5, the number of slots is 30.

2. Number of containers in the yard-bay (P2). It is well-known thatP2 ≤ P1.

3. Number of goal (out) containers (P3). It is well-known thatP3 ≤ P2

4. Number of containers on top of goal containers (P4). A lower bound for the
minimal number of reshuffles isP4.

These parameters influence in the number of reshuffles needed for each yard-
bay. The estimator function R is mainly depended onP4 and it is bounded by:

R = P4 + α : α ∈ [0,∞) (2.5)

whereα = 0 means that the problem is underconstrained meanwhileα → ∞
means that the problem is unsolvable.
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P1= 24       

P2= 19

P3= 8

P4= 8

N. of Reshuffles=9

Figure 2.15: Example and values of parameters.

Figure 2.15 shows an example of yard-bay with the value of each identified
parameter. The rest of parameters also play an important role but the relationship
among them is not clear. The simulation of one hundred yard-bays with different
tiers and number of containers and objectives return a strong relationshipamong
the parametersP1, P2 andP3. If (P1 − P2)/P3 is lower than 1.25, one more
reshuffle is needed (P4 +1). In the same way if(P1−P2)/P3 is lower than 1, one
more reshuffle is also needed(P4 + 2); and so on. Finally if(P1 − P2) → 0 the
problem is unsolvable. Thus, we estimate the number of reshuffles by the following
formula:

R = P4 +

⌊

2
P1−P2

P3

⌋

= P4 +

⌊

2 · P3

P1 − P2

⌋

(2.6)

This estimatorR is accurate enough for us to do not need to execute our planner
for each berthing plan. In the integrated system presented above, we can select to
run our planner or to use the estimator. In any case, once the best solutionis
found for the integrated problem, our planner must solve the best solution inorder
to determine the specific plan that the cranes must be carried out to allocate the
containers in the appropriate places.

2.9 Evaluation

In this section, we evaluate the behavior of the heuristic with the set of optimiza-
tion criteria presented. The experiments were performed on random instances. A
random instance of a yard-bay is characterized by the tuple< n, s >, wheren is
the number of containers in a yard-bay ands is the number of selected containers in
the yard-bay. Each instance is a random configuration of all containersdistributed
along six stacks with 4 tiers. They were solved on a personal computer equipped
with a Core 2 Quad Q9950 2.84Ghz with 3.25Gb RAM.

First, we present a comparison between our basic domain dependent heuristic
h1 against a domain independent one (Metric FF). Thus, Table 2.1 presents the
average running time (in milliseconds) to achieve a first solution as well as quality
of the best solution found (number of reshuffles) in 10 seconds for our domain-
dependent planner. This table also shows the average running time (in millisec-
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onds) and the quality of the solution forMetric FF. Both planners have been tested
in problems< n, 4 > evaluating 100 test cases for each one. Thus, we fixed the
number of selected containers to 4 and we increased the number of containers n
from 15 to 21.

It can be observed that our new domain-dependent heuristic is able to find a
solution in a few milliseconds, meanwhile the domain-independent planner (Metric
FF) needs much more time to find a solution. This solution also needs more moves
to get a goal state. Furthermore, due to the fact that our tool is an anytime planner,
we evaluate the best solution found in a given time (10 seconds).

Table 2.1: Average number of reshuffles and running time ofMetric FF andh1 in
problems< n, 4 >.

Instance
Metric FF Heuristic (h1)

Running time Solution Running time Best Solution
first solution in 10 secs

< 13, 4 > 22 3.07 2 3.07
< 15, 4 > 3102 4.04 6 3.65
< 17, 4 > 4669 5.35 12 4.35
< 19, 4 > 6504 6.06 24 4.72
< 20, 4 > 22622 7.01 36 5.22
< 21, 4 > 13981 6.82 66 5.08

Now we show the effects of using each one of the criteria described in Section
2.5 separately. In Table 2.2, we present the average sum of distances between the
selected containers and the right side of the layout in both our domain-independent
heuristic and our domain-dependent heuristic with distance optimization for prob-
lems< n, 4 >. As mentioned above, we fixed the number of selected containers
to 4 and we increased the number of containersn from 13 to 21. It can be ob-
served that distance optimization function helps us for finding solutions that place
the selected containers closer to the cargo side of the yard-bay.

Applying the criterion or function showed in Algorithm 3 we obtain the results
appeared in Table 2.3. These results are the comparison between the number of
solved problems over 100 problems< n, 4 > using or not that criterion in just one
second. Through this table we can conclude that:

• The higher number of containers, the lower problems are solved. This is
because as we increase the number of containers there are less positionsor
gaps where containers could be remarshalled.

• Allowing movements to the5th helps us to solve more problems. It is re-
markable with instances< 23, 4 > with H1 only three problems could be
solved, howeverOC1t solves84 over100 problems.

32



Table 2.2: Average distance obtained by considering distance or not in our domain-
dependent heuristic< n, 4 > with 4 tiers.

Instance
Metric FF OC1d

Distance Reshuffles Distance Reshuffles

< 13, 4 > 11.28 3.07 10.91 3.07
< 15, 4 > 10.60 4.04 9.21 3.65
< 17, 4 > 10.58 5.35 8.87 4.46
< 19, 4 > 12.28 6.06 8.32 4.86
< 20, 4 > 12.71 7.01 7.75 5.56
< 21, 4 > 12.20 6.82 8.36 5.34

Table 2.3: Number of solved problems< n, 4 > with 4 and 5 tiers during the
process.

Instance 4 tiersh1 5 tiersOC1t

< 19, 4 > 100 100
< 20, 4 > 100 100
< 21, 4 > 95 99
< 23, 4 > 3 84

Last criterion for solving problems where we only take into account one yard-
bay is showed in Section 2.5.3. Since Algorithm 7 presents the best results after
the whole process of remarshalling, we do the comparison in Table 2.4 among the
solutions given byMetric FF planner, the initial oneh1 andOC1b (Both) in 50
test cases. The last two ones look for solutions during 1 second in instances of
< 15, 4 > and 4 seconds in instances of< 17, 4 >. These times are used in order
to achieve a solution for all the instances.

Table 2.4: Average number of movements, sinks and time for the first solution in
problems< 15, 4 > (1) and< 17, 4 > (2) using or not balanced heuristics.

Metric FF h1 OC1b

(1) (2) (1) (2) (1) (2)

Reshuffles 3.72 4.24 3.42 3.68 5.36 5.30
Sinks 0.62 0.50 0.92 0.66 0 0
Time First Sol. 2621 2961 6 10 16 22

Sinksare calculated by Algorithm 10. As we mentioned above, we consider
that there is a sink where the difference in tiers between two adjacent rowsis higher
than 2. Thereby, in this algorithm we are counting sinks produced betweentwo
contiguos stacks at the same yard-bay as well as between two rows in one yard-bay

33



and the previous one. This process takes into account the goal containers in final
yard-bays.

From here, we realize an evaluation for the criteria presented in Section 2.6.
Table 2.5 shows the performance of the criteria for solving the whole block of
yard-bays. These experiments were performed in blocks of 20 yard-bays and each
one of them are instances< 15, 4 >. This evaluation was carried out in a yard
with 3 blocks of 20 yard-bays. The number of unfeasible relationships between
dangerous containers is calculated by means of Algorithm 11. Basically, welook
for those pairs of dangerous containers whose distance between them isshorter
than minimum distance (Dmin).

The results showed in Table 2.5 represent the average number of reshuffles,
the average number of sinks generated along the block and the average number of
unsatisfied dangerous containers. Results given by these optimization criteria are
the average of the best solutions found in 10 seconds. It can be observed thath1
still outperformsMetric FF in the average number of reshuffles. However, due
to the fact that they do not take into account the balancing constraints,Metric FF
generated an average of24.33 sinks in the block of yard-bay andh1 generated
and average of32.67 sinks. And it occurs the same for the average number of
unfeasible constraints for dangerous containers,Metric FF gives us15.33 andh1
obtains7.67.

