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Universidad Politécnica de Valencia
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Valencia, España. December 2010

0_frontmatter/figures/logo.eps


ii



Acknowledgements

It is a great pleasure to thank everyone who helped me to complete my

master thesis successfully and moreover on time. First, I would like to

thank my professors form Bethlehem University, specially Dr. Saleem. and

Dr. Suhail for there support in my undergraduate project who encouraged

me to continue my master studies.

I am equally grate-full to my adviser, Alfons Juan. He gave me moral

support, guided and suggested me the outlines of this project and corrected

my doubts. Also a special thanks to my colleagues in the laboratory who

always helped me, and specially to Adrian Giménez who never stopped
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Abstract

This thesis presents new approaches in off-line Arabic Handwriting Recog-

nition based on conventional Bernoulli Hidden Markov models. Until now,

the off-line handwriting recognition, in particular, the Arabic handwriting

recognition is still far away form being perfect. Hidden Markov Models

(HMMs) are now widely used for off-line handwriting recognition in many

languages and, in particular, in Arabic. As in speech recognition, they

are usually built from shared, embedded HMMs at symbol level, in which

state-conditional probability density functions are modeled with Gaussian

mixtures. In contrast to speech recognition, however, it is unclear which

kind of features should be used and, indeed, very different features sets

are in use today. Among them, we have recently proposed to simply use

columns of raw, binary image pixels, which are directly fed into embed-

ded Bernoulli (mixture) HMMs, that is, embedded HMMs in which the

emission probabilities are modeled with Bernoulli mixtures. The idea is to

by-pass feature extraction and ensure that no discriminative information is

filtered out during feature extraction, which in some sense is integrated into

the recognition model. In this thesis, we review this idea along with some

extensions that are currently providing state-of-the-art results on Arabic

handwritten word recognition.
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1

Introduction

1.1 Arabic Handwriting Recognition

Computer recognition of characters or word is one of the most successful applications

in pattern recognition. A handwriting recognizer is a system that automatically tran-

scribes text image into text. Put it simply, it is an automated process that uses pat-

tern recognition (PR) and machine learning (ML) techniques to recognize characters

or words given a lexicon or even an entire dictionary [27].

Fueled by market demand, some Optical Character Recognition (OCR) systems,

and also some handwriting systems are now available as commercial products. Despite

all these, off-line handwriting recognition is still a major challenge in PR [27, 25]. Offline

handwriting recognition is the task of determining what letters or word are present in

digital image on handwritten text[15]. The earliest work on handwriting recognition

(HR) was carried out in the sixties and seventies. Due to the poor performance achieved

by these systems at that time, less research on handwriting recognition took place

during the eighties [14]. The ultimate goal of HR is to have systems able to understand

any handwriting text. Their training phase should be minimum to automatically adapt

themselves to a new user.

The recognition of Arabic handwriting presents unique challenges and benefits and

has been approached more recently than the recognition of text in other scripts. Arabic

is spoken by 234 million people and important in the culture of many more [15]. It is one

of the six United Nations official languages [6, 5, 3, 1]. The characters of Arabic script

and similar characters are used by a much higher percentage of the worlds population
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1. INTRODUCTION

to write languages such as Arabic, Farsi (Persian), and Urdu. Arabic script differs

from Latin scripts in several ways. Unlike English handwriting, Arabic is written from

right-to-left and does not distinct between upper or lowercase characters [20].

1.2 Statistical Handwriting Recognition

To discuss the problem of handwriting recognizer design, we need its mathematical

formulation based on probabilities. Let O = o1, . . . ,oT denote an observation sequence

of fixes-dimension feature vectors, and W = w1, . . . ,wN denote the set of possible

transcriptions, each belonging to a fixed and known vocabulary. If p(W | O) denotes

the probability that the transcriptions W is written in the text image, given that the

evidence O was observed, then the recognizer will choose the most likely transcription

given the observed evidence. In another words, the recognizer should decide in favor of

a transcription (word) w∗ satisfying,

w∗ = arg max
w∈W

p(W | O) (1.1)

The well known Bayes formula of probability theory allows us to rewrite the right

side of the equation, moreover, since the maximization in equation 1.1 is carried out

with observation O fixed, it follows that the recognizer is trying to find the word w∗

that maximizes the product p(W ) p(O | W ), that is,

w∗ = arg max
w∈W

p(W ) p(O | W ) , (1.2)

where p(W ) is the probability that the word W was written, it is usually approximated

by an n-gram language model [11], and p(O | W ) is the probability that when the

image contains the word W the evidence O will be observed, in another words it is a

text image model

Following equation 1.2, a handwriting recognition system consists of four main

components which are described in detail in the following sections, preprocessing and

feature extraction, a text image model, a language model, and a search module.

1.2.1 Preprocessing and Feature Extraction

It is important to know what a data O will be observed. In handwriting of text image

case, image has to be transformed into sequence of fixed-dimension feature vectors

4



1.2 Statistical Handwriting Recognition

with which the recognizer will deal. For this, some techniques may be applied on

original images depending on its clarity, such as, rescaling, thresholding and background

removal, skew correction, binarization, and many others. For details see to [22]. Feature

extraction is not only limited for one bit column feature extraction. However a sliding

window of fixed width could be centered at each column of the image. Moreover, this

sliding window also could be then translated to align its center with its mass center

(Repositioning). The binary image under the translated window is read to construct a

local binary feature vector and, in this way, the whole input image is transformed into

a sequence of fixed-dimension feature vectors. More information in section 3.2

Transcription

{w1, . . . ,wN}

Hypothesis Search:

maximize

p(W ).p(O | W )

over W

Preprocessing/

feature extraction

Image

p(O | W ) Text Image

Model

p(W )
Language Model

Figure 1.1: Basic architecture of a statistical handwriting recognition system

1.2.2 Text Image Modeling

Returning back to the equation 1.2, the recognizer needs to determine the probability

value p(O | W ) for the realization of a sequence of feature vectors O given a word

sequence W . Having in mind that, writings differ significantly from writer to another

depending on the writing conditions. To model the writing variations, hidden Markov

models (HMM) are used. They have been established as a de-facto standard for speech
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1. INTRODUCTION

recognition systems [24], however they are widely used for off-line handwriting recog-

nition in many languages and, in particular, in Arabic [16, 17]. Other models are also

used such as those based on artificial neural networks or dynamic time wrapping [12].

In this thesis, we use the Bernoulli (mixture) HMMs (BHMMs), that is, embedded

HMMs in which the emission probabilities are modeled with Bernoulli mixtures. Our

models are explained in details in chapter 2.

1.2.3 Language Modeling

Language models (LMs) are used to model text properties like syntax and semantic

independently from the morphological models. They are used in many natural language

processing applications such as speech recognition, machine translation or handwritten

recognition. These models try to capture the properties of a language, and are used to

predict the next word in a word sequence [10].

In another words, equation 1.2, requires that we be able to compute for every word

W the a priori probability p(W ). Bayes formula allows many decompositions,

p(W ) = p(w1).

T
∏

t=2

p(wt | w
t−1
1 ) , (1.3)

where p(wt | wt−1
1 ) is the probability of the word wt when we have already seen the

sequence of words w1 . . . wt−1. The sequence of words prior to wt is called history. The

recognizer must estimate the value of the probability p(wt | w
t−1
1 ). In fact estimating

this value is difficult and costly since sentences can be arbitarily long. For this reason

these models are often approximated using smoothed n-gram models, which obtains

surprisingly good performance [10], although they only capture short term dependen-

cies.

The n-gram model is nowadays the most wide-spread model used for language

modeling. Besides from being used in HTR, it is also used in machine translation,

speech recognition, and practically in all human language technologies [11]. In a n-

gram model, the probability p(w1, . . . , wT ) of observing the sentence w1, . . . , wT is

approximated as,

p(W ) ≈ p(w1).

T
∏

t=2

p(wt | w
t−1
t−(n−1)) , (1.4)

6



1.3 Scientific Goals and Document Structure

where the probability of observing the tth word wt in the context history of the preceding

t − 1 words can be approximated by the probability of observing it in the shortened

context history of the preceding n− 1 words (nth order Markov property).

The parameter estimation can be easily carried out from a training set using the

Maximum Likelihood Estimation (MLE), since no hidden variables are required in n-

gram model. The conditional probability can be calculated from n-gram frequency

counts,

p(wt | w
t−1
t−(n−1)) =

count(wt−(n−1), . . . , wt−1, wt)

count(wt−(n−1),...,wt−1
)

(1.5)

As it is known, however, the n-gram probabilities are not derived directly from the

frequency counts, this estimation gives a zero probability for all unseen events. This

problem is solved by smoothing the model, that is, modifying the original probability

distribution in order to obtain similar distribution but without zero probabilities. Vari-

ous methods are used, from simple ”add-one” smoothing (assign a count of 1 to unseen

n-grams) to more sophisticated models, such as Good-Turing discounting or back-off

models.

