
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Automatic generation of test cases
to improve code coverage in Java

DEGREE FINAL WORK

Degree in Computer Engineering

Author: Carlos Santiago Galindo Jiménez

Tutor: Thomas Gross
Jose Miguel Benedi

Course 2017-2018

Contents

Contents iii
1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 1

2 Solution design 3
2.1 Technologies employed . 3

2.1.1 ASM: byte-code engineering . 3
2.1.2 Java Code Coverage Library (JaCoCo) 4
2.1.3 Java backwards-compatibility . 5

2.2 Detailed design . 5
2.2.1 Byte-code format and execution model 5
2.2.2 Byte-code instrumentation . 6
2.2.3 Control flow graph dependency analysis 7
2.2.4 Design limitations . 8
2.2.5 Security concerns . 9

2.3 Further improvements . 9
2.3.1 User-friendly results . 10
2.3.2 Improved branch and loop recognition 10
2.3.3 Extended analysis of chains . 11
2.3.4 Performance improvements . 11

3 Conclusions 13

iii

CHAPTER 1

Introduction

Testing is an essential part of writing software. It is used to verify the integrity of the
program, detect bugs and other errors. Writing good test suites will therefore increase
the general quality of any software project.

A common measure employed when writing software and tests for such software is
code coverage, or the amount of lines, functions, branches, etc. of a program that are
executed for a given test suite. This improves the test suite generation and expansion,
specially as the program is updated and grows.

1.1 Motivation

While teaching programming subjects, it is common to test projects written by students
with test suites that cover most legal/illegal cases. Such task can range in difficulty,
depending on the scope of the project and its input complexity. Ideally, all paths of a
properly programmed solution will be executed by such test suite, but obviously the
submitted solutions may have dead paths or simply paths that no normal (legal or illegal)
input will trigger.

These paths are normally the result of multiple code revisions, or bad coding practices
by the students. The program could function properly for most inputs, though, so an
advance coverage tool is needed to help the evaluator generate further tests that cover
those missing paths.

Developers would also benefit from an automated or simplified way to generate and
improve tests, specially with increasingly complex software solutions for our everyday
problems.

1.2 Objectives

• Obtain coverage information for a Java program, optionally only for a specific class,
method or even line in the source code.

• Produce a history overview of the evaluation of a conditional jump for a given
input.

• Develop a suite of programs to demonstrate the tool.

1

2 Introduction

The tool will be developed in Java and will deal with the compiled classes with debug
information, as well as the original source files, to further help the evaluator by providing
relevant snippets of code.

The target language will be Java, although due to employing the Java byte-code con-
tained in class files, it could easily made compatible with other JVM-based languages,
such as Scala or Kotlin, as well as other languages that do not run primarily in a JVM, but
can be compiled to byte-code.

CHAPTER 2

Solution design

A tool that generates new test cases will be either severely limited in scope and restric-
tive of the language features it supports or it will unavoidably need to “understand”
what happens inside each method call (not only user-written methods but also external
libraries and internal classes and methods from Java). Therefore, the process of designing
a solution starts by obtaining the relevant information and designing systems that can, if
not understand the information, present it to the developer in order to ease the process
of understanding which variable or variables must change in order to execute previously
not run sections of code.

Once the basic information is obtained, the analysis performed on it can be simple,
such as just displaying that information, or more complex, showing the developer the
exact modification that must be made in the test suite to increase coverage.

2.1 Technologies employed

As detailed previously, the tool has been developed in Java, targeting programs written
in Java, but being adaptable to any language that can be run in a Java Virtual Machine
(JVM). Some helper libraries have been employed to ease the general development; such
as commons-cli from Apache Commons1 for parsing command-line options easily.

2.1.1. ASM: byte-code engineering

Most of the work is done using the APIs exposed by the ASM2 library, which exposes the
byte-code of a class. It provides two different APIs:

• Core API: a event-based API, by which a chain of ClassVisitor (and MethodVisitor)
objects can be chained, reading and optionally modifying the class. All chains begin
with a ClassReader, that reads each element of the class, triggering the appropriate
events to the chain. Chains can optionally end in a ClassWriter, that receives the
events called by the last visitor instance in the chain and converts them into a byte
array, allowing the programmer to either load the class or save it to disk for later
usage.

