
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/114603

Ali, M.; Ahmed, I.; Ramirez Hoyos, P.; Nasir, S.; Mafé, S.; Niemeyer, C.; Ensinger, W.
(2018). Lithium Ion Recognition with Nanofluidic Diodes through Host-Guest Complexation
in Confined Geometries. Analytical Chemistry. 90(11):6820-6826.
doi:10.1021/acs.analchem.8b00902

http://doi.org/10.1021/acs.analchem.8b00902

American Chemical Society

This document is the Accepted Manuscript version of a Published Work that appeared in
final form in
Analytical Chemistry, copyright © American Chemical Society after peer review and
technical editing by the publisher.
 To access the final edited and published work see [insert ACS Articles on Request author-
directed link to
 Published Work, see http://doi.org/10.1021/acs.analchem.8b00902



 

 
 

1

Lithium ion recognition with nanofluidic diodes through 

host-guest complexation in confined geometries 

Mubarak Ali,a,b*  Ishtiaq Ahmed,c  Patricio Ramirez,d  Saima Nasir,a Salvador Mafe,e  

Christof M. Niemeyer,c  and Wolfgang Ensingera  

aTechnische Universität Darmstadt, Fachbereich Material- u. Geowissenschaften, Fachgebiet 

Materialanalytik, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany 

bGSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt, Germany 

cKarlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Hermann-von-

Helmholtz-Platz, D-76344 Eggenstein-Leopoldshafen, Germany 

dDepartament de Física Aplicada, Universitat Politécnica de València, E-46022 València, Spain 

eDepartament de Física de la Tierra i Termodinàmica, Universitat de València, E-46100 Burjassot, 

Spain. 

 

* Corresponding author: E-mail address: M.Ali@gsi.de 

 

 

Abstract 

The lithium ion recognition is receiving significant attention because of its 

application in pharmaceuticals, lubricants, and, especially, in energy technology. We 

present a nanofluidic device for specific lithium ion recognition via host–guest 

complexation in a confined environment. A lithium-selective receptor molecule, the 

aminoethyl-benzo-12-crown-4 (BC12C4–NH2) is designed and functionalized on 

single conical nanopores in polyethylene terephthalate (PET) membranes. The native 

carboxylic acid groups on the pore walls are covalently linked with the crown ether 

moieties and the process is monitored from the changes in the current–voltage (I–V) 

curves. The B12-crown-4 moieties are known to specifically bind with lithium ions 
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and when the modified pore is exposed to different alkali metal chloride solutions 

separately, significant changes in the ion current and rectification are only observed 

for lithium chloride. This fact suggests the generation of positively charged B12C4–

Li+ complexes on the pore surface. Furthermore, the nanofluidic diode is able to 

recognize the lithium ion even in the presence of high concentrations of potassium 

ions in the external electrolyte solution. Thus, this nanodevice suggests a strategy to 

miniaturize nanofluidic porous systems for efficient recognition, extraction and 

separation of lithium from raw materials.  
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1. Introduction 

Ion channel proteins control the trafficking of ions and molecules across the cell 

membrane and regulate a variety of biological functions including signal transmission 

and muscle contraction.1-4 The channels have the ability to discriminate between very 

similar ions and exhibit also unique characteristics such as gating and ion current 

rectification.1,2,5-8 In addition to ion selectivity, protein channels embedded in the 

membrane lipid bilayer allow for a variety of applications in nano and biotechnology 

such as sensing and manipulation of single molecules.9-11 

The unique functionality and ionic selectivity of ion channels is partly due to the 

asymmetric distribution of amino acid residues. Inspired from nature, artificial 

analogues of biological ion channels with similar functionalities have been prepared. 