1.2.4 Hypothesis Search

Keeping the equation 1.2 in mind, in order to find the desired transcription w∗ of the

observation O, we must search over all possible words W to find the maximizing one.

This search cannot be conducted by brute force since the space of words W is very

large. However a method called the Viterbi algorithm is used that will not consider

the overwhelming number of possible candidates of word W . This method, like all the

known others for a large vocabulary, cannot actually be guaranteed to find the most

likely W . It gives very good results, however, from the practical point of view.

1.3 Scientific Goals and Document Structure

The main objective of this thesis is to put forward the theoretical framework of the

Bernoulli Hidden Markov model, as well as to discuss new approaches in the conven-

tional handwriting recognition system, specially applied to Arabic. In chapter 6, we

will see that our objectives has been fulfilled to a great extent that are currently pro-

viding state-of-the-art results on Arabic handwritten word recognition. In particular,

7



1. INTRODUCTION

Our Arabic handwriting recognition system won the award of the first Place Prize in

the ICFHR 2010 competition. This thesis must be read in a sequential order.

In chapter 2, we introduce our basic Bernoulli Hidden Markov model applied to

the well known IfN/ENIT database of Arabic handwriting Tunisian town names [23],

BHMM-based handwriting recognition, maximum likelihood parameter estimation, and

empirical results. In chapter 3, our basic extension to plain BHMMs, which will be re-

ferred to as windowed BHMMs, and much more improved results. In chapter 4, window

repositioning is described, and new empirical results. To our knowledge, they are the

best results published to date on the IfN/ENIT database. In chapter 5, repositioning

in windowed BHMM is applied to the OpenHaRT database [21], and empirical results

are shown. Concluding remarks are discusses in chapter 6. A short overview of Arabic

Handwriting is given in the Appendix (chapter 7).
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2

Bernoulli Hidden Markov Models

2.1 Introduction

Hidden Markov Models (HMMs) are now widely used for off-line handwriting recogni-

tion in many languages and, in particular, in Arabic [16, 17]. Arabic is spoken by 234

million people and important in the culture of many more [?]. Given a text (line or

word) image, it is first transformed into a sequence of fixed-dimension feature vectors,

and then fed into an HMM-based decoder to find on its most probable transcription.

Following the conventional approach in speech recognition [24], HMMs at global (line

or word) level are built from shared, embedded HMMs at character (subword) level,

which are usually simple in terms of number of states and topology. In the common

case of real-valued feature vectors, state-conditional probability (density) functions are

modeled as Gaussian mixtures since, as with finite mixture models in general, their

complexity can be easily adjusted to the available training data by simply varying the

number of components.

After decades of research in speech recognition, the use of certain real-valued speech

features and embedded Gaussian (mixture) HMMs is a de-facto standard [24]. However,

in the case of handwriting recognition, there is no such a standard and, indeed, very dif-

ferent sets of features are in use today. In [8], we proposed to by-pass feature extraction

and to directly feed columns of raw, binary pixels into embedded Bernoulli (mixture)

HMMs (BHMMs), that is, embedded HMMs in which the emission probabilities are

modeled with Bernoulli mixtures. The basic idea is to ensure that no discriminative

information is filtered out during feature extraction, which in some sense is integrated

9



2. BERNOULLI HIDDEN MARKOV MODELS

into the recognition model. In this chapter, we discuss this basic idea, where our exper-

iments were carried out on the very popular IfN/ENIT database of Arabic handwritten

Tunisian town names [23]. In particular, we describe the plain Bernoulli mixtures and

Bernoulli mixture HMMs with examples (Sec. 2.2 and 2.3), BHMM-based Handwrit-

ing Recognition, and forward and backward algorithms (Sec. 2.4), maximum likelihood

estimation (Sec. 2.5). Then, empirical results are reported in Section 2.6. Concluding

remarks are given in Section 2.7.

2.2 Bernoulli Mixture

Let o be a D-dimensional feature vector. A finite mixture is a probability (density)

function of the form:

P (o | Θ) =

K
∑

k=1

πk P (o | k,Θ′) , (2.1)

where K is the number of mixture components, πk is the kth component coefficient,

and P (o | k,Θ′) is the kth component-conditional probability (density) function. The

mixture is controlled by a parameter vector Θ comprising the mixture coefficients and

a parameter vector for the components, Θ′. It can be seen as a generative model that

first selects the kth component with probability πk and then generates o in accordance

with P (o | k,Θ′).

A Bernoulli mixture model is a particular case of (2.1) in which each component

k has a D-dimensional Bernoulli probability function governed by its own vector of

parameters or prototype pk = (pk1, . . . , pkD)
t ∈ [0, 1]D ,

P (o | k,Θ′) =
D
∏

d=1

podkd (1− pkd)
1−od , (2.2)

where pkd is the probability for bit d to be 1. Note that this equation is just the product

of independent, unidimensional Bernoulli probability functions. Therefore, for a fixed

k, it can not capture any kind of dependencies or correlations between individual bits.

Consider the example given in Figure 2.1. Three binary images (a, b and c) are

shown as being generated from a Bernoulli prototype depicted as a gray image (black=1,

white=0, gray=0.5). The prototype has been obtained by averaging images a and c,

and it is the best approximate solution to assign a high, equal probability to these

10



2.3 Bernoulli HMM

a© b© c©

Figure 2.1: Three binary images (a, b and c) are shown as being generated from a

Bernoulli prototype depicted as a gray image (black=1, white=0, gray=0.5).

images. However, as individual pixel probabilities are not conditioned to other pixel

values, there are 26 = 64 different binary images (including a, b and c) into which the

whole probability mass is uniformly distributed. It is then not possible, using a single

Bernoulli prototype, to assign a probability of 0.5 to a and c, and null probability to

any other image such as b. Nevertheless, this limitation can be easily overcome by

using a Bernoulli mixture and allowing a different prototype to each different image

shape. That is, in our example, a two-component mixture of equal coefficients, and

prototypes a and b, does the job.

2.3 Bernoulli HMM

Let O = (o1, . . . ,oT ) be a sequence of feature vectors. An HMM is a probability

(density) function of the form:

P (O | Θ) =
∑

q0,...,qT+1

T
∏

t=0

aqtqt+1

T
∏

t=1

bqt(ot) , (2.3)

where the sum is over all possible paths (state sequences) q0, . . . , qT+1, such that q0 = I

(special initial or start state), qT+1 = F (special final or stop state), and q1, . . . , qT ∈

{1, . . . ,M}, being M the number of regular (non-special) states of the HMM. On the

11



2. BERNOULLI HIDDEN MARKOV MODELS

other hand, for any regular states i and j, aij denotes the transition probability from

i to j, while bj is the observation probability (density) function at j.

A Bernoulli (mixture) HMM (BHMM) is an HMM in which the probability of

observing ot, when qt = j, is given by a Bernoulli mixture probability function for the

state j:

bj(ot) =
K
∑

k=1

πjk

D
∏

d=1

potdjkd (1− pjkd)
1−otd , (2.4)

where πjk and pjk are, respectively, the prior and prototype of the kth mixture com-

ponent in state j.

Consider the upper part of Figure 2.2, where a BHMM example for the number 3 is

shown, together with a binary image generated from it. It is a three-state model with

single prototypes attached to states 1 and 2, and a two-component mixture assigned

to state 3. In contrast to the example in Figure 2.1, prototypes do not account for the

whole digit realizations, but only for single columns. This column-by-column emission

of feature vectors attempts to better model horizontal distortions at character level

and, indeed, it is the usual approach in both speech and handwriting recognition when

continuous-density (Gaussian mixture) HMMs are used. The reader can check that, by

direct application of Eq. (2.3) and taking into account the existence of two different

state sequences, the probability of generating the binary image generated from this

BHMM example is 0.063.

As discussed in the introduction, BHMMs at global (line or word) level are built

from shared, embedded BHMMs at character level. More precisely, let C be the number

of different characters (symbols) from which global BHMMs are built, and assume

that each character c is modeled with a different BHMM of parameter vector Θc. Let

Θ = {Θ1, . . . ,ΘC}, and let O = (o1, . . . ,oT ) be a sequence of feature vectors generated

from a sequence of symbols S = (s1, . . . , sL), with L ≤ T . The probability of O can be

calculated, using embedded HMMs for its symbols, as:

P (O | S,Θ) =
∑

i1,...,iL+1

L
∏

l=1

P (oil , . . . ,oil+1−1 | Θsl) , (2.5)

where the sum is carried out over all possible segmentations of O into L segments, that

is, all sequences of indices i1, . . . , iL+1 such that

1 = i1 < · · · < iL < iL+1 = T + 1;

12



2.3 Bernoulli HMM

I 1 2 3 F
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Figure 2.2: BHMM examples for the numbers 3 (top) and 31 (bottom), together with

binary images generated from them. Note that the BHMM example for the number 3 is also

embedded into that for the number 31. Bernoulli prototype probabilities are represented

using the following color scheme: black=1, white=0,gray=0.5 and light gray=0.1.
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2. BERNOULLI HIDDEN MARKOV MODELS

and P (oil , . . . ,oil+1−1 | Θsl) refers to the probability (density) of the lth segment, as

given by (2.3) using the HMM associated with symbol sl.