• Tree API: an object based API, which represents each instruction, label, method and
class as an object, representing classes as a tree of nodes. This allows for modifica-
tions or analyses that are not possible in a event-based environment, as in that case,

1https://commons.apache.org/proper/commons-cli/
2https://asm.ow2.io

3

https://commons.apache.org/proper/commons-cli/
https://asm.ow2.io

4 Solution design

the whole method/class is only complete when its last event is received. Addition-
ally, as part of this API, there exists a framework for generating control flow graphs
from the byte-code instruction list, which can then be used for static analysis of the
code.

Both APIs are used in the software project, with the Core API being predominant in
it, and the Tree API is only used where the Core API is lacking, such as the generation of
control flow graphs (CFG). A class or method can be obtained in the tree API from a series
of events in the core API, allowing the connection between both. Performance-wise, the
tree API is 20% slower than the event based API, so it is used as sparsely as possible, even
though the design is not specifically focused on performance.

ASM also includes multiple tools to generate instructions more easily, such as:

AdviceAdapter A method visitor that includes instructions to manage local variables
without having to analyze which are used where, and eases instruction genera-
tion by providing distinct methods for each type of instruction (push constant, call
method, etc.).

CheckClassAdapter A class visitor that checks for errors such as mismatching stack and
the validity of types, among others.

TraceClassVisitor A class visitor that outputs the class structure in readable format, and
can be used to visualize changes or even just convert byte-code opcodes (operation
codes) to readable text, e.g. 0x9a is printed as IFNULL.

ASMifier Utility that can show the programmer the necessary Java instructions to gener-
ate a snippet of Java code using the ASM library, easing the transition into byte-code
for programmers that only know Java.

Note that the class visitors described have a method version, that is both used inter-
nally and accessible to the programmer.

2.1.2. Java Code Coverage Library (JaCoCo)

As a helper tool to determine the coverage easily and avoid re-implementing a probe
system, JaCoCo3 has been used. It runs a program and collects information on multiple
levels: byte-code instruction, branch, line, method and class coverage. It also displays
method complexity (a measure of the complexity of the control flow graph associated
with a method).

On top of that, JaCoCo can accumulate results from running the same program mul-
tiple times (with different inputs). It also provides multiple options to gather execution
data, and we opted for the safest one regarding the possible side-effects, albeit the slow-
est performance-wise: using the JaCoCo Java agent to run the code in a different JVM,
which saves the result to a file, and then reading the file containing the coverage report.

JaCoCo helps generate an initial coverage report before any instrumentation begins,
which allows the program to optionally instrument and analyze only the first branch
with partial coverage (meaning that it has been executed but only once or always with
the same result). It is only employed when the user wants to find information regarding
only one branch without specifying the location, and it plays a supporting role in the
general structure of the program.

3https://www.jacoco.org/jacoco/

https://www.jacoco.org/jacoco/

2.2 Detailed design 5

2.1.3. Java backwards-compatibility

At first, there wasn’t any obvious need to develop the program with backwards compat-
ibility, because Java is in general forwards-compatible source wise. The most common
reason to target previous versions of Java is to run the software in devices that cannot ob-
tain a newer version of Java for any reason. ASM, which is the only truly indispensable
library for this project has backwards-compatibility all the way back to Java 5 (and even
previous versions for parts of the library), so even though there is no compatibility, the
port to previous versions should be a simple change.

Regarding Java Development Kit (JDK) and Java Runtime Environment (JRE) compat-
ibility, the design tries to be the most generic and compatible it can be, but it makes some
assumptions, for example that javac does not perform complex analyses and simplifies
loops or branches in the program. Small optimizations are expected; such as computing
arithmetic operations where all operands are numbers or constant propagation.
Tests to the current design have been performed exclusively using the OpenJDK version
1.8.0_181-b13 (64 bit); which is not the best practice: the Java SE and EE environments
should have also been tested.

