Regulation of the nitric oxide synthesis and signaling by post-translational modifications and N-end rule pathway-mediated proteolysis in *Arabidopsis thaliana*

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1. Arabidopsis thaliana as model organism	3
1.2. Biosynthesis and metabolism of nitric oxide	3
1.3. <u>NO as a regulator</u>	7
1.4. <u>NO sensing</u>	10
1.5. NO and stress-triggered responses. The role on plant	12
tolerance to freezing	
2. <u>OBJECTIVES</u>	15
3. MATERIALS AND METHODS	19
3.1. <u>Biological material</u>	21
3.1.1. Plant material	21
3.1.1.1. Plant species used	21
3.1.1.2. Plant growth	22
3.1.1.2.1. Growing media for plants	22
3.1.1.2.2. Growing conditions for plants	22
3.1.2. Microbiological material	23
3.1.2.1. Bacterial strains used	23
3.1.2.2. Bacterial growth	23
3.1.2.2.1. Growing media for bacteria	23
3.1.2.2.2. Growing conditions for bacteria	23
3.2. Manipulation of the biological material	23
3.2.1. Plant treatments	23
3.2.1.1. Plant transformation by floral dipping	23
3.2.1.2. Generation of a <i>nir1</i> mutant by CRISPR-Cas9 technology	23
3.2.1.3. NO treatments	26
3.2.1.4. Freezing tolerance assays	26
3.2.1.5. Staining methods	27
3.2.1.5.1. NO detection by fluorescence and confocal	27
microscopy	
3.2.1.5.2. Cuticle permeability tests	27
3.2.1.5.3. Staining for cell permeability, cell death, superoxide	28
and starch	
3.2.1.6. Change of nitrogen source for plant growth	28
3.2.1.7. Inhibition of protein synthesis or degradation	28
3.2.2. Bacterial manipulation	28
3.2.2.1. Genetic transformation by heat shock	28

3.3. Nucleic acid methods	29
3.3.1. Extraction and purification of nucleic acids	29
3.3.1.1. Extraction of genomic DNA from leaves or seedlings	29
3.3.1.2. Cleaning of PCR products	29
3.3.1.3. Extraction of DNA from agarose gel	29
3.3.1.4. Extraction and isolation of plasmidic DNA from bacteria	29
3.3.1.5. Extraction and isolation of total RNA from seedlings	30
3.3.2. Manipulation of nucleic acids	30
3.3.2.1. Methods for quantification and concentration	30
3.3.2.2. Methods for DNA amplification	30
3.3.2.3. Reverse transcription (RT) of mRNA	30
3.3.2.4. Quantification of transcripts by quantitative PCR (qPCR)	31
3.3.2.5. Transcriptomic analysis by microarrays	31
3.3.2.6. DNA sequencing	32
3.3.2.7. Electrophoretic techniques	32
3.3.2.8. Enzymatic digestion of DNA with restriction enzymes	33
3.3.2.9. Southern blot	33
3.3.2.10. Cloning techniques in bacteria	33
3.4. Protein methods	34
3.4.1. Extraction and purification of proteins	34
3.4.1.1. Extraction of total proteins from plant tissues	34
3.4.1.2. Immunopurification of tagged proteins with magnetic	34
beads	
3.4.1.3. Precipitation of proteins	34
3.4.2. Manipulation of proteins	34
3.4.2.1. Quantification of total proteins	34
3.4.2.2. Protein separation by SDS-PAGE	34
3.4.2.3. Protein detection by Western blot analyses	35
3.4.2.4. LC-MS/MS-based proteomic analyses	35
3.4.2.5. NR and NIR activity assays	35
3.5. <u>Metabolic methods</u>	36
3.5.1. LC/MS- and GC/MS-based analyses of the metabolome	36
3.5.2. Quantification of anthocyanins	38
3.5.3. Phytohormone quantification	38
3.6. In silico and statistical methods	38
3.6.1. <i>In silico</i> analyses	38
3.6.2. Prediction of PTMs	39
3.6.3. Statistical analyses	39
4. RESULTS	41
4.1. Regulation of NR-dependent NO biosynthesis. Post-	43
translational modifications of the biosynthetic enzymes	
4.1.1. Abstract	43
4.1.2. Nitrate Reductase is Regulated by Proteasome-mediated	43
Degradation and Nitrate Signaling	