Consider now the lower part of Figure 2.2. An embedded BHMM for the number 31

is shown, which is the result of concatenating BHMMs for the digit 3, blank space and

digit 1, in that order. Note that the BHMMs for blank space and digit 1 are simpler

than that for digit 3. Also note that the BHMM for digit 3 is shared between the two

embedded BHMMs shown in the Figure. The binary image of the number 31 shown

above can only be generated from two paths, as indicated by the arrows connecting

prototypes to image columns, which only differ in the state generating the second image

column (either state 1 or 2 of the BHMM for the first symbol). It is straightforward to

check that, according to (2.5), the probability of generating this image is 0.0004.

2.4 BHMM-based Handwriting Recognition

Given an observation sequence O = (o1, . . . ,oT ), its most probable transcription is

obtained by application of the conventional Bayes decision rule:

w∗ = arg max
w∈W

p(w | O) (2.6)

= arg max
w∈W

p(w) p(O | w) , (2.7)

where W is the set of possible transcriptions; p(w) is usually approximated by an n-

gram language model [11]; and p(O | w) is a text image model which, in this work,

is modeled as a BHMM (built from shared, embedded BHMMs at character level), as

defined in Eq. (2.5). A particularly interesting case arises when the set of possible

transcriptions reduces to a (small) finite set of words (class labels). In this case, p(w) is

simply the prior probability of word w, while p(O | w) is the probability of observing

O given that it corresponds to a handwritten version of word w.

2.4.1 The forward algorithm

In order to efficiently compute p(O | w) as a BHMM probability of the form given in

Eq. (2.5), we use a dynamic programming method known as forward algorithm [24, 26].

For each time t, symbol sl and state j from the HMM for symbol sl, we define the

forward probability αlt(j) as:

αlt(j) = P (Ot
1, qt = (l, j) | S,Θ) , (2.8)

14



2.4 BHMM-based Handwriting Recognition

that is, the probability of generating O up to its tth element and ending at state j from

the HMM for symbol sl. This definition includes (2.5) as the particular case in which

t = T , l = L and j = FsL ; that is,

P (O | S,Θ) = αLT (FsL
) . (2.9)

To compute αLT (FsL
), we must first take into account that, for each position l in S

except for the first, the initial state of the HMM for sl is joined with final state of its

preceding HMM, i.e.

αlt(Isl) = αl−1t(Fsl−1
) 1 < l ≤ L

1 ≤ t ≤ T . (2.10)

Having (2.10) in mind, we can proceed at symbol level as with conventional HMMs.

For the final states, we have:

αlt(Fsl) =

Msl
∑

j=1

αlt(j) asljFsl

1 ≤ l ≤ L
1 ≤ t ≤ T , (2.11)

while, for regular states, 1 ≤ j ≤ Msl , we have:

αlt(j) =





∑

i∈{Isl ,1,...,Msl
}

αlt−1(i) aslij



 bslj(ot) , (2.12)

with 1 ≤ l ≤ L and 1 < t ≤ T . The base case is for t = 1:

αl1(i) =

{

as1Is1 i bs1i(o1) l = 1, 1 ≤ i ≤ Ms1

0 otherwise
. (2.13)

The forward algorithm uses a dynamic programming table for αlt(·) which is computed

forward in time to avoid repeated computations.

Figure 2.3 shows an application example of the forward algorithm to the BHMM and

observation of Figure 2.2 (bottom). Non-null (and a few null) entries of the dynamic

programming table are represented by graph nodes aligned with states (vertically) and

time (horizontally). Node borders are drawn in black or gray, depending on whether

they are in valid paths (i.e. those from which the observation sequence can be generated)

or not. Also, those associated with special states are drawn with dotted lines. Numbers

at the top of each node refer to αlt(·) and thus, for instance, the probability of generating

O up to the third image column and ending at state 2 of the BHMM for the first symbol
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2. BERNOULLI HIDDEN MARKOV MODELS

is α13(2) =
10
450 . Computation dependencies between nodes are represented by arrows,

which are labeled above by, first, the transition probability, and then the observation

probability at the target state (see Eq. (2.4)). For instance, the numbers above the

arrow pointing to node α13(4) are: as123 · bs13(o4) =
7
10 · (12 · 0 +

1
2 · 15) = 7

10 ·
1
2 .

From Figure 2.3, we can clearly see that, as indicated at the end of Section ??, there

are only two paths from which the observation can be generated. They share all nodes

drawn with black borders except the two nodes aligned with the second observation

vector. In accordance with Eq. (2.9), the probability of the observation sequence is

α37(F ) = 0.0004.

2.4.2 The backward algorithm

The backward algorithm is similar to the forward algorithm but, as it name indicates, it

uses a dynamic programming table which is instead computed backward in time [24, 26].

The basic definition in this case is the backward probability:

βlt(j) = P (OT
t+1 | qt = (l, j), S,Θ) , (2.14)

which measures the probability (density) of generating OT
t+1 given that the tth vector

was generated in state j of the BHMM for the symbol sl. Using this definition, Eq. (2.5)

can be rewritten as:

P (O | S,Θ) =

Ms1
∑

j=1

as1Is1 j bs1j(o1) β11(j) . (2.15)

Taking into account that:

βlt(Fsl) = βl+1t(Isl+1
) 1 ≤ l < L

1 ≤ t < T , (2.16)

the backward probability for the initial and regular states, i ∈ {Isl , 1, . . . ,Msl}, can be

efficiently computed as:

βlt(i) = asnliFsl
βlt(Fsl) +

Msl
∑

j=1

aslijbslj(ot+1)βlt+1(j)
1 ≤ l ≤ L
1 ≤ t < T , (2.17)

where the base case is defined for t = T as

βlT (i) =

{

asLiFsL
l = L, 1 ≤ i ≤ MsL

0 otherwise
. (2.18)
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o1 o2 o3 o4 o5 o6 o7

I

1

1
10

1
10

1
300

1
300

1
9000

1
9000

0

0

2

1
15

1
15

10
450

9
450

0

0

3

0

0

70
9000

63
9000

0

0
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70
104

63
104

1

70
104

63
104

140
105
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105

0

0

F/I

560
105

504
105

1120
106

1008
106

1

0

0

560
106

504
106

F

40
105

36
105

1
3 ·

1
10

2
3 · 1

1
3 ·

1
10

2
3 · 1

3
10 · 1

710 · 0

1
3 · 0

2
3 · 0

3
10 · 0

710 · 1
2

1
10 · 0

9
10

1
· 1

4
5

1
5 · 1

1
· 0

1
5 · 0

4
5

1
· 1
2

5
7

1

2
3

1
3

7
10

3
10

9
10

1
10

1

4
5

1
5

1

5
7

2
7

1

1

1
2

1
2

1

1

Figure 2.3: Application example of the forward and Viterbi algorithms to the the BHMM

and observation of Figure 2.2 (bottom). Numbers at the top of the nodes denote forward

probabilities, while those at the bottom refer to Viterbi scores.
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2.4.3 The Viterbi algorithm

Although the forward and backward algorithms efficiently compute the exact value

of P (O | S,Θ), it is common practice to approximate it by the so-called Viterbi or

maximum approximation, in which the sums in Eqs. (2.3) and (2.5) are replaced by the

max operator, i.e.