2.2 Detailed design

In its current form, the resulting software consists of two distinct jar files: the profiler,
containing most of the logic and classes of the program, to model program execution and
obtain static information from the class files and a Java agent, that can be attached to a
JVM in order to obtain the execution data (which contains, among others, a method call
stack trace, and a log of variable assignments and conditions with the respective runtime
values).
The process performed in the profiler jar can be described as:

1. Initialization

(a) Process command-line arguments.
(b) Obtain list of files containing the inputs for each test.
(c) If necessary, run each test with JaCoCo attached to obtain the first location that

is partially covered.

2. Run tests with agent (section 2.2.2)

(a) For each input, run the program to be tested with the agent attached.
(b) Read the logs generated by each execution and convert them to objects.

3. Process results

(a) Generate a control flow graph for each method and obtain the chain of instruc-
tions that lead to the values consumed by the condition in a branch. Section
2.2.3.

(b) Read the tested program’s classes to determine variable names, line numbers
and other debugging information.

(c) Obtain the last value logged for relevant local values and arguments.

4. Display results

2.2.1. Byte-code format and execution model

Byte-code, as previously mentioned, is the intermediate representation into which multi-
ple languages are compiled, and it is executed by a JVM. Its instruction format and execu-

6 Solution design

tion model is dictated by Oracle’s specification of the Java Virtual Machine4. A complete
understanding of Java’s byte-code is not necessary to use it, but grasping its execution
model is key to understanding how Java is compiled and how byte-code works.

Each byte-code designates an operation to the stack, consuming a number of values
and pushing a result if available. Other instructions act on local variables or perform
unconditional jumps, therefore not altering the stack. Finally, there are operations whose
only function is to alter the state of the stack, such as pushing constant values, popping
or duplicating the top of the stack, and swapping the two top values.

User-defined variables are placed in a memory section specifically for local variables
and method arguments (including the reference to the method receiver5 for static meth-
ods). Values can be copied from this memory segment to the stack and vice versa. The
execution of a method will begin with an empty stack and with its arguments placed as
the first local variables. Local variables are indexed and treated very similarly as regis-
ters: a local variable will be located at a specific location (or index) in the locals segment
while it is being used, and no two variables will share the same index if they are both
used in a matching section of code.

With the stack and local variable on hand, each byte-code performs either a stack/lo-
cal editing task or a Java action (field access/assignment, method call, arithmetic, logic,
comparisons, etc.). Lastly, if compiled with debug information and not intentionally ob-
fuscated, line number, local variable names and source file path are provided in the byte-
code. This is indispensable for our tool to work and provide meaningful feedback to the
user, who is viewing the source, not the class files. The analysis tools still work, but the
display of results may not be as useful.

2.2.2. Byte-code instrumentation

The modifications inserted into the original code are short and simple. In general, they
call a static method to log the runtime value, adding other arguments to identify the
location in the code and the current method call stack. Modifications that log a value
follow this general structure:

1. Duplicate the value to be logged.
2. If the value is a primitive, call a the corresponding static method to convert it to an

object, generally of the form Type valueOf(primitiveType) from the class Type.
3. Push to the stack any necessary identifiers to help match the logged value with an

assignment, comparison, conditional jump, etc.
4. Call a static method from the Logger class, which prints an easily parsed message.

This consumes all the values generated by the instrumentation code.

In order to position each logged action chronologically in its specific method execu-
tion, a stack trace of the different methods called is also logged. The structure is much
simpler, as it just consists of pushing the qualified class name and method signature to
the stack and calling the enterMethod or exitMethod, respectively. When a method is
exited, the stack is checked for consistency. All methods are wrapped in a try-finally
structure to avoid a mismatch of the stack due to an uncaught exception.

