

BUSINESS PROCESS-BASED

REQUIREMENTS SPECIFICATION

AND OBJECT-ORIENTED

CONCEPTUAL MODELLING

OF INFORMATION SYSTEMS

Jose Luis de la Vara González

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy in Computer Science

Advisor: Dr. Juan Sánchez Díaz

July 2011

Reviewers

Björn Regnell (Lunds Universitet, Sweden)

Jaelson Castro (Universidade Federal de Pernambuco, Brazil)

Paolo Giorgini (Università degli Studi di Trento, Italy)

Evaluation committee

Óscar Pastor (Universidad Politécnica de Valencia, Spain)

Xavier Franch (Universitat Politècnica de Catalunya, Spain)

Paolo Giorgini (Università degli Studi di Trento, Italy)

João Araújo (Universidade Nova de Lisboa, Portugal)

Nelly Condori (Universiteit Twente, Netherlands)

Arantza Illarramendi (Universidad del País Vasco, Spain) (subs.)

José Hilario Canós (Universidad Politécnica de Valencia, Spain) (subs.)

To my parents and siblings,

for their unconditional support and encouragement.

And to my nephew,

for the immense happiness that has brought to our lives.

Preface

“The only place where success comes before work is in the dictionary”

Donald Kendall

Even though it may sound pretentious, this dissertation represents much

more that a common PhD thesis. It is a summary of around six years of

work and research on development of a business process-based

requirements engineering approach for OO-Method.

The subject initially seemed straightforward, but it turned not to be

so. Much work has been necessary until defining the current state of the

main contribution of this thesis: a methodological approach for business

process-based requirements specification and object-oriented conceptual

modelling of information systems.

The methodological approach has been modified, tuned, changed

again, extended… several times, maybe too many times. Some times to

mitigate some weakness, and others to take advantage of possible

improvements. Some times a step forward was taken, and later two steps

backward had to be taken. It has not been an easy journey.

As a result of the evolution of the work on the target subject, there

exist a clear relation between the final project of my 5-year degree

(Derivation of requirements models from organizational models), my

MSc thesis (Requirements elicitation for information systems from

business processes and goals) and this PhD thesis. Several mechanisms

and guidance have been proposed and evaluated for the last six years in

order to develop a business process-based requirements engineering

approach for OO-Method, and some of them have been discarded in the

journey.

Anyway, the lessons learned from the “mistakes” made until

finishing this thesis have been very important to increase the quality and

soundness of the current methodological approach, as well as to find the

research path that I would like to follow.

Furthermore, research on business process modelling and on

requirements engineering has evolved for the last six years, thus the

methodological approach has also been affected by such evolution. In

this sense, works from other researchers have influenced on the

development of the methodological approach of the thesis, which has

adopted and adapted ideas, mechanisms and principles from other

works when necessary and possible.

The methodological approach presented must not be regarded as a

finished and stable work. For sure it will continue evolving as new

challenges and needs are found in business process-based requirements

specification and object-oriented conceptual modelling of information

systems.

Lastly, although developing and finishing a PhD thesis has been very

hard sometimes, my family background on farming (including business

processes) and effort to achieve difficult objectives has made me realize

that I should not complain about such hardness. I just have to think about

the work that many people (e.g., my grandparents) have and have had to

perform to earn a living, especially in uneasy social and economic

situations.

Valencia, May 2011 Jose Luis de la Vara González

Acknowledgements

Becoming PhD is a very long journey. Nonetheless, as any long journey,

it will not be tiresome if you find the adequate people with whom to

share the journey. In my case, I have found many people for the last five

years (since I finished my degree in computer engineering) that have

made this journey not only possible or more bearable, but also fun and

exciting. I knew many of them before starting the journey, and others

have appeared unexpectedly and fortunately.

The main guilty of this thesis is Juan Sánchez. If someone should be

punished for the thesis, that is him. He gave the opportunity to join his

research team in my last degree year and has guided me wisely (I hope)

to the goal that this thesis represents. The thesis would have never been

possible without his advice, lessons, support, trust, friendship and

eventual patience.

Probably the main accomplice of Juan’s crime is Óscar Pastor. His

enthusiasm and passion have soaked into many colleagues and as well as

into me, as if the “MDD umbrella” was not effective to cover people. His

work makes the members of ProS feel proud to be part of it.

Furthermore, the crime has not only taken place in Spain. People

from other countries have played a relevant role in this thesis. I have to

thank Professors Björn Regnell and Paolo Giorgini for giving me the

chance to stay in Lund University and University of Trento, respectively,

during the development of this thesis. The experience and knowledge

that I gained in Sweden and Italy have definitely had a very positive

impact on my growth as a researcher and as a person.

The above people can be regarded as my research “bosses” during

the last five years, thus their influence on this thesis is direct and evident.

Nonetheless, becoming PhD is not only researching but also living and

sharing experiences with other people. Therefore, I have to thank more

people for their usually implicit and sometimes explicit support.

Enumeration of all the “non-boss” people that have helped me to develop

this thesis would require writing another dissertation, and I really do not

feel like it. I apologize if someone thinks that should be here but is not.

First of all (at least for closeness reasons), I have to thank all the

colleagues in the lab104 of DSIC: David Anes, David Melo, Diane,

Emanuel, Ignacio, Inés, Kevin, Luis, Marce, Mariam, Nathalie, Nelly,

Paco, Raúl, Sergio, Urko and Yeshica. They have had to stay beside me

much time, what can be difficult sometimes, and somehow I consider

them co-advisors in many aspects of my research and of my life. I

especially have to thank the rest of Juanetes for their work on

development of tool support for the thesis, Ignacio for translating the

abstract into Valenciano, and Paco for his help with MS Word.

At ProS, more colleagues have been important to develop this thesis.

I have to express my thanks to Bea, Fani and Giovanni, without whom

doctorate would have been much less fun and interesting. Clara, Isma,

María, Mario, Miriam, Nacho, Pablo and Salva have been an important

support to finish the thesis. It has been less hard (laughs have been usual

at job), and Miriam and Nacho also advised me about tool support. The

rest of current and former colleagues at ProS have had a direct or indirect

impact on the thesis too. I thank them all for their comradeship.

I have also got to know many people in and from places different to

Valencia and who have helped me to develop and finish this thesis, most

of the times in non-research-related ways. These people appeared, for

instance, in Trento (Amit, Fabiano, Michele and Raian) and Lund

(Annika, Carl Johan, Christian, Emma, Flavius, Jesper, Kim, Krzysztof,

Lars, Lhinn, Markus, Per, Raquel, Richard and the rest of members of

Datavetenskap). Others have collaborated with me (Agnes, Alexandre,

Claudia, Marcos and Michel).

Outside the work environment, I have to thank all my relatives and

friends from several places (Albacete, Madrid, Valencia…). The time that

I have spent with them has been important and necessary for me to relax,

stop development of the thesis for a while and resume it more willingly.

No sois los mejores amigos, pero sois los que tengo.

Finally, I am very grateful to the company CARE Technologies and

the Spanish Government for their funding support, to the people that

participated in evaluation, and to the reviewers for their comments.

Abstract

Two of the main needs when developing an information system for an

organization are that system analysts know and understand the

application domain and that the system properly supports the business

processes of the organization. Consequently, elicitation of system

requirements from business process models has been acknowledged as a

suitable activity to deal with that needs. In addition, system requirements

must be linked to subsequent development stages.

However, system analysts can face many challenges when

performing these activities. They may have problems communicating

with customer stakeholders and may need to analyse and operationalize

the purpose of the information system. Furthermore, system analysts

must bridge the gap between business and system domains for

specification of system requirements, specify different types of system

requirements and guarantee that their specification is precise, consistent

and homogeneous.

In relation to object-oriented conceptual modelling-based

information system development, system analysts must also avoid

potential problems that may arise when a conceptual schema is created

from system requirements as part of their link with subsequent

development stages. For example, a conceptual schema can be

incomplete or inconsistent if it is not properly managed.

As a solution, this thesis presents a methodological approach for

business process-based requirements specification and object-oriented

conceptual modelling of information systems. The approach consists of

four stages: organizational modelling, purpose analysis, specification of

system requirements and derivation of object-oriented diagrams.

By following the design research methodology for performing

research in information systems, the methodological approach has been

designed on the basis of many existing ideas and principles in academia

and industry. It also provides new mechanisms and guidance to address

the challenges presented above.

The methodological approach mainly aims to help system analysts to

elicit system requirements from business process models, adequately

specify system requirements and derive the object-oriented conceptual

schema of an information system from its system requirements. It does so

by taking advantage of existing solutions and by modifying them to

better tackle the associated challenges.

The methodological approach has been evaluated in laboratory and

industrial contexts, especially focusing on its usefulness for practitioners.

Thanks to evaluation, several lessons have been learned and many of

them have driven definition of the methodological approach.

Furthermore, the lessons learned can be very useful both in academia

and in industry for identification of further research areas and for

awareness of situations that may occur in information system

development projects, respectively.

Resumen

Dos de las principales necesidades a la hora de desarrollar un sistema de

información para una organización son que los analistas de sistema

conozcan y comprendan el dominio de aplicación y que el sistema dé un

soporte adecuado a los procesos de negocio de la organización. Como

consecuencia, se ha reconocido a la captura de requisitos de sistema a

partir de modelos de procesos de negocio como una actividad idónea

para acometer dichas necesidades. Además, los requisitos de sistemas se

deben enlazar con etapas de desarrollo posteriores.

Sin embargo, los analistas de sistema pueden afrontar muchos retos

mientras desarrollan estas actividades. Pueden tener problemas para

comunicarse con stakeholders cliente y pueden necesitar analizar y

operacionalizar el propósito del sistema de información. Más allá de este

problema y de esta necesidad, los analistas de sistema deben enlazar los

dominios de negocio y de sistema para especificar requisitos de sistema,

especificar diferentes tipos de requisitos de sistema y garantizar que su

especificación es precisa, consistente y homogénea.

En relación al desarrollo de sistemas de información basado en

modelado conceptual orientado a objetos, los analistas de sistema deben

evitar problemas potenciales que pueden surgir al crear un esquema

conceptual a partir de requisitos de sistema como parte de su enlace con

etapas de desarrollo posteriores. Por ejemplo, un esquema conceptual

puede ser incompleto o inconsistente si no se gestiona adecuadamente.

Como solución, esta tesis presenta una aproximación metodológica

para la especificación de requisitos basada en procesos de negocio y el

modelado conceptual orientado a objetos de sistemas de información. La

aproximación consta de cuatro etapas: modelado organizacional, análisis

del propósito, especificación de requisitos de sistema y derivación de

diagramas orientados a objetos.

Siguiendo la metodología de investigación de diseño para investigar

sobre sistemas de información, la aproximación metodológica se ha

diseñado a partir de varias ideas y principios que ya existían en el ámbito

académico y en la industria. La aproximación complementa dichas ideas

y principios suministrando nuevos mecanismos y directrices para encarar

los retos presentados anteriormente.

La aproximación metodológica persigue principalmente ayudar a

analistas de sistema a capturar requisitos de sistema a partir de modelos

de proceso de negocio, a especificar adecuadamente requisitos de sistema

y a derivar un esquema conceptual orientado a objetos de un sistema de

información a partir de sus requisitos de sistema. Lo hace aprovechando

soluciones existentes y modificándolas para encarar mejor los retos

asociados.

La aproximación metodológica ha sido evaluada en contextos de

laboratorio e industriales, centrándose dicha evaluación principalmente

en la utilidad de la aproximación para profesionales. Gracias a la

evaluación, varias lecciones se han aprendido y muchas de ellas han

dirigido la definición de la aproximación metodológica. Además, las

lecciones aprendidas pueden ser muy útiles tanto para la academia como

para la industria para la identificación de nuevas áreas de investigación y

el conocimiento de situaciones que pueden ocurrir en proyectos de

desarrollo de sistemas de información, respectivamente.

Resum

Dos de les principals necessitats en el desenvolupament d’un sistema

d’informació per a una organització és que l’analista conega i entenga el

domini de l’aplicació i que el sistema suporte els processos de negoci de

l’organització. Per tant, la captura de requisits des de models de

processos de negoci és coneguda com una activitat adequada per tractar

amb eixes necessitats.

Tanmateix, els analistes del sistema poden fer front a molts reptes

quan s’utilitzen aquestes activitats. El modelat de processos de negoci pot

tindre problemes de comunicació entre clients i stakeholders, i pot

necessitar analitzar i operacionalitzar el propòsit del sistema

d’informació. A més a més, l’analista del sistema ha de cobrir la distància

entre el negoci i els dominis del sistema per especificar requisits del

sistema, especificar distints tipus de requisits i garantir que les seues

especificacions són precises, consistents i homogènies.

En relació al desenvolupament de sistema d’informació basats en el

modelat orientat a objectes, l’analista ha d’evitar problemes potencials

que apareixen quan l’esquema conceptual es crea a partir dels requisits

del sistema, com a part de la seua connexió amb les següents fases de

desenvolupament. Per exemple, un esquema conceptual pot ser

incomplet o inconsistent si no es tracta de la manera adequada.

Com a solució, aquesta tesi presenta una aproximació metodològica

per a l’especificació de requisits basats en processos de negoci i en

models conceptuals orientat a objectes que representen sistemes

d’informació. La proposta consisteix en quatre etapes: modelat

organitzacional, anàlisi del propòsit, especificació dels requisits del

sistema i derivació del diagrames orientat a objectes.

El disseny de la metodologia d’investigació s’ha dissenyat utilitzant

moltes idees existents i principis tant de l’acadèmia com de la indústria,

proporcionant noves mecanismes i guies per dirigir els reptes presentats

anteriorment.

La aproximació metodològica té com a objectiu principals ajudar

l’analista a capturar requisits des de models de processos de negocis,

especificar requisits del sistema i derivar l’esquema conceptual d’un

sistema d’informació des dels seus requisits. Açò s’aconsegueix traient

profit de solucions existents i modificant-les per abordar els reptes

relacionats de una manera més òptima.

L’aproximació metodològica s’ha avaluat en el laboratori i en entorns

industrials, especialment centrat en l’utilitat per a professionals. Gràcies a

aquesta avaluació, hem aprés diverses lliçons i moltes han conduit a la

definició de l’aproximació metodològica. A més a més, les lliçons apreses

poden ser molt útils en l’acadèmia i en la indústria per identificar àrees

d’investigació futura i per prendre consciència de les situacions que

poden ocórrer en el en el desenvolupament de projectes relacionats en el

sistemes d’informació.

Contents

1 Introduction .

.

1

 1.1 Research Area

.

1

 1.2 Motivation

.

4

 1.3 Problem Statement

. . .

8

 1.4 Objectives .

.

9

 1.5 Proposed Solution

. . .

10

 1.6 Research Methodology

.

11

 1.7 Thesis Context

.

13

 1.8 Thesis Structure

. . . .

14

2 State of the Art

.

17

 2.1 Notations for Business Process Modelling

.

18

 2.1.1 BPMN

.

19

 2.1.2 UML 2.0 Activity Diagrams

.

20

 2.1.3 EPC . 21

 2.1.4 YAWL

.

22

 2.1.5 Analysis and Discussion

.

23

 2.2 Goal-Oriented RE Approaches

.

25

 2.2.1 The i* Framework

.

26

 2.2.2 KAOS .

. .

27

 2.2.3 Map .

. .

28

 2.2.4 Analysis and Discussion

.

29

 2.3 Business Process-Based Approaches for Organizational

 Modelling .

.

30

 2.3.1 EKD .

.

31

 2.3.2 ARIS .

.

32

 2.3.3 UML-Based Approaches

.

33

 2.3.4 Communication Analysis

.

34

 2.3.5 Analysis and Discussion

.

35

 2.4 Approaches for Specification of System Requirements . 37

 2.4.1 Scenario-Based Approaches

.

38

 2.4.2 Task and Task & Support Descriptions

.

39

 2.4.3 Business Transactions-Based Approaches

.

40

 2.4.4 Analysis and Discussion

.

41

 2.5 Approaches for Link of System Requirements with OO

 Conceptual Modelling

.

42

 2.5.1 RETO

. .

45

 2.5.2 ADORA

.

46

 2.5.3 SCORES 47

 2.5.4 Info Cases

.

48

 2.5.5 Analysis and Discussion

.

49

 2.6 Summary

.

50

3 Fundamentals of the Proposed Solution

.

51

 3.1 Definition of Business Process

.

52

 3.2 Design of the Methodological Approach

.

53

 3.3 Stakeholders Taxonomy

.

56

 3.4 Requirements Taxonomy

.

58

 3.5 Top Ten Principles of the Proposed Solution

.

62

 3.6 Correspondence between Business Process Models and

 Goal Models

.

65

 3.6.1 Background: Operational Goals

.

66

 3.6.2 Preliminary Concepts

.

67

 3.6.3 Running Example: The Garment Company . . .

.

69

 3.6.4 Guidelines for Derivation of Goal Trees from

 Business Process Models

.

71

 3.6.4.1 Derivation Guidelines

.

72

 3.6.4.2 Refinement Guidelines

.

75

 3.6.4.3 Contribution Guidelines

.

75

 3.6.4.4 Completion Guidelines

.

76

 3.6.5 Discussion

. .

78

 3.7 Summary .

.

80

4 Organizational Modelling

.

81

 4.1 Overview of the Stage

.

82

 4.2 Running Example: The Software Development

 Company .

. .

84

 4.3 Mission Statement

. . .

85

 4.4 Glossary .

.

87

 4.5 Business Events

. .

88

 4.6 Domain Data Model

. . . .

89

 4.7 Roles Model

. .

93

 4.8 Business Rules

.

94

 4.9 Process Map

. .

96

 4.10 As-Is BPDs

.

99

 4.10.1 Mapping of Previous Artefacts into BPDs

.

100

 4.10.2 Guidelines for Modelling of BPDs

.

102

 4.11 Summary . 114

5 Purpose Analysis

.

117

 5.1 Overview of the Stage

. . . .

118

 5.2 Running Example: The Software Development

 Company .

. .

121

 5.3 Background: Goal Discovery in RE

.

122

 5.4 Background: Business Process Reengineering

.

124

 5.4.1 Best Practices in Business Process Reengineering .

.

125

 5.5 Goals/Strategies Diagrams

.

130

 5.6 Operationalization Tables

.

136

 5.7 To-Be BPDs

.

141

 5.8 Summary .

.

144

6 Specification of System Requirements

.

145

 6.1 Overview of the Stage

.

146

 6.2 Running Example: The Rent-A-Car Company

.

148

 6.3 Labelled BPDs

. .

150

 6.4 Enriched BPDs

. .

153

 6.5 ETDs .

.

154

 6.5.1 Sections of the Textual Template

.

159

 6.5.1.1 Domain Requirements

.

162

 6.5.1.2 Product Requirements

.

163

 6.5.1.3. Information Flows

.

164

 6.5.2 Filling of the Textual Template

.

167

 6.5.2.1 Guidelines for Filling of the Textual Template

.

170

 6.6 Summary .

.

173

7 Derivation of OO Diagrams

.

175

 7.1 Overview of the Stage

.

176

 7.2 Running Example: The Rent-A-Car Company

.

179

 7.3 ETD Analysis

. . . .

181

 7.4 Class Diagram

. . . .

183

 7.5 State Transition Diagrams

.

189

 7.6 Further Link with OO-Method

.

193

 7.6.1 Conceptual Modelling and Software Generation

 with OO-Method

.

193

 7.6.2 Details and Discussion about the Link

.

196

 7.6.2.1 Object Model

.

197

 7.6.2.2 Dynamic Model

.

200

 7.6.2.3 Functional Model

.

201

 7.6.2.4 Presentation Model

.

202

 7.6.2.5 Conceptual Modelling of Legacy Systems . .

.

203

 7.7 Summary .

. .

204

8 Evaluation .

.

207

 8.1 Background: Evaluation of RE Approaches in Industry..

. . .

208

 8.2 Background: Qualitative Research

.

209

 8.3 Methods for Evaluation

.

210

 8.4 Industrial Contexts

. . . .

213

 8.4.1 Collaborative Project

.

213

 8.4.2 Other Industry Partners

.

215

 8.5 Evaluation Process

. . . .

216

 8.5.1 Objectives Definition

.

216

 8.5.2 Survey Design

. . . .

216

 8.5.3 Development of a Survey Instrument and

 Instrument Evaluation

.

217

 8.5.4 Data Collection

.

218

 8.5.5 Analysis

. .

220

 8.6 Validity . 223

 8.6.1 Construct Validity

.

224

 8.6.2 Conclusion Validity

.

225

 8.6.3 Internal Validity

.

226

 8.6.4 External Validity

.

226

 8.7 Lessons Learned

. . .

227

 8.7.1 Lessons Learned Related to RE Practice in General..

. .

230

 8.7.2 Specific Lessons Learned Related to the

 Methodological Approach

.

244

 8.8 Summary .

.

251

9 Conclusions . 253

 9.1 Contributions

. .

254

 9.2 Thesis Impact

. .

256

 9.2.1 Publications

. . .

257

 9.2.2 Forums Quality

.

259

 9.2.3 Citations

. .

260

 9.2.4 Collaborations

. . . .

261

 9.2.5 Research Stays

. . . .

262

 9.3 Future Work

.

263

 9.4 Final Reflection

. . .

266

References .

. .

269

A Conceptual Framework

.

295

B Tool Support .

.

299

List of Figures

1.1 General process of design research

.

12

2.1 BPMN graphical objects

. . . .

24

2.2 Example of Map diagram

.

29

3.1 Stages and artefacts of the methodological approach . .

.

55

3.2 Stakeholders taxonomy

. . . .

57

3.3 Requirements taxonomy

.

59

3.4 Patterns in business process models

. .

67

3.5 Example of domain data model

.

69

3.6 Example of BPD

.

70

3.7 Example of goal tree

. . .

74

4.1 Stage and artefacts presented in Chapter 4

.

82

4.2 Activities of the organizational modelling stage

.

84

4.3 Relationship between organizational mission and

 business processes

. .

86

4.4 Example of domain data model in which the cardinality

 of a relationship can be 1:1

.

92

4.5 Example of domain data model

.

92

4.6 Example of template of a business process

.

99

4.7 Examples of A-Is BPDs: a) definition of workflow;

 b) request management; c) version development

.

114

5.1 Stage and artefacts presented in Chapter 5

.

118

5.2 Activities of the purpose analysis stage

.

120

5.3 Example of goals/strategies diagram

.

134

5.4 Example of alternative goals/strategies diagram

.

135

5.5 Example of change in a domain data model

.

142

5.6 Examples of To-Be BPDs: a) definition of product

 workflow; b) calendar management; c) request

 management; d) version development; e) solve problem .

.

.

. . . .

143

6.1 Stage and artefacts presented in Chapter 6

.

146

6.2 Activities and steps of the specification of system

 requirements stage

. .

147

6.3 Example of domain data model

.

148

6.4 Example of To-Be BPD

. . . .

149

6.5 Example of labelled BPD

.

152

6.6 Example of enriched BPD

.

155

6.7 Example of enriched BPD in which all sequence flows do

 not turn into consecutive flows

. .

156

6.8 Characteristics and subcharacteristics of the ISO 9126-1

 standard .

.

157

6.9 Example of ETD

. . .

161

6.10 BNF grammar for specification of information flows . .

.

166

6.11 Examples of labelled flow objects and of their

 specification as sections of the textual template

.

.

169

7.1 Stage and artefacts presented in Chapter 7

.

176

7.2 Activities of the derivation of OO diagrams stage

.

178

7.3 Extended domain data model of the rent-a-car company .

.

179

7.4 Input, output and information flows of the ETDs related

 to car lifecycle of the rent-a-car company

.

.

180

7.5 Example of class diagram

.

184

7.6 Example of state transition diagram

.

190

7.7 General view of OO-Method

.

194

A.1 Conceptual framework for organizational modelling . .

.

296

A.2 Conceptual framework for specification of system

 requirements 297

A.3 Conceptual framework for purpose analysis

.

298

A.4 Conceptual framework for class diagrams

.

298

A.5 Conceptual framework for state transition diagrams . .

.

298

B.1 Ecore diagram for the organizational modelling stage . .

.

301

B.2 Tree-based ETD editor

. . . .

302

B.3 Example of goals/strategies diagram

.

303

B.4 BPMN editor and form-based ETD editor

.

304

List of Tables

1.1 Outputs of the stages of design research in this thesis . .

.

13

2.1 Analysis of business process-based approaches for

 organizational modelling

.

36

2.2 Analysis of approaches for specification of system

 requirements

. . . .

41

2.3 Analysis of approaches for link of system requirements

 with OO conceptual schemas

.

49

3.1 Correspondence among stakeholders taxonomies

.

58

3.2 Correspondence among requirements taxonomies . . .

.

60

3.3 Summary of guidelines to derive a goal tree from a BPD .

. .

72

3.4 Guidelines used in the running example

.

77

4.1 Examples of business events

.

88

4.2 Example of roles model

.

94

4.3 Correspondence between BPMN elements and elements

 of the artefacts created in the organizational modelling

 stage .

. .

101

4.4 Works that support definition of the guidelines

.

105

4.5 Aspects at which the guidelines are targeted

.

106

4.6 Example of table to specify task inputs and outputs . . .

.

110

5.1 List of patterns for business process reengineering and

 their impact on cost, flexibility, time and quality of a

 business process

.

. .

129

5.2 Example of operationalization table

.

137

6.1 Sections and types of requirements of the textual template

. .

160

6.2 Types of information flows to represent the possible

 functions and modes of an IS

.

.

167

6.3 Verbs for user intention on the basis of the possible

 functions and modes of an IS

.

.

172

6.4 Verbs for system responsibility on the basis of the

 possible functions and modes of an IS

.

.

173

7.1 Example of table for relationship analysis

.

181

8.1 Summary of subjects

.

220

8.2 Research questions of evaluation addressed in each lesson

 learned .

. .

229

9.1 Rating of the forums of the publications of the thesis . .

. .

260

9.2 Number of citations of the publications of the thesis . .

. .

261

Chapter 1

1 Introduction

“Common sense is the least common of the senses”

Anonymous

1.1 Research Area

An information system (IS) can be defined as a designed system that

collects, stores, processes and distributes information about the state of a

domain (Olivé, 2007). For example, it can distribute information about

the state of an organization. The main goal of an IS is to provide users

(people or other systems) with the information that they need, at the right

time and in the right place (Pohl, 2010).

The role that information technology (IT) in general and ISs in

particular play in organizations has evolved over time and their

importance has increased considerably. ISs are nowadays expected to

contribute to the competitiveness of an organization and to improve its

performance. It is essential that they fit the needs of an organization and

thus deliver value to the organization (McKeen, Smith, 2003). ISs should

be targeted at concerns such as business productivity and cost reduction,

business agility and speed to market, business/IT alignment, IT efficiency

and agility, and business process reengineering (Luftman, Ben-Zvi, 2010).

2

 1 Introduction

As a consequence, IS development for an organization has become a

more complex process. IS success not only depends on the resolution of

technical problems or on the use of up-to-date technologies, but also

highly depends on the requirements engineering (RE) process so that an

IS fits actual business needs.

The RE process is the first stage of a software process. RE can roughly

be defined as the branch of software engineering that is related to the

discovery and documentation of the purpose of a software system. It is

concerned with real-world goals for functions of and constraints on a

software system, and with the relationship of these factors to precise

specifications of software behaviour and to their evolution over time and

across software families (Zave, 1997). Although the RE process may vary

depending on the characteristics of a project, its basic activities are

requirements elicitation, analysis, specification (aka documentation),

validation, negotiation and management (Sommerville, 2005).

The requirements of a software system correspond to the activities,

capabilities or conditions that the system must support, possess or meet,

respectively, to fulfil stakeholders’ needs. Requirements represent

external characteristics of a software system (Davis, 1993) and can be

specified at different abstraction levels (Aurum, Wohlin, 2005b). For

example, requirements can be specified at the business level (business

requirements) and at the software system level (system requirements).

Requirements can be considered the main indicators of the success

(Nuseibeh, Easterbrook, 2000) and of the quality (Finkelstein, 1994) of a

software system, as well as of project success (Procaccino, Verner,

Lorenzet, 2006). The RE process is also interrelated with many processes

of a software development company and with other development stages

and strongly influences on them (Pohl, 2010). As a result, the RE process

has been recognised as the most important software development stage

(Davis, 1993). Disregarding it can lead a software development project to

fail and significantly increase its duration and cost.

When performing the RE process of an IS, it is essential that system

analysts have a deep knowledge and understanding of the application

domain to fulfil organizational needs (Jackson, 1995). Organizational

concerns must drive requirements elicitation (Zave, Jackson, 1997) and

requirements must be specified in terms of phenomena that occur in the

organizational environment (Sommerville, Sawyer, 1997).

3

1.1 Research Area

Consequently, the convenience of performing a stage of

organizational modelling during the RE process of an IS (Loucopoulos,

Karakostas, 1995; Bridgeland, Zahavi, 2009) and the need of system

analysts to play a business analyst role (IIBA, 2009; Rubens, 2007) have

been widely acknowledged during the last two decades. Organizational

models depict the goals, structure and behaviour of an organization, and

help system analysts to understand the application domain, the

organizational activity and needs, and the requirements of an IS.

Business process modelling is part of most of the organizational

modelling-based RE approaches. Business process models reflect the

activity of an organization and facilitate understanding of the application

domain. They can also be used for elicitation of system requirements

(Alexander, Stevens, 2002; Lauesen, 2002). Furthermore, business process

modelling can be regarded as essential for IS development.

Any IS for an organization should manage and execute business

processes involving people, applications and/or information sources

(Dumas, van der Aalst, ter Hofstede, 2005). ISs must support the business

processes of an organization (Kirchmer, 1999) and thus contribute to the

achievement of its goals. Otherwise, an IS may hamper the activity of an

organization and fail. These problems can be avoided by specifying

system requirements from business process models.

Nonetheless, proper specification of system requirements from

business process models does not imply that a RE approach is adequate

for IS development. Any RE approach must be linked to subsequent

development stages so that it is appropriate and useful for the software

process into which it is integrated (Verner, et al., 2005).

For IS development on the basis of object-oriented (OO) conceptual

modelling, a RE approach must be linked with conceptual models.

Therefore, it is necessary to determine how OO conceptual schemas,

which specify the knowledge that an IS needs to know (Olivé, 2007), can

be created from system requirements.

The research area of this thesis is IS development for organizations.

More specifically, the thesis focuses on business process-based

requirements specification and its link with OO conceptual modelling as

a subsequent development stage. Business process modelling and OO

modelling are among the practices most frequently used for conceptual

modelling in industry (Davies, et al., 2007).

4

 1 Introduction

1.2 Motivation

When addressing business process-based requirements specification and

subsequently creating an OO conceptual schema for the development of

an IS for an organization, system analysts face different challenges.

Several needs must be considered so that requirements are adequately

elicited, analysed, specified and integrated into a software process.

Furthermore, some problems may arise. If the needs and problems are

not addressed, then a RE process and the associated IS development

project may fail.

Communication with customer stakeholders is one of the main

challenges that system analysts face for IS development (Zave, 1997).

Good communication between system analysts and customer

stakeholders is necessary during the RE process (Sommerville, Sawyer,

1997) and for organizational modelling (Stirna, Persson, Sandkuhl, 2007).

Customer stakeholders are the main source of information of the activity

of an organization and of the requirements of an IS, and they have to

validate the information that system analysts gather and the models that

system analysts create in order to guarantee that they are correct, i.e., that

they contain the data that they must contain.

Communication between system analysts and customer stakeholders

can be difficult as a consequence of their different vocabularies and

professional backgrounds (Berenbach, et al., 2009) and of the existence of

a culture gap between business and system domains (Taylor-Cummings,

1998). These conditions can cause mismatches between what customer

stakeholders say or want to say and what system analysts understand or

believe that have understood.

One reason for miscommunication is that the models that system

analysts create during the RE process for interacting with customer

stakeholders usually focus on representation of the system domain

instead of on requirements of the business domain. Customer

stakeholders usually lack a deep software background, thus the models

can be hard to understand and validate for them. Consequently, models

and notations that do not just focus on the system domain and thus

facilitate communication between system analysts and customer

stakeholders should be used during the RE process.

5

1.2 Motivation

Another problem that system analysts face is that business process

models may not be enough to analyze an organization and understand

the application domain of an IS. Organizations usually decide to

introduce or modify an IS in order to solve some problems or meet some

needs (Nuseibeh, Easterbrook, 2000; Pohl 2010). These problems or needs

correspond to the goals that the system must (help to) fulfil (Pinheiro,

2003), i.e., the system purpose. Therefore, it is important for system

analysts to explore the goals of different customer stakeholders in

addition to their activity so that problems are solved, needs are met and

purposeful requirements are defined (Rolland, Salinesi, 2005).

When system purpose is not very complex, it can be directly analyzed

on business process models. An example is when system purpose is

mainly related to activity automation. However, this case does not

always happen in IS development projects and system purpose may

require a deeper analysis. In this case, the use of a goal-oriented RE

approach helps system analysts to model, understand and analyse the

purpose of a system, to relate requirements with system purpose and,

consequently, to better respond to the needs of an organization.

In addition, fulfilment of system purpose may only be possible by

changing (reengineering) the business processes of an organization so

that they fit the needs of the organization. ISs should aim to support new

ways of running a business that would not be possible without them

(Alexander, Bider, Regev, 2003), and the new ways of running may

involve a different execution of business processes in order to improve,

for instance, the efficiency and competitiveness of an organization. This

situation must be considered when analysing business processes and

system purpose during the RE process.

Once the business processes that an organization executes or wants to

execute after IS development have been modelled as part of the RE

process, they can be used for elicitation of system requirements.

However, it is necessary to bridge the gap between business and system

domains during specification of system requirements. This gap is the

consequence of characteristics such as different terminology, levels of

granularity and models between the domains (Arsanjani, 2005; Castro,

Kolp, Mylopoulos, 2002). The business requirements that are specified in

business process models must be analysed in order to determine the

functional system support that the business processes need.

6

 1 Introduction

In practice, inadequate functionality is the most common cause of

system failure to meet expectations (Lauesen, 2002). As a consequence,

the functional requirements of an IS (which specify what the system shall

do) might be considered the most important type of requirements and

usually receive most of the attention during the RE process (Borg, et al.,

2003). Nonetheless, functional requirements are not sufficient to

completely and precisely specify the system requirements of an IS, and

disregard for other types of system requirements may result in an

inadequate and unsatisfactory system for customer stakeholders

(Firesmith, 2005; Lawrence, Wiegers, Ebert, 2001).

The behavioural perspective of an IS that is provided by functional

requirements must be complemented with a data perspective (Siau, Lee,

2004) and a quality (aka non-functional) perspective (Loucopoulos,

Karakostas, 1995). Data requirements (which specify what the system

shall show, store and manage; (Lauesen, 2002)) and quality requirements

(which specify restrictions on the system and how well the system shall

perform its functions; (Berntsson-Svensson, 2009)) of an IS must be

considered when specifying its system requirements too.

Furthermore, it is important that system analysts properly manage

functional, data and quality requirements so that their specification is

consistent. The specification of these requirements should also be precise

enough so that, for instance, they can be interpreted easily by other

supplier stakeholders that have to deal with them (e.g., programmers).

An additional problem that may arise when specifying system

requirements of an IS is lack of homogeneity. Homogeneity is achieved if

all the system requirements that are specified in a given style and thus

are at the same abstraction level have the same granularity. Although the

problem of homogeneous granularity has not been widely addressed by

the RE community, some authors have acknowledged it (Dutoit, Paech,

2002; España, et al., 2009; Gorschek, Wohlin, 2006). System analysts may

mix and misinterpret granularity and abstraction levels of system

requirements, and as a result application of a RE approach can be

hindered, the quality of a system requirements specification (SyRS) can

be negatively affected and a SyRS can be inconsistent.

After system requirements have been specified and customer

stakeholders have validated them, they can be used as basis for creation

of the OO conceptual schema of an IS, i.e., for creation of a conceptual

7

1.2 Motivation

schema that meets system requirements and consequently meets the

needs of an organization. This means that the RE approach followed is

integrated into the software process of an organization in the case of OO

conceptual modelling-based IS development.

This thesis has been developed in the context of OO-Method (Pastor,

Molina, 2007). OO-Method is an approach for automatic software

generation that is based on OO conceptual modelling and that is

supported by the OlivaNova industrial tool1. OO-Method consists of

several models and diagrams. For example, it includes a class diagram

(object model) and state transition diagrams (dynamic model).

System requirements that are specified from business process models

must be linked to OO-Method models so that business process-based

requirements specification is integrated into the approach. Consequently,

the RE approach followed would meet the needs of the organizations that

use OO-Method and would be useful for them. However, problems in

integration may arise.

System requirements and OO conceptual schemas are usually

specified and created, respectively, separately or by different people

(Yourdon et al., 1995), and system analysts may have difficulties creating

an OO conceptual schema and creating it from system requirements

(Batra, 2007; Phalp, Cox, 2007; Svetinovic, Berry, Godfrey, 2005). These

problems are especially frequent when system analysts are novice.

As a result, problems such as inconsistency and incompleteness in an

OO conceptual schema may appear (Glinz, 2000) or an OO conceptual

schema may not meet system requirements (Insfrán, Pastor, Wieringa,

2002). OO conceptual schemas and system requirements must be

properly managed to avoid these problems, and specification of system

requirements should aim to make creation of OO conceptual schemas

possible and straightforward (Yue, Briand, Labiche, 2009).

Despite the importance of ISs in organizations and thus of business

process-based requirements specification and its link with OO conceptual

modelling, and as shown in Chapter 2, no existing RE approach properly

deals with all the challenges described. Since disregard of one of the

needs or problems may result in failure of an IS development project,

research targeted at tackling these challenges is necessary.

1 http://www.care-t.com. Accessed July 13, 2011.

8

 1 Introduction

1.3 Problem Statement

As discussed in the previous section, business process-based

requirements specification for IS development and its link with OO

conceptual modelling can be difficult for system analysts. They have to

carefully perform these activities so that several needs are met and some

problems are solved or avoided. Otherwise, an IS development project

may not be satisfactory for its stakeholders and thus may fail.

No existing RE approach addresses all the challenges presented.

Therefore, business process-based requirements specification for an IS

and its link with OO conceptual modelling are not closed research topics.

New research efforts should be performed to adequately develop these

activities, and they must provide perspectives and approaches in the

form of new mechanisms and guidance to help system analysts face the

associated challenges.

The above statements are also in line with problems and challenges

explained and justified in recent works. Support for business process

enactment, automation or execution based on business process models is

a top issue and a top challenge in industry and in academia (Indulska, et

al., 2009), and focus on business processes during the RE process is a

challenge for future research on RE (Jarke, et al., 2010). Integration of

approaches and provision of guidance for this purpose is also one of the

main needs of RE (Cheng, Atlee, 2007).

In summary, the challenges that this thesis addresses can be stated by

the following research questions:

Research question 1. How should the business processes of an

organization be modelled and analysed for elicitation of system

requirements of an IS?

Research question 2. How should system requirements of an IS be

specified from business process models?

Research question 3. How can business process-based system

requirements be linked to OO conceptual modelling?

These challenges can be faced by achieving the objectives that are

enumerated in the next section.

9

1.4 Objectives

1.4 Objectives

The main goal of the thesis is to develop a methodological approach for

specification of system requirements of an IS for an organization from

business process models and for link of the system requirements with

OO conceptual modelling. This goal can be reached and the associated

challenges can be faced by achieving several objectives, and such

objectives are related to the three research question presented in the

previous section.

The objectives that are related to the research question 1 are:

1. To identify an appropriate notation for business process

modelling in the RE process;

2. To identify a suitable approach to model the purpose of an IS,

and;

3. To define mechanisms and guidance to systematically analyse

the purpose of an IS and determine how it can affect the business

processes of an organization.

The objectives that are related to the research question 2 are:

4. To define mechanisms and guidance to systematically bridge the

gap between business and system domains when specifying

system requirements from business process models, and;

5. To develop a style for SyRS that

a. determines support for business processes;

b. integrates specification of functional, data and quality

requirements, and;

c. addresses consistency, precision and homogeneous

granularity of system requirements.

The objectives that are related to the research question 3 are:

6. To define guidance to systematically derive a class diagram from

business process-based system requirements, and;

7. To define guidance to systematically derive state transition

diagrams from business process-based system requirements.

10

 1 Introduction

1.5 Proposed Solution

The objectives of the thesis are achieved by developing a methodological

approach for business process-based requirements specification and OO

conceptual modelling of ISs. The approach consists of four stages:

 Organizational modelling

This stage aims to model and understand the behaviour of an

organization prior to development of an IS for it in order to gain

knowledge about the application domain. Business process

models are the main artefacts of the stage, and models that

facilitate involvement of and communication with customer

stakeholders are used.

 Purpose analysis

This stage aims to analyse the goals that an IS should allow an

organization to achieve and to specify how their achievement

would affect the business processes of the organization. Goal

models are used as basis for the development of the stage and

involvement of customer stakeholders is promoted.

 Specification of system requirements

This stage aims to specify system requirements of an IS whose

implementation would adequately support the business

processes of an organization. The stage also addresses the gap

between business and system domains, homogeneous

granularity of system requirements, and complete, precise and

consistent specification of functional, data and quality

requirements.

 Derivation of OO diagrams

This stage aims to create OO diagrams (i.e., an OO conceptual

schema) of an IS that meet its system requirements and are

complete and consistent. The OO diagrams correspond to a class

diagram and a state transition diagrams. As a result of the

derivation, specification of system requirements and the rest of

previous stages are integrated into OO conceptual modelling-

based IS modelling and development. For example, they can be

integrated into OO-Method-based IS development.

11

1.6 Research Methodology

This four-stage approach is presented in detail in the next chapters

and corresponds to the overall contribution of the thesis. Thanks to the

approach, system analysts can more easily face the challenges presented

when specifying system requirements from business process models and

subsequently linking them to OO conceptual modelling.

1.6 Research Methodology

The thesis has been developed by means of a research project that has

followed the design research methodology for performing research in ISs

(Vaishnavi, Kuechler, 2008).

Design research involves the analysis of the use and performance of

designed artefacts to understand, explain and very frequently improve

the behaviour of aspects of ISs. Examples of such artefacts are system

design methodologies and languages. In the case of this thesis, the

designed artefact is a methodological approach for specification of the

system requirements of an IS for an organization from business process

models and for OO conceptual modelling from the system requirements,

which corresponds to the main goal of the thesis.

Figure 1.1 shows the general process of design research. It consists of

five stages:

1. Awareness of problem

It may come from multiple sources (new developments in

industry or in a reference discipline, reading in an allied

discipline, etc.). Its output is a proposal for a new research effort.

2. Suggestion

It follows the proposal and is intimately connected with it. The

tentative design (output of this stage) is an integral part of the

proposal and must targeted at the proposal. The suggestion stage

is an essentially creative step wherein a new artefact is envisioned

based on a novel configuration of either existing or new and

existing elements.

3. Development

The tentative design is implemented in this stage, and the

techniques for implementation will vary depending on the

12

 1 Introduction

artefact to be constructed. The implementation itself may not be

very novel, but the novelty may be primarily in the design, not in

the construction of the artefact.

4. Evaluation

Once the artefact has been constructed, it is evaluated according

to criteria that are always implicit and frequently made explicit in

the proposal. This stage contains an analytic activity in which

hypotheses are usually made about the behaviour of the artefact.

The results of the evaluation stage and additional information

gained in the construction and running of the artefact are brought

together and feedback to another round of suggestion

(circumscription arrow in Figure 1.1).

5. Conclusion

This stage is the finale of a specific research effort. The results of

the effort are not only consolidated and documented at this stage,

but the knowledge gained in the effort is categorized as either

firm (facts learned) or as loose ends (behaviour that serves as

basis of further research). Awareness of the problem changes after

conclusion (operation and goal knowledge arrow in Figure 1.1).

For this thesis, the outputs of each stage of the general methodology

for design research are summarised in Table 1.1. Some of the outputs

have already been presented in this chapter, and most of them are

presented in the next chapters of the thesis.

Knowledge Flows OutputStages

Proposal

Tentative Design

Results

Artefact

Performance Measures

Awareness of problem

Conclusion

Evaluation

Suggestion

Development

Operation and

Goal Knowledge

Circumscription

Figure 1.1 General process of design research

13

1.7 Thesis Context

Table 1.1 Outputs of the stages of design research in this thesis

Stage of design research Outputs

Awareness of problem
Motivation, research questions and review of state of

the art

Suggestion
Objectives, proposed solution and fundamentals of the

proposed solution

Development Methodological approach

Evaluation Lessons learned

Conclusion Publications, thesis, contributions and future work

1.7 Thesis Context

This thesis has been developed at the research centre Centro de

Investigación en Métodos de Producción de Software (ProS) of the Universidad

Politécnica de Valencia (formerly known as OO-Method research group of

the Departamento de Sistemas Informáticos y Computación of the same

university), and in the context of the following regional, national and

international research projects:

 “Producción autom{tica de software a partir de modelos

organizacionales”. Regional project with industry.

 “DESTINO: Desarrollo de e-Servicios para la nueva sociedad

digital”. National CYCIT project referenced as TIN2004-03534.

 “Automatización de Procesos Orientado a Servicios a Partir de

Modelos Organizacionales”. Regional project with industry.

 “Generación de infraestructuras de tecnologías de información a

partir de modelos organizacionales”. National FPU Project

referenced as AP2006-02324.

 “SESAMO: Construcción de Servicios Software a partir de

Modelos”. National CYCIT project referenced as TIN2007-62894.

 “ITEI: Information Technologies supporting the Execution of

Innovation projects”. International ITEA 2 project referenced as

TSI-020400-2008-117.

 “From Business Objectives to Information Systems / De los

Objetivos de Negocio a los Sistemas de Información”.

International project referenced as HI2008-0190.

14

 1 Introduction

 “ITEI_AVANZA (Information Technologies Supporting the

Execution of Innovation Projects)”. International AVANZA

project referenced as TSI-020400-2009-8.

 “ProsREQ - Producción de Software Orientado a Servicios basada

en Requisitos: La parte Funcional”. National CYCIT project

referenced as TIN2010-19130-C02-02.

1.8 Thesis Structure

The rest of the thesis is organized as follows.

Chapter 2: state of the art.

This chapter reviews the most relevant existing works related to the

thesis. Their analysis has been necessary to determine the current state of

research and practice and to adopt existing principles and mechanisms in

the proposed solution.

Chapter 3: fundamentals of the proposed solution.

This chapter describes the main ideas and principles on which the

thesis is based. Their presentation is important for awareness of many of

the decisions that have been made and of the rationale behind them, as

well as and for understanding of the design and development of the

proposed solution.

Chapter 4: organizational modelling.

This chapter presents the first stage of the proposed solution. It

describes a business process-driven approach for organizational

modelling as a first step for modelling and understanding of the

application domain and for determination of organizational needs.

Chapter 5: purpose analysis.

This chapter presents the second stage of the proposed solution. It

describes an approach for analysis of the goals of an IS and determination

of their impact on the business processes of an organization. It is a second

step for understanding and analysis of organizational needs.

Chapter 6: specification of system requirements.

This chapter presents the third stage of the proposed solution. It

explains how to specify the system requirements of an IS from the

15

1.8 Thesis Structure

business process models of the organization for which the system is

going to be developed.

Chapter 7: derivation of OO diagrams.

This chapter presents the fourth stage of the proposed solution. It

describes how to link the business process-based system requirements of

an IS to OO conceptual modelling (as a subsequent development stage)

in the form of a class diagram and state transition diagrams.

Chapter 8: evaluation.

This chapter describes the evaluation that has been performed for the

proposed solution. A survey has been performed on the basis of

application of different methods for validation of RE approaches, and

several lessons have been learned.

Chapter 9: conclusions.

This chapter summarises the main conclusions that can be drawn as a

result of the development of this thesis. It describes the contributions that

have been made, discusses the impact of the thesis and presents the

future work that could be performed.

Appendix A: conceptual framework

This appendix presents a conceptual framework that graphically

shows the concepts that are used in the stages of the proposed solution

and the relationships between the concepts. It complements the

presentation of the stages in Chapters 4, 5, 6 and 7.

Appendix B: tool support.

This appendix outlines the tool support that has been developed for

the proposed solution. It corresponds to several prototypes whose main

purpose has been to show feasibility of automation of the proposed

solution.

Chapter 2

2 State of the Art

“It is said that if you know your enemies and know yourself, you will not be

imperilled in a hundred battles; if you do not know your enemies but do know

yourself, you will win one and lose one; if you do not know your enemies nor

yourself, you will be imperilled in every single battle”

Sun Tzu

This chapter reviews the state of the art related to this thesis. It embraces

different fields, disciplines and techniques that are related to business

process modelling, RE and OO conceptual modelling. For its review,

state of the art is divided into: 1) notations for business process

modelling; 2) goal-oriented RE approaches; 3) business process-based

(RE) approaches for organizational modelling; 4) approaches for

specification of system requirements, and; 5) approaches for link of

system requirements with OO conceptual modelling.

The following sections present the works that can be considered the

most relevant ones in each category. After their review, discussion about

the works is performed on the basis of their support for achievement of

the objectives of the thesis. Finally, a summary of the chapter is

presented. It must be indicated that the definition of business process

adopted in this thesis is presented and discussed in Chapter 3.

18

 2 State of the Art

2.1 Notations for Business Process Modelling

Business process modelling is a very common practice in organizations

nowadays. It plays a major role in many fields both in industry and in

academia (Indulska, et al., 2009), helping organization to be competitive

and achieve their goals. Therefore, the importance of business process

modelling is undeniable.

Business process models allow people to communicate and

understand the running of an organization. They are used for multiple

initiatives, such as business process reengineering, business process

management or software development. In summary, business process

models are used within organizations for learning, for decision support

about process development and design, for control and decision support

during process execution, and for analysis of information technology

support (Aguilar-Savén, 2004).

A sign of the relevance of business process modelling is the high

number of existing notations for this purpose (Dumas, van der Aalst, ter

Hofstede, 2005; Weske, 2007), each one of them with specific purposes,

strong points and weaknesses. Some notations have appeared in

academia and have been adopted later in industry, whereas others have

been initially defined for industrial purposes and have later been refined

and improved by means of academic research.

Another characteristic of current work on notations for business

process modelling (and on languages for business process execution) is

the existence of standardization efforts (Ko, Lee, Lee, 2009). Nonetheless,

a “universal” notation for business process models does not exist. The

reason behind this fact can be considered obvious. As said above, each

notation has been developed with specific purposes, thus they focus on

those aspects that have been regarded as more important by their

designers. Furthermore, existence of a unique “best-for-all” notation

would even be counterproductive. Such a notation may become too

complex to understand or to be handled for many purposes.

Since review of all the existing notations in this thesis is not possible,

the next subsections present the notations that can currently be

considered the most relevant ones in academia and industry. Section 2.1.5

analyses the notations and discusses selection of one of them for the

methodological approach of the thesis.

 19

2.1 Notations for Business Process Modelling

2.1.1 BPMN

BPMN (Business Process Model and Notation; (OMG, 2009)) is a graph-

based standard notation whose specification was developed by BPMI

(Business Process Management Initiative) in 2004 and that is now an

OMG (Object Management Group) standard. The notation has evolved

since its creation, and its version 2.0 has been published recently.

Evolution of the notation has mainly focused on improvement of its

expressiveness and broadening of its modelling purposes.

The main goal of BPMN has always been to provide a notation that is

easy to understand by all business process users. It also aims to provide a

standard that fills the gap between business models and their

implementation, and is closely related to WS-BPEL (Web Service

Business Process Execution Language). As a result, BPMN can be used

both for business modelling and for system modelling. Nonetheless,

BPMN can be regarded as more business-oriented than system-oriented.

BPMN can help organizations to understand their procedures by

means of a graphical notation. The notation allows these procedures to be

communicated in a standard way by means business process diagrams

(BPD, i.e., business process models in BPMN terminology), which

consists of different types of graphical objects:

 Flow objects, which are the main graphical objects for business

process modelling; they are events (start, intermediate and end

events, which can have triggers and be “catching” or “throwing”),

activities (sub-processes and tasks) and gateways (exclusive,

inclusive, complex and parallel gateways).

 Connecting objects, which allow other graphical objects to be

connected; they are sequence flows (normal and default), message

flows and associations.

 Swimlanes, which allow participants of a business process to be

represented; they are pools and lanes.

 Artifacts, which provide additional information about a business

process model; they are data objects, groups and annotations.

In addition, BPMN allows more graphical objects to be defined

according to the needs of business process users. Finally, the notation is

supported by many tools and vendors.

20

 2 State of the Art

2.1.2 UML 2.0 Activity Diagrams

UML (Unified Modelling Language; (OMG, 2005)) is a notation for

modelling of object-oriented software systems. It is considered de facto

standard for high-level descriptions of this kind of systems, and consists

of 13 diagrams. Among them, activity diagrams are a behavioural

diagram that aims to model business processes and flows in a software

system.

Activity diagrams were added to UML rather late and initially they

were poorly integrated, lacked expressiveness and did not have an

adequate semantics. As a solution, several concepts and graphical

elements have been introduced in UML 2.0. In addition to significant

syntax modifications, the main difference is switching from state

machine-based semantics to token flow (Petri net-like) semantics.

The fundamental units of behaviour in an activity diagrams are:

 Activities, which are the highest-level units of behaviour, and;

 Actions, which are the fundamental units of executable

functionality in an activity; they take a set of inputs and converts

them into a set of outputs.

Graphically, an activity diagram consists of a set of nodes and edges.

They can correspond to:

 Action nodes, which receive and manage control and data values

and provide control and data for other actions.

 Control nodes, which coordinate flows between other nodes and

route control or data tokens through the graph; examples of

control nodes are decision points and forks.

 Object nodes, which hold data tokens temporarily as they wait to

move through the graph; they also indicate an instance of a

particular object.

 Control flow edges, which start an activity node after the

completion of the previous one by passing a control token.

 Object flow edges, which provide inputs to actions; they also

model the flow of values to or from object nodes by passing

objects or data tokens

 21

2.1 Notations for Business Process Modelling

2.1.3 EPC

EPC (Event-driven Process Chain; (Dumas, van der Aalst, ter Hofstede,

2005; Scheer, 2000)) was developed from a project between SAP AG and

the University of Saarland. It is based on stochastic networks and Petri

nets. However, use of the notation does not require a formal framework.

For example, the notation does not rigidly distinguish between output

flows and control flows or between places and transitions.

The initial notation has been extended several times in order to

provide support for modelling of more aspects of an organization. This

led to what has been called the extended EPC notation (eEPC).

Nonetheless, the notation is usually referred to just as EPC. Its diagrams

are called EPC too.

Adoption of EPC is very high in Germany, Austria and Switzerland

(Becker, et al., 2010), both in industry and in academia. The most likely

reason is that EPC was originally invented in Germany, what may have

caused that many German companies and researchers initially adopted

the notation. The companies may also operate in Austria and

Switzerland, and, therefore, EPC may have easily found users in the three

countries. In addition, EPC is a key component of SAP modelling

concepts for business engineering and customization.

EPC consists of the following main graphical elements:

 Functions, which are active elements and model the activities

within an organization.

 Events, which are created by processing functions or by actors

outside a model; they act as preconditions or postconditions of

functions.

 Logical operators, which connect functions and events; they can

be AND, OR and XOR.

 Organization units and roles, which depict the people responsible

for executing a function.

 Information objects, which represent input and output data of the

functions.

 Deliverables, which represents results (services or products) that

functions require or produce.

22

 2 State of the Art

2.1.4 YAWL

YAWL (Yet Another Workflow Language; (ter Hofstede, et al., 2010)) was

developed by researchers from Eindhoven University of Technology and

from Queensland University of Technology. Its purpose is to overcome

some limitations of contemporary workflow management systems and of

Petri nets when modelling workflows. More concretely, YAWL is an

extension of Petri nets whose main purpose is to support more workflow

patters (multiple instances, advanced synchronisation and cancellation

patterns).

During the last years, YAWL has considerably advanced and evolved.

The research efforts related to the notation have been extensive, and well-

known members of the business process management community have

work on its improvement. These works can be considered quite fruitful,

and different and important contributions have been made.

A design and runtime environment supports YAWL and enactment of

workflows modelled with the notation. The environment is open source,

and it is freely available and can be extended. The environment also

allows interaction with other systems on the basis of a service-oriented

architecture. In this sense, the environment has been linked to the ProM

environment for simulation of YAWL models and creation by applying

process-mining techniques.

YAWL consists of five main graphical elements:

 Conditions, which represent a state of a process; input and output

conditions are special types of conditions and represent where a

process starts and finishes, respectively.

 Tasks, which represent actions that are performed by a human or

an external application; they can be atomic, composite or multiple

instance tasks.

 Splits, which represent the division of a path; they can be AND,

OR or XOR splits.

 Joins, which represent the union of several paths; as splits, they

can be AND, OR or XOR joins.

 Cancellation regions, which represent element deactivation upon

activation of a task.

 23

2.1 Notations for Business Process Modelling

2.1.5 Analysis and Discussion

This section discusses the selection of the notation that can be regarded as

the most suitable one in the RE process of an IS (first objective of the

thesis). Selection is based on the purposes of the notations, their use in

industry, their evaluations, their comparisons and their strong points.

The notation that has been selected is BPMN (version 1.2). Figure 2.1

shows its graphical objects. BPMN explicitly aims to be understandable

by all business process users, and selection is also in line with its use in

industry. Use of BPMN for the RE process is its most frequent application

for technical purposes in practice (Recker, 2010).

BPMN has been extensively evaluated on the basis of different criteria

such as the Bunge-Wand-Weber model (Rosemann, et al., 2006), the

workflow patterns (Wohed, 2006), quality frameworks (Nysetvold,

Krogstie, 2005; Wahl, Sindre, 2005), the perspectives of users and

developers (Recker, Indulska, Green, 2007), its actual use (zur Muehlen,

Recker, 2008) or its cognitive effectiveness (Genon, Heymans, Amyot,

2011). The main conclusions that can be drawn are the following ones:

 BPMN is the notation that supports a higher percentage of

elements of the Bunge-Wand-Weber model.

 BPMN supports most of the workflow patterns; no notation for

business process modelling supports all of them.

 BPMN is very expressive and easy to use and understand,

although it can be improved.

 BPMN does not properly support business rule specification and

has graphical objects that are redundant or overloaded.

 Just 20% of BPMN elements are regularly used, and some of them

are hardly ever used.

 BPMN could modify representation of some graphical elements to

improve cognitive effectiveness.

In addition to some of the above works, others have compared BPMN

to the rest of notations reviewed (e.g., (Becker et al., 2010; Birkmeier,

Klöchner, Overhagen, 2010; Decker, et al. 2010; Figl, et al, 2010; List,

Korherr, 2006; Recker, et al. 2009; Rodríguez, et al., 2009)). Some

conclusions from the comparisons are the following ones:

24

 2 State of the Art

 Notations for business process modelling can be and are

combined in practice.

 YAWL is more focused on modelling at an execution level than

BPMN; nonetheless, BPMN can be mapped into YAWL.

 BPMN, activity diagrams and EPC properly support functional,

behavioural, organizational and informational perspectives.

 Both BPMN and activity diagrams can become complex for

stakeholders, thus they are usually adapted in practice to reduce

complexity; BPMN may not be easier to use for all stakeholders;

nonetheless, BPMN can be mapped into activity diagrams.

 BPMN is widespread in industry, and stakeholders’ satisfaction is

higher with BPMN than with EPC or activity diagrams.

Some original weaknesses of BPMN have already been mitigated. For

example, lack of formal semantics (e.g., on the basis of Petri Nets

(Dijkman, Dumas, Ouyang, 2008)). Others do not affect the thesis because

correspond to issues that are not addressed when using BPMN. For

example, representation of system structure (Rosemann, et al., 2006)

In summary, although BPMN has weak points, it can be regarded as

the best suited notation for business process modelling currently. It can

be considered the most expressive and easy to use and understand

notation, and it is receiving strong support from academia and industry.

As a result, it is recognised as the de facto standard notation for business

process modelling. Nonetheless, awareness of the weaknesses of BPMN

when using it is important in order to try to avoid them or mitigate them.

Finally, other analyses of BPMN can be found in (Aagesen, Krogstie,

2010; Recker, 2010; Recker, 2011). These works have analysed in more

depth some of the issues that have been discussed in this section.

Flow objects

Exclusive

gateway

Start event Task

End event

Intermediate

event

Sub-

process

Complex

gateway

Parallel

gateway

Inclusive

gateway

Connecting objects

Sequence flow

Message flow

Association

Swimlanes

Pool

Lane

Artifacts

 Annotation

Group

Data

object

Default

(sequence) flow

Figure 2.1 BPMN graphical objects

 25

2.2 Goal-Oriented RE Approaches

2.2 Goal-Oriented RE Approaches

Goals have long been recognized to be essential components of the RE

process (van Lamsweerde, 2001). They can be defined as objectives that a

software system should achieve in order to meet stakeholders’ needs.

Goals can be formulated at different abstraction levels, ranging from

high-level (strategic concerns) to low-level (technical concerns).

Goal-oriented RE approaches emerged as a means to overcome a

major drawback of traditional RE approaches. They lead to systems

technically good but unable to respond to the needs of users. Goal-

oriented RE approaches consider that requirements should initially focus

on the why and how issues of a software system rather than on the issue

of what needs to be implemented.

More specifically, traditional RE approaches have focused on the

functionality of a system and its interactions with users. Instead of asking

what the system needs to do, goal-oriented RE approaches ask why a

given functionality is necessary and how it could be implemented.

Therefore, goals give a rationale for system functionality.

In addition to this purpose, goal modelling and analysis in the RE

process aims to: better understand a system; facilitate requirements

elicitation; identify and evaluate alternative implementations; detect

irrelevant requirements; obtain complete requirements specifications;

identify and resolve requirements conflicts, and; define stable goals

(Pohl, 2010). Goal-orientation is usually targeted at organizational change

(Kavakli, Loucopoulos, 2006).