Taking into account thatOCN is a junction ofOCnB andOCnD, bothOCnB

andOCnD solved their problems. That is,OCnB obtained its solutions with no
sinks andOCnD obtained its solutions by satisfying all dangerous constraints.
Furthermore,OCN was able to solve its problems by satisfying both types of con-
straints. However we could state that balancing problem is harder than the problem
related to dangerous containers becauseOCnB needs more reshuffles to obtain a
solution plan thanOCnD. Moreover, we observe withOCnB,OCnD andOCN en-
sure the established requirements however the average reshuffles is increased with
respect toh1.

Table 2.5: Average results with blocks of 20 yard-bays each one being a< 15, 4 >
problem.

Metric FF h1 OCnB OCnD OCN

Reshuffles 3.98 3.60 5.68 4.30 6.53
Sinks 24.33 32.67 0 33.33 0
Non-Safe Dangerous 15.33 7.67 8.00 0 0

In Table 2.6, we show the performance of our planner H1 Sequential andH1
Ordered (Section 2.7). These experiments were performed on blocks ofcontainers
composed by 10 yard-bays in the form< 17, s >. Thereby, each yard-bay has a
different number of goal containers. Furthermore, we have established a timeout
of 35 seconds to solve each yard-bay.

The first column in Table 2.6 corresponds to each instance solved by eachplan-
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Table 2.6: Comparison of H1 Sequential and H1 Ordered.

Instance
Order (Yard-Bay/N. Goal containers) Number

1 2 3 4 5 6 7 8 9 10 Reshuffles

1-O
6 1 2 8 3 4 10 9 5 7

91
9 7 6 6 5 5 5 4 2 2

1-S
1 2 3 4 5 6 7 8 9 10

Time Out
7 6 5 5 2 9 2 6 4 5

2-O
2 5 6 1 4 3 8 9 10 7

64
7 7 7 6 6 5 4 4 3 2

2-S
1 2 3 4 5 6 7 8 9 10

Time Out
6 7 5 6 7 7 2 4 4 3

3-O
3 2 7 8 10 4 6 1 9 5

55
8 6 6 6 6 5 5 4 4 1

3-S
1 2 3 4 5 6 7 8 9 10

99
4 6 8 5 1 5 6 6 4 6

4-O
7 9 2 10 3 4 6 1 8 5

63
10 7 6 6 5 5 4 3 3 2

4-S
1 2 3 4 5 6 7 8 9 10

63
3 6 5 5 2 4 10 3 7 6

5-O
7 1 10 2 8 9 4 5 6 3

78
9 7 7 6 6 6 5 5 4 2

5-S
1 2 3 4 5 6 7 8 9 10

Time Out
7 6 2 5 5 4 9 6 6 7

ner. Thereby, row 1 corresponds to instance 1 of planner H1 Ordered (1-O), row 2
corresponds to instance 1 of planner H1 Sequential (1-S), and so on.The following
10 columns have two rows for each instance. They show for each instance the order
in which the yard-bays are executed (upper row) and the number of goal containers
that each one of them has (lower row). As example, for the instance 1-O,the sixth
yard-bay is the first one in being executed and it has 9 goal containers.Finally, the
last column presents the number of reshuffles needed to solve the instanceor Time
Out if a solution is not found.

As it can be observed, there are instances which only can be solved through
the H1 Ordered, e.g. instances 1, 2 and 5. Moreover, other instances (instance 3),
through the H1 Ordered planner, give a more efficient plan than the sequential one.
However, there are also other examples in which both planners return the same
plan (instance 4).
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Thus, we can conclude that H1 Ordered can be considered a better planner than
H1 Sequential to solve the complete block of yard-bays.

The actual average number of reshuffles and the average value of our estimator
R are presented in Table 2.7. In each row, we present the average number of
reshuffles from a set of 100 random instances. In all cases, we considered yard-
bays with tier 4, so that the number of possible containers to be allocated to each
yard-bay is set to 24 (P1 = 24). The rest of parameters were increased:P2 from
15 to 19 andP3 from 4 to 8. It can be observed the similitude of the average
number of reshuffles andR in all cases. It can be observed that the estimatorR
achieved values close to the actual values in all cases. The average value ofR in all
instances was very similar to the average value of the actual number of reshuffles.
The standard deviation ofR was even lower than the actual number of reshuffles
due to the fact that it is not dependent on the original allocation of out containers.

Table 2.7: Values obtained through estimatorR.

P2 = 15 P2 = 17 P2 = 19

Reshuffles R Reshuffles R Reshuffles R

P3 = 4 2.8 2.6 3.7 4.6 4.6 4.8
P3 = 6 4.2 4.8 6.2 5.9 5.6 6
P3 = 8 6.2 6 8.6 8 7.2 8

Avg. values 4.4 4.5 6.2 6.2 5.8 6.3
St. deviation 2.1 1.9 3.1 2.1 2.6 1.9

2.10 Conclusions

This chapter presents a domain-dependent heuristic and a set of optimization cri-
teria for solving the container stacking problem by means of Artificial Intelligence
planning techniques. We have developed a domain-dependent planning tool for
finding optimized plans to obtain an appropriate configuration of containers ina
yard-bay. Thus, given a set of outgoing containers, our planner minimizes the num-
ber of necessary reshuffles of containers in order to allocate all selected containers
at the top of the stacks. This proposed planner is able to satisfy both balancing
constraints and dangerous container constraints, as well as reducing the distance of
the goal containers to the cargo side or allowing a fifth tier during the remarshalling
process.

Additional criteria have been defined for management blocks of yard-bays into
consideration. However, as the problems involve a larger number of constraints,
the solution becomes harder and the number of reshuffles increases. Due to the fact
that a solution of a yard-bay influences on the solution of the following yard-bay,
the order of solving the yard-bays will determine the minimal number of reshuffles.
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This proposed planner with a domain-dependent heuristic allows us to obtain
optimized and efficient solutions. This automatic planner can help to take decisions
in the port operations dealing with real problems. Moreover, it can help to simu-
late operations to obtain conclusions about the operation of the terminal, evaluate
alternative configurations, obtain performance measures, etc. Particularly, in [59]
the proposed planner has been applied for obtaining an evaluation of alternative 4
or 5 tiers stacks configuration.
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Chapter 3

Berth Allocation and Quay Crane
Assignment Problem

3.1 Introduction to BAP and QCAP

Container terminals are open systems with three distinguishable areas (see Figure
3.1): the berth area, where vessels are berthed for service; the storage yard, where
containers are stored as they temporarily wait to be exported or imported; and the
terminal receipt and delivery gate area, which connects the container terminal to the
hinterland. Each one of them presents different planning and scheduling problems
to be optimized. For example, berth allocation, quay crane assignment, stowage
planning and quay crane scheduling must be managed in the berthing area;the
container stacking problem, yard crane scheduling and horizontal transport opera-
tions must be carried out in the yard area; and hinterland operations must be solved
in landside area. Figure 3.2 shows the main planning and scheduling problemsthat
must be managed in the berth area.

We will focus our attention to the Berth Allocation Problem (BAP), a well-
known NP-Hard combinatorial optimization problem, which consists of assigning
incoming vessels to berthing positions. Once a vessel arrives at the port,it enters
in the harbor waiting time to moor at the quay. The quay is a platform protruding
into the water to facilitate the loading and unloading of cargo. The locations where
mooring can take place are called berths. These are equipped with giant cranes,
called pier or quay cranes (QC), used to load and unload containers which are
transferred to and from the yard by a fleet of vehicles. In a transshipment terminal
the yard allows temporary storage before containers are transferred toanother ship
or to another mode (e.g., rail or road).

Managers at container terminals face two interrelated decisions:whereand
whenthe vessels should moor. First, they have to take into account physical re-
strictions as length or draft, but also they must take into account the prioritiesand
other aspects to minimize both port and user costs, which are usually opposites.
Nowadays, this process is usually solved manually with a first come, first served
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Figure 3.2: Planning and scheduling problems in Container Terminals

policy . That is, the order the vessels arrive is the same they are moored. Figure 3.3
shows an example of graphical space-time representation of a berth planning with
6 vessels. Each rectangle represents a vessel with its handling time and length.