Track-etched conical nanopores have received great interest because of their 

mechanical stability, control over pore dimensions (size and geometry), and surface 

functionalization.12-14 

In the particular case of polyethylene terephthalate (PET) membranes, the 

carboxylic acids groups generated on the pore surface can be easily functionalized 

with different molecules, leading to the modulation of the ionic transport and 

rectification characteristics.15-23 Moreover, the surface charge regulated phenomena 

can be implemented in miniaturized sensing devices by decorating the pore surface 

with recognition elements for the detection of biomolecules,24-33 anions30,33-39 and 

metal cations.16,40-47 Among the various metal cations, alkali metal ions are involved 

in a variety of essential biological processes. Jiang and co-workers have recognized 

potassium cation (K+) with DNA-modified nanopores.47 The crown ether 

functionalized nanopores have the ability to bind specifically to potassium and sodium 

cations (Na+), leading to significant changes in the electronic readout of the pore.43,44 
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We have recently demonstrated the detection of cesium cation (Cs+) by using 

calixcrown ether functionalized nanopores.46 However, the design and development of 

a nanofluidic device which specifically recognize lithium cation (Li+) has not been 

explored. 

Lithium is the lightest and less abundant alkali metal. It is the 25th most abundant 

element in the Earth's crust. Recently, much attention has been paid towards the 

recognition and extraction of lithium because of its extensive use in pharmaceuticals, 

heat-resistant ceramics, lubricants, energy technology, and nuclear power plants.48,49 

Regarding the biomedical application, lithium compounds are successfully used for 

the treatment of bipolar disorder and may reduce the risk of suicide attempt in 

patients.50 On the other hand, excessive ingestion of lithium can adversely affect the 

kidneys and nervous system.51 Because of the high use of rechargeable lithium ion 

batteries, especially in portable biomedical devices and mobile phones, the leakage of 

lithium to environment and its adverse effect cannot be neglected. Hence, techniques 

and methods are being developed for lithium recognition.52-55 However, the 

coexistence of lithium with other alkali cations in liquid solutions makes it difficult to 

selectively recognize it.  

We design and miniaturize a functional nanofluidic device exhibiting selectivity to 

lithium ion in the presence of other alkali cations. To this end, single conical 

nanopores in polymers membranes are fabricated and chemically modified with 

lithium-selective receptor moieties, the aminoethyl-benzo-12-crown-4 (BC12C4–

NH2). The modified pore is evaluated with different alkali metal chloride solutions 

and exhibits current rectification only for the case of the lithium chloride solution. 

Because B12C4 moieties on the pore surface generate B12C4–Li+ complexes, the 

pore surface charge changes from neutral to positive, becoming anion selective as 
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revealed from the inversion observed in the ion current rectification. The experimental 

results show that the nanofluidic device can recognise lithium ion at lower 

concentrations, even in the presence of other metal cations in the electrolyte solution. 

 

2. Materials and methods 

2.1 Materials 

Polyethylene terephthalate (PET, Hostaphan RN 12, Hoechst, 12 µm thick) foils, 

N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide·hydrochloride (EDC·HCl), 

pentafluorophenol (PFP), dopamine hydrochloride (DA), triethylamine, di-tert-butyl 

dicarbonate (Boc2)O), triethylene glycol, p-toluenesulfonyl chloride, potassium t-

butoxide (t-BuOK), potassium carbonate (K2CO3), trifluoroacetic acid (TFA), lithium 

chloride (LiCl), sodium chloride, (NaCl), potassium chloride (KCl), rubidium chloride 

(RbCl) and cesium chloride (CsCl) were used in this study. All the chemical and 

solvent were purchased from Sigma-Aldrich, Taufkirchen, Germany, and used 

without further purification. 

1H and 13C NMR spectra were recorded at 500 and 125 MHz in CDCl3, 

respectively. High-resolution mass spectra were measured using a Finnigan MAT90 

mass spectrometer. Analytical TLC (silica gel, 60F-54, Merck) and spots were 

visualized under UV light and/or phosphomolybdic acid-ethanol. Flash column 

chromatography was performed with silica gel 60 (70-230 mesh, Merck) and basic 

aluminum oxide (activated, basic, ~150 mesh, 58 Å, Aldrich). 