P (O | S,Θ) ≈ max
i1, . . . , iL+1

q1, . . . , qT

L
∏

l=1

P̂ (o
il+1−1
il

| Θsl) , (2.19)

where the P̂ is defined as:

P̂ (o
il+1−1
il

| Θsl) = aslIslqil ·

il+1−2
∏

t=il

aslqtqt+1
· aslqil+1−1Fsl

·

il+1−1
∏

t=il

bslqt(ot) . (2.20)

In contrast to the exact definition, this approximation allows us to identify a single, best

state sequence or path associated with the given observation sequence. The well-known

Viterbi algorithm efficiently computes this approximation, using dynamic programming

recurrences similar to those used by the forward algorithm. Formally, we need to

compute the probability Q(l, t, j) of the most likely path up to time t that ends with

the state j from the BHMM for symbol sl. For the specials states, it can be computed

as:

Q(l, t, Isl) = Q(l − 1, t, Fsl−1
) 1 < l ≤ L

1 ≤ t ≤ T . (2.21)

Q(l, t, Fsl) = max
1≤j≤Msl

Q(l, t, j) asljFsl

1 ≤ l ≤ L
1 ≤ t ≤ T , (2.22)

while, for the regular states with 1 ≤ l ≤ L and 1 < t ≤ T , we have:

Q(l, t, j) =

[

max
i∈{Isl ,1,...,Msl

}
Q(l, t− 1, i) aslij

]

bslj(ot) , (2.23)

The base case is for t = 1:

Q(l, 1, i) =

{

as1Is1 i bs1i(o1) l = 1, 1 ≤ i ≤ Ms1

0 otherwise
. (2.24)

Clearly, the Viterbi algorithm can be seen as a minor modification of the forward

algorithm in which only the most probable is considered in each node computation.

Indeed, the application example shown in Figure 2.3 is used both, for the forward and
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Viterbi algorithms. Now, however, the relevant numbers are those included at the

bottom of each node, which denote Q(l, t, j); i.e., at row 2 and column 3, we have

Q(1, 3, 2) = 9
450 . Consider the generation of the third observation vector at the second

state (for the first symbol). It occurs after the generation of the second observation

vector, either at the first or the second states, but we only take into account the most

likely case. Formally, the corresponding Viterbi score is computed as:

Q(1, 3, 2) = max

{

1

15
·
3

10
· 1,

1

300
·
2

3
· 1

}

= max

{

9

450
,

1

450

}

=
9

450

Note that forward probabilities do not differ from Viterbi scores up to Q(1, 3, 2), since

it corresponds to the first (and only) node with two incoming paths. The Viterbi ap-

proximation to the exact probability of generating the observation sequence is obtained

at the final node: Q(3, 7, F ) = 0.00036. The most likely path, drawn with thick lines,

is retrieved by starting at this node and moving backwards in time in accordance with

computation of Viterbi scores. As usual in practice, the final Viterbi score in this

example (0.00036) is a tight lower bound of the exact probability (0.00040).

2.5 Maximum likelihood parameter estimation

Maximum likelihood estimation of the parameters governing an embedded BHMM

does not differ significantly from the conventional Gaussian case, and it can be car-

ried out using the well-known EM (Baum-Welch) re-estimation formulae [24, 26]. Let

(O1, S1), . . . , (ON , SN ), be a collection of N training samples in which the nth obser-

vation has length Tn, On = (on1, . . . ,onTn), and was generated from a sequence of

Ln symbols (Ln ≤ Tn), Sn = (sn1, . . . , snLn). At iteration r, the E step requires the

computation, for each training sample n, of their corresponding forward and backward

probabilities (see (2.8) and (2.14)), as well as the expected value for its tth feature

vector to be generated from kth component of the state j in the HMM for symbol sl,

z
(r)
nltk(j) =

π
(r)
snljk

∏D
d=1 p

(r)
snljkd

ontd

(1− p
(r)
snljkd

)
1−ontd

b
(r)
snlj

(ont)
,

for each t, k, j and l.
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In the M step, the Bernoulli prototype corresponding to the kth component of the

state j in the HMM for character c has to be updated as:

p
(r+1)
cjk =

1

γck(j)

∑

n

∑

l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)ont

P (On | Sn,Θ(r))
, (2.25)

where γck(j) is a normalization factor,

γck(j) =
∑

n

∑

l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn,Θ(r))
, (2.26)

and ξ
(r)
nltk(j) the probability for the tth feature vector of the nth sample, to be generated

from the kth component of the state j in the HMM for symbol sl,

ξ
(r)
nltk(j) = α

(r)
nlt(j)z

(r)
nltk(j)β

(r)
nlt(j) . (2.27)

Similarly, the kth component coefficient of the state j in the HMM for character c has

to be updated as:

π
(r+1)
cjk =

1

γc(j)

∑

n

∑

l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn,Θ(r))
, (2.28)

where γc(j) is a normalization factor,

γc(j) =
∑

n

∑

l:snl=c

∑Tn

t=1 α
(r)
nlt(j)β

(r)
nlt(j)

P (On | Sn,Θ(r))
. (2.29)

To avoid null probabilities in Bernoulli prototypes, they can be smoothed by linear

interpolation with a flat (uniform) prototype, 0.5,

p̃ = (1− δ)p+ δ 0.5 , (2.30)

where, for instance, δ = 10−6.

2.6 Experiments

Experiments reported here were carried out on the very popular IfN/ENIT database

of Arabic handwritten Tunisian town names [23]. More details about this database are

in section 2.6.1. Each image was rescaled in height to a given dimension D (10, 15,

20, 25, 30,35), while keeping the original aspect ratio, and then binarized using Otsu

binarization. In the results reported below, however, only height 30 is considered since,

in a series of preliminary informal tests, it led to better results than other heights.
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2.6.1 IfN/ENIT database

IfN/ENIT database is an Arabic handwritten text database which contains handwritten

Tunisian town/villages names [23]. It is then a database for isolated word recognition.

In last years this database has been used in several Arabic handwritten competitions,

see [19, 16, 17, 18], becoming a reference in the Arabic handwritten area. The database

consists of 946 Tunisian town/villages. It is written by 411 writers. They were asked to

fill 5 forms with 12 names from the possible names with their corresponding postcodes.

Forms were made guarantying that each word appears at least 3 times in the database,

and each character shape occur at minimum more than 200 times. The only aid to

writing was the printing of dark light rectangles in the backside of the form to indicate

where to write the words. Figure 2.5 shows two examples of forms.

Forms were scanned with 300 dpi and, binarised and automatically segmented.

Using a semi-automatically process segmented images were labeled with the postcode,

the Arabic word in codes as “ISO 8859-6” with a sequence of Arabic character shapes

from 306 different shapes, since each letter appears in four different forms depending

of its position in the word (Begin, Middle, End or Isolated form). It is important to

note that “ISO 8859-6” does not encode the shape information.

The resulting database is composed by 32492 different images divided into 5 sets

(a,b,c,d and e). The first four sets are the original sets of the database, while the set

e was used as test set in the ICDAR 2005 competition see [19], being late released.

Thus it is a common practice to public results doing a cross validation experiment with

the first four sets, and a final experiment training with sets a,b,c,d and testing the set

e. Note that while the number of classes is 946 (postcodes), the size of the lexicon is

greater since names are written in different forms. Table 2.1 shows some statistics for

the five sets, and figure 2.4 shows some samples of images.

Table 2.1: Some statistics of the IfN/ENIT-database sets

No. of words Lexicon

a 6537 1588

b 6710 1634

c 6477 1498

d 6735 1564

e 6033 733
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Figure 2.4: Samples of the IfN/ENIT database

2.6.2 Evaluation Metrics

Results in general are obtained following a very popular evaluation metrics, we describe

two of them in this thesis. First, the classification error rate, which is the conventional

metric used in pattern recognition for classification problems. It is used for the isolated

words recognition, where each word indicates a class label. It is calculated as the

percentage of errors in test set,

Error =
NE

N
× 100 (2.31)

where NE is the number of errors, and N is the number of samples in the test set.

This metric could also be used in continuous HTR (line condition), in which a sequence

of words is obtained as a result of the recognition process.However, it is somewhat a

strict metric, since an erroneous word on the sequence implies that the sequence is

considered all erroneous.

The second metric is the Word Error Rate (WER), is a common metric of the

performance of a speech recognition or machine translation system. This metrics tends

to calculate the error at word level instead of at sentence level. That is, for each

predicted sentence, the minimum number of insertions, deletions, and substitutions is

calculated.

WER =
NI +ND +NS

NE
, (2.32)

where NI, ND, and NS, are respectively the total number if needed insertions,

deletions, and substitutions, while NW is the total number of words in the reference.

2.6.3 Experiments

Experiments were carried out by trying different number of states, Q ∈ {2, 4, 6, 8}, and

also different number of mixture components per state, K ∈ {1, 4, 16, 64, 128}. For

22

components/figures/ifnenit_sample1.eps
components/figures/ifnenit_sample2.eps


2.6 Experiments

Figure 2.5: Example of two handwritten forms from the IfN/ENIT database
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2. BERNOULLI HIDDEN MARKOV MODELS

K = 1, the HMMs were initialized by first segmenting the training set with a “neutral”

model, and then using the resulting segments to perform a Viterbi initialization. The

initialized HMMs were trained with 4 EM iterations. For K > 1, the HMMs were

initialized by splitting the mixture components of the models trained with K/4 (or

K/2) mixture components per state. Again, after initialization, HMMs were trained

with 4 EM iterations. On the other hand, recognition of test images was performed by

using the Viterbi algorithm.