The reminder of this chapter is organized as follows: the next section presents
a literature review about the BAP and QCAP and different techniques to manage
them. Section 3.3 address the developed modelas as well as their notations. Section
3.4 and Section 3.5 describe the notation used and the developed metaheuristic
techniques, respectively. In section 3.6 the computational results are reported and
finally, conclusions are presented.
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Figure 3.3: A berth planning

3.2 Literature review

In [68], the authors show a complete comparative study about differentsolutions
for the BAP according to their efficiency in addressing key operational and tactical
questions relating to vessel service. They also study the relevance and applicability
of the solutions to the different strategies and contractual service arrangements
between terminal operators and shipping lines.

To show similarities and differences in the existing models for berth allocation,
Bierwirth and Meisel [3] developed a classification scheme according to four at-
tributes (see Figure 3.4). The spatial attribute concerns the berth layout and water
depth restrictions. The temporal attribute describes the temporal constraintsfor the
service process of vessels. The handling time attribute determines the way ves-
sel handling times are considered in the problem. The fourth attribute definesthe
performance measure to reflect different service quality criteria. The most impor-
tant ones are focused on minimizing the waiting time and the handling time of a
vessel. Both measures aims at providing a competitive service to vessel operators.
If both objectives are pursued (i.e. wait and hand are set), the port stay time of
vessels is minimized. Other measures are focused on minimizing the completion
times of vessels among others. Thus, by using the above classification scheme,
a certain type of BAP is described by a selection of values for each one ofthe
attributes. For instance, let’s be a problem where the quay is assumed to be a
continuous line (cont). The arrival times restrict the earliest berthing of vessels
(dyn) and handling times depends on the berthing position of the vessel (pos). The
objective is to minimize the sum of the waiting times (wait) and handling time
(hand). According to the scheme proposed by [3], this problem is classified by
cont|dyn|pos|Σ(wait+hand).
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Value Description

1. Spatial attribute

disc The quay is partitioned in discrete berths

cont The quay is assumed to be a continuous line

hybr The hybrid quay mixes up properties of discrete and continuous berths

draft Vessels with a draft exceeding a minimum water depth cannot be berthed arbitrarily

2. Temporal attribute

stat In static problems there are no restrictions on the berthing times

dyn In dynamic problems arrival times restrict the earliest berthing times

due Due dates restrict the latest allowed departure times of vessels

3. Handling time attribute

fix The handling time of a vessel is considered fixed

pos The handling time of a vessel depends on its berthing position

QCAP The handling time of a vessel depends on the assignment of QCs

QCSP The handling time of a vessel depends on a QC operation schedule

4. Performance measure

wait Waiting time of a vessel

hand Handling time of a vessel

compl Completion time of a vessel

speed Speedup of a vessel to reach the terminal before the expected arrival time

tard Tardiness of a vessel against the given due date

order Deviation between the arrival order of vessels and the service order

rej Rejection of a vessel

res Resource utilization effected by the service of a vessel

pos Berthing of a vessel apart from its desired berthing position

misc Miscellaneous

Figure 3.4: A classification scheme for BAP formulation [3].

One of the early works that appeared in the literature was focused on the de-
velopment of a heuristic algorithm which a First-Come-First-Served (FCFS)rule
was considered [40]. However, the idea that for high port throughput, optimal
vessel-to-berth assignments should be found without considering the FCFS bases
was introduced by [31]. Therefore, we will use the FCFS rule in order toget an up-
per bound. Nevertheless, this approach may result in some vessels’ dissatisfaction
regarding the order of service.

In [20], multiple vessel mooring per berth is allowed assuming that vessel ar-
rivals can be grouped into batches. They have developed a tree search procedure
which provides an exact solution and this is improved by a composite heuristic.

Some metaheuristics have been developed to solve the BAP. In [11] two Tabu
Search heuristics are presented to solve the discrete and continuous case, respec-
tively to minimize the weighted sum of the service time for every ship. Both heuris-
tics are inspired by aMulti-Depot Vehicle Routing Problem with Time Windows
algorithm and can handle various features of real-life problems as time windows or
favorite and acceptable berthing areas. Mauri et al. [44] design a column genera-
tion approach for the problem of Cordeau et al. [11] which delivers better solutions
in shorter runtime than Tabu Search. In the models of Han et al. [21] and Zhou
et al. [71], a Genetic Algorithm (GA) is proposed to solve this problem. In both
models, the draft of vessels restricts the berth assignment decisions.
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An approach based on multi-objective optimization problem using evolutionary
algorithms [7] is followed to minimize the makespan of the port, total waiting
time of the ships, and degree of deviation from a predetermined service priority
schedule.

In [30], Imai et al. provide a solution for the integration of BAP with the Quay
Crane Assignment Problem (QCAP) based on genetic algorithms. It minimizes the
weighted number of vessel rejections. In this sense, an integration through two
mixed integer programming formulations including a tabu search method is pre-
sented by Giallombardo et al. [17]. The latter tabu search method is an adaption
of the one of [11]. However, Giallombardo et al. minimize the yard-related house-
keeping costs generated by the flows of containers exchanged betweenvessels.
These two approximations consider the discrete case of the BAP.

Considering the quay as a continuos line, a non-linear integer programming
model is developed to integrate BAP and QCAP in [48]. They do not consider
restrictions on the berthing times, one vessel could be scheduled earlier orlater
than the committed or arrival time.

In [3], the authors give a comprehensive survey of berth allocation and quay
crane assignment formulations from the literature. Some authors outline approaches
more or less informally while others provide precise optimization models. More
than 40 formulations are presented distributed among discrete problems, contin-
uous problems and hybrid problems. Hansen et al. [22] considered a discrete
problem with a tardiness objective which accounts for departure time relatedcosts
including penalties for tardiness as well as benefits for early departures. This prob-
lem was solved by a variable neighborhood search which turns out to be superior
to the GA of Nishimura et al. [46].

Taken into account the requirements of container operators of MSC (Mediter-
ranean Shipping Company S.A), our approach also studies the integration of these
two problems (BAP and QCAP) through a metaheuristic called Greedy Random-
ized Adaptive Search Procedures (GRASP) [13]. This metaheuristic is able to find
feasible solutions within an acceptable computational time. Following the above
classification scheme (see Figure 3.4), our approach is classified bycont|dyn|QCAP|Σ
wait. Thus, we focused on the following attributes and performance measure:

• Spatial attribute: cont : we assume the quay is a continuous line, so that
there is no partitioning of the quay and vessel can berth at arbitrary positions
within the boundaries of the quay. It must be taken into account that for a
continuous layout, berth planning is more complicated than for a discrete
layout at the advantage of better utilizing quay space [3].

• Temporal attribute: dyn : we assume dynamic problems where arrival
times restrict the earliest berthing times. Thus, fixed arrival times are given
for the vessels. Hence, vessels cannot berth before their expected arrival
time.
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• Handling time attribute: QCAP : we assume the handling time of a vessel
depends on the assignment of QCs.

• Performance measure: wait: Our objective is to minimize the sum of the
waiting time of all scheduled vessels to be served.

3.3 BAP-QCAP models

The objective in BAP is to obtain an optimal distribution of docks and cranes to
vessels. This problem can be considered as a special kind of machine scheduling
problem, with specific constrains (length and depth of vessels, ensure a correct
order for vessels that exchange containers, assuring departing times,etc.) and opti-
mization criteria (priorities, minimization of waiting and staying times of vessels,
satisfaction on order of berthing, minimizing cranes moves, degree of deviation
from a pre-determined service priority, etc.).

The First-Come-First-Served (FCFS) rule can be used to obtain an upperbound
of the function cost in BAP [40]. Several methods have been proposedin the
literature for solving BAP. Usually, these methods are mainly based on heuristic
[20] or metaheuristic [11], [7] approaches.

Our approach follows an integration of the Quay Crane Assignment Problem
(QCAP) and the BAP through the metaheuristic Greedy Randomized Adaptive
Search Procedure (GRASP) [13] which is able to obtain optimized solutions in
an efficient way.

3.3.1 BAP+static QCAP

In this section we present the notation of the main parameters (Figure 3.5) thatwill
be used in the proposed metaheuristic techniques. In this first model (Mv), known
asstatic QCAP[51, 53], QCs are assigned to one vessel and they can not be moved
to another vessel until the former one leaves the Container Terminal.