2.2 Fabrication of single asymmetric nanopores 

Single conical nanopores in PET membranes were fabricated through asymmetric 

chemical etching of latent ion tracks.15 For this purpose, PET foils were first irradiated 
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with single swift heavy ions (Au) of kinetic energy 11.4 MeV/nucleon at the linear 

accelerator UNILAC (GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, 

Germany). Then, the latent ion tracks in polymer membranes were sensitized with soft 

UV light. The chemical track-etching process was performed in a custom-made 

conductivity cell having three chambers. The chemical asymmetric track-etching 

process can be found elsewhere15. Briefly, an etching solution (9 M NaOH) was filled 

in the middle compartment and the stopping solution (1 M KCl + 1 M HCOOH) was 

filled on the side chambers. The etching process was carried out at room temperature 

and monitored by applying a potential of –1 V across the membrane. After the 

breakthrough, the etching process was stopped when the current reached a certain 

defined value. Then, the etched membrane was washed with stopping solution, 

followed by deionized water. The etched sample was dipped in deionized water 

overnight in order to remove the residual salts. The chemical etching process resulted 

in the generation of carboxylic groups (COOH) on the inner pore walls due to the 

hydrolysis of ester bonds in the back-bone of polymer chains. 

2.3 Synthesis of aminoethyl-benzo-12-crown-4 (B12C4–NH2)  

Figure 1 depicts the preparation of the different crown ether derivatives involved in 

the synthesis of aminoethyl-benzo-12-crown-4 (4) following previously reported 

reaction procedures with slight modifications.56-58 Details of the synthesis are given in 

the Electronic Supplementary Information (ESI) file.  

We have synthesised aminoethyl-benzo-12-crown-4 (B12C4–NH2) to modulate the 

nanopore surface chemistry and transport properties in response to lithium cation. The 

reaction scheme for the synthesis of B12C4–NH2 is shown in Figure 1. The first step 

was the protection of amine group of dopamine hydrochloride (DA).56 For this 

purpose, N-tert-butoxycarbonyl-3,4-dihydroxyphenylethylamine (1) was prepared by 
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treating commercially available DA with di-tert-butyl dicarbonate in the presence of 

triethylamine. The second step was the synthesis of triethylene glycol ditosylate (2) by 

reacting triethylene glycol and p-toluenesulfonyl chloride in sodium hydroxide and 

THF mixture.57 Protected crown ether 3 was obtained by refluxing compound (1) and 

compound (2) with potassium carbonate in dried acetonitrile.58 Finally, the 

deprotection of N-boc group was carried out using trifluoroacetice acid to afford 

B12C4–NH2 (4). The chemical structures of synthetic crown ether derivatives were 

characterized through 1H NMR, 13C NMR and HRMS-FAB techniques. 

2.4 Chemical functionalization of nanopore surface 

The carboxylic acid groups on the pore surface were first activated by exposing the 

track-etched single-pore membrane to an ethanol solution containing EDC (100 mM) 

and PFP (200 mM) at room temperature for 1 h. After washing with ethanol several 

times, the activated pore was treated with B12C4–NH2 (35 mM) solution for 24 h. 

During this reaction period, amine-reactive PFP-esters were covalently coupled with 

the amine group of the B12C4–NH2. Subsequently, the modified pore was washed 

thoroughly with ethanol followed by careful rinsing with deionized water. 

2.5 Current-voltage measurements 

The unmodified and modified pores were characterized by measuring the current–

voltage (I–V) curves before and after functionalization. The electrolyte solutions were 

prepared in 10 mM tris-buffer. The measurement of I–V curve was performed using a 

picoammeter/voltage source (Keithley 6487, Keithley Instruments, Cleveland, Ohio, 

USA) and the LabVIEW 6.1 software (National Instruments). For this purpose, the 

single-pore as-prepared membrane was fixed between the two compartments of the 

conductivity cell. An aqueous electrolyte was filled in both halves of the cell. The 
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electrodes consisting of a Ag wire coated with AgCl were inserted into each half-cell 

solution to establish a transmembrane potential difference (voltage V) and the ionic 

current I through the pore was then measured. In the present case, the ground was 

placed on the big opening side and the electrodes facing the tip side of the conical 

nanopore. Then a scanning triangle voltage signal was applied from 1 to +1 V across 

the membrane to record the I–V curves. 