Nonetheless, goal-oriented RE approaches also present some

weaknesses that can hinder their application (Rolland, Salinesi, 2005). For

example, the approaches should better address goal abstractness,

elicitation, fuzziness and operationalization, and better guide discovery

of alternative goals.

The next subsections review the goal-oriented RE approaches that can

be considered the most relevant ones. Section 2.2.4 analyses the

approaches and discusses selection of one of them for the methodological

approach of the thesis. A relevant work on goal-oriented RE that is not

reviewed is GBRAM (Antón, 1997). This approach focuses on goal

discovery, not on goal modelling and analysis. EKD goals model (Section

2.3.1) is neither reviewed in this section.

26

 2 State of the Art

2.2.1 The i* Framework

The i* framework (Yu, 1995) was developed at University of Toronto to

model and reason about organizations and their ISs. It focuses on

modelling of the dependencies that exist between the business actors in

order to achieve organizational goals. The framework consists of two

models: the strategic dependency model and the strategic rationale

model.

The strategic dependency model shows the dependencies that exist

between actors to achieve their goals, to perform tasks and to provide or

request resources. A dependency describes an intentional relationship

between two actors. It is composed by a depender (the actor who is

dependent on another actor), a dependee (the actor on whom another

actor depends) and a dependum (the task, goal, resource or softgoal on

which the relationship is focused).

The strategic dependency model is composed by four types of

dependencies. Goal dependency represents that an actor depends on

another to achieve a goal. Resource dependency represents that an actor

depends on another to deliver a resource, which can be either material or

informational. Task dependency represents that there exists a

dependency for performing a task. Softgoal dependency is similar to the

goal dependency, but with the difference that the goal and how it can be

achieved are not precisely defined.

By means of the strategic rationale model, a deeper analysis of the

reasons that exist behind each dependency relationship is performed.

This is useful for representing tasks that have to be performed by the

actors to achieve their goals, as well as for thinking about new ways of

working. This model is based on the elements of the dependency model,

but it also adds task decomposition links (to represent the combination of

the necessary tasks to achieve a goal) and mean-ends links (to present the

diverse options that can be taken to fulfil a task or goal).

The i* framework is also closely related to the NFR Framework

(Chung, et al., 2000). The frameworks share creators, several principles

and concepts. For example, both frameworks address analysis of

softgoals. Nonetheless, the NFR framework focuses on identification,

analysis and operationalization of non-functional requirements.

 27

2.2 Goal-Oriented RE Approaches

2.2.2 KAOS

KAOS (Knowledge Acquisition in autOmated Specification; (Dardenne,

van Lamsweerde, Fickas, 1993)) was developed by researchers from

University of Oregon and University of Louvain. Its purpose is to

support requirements elicitation and specification from high level goals

that system requirements must fulfil. In this sense, in KAOS goals are

refined until they are assigned to individual agents.

KAOS consists of four complementary models: the goal model, the

object model, the agent responsibility model and the operation model.

For review of state of the art, the KAOS goal model is described.

The goal model is the driving model of KAOS. It declares the goals of

a software system. A goal defines an objective that the system should

achieve, usually through the cooperation of multiple agents. Goal-

refinement links (AND/OR links) relate a goal to a set of sub-goals. A set

of sub-goals refines a parent goal if the satisfaction of the sub-goals is

sufficient for satisfying the parent goal. In addition to goal refinements,

conflicts between goals can also be captured.

The goal model has a two-layer structure. An outer semantic net layer

is used for declaring goals and goal links, and an inner textual layer is

used for defining goals. Goals are defined in natural language and may

optionally be defined formally in real-time temporal logic.

The goals at the top of a model usually represent strategic or business

goals, whereas the goals at the bottom represent system requirements.

Therefore, characteristics of both the business domain and the system

domain can be represented in a goal model and business characteristics

are refined until system ones are specified. As mentioned above, the

agents responsible for achievement of the bottom goals are determined.

KAOS distinguishes among four patterns (achieve, cease, maintain

and avoid) and five categories (satisfaction, safety, security, information

and accuracy) of goals. The categories are organized into specialization

hierarchies. For example, the category of security goals is specialized into

subcategories such as confidentiality and authentication goals.

Nonetheless, determination of a category for a goal is optional.

 It must also be indicated that KAOS is usually regarded as targeted at

embedded software systems, not at ISs (Pohl, 2010).

28

 2 State of the Art

2.2.3 Map

The Map approach (Rolland, 2007) was developed at University of Paris 1

(Panthéon Sorbonne). It aims to capture the intentions (goals) of an

enterprise or system and to determine the strategies that can contribute to

the fulfilment of these intentions.

The emphasis on the concept of strategy as a way to achieve a goal

distinguishes Map from other goal-oriented RE approaches. This

emphasis is motivated by the fact that stakeholders do not naturally

make the distinction between goals and strategies. As a consequence,

pitfalls can arise. The size of a goal model can unnecessarily increase

when strategies are expressed as goals, alternative ways to run an

organization can be more difficult to discover, and recognizing stable

elements in an organization (intentions) versus more versatile ones

(strategies) can be more difficult. In addition, Map promotes variability

analysis at the requirements stage.

Map diagrams consist of a graph whose nodes are intentions and

whose edges are strategies. An edge entering a node identifies a strategy

that can be used to achieve the intention of the node, so a map shows

which intentions can be achieved by which strategies. The aggregation of

a source intention, a target intention and a strategy is called section. A

section can be refined in another Map diagram.

Given the low number of main constructs that Map propose, it can be

considered that its diagrams must not be difficult for stakeholders to

understand, or that at least that they must be easier to understand than

the models of other goal-oriented RE approaches.

A relevant characteristic of Map is that it has not only be used as an

approach for goal modelling, but also as an approach for business

process modelling. By lowering their abstraction level, nodes can be used

for modelling of activities and the edges for modelling of ways and of

sequences to perform the activities.

However, modelling of business processes with Map can be regarded

as not completely adequate. Although the use of few constructs is an

advantage for understanding of the diagrams, it is also a disadvantage

for business process modelling. Common and necessary information that

should be included in a business process model is not supported by Map.

For example, the roles that perform the activities cannot be specified.

 29

2.2 Goal-Oriented RE Approaches

2.2.4 Analysis and Discussion

This section discusses the selection of the approach that can be regarded

as the most suitable one for modelling of the purpose of an IS (second

objective of the thesis). Selection is based on the purpose of the

approaches, on their strong points and on their weaknesses.

The approach that has been selected is Map (Figure 2.2, adapted from

(Rolland, 2007)). It focuses on strategies to achieve goals and has only

two main concepts (goal and strategy). The low number of concepts is

positive to facilitate its use and understanding, thus it can be considered

that the Map approach facilitates customer stakeholders’ participation

and communication with them. It also does not deal with tasks and roles

that execute them, which can be modelled in business process models.

The i* framework has been discarded because several weaknesses

have been identified (e.g., (Estrada, et al., 2007; Franch, 2010; Maiden, et

al., 2004; Moody, Heymans, Matulevicius, (2010)). i* diagrams might be

too complex and difficult to understand for stakeholders and should

better support aspects such as granularity, scalability and refinement.

KAOS has been discarded because ways to achieve goals (strategies)

have to be modelled as goals, what may increase the size and thus the

complexity of a goal model. In addition, the Map approach uses fewer

concepts, thus it is easier to use and understand.

Finally, there exist works that have compared and analysed i* and

KAOS (e.g., (Kavakli, 2002; Matulevicius, Heymans, 2007; Matulevicius,

Heymans, Opdahl, 2007)) and have found weaknesses. Finally, the

relationship between i* and KAOS was studied in (Monteiro, et al., 2010).

Nonetheless, the value of the i* framework and of KAOS cannot be

denied. They can be useful for development of many software systems,

and their use will depend on the purpose of goal modelling (Pohl, 2010).

For example, the i* framework is suitable to analyse dependencies among

actors. In fact, many RE approaches are based on it, as shown below.

Start
Make Room

Booking

Accept

Payment
Stop

By customer

retraction

Normally

By credit card

By electronic

transfer

By visiting a travel agency

On the

Internet

Goal

Strategy

Legend

Figure 2.2 Example of Map diagram

30

 2 State of the Art

2.3 Business Process-Based Approaches for

Organizational Modelling

An organizational model (aka enterprise or business model) is a

consistent set of special-purpose and complementary models that

describe various facets of an organization to satisfy some purpose of

business users (Vernadat, 1996). Organizational modelling is the set of

activities that are used to develop the various parts of an organizational

model. An organizational model usually consists of different sub-models

for representation of the facets (activity, information, constraints, etc.).

Organizational modelling-based RE approaches aim to represent and

understand the organization for which a software system is going to be

developed. Requirements need to be articulated in the framework of

“real-world” knowledge, which provides the purpose of the intended

system as well as the knowledge about the phenomena that are common

to the business and system domains (Loucopoulos, Karakostas, 1995).

Most of the existing organization modelling-based RE approaches

focus on creation of business process models and elicit system

requirements from them. A type of approaches that has been considered

not to belong to this category are the i*-based approaches.

The success of the i* framework in academia is clear. There exist many

approaches for IS development that are based on it, such as Tropos

(Bresciani, et al., 2004; Castro, Kolp, Mylopoulos, 2001), RESCUE (Jones,

Maiden, 2004) and PRiM (Grau, Franch, Maiden, 2008). Nonetheless,

these approaches are not considered business process-based approaches

because business process modelling is just partially addressed and plays

a secondary role. For example, they do not address activity sequence.

BPMN-based approaches for requirements specification have been

presented in (de Castro, Marcos, Vara, 2010; Rodríguez, et al., 2009)

Nonetheless, these approaches are not reviewed in detail because they do

not properly support any of the objectives of the thesis (apart from the

first). This weakness is also present in most of the existing approaches for

specification of system requirements from business process models (e.g.,

(Coskuncay, et al., 2010; Odeh, Kamm, 2003))

The next subsection reviews the approaches that can be regarded as

the most relevant ones. Section 2.3.5 analyses them.

 31

2.3 Business Process-Based Approaches for Organizational Modelling

2.3.1 EKD

EKD (Enterprise Knowledge Development; (Bubenko, Persson, Stirna,

2001)) was developed at Royal Institute of Technology. It provides a

systematic and controlled way of analysing, understanding, developing

and documenting an organization and its components.

The purpose of EKD is to provide a clear and unambiguous picture of

how an organization operates at a given moment, what are the

requirements and the reasons for change, what alternatives could be

devised to meet these requirements, and what are the criteria and

arguments for evaluating these alternatives.

EKD consists of six models:

 Goals model, which focuses on describing the goals of an

organization, i.e., what the organization and its employees want

to achieve or to avoid and when; this model analyses goals,

problems, causes, constraints and opportunities, and uses

AND/OR decompositions for goals.

 Business rules model, which is used to define and maintain

explicitly formulated business rules, consistent with the goals

model; business rules may be seen as operationalization or limits

of goals.

 Concepts model, which is used to define the "things" and

"phenomena" that are present in the other models and includes

organizational concepts, attributes, and relationships.

 Business process model, which is used to define organizational

processes and the way they interact and handle information (as

well as material); a business process is assumed to consume

inputs (of information or material) and produce outputs.

 Actors and resources model, which is used to describe how

different actors and resources are related to each other and how

they are related to components of the goals model and of the

business processes model.

 Technical components and requirements model, which defines

requirements for the development of an information system; this

model focuses on the technical system that is needed to support

the goals, processes and actors of an organization.

32

 2 State of the Art

2.3.2 ARIS

As EPC, ARIS (ARchitecture of ntegrated Information Systems; (Scheer,

2000)) arose from a project between SAP AG and the University of

Saarland. ARIS aims to provide a framework spanning the gap between

business requirements and ISs, i.e., to provide a precise way of

expressing business processes and to allow effective communication and

detailed analysis of them. It also aims to provide an unambiguous basis

for the development of the necessary IS to support business processes.

ARIS provides a structure to organise different types of model and

objects of an organization and to define their relation to each other. ARIS

structure consists of five views (i.e., models):

 Organization view, which represents static models of the

structure of an organization; it includes departments, people

resources and roles in hierarchical organisation charts, technical

resources (e.g., equipment and transport) and communication

networks.

 Data view, which represents static models of business

information; it includes data models, knowledge structure,

information carriers, technical terms and database models.

 Function view, which represents static models of process tasks; it

includes function hierarchies, business objectives, supporting

systems and software applications.

 Product/service view, which represents static models of the

structures of products and services; it includes product trees,

products and services.

 Process (control) view, which depicts dynamic models showing

the behaviour of processes and how they relate to the resources,

data and functions of the business environment; it includes EPCs,

information flow, materials flow, communications diagrams,

product definitions, flow charts and value chain diagrams.

The first four views focus on the structure of an organization, while

the process view focuses on the dynamic behaviour of the business

process and brings together all the different elements of the other views.

Use cases can be specified as a link between the organization and the

function views. Class diagrams can also be used in the data view.

 33

2.3 Business Process-Based Approaches for Organizational Modelling

2.3.3 UML-Based Approaches

Many organizational modelling-based RE approaches that focus on

business process modelling are based on UML. These approaches adopt

and adapt UML diagrams and principles for creation of organizational

models. Some of them are the following ones.

(Eriksson, Penker, 2000) is probably the most cited UML-based

approach for organizational modelling. It proposes an approach that is

based on the extension of UML by means of stereotypes. Extensions are

targeted at modelling of business processes, resources, goals, business

rules and relationships. The approach uses four different views (i.e.,

models):

 Vision view, which describes a goal structure for an organization

and illustrates problems that must be solved in order to reach

goals.

 Process view, which represents the activities and value created in

an organization and illustrates the interaction between the

processes and resources in order to achieve the goal of each

process.

 Structure view, which shows the structures among the resources

in an organization.

 Behaviour view, which represents the individual behaviour of

each important resource and process.

With regard to other UML-based approaches, (García Molina, et al.

2002) propose an approach that is based on the OOram three-model

architecture and the IDEA method for elicitation of use cases and creation

of OO conceptual schemas from organizational models. As RUP

(Kruchten, 2003), this approach mainly focuses on identification of

business processes and organizational actors and addresses specification

of business use cases. The approach also addresses determination of

business rules and information objects.

In (Marshall, 2000), UML is used for modelling of purpose, processes,

entities and structure of an organization. Finally, other works have

addressed derivation of use cases and class diagrams from activity

diagrams (e.g., (Rodríguez, et al., 2009)).

34

 2 State of the Art

2.3.4 Communication Analysis

Communication Analysis (España, González, Pastor, 2009; España, et al.,

2011; González, et al., 2011) is an approach that has been published

recently. Differently from other organizational modelling-based RE

approaches, business processes are modelled and analysed from a

communicative perspective, not from a behavioural perspective.

In Communication Analysis, ISs are means to support organizational

communication. Consequently, it focuses on communicative interactions

that occur between an IS and its environment. In addition, this approach

does not only consider ISs from a software perspective, but also considers

them from an organizational and social perspective.

Communication Analysis proposes a requirements structure that

allows successive refinements for ISs description though five levels:

 System/subsystems level (L1), which refers to an overall

description of an organization and its environment; it also

involves decomposition of the problem to reduce its complexity.

 Process level (L2), which refers to business process descriptions

both from a dynamic viewpoint (by identifying flows of

communicative interactions, aka communicative events) and a

static viewpoint (by identifying business objects).

 Communicative interaction level (L3), which refers to the detailed

description of each communicative event (e.g., the description of

its associated message) and each business object.

 Usage environment level (L4), which refers to capture of the

requirements related to the usage of a software-based IS, the

design of the user interfaces and the modelling of object classes

that will be stored in the IS memory.

 Operational environment level (L5), which refers to the design

and implementation of the software components and architecture

of a software-based IS.

Levels L1, L2 and L3 belong to the problem space. They do not

presuppose the computerisation of an IS and aim to discover and

describe the communicational needs of users. In contrast, Levels L4 and

L5 belong to the solution space. They specify how the communicational

needs are going to be supported by a software-based IS.

 35

2.3 Business Process-Based Approaches for Organizational Modelling

2.3.5 Analysis and Discussion

Business process-based approaches for organizational modelling are

analysed on the basis of their support for achievement of the objectives 3

to 7 of the thesis (Section 1.4). The objectives 1 and 2 have not been

considered because they are out of the scope of the approaches, although

it must be noted that they influence on the objective 3.

Table 1 summarises the analysis. The support that the approaches

provide for achievement of each objective is represented by means of

symbols. If an approach (or a set of approaches) is considered to properly

support achievement of a goal (i.e., it provides mechanisms or guidance

that allow the objective to be achieved without problems), then the

corresponding cell contains the symbol “+”. If it is considered that the

support that is provided should be improved, then the corresponding cell

contains the symbol “+/-“. Finally, if it is considered that improper or no

support is provided, then the corresponding cell contains the symbol “-”.

This kind of analysis has also been performed for approaches for

specification of system requirements and for approaches for link of

system requirements with OO conceptual schemas (Sections 2.4 and 2.5).

It must also be indicated that some readers may not agree on the results

of the analyses, i.e., on the rating of the support of the approaches as

proper, not completely proper or improper. Explanation of the reasons

for rating is provided to try to reduce disagreement.

EKD provides support for achievement of all the objectives except for

derivation of state transition diagrams. Nonetheless, most of the support

that provides should be improved. Effect of system purpose on business

processes is weakly addressed, and EKD does address issues such as

bridging the gap between business and system domains, specification of

quality requirements and homogeneous granularity of system

requirements. Finally, EKD data models (conceptual schemas) are less

detailed than class diagrams.

The main problem of ARIS is that it does not deal with too many

objectives of the thesis. In addition, it only properly supports one

objective (specification of system requirements that determines support

for business process). ARIS should also provide more guidance to bridge

the gap between business and system domains, and the degree of detail

of the system requirements and of the class diagrams should be higher.

36

 2 State of the Art

UML-based approaches present an important weakness that can

hinder their application: its diagrams might be difficult for stakeholders

to use, understand and validate (Dobing, Parsons, 2000; Siau, Cao, 2001).

This is a result of its focus on the system domain. UML-based approaches

should also improve their mechanisms and guidance to bridge the gap

between business and system domains. For example, direct map of

business task to use cases assumes that they have the same granularity,

which it is not always the case. Finally, the degree of detail of the class

diagrams that are derived should also be improved. More and more

specific information should be included.

The support that Communication Analysis provides for the challenges

that it tackles (and are common to this thesis) can be regarded, in general,

as good. It is especially important (in relation to this thesis) its focus on

homogeneous granularity of requirements to increase their quality

(España, et al., 2009). Among its weaknesses, Communication Analysis

does not address analysis of system purpose for requirements elicitation

and of its effect on the business processes of an organization. It may also

improve specification of system requirements by addressing quality

requirements.

Despite the weaknesses that have been indicated for the business

process-based approaches for organizational modelling and thus their

lack of completely proper support for achievement of the objectives of the

thesis, the contributions that the approaches have made and their

importance cannot be denied. Furthermore, the ideas and mechanisms

that they propose could be modified or combined with other techniques

to mitigate most of the weaknesses.

Table 2.1 Analysis of business process-based approaches

for organizational modelling

Objective EKD ARIS UML-based
Communication

Analysis

3 +/- - +/- -

4 +/- +/- +/- +/-

5a + + + +/-

5b +/- +/- +/- +/-

5c +/- - - +

6 +/- +/- +/- +

7 - - - +

 37

2.4 Approaches for Specification of System Requirements

2.4 Approaches for Specification of System

Requirements

Specification (aka modelling) of system requirements is the activity of the

RE process that is related to documentation of the requirements of a

software system that belong to the system domain. The output of this

activity is a SyRS.

Specification of system requirements can be considered the main

activity of the RE process because all the others are influenced by or are

targeted at it. Requirements elicitation aims to discover the system

requirements that will be specified. Requirements analysis aims to

examine the system requirements that have been discovered and may be

specified and thus implemented. Requirements validation is concerned

with the adequacy of the system requirements for fulfilment of

stakeholders’ needs. Requirements negotiation is performed on the basis

of the system requirements that should be implemented. Finally,

requirements management is related to the control of the changes that

may occur in the system requirements of a SyRS.

There exist many and very different styles and approaches for

specification of system requirements (Davis, 1993; Kotonya, Sommerville,

1998; Lauesen, 2002). As notations for business process modelling, each

style for specification of system requirements has specific purposes and

different strong points and weaknesses. Therefore, their use will depend

on the purpose of specification of system requirements. For example, a

purpose can be specification of user requirements.

The approaches that have been considered to belong to the state of the

art of this thesis are those that address determination of support for

business processes (objective 5a). In addition to the approaches that are

reviewed in this section, the styles and approaches of the organizational

modelling-based RE approaches that have been reviewed in Section 2.3

are also considered approaches of the state of the art for specification of

system requirements.

The most relevant approaches related to this thesis for specification of

system requirements and the styles proposed for specification are

presented in the following subsections. Section 2.4.4 analyses the

approaches.

38

 2 State of the Art

2.4.1 Scenario-Based Approaches

Scenarios (Alexander, Maiden, 2004) aim to find possible ways to use a

software system to accomplish some desired function. They are based on

the idea of a sequence of actions that have to be performed by a user and

by a software system.

Within scenario-based approaches, different styles exist. Probably the

most famous one is use cases. Other well-known styles are user stories,

misuse cases and storyboards.

Scenarios are related to this thesis because they usually use the

language of the application domain and aim to facilitate agreement upon

system support for business processes and to interrelate system

functionality and business processes (Weidenhaupt, et al., 1998). In

addition, the simplicity of scenarios facilitates communication between

system analysts and customer stakeholders.

Scenarios usually deal with three parts of a software system. The

system context refers to descriptions of the broader environment in

which the system is embedded (e.g., an organization in the case of an IS).

System interaction covers how the system interacts with its environment

(e.g., users). Finally, internal system refers to internal interactions among

system components.

Many and different templates for specification of scenarios-based

system requirements can be found in literature. A typical template

contains this information:

 Name of the scenario

 Actors that participate

 Goal that should be achieved by executing the scenario

 Main story

 Variations of the main story

 Exceptions of the main story

 Preconditions for execution of the scenario

 Postconditions after execution

 Non-functional requirements that constrain or affect the scenario

 39

2.4 Approaches for Specification of System Requirements

2.4.2 Task and Task & Support Descriptions

Task descriptions (Lauesen, 2002) are based on a simple but important

idea: a software system must support user tasks. They focus on

requirements at the domain (business) level, and aim to specify adequate

support for business tasks and for what users and software systems

should achieve together.

For this purpose, the work areas that will be affected by a system are

determined and task descriptions for each area are specified. A task

description has a specific goal, and a user performs the task and either

achieves the goal or cancels the whole activity.

The main difference with the scenario-based approaches is the focus

on the collaboration between a user and a system, in contrast to the focus

on the definition of the actions of a software system and the interactions

with it. The information that is specified in a task description is:

 Name of the task

 Purpose of the task

 Trigger/Precondition for execution

 Frequency and critical situations of execution of the task

 Sub-tasks and their sequence

 Variants during execution of the task

As a natural following step, task & support descriptions address

specification of the software-based solutions that can be provided for task

descriptions. Each sub-task is analysed so that its existing problems and

possible solutions (system support) are determined.

The main advantages of task and task & support descriptions are that

stakeholders find them easy to validate, focus on understanding of the

application domain and facilitate validation. An initial weakness was that

they did not address data requirements. However, this problem was

solved by linking them to Virtual Windows, in which the pieces of data

that a system has to show so that a user performs a task are determined.

Finally, a study on effectiveness of task descriptions and use cases is

presented in (Lauesen, Kuhail, 2011). Task descriptions better address

problem analysis and link of requirements with the application domain.

40

 2 State of the Art

2.4.3 Business Transactions-Based Approaches

Approaches that focus on specification of business transactions for

software systems have appeared recently (Chalin, Sinnig, Torkzadeh,

2008; Correa, Werner, 2004). Their authors argue that most of the works

on business transactions deals with them from a design perspective

instead of from a requirements perspective. However, modelling of

business transactions and concurrency management can be considered

domain activities and thus should be analysed during the RE process.

These approaches aim to provide proper means for an integrated

specification of functional and business transaction requirements. They

are related to this thesis because they focus on analysis of the application

domain, system support for business (transactions) and precision in

SyRS. They also deal with documentation and analysis of business

information for elicitation of system requirements (e.g., business rules).

For specification of business transactions, the approaches adapt and

extend use cases. Since use case descriptions mainly focus on the

sequence of interactions between actors and the system, it is common to

see analysts trying to specify interaction details before having a precise

knowledge of the underlying transaction results that should be achieved.

Three types of use cases are considered: transactional use cases, support

use cases and data extraction use cases.

The information that is included in business transactions-based use

cases is:

 Business transactions to be supported by the use case

 Input for the use case

 Expected results

 Main scenario for execution of the use case

 Scenarios for abortion situations on the basis of actor’s decision

 Scenarios for detection of accesses to transactional resources by a

software system

 Scenarios for failures in access to transactional resources

 Response time out for a system

 Policies for management of failures in data storage

 41

2.4 Approaches for Specification of System Requirements

2.4.4 Analysis and Discussion

The approaches for specification of system requirements have been

analysed on the basis of the support that they provide to achieve the

objectives of the thesis. The objectives 1, 2, 3, 6 and 7 have not been

considered in the analyses because they are out of the scope of the

approaches. Therefore, just the objectives that are related to the second

research question of the thesis have been considered.

Although all the approaches that have been reviewed address all the

objectives that are related to the second research question, none of them

provides adequate support to achieve the objectives. The main problems

of the approaches are that: 1) they focus on definition of the information

to specify but do not explain how to obtain the information (e.g., from

business process models); 2) they do not pay too much attention to

quality requirements, and; 3) the guidance for homogeneous granularity

should be more detailed, specific and objective to facilitate its application.

The definition of criteria for assurance of homogeneous granularity of

system requirements is missing in most of the RE approaches in general

and in those reviewed in this section in particular. There exist some

criteria, but most of them need to be more precise so that they are easy to

apply. Clear examples are goals of use cases (Cockburn, 20001) and

closure and “coffee break test” (Lauesen, 2002). If precise and objectives

criteria for homogeneous granularity are not defined for system

requirements, then it could be difficult to achieve and validate.

The validity of the approaches for specification of system

requirements should not be doubt in spite of their weaknesses. The

approaches are sound and have been and are successfully applied in

many software development projects. Their problem in relation to this

thesis is that they are not targeted at some of its objectives.

Table 2.2 Analysis of approaches for specification of system

requirements

Objective Scenario-based
Task and task &

support descript.

Business

transact.-based

4 +/- +/- +/-

5a +/- +/- +/-

5b +/- +/- +/-

5c +/- +/- +/-

42

 2 State of the Art

2.5 Approaches for Link of System Requirements

with OO Conceptual Modelling

Creation of OO diagrams (e.g., OO conceptual schemas) from or in

conjunction to specification of system requirements has been considered

a necessary step in software development projects since the appearance

of the first approaches for OO development approaches (e.g., (Jacobson,

et al., 1992)). The most common practice has been the combination of use

cases and class diagrams, which can be considered to complement each

other for system modelling (Siau, Lee, 2004).

Although link of system requirements with OO diagrams is clearly

important for software modelling and development, most of the

approaches that deal with this step present an important weakness: they

do not provide means to avoid problems such as incompleteness of OO

diagrams and inconsistency of OO diagrams and SyRSs. As a solution to

this weakness, many approaches have focused on provision of

mechanisms and guidance in order to try to avoid potential problems.

Among these approaches, those considered to be most related to the

thesis are reviewed in this section.

All the approaches that are reviewed share a common characteristic:

they specify system requirements from a scenario-based perspective. In

this sense, use cases are used as style for SyRS and as starting point for

the derivation of OO conceptual schemas. Depending on the approach,

details of use cases are specified in a given way so that an OO conceptual

schema is created from their analysis.

In addition to the approaches that are reviewed in this section (which

focus on link of system requirements with OO conceptual schemas),

other four kinds of approaches exist for creation of class diagrams from

system requirements.

The first kind corresponds to approaches that deal with design-level

class diagrams (e.g., (Cox, Phalp, 2007)). These approaches are not

reviewed because they address derivation of design characteristics of a

software system. On the basis of conceptual modelling principles (Olivé,

2007), conceptual schemas must specify the knowledge that an IS needs

to know, not the internal characteristics of the system. They correspond

to analysis models about the application domain and do not include

descriptions of software components (Larman, 2005).

 43

2.5 Approaches for Link of System Requirements with OO Conceptual Modelling

The second kind of approaches correspond to linguistic-based

approaches (e.g., (Overmyer, Lavoie, Rambow, 2001)), which address

creation of class diagrams from analysis of textual specifications. They

are not reviewed because they do not address specification of system

requirements for support of business processes.

The third kind of approaches correspond to i*-based approaches that

address derivation of class diagrams (e.g., (Castro, et al., 2001)). As in

Section 2.3, these approaches are not reviewed because they focus on

support of goals instead of on support of business processes when

specifying system requirements and thus when deriving OO conceptual

schemas. Another goal-based approach (although non-i*-based) is

presented in (Liang, 2003). This approach analyses use case goals for

identification of classes and of their properties, and subsequently for

modelling of a class diagram.

The last kind of approaches corresponds to those that derive OO

conceptual schemas from business process-oriented organizational

models. They have been reviewed in Section 2.3.

There exists another type of works related to link of system

requirements with OO conceptual models. Such works have studied

business processes modelling from a data-centred perspective. They have

not been presented as RE works, but as business process management

works, thus they focus on analysis and design of business processes

instead of on requirements elicitation and specifications.

These works have addressed issues such as the notion of business

artefact (Nigam, Caswell, 2003), design of product-based workflows

(Reijers, Liman, var der Aalst, 2003), detection of data flow anomalies

(Shun, Zhao, Numaker, 2005) and document-driven workflows (Wang,

Kumar, 2005). These works are not reviewed in detail in this section

because they do not regard business process models as a means for

understanding of the application domain and for elicitation of system

requirements.

In (Kumaran, Liu, Wu, 2008), the correspondence between activity-

centric business process models and information-centric ones is

discussed. This work also shows how an activity-centric business process

model can be transformed into a data-centric model.

44

 2 State of the Art

With regard to state transitions diagrams (as a part of the OO

conceptual schema of an IS), approaches that address the link of system

requirements with OO conceptual models do not usually deal with them.

Nonetheless, works related to this issue can be found in literature.

Although they are not reviewed in depth because they do not aim to

specify support for the business processes of an organization, some of the

works are the following ones.

There exist works that have addressed derivation of state transition

diagrams from scenarios in general (e.g., (Uchitel, Kramer, Magee, 2003;

Whittle, Schuman, 2000)) and from use cases in particular (e.g., (Ratcliffe,

Budgen, 2005)). Scenarios are represented by means of message sequence

charts or sequence diagrams, and the derivation of state transition

diagrams from them is usually called synthesis. For synthesis, formal

descriptions and algorithms are provided by the works. However, these

works address design aspects of a software system and are not oriented

towards conceptual modelling, as discussed above for the works that

deal with derivation of design-level class diagrams.

Another stream of related work includes works that have combined

business process models and state transition diagrams. However, such a

combination has been targeted at model checking (e.g., (Bhattacharya, et

al., 2007; Eshuis, 2006)) and at consistency between the models (e.g.,

(Küsters, Ryndina, Gall, 2007)). They do not aim to link system

requirements to OO conceptual models as part of IS development, but to

guarantee that business process models are correct.

Last but not least, two systematic reviews related to the link of system

requirements with OO conceptual modelling have been published

recently. They reviewed RE approaches for model driven development

(Loniewski, Insfrán, Abrahão, 2010) and transformation approaches

between user requirements and analysis models (Yue, Briand, Labiche,

2010). Nonetheless, both works have focused on review of technical

issues when deriving class diagrams from system requirements, not on

provision of mechanisms and guidance to avoid potential problems

when addressing the derivation.

The next subsections present the approaches for link of system

requirements with OO conceptual schemas that have been regarded as

the most suitable ones for achievement of the objectives of the thesis.

Section 2.5.5 analyses the approaches.

 45

2.5 Approaches for Link of System Requirements with OO Conceptual Modelling

2.5.1 RETO

RETO (Insfrán, Pastor, Wieringa, 2002) was developed at Universidad

Politécnica de Valencia. As this thesis, it aims to provide a RE approach

for OO-Method.

The approach addresses the problem of software engineers that do not

know if an OO conceptual schema meets user requirements. The

intended solution is based on the provision of guidance to link user

requirements (represented through the TRADE framework) to an OO-

Method conceptual schema in a traceable way.

System requirements are specified by means of three complementary

parts. A mission statement describes the purpose of the system in one or

two sentences. A function refinement tree deals with partition of external

interaction according to the different business areas or business

objectives of an organization. Finally, a use case model includes two

parts: 1) a use case diagram to show the communications between the

actors and the system, and; 2) a use case specification in the form of

textual templates for scenario-based specification in order to determine

the composition of external interactions. Therefore, each use case is

analysed at two levels: at the use case diagram level and at the use case

specification level.

Functionality to support use cases is allocated in the classes of an IS by

analysing the use case diagram. For each step described or implied in a

use case specification, a responsibility (or a set of responsibilities) is

identified and a system analyst has to allocate it to a class. Such a class

may have been previously identified or it may be necessary to define a

new one.

Sequence diagrams are used in order to deal with the activity of

identifying responsibilities and allocating them into class components of

an IS. These diagrams show how classes participate in and are affected by

the execution of a use case, and specify the interactions between the

classes.

Sequence diagrams are also enriched by specifying the messages that

classes send to others. Several types of messages are defined, and UML

stereotypes are used to differentiate them. Once the sequence diagrams

have been modelled, a set of rules allow derivation of part of an OO-

Method conceptual schema in the form of a class diagram.

46

 2 State of the Art

2.5.2 ADORA

ADORA (Analysis and Description Of Requirements and Architecture;

(Glinz, Berner, Joos, 2004)) is an approach for OO modelling of software

systems that was developed by researchers from University of Zurich. It

provides a lightweight approach for consistency between a scenario

model and a class model (Glinz, 2000).

This approach is based on the fact that OO requirements specifications

typically combine a scenario (or use case) model and a class model for

expressing functional requirements. With such a combination, the

problem of consistency between the two models arises. Therefore,

ADORA aims to provide mechanisms and guidance that ensure that the

information in these models is neither contradictory nor partially

incomplete.

Nearly all requirements modelling techniques that use more than one

model have no systematic approaches to combine the models

consistently. The consistency problem is simply ignored and thus left to

the system analysts and to the users, who have to validate a requirements

specification.

A scenario model and a class model are considered to be consistent if:

1) there are no contradictions between the information in the scenario

model and the information in the class model (both where information is

shared and where the models interact), and; 2) there is no partial

incompleteness with regard to the other model. A partial incompleteness

is a situation where information that is present in one model requires

corresponding information in the other model.

Consistency is achieved in ADORA by minimizing overlaps between

the two models and by systematically cross-referencing corresponding

information. A set of model construction and checking rules is provided

both for developing a consistent specification and for checking the

consistency of a completed specification.

In summary, this approach allows systematic identification of

information in a class model that corresponds to information in a

scenario and vice-versa. It provides elementary conformance rules that

can be checked automatically, have rules for inspecting corresponding

information and can systematically detect both contradictions and

information that is missing on either side (partial incompleteness).

 47

2.5 Approaches for Link of System Requirements with OO Conceptual Modelling

2.5.3 SCORES

SCORES (Kösters, Six, Winter, 2001) was developed at University of

Hagen. Similarly to ADORA, it is based on the fact that inconsistency

and incompleteness may arise between use cases and class models. For

SCORES, the reason is that the models are based on different modelling

techniques and aim at different abstraction levels.

SCORES proposes a method for coupling of use case and class

models. Since the class model provides a finer granularity and more

rigorous semantics compared to the use case model, use cases are refined

to achieve more precise specifications. For this purpose, activity graphs

are used. Therefore, granularity and semantics of the refinement allow

transition of use cases via activity graphs to a class model

An activity graph is a variation of a state machine in which the states

represent the development of actions or sub-activities and the transitions

are triggered by the completion of the actions or sub-activities. An

activity graph focuses on a single modelling element (e.g., an operation, a

class or an entire system). Consequently, it cannot model the behaviour

of more than one interacting modelling element. In particular, it cannot

cope with interaction information (differently from sequence diagrams).

Furthermore, an activity graph is not able to capture associations to

actors and «include» or «extend» relationships between use cases.

In SCORES, the use cases are refined by specifying actions. Actions

together with basic control flow information derived from narrative

descriptions of business tasks are composed into activity graphs.

The class model obtained comprises the most important classes of the

domain with their responsibilities, root operations, some initial attributes

and relationships. In an incremental, iterative process, analysts explore

the activity graphs in more detail in order to extract all the modelling

elements involved in the execution of the corresponding use cases.

In summary, SCORES addresses precise modelling of use case

behaviour in terms of refined activity graphs covering internal,

interaction and contextual information. It also addresses seamless,

traceable transition of use cases to a class model via activity graphs. In

addition, SCORES addresses validation of a use case model and the

verification of a class model against a use case model.

48

 2 State of the Art

2.5.4 Info Cases

Info Cases (Fortuna, Werner, Borges, 2008) was developed at Federal

University of Rio de Janeiro. As ADORA, it addresses the problem of the

joint use of use case models and class (domain) models.

There are difficulties in this use, mainly when trying to obtain a class

model from a use case model or when trying to maintain consistency

between them. This approach proposes a specialization of use cases

called info cases, from which a class diagram can be derived by means of

semi-formal rules.

Two steps must be taken to solve the difficulties of the joint use of use

case models and class models. First, the elements of the class model must

be systematically captured while modelling use cases. Second, these

elements must be precisely represented within the description of the use

cases. As a solution, this approach provides an integrated model capable

of capturing, in a single conceptual framework, the elements involved in

use cases and in the class model.

Use cases must have value for a stakeholder and make achievement of

some of his goals possible. This means that a change of state in the

system and in its environment is made. The state of the system when the

goal is achieved must be a steady state, that is, consistent with the state of

the environment in which the system is introduced. Therefore, the state is

free of any need for rollback to a previous state, even if no other use case

is activated subsequently. This partitioning criterion defines a level of

abstraction for the elicitation of use cases, which is called informational

level of objectives.

The flows of information exchanged between the actors and the

system in each use case are used to capture the elements of a class

diagram. These flows are called information flows, and are exchanged

through the informational interface of the use cases.

An info case is a use case of the informational level of objectives, with

its informational interface specified by means of information flows.

Information flows, which are capable of capturing elements of a class

diagram, have two parts: a specification of the composition of flow and a

dictionary of elementary items of information. For determination of the

elements of a class diagrams from information flows, several rules are

provided.

 49

2.5 Approaches for Link of System Requirements with OO Conceptual Modelling

2.5.5 Analysis and Discussion

The three first objectives of the thesis have not been considered for

analysis of the approaches for link of system requirements with OO

conceptual schemas because they are out of the scope of the approaches.

The objectives that are related to the second and third research question

have been considered because most of the approaches deal both with

specification of system requirements and with derivation of OO

conceptual schemas.

A common weakness has been found in all the approaches that have

been reviewed: none of them address derivation of state transition

diagrams. Both static and dynamic properties are important for IS

conceptual modelling (Olivé, 2007; Pastor, Molina, 2007). They neither

address the gap between business and system domains nor

determination of support for business processes.

In addition, they do not explicitly address specification of quality

requirements and do not provide guidance for determination of all the

parts of a class diagram (classes, attributes, methods and associations). In

this sense, their class diagrams are incomplete. Finally, just info cases

deals with homogeneous granularity of use cases.

As for the rest works reviewed in the previous sections of this chapter,

the existence of weaknesses in the approaches for link of system

requirements with OO conceptual modelling does not imply that they do

not have strong points. Furthermore, identification of both the strong

points and the weaknesses of the approaches has been vey important for

development of the proposed solution of the thesis, as well as for

awareness of the problems that may arise and the approaches address.

Table 2.3 Analysis of approaches for link of system requirements with

OO conceptual schemas

Objective RETO ADORA SCORES Info Cases

4 - - - -

5a - - - -

5b +/- +/- +/- +/-

5c +/- +/- +/- +

6 +/- +/- +/- +/-

7 - - - -

50

 2 State of the Art

2.6 Summary

This chapter has presented the state of the art of the thesis. Five

categories of works have been reviewed, and the adequacy of the works

of each category for achievement of the objectives of the thesis has been

analysed and discussed.

The main conclusions of the review of the state of the art are that:

1. BPMN and Map are probably the notation for business process

modelling and the goal-oriented RE approach, respectively, that

best fit the challenges, needs and objectives of the thesis, and;

2. No existing RE approach (business process-based approach for

organizational modelling, approach for specification of system

requirements or approach for link of system requirements with

OO conceptual modelling) allows achievement of all the

objectives of the thesis, i.e., no approach properly addresses all

the challenges (research questions) of the thesis.

Although some objectives could be achieved by using some

approaches, other objectives would require changes on the approaches or

combination with other approaches. In fact, this is the line that has been

followed in this thesis for development of the proposed solution. Instead

of proposing a completely new approach, the methodological approach

presented is based on many ideas, mechanisms and guidelines proposed

in previous works. This fact is further explained in the next chapters.

Chapter 3

3 Fundamentals of the

Proposed Solution

“Those are my principles, and if you don't like them... well, I have others”

Groucho Marx

Before describing the stages and the evaluation of the methodological

approach of the thesis, this chapter introduces several aspects on which

the proposed solution is based or that have been analysed or defined as

part of its design and development. References to these aspects are made

throughout the thesis, thus it is necessary to present them in order to

understand the explanation of the methodological approach.

First, a definition of business process is proposed and the design of

the methodological approach is presented and discussed. Next, a

stakeholders taxonomy and a requirements taxonomy for this thesis are

described. The top ten principles of the proposed solution are then

explained, and finally the correspondence between business process

models and goal models is discussed. To conclude, a summary of the

chapter is presented.

52

 3 Fundamentals of the Proposed Solution

3.1 Definition of Business Process

Definitions of what a business process is are abundant, and many authors

have their own definitions. Some of the most widely known and used are

the following ones:

 A (business) process is a specific ordering of work activities across

time and place, with a beginning and an end, and clearly

identified inputs and outputs: a structure for action (Davenport,

1993).

 A business process is a collection of activities that take one or

more kinds of input and creates an output that is of value to the

customer (Hammer, Champy, 2001).

 A business process is a set of one or more linked procedures or

activities which collectively realise a business objective or policy

goal, normally within the context of an organizational structure

defining functional roles and relationships (WfMC, 1999).

 A business process is the complete and dynamically coordinated

set of collaborative and transactional activities that deliver value

to customers (Smith, Fingar, 2002).

 A business process consists of a set of activities that are performed

in coordination in an organizational and technical environment.

These activities jointly realize a business goal. Each business

process is enacted by a single organization, but it may interact

with business processes performed by other organizations.

(Weske, 2007).

Definitions are usually very similar, thus it could be argued that the

notion of business process is straightforward. However, some authors

(Lindsay, Downs, Lunn, 2003; Melão, Pidd, 2000) have studied the nature

and definitions of business process in depth and have identified different

perspectives for their modelling (deterministic machine, complex

dynamic system, feedback loop and social constructs). They argue that it

is essential to know and understand the nature and possible perspectives

of business process modelling in order to properly define what a business

process is and thus to model them adequately.

On the basis of these works and previous definitions, the following

definition of business process is proposed and adopted in this thesis:

53

3.2 Design of the Methodological Approach

A business process is a set of structured and ordered activities that are

performed in an organization to achieve some business goal. A business

process takes inputs from the business environment and creates outputs,

and is executed coordinately and dynamically by people and/or technical

components that exchange information.

3.2 Design of the Methodological Approach

The methodological approach of the thesis, which corresponds to the

proposed solution, has been introduced in Chapter 1. It consists of four

stages: organizational modelling, purpose analysis, specification of

system requirements and derivation of OO diagrams. In this section, the

existing approaches and ideas on which its design has been based are

discussed.

As explained in Chapters 1 and 2, no existing RE approach properly

addresses all the challenges of the thesis. Nonetheless, it does not mean

that they are useless for development of the thesis. In this sense, the

strategy followed for the design of the methodological approach has been

to try to use (i.e., adopt, adapt, modify, extend…) as many existing ideas

and mechanisms as possible, instead of developing and proposing

completely new artefacts. If different existing works can make

achievement of specific objectives of the thesis possible, then the

combination of the works will make achievement of several or of all of

them possible.

Although BPMN (OMG, 2009) and Map (Rolland, 2007) have been the

reference works for design of the organizational modelling and purpose

analysis stages of the methodological approach, EKD (Bubenko, Persson,

Stirna, 2001) has had a great influence on them too. Many of its models

have been adopted, adapted and extended, especially focusing on

modelling business processes according to the definition proposed. The

main weakness of EKD is probably the lack of focus on the purpose of an

IS for understanding of the application domain and for elicitation of

system requirements. This weakness has been addressed by including a

Map-based purpose analysis stage.

For specification of system requirements, a new style has been

defined. It is called Extended Task Description (ETD), and it is influenced

by previous works. ETDs are mainly based on Lauesen’s Task & Support

Descriptions (Lauesen, 2002). Among other changes, Lauesen’s style has

54

 3 Fundamentals of the Proposed Solution

been extended by describing user-system interaction by means of

essential use cases (Constantine, Lockwood, 1999), by including

information flows based on those of the Info Case approach (Fortuna,

Werner, Borges, 2008), and by specifying quality requirements on the

basis of the ISO 9126-1 standard (ISO, 2001).

For derivation of OO diagrams, some existing ideas and mechanisms

have been used. For example, consistency rules from ADORA (Glinz,

2000) have allowed identification of relevant potential problems that may

arise. When limitations were found in other works, ways to overcome

them were studied and included.

Figure 3.1 shows the stages and artefacts of the methodological

approach. It is based on the assumption that an organization has a

problem or need that could be fulfilled by an IS.

The first stage depicts the current organizational environment (As-Is),

in which the problem or need exist. The organization will change to solve

the problem (To-Be), and the change will have an effect on its business

processes. Once the new business processes are modelled, systems

requirements are specified from them and OO diagrams are derived from

system requirements.

Participation and involvement of customer stakeholders in the process

is essential. Apart from being the source of information from which the

activity of and organization and system requirements are discovered,

they must validate that the BPDs of an organization are correct (i.e., they

properly depict the organizational activity), agree on the effect of an IS on

the business processes and validate the system requirements.

It must be noted that Figure 3.1 depicts and ideal sequential process

for execution of the methodological approach, what does not exactly

correspond to reality. In actual executions, the process can be iterative (in

fact it is the usual way), and incomplete or insufficient information in a

stage can be discovered in subsequent stages.

In addition, although the information and models of the As-Is part are

not included in the To-Be part (in order to keep Figure 3.1 as small as

possible), they will also be represented and maintained in the To-Be

situation of an organization. For example, changes in business processes

may imply changes in other artefacts of the organizational modelling

stage (roles model, business rules, etc.), and they must be reflected.

55

3.2 Design of the Methodological Approach

Business Events

Roles Model

Domain Data Model

Glossary

Business Rules

ORGANIZATIONAL MODELLING

SPECIFICATION OF SYSTEM

REQUIREMENTS

As-Is BPDs

Process Map

PURPOSE ANALYSIS

Goals/Strategies Diagrams

To-Be BPDs

Business-process based requirements

specification and OO conceptual modelling

Organizational problem or

need solvable by an IS

As-Is

To-Be

Validation

Agreement

ETDs

Validation

State Transition Diagrams

Class Diagram

DERIVATION OF OO-DIAGRAMS

Operationalization Tables

Labelled BPDs

Enriched BPDs

ETD Analysis

Mission Statement

Figure 3.1 Stages and artefacts of the methodological approach

In summary, and as explicitly stated as possible in the research

methodology followed (Vaishnavi, Kuechler, 2008), stages and artefacts

of the thesis themselves may not very novel, but the contributions are

primarily in the design and construction processes of the artefacts.

Therefore, an overall contribution of the thesis is to show how

combination of existing works can make achievement of its objectives

possible. This contribution is made by proposing extensions to these

works, new mechanisms and new guidance, and is also in line with the

needs of integration and combination of existing RE approaches and of

provision of systematic guidance to apply them (Cheng, Atlee, 2007).

56

 3 Fundamentals of the Proposed Solution

When reviewing literature, approaches whose design is similar to the

methodological approach can be found. Modelling and analysis of As-Is

and To-Be situations of an organization is common when addressing the

RE process of an IS (Pohl, 2010), business process management (Becker,

Kugeler, Rosemann, 2003) or business process reengineering (Carr,

Johansson, 1995). For example, the PRiM approach (Grau, Franch,

Maiden, 2008) models both situations. In (Berenbach, et al., 2009), a

model-driven RE process is presented on the basis of five models:

business model, feature/goal model, use case (analysis) model, design

model and implementation model.

The stages of the methodological approach of the thesis and the

creation processes of their artefacts are presented in the next chapters, as

well as further details about the combination of existing RE approaches.

3.3 Stakeholders Taxonomy

This section presents and defines a stakeholders taxonomy for the thesis.

The types of stakeholders of the taxonomy correspond to people and

roles that may be affected by business process-based requirements

specification and OO conceptual modelling of an IS.

Even though other stakeholders taxonomies or terminologies can be

found in literature (e.g (Alexander, Beus-Dukic, 2009; Berenbach, et al.,

2009; Lauesen, 2002)), it is important to explicitly determine what types

of stakeholders are mainly addressed in this thesis and what people and

roles are referred to when mentioning a type of stakeholders. Otherwise,

misconceptions may appear.

Figure 3.2 shows the taxonomy in the form of a class diagram, and

Table 3.1 shows the correspondence among several taxonomies and the

one proposed. The types of stakeholders of the taxonomy of the thesis are

defined as follows.

 Stakeholder: a stakeholder is a person (or group of people) that

has an interest in an IS and whose opinions, needs or preferences

are likely to be relevant to the success of the system.

 Customer stakeholder: a customer stakeholder is a stakeholder

that is part of the customer side of an IS development project and

corresponds to a person that works for the organization for which

an IS is going to be developed.

57

3.3 Stakeholders Taxonomy

Customer

stakeholder

Supplier

manager
End-userEmployee

Customer

manager

Supplier

stakeholder

Programmer
System

analyst

Stakeholder

Figure 3.2 Stakeholders taxonomy

 Customer manager: a customer manager is a customer

stakeholder that corresponds to a person that is in charge of the

management, control and decision making of some part of an

organization (e.g., a plant manager).

 Employee: an employee is a customer stakeholder that

corresponds to a person that performs the operational work of an

organization and is not a customer manager.

 End-user: an end-user is a customer stakeholder that represents

the people that will need to use an IS to perform their work.

 Supplier stakeholder: a supplier stakeholder is a stakeholder that

is part of the supplier side of an IS development project, i.e., a

person that works for the software development company that is

going to develop an IS.

 Supplier manager: a supplier manager is a supplier stakeholder

that corresponds to a person that is in charge of the management,

control and decision making of some part of a software

development company (e.g., a project leader).

 System analyst: a system analysts is a supplier stakeholder that

corresponds to a person that interacts with customer stakeholders

during the RE process in order to specify the system requirements

of an IS; this type of stakeholder is sometimes referred to as

requirements engineer (see Table 3.1) or business analyst (e.g.,

(IIBA, 2009)).

 Programmer: a programmer is a supplier stakeholder that

corresponds to a person that is in charge of the actual

development and implementation (i.e., coding) of an IS.

58

 3 Fundamentals of the Proposed Solution

Table 3.1 Correspondence among stakeholders taxonomies

This thesis
(Alexander, Beus-

Dukic, 2009)

(Berencbach, et

al., 2009)
(Lauesen, 2002)

Stakeholder Stakeholder Stakeholder Stakeholder

Customer

stakeholder

Functional

beneficiary

Customer, business

stakeholder
Customer, sponsor

Customer

manager
Sponsor, champion Buyer

Manager of the

departments

Employee Expert Expert -

End-user Normal operator User Daily user

Supplier

stakeholder
Manufacturer

Supplier, technical

stakeholder
Software supplier

Supplier manager Product manager
Development/project

manager
-

System analyst Operational support
Requirements

engineer/analyst

Analyst,

requirements

engineer

Programmer
Developer,

maintenance

operator

Developer-architect-

designer
Programmer

3.4 Requirements Taxonomy

In addition to the stakeholders taxonomy, a requirements taxonomy for

this thesis is defined too. The types of requirements of the taxonomy

correspond to aspects and characteristics of an IS that must be considered

for business-process based requirements specification. Nonetheless, the

taxonomy could be used for requirements elicitation and specification of

ISs in general.

As with the stakeholders taxonomy, there exist other requirements

taxonomies and classifications (e.g., (Aurum, Wohlin, 2005b; Glinz, 2007;

Lauesen, 2002)). Nonetheless, it is again important to present and define

the requirements terminology that is used in this thesis.

The purpose of the definition of a requirements taxonomy is that

readers know what a requirements-related term refers to when used so

that ambiguity and misinterpretation are avoided. These problems may

appear when different people use different semantics for common terms.

For example, different definitions and interpretations exist for very

common terms such as system requirement (Davis, 2003) and non-

functional requirement (Glinz, 2007).

59

3.4 Requirements Taxonomy

It must also be indicated that other authors may refer to the types of

requirements of the taxonomy with other terms or use the terms of the

taxonomy with other semantics. For example, some authors use the term

‚software requirement‛ to refer to the term ‚system requirement‛ of the

taxonomy or the term ‚goal level requirement‛ to refer to ‚strategic

requirement‛ (e.g., (Lauesen, 2002)).

Figure 3.3 shows the requirements taxonomy in the form of a class

diagram, and Table 3.2 shows the correspondence among other

requirements taxonomies and the one proposed. The types of

requirements of the taxonomy are defined as follows.

 Requirement: requirements are activities, capabilities or

conditions that an IS must support, possess or meet, respectively,

to fulfil stakeholders’ needs.

 Business requirement: business requirements are requirements

that belong to the application domain (i.e., to the

organizational/business environment).

 Strategic requirement: strategic requirements are business

requirements that specify goals or objectives that must be

achieved so that an organization succeeds.

 Operational requirement: operational requirements are business

requirements that specify actual activity (daily work) of an

organization; operational requirements support strategic

requirements.

Business

requirement

Product

requirement
Domain

requirement

Operational

requirement

Strategic

requirement

System

requirement

Data

requirement

Functional

requirement

supports

supports elicited from
Quality

requirement

Requirement

Design

constraint

supports

1..* 1..* 1..* 1..* 1..*

1..*1..*

1..*

Figure 3.3 Requirements taxonomy

60

 3 Fundamentals of the Proposed Solution

Table 3.2 Correspondence among requirements taxonomies

This thesis
(Aurum, Wohlin,

2005b)
(Glinz, 2007) (Lauesen, 2002)

Requirement Requirement Requirement Requirement

Business

requirement

Business
requirement,

primary

requirement

-
Domain level

requirement

Strategic

requirement

Goal level

requirement
-

Goal level

requirement

Operational
requirement

- - -

System
requirement

Product level

requirement,
technical

requirement

System requirement
Product level
requirement

Domain

requirement

Domain level

requirement,

derived requirement

Functional

requirement
-

Product

requirement

Product level

requirement, design

level requirement

System requirement
Design level

requirement

Quality
requirement

Non-functional
requirement

Performance

requirement,

specific quality

requirement

Quality requirement

Functional

requirement

Functional

requirement

Functional

requirement

Functional

requirement

Data requirement -
Functional

requirement
Data requirement

Design constraint - Constraint Design constraint

 System requirement: system requirements are requirements that

belong to the system domain; system requirements support

business requirements.

 Domain requirement: domain requirements are system

requirements that are elicited from operational requirements.

 Product requirement: product requirements are system

requirements that are not elicited from operational requirements;

they are elicited from stakeholders, usually from end-users;

product requirements support domain requirements.

61

3.5 Top Ten Principles of the Proposed Solution

 Quality requirement: quality requirements are product

requirements that specify quality characteristics that an IS must

possess.

 Functional requirement: functional requirements are system

requirements that specify actions that an IS shall do or

restrictions on these actions.

 Data requirement: data requirements are system requirements

that specify the pieces of information than an IS shall store and

manage or restrictions on these pieces of information.

 Design constraint: design constraints are system requirements

that specify global restrictions (affect the whole system) on how

an IS has to be designed.

Although the expressions system requirements specification (SyRS)

and specification of system requirements are not part of the requirements

taxonomy, and their interpretation may be straightforward for many

readers, it must be indicated the difference that is made between them in

the thesis. SyRS is the document in which system requirements are

specified and documented, whereas specification of system requirements

is the process performed to create a SyRS. This difference is not always

clear in literature. For example, sometimes authors use the expression

requirements specification to refer both to the document and to the

process. In this thesis, ETDs are proposed as a style of SyRS.

3.5 Top Ten Principles of the Proposed Solution

This section presents the main principles on which the proposed solution

is based. They represent issues that should be addressed in the RE

process of any IS and thus are addressed in the methodological approach

of the thesis. Although most of them have already been introduced in the

previous chapters, more and new emphasis on their importance for the

thesis is considered important.

There are top ten principles, which have been adopted from both

literature and practice, i.e., from literature review and from evaluation of

the methodological approach. There exist more principles that have had

influence on the proposed solution and are important, but the following

ones can be regarded as those that most strongly have influenced on the

methodological approach.

62

 3 Fundamentals of the Proposed Solution

1) Understanding and knowledge of the application domain are

preconditions for requirements elicitation and specification

When developing any software system and performing the RE

process, understanding and knowledge of the application domain are

keys for success and practically preconditions for adequate requirements

elicitation and specification (Jackson, 1995) and subsequently for

business/IT alignment (Reich, Benbasat, 2000).

In the case of ISs, the application domain corresponds to the

organization and the organizational environment in which a system will

be deployed and used. Lack of knowledge of the application domain may

cause an IS not to fit the actual needs of the environment and of the

customer stakeholders. Repair of problems derived from this fact may be

highly costly for a software development company, both in time and in

money.

2) ISs must support the business processes of an organization

The need and importance of business process modelling during the

RE process of an IS for an organization has been largely justified in

Chapter 1 and, therefore, is one of the bases of the thesis. The business

processes of an organization must be considered during the RE process

so that system requirements support them, and domain requirements

must be part of any SyRS of an IS. Nonetheless, business process

modelling may not be sufficient.

Business process models must be analysed so that the gap between

business and system domains is bridged and correct system support for

business tasks is specified. In addition, it may be important to delay the

splitting of work between an IS and its users. Before proposing solutions,

the problem to be solved by an IS (organizational needs to be fulfilled

and business processes to be supported) must be understood

(Loucopoulos, Karakostas, 1995).

3) System analysts must be aware of the purpose of an IS

The need of a new IS in an organization is the consequence of the

existence of some business need that should be fulfilled or of some

business problem that should be solved by (using) the IS. For example, an

organization may need an IS to remain competitive or to increase

competiveness. If no need or problem existed, there would not be reason

for developing the system.

63

3.5 Top Ten Principles of the Proposed Solution

These needs and problems correspond to the purpose of the IS, and

system analysts must be aware of it so that clear understanding of system

objectives exist (Alexander, Beus-Dukic, 2009) and the system addresses

them (Rolland, Salinesi, 2005). If system analysts disregard its purpose,

then an IS may not fit the actual goals that an organization pursues.

Furthermore, modelling and detailed analysis of the purpose may be

necessary, for instance, for determination of the ways to achieve the goals

of an organization and of how these ways affect the organization (Yu,

1995). Such an analysis may not be straightforward (Antón, 1997), thus

provision of mechanisms and guidance to perform it is important.

4) Customer stakeholders’ involvement during the RE process must be

promoted

Customer stakeholders’ involvement is recognised as very positive

and necessary for the RE process in general (Sommerville, Sawyer, 1999)

and for organizational modelling in particular (Stirna, Persson, Sandkuhl,

2007). It is also important for business/IT alignment (Reich, Benbasat,

2000). Its lack can lead an IS to failure.

One of the issues that must be properly addressed to promote

customer stakeholders’ involvement is communication with them.

Communication can be difficult because of differences in vocabularies

and backgrounds between customer stakeholders and system analysts

(Berenbach et al., 2009), and misunderstandings may appear. Therefore,

models and notations that facilitate communication between system

analysts and customer stakeholders must be used in the RE process.

5) System requirements must be specified using an external view

Although it may be regarded as surprising, the notion of system

requirement might be considered a recurrent problem both in academia

and in industry. Different people usually have different perceptions of

what a system requirement is and what it is not, and abstractions based

on criteria such as the difference between what and how a software

system shall do can be confusing or impractical (Davis, 1993; Kotonya,

Sommerville, 1998).

As a solution to this problem, the use of the criterion of external view

is followed in the thesis: system requirements correspond to external

observable characteristics of a software system that are required by

stakeholders (Davis, 2003).

64

 3 Fundamentals of the Proposed Solution

6) Different types of system requirements must be specified

Most of the RE approaches that are presented in academia usually just

focus on a type of requirements (product, functional, data, quality…) and

disregard other types. However, it is essential to consider several types of

requirements so that a SyRS meets one of its necessary characteristics:

completeness (Firesmith, 2005).

Specification of the types of requirements that are not addressed in a

RE approach may not be trivial (from or in conjunction to specification of

other requirements), and incompleteness and inconsistency may appear

between system requirements in a SyRS.

7) System requirements must be specified homogenously

System requirements that belong to a same abstraction level (e.g.,

ETDs or use cases) must be specified homogeneously. Non-ambiguous

criteria that assure this condition must be used in RE approaches.

Homogeneity is achieved in a SyRS if all its units of system

requirements at a given abstraction level have the same granularity.

When criteria and thus homogeneity do not exist, a specification can be

regarded as inconsistent and problems may arise. For example,

application of a RE approach may be hindered (Dutoit, Paech, 2002),

comparison of system requirements may be difficult (Gorschek, Wohlin,

2006) and the quality of a SyRS may be negatively affected (España, et al.,

2009).