4.1.3. NR and NiR1 proteins are post-translationally regulated	49
by NO	
4.2. NO-triggered transcriptomic and metabolomic responses.	55
Role of hormones in NO sensing	
4.2.1. Abstract (1)	55
4.2.2. Overrepresentation of hormone- and oxygen-related	55
regulatory components in the early NO-responsive transcriptome	
4.2.3. A sensing test based on inhibition of hypocotyl	57
elongation allowed identification of hormone-related transcription	
factors modulating NO sensitivity	
4.2.4. Ethylene perception and signaling as well as salicylate	60
and strigolactone biosynthesis are required for NO sensing	
4.2.5. NO sensing and ABA signalling	64
4.2.6. NO sensing and jasmonate signaling	66
4.2.7. Involvement of brassinostereoids in NO sensing	67
4.2.8. Abstract (2)	70
4.2.9. Metabolomic analyses reflect a transient reprogramming	70
response to exogenous NO	10
4.2.10. Altered levels of amino acids and dipeptides suggests	72
NO treatment increased protein breakdown	12
4.2.11. Acute exposure to NO triggers the accumulation of	74
polyamines and responses to oxidative stress	1 4
4.2.12. Altered lipidome reflects changes in lipidic structures	76
such as membranes and cuticle in NO-exposed plants	70
4.2.13. Altered purine, pyrimidine and chlorophyll	78
metabolism suggest NO enhanced nucleic acid turnover,	70
chlorophyll degradation and non-programmed cell death	
4.2.14. Exposure to NO affected photorespiration and central	80
carbon metabolism	80
	83
4.3. <u>Function of the ERFVII RAP2.3 on the regulation of NO</u>	03
homeostasis and signaling 4.3.1. Abstract	83
4.3.1. Abstract 4.3.2. A rheostat-like mechanism based on RAP2.3	83
degradation controls endogenous NO content	03
4.3.3. RAP2.3 modulates NO sensing in shoots and roots	86
U	87
4.3.4. Genome-wide transcriptome analyses revealed RAP2.3	07
as a general negative regulator of NO-triggered responses	91
4.3.5. The NO-responsive RAP2.3-independent transcriptome	91
includes jasmonic acid and ethylene core signaling gene sets	04
4.3.6. The NO-responsive RAP2.3-dependent transcriptome	91
suggest the existence of NO-sensitive gene-specific hormone	
signaling pathways	~~
4.4. Role of NO in constitutive and cold acclimation induced	96

freezing tolerance

4.4.1. Abstract (1) 4.4.2. The transcriptome of NO-deficient <i>nia1,2noa1-2</i>	96 96
mutant plants is enriched in cold-related transcripts 4.4.3. Enhanced biosynthesis of ABA, JA and osmoprotective metabolites in NO-deficient plants	98
4.4.4. Increased levels of antioxidant metabolites in <i>nia1,2noa1-2</i> plants	101
4.4.5. NO negatively regulates constitutive freezing tolerance of Arabidopsis	101
4.4.6. Abstract (2) 4.4.7. NO functions as a positive regulator of cold acclimation	104 104
in Arabidopsis 4.4.8. NO promotes the cold-induced expression of <i>CBF</i> genes	107
in Arabidopsis 4.4.9. NO regulates the sensitivity of Arabidopsis to ABA in	108
response to low temperature 4.4.10. NO activates anthocyanin accumulation in	109
Arabidopsis during cold acclimation 5. <u>DISCUSSION</u>	113
6. <u>CONCLUSIONS</u> 7. <u>BIBLIOGRAPHY</u>	135 139
A. <u>ANNEXES</u>	i

FIGURES

Figure 1.1. Scheme of the main biosynthetic and metabolic5pathways of NO

Figure 1.2. Scheme of the Cys-Arg/N-end rule pathway-mediated 11 degradation of ERFVII transcription factors as sensor mechanism of NO in plants

