
Universitat Politècnica de València
Departamento de Comunicaciones

New energy detector extensions

with application in sound based

surveillance systems

DOCTORAL THESIS

Jorge Moragues Escrivá

Directed by

Dr. Luis Vergara Domínguez

Dr. Jorge Gosálbez Castillo

July 2011





New energy detector extensions

with application in sound based

surveillance systems

A dissertation presented to the �Departamento de

Comunicaciones� to obtain the degree of

�Doctor en Telecomunicación� by

Jorge Moragues Escrivá

Directed by

Dr. Luis Vergara Domínguez

Dr. Jorge Gosálbez Castillo

Universitat Politècnica de València

Departamento de Comunicaciones

July 2011





To Sandra.





All our dreams can come true,

if we have the courage to pursue them.

Walt Disney





Acknowledgements

First and foremost, I would like to express my sincere gratitude to my di-
rector, Prof. Dr. Luis Vergara, for his continuous support of my Ph.D.
study and research as well as for his patience, motivation, enthusiasm, and
immense knowledge. His understanding and personal guidance have been
of great value for me. For his constructive comments and for his important
support lent to this work, I also wish to warmly thank my director, Dr. Jorge
Gosálbez, the person who introduced me to the world of research.

I wish to express my sincere thanks to Dr. Ramón Miralles and Dr.
Ignacio Bosch for their trust and generous support. I would also like to thank
Prof. Dr. Kristian Kroschel for o�ering me the internship opportunities
in his group at �Universität Karlsruhe� (Germany) where I participated in
diverse exciting projects together with other Ph.D. students.

I am deeply grateful to Arturo for his valuable advice and friendly help.
He has made his support available to me in a number of ways during the
past years, and this thesis would not be the same without his comments and
suggestions. I am also grateful to all my colleagues at �Grupo de Tratamiento
de Señal� with whom I have shared many experiences� especially, Gonzalo
and Ma Angeles. With their company and friendship, my days were made
more enjoyable.

My deepest gratitude goes to my family and friends for their un�agging
love and support throughout my life; this dissertation would be simply im-
possible without them. I am indebted to my parents, Pepe and Mila, who
spared no e�ort to provide the best loving environment for me to grow up
in. My sincerest thanks goes to my sister Patricia, for her constant support
and love during all these years, and for the detailed review, constructive
criticism and excellent advice during the preparation of this thesis. I also
wish to thank my aunt, Rosana; she always took care of me like a son and
her advice was consistently timely and useful. My warm gratitude to my
grandfather, Casimiro, for his prays and for encouraging me to do my best
in all matters of life.

Last, but not the least, I owe my loving thanks to my wife Sandra. She
encouraged, supported, understood, and loved me at every moment. None
of this could have happened without her. This thesis is dedicated to her.

ix





Resumen

Esta tesis está dedicada al desarrollo de nuevos detectores de energía para
la detección de señales desconocidas en presencia de ruido no gaussiano con
muestras no independientes. Para ello, se ha llevado a cabo un amplio estudio
de las diferentes estructuras de detección existentes basadas en energía y se
han propuesto nuevas técnicas capaces de resolver este tipo de situaciones.

El detector de energía se presenta como la solución óptima para la de-
tección de señales gaussianas no correladas, o como un test de razón de
verosimilitud generalizado cuando las señales son completamente descono-
cidas. En ambos casos, el ruido de fondo debe ser gaussiano e incorrelado.
Sin embargo, su comportamiento se degrada cuando el ruido de fondo no
cumple estas características. En primer lugar se proponen dos extensiones,
por un lado el detector de energía extendido cuando el ruido es no gaussiano,
y por otro el detector con preprocesado de energía extendido cuando además
es no independiente. En segundo lugar, se presenta una generalización del
�ltro adaptado a subespacio basada en una modi�cación del test de Rao.
Para evaluar el comportamiento de estas extensiones con respecto al detec-
tor de energía clásico, se de�ne un factor de ganancia que ilustra las mejoras
logradas en detección.

A continuación, se demuestra como el desconocimiento de la duración de
la señal puede deteriorar el comportamiento del detector. Para hacer frente a
este problema, se presenta una novedosa estructura de múltiples detectores
de energía basada en la subdivisión sucesiva del intervalo de observación
original. Esta técnica de detección nos conduce a una estructura en capas
con varios detectores de energía cuyos vectores de observación se ajustan
a diferentes intervalos de duración de la señal. Se ha desarrollado todo el
análisis requerido para el cálculo de las correspondientes probabilidades de
falsa alarma y de detección para una estrategia de subdivisiones particular,
estableciendo los procedimientos necesarios para su generalización a otros
casos. Las simulaciones realizadas muestran las ventajas de utilizar la nueva
estructura con respecto a un solo detector cuando la duración real de la señal
y el intervalo de observación original son diferentes.

Los buenos resultados alcanzados en las simulaciones han permitido el
empleo de dichos detectores en aplicaciones reales de vigilancia basada en
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xii Resumen

sonido. Estos sistemas presentan un interesante ámbito de aplicación donde
es posible comprobar la robustez de los detectores analizados en los de-
sarrollos teóricos de esta tesis. Para ello, se han analizado varias fuentes
acústicas en diferentes escenarios de ruido de fondo, tanto reales como simu-
lados, presentándose además dos enfoques novedosos. En el primero de ellos,
la información proporcionada por el detector de energía se combina con un
método de localización sonora de fuentes. Gracias a la utilización de esta
nueva técnica, se demuestra como la localización de sonidos en presencia de
ruido de fondo mejora considerablemente. Por último, un nuevo conjunto de
características extraídas a partir de la estructura de múltiples detectores son
evaluadas y comparadas con otras características comúnmente utilizadas en
el reconocimiento de sonidos acústicos. De nuevo, los resultados obtenidos
con las nuevas características ofrecen mejores probabilidades de acierto en la
clasi�cación, especialmente en baja relación señal a ruido.