Let Vi be an incoming vessel. We define:

• a(Vi) : Arrival time of the vesselVi at port.

• m(Vi) : Moored time ofVi.

• pos(Vi) : Berthing position whereVi will moor.

• c(Vi) : Number of required movements to load and unload containers ofVi.

• q(Vi) : Number of assigned QCs toVi.

• d(Vi) : Departure time ofVi, which depends onm(Vi), c(Vi) andq(Vi).

• w(Vi) : Waiting timeVi arrives at port until it moors:

w(Vi) = m(Vi)− a(Vi) (3.1)
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• l(Vi) : Length ofVi.

• pr(Vi) : Vessel’s priority.

• QC : Available QCs in the Container Terminal.

• L : Total length of the berth in the Container Terminal.

Berthing position (pos(Vi)) will be determined according to the length of the
vessels (and their security distances) which have previously planned. In addition,
this position will be as close to the ends of the quay as possible. Thereby, avoiding
one vessel could moor in the middle of the quay gives more continuous length
available to moor the remaining vessels.

a(Vi) m(Vi) d(Vi)

w(Vi)

Vi

time
0

L

pos(Vi)

l(Vi)

B
e
rt
h
 S
p
a
c
e

Figure 3.5: Representation of a vessel according its position and times

Basically, our objective is to allocate all vessels according to several constraints
with the objective of minimizing the total weighted waiting time. To this end, let’s
assume a priority of each vessel according to its length and the number of move-
ments (loading and unloading operations), in order to avoid the vessels’ dissatis-
faction mentioned above, as:

pr(Vi) = α× l(Vi) + β × c(Vi) (3.2)

whereα andβ are the needed factors to distribute the values ofl(Vi) andc(Vi)
in order to range the priority in[1, 10]. For instance, the vessels with length0 <
l(Vi) ≤ 100 theα × l(Vi) = 1; the vessels with the number of containers0 <
c(Vi) ≤ 200 theα× c(Vi) = 1; therefore, the priority value would be 2.

As we have pointed out, we deal with continuous and dynamic BAP and the
time is discretized into integer units (1, 2, . . . , T ). Moreover, we consider the fol-
lowing assumptions:

• Number of quay cranes (QC) assigned to a vessel do not vary along allthe
moored time. Moreover, all QC do the same number of movements by unit
time (movsQC).

45



• All the information related to the waiting vessels is known in advance.

• Every vessel has a draft lower or equal than the quay.

• Mooring and unmooring are no time consuming.

• Simultaneous berthing is allowed.

Therefore, in order to allocate one vessel at berth, the following constraints
must be accomplished:

• Moored time must be at least the same that its arrival time:

m(Vi) ≥ a(Vi)

• There is enough contiguous space at berth to moor the vessel (l(Vi)).

• There is a security distance (secLength) between two moored ships: let’s
assume 5% of their lengths (the maximum of these two contiguous vessels).

• There must be at least one QC to be assigned to each vessel. The maximum
number of assigned QC by vessel depends on its length. This is due to the
fact that a security distance is required between two contiguous QC (secQC)
and the maximum number of cranes that the Container Terminal allows per
vessel (maxQC). Moreover, once a crane starts to work into a vessel, it must
complete it without any pause or shift (jobs non-preemptive). Thus, the han-
dling time ofVi is given by:

c(Vi)

q(Vi)× movsQC
(3.3)

The goal of the BAP is to allocate each incoming vessel according to the exist-
ing constraints by minimizing the total weighted waiting time of vessels:

Tw =
∑

i

w(Vi)
γ × pr(Vi) (3.4)

whereγ : (γ ≥ 1) is an adjustment factor to prevent that lower priority vessels
are systematically delayed. Note that this objective function is different to the
tardiness concept in scheduling. The weighted optimization of tardiness of vessels
would be:

Tt =
∑

i

w(Vi)× (d(Vi)− dueT ime(Vi)) (3.5)

Thus, the departure time of vesselsd(Vi)with respect to their due timesdueT ime(V i)
is optimized.
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3.3.2 BAP+dynamic QCAP

In this section, we present a new modelMh which modifies the previous one by
introducing the holds1 of the vessels into it. As holds are introduced in the model,
Mh is now based onDynamic QCAPmodel [52].

Dynamic QCAP assigns QCs to the holds of the vessels. Thus, once all the
movements of one hold are done, the QC can move to another location (another
hold in the same vessel or to other vessel). The notation, assumptions and con-
straints mentioned above remain valids, except for obtaining the handling time
corresponding to each vessel. The handling time will be explained later. Theopti-
mization function is also the same as in Equation 3.4.

Following, we introduce some more notation:

• h(Vi) : Number of holds intoVi. All vessels have the same length hold.

• cj(Vi) : Number of movements to load or unload containers from/into the
hold j, 1 ≤ j ≤ h(Vi).

• stj(Vi) : Starting time of working the QCj, 1 ≤ j ≤ q(Vi). Just one QC
can be assigned to one hold.

• htj(Vi) : Handling time of the QCj, 1 ≤ j ≤ q(Vi).

• hj(Vi) : Set of handling times of each hold assigned to the QCj, 1 ≤ j ≤
q(Vi).

Within the Container Terminals two other key factors are the ratio of berth
usage (Bu) and the quay cranes throughput (Tqc). Berth usage is obtained by means
of the Equation 3.9. It reflects the area held by vessels with respect to the maximum
area. The maximum area depends on the length of the quay (L) as well as the fisrt
mooring and the last departure of the incoming vessels.

firstArrival← min
i
(m(Vi)) (3.6)

lastDeparture← max
i

(m(Vi)) (3.7)

Bu ←
∑

i

l(Vi)× (d(Vi)−m(Vi)) (3.8)

Bu ←
Bu

L× (lastDeparture− firstArrival)
(3.9)

Tqc depends on the model for the QCAP we consider. Static QCAP model
calculatesTqc by means of Equation 3.10 taking into consideration that one QC
remains at the same vessel until it departs. Thereby, all the QCs are busythe same
time although they are idle (shaded area in Figure 3.6(a)).

1The holds are the spaces of the container vessels where containers arestored.
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Tqc ←
∑

i

q(Vi)× (d(Vi)−m(Vi)) static (3.10)

Tqc ←
∑

i

∑

1≤j≤q(Vi)

htj(Vi) dynamic (3.11)

However, Dynamic QCAP model, which uses Equation 3.11, considers that
once one QC finishes its job at one hold, it can move to another location. Therefore,
the time for each QC is only its service time (shaded area in Figure 3.6(b)).

1

(a) Static QCAP

1

(b) Dynamic QCAP

Figure 3.6: Differences to calculateTqc

The fact of taking into consideration the holds (h(Vi)) of each vessel in our
model allows better use of the resources (QCs and berth). Figure 3.7 shows both
approximations. In this figure, each bold rectangle represents the time that one QC
is working on a hold.

On the one hand, when one QC is assigned to one vesseli in Figure 3.7(a), this
can not be moved to another vesselj until i leaves the Container Terminal. On the
other hand, in Figure 3.7(b) the concept of holds is introduced. Once a QC finishes
its job related to one hold in the vesseli, it could keep working on another hold of
the same vessel or move to another vesselj. Thereby, the latter scheduling gets a
departure time of the last vessel (TLD) earlier than the former scheduling (from the
unit time 12 to 9); the waiting time (Tw) is also reduced (from 26 to 13) and the
berth usage rate (Bu) is increased as well (around 20%). Finally, Dynamic QCAP
gets that more QCs are used per unit time than static QCAP, and the total time that
the QCs are tied to one vessel (Tqc) is also reduced.

3.4 Mooring one vessel

Once all the parameters are defined, we present the functionmoorVessel(Algo-
rithm 12) used to get moored one vesselVi in a given timet (the required data are:
v: Vessel for allocating;Vin: set of vessels already moored). These algorithms are
written following theMh model (Section 3.3.2).