Figure 1.3. Scheme summarizing the CBF-dependent pathway of 14 cold acclimation-induced freezing tolerance

Figure 3.1. Generation of *nir1* mutant plants by CRISPR-Cas9 25 technology

Figure 4.1. Effect of nitrogen source and proteasome-mediated 44 degradation on NR and NiR

Figure 4.2. Regulation of NR and NiR by NLP7 nitrate signaling 46 factor

Figure 4.3. Complementation of *nlp7-1* and *prt6-1* related 47 phenotypes and NO production by *NLP7* over-expression

Figure 4.4. Generation of transgenic plants overexpressing HA- 48 tagged versions of NR1, NR2 and NiR1

Figure 4.5. NO accumulation in plants altered in nitrite reduction to ammonium	48
Figure 4.6. NR protein in nitrate signaling and Arg/N-end rule	48
pathway mutants.	40
Figure 4.7. Effect of exogenous NO on NR protein stability	49
Figure 4.8. Post-translational modifications identified in planta	
for NR1/NIA1 and NIR2/NIA2	50
	52
Figure 4.9. Post-translationally modified residues in aligned NR1/NIA1 and NR2/NIA2 proteins	52
Figure 4.10. Post-translational modifications identified in planta	53
for NiR1	
Figure 4.11. Location of S-nitrosylated cysteines and	54
nitrated/aminated tyrosines in the 3D model of NiR1	
Figure 4.12. 3D modelling of Arabidopsis NRs showing the	54
position of nitrated conserved tyrosine residues close to the FAD	
binding site	
Figure 4.13. Identification and characterization of the NO-	56
responsive transcriptome	
Figure 4.14. Screening of TPT transgenic lines conditionally	58
expressing transcription factor encoding genes through a NO-	
triggered hypocotyl shortening assay in etiolated seedlings	
Figure 4.15. β-estradiol induced transcript accumulation in	59
randomly selected TRANSPLANTA transgenic lines	
Figure 4.16. Ethylene perception and signaling is required for NO	61
sensing	
Figure 4.17. Effect of NO treatment on the transcript levels of A,	62
ethylene, B, jasmonate and C, brassinosteroid biosynthetic/or	
signaling encoding genes	
Figure 4.18. Involvement of salicylates and strigolactones in NO	63
sensing	
Figure 4.19. Involvement of ABA signaling in NO sensing	65
Figure. 4.20. Involvement of jasmonate signaling in NO sensing	67
Figure 4.21. Genes up-regulated by either brassinolide (BL) or	68
NO treatments	
Figure 4.22. Involvement of brassinosteroid signaling in NO	69
sensing	
Figure 4.23. Metabolomic Changes after Applying an NO Pulse	71
to Arabidopsis Plants	
Figure 4.24. Superoxide content reduction and post-	74
translational modifications induced by NO	
Figure 4.25. Enhanced polyamine content in plants exposed to	75
NO	
Figure 4.26. Altered phospholipid catabolism in plants after	77
exposure to NO	