4https://docs.oracle.com/javase/specs/index.html
5 The object that the method has been called upon, referenced in Java with the keyword this.

https://docs.oracle.com/javase/specs/index.html

2.2 Detailed design 7

2.2.3. Control flow graph dependency analysis

The stack-based execution of byte-code instructions can be modeled as a directed graph
G = (V, E). In a method with arguments6 numbered 1 through n and m instructions, the
set of nodes is defined as V = {vi | ∀i ∈ [−n, m)} and the set of edges as E = {vivj |
vi, vj ∈ V ∧ i 6= j ∧ j ∈ [0, m)}.

A node (vi), if i ≥ 0 represents the result of the ith instruction of the program; oth-
erwise it represents the ith argument of the method. The result may be null if the in-
struction has no result pushed to the stack, therefore being a sink node. An edge (vivj)
implies that vi is one of the values consumed by instruction j, which results in the value
vj. vi can either be an argument or the result of another instruction. Instructions that just
modify the stack can be source nodes (push a constant, new object), sink nodes (pop a
value), modify the order in which the nodes are placed in the stack (swap) or copy the
same node so that it can be used as argument for multiple instructions (duplicate). These
last two have no practival effect on the graph, as they just affect the position and amount
in the stack. Jump instructions will be ignored for now.

A simple static analysis is perfectly capable of generating such graph without much
effort for individual expressions or assignments. In turn, the graph can be used to iden-
tify the source from which any value present in the stack has originated, and the instruc-
tion(s) in which it will be consumed. Identifying the sources in a comparison expression
for a conditional branch is now trivial, but this is not enough, as the values could be
traced further to the beginning of the method. The greatest limitation is the exclusion
of jumps (conditional and unconditional): the intra-statement analysis will only be valid
when jumps modify the graph accordingly.

The most obvious solution is a control-flow graph (CFG): a directed graph which de-
scribes the different paths that a program execution may take. Typically, each node of the
graph represents what is called a “basic block”: a sequence of instructions that are always
executed uninterrupted; instructions can only jump to the beginning of a block and from
the end of a block. The only way for the control-flow to exit a basic block through an
instruction other than the last one would be an error that terminates the program. In the
tool’s implementation, we are going to represent each instruction as a vertex in the CFG.

The ASM library includes, as part of its tree API, a series of classes that can be ex-
tended to generate CFGs from byte-code instructions. This CFG represents each instruc-
tion connected to others given the program’s control flow, with a “frame” associated to
each instruction, representing the state of the local variables and stack in that precise
moment. Specifically, the state of the program before each instruction is described in a
Frame, which contains a Value object for every local variable and stack value in use. An
Interpreter simulates the effects of each possible byte-code instruction in both the locals
and the stack of its corresponding Frame. It receives the instruction and the appropri-
ate amount of Value objects (arguments for the instruction to consume), and optionally
generates a resulting Value to be pushed to the stack. Finally, the Analyzer makes use
of the Interpreter to populate the Value objects for every instruction’s Frame object. It
simulates internally stack reordering or duplication instructions, as well as local variable
access and storage, but most importantly it performs a forward-flowing data analysis,
which allows for multiple checks, for example regarding type consistency or, in our case,
value relationships.

6Note that when the text makes a reference to arguments, the receiver (see footnote 5) is included by
default.

8 Solution design

All of these classes have been extended to accomodate both a CFG at the instruc-
tion/Frame level and the previously described graph of value generation and consump-
tion at the Value level:

Frame→ Node Links to the predecessor and successor instructions, representing the
edges between the different Nodes/instructions in the CFG.

Value→ StackValue Links to the Value’s “parents”, arguments to generate this value,
and “children”, values that are generated using this one7. For source nodes, it in-
dicates the kind of source of the value: method argument, hard-coded constant,
new object, static field or method call without arguments (static to avoid having a
receiver argument). It also contains utilities to locate sources that have influenced
a value, as well as the nodes that act as sinks, consuming such value without pro-
viding a result. It is also able to represent the graph going back to the source nodes
as a chain of instructions with its arguments.