In this mooring process, three steps are distinguished (Figure 3.8):
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Figure 3.7: Approximation using or not the holds of the vessels

1. Check if there are available QCs during the handling time ofVi (Algorithm
13).

2. Make sure there is enough continuous length at the berth to moorVi (Algo-
rithm 15).

3. Assign more cranes when it is possible (Algorithm 16) (only for dynamic
model, Section 3.3).

The main differences between the two models described in previous sections
are:

• how the handling time is calculated. Algorithms for theMv model are de-
scribed in [53]; and

• Mv does not carry out the adding cranes phase.

Algorithm 13 presents how to obtain the number of QCs. As we have men-
tioned above, in this chapter we consider that each QC is assigned just to one hold.
In order to do this, we distribute the holds of one vessel (h(Vi)) into the different
cranes by the Algorithm 14.

After determining this first number of QCs, we must check if there is enough
continuous length (Algorithm 15). At this moment, the distance security length
between two contiguous vessels is taken into account (secQC). Furthermore, the
given berthing position will be as close to the ends of the berth as possible.

Then, if the vesselVi has available QCs and length to get moored at the time
t, it is tried to assign more QCs. This process is carried out in Algorithm 16. This
is based on obtaining the period of time in which there is at least one available QC
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insertVessel (Algorithm 2)

Allocating one vessel at time t

positionBerth (Algorithm 4)

Determine the position of Vi at the 

berth

moorVessel (Algorithm 1)

Allocating one vessel in the berth

handlingTime (Algorithm 3)

Time spent by Vi at berth.

Distribute the holds among the 

available QC

addingCranes (Algorithm 5)

Insert another QC to Vi

Figure 3.8: Application order of the algorithms presented

Algorithm 12 : Function moorVessel. Allocating exactly one vessel in the
berth.

Data: v vessel to moor;Vin elements.
if |Vin| = 0 then

cranes← max
(

1,min
(

maxQC,floor
(

l(v)
secQC

)))

;

tf ← t+ handlingTime(v, nc);
m(v)← t;
d(v)← tf ;
q(v)← cranes;
pos(v)← 0;
Vin ← Vin ∪ v;

else
inst← insertV essel(v, a(v), Vin);
if !inst then

T ← stk(vj) + htk(vj) | vj ∈ Vin, 1 ≤ k ≤ q(vj) ∧ stk(vj) + htk(vj) > a(v);

while tk ∈ T ∧ !inst do
inst← insertV essel(v, tk, Vin);

end
end

end

from m(Vi) until d(Vi), and then setting a new QC to the ship if there is any hold
in which there is no QC working yet. Thus, we can reduce the departure time of
this vessel.

Finally, if the vesselVi can not be moored at this timet, the whole process
described above is repeated taking into consideration other time (tk) to moorVi

(Algorithm 12). Each timetk represents each time one crane has finished working
on the hold of the others vessels.

3.5 A meta-heuristic method for BAP+QCAP

From the methods explained above, we have developed different methodsfor solv-
ing BAPs. Firstly, we applied the simplest solution for bothMv andMh models,
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Algorithm 13 : Function insertVessel. Allocating one vessel in the berth at
time t

Data: Vi: Vessel for allocating;t: actual time;Vin: moored already vessels;
Result: Vi could moor;

Lavail ← L−
(

∑

vj∈Vin
l(vj) |m(vj) ≤ t ∧ d(vj) > t

)

;

if Lavail ≤ l(Vi) then
return false;

end
cranes← −1;
cranesm ← −1;
repeat

nc← max(1, cranes);
tf ← t+ handlingTime(Vi, nc);

cranesm ← nc;

cranes← max
(

1,min
(

maxQC,floor
(

l(Vi)
secQC

)))

;

/* Vessels which coincide with Vi */
W ← v ∈ Vin| d(v) > t ∧m(v) < tf ;
QCu ← cranesWorking(v, t),∀v ∈W ;
cranes← min(cranes,QC −QCu);
foreach i ∈W do

if m(i) ≥ t then
QCu ← cranesWorking(v,m(i)), ∀v ∈W ;
cranes← min(cranes,QC −QCu);

end
for j ← 1 to q(i) do

QCu ← cranesWorking(v, stj(i) + htj(i)), ∀v ∈W ;
cranes← min(cranes,QC −QCu);

end
end
if cranes ≤ 0 then

return false;
end

until cranesm = cranes ;

q(Vi)← cranesm;
m(Vi)← t;
d(Vi)← tf ;

insert← PositionBerth(Vi, Vin);

if insert then
addingCranes(Vi, Vin);

end

return insert;
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Algorithm 14 : Function handlingTime. Distribute the holds among the
available QC

Data: Vi: Vessel to allocate;nQC: number of QC;

T ← cj(Vi)/ movsQC, 1 ≤ j ≤ h(Vi);
/* Sort the values of T from top to bottom */

q(Vi)← nQC;
for j ← 1 to nQC do

stj(Vi)← m(Vi);
htj(Vi)← ceil(Tj);
hj(Vi)← {ceil(Tj)};

end
for j ← nQC + 1 to h(Vi) do

/* Choose the QC which ends earlier */
qm ← argmin(stj(Vi) + htj(Vi), 1 ≤ j ≤ nQC);

hqm (Vi)← hqm (Vi) ∪ Tj ;
htqm (Vi)← htqm (Vi) + ceil(Tj);

end

return max(stj(Vi) + htj(Vi)), 1 ≤ j ≤ q(Vi);

following the FCFS criteria:∀i,m(Vi) ≤ m(Vi+1). A vessel can be allocated at
time t when there is no vessel moored in the berth or there are available contiguous
quay length and cranes at timet (Algorithm 17).

Just for theMv model (Section 3.3), we also have implemented a complete
search algorithm for obtain the best (optimal) mooring order of vessels: thelowest
Tw (lower bound of the cost function). This algorithm uses the functionsmoorVes-
sel (Algorithm 12) to allocate one vessel from its arrival time (Section 3.4). The
lowestTw is obtained by checking each possible order of the incoming vessels.

The next developed method is a meta-heuristic GRASP algorithm for Berth
Allocation and Quay Crane Assignment Problem (Algorithm 18). This method has
been developed for bothMv andMh models. This is a randomly-biased multistart
method to obtain optimized solutions of hard combinatorial problems in a efficient
way. The parameterδ (0 ≤ δ ≤ 1) allows tuning of search randomization.

This algorithm receives as parameters both theδ factor and the set of vessels
Vout waiting for mooring at the berth. Firstly, all the waiting vesselsVout are
considered as candidatesC. Each of the candidate vessels is moored within the
current state (being assigned the mooring and departure times (m(Vi),d(Vi)), the
number of QCs (q(Vi)) and the berthing position (pos(Vi))) and they are valued
according to the cost functionfc. This cost function is the sum ofTw that each
vessel causes to the rest of unmoored vessels.

According to the cost functionfc, a restricted candidate list (RCL) is created.
Then, one vesselv is chosen to be definitely moored by following the random
degree indicated byδ factor. Oncev is determined, this is added to the set of
vesselsVin and eliminated from the candidate listC. This loop is repeated untilC
is empty, that is, all the vessels are moored.

As metaheuristic GRASP indicates, this search is repeated according to the
number of iterations specified by the user. Thus, the best solution according toTw
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Algorithm 15 : FunctionPositionBerth. Determining the position of the
vessel in the berth

Data: Vi: Vessel to allocate;Vin: moored vessels.
Result: Vi could moor (by length).
W ′ ← v ∈ Vin| d(v) ≤ m(Vi) ∧m(v) ≥ d(Vi);
W ← Vin −W ′;
sortByPositionBerth (W);

/* Position occupied by the moored vessels */
busy = {0};
lengths = {0};
foreachv ∈W do

busy = busy ∪ {pos(v)};
lengths = lengths ∪ {l(v)};

end
busy = busy ∪ {L};
lengths = length ∪ {0};

minDistance← +∞;
posBerth← 0;
assigned← false;
/* Examining each gap between the vessels */
for i← 1 to |busy| − 1 do

dLeft← lengths[i]× secLength;
dRight← lengths[i+ 1]× secLength;
dV essel← l(Vi)× secLength;

dLeft← max(dLeft, dV essel);
dRight← max(dRight, dV essel);
free← (busy[i+ 1]− dRight)− (dLeft+ (busy[i] + lengths[i]));