Figure 2.6 shows the Word Error Rate (WER%), as a function of the number of

states, for varying number of components. Each WER estimate (plotted point) was

obtained by cross-validation with the first 4 standard folds (a, b, c and d).

 15

 20

 25

 30

 35

 40

 45

 50

 55

 2  4  6  8

WER(%)

Q

K=1
4

16
46

128

Figure 2.6: Classification error-rate (%) as a function of the number of states, for varying

number of components (K). Cross-validation using sets (a,b,c,d).

From the results in Fig. 2.6, it seems that an appropriate value for the number of

states is 6, and also an appropriate value for the number of mixture components per

state is 64. Using these values, two additional experiments were carried out by using the
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training-test partitions abcd-e and abcde-e. The resulting WER values are included in

Table 2.2 together with those obtained in the other training-test combinations involved

in the 4-fold cross-validation experiment performed previously.

Table 2.2: Word Error Rate (WER%), for Q = 6 and K = 64, in different training-test

combinations of the a, b, c, d and e folds.

Training Test WER%

abc d 17.6

abd c 17.3

acd b 19.0

bcd a 17.5

abcd e 34.3

abcde e 24.3

From the results in Table 2.2, we can see that the results for the first four folds are

very similar, in the range 17.3%− 19.0%, while those for fold e (34.3% and 24.3%) are

significantly higher. This might be due to the different age and profession distribution of

the writers that contributed to fold e, as compared with those of the first four folds [19].

On the other hand, when compared with the results on fold e (abcde-e) at the ICDAR

2007 competition, our 24.3% would rank in the middle part of the list, far from the

best results, but nonetheless above many participating systems. We think that this is a

relatively good result since our Bernoulli mixture HMM-based system is still at a basic

state of development and, therefore, there is significant room for improvement.

2.7 Concluding Remarks

Embedded Bernoulli mixture HMMs have been applied to Arabic handwriting recogni-

tion and, more precisely, they have been tested on the very popular IfN/ENIT database

of Arabic handwritten Tunisian town names.
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3

Windowed BHMMs

3.1 Introduction

In this chapter, we provide new, much more improved results on the IfN/ENIT database.

In contrast to our basic approach, in which narrow, one-column slices of binary pixels

are fed into BHMMs, now we use a sliding window of adequate width to better capture

image context at each horizontal position of the word image. It must be noted that

the use of sliding windows for HMM-based handwriting recognition is not new and, in-

deed, the best Word Error Rate (WER) reported on the standard abcd-e training-test

partition of IfN/ENIT, 14.6%, has been obtained using windowed Gaussian mixture

HMMs [7]. In this chapter, however, we show that our windowed BHMMs approach

leads to an even better WER of 12.3%.

In what follows, we first describe windowed BHMMs formally, with intuitive exam-

ples. Then, the new empirical results are reported in Section 3.3. Concluding remarks

are given in Section 3.4.

3.2 Windowed BHMMs

Given a binary image normalized in height to H pixels, we may think of a feature

vector ot as its column at position t or, more generally, as a concatenation of columns

in a window of W columns in width, centered at position t. This generalization has no

effect neither on the definition of BHMM nor on its maximum likelihood estimation,

though it might be very helpful to better capture image context at each horizontal

position of the image. As an example, Figure 3.1 shows a binary image of 4 columns
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and 5 rows, which is transformed into a sequence of 4 15-dimensional feature vectors

by application of a sliding window of width 3. For clarity, feature vectors are depicted

as 3×5 subimages instead of 15-dimensional column vectors. Note that feature vectors

at positions 2 and 3 would be indistinguishable if, as in our previous approach, they

were extracted with no context (W = 1).

o1 o2 o3 o4

Figure 3.1: Example of transformation of a 4× 5 binary image (bottom) into a sequence

of 4 15-dimensional binary feature vectors O = (o1,o2,o3,o4) using a window of width 3.

3.3 Experiments

As described before, experiments have been carried out using the well-known IfN/ENIT

database of Arabic handwritten Tunisian town names [23]. More precisely, we have used

the IfN/ENIT database in version 2.0, patch level 1e (v2.0p1e), which is exactly the

version used as training data in the Arabic handwriting recognition competition held at

ICDAR (Int. Conf. on Document Analysis and Recognition) in 2007 and 2009 [16, 17].

It comprises 32492 Arabic words written by more than 1000 different writers, from

a lexicon of 937 Tunisian town/village names. A standard partition is defined which

consists of five folds labeled as a, b, c, d and e. Each image was scaled in height to 30

pixels and then binarized using Otsu’s method.

We tried different values for the sliding window width, W ∈ {1, 3, 5, 7, 9, 11}

and also different different values for number of mixture components per state, K ∈
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{1, 2, 4, 8, 16, 32, 64}. However, taking into account our previous, preliminary results

in [13], we only tried BHMMs of 6 states. For K = 1, BHMMs were initialized by

first segmenting the training set with a “neutral” model, and then using the resulting

segments to perform a Viterbi initialization. Initialized HMMs were trained with 4 EM

iterations. For K > 1, the HMMs were initialized by splitting the mixture components

of the models trained with K/2 mixture components per state. Again, after initializa-

tion, HMMs were trained with 4 EM iterations. On the other hand, recognition of test

images was performed by using the Viterbi algorithm. Figure ?? shows the Word Error

Rate (WER%) as a function of the number of mixture components, for varying sliding

window widths. Each WER estimate (plotted point) was obtained by cross-validation

with the first 4 standard folds (abcd).

 5

 10

 15

 20

 25

 30

 1  2  4  8  16  32  64

WER(%)

K

W=1
3
5
7
9

11

Figure 3.2: WER(%) as a function of the number of mixture components (K) for varying

sliding window widths (W ).

From the results in Figure 3.2 it becomes clear that the use of a sliding window

improves the results to a large extent. In particular, the best result, 7.4%, is obtained
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for W = 9 and I = 32, though very similar results are also obtained for W = 7 and

W = 11. It is worth noting that the best result achieved with no sliding windows

(W = 1) is 17.7%.

To get some insight into the behavior of our windowed BHMMs, the model for

character p , trained from folds abc with W = 9 and K = 32, is (partially) shown

in Figure 3.3 (bottom) together with its Viterbi alignment with a real image of the

character p, extracted from sample de05 007 (top). As in Figure ??, Bernoulli proto-

types are represented as grey images where the grey level of each pixel measures the

probability of its corresponding pixel to be black (white = 0 and black = 1). From

these prototypes, it can be seen that the model works as expected, i.e. each state from

right to left accounts for a different local part of p, as if the sliding window was moving

smoothly from right to left. Also, note that the main stroke of the character p ap-

pears almost neatly drawn in most prototypes, whereas its upper dot appears blurred,

probably due to a comparatively higher variability in window position.

6 5 4 3 2 1

24203232212424201122

Figure 3.3: BHMM for character p, trained from folds abc with W = 9 and K = 32

(bottom), together with its Viterbi alignment with a real image of the character p, ex-
tracted from sample de05 007 (top).

As discussed in [7], letters in Arabic script differ significantly in length, and thus
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it might not be appropriate to model all of them using BHMMs of identical number

of states. With this idea in mind, a new experiment was carried out, similar to that

described above, but with fixed sliding window of W = 9 and variable number of states

per character. To decide the number of states for each character, we first Viterbi-

segmented all training data using BHMMs of 4 states, and then computed the average

length of the segments associated with each character. Given an average segment length

for character c, T̄c, its number of states was set to F · T̄c, where F is a factor measuring

the average number of states that are required to emit a feature vector. Thus, its

inverse, 1
F
, can be interpreted as a state load, that is, the average number of feature

vectors that are emitted in each state. For instance, F = 0.2 means that only a fraction

of 0.2 states is required to emit a feature vector or, alternatively, that 1
0.2 = 5 feature

vectors are emitted on average in each state. Figure 3.4 shows the WER obtained as

a function of F , F ∈ {0.2, 0.3, 0.4, 0.5}, for varying values of the number of mixture

components. The best result achieved is a WER of 7.3%, using F = 0.4 and K = 32,

which is slightly better than the 7.4% obtained with 6 states per character.

In Figure 3.5, the sample dm33 037 has been recognized using BHMMs with W =

9, K = 32 and both, 6 states (top) and variable number of states, with F = 0.4

(bottom). In both cases, the recognized word has been Viterbi-aligned at character level

(background color) and state level (bottom and upper ticks). Although the BHMMs of

6 states produce a recognition error,
�éJ
�KA

�	® 	JË @ (top), the BHMMs of variable number of

states are able to recognize the correct word,
�éJ
 	K@

�	kYË @ (bottom). Note that there are

two letters, ’Ë’ and ’X’, that are written at the same vertical position, or better to say,

at a specific column, and thus it is very difficult for our BHMMs to recognize them as

two different letters. On the other hand, the incorrectly recognized word (top) is not

very different in shape from the correct one; e.g. the characters ’ 	K’ and ’�K’ are very

similar (type B [19]).