8) SyRSs must be structured

The need of structuring a SyRS has been acknowledged as basic for

any RE approach (Alexander, Stevens, 2002; Sommerville, Sawyer, 1999).

Well structured specifications facilitate understanding, specification,

validation and management of system requirements.

For structuring SyRS, the use of standard templates for specification is

very useful and thus advisable. Templates indicate the information that

must be gathered and described, allow system analyst to focus on such

information and to be able to locate it, and allow customer stakeholders

to more easily distinguish among the types of information that are

included in the template.

65

3.6 Correspondence between Business Process Models and Goal Models

9) System requirements must be linked to subsequent development

stages

Once the system requirements of an IS have been elicited and

specified as a result of the RE process, just a part of the work is finished.

The purpose of most of the software development companies is to

develop software systems, not just to determine its requirements.

As a result, the way to perform subsequent development stages from

system requirements must be determined. Furthermore, problems such

as inconsistency or incompleteness in artefacts of subsequent stages must

be addressed to try to avoid them. Otherwise, the usefulness of the

system requirements would clearly decrease, and even may cause a RE

approach not to be used by a software development company.

10) Detailed guidance must be provided

Detailed guidance for elicitation and specification of all types of

necessary requirements is essential so that a RE approach can be applied

(Dutoit, Paech, 2002). If an approach does not provide detailed guidance,

then different people from its designers1 may have difficulties when

applying or trying to apply it. For example, system analysts would know

what information they would have to compile, but they may not know

how to compile it.

In addition, results from application by different people may not be

the same. Companies may also not use or may stop using a RE approach

if they found difficulties or problems in their application because of lack

of guidance.

3.6 Correspondence between Business Process

Models and Goal Models

This section presents and discusses the correspondence between business

process models and goal models. On the basis of this correspondence,

combination of goal models (for specification of strategic requirements)

and business process models (for specification of operational

requirements) in the thesis is discussed and justified. Conclusions from

1 When referring to the designers of the methodological approach of the thesis in this thesis,

the PhD candidate and his advisor are referred to.

66

 3 Fundamentals of the Proposed Solution

discussion are considered to apply to the RE process of an IS and to

organizational modelling in general.

The following subsections explain the correspondence in detail. First,

background and preliminary concepts are explained. Next, a running

example and guidelines for derivation of goal tress from business process

models are presented. Finally, the correspondence is discussed.

3.6.1 Background: Operational Goals

Business processes have goals that must be fulfilled during or after their

execution (Kueng, Kawalek, 1997). There are sub-goals that denote

important milestones within a business process and whose fulfilment is

possible due to the actions of all the participants involved (Ould, 1995).

These sub-goals are called operational goals, and indicate when the

instance of a business process (model) can be considered completed

(Bider, 2003). Therefore, an operational goal can be defined as an

objective or state that must or may be reached in a business process and

that indicates its completion.

In most of the existing notations for business process modelling (e.g.,

BPMN), the operational goals of a business process are implicitly

declared in the structure of a business process model and the states of its

resources and data entities. These entities and resources are input or

output of the activities of a business process model, and their states can

change and evolve during execution of a business process.

Since operational goals are implicitly part of a business process

model, then it can be assumed that a business process model is

equivalent to a goal tree (or model) and thus a goal tree can be derived

from a business process model. Nonetheless, the correspondence

between a business process model and a goal tree must be determined. If

such a correspondence was found, then a business process model could

be mapped into a goal tree from patterns of the business process model.

In addition to a business process model, a domain data model may be

necessary for derivation of a goal tree from it. This model is a simplified

class diagram that includes the entities that are used in a business process

model and whose states change as a result of the execution of the

business process. Entities and the relations between them (associations

and aggregations) must be modelled.

67

3.6 Correspondence between Business Process Models and Goal Models

3.6.2 Preliminary Concepts

This section defines several concepts on which derivation of goal tress

from business process models is based. The concepts also aim to facilitate

explanation and understanding of the derivation process.

A goal tree consists of operational goals that are decomposed into

other goals or tasks by means of ‘AND’ and ‘OR’ decompositions. A task

is an atomic activity that is performed to fulfil a goal. The contributions

of other goals or tasks are necessary to fulfil an operation goal.

The semantics of an ‘AND’ decomposition is that all the descendant

elements have to be fulfilled (for goals) or performed (for tasks) in order

to fulfil the decomposed goal. For an ‘OR’ decomposition, the

decomposed goal will be fulfilled when some of the descendant elements

are fulfilled or performed. Therefore, ‘OR’ decompositions depict

alternative ways to fulfil a goal.

Several concepts are defined to specify the guidelines for derivation of

a goal tree from patterns of a business process model. These concepts

might be complicated, but they are necessary to simplify the explanation

of the guidelines. Figure 3.4 shows some patterns that are used to explain

the concepts. The figure has been modelled with BPMN.

2

9

12

4

5

10

11

1331

6

8

7

15

14 16 17

19

21

18 20 22

24

26

23 25

28

27

BP1

BP4

BP3

BP2

29

Basic flow Alternative flow Branching place

Figure 3.4 Patterns in business process models

68

 3 Fundamentals of the Proposed Solution

 The basic flow of a business process model is the set of elements

that are executed in all the instances of the business process.

In Figure 3.4, the basic flow of BP1 is the set of elements {1, 2, 3, 5,

6, 7, 10, 13}.

 An alternative flow in a business process model is a set of flow

objects that is not part of the basic flow of the model and does

not have more than one connection to another flow (regardless

whether the flow is basic or alternative).

In Figure 3.4, the alternative flows of BP1 are the sets of elements

{4}, {8}, {9} and {11, 12}. The set {9, 11, 12} is not an alternative

flow because it would have two connections with the basic flow

(9 and 12 with 10)

 A loop in a business process model is an iteration of a sequence

of the elements of the model.

In Figure 3.4, the sequence of elements {16, 15} is a loop in BP2.

 A loop with alternative executions in a business process model is

a loop that contains elements that are part of the basic flow of the

model as well as elements that are not.

In Figure 3.4, the loop {20, 21, 19} in BP3 is a loop with alternative

executions.

 An alternative execution of a loop in a business process model is

each one of the possible executions of a loop with alternative

executions. The sequence of elements of the loop that are part of

the basic flow of the model is an alternative execution of the loop

too.

In Figure 3.4, the sequences of elements {19, 20} and {21, 19, 20} in

BP3 are the alternative executions of the loop.

 A branching place of a business process model is a place in the

model where:

(a) an alternative flow begins, and;

(b) not all the alternative flows that begin from it are part of

a loop whose end condition is checked in the place.

69

3.6 Correspondence between Business Process Models and Goal Models

In Figure 3.4, the branching places of BP1 are (3), (7) and (11). In

BP4, (25) is a branching place too. However, place (20) in BP3 is

not a branching place because it does not fulfil the second

condition.

3.6.3 Running Example: The Garment Company

A garment company is used as a running example to show the derivation

of goal trees from business process models. Figure 3.6 shows a BPD for

the company, whereas Figure 3.5 shows a domain data model. The BPD

corresponds to a business process for order processing, which is

described as follows.

A secretary selects the next order that must be processed in the

company. Each order contains the garments ordered by a client and the

shipment destinations of the garments. The packing lists show the

decomposition of an order by shipment destination. The garments are

sent to the clients with a delivery note, and store managers select the

destinations that must receive the garments first, i.e., they prioritise the

destinations. Store operatives receive the delivery note and place the

garments in the boxes to be shipped.

If there are not enough garments in stock to cover an order, then just

the garments that are available are placed in the boxes. The store

manager has to decide whether to wait for the rest of garments or to send

the partial shipment (with fewer garments than ordered) to the

destinations. The packing list is modified in either case and sent to a

secretary, who creates the final version of the packing list. Then the

delivery note is placed into the box and the shipment is prepared for

delivery.

Delivery Note

Order

Garment

ShipmentBox

Packing list

Figure 3.5 Example of domain data model

70

 3 Fundamentals of the Proposed Solution

Figure 3.6 Example of BPD

Garment Company

Secretary OperativeStore Manager

S
e

le
c

t
a

n

o
rd

e
r

C
re

a
te

te
m

p
o

ra
ry

p
a

c
k

in
g

 l
is

t

P
ri

o
ri

ti
z
e

d
e

li
v

e
ry

 n
o

te

P
la

c
e

g
a

rm
e

n
ts

V
a

li
d

a
te

 b
o

x

M
o

d
if

y

p
a

c
k

in
g

 l
is

t

C
re

a
te

 f
in

a
l

p
a

c
k

in
g

 l
is

t

P
la

c
e

d
e

li
v

e
ry

 n
o

te

in
 b

o
x

P
re

p
a

re

s
h

ip
m

e
n

t

N

o

O
rd

e
r

[t
o

-b
e

-p
ro

c
e

s
s
e

d
]O

rd
e

r

[c
h

o
s
e

n
]

P
a

c
k
in

g
 L

is
t

[t
e

m
p

o
ra

ry
]

D
e

liv
e

ry
 N

o
te

[c
h

o
s
e

n
]

B
o

x

[t
o

-b
e

-f
ill

e
d

]

B
o

x

[w
it
h

 g
a

rm
e

n
ts

]

P
a

c
k
in

g
 L

is
t

[m
o

d
if
ie

d
]

P
a

c
k
in

g
 L

is
t

[f
in

a
liz

e
d

]

G
a

rm
e

n
t

B
o

x

[c
o

m
p

le
te

d
]

S
h

ip
m

e
n

t

[t
o
-b

e
-d

e
liv

e
re

d
]

O
rd

e
r

[p
ro

c
e

s
s
e

d
]

¿
S

u
ff

ic
ie

n
t

q
u

a
n

ti
ty

 o
f

g
o

o
d

s
?

Y
e

s

S
u

ff
ic

ie
n

t

g
o

o
d

s

a
v
a

ila
b

le

B
o

x

[v
a

lid
a

te
d
]

D
is

tr
ib

u
te

b
o

x
e

s

D
e

liv
e

ry
 N

o
te

[p
la

c
e

d
]

71

3.6 Correspondence between Business Process Models and Goal Models

3.6.4 Guidelines for Derivation of Goal Trees from

Business Process Models

Possibility of derivation of goal trees from business process models was

discussed and justified in Section 3.6.1 on the basis of the implicit (or

explicit, depending on the notation) existence and modelling of

operational goals in a business process model. This section presents the

guidelines for derivation of goal trees, which are divided into four

groups of guidelines: derivation, refinement, contribution and

completion guidelines. For definition of the guidelines, BPMN

terminology is used (BPD, sub-process, event, etc.).

Derivation guidelines allow goals and tasks to be defined and named.

Refinement guidelines allow the type of decomposition of a goal to be

determined. Contribution guidelines allow contributions of goals and

tasks to the fulfilment of other goals to be determined. Finally,

completion guidelines allow a goal tree to be finished.

The contribution guidelines and the refinement guidelines are applied

together. For example, the refinement guideline R.1 needs a contribution

guideline (guideline C.1) in order to define the descendant elements of

the goal that refines it.

Table 3.3 shows a summary of the guidelines. It presents the mapping

of BPD elements and patterns into elements of a goal tree (goals and

tasks), as well as the type of decomposition and the elements of a goal

tree that contribute to the fulfilment of each goal.

Figure 3.7 shows the goal tree derived from the BPD of the running

example. The goal tree can be considered similar to a Tropos (Bresciani,

et al., 2004) or a KAOS goal model (Dardenne, van Lamsweerde, Fickas,

1993). In relation to this fact, a combination of the notations of the i*

framework for modelling of goals and tasks and of the structure of the

KAOS goal model is used in the goal tree.

Table 3.4 shows the guidelines that have been applied to derive the

goal tree of Figure 3.7. For each element of the goal tree, the guidelines

applied for its derivation, refinement and contribution are specified. It

must be noted that completion guidelines are not applied in the running

example.

The next subsections present the guidelines of each group defined.

72

 3 Fundamentals of the Proposed Solution

Table 3.3 Summary of guidelines to derive a goal tree from a BPD

BPD element
Element of

a goal tree
Decomposition Descendent element

BPD Goal AND
- Goals and tasks that do not

contribute to another goal in the

goal tree

Sub-process Goal - -

Task Task - -

Event with a

trigger
Task - -

Loop with no

alternative

executions

Goal AND
- Goals and tasks derived from

the BPD elements of the loop

Loop with

alternative

executions

Goal OR
- Goals derived from the

alternative executions of the

loop

Alternative

execution of a

loop

Goal AND
- Goals and tasks derived from

the BPD elements of the

alternative execution

Branching place Goal OR
- Goals derived from the

branches that follow the

branching place

Branch that

follows a

branching place

Goal AND
- Goals and tasks derived from

the BPD elements of the branch

Data object Goal AND

- Goals and tasks derived from

BPD elements that change the

state of the data object and are

not in a loop

- Goals derived from loops that

change the state of the data

object

- Goals derived from other data

objects that are related to the

data object by means of an

inclusive aggregation

relationship

3.6.4.1 Derivation Guidelines

There exist nine derivation guidelines, which are defined as follows.

Guideline D.1 (BPDs)

A BPD depicts a goal that corresponds to the root of a goal tree and is

fulfilled when the business process ends. The name of the goal in the goal

tree is the same as the name of the BPD.

73

3.6 Correspondence between Business Process Models and Goal Models

Guideline D.2 (sub-processes)

A sub-process in a BPD depicts a goal in a goal tree that is fulfilled

when the sub-process ends. The name of the goal in the goal tree is the

same as the name of the sub-process in the BPD.

Guideline D.3 (tasks)

A task in a BPD depicts a task in a goal tree. The name of the task in

the goal tree is the same as the name of the task in the BPD.

Guideline D.4 (events)

An event with a trigger in a BPD depicts a task in a goal tree (except

link triggers, which are only used to link BPDs). The name of the task in

the goal tree will depend on the criterion of the creator, but it has to refer

to the event type (start, intermediate, final) and the event trigger

(message, timer, cancel…).

Guideline D.5 (loops)

A loop in a BPD depicts a goal in a goal tree that is fulfilled when the

loop ends. The name of the goal will depend on the criterion of the

creator, but it has to refer to the condition that is fulfilled when the loop

ends.

Guideline D.6 (alternative executions of a loop)

An alternative execution of a loop in a BPD depicts a goal in a goal

tree that is fulfilled when the alternative execution is executed. The name

of the goal will depend on the criterion of the creator.

Guideline D.7 (branching places)

A branching place in a BPD depicts a goal in a goal tree that is

fulfilled when all the branches that follow the branching place end or

merge into basic flow. The name of the goal will depend on the criterion

of the creator.

Guideline D.8 (branches that follow a branching place)

A branch in a BPD that follows a branching place depicts a goal in a

goal tree that is fulfilled when the branch ends or merges into basic flow.

The name of the goal will depend on the criterion of the creator.

74

 3 Fundamentals of the Proposed Solution

Figure 3.7 Example of goal tree

O
rd

e
r

p
ro

c
e

s
s
in

g

M
o

d
if
y
 p

a
c
k
in

g
 l
is

t
C

re
a

te
 t
e

m
p

o
ra

ry

p
a

c
k
in

g
 l
is

t

P
la

c
e

 d
e

liv
e

ry

n
o

te
 i
n

 b
o

x

C
re

a
te

 f
in

a
l

p
a

c
k
in

g
 l
is

t

V
a

lid
a

te
 b

o
x

P
la

c
e

 g
a

rm
e

n
ts

W
a

it
 u

n
ti
l
s
u

ff
.

g
o

o
s
 a

v
a

ila
b

le

S
e

le
c
t
o

rd
e

r
P

re
p

a
re

 s
h

ip
m

e
n

t

A
N

D

P
a

c
k
in

g
 l
is

t
fi
n

a
liz

e
d

A
N

D

S
h

ip
m

e
n

t

to
-b

e
-d

e
liv

e
re

d

A
N

D

O
rd

e
r

p
ro

c
e

s
s
e

d

A
N

D

H
a

v
e

 s
u

ff
ic

ie
n

t

q
u

a
n

ti
ty

O
R

D
e

liv
e

ry
 n

o
te

 p
la

c
e

d

A
N

D

S
u

ff
ic

ie
n

t
q

u
a

n
ti
ty

A
N

D

N
o

t
s
u

ff
ic

ie
n

t
q

u
a

n
ti
ty

A
N

D

B
o

x
 c

o
m

p
le

te
d

A
N

D

D
is

tr
ib

u
te

 b
o

x
e

s

P
ri
o

ri
ti
z
e

d
e

liv
e

ry
 n

o
te

L
e

g
e

n
d

G
o

a
l

T
a

s
k

D
e

c
o

m
p

o
s
it
io

n

75

3.6 Correspondence between Business Process Models and Goal Models

Guideline D.9 (data objects)

A data object in a BPD whose state changes during the execution of

the business process depicts a goal in a goal tree that is fulfilled when the

data object reaches the last of its states in the BPD. The name of the goal

is the name of the data object in the BPD followed by the last state that

the data object reaches.

3.6.4.2 Refinement Guidelines

There exist two refinement guidelines, which are defined as follows.

Guideline R.1 (BPDs, loops with no alternative executions, alternative

executions of a loop, branches that follow a branching place and data

objects)

A goal that is defined from a BPD, a loop with no alternative

executions, an alternative execution of a loop, a branch that follows a

branching place and whose first flow object belongs to an alternative

flow, or a data object whose state changes during the execution of a

business process, is refined in a goal tree by means of an ‘AND’

decomposition.

Guideline R.2 (loops with alternative execution and branching places)

A goal that is defined from a loop with alternative executions or a

branching place is refined in a goal tree by means of an ‘OR’

decomposition.

3.6.4.3 Contribution Guidelines

There exist nine contribution guidelines, which are defined as follows.

Guideline C.1 (elements of a loop with no alternative executions)

The goals and tasks that are derived from the elements that are

executed in a loop with no alternative executions contribute to the

fulfilment of the goal of the loop in a goal tree.

Guideline C.2 (alternative executions of a loop)

The goals that are derived from the alternative executions of a loop

contribute to the fulfilment of the goal of the loop in a goal tree.

76

 3 Fundamentals of the Proposed Solution

Guideline C.3 (elements of an alternative execution of a loop)

The goals and tasks that are derived from the elements that are

executed in an alternative execution of a loop contribute to the fulfilment

of the goal of the alternative execution in a goal tree.

Guideline C.4 (branches that follow a branching place)

The goals that are derived from the branches that follow a branching

place contribute to the fulfilment of the goal of the branching place in a

goal tree.

Guideline C.5 (elements of a branch that follows a branching place)

The goals and tasks that are derived from the elements of a branch

that follows a branching place and whose first flow object belongs to an

alternative flow contribute to the fulfilment of the goal of the branch in a

goal tree.

Guideline C.6 (data objects)

The goals and tasks that are derived from tasks and sub-processes of a

BPD, are not executed in a loop and change the state of a data object

contribute to the fulfilment of the goal of the data object in a goal tree.

Guideline C.7 (data objects in loops)

The goals that are derived from loops whose execution changes the

state of a data object contribute to the fulfilment of the goal of the data

object in a goal tree.

Guideline C.8 (inclusive aggregation relations between data objects)

The goals that are derived from a data object that is related to another

data object in the domain data model by means of an inclusive

aggregation relation (component data object) contribute to the fulfilment

of the goal of the latter data object (composed data object) if defined in a

goal tree.

Guideline C.9 (goals and tasks with no contribution)

The goals or tasks in a goal tree that do not contribute to the fulfilment

of some goal contribute to the fulfilment of the root of the goal tree.

3.6.4.4 Completion guidelines

There exist two completion guidelines, which are defined as follows.

77

3.6 Correspondence between Business Process Models and Goal Models

Guideline T.1 (goals with no descendants)

The goals that do not have descendants in a goal tree and that have

not been derived from a sub-process are changed into tasks.

Guideline T.2 (goals with only one descendant)

The goals that have only one descendant are removed from a goal

tree. The descendant will contribute to the fulfilment of those goals to

which the parent goal contributes in the goal tree.

Table 3.4 Guidelines used in the running example

Element of the goal tree Guidelines

Order processing D.1 / R.1 / C.9

Packing list finalized D.9 / R.1 / C.6

Create temporary packing list D.3 / - / -

Modify packing list D.3 / - / -

Create final packing list D.3 / - / -

Order processed D.9 / R.1 / C.6

Select order D.3 / - / -

Prepare shipment D.3 / - / -

Shipment to-be-delivered D.9 / R.1 / C.6, C.8

Box completed D.9 / R.1 / C.6, C.7, C.8

Have sufficient quantity D.5 / R.2 / C.2

Sufficient quantity D.6 / R.1 / C.3

Not sufficient quantity D.6 / R.1 / C.3

Validate box D.3 / - / -

Place garments D.3 / - / -

Wait until sufficient goods available D.4 / - / -

Distribute boxes D.3 / - / -

Delivery note placed D.9 / R.1 / C.6

Place delivery note in box D.3 / - / -

Prioritize delivery note D.3 / - / -

78

 3 Fundamentals of the Proposed Solution

3.6.5 Discussion

Once background, guidelines and an example of the correspondence

between business process models and goal models have been presented

in the previous sections, this section discusses the implications that this

correspondence has in RE in general and in this thesis in particular.

In general, most of the goal-oriented RE approaches (see Section 2.2)

model and analyse the application domain of a software system with

focus on the goals and agents (or actors) of a system. In contrast to this

approaches, most of the business process-based approaches for

organizational modelling (see Section 2.3) model and analyse the

application domain with focus on the activities that are performed in an

organization, their sequence and coordination, and the roles that perform

the activities.

These perspectives could be regarded as distinct or even opposite

because of the explicit focus on different aspects of the application

domains (goals vs. activities). However, on the basis of the possibility of

derivation of goal trees from business process models, the perspectives

should not be regarded as distinct, but as complementary or even

equivalent in some aspects (e.g., for modelling of operational goals).

The existence of a correspondence between business process models

and goal models implies that goal models (or at least part of them) are

implicitly created when modelling business process, and vice versa.

Therefore, business process models allow specification of part of the

information that is gathered and analysed in goal-oriented RE

approaches, and goal models allow specification of part of the

information that is gathered and analysed in of business process-based

approaches for organizational modelling.

In relation to the thesis, the existence of such a correspondence allows

to further justify the combination of BPMN and Map for business process

modelling and purpose analysis, in addition to its adequacy for

modelling and understanding of the application domain of an IS.

On the one hand, their combination allows all types and abstraction

levels of goals of an organization and of an IS to be addressed. Strategic

goals are modelled and analysed on the basis of Map, whereas

operational goals are modelled and analysed on the basis of BPMN.

79

3.6 Correspondence between Business Process Models and Goal Models

On the other hand, Map complements BPMN by allowing system

analysts to analyse the purpose of an IS on the basis of the strategic goals

of an organization, whereas BPMN complements Map by allowing

system analysts to model details of organizational activity that cannot be

modelled with the goal-oriented RE approach or whose modelling

presents limitations.

The combination of BPMN and Map is the way proposed in this thesis

for modelling and analysis of the application (business) domain and thus

for specification of business requirements. Map allows specification of

strategic requirements and BPMN allows specification of operational

requirements.

In summary, the combination of BPMN and Map allows the proposed

solution to embrace most of the information that is usually modelled in

goal-oriented RE approaches. It also includes further information such as

activity sequence. The combination also allows the proposed solution to

embrace all the information that can be part of a business process model

and represents the application domain, extending such information with

details about the purpose and the goals of an IS. Finally, the combination

is used for specification of business requirements, and subsequently for

elicitation of system requirements.

Nonetheless, it must also be noted that business process models and

goal models are similar and equivalent in some aspects, but not in all.

Therefore, the selection of one of the types of models instead of the other

should be justified and explained when modelling and analysing and

organization or an IS so that the decision and the rationale behind it are

clear.

The use of a type of models or of others when developing a software

system will depend on the part or aspect of the application and of an IS

with which system analysts and other stakeholders are mainly

concerned. For example, business process models should be used instead

of goal models when development mainly aims to support organizational

activities and their sequence. In contrast, goal models can be considered

better-suited when an organization is aware of its goals but not of its

business processes. This situation may happen when new goals (needs)

arise in an organization and they need to be analysed for development of

a new IS or for definition a new business process to fulfil the goals.

80

 3 Fundamentals of the Proposed Solution

3.7 Summary

This chapter has presented the fundamentals on which the proposed

solution of the thesis is based. These fundamentals represent a summary

of and a justification for many decisions that have been made during the

design and development of the methodological approach of the thesis.

By explicitly and precisely defining what is meant by business process

in the thesis, the information that should be depicted in business process

models and that thus should be gathered for their creation is determined.

By introducing the design of the methodological approach, its relation

with previous works has been determined, as well as the influence of the

works on the thesis.

By presenting a stakeholders taxonomy and a requirements

taxonomy, understanding of the terminology used in the thesis is

facilitated. In addition, the taxonomies could be used as basis for

presentation and explanation of other RE approaches for IS development.

By listing the top ten principles of the proposed solution, more

emphasis on their importance for the development of an IS in general

and for this thesis in particular has been placed. These principles could

also be used for assessment and comparison of existing RE approaches.

Finally, by studying, presenting and discussing the correspondence

between business process models and goal models, their equivalence,

combination or use of one of the types of models for a modelling and

analysis purpose can be justified.

Chapter 4

4 Organizational Modelling

“If you can't describe what you are doing as a process, you don't know what

you're doing”

William Edwards Deming

The previous chapters have presented the main background work on

which the methodological approach of the thesis is based. Once this work

is known, presentation in detail of the approach starts in this chapter.

The chapter presents the first stage of the methodological approach

(Figure 4.1): organizational modelling. The stage aims to model the

structure and behaviour of an organization prior to development of an IS

in order to gain knowledge and understanding about the application

domain. The stage especially focuses on modelling the business process

of the organization and is a first step for awareness of organizational

needs and thus of requirements. In this sense, business process models

depict operational requirements.

The chapter is organized as follows. First, an overview of the stage

and a running example for its explanation are presented. Next, the

artefacts created as a result of the development of the stage (Figure 4.1)

are described. The descriptions include guidelines for creation of the

artefacts. Finally, a summary of the chapter is presented.

82

 4 Organizational Modelling

Business Events

Roles Model

Domain Data Model

Glossary

Business Rules

ORGANIZATIONAL MODELLING

SPECIFICATION OF SYSTEM

REQUIREMENTS

As-Is BPDs

Process Map

PURPOSE ANALYSIS

Goals/Strategies Diagrams

To-Be BPDs

Business-process based requirements

specification and OO conceptual modelling

Organizational problem or

need solvable by an IS

As-Is

To-Be

Validation

Agreement

ETDs

Validation

State Transition Diagrams

Class Diagram

DERIVATION OF OO-DIAGRAMS

Operationalization Tables

Labelled BPDs

Enriched BPDs

ETD Analysis

Mission Statement

Figure 4.1 Stage and artefacts presented in Chapter 4

4.1 Overview of the Stage

As explained in Chapter 3, the main characteristic of the organizational

modelling stage is the influence of EKD (Bubenko, Stirna, Persson, 2001)

and the use of BPMN (OMG, 2009) for business process modelling. The

stage is targeted at obtaining BPDs, as well as facilitating communication

with customer stakeholder and thus their involvement. As a result, and

as justified in Chapter 2, BPMN has been selected for business process

modelling because it has strong points that can facilitate communication

among all the stakeholders.

83

4.1 Overview of the Stage

Figure 4.2 shows the activities that are performed in the

organizational modelling stage. The artefacts that are created and

managed are shown in Figure 4.1.

For modelling of the organization for which an IS is going to be

developed, the information gathered is a mission statement, a glossary,

the business events, a domain data model, the business rules, a roles

model and a process map. This information is discovered by interviewing

the employees of the organization so that they describe their work.

Workshops with several employees can also be performed. In addition, it

is advisable to look through the available documentation related to the

organizational activity and the business policies.

The purpose of the information collected is to understand the business

environment (i.e., the application domain) and to be able to model the

business processes of the organization correctly (according to the

definition proposed in Chapter 3). Missing or lack of information may

imply that BPDs do not reflect the actual organizational activity.

Nonetheless, system analysts may decide to directly model the As-Is

BPDs of an organization or not to create all the other artefacts. What is

considered important is that system analysts are aware of the information

that a BPD must reflect and thus contain.

Although presented sequentially, creation of the artefacts related to

the information gathered is usually performed in parallel. As employees

are interviewed and documentation is checked, new details of the

artefacts are discovered. In this sense, creation of the artefacts non-in

parallel can be ineffective (Stirna, Persson, 2009). This also applies to

modelling of As-Is BPDs.

As-Is BPDs are created from the information gathered, and a set of

guidelines are provided to facilitate this activity. The diagrams must be

validated by the customer stakeholders in order to guarantee that the

organizational activity has been properly understood and thus modelled.

Several iterations are usually necessary to get the final version.

With regard to the models and artefacts of this stage, other and more

artefacts may be created during an organizational modelling stage. For

example, business strategy (Bleistein, et al., 2006) or interactions with

suppliers and customers (Gordjin, Akkermans, 2003) could be modelled.

The proposal and use of more models is common in enterprise

architecture frameworks (Lankhorst, 2009).

84

 4 Organizational Modelling

Interview

employees
 Look through

 documentation

 Model As-Is

business

processes

As-Is BPDs OK?Gather

information Yes

No

Figure 4.2 Activities of the organizational modelling stage

The use of some models or others depends on the purpose of

organizational modelling and the perspective adopted for understanding

of an organization and the application domain. Disregard of this fact can

lead a modelling project to fail, for instance, if too much information or

irrelevant information is gathered (Becke, Kugeler Rosemann, 2003). In

this stage, the models and artefacts that have been considered more

adequate and sufficient for business process-based organizational

modelling have been included. Nonetheless, more models could be

added, but their relationship with the ones defined should be defined.

Finally, although modelling of the As-Is situation of an organization

is quite common and recommended, it may have negative points and

thus people who are against it can be found (Becker, Kugeler, Rosemann,

2003). For example, it may be said that As-IS modelling is a very time

consuming activity. In this thesis, the advantages of modelling As-Is

situations (e.g., understanding of the current application domain and

identification of shortcomings and possible improvements) are

considered much more important than the possible negative points.

4.2 Running Example: The Software

Development Company

When presenting the stages of the methodological approach of the thesis

in Chapters 4, 5, 6 and 7, running examples are used to show how the

stages are performed and how their artefacts are created. This is similar

to the use of the garment company to show correspondence between

business process models and goal models in Chapter 3.

85

4.3 Mission Statement

The running examples correspond to illustrations (Wieringa, 2008).

They do not aim to show validity of the methodological approach, but to

facilitate its explanation and understanding. Although they could be

regarded as simplistic, they are considered to be good to show the

application of the methodological approach.

Actual (complete) examples or cases could have been used for

explanation of the stages of the methodological approach. However, they

would have implied the need to present more information about an

organization (i.e., about the application domain) that is not relevant to

show application of the methodological approach. Furthermore, their

complexity may hinder understanding of the approach. As a solution,

use of straightforward running examples has been decided.

In this chapter, a software development company is used as a running

example. More concretely, the organizational activity related to product

development will be used to explain organizational modelling and show

its application.

The company (SwDepCo) develops software products that are

provided to several customers. The products are standard, so no

customer has a customized version of them. Nonetheless, customers can

request improvements on the products, and they are included in future

versions.

The following sections describe the artefacts of the organizational

modelling stage and use the software development company to show

examples of the artefacts.

4.3 Mission Statement

For understanding of an organization, the first thing that must be known

is the main goal of its activity. The mission (statement) of an organization

states why the organization exists and its basic purpose. A clear mission

is also vital for discovery and understanding of the needs of an

organization and the requirements of an IS for the organization

(Alexander, Beus-Dukic, 2009).

Figure 4.3 shows a generic framework to show the relationship

between the business processes of an organization and its mission.

Business processes contribute to the achievement of the mission of an

organization by making achievement of strategic goals possible, which

86

 4 Organizational Modelling

usually correspond to long term goals. That is, strategic goals are

achieved by executing business processes, and achievement of such goals

implies achievement of the organization mission.

In addition, it is common that indicators are defined in an

organization for assessment of the achievement of strategic goals. In this

sense, business processes are assigned the indicators that can be

measured thanks to their execution. The mission and the strategic goals

of an organization are considered intentional features, whereas indicators

and business processes are considered operational features.

The above issues (strategic goals and indicators) are part of the

definition of the strategy of an organization. Different models and

approaches exist for this purpose, e.g., Porter’s value chain (Porter, 1985)

and the Balanced Scorecard (Kaplan, Norton, 1996). Nonetheless, strategy

definition for an organization and its analysis are out of the scope of this

thesis.

For the software development company, its mission statement can be

defined as ‚provide customers with software products‛. This example is

very abstract and could be used for any software development company,

but it may be more concrete and detailed if specialisation of the company

on development some type of software system or for some application

domain was assumed. For example, a mission statement may be defined

as ‚provide banks with information systems for investment

management‛.

Organizational Mission

Strategic Goal Strategic Goal Strategic Goal

Indicator Indicator Indicator

Business

Process

Business

Process
Business

Process

AND decomposition

Assesses Measured in

Legend

Intentional features

Operational features

Figure 4.3 Relationship between organizational mission and business processes

87

4.4 Glossary

4.4 Glossary

When developing the RE process of an IS for an organization, it is usual

that the organization uses some terms that are unknown by system

analysts or whose semantics is different to system analysts’ perception.

For example, the semantics of such a wide-spread term as invoice can

vary among organizations and people.

In addition, it is common that a specific application domain has its

own terms, which are not used in other domains and thus are unknown.

For example, the term packing list for the garment company used as

running example in Chapter 3 to show derivation of goal trees from

business process models.

A glossary (aka as dictionary) is an artefact that contains the set of

definitions of organizational terms that system analysts must know in

order to understand organizational activity and to properly communicate

with customer stakeholders (and possibly with other supplier

stakeholders). If a term is unknown, then system analyst may have

problems to communicate with or to understand customer stakeholders.

Therefore, the need of a glossary is directly influenced by the need of

understanding the application domain.

The purpose of a glossary is to define the organizational terms in an

unambiguous and concise way, especially those that are hard to

understand or whose semantics may be misinterpreted. A glossary is a

very common and necessary artefact not only for organizational

modelling, but also for requirements specification in general (Alexander,

Beus-Dukic, 2009; Berenbach, et al., 2009; Lauesen, 2002).

The terms of a glossary are arranged by means of a list in which new

terms are added in alphabetical order. The list may also be numbered,

and acronyms and relationships between the terms may be specified

(Alexander, Beus-Dukic, 2009; Berenbach, et al., 2009). For example,

synonyms and homonyms may be specified in a glossary, or

specialization hierarchies.

For the software development company, a term that may be part of

the glossary is work unit. A work unit is a set of activities that must be

performed so that a product is modified as a response to a customer

request.

88

 4 Organizational Modelling

4.5 Business Events

Organizational activity is performed in an environment in which

different happenings (or ‚things‛) can occur. Some of these happenings

do not affect the organizational activity, but others are important and

must be detected because they can trigger some specific behaviour and

necessary response within the organization.

Business events are recurrent and significant happenings that occur in

the environment (aka context) while the organization activity goes on

and to which the organization must respond, i.e., happenings that are

perceived in the environment and are pertinent to the organization (Olle,

et al., 1991).

Business events are usually triggered by external agents of an

organization, such as suppliers and customers. Nonetheless, they can also

be triggered within an organization as a result of the development of its

activity. For example, failure in a machine in a factory is a business event.

The business events impact the organization and affect its behaviour.

In addition to for organizational modelling, business events are

important for the RE process of an IS. They can be later translated into

and thus correspond to events that must be captured or thrown by the

system (Alexander, Beus-Dukic, 2009). Therefore, they must be

discovered and specified.

In the organizational modelling stage, business events are specified by

means of a table in which the name and a brief description about them

are provided. This way, business events can be better understood, what

also facilitates understanding of the application domain. For the software

development company, Table 4.1 lists three business events: customer

request, unable to finish on time and problem detected.

Table 4.1 Examples of business events

Name Description

Customer request received A customer submits an expected improvement on a product

Unable to finish on time
A developer is unable to finish an activity before the

planned date

Problem detected
The product manager discovers a situation that may cause

problems in version development

89

4.6 Domain Data Model

4.6 Domain Data Model

As specified in the definition of business process proposed in Chapter 3,

the business processes of an organization take inputs from the business

environment and create outputs. In addition, the participants (either

human or technical) exchange information.

In the context of an IS for an organization, such inputs, outputs and

information correspond to information about the domain (data) entities,

i.e., the domain entities that are necessary for execution of the business

processes. Furthermore, precise references to data models are important

when modelling business processes as part of the RE process of an IS

(Becker, Kugeler, Rosemann, 2003).

In the organizational modelling stage, a domain data model is created

in order to facilitate understanding of the application domain and specify

the domain entities that are necessary for execution of business processes.

This model allows a system analyst complement the behavioural

perspective of an organization with a data (or resource) perspective.

As explained in Chapter 3 when presenting background work for

derivation of goal tress from business process models, a domain data

model is a simplified class diagrams that includes the domain entities

(aka classes or entity types) that are used in a business process model and

whose states change in the business process. This model just includes

entities and the relationships between, and the types of relationships

considered are associations (aka binary relationships), aggregations (aka

Part-Of relationships) and generalization/specialization (aka Is-A or

inheritance relationships). Associations must be named.

It must be noted that more types of relationships can exist between

and among domain entities (Olivé, 2007). Their consideration for creation

of a domain data model will depend on the purpose of the model and on

the degree of detail determined as necessary or satisfactory. For the

organizational modelling stage, the above types of relationships are

considered sufficient.

Since creation of a domain data model may be difficult (Batra, 2007;

Svetinovic, Berry, Godfrey, 2005), especially for inexperienced system

analysts, some explicit definitions and principles for identification of

domain entities and of relationships between them are presented. They

are based on the descriptions and recommendations provided in (Olivé,

90

 4 Organizational Modelling

2007; Parsosn, Wand, 1997; Parsons, Wand, 2000). Some reader may

regard the definitions and principles as well-known or simple, but it is

considered important to provide system analysts with as much guidance

as possible in order to facilitate their work.

Discovery of the domain entities of an organization and their

relationships is a classification activity that aims to structure a perception

of the world and the knowledge about it. Classification assumes the

existence of a concept and of an object to be classified. The classification

operation consists in determining whether or not the object is an instance

of the concept. For a domain data model, such concepts represent the

domain entities and their relationships.

Domain entities are abstractions created by humans in order to

describe useful similarities among things. Consequently, a domain entity

can be defined an abstract description of a set of properties shared by a

set of instances of the organizational environment.

A relationship exists between two domain entities if a mutual

property is found. For a given relationship, each domain entity plays a

role in the relationship, instances of both entities are necessary for the

existence of the relationship, and the entities must correspond to different

instances.

The relationships that are considered in a domain data model are the

following ones:

 Association: it is the most generic relationship between two

domain entities, and corresponds to mutual properties for which

no specific patter (aggregation of generalization/specialization) is

discovered.

 Aggregation: it is a type of relationships in which one domain

entity plays the role of a part (P) and the other play the role of the

whole (W); this relationship implies that:

a) P is part of W;

b) W is a composite formed by P (and possibly other

entities), and;

c) existence of P is only relevant and possible if related to W

(i.e., if no instance of W exist, then no instance of P can

exist).

91

4.6 Domain Data Model

 Generalization/Specialization: a domain entity S is a specialization

of an domain entity G if all the instances of S are also instances of

G; this implies that:

a) S has the defining properties of G and some others;

b) G is a generalization of S, and thus the defining properties

of S include the defining properties of G;

c) in any situation on which G is used, S can be used too;

d) S is a subtype of G, and;

e) G is a supertype of S.

For determining that a domain entity corresponds to a concept that

represents a set of instances of objects of an organization and that its

definition is cognitively correct, the domain entity must fulfil the

following conditions:

 Abstraction from instances: a domain entity can be defined only if

there are instances in the organization (relevant universe of

instances) possessing all properties that define the domain entity.

 Maximal abstraction: a relevant property possessed by all

instances of a domain entity should be included in its definition.

 Completeness: Given a relevant universe of instances and

properties, every property should be used in the definition of at

least one domain entity.

 Non-redundancy: A domain entity that is a subtype of another

must have at least one property that is not in its supertype.

Cardinality is not specified in the relationships of the domain data

model. Nonetheless, and on the basis of experience reviewing data

models, another important issue for distinguishing different domain

entities is to check the cardinality of their relationships. In this sense, the

maximum and minimum cardinality of a relationship between two

domain entities cannot be 1 (1:1). If so, both domain entities would

represent the same concept and thus would correspond to a same

domain entity.

An exception to this rule is shown in Figure 4.4. A country has just

one capital and a capital belongs to just a country. Nonetheless, the

92

 4 Organizational Modelling

domain entity ‚capital‛ is a specialization of the domain entity ‚city‛,

which is related to country via a non-1:1 relationship. In summary, a 1:1

relationship between two domain entities can exist if one of them is the

specialization of another entity that is related to the other entity too and

the cardinality of that relationship is not 1:1.

Capital

CityCountry
Has

Has

Figure 4.4 Example of domain data model in which the cardinality of a

relationship can be 1:1

Finally, it must be noted that there is no a single ‚correct‛ set of

domain entities to model the instances and properties of a given

organization, i.e., no unique domain data model exists for an

organization. The particular choice of domain entities (a view of an

organization) depends on the purpose of a domain data model.

For the organizational modelling stage, its purpose is to find the set of

domain entities (and the relationships between them) that are necessary

for execution of the business processes of an organization because are

inputs or outputs of its activities and represent information that the

participants need and may exchange. Other domain entities such as

physical elements of materials (that do not correspond to information

necessary for execution of business processes) are not considered.

For the software development company, Figure 4.5 shows its domain

data model.

Product

Defined

from
Customer

Version

Work Unit

Activity

DeveloperWorkflow

Request

Submits

Performs

Included in

Performed

through

Has

Follows

Document
Associated

toBuys

Figure 4.5 Example of domain data model

93

4.7 Roles Model

4.7 Roles Model

The activity of an organization is performed by its employees, who

participate in the execution of its business processes. All employees do

not perform the same activities or can perform any activity, but they are

usually in charge of a part of the activities performed in the organization.

In addition, it is common that organizations are divided into different

parts (i.e., organizational units), such as departments or sections.

Nonetheless, on the basis of business process orientation in organizations

(e.g., (Hammer, Champy, 2001)), employees from different organizational

units usually participate in the execution of the business processes, thus

they interact and share information and resources. Such employees play

different roles for execution of the business processes. Therefore, a role

represents a responsibility that a person (i.e., an employee) assumes

when he holds a position in an organization (Bridgeland, Zahavi, 2009).

In the roles model, the organizational units and the roles that the

employees that are part of them can play are specified. For each role, the

set of activities in which the role is in charge is specified too.

An activity in a roles model represents an atomic action that the

employees that play the corresponding role can perform. Action

atomicity implies that:

a) once the action is started, its execution is completed or cancelled,

and;

b) no alternative executions exist within the action (e.g., an activity

cannot have alternative outputs).

These criteria define the granularity for an activity of the roles model.

If development of an activity may be stopped and later resumed, then

this fact should be specified by means of another activity. If alternative

executions where found, then the activity should be decomposed in

several actions.

It must be noted that execution of an activity may be stopped and

cancelled because of happening of some event. In this case, the event

would interrupt execution of the activity, and some response to the event

would follow its happening. The above criteria must not be confounded

or regarded as conflicting with the fact that an activity can be executed

94

 4 Organizational Modelling

several times (multiple instances or loop tasks and sub-processes in

BPMN).

The roles model is created by means of a table that lists the activities,

roles and organizational units of an organization. If considered

necessary, a description of the activities may also be included. Table 4.2

shows an example of a roles model for the software development

company. With regard to product development, the organizational unit

(i.e., department) that participates in that organizational activity is

‚development‛. Among its roles, product managers and developers

perform activities.

Table 4.2 Example of roles model

Organizational Unit Role Activity

Development

Product manager

Define product workflow

Assign activities to developers

Create product version

Assign version to work item

Check version development

Solve problem

Developer

Define work item

Estimate activity

Carry out activity

4.8 Business Rules

Another aspect of an organization that systems analysts must know to

understand organizational activity and the application domain is the set

of restrictions under which the organization operates. Such constraints

correspond to the business rules of the organization.

A business rule is a statement that defines or constrains some aspect

of an organization (The Business Rules Group, 2000). Business rules

define the structure and behaviour of an organization and guide the

activity of its employees (Bridgeland, Zahavi, 2009). They also explain

what is allowed and what is not in an organization, and the consequences

of violation of a business rule. A business rule can be classified as (The

Business Rules Group, 2000):

95

4.8 Business Rules

 Derivation: it is a statement of knowledge that is derived from

other knowledge of an organization.

 Structural assertion: it is a defined concept or a statement of a fact

that expresses some aspect of the structure of an enterprise.

 Action assertion: it is a statement of a constraint or condition that

limits or controls the behaviour of an organization.

It must be indicated that other classifications exist and may have been

used for explanation of business rules (e.g., (Wan-Kadir, Loucopoulos,

2004)).

For the organizational modelling stage, just those business rules that

do not correspond to information of other artefacts of the stage are

specified. For example, the terms of the glossary or the assignation of

activities to roles in the roles model can be regarded as business rules. In

addition, other business rules are not considered important for the

organizational modelling stage and thus are not specified at this stage of

the methodological approach. For example, the attributes of the domain

entities are not addressed.

As a result, derivations and structural assertions are not considered,

and just action assertions are specified at the organizational modelling

stage. Among them, the following types of action assertions must be

discovered and specified by system analysts:

 Obligation: this type of business rules makes employees to behave

in a given way; it is usually specified by means of ‚must-do‛ or

‚must-do-if‛ statements.

 Prohibition: this type of business rules prevents employees from

performing a given behaviour; it is usually specified by means of

‚cannot-do‛ or ‚cannot-do-if‛ statements.

 Permission: this type of business rules allows employees to

perform some behaviour under certain circumstances, e.g.,

violation of a business rules; it is usually specified by means of

‚can-do-if‛ statements.

 Response to event: this type of business rules can be regarded as a

specialization of obligations, and defines what employees must do

in case of happening of a business event; it is usually specified by

means of ‚if-then-must‛ statements.

96

 4 Organizational Modelling

These types of action assertions are based on and defined from

(Bridgeland, Zahavi, 2009). Differently from that work and other works

(e.g., (Bubenko, Stirna, Persson, 2001)), no specific structure for

specification of business rules is proposed or imposed in this thesis.

Nonetheless, it may be defined. What is considered important is to

classify business rules as belonging to some of the above types and that

they refer to information of the other artefacts of the organizational

modelling stage. For example, a response to an event must refer to a

business event and to an activity of the roles model.

Business rules are specified textually by means of a bulleted list. For

each business rule, its type must be specified. For the software

development company, some business rules are the following ones:

 Customer requests must be managed by development in a week

time (obligation)

 A developer cannot perform an activity that has not been assigned

to him (prohibition)

 The product manager can define a work item for a customer

request if it has not been managed by development in a week time

(permission)

 If the event ‚unable to finish on time‛ happens, then the product

manager must solve the problem (response to event)

4.9 Process Map

An organization performs a set of business processes to fulfil its mission.

Nonetheless, the importance of all its business process is not the same.

The influence of some of them on fulfilment of the mission is higher and

thus their importance. This means that it is very important for a company

that the most important business process are adequately executed, what

implies activities such as control, monitoring and management.

As explained in Chapter 3, business processes have goals that must be

achieved after their execution, and these goals are called operational

goals. They also have inputs and outputs, and people participate in their

execution. In addition, the business processes of an organization can be

classified into three types (Ould, 1995):

97

4.9 Process Map

 Core (aka operative) business processes: this category focuses on

satisfying external customers of an organization; they directly add

value in a way perceived by the customers, respond to customer

requests and generate customer satisfaction.

 Support (aka supporting) business processes: this category

focuses on satisfying internal customers of an organization; they

might add value to the customers indirectly by supporting a core

business process, or they might add value to the business directly

by providing a suitable working environment.

 Management (aka strategic) business processes: this category

focuses on managing core and support business processes, on

planning and on key, success factors at the strategic level.

For the software development company, a core process is version

development, a support process is definition of workflow, and a

management process is agreement with customers. As can be observed,

business processes are named in a noun-oriented way, similar to many

existing works (e.g., (Harrington, 1993; Lankhorst, 2009; Smith, Fingar,

2002))

It must be indicated that other classifications for business processes

exist and could have been used. For example, business process can be

classified as enterprise, cross-process, process-specific and technical

business processes (Silver, 2009), or as organizational and operational

business processes (Weske, 2007).

In addition, although the organizational modelling stage is mainly

targeted at discovery of intra-organizational business processes (Weske,

2007), shared business processes (with partners, suppliers or customers)

would be considered if they were going to be supported by an IS. In this

case, the problem or need solvable by an IS would affect several

organizations, not only one.

The approach followed in the organizational modelling stage for

determination of the business process of an organization is line with

those works that considered that many business processes exist in an

organization, and not just a small set of basic and high level business

processes in which a customers triggers a business process and it finishes

when the customer receives the product or service requested. Examples

of first type of works are (Harrington, 1991; Ould, 1995; Smith, Fingar,

98

 4 Organizational Modelling

2002), which also provide (long) lists of possible business processes in an

organization. Such a list can facilitate their identification.

Nonetheless, adoption of an approach or other in practice is flexible,

and its criteria for decision are straightforward: 1) use the approach with

which customer stakeholders feel most comfortable; 2) If no preference

exist in customer stakeholders, then use the approach with which you (as

system analyst) feel most comfortable.

The process map of an organization consists of the business processes

that are identified on the basis of the information previously gathered

and the perception of the customer stakeholders on the organizational

activity. A process map is represented by means of two diagrams. First, a

BPD is created and each business process discovered is included in the

BPD in the form of a sub-process. Then the sub-processes are grouped on

the basis of their type (core, support or management business process).

Second, another BPD is created to specify the execution sequence of the

business processes. It must be indicated that a different approach may be

used (e.g., use of a list for each type of business processes instead of the

first BPD).

In addition, each business process is initially described in a template.

An example for the software development company is shown in Figure

4.6. The template includes the name of the business process and its type,

responsible, participants, operational goals, inputs and outputs.

The responsible of a business process is an individual who is in charge

of the correct and efficient execution of the business process. He is also in

charge of detecting inefficiencies and of improving the business process,

in close collaboration with the participants and (possible) process

designers (Weske, 2007). Participants correspond to the roles of the

employees that execute activities of the business process.

Inputs and outputs correspond to the domain entities that are

necessary for execution of the business process and that are generated or

modified, respectively. It is also common that the operational goals are

related to the outputs, and more operational goals can be discovered and

thus specified once a business process has been modelled (e.g., on the

basis of the guidelines for identification of goals of business process-

based goal trees presented in Chapter 3).

99

4.10 As-Is BPDs

Business Process: VERSION DEVELOPMENT

Type: Core Process Responsible: Product Manager

Participants: Product manager, Employee

Operational Goals: Work unit completed, Version finished

Inputs: Product, Work unit

Outputs: Version, Work unit

Figure 4.6 Example of template of a business process

It must be indicated that different templates for description of

business process exist and thus could be used. The one proposed is

considered to fit the needs of business process modelling in the

methodological approach of the thesis, but it could be modified. For

example, if the strategy of an organization was determined or analysed

too, then the template may include a section for specification of the

indicators that can be measured in the business process.

4.10 As-Is BPDs

The last activity of the organizational modelling stage is to model the As-

Is BPDs of an organization, which represent the current situation and

way of working of the organization. As-Is BPDs are the artefacts targeted

at when modelling an organization, and correspond to the first important

representation about the application domain (combination of several

perspectives and artefacts) in the methodological approach.

As-Is BPDs allow system analysts to represent the structure and

behaviour of an organization (from a business process-based perspective)

in a single model, and correspond to the style for specification of

operational requirements (see Chapter 3) in the methodological

approach. To guarantee that they are correct, customer stakeholders must

validate them and agree upon the part of real world that they represent.

In case of disagreement (because of incorrect or lack of information),

modifications may be necessary both in the BPDs and in the artefacts

previously created in the organizational modelling stage. For example, an

employee may realise that an activity is missing in an As-Is BPD.

Therefore, the activity should be introduced in the BPD as well as in the

roles model so that consistency between the models is guaranteed. An

example of modification that would not affect other artefacts is a change

100

 4 Organizational Modelling

in execution sequence of some activities. It would not affect other

artefacts because execution sequence of activities is specified only in

BPDs.

The As-Is BPDs of an organization may also correspond to its To-Be

BPDs. This is the case when an organization does not aim to change its

business processes when an IS is going to be developed, for instance,

because the main purpose of the system is just task automation and the

organization considers that the design and execution of its business

processes is satisfactory. In this case, and as discussed in Chapter 3,

development of the purpose analysis stage would not be necessary, and

thus As-Is BPDs would represent the future wanted situation of an

organization.

The following subsections outline the mapping of the previous

artefacts of the stage into BPDs and present a set of guidelines for their

modelling. The guidelines are based both in literature review and in

application and evaluation of the methodological approach of the thesis.

4.10.1 Mapping of Previous Artefacts into BPDs

Once the artefacts related to the glossary, the business events, the domain

data model, the roles model, the business rules and the process map of an

organization have been created, As-Is BPDs are modelled from them. As

discussed above, this does not imply that business process modelling

cannot start until all the previous information is gathered (i.e., system

analyst consider that the information is complete), but that this

information is mapped into and correspond to details of the As-Is BPDs

of an organization.

The information of the artefacts must be consistent. The information

that different artefacts share must be present in all the artefacts (e.g., a

participant in the template of a business process must appear as a role in

the roles model). The consistency needs are explicitly shown in Appendix

A, in which the relationships between the concepts (i.e., information) of

the artefacts is determined.

Table 4.3 shows a summary of the correspondence between BPMN

elements (i.e., elements that can be modelled in a BPD) and previous

elements (i.e., information of the rest of artefacts of the organizational

modelling stage). When the correspondence is multiple (i.e., a previous

101

4.10 As-Is BPDs

element can be mapped into different BPMN elements), system analysts

have to select the one that they prefer. In addition, other correspondence

may be defined. In summary, selection and definition of a mapping will

depend on the criteria and preferences of the system analysts and the

customer stakeholders.

Nonetheless, the guidelines of the following section suggest selection

of the correspondence depending on the characteristics of the previous

elements and on the basis of the quality aspects of a business process

model. These aspects are explained in the following section. For example,

use of annotations is not suggested in order to keep BPDs as small as

possible and thus try to facilitate their understanding. Nonetheless,

system analysts or customer stakeholders may like using them, and thus

the corresponding guideline would not be followed.

In must be noted that business process models in the methodological

approach consists of a BPD and of associated documentation (e.g., with a

description of the business process, its business rules and the inputs and

outputs of its activities).

Finally, the correspondence shown in table 4.3 justifies the need of the

creation of other artefacts (i.e., of gathering their associated information)

to model BPDs according to the definition proposed in Chapter 3.

Correspondence for mission statement does not exist, but its definition is

necessary for understanding of the application domain.

Table 4.3 Correspondence between BPMN elements and elements of the artefacts

created in the organizational modelling stage

Previous element BPMN element

Business process BPD

Organization Pool

Participant Lane

Business event Event with a trigger

Activity Task, event with a trigger, decision or no-element

Obligation, Prohibition

and Permission

Decision, event with a trigger, documentation or

annotation

Response to event Sequence flow between an event and a task

Domain entity Documentation or data object

Definitions Documentation or annotation

102

 4 Organizational Modelling

4.10.2 Guidelines for Modelling of BPDs

Definition and use of guidelines for business process modelling are

important concerns both in industry and in academia. Guidelines are

related to the issues of following a methodology when modelling

business processes (Bandara, Gable, Rosemann, 2005; Indulska, et al.,

2009) and of obtaining quality business process models (Becker,

Rosemann, von Uthmann, 2000). Guidelines are especially important for

novice modellers in order to facilitate and help them with business

process modelling (Mendling, Reijers, van der Aalst, 2010).

Among the existing works on business process modelling, many

have focused on provision of advice and guidelines for its development.

The guidelines can be targeted at six aspects of a business process model

(i.e., there exist six types of guidelines) and its creation process (i.e.,

modelling of a business process) (Becker, Rosemann, von Uthmann,

2000):

 Correctness

This aspect is related to the syntax and semantics of a business

process model. A model is syntactically correct if it is consistent

and complete against the metamodel on which the model is

based. A model is semantically correct if it postulates that the

structure and the behaviour of the model are consistent with

reality. The consistency between different models is also part of

the correctness of the models.

 Relevance

This aspect is related to the selection of a relevant object system

(universe of discourse) in order to take a relevant modelling

technique or to configure an existing metamodel adequately and·

to develop a relevant (minimal) model. A business process model

includes elements without relevance if they can be eliminated

without loss of meaning for the model user.

 Economic efficiency

This aspect is a constraint to all the other guidelines. For

example, it restricts the correctness or the clarity of a business

process model. Economic efficiency is related to the cost/benefit

and feasibility of modelling a business process. Approaches to

103

4.10 As-Is BPDs

support the economic efficiency are reference models,

appropriate modelling tools or re-use of models.

 Clarity

This aspect is related to the need of a business process model to

be readable, understandable and useful. It is extremely subjective

and postulates exactly that a model is understood by the model

user. It is not sufficient if a model designer regards the model as

understandable. Construct overload is an example of missing

clarity as additional knowledge outside the modelling technique

is required. Mainly layout conventions put clarity in concrete

terms.

 Comparability

This aspect is related to the need of the use of all the aspects

within a modelling project. It aims to increase the comparability

between businesses and periods, and includes, for instance, the

uniform application of layout or naming conventions. Otherwise,

two models would follow certain but different rules. The

necessity to compare business process models is obvious and

especially important if As-Is and To-Be business process models

or enterprise-specific and reference business process models have

to be compared.

 Systematic design

This aspect is related to the need of well-defined relationships

between models that belongs to different views, e.g., the

integration of business process models with data models (every

input and output data within a business process model has to be

specified in a corresponding data model). A possible solution is

to use a metamodel which integrates all relevant views. In this

thesis, such a metamodel corresponds to the conceptual

framework presented in Appendix A.

The first three aspects are considered basic for a business process

model, whereas the last three are considered optional.

When reviewing literature, many concrete guidelines for business

process modelling in general and for BPMN-based modelling in

particular can be found. They address different aspects of a business

104

 4 Organizational Modelling

process model. Adoption of some guidelines or others will depend on the

criteria of system analysts (who model business processes) and of the

customer stakeholders, and even they may define and propose their own

guidelines.

For BPMN-based business process modelling in the methodological

approach of the thesis, 35 guidelines are presented in order to address the

above aspects of a business process model. The guidelines have been

adopted from literature or determined from definition, application and

evaluation of the methodological approach, and most of them address

several aspects of a business process model.

In addition, some guidelines have been implicitly presented in

previous sections of this chapter when explaining how to discover and

specify the information of the rest of artefacts of the organizational

modelling stage. For example, the criteria for action atomicity in the roles

model are related to correctness, relevance, comparability and systematic

design of business process models. It must also be indicated that the

conceptual framework presented in Appendix A addresses some of the

aspects (correctness, relevance and systematic design) and thus is related

to guidelines for business process modelling.

Another set of implicit guidelines for modelling of BPDs is to comply

with BPMN specification, which is related to correctness. Guidelines for

this facet are not presented, but the restriction on business process

modelling with BPMN (version 1.2) can be consulted in (OMG, 2009).

Other type of guidelines that are not presented are general graphical

(aesthetic) conventions for creation of diagrams (e.g., (Becker, Kugeler,

Rosemann, 2003; Bridgeland, Zahavi, 2009; Effinger, Jogsch, Seiz 2010;

Grosskopf, Decker, Weske, 2009; Lankhorst, 2009; Schrepfer, et al., 2009)),

which address clarity of business process models. Some examples are:

 use of a common size for the elements of a same type;

 alignment of the elements;

 avoidance of overlaps of elements and of line crossing, and;

 modelling of diagrams from left to right;

Table 4.4 shows the main works (there exist more) on which definition

of some guidelines is based (e.g., the work has identified weaknesses on

modelling with BPMN that are mitigated by means of the guidelines) or

105

4.10 As-Is BPDs

that include similar guidelines. Many guidelines are based on metrics for

business process models (Sánchez, et al., 2010) so that they address

quality aspects of a model.

All the guidelines are not based on literature, but some have been

defined as result of the evaluation of the methodological approach. In

addition, some guidelines that are supported by other works were

defined before the works were published or reviewed. Nonetheless, this

fact is not considered very important.

What is important is that most of the guidelines coincide with other

works, what also increases their relevance and validity. For those

guidelines that are not supported by other works (G1, G4-6, G8), their

definition is important to address some of the aspects of a business

process model. More specifically, all those guidelines are necessary for

correctness, relevance, comparability and systematic design, and may

also influence clarity (positively).

Table 4.4 Works that support definition of the guidelines

Work Guidelines

(Allweyer, 2009) G21-22, G24, G34

(Becker, Kugeler, Rosemann, 2003) G7, G11, G13-14, G31-32,

(Bridgeland, Zahavi, 2009) G9, G11, G16, G20, G31-32, G34-35

(Grosskopf, Decker, Weske, 2009) G3, G11, G13-16, G20, G22-23

(Gruhn, Laue, 2009) G27

(Koehler, Vanhatalo, 2007) G21-22, G25, G29

(Lankhorst, 2009) G11, G13-G14, G16, G31-32, G34-35

(Mendling, Strembeck, 2008) G30

(Mendling, Reijers, van der Aalst, 2010) G11, G13-14, G16-22, G24, G27, G31

(Ould, 1995) G13, G16, G20

(Recker, 2011) G2-3, G9-14, G27, G29

(Rolón, et al., 2009) G13, G16, G24

(Silver, 2009) G3, G7, G15-20, G28-29, G31-35

(Smith, Miers, 2008) G17, G22, G26, G30

(zur Muehlen, Indulska, 2010) G9-12

(zur Muehlen, Wisnosky, Kindrick, 2010) G13, G20, G29

106

 4 Organizational Modelling

Table 4.5 shows the aspects of a business process model at which the

guidelines presented are targeted. It must be noted that, in general,

guidelines for systematic design are influenced by the methodology

followed (e.g., the process of the organizational modelling stage).