/* Choose the berthing position closer to the ends of the berth */
if free ≥ l(Vi) then

assigned← true;
if minDistance > (busy[i] + lengths[i] + dLeft) then

minDistance← busy[i] + lengths[i] + dLeft;
posBerth← minDistance;

end
if minDistance > (L− (busy[i+ 1]− dRight)) then

minDistance← L− (busy[i+ 1]− dRight);
posBerth← L− (minDistance+ l(Vi));

end
end

end
if assigned then

pos(Vi)← posBerth;
return true;

end
return false;
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Algorithm 16 : Function addingCranes. Insert another QC toVi

Data: Vi: Vessel to allocate;Vin: moored vessels;
// Set of vessels which are moored at the same time than Vi

W ← v ∈ Vin | d(v) > a(Vi) ∧ m(v) < d(Vi);

// T is the set of berthing and ending times of each QC from W
T ← m(v) | v ∈W ∧ m(v) ≥ t;
T ← T ∪ {stj(v) + htj(v) | v ∈W, 1 ≤ j ≤ q(Vi) ∧ (stj(v) + htj(v)) < m(Vi) ∧

(stj(v) + htj(v)) ≥ d(Vi)};
// The values of T must be sorted from bottom to top

// Obtain the time [start, end] that at least there is 1 available QC
continue← false repeat

start← −1; end← −1;
foreach t ∈ T do

Qu ← cranesWorking(v, t), ∀v ∈W ;
if |Qu| > 0 then

if start = −1 then
start← t; end← −1;

end
else

if start 6= −1 then
end← t;

end
end
if start 6= −1 ∧ end 6= −1 then

// Find a hold whose handling work is lower than end− start
// last(hj(Vi)) is the last hold assigned to this QC

// Handling time of the hold
H ← max(last(hj(Vi))), 1 ≤ j ≤ q(Vi) ∧ last(hj(Vi)) < (end− start);

// QC which carries out this hold
k ← argmax(last(hj(Vi))), 1 ≤ j ≤ q(Vi) ∧ last(hj(Vi)) < (end− start);

// QC which finishes at start time
m← j | 1 ≤ j ≤ q(Vi) ∧ stj(Vi) = start;

if H 6= ∅ then
continue← true;
// Delete the hold from the first QC
hk(Vi)← hk(Vi)−H;
htk(Vi)← htk(Vi)−H;
// Add this hold to the new QC
if m 6= ∅ then

k ← m; // Choosing a QC already assigned to Vi

htk(Vi)← H;
hk(Vi)← hk(Vi) ∪ {H};

else

if |hk(Vi)| > 0 then
k ← q(Vi) + +; // A new QC is moved to Vi

end
stk(Vi)← start;
htk(Vi)← htk(Vi) +H;
hk(Vi)← {H};

end
end

d(Vi)← max(stj(Vi) + htj(Vi)), 1 ≤ j ≤ q(Vi);

start← −1; end← −1;
end

end
until !continue ;
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Algorithm 17 : Allocating vessels following FCFS policy
Data: V : set of ordered incoming vessels;
Result: Sequence forV ;
Vlast ← ∅;
Vm ← ∅;
foreachVi ∈ V do

t← max(m(Vlast), a(Vi));
inst← insertV essel(Vi, t);
if !inst then

T ← stk(vj) + htk(vj) | vj ∈ Vin, 1 ≤ k ≤ q(vj) ∧ stk(vj) + htk(vj) > t;
while tk ∈ T∧!inst do

inst← insertV essel(Vi, tk);
end

end
Vlast ← Vi;
Vm ← Vm ∪ Vi;

end

Algorithm 18 : Grasp metaheuristic adapted to BAP
Data: δ factor;Vout elements;b: state of the berth
Result: Solutions
Vin ← {};
C ← Vout;
while C 6= ∅ do

foreachve ∈ Vout do
fc(ve)← 0;
b′ ← b;

moorV essel(ve, Vin);
V ′

in ← Vin ∪ ve;
foreachvo ∈ Vout| vo 6= ve do

moorV essel(vo, V ′

in);
fc(ve)← fc(ve) + (w(vo)× pr(vo));

end
end

cinf ← min{fc(e)| e ∈ C};
csup ← max{fc(e)| e ∈ C};

RCL← {e ∈ C|fc(e) ≤ cinf + δ(csup − cinf )};

v ← random(RCL);
moorV essel(v, Vin);

update(b) ; /* state of the berth b with v moored */

Vin ← Vin ∪ v;
C ← C − v;

end

is returned as the solution for the BAP.

This metaheuristic process does not include a local search technique since it
would involve testing the possible exchanges between the already orderedvessels,
so that the computational cost would be increased considerably.
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3.6 Evaluation

In this section, we evaluate the behavior of the three methods presented. The ex-
periments were performed on instances given by the port operators. These instance
are composed on 20 vessels with an exponential distribution of arrivals and all
needed factors are fixed (length, draft and moves). Moreover, port operators gave
us instances with two different inter-arrival distributions:Sparmeans that the ar-
rival among vessels is sparsely distributed meanwhileDensmeans that the arrival
among vessels is densely distributed.

As we mentioned above, our goal is to minimize the total waiting time elapsed
to serve the set ofn vessels. All the experiments carried out were solved on a
personal computer equipped with a Core 2 Quad Q9950 2.84Ghz with 3.25Gb
RAM.

Considering theMv model, (see table 3.1) the times of employing the complete
search against the GRASP method with 1000 iterations is presented. As it can
be observed, a complete search is impracticable for 13 vessels (approximately 7
hours). However, our GRASP method takes around 15 seconds to solvea schedule
of 20 vessels.

Table 3.1: Computing time elapsed in milliseconds (ms.)

Number Complete GRASP

5 <1 203
10 38110 1486
11 334441 1734
12 2689831 2234
13 26063570 3219
14 · · · 3907
15 · · · 5203
20 · · · 14954

Table 3.2 shows the averageTw (with γ = 1) of 100 instances using FCFS and
complete search methods described above with two different inter-arrival distribu-
tions. Through these data, it can be observed that FCFS method results a schedule
which is far away from the best one.

Table 3.2:Tw for sparsely/densenly distributed Vessels

Vessels FCFS Complete

5 - Spar 27.67 13.93
10 - Spar 91.06 43.07
5 - Dens 52.79 32.83
10 - Dens 274.00 156.61
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The rest of the experiments will be based onMh model. The next experiments
compare our GRASP method against the FCFS criteria, using 100 instances with
the former inter-arrival distributions. Figure 3.9 and Figure 3.10 show theaverage
values for the metric function for the two methods to allocate 10 vessels. It can
be observed that the solutions given by our GRASP method always outperformed
the FCFS solution, mainly forδ ∈ [0.3 − 0.5] in densely distributed vessels and
δ ∈ [0.3− 0.4] for sparsely distributed ones.

320

340

360

380

400

420

440

460

480

T
w

Static FCFS

Static Grasp

Dyn FCFS

Dyn Grasp

280

300

320

340

360

380

400

420

440

460

480

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

T
w

Factor δ

Static FCFS

Static Grasp

Dyn FCFS

Dyn Grasp

Figure 3.9:Tw for 10 vessels with densely distributed inter-arrival times.
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Figure 3.10:Tw for 10 vessels with sparsely inter-arrival times.

Furthermore, Figure 3.11 shows theTw values for 10 incoming vessels. It
can be observed as the number of iterations increased the quality of our GRASP
method also increased. For instance, forδ = 0.4, Tw = 303.03 with 100 iterations
meanwhileTw is decreased to280.8 with 400 iterations.

In Figure 3.12 and Figure 3.13, the same evaluation is carried out for 20 vessels.
It can be observed the same tendency than in Figure 3.9 and Figure 3.10, whereδ ∈
[0.1−0.2] got the lowest values for both inter-arrival time distributions. Moreover,
GRASP reduces around20 − 30% the averages values ofTw with respect to the
obtained by the FCFS criteria.
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Figure 3.12:Tw for 20 vessels with densely inter-arrival times.

