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ABSTRACT 

Nanopore-based logical schemes in ionic solutions typically involve single gates and 

chemical inputs. The design of computer-like functions requires the consecutive 

concatenation of several gates and the use of electrical potentials and currents to facilitate the 

downstream transfer of electrochemical information. We have demonstrated the robust 

operation of concatenated logic functions using biomimetic nanofluidic diodes based on 

single pore membranes. To this end, we have implemented first the logic functions AND and 

OR with combinations of single nanopores using all-electrical input and output signals. The 

concatenation of these gates allows the output of the OR gate to act as one of the inputs of the 

AND gate, giving an Enabled-OR logic function. Also, the operation of the OR gate 

connected with a solid-state transistor, working as a signal inverter, gives a NOR gate. These 

hybrid electrochemical circuits allow a variety of real time logic functions because of the 

robust electrical coupling between ionic solutions and electronic elements. 

Keywords: nanofluidic diode, electrochemical logic functions, signal transduction. 
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1. Introduction 

Operational procedures with small electrochemical devices such as energy conversion 

modules, sensors and actuators, and controlled release drug-delivery dispensers require 

appropriate responses (outputs) to well-defined stimuli (inputs). This characteristic can be 

fulfilled by implementing logical schemes on micro and nanoscale devices such as self-

assembled monolayers [1, 2], nanoparticle arrays [3, 4], and biomolecular systems [5]. 

Alternatively, micro and nanofluidic devices operating in ionic solutions permit logic 

functionalities by tuning the interaction between the molecules functionalized on the pore 

surface and free ions [6-15]. In particular, nanopore diodes inserted in polymeric membranes 

are responsive to chemical, electrical, thermal, and optical input signals, a crucial 

characteristic for sensors, energy conversion, and signal processing at bioelectrical interfaces 

[11, 16-23]. While the electronic technology dominates logic circuits, demonstrating 

electrochemically-based logical nanodevices allows information processing in the chemical 

and biological systems of biomedicine and biotechnology where soft matter micro and 

nanostructures operating in ionic aqueous environments are commonplace. 

The charged inner walls of nanopores permit a variety of biomimetic responses in 

electrical rectification and switching processes [12, 17]. Also, the possibility to interconnect 

these nanostructures with solid-state components and their compatibility with physiological 

fluids [19,24-28] can be exploited in devices allowing interactive communication with the 

human body. Most micro and nanopore-based logical schemes previously developed involve 

single gates and chemical (e.g., solution pH and analyte concentration) inputs [6,7,9,11-16]. 

However, sensing and actuating with combined chemical/electrical signals may require the 

design of logical functions of increased complexity for the downstream transfer of 

information in nanofluidic circuits. Once the first electrical output is acquired from the 

relevant chemical, thermal or optical input, signal transfer and processing can be implemented 
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by concatenating a sequence of electrical signals in hybrid schemes combining nanofluidic 

and solid state circuitry. Indeed, the use of electrical signals such as potentials and currents 

should facilitate the sequential transfer of electrochemical information. 

We consider here the design of concatenated logic functions using nanofluidic diodes 

with all-electrical input and output signals. To this end, we demonstrate first the logic 

functions OR and AND using combinations of single diodes. The concatenated operation of 

these gates, assembled in such a way that the output of the first gate constitutes one of the 

inputs of the second gate, allows an Enabled-OR function. Finally, we show that the operation 

of the OR gate connected with a solid-state transistor working as a signal inverter gives a 

universal NOR gate. The immobilization of the biomimetic nanopores on solid supports such 

as polymeric membranes should facilitate the sensing, switching, and resetting functions in 

different ionic solution environments. 

 

2. Experimental section  

Nanofluidic diode. The membrane samples containing single nanopores were obtained 

from stacks of 12.5-μm thick polyimide (PI) foils (Kapton50 HN, DuPont) irradiated with 

swift heavy ions (Au) of energy 11.4 MeV per nucleon at the linear accelerator UNILAC 

(GSI, Darmstadt). In order to achieve single-ion irradiation, a metal mask with a 200 mm-

diameter centered aperture was placed in front of each stack. The ion beam was blocked 

immediately after a single ion passed through the foil stack and was registered by a particle 

detector placed behind the samples. The membrane tracks were converted into approximately 

conical pores by means of asymmetric track-etching techniques [29, 30]. SEM images of the 

nanopore fracture and gold replicas (see Fig. 1 for a typical image) of the conical pores can be 

found elsewhere [27]. Typical pore radii were in the range 10–40 nm for the cone tip and 

300–600 nm for the cone base [27]. Because of the track-etching processes, carboxylate 
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residues were obtained on the pore surface. These residues can be in ionized form, resulting in 

fixed charges, when the membrane is bathed by aqueous solutions of KCl at appropriate pH 

values [7, 9, 17]. These charges, together with approximately conical pore geometry, are 

responsible for the electrical rectification shown by the nanofluidic diodes [9, 17] . 

Electrical Measurements. Figs. 1–4 show the schemes of the equivalent electric 

circuits used for the AND, OR, Enabled-OR and NOR logic functions. The single pore 

membranes incorporating the nanofluidic diodes were bathed by 0.1 M KCl electrolyte 

solutions under controlled pH conditions. A picoammeter/voltage source (Keithley 6487/E) 

was used to introduce the input potential (square wave) V1 and measure the electric current. 

Synchronized input signal waves V2 and V3 were obtained from V1 using a MM74C93 4-bit 

binary counter and a 74HCT14 hex inverting Schmitt trigger. Output voltages were measured 

using a (Keithley 2000/E) multimeter. DC bias voltages were introduced in the circuits using 

a (Keithley 2400) source meter. 