A final experiment was carried out using the four folds of the previous experiments,

abcd, as training data, and the fifth fold, e, as test data. Taking into the results

obtained above, we tried BHMMs with W = 9, K = 32, and both, Q = 6 states and

variable number of states with F = 0.4. The WER achieved in both cases is included

in Table 3.1, together with WER results for other training-test partitions, including

the 4 partitions involved in the 4-fold cross-validation experiments described above.
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Figure 3.4: WER(%) as a function of the factor F for varying values of the number of

mixture components (K).

�é J

�K A 	® 	J Ë @

�é J
 	K A 	k Y Ë @
Figure 3.5: Sample dm33 037 incorrectly recognized with BHMMs of 6 states (top), but

correctly recognized with BHMMs of variable number of states (bottom). In both cases,

the recognized word has been Viterbi-aligned at character level (background color) and

state level (bottom and upper ticks).
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3.4 Concluding Remarks

Table 3.1: Word Error Rate (WER%) in different training-test combinations of the abcde

folds, for BHMMs with W = 9, K = 32, and both, Q = 6 states and variable number of

states with F = 0.4.

WER%

Training Test Q = 6 F = 0.4

abc d 8.0 7.5

abd c 6.6 6.9

acd b 7.4 7.7

bcd a 7.8 7.6

abcd e 13.7 12.3

abcde e 5.4 4.0

In Table 3.1, it can be seen that the results for the first 4 folds are very similar, in

the range 6% − 9%, while those for fold e (13.7% and 12.3%) are higher. This might

be due to the different age and profession distribution of the writers that contributed

to fold e, as compared with those of the first 4 folds [19]. On the other hand, when

compared with the results on fold e (abcde-e) at the ICDAR 2007 competition, our 4%

outperforms the three best results. If the comparison is done with the more recently

results of the ICDAR 2009 competition, our result would rank in the top of the list.

In both cases, however, the results must be interpreted with caution since fold e is

used both for training and testing. Nevertheless, on the standard abcd-e partition, our

WER of 12.3% outperforms the 14.6% reported in [7] which, to our knowledge, is the

best result known to date.

3.4 Concluding Remarks

Windowed Bernoulli mixture HMMs (BHMMs) have been defined and tested for Arabic

Handwritten Word Recognition on the the well-known IfN/ENIT database of handwrit-

ten Tunisian town names. In contrast to our previous basic approach, in which narrow,

one-column slices of binary pixels are fed into BHMMs, we have used a sliding window

of adequate width to better capture image context at each horizontal position of the

word image. Very good results have been reported on IfN/ENIT and, in particular, a

WER of 12.3% has been achieved on the standard abcd-e partition.
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4

Repositioning in Windowed

BHMMs

4.1 Introduction

In this chapter, again, more improved results on the IfN/ENIT database. Our new

approach does not differ a lot from our previous approach, where a sliding window of

fixed width on the binarized image is first centered at each column, and then translated

to align its center with its mass center. The binary image under the translated window

is read to construct a local binary feature vector and, in this way, the whole input image

is transformed into a sequence of binary feature vectors. In this chapter, we show that

our windowed BHMMs with repositioning approach leads to an even better WER of

6.1%.

In what follows, we first describe repositioning in windowed BHMMs, with intuitive

examples. Then, empirical results are reported in Section 4.3. Concluding remarks are

given in Section 4.5.

4.2 Window Repositioning

As we have seen in chapter 3, given a binary image normalized in height to H pixels,

we may think of a feature vector ot as a concatenation of columns in a window of

W columns in width, centered at position t. Although one-dimensional, “horizontal”

HMMs for image modeling can properly capture non-linear horizontal image distor-

tions, they are somewhat limited when dealing with vertical image distortions, and this
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4. REPOSITIONING IN WINDOWED BHMMS

limitation might be particularly strong in the case of feature vectors extracted with

significant context. To overcome this limitation, we have considered three methods

of window repositioning after window extraction: vertical, horizontal, and both. The

basic idea is to first compute the compute the center of mass of the extracted window,

which is then repositioned (translated) to align its center to the center of mass. This

is done in accordance with the chosen method, that is, horizontally, vertically, or in

both directions. Obviously, the feature vector actually extracted is that obtained after

repositioning. An example of feature extraction is shown in Figure 4.1 in which the the

standard method (no repositioning) is compared with the three methods repositioning

methods considered.

To illustrate the effect of repositioning with real data, Figure 4.2 shows the sequence

of feature vectors extracted from a real sample of the IfN/ENIT database, with and

without (both) repositioning. As intended, (vertical or both) repositioning has the

effect of normalizing vertical image distortions, especially translations.

4.3 Experiments

In the experiments described in previous chapters, we have not tried window reposi-

tioning after window extraction but, as discussed in Sec. 3.2, many recognition errors

of our BHMM-based classifier might be due to its limited capability to properly model

vertical image distortions. In order to study the effect of repositioning on the classifi-

cation accuracy, the standard method (no repositioning) was compared with the three

repositioning methods described in Sec. 3.2: vertical, horizontal, and both directions.

This was done with W = 9, K = 32, and F = 0.4, for the four partitions considered in

the previous experiments (abc-d, abd-c, acd-b, and bcd-a), and also for the partitions

abcd-e and abcde-e, which are commonly used to compare classifiers in the IfN/ENIT

task, abcd-e especially. The results are included in Table 4.1.
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4.3 Experiments

o1 o2 o3 o4Repositioning

None

Vertical

Horizontal

Both

Figure 4.1: Example of transformation of a 4× 5 binary image (bottom) into a sequence

of 4 15-dimensional binary feature vectors O = (o1,o2,o3,o4) using a window of width 3.

The standard method (no repositioning) is compared with the three repositioning methods

considered: vertical, horizontal, and both directions.

As expected, from the results in Table 4.1 it becomes clear that vertical (or both)

window repositioning improves very much the results obtained with the standard method

or horizontal repositioning alone. To our knowledge, the result obtained for the abcd-e

partition with vertical (or both) repositioning, 6.1%, is the best result reported on this

partition to date. Indeed, it represents a 50% relative error reduction with respect to
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4. REPOSITIONING IN WINDOWED BHMMS

Figure 4.2: Original sample pf069 011 from IfN/ENIT database (top) and its sequence

of feature vectors produced with and without (both) repositioning (center and bottom,

respectively).

Table 4.1: Word Error Rate (WER%) of the BHMM-based recognizer (with W = 9,

K = 32, and F = 0.4) in different training-test combinations of the abcde folds, for four

repositioning methods: none, vertical, horizontal, and both directions.

WER%

Training Test None Vertical Horizontal Both

abc d 7.5 4.7 8.4 4.8

abd c 6.9 3.6 7.7 3.8

acd b 7.7 4.5 8.1 4.4

bcd a 7.6 4.4 8.2 4.6

abcd e 12.3 6.1 12.4 6.1

abcde e 4.0 2.2 3.9 2.0

the 12.3% of WER obtained without repositioning which, to our knowledge, was the

best result published until now [9].

4.4 ICFHR 2010 competition results

In this section, we summarize the most recent published results in the ICFHR 2010

competition [18] on the well-known IfN/ENIT database, which presents the current

stat-of-art for Arabic Handwriting Recognition.

The competition was held in Kolkata (India), where 4 groups with 6 systems par-

ticipated. The systems were compared based on the recognition rate. For the test

purpose, two new datasets was introduced, set f and s. Set f was collected in Tunisia,

while set s was collected in the United Arab Emirates.
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4.5 Concluding Remarks

According to [18], our system with window repositioning (UPV-BHMM2) obtained

the best results on set s with 84.62%, and second best results on set f with 92.20%. It

is good to know, that all previous sets were collected in Tunisia including set f, but not

set s which is more general from the writing variety, that makes sense why recognition

rates for set s is a bit different. Our system won the award of the first Place Prize in

the IAPR sponsored Arabic Handwriting Recognition Competition organized during

ICFHR 2010.

4.5 Concluding Remarks

We have considered three methods of window repositioning after window extraction

so as to help our BHMM-based recognizer in dealing with vertical image distortions.

As expected, the best results have been obtained with an adequate adjustment of the

window width, number of states, number of mixture components and, what it seems

even more important, (vertical) window repositioning after window extraction. A WER

of 6.1% has been achieved on the standard abcd-e partition which outperforms the best

result known to date. Moreover, our participation in the ICFHR 2010 competition

fulfilled with success and we won the award of the first Place Prize.