Therefore, they are usually targeted at a specific methodology, although

they can also affect other aspects of a business process model.

Table 4.5 Aspects at which the guidelines are targeted

 Aspect

Guidelines CR RL EE CL CM SD

G1 X X X

G2-3 X X X X X

G4-14 X X X X X

G15, G26 X X X X

G16, G20, G30-32, G34-35 X

G17-19, G21-22, G24-25, G28 X X X

G23 X X X X

G27 X X

G29 X X X

G33 X X

Aspects of a business process model: correctness (CR), relevance (RL), economic efficiency

(EE), clarity (CL), comparability (CM), systematic design (SD).

The guidelines presented are that, guidelines, not rules. Therefore,

they do not impose a completely deterministic and automatable process

for modelling of BPDs or oblige system analysts to use them. They just

aim to suggest how a BPD should be modelled so that it better addresses

the aspects of a business process model, to obtain uniform BPDs and thus

to obtain BPDs with a higher quality than if guidelines were not followed

(Becker, Kugeler, Rosemann, 2003). It must also be indicated that some

guidelines are 100% automatable (G1-3, G12, G18, G23, G25, G27-28,

G30), what positively affects economic efficiency.

It must be noted that application of some guidelines can be positive

for an aspect of a business process model but negative for another. For

example, the guideline G20 (explicit modelling of gateways) is positive

for correctness but negative for economic efficiency. Therefore system

analysts are responsible for deciding what aspect is more important in

107

4.10 As-Is BPDs

cases like that. Some guidelines may also affect definition of the elements

of the previous artefacts. For example, the guideline G29 may cause

renaming of some element.

The guidelines do not cover modelling of all the existing BPMN

elements, but just of those that can be derived from the information of the

rest of artefacts of the organizational modelling stage and of those whose

modelling may be problematic (e.g., may lead to obtain an incorrect

business process model). Fore example, there are not specific guidelines

for modelling of transactions or ad-hoc sub-processes, or for sequencing

(most of the) flow objects. In this sense, BPMN elements that are domain-

dependant (i.e., related to specific characteristics of an organization) are

not considered in the guidelines. For example, modelling of a transaction

will depend on how an organization executes or wants to execute its

business processes.

Finally, the set of guidelines presented could either be followed or

not, but one rule exists that should always be followed: customer

stakeholders must be ‚happy‛ with the BPDs (Grosskopf, Decker, Weske,

2009; Ould, 1995). Consequently, a guideline may not be followed if

customer stakeholders do not like their application, provided that a BPD

is still correct. Furthermore, validation by customer stakeholders is

necessary for guaranteeing correctness, relevance and clarity.

The 35 guidelines adopted in the organizational modelling stage for

business process modelling (i.e, for modelling of BPDs) are the following

ones.

G1) Mapping of business processes

For each business process of the process map, a BPD is created.

G2) Mapping of organizations

The organization for which an IS is going to be developed is modelled

in the BPDs as a pool. If several organizations were considered (e.g., an

organization and its customers), then a pool would be modelled for each

organization.

G3) Mapping of participants

Each participant of the process map (and thus each role of the roles

model) is modelled as a lane in the BPDs of the business processes in

which he participates.

108

 4 Organizational Modelling

G4) Mapping of business events

Each business event is modelled as an event with a trigger in the BPDs

of the business processes that are affected by the event.

G5) Mapping of activities into events with triggers

An activity of the roles model is modelled in the BPD of the business

process in which it is executed as an event with a timer trigger when the

activity represents that its associated role has to wait, and as an event

with a message trigger when the activity represents that the role has to

send or receive some information. In both cases, triggering of the events

has to be a consequence of an interaction with an external participant

(people from other organizations, e.g., a customer or a supplier) or with a

role of the same organization that is not modelled in the BPD.

G6) Mapping of activities into decisions

An activity of the roles model is modelled as a decision (i.e., as an

exclusive gateway) in the BPDs of the business processes in which it is

executed when the activity represents that its associate role has to check

some information.

G7) Mapping of activities into no element

An activity of the roles model is not modelled in the BPDs of the

business processes in which it is executed if the activity could be mapped

into an event with triggers (guideline G5) except for the condition related

to interaction (e.g., the activity may represent an interaction with a

person of the same organization that is modelled in the same BPD by

means of a lane).

G8) Mapping of activities into tasks

If an activity of the roles model is not modelled from the guidelines

G5, G6 or G7, then it is modelled as a task in the BPDs of the business

processes in which it is executed.

G9) Mapping of obligations, prohibitions or permissions into

decisions

An obligation, a prohibition or a permission is modelled as a decision

in the BPDs of the business processes that the business rule constrains if

it corresponds to an ‚if‛ statement and its fulfilment or the moment at

which it is checked can be predicted.

109

4.10 As-Is BPDs

G10) Mapping of obligations, prohibitions and permissions into

decisions or events with triggers

An obligation, a prohibition or a permission is modelled as an event

with a trigger in the BPDs of the business processes that the business rule

constrains if it corresponds to an ‚if‛ statement and its fulfilment or the

moment at which it is checked cannot be predicted. Depending on the

nature of the business rule, the trigger can be error, conditional, cancel,

compensation, cancel or multiple. The event can also be attached to an

activity (task or sub-process) whose execution interrupts.

G11) Mapping of obligations, prohibitions or permissions into

documentation

If an obligation, a prohibition or a permission is not modelled from

the guidelines G9 or G10, then it is included in the documentation of the

BPDs of the business process that the business rule constrain.

For this guideline, other possibility would be to model annotations.

Although it may be considered positive for correctness and relevance, it

also may be negative for clarity. Clarity is considered more important in

the organizational modelling stage than correctness and relevance (in

relation to whether modelling annotations or not), thus modelling of

annotations is not adopted (a priori) in the methodological approach.

G12) Mapping of responses to events

A response to an event is modelled in the BPDs of the business

process that the business rule constrains as a sequence flow that connects

the event with the element that represents the activity triggered.

G13) Mapping of domain entities

Input and output domain entities of the activities of the roles model

are specified in a table that is part of the documentation of a BPD. For

each domain entity, its state must be specified. If a domain entity can

have any state, then an asterisk (‘*’) is used. If a domain entity just has a

state for which a name is not defined, then a dash (‘-‘) is used

An example for the software development company is shown in Table

4.6 (business process ‚management of customer request‛). For this

guideline, other possibility is to model data objects. However, this way of

modelling is not adopted (a priori) in the methodological approach (see

discussion in guideline G11 for justification).

110

 4 Organizational Modelling

Table 4.6 Example of table to specify task inputs and outputs

 Input Output

Task Entity State Entity State

Define work unit Customer - Work unit New

Assign activities to developers
Work unit New Activity Assigned

Developer -

Estimate activity Activity Assigned Activity Estimated

It must be indicated that this guideline was not followed for

modelling of the BPD of Figure 3.5 because in that figure it was

considered important to show the inputs and outputs of the tasks in the

business process model.

G14) Mapping of definitions

A definition of the glossary that is considered necessary for

understanding of a BPD is included in its documentation.

For this guideline, other possibility would be to model annotations in

the BPDs. However, this way of modelling is not adopted (a priori) in the

methodological approach (see discussion in guideline G11 for

justification).

G15) Interactions between organizations

An interaction between two organizations that are modelled in a same

BPD (by following the guideline G2) is modelled by means of messages.

G16) Size of BPDs

In general, a BPD should not have more than 9 activities (regardless

they are tasks or sub-processes), fit in a page and be described in less

than ten minutes.

G17) Start and end events

All BPDs must have a start event and an end event.

G18) Number of start events

In general, a BPD should only have one start event. This guideline

should not be followed if different events with triggers can start the

process and the first task of the BPD can be different depending on the

event that happens.

111

4.10 As-Is BPDs

G19) Number of end events

In general, a BPD should only have one end event. This guideline

should not be followed if successful and failure executions of the

business process exist (an end event for each situation should be

modelled).

G20) Decomposition of a BPD

If modelling of a BPD does not fulfil the guideline G16, then it should

be decomposed by means of sub-processes or an event with a link

trigger. As a result, new BPDs can be created.

G21) Decisions, forks, mergings and joins

Decisions, forks, merging and joins should be explicitly modelled in

BPDs by means of gateways.

G22) Gateways in pairs

Exclusive and parallel gateways should be modelled in pairs. For

example, for each decision modelled by means of a gateway, another

gateway should be modelled for its merging.

G23) Gateways not in pairs

Guideline G22 should not be followed in the case of looping

sequences (the branch or branches of a gateway join or merge in the same

gateway) and of a task that follows a decision with two branches and

merges into the first task of the other branch.

G24) Outputs of mergings and joins

A merging or a join should just have one outgoing flow.

G25) No combination of decisions and mergings and of forks and

joins

Decisions and mergings should not be combined in a same exclusive

gateway, and forks and joins should not be combined in a same parallel

gateway.

G26) Default flow

A default flow should be modelled in all the decisions. For the

methodological approach, they represent the normal (i.e., the most

frequent) branch that is followed.

112

 4 Organizational Modelling

G27) Inclusive gateways

In general, inclusive (OR) gateways should not be used. They can be

replaced by using other patterns of gateways.

G28) Loops and multiple instances

Loops should be used in activities of a BPD when they can be

executed consecutively several times but the number of executions is

unknown at modelling time. Multiple instances should be used when the

number is known.

G29) Non-use of other BPMN elements

In general, use of conditional flows (to follow guideline G20), signal

triggers for events (they are mainly system oriented, not business

oriented and as BPDs are used in this thesis) and annotations (they can

and should be specified as documentation as discussed in guideline G11)

should be avoided.

It must be noted that just manual tasks are modelled (if the guidelines

are followed) in the organizational modelling stage, then use of the rest

of types (service, receive, send, script, user, and none) should be avoided

too. Modelling of reference tasks is implicitly allowed by modelling of a

same activity in different BPDs (those that correspond to the business

processes in which the activity is executed).

G30) Length of names

In general, the name of an element of a BPD should not have more

than 5 five words. If this condition cannot be fulfilled (e.g., for a complex

gateway), then the complete name of the element should be indicated in

the documentation of the BPD.

G31) Name of activities

An activity should be named in an action way: a verb followed by an

object.

G32) Name of events

An event should be named in a happening way: an adjective or a

condition followed by an object or a verb, or an object followed by a past

participle.

113

4.10 As-Is BPDs

G33) Common names for events

A catching event for a throwing event modelled in other BPD should

have the same name as the latter event.

G34) Name of decisions

A decision should be named in a question form: a condition followed

by a question mark.

G35) Name of branches of a decision

A branch of a decision should be named as a response to the question

of the decision.

Once presentation of the guidelines is finished, Figure 4.7 shows the

As-Is BPDs for the software development company. They are described

as follows.

The product manager defines the set of activities that has to be carried

out to develop a product through product workflow. When a customer

requests a new improvement, a developer defines the work item that is

necessary to provide the customer with the request. Next, developers are

assigned the activities that are necessary to develop the work item, and

developers have to estimate how long the activities will take. The

product manager is also responsible for the periodical creation of product

versions, which have a strict deadline, and must decide the version in

which a work item will be developed.

The developers carry out the activities in order to finish the work

items and deliver the improvement requested, and the product manager

checks that version development is adequate. However, problems may

arise while developing versions. Developers may not be able to finish the

activities they are responsible for due to time constraints. If a problem

arises, then the product manager has to try to solve it (by changing the

version of a work item).

Lastly, it must be noted that the degree of detail of the As-Is BPDs

modelled in the organizational modelling stage is high. This is in line

with recognised need of detailed business process models when they are

used for software development (e.g., (Becker, Kugeler, Rosemann, 2003)),

and would correspond to low levels of structured approaches for

business process modelling (e.g., (Davis, Brabänder, 2007)).

114

 4 Organizational Modelling

S
w

D
e

p
C

o
S

w
D

e
p

C
o

P
ro

d
u

c
t
M

a
n

a
g

e
r

Define

Product

Workflow S
w

D
e

p
C

o D
e

v
e

lo
p

e
r

P
ro

d
u

c
t
M

a
n

a
g

e
r

Define Work

Item
Customer

request

received

Estimate

Activity

Assign

Activities to

Developers

D
e

v
e

lo
p

e
r

P
ro

d
u

c
t
M

a
n

a
g

e
r

Assign

Version to

Work Item

Create

Product

Version

Check

Version

Development

Carry out

Activity

Solve

Problem

Problem detected

a)

b)

c)

Unable to

finish on time

Legend

Start Event

with a Message Trigger

Intermediate Event

with an Error Trigger

Loop

task

Figure 4.7 Examples of A-Is BPDs: a) definition of workflow; b) request

management; c) version development

4.11 Summary

This chapter has presented the organizational modelling stage of the

methodological approach of the thesis. For this purpose, its artefacts and

their creation processes have been described.

First, information about the organizational activity and environment

is gathered through interviewing customer stakeholders and checking

organizational documentation. A set of initial artefacts are created from

these activities, and they are later mapped into the As-Is BPDs of the

organization.

As-Is BPDs are created by following a set of guidelines that aim to

guarantee (or increase) the correctness, relevance, clarity and

comparability of the models, as well as the economic efficiency and a

systematic modelling when creating them. The set of guidelines is

115

4.11 Summary

probably the largest and most detailed existing one for modelling with

BPMN.

Development of the organizational modelling stage is strongly

grounded on existing works. For example, it is influenced by EKD,

principles for data modelling, business rules specification and works on

guidelines for business process modelling and on BPMN weaknesses.

In conclusion, this chapter has provided a systematic approach for

modelling an organization for which an IS is going to be developed. The

approach is based on several mechanisms, artefacts and guidance, and is

targeted at modelling the As-Is BPDs of the organization. Thanks to the

BPDs, an initial picture of the application domain and of the

characteristics and needs of an organization is obtained.

Chapter 5

5 Purpose Analysis

“Without goals, and plans to reach them, you are like a ship that has set sail with

no destination”

Fitzhugh Dodson

This chapter presents the second stage of the methodological approach of

the thesis (Figure 5.1): purpose analysis. This stage aims to model and

analyse the goals of an IS and determine how achievement of such goals

will affect the business processes of an organization.

As mentioned in previous chapters, development of this stage may

not be necessary. It will depend on the complexity of the purpose of a

system. Systematic analysis may not be important if the effect of an IS on

business process is clear and straightforward. For example, many times

just task automation is the expected effect.

The chapter is organized as follows. First, an overview of the purpose

analysis stage and a running example for its explanation are presented.

Next, background work on goal discovery in RE and on business process

reengineering is presented. The artefacts created as a result of the

development of the stage (Figure 5.1) are then described and their

creation processes are explained. Finally, a summary of the chapter is

presented.

118

 5 Purpose Analysis

Business Events

Roles Model

Domain Data Model

Glossary

Business Rules

ORGANIZATIONAL MODELLING

SPECIFICATION OF SYSTEM

REQUIREMENTS

As-Is BPDs

Process Map

PURPOSE ANALYSIS

Goals/Strategies Diagrams

To-Be BPDs

Business-process based requirements

specification and OO conceptual modelling

Organizational problem or

need solvable by an IS

As-Is

To-Be

Validation

Agreement

ETDs

Validation

State Transition Diagrams

Class Diagram

DERIVATION OF OO-DIAGRAMS

Operationalization Tables

Labelled BPDs

Enriched BPDs

ETD Analysis

Mission Statement

Figure 5.1 Stage and artefacts presented in Chapter 5

5.1 Overview of the Stage

As a summary of the facts and decisions explained in the previous

chapters, the main characteristic of the purpose analysis stages is the use

of the Map approach (Rolland, 2007) for its development. The stage is

targeted at analysing the goals an IS and determining how they can

influence the execution of the business processes of an organization.

Another objective is to facilitate communication with customer

stakeholder and thus their involvement. As a result, and as justified in

Chapter 2, the Map approach was selected for analysis of the purpose of

 119

5.1 Overview of the Stage

a system because its characteristics and strong points can facilitate

communication among all the stakeholders.

Figure 5.2 shows the activities of the purpose analysis stage, in which

the problem (or need) that an organization expects to solve by

introducing an IS is analysed. The aim is to determine the IS goals and to

find system strategies (features) that can fulfil the goals and thus solve

the organizational problem. It must be determined how to operationalize

the strategies related to the system purpose, and operationalization tables

are used for this purpose. Agreement with customer stakeholders on the

effect that the development of the IS may have on the business processes

must also be reached. As a result, changes in the business processes can

occur on the basis of the effect that the operationalization of the strategies

will have on them. To-Be BPDs are modelled according to the effect

determined.

Once agreement upon the effect of an IS on business processes has

been reached, the purpose analysis stage is finished. It must be noted that

several iterations may be necessary for reaching an agreement. This is

mainly caused by the possibility of defining alternatives and different

ways to achieve IS goals and operationalize the strategies.

It must also be indicated that Map diagrams are called goals/strategies

diagrams in the methodological approach of this thesis. Maps diagram

are usually called map, but the use of this term in the methodological

approach may be confusing because of the definition or an artefact called

process map in the organizational modelling stage.

Although all the stages of the methodological approach are correlated,

the organizational modelling and purpose analysis stages have a special

and very strong interrelationship. On the one hand, the purpose analysis

stage affects organizational situation (it changes from As-Is to To-Be) and

thus organization modelling. On the other hand, the purpose analysis

stage is performed on the basis of information gathered during

organizational modelling.

Reference to artefacts of the organizational modelling stage is

necessary when performing (and explaining) the purpose analysis stage,

as well as reference to artefacts of the purpose analysis stage would have

been necessary if a ‚To-Be‛ organizational modelling stage had been

defined explicitly in the methodological approach.

120

 5 Purpose Analysis

 Analyse system

goals

Operationalize

 system purpose

Model To-Be

business

processes

Agreement upon To-Be BPDs?

YesNo

Figure 5.2 Activities of the purpose analysis stage

Although the whole methodological approach is related to business/IT

alignment and positively affects it, the relationship is probably stronger

and thus clearer in this stage. This alignment is considered to be reached

when business goals, activities and processes of an organization are in

harmony with the technology that supports them (McKeen, Smith, 2003),

so business and IT work together to reach common goals (Campbell,

2005).

When reviewing literature, works and proposals that are in line with

the purpose analysis stage can be found. For example, the first four steps

of the organization-driven planning process presented in (Olle, et al.,

1991) are analyse business problem, identify needs for change, identify

IS, and propose change alternatives and new ISs.

Map-based approaches related to business process modelling and

reengineering have also been presented in several works. In (Salineis,

Presso, 2002), analysis and identification of gaps between As-Is and To-

Be situations of a business process are based on Map diagrams, and the

operationalization of the sections is addressed too. In (Thevenet, Salinesi,

2007), the Map approach is used to analyse the alignment of ISs and

business strategy and to link the strategic and operational levels of an

organization.

In relation to EKD, Map diagrams have been proposed to guide the

modelling process (Rolland, Nurcan, Grosz, 2000). A Map-based

extension of EKD for documentation and management of change in an

organization was presented in (Nurcan, Rolland, 2003).

Finally, in the context of B-SCP (a RE approach for alignment of

requirements and business strategy; (Bleistein, et al., 2006)), three

strategies have been proposed for integration of the Map approach into

B-SCP (Babar, et al., 2008a).

One of the strategies is presented in deeper detail in (Babar, et al.,

2008b). The strategy for integration aims to provide mechanisms to

 121

5.2 Running Example: The Software Development Company

validate and verify Map requirements against B-SCP requirements, and

vice versa. Map is used as basis for analysis and comparison of the As-Is

and To-Be situations of an organization, and for representation of

strategic goals in a (non-deterministic) business process-like form.

Nonetheless, this way of representing business strategy is not new, but it

was previously proposed in the context of the Balanced Scorecard

(Kaplan, Norton, 1996). The representation is called strategy maps.

5.2 Running Example: The Software

Development Company

The running example for the purpose analysis stage is the same as the

one for the organizational modelling stage: the software development

company (SwDepCo). The main reason is that introduction of a new

example may be counterproductive.

Since reference to and analysis of the As-Is situation of an

organization are performed during purpose analysis, it is easier for a

reader to understand development of the stage on the basis of an already

known case. In addition, introduction of a new example would require to

present information in detail about it to understand it. This would imply

a larger extension of the chapter, which can be avoided by using the

software development company as a running example.

The company is experiencing problems with response time to

customer requests since a few months ago. Some customers have started

to complain about the time that passes since they request an

improvement until it is included in a product, thus their satisfaction with

the company has decreased.

The main reason for the slow response to customer requests is that

product development is now hardly ever performed as planned and thus

improvements are not delivered when expected. The number of

customers of the company has increased during the last year

considerably, and so the number of requests.

Employees’ workload has increased and is now very heavy, or at least

heavier than in past. This situation has caused that developers have not

been able to finish their job as estimated many times and that product

managers have not been able to detect some problems with sufficient

anticipation. As a result, delays on response to requests have happened.

122

 5 Purpose Analysis

The company has analysed possible ways to tackle this situation. The

most immediate one will be to hire more employees, so that employees’

workload decreases. In addition, the company has decided to introduce a

new IS to support product development so that this organizational

activity is improved and thus customer satisfaction increases. By using a

new IS, a solution to these problems and needs for both present and

future is expected to be found.

5.3 Background: Goal Discovery in RE

This section reviews background work on goal discovery in RE in general

an in goal-oriented RE approaches in particular. The review is useful for

the purpose analysis stage in order to determine the ways in which IS

goals should be addressed and discovered.

Clear goals when developing a software system are essential to

understand what the real requirements are and thus to elicit them

(Alexander, Beus-Dukic, 2009). They can also reduce work of the RE

process. However, goal discovery (or elicitation) is not an easy task, and

it is recognised as one of the main weaknesses of goal-oriented RE

approaches (Rolland, Salinesi, 2005).

As a solution, many works have focused on provision of mechanisms

and artefacts for goal discovery. For example, scenarios, organizational

documents and goal refinements have been proposed for goal discovery

(Rolland, Salinesi, 2005; van Lamsweerde, 2001). Nonetheless, these

approaches do not fit the needs of the methodological approach of the

thesis, in which IS goals are defined from the organizational problems or

needs and as a complement to business process models for

understanding of the application domain.

Other works have focused on study of the nature of goals and on

proposal of guidelines for goal discovery. Among them, three works can

be considered the most relevant ones.

GBRAM (Antón, 1997) can be regarded as the first specific approach

for goal discovery. It is based on the assumption that customer

stakeholders usually have a better understanding of their general goals

than of system requirements. The approach aims to facilitate transition

from goals to system requirements, and proposes heuristics, guidelines

and a process for goal exploration, identification, organization,

 123

5.3 Background: Goal Discovery in RE

refinement, elaboration and operationalization. Goal discovery is related

to exploration, whose inputs can be interviews, policies, requirements,

transcripts, workflow diagrams, corporate goals and a mission statement

of an organization. Goals are classified as achievement (desired state) or

maintenance (condition held true) goals.

In (Regev, Wegmann, 2005), the authors study the principles of goal-

oriented RE and the nature of goals. They aim to provide more precise

definitions of different types of goals on the basis of mechanisms from

general systems thinking and cybernetics, and as part of (or as a

complement to) the Lightswitch approach for specification of early (i.e.,

business) requirements (Regev, Wegmann, 2004). As a result of the study,

the relationships between the types of goals are explained in detail. For

example, achievement goals are defined (or aim) to fulfil maintenance

goals, and they may also be targeted at other achievement goals.

The last and most recent relevant work is (Singh, Woo, 2008), which

focuses on goal discovery at the operational, tactical and strategic levels

of an organization. The authors provide three approaches for goal

discovery (one for each level), which are then integrated into a single

approach. Guidelines are also provided for goal discovery at each level.

In a later work (Singh, Woo, 2009), the authors use part of the approach

to study business/IT alignment.

With regard to the Map approach, its creators have provided some

general guidelines for goal discovery (Roland, Salinesi, 2005; Rolland,

2007). For example, system analysts should first focus on business goals

and then refine them until defining lower levels goals on the basis of the

strategies (i.e., by creating new Map diagrams on the basis of the sections

of another diagram). However, the guidelines can be considered too

abstract and thus difficult to apply. Some more concrete guidelines have

been presented recently for Map-based service engineering (Rolland,

Kirsch-Pinheiro, Souveyet, 2010).

 Finally, templates for goal documentation can be found in literature

(e.g., (Antón, 1997; Pohl, 2010)). Use of templates is expected to facilitate

goal discovery and specification. However, goal documentation in detail

is not considered very important in this thesis, thus templates are not

used and goals are not described in detail.

Goal discovery for the purpose analysis stage is further presented and

discussed in Section 5.5.

124

 5 Purpose Analysis

5.4 Background: Business Process Reengineering

This sections reviews background work on business process

reengineering, focusing on its relationship with development of ISs. On

the basis of the review, the way to address business process

reengineering in the purpose analysis stage is determined.

Business process reengineering can be defined as the analysis and

design of business processes for their change and possible improvement

in order to achieve some business goal (Grover, Malhorta, 1997). It gained

fame quickly in the 90’s as a result of the success of several works on the

subject (Davenport, 1993; Hammer, Champy, 2001), which proposed

novel solutions to important problems of organizations such as loss of

competitiveness and low performance.

An organization may need business process reengineering because of

three reasons (Hammer, Champy, 2001). First, an organization may need

it because it is in deep trouble. The organization would have no choice,

and it may not survive if it did not change. Second, an organization may

need it because, although not in trouble, its managers see trouble coming.

Therefore, the organization would anticipate the change before it was

necessary urgently. Third, a leader organization in a peak condition may

find a new opportunity. In this case, the change would aim to widen the

gap with competitors. Such reasons coincide with the reasons for IS

development assumed in this thesis: existence of a problem or need in an

organization, which may arise in the three situations described.

Despite its success, discrepancies about business process

reengineering exist (Melão, Pidd, 2000). For example, different opinions

exist about its originality, its radical or incremental perspective as the

most suitable one, the suitability of defining completely new business

processes, or the need of methodological approaches to perform it.

Adoption of a perspective depends on the needs of business process

reengineering and on the criteria of the stakeholders.

An issue on which consensus can be considered to exist is on the

importance of IT in business process reengineering (Broadbent, Weill,

St.Clair, 1999). Organizations must be aware of the new ways of

operation that IT makes possible, which can be useful in all the situations

presented above. Business process reengineering initiatives are also

usually linked to development of new IT. In the (software-oriented) IS

 125

5.4 Background: Business Process Reengineering

development research community, this activity is regarded as a

reengineering initiative (Grau, Franch, 2007).

The role that IT plays in business process reengineering varies

depending on the moment (in relation to business process design) at

which it is used (Attaran, 2004). The role can be: 1) enabler, when IT is

considered before business processes are designed; 2) facilitator, when IT

is considered during business process design, or; 3) implementor, when

IT is considered during business process implementation.

There no exists an overall agreement upon the most suitable role.

Some authors think that IT must be an enabler of business process

reengineering and thus trigger it (e.g., (Carr, Johansson, 1995)), but others

think that excessive focus on IT (instead of on business needs) is a risk

and IT should never lead reengineering (e.g., (Whitman, 1996)).

The most suitable role of IT will depend on the purpose of a concrete

business process reengineering initiative. This issue is also related to

radical vs. incremental perspective on business process reengineering,

i.e., to the use of technology in a completely new way or in a more

conservative manner. Anyway, what is really important about IT is that it

meets and is in line with business needs (Davenport, 1993).

On the basis of this discussion and the best practices presented in the

following subsection, business process reengineering in the purpose

analysis stage is further presented and discussed in the Section 5.6.

5.4.1 Best Practices in Business Process Reengineering

Among the existing works on business process reengineering, many have

focused on provision of advice and guidelines for its development and

for avoidance of problems on the basis of practical experience (e.g., (Carr,

Johansson, 1995; Smith, Fingar, 2002)).

In (Reijers, Mansar, 2005), a set of 29 patterns (called best practices in

that work) for business process reengineering can be found. The patterns

are based on literature review, and are especially targeted at

reengineering of existing business processes that are taken as basis for

change. Table 5.1 shows a summary of the patterns, which are divided

into eight types of orientations:

 Customer, which focuses on improving contacts with customers;

there exist three patterns related to this type of orientation:

126

 5 Purpose Analysis

1) Control relocation: move controls towards the customer.

2) Contact reduction: reduce the number of contacts with

the customers and third parties.

3) Integration: consider the integration with a business

process of the customer or supplier.

 Business process operation, which focuses on how to implement

a new business process; there exist five patterns related to this

type of orientation:

4) Order types: determine whether tasks are related to the

same type of order and, if necessary, distinguish new

business processes.

5) Task elimination: eliminate unnecessary tasks.

6) Order-based work: consider removing batch-processing

and periodic activities from a business process.

7) Triage: consider the division of a general task into two or

more alternative tasks, or the integration of two or more

alternative tasks into one general task.

8) Task composition: combine small tasks into composite

tasks and divide large tasks into workable smaller tasks.

 Business process behaviour, which focuses on execution of a

business process; there exist four patterns related to this type of

orientation:

9) Resequencing: move tasks to appropriate places.

10) Knock-out: order knock-outs in a decreasing order of

effort and in an increasing order of termination

probability.

11) Parallelism: consider whether tasks may be executed in

parallel.

12) Exception: design business process for typical orders and

isolate exceptional orders from normal flow.

 Organizational structure, which focuses on the allocation of

resources of an organization in a business process; there exist six

patterns related to this type of orientation:

 127

5.4 Background: Business Process Reengineering

13) Order assignment: let workers perform as many steps as

possible for single orders.

14) Flexible assignment: assign resources in such a way that

maximal flexibility is preserved for the near future.

15) Centralization: treat geographically dispersed resources

as if they are centralized.

16) Split responsibilities: avoid assignment of task

responsibilities to people from different functional (i.e.,

organizational) units.

17) Customer teams: consider assigning teams out of

different departmental workers that will take care of the

complete handling of specific sorts of orders.

18) Numerical involvement: minimize the number of

departments, groups and people involved in a business

process.

19) Case manager: appoint one person as responsible for the

handling of each type of order.

 Organizational population, which focuses on the types and

number of resources of an organization used in a business

process; there exist three patterns related to this type of

orientation:

20) Extra resources: if capacity is not sufficient, consider

increasing.

21) Specialist-generalist: consider to make resources more

specialized or more generalized.

22) Empower: give workers most of the decision-making and

reduce middle management.

 Information, which focuses on the information that is or may be

used and created in a business process; there exist two patterns

related to this type of orientation:

23) Control addition: check the completeness and correctness

of incoming materials and check the output before it is

sent to customers.

128

 5 Purpose Analysis

24) Buffering: instead of requesting information from an

external source, buffer it by subscribing to updates.

 Technology, which focuses on the technology that may be used

for execution of a business process; there exist two patterns

related to this type of orientation:

25) Task automation: consider automating tasks.

26) IT: try to elevate physical constraints in a business

process by applying new technology

 External environment, which focuses on improvement upon the

collaboration and communication with third parties; there exist

three patterns related to this type of orientation:

27) Trusted party: instead of determining information

oneself, use results of a trusted party.

28) Outsourcing: consider outsourcing a business process in

whole or parts of it.

29) Interfacing: consider a standardized interface with

customers and partners

The patterns have different impacts (positive or negative) on cost,

flexibility, time and quality of execution of a business process. It is

important that system analysts and customer stakeholders are aware of

this impact when deciding to make some change in a business process on

the basis of a given pattern. Need of improvement on cost, flexibility,

time or quality can make an organization use some patterns or others.

The use of a pattern may either be advisable or not depending on the

purpose of business process reengineering.

Table 5.1 summarises the impact of the patterns for business process

reengineering on cost, flexibility time and quality, which is presented and

discussed in detail in (Reijers, Mansar, 2005). The symbols ‘+’ and ‘-‘ in

the cells represent positive and negative impact of a pattern, respectively,

whereas no symbol represents neutral impact. It must be noted that

positive impact does not mean increase in all the aspects.

Finally, many guidelines and best practices for business process

reengineering can be found in literature, but just one rule exists: it must

be linked to and based on business strategy (Carr, Johansson, 1995).

 129

5.4 Background: Business Process Reengineering

Table 5.1 List of patterns for business process reengineering and their impact on

cost, flexibility, time and quality of a business process

 Aspect

Type Pattern Cost Flex. Time Qual.

Customer

Control relocation + +

Contact reduction + - +

Integration - - -

Business

process

operation

Order types - - - -

Task elimination - - -

Order-based work + -

Triage - - - +

Task composition - - - +

Business

process

behaviour

Resequencing - -

Knock-out - +

Parallelism + - - -

Exception - - +

Organizational

structure

Order assignment - - +

Flexible assignment - - +

Centralization + + -

Split responsibilities - + +

Customer teams - - - -

Numerical involvement - + -

Case manager + +

Organizational

population

Extra resources + + -

Specialist-generalist + -

Empower - - -

Information
Control addition - + +

Buffering + -

Technology
Task automation + - +

IT - - +

External

environment

Trusted party - -

Outsourcing - -

Interfacing - - +

130

 5 Purpose Analysis

5.5 Goals/Strategies Diagrams

Once background work on goal discovery in RE and on business process

reengineering has been presented, this section explains how to create the

first artefact of the purpose analysis stage: goals/strategies diagrams.

Goals/strategies diagrams are used for modelling and analysis of the

organizational problem or need at which an IS is targeted and of the

solutions that the system can provide. The diagrams are modelled in a

collaborative manner between system analysts and customer

stakeholders (usually managers, who are more aware of the strategic and

business needs) so that they agree on the solution.

In the methodological approach of the thesis, an IS is a facilitator of

the necessary changes in the business processes of an organization

because it is considered while they are designed. When adopting the

facilitator role, IT can have several positive effects on business processes

(Attaran, 2004). For example, IT can enhance employees’ ability to make

more informed decisions, facilitate identification of enablers for process

redesign, capture the nature of the proposed change and link it to

strategy, capture and disseminate knowledge and expertise to improve

business processes, and reduce and replace work on business processes.

Before modelling of goal/strategies diagrams, system analysts must be

aware of the problem or need that an IS must solve and how it is related

to business strategy. This is what some authors call system vision (e.g.,

(Pohl, 2010)). For the software development company, the main problem

is the existence of customer complains because of delays in response to

requests. As a consequence, the strategic goal ‚keep customer

satisfaction‛ is not fulfilled.

In comparison to the works presented in Section 5.3, the

methodological approach of the thesis focuses on strategic and business

goals, whose fulfilment is not or may not be possible because of the

existence of problems or needs in an organization. Therefore, some

achievement (e.g., reduce customer complaints) or maintenance goal

(e.g., keep customer satisfaction) cannot be fulfilled, and some

achievement goal(s) (e.g., reduce time of response to customer requests)

arises and aims to fulfil the first goal.

The methodological approach focuses on the (business) goals that an

IS must fulfil (or whose fulfilment must make possible), not in goals in

 131

5.5 Goals/Strategies Diagrams

general or at any abstraction level. In addition, the above works

practically just focus on goal modelling, whereas the thesis focuses both

on goal and on business process modelling and analysis.

The goals of the goals/strategies diagrams correspond to achievement

goals. They represent need of change and thus desired states in an

organization. Otherwise, an IS would not be necessary, or its purpose

would be very simple and thus a purpose analysis stage would not be

necessary. Consequently, achievement is the type of goals that are mainly

addressed in the stage. It must be noted that the goals correspond to the

strategic requirements that are addressed in the methodological

approach. The goals are named with change-related verbs (improve,

minimize, maximize, reduce, increase, facilitate…), referring to some

business aspect.

Once goals have been defined, system features (i.e., strategies) to fulfil

them must be determined. System features play an important role in the

development of many software systems, especially in the contexts of

product line-based development (e.g., (Heidenreich, et al., 2010)) and of

market-driven development (e.g., for system planning and decision

making (Wnuk, Regnell, Karlsson, 2009)). Although features are usually

considered to be related to architectural aspects of a software system

(Pohl, 2010), they can be used in the RE process and feature-oriented RE

approaches exist (e.g., (Shaker, 2010)).

The most common style for modelling of system features is FODA

diagrams (Kang, et al., 1990). Nonetheless, this style is not adopted in the

thesis because its purposes and perspective for modelling of system

features do not coincide. FODA usually focuses on the system domain,

whereas features of the purpose analysis stage focuses on the business

domain. In addition, FODA features do not aim to represent ways to

achieve the goals of an IS. It is also common that features are specified in

lists (Lauesen, 2002).

Many definitions exist for system feature (Apel, Kästner, 2009), and its

notion has been considered confusing (Classen, Heymans, Schobbens,

2008). On the basis of previous definitions and their purpose in the

analysis stage, a system feature is defined in this thesis as a system

requirement that:

a) represents an abstraction of the functionality (i.e., a unit of

behaviour) of the system;

132

 5 Purpose Analysis

b) consists of a set of related domain assumptions and

requirements;

c) corresponds to distinctive characteristics of the system that is

valuable for customer stakeholders;

d) cannot be verified (i.e., tested) unless it is refined and specific

criteria are defined (Berenbach, et al., 2009);

e) represents a customer stakeholders’ expectation about the system

(Lauesen, 2002), and;

f) makes fulfilment of system goals possible.

For example, ‚the system shall show the available time‛ is not a

system feature because it represents a single requirement, can be tested,

and is not an expectation but a fact. In contrast, ‚the system shall support

workflow execution‛ is a feature.

Features represent domain requirements in the methodological

approach and are the first requirements of the system domain that are

addressed for support of business requirements. Two types of features

are considered when modelling goals/strategies diagrams:

 Collaborative features

This type corresponds to features in which an IS and its end-

users collaborate, thus their participation is necessary. They can

be specified in the form ‚the system shall support…‛ and refer to

support of end-users activities, i.e., system behaviour shall

support organizational activity performed by end-users.

 Autonomous features

This type corresponds to features in which an IS performs some

behaviour on its own, without collaboration of end-users. They

can be specified in the form ‚the system shall…‛ and refer to an

autonomous action. Although (as collaboration features) they are

targeted at support of organizational activity, they do not

directly support end-users activity, but indirectly.

The difference between a collaborative and an autonomous feature is

very slight in many cases, and thus selection of a type must be agreed

upon with customer stakeholders. For example, a feature could be ‚the

system shall support indication of spent time‛ (collaborative) or ‚the

 133

5.5 Goals/Strategies Diagrams

system shall record the spent time‛ (autonomous). There exits a nuance

between both specifications, which in practice are not very different.

Specification of system feature of a given type will also depend on the

aspect that stakeholders want to emphasise, i.e., if they are more

concerned about collaboration between an IS and its users or about

autonomous actions of an IS.

By linking system features to goals and business processes (in the next

activity), the limitations related to the difficulty to ensure that user tasks

are supported and business goals covered and to the representation of

unreal customer stakeholders’ expectations (Lauesen, 2002) are mitigated.

When naming edges of goals/strategies diagrams, the name of the

corresponding feature is adapted. Strategies are named as ‚By…‛, and

express behaviour of an IS (collaborative or autonomous) that represents

a manner to fulfil a goal. In the case of collaborative features, reference to

the support is not necessary. For example, the edge of a feature such as

‚the system shall support workflow execution‛ is not named as ‚By

supporting workflow execution‛ but as ‚By executing workflow‛.

The reason for this suggestion is that, when discovering and

specifying system features, the focus is not only on what an IS will do,

but on how it can support organizational activity (regardless it is in a

collaborative or autonomous way) and make fulfilment of its goal

possible. Anyway, naming of edges will depend on the preferences and

criteria of the stakeholders.

In summary, the steps to analyse system purpose are the following

ones:

1. A goals/strategies diagram is created.

2. The achievement goals that customer stakeholders want to fulfil

by means of a new IS are modelled as nodes.

3. Edges are modelled to represent the system features that can

make fulfilment of the goals possible; autonomous features are

indicated by means of an asterisk.

4. For those features that are considered to correspond to other

achievement goals and for which sub-goals can be defined, the

above steps are repeated for the corresponding section.

134

 5 Purpose Analysis

These steps represent a refinement of those proposed in (Rolland,

Salinesi, 2005; Rolland, 2007). Provision of a detail explanation and

justification of the types of goals and of the types of system features to

address is considered to mitigate the weaknesses in the guidelines of the

Map approach outlined in Chapter 2.

It must be noted that analysis of system purpose is a very subjective

and extremely creative activity, in which systems analysts’ expertise and

customer stakeholders’ wishes play a major role. The goals are usually

stable, but definition of the strategies can vary depending on the people

that participate in modelling of goal/strategies diagram.

It is very difficult that diagrams created by different people coincide.

Therefore, it is essential that those customer stakeholders that are

considered more relevant for IS development (because of their

knowledge and awareness of the system goals or of the impact of their

opinion on system success) participate in analysis of system purpose and

give feedback about the solutions proposed.

Figure 5.3 shows a goals/strategies diagram for the software

development company. It is considered that the company has been

experiencing problems with delivery requests because of lack of

knowledge about version development, and consequently the strategic

goal ‚keep customer satisfaction‛ is not fulfilled. The main reason for the

delay is that activity development is not always performed as planned

because of the great amount of work that developers have to do.

Improve

knowledge about

version status

Facilitate work

item development
Improve

knowledge about

activity status

Start

Stop

By sharing

documents

By managing

calendar

By detecting

problems*

By executing

workflow

By recording spent

time*

By ending activities

Reduce time of

request delivery

By ending

version

By solving

problems

By removing

threats*

By anticipating

problems*

Figure 5.3 Example of goals/strategies diagram

 135

5.5 Goals/Strategies Diagrams

The product manager needs to be able to better project, for example, if

an employee will miss working days, or if an employee has spent more

time than planned on an activity. The product manager also needs to

foresee problems and find solutions quickly. In addition, developers

need to be able to determine more accurately the time they have at their

disposal to finish their activities and how long these activities will take.

To solve these problems, developers want the IS to facilitate work

item development and to improve the knowledge they have about the

status of the activities that they have to perform. The product managers

want the IS to improve their knowledge about the status of the versions.

Finally, company managers want the IS to reduce the time that takes a

customer request to be delivered.

The system analyst proposed system features that could fulfil these

intentions and modelled them in the goals/strategies diagram after

agreement with customer stakeholders was reached. Both collaboration

features and autonomous features have been defined.

Figure 5.4 shows an example of an alternative initial goal/strategy

diagrams that may have been modelled for the software development

company (e.g., because just company managers participated in its

creation). Just one goal would have been defined, but analysis of the

strategy ‚by controlling product development‛ may have resulted in

identification of several new goals (the other three goals of the diagram

in Figure 5.3), thus it would have been further modelled and analysed in

a new goals/strategies diagram.

Finally, it must be indicated that Map elements have parameters

(Rolland, 2007) but they are not addressed and thus specified in the

methodological approach of the thesis. For example, the beneficiary and

the location of an intention (i.e., goals) are some of its parameters.

Start Stop
Reduce time of

request delivery

By ending

version

By removing

threats*

By controlling

produt development

Figure 5.4 Example of alternative goals/strategies diagram

136

 5 Purpose Analysis

5.6 Operationalization Tables

After analysis of system purpose on the basis of goals/strategies

diagrams, the effect that system purpose will have on the business

processes of an organization is analysed and determined by means of

operationalization tables (one per each diagram obtained).

Table 5.2 shows an example for the goals/strategies diagram shown in

Figure 5.3. The table consists of five columns:

1. The strategy whose operationalization is under analysis.

2. The pattern of business process reengineering (Section 5.4) on

which operationalization is based; different patterns can affect

operationalization of a strategy (in a given business element), but

just one pattern is considered to be the most influential one and

thus only that is documented;

3. The business element(s) affected by operationalization on the

basis of the pattern; such business elements can correspond to

information that is part of the ‚initial‛ artefacts of the

organizational modelling stage (business event, activities,

business rules, etc.), or to new elements that are necessary for

execution of business processes in the To-Be situation of an

organization and did not exist when the As-Is situation was

modelled; if an element is new, then the name of the element is

followed by ‚(N)‛.

4. The type of element for the new business elements.

5. The organizational role that is affected by the operationalization

or is in charge of the business element.

Use of patterns makes stakeholders aware of the existing possibilities

(based on best practices) that they have for business process

reengineering. It must be indicated that the IT pattern is not considered

during operationalization of system purpose. This pattern is mainly a

technology-based pattern, thus it is much related to specific technical

solutions and focuses on the system domain. Operationalization of

system purpose is mainly targeted at the business domain, and aims to

determine how business elements can be affected by a new IS from a

business perspective, independently of the technology (e.g., a workflow

management system) that will be used for IS development.

 137

5.6 Operationalization Tables

Table 5.2 Example of operationalization table

Strategy Pattern Business element Type Participant

By executing
workflow

TAU Define product workflow ACT Product M.

TAU Assign activities to developers ACT Product M.

TCO

Start activity (N) ACT Developer

Carry out activity ACT Developer

Finish activity (N) ACT Developer

By sharing

documents

BUF Start activity (N) ACT Developer

BUF Finish activity (N) ACT Developer

By managing

calendar

OAS Manage calendar (N) ACT Developer

BUF
Time slot (Available and

Unavailable) (N)
DOE Developer

By recording spent

time
TAU

Carry out activity ACT Developer

Finish activity (N) ACT Developer

Need to start activity (N) EVE Developer

By anticipating

problems

TAU Estimate activity ACT Developer

TAU Need to start activity (N) EVE Developer

OBW
Check version development ACT Product M.

Problem detected EVE Product M.

By ending activities TAU Finish activity (N) ACT Product M.

By detecting

problems
TAU

Check version development ACT Product M.

Carry out activity ACT Developer

Unable to finish on time EVE Developer

By solving

problems
TRI

Solve problem ACT Product M.

Change activity assignment (N) ACT Product M.

Change work item version (N) ACT Product M.

Notify changes (N) ACT Product M.

By ending version

CAD
Version deadline (N) EVE Product M.

Release version (N) ACT Product M.

BUF

If the event “version deadline”

happens, then the product

manager has to release the

version under development

BR Product M.

By removing

threats

TAU Carry out activity ACT Developer

TAU Notify changes ACT Product M.

Patterns for business process reengineering: order-based work (OBW), triage (TRI), task

composition (TCO), order assignment (OAS), control addition (CAD), buffering (BUF), task
automation (TAU).

Type of element: bus. event (EVE), domain entity (DOE), activity (ACT), bus. rule (BRU).

138

 5 Purpose Analysis

The new business elements of Table 5.2 are:

 ‚Start activity‛, which is an activity that developers perform

when they begin the development of an activity and have to

receive the necessary documents to carry out the activity;

 ‚Finish activity‛, which is the activity that developers perform

when they finish an activity and have to share the documents

related to development of the activity;

 ‚Manage calendar‛, which is an activity that developers perform

in order to divide and indicate the time that they can spent in a

working day;

 ‚Time slot‛, which is a domain entity that developers need to

perform the activity ‚Manage calendar‛;

 ‚Need to start activity‛, which is a business event that happens

when a developer must start an activity so that a work item is

finished before version deadline;

 ‚Change activity assignment‛, which is an activity that product

managers performed in order to change the developer that is

responsible for an activity so that a work item is finished before

version deadline;

 ‚Change work item version‛, which is an activity that product

manager perform in order to change the version of a work item

due to some problem;

 ‚Notify changes‛, which is an activity that product managers

perform in order to let developers know the possible changes in

activity assignment or the version of a work item;

 ‚Version deadline‛, which is a business event that happens

when the date of version release is reached;

 ‚Release Version‛, which is an activity that product managers

perform in order to check and later release a finished version of a

product, and;

 ‚If the event ‚version deadline‛ happens, then the product

manager has to release a version‛, which is a business rule

(response to event).

 139

5.6 Operationalization Tables

With regard to how business elements are affected by

operationalization of the strategies, the strategy ‚by executing workflow‛

is used as an example. The business elements that operationalize the

strategy are:

 ‚Define product workflow‛, because it is the activity in which the

activities and documents of the product workflow are defined,

and;

 ‚Assign activity to developers‛, ‚Start activity‛, ‚Carry out

activity‛ and ‚Finish activity‛, because they refer to activities of

the product workflow.

Therefore, the workflow is executed because of the development of

these activities once an IS is introduced in the software development

company. The first two activities will be mainly affected by the IS as a

result of automation, whereas the last three activities are mainly a

consequence of task decomposition of the initial activity ‚Carry out

activity‛.

As happens with modelling of goals/strategies diagrams, both

systems analysts and customer stakeholders must participate and agree

upon the effect that an IS will have on the business processes of an

organization. Again, it is a quite subjective and creative activity, in which

expertise and wishes play a major role.

Although the use of patterns for business process reengineering can

help stakeholders to perform the activity in a more systematic manner,

different people may obtain different operationalization tables. For

example, a customer stakeholder may think that removal of an activity

on the basis of the order-based work will be very positive, but other may

disagree on this decision. Satisfaction of all customer stakeholders is

hardly ever possible, so operationalization is also an exercise of trade-off

analysis and determination.

When creating operationalization tables, system strategies may be

refined (i.e., their associated section in a goals/strategies diagram will be

further analysed in another diagram). It would mean that goals

associated to the strategy have been discovered, and that they were not

discovered during analysis of system purpose.

As a rule of thumb, candidate strategies for refinement are those

whose operationalization affects more than five business elements. For

140

 5 Purpose Analysis

example, on the basis of the goals/strategies diagram shown in Figure 5.4,

and assuming that no other diagram had been modelled,

operationalization of the strategy ‚by controlling product development‛

would have affected much more than five elements, thus it would be a

candidate for refinement.

Decision about whether refining or not a strategy is partially

subjective, but attempt to find low granularity strategies (i.e., they do no

affect many business elements) is considered positive. On the one hand,

reduction of the scope of business elements affected by a strategy can

facilitate its analysis. When too many elements are affected, effect

analysis can be more difficult for stakeholders. They may have problems

for identification of all the business elements affected by a strategy, what

may also imply loss of focus on the actual effect.

On the other hand, specification of strategies with too high

granularity implies not only that sub-goals are not analysed, but that

more strategies are not specified. Such a specification is considered

advantageous because it facilitates discovery of new ways to achieve

system goals and thus of running a business, and such ways can turn to

be more adequate or satisfactory for customer stakeholders than if a

strategy had not been refined. Nonetheless, refinement and proposal of a

strategy (i.e., a system feature) must comply with the definition proposed

(e.g., it is not testable unless further details are provided).

Operationalization of a strategy on the basis of a given pattern for

business process reengineering can affect more than one element. The

clearer example is the triage pattern, on the basis of which a business

element (e.g., an activity) is decomposed into several elements.

In addition, those strategies that correspond to autonomous features

have automation-related effects on business process. As a result, existing

business elements can be automated or removed from a business process.

In the latter case, introduction of a new IS would entail that the business

element is no longer necessary. For example, execution of an activity by

employees would not be necessary or relevant in the To-Be situation of

an organization thanks to IS support.

In relation to the review of business process reengineering presented

above, the strategy adopted when operationalizing system purpose is

incremental, based on existing business processes and methodological

(although partially).

 141

5.7 To-Be BPDs

5.7 To-Be BPDs

The last activity of the purpose analysis stage is to model the new (To-Be)

BPDs of an organization. This activity is based on the effect that the

operationalization of the system purpose will have on the business

process of an organization. Therefore, and in comparison to As-Is BPDs,

new elements may be added, existing elements may be removed, or the

structure (e.g., activity sequence) of a business process may be changed.

In summary, changes can occur in As-Is BPDs of an organization as a

consequence of the development of an IS and on the basis of the

operationalization of its features. Otherwise, the organization may not be

able to achieve the goals that it pursues by introducing a new IS.

Achievement of such goals implies that the problems of the organization

are expected to be solved thanks to the IS, or that its needs are expected

to be met.

For modelling of To-Be BPDs, the guidelines presented in Chapter 4

for modelling of BPDs should be followed. System analyst must also

agree with customer stakeholders upon the design of the To-Be BPDs,

which represents the way in which the organization wants to operate in

future. If customer stakeholder do not agree upon the design, looping in

the purpose analysis stage may be necessary.

During the validation of the To-Be BPDs, issues related to errors or

incompleteness in the previous activities of the stage and in their

artefacts may appear, even in artefacts of the organizational modelling

stage. Consequently, the artefacts should be revised, the activities may be

performed again and changes in the artefacts may be necessary. For

example, it is possible that a new IS goal is discovered in validation of

To-Be BPDs. Therefore, it would not have been modelled in the

goals/strategies diagrams. The goal should be analysed, strategies should

be defined to achieve the goal, they would have to be operationalized,

and finally new changes in the To-Be BPDs may occur.

Conflicts in operationalization of strategies and thus for modelling of

To-Be BPDs may be detected. For example, operationalization of a

strategy may involved deletion of a business element that is also affected

by other strategy in a non-deletion related way. This would mean that

operationalization of a strategy indicates that the element should not be

part of To-Be BPDs, whereas another indicates that the element should be

142

 5 Purpose Analysis

maintained in the To-Be BPDs. In case of conflict detection, system

analysts must agree with customer stakeholders what operationalization

should be followed.

For the software development company, the activity ‚check version

development‛ should be maintained according to the strategy ‚By

detecting problems‛ and on the basis of the pattern ‚Task automation‛.

However, it may be removed according to the strategy ‚By anticipating

problems‛ and on the basis of the pattern ‚Order-based work‛ (and also

influenced by ‚Empower‛). In this case, the final decision is to remove

the activity.

As a consequence of the operationalization table-based analysis of the

effect of an IS on business processes and of the operationalization of the

purpose of the system, changes in other artefacts for organizational

modelling may occur too. For example, new business processes may be

discovered and thus defined and they would have to be included in the

process map, or new domain entities may be defined to support the

information needs of the business process.

Figure 5.5 shows a change in the domain data model of the software

development company. Time slot and its specializations (available and

unavailable time slot) are new domain entities. The relationship between

developer and activity has been removed, and a relationship between

activity and available time slot has been defined.

With regard to the patterns related to technology, their effect on the

business processes of an organization is further analysed in the

specification of system requirements stage. For the purpose analysis

stage, they are used as basis for indication of activities that are subject to

be automated, but the degree of automation (partial or complete) is not

considered.

Time slot

Availbale time slot Unavailable time slot

Developer

Activity

Has

Performed through

Figure 5.5 Example of change in a domain data model

 143

5.7 To-Be BPDs

Figure 5.6 shows the To-Be BPDs for the software development

company. The As-Is BPDs have changed, and a new business process

(calendar management) and new elements (e.g., the activity ‚change

activity assignment‛) have been introduced. The BPD for problem

resolution is part of the business process ‚version development‛, as a

result of the decomposition of the BPD via the sub-process ‚solve

problems‛.

S
w

D
e

p
C

o

S
w

D
e

p
C

o

D
e

v
e

lo
p

e
r

Manage

Calendar
Change in

available time

S
w

D
e

p
C

o

P
ro

je
c
t
M

a
n

a
g

e
r Change

Activity

Assignment

Change

Work Item

Version

Notify

changes

b)

e)

S
w

D
e

p
C

o

P
ro

d
u

c
t
M

a
n

a
g

e
r

Define

Product

Workflow

S
w

D
e

p
C

o D
e

v
e

lo
p

e
r

P
ro

d
u

c
t
M

a
n

a
g

e
r

Define Work

Item
Customer

request

Estimate

Activity

Assign

Activities to

Developers

D
e

v
e

lo
p

e
r

P
ro

d
u

c
t
M

a
n

a
g

e
r

Assign

Version to

Work Item

Create

Product

Version

a)

c)

d)

Carry out

Activity

Solve

Problem

Need to start activity

Release

Version

Version deadline

Start Activity
Finish

Activity

Unable to

finish on time

Legend

Start Event with

a Rule Trigger

Intermediate Event

with a Timer Trigger

End Event with a

Message Trigger

Figure 5.6 Examples of To-Be BPDs: a) definition of product workflow; b)

calendar management; c) request management; d) version development; e) solve

problem.

144

 5 Purpose Analysis

5.8 Summary

This chapter has presented purpose analysis, the second stage of the

methodological approach of the thesis. By performing this stage, the

goals of an IS and their effect of the business processes of an organization

can be systematically determined by means of several mechanisms and

guidance provided.

The goals of an IS are analysed on the basis of a new Map-based way

to create and analyse goals/strategies diagrams. The stakeholders must

discover the achievement goals whose fulfilment is expected to be

possible thanks to a new IS, and the system features that represent

strategies for fulfilment of the goals must be determined.

With regard to operationalization of system purpose, a new way for

goal operationalization has been presented. Operationalization tables are

used to determine the effect of the strategies of goals/strategies diagrams

on the business process of an organization and by taking advantage of

well-known and widely used patterns for business process

reengineering.

For both cases, the mechanisms and guidance provided are deeply

grounded on existing works on goal discovery in RE and on business

process reengineering. On the basis of the facilitator role of IT for

business process reengineering, the strategy defined and followed is

based on discovery of achievement business goals and on existing

business processes, and it is incremental, methodological and narrow.

Finally, once the purpose of an IS has been analysed and

operationalized, To-Be BPDs of an organization can be modelled. They

represent the way that the organization wants to behave when the new IS

is running and thus supporting the organizational activity.

Chapter 6

6 Specification of System

Requirements

“Our project plan will follow the usual arc… Requirements will drift until the

project is both undesirable and impossible”

Dilbert

This chapter presents specification of system requirements, the third

stage of the methodological approach of the thesis (Figure 6.1). It aims to

specify the system requirements of an IS to properly support the business

processes of an organization.

The stage is performed from the To-Be BPDs of an organization,

which are analysed on the basis of several mechanisms. Afterwards, a set

of guidelines determine how to derive ETDs from them to specify system

requirements. As mentioned in previous chapters, the To-Be BPDs can

correspond to the output of the purpose analysis stage or of the

organizational modelling stage (in case IS purpose is not analysed).

The chapter is organized as follows. First, an overview of the stage

and a running example are presented. Next, the artefacts that are created

for specification of system requirements (Figure 6.1) and their creation

processes are explained. Finally, a summary of the chapter is presented.

146

 6 Specification of System Requirements

Business Events

Roles Model

Domain Data Model

Glossary

Business Rules

ORGANIZATIONAL MODELLING

SPECIFICATION OF SYSTEM

REQUIREMENTS

As-Is BPDs

Process Map

PURPOSE ANALYSIS

Goals/Strategies Diagrams

To-Be BPDs

Business-process based requirements

specification and OO conceptual modelling

Organizational problem or

need solvable by an IS

As-Is

To-Be

Validation

Agreement

ETDs

Validation

State Transition Diagrams

Class Diagram

DERIVATION OF OO-DIAGRAMS

Operationalization Tables

Labelled BPDs

Enriched BPDs

ETD Analysis

Mission Statement

Figure 6.1 Stage and artefacts presented in Chapter 6

6.1 Overview of the Stage

The purpose of the specification of system requirements stage is to help

system analysts precisely specify the system requirements of an IS from

the business processes of an organization so that its activity is properly

supported. System requirements are specified by means of ETDs, which,

as explained in Chapter 3, are based on Lauesen’s task & support

descriptions (Lauesen, 2002), essential use cases (Constantine, Lockwood,

1999), information flows of the Info Cases approach (Fortuna, Werner,

Borges, 2008) and the ISO 9126-1 standard (ISO, 2001).

147

6.1 Overview of the Stage

The stage consists of three activities (Figure 6.2). First, the To-Be BPDs

of an organization are labelled according to the system control on them

and the labelling is agreed upon with customer stakeholders. Next, the

flow objects that are always executed consecutively are identified and

customer stakeholders validate the identification. These activities aim to

help system analysts to properly elicit system requirements and bridge

the gap between business and system domains.

Textual templates for ETD specification (hereafter referred to as

textual templates) are then filled to specify the system requirements

(functional, data and quality requirements) of an IS. This activity is

performed from the enriched BPDs by following a set of guidelines that

help system analysts to determine: 1) the correspondence between BPD

elements and the domain requirements, and; 2) the product requirements

of an ETD. Part of the content of the textual templates must be agreed

upon with customer stakeholders, and they must check the templates to

validate and agree upon the system requirements.

In relation to the requirements taxonomy presented in Chapter 3, all

the types of system requirements of an IS are specified in this stage,

except design constraints. This type is not addressed in this stage (and no

specific stage or activity have been defined for them in the

methodological approach of the thesis) because no systematic way to

derive them can be defined.

All the guidance that can be provided about specification of design

constraints is that they correspond to restrictions that affect an IS as a

whole (e.g., the system shall have a web-based user interface), must be

specified in a SyRS (e.g., in a specific section for them), and must be

elicited from customer stakeholders (e.g., employees that are part of the

IT department of an organization and know the possible technical

restrictions of a new IS for the organization).

Label BPDs

Model

consecutive

flows

Specify ETDs

ETDs OK and agreement upon them? Yes

No

Figure 6.2 Activities and steps of the specification of system requirements stage

148

 6 Specification of System Requirements

6.2 Running Example: The Rent-a-Car Company

As a running example to explain the specification of system requirements

stage, a new running example is introduced: a rent-a-car company.

Nonetheless, the actual and complete running of the organization is not

explained, but just some information of the company is used.

The company is located in a tourist area, and its fleet of cars and

workload greatly vary between the summer and the winter seasons. The

number of cars in the summer season is around 250, whereas in the

winter season is around 50. As a result, cars are usually bought at the

beginning of a season and sold at the end. Its main activity is car rental,

but it involves other activities (e.g., car maintenance).