2.6 Modeling 

The theoretical I – V curves were calculated using the Poisson and Nernst-

Planck (PNP) equations 

2
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where r and  are spherical coordinates with the origin in the cone apex and  is the 

surface concentration of fixed charges. The boundary conditions for the ionic 

concentrations are based on the Donnan equilibrium conditions for the external and 

pore solution concentrations. Solving Equations (1)-(2) at a given applied voltage V, 

allows for the calculation of the ionic fluxes, the axial profiles of electric potential and 

ionic concentrations, and the electric current  
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through a pore section of radius a. Additional equations for the boundary conditions 

and numerical details can be found in References 59-62. 

 

3. Results and discussion 

Figure 2A shows the chemical modification of the COOH groups with amine-

terminated benzo-12-crown-4 (B12C4–NH2) molecules through carbodiimide 

coupling chemistry. The crown ethers are known to selectively bind a metal cation, 

depending on their cavity size (Figure 2B). The lithium cation is captured by the 12-

crown-4 moieties because the metal cation (Li+) diameter (140 pm) is comparable to 

the cavity size (120 to 150 pm) of the macrocycle. 

The nanopores are characterized by measuring the asymmetric I–V curves which 

are sensitive to the pore surface charges. Indeed, these charges interact with the ions 

passing through the nanopore and then oppositely charged pores show different 

rectifications. Thus, the pore functionalization can be confirmed by measuring the I–V 

characteristics before and after modification of the nanopore. 

Figures 3A (experiment) and 3B (model) illustrate the characterization of the 

unmodified (as-prepared) nanopore in symmetric 100 mM KCl solutions. Assuming 

infinite dilution values for the diffusion coefficients of the ionic species and a conical 

geometry for the pore, the only unknown model parameters are the pore tip (d) and 

base (D) diameters, and the surface concentration of fixed charges, . The pore base 

diameter determined from the etching time is D = 400 nm. At pH = 3.5, the carboxylic 

acid groups attached on the pore walls are protonated ( = 0), leading to a quasi-linear 

I–V curve. Fitting the theoretical model to the experimental data gives then the pore 



 

 
 

10

tip diameter d = 10 nm. At close to neutral pH values, the pore shows rectification 

because of the asymmetric distribution of the fixed charges and the electric potential 

along the axis. High currents are obtained at positive voltages and low currents at 

negative voltages, as shown in Figure 3A.59-64 This fact leads to the preferential 

transport of cations from the tip to the base opening of the conical nanopore. The only 

unknown model parameter  is then calculated by fitting the theoretical model to the 

experimental data of Figure 3A at pH = 6.5, giving  = 0.25 e/nm2, where e is the 

elementary charge. In this estimation, we assume that the COO¯ groups are 

homogeneously distributed on the pore walls. 

Figure 3C shows the I–V curves of the as-prepared single conical nanopore 

measured in 100 mM alkali salt solutions. On exposure to various alkali cations, the 

unmodified nanopore exhibits similar current rectifications and the currents measured 

for different cations can be described using the values of the diffusion coefficients of 

the different cations at infinite dilution. Figure 3D shows the theoretical results 

obtained with the same model parameters as in Figure 3B. The good agreement 

between theory and experiment supports the assumptions concerning the conical pore 

geometry and the fixed charge distribution. 