39



4. REPOSITIONING IN WINDOWED BHMMS

40



5

OpenHaRT Experiments

In this chapter, we extend the empirical results reported in previous chapters to the

NIST OpenHaRT database [21]. For more details about databases, please review sec-

tion 5.1. The IfN/ENIT database is small in size, so we used it first to find out some

parameters such as best image width, number of states, etc. Adding to that, the NIST

OpenHaRT database is very huge. It is a very costly process to try all possible param-

eter values. Therefore we used those valuess that obtained best results on IfN/ENTI

database to train the models on the OpenHaRT database. The NIST OpenHaRT

database contains lines of handwritten text. Therefore, the task to be performed on

this database is not only a word recognition task, but also a line recognition task. Due

to the varying number of words per line, the error rate for each predicted sentence is cal-

culated by finding the minimum number of insertions, deletions and substitutions 2.32,

not only by calculating substitutions.

5.1 NIST OpenHaRT database

The National Institute of Standards and Technology (NIST) Open Handwriting Recog-

nition and Translation (OpenHaRT) evaluation is a public evaluation of image-to-text

transcription and translation, similar to the tasks evaluated by NIST for the DARPA

Multilingual Automatic Document Classification Analysis and Translation (MADCAT)

Program, see [21]. The 2010 evaluation focuses on recognition and translation of im-

ages containing primary Arabic handwritten script. Note that in this competition, no

previous results were published on the available data.
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5. OPENHART EXPERIMENTS

The data being used for OpenHaRT 2010 was created by the Linguistic Data Con-

sortium (LDC) and has been used in previous MADCAT evaluations. This data was

created in a controlled environment where known scribes copied Arabic source texts that

were previously used in the DARPA GALE program. The source text was originally in

electronic format. A corresponding document image was created by instructing literate

native Arabic writers to produce handwritten copies of chosen passages using various

writing conditions. Each passage was copied by at least two scribes. The handwritten

copies were then scanned at 600 dpi to create the document images in TIFF format. A

writing factor is considered, the writing instrument, surface and speed. Please refer to

the NIST evaluation plan for details [21].

The database comprises 39056 Arabic image documents. It was written by more

than 100 different writers. It contains a lexicon of 101515. A standard partition is

defined which consists of two sets for training which consists of 37611 documents, in

total of 6000 passages, and another two sets for development which consists of 1445

documents, in total of 100 passages. Table 5.1 explores more details.

Docs Lines Words Lexicon

Training set 37611 663177 3734356

Dev set 1445 23746 141870

SmallCorpus1 260 4336 23000 101515

SmallCorpus2 2600 41743 242385 101515

All 39056 686923 3876226 101515

Table 5.1: Database statistics extracting words and lines

For the evaluation process, both tasks are paired with segmentation conditions to

explore the relationship between system performance and the system’s ability to seg-

ment the data. Segmentation is represented as a series of polygon coordinates indicating

the locations of the text segments within the image. The two segmentation conditions

are referred to as word segmentation and line segmentation.

• Word segmentation is created manually. Human annotators mark the word

boundaries using the GEDI tool. The input to GEDI is a document image.

• Line segmentation is the primary segmentation condition. It is defined as a

bounding box that surrounds a line of text and is derived algorithmically from
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5.2 Tri-character approach

the word segmentations by creating polygons that minimize the amount of text

overlap between the lines.

The database was divided into several partitions 5.1. A small partition of the

data-set has been used to find the best parameters. It is called “smallcorpus1”. This

partition contains of 200 documents for training, which equivalent to 20000 words, and

60 documents for evaluation which equivalent to 3000 words. Another small partition

of the database was used. It is called “smallcorpus2”, it consists of 2000 documents

for training, and 600 documents for evaluation which is equivalent to 32570 lines for

training, and 9173 lines for evaluation, and also equivalent to 184433 words for training,

and 57952 words for testing.

5.2 Tri-character approach

Following The standard procedure that was used in IfN/ENIT, each transcription hy-

pothesis is modeled as an HMM in which emission probabilities are modeled as Bernoulli

mixture distributions (BHMMs). To keep the number of independent parameters low,

the BHMM at sentence level (transcription hypothesis) is built from BHMMs at char-

acter level. Nevertheless, with this database, the BHMM at sentence level is build

from BHMMs at character level which depend on their surrounding characters, that is,

following a tri-character model ling approach.

5.3 Experiments

Experiments in this section were carried out on the NIST OpenHaRT database [21].

Each document image was segmented to fit the two conditions proposed in the NIST

OpenHart competition (Word and Line conditions). Word segmentations were sup-

ported and they were used to find the line segmentations. Each resulting image was

scaled in height to 30 pixels and then binarized using Otsu’s method. Following our

strategy, no preprocessing nor feature extraction was applied on images.

Keeping the tri-character approach 5.2 in mind, a list of tri-characters was obtained

by taking the first N ∈ {50, 100, 200, 500} frequent ones, that is, if a tri-character T

appears more than N time, it will be selected. Selected ones were replaced with those

of uni-characters to avoid duplication. This approach improved our results since we
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5. OPENHART EXPERIMENTS

Figure 5.1: NIST OpenHart example document

44

components/figures/nist_example_document.ps


5.3 Experiments

model for the character and it’s surrounding two characters. We used N = 500 to

do our experiments since it was the best in results, number of characters, and time

consuming. On the other hand, from our previous, preliminary results, some good

parameters are used, they are, the window width W = 9, and variable number of states

with loading factor F = 0.4. For the two conditions (word and line), we tried different

mixture components per state, K ∈ {4, 16, 32, 64}. Training and recognition of test

images was performed by using the Viterbi algorithm. Figure 5.2 shows the Word

Error Rate (WER%) as a function of segmentation conditions, for varying values of the

number of mixture components per state

 45

 50

 55

 60

 65

 4  16  32  64

WER(%)

Components

Task: WORD
LINE

Figure 5.2: WER(%) as a function of the segmentation conditions for varying values of

the number of mixture components (K).
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5. OPENHART EXPERIMENTS

From the results in Figure 5.2 it becomes clear that with line segmentation condi-

tion WER rate is lower, this improvement could due the use of the n-gram language

model. Moreover, the model’s complexity is adjusted to the training data by using more

mixture components per state. In particular, best result obtained for K = 64 on line

segmentation condition is 45.09, and on word segmentation condition is 45.77. In the

NIST OpenHaRT competition, we could not train for K > 32 for the whole data-set,

however we got the first place in the line condition with accuracy of 52.54, and second

place in word condition with accuracy of 51.06. More details are in the NIST technical

report [21].

In order to analyze the high rates of WER in this database, we generated a confusion

matrix that shows the very frequent wrong recognized words. Table 7.5 in Appendix

section explores more details.
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Concluding and Remarks

6.1 Conclusions

Embedded Bernoulli HMMs (BHMMs) have been described and tested for Arabic Hand-

writing Recognition on the the well-known IfN/ENIT database of handwritten Tunisian

town names. Apart from our previous basic approach, in which narrow, one-column

slices of binary pixels are fed into BHMMs, we have used a sliding window of ade-

quate width to better capture image context at each horizontal position of the word

image. Also, we have considered three methods of window repositioning after window

extraction so as to help our BHMM-based recognizer in dealing with vertical image

distortions. The experiments reported have carefully studied the effects of the window

width, the number of states, and repositioning. As expected, the best results have

been obtained with an adequate adjustment of the window width, number of states,

number of mixture components and, what it seems even more important, (vertical)

window repositioning after window extraction. A WER of 6.1% has been achieved on

the standard abcd-e partition which, to our knowledge, outperforms the best result

known to date.

On the other hand, our new approach, repositioning in windowed BHMMs was

tested on the NIST OpenHaRT database for Arabic Handwriting Recognition. This

database was introduced by the National Institute of Standards and Technology (NIST)

in their 2010 evaluation. Unlike IfN/ENIT database, this database, contains lines of

handwritten text. Therefore, the task to be performed is a continuous word recognition

task (line condition) and needed a n-gram language model. A WER of 45.09% has been
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achieved for the line condition on the evaluation set, and a WER of 45.77% for the word

condition.

6.2 Scientific Contributions

Parts of this thesis have been published in international workshops, and conferences. In

this section, we review these publications pointing out their ranking, and their relation

with this thesis.

• The 3rd Palestinian International Conference on Computer and Information Tech-

nology (PICCIT 2010) (research, innovation and entrepreneurship) in East He-

bron, Palestine

– Ranking: No core

– Relation with chapter 2

– Publication: I. Khoury, A. Giménez, and A. Juan. Arabic Handwritten

Word Recognition Using e Bernoulli Mixture HMMs. In Proc. of the 3rd

Palestinian Int. Conf. on Computer and Information Technology (PICCIT

2010), Hebron (Palestine), Mar. 2010.