Interpreter→ StackInterpreter As mentioned, contains all the logic that consumes and
generates StackValues, linking them in the process, according to the arity of each
instruction. It also manages merging pairs of Nodes containing two different but
mergeable states for the stack and locals, each representing the last state in two
paths that converge, e.g. after an if-else block. The merge is performed by creat-
ing a new Node with new StackValues for each local or stack value, whose parents
are the StackValues in the same position. This represents an alternative: either the
value comes from one path OR the other. The opposite mechanism (one value that
can be used either by one path or another) is implemented in the Analyzer.

Analyzer This last one has been extended as an anonymous class. It specifies the initial
Frame/Node for a method (an empty stack and all the arguments as the first locals)
and the case where a Node has multiple “children” or “successors”, e.g. after a
conditional jump.

With all these classes in place, we can create a more complete picture of the structure
of the method and the movement of values between stack and locals. Using the complete
CFG, we are able to obtain the origin of any stack value or local variable, tracing it back to
constants and other source nodes, or even to the start of the method. This allows the tool
to display basic information to the developer: which variables influence and therefore
modify the result of a conditional jump’s comparison, which would increase coverage.

An important remark when modifying or extending the current agent is that the mod-
ifications can’t alter the control flow, or add values to the execution, but only log values
and probe locations, such as method entrance and exits.

2.2.4. Design limitations

In the process of designing the software, some limitations have been encountered and
worked around, and some have been added as limitations, due to the high cost or impos-
sibility of an alternative solution. These are the limitations established on Java programs
that can be used with our tool and the reason for their exclusion:

Lambdas Lambdas are anonymous functions introduced in Java 7 and are used to sim-
plify the syntax of a single-method anonymous class. Sadly, they are all placed

7Values can only be used once and are popped from the stack, but the usage of duplication instructions
and storage in local variables can bypass this limitation

2.3 Further improvements 9

inside the java package, making it difficult to differentiate them from native Java
classes. Furthermore, some libraries used, and Java itself have lambdas that would
not be convenient (or sometimes possible) to instrument. Given that lambda func-
tions tend to be short or reference another method entirely, a decision was made to
ignore lambdas.

Parallelism Given the cost of taking into account the different facets and options avail-
able for parallelism, and the lack of an explicit motivation to implement it has re-
sulted in it being declared a limitation. No check is performed to guard the system
about it, but some analyses may return erroneous results.

2.2.5. Security concerns

From a security standpoint, the program to be instrumented is treated in “good faith”,
meaning that no malicious behavior is expected from it. Regardless, there are always
some security concerns and errors that arise from the execution of arbitrary code. To
avoid any problems or side-effects when running multiple tests on the same classes, all
executions must be completely separated from each other, and the safest way is to run
each test in a different JVM. This introduces some additional overhead and maybe un-
necessary resource consumption, but it avoids most of the interference and side-effects
in static fields between executions that could lead to unforeseen bugs.

The main concern would be the possibility that, for some of the test cases, the pro-
gram to be tested does not terminate properly, either due to an infinite loop, an uncaught
exception or the JVM being killed by the system.

In the first case, the solution is obvious: establish a reasonable time limit (customiz-
able by the user) that would allow the execution to complete normally in the worst case
scenario. If it takes longer, the JVM process is terminated and the available results col-
lected. This solution makes handling JVM shutdowns even more relevant. An alternative
solution would be to implement communications with the agent attached to the running
program in order to signal a timeout, or that the time requirements be handled by the
agent itself.

The second case requires that the design either catch the exception by modifying the
header of the main method to stop the exception or by printing the information obtain
from the execution and ensure that the printer’s buffer is flushed before the JVM termi-
nates (either by normal means, an exception or the described timeout). Modifying the
main method comes with its set of problems, as it also involves discovering which main
method is the true one if more than one matches the requirements to be a main method.
On the other hand, the JVM provides a shutdown hook, an option to execute a thread
when the JVM is shutting down due to user error, system stop/kill signal, etc. It can be
used to flush the remaining information to be printed and close the output stream prop-
erly. This option is also more powerful than simply catching every exception in the main
method and generally safer, so this is the one we chose for the project. This solution also
covers the third case (JVM shutdown by the system or another process).