The last experiments also show how the Dynamic QCAP model always out-
performs the static one. For instance, taking into account 20 incoming vessels and
δ = 0.2 in Figure 3.13, the value ofTw is 255.43 and374.87 for dynamic and staic
QCAP model respectively.
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Figure 3.13:Tw for 20 vessels with sparsely inter-arrival times.
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Figure 3.14 shows the evolution of FCFS when the number of incoming ves-
sels with the static QCAP (solutions that would be provided by terminal opera-
tors) against GRASP considering Dynamic QCAP solutions. It is remarkable, the
greater the number of incoming vessels is, the better the GRASP solutions.
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Figure 3.14:Tw varying the number of incoming vessels.

This metaheuristic search has been also applied to real-data given by portop-
erators from MSC. Figure 3.15 shows that our grasp metaheuristic achieves better
results than FCFS method as the examples studied above. Factorδ ∈ [0.1 − 0.2]
gets the bestTw for 15 incoming vessels, and in the case of 10 vessels the best
factor isδ ∈ [0.3− 0.4].
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Figure 3.15:Tw for real-data obtained given by port operators.

Following the same experiments as mentioned before, Figure 3.16 shows the
relationship between berth usage and the weighted waiting timeTw taking into
account 15 incoming vessels. We can directly confirm that the lowerTw is, the
greater berth usage.

Finally, Table 3.3 shows that considering holds in the model (Dynamic QCAP),
the throughput of the QCs is improved considerably. In other words, QCsspend
less time in order to do the same amount of movements. Therefore, Dynamic
QCAP model allows better use of the QC, since they can be used in other vessels
immediately.
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Figure 3.16: Relationship between ratio of berth usage andTw (15 incoming ves-
sels)

Table 3.3: Average time of the QC that they are busy (15 vessels with densely
inter-arrival times)

Number of Vessels Static QCAP Dynamic QCAP

10 233.85 202.02
15 351.15 303.08
20 453.44 406.68

3.7 Conclusions

In this chapter, we present a new process to allocate berth space for a number of
ships using a GRASP metaheuristic. This process also adds the Quay CraneAs-
signment Problem into a model that takes into account the holds of each incoming
vessel. This method has been compared to the actual scheduling method employed
in Container Terminals. It is observed how it can reduce the waiting time, the
berth utilization and throughput of QCs. Thereby, we state that the method used
in Container Terminals can be improved by using our different metaheuristics, for
instance GRASP.

The above experiments show that:

• the greater the number of vessels to schedule is, the more significant the
difference between GRASP and FCFS criteria, and

• the berth usage is directly proportional to total weighted waiting time (Tw).
It means, the lower theTw is, the lower the berth usage.

In this chapter, we also present a model where the basic unit to assign QCsis
each one of the holds of the incoming vessels. This model gets better results than
the former model, whose basic unit is the own vessel. The reason is that QCscan
be employed in an efficient manner, moving each time they finish their job at one
hold.
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Chapter 4

Integration BAP, QCAP and
CStackP

4.1 Introduction

The efficient management of containers in port requires more analysis and devel-
opment to ensure reliability, delivery dates or handling times in order to improve
productivity and container throughput from quay to landside and vice versa. Ex-
tensive surveys are provided about operations at seaport container terminals and
methods for their optimization [69, 66]. Moreover, other problems are faced on
planning the routes for liner shipping services to obtain the maximal profit [9].
Another important issue for the success at any container terminal is to forecast
container throughput accurately [6]. Thus, they could develop better operational
strategies and investment plans.

The main research on optimization methods in container terminals are related
to reduce the berthing time of vessels. This objective generates a set of interrelated
problems such as berth allocation, yard-side operation, storage operation and gate-
house operation. Usually, each one of these problems is managed independently
of others due to their exponential complexity. However, these problems areclearly
interrelated so that an optimized solution of one of them restrings the possibility of
obtaining a good solution in another.

In this chapter, we focus our attention on three important and interrelated prob-
lems: the Berth Allocation Problem (BAP), the Quay Crane Assignment Problem
(QCAP) and the Container Stacking Problem (CStackP) (see Figure 4.1).Briefly,
the BAP and QCAP consist on the allocation of docks and quay cranes to incom-
ing vessels under several constraints and priorities (length and depth ofvessels,
number of containers, and so on). On the other hand, when a vessel berths, export
containers stacked to be loaded in the vessel should be on top of the stacksof the
container yard. Therefore, the CStackP consists on relocating the containers so that
the yard crane does not need to do re-handling work at the time of loading.These
two problems are clearly related: an optimal berth allocation plan may generate a
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large amount of relocations for export containers; meanwhile a suboptimalberth
allocation plan could require fewer rearrangements.

The Berth Allocation 

Problem

:

Quay 

Assignment 

Problem

The Container 

Stacking Problem

Figure 4.1: Integrated Remarshalling, Berthing and Quay Crane allocation prob-
lems in Maritime Terminals.

In order to provide a computer-based decision support system, we integrate a
set of intelligent techniques for solving these problems concurrently in order to
achieve a mixed-solution that combines optimization of BAP, QCAP and CStackP
[57, 56, 61, 62]. To this end, we integrate the solutions obtained by the developed
methods in previous chapters:

• the heuristically-guided planner for generating a rehandling-free intra-block
remarshalling plan for container yards (CStackP problem) presented in Chap-
ter 2; and

• the GRASP metaheuristic approach for solving the BAP and QCAP as an
independent problem (Chapter 3).

With this data, terminal operators should ultimately decide in each scenario which
solution is the most appropriate in relation to a multi-objective function: to min-
imize the waiting times of vessels and to minimize the amount of relocations of
containers.

These techniques will be very useful for terminal operators due to berthalloca-
tion is especially important in case of ship delays. A new berthing place has to be
allocated to the ship whereas containers are already stacked in the yard [66] and a
remarshalling plan remains necessary to minimize the berthing time.
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4.2 Integrating BAP, QCAP and CStackP

As we have pointed out, both the CStackP and the BAP+QCAP are well-known
problems and several techniques have been developed to solve them in anindepen-
dent way. However, few systems have been developed to relate and optimize both
problems in an integrated way. Some works consider berth and yard planning in
a common optimization model [1][5][14], but they are mainly focused on storage
strategies. Moreover, only some works integrate the BAP with the QCAP. Giallom-
bardo et al. [17] try to minimize the yard-related house-keeping costs generated by
the flows of containers exchanged between vessels. However, there also exists a
relationship between the optimization of maritime and terminal-sides operations
(BAP, QCAP, CStackP, etc.).

Figure 4.2 shows an example of three berth allocation plans with the corre-
sponding quay crane allocations and a block of containers to be loaded in the
vessels. Containers of type A, B and C must be loaded in vessels A, B and C,
respectively. In the first berth allocation plan, the order of vessel is A-B-C and
the quay crane allocation is two cranes, three cranes and one crane, respectively.
The second berth allocation plan is C-B-A. In this case the quay crane allocation is
three, two and one, respectively. Finally, the third berth allocation plan is B-C-A
and two quay cranes are allocated to all vessels. Each configuration generates a dif-
ferent waiting time for berthing and different handling times, and the port operator
probably selects the best solution to optimize these (BAP and QCAP) problems.
However the best solution of these two problems could generate a large number
of reshuffles in the yard so the question is straightforward: what is a better solu-
tion? Perhaps a solution that optimizes the BAP+QCAP could not be the more
appropriate for the CStackP (and vice versa).

B CA

BC A

B C A

BA C

Figure 4.2: Different alternatives of BAP and QCAP.