The input potentials and the resulting electric currents were introduced in the bathing 

solutions by Ag|AgCl electrodes. Typical current-voltage (I – V) curves showing the electrical 

rectification characteristics of the nanofluidic diodes can be found elsewhere [7, 9, 17]. The 

curves showed low pore resistances when the current entered the cone tip (positive potentials) 

and high resistances when the current entered the cone base (negative potentials) [31]. The PI 

samples used in the experiments showed currents of the order of 100 nA for V = +2V and –2 

nA for V = –2V. The high rectification ratios obtained with these samples were needed in 

order to obtain robust logic responses in the output signals. 

 

3. Results and discussion 

The logic functions AND (Fig. 1) and OR (Fig. 2) are implemented by combinations of 

nanofluidic diodes with different polarities which are submitted to the time (t)-dependent 
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input potentials V1 and V2. In each case, the potential Vout is the output signal. Compared with 

the solid-state case, the logics “0” and “1” are only approximately defined because of the 

limited rectification characteristics of the nanofluidic diodes. However, the rectifying effects 

are significant and can be improved further by controlling the pore shape and charge 

distribution [32, 33]. 

Fig. 3 shows the scheme and operation of the concatenated logic obtained by connecting 

the above gates. The output of the OR gate is the first input for the AND gate. The integrated 

module can be operated as an Enabled-OR function because the input 1 of V3 enables the 

logical function OR of the inputs V1 and V2. On the contrary, the input 0 of V3 disables this 

function. The full availability of nanofluidic diodes showing different characteristics [11, 19, 

33], together with the possibility of using three-volume cells in the logical operation14 allows 

the design of other concatenated gates with increased complexity. 

Fig. 4 shows the operation of the OR gate of Fig. 2 when it is connected with a solid-

state transistor to give a NOR universal gate. Note that any other logic function can be 

obtained as a combination of NOR gates only. The output of the OR gate acts as the input of 

the transistor working as a signal inverter. In order to correct for the mismatch between the 

electrical characteristics of the components of the hybrid circuit and achieve a high current 

gain, a Darlington pair is used. The electrical coupling between the two nanopores and the 

solid-state transistor allows integrating different device functionalities, as demonstrated 

recently for the case of nanopores and capacitors in energy conversion processes [28]. 

To achieve the real time modulation of Figs. 1–4, the externally applied input pulses 

should have time periods much larger than the relaxation time of the nanopore. Figs. 1–4 

suggest that the time response of the nanofluidic circuits to the input signals is lower than 1 s.  

This time may increase with the length L of the pore, which is L = 10 μm in our case. Using 

biological ion channels [34,35] and solid-state nanopores [18,19] fabricated on silicon oxide, 
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ceramics, and glass supports, the response time of the system could be decreased because L = 

10–100 nm in these cases. 

4. Conclusions 

The implementation of processor-like functions using fluidic nanodevices requires the 

downstream transfer of electrochemical information. This essential characteristic can be 

achieved by concatenating several logic gates using different nanopore arrangements. We 

have described simple designs of concatenated logic functions using nanofluidic diodes with 

all-electrical input and output signals. We demonstrate first the logic functions OR and AND 

using different arrangements of single diodes and use then the output of the first gate as one 

of the inputs of the second gate to demonstrate an Enabled-OR logic function. The inverter 

functionality of a solid-state transistor connected to the output of an OR logic gate formed by 

two nanopores gives a universal NOR logics. The nanopores can be immobilized on solid 

single pore and multipore membranes that have previously been used for sensing and 

actuating. The resulting hybrid circuits allow a robust electrical coupling between ionic 

solutions and electronic elements such as transistors and capacitors. 
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Figure captions 

Fig. 1 

The logic function AND is achieved using nanofluidic diodes obtained by track-etching 

techniques. Typical gold replicas [27] are shown in the central image. The conical nanopores 

in single pore membranes are placed in an electrochemical cell and connected to a resistance 

R = 500 M at potential V0 = 1.5 V. The two square-wave input potentials V1 and V2 have 

different periodicity. The input potential V3 allows the concatenation of this gate with other 

gates. The ground connection is also shown. A DC 3 V voltage is introduced in the circuit by 

means the long red and black wires. The potential Vout is the output signal. The logics “0” and 

“1” correspond to low and high values of the input and output potentials, respectively. 

Fig. 2 

The logic function OR is realized by using two nanofluidic diodes with the ground resistance 

R = 500 M and two square-wave input potentials. The input and output signals are those of 

Fig. 1. 

Fig. 3 

Scheme and operation of two concatenated OR and AND logic gates with R1 = 40 M, R2 = 

500 M, and V0 = 1.5 V. These values of the resistances allow high electric currents in the 

first gate together with robust output potentials and logic responses in the second gate. The 

output of the OR gate corresponds to the input potentials V1 and V2 of Fig. 2 and acts as the 

first input for the AND gate to give an Enabled-OR logic function. The OR function is 

enabled only when the second input (V3) of the AND gate is 1, while it is disabled when it is 

0. The system can be operated as an integrated module that allows the downstream transfer of 

information. 
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Fig. 4 

Scheme and operation of an OR logic gate connected to a solid-state transistor acting as an 

inverter. In order to achieve a significant current gain, a Darlington pair was used for the 

transistor, with R1 = 90 M, RD = 4.7 k, and VD = 3 V. The resulting output is a universal 

NOR logic function. 
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