2.3 Further improvements

Due to the nature of the problem to be solved and the limitations of a Bachelor thesis,
there are multiple aspects that are underdeveloped and could be extended to make the
tool simpler to use and more powerful.

10 Solution design

2.3.1. User-friendly results

Part of the information provided to the user is a chain of operations from arguments,
constants and other sources of information to show how each source is combined in order
to generate the value that determines the conditional jump. This is done by showing
the byte-code instructions’ mnemonic with its arguments formatted as “instruction(arg1,
arg2, ...)”. This puts a burden on the user of the tool to interpret the different byte-code
mnemonics. The user may not be familiar enough with byte-code in order to correctly
interpret this information. Implementing a printer that converts trees of operations to
the equivalent Java statement would be difficult, so the default printout from the ASM
library has been used (using TraceMethodAdapter).

IDE integration

Expanding on the interaction between this tool and the developer, the output format
could be improved into a set of HTML pages, as other coverage tools do. The ideal in-
terface both for executing and presenting the results would be IDE integration, as the
programmer can make small changes to their software and test suite on the fly, and re-
running the tool as often as necessary. This also allows displaying the results in the
context of the source code, which can be navigated normally, but now has extra informa-
tion attached, such as the dependencies of a condition or the values taken by the various
variables in the different assignments or definitions.

2.3.2. Improved branch and loop recognition

In its current state, the lookup of branches and loops is performed by detecting condi-
tional jump instructions, specifically those of the form IFxx, IFNULL and IFNONNULL for
comparing integers and objects against 0 or null (respectively), IF_ICMPxx and IF_ACMPxx,
which compare pairs of integers or object references. This covers most of the conditional
jumps in Java, with the notable exception of ‘switch‘ blocks, but those are required to
have constants as the target of the comparison, so there is no complex network of depen-
dencies, and our tool would just point out the obvious.

A small problem arises when some instructions that are apparently not branches ap-
pear as such. For example, OpenJDK implements object comparisons with a conditional
jump; the comparison object == null becomes:

1 aload_0 // Load o b j e c t
2 i f n o n n u l l l a b e l 1
3 i c o n s t _ 1 // Write 1 (t rue)
4 goto l a b e l 2
5 l a b e l 1 :
6 i c o n s t _ 0 // Write 0 (f a l s e)
7 l a b e l 2 :

The same occurs with comparisons against a second object, but using the IF_ACMPEQ
or IF_ACMPNE for == and != respectively. This generates false positives when locating,
instrumenting and displaying branches. The problem is not too great, as it can be useful
to cover both options (comparison results in true or false) when creating tests, but if
they are common it can result in too much information about non-branches or loops.

Solving this requires studying not only the JVM specification but each implemen-
tation of javac, such that structures which make use of conditional jump byte-code in-
structions can be identified and blacklisted or at least differentiated from the user-written
branches and loops.

2.3 Further improvements 11

Alternatively, these patterns can be considered as partly covered instructions (if only
one branch is taking in the whole execution), as not all of the byte-code instructions that
have been compiled from the original Java expression have been executed. This may
seem odd to the programmer, but it can make a test suite generated on the basis of full
coverage more complete, by providing instances in which these comparisons result in
true and false. Furthermore, coverage tools detail coverage down to the class, method,
source line, branch and byte-code instruction level, so the source line (which is the atomic
unit as far as a non-expert developer is concerned) would obtain partial coverage; e.g. the
JaCoCo library behaves in this way.

2.3.3. Extended analysis of chains

As mentioned in section 2.3.1, the origin of the condition for a branch is shown as a chain
of operations performed to the original arguments or the method, constants or objects
created. Some operations with “complex” meaning, such as method calls are displayed as
another transformation, with its arguments. This means that, because the actions inside
other methods are not followed, new dependencies or lack thereof are not obtained. It
would be entirely possible for the arguments of a method to not alter the object returned
by it, but affect the course of the program in other ways: debug flags, strings for printouts,
etc.