Figure 6.3 shows a domain data model for the company and Figure

6.4 shows the To-Be BPD of the business process ‚car rental‛ of the

company, which is executed by office employees. When a customer

wants to rent a car, he has to choose one, what implies that the customer

is requesting a rental contract. Rental contracts can also include extras

(e.g., a GPS or a baby chair), and the price of the contract is determined

on the basis of the rate of the car selected. If a customer is new, then the

office employee records his data. Under certain circumstances, customers

have to pay a deposit of money. The business process finishes when the

office employee prints a copy of the rental contract and gives it to the

customer, as well as the keys of the car. Cars need a valid insurance

(policy) that covers them in case of accident so that they can be rented.

For the rent-a-car company, it will be assumed that it just aims to

automate its business processes. Therefore, the purpose analysis would

not have been performed, the artefacts shown correspond to the output

of the organizational modelling stage, and thus the As-Is BPDs of the

company coincide with its To-Be BPDs.

CarInsurance Rate

Extra Rental Contract
Can include

Customer

Covers

Includes

Imposes rental

price of

Requests

Figure 6.3 Example of domain data model

149

6.2 Running Example: The Rent-a-Car Company

Rent-a-car Company

N
e

w

c
u

s
to

m
e

r?
N

o

S
e

a
rc

h
 f

o
r

c
u

s
to

m
e

r

d
a

ta

R
e

c
o

rd

c
u

s
to

m
e

r

d
a

ta
Y

e
s

F
il
l
c

o
n

tr
a

c
t

T
a

k
e

 d
e

p
o

s
it

P
ri

n
t

c
o

n
tr

a
c

t

d
e

ta
il
s

G
iv

e
 c

o
n

tr
a

c
t

a
n

d
 c

a
r

k
e

y
s

D
e

p
o

s
it

p
a

y
m

e
n

t?
N

o

Y
e

s

Office Employee

C
h

o
o

s
e

 a
 c

a
r

E
x

tr
a

s

re
q

u
e

s
t?

Y
e

s
C

h
o

o
s

e

e
x

tr
a

s

N
o

Figure 6.4 Example of To-Be BPD

150

 6 Specification of System Requirements

6.3 Labelled BPDs

The set of To-Be BPDs (which include documentation about business

rules and input and output domain entities) depict the operational

requirements from which domain requirements are elicited in the

specification of system requirements stage. For this purpose, To-Be BPDs

are analysed and enriched graphically in order to allow system analysts

to properly elicit ETDs from them.

System analysts have to precisely determine the system support for

the business processes of an organization and the execution over time of

its flow objects, and they do it in collaboration with customer

stakeholders. The first activity (BPD labelling) is explained in this section.

In that activity, system analysts and customer stakeholders agree

upon the degree of automation of the business processes of an

organization. BPMN tasks, events with triggers and gateways that depict

decisions of the To-Be BPDs are labelled according to the system support

for them. The labels (Figure 6.5) are:

 ‚O‛ (out of the system), if the execution of the flow object will

not be supported by a software system;

 ‚L‛ (controlled by a legacy system), if the execution of the flow

object will be supported by an already existing system;

 ‚U‛ (controlled by a user), if the flow object will be executed by a

person that interacts with the IS, or;

 ‚IS‛ (controlled by the system), if the IS will be in charge of the

control and execution of the flow object with no human

participation.

On the basis of practical experience, the semantics of the flow objects

that will be out of the system or controlled by a legacy system is clear, but

the semantics of the flow objects that will be controlled by the system or

by a user may be confusing. Depending on their label:

 an event happening will be thrown or caught by the IS or by a

user (who will use and interact with the system for throwing or

catching the event happening);

 the fulfilment of a gateway condition will be checked by the IS or

by a user, and;

151

6.3 Labelled BPDs

 a task will be executed by the IS or by a user; in the latter case, the

system will also take part in the execution of the task (a user will

interact with the system), but it will be executed because of the

user’s initiative.

In addition, system analysts and customer stakeholders must agree

upon the business rules and domain entities that were not modelled

graphically and will be part of the IS, i.e., the business rules that will be

controlled by the system and the domain entities whose information will

be stored and managed in the system.

It must be indicated that the most recent version of BPMN (2.0)

includes labels for tasks. As a consequence, the correspondence between

labels of labelled BPDs and BPMN labels has been studied in order to be

‚more compliant‛ with next versions of the standard. Although the

BPMN version 1.2 has been used for development of methodological

approach, it is very likely that BPMN labels will be adopted and that

their graphical representation will be used when possible.

In fact, BPMN labels have already been considered for development

of tool support for the methodological approach (Appendix B).

Nonetheless, labels of labelled BPDs are used during presentation of the

specification of system requirements stage so that it is consistent with

existing publications of the thesis (see Chapter 9). In addition, the labels

of labelled BPDs were defined and have been used before BPMN

provided labels.

Finally, and as mentioned in Chapter 5, labelling of BPDs is related to

business process reengineering (task automation). In this sense, candidate

business elements for automation can be discovered in the purpose

analysis stage when operationalizing system purpose, but the degree of

automation is determined in this stage. Determination of such a degree is

also common in workflow modelling (e.g., (Sharp, McDermott, 2009)).

A business element (in general, an activity) is considered to be (in

relation to a new IS):

 non-automated, if it will be out of the system or controlled by a

legacy system;

 partially automated, if it will be controlled by a user, or;

 completely automated, if it will be controlled by the system.

152

 6 Specification of System Requirements

Rent-a-car Company

N
e

w

c
u

s
to

m
e

r?
N

o

S
e

a
rc

h
 f

o
r

c
u

s
to

m
e

r

d
a

ta

R
e

c
o

rd

c
u

s
to

m
e

r

d
a

ta
Y

e
s

F
il
l
c

o
n

tr
a

c
t

T
a

k
e

 d
e

p
o

s
it

P
ri

n
t

c
o

n
tr

a
c

t

d
e

ta
il
s

G
iv

e
 c

o
n

tr
a

c
t

a
n

d
 c

a
r

k
e

y
s

D
e

p
o

s
it

p
a

y
m

e
n

t?
N

o

Y
e

s

Office Employee

C
h

o
o

s
e

 a
 c

a
r

E
x

tr
a

s

re
q

u
e

s
t?

Y
e

s
C

h
o

o
s

e

e
x

tr
a

s

N
o

L
e

g
e

n
d

(B
P

M
N

 E
le

m
e

n
t
L

a
b

e
ls

)
O

O
u

t
o

f
th

e
 s

y
s
te

m
U

C
o

n
tr

o
lle

d
 b

y
 a

 u
s
e

r
IS

C
o

n
tr

o
lle

d
 b

y
 t
h

e
 s

y
s
te

m

O

UU

O
U

ISU

U
U

O

U

Figure 6.5 Example of labelled BPD

153

6.4 Enriched BPDs

6.4 Enriched BPDs

In the second activity of the stage, labelled BPDs are enriched by

specifying those sequence flows that are consecutive flows, i.e., those

sequence flows that link two flow objects that are always executed one

after another without an interruption. The graphical representation of a

consecutive flow is an arrow with two arrowheads. The output of the

activity is the set of enriched BPDs of an organization.

This type of connecting object does not exist in BPMN, but, as

explained below, it is necessary to properly elicit the ETDs of an IS and so

that their granularity is homogeneous. The purpose of the definition of

this new type of connecting object is to be able to represent graphically

the fact that two flow objects (or a sequence of flow objects) are always

executed consecutively. If there are two flow objects that are executed

consecutively sometimes, but not consecutively other times, a

consecutive flow is not modelled.

The identification of consecutive flows is performed as follows. For

each sequence flow of a labelled BPD that links two flow objects of a

same lane, system analysts have to determine if the target flow object is

always executed immediately after the source flow object when a token is

in the sequence flow. If so, both flow objects are linked by means of a

consecutive flow.

The existence of a consecutive flow between two flow objects implies

that both objects represent a business transaction, i.e., the effect of the

first object will be cancelled unless the second one is successfully

executed. A sequence of flow objects linked by consecutive flows means

that if the role responsible for the execution of the flow objects stopped in

executing the business process at the last object of the sequence, then the

effect of the flow objects would be recorded in the IS and they would not

need to be performed them again.

A sequence of flow objects linked by consecutive flows is similar to

the concept of step in workflow (e.g., (Davis, Brabänder, 2007; Dijkman,

Joosten, 2002 Sharp, McDermott, 2009)). Nonetheless, the notion and

implications of the sequence is more precise and impose more

constraints. It is not enough to determine that a participant can execute a

set of flow objects in a row, but it is also necessary to determine if it must

be done in that way or if it is not necessary.

154

 6 Specification of System Requirements

Customer stakeholders’ participation is essential to model consecutive

flows this activity. Customer stakeholders are the source of information

from which the precise execution order of the flow objects is modelled,

and they must validate that the consecutive flows have been properly

modelled according to how the organization executes or wants to execute

its business processes.

Figure 6.6 shows the enriched BPD for the business process ‚car

rental‛. Although all sequence flows of Figure 6.5 have turned into

consecutive flows in Figure 6.6, this is not always the case. In general,

some sequence flows may turn into consecutive flows and others may

not as a result of modelling of consecutive flows (Figure 6.7). Even it is

possible that no sequence flow turns into a consecutive flow.

6.5 ETDs

In the methodological approach of the thesis, system requirements are

elicited from the enriched BPDs and customer stakeholders and specified

by means of ETDs in a textual template. The purpose of an ETD is to

specify complete, adequate and precise IS support for the business tasks

(i.e., activity) of an organization, and thus for its business processes.

The specification of domain requirements in an ETD is an adaptation

and extension of task & support descriptions (Lauesen, 2002), the

specification of user-system interaction (hereafter referred to as

interaction) is based on essential use cases (Constantine, Lockwood,

1999), the specification of data requirements is a modification an

extension of the information flows of the Info Cases approach (Fortuna,

Werner, Borges, 2008), and quality attributes are specified on the basis of

the ISO 9126-1 standard (ISO, 2001). Task & support descriptions,

essential use cases, information flows and the ISO 9126-1 standard were

chosen as basis for the definition of the textual template because they

were considered to allow the purpose of an ETD to be achieved in a

straightforward way.

As explained in Chapter 2, task & support descriptions aim to specify

adequate support for business tasks (differently from other styles for

SyRS; e.g., use cases aim to specify interactions with a system). They are a

way to express what the system actors want to perform (user tasks),

including domain-level information and how a system could support an

activity or solve a problem.

155

6.5 ETDs

Rent-a-car Company

Office Employee

N
e

w

c
u

s
to

m
e

r?
N

o

S
e

a
rc

h
 f

o
r

c
u

s
to

m
e

r

d
a

ta

R
e

c
o

rd

c
u

s
to

m
e

r

d
a

ta
Y

e
s

F
il
l
c

o
n

tr
a

c
t

T
a

k
e

 d
e

p
o

s
it

P
ri

n
t

c
o

n
tr

a
c

t

d
e

ta
il
s

G
iv

e
 c

o
n

tr
a

c
t

a
n

d
 c

a
r

k
e

y
s

D
e

p
o

s
it

p
a

y
m

e
n

t?
N

o

Y
e

s

C
h

o
o

s
e

 a
 c

a
r

E
x

tr
a

s

re
q

u
e

s
t?

Y
e

s
C

h
o

o
s

e

e
x

tr
a

s

N
o

O

UU

O

U

ISU

U

U
O

U

L
e

g
e

n
d

C
o

n
s
e

c
u

ti
v
e

 f
lo

w

Figure 6.6 Example of enriched BPD

156

 6 Specification of System Requirements

Figure 6.7 Example of enriched BPD in which all sequence flows do not turn into

consecutive flows

Library and Scientific

Documentation Office

Library Employee

N
o

C
h

o
o

s
e

 a

p
ro

v
id

e
r

N
o

ti
fy

re
q

u
e

s
t

re
je

c
ti

o
n

R
e

q
u

e
s

t
th

e

it
e

m

R
e

c
o

rd
 i
te

m

a
rr

iv
a

l

N
o

Y
e

s

It
e

m

re
q

u
e

s
t

A
c

c
e

p
t

re
q

u
e

s
t?

It
e

m

re
c

e
iv

e
d

It
e

m

a
v

a
il
a

b
le

?
R

e
p

ly
 f

ro
m

p
ro

v
id

e
r

Y
e

s

O

U
U

UU

U
O

O
P

la
c

e
 a

n

o
d

e
r

fo
r

th
e

it
e

m

U
IS

157

6.5 ETDs

An essential use case is a simplified (shorter and simpler) form of use

case that depicts an abstract scenario for a complete and intrinsically

useful interaction with a software system. Originally, essential use cases

were a complement to task modelling to provide further details about it.

They are specified from a user perspective by means of user intention

(e.g., identify self) and system responsibility (e.g., show choices).

Information flows, which were presented in Chapter 2, are an abstract

representation of the communication between an IS and its actors.

Task & support descriptions, essential use cases and information

flows are intended to contain the fewest presuppositions about the

technology with which an IS will be developed.

With regard to the ISO 9126-1 standard, it provides a quality model

that can be used for specification of external quality attributes of a

software system. The model defines six characteristics, and each one of

them is refined in different subcharacteristics (Figure 6.8).

According to some authors (e.g., (Pohl, 2010; Wiegers, 2003)), there

exits types of quality requirements (and thus characteristics and

subcharacteristics of the ISO 9126-1 standard) that are more important for

users and others that are more important for developers. Since ETDs are

mainly specified to support users’ activity, then it is few likely that types

of quality requirements that are more important for developers are

specified in them. It is more likely that they are specified as design

constraints, or simply in another section of a SyRS. Nonetheless, this does

not mean that their specification in ETDs is impossible or not sensible.

Their specification will depend on stakeholders’ needs and preferences.

Quality attribute

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability

Accuracy

Interoperability

Security

Functionality

compliance

Maturity

Fault tolerance

Recoverability

Reliability

compliance

Understandabilty

Learnability

Operability

Attractivenesss

Usability

compliance

Time behavoir

Resource

utilisation

Efficiency

compliance

Analysability

Changeability

Stability

Testability

Maintainability

compliance

Adaptability

Installabaility

Co-existence

Replaceability

Potability

compliance

Figure 6.8 Characteristics and subcharacteristics of the ISO 9126-1 standard

158

 6 Specification of System Requirements

The granularity of business tasks modelled in BPDs and of ETDs can

be different. An ETD can specify support for several business tasks

(activities of the organizational modelling stage) modelled in BPDs. Such

tasks correspond to subtasks of the ETD and their determination is based

on the consecutive flows of the enriched BPDs. An ETD specifies IS

support for the execution of a set of consecutive flow objects of an

enriched BPD, and the subtasks of the ETD are part of the set.

In addition, a significance criterion for ETDs has explicitly been

defined so that their granularity is homogeneous and, therefore, their

specification is consistent and adequate. The criterion is as follows: an

ETD is significant if no other ETD is always executed immediately before

or after the first one is executed. If there were two ETDs that hindered the

fulfilment of this criterion, then both ETDs would represent the same unit

of system requirements in conjunction and they should be specified in

the same textual template.

This criterion is a result of using analysis of consecutive flows for

elicitation of ETDs. As an example of application of this criterion, the

system requirements for the enriched BPD of Figure 6.6 are specified in a

single ETD. It is considered that specification of IS support for the tasks is

only significant as a whole (an only ETD) because the tasks are always

executed together and consecutively and their effect would be cancelled

unless all the tasks are executed.

When reviewing literature, criteria for homogeneous granularity of

system requirements that are in line with or related to the significance

criterion of ETDs can be found:

 A step is a sequence of tasks of a business process that can be

performed without interruption by the same role. A step is

mapped into a use case (Dijkman, Joosten, 2002) .

 A communicative event (or a use case) must be triggered by an

external interaction, provide meaningful information and consists

of synchronous activities. Communicative events are

asynchronous to each other (España, González, Pastor, 2008).

 Execution of a use cases implies a change of state in the system

and in its environment, and such a state must be steady (Fortuna,

Werner, Borges, 2008).

159

6.5 ETDs

 A user performs a task description (or task & support description)

and either achieves its goal or cancels the whole activity. When

the task is finished, it means that the user would deserve a cup of

coffee (Lauesen, 2002).

 A use case should embody at least one transaction in a business

process and should support at least one activity leading a change

of state (Odeh, Kamm, 2003)

However, these criteria are considered to be less precise or more

complex than the significance criterion of ETDs (in conjunction to

modelling of consecutive flows). As a result, they may be misinterpreted,

their application may be more difficult for system analysts and customer

stakeholders, and non-homogeneous system requirements may be

obtained. Furthermore, just the criteria in (Dijkman, Joosten, 2002; Odeh,

Kamm, 2003) address elicitation of system requirements from task-

oriented business processes. The criterion proposed in (España,

González, Pastor, 2008) analyses business processes from a

communicative perspective, which is different from the perspective for

business process modelling adopted in this thesis.

The following subsections present the sections of the textual template

and the guidelines to fill it. Although some parts of the explanation of the

subsections might be intuitive or well-known for some readers,

understanding of the semantics of the sections is not always as

straightforward as expected, what can lead to misinterpretation of ETD

specification. Therefore, it has been considered important to explain the

sections of the templates in detail.

6.5.1 Sections of the Textual Template

Table 6.1 lists the sections of the textual template and shows what types

of requirements are specified in each one of them. When a cell contains a

cross, it means that the section of its row always specifies the type of

requirement of its column. For example, user intention represents a

product requirement. When a cell contains an asterisk, it means that the

section of its row may specify the type of requirement of its column, but

it may also not do it. For example, business rules may represent

functional or data requirements.

160

 6 Specification of System Requirements

Table 6.1 Sections and types of requirements of the textual template

 Type of system Requirements

Section Domain Product Functional Data

Name X

Business process X

Role X X

Subtasks X *

Triggers X X

Preconditions X X

Postconditions X X

Frequency X

Critical X

Input X X X

Output X X X

Business rules X * *

User intention X

System responsibility X X

Information flows X X

Quality attributes X * *

The sections of the textual template can be categorized as domain

requirements or product requirements, and can also correspond to

functional or data requirements. Figure 6.9 shows an example of textual

template that has been specified from the enriched BPD of Figure 6.6. As

shown in Figure 6.9, textual templates are divided into three parts (thick-

lined parts): the name of the ETD, the rest of domain requirements, and

the product requirements.

With regard to the combination of existing approaches and types of

system requirements in the textual template, its sections for specification

of domain requirements represent an extension of Lauesen’s template for

specification of task (and task & support) descriptions. The sections for

specification of product requirements represent a combination and

extension of essential use cases, information flows of the Info Cases

approach and the ISO 9126-1 standard, as well of task descriptions.

161

6.5 ETDs

Extended Task Description: CAR RENTAL

Business process: Car rental Role: Office employee

Subtasks: Choose a car, Check whether a customer is new or not, Record customer data, Search for
customer data, Fill contract, Choose extras, Take deposit, Print contract details

Triggers: -
Preconditions: -
Postconditions: -

Frequency: 10 times per day during winter season; 40 times per day during summer season
Critical: Days on which a holiday period begins in summer season

Input Output

Domain Entity State Domain Entity State

Car
Customer (1)
Extra

Ready
-
Ready

Rental contract
Car
Customer (2)

Extra

Open
Rented
-

Rented

Business Rules

 The insurance of a car must be valid during the rental period

 A car cannot be rented if it has more than 300000 km

 The total cost of a rental contract is calculated from the rate of a car and the price of the extras
requested, multiplied by the number of rental days and VAT

User Intention System Responsibility Information Flows

Normal interaction

2. Select a car

4. Select a customer
5. Introduce rental
contract information

1. Show cars

3. Show customers

6. Show rental contract
details

7. Print rental contract
details

 1{ Car / make + model / }n
 Car
 1{ Customer / name + surname + ID
 number/ }n
 Customer (1)
 Rental contract / contract number + current
 date + current time + office + return date +
 return office /
 Rental contract / contract number + current
 date + current time + office + return date +
 return office + rental cost + extras cost + VAT
 + deposit + total cost / + Car / make + model
 + plate number / + (Customer (1) / name +
 surname + ID number / | Customer (2) / name
 + surname + ID number /) + [1{ Extra
 / name / }n]

Alternatives

(New customer)
4.a.1. Introduce
customer data [5]

 Customer (2) / number + name + surname +
 ID number + address + city + telephone
 number + credit card type + credit card
 number + credit card expiration date /

Extensions

5.a.2. Select extras

(Extras request)
5.a.1. Show extras

 1{ Extra / name / }n
 1{ Extra }n

(Deposit payment)
5.b.1. Introduce deposit
amount

 Rental contract / deposit /

Quality attributes

 When an office employee selects a car, no other office employee will be able to select the same car
(Functionality/Suitability)

Figure 6.9 Example of ETD

162

 6 Specification of System Requirements

Each section of the textual template is described in the following

subsections. For this purpose, the sections are divided into domain

requirements, product requirements and information flows. Although

information flows are product requirements, they have a specific

subsection because of the length of their description compared to the rest

of product requirements.

6.5.1.1 Domain Requirements

The domain requirements of the textual template are those system

requirements that are elicited from operational ones. As mentioned

above, in the methodological approach of the thesis, operational

requirements correspond to the enriched BPDs of an organization and

the textual specification of their business rules and input and output

domain entities. The sections of the textual template that represent

domain requirements are the following ones:

 Name: it is a sentence that identifies an ETD.

 Business process: it corresponds to the enriched BPD (i.e.,

business process) that is supported by an ETD.

 Role: it represents the role that the user responsible for the

execution of an ETD will play, or the system.

 Subtasks: they are the consecutive flow objects of the business

process of an ETD that depict business tasks that will be

supported by the ETD.

 Triggers: they are the flow objects of the business process of an

ETD that precede its first subtask, depict conditions that cause

the need to execute the ETD when they are fulfilled and will be

controlled by the system.

 Preconditions: they are the flow objects of the business process of

an ETD that precede its first subtask, depict conditions that must

be fulfilled before the ETD can be executed and will be controlled

by the system.

 Postconditions: they are the flow objects of the business process

of an ETD that follow its last subtask, depict conditions that must

be fulfilled after the ETD is executed and will be controlled by

the system.

163

6.5 ETDs

 Frequency: it is the expected number of times that an ETD will be

executed within a time period.

 Critical: it represents a time period or condition in which an ETD

will be executed under abnormal or extreme conditions.

 Input: it is the set of domain entities that are used or consumed

by the subtasks of an ETD and whose information will be stored

in the IS.

 Output: it is the set of domain entities that are modified or

generated after the execution of the subtasks of an ETD and

whose information will be stored in the IS.

 Business rules: they are the business rules of the business process

of an ETD that were specified textually, affect the ETD and will

be controlled by the system; as explained below, new business

rules can be specified.

6.5.1.2 Product Requirements

The product requirements of the textual template are those system

requirements that are not elicited from operational ones and are

necessary to support domain requirements. In the methodological

approach of the thesis, product requirements correspond to specific

characteristics of an IS that are not derived from enriched BPDs. The

sections of the textual template that represent product requirements are

the following ones:

 User intention: it corresponds to the set of actions that a user may

perform during the execution of an ETD to interact with the

system.

 System responsibility: it corresponds to the set of actions that the

system may perform during the execution of an ETD.

The actions of user intention and system responsibility can be

part of three different interactions:

a) Normal interaction: actions that are performed when

executing the set of subtasks of the ETD that are always

executed in its business process, or that are part of the

default flow of a gateway and the branches that follow

164

 6 Specification of System Requirements

the gateway are not always executed in the business

process of the ETD.

b) Alternatives: actions that may be performed when

executing the ETD and are an alternative to the actions of

normal interaction (i.e., actions that imply that some

action of normal interaction is not executed and

substitute it).

c) Extensions: actions that may be performed when

executing the ETD and are an extension to the actions of

normal interaction (i.e., additional actions that may be

executed but do not imply that some action of normal

interaction is not executed).

 Quality attributes: they are the set of product requirements that

are not specified in any other section of the textual template and

represent quality requirements of an ETD.

6.5.1.3 Information Flows

Detailed specification of data requirements is performed in ETDs by

means of information flows. They are mainly an abstract representation

of the communication between an IS and its users, and correspond to

data requirements for interaction (i.e., for user intention and system

responsibility).

Information flows depict all the pieces of information that are

necessary in an ETD so that user intention and system responsibility are

properly supported. These pieces will be those that the IS and its users

will exchange, thus information flows are specified for each action of user

intention and system responsibility. Completeness of data requirements

will be reached if all the pieces of information that are necessary for

interaction are specified, and consistency between data and functional

requirements will exist if all the domain entities of the pieces of

information that are specified are used as input or output of the ETD.

Information flows can be considered a specialization of data

expressions (Lauesen, 2002), i.e., data expressions that are exchanged

between an IS and its users during the execution of an ETD. The main

advantages of data expressions and, therefore, of information flows are

that they are very compact, precise and easy for system analysts and

165

6.5 ETDs

customer stakeholders to use and understand. In addition, the problem of

complexity (size) of data expressions when trying to model an entire

system is overcome by using interaction in ETDs as scope for

specification of information flows.

In the Info Cases approach, information flows specify only the

communication between a system and its users and in a unique flow.

This is a problem because all the possible functions and modes of an IS

(Olivé, 2007) are not (properly) addressed. Consequently, information

flows are modified in this thesis for ETD specification.

The possible functions of an IS are:

 Memory: its purpose is to maintain an internal representation of

the state of a domain, which is necessary for the other functions.

 Informative: its purpose is to provide users with information

about the state of a domain.

 Active: its purpose is to perform actions that change the

representation of the state of a domain.

The possible modes of an IS are:

 On request: it is followed when an IS performs a function as a

response to a user request.

 Autonomous: it is followed when an IS performs a function on his

own, without a user request.

It must also be indicated that external systems with which an IS

interacts are considered users for ETD specification, i.e., users of an IS can

corresponds to both people and software systems that interact (exchange

information) with the IS (Pohl, 2010).

Specification of information flows is performed on the basis of the

BNF grammar shown in Figure 6.10, the domain entities that are used as

input and output in an ETD, and from its interactions (normal

interaction, alternatives and extensions).

An input flow represents the pieces of information that a user has to

communicate to an IS when executing an action of user intention. An

output flow represents the pieces of information that an IS has to

communicate to a user when executing an action of system responsibility.

An autonomous flow represents the pieces of information that an IS has

166

 6 Specification of System Requirements

to store on his own to keep a correct representation of the domain. Such

information will be later available for users (so that the external view

criterion for system requirements is fulfilled). An input or autonomous

flows corresponds to information that must be part of the memory of (i.e.,

must be stored in) an IS, whereas an output flow corresponds to

information obtained (directly or derived) from the memory of an IS.

<Information flow> ::= <Input flow> | <Output flow> | <Autonomous flow>

<Input flow> ::= <Input data expression>

<Output flow> ::= <Output data expression>

<Autonomous flow> ::= ~ <Autonomous data expression>

<Input data expression> ::= <Domain entity> |

 <Domain entity> / <Attribute> / |

 <Input data expression> + <Input data expression> |

 <Lower limit> { <Input data expression> } <Upper limit>

<Output data expression> ::= <Domain entity> / <Attribute> / |

 <Output data expression> + <Output data expression> |

 (<Output data expression> ‘|’ <Output data expression>) |

 <Lower limit> { <Output data expression> } <Upper limit> |

 [<Output data expression>]

<Autonomous data expression> ::= <Domain entity> / <Attribute> / |

 <Autonomous data expression> + <Autonomous data expression> |

 <Lower limit> { <Autonomous data expression> } <Upper limit>

<Attribute> ::= <Attribute name> | <Attribute> + <Attribute> |

 (<Attribute> ‘|’ <Attribute>) | [<Attribute>]

<Domain entity> ::= <String>

<Attribute name> ::= <String>

<String> ::= <Character> | <Character><String>

<Character> ::= <Letter> | <Number> | ‘(’ | ‘)’ |

<Lower limit> ::= <Number>

<Upper limit> ::= <Number> | n

<Letter> ::= A | a | B | b | C | c | D | d …

<Number> ::= <Digit> | <Digit><Number>

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 6.10 BNF grammar for specification of information flows

The symbols that can appear in an information flow and their

semantics are:

 ‘’, for input pieces of information to an IS;

 ‘’, for output pieces of information from an IS;

 ‘~’, for autonomous memory and active actions of an IS;

 ‘/ /’, for membership;

 ‘+’, for aggregation;

167

6.5 ETDs

 ‘(|)’, for alternative;

 ‘, }’, for repetition;

 ‘* +’, for option, and;

 ‘n’, for indeterminate number of repetitions.

Table 6.2 shows the correspondence between the types of information

flows of an ETD and the functions and modes of an IS. It must be

indicated that not only information flows (and their associated user

intention or system responsibility) are affected or participate in the

development of the functions and modes of an IS, but also other sections

do. For example, a business rule (such as the one shown for total cost in

Figure 6.9) can correspond to the active function of an IS. Details about

the functions and modes also affect the derivation of OO diagrams stage

(Chapter 7).

Finally, it must be noted that the semantics of the input and output

flows and the semantics of the input and output of an ETD are different.

The input of an ETD is the set of domain entities that exist and are used

or consumed by its subtasks, and the output is the set domain entities

that are generated or changed after the execution of its subtasks.

Table 6.2 Types of information flows to represent the possible functions and

modes of an IS

 Mode

Function On request Autonomous

Memory ~

Informative

Active ~

6.5.2 Filling of the Textual Template

The sections of the textual template either are derived from an enriched

BPD or must be agreed upon with customer stakeholders, and guidelines

have been defined to fill them. The guidelines specify what BPD elements

correspond to domain requirements of the textual template and how to

specify product requirements, and there are 31 guidelines to fill the

sections.

168

 6 Specification of System Requirements

Apart from the guidelines that are presented in the next subsection, all

the sections of the textual template that depict product requirements of

an ETD have an implicit guideline: they must be agreed upon with

customer stakeholders. This guideline is also applicable to frequency,

critical, input, output and business rules sections of the textual template.

In the case of product requirements and of frequency and critical

sections, customer stakeholders are the source of information from which

they are elicited and specified in an ETD, thus they must indicate them

and validate them.

With regard to business rules, it must be remembered that just some

action assertions are specified in the organizational modelling stage.

However, IS behaviour may be constrained by other types of business

rules that have not been addressed in the methodological approach yet.

These types correspond to structural assertions and derivations. More

specifically, they correspond to those business rules related to restrictions

on the information (data) of an organization and that must be controlled

by the IS. For example, in Figure 6.9, a business rules that has been

defined for ETD specification is that ‚the total cost of a rental contract is

calculated from the rate of a car and the price of the extras requested,

multiplied by the number of rental days and VAT‛.

In summary, all the business rules that represent constraints on the

information of an organization and of its IS and are not specified in any

other artefact (e.g., information flows of the ETDs) must be specified as

business rules in the textual template. Nonetheless, it must be indicated

that some types of business rules are addressed later in the

methodological approach. They are those related to the data types of the

attributes of the domain entities and the cardinality of the relationships

between domain entities. They are addressed in the derivation of OO

diagrams stage.

Since some guidelines might be difficult to understand without an

example, Figure 6.11 shows examples of labelled flow objects and their

specification in the sections of the textual template (application of the

guidelines).

Finally, the guidelines allow system analysts to bridge the gap

between business and system domains for specification of system

requirements, as well as BPD labelling and modelling of consecutive

flows.

169

6.5 ETDs

Section

Disable

apartment

Create repair

report

IS U

Additional

charges?

U

Send offer

U

Disable apartment

PhD student notified AND Advisor notified

Modifications notified
Available seats

User request OR Employee request

New order

New submission AND Not adequate length
Not enough garments

Send offer
Check if there are

additional chargesCreate repair report

Select

destination

and date

No

Modify

planning

IS

Reject PhD

defense

request

IS

IS

Notify

advisor

Notify PhD

student

Available

seats?

Notify

modifications

IS

U

U

U

Yes

IS

Negative

balance?

IS

Notify bank

officeWithdraw

money

U

Yes

IS

Additional

charges?

IS

Notify customer

Labelled flow objects and specification in a textual template

Modify orderNo

Enough

garmets?

IS
IS

Plan

production

IS
U

New

order

Evaluate item

IS

U

Reject

submission
No

Adequate

length?
IS

IS

Employee

request

IS

New

submission

User

request

Assign seatsYes

Tickets

available?

IS
U

Choose

provider

U
U

Item

request

Call customer

and bank

officeU

U

Evaluate

request
No

Debt

exists?
IS

U

Charge

rejection

U

Credit

request

U

End of

payment period

End of payment period OR Charge rejection

Item request

Credit request AND No debt exists

Available tickets

(Negative balance) Bank office notified OR

(Additional chages) Customer notified

IS

S
u

b
ta

s
k
s

T
ri
g

g
e

rs
P

o
s
tc

o
n

d
it
io

n
s

P
re

c
o

n
d

it
io

n
s

Figure 6.11 Examples of labelled flow objects and of their specification as sections

of the textual template

170

 6 Specification of System Requirements

6.5.2.1 Guidelines for Filling of the Textual Template

Name

G1) If an ETD just supports a subtask, then its name is the same as the

name of the subtask that is supported.

G2) The name of an ETD must be agreed upon with customer

stakeholders if it supports several subtasks.

Business Process

G3) The business process of an ETD corresponds to the enriched BPD

(name) from which the ETD has been elicited. If the BPD has been

modelled for a sub-process, then the business process corresponds to the

root BPD.

Role

G4) The role of an ETD is the system if all its subtasks are controlled

by the system.

G5) The role of an ETD is the participant in the business process of the

ETD whose lane contains the flow objects from which the subtasks of the

ETD that will be controlled by a user are specified.

Subtasks

G6) The subtasks of an ETD are the BPMN tasks that will be

controlled by the system or by a user and the gateways and ‚throwing‛

events that will be controlled by a user.

Triggers

G7) The triggers of an ETD are the ‚catching‛ events that will be

controlled by the system. If the role of an ETD is the system, then the

gateways that will be controlled by the system are triggers too.

G8) The triggers of an ETD can be combined conjunctively (the

fulfilment of all of them causes the need of execution) and disjunctively

(the fulfilment of any of them causes the need of execution).

Preconditions

G9) The preconditions of an ETD are the ‚catching‛ events that will be

controlled by a user. If the role of an ETD is not the system, then the

gateways that will be controlled by the system are preconditions too.

171

6.5 ETDs

G10) The preconditions of an ETD can be combined conjunctively (the

fulfilment of all of them is necessary so that the ETD can be executed)

and disjunctively (the fulfilment of some of them is necessary so that the

ETD can be executed).

Postconditions

G11) The postconditions of an ETD are the ‚throwing‛ events that

will be controlled by the system and the gateways that will be controlled

by the system and can make the subtasks of the ETD iterate.

G12) The postconditions of an ETD can be combined conjunctively (all

of them must be fulfilled after the ETD is executed) and disjunctively

(some of them must be fulfilled after the ETD is executes).

G13) If the postconditions of an ETD are combined disjunctively, then

it must be specified when they must be fulfilled (i.e., a condition precedes

the postcondition).

Input and Output

G14) If more than an instance of a domain entity is part of the input or

output of an ETD, then the instances must be differentiated by means of

numbers in parentheses.

User Intention and System Responsibility

G15) For each subtask of an ETD that is controlled by a user, at least

one action in user intention or in system responsibility must be specified.

G16) For each alternative and extension of an ETD, a name that

identifies the alternative or extension and refers to the condition under

which it is executed must be specified.

G17) The actions of normal interaction of an ETD are jointly ordered

according to their expected execution1.

G18) The actions of an alternative are ordered by means of three

components: the same number as the first action of normal interaction

that they substitute; a letter to distinguish among alternatives; and

another number to order the actions of the alternative.

1 Although such an order represents the expected sequence of the steps of user intention

and system responsibility, it may finally not represent the actual sequence to perform an

ETD, i.e., it is just a possible sequence. In this sense, some authors have discussed the

convenience of step ordering (e.g., (Lauesen, 2002)), as well as its possible problems.

172

 6 Specification of System Requirements

G19) The action of normal interaction that follows the last action of an

alternative is put in square brackets at the end of the action of the

alternative.

G20) The actions of an extension are ordered like the actions of an

alternative, but their first number corresponds to the action of normal

interaction that precedes the actions of the extension.

G21) In general, the actions of user intention correspond to the

following verbs (Table 6.3): select (existing information), introduce (new

information, which may affect existing information) and check (existing

information).

G22) In general, the actions of system responsibility correspond to the

following verbs (Table 6.4): show (existing information), store (new

information) and change (existing information).

Information flows

G23) An input flow must be specified for each action of user intention

in which the user has to select pieces of information of the system or to

introduce new pieces of information in the system.

G24) An output flow has to be specified for each action of system

responsibility in which the system has to show pieces of information to

users.

G25) An autonomous flow has to be specified for each action of user

intention or system responsibility in which the system has to store or

change some information without input from users.

G26) For each information flow, the input or output data expression is

specified on the basis of the BNF grammar for specification of

information flows.

Table 6.3 Verbs for user intention on the basis of the possible functions and

modes of an IS

 Mode

Function On request Autonomous

Memory Introduce, Select -

Informative Check -

Active Introduce, Select -

173

6.6 Summary

G27) For each information flow of an ETD, the domain entities that

are used must be part of the input or output of the ETD.

G28) The domain entities and the attributes of an autonomous flow of

an ETD must be part of an output flow of some ETD (the same ETD or

another).

Quality attributes

G29) For each quality attribute of an ETD, a type of characteristic and

subcharacteristic of the ISO 9126-1 standard must be specified.

G30) If an external system participates in an ETD (as a user), then a

quality attribute of ‚Functionality/Interoperability‛ must be specified

and must refer to the system.

G31) If both a human user (which will correspond to the role) and an

external system participate in an ETD, then the steps of interaction

performed by the system must be indicated by means of a quality

attribute of ‚Functionality/Interoperability‛.

Table 6.4 Verbs for system responsibility on the basis of the possible functions

and modes of an IS

 Mode

Function On request Autonomous

Memory - Store

Informative Show Show

Active Show Change

6.6 Summary

This chapter has presented specification of system requirements, the

third stage of the methodological approach of the thesis. The stage aims

to specify system requirements by means of ETDs and is based on the

analysis of the To-Be BPDs of an organization. The stage is performed

collaboratively by system analysts and customer stakeholders.

Mechanisms and detailed guidance have been presented in order to

properly elicit and specify the system requirements of an IS from the

business processes of an organization. As a result, the gap between

BPMN and ETDs has been bridged, BPMN has been extended

174

 6 Specification of System Requirements

graphically by specifying the automation of its elements with labels and

by defining the concept of consecutive flow, and thus BPMN

expressiveness and usefulness for the RE process have been improved.

ETDs are specified in a standard textual template that integrates

functional, data and quality requirements and that is filled by following a

set of guidelines that determines the correspondence between the

business processes of an organization and the system support that they

need. Data requirements are specified in detail by means of a new and

improved style for specification of information flows and on the basis of

a BNF grammar. Guidelines have also been presented to precisely specify

the information flows and to facilitate completeness and consistency of

data requirements. Furthermore, ETDs are homogeneously specified on

the basis of a significance criterion.

Chapter 7

7 Derivation of OO Diagrams

“Essentially, all models are wrong, but some are useful”

George E. P. Box

This chapter presents the fourth and last stage of the methodological

approach of the thesis (Figure 7.1): derivation of OO diagrams. Such

diagrams correspond to an OO conceptual schema of an IS, and their

derivation allows business process-based system requirements to be

integrated into OO conceptual modelling-based IS development.

As a result of the integration, system requirements can be useful for

an OO perspective for IS modelling and development. A SyRS in the

form of ETDs (as well as the first three stages of the methodological

approach) would be useful for IS development on the basis of OO-

Method (Pastor, Molina, 2007) or other OO conceptual modelling-based

approach. The diagrams derived would meet the system requirements of

an IS and support the business processes of an organization.

The chapter is organized as follows. First, an overview of the stage

and a running example are presented. Next, the artefacts of the stage

(Figure 7.1) and the guidance and rules for their creation are described.

Further link of ETDs with OO-Method is then discussed, and finally a

summary of the chapter is presented.

176

 7 Derivation of OO Diagrams

Business Events

Roles Model

Domain Data Model

Glossary

Business Rules

ORGANIZATIONAL MODELLING

SPECIFICATION OF SYSTEM

REQUIREMENTS

As-Is BPDs

Process Map

PURPOSE ANALYSIS

Goals/Strategies Diagrams

To-Be BPDs

Business-process based requirements

specification and OO conceptual modelling

Organizational problem or

need solvable by an IS

As-Is

To-Be

Validation

Agreement

ETDs

Validation

State Transition Diagrams

Class Diagram

DERIVATION OF OO-DIAGRAMS

Operationalization Tables

Labelled BPDs

Enriched BPDs

ETD Analysis

Mission Statement

Figure 7.1 Stage and artefacts presented in Chapter 7

7.1 Overview of the Stage

The main purpose of the derivation of OO diagrams stage is to obtain an

OO conceptual schema of an IS in the form of a class diagram and of the

state transition diagrams of the classes. The conceptual schema must

meet the system requirements of the IS (Insfrán, Pastor, Wieringa, 2002),

be consistent with them (Glinz, 2000), and be complete from a

requirements perspectives (i.e., the conceptual schema must contain all

the necessary information to support the system requirements of an IS;

(Olivé, 2007)).

177

7.1 Overview of the Stage

Since system requirements are defined from the business process

models of an organization, then the OO conceptual schema derived from

the system requirements will support the business processes. Therefore,

business process-based requirements specification and OO conceptual

modelling of an IS are linked, and the system requirements can be useful

for any OO conceptual modelling-based approach for IS development.

Derivation of OO diagrams is performed through three activities

(Figure 7.2). First, ETDs are analysed to specify the necessary information

for derivation of an OO conceptual schema that has not been

documented in the previous stages of the methodological approach. Such

information corresponds to the ETDs in which relationships between

domain entities are created or deleted.

Next, a class diagram and state transition diagrams of the classes are

derived by following a set of rules that determine the properties of the

diagrams that can be determined from existing artefacts (the domain data

model, the ETDs an the ETD analysis). Part of the information can be

automatically derived, but other cannot. The latter case corresponds to

decisions that system analysts must make on the basis of ETDs and

customer stakeholders’ knowledge and needs.

It must be indicated that both a class diagram and the state transition

diagrams cannot be completely derived until part of the information of

the other diagram is specified. Some rules for derivation of a diagram are

based on information of the other.

Finally, customer stakeholders must validate the OO conceptual

schema derived. The class diagram must contain all the classes and

attributes that represent the information that the customer stakeholders

need to execute the business processes of their organization, and the state

transition diagrams must contain all the necessary states of the classes.

The rules and guidance provided guarantee that the conceptual

schema is correct and complete on the basis of the ETDs of an IS, but

incompleteness in the schema may be discovered because of

incompleteness in the SyRS. Although the ETDs had been previously

validated, incompleteness in them may be found in this stage. For

example, an attribute may not be present in the class diagram because it

was not specified in any information flow. If the attribute was necessary

and thus should be part of the conceptual schema, then it should be part

of an input or autonomous flow of some ETD.

178

 7 Derivation of OO Diagrams

Analyse ETDs
Derive

class diagram

Derive

state transition

diagrams

Diagrams OK? Yes

No

Figure 7.2 Activities of the derivation of OO diagrams stage

Definition of the rules for derivation of the class diagram and of the

state transition diagrams of the classes is based on the assumption that a

SyRS (i.e., the set of ETDs of an IS) is complete. Therefore, it contains the

specification of all the system requirements of the IS, such as all the

information flows that the IS users need. Otherwise, the diagrams

derived may need to be completed by system analysts with that

(requirements) information that is missing in the ETDs but will be

necessary in the IS to support the business processes of an organization.

For example, it may be decided that ETDs for management of the

information of the domain entities (such as modification of the value of

its attributes) are not explicitly specified in the specification of system

requirements stage. Consequently, elements to support this activity could

not be derived to the OO diagrams (e.g., methods) because no explicit

information would exist in the ETDs to derive the elements from them.

Therefore, the elements would have to be modelled by the system

analysts according to customer stakeholders’ needs.

Finally, and in the context of this thesis, the derivation of OO

diagrams stage makes integration of ETDs into IS development with OO-

Method possible. Therefore, the whole RE process proposed in the first

three stages of the methodological approach could be used as a RE

approach for OO-Method. Nonetheless, it is again emphasised that the

derivation of OO diagrams stage has been defined to provide a standard

integration with OO conceptual modelling-based approaches for IS

development that use class diagrams and state transitions diagrams.

In addition to creation of a class diagram and of state transition

diagrams of the classes, further link of ETDs with other models of OO-

Method is possible by deriving part of the information that has to be

specified in them. However, many specific details of the link are out of

the scope of this thesis.

179

7.2 Running Example: The Rent-A-Car Company

7.2 Running Example: The Rent-A-Car Company

As a running example for the derivation of OO diagrams stage, the rent-

a-car company presented for the specification of system requirements

stage (Chapter 6) is used. In addition to the information and details about

the company presented in the previous chapter, some new information is

used to perform the derivation of OO diagrams stage. More concretely,

more ETDs are used in this chapter and the domain data model is

extended.

The part of the rent-a-car company that is used to show the fourth

stage of the methodological approach is that related to car management.

In Chapter 6, the business process ‚car rental‛ and its corresponding ETD

(Figure 6.9) were presented, and the rest of ETDs related to car lifecycle

are used in this chapter to derive the class diagram and the state

transition diagrams of an IS. Such ETDs are:

 car purchase;

 car return;

 car maintenance;

 operation end, and;

 car sale.

Part of the ETDs (input, output and information flows) is shown in

Figure 7.4. The domain data model for the rent-a-car company presented

in Chapter 6 is extended with new domain entities and relationships in

Figure 7.3.

CarInsurance

Rate

Extra

Garage

Rental Contract

Operation

Can

include
Customer

Covers

Includes

Imposes rental price of

Requests

Maintained

through

Carried out in

Figure 7.3 Extended domain data model of the rent-a-car company

180

 7 Derivation of OO Diagrams

Extended Task Description: CAR PURCHASE

Input Output

Domain Entity State Domain Entity State

Insurance
Rate

-
-

Car Ready

Information flows
(Normal)

 1{ Insurance / company + expiration date / }n
 Insurance
 1{ Rate / name + price / }n
 Rate
 Car / plate number + make + model + engine + colour + seats + purchase date /

Extended Task Description: CAR RETURN

Input Output

Domain Entity State Domain Entity State

Rental Contract
Car
Extra

Open
Rented
Rented

Rental Contract
Car
Extra

Closed
Ready | Disabled
Ready

Information flows
(Normal)
 1{ Car / plate number / }n
 Car / km + fuel /
~ Rental Contract / return date /
 Rental Contract / amount to pay /

(Extension)
 Car / disability date /

Extended Task Description: CAR MAINTENANCE

Input Output

Domain Entity State Domain Entity State

Car
Garage

Disabled
-

Operation To-Do

Information flows
(Normal)
 1{ Car / plate number / }n

 Car
 1{ Garage / name + address + phone number / }n
 Garage
 Operation / number + date + description /

Extended Task Description: OPERATION END

Input Output

Domain Entity State Domain Entity State

Operation
Car

To-Do
Disable

Operation
Car

Finished
Ready

Information flows
(Normal)
 1{ Car / plate number / }n

 Car
 Operation / end date + price /

Extended Task Description: CAR SALE

Input Output

Domain Entity State Domain Entity State

Car Ready Car Sold

Information flows
(Normal)
 1{ Car / plate number / }n

 Car / sale date /

Figure 7.4 Input, output and information flows of the ETDs related to car lifecycle

of the rent-a-car company

181

7.3 ETD Analysis

7.3 ETD Analysis

The first activity of the derivation of OO diagrams stage aims to specify

information about the ETDs and the domain entities that has not been

documented in the previous stages of the methodological approach but it

is necessary for derivation of the class diagram of an IS and of the state

transition diagrams of the classes.

System analysts have to determine:

a) the ETDs in which the relationships between the domain entities

of the domain data model are created, and;

b) the ETDs in which the relationships between the domain entities

of the domain data model are deleted.

The activity is performed by creating a table as the one shown in

Table 7.1. The relationships between the domain entities of the domain

data model of the rent-a-car company that are created or deleted in each

ETD are specified in the table. These relationships represent information

that will be managed by the IS of an organization.

All the types of relationships are analysed (association, aggregation

and inheritance relationships). In the case of inheritance relationships,

creation and deletion of a relationship means that a domain entity is

specialised (i.e., an object becomes an instance of the child domain entity)

and generalised (i.e., the object becomes an instance of the parent domain

entity), respectively. For example, a person may be considered a child

when he is born, but the person may become a regular person once he is

18. Therefore, he would not be considered a child anymore.

Table 7.1 Example of table for relationship analysis

ETD
Relationship

Creation Deletion

Car Purchase Covers, Imposes rental price of -

Car Rental Requests, Includes, Can include -

Car Return - -

Car Maintenance Maintained through, Carried out in

Operation End - -

Car Sale - -

182

 7 Derivation of OO Diagrams

Nonetheless, all inheritance relationships may not be created or

deleted this way. An instance of a parent domain entity may never

become an instance of a child entity, and instances of the child entity may

be created directly and without the need of previously creating an

instance of the parent domain entity.

Inconsistencies may be detected in the ETDs (or in the analysis

performed):

 The ETD in which a relationship between two domain entities is

created or deleted requires that both entities are part of the input

or output of the ETD. Otherwise, no relationship can exist or some

domain entity is missing in the ETD.

 All relationships that are deleted must be created.

ETD analysis may be extended or changed by specifying more

information about the ETDs that it is specified in subsequent activities of

the derivation of OO diagrams stage. For example, and as currently

defined in the methodological approach of the thesis, the data types of

the attributes of the domain entities are specified during derivation of the

class diagram. However, the data types may also be specified in another

artefact when analysing ETDs.

What has been considered important is not when to specify certain

information (if it could be specified at different ‚moments‛ of a stage),

but that all the necessary information is specified at some moment. It is

considered that specification of information at a given moment will

depend on the criteria and preferences of the systems analysts. Provision

of mechanisms and guidance to facilitate their decision and make it

possible, as well as recognition of the fact that some steps may me

performed at different moments, is regarded as the relevant point.

Finally, it must be indicated that the more information was pre-

specified before application of the rules for derivation of the OO

conceptual schema, the more automatic the derivation would be. As said

above, it is a decision of system analysts when to perform some steps and

what degree of automation they need or want at a given moment of a

stage, and trade-offs may be necessary. It must be noted that more

automation does not imply that a step has not to be performed, but that it

can be performed previously to gain some degree of automation later.

183

7.4 Class Diagram

7.4 Class Diagram

The class diagram of an IS is derived from (some sections of) its ETDs,

ETD analysis, its state transition diagrams, and the domain data model of

the corresponding organization. This activity is performed by following

16 rules. The graphical representation of the class diagram is completed

by documenting the information (e.g., integrity constraints) that affects

the classes and is not represented graphically. Although plain text is used

in this thesis, no specific language is assumed for documentation and any

could be used (e.g., OCL (OMG, 2006)).

The rules allow system analysts to model classes (Rule C1) and their

attributes (Rule C2) and methods (Rules C3, C4, C5, C6, C8, C9 and C10),

as well as the relationships between the classes (rule C7) and their

multiplicities (Rules C13 and C14) for associations and aggregations. In

addition, four rules have been defined for completing a class diagram

with integrity constraints (Rule C15) derivation rules (Rule C16) and

details about the methods (Rules C11 and C12) in its documentation.

Some rules can be automatically applied from existing artefacts, but

others cannot (Rules C11, C12, C14, C15 and C16). Such rules need that

system analysts make decisions or indicate some extra information that

cannot be automatically (and deterministically) derived from the

available artefacts. System analysts also have to name the methods.

Figure 7.5 shows a class diagram for the rent-a-car-company. It has

been derived from the ETDs shown in Figure 6.9 and Figure 7.4 and the

ETD analysis shown in Table 7.1. It must be noted that these artefacts

correspond to just a part of the whole SyRS and ETD analysis of the rent-

a-car company, thus the class diagram is incomplete. In addition,

parameters of the methods and data types have not been modelled to

keep Figure 7.5 as small as possible.

The rules are defined as follows.

Rule C1 (classes)

A class is modelled in a class diagram for each domain entity of an

information flow.

For the running example, the classes are ‚Insurance‛, ‚Rate‛, ‚Car‛,

‚Customer‛, ‚Rental Contract‛, ‚Extra‛, ‚Garage‛ and ‚Operation‛.

184

 7 Derivation of OO Diagrams

Figure 7.5 Example of class diagrams

+
c
re

a
te

 c
a

r(
)

+
re

n
t
c
a

r(
)

+
re

tu
rn

 c
a

r(
)

+
d

is
a

b
le

 c
a

r(
)

+
s
e

ll
c
a

r(
)

-p
la

te
 n

u
m

b
e

r

-m
a

k
e

-m
o

d
e

l

-e
n

g
in

e

-c
o

lo
u

r

-s
e

a
ts

-p
u

rc
h

a
s
e

 d
a

te

-k
m

-f
u

e
l

-d
is

a
b

ili
ty

 d
a

te

-s
a

le
 d

a
teC

a
r

+
c
re

a
te

 r
a

te
()

+
a

d
d

 c
a

r(
)

-n
a

m
e

-p
ri
c
eR

a
te

+
c
re

a
te

 g
a

ra
g

e
()

+
a

d
d

 o
p

e
ra

ti
o

n
()

-n
a

m
e

-a
d

d
re

s
s

-p
h

o
n

e
 n

u
m

b
e

r

G
a

ra
g

e

+
c
re

a
te

 o
p

e
ra

ti
o

n
()

+
e

n
d

 o
p

e
ra

ti
o

n
()

-n
u

m
b

e
r

-c
u

rr
e

n
t
d

a
te

-d
e

s
c
ri
p

ti
o

n

-e
n

d
 d

a
te

-p
ri
c
eO

p
e

ra
ti

o
n

+
c
re

te
 i
n

s
u

ra
n

c
e

()

+
a

d
d

 c
a

r(
)

-c
o

m
p

a
n

y

-e
x
p

ir
a

ti
o

n
 d

a
te

In
s

u
ra

n
c

e

+
c
re

a
te

 e
x
tr

a
()

+
re

n
t
e

x
tr

a
()

+
re

tu
rn

 e
x
tr

a
()

-n
a

m
e

E
x

tr
a

+
c
re

a
te

 c
u

s
to

m
e

r(
)

+
a

d
d

 r
e

n
ta

l
c
o

n
tr

a
c
t(

)

-n
u

m
b

e
r

-n
a

m
e

-s
u

rn
a

m
e

-I
D

 n
u

m
b

e
r

-a
d

d
re

s
s

-c
it
y

-t
e

le
p

h
o

n
e

 n
u

m
b

e
r

-c
re

d
it
 c

a
rd

 t
y
p

e

-c
re

d
it
 c

a
rd

 n
u

m
b

e
r

-c
re

d
it
 c

a
rd

 e
x
p

ir
a

ti
o

n
 d

a
te

C
u

s
to

m
e

r

+
c
re

a
te

 r
e

n
ta

l
c
o

n
tr

a
c
t(

)

+
c
lo

s
e

 r
e

n
ta

l
c
o

n
tr

a
c
t(

)

+
c
a

lc
u

la
te

 r
e

n
ta

l
c
o

s
t(

)

+
c
a

lc
u

la
te

 e
x
tr

a
 c

o
s
ts

()

+
c
a

lc
u

la
te

 V
A

T
()

+
c
a

lc
u

la
te

 t
o

ta
l
c
o

s
t(

)

+
s
e

t
re

tu
rn

 d
a

te
()

+
c
a

lc
u

la
te

 a
m

o
u

n
t
to

 p
a

y
()

-c
o

n
tr

a
c
t
n

u
m

b
e

r

-c
u

rr
e

n
t
d

a
te

-c
u

rr
e

n
t
ti
m

e

-o
ff
ic

e

-r
e

tu
rn

 d
a

te

-r
e

tu
rn

 o
ff
ic

e

-d
e

p
o

s
it

R
e

n
ta

l
C

o
n

tr
a

c
t

0
..
*

0
..
*

0
..
*

1

0
..
*

1

1

0
..
*

1

0
..
*

0
..
*

1

0
..
* 1

185

7.4 Class Diagram

Rule C2 (attributes)

An attribute is modelled in a class for each attribute that belongs to

the domain entity from which the class was modelled and that is in an

input or autonomous flow of an ETD. A data type must be specified for

each attribute.

For the running example, the attributes of the class ‚Operation‛ are

‚number‛, ‚date‛, ‚description‛, ‚end date‛, and ‚price‛.

Rule C3 (creation method)

A creation method is modelled for each class. Its parameters are the

attributes of the domain entity from which the class was modelled in the

ETD(s) where the domain entity appears in an input or autonomous flow

and it is part of the output of the ETD but not of the input. A data type

must be specified for each parameter.

It must be noted that a class may have several creation methods, and

it must have at least one. For the running example, the creation method

of the class ‚Operation‛ is ‚create operation (number, date, description)‛,

which is modelled from the ETD ‚Car Maintenance‛.

Rule C4 (deletion method)

A deletion method is modelled in a class if the domain entity from

which the class was modelled can reach a state in the output of an ETD

that is not used in the input of other ETD.

For the running example, a deletion method (‚sell car‛) is modelled

for the class ‚Car.‛ Once it reaches the state ‚Sold‛ (in the ETD ‚Car

Sale‛), the state is not used in of other ETD.

Rule C5 (modification method)

A modification method is modelled in a class for each ETD in which

the domain entity from which the class was modelled has attributes in an

input or autonomous flow and a creation method of the class was not

modelled from the ETD. Its parameters are the attributes of the domain

entity in the input or autonomous flow of the ETD where the domain

entity appears. A data type must be specified for each parameter.

For the running example, a modification method of the class

‚Operation‛ is ‚end operation (end date, price)‛, which is modelled from

the ETD ‚Operation End‛.

186

 7 Derivation of OO Diagrams

Rule C6 (calculation method)

A calculation method is modelled in a class for each attribute that: 1)

belongs to the domain entity from which the class was modelled; 2) is in

an output flow; and 3) does not correspond to an attribute of the class. A

return data type must be specified for each calculation method.

For the running example, a calculation method of the class ‚Rental

Contract‛ is ‚calculate rental cost‛, which is modelled from the ETD ‚Car

Rental‛ (Figure 6.9).

Rule C7 (relationships)

A relationship between two classes is modelled if there exists a

relationship between the domain entities from which the classes were

modelled that is created in some ETD. For inheritance relationships in a

domain data model between domain entities from which classes are

modelled, all the relationships are modelled.

For the running example, a relationship between the classes ‚Car‛

and ‚Rental Contract‛ is modelled from the ETD ‚Car rental‛ (the

relationship ‚Includes‛).

Rule C8 (relationship creation method)

A relationship creation method is modelled in a class if no method has

been defined in the class from the ETD in which a relationship of the

domain entity from which the class was modelled is created.

For the running example, a relationship creation method of the class

‚Garage‛ is ‚add operation‛, which is modelled form the ETD ‚Car

Maintenance‛.

Rule C9 (relationship deletion method)

A relationship deletion method is modelled in a class if no method has

been defined in the class from the ETD in which a relationship of the

domain entity from which the class was modelled is deleted.

For the running example, this rule is not applied. Nonetheless, it

would have been if the relationship ‚Carried out in‛ between the classes

‚Operation‛ and ‚Garage‛ had been considered to be deleted after

execution of the ETD ‚Operation End‛. This would imply that the rent-a-

car company would not need to know the garage where an operation is

carried out once it is finished.

187

7.4 Class Diagram

Rule C10 (state change method)

A state change method is modelled in a class for each ETD in which

the domain entity from which the class was modelled has different states

in the input and output of the ETD and no other method has been

modelled in the class from the ETD.

For the running example, the method ‚return extra‛ of the class

‚Extra‛ is a state change method. It is defined from the ETD ‚Car

return‛.

Rule C11 (methods details)

The type of each method of a class must be indicated in the

documentation of the class diagram.

For example, the method ‚return car‛ of the class ‚Car‛ is a

modification method.

Rule C12 (relationship methods details)

If the methods related to creation and deletion of a relationship have

not been modelled from the Rules C8 and C9, then the methods of a class

from which a relationship with other classes is created and deleted must

be indicated.

For the running example, the relationship ‚Carried out in‛ is created

from the method ‚create operation‛ of the class ‚Operation‛ and the

method ‚add operation‛ of the class Garage. The first one is defined from

Rule C3, and the second one is from the Rule C8. This means that the

method ‚create operation‛ is both a creation method and a relationship

creation method.

Rule C13 (minimum multiplicity)

The minimum multiplicity of a class in an association or aggregation

is 0 if the corresponding relationship creation method does not

correspond to a creation method of the class. Otherwise, the minimum

multiplicity is the minimum number of occurrences of the domain entity

from which the class was modelled in the input flows of the ETD from

which the relationship creation method was modelled (1, 0 if optional, or

lower limit of repetitions).

188

 7 Derivation of OO Diagrams

For the running example, the minimum multiplicities of the

association between the classes ‚Car‛ and ‚Rental Contract‛ are 0 for

‚Car‛ and 1 for ‚Rental Contract‛.

It must be noted that the minimum multiplicity of the compound class

of an aggregation cannot be 0. Existence of the component class is only

possible if the compound class exists. Otherwise, the relationship

between the classes would be an association, not an aggregation.

Rule C14 (maximum multiplicity)

The maximum multiplicity of a class in an association or aggregation

is the maximum number of times that the corresponding relationship

creation method can be executed in the lifecycle of the class without

executing the corresponding relationship deletion method. Such a

number is calculated from the state transition diagram of the class.

For the running example, the maximum multiplicities of the

association between the classes ‚Car‛ and ‚Rental Contract‛ are

indeterminate (‘*’) for ‚Car‛ and 1 for ‚Rental Contract‛.