Given a waiting queue of vessels to be allocated and a given state of the con-
tainers in the container yard, each solution for the BAP+QCAP (SBAPi: a feasi-
ble sequence of mooring andSQCAPi: a feasible quay crane allocation), requires
a different number of container’s relocations in the associated CStackP solution
(SCStackPi) in order to put on top the containers to be loaded according to the
order of berthing. We can associate a cost to eachSBAPi + QCAPi related to
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the total weighted waiting time and handling time of vessels of this berthing or-
der (Tw). Likewise, we can associate a cost to eachSCStackPi as the number of
required container relocations. Therefore, we can qualify the optimality ofeach
global solution (Soli) of BAP+QCAP and CStackP as a lineal combination of the
quality of each partial solution:

Cost(Soli) = α ∗ Cost(SBAPi + SQCAPi) + β ∗ (SCStackPi) (4.1)

The best decision will depend on the policy of each maritime terminal (α and
β parameters). The data flow diagram of the Integrated System Functioning can
be seeing in Figure 4.3. Firstly, the BAP, QCAP and the CStackP data are loaded
in the integrated system. Next, the BAP+QCAP is solved to achieve a solution
(SBAPi+QCAPi) based on their constraints and optimization criteria. Then, the
CStackP is estimated by taken into account the berthing order of vessels obtained
in SBAPi + QCAPi. This estimator returns the number of reshuffles needed
to achieve a solution. After this step, the cost of the global solution (Soli) can
be calculated by using the previous expression 4.1. By iterating this integrated
process, the operators can obtain a qualification cost of each feasibleSoli, as well
as the best global solution, according the givenα andβ parameters. A branch and
bound method has been also applied in the integrated search for the best global
solution (Soli), so that the search can be pruned each time the current solution
does not improve the best solution found so far. Finally, once the best solution is
obtained, the CStackP planner is carried out to obtain the specific movements for
all remarshalling tasks. This plan is sequentially obtained for each vessel according
to the solution obtained inSBAPi+QCAPi and the current state of the container
yard. Thus, the optimized remarshalling plan for the berthing order of vessels of
SBAPi is obtained.

After defining the Container Stacking Problem in Chapter 2 and Berth Alloca-
tion Problem together with Quay Crane Assingment Problem in Chapter 3 we can
achieve a global solutionSoli as it appears in Figure 4.3.

4.3 Evaluation

In this section, we evaluate the behavior of the integrated system in random in-
stances. We randomly generated scenarios consisting of a set of 10 vessels for
berthing. Each vessel must loadC containers randomly from the container yard.
The yard was composed of 170 containers so that it remained empty once theves-
sels were loaded. For each problem, we generated 10 random instanceswith a
different configuration of containers in the yard.

For this first experiment, we applied the Algorithm 18 to obtain the best 10
schedules for the incoming vessels. To solve the Container Stacking Problem, the
domain-dependent planner with the heuristic (Algorithm 1) was employed.
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Figure 4.3: Data flow diagram of the Integrated System Functioning.

Figure 4.4 shows the combined function cost Cost(Soli), introduced in Equa-
tion 4.1 which relates for ten different scenarios:

• The normalized total weighted waiting time of vessels, Cost(SBAPi), and

• The number of its required container relocations, Cost(SCStackPi).
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Figure 4.4: Relating the costs of BAP+QCAP and CStackP.

In each one of this ten cases, the arrival times and data of vessels, as well as
the initial state of the container yard, have been randomly generated. Figure 4.4
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represents the combined function cost, Cost(Soli) with three different weights of
the parametersα andβ. We can see that better (or worst) berthing orders can
require larger (or smaller) number of container relocations. For instance, with
α = 0.5, β = 0.5 the best choice is the sixth schedule. It does not get the best
solution for BAP+QCAP, however it corresponds to the schedule with the smallest
number of container relocations (CStackP).

4.4 Conclusions

The Container Stacking Problem and the Berth Allocation Problem with the Quay
Crane Assignment Problem are three important and related problems in maritime
container terminals. In this chapter, we have presented an integrated system to
manage these problems in a coordinated way. To this end, the developed solutions
in the last chapters for each one of the problems are combined in our integrated
system. Thus, terminal operators can be assisted to decide the most appropriated
solution in each particular case. Furthermore, the system presented in this chap-
ter could assist container terminal’s operators to simulate, evaluate and compare
different feasible alternatives to the same state of the yard and arrival of the ships.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The increase in the traffic of containers in the world makes necessary the construc-
tion of larger vessels by liner shippings. Therefore, Container Terminalsmust offer
competitive services to ensure the lowest berthing time for these vessels. Because it
is considered that the time a vessel spends moored at the terminal is nonproductive.

Thus, in this Master Thesis several artificial intelligence techniques have been
applied to achieve optimal solutions to different combinatorial problems of Con-
tainer Terminals (Figure 1.7). We have presented a domain-dependent heuristic
planner for the Container Stacking Problem, specifically for the remarshalling
problem. Next, we have developed a new metaheuristic solution for the Berthing
Allocation Problem and Quay Crane Allocation Problem. And finally, we pre-
sented how to interrelate these two approximations in order to achieve an optimized
solution for both problems.

Firstly, our domain-dependent planner is able to reduce the number of move-
ments needed to put all the outgoing containers at top of the stacks or underanother
outgoing containers. It is able to handle real-world requirements, for instance bal-
anced stacks or the existence of dangerous containers. And, it can get solutions for
a whole block of containers. Furthermore, since this process needs a lotof com-
putation time, an analytical formula was derived from the data in order to estimate
the number of reshuffles for a given state of the yard.

The developed model in order to schedule incoming vessels gets plans which
are near optimal solutions. Our model is based on the metaheuristic Grasp which
introduces a random factor to get optimized solutions. For this problem, thereare
two remarkable points:

• The greater the number of incoming vessels, the greater the benefits to this
metaheuristic model.

• How the berth usage is directly proportional to the total weighted waiting
time.
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And finally, we pointed out how these three issues (BAP, QCAP and Container
Stacking Problem) are interrelated and we proposed an architecture to solve them
in an efficient way. The best solution for berthing the incoming vessels might
not offer an ordering which minimizes the number of reshuffles of the container
yards. Therefore, an optimized global solution is a trade-off between these different
problems.

With these provided solutions could assist container terminal’s operators to
simulate, evaluate and compare different feasible alternatives to the same initial
states. For instance, evaluating the fact of using a different number of Quay Cranes
at the berth, varying the maximum number dedicated by vessel or assessingseveral
stacks configurations as allowing stack more containers (4, 5 or more tiers).

Summarizing, the next contributions have been presented in this work:

• A domain-dependent planner guided by a heuristic for the Container Stack-
ing Problem.

In addition, we have added real-world requirements to this planner:

– Leave the outgoing containres near truck position.

– Allow different heights.

– Dangerous containers.

– Balance one yard-bay and the whole container blocks.

• A domain-dependent planner to solve container blocks efficiently according
to their number of outgoing containers.

• An analytic formula to estimate the number of reshuffles of one yard-bay.

• Berth Allocation and Quay Crane Allocation Problems have been solved by
a model based on GRASP metaheuristic.

Two approaches are studied depending on how Quay Cranes are allocated:

– To vessels, calledstatic QCAP.

– To holds of vessels,dynamic QCAP.

• An efficient system to integrate the problems related to the storage yard (re-
marshalling) and the quay side (loading/unloading containers).

5.2 Future work

Although there have been studied these problems in the literature, there are still
some open problems related to the Container Terminals.

In this work, we addressed the BAP and QCAP problems, but another impor-
tant issue where quay cranes are involved is the Quay Crane SchedulingProblem
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(QCSP). QCSP consists on determining the sequence of unloading/loading tasks
assigned to each Quay Crane so that the completion time of a vessel tasks is mini-
mized.

Related to the Container Stacking Problem, remarshalling problem is an op-
tion when there is enough time in order to prepare the container yard for the next
vessel. However, when it is not possible, this problem and also our planner, should
be adapted to achieve that all the outgoing containers are loaded onto the vessel
minimizing the number of reshuffles during the pickup operation.

Other problems that have not been studied in this work and could be faced are
for instance planning the routes for liner shipping services to obtain the maximal
profit [9], or routing all the manned and automated vehicles of a Container Ter-
minal in a coordinated way, e.g. AGV, Quay Cranes and RMGs in order to avoid
deadlocks.

This last issue, about the automated vehicles in Container Terminals, could also
be studied as a part of a system. A system which involves the problems studiedin
this work (BAP, QCAP and CStackP) as well as the routing of these vehicles.

5.3 Related publications

In this section, it is shown a list of published publications to conferences and jour-
nals. For each one of them, JCR ranking (in case of journals) or CSC/CORE rank-
ing (in case of conferences) is showed.
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Advanced Engineering Informatics, 2010 (JCR: 1.73).
DOI: 10.1016/j.aei.2010.10.001

• M. A. Salido, M. Rodriguez-Molins and F. Barber.
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