Figure 4.27. Alterations in the permeability of lipidic structures	78
Figure 4.28. NO triggers DNA and chlorophyll degradation	79
Figure 4.29. Endogenous NO content and cell death upon	80
exposure to exogenous NO	04
Figure 4.30. Metabolites of glycolysis and TCA cycle in plants	81
exposed to NO	0.4
Figure 4.31. NO in plants overexpressing MC- and MA-RAP2.3 versions	84
Figure 4.32. NO in N-end rule pathway mutant and wild type	85
plants	00
Figure 4.33. NO in roots of mutant and transgenic plants	86
Figure 4.34. Overexpression of non-degradable MA-RAP2.3	88
confers hyposensitivity to NO	00
Figure 4.35. Transcriptome analysis of β -estradiol inducible	90
RAP2.3 transgenic lines	
Figure 4.36. Effect of NO and RAP2.3 on the expression of JA	93
biosynthesis and signaling genes	
Figure 4.37. Effect of NO and RAP2.3 on the expression of ABA	95
biosynthesis and signaling genes	
Figure 4.38. Levels of cold-inducible transcripts in Col-0 and	97
<i>nia1,2noa1-2</i> plants	
Figure 4.39. Levels of hormones and osmoprotective	99
metabolites in Col-0 and <i>nia1,2noa1-2</i> plants	
Figure 4.40. Glycolysis and TCA cycle metabolite ratios between	100
<i>nia1,2noa1-2</i> and Col-0 plants	
Figure 4.41. Endogenous content of ascorbate-glutathione cycle	102
metabolites in wild type and NO-deficient plants	
Figure 4.42. Constitutive freezing tolerance of Col-0 and	103
nia1,2noa1-2 plants	
Figure 4.43. NO levels in cotyledons of Col-0 and <i>nia1,2noa1-2</i>	104
plants after cold acclimation	405
Figure 4.44. NO levels in Col-0 and <i>nia1,2noa1-2</i> plants at different times after cold treatment	105
	106
Figure 4.45. Cold acclimation-induced freezing tolerance of Col- 0 and <i>nia1,2noa1-2</i> plants	100
Figure 4.46. Effect of different nitrogen sources on NO	107
production	107
Figure 4.47. Effects of cold acclimation on the <i>CBF</i> s and their	108
targets in Col-0 and <i>nia1,2noa1-2</i> plants	
Figure 4.48. ABA homeostasis and signaling in cold acclimated	109
wild-type and NO-deficient plants	
Figure 4.49. Effects of cold acclimation on anthocyanin	110
synthesis in Col-0 and <i>nia1,2noa1-2</i> plants	

Figure 5.1. Scheme showing the direct involvement of ethylene 118 (ET), strigolactones (SL), salicylates (SA), abscisic acid (ABA) and brassinosteroids (BR) in NO-triggered inhibition of hypocotyl elongation.

Figure 5.2. Model of NO involvement in the regulation of 120 constitutive freezing tolerance

Figure 5.3. Scheme showing the endogenous and environmental 122 factors involved in the positive regulation exerted by NO on cold acclimation-induced freezing tolerance

Figure 5.4. Scheme summarizing the regulation that high 125 concentrations of NO exert over different metabolite categories and cell processes

Figure 5.5. RAP2.3-dependent and –independent NO-regulated 128 pathways

Figure 5.6. Regulation of NRs, NiR1 and NO production.	131
Figure 5.7. Scheme showing processes investigated in this work	133
that regulate NO or are regulated by it	
Figure A1 Man of pCP8/CW/TOPO vector (Invitregon)	i. /

Figure A1. Map of pCR8/GW/TOPO vector (Invitrogen)	IV
Figure A2. Map of pALLIGATOR2 vector	V
Figure A3. Map of pMTN2982 (pDONR207) vector	vi
Figure A4. Map of pHEE2E-TRI vector	vii
Figure A5. In silico analyses of NLP7 promoter	viii

TABLES

Table 4.1. TPT lines showing hypo- or hyper-sensitivity to NO on 60 hypocotyl elongation of etiolated seedlings upon conditional expression of TF encoding genes
 Table 4.2. Statistical comparisons in the metabolomic analyses
72 Table A1. Abbreviations and acronyms ix Table A2. Buffers and solutions used in this work xii Table A3. Oligonucleotides used in this work xiii Table A4. Proteins with the MC- N-terminal amino acid sequence xvi in the Arabidopsis proteome Table A5. Genotyping of T1 generation of *pU6::gNIR1-1* ΧХ Table A6. Prediction of S-nitrosylation and nitration sites of xxi potential NO targets

Table A7. In silico genome-wide analysis of putative RAP2.3-xxiiibinding motifs and the intersection with NO-regulated genes

Table A8. Genes that were up-regulated in non-acclimated xxix *nia1,2noa1-2* plants and were reported to be related to cold-triggered responses

Table A9. Differential transcript levels in TPT-RAP2.3 lines not- xxxiii treated with β -estradiol

EQUATIONS

Equation 3.1. Normalized relative expression	31
--	----