It must be indicated that the maximum multiplicity cannot be lower

than the number of occurrences of the domain entity from which the class

was modelled in the input flows of the ETD in which the relationship

creation method (1 or upper limit of repetitions).

Rule C15 (integrity constraints)

The triggers, preconditions, postconditions and business rules of the

ETDs must be checked to determine if some of them should be included

in the documentation of the class diagram as integrity constraints. In

addition, other integrity constraint may be discovered.

For the running example, an integrity constraint is that the insurance

of a car must be valid during the rental period.

Rule C16 (derivation rules)

The business rules of the ETDs must be checked to determine if some

of them should be included in the documentation of the class diagram as

derivation rules. In addition, other derivation rules may be discovered.

For the running example, a derivation rule is that the total cost of a

rental contract is calculated from the rate of a car and the price of the

extras requested multiplied by the number of rental days and VAT.

189

7.5 State Transition Diagrams

7.5 State Transition Diagrams

A state transition diagram is derived for each class of the class diagram of

an IS from (some sections of) its ETDs and its class diagram by following

a set of rules. There are 11 rules, and they allow system analysts to model

states (Rules S1, S2 and S3), transitions (Rules S4, S5 and S8) and

preconditions (Rule S9) and postconditions (Rule S10) of the transitions.

System analysts also have to indicate information when ambiguity exists

(Rules S6 and S7) and to check that a diagram is correct (Rule S11).

As for derivation of the class diagram, some of the rules are not

completely automatable (Rules S6, S8, S9 and S11).

Figure 7.6 shows the state transition diagram of the class ‚Car‛ for the

running example, which is used as an example to explain the rules. It has

been derived from the ETDs shown in Figures 6.9 and 7.4 and the class

diagram shown in Figure 7.5. It must be noted that the diagram has not

been modelled completely (e.g., preconditions are not shown) to keep

Figure 7.6 as small as possible.

The rules are defined as follows.

Rule S1 (initial state)

An initial state is modelled in each state transition diagram.

This rule is always applied, thus it has been in Figure 7.6.

Rule S2 (final state)

A final state is modelled in a state transition diagram if the class has a

deletion method in the class diagram.

A final state is part of Figure 7.6 because the class ‚Car‛ has a deletion

method (‚sell car‛).

Rule S3 (intermediate states)

An intermediate state is modelled in a state transition diagram for

each state that the domain entity from which the class was modelled can

reach in the ETDs and does not correspond to the state that the domain

entity reaches in the ETD from which a deletion method was modelled.

The names of the states are those of the domain entity in the in the ETDs.

The intermediate states of the class ‚Car‛ are ‚Ready‛, ‚Rented‛, and

‚Disabled‛.

190

 7 Derivation of OO Diagrams

Ready DisabledRented

do operation

disable carrent car

return car

sell car

create car

Figure 7.6 Example of state transition diagram

Rule S4 (first transition)

A transition is modelled from the initial state of a state transition

diagram for each creation method of the corresponding class. The event

of the transition is the creation method of the class and the target state is

the state of the domain entity from which the class was modelled in the

output of the ETD from which the creation method was modelled.

The first transition of the state transition diagram of the class ‚Car‛ is

targeted at the state ‚Ready‛. Its event is ‚create car‛.

Rule S5 (last transition)

If a state transition diagram has a final state, then a transition is

modelled to it for each deletion method of the corresponding class. The

event of the transition is the deletion method of the class and the source

state is the state of the domain entity from which the class was modelled

in the input of the ETD from which the deletion method was modelled.

In Figure 7.6, the source state of the last transition of the class ‚Car‛ is

‚Ready‛. The event of the transition is ‚sell car‛.

Rule S6 (multiple possible target states)

If the domain entity from which the class was modelled can reach

several (different) states in the output of an ETD, then the states that can

be reached from each method modelled in the class diagram from that

ETD must be indicated.

For the lifecycle of the class ‚Car‛, the states ‚Ready‛ and ‚Disabled‛

can be reached in the ETD ‚Car Return‛, from which the methods

‚return car‛ and ‚disable car‛ were modelled in the class diagram shown

in Figure 7.5. The method ‚return car‛ allows the class ‚Car‛ to reach the

state ‚Ready‛, whereas the method ‛disable car‛ allows the class ‚Car‛

to reach the state ‚Disabled‛.

191

7.5 State Transition Diagrams

Rule S7 (multiple possible transitions)

If several methods have been modelled in a class from a same ETD,

then the states that can be reached from each method modelled in the

class diagram from that ETD must be indicated.

This rule is not applied in Figure 7.6, but it is for the state transition

diagram of the class ‚Rental Contract‛. The methods ‚set return date‛

and ‚calculate amount to pay‛ are modelled from the ETD ‚Car Return‛.

It is considered that the first one is the event of a transition between the

states ‚Open‛ and ‚Closed‛, whereas the second method represents the

event of a transition whose source and target state is ‚Closed‛.

Rule S8 (intermediate transitions)

For each method of a class not analysed through Rules S4, S5, S6 and

S7, a transition is modelled in its state transition diagram. The event of

the transition is the method. If the state of the domain entity in the input

of the ETD cannot be anyone (‘*’), then the source state is the state of the

domain entity in the input of the ETD. The target state is the state of the

domain entity in the output of the ETD. If the state of the domain entity

can be anyone (*’), then a cyclic transition is modelled in all the

intermediates states.

In Figure 7.6, an intermediate transition for the class ‚Car‛

corresponds to the event ‚rent car‛. The source state is ‚Ready‛ and the

target state is ‚Rented‛.

Rule S9 (preconditions)

The integrity constraints of the class diagram must be checked to

determine if some of them are preconditions of some event.

For the transitions of Figure 7.6, a precondition for execution of the

event ‚rent car‛ is that a car cannot be rented if it has more than 300000

kilometres.

Rule S10 (postconditions)

The integrity constraints of the class diagram must be checked to

determine if some of them are postconditions of some event.

This rule is not applied in Figure 7.6, but it would have been if, for

instance, it had been decided that a car could not be returned unless the

192

 7 Derivation of OO Diagrams

customer had paid the whole rental contract (i.e., the amount to pay was

0).

Rule S11 (diagram check)

The integrity constraints of the class diagram must be checked to

determine if some of them impose restrictions on the lifecycle of a class

that have not been modelled.

This rule is not applied in Figure 7.6. An example of application

would be that an ETD had been specified in which it had determined that

the domain entity ‚Car‛ was part of its input and could have any state

(‘*’). For example, an ETD for modification of the colour of a car (after it

had been painted) may exist. Nonetheless, a business rule may also

specify that a car cannot be used as input (i.e., its colour cannot be

modified) if its state is ‚Sold‛, and this business rules would later turned

into an integrity constraint of the class diagram. Furthermore, this rule

would also cause the need to make changes in the class diagram.

If all the other rules (both the ones for derivation of the class diagram

and the ones for derivation of the state transition diagrams) were

applied, and for the example used in the previous paragraph, then the

class ‚Car‛: 1) would not have a deletion method; 2) would not have a

final state; 3) would not have a final transition; 4) would have an

intermediate state ‚Sold‛, and; 5) would have a transition whose source

and target states were ‚Sold‛ and whose event was the method modelled

from the ETD for modification.

Consequently, the state transition and class diagrams derived would

not be correct, but system analyst would have to modify them so that

they meet system requirements (according to the integrity constraint).

The point on this discussion (as well as on many other aspects of the

methodological approach) is that the rules determine mappings between

artefacts when possible. They also aim that these mapping are

deterministic and as automatable as possible. However, some details and

specific information and needs that may exist are specified in a way in

the methodological approach that makes the previous purpose

unreachable. The purpose may be reachable, for instance, by imposing

more restrictions on how ETDs should be specified, but it would also

imply other trade-offs.

193

7.6 Further Link with OO-Method

In summary, the rules could be more automatable and allow

derivation of (100%) complete diagrams, but this would imply further

work and restrictions on previous stages and steps that, in general,

practitioners do not like. Furthermore, in most of the cases, the situations

discussed do not occur, thus the necessary effort for more automatable

and complete rules may be regarded as not worthy.

7.6 Further Link with OO-Method

This section presents and discusses how the methodological approach of

the thesis (more concretely, a SyRS in the form of ETDs) could be further

linked to OO-Method (Pastor, Molina, 2007).

OO-Method has more details and models that those that can be

derived by following the rules presented in the two previous sections.

Therefore, the link must be determined or at least suggestions and ideas

about it must be provided so that the methodological approach could be

more useful for those practitioners that use OO-Method. Nonetheless,

and as mentioned below, a deeper analysis of the further link of ETDs

with OO-Method is out of the scope of this thesis.

The following subsections outline OO-Method by presenting its

conceptual models and how software can be generated by using it and

discuss the link of the methodological approach with OO-Method.

7.6.1 Conceptual Modelling and Software Generation

with OO-Method

As mentioned in Chapter 1, OO-Method is an approach for automatic

software generation on the basis of OO conceptual modelling. It is

supported by the OlivaNova tool and can decrease development time

and increase productivity. Conceptual modelling with OO-Method is

independent from the target technological platform (e.g., Java or .Net).

OO-Method consists of the following conceptual models (Figure 7.7):

 Object model: this model specifies the structure and static

relationships between the classes of a software system by means

of a graphical diagram that can be considered equivalent to UML

class diagram; it includes classes, their attributes and methods,

and the relationships between the classes.

194

 7 Derivation of OO Diagrams

C
o

n
c
e

p
tu

a
l
M

o
d

e
lli

n
g

C
o

d
e

M
o

d
e

l
T

ra
n

s
fo

rm
a

ti
o

n

DYNAMIC MODEL

FUNCTIONAL MODEL

Modeller

Class Relationship

Attributes

+

Code

Transformations

Transformation Engine

Application Code

PRESENTATION MODEL

Presentation Layer

Application Layer

Persistence Layer

3
-L

a
y

e
r

A
rc

h
it

e
c

tu
re

OBJECT MODEL

Application Model

O
L

IV
A

N
O

V
A

 (
O

O
-M

e
th

o
d

)
C

o
n

c
e

p
tu

a
l S

c
h

e
m

a
E

x
e

c
u

tio
n

 M
o

d
e

l

Figure 7.7 General view of OO-Method

 Dynamic model: this model specifies the dynamic and

behavioural side of the classes of the object model by means of

graphical diagrams that can be considered equivalent to UML

state transitions diagrams; the valid lifecycles of the classes are

represented in this model, as well as the possible interactions

between the objects (i.e., instances of the classes).

 Functional model: this model specifies the semantics of the

change of an object state as a result of method execution (e.g., a

change in the number of kilometres of a car) by means of a

declarative textual specification.

 Presentation model: this model specifies the characteristics of the

user interface of a software system and how the users will

interact with the system; the model is created by means of a

pattern-based graphical model through 3 levels of detail, from

more general to more specific characteristics.

195

7.6 Further Link with OO-Method

OO-Method corresponds to a graphical representation for OASIS,

which is an OO language for specification of ISs. OASIS is based on

dynamic logic and process algebra, and allows OO-Method conceptual

schemas to be formally defined. An OASIS specification also represents a

high-level repository or data dictionary of a software system.

Applications generated from conceptual modelling with OO-Method

have a three-layer architecture (Figure 7.7). The presentation layer

contains the software components responsible for presenting users the

application interface to interact with a software system. The application

layer provides services that implement the functionality of an

application. The persistence layer provides services to store and obtain

the pieces of data necessary for execution of an application.

The software process of OO-Method consists of two stages. First,

system analysts (modellers) create a conceptual schema, which

corresponds to a representation of the problem space (i.e., the application

domain). A UML-based notation and textual specifications are used.

Second, the code of an application is generated on the basis of the

Execution Model of OlivaNova, which corresponds to a representation of

the solution space and can be targeted at different technologies.

When comparing OO-Method with other approaches for software

modelling and development, it deals with the static (data-oriented) and

the dynamic (behaviour-oriented) views of an IS. Both views are

necessary for complete IS modelling and development. In addition, it

relies on an underlying formal model, integrates formal and semi-formal

techniques, and (in conjunction with OlivaNova) allows generation of

complete and ready-for-running applications by precisely specifying an

IS.

In relation to MDA (Model Driven Architecture; (OMG, 2003)), a

detailed description of its correspondence with OO-Method can be found

in (Pastor, Molina, 2007). The main points are that: 1) an OO-Method

conceptual schema corresponds to a Platform-Independent-Model; 2) the

execution model corresponds to a Platform-Specific-Model, and; 3) the

code generated corresponds to an Implementation Model.

OO-Method was and is targeted at system modelling, thus it has

weaknesses related to previous stages of software development (e.g., the

RE process). As a solution, several approaches have been defined for the

last decade to extend OO-Method and provide its users with means to

196

 7 Derivation of OO Diagrams

deal with requirements specification and modelling and with their link

with OO conceptual modelling. In this sense, the methodological

approach of this thesis arose to meet the need of OO-Method of having a

business process-based RE approach.

Other RE approaches for OO-Method are based on use cases (Insfrán,

Pastor, Wieringa, 2002), linguistic patters (Díaz, Sánchez, Matteo, 2005),

the i* framework (Estrada, et al., 2006) and Communication Analysis

(González, et al., 2011). Existence of such a set of approaches is in line

with the recommendation of having and using different approaches and

tools for different problems (Dieste, Juristo, Shull, 2008).

More details about OO-Method can be consulted in (Pastor, Molina,

2007). Some of them are presented in the next section to discuss further

link of ETDs with OO-Method. Finally, some potential problems

associated to IS modelling and development with OO-Method and that

are related to requirements (e.g., difficulty of customer stakeholders to

understand OO conceptual schemas) are discussed in Chapter 8.

7.6.2 Details and Discussion about the Link

Sections 7.4 and 7.5 have presented a ‚standard‛ way to derive the class

diagram of an IS and the state transition diagrams of its classes. It could

be used for any OO conceptual modelling-based approach for IS

development that uses those diagrams. However, OO-Method has

specific characteristics that differentiate it from other approaches. They

must be considered for further link of ETDs with OO-Method. Anyway,

other OO diagrams (e.g., UML diagrams) can be derived from and

transformed into OO-Method diagrams (Giachetti, Marím, Pastor, 2009).

The distinctive models and characteristics of OO-Method are a

consequence of an important characteristic and need on it. For generation

of a (100%) complete application, a conceptual schema must be precise

and complete. Otherwise, a model compiler could not generate the

application.

Most of the specific details for further link with OO-Method are out of

the scope of this thesis. For example, no specific way to link ETDs to the

presentation model of OO-Method is defined. Nonetheless, the following

subsections outline the details of the different models and characteristics

of OO-Method that can or may be specified from ETDs. When not

197

7.6 Further Link with OO-Method

considered possible (without much further study), the way in which the

models and characteristics should be specified is explained. Specification

would be based on information from or on agreement with customer

stakeholders.

It must also be indicated that system analysts that use OO-Method can

model some products requirements that may not have been specified in

the ETDs of an IS (e.g., a help message in user interface) and which

should be elicited from customer stakeholders too.

In addition, it is common that system analysts include design-level

details in the OO-Methods diagrams. Such details correspond to design

decisions that cannot be directly derived from requirements, unless

correspondence patterns were defined. For example, an association

between classes could be modelled as an inheritance relationship because

of a design decision related to the final implementation of the system and

data storage into a database management system.

Finally, it must be indicated that not only a single way to use OO-

Method exists, but its models can be used and combined in different

ways to generate an application. A concrete use depends on the

preferences of a system analyst. For example, some analysts prefer not to

model state transitions diagrams but to restrict service execution (on the

basis of the states of a class) in the object model.

Consequently, some details about further link with OO-Method that

may seem redundant because they are indicated in other model actually

are not. The point is that some ways for further link would be necessary

or not depending on the preferences of the system analysts. Some of the

indications provided may not be necessary because they correspond to

information specified in other part of an OO-Method conceptual schema.

7.6.2.1 Object Model

The characteristics and details of the object model of OO-Method that are

not defined from the rules presented in Sections 7.4 and 7.5 but that

could (and in general must) be specified in an OO-Method conceptual

schema are the following ones.

 Attributes

For each attribute of a class, system analysts must indicate if it is

an identifier of the class, and may also indicate its default value.

198

 7 Derivation of OO Diagrams

Constant attributes would be those that correspond to the

parameters of the creation method(s) of a class and are not later

modified by other method, and variable attributes would be the

rest. A calculation method (i.e., the result of its execution) could

be transformed into a derived attribute. Required on creation

attributes would be those that correspond to the parameters of the

creation method of a class. An attribute could have a null value if

it does not correspond to one of the parameters of the creation

method.

 Services

In general, OO-Method services of classes correspond to the

methods of a class diagram. Nonetheless, OO-Method defines

some special types of services. Shared events correspond to pairs

of methods of two different classes that must be executed in

conjunction so that their effect is relevant. These services would

correspond to the relationship methods of a given relationship,

which affect more than one class. Transactions represent the joint

execution of a set of services. These services would correspond to

a set of methods that must be executed in an ETD for its

completion. In addition, the creation and destruction (deletion)

methods are graphically specified (shown) by means of

stereotypes.

 Arguments

OO-Method arguments correspond to the parameters of the

methods of a class diagram. As attributes, they can have a default

value and be null. In the case of output arguments, their value

expression would correspond to an integrity constraint or

derivation rule.

 Agents

OO-Method agents are a special type of classes that depict that a

class can execute services of other classes. IS users would be

represented in the OO-Method object model as agents, even

though they did not correspond to classes already modelled in the

class diagram. The services that they could execute could be

determined from the information flows of the ETDs. For example,

a user (i.e., an agent) could execute a method of a class that has

199

7.6 Further Link with OO-Method

been defined from an input flow of him in an ETD. Attribute

visibility must also be specified for agents. This could be

performed from the output flows of the ETDs.

 Associations

In OO-Method, the roles of the classes of an association must be

specified. In addition, associations can be dynamic or static.

Dynamic associations mean that the object of an association can

change during the lifecycle of the other object. Static associations

mean that the relationship is constant. Determination of a

dynamic association would be based on the number of times that

a relationship creation method can be executed without executing

its corresponding relationship deletion method, in a similar way

to how maximum multiplicity of a relationship is determined. For

dynamic associations, both relationship methods should be

executed in the same ETD. First the relationship deletion method

should be executed, and then the relationship creation method.

 Identification dependency

In an aggregation, a component class may need its corresponding

composed class to be identified. Existence of such a dependency

must be specified.

 Other characteristics of associations

In OO-Method, associations can be: 1) flexible or strict; 2) disjoint

or non-disjoint; 3) null or not null, and; 4) mono-valued or multi-

valued. The cases (3) and (4) can be determined from the

multiplicities of the relationships of a class diagram. A strict

association corresponds to the aggregation defined in the

methodological approach. Disjoint and not disjoint associations

must be determined.

 Specialization and generalization

OO-Method specialization and generalization corresponds to the

inheritance relationships of the methodological approach. A

specialization is temporary if an object can switch between the

parent class and the child class, and it is universal otherwise. A

temporary specialization would be detected because of the

existence of creation or deletion methods associated to an

200

 7 Derivation of OO Diagrams

inheritance relationship of a class diagram. Generalizations can

also be disjoint or non-disjoint, and this fact must be indicated.

 Derivations, preconditions and integrity constraints

OO-Method has its own syntax for specification of derivations,

preconditions and integrity constraints. Therefore, those defined

in the class diagram or the state transition diagrams must be

translated.

7.6.2.2 Dynamic Model

The characteristics and details of the dynamic model of OO-Method that

are not defined from the rules presented in Sections 7.5 and 7.6 but that

could (and in general must) be specified in an OO-Method conceptual

schema are the following ones.

 Elements of the state transition diagram

In OO-Method, the initial state of a class is called pre-creation

state, the final state is called destruction state and the

intermediate states are called simple states. Events are called

actions and preconditions are called control conditions. Agents

responsible of action execution can also be defined, and they

could be derived from the ETDs as explained above. OO-Method

does not directly support specification of postconditions for the

events of the transition, but they can be specified with other

mechanisms (e.g., by including a ‚fictitious‛ service to check the

postcondition and defining a transaction that includes the event

and the new service).

 Statecharts

Complexity of state transition diagrams can be managed in OO-

Method by defining statecharts from them, which could be

modelled from the ‚standard‛ state transition diagrams derived

with the methodological approach too.

 Elements of the object interaction diagram

The object interaction diagram complements the state transition

diagrams of the classes of a software system by specifying

interaction and communication between objects. These objects can

be instances of a same class or of different classes. In relation to

201

7.6 Further Link with OO-Method

the link of ETDs with an object interaction diagram, triggers could

be derived from those methods of a class defined from

autonomous flows as well as from the triggers of the ETDs.

Candidates for global transactions and interactions are those sets

of methods that are modelled in a class diagram from a same ETD

and have been defined from autonomous flows.

It must be indicated that many details of the dynamic model of OO-

Method do not correspond to requirements information but to design

decisions. This is due to the fact that they specify internal characteristics

of a software system, which are out of the scope of this thesis. For

example, and in general, the way in which objects (instances of the

classes) will communicate each other is considered a design decision that

system analysts must make.

7.6.2.3 Functional Model

The characteristics and details of the functional model of OO-Method

that are not defined from the rules presented in Sections 7.4 and 7.5 but

that could (and in general must) be specified in an OO-Method

conceptual schema are the following ones.

 Evaluations

Evaluations of the functional model of OO-Method allow

specification of service effect. For example, assignation of a new

value to an attribute of a class as a result of service execution is

specified by means of an evaluation. In general, all the methods

defined in the class diagram that have parameters imply

determination of the initial values or changes in the values of the

attributes of a class. For more complex evaluations (that do not

represent design decisions), their formulae should be defined on

the basis of the integrity constraints and derivation rules of the

class diagram. Nonetheless, it may be possible that no business

rules had been defined (e.g., because it was not considered

necessary before). In this case, system analysts should discover

service effect.

 Evaluation conditions

Execution of an evaluation may be constrained by a condition, i.e.,

a precondition. Such a precondition should correspond to an

202

 7 Derivation of OO Diagrams

integrity constraint of the class diagram, a precondition of some

transition of the sate transition diagram or a business rule of an

ETD.

 Default values in evaluations

When specifying evaluations, system analysts can specify default

values by using functions. For example, ‚getSystemDate()‛ is a

function that could be used to indicate that the system should

obtain and store the current date. These functions may be used for

specification of evaluations for methods modelled from

autonomous flows. For input flows, users are responsible for

introducing the values that they want the IS to store, thus no

automatic generation is necessary.

7.6.2.4 Presentation Model

Modelling and specification of the user interface of and of the interaction

with a software system can be considered a very creative activity. It

highly depends on system analysts’ expertise and is strongly constrained

by end-users’ preferences. Therefore, a deterministic mapping between

ETDs and the presentation model of OO-Model is hard to define. It

would require further research, which is out of the scope of this thesis.

Nonetheless, some characteristics and details of the presentation

model of OO-Method that are not defined from the rules presented in

Sections 7.4 and 7.5 but that could (and in general must) be specified in

an OO-Method conceptual schema are the following ones.

 Level 1: Action hierarchy tree

This level represents the way in which users and a system will

interact, e.g., by using a menu in which users will select options.

In relation to ETDs, it is considered that the action hierarchy tree

of an application whose conceptual schema has been created after

performing the methodological approach should be structured

according to business processes and ETDs. This would imply that

the user interface would be task-oriented, and that end-users

would indicate the business process and the ETD (of all the

associated with that business process) that they need or want to

execute.

203

7.6 Further Link with OO-Method

 Level 2: Interaction units

This level represents the specific units for interaction (e.g., a user

interface for execution of an ETD) and the possible navigations

between them. On the basis of the information flows of the ETDs,

initial interaction units may be defined by analysing the

information that a (human) user and a system exchange. For

example, if a system shows a set of objects of a class (‚ 1{ Car /

make + model / }n‛), then the population pattern (which can be

used to show all the instances of a class) should be used.

Navigation may be based on the order in which the states of the

classes can be reached, or even execution order of the ETDs could

be determined, for instance, as a part of ETD analysis.

 Level 3: Basic elements

This level represents the specific components of the interaction

units, e.g., the set of buttons that will be displayed. Again, it is

considered that an initial set of basic elements could be derived

from the ETDs of an IS. For example, if an input flow from a

(human) user includes attributes, then something (e.g., a textfield)

is necessary in the user interface to introduce such information.

Finally, it must be indicated that no single user interface for and

interaction with a software system exists, but different and alternatives

ones can be defined. Even though an initial presentation model was

derived from ETDs, the model may require many modifications. As

indicated many times during presentation of the methodological

approach of the thesis for different aspects of the RE process, just one rule

exist for modelling of the user interface and of the interaction: that

customer stakeholders like and agree upon the proposed alternative.

7.6.2.5 Conceptual Modelling of Legacy Systems

A characteristic of conceptual modelling with OO-Method that has not

been mentioned above is the possibility of modelling elements of a legacy

system with which a new software system should interoperate.

In relation to the methodological approach, such systems have not

been considered much. The only mechanisms provided have been: 1) the

definition of a label to indicate that a flow object of a To-Be BPD would

be controlled by a legacy system, and; 2) the acknowledgement of the

204

 7 Derivation of OO Diagrams

possibility of the fact that an IS may interoperate with other systems, that

these system should be regarded as users and that interoperability details

can be specified in the quality attributes sections of an ETD. Both

mechanisms were presented in Chapter 6.

Modelling of legacy elements has not been considered when defining

the methodological approach, but it is not conflicting with it.

Furthermore, if such elements existed, then it could be assumed that its

system requirements and its conceptual schema would be already

known. Therefore, the main objective of the derivation of OO diagrams

stage (to obtain a complete and consistent OO conceptual schema that

meets system requirements) would have already been achieved.

The main difficulty of including legacy elements in an OO-Method

conceptual schema would be to exactly determine how they would

interoperate with a new IS. Such information should be obtained from

customer stakeholders (those who know how the legacy system works)

and may also imply the need of making design decisions related to

internal management of the interoperability in the new IS, which are out

of the scope of this thesis.

7.7 Summary

This chapter has presented derivation of OO diagrams, the fourth stage

of the methodological approach of the thesis. This stage allows system

analysts to obtain an OO conceptual schema of an IS that meets its system

requirements and is complete and consistent from a requirements-

perspective. Consequently, a SyRS in the form of ETDs is linked to OO

conceptual modelling-based IS development.

For performing the stage, first ETDs are analysed to specify several

details that are necessary for derivation of the OO conceptual schema of

an IS. Next, a class diagram and state transition diagrams are modelled

by following two sets of rules that determine the correspondence

between the system requirements of an IS and its OO conceptual schema.

Most of the rules are fully automatable, but system analysts must always

make some decisions when deriving an OO conceptual schema.

Finally, further link of the methodological approach with OO-Method

has been discussed. The initial OO conceptual schema derived can be

useful for any OO conceptual modelling-based approach for IS

development, but OO-Method has specific and distinctive characteristics

205

7.7 Summary

that require a deeper analysis of the correspondence between ETDs and

an OO-Method conceptual schema.

For those elements of an OO-Method conceptual schema that are not

derived by following the rules proposed for derivation of a class diagram

and of the state transitions diagrams of the classes, the (possible) way to

model or specify them has been presented. As a consequence, more

information in the object, dynamic, functional and presentation models of

OO-Method could be determined from ETDs. Nonetheless, many specific

details about the link require further research that is out of the scope of

this thesis.

Chapter 8

8 Evaluation

“In theory, there is no difference between theory and practice. But, in practice,

there is”

Jan L.A. van de Snepscheut

Once presentation of the stages of the methodological approach of the

thesis is finished, this chapter describes the evaluation that has been

performed to validate it. Evaluation has three main characteristics. First,

it has been targeted at gaining insights into the practical usefulness of the

methodological approach. Second, it corresponds to a qualitative

(flexible) research approach. And third, it is mainly based on a survey

with industry stakeholders.

Interviews have been conducted after explaining and applying the

methodological approach by means of different methods for validation of

RE approaches. As result of the survey, several lessons about the

methodological approach have been learned.

The chapter is organized as follows. First, evaluation of RE

approaches in industry and qualitative research are discussed. Next, the

methods, the industrial contexts and the process for evaluation are

described. Validity and lessons learned are then presented and discussed.

Finally, a summary of the chapter is provided.

208

 8 Evaluation

8.1 Background: Evaluation of RE Approaches in

Industry

Gaining insights into RE in industry is recognised as one of the main

needs for RE research because of the gap that exists between academia

and practice (Paech, et al., 2005). This is related to the fact that RE

approaches are not usually empirically evaluated. For example, a recent

study (Condori, et al., 2009) showed that very few publications on

techniques for requirements specification had an empirical evaluation.

Furthermore, most of the evaluations are not performed in industrial

contexts (see the references of the previous paragraph), but in laboratory

environments. If RE approaches are not evaluated in industry, then their

adoption in practice can be hindered (Ivarsson, Gorschek, 2009).

Although the validity and implications of laboratory evaluations have

been discussed and justified in literature (e.g., the adequacy of using

students as subjects (Runeson, 2003)), generalizability is always affected.

For example, and in general, conclusions from students would just be

useful to characterize the situation of novice practitioners.

As a solution, several authors have acknowledged the need and

convenience of evaluating RE approaches in actual industrial contexts

(e.g., (Davis, Hickey, 2002; Potts, 1993; Wieringa, 2005)). For example, a

RE approach should be evaluated with practitioners that use it or may

use it. This does not mean that evaluation in laboratory is inappropriate

but that evaluation in industry is considered more adequate.

Users can indicate how useful they considered a RE approach is or

can be on the basis of their expertise, as well as possible weaknesses and

improvements in relation to actual practice. This is the line that has been

followed for evaluation of the methodological approach.

In summary, evaluation of the methodological approach of the thesis

aims to gain insights into its practical usefulness, thus it has been

(mainly) validated with industry people. Such people can play the

different roles of the stakeholders taxonomy (Chapter 2): customer

stakeholder (customer manager, employee and end-user) and supplier

stakeholder (supplier manager, system analyst and programmer). These

roles are considered to correspond to the users (and stakeholders) of the

methodological approach, thus their feedback about it is very valuable.

 209

8.2 Background: Qualitative Research

8.2 Background: Qualitative Research

When addressing empirical evaluation (or research) in any research field

in general (Robson, 2002) and in software engineering in particular

(Wohlin, et al, 2000), two overall approaches exist: quantitative (aka

fixed) research and qualitative (aka flexible) research.

Quantitative research is mainly targeted at quantifying a relationship

between or comparing two or more groups as a result of the discovery of

a cause-effect relationship. Qualitative research is mainly targeted at

studying objects in their natural setting and at interpreting phenomena

on the basis of explanations from people of the setting (Wohlin, et al.,

2000). Nonetheless, a mixed approach could be adopted too (Robson,

2002). For example, a research approach may be used to facilitate design

of the other, or triangulation may be used to check results obtained from

a quantitative approach with those obtained from a qualitative approach

(or vice versa).

For evaluation of the methodological approach of the thesis, a

qualitative research approach has been adopted. Qualitative research is

usually characterised by the production of qualitative data (though

quantitative data can be produced and analysed too), the lack of a

complete pre-specification of the analysis to perform on the pieces of

data, and the possibility of design evolution as evaluation proceeds.

Qualitative research also aims to investigate and understand phenomena

within their real context and to seek new insights, ideas and possible

hypotheses for future research (Robson, 2002).

Other characteristics of qualitative research are that it is targeted at

learning from others, its data typically come from fieldwork by

interacting with people about their experiences and perceptions, the

pieces of data produced are more detailed than those produced in

quantitative research but comes from a smaller number of subjects, the

researcher is usually considered the instrument, and the data do not

include judgements but simply describe phenomena (Patton, 2001).

The above aspects about qualitative research allow the evaluation of

the methodological approach to be considered to correspond to a

qualitative research approach. This fact is further explained and shown in

the next sections.

210

 8 Evaluation

8.3 Methods for Evaluation

As mentioned above, evaluation of the methodological has been mainly

based on a survey with industry people. Details about them and the

industrial context in which evaluation has been performed are presented

in the next sections.

A survey is not just the instrument (e.g., the questionnaire or

checklist) for gathering information. It is a comprehensive research

method for collecting information to describe, compare or explain

knowledge, attitudes and behaviour (Fink, 1995). It is usually performed

in retrospect, for instance, after an approach has been presented or used,

and usually aims to produce descriptive conclusions (Wohlin, et al.,

2000).

A set of methods for validation of RE approaches is presented in

(Wieringa, 2008). Among them, methods in which an approach is applied

by its designers have been used in evaluation of the methodological

approach. Application of these methods allowed the survey to be

performed in retrospect, after the participants had been explained about

the methodological approach, had been involved in its application or had

observed it.

The methods that were used are the following ones.

 Lab demo

This method consists in using a RE approach on a realistic

example in an artificial environment in order to show that the

approach could work in practice. For evaluation of the

methodological approach, lab demos allowed analysis of the

mechanisms and guidelines defined, identification of potential

weaknesses that stakeholders may find and, consequently,

proposal of improvements. Lab demos were conducted prior to

evaluation with industry people.

 Illustration

This method consists in using a RE approach in a small example

in order to explain it and allow someone to understand it. For

evaluation of the methodological approach, illustrations allowed

presentation of the approach to industry people before getting

feedback from them.

 211

8.3 Methods for Evaluation

 Field trial

This method consists in using a RE approach in the field to gain

knowledge and show that the approach can be used in practice.

For evaluation of the methodological approach, field trials

allowed application of the approach in real settings in order to

identify actual weaknesses and improvements (i.e., based on

industrial practice) related to application. Customer stakeholders

were directly involved in application of the methodological

approach, whereas supplier stakeholders observed application.

Feedback was obtained during and after the development of the

field trials.

In summary, lab demos allowed analysis of application of the

methodological approach in existing, known cases to check if it would be

effective in past projects. Documentation about the projects and the

proposed solutions were available. Illustrations allowed development of

initial in-lab evaluations with stakeholders in order to know their opinion

about the methodological approach and their experience with the

challenges and objectives that it addresses.

With regard to field trials, they were performed as follows. First,

meetings with customer stakeholders to understand and model their

organizations were held. They described the activity of the organization,

organizational documentation was compiled and organizational

modelling was performed. As-Is BPDs were then modelled and customer

stakeholders validated them.

Second, purpose analysis was performed to discover means to meet

systems goals and to determine and agree upon their effect on business

processes. In most of the cases the purpose was straightforward (mainly

automation), thus the stage was not completely performed and To-Be

BPDs and As-Is BPDs were very similar.

Next, system requirements were specified and validated by customer

stakeholders, and OO diagrams were derived. Finally, development of

the field trials was discussed with the stakeholders that participated.

Although iterations were performed in all the stages (i.e.,

modifications were performed after initial validation by customer

stakeholders), the stage in which more iterations were necessary to obtain

the final versions of its output artefacts was organizational modelling.

212

 8 Evaluation

It must be noted that data collection was mainly based on feedback

obtained from stakeholders by means of interviews. Nonetheless, it is

recognised that data collection can also be performed, for instance, from

available documents (Yin, 2009), as done in the lab demos. In this case,

existing proposed solutions and solutions obtained by applying the

methodological approach were compared.

Although evaluation is mainly based on survey design, characteristics

of other methods for evaluation can be found. This is a result of the very

thin line that exists between different research methods (Wohlin, Höst,

Henningsson, 2003). Research methods share characteristics, thus their

application can be similar in several aspects.

Aspects of case study research (Runeson, Höst, 2009; Yin, 2009) can be

found in evaluation. For example, evaluation studied contemporary

phenomena in its natural context, was (mainly) exploratory, qualitative

and flexible, addressed ways (how questions) in which industry works

and the reasons (why questions) behind past problems and current

opinions, and there were many more variables than data points.

Post-mortem analysis (Wohlin, Höst, Henningsson, 2003) is conducted

on the basis of past events. For example, past experiences in IS

development were discussed with participants in evaluation. This

method can be performed by looking at project documentation (as done

for lab demos) or by interviewing people, and focuses on typical

situations that have occurred. The basic idea behind post-mortem

analysis is to capture the knowledge and experience from a specific case

or activity after it has been finished.

Some authors have called interview study to similar or related

evaluations (e.g., (Berntsson-Svensson, Gorschek, Regnell, 2009)).

However, in general it is considered that interviews are more a method

for data collection than a research method itself (e.g., (Kitchenham,

Pfleeger, 2008; Robson, 2002)).

Finally, it must be indicated that the methodological approach has

been developed progressively and changes have been made as a result of

evaluation. Weaknesses have been discovered and mitigated, and

advantage from possible improvements has been taken. For example,

relationship methods (Chapter 7) were not initially addressed. Modelling

of a relationship was considered enough, but practitioners’ opinion about

the convenience of the methods pointed that they should be considered.

 213

8.4 Industrial Contexts

8.4 Industrial Contexts

This section presents the different industrial contexts where the

methodological approach has been evaluated. They correspond to the

situations in which illustrations and field trials were performed, and are

divided into two types of contexts: evaluation in a collaborative project

with a company (hereafter referred to as project partner) and evaluation

with other industry partners.

The next subsections present more details about each context.

8.4.1 Collaborative Project

This thesis arose from a collaborative project between Unniversidad

Politécnica de Valencia and a company that uses OO-Method. The

purpose of the project was to link business and system domains in order

to solve problems that the project partner experienced and were related

to requirements. These problems mainly arose when system analysts

were inexperienced, they modelled large or complex systems, or the

organization for which an IS was going to be developed was part of an

application domain with which the system analysts had not previously

dealt.

As explained previously in the thesis, OO-Method can decrease

development time and increase productivity. However, these advantages

might disappear if requirements-related problems arise. System analysts

might have difficulty in modelling systems, and systems may be

deployed later than planned.

After analyzing its requirements practices, it was argued that the

project partner did not properly address business understanding,

communication with customer stakeholders, and, therefore, requirements

elicitation, specification and validation.

When OO-Method was applied in the project partner, the object

model was the main system model, and system analysts usually just

provided some unstructured textual descriptions about the requirements

and validated them on the object model or on the final application. Senior

system analysts felt comfortable with this approach, but it was

considered that it should be improved:

214

 8 Evaluation

 Class diagrams (e.g., an object model) alone might not be

appropriate for communicating and validating requirements,

there are few studies addressing the ability of customer

stakeholders to understand class models, and they can be

complex for people that have not been trained in object-oriented

modelling (Dobing, Parsons, 2000; Lubars, Potts, Richter, 1992).

In addition, objects might not be a good way of thinking about an

application domain (Vessey, Coner, 1994).

 Requirements validation should be carried out with reference to

organizational concerns instead of with reference to system

functionality (Rolland, Prakash, 2000). Furthermore,

requirements validation on the generated applications can cause

late detection of errors, thus their correction might be much more

expensive than if errors had been detected in earlier

development stages (Davis, 1993).

 Maintenance might be complex for systems whose analysts do

not longer work for the project partner. System and requirements

documentation is usually scarce, thus system modification can be

very difficult for new analysts of a system when they just have an

OO-Method conceptual schema and the application to

understand the system and its requirements.

As traditional approaches for conceptual modelling (e.g., (Olivé,

2007)), system analysts focused on obtaining the conceptual schema of an

IS instead of on analysing the application domain. However,

understanding of the application domain is essential for project and

system success (as explained below and justified in works such as

(Jackson, 1995)), and focus on obtaining a conceptual schema and

disregard of the process for creation may lead the RE process and a

software system to failure (Insfrán, Pastor, Wieringa, 2002; Rolland,

Prakash, 2000). System analysts needed detailed guidance for developing

the RE process so that a conceptual schemas meet system requirements.

As a solution, it was decided to develop a business process-based RE

approach for OO-Method. Its current state corresponds to the

methodological approach of the thesis. It must be indicated that none of

the RE approaches defined for OO-Method (Chapter 7) had been widely

adopted by the project partner and they were not used when the

collaborative project started.

 215

8.4 Industrial Contexts

A very positive point of collaborating with the project partner was

that it belonged to a holding company. As a result, other organizations of

this company participated in evaluation of the methodological approach.

The organizations were small/medium-size and operated in different

application domains (water supply, insurance, apartment rental…). Since

the project partner had developed ISs for the organizations previously,

comparison among the approach that the system analysts usually used

and the methodological approach was also possible.

Employees of the project partner played the supplier stakeholder role

in evaluation, whereas employees of the other organizations of the

holding company played the customer stakeholder role.

8.4.2 Other Industry Partners

In addition to the project partner, the methodological approach was

evaluated with other industry partners. These industry partners can be

divided into two categories: customer stakeholders and supplier

stakeholders.

Customer stakeholders of the other industry partners that participated

in evaluation corresponded to people that had played or were playing

the customer role in IS development. They worked as managers or

employees for their organizations and were IS users. The organizations

were part of different application domains (automobile manufacture,

construction, food and goods manufacture, food and goods distribution,

public transport, media, telecommunications, finance, public

administration, education, agriculture and hotel business).

In addition, the methodological approach was evaluated with

supplier stakeholders. More specifically, managers (including company

managers and project leaders), system analysts and programmers from

several software development companies participated in evaluation. The

application domain at which the software systems of the companies were

targeted was variable in most of the companies (i.e., they companies did

not only develop ISs for a domain). Nonetheless, some of companies

were specialised in specific domains (e.g., finance, public administration,

education and telecommunications).

In both cases, participants’ backgrounds were heterogeneous

(education, years of experience, number of IS development projects…).

216

 8 Evaluation

When field trials were performed with other industry partners, just a

part of an organization was used. Therefore, they probably should be

regarded as illustrations. Although they may be regarded as field trials

because actual cases were used, they mainly aimed to show application

of the methodological approach by means of an example.

8.5 Evaluation Process

This section describes the evaluation process performed to conduct the

survey. Information about the methods for validation of RE approaches

that were applied before data collection has been presented in Section 8.3.

The evaluation process is presented as proposed in (Kitchenham,

Pfleeger, 2008).

Presentation of the evaluation process mainly focuses on the part of

the survey related to the interviews (after use of illustrations and field

trials). Nonetheless, details about lab demos are provided when

considered necessary.

8.5.1 Objectives Definition

As already mentioned, the main goal of the survey was to gain insights

into the practical usefulness of the methodological approach (in IS

development). The research questions analysed in relation to application

of the approach were:

RQ1: What weaknesses may stakeholders find?

RQ2: What advantages do stakeholders find?

RQ3: What limitations do stakeholders find?

Lab demos were used to answer the first questions, whereas

illustrations and field trials were used to answer the rest of questions. In

relation to the advantages and limitations, analysis of both current and

past situations and experiences was aimed, trying to discover and

understand the reasons behind stakeholders’ perspectives.

8.5.2 Survey Design

In addition to qualitative, the survey is both cross sectional and

longitudinal (Kitchenham, Pfleeger, 2008), and explorative (Wohlin, et al.,

2000). Interviews were chosen for data collection.

 217

8.5 Evaluation Process

The survey was cross sectional because most of the participants were

interviewed once and at a fix point of time. Nonetheless, others were

interviewed several times, thus the survey was longitudinal too. For

example, some employees of the project partner provided feedback

several times, as development of and modifications in the methodological

approach were presented to them.

The survey was explorative because it mainly aimed to get data and

analyse results to improve the methodological approach from a practical

perspective. The survey was not targeted at determining the distribution

of some perspective (as a descriptive survey) neither at explaining a

given aspect of a population (as an explanatory survey). It also aimed to

discover what is happening in little-known situations, what is almost

exclusive of qualitative research (Robson, 2002).

With regard to the interviews, they are one of the most common

methods for data collection in qualitative studies (Patton, 2001) and in

surveys (Wohlin, et al., 2000). Among their types, unstructured

interviews (Robson, 2002) were conducted.

In this type of interviews, the interviewer has a general area of interest

and concern but lets the conversation develop within this area. The

interview can be completely informal. For example, a meeting in which

people discuss about a specific subject (i.e., the area of interest) can be

considered an unstructured interview.

The areas of interest of the interviews were related to the research

questions of the survey. They focused on the challenges and objectives

addressed in the methodological approach (Chapter 1) and on its

principles (Chapter 3), as well as on the artefacts, mechanisms and

guidance proposed (Chapters 4, 5, 6 and 7). As mentioned above,

feedback from both past and current experiences was aimed.

8.5.3 Development of a Survey Instrument and

Instrument Evaluation

Given that interviews were unstructured, a specific instrument was not

developed (consequently neither evaluated). The researchers (i.e., the

designers of the methodological approach) were regarded as the

instruments, what it is usual in qualitative research as explained above.

218

 8 Evaluation

How validity was affected by the lack of a specific survey instrument

is discussed in Section 8.6. Nonetheless, it must be noted that all the

interviews focused on aspects (challenges, objectives and principles) of

the methodological approach. Such aspects have been defined both from

literature and from problems found in industry. This fact can be

considered to address the step related to search the relevant literature

when developing a survey instrument. Furthermore, references and

details about works whose results and conclusions are in line with the

lessons learned from evaluation are provided in Section 8.7.

8.5.4 Data Collection

The designers of the methodological approach were the interviewers for

data collection. Participants in the survey were selected through a

combination of convenience, snowball and maximum variation sampling

(Patton, 2001). Known (industry) people were contacted in order to ask

them about the possibility of providing feedback about the

methodological approach. All of them worked in Spain, for regional,

national or international organizations.

In the case of the project partner, meetings were agreed and held

periodically in order to explain and discuss the progress of the

methodological approach. For application of the methodological

approach with people from other organizations of the holding company

of the project partner, the project partner was in charge of agreeing with

the other organizations when they would participate and who would

participate.

The people contacted and those who work for the project partner and

for other organizations of the holding company corresponded to people

that played the roles of the stakeholders taxonomy (proposed) in their

organizations. It was planned to try to obtain feedback from at least 5

participants of each role.

In relation to the number of subjects that participated in the

interviews, the interviews with participants from other industry partners

were individual. The interviews with participants from the project

partner and from the other organizations of the holding company were

group interviews, in which several people participated in the discussion

and provided feedback, in a similar way to workshops.

 219

8.5 Evaluation Process

For data collection, the duration of the interviews and meetings were

limited to two hours, although in some case less time was enough. All

interviews lasted at least 1 hour. Data were collected by writing and

taking notes about facts and opinions that the participants provided in

relation to the methodological approach and past and current

experiences.

Although it is recognised that taping and transcription are better

suited when conducting interviews (Patton, 2001; Robson, 2002),

problems were found when people were requested to consent to record

the interviews. Most of them did not agree upon (they did not feel

comfortable), thus taking notes was finally adopted for data collection in

all the interviews.

Since the methodological approach has been defined progressively

and modifications have been made as weaknesses and improvements

were found, feedback about the whole approach was not obtained

throughout all the evaluation. For example, feedback from the project

partner and people that work for other organizations of the holding

company was not obtained for the current sate of the derivation of OO

diagrams stage. The collaborative project finished before the current state

of the stage was reached.

In many interviews only feedback from specific aspects of the

methodological approach was obtained, i.e., feedback from those aspects

in which the interviewees were more interested or that were more

familiar to them. In addition, feedback for the whole methodological

approach could not be obtained in other cases because enough interviews

could not be conducted. As a consequence of the little available time that

many participants in evaluation had, they could not be interviewed as

many times as necessary and desired.

With regard to the lab demos, designers of the methodological

approach used information about past projects (realistic examples) that

they had or that they were provided with. Since the methodological

approach has been defined progressively and modifications have been

made, it was been applied several times in some examples. This means

that different versions of the approach were applied in the same

examples.

220

 8 Evaluation

8.5.5 Analysis

Table 8.1 shows the number of interviewees for each role of the

stakeholders taxonomy that participated in the survey and whose results

from interview analysis are reported. The number of organizations

involved is shown too. With regard to lab demos, 6 examples were used.

Further details (i.e., background information) about the participants

cannot be provided for confidentiality reasons. Nonetheless, some agreed

on presentation and explanation of specific situations related to their

experience when presenting the lessons learned, provided that the

information was presented in an anonymous way. Therefore, more

details about the practice and experience of the participants and their

organizations, and that could identify them, cannot be provided.

Analysis was performed for 49 people from 38 organizations. The

organizations of employees and end-users coincided in 5 cases, of

supplier managers and system analysts coincided in 1 case, and of system

analysts and programmers coincided in 1 case. In addition, 4 system

analysts worked for the same company. As explained below, results from

some interviews (people different to these 49) are not reported.

Although some participants played different roles in their

organizations (e.g., a person could be both an employee and an end-

user), just one of the roles was considered for the survey. In summary,

each interviewee of Table 8.1 corresponds to a different person.

The main activity of analysis was to partition the responses. It

consisted in identifying how similar/distinct the feedback from different

participants was in order to obtain a set of lessons learned (Section 8.7)

from evaluation and try to improve the methodological approach.

Table 8.1 Summary of subjects

Stakeholder role Number of interviewees Number of organizations

Customer manager 5 5

Employee 10 10

End-user 9 9

Supplier manager 8 7

System analyst 10 7

Programmer 7 7

 221

8.5 Evaluation Process

Both individual interviewees, sets of interviewees and organizations

were analyzed. It was determined that lessons learned may correspond to

perceptions, experiences or practices (e.g., importance of a principle of

the methodological approach in industry) from specific types of

stakeholders (first column of Table 8.1) or sets of specific types of

stakeholders (e.g., customer stakeholders), or to organization-wide issues

(e.g., use of a given approach for requirements specification).

Three types of lessons learned were sought on the basis of their source

according to three criteria:

 Lessons learned that corresponded to direct feedback from

interviewees: they corresponded to facts and opinions that the

participants provided during evaluation of the methodological

approach; their acronym is DFI (Direct Feedback from

Interviewees).

 Lessons learned derived by the designers of the methodological

approach on the basis of feedback from interviewees: they

corresponded to assumptions that the designers made about the

methodological approach after evaluating it; their acronym is AFF

(Assumption From Feedback).

 Lessons learned derived by the designers of the methodological

approach on the basis of application of the approach: they

corresponded to assumptions that the designers made about the

methodological approach after applying it in the lab demos,

illustrations and field trials; their acronym is AFA (Assumption

From Application).

For determination of those lessons learned considered relevant, and

their degree of importance/relevance, other two types of lessons learned

were defined on the basis of two criteria:

 Primary lesson learned (PLL): this type corresponded to those

lessons learned that 1) held for half or more the subjects under

analysis, and 2) the number of subjects for which it held was

bigger than 2 (for individual subjects, they had to work for

different organization); depending on the issue, the subjects under

analysis could be organizations, specific types of stakeholders,

union of specific types of stakeholders or the examples used in the

lab demos.

222

 8 Evaluation

 Secondary lesson learned (SLL): this type corresponded to those

lessons learned that 1) did not fulfil the criterion of PLLs and 2)

held for at least a 10% of the subjects under analysis or for two

subjects (when 10% of the sample for a given part of the sample

was smaller than two, such as for system analysts).

In short, the first types and criteria allowed determination of the

source of a lesson learned, whereas the latter allowed determination of

the degree of importance/relevance of a lesson learned. Both categories

were not disjoint, but they were combined for characterization of a lesson

learned. For example, a lesson learned could be a DFI-PLL if it was

defined from the opinion of the majority of the subjects. A lesson learned

may even be a combination of DFI, AFF and AFA (e.g., AFF/AFA-PL).

As a result of the definition of the types of lessons learned and of their

associated criteria, report on lessons learned that may be very specific to

a specific subject (and thus probably may not be generalizable) is avoided

and feedback from some interviewees is not reported. More specifically,

feedback from five interviewees (and their corresponding five

organizations) is not considered when reporting on the lessons learned.

The inclusion/exclusion of the feedback from these interviewees did

not have any impact on the determination of the source and relevance of

the lessons learned. For example, for PLLs their criterion still held despite

exclusion of the feedback, and for SLLs inclusion of the feedback did not

cause determination of more lessons learned.

Nonetheless, feedback from the interviewees excluded is considered

as relevant or important for development, evaluation and evolution of

the methodological as the rest of facts or opinions. Indeed, some

modifications in the methodological approach were made on the basis of

feedback from just one subject (e.g., the project partner). For most of the

cases, relevance of such feedback was confirmed by coinciding later with

feedback from other subjects.

Awareness and solution of a single problem or of problems of a single

organization can be very important. In fact, their study is possible and

very common, for instance, in case study research (Runeson, Höst, 2009)

and the value of such studies cannot be denied despite their limitations.

However, for determination and report of the lessons learned, individual

cases were considered to be less valuable than common cases (between

subjects) and negatively affect generalization of the evaluation.

 223

8.6 Validity

8.6 Validity

A fundamental question concerning the results and conclusions of an

evaluation is how valid they are (Wohlin, et al., 2000). Validity of

qualitative research highly depends on the quality of the researchers that

perform it (Patton, 2001). For example, the methodological skill,

sensitivity and integrity of a researcher (regarded as quality aspects)

affect validity.

Researcher’s quality can be considered related to researcher’s

expertise. It can be presumed that the validity of a qualitative study

conducted by a junior researcher (e.g., a PhD student) is more threatened

that the validity of a study conducted by a senior researcher (e.g., a

Professor that has advised and supervised several PhD students in

conduction of qualitative studies).

Even though a junior researcher strives for properly performing

qualitative research, expertise is usually gained as a result of practice by

participating in different studies. It is likely that many details and aspects

will be better known and thus addressed after having performed or

supervised several studies.

Nonetheless, review of and reliance on relevant, existing and widely-

accepted literature from well-known and experienced authors (e.g.,

(Kitchenham, Pfleeger, 2008; Patton, 2001; Robson, 2002, Wohlin, et al.,

2000)) can help a junior researcher to better address and thus perform

qualitative research.

It must also be indicated that the methodological was first evaluated

with the project partner and later with the other industry partners.

Therefore, and as a result of the expertise gained from evaluation with

the project partner, it can be considered that validity of evaluation with

other industry partners is less threatened. In short, the later an interview

was performed, the more valid it can be considered.

Other aspects of evaluation validity are discussed in the rest of this

section on the basis of the perspectives proposed in (Wohlin, et al., 2000).

In addition, some limitations associated to specific lessons learned are

presented in the next section.

224

 8 Evaluation

8.6.1 Construct Validity

Construct validity is concerned with the relation between a theory and its

observation. Threats to construct validity refer to the extent to which the

setting of an empirical study actually corresponds to the construct under

study. In evaluation of the methodological approach of the thesis, this

validity is related to the information sources used (participants and

examples of the lab demos) and the characterization of the theory under

analysis (business process-based requirements specification and object-

oriented conceptual modelling of ISs).

Inadequate preoperational explication of construct can be considered

mitigated by extensive reference to literature and actual problems in

industry to characterise the theory. Mono-operation bias was addressed

by interviewing people that had the different roles of interest and by

using several examples in the lab demos, and mono-method bias by

aiming to get feedback both from current and from past experiences.

In relation to interaction of different treatments, there exists a threat in

the fact that, for instance, participants from the project partner were

interviewed several times as development of the methodological

approach progressed. Their previous perspectives on the approach may

have influenced their opinion at a given later moment. In a similar way,

interaction of testing and treatment may be affected because participants

may have changed their behaviour as a result of previous knowledge

about the methodological approach.

Hypothesis guessing was addressed by emphasising the need of

obtaining actual opinions, information and facts from participants on the

basis of their experience. Evaluation apprehension was mitigated by

guaranteeing anonymity and confidentiality when publishing the results.

Nonetheless, a remaining threat to evaluation apprehension is that

participants may not feel completely free to express their opinions in

group interviews.

Finally, experimenter expectancies are considered to having been

properly addressed because both positive aspects and negative aspects of

the methodological approach were discovered and thus are reported as a

result of evaluation. Existence and report of only positive results may

suggest that experimenter expectancies may have affected the

observation.

 225

8.6 Validity

8.6.2 Conclusion Validity

Conclusion validity is concerned with the relationship between a

treatment and the conclusions drawn from it. Threats to conclusion

validity refer to the ability to draw correct conclusions about

relationships between the treatments and the results of an empirical

study. In evaluation of the methodological approach of the thesis, this is

related to the correctness of the lessons learned about the roles and

organizations of the participants and the examples of the lab demos.

A way to address conclusion validity and mitigate possible threats

was to confirm with interviewees those facts and opinions whose

understanding (on the basis of the notes taken) was not completely clear,

both during and after the interviews. For lab demos, the two designers of

the methodological approach had to agree on the lessons learned.

Since obtaining statistical significance was not a goal of the survey

(otherwise, probabilistic sampling methods should have been used

(Kitchenham, Pfleeger, 2008)), the threats related to statistical issues were

not addressed.

Fishing is considered to not have affected the survey because of the

same reasons discussed for experimenter expectancies. Both negative

results and positive results about the practical usefulness of the

methodological approach were obtained. This means that some lessons

learned indicate positive aspects, whereas others indicate negative

aspects. Furthermore, evaluation was (partially) targeted at identification

of possible weaknesses to mitigate them, not just at determination of

positive aspects of the methodological approach.

Threats to reliability of measures and reliability of treatment

implementation were that unstructured interviews were conducted, no

specific instrument was developed for the survey, all the participants

were not interviewed about the same, exact issues and the details

presented to interviewees about the methodological approach varied

according to their background (e.g., knowledge about a subject and

experience on it). Therefore, it is difficult (or even impossible) to

guarantee that, for instance, the outcome would be same if measurement

of a phenomenon (from conduction of an interview with a participant)

was performed twice.

226

 8 Evaluation

Random irrelevancies in experimental setting were mitigated by

according meetings for conducting the interviews at moments that were

convenient both for the interviewer and the interviewee. In addition, the

meetings were held in places that were chosen so that participants did

not get distracted.

8.6.3 Internal Validity

Internal validity is concerned with the causal relationship between a

treatment and its results. Threats to internal validity refer to discovery of

a causal relationship in an empirical study that does not exist. In

evaluation of the methodological approach of the thesis, this validity is

related to the truth of the lessons learned for the roles and organizations

of the participants and for the lab demos.

History was mitigated by considering just one role for those

participants that may correspond to several, and maturation by limiting

the duration of the interviews to two hours. Furthermore, many

interviews lasted less time. Nonetheless, participation in several

interviews may have affected maturation.

The risk of instrumentation is evident because of the lack of a specific

instrument for the survey. Interaction with selection may have occurred

in the people that participated in several interviews. Compensatory

rivalry may also have happened if participants tried to unjustifiably

show that their practice is better than the methodological approach.

Nonetheless, emphasising the need of actual opinions, information and

facts should have mitigated it.

In summary and in general, threats to internal validity are not

considered very important for the survey because discovery of

(statistically) significant cause-effect relationships was not aimed. It is

also considered that criteria defined for identification of relevant lessons

learned increased internal validity.

8.6.4 External Validity

External validity is concerned with the generalization of the conclusions

of an empirical study. Threats to external validity refer to the ability to

generalize the results and conclusions beyond the setting of the study. In

evaluation of the methodological approach, this validity is related to how

 227

8.7 Lessons Learned

general the lessons learned are, i.e., if they are related to general practice

and could be considered that they could affect more cases that those

associated to the participants in the survey.

In general, threats to external validity are not considered very

important for the survey. The survey is qualitative and exploratory, thus

it does not aim to generalize conclusions beyond its actual setting but to

explain and understand the phenomena under analysis. Nonetheless,

understanding the phenomena under study may help in understanding

other cases. In addition, many results and conclusions coincide with

other works, as presented and discussed in the next section, and the

subjects’ background was heterogeneous.

Use of realistic environments (practitioners that corresponded to

supplier stakeholders and people that corresponded to customer

stakeholder) and of realistic examples (in the lab demos) is considered

very positive for external validity despite other threats existed.

Interaction of selection and treatment was mitigated by interviewing

people that played those roles considered to correspond to the most

relevant stakeholders for IS development (stakeholders taxonomy).

Interaction of setting and treatment was addressed by searching subjects

that had participated or were participating in development projects.

A remaining threat to external validity is that many details about the

participants and their interviews cannot be presented for confidentiality

reasons. This also affects the value of the evaluation (Ivarsson, Gorschek,

2011).

8.7 Lessons Learned

Presentation of lessons learned is a common way to report on results and

interpretation of qualitative research (Ivarsson, Gorschek, 2011).

Furthermore, lessons learned can be very compelling and valuable for

practitioners (if they correspond to industrial issues) because they

provide evidence of actual situations that they face or may face.

It must be indicated that lessons learned may even be regarded as a

research method itself, as case study or survey research. Nonetheless, for

evaluation of the methodological approach, lessons learned are just

considered to correspond to the results of the evaluation and their

interpretation.

228

 8 Evaluation

For this thesis, several lessons have been learned after evaluating the

methodological approach on the basis of the feedback obtained from

participants in evaluation and from the observations made by the

designers of the approach. Some of them have driven definition of the

mechanisms and guidance of the approach and have been implicitly

addressed in previous chapters (e.g., problems related to specification of

information flows as a unique flow were mentioned in Chapter 6).

Indeed, many decisions and choices on the methodological approach

have been based on lessons learned.

This section presents the lessons learned distinct from issues already

discussed in the thesis. It is considered that those issues do not need to be

discussed (again) in this chapter because the lessons learned presented

are related to concerns that affect and are related to application of the

methodological as currently defined.

Application of and discussion about previous versions of the

methodological approach is considered unnecessary because the

corresponding issues do not affect the approach anymore. For example, it

is considered unnecessary to discuss about the fact that BPDs can get

tangled if domain entities are (always) modelled with data objects.

Nonetheless, issues mentioned in previous chapters are presented in

lessons learned when it is considered that they have not been extensively

enough discussed or not enough evidence has been provided. For

example, the need of detailed guidance for application of a RE approach

has been indicated throughout the thesis, but details about concrete,

actual cases are shown in this section.

Lessons learned are presented from more general ones (they can be

considered to affect the RE process of IS development projects in general,

i.e, they are related to RE practice in general) to more concrete ones (they

mainly affect and are related to the methodological approach of the

thesis). How the lessons learned have been and are addressed in the

methodological approach is also discussed.