We functionalize the carboxylic acid groups on the pore surface with crown ether 

(host) moieties to selectively capture the lithium cation (guest). For this purpose 

B12C4–NH2 is immobilized on the pore surface as described in Figure 2A. The 

modified pore I–V characteristics of Figure 3E show that derivatization of carboxylic 

acid groups with uncharged B12C4 moieties results in the loss of the pore negative 

charges. This fact leads to a significant decrease of the pore rectification for the case 

of Na+, K+, Rb+ and Cs+, suggesting no complexation of these cations with the B12C4 

moieties. In this case, the metal cation diameters do not match the cavity size of the 
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immobilized crown ether groups. On the contrary, Figure 3E shows that upon 

exposure to LiCl solution, the modified pore exhibits a reversal in the current 

rectification which is attributed to the switching of the pore charge from negative to 

positive due the specific binding of Li+ cation with the crown ether moieties. The 

rectification ratios for the alkali cations on the left ordinate axis are obtained by 

dividing the average value of the negative current to the positive currents (red 

columns). In the case of the right ordinate axis, we consider the ratio of the positive to 

the negative currents (blue columns), as shown in the inset of Figure 3E. The clear 

difference observed between the rectification ratio for lithium and the other cations 

further confirm the formation of positively charged B12C4–Li+ complexes on the pore 

surface for the electrolyte solution having Li+ cations. 

Because of the positively charged B12C4–Li+ chelates, the nanopore preferentially 

attracts the anions (Cl– ) and excludes the cations (Li+), thus reversing the current 

rectifcation of I–V curve17 (Figure 3E). Note the different rectification ratios shown in 

the inset of Figure 3E. Figure 3F shows the theoretical curves obtained using the 

model parameters given in the figure. In order to reproduce the measured currents, the 

pore diameters must be decreased by 5 nm because of the functionalization of the 

functional crown ether moieties on the surface. The curves corresponding to Na+, K+, 

Rb+ and Cs+ are calculated by assuming  = 0.02 e/nm2, while the curve for Li+ is 

reproduced using  = +0.22 e/nm2 in the model. The fact that the pore surface charge 

remains slightly negative for Na+, K+, Rb+ and Cs+after chemical modification. This 

suggests that the immobilization of crown ether moieties of Figure 2A is not 100% 

efficient, leaving unmodified COO¯ groups on the pore surface. These carboxylate 

groups are responsible for the partial negative pore surface change after chemical 

reaction as evidenced from the I–V behaviour of the pore shown in Figure 3E. 
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Figures 4A and 4B show the lithium-crown ether complexation and the I–V 

characteristics of the modifed pore at different lithium concentrations. The 

background electrolyte (10 mM tris buffer, pH 6.5) gives an essentially 

nonconducting pore with very low currents (~ 4 pA). 

The experiments in Figure 4B show that when the modified pore is exposed to 

solutions of 1 µM and 10 µM Li+ concentrations, the modified pore starts 

rectification with an increase of ion current at 1 V from 4 pA to 20 pA and 60 

pA, respectively, because of the formation of positively charged B12C4–Li+ 

complex (Figure 4A) on the pore surface. Further increasing of the Li+ ion 

concentration from 10 µM to 100 mM, gives gradual increases of the rectified 

current from 60 pA to 700 pA measured at 1 V. On te contrary, only small 

changes in the current at +1 V occur when exposing the pore to different Li+ ion 

concentrations. These facts clearly show that B12C4–Li+ complexes allow Li+ 

sensing over a wide range of concentrations. The theoretical calculations of Figure 

4B reproduce well the experimental data at concentrations of Li+ higher than that 

of the tris buffer (10 mM), suggesting that for Li+ concentrations lower than 10 

mM most of the current is transported by the buffer electrolyte. 

To study the reproducibility of the data, we have modified a second conical 

nanopore under the same set of experimental conditions. In this case, the 

characteristic pore parameters are D = 500 nm, d = 22 nm, and  = 0.5e/nm2. The 

experiments of Figure 5A show the small changes obtained in the I–V curves for 

solutions of NaCl, KCl, RbCl and CsCl at 100 mM after pore modification. This is 

not the case of the LiCl 100 mM solution, where a significant current rectification 

is obtained again because of the positively charged B12C4–Li+ complex. Figure 

5B shows the theoretical curves obtained using the model parameters given in the 
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figure, revealing that the immobilization of crown ether groups on COO¯ is now 

much more efficient than in the case of the sample of Figures 3 and 4. 