• The International Conference on Frontiers in Handwriting Recognition (ICFHR

2010)

– Ranking: core B

– Relation with chapter 3

– Publication: A. Giménez, I. Khoury, and A. Juan. Windowed Bernoulli

Mixture HMMs for Arabic e Handwritten Word Recognition. In Proc. of the

Int. Conf. on Frontiers in Handwriting Recognition (ICFHR 2010), Kolkata

(India), Nov. 2010.

• The International Competition on Frontiers in Handwriting Recognition

– Relation with chapter 3 and 4

– First Place Prize in the IAPR sponsored Arabic Handwriting Recognition

Competition organized during ICFHR 2010 Authors: A. Giménez, I. Khoury

and A. Juan November 2010
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• Springer book: Contributing in writing a chapter of book (not published yet),

due the winning of the first Place Prize in the ICFHR competition.

– Relation with chapter 4

– Publication: Volker Märgner and Haikal El Abed, Eds., ”Guide to OCR for

Arabic Scripts - Development, Evaluation and Improvement”, Advances in

Pattern Recognition. Springer Verlag, 2011.

• The 2010 NIST Open Handwriting Recognition and Translation Evaluation (Open-

HaRT 2010)

– Ranking: International technical report

– Relation with chapter 5

– Competition: Our results were classified as in first place for the line condition

HTR, and a second place for the word condition HTR. More details are in

http://www.nist.gov/itl/iad/mig/hart2010.cfm

6.3 Future Work

Results have shown that Bernoulli HMMs which are fed of a fixed-dimension feature

vectors, have obtained better results that those of Gaussian’s which are fed of real-

valued feature vectors. Working with Bernoulli HMMs is very promising, though still

more research work has to be done. For future work, our models could be tested on more

databases especially for Arabic. Further improvements can be expected by applying

the discriminative training, as well as trying more methods in modeling the variations

in the Arabic handwritten text.
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Appendix

7.1 Arabic Handwriting

Arabic is spoken by 234 million people and important in the culture of many more [15].

It is one of the six United Nations official languages [6, 5, 3, 1]. The characters of

Arabic script and similar characters are used by a much higher percentage of the worlds

population to write languages such as Arabic, Farsi (Persian), and Urdu. Arabic script

differs from Latin scripts in several ways. Unlike English handwriting, Arabic is written

from right-to-left and does not distinct between upper or lowercase characters [20].

Although Arabic inscriptions are most common after the birth of Islam (7th cen-

tury CE), the origin of the Arabic alphabet lies deeper in time. The Nabataeans, which

established a kingdom in what is modern-day Jordan from the 2nd century BCE, were

Arabs. They wrote with a highly cursive Aramaic-derived alphabet that would even-

tually evolve into the Arabic alphabet. The Nabataeans endured until the year 106

CE, when they were conquered by the Romans, but Nabataean inscriptions continue

to appear until the 4th century CE, coinciding with the first inscriptions in the Arabic

alphabet (which is also found in Jordan) [4]. There are many Arabic dialects. Classical

Arabic, which is the language of the Qur’an that was originally the dialect of Mecca

in what is now Saudi Arabia. An adapted form of this, known as Modern Standard

Arabic, is used in books, newspapers, on television and radio, in the mosques, and in

conversation between educated Arabs from different countries.
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7. APPENDIX

The Arabic alphabet contains 28 consonants. They are annotated according to their

position. Characters may come alone (A), or may come connected to another character.

They could be connected at the Beginning (B), Middle (M), or even at the End (E).

A list of Arabic characters following the IfN/ENTI database (Sec. 2.6.1) are shown

in table 7.4. Like other Proto-Sinaitic-derived scripts, Arabic doesn’t have letters for

vowels. However, there is a system to marking vowels. Short vowels are represented

by diacritics above or below a letter, they are: damma, fat-ha,and kasra. Long vowels

are represented by using the short-vowel diacritics plus the letters alif, wa:w, and ya:

to represent the sounds [a:], [u:], and [i:], respectively. Table 7.1, shows an example of

short and large vowels applied to the character meem (Ð).

Table 7.1: Short vowels: fat-ha, kasra, and damma respectively starting from the left,

and long Vowels in Arabic language

Short vowels Long vowels
�Ð Ð�

�Ð A �Ó ú
×� ñ�Ó
[ma] [mi] [mu] [ma:] [mi:] [mu:]

In addition to the vowel markers, Arabic also has several other diacritics. The

hamza, which looks like C, denotes the glottal stop . Please note that the letter alef

used to represent the glottal stop, but has become more of a placeholder for initial

vowel words. The hamza requires a ”seat” letter such as alef but also wa:w and ya: to

anchor onto. Another diacritic is the suku:n, which looks like a circle and is placed on

top of a letter to denote the absence of any vowel. One more diacritic is the madda,

which may comes instead of a hamza on the alef letter. Finally, the diacritic shadda,

which resembles W, represents the doubling of a consonant. See table 7.2. And finally,

Arabic numbers that is also called Indian numbers. See table 7.3

Table 7.2: Examples of different Arabic diacritics

hamza alef with yaa waaw with meem with

alone hamza madda hamza hamza shadda sukun

Z

@ @�

�
@ Zø
 Zð �Ð �Ð
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7.1 Arabic Handwriting

Table 7.3: Arabic (Indian) numbers

0 1 2 3 4 5 6 7 8 9

7.1.1 Root system in Arabic

Arabic words are constructed from three-letter ”roots” which convey a basic idea [2].

For example, k-t-b conveys the idea of writing. Addition of other letters before, between

and after the root letters produces many associated words: not only ”write” but also

”book”, ”office”, ”library”, and ”author”.

7.1.2 Advanced Arabic annotation:

Annotation of Arabic characters is very helpful, where more information about the

position of each character is given. Annotation of the IfN/ENIT database is not neces-

sary since they are supported with the database. But when using another database, like

OpenHaRT 5.1, that is only Arabic characters is given, annotation is needed. We have

created a system to annotate all Arabic letters that takes into account the same way of

annotating the IfN/ENIT database but, more characters were considered. Experiments

shown that by using the annotated text, results were improved.
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7. APPENDIX

Table 7.4: Arabic characters (Char) and their annotations (Anno) according to the

IfN/ENIT database (see section 2.6.1)

Name Alone(A) Begin(B) Middle(M) End(E)

Char Anno Char Anno Char Anno Char Anno

Alef @ aaA A aaE

Baa H. baA K. baB J. baM I. baE

Taa �H taA �K taB �J taM �I taE

Thaa �H thA �K thB �J thM �I thE

Jeem h. jaA k. jaB j. jaM i. jaE

Haa h haA k haB j haM i haE

khaa p khA 	k khB
	j khM q khE

Daal X daA Y daE

Dhaal
	X dhA

	Y dhE

Raa P raA Q raE

Zaay 	P zaA 	Q zaE

Seen � seA � seB � seM � seE

Sheen �� shA �� shB �� shM �� shE

Saad � saA � saB � saM � saE

Daad 	� deA 	� deB 	� deM 	� deE

Tta   toA £ toB ¢ toM ¡ toE

Dhaa 	  zaA 	£ zaB 	¢ zaM 	¡ zaE

Ayn ¨ ayA « ayB ª ayM © ayE

Ghyn
	̈

ghA
	« ghB 	ª ghM 	© ghE

Faa
	¬ faA

	̄
faB

	® faM
	 faE

Qaaf
�� kaA

�̄
kaB

�® kaM
�� kaE

Kaaf ¼ keA » keB º keM ½ keE

Laam È laA Ë laB Ê laM É laE

Meen Ð maA Ó maB Ò maM Ñ maE

Noon 	à naA 	K naB 	J naM 	á naE

Haa è heA ë heB ê heM é heE

Waaw ð waA ñ waE

Yaa ø
 eeA ù
 eeE
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” ) , ��B

@ ÉÊË @ é<Ë @ 	ák 	¬ ú 	̄ ú


	̄ B �ÊË ú �æÓ 	áÜØ 	áÓ
” 26 0 4 0 0 0 0 0 1 0 0 0 0 0 0

) 0 5 4 0 0 0 0 0 0 0 0 0 0 0 0

, 0 1 55 0 0 0 0 0 0 0 0 0 0 0 1
	¬B
�
@ 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

é<Ë @ 0 0 0 0 5 13 0 0 0 0 0 0 0 0 0

ú 	̄ 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

ú

	̄

0 0 0 0 0 0 1 9 8 30 1 0 0 0 1

B 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0

	áÓ 0 0 0 0 0 0 4 0 0 0 0 0 4 3 38

Table 7.5: Confusion Matrix for the very frequent wrong recognized words
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