Although it may be argued that some of the lessons learned

(especially for those for RE practice in general) correspond to issues that

have been widely acknowledged in literature and thus are not very

novel, it is considered relevant to present and discuss them. They are

concerns that still affects RE practice, and thus research. Therefore, they

are important and should be reported.

 229

8.7 Lessons Learned

The main lessons learned are presented in the next subsections, firstly

the general ones (10 lessons learned) and secondly the specific ones (7

lessons learned). For each lesson learned, its type (source and relevance)

is specified. It must be noted that the names (and thus the explanation) of

some lessons learned can enclose lessons learned of several types. In

addition, some lessons learned (not considered main ones) are presented

within explanation of others.

Table 8.2 shows the correspondence between the lessons learned and

the research questions of evaluation for which the lessons learned

provided answers. As shown in the table, it was considered that a lesson

learned could provide answers for more than one research question. For

example, a lesson learned may be related to a positive aspect of the

methodological approach identified from (some) interviewees’

perspectives (RQ2), but some details of the approach may not be

completely satisfactory for other interviewees (RQ3).

Table 8.2 Research questions of evaluation addressed in each lesson learned

Lesson Learned
Research Question

RQ1 RQ2 RQ3

LL1 X

LL2 X

LL3 X X

LL4 X

LL5 X

LL6 X

LL7 X

LL8 X

LL9 X X

LL10 X X

LL11 X X

LL12 X

LL13 X

LL14 X

LL15 X X X

LL16 X X X

LL17 X

230

 8 Evaluation

When reviewing Table 8.2, it can be observed that there exist more

lessons learned related to positive aspects of the methodological

approach (RQ2) than to negative aspects (RQ1 and RQ3). This is a

consequence of having already addressed most of the negative aspects of

the methodological approach discovered during its definition. When it

was considered that a weakness could be mitigated, means to achieve it

were studied and introduced.

8.7.1 Lessons Learned Related to RE Practice in General

LL1) Understanding and knowledge of the application domain is a key

for success of software development projects and of ISs (AFF-PLL)

The first part of the interviews with supplier stakeholders was aimed

to know and understand the mission of their organizations, i.e., what

types of projects and systems developed and at what applications

domain they were targeted. It also involved discussion about the success

of the organizations, of their projects and of their products.

In relation to and on the basis of these aspects, feedback about the

importance of understanding of and knowledge about the application

domain was obtained. These aspects were considered essential when

defining the methodological approach, but gaining insights into to what

extent they were important in practice was aimed.

The feedback obtained was in line with the initial believes of the

interviewers. Many cases and much evidence were found about the fact

that a project or system can be deemed to failure if supplier stakeholders

do not know the application domain. In the same way, likelihood of

success is higher when the application domain is familiar.

As an example, a software development company was found that not

only was specialised in software system for a particular application

domain (finance), but also for specific needs of the domain. In addition,

that part of the domain was not well-known for most of industry.

The company had found a market niche in which it stood out over

competitors and had obtained projects when competing with major IT

companies. Even the company had found cases in which potential clients

had not believed in the possibility of obtaining the products that it

offered. Past projects had failed in the potential clients because of the

 231

8.7 Lessons Learned

difficulty of understanding and the complexity of the application domain

and thus of developing an adequate product for it.

Understanding of the application domain is one of the principles of

the thesis (Chapter 3). Works that point its importance when performing

the RE process (and developing an IS) can be found easily (e.g., (Jackson,

1995)). Some works are based on empirical studies or practical experience

(e.g., (Berntsson-Sevensson, Aurum, 2006; Firesmith, 2007; Gulla, 2004;

Lauesen, Vium, 2005; Sadraei, et al., 2007)).

LL2) IS support to business processes is essential (DFI-PLL)

An issue on which consensus was reached with all the interviewees

was the fact that ISs must support the business processes of an

organization. Even though business processes are not always modelled

during the RE process of and IS, the activity of an organization is always

considered when an IS is going to be developed.

In the customer stakeholder side, interviewees indicated the

dissatisfaction that had existed in their organizations when a new IS had

been introduced but it had not allowed end-users to perform their work

as expected or wished. For example, cases in which ERP systems had not

been adequately customized for their use in organizations resulted in

problems when using them. Instead of facilitating and improving work,

they negatively affected end-users’ performance. End-users even stopped

using the “new” ERP and resumed using the previous IS until the ERP

was modified, despite the limitations of the IS.

In the supplier stakeholder side, interviewees indicated how

important was that an IS supported end-users’ (organizational) activity

so that a project was successful, and some examples of problems were

obtained. What was partially surprising was that, even though supplier

stakeholder acknowledged problems related to inadequate knowledge

about and thus to support for business processes, most of the

organizations neither used nor planned to use business process

modelling as part of their RE process. Nonetheless, some interviewees

stated that they had to study and try its adoption.

The problem of inadequate support to business processes in the

supplier stakeholder side was also clearly related to the need of

knowledge and understanding of an application domain. For example, a

case was found in which an IS had been developed for a factory on the

232

 8 Evaluation

basis of the activity in a different factory of the same company. It had

been assumed that all the factories worked in the same way, but it was

not so The application domain was not known enough, and consequently

the business processes of the first factory were not properly supported.

Support to business processes is one of the principles of the thesis,

and its importance is widely acknowledged in literature (e.g., (Becker,

Kugeler, Rosemann, 2003; Dumas, van der Aalst, ter Hofstede, 2005)).

Some works that report on empirical studies or practical experience and

have also indicated the importance of this issue are (Cardoso, Almeida,

Guizzardi, 2009; Gulla, 2004; Indulska, et al., 2009; Lauesen, Vium, 2005;

Sadraei, et al., 2007).

LL3) Awareness of IS goals is important (DFI-PLL), but systematic

modelling and analysis is not a wide-spread practice (AFF-PLL)

Another issue for success of an IS and its development project that

was widely acknowledged among supplier stakeholders was the need of

knowing the (ultimate) goal of an IS.

In most of the projects it is not enough to know that a customer wants

an ERP system, but also it is necessary to know why the system is

necessary to specify the (actual) requirements of the system and provide

an adequate solution. For example, an ERP system in a factory may be

necessary so that employees follow the quality policies of the company

and the managers of the company can know in real time how such

policies are being addressed.

Despite the acknowledged 1) importance of awareness of the purpose

of a system, 2) importance of analysis and determination of its effect on

the business processes of a customer (DFI-SLL), 3) interest that

interviewees showed in the purpose analysis stage (specially in the

patterns for business process reengineering; DFI-SLL), no supplier

stakeholder neither software development company was found that used

some approach for modelling and analysis of the purpose of an IS, i.e.,

use of some goal-oriented RE approach was not found.

The importance of knowing and addressing the goals of a software

system for project success has been acknowledged in the principles of the

thesis and in works such as (Borg, et al., 2003; Charette, 2005; Gulla, 2004;

Lausen, Vium, 2005; Liu, et al., 2009). In relation to the narrow adoption

of goal-oriented RE approaches in industry, it is acknowledged in

 233

8.7 Lessons Learned

(Matulevicius, Heymans, 2007). Recent surveys about techniques and

approaches for requirements elicitation and specification also indicates

that either goal-oriented RE approaches are not used (e.g., (Liu, et al.,

2009; Neill, Laplante, 2003)) or that they are used by very few

practitioners (e.g., (Rouibah, Al-Rafee, 2009)).

A limitation of this lesson learned is that the interviewees worked for

companies that focused on provision of IT solutions and not on business

consulting. It is considered that business consulting companies may be

more concerned about reengineering the business process of an

organization from the analysis of its business goals, for instance, on the

basis of strategy maps of the Balanced Scorecard (Kaplan, Norton, 1996).

In other words, it is more likely that business consulting practitioners

analyse business goals and how they are related to business processes.

LL4) Practitioners may be reluctant to use and combine several

modelling techniques (AFF-PLL)

One of the main characteristics of the methodological approach is that

it combines several modelling techniques (and approaches) in order to

address (part of) the RE process of an IS. Although it was decided so

because of the belief in its need, the actual practice is that such a

combination of techniques is not liked by practitioners in general.

Combination has been found in some cases (DFI-SLL; e.g., use of

different UML diagrams), but most of the system analysts interviewed do

not like having to use more than one technique. They prefer to just use

one even though it may present limitations and problems may arise later.

Use of several techniques is usually based on company

recommendations and policies, not on the belief of practitioners in their

suitability (DFI-SLL). Furthermore, system analysts rely more on their

expertise than on the possible advantages of using a technique (AFF-

PLL). For example, practitioners that use OO-Method usually do not

create a dynamic model, but “adapt” the object model so that it includes

the details that are supposed to be in the dynamic model.

In relation to the methodological approach, the combination of BPMN

and the Map approach first and the later derivation of OO diagrams was

not “very” welcome in general among system analysts (AFF-PLL). This

issue is further explained, analysed and discussed in LL10.

234

 8 Evaluation

Some authors have provided evidence of the reluctance and dislike of

practitioners to use and combine several modelling techniques (e.g.,

(Becker, et al., 2010) for business process modelling). Nonetheless, other

works have acknowledged the need of combining and using different

techniques in the RE process depending on the problem to solve (e.g.,

(Dieste, Juristo, Shull, 2008)). It has also been acknowledged that system

analysts relay mainly on heuristics acquired through experience when

working or deciding how to work (Cox, Phalp, 2007), and programmers

may have problems when using several RE techniques/models and may

not like having to use new models (Lauesen, Vinter, 2001).

Other authors have recognised that problems when using and

interpreting different models of a same system can arise (Kim, Hahn,

Hahn, 2000). A way to mitigate such problems is to determine clear

references between the models. In this sense, traceability and

relationships among the models of the methodological approach exist.

This issue is clearer and explicitly shown in Appendix A (conceptual

framework) of the thesis.

Furthermore, and as acknowledged by the same authors of the

previous work, the use of several models is usually the norm, not the

exception, in IS modelling in real projects. This has been further

confirmed by studies that have surveyed the use and combination of

diagrams and techniques for IS modelling in industry (e.g., (Dobing,

Parsons, 2006)).

It is considered that this lesson learned is limited in the same way as

LL3. It is believed that use and combination of different modelling

techniques is more usual in business consulting than in IT consulting. For

example, ARIS (which, as mentioned in Chapter 2, is widely used in

industry in several European countries) can be considered to be more

focused on business issues and requires the combination of several

modelling techniques, if followed as defined.

Another limitation is related to the size of the systems that the

interviewees developed. It is widely recognised that the more complex a

system is, the more models to analyse it and design it may be necessary

to better understand it and find solutions (e.g., (Kim, Hahn, Hahn, 2000)).

In addition, system analysts’ feedback may have been influenced by the

fact that most of them had previously worked as programmers.

 235

8.7 Lessons Learned

LL5) Homogeneous granularity of system requirements can be

important (AFF/AFA-SLL)

During the definition of the methodological approach, the need of

homogeneous granularity (abstraction level) of ETDs so that their

specification can be considered consistent and significant (Chapter 6) was

determined. As a result, the significant criterion for ETDs was defined.

When discussing homogeneous granularity with supplier

stakeholders, some interesting insights were gained. On the one hand, it

was not regarded as a very important concern for most of the supplier

stakeholders (DFI-PLL) and use of explicit criteria to guarantee it was

uncommon (DPI-PLL). Granularity of system requirements (e.g., use

cases) usually depended on system analysts’ experience and own criteria

and was not wide-spread knowledge/practice in companies.

Nonetheless, explicit criteria were found in some organizations (AFF-

SLL). For example, a company defined the granularity of a use case for

activation of a service provided to its clients as the sequence of steps

necessary since a client requests the activation (via SMS or the Internet)

until he receives the notification of activation (via SMS). For each use

case, scenarios were specified and the necessary workflow was designed.

Furthermore, cases in which non-homogeneous granularity was a

source of problems were found (AFF-SLL). For example, they arose when

programmers received a SyRS from system analysts in the form of use

cases whose granularity was considerably heterogeneous. Some of them

represented very concrete interactions whereas others represented

practically business goals or business activity at a high abstraction level.

As a consequence, programmers had to “re-analysed” the use cases so

that they were relevant for implementation (implementation of a given

use case in isolation was nonsense) or had to consult system analysts

about the purpose of some use cases to order their implementation. These

problems involved delay in implementation of use cases and extra work

for programmers.

The importance of homogeneous granularity of system requirements

has been acknowledged, for instance, for improving the quality of a SyRS

(España, et al., 2009), comparing and prioritising requirements

(Gorschek, Wohlin, 2006) and for properly applying a RE approach

(Dutoit, Paech, 2002).

236

 8 Evaluation

LL6) Imprecise specification of system requirements can have negative

consequences (DFI/AFA-SLL)

Obtaining a precise SyRS is considered so important that it is

explicitly mentioned in the objectives of the thesis (Chapter 1). However,

it was not considered very important by some supplier stakeholders

(AFF-SLL), who considered that modelling of a use case diagram and

provision of some unstructured information was enough.

However, negative consequences of imprecise SyRSs were found in

some cases. An example (with no very negative consequences) was that

programmers had to ask system analysts about details of, for instance, a

SyRS in the form of use cases. It entailed loss of time for both

programmers and system analysts, but not much time.

A much more serious situation was found in the company (mentioned

in LL5) that used service request-notification for homogeneous

granularity of use case. This company usually outsourced software

development, and a system analyst assumed that the necessary software

for a new service would be developed by the same company that had

previously developed software for another service. As a result, he

omitted some details about the scenarios of the corresponding (new) use

case because they were similar to the scenarios of the previous service.

What the system analyst did not know was that the outsourced

company also outsourced development sometimes, as for the new

service. The final consequence of detail omission was that the company

of the system analyst had provided clients with a service that was not

billed, what turned to be regarded as a loss of money in the company.

This lesson learned is also related to LL1. The more knowledge about

an application domain system analysts had, the less precise SyRSs

usually were (AFF-SLL). Nonetheless, system analysts were told about

the important risk in assuming a wide or complete knowledge about an

application domain, which may lead a system or project to failure

(Berenbach, et al., 2009). They agreed upon this issue (DFI/AFA-SLL).

The importance of creating a clear, precise SyRS and problems that

may arise if not fulfilled (e.g., project failure) have been indicated, for

instance, in (Charette, 2005; Firesmith, 2007; Hofman, Lehner, 2001;

Kamsties, Hörmann, Schlich, 1998; Lauesen, Vium, 2005; Procaccino,

Verner, Lorenzet, 2006).

 237

8.7 Lessons Learned

LL7) The notion of non-functional requirement is ambiguous (AFF-

PLL)

“What do you mean by non-functional requirement?” This was the most

frequent answer that stakeholders provided when they were asked about

aspects of management of non-functional requirements and when

discussing about them.

Even in cases in which this answer was not obtained, or when it had

been explained that non-functional requirements referred to

characteristics related to aspects such as usability, performance and

interoperability of an IS, most of the stakeholders did not make a clear

distinction between functional and non-functional requirements or did

not interpret a non-functional requirement as such (AFF-PLL). For

example, some supplier stakeholders regarded some security concerns

(e.g., authentication) as related to functional requirements.

Therefore, it was assumed that the notion of non-functional

requirements was ambiguous, at least for the interviewees. As a solution,

the term quality requirement was adopted and the ISO 9126-1 standard

was chosen as a reference to specify quality requirements of ETDs.

It is considered that these decisions improved communication with

stakeholders and understanding for them because less confusion arose in

later interviews (AFA-PLL). When talking or discussing about a given

system requirement, it was easier for stakeholders to identify it as a

security aspect (quality attribute and requirement) than as a non-

functional requirement.

The ambiguity and the inconvenience of the term non-functional

requirements has been discussed and justified in literature (e.g., (Glinz,

2007; Pohl, 2010)). With regard to empirical studies, misinterpretation of

non-functional requirements, communication problems among different

organizations related to their notion and language problems related to

them in documents have been reported as important risks in software

development in (Borg, et al., 2003).

Finally, it is considered (in this thesis) that use of the term quality

requirement has increased in recent years (e.g., (Bersntsson, Gorschek,

Regnell, 2009; Lauesen, 2002)). Nonetheless, the term non-functional

requirement is still used (e.g., (Ameller, Franch, Cabot, 2010; Chung,

Leite, 2009)).

238

 8 Evaluation

LL8) Detailed and straightforward methodological guidance can be

important for a RE approach (DFI/AFA-SLL)

Provision of detailed methodological guidance for application of a RE

approach is one of the principles of the thesis. It is considered that it can

facilitate adoption because practitioners would find fewer problems

when using an approach. For example, they would exactly know from

where and how system requirements should be elicited.

Although the interviewees indicated that guidance is important (DFI-

PLL), they did not consider that detailed guidance is essential (DFI-PLL).

For example, system analysts and programmers attended several courses

and talks about agile development and studied different techniques and

books for adoption of an agile software process in a company.

The company adopted user stories because they were believed to be

very useful (and indeed they were), but they were used in a very

lightweight and non-systematic way if compared to reference works on

how to apply them (e.g.,(Cohn, 2004)). In short, the company considered

necessary to follow general guidelines, but it did not considered

important to follow most of the specific, detailed aspects.

In contrast to this situation, cases in which adoption and application

of a RE approach has ended in abandonment because of insufficient or

inadequate guidance were found too (DFI-SLL). Supplier stakeholders

indicated that not only (detailed) guidance was necessary, but that it was

also necessary that the guidance was straightforward for those who had

to apply a RE approach (DFI-SLL). For example, application of criteria for

identification of use cases on the basis of their goals had resulted in

confusion among system analysts.

The need of providing detailed guidance in a RE approach probably is

not widely acknowledged in literature. Nonetheless, there exist works

that have recognised the advantages of detailed guidance in a RE

approach (e.g., higher quality in SyRS (España, et al., 2009)) and the

problems that may arise, such as, different results if applied by different

people (Dutoit, Paech, 2002) or ambiguity in a SyRS (Hsia, Davis, Kung,

1993). Even there are authors who have recognised detailed guidance as

important and necessary to apply a RE approach on the basis of feedback

from practitioners (e.g., (Karahanna, Straub, Chervany, 1999; Regnell,

Berntsson-Svensson, Olsson, 2008)). Such guidance must be targeted at

ease of use of an approach.

 239

8.7 Lessons Learned

LL9) Creation of OO diagrams that meet system requirements is

important (DFI-PLL) but it is not a main concern in practice (DFI-PLL)

An objective of the thesis (and maybe the ultimate one, given that it

arose from the need of OO-Method of having a business process-based

RE approach) is to derive the OO conceptual schema of an IS from its

system requirements in the form of a class diagram and state transition

diagrams.

Such diagrams must be consistent with and complete in relation to the

system requirements of an IS. In essence, it is considered in this thesis

that the OO diagrams of an IS must properly meet its system

requirements. This line of thought coincides with industrial perspectives.

Most of the interviewees (including system analysts) regarded this

characteristic as a very positive aspect of the methodological approach

and as important for practice.

However, the survey also indicated that, although stakeholders

considered it important, most of system analysts were not much

concerned about obtaining OO diagrams that met system requirements.

They simply cared about obtaining OO diagrams. Determination of

whether a diagram met system requirements or not was later analysed

and determined.

Furthermore, most of the system analysts did not considered that

creation of the OO diagrams of an IS and that fulfilment of system

requirements were main (i.e., highly important) activities in IS

development (DFI-PLL). In relation to the methodological approach, they

considered, for instance, that requirements elicitation and interaction

with customers are much more important concerns (DFI-SLL).

Nonetheless, problems in creation of OO conceptual schemas and in

their creation to meet system requirements were found (DFI-SLL), but on

a minor scale. For example, a system analysts had been requested to

create the data model (in the form of an ER diagram, which can be

considered equivalent in many aspects to a class diagram) for a new IS.

This IS was not modelled and developed from scratch, but it was the

extension and improvement of an existing system. The data model had to

reflect the data requirements of the “old” system, and also incorporate

the new data needs of the new system.

240

 8 Evaluation

Initially, it did not seem a difficult duty. The problems arose when the

system analyst was told that no documentation about the requirements of

the old system existed. Therefore, he just had the actual old system (e.g.,

its forms) and the corresponding database to create the data model.

Creation of the data model was tough, but not the toughest part.

Although not easy, the system analyst finally managed to obtain it.

However, he was not able to guarantee that the model met data

requirements, thus directly using it as a reference for the new system

would have been risky. Such a risk is clearer if it is indicated that parts of

the new (and thus of the old) IS corresponded to a safety-critical system.

At the end, and as result of the lack of a SyRS and thus of being

unable to guarantee the correctness of the model, the system analysts had

to request help from some colleagues that better knew the system. This

turned into a delay in development of the project, which it was later

cancelled because of breach of contract for several milestones.

It is not said that the project was cancelled because of the problems

related to creation of the data model, and it may be considered that the

ultimate “guilty” was the person that requested the system analysts to

create a data model or that the project was cancelled because of other

problems. Indeed, projects usually fail because of several types of

problems (Charette, 2005). What this example showed was that fulfilment

of system requirements in OO diagrams (and guaranteeing it) could be a

problem, especially if the RE process was not carefully performed. Such a

(supposedly) unimportant problem turned into a serious situation.

There is a contradictory point in this lesson learned (as well as in

others). On the one hand, system analysts considered that obtaining

adequate OO diagrams is important. However, and on the hand, system

analysts were not much worried about it. This contradiction may be

regarded as a threat to internal validity of the lesson. It is considered that

somehow industry perspectives on the issue are different from industry

practice.

When reviewing literature, the need of OO conceptual schemas of

meeting system requirements is acknowledged because, for instance, it is

related to its correctness (Olivé, 2007). Furthermore, works that report on

problems when creating OO diagrams that meet system requirements if

this activity is not properly performed exist (e.g., (Fortuna, Werner,

Borges, 2008; Svetinovic, Berry, Godfrey, 2005)). The need of detailed and

 241

8.7 Lessons Learned

more guidance to properly model OO conceptual schemas from SyRSs is

recognised in (Cox, Phalp, 2007), which also indicates that, in general,

industrial acceptance of guidelines is still limited.

A possible limitation of this lesson is that the number of senior system

analysts (4 or more years of experience) interviewed was higher than the

number of junior ones. The lessons learned is also related to the next.

LL10) The perceived usefulness of a RE approach varies among

stakeholders and projects (AFF-PLL)

This lesson learned can be considered to be the main and most important

one of the thesis. Although it may seem obvious, it was surprising how

perception about the value of the methodological approach greatly

varied among stakeholders. Furthermore, somehow this lessons learned

is related to and summarises most of (or even all) the others.

When asking customer stakeholders about the usefulness of the

methodological approach, the general perception was that it could be

effective for the RE process of an IS (DFI-PLL). They considered that its

use could lead to ISs that adequately fitted their needs, and several

positive points lessons learned (presented below) were derived and

assumed from customer stakeholders’ feedback.

System analysts stated that use of the methodological approach would

allow them to adequately understand and specify system requirements

and to create an OO conceptual schema (AFF-PLL). However, there were

some senior system analysts who claimed that they may just use it

eventually because they did not think that the approach could improve

their job significantly in most of their projects (AFF-SLL).

These system analysts corresponded to two types. The first type

corresponded to systems analysts that were very skilled in using other

approaches and interacting with customers. For example, senior system

analysts of the project partner were experts at using OO-Method. They

usually modelled a system while the customer described what the system

should do, thus they could quickly generate it, validate it and fix it (if

necessary).

The second type corresponded to system analysts that had worked for

many years and thus were specialised in a given application domain. As

a result, they did not need to gather and model much information (i.e.,

activity of an organization) of the business (application) domain because

242

 8 Evaluation

they were already aware of most of the behaviour and possible needs of

an organization.

In contrast to the opinion of senior system analysts, most of the junior

system analysts considered that the methodological approach could

really help them (AFF-PLL). They had less experience in dealing with

customers and, therefore, in understanding what they need, and also had

less knowledge about many applications domains.

Even though supplier managers agreed upon the principles of the

methodological approach and acknowledged that (parts of) it could be

useful for and improve practice in their companies (AFF-PLL), their main

concerns about application of the methodological were the necessary

effort and time to learn to apply the approach and to apply it in a project

(AFF-PLL). Many of them were not sure that the expected improvement

was worth the necessary investment (AFF-SLL).

Last but not least, programmers claimed that the degree of detail and

precision of ETDs was good enough for implementation (DFI-PLL) and

that (semi-) automatic derivation of an OO conceptual could be very

useful (DFI-PLL). Other positive aspects for programmers have been

reported above.

In summary, although it is considered that all supplier stakeholders

can benefit from the methodological approach, it is also considered that

its use in a project will mainly depend on system analysts’ experience

and knowledge about the application domain and on system complexity

(AFF-PLL).

For IS development for application domains with which a system

analyst has not previously deal or with junior system analysts, it is

considered that the approach could really help them to better address

elicitation and specification of system requirements and subsequently

obtain an OO conceptual schema that meets system requirements (AFF-

PLL). Nevertheless, there can also be projects in which application of the

methodological approach (or of some of its parts) may not be necessary

(AFF-PLL). The problem is how to exactly determine whether a RE

approach should be used or not in a given project.

It is also assumed (AFF-PLL) that a gap exist in the perceived useful

between those who would apply or would control application of the

methodological approach (system analysts and supplier stakeholders)

 243

8.7 Lessons Learned

and those who would received the outcome of the approach in the form

of a SyRS and an OO conceptual schema (programmers) or, once

development is finished, an IS (customer stakeholders).

The first ones are more concerned about performance issues (related

to how much the approach may “hinder” an activity or make it slower),

whereas the latter are more concern about other quality issues related to

how much the approach would facilitate their activity (AFF-PLL).

Some works that have reported on differences among opinion on the

usefulness of a RE approach are (Cox, Phalp, 2007; Davis, Hickey, 2002;

Kaindl, et al., 2002; Mead, 2000). Other authors have indicated that

industry is more concerned about RE and thus more clearly perceive its

usefulness in large projects (Juristo, Moreno, Silva, 2002) and that models

for IS development in general (Davies, et al., 2007; Karahanna, Straub,

Chervany, 1999) and for the RE process in particular (Kamsties,

Hörmann, Schlich, 1998) are only used when they are believed to be

useful.

Compatibility with current practices may also influence adoption and

perceived usefulness of a RE approach (Davies, et al., 2007; Karahanna,

Straub, Chervany, 1999), as well as organizational culture (Cox, Phalp,

2007). It has been widely acknowledged the difficulty of transferring RE

research to practice (e.g., (Kaindl, et al., 2002; Lauesen, Vinter, 2001;

Mead, 2000). For example, practitioners may not want to use new RE

approaches even though they may improve their work because of the

necessary effort.

Finally, it is recognised that a good RE approach either reduces the

cost of a development project or increases the quality of the resulting

product when used in specific situations (Davis, Zowghi, 2006). In this

sense, the methodological approach fulfils the second conditions (AFF-

PLL). The same authors also indicated that a RE approach should not be

discarded because failure in a project, that a good RE approach does not

guarantee project success and that use of a “non-good” RE approach does

not imply project failure.

The main and final point of this lesson learned has been indicated in

literature: quality is in the eye of the beholder (Davis, 1995). The

perceived quality of a RE approach (if not empirically demonstrated, or

even in that case) can be considered to be closely related to the expected

benefits and problems from its application.

244

 8 Evaluation

8.7.2 Specific Lessons Learned Related to the

Methodological Approach

LL11) There exists a gap between BPMN and system requirements

(AFF/AFA-PLL)

One of the problems of the RE process and of IS development that is

addressed in the methodological approach is the gap between business

and systems domains. The solution to this problem is essential for the

approach, and its importance is acknowledged in its second principle

(Chapter 3): business processes must be properly analysed so that the gap

is bridged when specifying system requirements from them.

BPMN is used in the methodological approach from a business

perspective (it can also be used from a system perspective), thus BPMN

(BPDs) is used as model for the business domain and ETDs are used as

model for the system domain.

A gap exists between BPDs and ETDs because of the differences in

characteristics such as terminology, semantics, abstraction levels and

granularity. The gap is bridged by providing mechanisms and guidance

for proper analysis of BPDs (labels and consecutive flows) and for correct

elicitation and specification of ETDs (significance criterion and guidelines

for ETD specification).

This gap is clear if the guidelines for filling of the textual template are

analysed. For example, BPMN triggers do not always map to ETD

triggers and granularity of ETDs and BPMN tasks can be different. In

addition, the textual template contains information that is not part of the

business environment, i.e., it corresponds to specific characteristics of the

system that determine support for business requirements.

LL12) Graphical extension of BPMN can facilitate understanding (AFF-

PLL)

When it was decided to adopt BPMN graphically, probably the main

reason was that it was expected to facilitate communication between

system analysts and customer stakeholder. As explained in the next

lesson learned, this condition was shown in the evaluation, but it was

also discovered that graphical extension of BPMN could further improve

the notation.

 245

8.7 Lessons Learned

System analysts and supplier managers did not initially like that

BPMN had been graphically extended (DFI-PLL) with labels for flow

objects and with consecutive flows. They wondered if more graphical

elements were really necessary given that BPMN was quite extensive.

Nonetheless, it was argued that labelling and modelling of

consecutive flows were useful to bridge the gap between business and

system domains. As a result, system analysts and supplier managers

finally agreed upon their use (DFI-PLL). Furthermore, after using these

elements, they acknowledged that these graphical elements helped them

to better understand BPDs (DFI-PLL), and thus BPMN expressiveness

was improved (AFF-PLL).

Customer stakeholders and programmers also liked the graphical

extensions (DFI-PLL). Understanding of the proposed solution (system

support) for a business process was easy, and better than if new graphical

elements had not been used (AFF-PLL).

The convenience and usefulness of extending BPMN graphically is

evident if two facts are considered. First, BPMN specification has always

provided the possibility of extending the notation if considered necessary

by its users. Second, and more important, the last version of BPMN

(version 2.0) has defined labels for the tasks so that their type is

graphically shown and their semantics is more easily understood.

Existing works related to this lesson learned are those that have found

benefits from graphical extension of BPDs. They have studied graphical

extension of BPMN to improve its expressiveness and facilitate

understanding of BPDs in actual projects (e.g., (zur Muehlen, Ho., 2008))

and graphical extension of business process models by labelling their

elements (e.g., (Mendling, Reijers, Recker, 2010)).

LL13) The RE models of the methodological approach are easy to

understand for stakeholders and can facilitate customer stakeholders’

involvement (AFF-PLL)

Since its initial conception, one of the needs that the methodological

approach had to fulfil was that it had to facilitate communication with

customer stakeholders and their involvement in its application. As a

result, and as justified in previous chapters of the thesis, when a RE

246

 8 Evaluation

technique or approach (i.e., a model)1 was selected, one of the criteria was

how useful it would be for fulfilment of the above need. Although

theoretically all the RE models were suitable, this had to be shown in

practice. Furthermore, some of them had been modified.

When evaluating the methodological approach with customer

stakeholders, they stated that they could understand and validate the

artefacts of the RE models (e.g., BPDs, goals/strategies diagrams and

ETDs) easily (DFI-PLL), more easily than other models such as class

diagrams or dataflow diagrams (DFI-SLL). The only negative aspect

found was that ETDs sometimes became very large (DFI/AFA-PLL), what

may hinder their understanding and validation. Nonetheless, this was a

consequence of the inherent complexity and the amount of needs of the

subtasks of the ETDs.

In addition, customer stakeholders of the field trials get used to

BPMN even quicker than expected. In very little time, they were able to

completely understand BPDs and they even fixed modelling errors (AFA-

PLL). It was considered that communication and interaction with

customer stakeholders was facilitated (AFA-PLL), and they also claimed

that had felt more involved in system development and had had a more

participative attitude than in past projects (DFI-PLL).

With regard to supplier stakeholders, they were asked to interpret

BPDs of organizations that they did not know in depth. The result was

that they understood them easily most of times (DFI/AFF-PLL), and they

just had problems when documentation of the organizational activity

(business rules, data entities…) was insufficient (AFF-PLL).

A limitation of this lesson learned is that all the elements of BPMN

(the complete notation) were not used in any field trial or illustration.

With regard to related work, (expected) benefits in communication

between customer stakeholders and system analysts when using the RE

models of the methodological approach have been indicated in previous

chapters of the thesis. In addition, some works have reported on

empirical studies or practical experiences that have provided evidence of

the suitability of BPMN to interact with customer stakeholders (e.g., (zur

Muehlen, Ho, 2008)).

1 OO diagrams are not considered to be part of the RE models of the methodological

approach, but to be part of a system model (e.g., an OO-Method conceptual model)

 247

8.7 Lessons Learned

LL14) Filling of the textual template of an ETD is variable (AFA-PLL)

Domain requirements of an ETD depends on (are elicited from) BPDs,

and their correspondence is determined by the guidelines for filling of

the textual template. However, BPD modelling is variable, and

specification of domain requirements also is.

For example, a business rule might be specified in a BPD: 1) as a

gateway, or; 2) textually in its documentation. Therefore, the business

rule could correspond: 1) to a trigger, precondition, postcondition or the

source of an alternative or of an extension, or; 2) to a business rule of an

ETD.

It was not considered that variability of BPD modelling and, therefore,

of specification of domain requirements was a weakness or problem of

the methodological approach. What was considered important was that

all the organizational concerns that would affect and would be controlled

by an IS (e.g., the business rules of an organization) and corresponded to

domain requirements were specified in the ETDs, regardless of the

section of the textual template in which it was done.

In summary, some domain requirements could be specified in

different styles (sections of the textual template) (AFA-PLL).

LL15) The OO diagrams derived can be regarded as complete from a

requirements perspective (AFA-PLL)

Completeness of the OO conceptual schema of an IS created by

applying the methodological was evaluated by comparing it with

existing OO diagrams of the IS under study. This means that the actual

OO conceptual schema of some ISs (e.g., an OO-Method conceptual

schema) or a schema that corresponded to possible solutions (proposed

by people different to the designers of the methodological approach)

were available.

The main result was that, in general, the OO diagrams derived by

following the methodological approach were smaller and differ in some

characteristics with the other diagrams (AFA-PLL). The reason was that

internal (design) characteristics of an IS had been modelled in the

available diagrams, whereas the diagrams derived by applying the

methodological approach only contained characteristics related to

(derived from) the corresponding SyRS.

248

 8 Evaluation

For example, and as explained in Chapter 7, it is usual that system

analyst that use OO-Method in industry make some design decisions

when creating a conceptual schema and (given that the OO-Method

allows it) include them, for instance, in the object model. The example

shown in Chapter 7 was modelling of an association between two classes

as an inheritance relationship.

Nonetheless, all the external characteristics that had been modelled in

the available OO diagrams coincided with the details of the OO

conceptual schemas derived by applying the methodological approach

(AFA-PLL).

It must also be indicated that the previous statement is partially

“false”. Some external characteristics of the available diagrams were

missing, but because incompleteness (in relation to the OO conceptual

schema that should have been derived) existed in artefacts created in

stages of the methodological approach previous to derivation of OO

diagrams. For example, if an attribute of a domain entity had not been

specified in an input or autonomous flow of some ETDs (but it should

have been), then it was impossible that the attribute was present in the

corresponding class of the class diagrams.

In summary, it was determined that the OO conceptual schemas

derived by applying the methodological approach could be considered

complete from a requirements perspective, provided that the SyRS from

which the schema was derived was complete and correct. It must also be

noted that all the characteristics of an OO-Method conceptual schema

whose derivation has not been addressed (i.e., studied in depth) in this

thesis (e.g., the presentation model) were out of the scope of evaluation of

the completeness of the OO conceptual schemas derived by applying the

methodological approach.

LL16) The OO diagrams derived represent a refinement of artefacts of

previous stages (DFI/AFA-PLL)

An aspect of the methodological about which discussion with

interviewees arose and of which designers of the methodological

approach realised while applying it was the fact that there exist

similarities and relationships between the OO conceptual schema created

in the derivation of OO diagrams stage and artefacts created in previous

stages of the methodological approach.

 249

8.7 Lessons Learned

It was evident that a class diagram and a domain data model were

very similar (DFI/AFA-PLL). The classes and associations of the class

diagrams were a subset of the domain entities and relationships of the

domain data model of the organizations under study. Nonetheless, this

fact was not considered to be a weakness or problem of the

methodological, but to be a reflection of common practice in IS

development.

The pieces of information (data) that are stored and managed in an IS

correspond to a part of the application domain that will be represented,

stored and controlled by the system (Olivé, 2007). In the methodological

approach, a domain data model is a part of the application domain that

can be considered to be later refined to model a class diagram that

depicts the part of the domain data that will be controlled by an IS. The

methodological approach aims to provide system analysts with

mechanisms and guidance to model a class diagram of an IS.

Furthermore, the purposes of a domain data model and of a class

diagram are different in the methodological approach. The purpose of a

domain data model is to understand the application domain of an IS,

whereas the purpose of a class diagram is to model the static properties

of the OO conceptual schema of the IS and that it meets its system

requirements. Furthermore, it includes system details, such as methods.

With regard to state transition diagrams, they were related to ETDs

(DFI/AFA-PLL). Apart from other information, ETDs specified the state

of its input and output domain entities, which implicitly specified the

sequence (execution order) of the ETDs. These characteristics were clearly

related and were similar to specification of states in a state transition

diagram and to their sequence.

ETDs could be regarded as a representation of the states and

transitions of an IS (AFF/AFA-PLL), i.e., the sequence of ETDs that the IS

would have to follow to support the business processes of an

organization. ETD execution implied state changes of domain entities,

and thus in (the instances of) the state transition diagrams of the classes

that had been modelled from them.

Therefore, ETDs could also be regarded as transactions in an IS in

which events (transitions) of different state transition diagrams were

executed. ETD sequence could be regarded as a macro-state transition

diagram, i.e., a state transition diagram that affected the states of the state

250

 8 Evaluation

transition diagrams of several classes (AFA-PLL). Therefore, the state

transition diagrams represented a refinement of ETDs.

In summary, the relation between ETDs and state transition diagrams

was that ETD execution affected lifecycles of classes (state change, event

happening…). Consequently, they could be considered to be semantically

similar.

Nonetheless, this fact did not mean that state transition diagrams

were considered unnecessary in the methodological approach. ETDs

were part of a requirements model, whereas state transition diagrams

were part of a system model (e.g., an OO-Method conceptual schema).

Both models represented and shared common phenomena, in different

ways and in different development stages. They also had different

purposes (requirements vs. system modelling), as indicated for a domain

data model and a class diagram.

LL17) The principles, artefacts, mechanisms and guidance of the

methodological approach can be useful for and applied in other RE

approaches (AFF/AFA-SLL)

The last lesson learned resulted from evaluation and reported is

related to an aspect about which the designers of the methodological

approach had thought but that also was later indicated by supplier

stakeholders. Specific ideas (principles, artefacts, mechanisms and

guidance) of the methodological may be applied in other RE processes or

approaches, both in academic research and in industrial practice. The

reason is that they could benefit from the ideas.

Theoretically, the benefit was evident, for instance, when extensions

and improvements had been proposed for the existing RE approaches

adopted in the methodological approach. For example, Lauesen’s task

descriptions may include a new section for specification of the business

rules of the work area under analysis so that they are more complete and

precise.

Nonetheless, usefulness of the ideas of the methodological approach

was considered to go further, and they could be adopted in other RE

processes and in other RE approaches. For example, a system analyst

acknowledged that an explicit criterion for homogeneous granularity of

the use cases specified in his company would be useful, and a supplier

manager indicated he would like to adopt BPMN for business process

 251

8.8 Summary

modelling in his organization2. The system analyst also asked if the

significance criterion for ETDs could be adapted for or adopted for use

case modelling, and the answer was “yes”.

In summary, although the methodological approach of the thesis was

defined from the collaborative project and thus was initially targeted at

the project partner, similar problems and needs (e.g., lack of business

understanding and inadequate specification of system requirements)

were observed in other industry partners. Therefore, it was considered

that the ideas of the methodological approach could be useful for them.

Furthermore, the methodological approach should not be regarded as

a monolithic RE approach, but as the conjunction of a set of ideas,

principles and good practices that can improve the RE process of any

company and that can be adopted separately.

For those ideas of the methodological approach that have been or may

be adopted in other RE processes and approaches, it would be interesting

to study their effectiveness and their practical usefulness. The results

would positively affect, for instance, external validity of the evaluation of

the methodological, provided that the results (e.g., lessons learned)

coincided.

8.8 Summary

This chapter has presented the evaluation of the methodological

approach of the thesis. It has been performed from an industry

perspective by following a qualitative research approach and on the basis

of a survey.

Data from 49 (relevant) participants were collected through

unstructured interviews after application of the methodological approach

in illustrations and field trial. The participants provided feedback (facts

and opinions) about the usefulness of the approach and how its

challenges, objectives and principles affected them. In addition, the

designers of the methodological approach performed lab demos to gain

insights into potential limitations of the approach in practice.

2 Although BPMN had not been defined as notation for business process modelling in this

thesis, it was considered that its adoption by the supplier manager would be a result of its

adoption and use in the methodological approach, after having decided that it would the

best-suited notation for business process modelling (in general and for the RE process in

particular) and after having explained its strong points to the supplier manager.

252

 8 Evaluation

As a result of the survey, several lessons about the methodological

approach have been learned. Some are useful for the RE process of an IS

in general, and some are useful for application of the methodological

approach in particular. Anyway, it is considered that all the lessons

learned are important both in academia and in industry for awareness of

the state of practice and of possible situations that may occur in business

process-based requirements specification and OO conceptual modelling

of ISs.

The evaluation performed is considered to have been very positive.

On the one hand, it has allowed the designers of the methodological

approach to modify it and improve it from lessons learned in real

settings. On the other hand, it has allowed further understanding of

industrial practice to be gained.

Nonetheless, readers must be aware of the limitations and threats to

validity indicated when using and interpreting the results (i.e., the

lessons learned) of the evaluation. Probably the two main threats are: 1)

the use of unstructured interviews for data collection (and thus the lack

of a survey instrument), and; 2) the impossibility to provide more details

about the subjects and the survey for confidentiality reasons.

Chapter 9

9 Conclusions

“You rise. You fall. You're down, then you rise again. What don't kill ya make

ya more strong”

Metallica

Development of any activity allows people to draw conclusions from it.

They can be useful for those who perform them and for others to gain

insights into and better understand the activity under analysis in the

form of a summary of facts and opinions. This chapter presents the main

conclusions that can be drawn after development of this thesis.

Such conclusions correspond to different aspects of the

methodological approach of the thesis related to what it provides and to

what could be performed from it. Nonetheless, and as explained in the

chapter, more aspects of the thesis may be presented and discussed as

part of its conclusions.

The rest of the chapter is organised as follows. First, the contributions

that have been made in the thesis are presented. Next, the impact of the

thesis is discussed and possible future woks are described. Lastly, a final

reflection is presented.

254

9 Conclusions

9.1 Contributions

This thesis has presented a methodological approach for business

process-based requirements specification and OO conceptual modelling

of ISs. Its general purpose is to facilitate system analysts’ work when

addressing the RE process of an IS and creating an OO conceptual

schema of the IS from its systems requirements. Mechanisms and

detailed guidance have been provided to achieve such a purpose, and

other stakeholders can benefit from the approach too.

As a result of the development of the thesis, ways to address current,

actual problems acknowledged in academia and in industry have been

provided. Therefore, several contributions have been made. The main

contributions are the following ones.

Provision of a set of fundamentals for business process-based

requirements specification and OO conceptual modelling of ISs

In Chapter 3, the fundamentals of the proposed solution of the thesis

have been presented. Such fundamentals can be useful not only for the

methodological approach, but also for other RE approaches for IS

development.

A precise definition of business process has been provided, and the

types of stakeholders and of requirements that must be considered in the

RE process of an IS have been discussed. It is considered that the top ten

principles should be addressed by any RE approach for IS development

because they represent essential issues in the RE process. Finally, the

correspondence between business process models and goal models and

its implications have been presented and discussed.

Development of an integrated, systematic approach for modelling of

the business processes of an organization and analysis of the purpose

of an IS

In Chapters 4 and 5, an integrated way to model the current state of

an organization by focusing on its business processes and to analyse how

a new IS may affect them has been presented. It is based on the

combination of BPMN and the Map approach.

Guidance and guidelines for BPMN-based modelling of an

organization have been provided, as well as for creation of

goals/strategies diagrams. For determination of the effect of an IS on

255

9.1 Contributions

business processes, operationalization tables and their analysis have been

proposed. Furthermore, the mechanisms and guidance presented allow

several weaknesses of BPMN and of the Map approach to be mitigated.

Development of a systematic approach and a style for specification of

system requirements from business process models

In Chapter 6, a systematic way to specify the system requirements of

an IS from the business process of the organization in which the system

will be introduced (modelled in the form of BPDs) has been presented.

It provides a new style for SyRS, ETDs, which are elicited by

analysing and enriching BPDs and specified by following a set of

guidelines. ETDs represent the union of several techniques, which are

improved by providing new mechanisms and guidance to address some

of their weaknesses. Consequently, system requirements for support of

business processes are adequately specified.

Provision of guidance for systematic derivation of an OO conceptual

schema from business-process based system requirements

In Chapter 7, a systematic way to obtain the OO conceptual schema of

an IS (in the form of a class diagram and state transition diagrams) from

its system requirements (in the form of ETDs) has been presented.

This allows system analysts to adequately link system requirements to

subsequent development stages by following a set of rules. As a result,

ETDs can be integrated into OO conceptual modelling-based IS

development. In addition, further details about how ETDs should be

linked to OO-Method models have been provided and discussed.

Presentation of and discussion about the lessons learned by evaluating

the above contributions

Finally, Chapter 8 has presented the evaluation that has been

performed on the methodological approach. As a result of a survey,

several lessons have been learned, which have been presented and

discussed.

Lessons learned are useful for awareness of the current state of

practice related to the thesis. Existing problems and needs in industry

have been pointed, as well as aspects about which practitioners are not

very concerned. Lessons learned are also important to analyse the

practical usefulness of the methodological approach.

256

9 Conclusions

In summary, the thesis has dealt with challenges and objectives that,

in conjunction, are not properly addressed by other RE approach.

Therefore, its contributions can be considered evident and important.

Furthermore, the contributions can be useful both for academia and for

industry.

For academia, the thesis has indicated important issues of business

process-based requirements specification and OO conceptual modelling

of ISs that may be addressed in future research or should be considered

when developing a RE approach. For industry, the thesis has presented

and addressed actual problems in practice, thus practitioners can be

aware of their existence and of possible ways to address them.

9.2 Thesis Impact

The impact of this thesis is explained and discussed in this section on the

basis of these criteria: 1) the publications that are related to the thesis and

have been accepted at research forums; 2) the quality of the forums of the

publications; 3) the number of citations of the publications; 4) the

collaborations that have arisen with researchers of other institutions

during the development of the thesis, and; 5) the research stays that have

been performed during the development of the thesis.

Another criterion to asses the impact of a thesis is the research projects

on which it has influenced. The list of such projects for this thesis has

been presented in Chapter 1. In addition, other criteria may have been

defined and thus used. For example, the teaching duties performed and

related to the development of the thesis, the talks given or the

collaborations and contacts with industry could be criteria for assessment

of the impact of a thesis.

Probably the main criterion to assess the impact of a thesis should be

its use and adoption in industry and by people different to its designers.

For this thesis, it is hard to predict whether the methodological approach

as a whole will be adopted by practitioners (at this moment it is not), but

it can be guaranteed that some of its ideas and principles (e.g., business

process modelling with BPMN) have been and are being adopted in

industry after their presentation to practitioners (see Chapter 8).

The following subsections present the impact of the thesis for each

criterion defined in the first paragraph of this section.

257

9.2 Thesis Impact

9.2.1 Publications

The set of publications that are related to this thesis consists of 17 papers

that have been accepted at twelve international conferences, four

international workshops and one national workshop, and of one book

chapter. The publications (in chronological order of publication) are the

following ones:

 de la Vara, J.L., Anes, D., Sánchez, J. (2007) Construcción de

modelos de requisitos a partir de modelos de procesos y de metas.

In: X Workshop de Ingeniería de Requisitos y Ambientes de

Software (IDEAS 2007), pp 33-46.

 de la Vara, J.L., Sánchez, J., Pastor, O. (2007) Integración de un

Entorno de Producción Automática de Software en un Marco de

Alineamiento Estratégico. In: X Workshop on Requirements

Engineering (WER 2007), pp 68-79.

 de la Vara, J.L., Anes, D., Sánchez, J. (2007) Descomposicón de

Árboles de Metas a partir de Modelos de Procesos. In: X

Workshop on Requirements Engineering (WER 2007), pp 35-46.

 de la Vara, J.L., Sánchez, J. (2007) Business process-driven

requirements engineering: a goal-based approach. In: VIII

International Workshop on Business Process Modeling,

Development and Support (BPMDS'07), pp 299-307.

 de la Vara, J.L., Sánchez, J. (2007) Derivación de modelos de

tareas a partir de modelos BPMN. In: I Taller sobre Procesos de

Negocio e Ingeniería del Software (PNIS 2007).

 de la Vara, J.L., Sánchez, J. (2008) Improving Requirements

Analysis through Business Process Modelling: A Participative

Approach. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008, LNBIP

7. Springer, Heidelberg, pp 165-176.

 de la Vara, J.L., Sánchez, J. (2008) Facilitating and Benefiting from

End-User Involvement during Requirements Analysis. In: 10th

International Conference on Enterprise Information Systems

(ICEIS 2008), pp 316-319.

 de la Vara, J.L., Sánchez, J., Pastor, O. (2008) Business Process

Modelling and Purpose Analysis for Requirements Analysis of

258

9 Conclusions

Information Systems. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE

2008, LNCS 5074. Springer, Heidelberg, pp 213-227.

 de la Vara, J.L., Sánchez, J. (2009) Business Process-Driven

Requirements Engineering: A Goal-Based Approach. In: P.K.

Banerjea (ed.) Technology & Business Strategy: A Global

Perspective. Icfai, Hyderabad, pp 81-92.

 de la Vara, J.L., Fortuna, M.H., Sánchez, J., Werner, C.M.L.,

Borges, M.R.S. (2009) Modelado de Requisitos de Datos para

Sistemas de Información basados en Procesos de Negocio. In: XII

Conferencia Iberoamericana de Ingeniería de Requisitos y

Ambientes de Software (CIbSE 2009), pp 43-57.

 de la Vara, J.L., Fortuna, M.H., Sánchez, J., Werner, C.M.L.,

Borges, M.R.S. (2009) A Requirements Engineering Approach for

Data Modelling of Process-Aware Information Systems. In:

Abramowicz, W. (ed.) BIS 2009, LNBIP 21. Springer, Heidelberg,

pp 133-144.

 de la Vara, J.L., Sánchez, J. (2009) BPMN-Based Specification of

Task Descriptions: Approach and Lessons Learnt. In: Glinz, M.,

Heymans, P. (eds.) REFSQ 2009, LNCS 5512. Springer,

Heidelberg, pp 124-138.

 de la Vara, J.L., Sánchez, J. (2009) Specification of Data

Requirements from Task Descriptions. In: 21st International

Conference on Software Engineering and Knowledge Engineering

(SEKE 2009), pp 55-60.

 de la Vara, J.L., Sánchez, J. (2010) System Modeling from

Extended Task Descriptions. In: 22nd International Conference on

Software Engineering and Knowledge Engineering (SEKE 2010),

pp 425-429.

 Koschmider, A., de la Vara, J.L., Sánchez, J. (2010) Measuring the

Progress of Reference Model-Based Business Process Modeling.

In: 3rd International Conference on Business Process and Services

Computing (BPSC 2010), pp 218-229.

 de la Vara, J.L., Ali, R., Dalpiaz, F., Sánchez, J., Giorgini, P. (2010)

Business Process Contextualisation via Context Analysis. In:

259

9.2 Thesis Impact

Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010,

LNCS 6412. Springer, Heidelberg, pp 471-476.

 de la Vara, J.L., Ali, R., Dalpiaz, F., Sánchez, J., Giorgini, P. (2010)

COMPRO: A Methodological Approach for Business Process

Contextualisation. In: Meersman, R., Dillon, T., Herrero, P. (eds.)

OTM 2010, Part I, LNCS 6426. Springer, Heidelberg, pp. 132-149

(CoopIS 2010)

 de la Vara, J.L., Wnuk, K., Berntsson-Svensson, R., Sánchez, J.,

Regnell, B. (2011) An Empirical Study on the Importance of

Quality Requirements in Industry. In: 23rd International

Conference on Software Engineering and Knowledge Engineering

(SEKE 2011) (accepted paper)

9.2.2 Forums Quality

Table 9.1 shows the rating of the forums at which the publications of the

thesis have been accepted. The rating is based on international conference

rankings that are used by the Spanish Government and by Spanish

universities to asses the quality of a publication. In this sense, quality of a

publication is determined from the the ranking of the forum at which it

was accepted.The rankings used are:

 Computing Research and Education Association of Australasia

(CORE)1;

 Conference Ranking in Computer Science (CSCR)2, and;

 Citeseer3.

Of the 15 forums at which some publication of thesis has been

accepted, eight of them are included in some of the international

conference rankings considered. Four of the conferences are considered

top forums (CAiSE, ER, CoopIS and SEKE), thus six publications of the

thesis can be regarded as vey high quality publications. Among these

conferences, probably the toughest one is CAiSE. For the 2008 edition of

the conference, just a 13% of the papers submitted were accepted.

1 http://core.edu.au/index.php/categories/conference%20rankings. Accessed July 13, 2011
2 http://www.grc.upv.es/localdocs/Conference_category_CS.pdf. Accessed July 13 2011
3 http://citeseerx.ist.psu.edu/stats/venues. Accessed July 13, 2011

260

9 Conclusions

Table 9.1 Rating of the forums of the publications of the thesis

Conference CORE CSCR Citeseer

CAiSE A - 209/581

ER A 0,91 117/581

CoopIS A 0,87 475/581

SEKE B 0,88 -

REFSQ B - -

BIS B - -

ICEIS C - 400/581

BPMDS C - -

9.2.3 Citations

Other perspective to asses the impact of a thesis is the number of times

that its publications have been referenced in other works, i.e., their

citations. This perspective determines how the publications and thus the

work of a thesis have influenced on later works. Among all of them, the

works considered relevant are those developed by authors different to

the author of a thesis. This means that these authors have taken the work

of the thesis as a reference for their own work and have realised of the

relationship between the works.

For determination of the citations, exploratory searches in Google4

and in Google Scholar5 have been performed. Table 9.2 shows the

number of citations of the publications of the thesis that have been

referenced in some work6. For counting of the citations, just publications

of other authors have been considered, i.e., publications of which Jose

Luis de la Vara is not one of the authors.

The result of citation counting is that the publications of the thesis

have been referenced in 54 works and that the h-index of the PhD

candidate is four (if self-references are not considered). Nonetheless,

these results may be lower than in reality given the exploratory and non-

systematic nature of the searches for determination of citations.

4 http://www.google.es. Accessed July 13, 2011
5 http://scholar.google.es. Accessed July 13, 2011
6 The detailed list of publications can be found in:

http://hci.dsic.upv.es/jdelavara/Citations.pdf. Accessed July 13, 2011

261

9.2 Thesis Impact

Table 9.2 Number of citations of the publications of the thesis

Publication Citations

Business process-driven RE: a goal-based approach (BPMDS’07) 17

Business Process Modelling and Purpose Analysis for Requirements Analysis

of Information Systems (CAiSE 2008)
16

Descomposición de Árboles de Metas a partir de Modelos de Procesos

(WER 2007)
4

A Requirements Engineering Approach for Data Modelling of Process-Aware

Information Systems (BIS 2009)
4

Improving Requirements Analysis through Business Process Modelling: A

Participative Approach (BIS 2008)
3

Derivación de modelos de tareas a partir de modelos BPMN (PNIS 2007) 2

Modelado de Requisitos de Datos para Sistemas de Información basados en

Procesos de Negocio (IDEAS 2009)
2

BPMN-Based Specification of Task Descriptions: Approach and Lessons

Learnt (REFSQ 2009)
2

System Modeling from Extended Task Descriptions (SEKE 2010) 2

Construcción de modelos de requisitos a partir de modelos de procesos y

de metas (IDEAS 2007)
1

Measuring the Progress of Reference Model-Based Business Process

Modeling (BPSC 2010)
1

9.2.4 Collaborations

Collaboration with researchers from other institutions can be considered

a criterion to asses the impact of a thesis too. It is related to the interests

that other researchers have shown in the work of the thesis and to their

interest in researching on the same or on similar subjects.

During the development of this thesis, collaborations with researchers

from the following institutions have arisen:

 Universidade Federal de Juiz de Fora, Universidade Federal do

Rio de Janeiro and Universidade Federal de Pernambuco (Brazil)

 Karlsruhe Institut für Technologie (Germany)

 Università degli Studi di Trento (Italy)

 University of Pretoria (South Africa)

 Universitat Politècnica de Catalunya (Spain)

 Lunds Universitet (Sweden)

262

9 Conclusions

9.2.5 Research Stays

The set of research stays performed during the development of a thesis

can be a criterion for assessment of its impact. The justification for the use

of this criterion is almost the same as the justification for the use of

collaborations: other researchers have shown interests in the work of the

thesis.

Nonetheless, research stays could be considered a further step, in

which researchers from the host institution and the guest researcher

commit to closely work and collaborate during a given period of time. In

addition, the importance of the host institution can be considered related

to the quality of the work performed and thus of the thesis.

During the development of this thesis, two research stays have been

performed:

 February 2010, Università degli Studi di Trento

This research stay was performed at the Software Engineering

and Formal Methods Research Group of the Department of

Information and Computer Engineering, and under the

supervision of Prof. Paolo Giorgini. Researchers from this

Research Group have a strong background and influence on RE

and conceptual modelling research and participate in major

international research projects7.

 May-August 2010, Lunds Universitet

This research stays was performed at the Software Engineering

Research Group of the Department of Computer Science, and

under the supervision of Prof. Björn Regnell. Lunds Universitet

and the members of the Software Engineering Research Group are

considered a top institution and top researchers worldwide,

respectively, on system and software engineering (Sjoberg, et al.,

2005; Wong, et al., 2011)). In addition, Lunds Universitet is well-

known for its strong and successful relationships with industry

and for performing industry-driven, empirical research8.

7 http://disi.unitn.it/research/research_programs/sweng. Accessed July 13, 2011
8 http://ease.cs.lth.se. Accessed July 13, 2011

263

9.3 Future Work

9.3 Future Work

No PhD thesis is perfect or complete. The reason is very simple: it is

impossible that a single thesis solves all the problems that may arise in

real world within its research area. Problems appear and disappear as

new technologies and approaches are proposed and the wishes of

stakeholders evolve over time. Therefore, more work related to a thesis

can always be performed to reduce it possible weak points or to address

new challenges of its research area.

More work can be performed on the basis of this thesis for further

advance of and improvement on the RE process of IS development.

Therefore, many future works could be performed as a continuation of

this thesis. A set of future works related to this thesis that have already

been started or that are expected to be started in a short period of time is

the following one.

Further evaluation

Current evaluation of the methodological approach presents some

limitations that may be addressed to improve it and to gain further

insights into its practical usefulness.

Experiments would allow specific aspects of the approach to be

assessed in more detail. For example, and as performed in other works

(e.g., (Marín, et al., 2010)), the effectiveness of its guidelines and rules can

be evaluated. Case studies in which the approach is applied by people

different to its designers would also be very valuable. Finally, surveys

targeted at conclusion generalization could be performed too.

In contrast to the above empirical-based further evaluation, another

stream for further evaluation (and possible improvement) would be

based on theoretical models and recommended practices. For example,

the methodological approach could be evaluated on the basis of its

support to the fitness relationship (Salinesi, Rolland, 2003). Other

evaluation could be performed on the basis of the support to CMMI (SEI,

2010). Improvement opportunities detected may increase the industrial

acceptance of the approach, for instance, in companies that follow CMMI.

Extensions and improvements on business process modelling

Although the (business process-based) organizational modelling stage

is considered to have been adequately defined, improvements on it can

264

9 Conclusions

be suggested. This a result of the evolving needs and of the opportunities

that frequently arise in the research field of business process modelling.

Two specific opportunities are the following ones.

Business process modelling could be improved by creating the models

from a repository or a recommendation system (e.g., (Koschmider,

Hornung, Oberweis, 2011)). These systems facilitate business process

modelling by providing users with models similar to the ones that they

want to create, thus the process of modelling a business process can be

accelerated. In addition, a new idea that could be studied is how use of

these systems could even be more positive by including progress

measurement techniques. They would allow modellers to know the

completion degree of their business process models under construction.

Another opportunity is the incorporation of techniques for context

analysis (e.g., (Ali, Dalpiaz, Giorgini, 2010)) so that fitness between a

business process and its context is better analysed and determined.

Context can strongly influence execution of a business process. If this fact

is disregarded when designing a business process, then the business

process may not properly responds to the events of its context and would

not be adequately executed.

Further link with OO-Method

Although link of business process-based SyRS with OO conceptual

modelling has been addressed in Chapter 7, many specific details of OO-

Method have not been addressed in depth in this thesis. These details

have been indicated in Chapter 7, but most of the times in a very abstract

way that requires further research.

Further link with OO-Method would mean that the methodological

approach could be even more useful for those practitioners that use the

approach for automatic software generation. It would also mean that a

whole approach for automatic IS development (methodological approach

in conjunction with OO-Method) would be defined and obtained. This

would provide many benefits for both approaches and would represent a

significant contribution for practice.

In addition, link of the methodological approach with advanced

features of model-driven development with OO-Method that have been

proposed recently to extend it (e.g., (Aquino, Vanderdonckt, Pastor, 2010;

Panach, et al., 2008; Valverde, Pastor, 2009)) could be studied.

265

9.3 Future Work

Extension and application of the methodological approach for new

contexts

The methodological approach defines (part of) a RE process for IS

development on the basis of OO conceptual modelling in general and of

OO-Method in particular. Nonetheless, many other approaches,

techniques, paradigms and contexts exist for IS development nowadays.

Use of the methodological approach in and with them would require

further study.