We consider now the case of electrolyte mixtures in Figure 5C. By increasing 

the concentration of LiCl from zero to 20 mM in the mixture at constant total 

electrolyte concentration (100 mM), the nanopore starts rectifying the current, 

suggesting the binding of the Li+ ion with the crown ether moieties even in the 

presence of a high K+ concentration (80 mM). Increasing further the fraction of 

lithium over potassium gives relatively low rectification changes indicating the 

saturation of positive charges (B12C4–Li+) at 40 mM LiCl approximately. 

We have also examined the reversibility of lithium ion recognition. Potassium ion 

does not fit to the cavity size of B12C4 moieties and can then be used as a control 

electrolyte to check this reversibility. To this end, the modified pore is exposed 

alternatively to KCl and LiCl solutions and the ion currents are measured at 1 V. 

Figure 5D shows the results obtained over different cycles of reversible Li+ binding 

and unbinding. The reversible changes observed suggest that it is the surface charge 

density that dictates the pore properties from a non-conducting state with B12C4 

moieties to a conducting state with B12C4–Li+ chelates. 

Finally, we have considered the modified pore under acidic conditions (pH 3.5). 

The I–V curves of Figure 6 were obtained using a third functionalized pore sample. 

The modified pore shows anion selectivity to all alkali metal cation solutions, 

suggesting the loss of specific binding to lithium due to the protonation of crown ether 

moieties.65  

 

4. Conclusions 
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In summary, we have demonstrated the miniaturization of a nanofluidic device 

based on a single conical nanopore for lithium ion specific recognition. On exposure 

to LiCl solutions, host-guest ion recognition occurs in the confined geometry, leading 

to the switching of the nanopore charges from neutral to positive because of the Li+–

crown ether complexes formed on the surface. This process leads to significant 

changes in the pore rectification characteristics, which depend on the asymmetrical 

distribution of positively charged groups along the pore axis. On the contrary, other 

alkali metal cations do not give significant changes because they are unable to bind 

with the immobilized crown ether groups. The experimental data are well described 

by a theoretical model based on the Poisson and Nernst-Planck equations and show 

that the electrical characteristics of the single-pore membrane change significantly 

over a wide range of lithium ion concentrations in the solution. Moreover, the 

nanodevice can detect lithium ions even in the presence of other metal cations in 

mixtures of electrolyte solutions. In summary, we believe that this study can 

contribute significantly to the design and development of nanostructured materials for 

the recognition, separation, and extraction of lithium ions. 

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications 

website at DOI:  

Supporting information contains scheme and detailed synthesis of aminoethyl-benzo-

12-crown-4 (B12C4–NH2). 
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Figures and Legends 

 

 

Figure 1.  Synthesis of the aminoethyl-benzo-12-crown-4 (B12C4–NH2). 
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Figure 3. (A) Experimental I–V characteristics of the unmodified pore in 100 mM 

KCl solutions at two pH values. (B) Model calculations corresponding to the 

experimental data. (C) Experimental I–V characteristics of the unmodified pore 

exposed to different alkali cation solutions (100 mM, pH 6.5). (D) Model calculations 

corresponding to the experimental data. (E) Experimental I–V characteristics of the 

B12C4-modified pore exposed to different alkali cation solutions (100 mM, pH 6.5). 

The inset shows the rectification ratio versus alkali cation at potential 1 V. (F) Model 

calculations corresponding to the experimental data. 
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Figure 5. (A) I–V characteristics of a second modified pore exposed to different alkali 

cation (100 mM, pH 6.5) solutions separately. (B) Model calculations corresponding 

to the experimental data. (C) I–V characteristics of the this pore exposed to different 

fractions of KCl and LiCl solutions keeping the ionic strength (100 mM) constant 

of the electrolyte. (D) The conductance obtained at V = 1 V after several 

measuring cycles on exposing the modified pore to KCl and LiCl solutions, 

alternatively. 
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Figure 6. I–V curves of the modified pore exposed to different alkali metal chloride 

(100 mM, pH 3.5) solutions.  
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