A difficult but useful improvement would be in-lining methods to improve the chain’s
accuracy when reporting dependencies. Short methods are frequently in-lined by the
JVM’s compiler, but short methods only go so far. The end-goal of this improvement
would be to create a control-flow graph that shows the complete picture: all methods
in-lined into one giant method. In this new “mono-method” program, the dependency
graph can determine with perfect accuracy the values that affect an instruction.

Another step further would include partial dependencies, such as the array partially
depending on its size, or arithmetic and boolean operations being simplified to the max-
imum, in order to display the true effect of each edge in the dependency graph.

2.3.4. Performance improvements

Performance has not been a core objective to strive towards while developing this tool.
It tends to err on the side of security rather than performance. However, it doesn’t mean
that there are no possible simple (and complex) changes to improve it:

• Split the classes into more jar files, in order to load the minimum amount of classes
as dependency of the agent, and thus slightly reduce the computational require-
ment of creating and destroying JVMs for individual tests.

• Parallelization of analysis and tests: the methods are currently analyzed after all the
tests have finished, but both could be parallel. The execution of the tests themselves
could also be parallelized, but it may not be worth it if the program to be tested is
IO-bound.

• Instrumentation could be cached into the disk and not be performed multiple times.
It could also be cached between runs, if the classes to be tested haven’t changed but
the test suite has.

• Lookups of various debug markers and information could be sped-up by caching,
at the expense of RAM usage.

CHAPTER 3

Conclusions

The basis of this BSc. Thesis has been code analysis, both static and dynamic. The initial
goal of the project was to achieve automatic generation of test cases, by observing how
the different inputs of a program modify each element of its execution and therefore
affect which branches are executed and the arguments of method calls. As mentioned
previously, this tool has erred in the side of a wider compatibility with more expressions,
with the penalty of not achieving complete automation in test generation. It provides a
tool for the programmer to focus the test-creating effort and shorten the amount of time
needed to develop a test suite with complete code coverage.

An alternative version of this tool on the other end of the spectrum would have been
an automatic one, which generates test cases for any program written in a limited subset
of Java, such as one with only primitive types. In the end, such version would only be
useful for the simplest programs, while our tool provides some help and guidance for
any kind of program (barring limitations on section 2.2.4).

Another important part of this tool is its extendability, as the current tool could be
the base for a more complex framework. This can be done by implementing the multiple
improvements mentioned (section 2.3), by simply logging more and more complex val-
ues or expressions, performing deeper analyses or even by combining it with machine
learning tools.

Knowledge required

Most of the programming done to create this tool is dedicated to generate the control-
flow graph and to instrument classes with the ASM library. Most topics utilized are cov-
ered in a typical Bachelor on Computer Science; in subjects such as Compiler Design or
Programming Languages. Other topics required to understand and extend this program
include: the byte-code format and execution model, and by extension the functioning
of the JVM, including class-loading mechanisms; instrumentation and reflection tools in
Java (specifically in the form of Java Agents); and an understanding of the ASM byte-
code manipulation library. The last one is described in detail in their user guide1. The
guide acts both as an encyclopedic resource to be consulted on specific topics and as an
introduction to each of the APIs that are exposed by it.

1Published on the ASM project homepage: https://asm.ow2.io/asm4-guide.pdf

13

https://asm.ow2.io/asm4-guide.pdf

	Contents
	Introduction
	Motivation
	Objectives

	Solution design
	Technologies employed
	ASM: byte-code engineering
	Java Code Coverage Library (JaCoCo)
	Java backwards-compatibility

	Detailed design
	Byte-code format and execution model
	Byte-code instrumentation
	Control flow graph dependency analysis
	Design limitations
	Security concerns

	Further improvements
	User-friendly results
	Improved branch and loop recognition
	Extended analysis of chains
	Performance improvements

	Conclusions