For example, it may necessary that some aspects of the

methodological were tailored to meet specific needs of service-oriented

systems (as discussed in (Graham, 2008)), of ERP systems or of agile

development. Consequently, extensions or modifications in the

methodological approach may be necessary for its application in these

types of IS development projects.

Furthermore, once extensions have been proposed and included, the

(new) methodological approach should be applied in the new contexts to

evaluate its actual, practical usefulness.

Improvement on tool support

Tool support for the methodological approach is presented in

Appendix B. As mentioned in Chapter 1, it corresponds to a set of

prototypes whose purpose is to show feasibility of automation of the

approach. Although the tool support developed is considered important

and useful, it could be improved.

Improvement should be targeted mainly at two aspects. First, it

should aim to further automate application of the methodological

approach. Since current tool support corresponds to prototypes, just

partial automation has been addressed. Second, usability of tool support

should be increased. The prototypes are highly based on software

generated automatically, whose usability could be improved by hand

coding specific parts of tool support.

The goal of the improvements is clear: easier and faster application of

the methodological approach. Consequently, application of the approach

by practitioners would be facilitated and its (possible) adoption in

industry may increase.

266

9 Conclusions

Finally, and as stated above for a PhD thesis, future work is neither

perfect nor complete. Many other future works can be defined, but their

relevance will depend on the needs and interest of industry and

academia (i.e., researchers). In addition, a future work that has not been

listed is further publication of the different parts of the thesis. This future

work is implicit in any thesis, provided that all its results have not been

published yet in journals, conferences or workshops.

9.4 Final Reflection

After having stayed for ten years in academia (five years as a student of a

5-years degree in computer engineering and five years as a MSc and a

PhD student on computer science, and six of the ten years being involved

in research), and having interacted many times with researchers and

practitioners, many things seem more limpid.

In relation to this thesis, the perception about the role of RE (and thus

of RE approaches) on software processes has evolved. Things that

seemed inexplicable or at least hard to understand have now a

justification. A picture that was blurred is now clear.

Belief in the importance of RE is evident. Otherwise, this thesis should

have never been developed. However, there exist people (both

practitioners and researchers) who do not agree on this opinion and

undervalue RE. They claim, for instance, that they do not care about RE,

that they do not develop neither need a RE process or that the effort it

requires is not worth.

What these people do not realize is that RE is not only modelling

business processes or specifying use cases. They do not even realize that,

in fact, they deal with RE, although in a different way to what they think

RE is. For sure, any software development company tries to discover

customer needs and implement software systems that meet them. The

use of a given RE approach or other is not the relevant point. The

relevant point is to try to successfully develop systems that fulfil their

purpose and satisfy stakeholders.

No existing RE approach is well-suited for all companies, types of

project or types of system. Furthermore, most of (or even all) the RE

approaches that are targeted at specific contexts will not always be useful

267

9.4 Final Reflection

and weak points will be found. For example, further (future) work can be

performed for the RE approach presented in this thesis.

The actual value of a RE approach should never be denied because of

its weak points. The actual value of a RE approach should be assessed on

the basis of the problems whose solution it may facilitate. Therefore, it is

responsibility of both researchers and practitioners to determine on what

situations a RE approach will be useful. If weaknesses are found, it does

not mean that an approach is useless, but that improvement

opportunities exist or that other approach would be better-suited.

This line of thought has been adopted and followed in this thesis. The

methodological approach developed is based on many ideas and

mechanisms of existing RE approaches. Therefore, the methodological

approach has tried to take advantage of existing solutions to achieve the

objectives of the thesis.

It cannot be said that the proposed solution is better than, for instance,

all the approaches reviewed in Chapter 2. What can be said is that the

proposed solution aims to help system analysts face the challenges

described in Chapter 1, and that it is expected that the methodological

approach will do it better than the existing RE approaches.

Furthermore, usefulness of a RE approach not only depends on how

well and sensible it was conceived and developed. It highly depends on

the skills of those that use the approach and on their goals. A

paradigmatic example for me is specification and modelling of use cases.

For some time, I thought that what I had been taught about the

importance and usefulness for software development of use cases was

partially false. I had heard many practitioners and researchers doubting

their value and saying that they would never use them (in some cases

again).

Some time later, I found cases in which the success of software

development highly depended on adequate and precise elicitation and

specification of use cases, and practitioners completely believed in their

usefulness. The explanation of the first perception became then clear. Use

cases simply did not fit the needs and wishes of those practitioners (or

researchers), or they simply did not know how to use or take advantage

of them.

268

9 Conclusions

In conclusion, researchers on software development methods in

general and on RE approaches in particular must listen to all

stakeholders, both in academia and in industry, and look for solutions to

existing or potential problems and for improvements on existing practice

when necessary. What researchers should never do is to consider a

personal opinion as a universal truth, or a situation as a permanent state.

For any opinion or situation that is taken for granted, cases in which their

bases do not hold can be found.

Although the above claims may seem obvious, they have not always

been so, at least for me. Nevertheless, they are personal opinions.

References

Aagesen, G., Krogstie, J. (2010) Analysis and Design of Business

Processes Using BPMN. In: vom Brocke, J., Rosemann, M. (eds.)

Handbook on Business Process Management 1, International

Handbooks on Information Systems. Springer, Heidelberg, pp 213-

235.

Aguilar-Savén, R.S. (2004) Business process modelling: Review and

Framework. International Journal of Production Economics 90(2):

129-149.

Alexander, I.F., Stevens, R. (2002) Writing Better Requirements. Pearson

Education, London.

Alexander, I., Bider, I., Regev, G. (2003) REBPS 2003: Motivations,

Objectives and Overview. Message from the Workshop Organizers.

In: CAiSE 2003 Workshops.

Alexander, I.F., Maiden, N. (eds.) (2004) Scenarios, Stories, Use Cases.

John Wiley and Sons, Chichester.

Alexander, I., Beus-Dukic, L. (2009) Discovering Requirements: How to

Specify Products and Services. Wiley, Chichester.

Ali, R., Dalpiaz, F., Giorgini, P. (2010) A goal-based framework for

contextual requirements modeling and analysis. Requirements

Engineering 15(4): 439-458.

270

References

Allweyer, T. (2010) BPMN 2.0: Introduction to the Standard for Business

Process Modeling. Books on Demand, Noderstedt.

Ameller, D., Franch, X., Cabot, J. (2010) Dealing with Non-Functional

Requirements in Model-Driven Development. In: 18th IEEE

International Requirements Engineering Conference (RE 2010), pp

189-198.

Antón, A.I. (1997) Goal Identification and Refinement in the Specification

of Software-Based Information Systems. PhD Thesis, Georgia

Institute of Technology.

Apel, S., Kästner, C. (2009) An Overview of Feature-Oriented Software

Development. Journal of Object Technology 8(5): 49-84.

Aquino, N., Vanderdonckt, J., Pastor, O. (2010) Transformation

templates: adding flexibility to model-driven engineering of user

interfaces. In: 25th ACM Symposium On Applied Computing (SAC

2010), pp 1195-1202.

Arsanjani, A. (2005) Empowering the business analysts for on demand

computing. IBM Systems Journal 44(1): 67-80.

Attaran, M. (2004) Exploring the relationship between information

technology and business process reengineering. Information &

Management 41(5): 585-596.

Aurum, A., Wohlin, C. (eds.) (2005a) Engineering and Managing

Software Requirements. Springer, Heidelberg.

Aurum, A., Wohlin, C. (2005b) Requirements Engineering: Setting the

Context. In: (Aurum, Wohlin, 2005a), pp 1-15.

Babar, A., Zowghi, D., Cox, K., Tosic, V., (2008a) Three Integration

Approaches for Map and B-SCP Requirements Engineering

Techniques. In: 2008 ACM symposium on Applied computing

(SAC’08), pp 650-655.

Babar, A., Cox, K., Tosic, V., Bleistein, S., Verner, J. (2008b) Integrating B-

SCP and MAP to manage the evolution of strategic IT requirements.

Information and Software Technology 50(7-8): 815-831.

Bandara, W., Gable, G.G., Rosemann, M. (2005) Factors and measures of

business process modeling: model building through a multiple case

study. European Journal of Information Systems 14: 347-360.

271

References

Batra, D. (2007) Cognitive complexity in data modelling: causes and

recommendations. Requirements Engineering 12(4): 231-244.

Becker, J., Rosemann, M., von Uthmann, C. (2000) Guidelines of Business

Process Modeling. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.)

Business Process Management, LNCS 1806. Springer, Heidelberg, pp

30-49.

Becker, J., Kugeler, M., Rosemann, M. (eds.) (2003) Process Management:

A Guide for the Design of Business Processes. Springer, Berlin.

Becker, J., Breuker, D., Weiß, B., Winkelman, A. (2010) Exploring the

status quo of business process modelling languages in the banking

sector – An empirical insight into the usage of methods in banks. In:

21st Australasian Conference on Information Systems (ACIS 2010)

Berenbach, B., Paulish, D.J., Kazmeier, J., Rudorfer, A. (2009) Software

and Systems Requirements Engineering: in Practice. McGraw-Hill,

New York.

Berntsson-Svensson, R., Aurum, A. (2006) Successful software project and

products: An empirical investigation. In: 2006 International

Symposium on Empirical Software Engineering (ISESE 2006), pp 144-

153.

Berntsson-Svensson, R. (2009) Managing Quality Requirements in

Software Product Development. Licentiate Thesis, Lund University.

Berntsson-Svensson, R., Gorschek, T., Regnell, B (2009) Quality

Requirements in Practice: An Interview Study in Requirements

Engineering for Embedded Systems. In: Glinz, M., Heymans, P. (eds)

REFSQ 2009, LNCS 5512. Springer, Heidelberg, pp 218-232.

Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J. (2007) Towards

Formal Analysis of Artifact-Centric Business Process Models. In:

Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007, LNCS 4714.

Springer, Heidelberg, pp 288-304.

Bider, I. (2005) Choosing Approach to Business Process Modeling–

Practical Perspective. Journal of Conceptual Modeling 34.

Bidgeland, D.M., Zahavi, R. (2009) Business Modeling: A Practical Guide

to Realizing Business Value. The MK/OMG Press, San Francisco.

272

References

Birkmeier, D., Klöchner, S., Overhagen, S. (2010) An empiricial

comparison of the usability of BPMN and UML activity diagrams for

business users. In: 18th European Conference on Information

Systems (ECIS 2010)

Bleistein, S., Cox, K., Verner, J., Phalp, K.T. (2006) B-SCP: A requirements

analysis framework for validating strategic alignment of

organizational IT based on strategy, context, and process.

Information and Software Technology 48(9): 846-868.

Borg, A., Yong, A., Carlshamre, P., Sandahl, K. (2003) The bad conscience

of requirements engineering: an investigation in real-world treatment

of non-functional requirements. In: Third Conference of Software

Engineering Research and Practise in Sweden (SERPS’03), pp 1-8.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J. (2004)

Tropos: An Agent-Oriented Software Development Methodology.

Autonomous Agents and Multi-Agent Systems 8(3): 203-236.

Broadbent, M., Weill P., St.Clair, D. (1999) The implications of

information technology infrastructure for business process redesign.

MIS Quarterly 23(2): 159-182.

Bubenko, J., Persson, A., Stirna, J. (2001) EKD User Guide (online)

http://people.dsv.su.se/~js/ekd_user_guide.html. Accessed July 13,

2011.

Campbell, B. (2005). Alignment: Resolving ambiguity within bounded

choices. In: Ninth Pacific Asia Conference on Information Systems

(PACIS 2005)

Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, G. (2009) Requirements

Engineering Based on Business Process Models: A Case Study. In:

13th Enterprise Distributed Object Computing Conference

Workshops (EDOCW 2009), pp 320-327.

Carr, D.K., Johansson, H.J. (1995) Best Practices in Reengineering: What

Works and What Doesn't in the Reengineering Process. McGraw Hill,

New York.

Castro, J., Alencar, F.M.R., Filhol, G.A.C., Mylopoulos, J. (2001)

Integrating organizational requirements and object oriented

modelling. In: 5th IEEE International Symposium on Requirements

Engineering Conference (RE’01), pp 146-153.

273

References

Castro, J., Kolp, M., Mylopoulos, J. (2002) Towards requirements-driven

information systems engineering: the Tropos Project. Information

Systems 27(6): 365-389.

Chalin, P., Sinnig, D., Torkzadeh, K. (2008) Capturing business

transaction requirements in use case models. In: 23rd Annual ACM

Symposium on Applied Computing (SAC’08), pp 602-606.

Charette, R.N. (2005) Why Software Fails. IEEE Spectrum 42(9): 42-49.

Cheng, B.H.C., Atlee, J.M. (2007) Research Directions in Requirements

Engineering. In: 29th International Conference on Software

Engineering (ICSE 2007), Workshop on the Future of Software

Engineering (FOSE 2007), pp 285-303.

Chung, L., Nixon, B., Yu, E., Mylopoulos, J. (2000) Non-Functional

Requirements in Software Engineering. Kluwer Academic Press,

Boston.

Chung, L., Leite, J.C.S.P. (2009) On Non-Functional Requirements in

Software Engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P.,

Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications -

Essays in Honor of John Mylopoulos, LNCS 5600. Springer,

Heidelberg, pp 363-379.

Classen, A., Heymans, P., Schobbens, P.Y. (2008) What’s in a Feature: A

Requirements Engineering Perspective. In: Fiadeiro, J., Inverardi, P.

(eds.) FASE 2008, LNCS 4691. Springer, Heidelberg, 16-30.

Cockburn, A. (2001) Writing Effective Use Cases. Addison-Wesley,

Boston.

Cohn, M. (2004) User Stories Applied: For Agile Software Development.

Addison-Wesley, Redwood City.

Condori, N., Daneva, M., Sikkel, K., Wieringa, R., Dieste, O., Pastor, O.

(2009: A systematic mapping study on empirical evaluation of

software requirements specifications techniques. In: 3rd International

Symposium on Empirical Software Engineering and Measurement

(ESEM 2009), pp 502-505

Constantine, L., Lockwood, L. (1999) Software for use: a practical guide

to the models and methods of usage-centered design. Addison-

Wesley, New York.

274

References

Correa, A.L., Werner, C.M.L. (2004) Precise specification and validation

of transactional business software. In: 12th IEEE International

Requirements Engineering Conference (RE’04), pp 16-25.

Coskuncay, A., Aysolmaz, B., Demirors, O., Bilen, O., Dogani, I. (2010)

Bridging the gap between business process modelling and software

requirements analysis: a case study. In: Fifth Mediterranean

Conference on Information Systems (MCIS 2010)

Cox, K., Phalp, K.T. (2007) Practical experience of eliciting classes from

use case descriptions. Journal of Systems and Software 80(8): 1286-1304.

Dardenne, A., van Lamsweerde, A., Fickas, S. (1993) Goal-directed

Requirements Acquisition. Science of Computer Programming 20: 3-

50.

Davenport, T.H. (1993) Process innovation: reengineering work through

information technology. Harvard Business School Press, Boston.

Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S. (2007) How do

practitioners use conceptual modeling in practice? Data &

Knowledge Engineering 58(3): 358-380.

Davis, A.M. (1993) Software requirements: objects, functions and states.

Prentice-Hall, Upper Saddle River.

Davis, A.M. (1995) 201 principles of software development. McGraw-Hill,

New York.

Davis, A.M., Hickey, A.M. (2002) Requirements Researchers: Do We

Practice What We Preach. Requirements Engineering 7(2): 107-111.

Davis, A.M. (2003) System phenotypes. IEEE Software 20(4): 54-56.

Davis, A.M., Zowghi, D. (2006) Good requirements practices are neither

necessary nor sufficient. Requirements Engineering 11(1): 1-3.

Davis, R., Brabänder, E. (2007) ARIS Design Platform: Getting Started

with BPM. Springer-Verlag, London.

de Castro, V., Marcos, E., Vara, J.M. (2010) Applying CIM-to-PIM model

transformations for the service-oriented development of information

systems. Information and Software Technology 53(1): 87-105.

275

References

Decker, G., Dijkman, R., Dumas, M., García-Bañuelos, L. (2010) The

Business Process Modeling Notation. In: (ter Hofstede, et al., 2010),

pp 347-368.

Díaz, I., Sánchez, J., Matteo, A. (2005) Conceptual Modelling Based on

Transformation Linguistic Patterns. In: Delcambre, L., Kop, C., Mayr,

H.C., Mylopoulos, J., Pastor, O (eds.) ER 2005, LNCS 3716. Springer,

Heidelberg, pp 192-208.

Dieste, O., Juristo, N., Shull, F. (2008) Understanding the Customer: What

Do We Know about Requirements Elicitation? IEEE Software 25(2):

11-13.

Dijkman, R.M., Joosten, S.M.M. (2002) Deriving Use Case Diagrams from

Business Process Models. CTIT Technical Report 02-08, University of

Twente.

Dijkman, R.M., Dumas, M., Ouyang, C. (2008) Semantics and analysis of

business process models in BPMN. Information and Software

Technology 50(12): 1281-1294.

Dobing, B., Parsons, J. (2000) Understanding the role of use cases in UML:

a review and research agenda. Journal of Database Management

11(4): 28-36.

Dobing, B., Parsons, J. (2006) How UML is used. Communications of the

ACM 49(5): 109-113.

Dumas, M., van der Aalst, W., ter Hofstede, A.H.M. (eds.) (2005) Process-

Aware Information Systems. John Wiley & Sons, Chichester.

Dutoit, A.H., Paech, B. (2002) Rationale-Based Use Case Specification.

Requirements Engineering 7(1): 3-19.

Effinger, P., Jogsch, N., Seiz, S. (2010) On a Study of Layout Aesthetics for

Business Process Models Using BPMN. In: Mendling, J., Weidlich,

M., Weske, M. (eds.) BPMN 2010, LNBIP 67. Springer, Heidelberg, pp

31-45.

Eriksson, H., Penker, M. (2000). Business Modeling with UML: Busines

Patterns at Work. John Wiley & Sons, New York.

Eshuis, R. (2006) Symbolic Model Checking of UML Activity Diagrams.

ACM Transactions on Software Engineering and Methodology 15(1):

1-38.

276

References

España, S., González, A., Pastor, O. (2009) Communication Analysis: A

Requirements Engineering Method for Information Systems. In: van

Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009, LNCS 5565.

Springer, Heidelberg, pp 530-545.

España, S., Condori-Fernández, N., González, A., Pastor, O. (2009)

Evaluating the Completeness and Granularity of Functional

Requirements Specifications: A Controlled Experiment. In: 17th IEEE

International Requirements Engineering Conference (RE 2009), pp

161-170.

España, S., Ruiz, M., Pastor, Ó., González, A. (2011) Systematic derivation

of state machines from communication-oriented business process

models. In: IEEE 5th International Conference on Research

Challenges in Information Science (RCIS 2011) (accepted paper)

Estrada, H., Martínez, A., Pastor, O., Mylopoulos, J. (2006) An Empirical

Evaluation if the i* Framework in a Model-Based Software

Generation Environment. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006,

LNCS 4001. Springer, Heidelberg, pp 513-527.

Figl, K., Mendling, J., Strembeck, M., Recker, J. (2010) On the Cognitive

Effectiveness of Routing Symbols in Process Modeling Languages. In:

Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010, LNBIP 47. Springer,

Heidelberg, pp 230-241.

Fink, A. (1995) The Survey Handbook. Sage Publications, Thousand

Oaks.

Finkelstein, A. (1994) Requirements Engineering: a review and research

agenda. In: 1st Asia-Pacific Software Engineering Conference

(APSEC’94), pp 10-19.

Firesmith, D. (2005) Are Your Requirements Complete? Journal of Object

Technology 4(1): 27-43.

Firesmith, D. (2007) Common Requirements Problems, Their Negative

Consequences, and the Industry Best Practices to Help Solve Them.

Journal of Object Technology 6(1): 17-33.

Franch, X. (2010) Fostering the Adoption of i∗ by Practitioners: Some

Challenges and Research Directions. In: Nurcan, S., Salinesi, C.,

Souveyet, C., Ralité, J. (eds) Intentional Perspectives on Information

Systems Engineering. Springer, Heidelberg, pp 177-193.

277

References

Fortuna, M.H., Werner, C.M.L., Borges, M.R.S. (2008) Info Cases:

Integrating Use Cases and Domain Models. In: 16th International

Requirements Engineering Conference (RE’08), pp 81-84.

García Molina, J., Ortín, M.J., Moros, B., Nicolás, J. (2002) Transforming

the OOram Three-Model Architecture into a UML-based Process.

Journal of Object Technology 1(4): 119-135.

 Genon, N., Heymans, P., Amyot, D. (2011) Analysing the Cognitive

Effectiveness of the BPMN 2.0 Visual Notation. In: Malloy, B., Staab,

S., van der Brand, M. (eds.) SLE 2010, LNCS 6563. Springer,

Heidelberg, pp 377-396.

Giachetti, G., Marín, B., Pastor, O (2009) Using UML as a Domain-Specific

Modeling Language: A Proposal for Automatic Generation of UML

Profiles. In: In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE

2009, LNCS 5565. Springer, Heidelberg, pp 110-124.

Glinz, M. (2000) A Lightweight Approach to Consistency of Scenarios

and Class Models. In: 4th International Conference on Requirements

Engineering (ICRE'00), pp 49-58.

Glinz, M., Berner, S., Joos, S. (2002) Object-oriented modeling with

ADORA. Information Systems 27(6): 425-444.

Glinz, M. (2007) On Non-Functional Requirements. In: 15th International

Requirements Engineering Conference (RE’07), pp 21-26.

González, A., España, S., Ruiz, M., Pastor, O. (2011) Systematic derivation

of class diagrams from communication-oriented business process

models. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E.,

Schmidt, R., Bider, I. (eds.) BPDMS 2011 and EMMSAD 2011, LNBIP

81. Springer, Heidelberg, pp 246-260.

Gordjin, J., Akkermans, J.M. (2003) Value-based requirements

engineering: exploring innovative e-commerce idea. Requirements

engineering 8(2): 114-134.

Gorschek, T., Wohlin, C. (2006) Requirements Abstraction Model.

Requirements Engineering 11(1): 79-101.

Graham, I. (2008) Requirements modelling and specification for service

oriented architecture. Wiley, Chichester.

278

References

Grau, G., Franch, X. (2007) ReeF: Defining a Customizable Reengineering

Framework. In: In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE

2007, LNCS 4495. Springer, Heidelberg, pp 485-500.

Grau, G., Franch, X., Maiden, N.A.M. (2008) PRiM: An i*-based process

reengineering method for information systems specification.

Information and Software Technology 50(1-2): 76-100.

Grosskopf, A., Decker, G., Weske, M. (2009) The Process: Business

Process Modeling Using BPMN. Megahn-Kiffer Press, Tampa.

Grover, V., Malhorta, M. (1997) Business process reengineering: A

tutorial on the concept, evolution, method, technology and

application. Journal of Operations Management 15(3): 193-213.

Gruhn, V., Laue, R. (2009) Reducing the Cognitive Complexity of

Business Process Models. In: 8th IEEE International Conference on

Cognitive Informatics (ICCI’09), pp 339-345.

Gulla, J.A. (2004) Understanding Requirements in Enterprise Systems

Projects. In: 12th IEEE International Requirements Engineering

Conference (RE’04), pp 176-185.

Hammer, M., Champy, J. (2001) Reengineering the Corporation: A

Manifesto for Business Revolution, 2nd ed. Collins, New York.

Harrington, H.J. (1991) Business Process Improvement: The

Breakthrough Strategy for Total Quality, Productivity, and

Competitiveness. McGraw-Hill, New York.

Heidenreich, F., Sánchez, P., Santos, J., Zschaler, S., Alférez, M., Araújo,

J., Fuentes, L., Kulesza, U., Moreira, A., Rashid. A. (2010) Relating

Feature Models to Other Models of a Software Product Line - A

Comparative Study of FeatureMapper and VML*. In: Katz, S.,

Mezini, M., Kienzle, J. (eds.) Transactions on AOSD VII, LNCS 6210.

Springer, Heidelberg, pp 69–114.

Hofman, H.F., Lehner, F. (2001) Requirements Engineering as a Success

Factor in Software Projects. IEEE Software 18(4): 58-66.

Hsia, P., Davis, A., Kung, D. (1993) Status report: requirements

engineering. IEEE Software 10(6): 75-79.

IIBA (2009) A Guide to the Business Analysis Body of Knowledge

(BABOK Guide), Version 2.0.

279

References

Indulska, M., Recker, J., Rosemann, M., Green, P. (2009) Business Process

Modeling: Current Issues and Future Challenges. In: van Eck, P.,

Gordjin, J., Wieringa, R. (eds.) CAiSE 2009, LNCS 5565. Springer,

Heidelberg, pp 501-514.

Insfrán, E., Pastor, O., Wieringa, R. (2002) Requirements Engineering-

Based Conceptual Modelling. Requirements Engineering 7(2): 61-72.

ISO (2001) International Standard ISO/IEC 9126-1: Software engineering –

Product quality – Part 1: Quality Model.

Ivarsson, M., Gorschek, T. (2011) A Method for evaluating rigor and

industrial relevance of technology evaluations. Empirical Software

Engineering 16(3): 365-395.

Ivarsson, M., Gorschek, T. (2009) Technology transfer decision support in

requirements engineering research: a systematic review of REj.

Requirements Engineering 14(3): 155-175.

Jackson, M. (1995) Software Requirements & Specifications: a lexicon of

practice, principles and prejudices. ACM Press/Addison-Wesley,

New York.

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G. (1992) Object-

Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley, Reading.

Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W.

(2010) The Brave New World of Design Requirements: Four Key

Principles. In: Pernici, B. (ed.) CAiSE 2010, LNCS 6051. Springer,

Heidelberg, pp 470-482.

Jones, S., Maiden, N. (2004) RESCUE: An Integrated Method for

Specifying Requirements for Complex Socio-Technical Systems. In:

Mate, J.L., Silva, A. (eds.) Requirements Engineering for

Sociotechnical Systems. Information Resources Press, Arlington, pp

245-265.

Jones, S., Maiden, N.A.M., Manning, S., Greenwood, J. (2007) Informing

the Specification of a Large-Scale Socio-technical System with Models

of Human Activity. In: Sawyer, P., Paech, B., Heymans, P. (eds.)

REFSQ 2007, LNCS 4542. Springer, Heidelberg, pp 175-189.

280

References

Juristo, N., Moreno, A.M., Silva, A. (2002) Is the European Industry

Moving toward Solving Requirements Engineering Problems? IEEE

Software 19(6): 70-77.

Kaindl, H., Brinkkemper, S., Bubenko, J.A., Farbey, B., Greenspan, S.L.,

Heitmeyer, C.L., Leite, J.C.S.P., Mead, N., Mylopoulos, J., Siddiqi, J.

(2002) Requirements Engineering and Technology Transfer:

Obstacles, Incentives and Improvement Agenda. Requirements

Engineering 7(3): 113-123.

Kamsties, E., Hörmann, K., Schlich, M. (1998) Requirements engineering

in small and medium enterprises. Requirements Engineering 3(2): 84

-90.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S. (1990)

Feature-Oriented Domain Analysis (FODA) Feasibility Study.

Technical Report CMU/SRI-90-TR-21. Software Engineering Institute,

Carnegie Mellon University.

Kaplan, R., Norton, D. (1996) The Balanced Scorecard: Translating

Strategy into Action. Harvard Business School Press, Boston.

Karahanna, E., Straub, D.W., Chervany, N.L. (1999) Information

technology adoption across time: a cross-sectional comparison of pre-

adoption and post-adoption beliefs. MIS Quarterly 23(2): 183-213.

Kavakli, E. (2002) Goal-Oriented Requirements Engineering: A Unifying

Framework. Requirements Engineering 6(4): 237-251.

Kavakli, E., Loucopoulos, P. (2006) Experiences With Goal-Oriented

Modeling of Organizational Change. IEEE Transactions on Systems,

Man, and Cybernetics – Part C: Applications and Reviews 36(2): 221-

235.

Kim, J., Hahn, J., Hahn, H. (2000) How Do We Understand a System with

(So) Many Diagrams? Cognitive Integration Processes in

Diagrammatic Reasoning. Information Systems Research 11(3): 284-

303.

Kirchmer, M. (1999) Business Process Oriented Implementation of

Standard Software: How to Achieve Competitive Advantage

Efficiently and Effectively, 2nd ed. Springer, Berlin.

281

References

Kitchenham, B.A., Pfleeger, S.L. (2008) Personal opinion surveys. In:

Shull, F., Singer, J., Sjoberg, D.I.K. (eds.) Guide to Advanced

Empirical Software Engineering. Springer, London, pp 63-92.

Ko, R.K.L., Lee, S.S.G., Lee, E.W. (2009) Business process management

(BPM) standards: a survey. Business Process Management Journal

15(5): 744-791.

Koehler, J., Vanhatalo, J. (2007) Process anti-patterns: How to avoid the

common traps of business process modelling. WebSphere Technical

Development Journal (online) http://www.ibm.com/developerworks/

websphere/techjournal/0702_koehler/0702_koehler.html. Accessed

July 13, 2011.

Koschmider, A., Hornung, T., Oberweis, A. (2011) Recommendation-

based editor for business process modelling. Data & Knowledge

Engineering 70(6): 483-503.

Kösters, G., Six, H.W., Winter, M. (2001) Coupling Use Case and Class

Models as a Means for Validation and Verification of Requirements

Specifications. Requirements Engineering 6(1): 3-17.

Kotonya, G., Sommerville, I. (1998) Requirements Engineering: Processes

and Techniques. John Wiley & Sons, Chichester.

Kueng, P., Kawalek, P. (1997) Goal-based Business Process models:

creation and evaluation. Business Process Management Journal 3(1):

17-38.

Kumaran, S., Liu, R., Wu, F.Y. (2008) On the Duality of Information-

Centric and Activity-Centric Models of Business Processes. In:

Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008, LNCS 5074. Springer,

Heidelberg, pp 32-47.

Küsters, J.M., Ryndina, K., Gall, H. (2007) Generation of Business Process

Models for Object Life Cycle Compliance. In: Alonso, G., Dadam, P.,

Rosemann, M. (eds.) BPM 2007, LNCS 4714. Springer, Heidelberg, pp

165-181.

Lankhorst, M. (2009) Enterprise Architecture at Work: Modelling,

Communication and Analysis, 2nd ed. Springer, Heidelberg.

282

References

Larman, C. (2005) Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative Development, 3rd

ed. Prenticw-Hall, Upper Saddle Rive.

Lauesen, S., Vinter, O. (2001) Preventing Requirement Defects: An

Experiment in Process Improvement. Requirements Engineering 6(1):

37-50.

Lauesen, S. (2002) Software Requirements: Styles and Techniques.

Addison-Wesley, London.

Lauesen, S., Vium, J.P. (2005) Communication gaps in a tender process.

Requirements Engineering 10(4): 247-261.

Lauesen, S., Kuhail, M.A. (2011) Use Cases versus Task Descriptions. In:

Berry, D., Franch, X. (eds.) REFSQ 2011, LNCS 6606. Springer,

Heidelberg, pp 106-120.

Lawrence, B., Wiegers, K., Ebert, C. (2001) The Top Risks of

Requirements Engineering. IEEE Software 18(6): 62-63.

Liang, Y. (2003) From use cases to classes: a way of building object model

with UML. Information and Software Technology 45(2): 83-93.

Lindsay, A., Downs, A., Lunn, K. (2003) Business processes - attempts to

find a definition. Information and Software Technology 45(15): 1015-

1019.

List, B., Korherr, B. (2006) An Evaluation of Business Process Modelling

Languages. In: 21st Annual ACM Symposium on Applied

Computing (SAC’06), pp 1532-539.

Liu, L., Zhang, H., Peng, F., Ma, W., Shan, Y., Xu, J., Burda, T. (2009)

Understanding Chinese Characteristics of Requirements Engineering.

In: 17th IEEE International Requirements Engineering Conference

(RE 2009), pp 261-266.

Loniewski, G., Insfrán, E., Abrahão, S. (2010) A Systematic Review of the

Use of Requirements Engineering Techniques in Model-Driven

Development. In: Petriu, D.C., Rouquette, N., Haugen, O. (eds.)

MODELS 2010, Part II, LNCS 6395. Springer, Heidelber, pp 213-227.

Loucopoulos, P., Karakostas, V. (1995) System requirements engineering.

McGraw-Hill, New York.

283

References

Lubars, M., Potts, C., Richter, C. (1993) A review of the state of the

practice in requirements modelling. In: IEEE International

Symposium on Requirements Engineering (ISRE 1993), pp 2-14.

Luftman, J., Ben-Zvi, T. (2010) Key Issues for IT Executives 2010:

Judicious IT Investments Continue Post-Recession. MIS Quarterly

Executive 9(4)

Maiden, N.A.M., Jones, S., Manning, S., Greenwood, J., Renou, L., (2004)

Model-Driven Requirements Engineering: Synchronising Models in

an Air Traffic Management Case Study. In: Persson, A., Stirna, J.

(eds.) CAiSE 2004, LNCS 3084. Springer, Heidelberg, pp 368-383.

Marín, B., Giachetti, G., Pastor, O., Vos, T.E.J., Abran, A. (2010)

Evaluating the usefulness of a functional size measurement

procedure to detect defects in MDD models. In: 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and

Measurement (ESEM 2010)

Marshall, C. (2000) Enterprise Modeling with UML. Addison Wesley,

Essex.

Matulevicius, R., Heymans, P. (2007) Comparing Goal Modelling

Languages: An Experiment. In: Sawyer, P., Paech, B., Heymans, P.

(eds.) REFSQ 2007, LNCS 4542. Springer, Heidelberg, pp 18-32.

Matulevicius, R., Heymans, P., Opdahl, A. (2007) Comparing GRL and

KAOS using the UEML Approach. In: Gonçalves, R.J., Müller, J.P,

Mertins, K., Zelm, M. (eds.) Enterprise Interoperability II, Part I.

Springer, London, pp 77-88.

McKeen, J., Smith, H.A. (2003) Making IT Happen: Critical Issues in IT

Management. . John Wiley & Sons, Chichester.

Mead, N.R. (2000) Why is it so Difficult to Introduce Requirements

Engineering Research Results into Mainstream Requirements

Engineering Practice? In: In: 4th International Conference on

Requirements Engineering (ICRE'00), pp 75-76.

Melão, N., Pidd, M. (2000) A conceptual framework for understanding

business processes and business process modelling. Information

Systems Journal 10(2): 105-129.

284

References

Mendling, J., Strembeck, M. (2008) Influence Factors of Understanding

Business Process Models. In: Abramowicz, W., Fensel, D. (eds.) BIS

2008, LNBIP 7. Springer, Heidelberg, pp 142-153.

Mendling, J., Reijers, H.A., Recker, J. (2010) Activity labeling in process

modeling: Empirical insights and recommendations. Information

Systems 35(4): 467-482.

Mendling, J., Reijers, H.A., van der Aalst, W.M.P. (2010) Seven process

modelling guidelines (7PMG). Information and Software Technology

52(2): 127-136.

Monteiro, R., Araújo, J., Amaral, V., Patrício, P. (2010) MDGore: Towards

Model-Driven and Goal-Oriented Requirements Engineering. In: 18th

IEEE International Requirements Engineering Conference (RE 2010),

pp 405-406.

Moody, D.L., Heymans, P., Matulevicius, R. (2010) Visual syntax does

matter: improving the cognitive effectiveness of the i* visual notation.

Requirements Engineering 15(2): 141-175.

Neill, C.J., Laplante, P.A. (2003) Requirements Engineering: The State of

the Practice. IEEE Software 20(6): 40-45.

Nigam, A., Caswell, N.S. (2003) Business artifacts: An approach to

operational specification. IBM Systems Journal 42(3): 428-445.

Nurcan, S., Rolland, C. (2003) A multi-method for defining the

organizational change. Information and Software Technology 45(2):

61-82.

Nuseibeh, B., Easterbrook, S. (2000) Requirements engineering: a

roadmap. In: Conference on The Future of Software Engineering,

22nd International Conference on Software Engineering (ICSE’00), pp

35-46.

Nysetvold, A.G., Krogstie, J. (2005) Assessing Business Process Modelling

Languages Using a Generic Quality Framework. In: 10th

International Workshop on Exploring Modeling Methods in Systems

Analysis and Design (EMMSAD05)

Odeh, M., Kamm, R. (2003) Bridging the gap between business models

and system models. Information and Software Technology 45(15):

1053-1060.

285

References

Olivé, A. (2007) Conceptual Modeling of Information Systems. Springer,

Heidelberg.

Olle, T.W., Hagelstein, J., Macdonald, I.G., Rolland, C., Sol, H.G., van

Assche, F.J.M., Verrijn-Stuart, A.A. (1991) Information Systems

Methodologies: A Framework for Understanding, 2nd ed. Addison-

Wesley, Workingham.

OMG (2003) MDA Guide Version 1.0.1 (online) www.omg.org/mda.

Accessed July 13, 2011.

OMG (2005) Unified Modeling Language: Superstructure Version 2.0

(online) http://www.uml.org. Accessed July 13, 2011.

OMG (2006) Object Constraint Language Version 2.0 (online)

http://www.omg.org/spec/OCL/2.0/. Accessed July 13, 2011.

OMG (2009) Business Process Model and Notation (BPMN) Specification

v.1.2 (online) http://www.bpmn.org. Accessed July 13, 2011.

O’Neill, P., Sohal, A.S. (1999) Business Process Reengineering: A review

of recent literature. Technovation 19(9): 571-581.

Ould, M. (1995) Business processes: modelling and analysis for re-

engineering and improvement. Wiley, Chichester.

Overmyer, S.P., Lavoie, B., Rambow, O. (2001) Conceptual modeling

through linguistic analysis using LIDA. In: 23rd International

Conference on Software Engineering (ICSE’01), pp 401-410.

Paech, B., Koenig, T., Borner, L., Aurum, A. (2005) An analysis of

empirical requirements engineering survey data. In: (Aurum,

Wohlin, 2005a), pp 427-452.

Panach, J.I., España, S., Moreno, A.M., Pastor, O. (2008) Dealing with

Usability in Model Transformation Technologies. In: Li, Q.,

Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008, LNCS 5231.

Springer, Heidelberg, pp 498-511.

Parsons, J., Wand, Y. (1997) Choosing Classes in Conceptual Modeling.

Communications of the ACM 40(6): 63-69.

Parsons, J., Wand, Y. (2000) Emancipating Instances from the Tyranny of

Classes in Information Modeling. ACM Transactions on Database

Systems 25(2): 228-268.

286

References

Pastor, O., Molina, J.C. (2007) Model-Driven Architecture in Practice: A

Software Production Environment Based on Conceptual Modeling.

Springer, Heidelberg.

Patton, M.Q. (2001) Qualitative Research and Evaluation Methods, 3rd

ed. Sage Publications, London.

Pinheiro, F.A.C. (2003) Requirements honesty. Requirements Engineering

8(3): 183-192.

Pohl, K. (2010) Requirements Engineering: Fundamentals, Principles, and

Techniques. Springer, Heidelberg.

Porter, M.E. (1985) Competitive Advantage: Creating and Sustaining

Superior Performance. Free Press, New York.

Potts, C. (1993) Software-Engineering Research Revisited. IEEE Software

10(5): 19-28.

Procaccino, J.D., Verner, J.M., Lorenzet, S.J. (2006) Defining and

contributing to software development success. Communications of

the ACM 49(8): 79-83.

Ratcliffe, M., Budgen, D. (2005) The application of use cases in systems

analysis and design specification. Information and Software

Technology 47(9): 623-641.

Recker, J., Indulska, M., Green, P. (2007) Extending Representational

Analysis: BPMN User and Developer Perspectives. In: Alonso, G.,

Dadam, P., Rosemann, M. (eds.) BPM 2007, LNCS 4714. Springer,

Heidelberg, pp 384-399.

Recker, J., zur Muehlen, M., Siau, K, Erickson, J., Indulska, M. (2009)

Measuring method complexity: UML versus BPMN. In: 15th

Americas Conference on Information Systems (AMCIS 2009)

Recker, J. (2010) Opportunities and constraints: the current struggle with

BPMN. Business Process Management Journal 16(1): 181-201.

Recker, J. (2011) Evaluations of Process Modeling Grammars: Ontological

Qualitative and Quantitative Analyses Using the Example of BPMN,

LNBIP 71. Springer, Heidelberg.

287

References

Regev, G., Wegmann, A. (2004) Defining early IT system requirements

with regulation principles: the Lightswitch approach. In: 12th IEEE

International Requirements Engineering Conference (RE’04), pp 144-

153.

Regev, G., Wegmann, A. (2005) Where do Goals Come from: the

Uncerlying Principles of Goal-Oriented Requirements Engineering.

In: 13th IEEE International Conference on Requirements Engineering

(RE’05), pp 353-362.

Regnell, B., Berntsson-Svensson, R., Olsson, T. (2008) Supporting

Roadmapping of Quality Requirements. IEEE Software 25(2): 42-47.

Reich, B.H., Benbasat, I. (200) Factors that influence the social dimension

of alignment between business and information technology

objectives. MIS Quarterly 24(1): 81-113.

Reijers, H.A., Liman, S., van der Aalst, W.M.P. (2003) Product-Based

Workflow Design. Journal of Management Information Systems

20(1): 229-262.

Reijers, H.A., Mansar, S.L. (2005) Best practices in business process

redesign: an overview and qualitative evaluation of successful

redesign heuristics. Omega 33(4): 283-306.

Robertson, S., Roberson, J. (2006) Mastering the Requirements Process,

2nd ed. Addison-Wesley, Boston.

Robson, C. (2002) Real World Research, 2nd ed. Blackwell, Oxford.

Rodriguez, A., de Guzmán, I.G.R., Fernández-Medina, E., Piattini, M.

(2009) Semi-formal transformation of secure business processes into

analysis class and use case models: An MDA approach. Information

and Software Technology 52(9): 945-971.

Rolland, C., Nurcan, S., Grosz, G. (2000) A decision-making pattern for

guiding the enterprise knowledge development process. Information

and Software Technology 42(5): 313-331.

Rolland, C., Prakash, N. (2000) From conceptual modelling to

requirements engineering, Annals of Software Engineering 10(1-4):

151-176.

Rolland, C., Salinesi, C. (2005) Modeling Goals and Reasoning with

Them. In: (Aurum, Wohlin, 2005a), pp 189-217.

288

References

Rolland, C. (2007) Capturing System Intentionality with Maps. In:

Krogstie, J., Opdhal, A.L., Brinkkemper, S. (eds.) Conceptual

Modelling in Information Systems Engineering. Springer,

Heidelberg, pp 141-158.

Rolland, C., Kirsch-Pinheiro, M., Souveyet, C. (2010) An Intentional

Approach to Service Engineering. IEEE Transactions on Service

Computing 3(4): 292-205.

Rolón, E., Sánchez, L., García, F., Ruiz, F., Piattini, M., Caivano, D.,

Visaggio, G. (2009) Prediction Models for BPMN Usability and

Maintainability. In: 2009 IEEE Conference on Commerce and

Enterprise Computing (CEC’09), pp 383-390.

Rosemann, M., Recker, J., Indulska, M., Green, P. (2006) A Study of the

Evolution of the Representational Capabilities of Process Modeling

Grammar. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006, LNCS 4001.

Springer, Heidelberg, pp 447-461.

Rouibah, K., Al-Rafee, S. (2009) Requirement engineering elicitation

methods: A Kuwaiti empirical study about familiarity, usage and

perceived value. Information Management & Computer Security

17(3): 192-217.

Rubens, J. (2007) Business analysis and requirements engineering: the

same, only different? Requirements Engineering 12(2): 121-123.

Runeson, P (2003) Using Students as Experiment Subjects - An Analysis

on Graduate and Freshmen Student Data. In: 7th International

Conference on Empirical Assessment in Software Engineering (EASE

2003), pp 95-102.

Runeson, P., Höst, M. (2009) Guidelines for conducting and reporting

case study research in software engineering. Empirical Software

Engineering 14(2): 131-164.

Sadraei, E., Aurum, A., Beydoun, G., Paech, B. (2007) A field study of the

requirements engineering practice in Australian software industry.

Requirements Engineering 12(3): 145-162.

Salinesi, C., Presso, M.J. (2002) A Method to Analyse Changes in the

Realisation of Business Intentions and Strategies for Information

System Adaptation. In: Sixth International Enterprise Distribute

Object Computing (EDOC’02), pp 84-95.

289

References

Salinesi, C., Rolland, C. (2003) Fitting Business Models to System

Functionality Exploring the Fitness Relationship. In: Eder, J.,

Missikoff, M. (eds.) CAiSE 2003, LNCS 2681. Springer, Heidelberg,

pp 647-664.

Sánchez L., García, F., Ruiz, F., Piattini, M. (2010) Measurement in

business processes: a systematic review. Business Process

Management Journal 16(1): 114-134.

Scheer, A.W. (2000) ARIS - Business Process Modeling, 3rd ed. Springer,

Heidelberg.

Schrepfer, M., Wolf, J., Mendling, J., Reijers, H.A. (2009) The Impact of

Secondary Notation on Process Model Understanding. In: Persson,

A., Stirna, J. (eds.) PoEM 2009, LNBIP 39. Springer, Heidelberg, pp

161-175.

SEI (2010) CMMI for Development, Version 1.3, CMU/SEI-2010-TR-033

(online) http://www.sei.cmu.edu. Accessed July 13, 2011.

Shaker, P. (2010) Feature-Oriented Requirements Modeling. In: 32nd

ACM/IEEE International Conference on Software Engineering (ICSE

2010), vol. 2, pp 365-368.

Sharp, A., McDermott, P. (2009) Workflow modelling: tools for process

improvement and application development. Artech, Norwood.

Shun, S.X., Zhao, J.L., Numaker, J.F. (2006) Formulating the Data-Flow

Perspective for Business Process Management. Information Systems

Research 17(4): 374-391.

Siau, K., Cao, Q. (2001) Unified modeling language - a complexity

analysis. Journal of Database Management 12(1): 26-34.

Siau, K., Lee, L. (2004) Are use case and class diagram complementary in

requirements analysis? Requirements Engineering 9(4): 229-237.

Silver, B. (2009) BPMN Method and Style. Cody-Cassidy Press, Aptos.

Singh, S.N., Woo, C. (2008) A Methodology for Discovering Goals at

Different Organizational Levels. In: 3rd International Workshop on

Business/IT Alignment (BUSITAL’08)

290

References

Singh, S.N., Woo, C. (2009) Investigating business-IT alignment through

multi-disciplinary goal concepts. Requirements Engineering 14(3):

177-207.

Sjøberg, D.I.K, Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic,

A., Liborg, N.K., Rekdal, A.C. (2005) A Survey of Controlled

Experiments in Software Engineering. IEEE Transactions on Software

Engineering 31(9): 733-753.

Smith, H., Fingar, P. (2002) Business Process Management: The Third

Wave. Meghan-Kiffer Press, Tampa.

Sommerville, I., Sawyer, P. (1997) Requirements Engineering: A Good

Practice Guide. Wiley, Chichester.

Sommerville, I. (2005) Integrated Requirements Engineering: A Tutorial.

IEEE Software 22(1): 16-23.

Stirna, J., Persson, A., Sandkuhl, K. (2007) Participative Enterprise

Modeling: Experiences and Recommendations. In: Krogstie, J.,

Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007, LNCS 4495. Springer,

Heidelberg, pp 546-560.

Stirna, J., Persson, A. (2009) Anti-patterns as a Means of Focusing on

Critical Quality Aspects in Enterprise Modeling. In: Halpin, T.,

Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R.

(eds.) BPMDS 2009 and EMMSAD 2009, LNBIP 29. Springer,

Heidelberg, pp 407-418.

Svetinovic, D., Berry, D.M., Godfrey, M.W. (2005) Concept Identification

in Object-Oriented Domain Analysis: Why Some Students Just Don't

Get It. In: 13th IEEE International Requirements Engineering

Conference (RE'05), pp 189-198.

Taylor-Cummings, A. (1998) Bridging the user-IS gap: a study of major

information systems projects. Journal of Information Technology 13:

29-54.

ter Hofstede, A.H.M., ven der Aalst, W.M.P., Adams, M., Russell, N.

(eds.) (2010) Modern Business Process Automation: YAWL and its

Support Environment. Springer, Heidelberg.

291

References

The Business Rules Group (2000) Defining Business Rules ~ What Are

They Really? Final Report, revision 1.3 (online)

http://www.businessrulesgroup.org/first_paper/BRGwhatisBR_3ed.p

df. Accessed July 13, 2011.

Thevent, L.H., Salinesi, c. (2007) Aligning IS to Organization’s Strategy:

The INSTAL Method. In: Krogstie, J., Opdahl, A.I., Sindre, G. (eds.)

CAiSE 2007, LNCS 4495. Springer, Heidelberg, pp 203-217.

Vaishnavi, V.K., Kuechler, W. (2008) Design Science Research Methods

and Patterns: Innovating Information and Communication. Auerbach

Publications, Boca Raton.

Valverde, F., Pastor, O. (2009) Facing the Technological Challenges of

Web 2.0: A RIA Model-Driven Engineering Approach. In: Vossen, G.,

Long, D.D.E., Yu, J.X. (eds.) WISE 2009, LNCS 5820. Springer,

Heidelberg, pp 131-144.

van Lamsweerde, A. (2001) Goal-oriented requirements engineering: a

guided tour. In: 5th IEEE International Symposium on Requirements

Engineering (RE’01), pp 249-262.

Vernadat, F. (1996) Enterprise Modelling and Integration: Principles and

Applications. Chapman & Hall, London.

Verner, J., Cox, K., Bleistein, S., Cerpa, N. (2005) Requirements

engineering and software project success: an industrial survey in

Australia and the U.S. Australasian Journal of Information Systems

13(1): 225-238.

Vessey,I., Coner, S. (1994) Requirements Specification: Learning Objects,

Process and Data Methodologies. Communications of the ACM 37(5):

102-113.

Wahl, T., Sindre, G. (2005) An Analytical Evaluation of BPMN Using a

Semiotic Quality Framework. In: 10th International Workshop on

Exploring Modeling Methods in Systems Analysis and Design

(EMMSAD05)

Wang, J., Kumar, A. (2005) A Framework for Document-Driven

Workflow Systems. In: van der Aalst, W.M.P., Benatallah, B., Casati,

F., Curbera, F. (eds.) BPM 2005, LNCS 3649. Springer, Heidelberg, pp

285-301.

292

References

Wan-Kadir, W.M.N., Loucopoulos, P. (2004) Relating evolving business

rules to software design. Journal of Systems Architecture 50(7): 367-

382.

Weidenhaupt K., Pohl, K., Jarke, M., Haumer, P. (1998) Scenarios in

System Development: Current Practice. IEEE Software 15(2): 34-45.

Weske, M. (2007) Business Process Management: Concepts, Languages,

Architectures. Springer, Heidelberg.

WfMC (1999) Workflow Management Coalition: Terminology & Glossary

(online) http://www.wfmc.org/standards/docs/TC-1011_term_

glossary_v3.pdf. Accessed July 13, 2011.

White, S.A., Miers, D. (2008) BPMN Modeling and Reference Guide.

Future Strategies Inc., Lighthouse Point.

Whitman, M. (1996) IT divergence in reengineering support: Performance

expectations vs. perceptions. Information & Management 30(5): 239-

250.

Whittle, J., Schumann, J. (2000) Generating Statechart Designs From

Scenarios. In: 22nd International Conference on Software Engineering

(ICSE’00), pp 314-323.

Wiegers, K.E. (2003) Software Requirements, 2nd ed. Microsoft Press,

Redmond.

Wieringa, R. (2005) Requirements researchers: are we really doing

research? Requirements Engineering 10(4): 304-306.

Wieringa, R. (2008) Requirements Engineering Research Methodology:

Principles and Practice. University of Twente.

Wnuk, K., Regnell, B., Karlsson, L. (2009) What Happened to Our

Features? Visualization and Understanding of Scope Change

Dynamics in a Large-Scale Industrial Setting. In: 17th IEEE

International Requirements Engineering Conference (RE 2009), pp

89-98.

Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hostede, A.H.M.,

Russell, N. (2006) On the suitability of BPMN for Business Process

Modelling. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006,

LNCS 4102. Springer, Heidelberg, pp 161-176.

293

References

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.

(2000) Experimentation in Software Engineering: An Introduction.

Kluwer Academic Press, Boston.

Wohlin, C., Höst, M, Henningsson, K. (2003) Empirical Research Methods

in Software Engineering. In: Conradi, R., Wang, A.I. (eds.) ESERNET

2001-2003, LNCS 2765. Springer, Heidelberg, pp 7–23.

Wong, W.A, Tse, T.H., Glass, R.L., Basili, V.R., Chen, T.Y. (2011) An

assessment of systems and software engineering scholars and

institutions (2003–2007 and 2004–2008) Journal of Systems and

Software 84(1): 162-168.

Yin, R.K. (2009) Case Study Research: Design and Methods, 4th ed. Sage

Publications, Los Angeles.

Yourdon, E., Nevermann, P., Oppel, K., Thomann, J., Whitehead, K.

(1995) Mainstream objects: an analysis and design approach for

business. Yourdon Press, Upper Saddle River.

Yu, E. (1995) Modelling Strategic Relationships for Process

Reengineering. PhD Thesis, University of Toronto.

Yue, T., Briand, L.C., Labiche, Y. (2009) A Use Case Modeling Approach

to Facilitate the Transition towards Analysis Models: Concepts and

Empirical Evaluation. In: Schürr, A., Selic, B. (eds.) MODELS 2009,

LNCS 5795. Spinger, Heidelberg, pp 484-498.

Yue. T., Briand, L.C., Labiche, Y. (2010) A systematic review of

transformation approaches between user requirements and analysis

models. Requirements Engineering 16(2): 75-99.

Zave, P. (1997) Classification of research efforts in requirements

engineering. ACM Computing Surveys 29(4): 315-321.

Zave, P., Jackson, M. (1997) Four Dark Corners of Requirements

Engineering. ACM Transactions on Software Engineering and

Methodology 6(1): 1-30.

zur Muehlen, M., Ho, D.T. (2008) Service Process Innovation: A Case

Study of BPMN in Practice. In: 41st Hawaii International Conference

on Systems Science (HICSS-41 2008)

294

References

zur Muehlen, M., Recker, J. (2008) How Much Language Is Enough?

Theoretical and Practical Use of the Business Process Modeling

Notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008, LNCS

5074. Springer, Heidelberg, pp 465-479.

zur Muehlen, M., Indulska, M. (2010) Modeling languages for business

processes and business rules: A representational analysis.

Information Systems 35(4): 378-390.

zur Muehlen, M., Wisnosky, D., Kindrick, J. (2010) Primitives: Design

Guidelines and Architecture for BPMN Models. In: 21st Australasian

Conference on Information Systems (ACIS 2010)

Appendix A

A. Conceptual Framework

This appendix presents a conceptual framework for the methodological

approach of the thesis. Such a framework corresponds to the metamodel

or conceptual schema of the approach, and includes the main, basic

concepts proposed and used in the stages of approach and the

relationships that exist between them.

The conceptual framework is divided into five different sub-

conceptual frameworks for:

 Organizational modelling (Figure A.1)

 Purpose analysis (Figure A.3)

 Specification of system requirements (Figure A.2)

 Class diagrams (Figure A.4)

 State transition diagrams (Figure A.5)

They have been modelled in a domain data model-like way.

296

A Conceptual Framework

Figure A.1 Conceptual framework for organizational modelling

B
u

s
in

e
s
s
 P

ro
c
e

s
s

C
o

n
tr

ib
u

te
s

to

B
u

s
in

e
s
s
 R

u
le

A
g

g
re

g
a

ti
o

n
In

h
e

ri
ta

n
c
e

A
s
s
o

c
ia

ti
o

n

R
e

la
ti
o

n
s
h

ip

D
o

m
a

in
 E

n
ti
ty

B
u

s
in

e
s
s
 E

v
e

n
t

G
lo

s
s
a

ry
 T

e
rm

M
is

s
io

n

O
p

e
ra

ti
o

n
a

l
G

o
a

l

R
e

s
p

o
n

s
e

 t
o

 E
v
e

n
t

P
e

rm
is

s
io

n
P

ro
h

ib
it
io

n
O

b
lig

a
ti
o

n

A
c
ti
v
it
y

O
rg

a
n

iz
a

ti
o

n
a

l
U

n
it

R
o

le

Is
 i
n

p
u

t
o

f

Is
 o

u
tp

u
t
o

f

Is
 a

c
h

ie
v
e

d
 i
n

Is

u
s
e

d
 i
n

R
e

la
te

s

B
e

lo
n

g
s
 t
o

E
x
e

c
u

te
d

 b
y

R
e

s
p

o
n

s
ib

le

o
f

E
x
e

c
u

te
d

 i
n

C
o

n
s
tr

a
in

s
T

ri
g

g
e

re
d

 i
n

M
a

n
a

g
e

d

th
ro

u
g

h

S
ta

te

297

A Conceptual Framework

Figure A.2 Conceptual framework for specification of system requirements

R
e

s
p

o
n

s
ib

le

o
f

S
u

b
ta

s
k

S
ta

te

In
fo

rm
a

ti
o

n
 F

lo
w

P
o

s
tc

o
n

d
it
io

n

P
re

c
o

n
d

it
io

n

T
ri
g

g
e

r

R
o

le

E
T

D

B
u

s
in

e
s
s
 P

ro
c
e

s
s

IS
O

 9
1

2
6

-1

s
u

b
c
h

a
ra

c
te

ri
s
ti
c

IS
O

 9
1

2
6

-1

c
h

a
ra

c
te

ri
s
it
c

Q
u

a
lit

y
 A

tt
ri
b

u
te

B
u

s
in

e
s
s
 R

u
le

S
te

p

D
o

m
a

in
 E

n
ti
ty

C
ri
ti
c
a

l

F
re

q
u

e
n

c
y

U
s
e

r
In

te
n

ti
o

n
S

y
s
te

m

R
e

s
p

o
n

s
ib

ili
ty

In
te

ra
c
ti
o

n

E
x
te

n
s
io

n

A
lt
e

rn
a

ti
v
e

N
o

rm
a

l

B
e

lo
n

g
s
 t
o

C
o

rr
e

s
p

o
n

d
s
 t
o

Is
 o

u
tp

u
t

o
f

Is
 i
n

p
u

t

o
f

C
o

n
s
tr

a
in

s

C
o

n
ta

in
s

E
x
e

c
u

te
d

in C
o

n
s
tr

a
in

s
C

o
n

s
tr

a
in

s

C
o

n
s
tr

a
in

s

C
o

n
s
tr

a
in

s

298

A Conceptual Framework

Is source of

Strategy

Business Process

Element
BPR Pattern

Goal

Is target of

Operationalized

through

Affects

Figure A.3 Conceptual framework for purpose analysis

Constrains

ClassMethod

Attribute

Relationship

Creation Method

Aggregation

Association

Relationship

Derivation Rule

Integrity Constraint

Modification Method

State Change

Method

Relationship

Deletion Method

Deletion Method

Creation Method

Inheritance

Calculation Method

Constrains

Associated to

Associated to

Figure A.4 Conceptual framework for class diagrams

State

Constrains

First Transition

Transition

Intermediate StateFinal StateInitial State

Precondition Postcondition

Intemediate

Transition
Last Transition

Constrains

Is source ofIs target of

Figure A.5 Conceptual framework for state transition diagrams

Appendix B

A. Tool Support

This appendix outlines the tool support that has been developed for the

methodological approach of the thesis. It aimed to show feasibility of

automation of the approach.

Tool support consists of six main components (i.e., editors):

 An organizational model editor

 A Map editor

 A BPMN editor

 An ETD editor

 A class diagram editor

 A state transition diagram editor

Although most the details about the editors are out of the scope of the

thesis and thus are not presented in this appendix, it must be indicated

that development of tool support has been based on the Eclipse

environment1. As a result, components and characteristics of the

environment that facilitate creation of editors have been used, such as

Ecore modelling, EMF and GMF. The class diagram editor and the state

1 http://www.eclipse.org. Accessed July 13, 2011.

300

B Tool Support

transition diagram editor have not been specifically developed for the

methodological approach of the thesis, but UML2 tools provided by

Eclipse have been used.

The guidelines and rules proposed in the methodological approach

have been partially automated. More concretely, part of the textual

template of the ETDs can be filled from enriched BPDs and part of an OO

conceptual schema can be derived from ETDs. This implies that further

automation is yet possible, as well as other improvements on tool

support (see Chapter 9). Guidelines and rules have been implemented by

hand coding them and by taking advantage of the ATL language for

specification of transformations between models.

The following figures show some screenshots and examples of:

 an ecore diagram (Figure B.1);

 a tree-based editor generated from an ecore diagram and on the

basis of EMF (Figure B.2);

 a diagram modelled with the Map editor (Figure B.3), and;

 the BPMN editor (Figure B.4), which also integrates a form-based

ETD editor; it supports BPMN 2.0 labels for labelling of flow

objects, as well as modelling of consecutive flows.

Tool support for RE approaches is considered essential for adoption in

industry (e.g., (Kaindl, et al., 2002)). This fact was confirmed during

evaluation of the methodological approach of the thesis. Many supplier

stakeholders asked about the tool support developed and the automation

provided. Even though full automation was not yet available, existence of

tool support and possibility of improvement were considered positive.

Nonetheless, cases in which existence of tool support had not implied

success in adoption of a RE approach were found. Some organizations

had acquired or even developed their own tools as part of the adoption

of a RE approach, but adoption failed because of other reasons. The most

usual reason was the lack of enough and adequate guidance to apply the

approaches. Consequently, tool support did not provide any advantage

because of the existence of other inherent difficulties for application.

In relation to the above fact, development of the methodological

approach has been in line with those authors that think that techniques

can be more important that tools (e.g., (Davis, 1995)).

301

B Tool Support

Figure B.1 Ecore diagram for the organizational modelling stage

302

B Tool Support

Figure B.2 Tree-based ETD editor

303

B Tool Support

Figure B.3 Example of goals/strategies diagram

304

B Tool Support

Figure B.4 BPMN editor and form-based ETD editor