Resum

Aquesta tesi està dedicada al desenvolupament de nous detectors d'energia
per a la detecció de senyals desconeguts en presència de soroll no gaussià
i les mostres del qual són no independents. Per a això, s'ha dut a terme
un ampli estudi de les diferents estructures existents en detecció basada en
energia i s'han proposat noves tècniques capaces de resoldre aquest tipus de
situacions.

El detector d'energia es presenta com la solució òptima per a la detecció
de senyals gaussians no correlats o com un test de raó de versemblança
generalitzat quan els senyals són completament desconeguts. En ambdós
casos, el soroll de fons ha de ser gaussià i incorrelat. No obstant això, el
seu comportament es degrada quan el soroll de fons no complix aquestes
característiques. En primer lloc es proposen dues extensions, per un costat
el detector d'energia estés quan el soroll és no gaussià i per un altre el detector
amb preprocessat d'energia estés quan a més és no independent. En segon
lloc, es proposa una generalització del �ltre adaptat a subespai basada en
una modi�cació del test de Rao. Per a avaluar el comportament d'aquestes
extensions respecte al detector d'energia clàssic, es de�nix un factor de guany
que il·lustra les millores en detecció aconseguides.

D'altra banda, es demostra com el desconeixement de la duració del
senyal pot deteriorar el comportament del detector. En aquest sentit, per a
millorar aquest comportament, es presenta una estructura de múltiples de-
tectors d'energia basada en la subdivisió successiva de l'interval d'observació
original. Aquesta nova tècnica de detecció ens conduïx a una estructura en
capes amb diversos detectors d'energia els vectors d'observació de la qual
s'ajusten a diferents intervals de duració del senyal. Les corresponents prob-
abilitats de falsa alarma i de detecció es calculen per a una estratègia de
subdivisions particular establint els procediments necessaris per a la seua
generalització a altres casos. Les simulacions realitzades mostren els avan-
tatges d'utilitzar la nova estructura respecte a un sol detector quan la duració
real del senyal i l'interval d'observació original són diferents.

Els resultats bons aconseguits en les simulacions han permés la utilització
dels esmentats detectors a aplicacions reals de vigilància basada en so. Aque-
sts sistemes presenten un interessant àmbit d'aplicació on és possible com-
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provar la robustesa dels detectors analitzats en els desenvolupaments teòrics
d'aquesta tesi. Per a això, diverses fonts acústiques s'han analitzat en presèn-
cia de diferents escenaris de soroll de fons, tant reals com simulats, presentant
a més a més dos enfocaments novedosos. En el primer d'ells, la informació
proporcionada pel detector d'energia es combina amb un mètode de local-
ització sonora de fonts. Gràcies a la utilització d'aquesta nova tècnica, es
demostra com la localització de sons en presència de soroll de fons millora
considerablement. Per últim, un nou conjunt de característiques extretes a
partir de l'estructura de múltiples detectors són avaluades i comparades amb
altres característiques comunament utilitzades en el reconeixement de sons
acústics. De nou els resultats obtinguts amb les noves característiques ofer-
ixen millors probabilitats d'encert en la classi�cació, especialment en baixa
relació senyal a soroll.



Abstract

This thesis is dedicated to the development of new energy detectors employed
in the detection of unknown signals in the presence of non-Gaussian and
non-independent noise samples. To this end, an extensive study has been
conducted on di�erent energy detection structures, and novel techniques
have been proposed which are capable of dealing with these problematic
situations.

The energy detector is proposed as an optimum solution to detect uncor-
related Gaussian signals, or as a generalized likelihood ratio test to detect
entirely unknown signals. In both cases, the background noise must be
uncorrelated Gaussian. However, energy detectors degrade when the noise
does not ful�ll these characteristics. Therefore, two extensions are proposed.
The �rst is the extended energy detector, which deals with the problem
of non-Gaussian noise; and the second is the preprocessed extended energy
detector, used when the noise also possesses non-independent samples. A
generalization of the matched subspace �lter is likewise proposed based on a
modi�cation of the Rao test. In order to evaluate the expected improvement
of these extensions with respect to the classical energy detector, a signal-
to-noise ratio enhancement factor is de�ned and employed to illustrate the
improvement achieved in detection.

Furthermore, we demonstrate how the uncertainty introduced by the un-
known signal duration can decrease the performance of the energy detector.
In order to improve this behavior, a multiple energy detector, based on suc-
cessive subdivisions of the original observation interval, is presented. This
novel detection technique leads to a layered structure of energy detectors
whose observation vectors are matched to di�erent intervals of signal dura-
tion. The corresponding probabilities of false alarm and detection are derived
for a particular subdivision strategy, and the required procedures for their
general application to other possible cases are indicated. The experiments
reveal the advantages derived from utilizing this novel structure, making it
a worthwhile alternative to the single detector when a signi�cant mismatch
is present between the original observation length and the actual duration
of the signal.
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xvi Abstract

The important simulation results yielded by the new energy detectors
o�er promising opportunities for real-world applications, such as surveillance
systems based on sound analysis. These systems present a suitable scope
for verifying the robustness of the theoretical detectors presented in this
thesis. Thus, several acoustic sources and a variety of real and simulated
noise scenarios were tested and two novel approaches were presented. The
�rst combines the information provided by an adaptive energy detector with
the standard localization method. The localization rates are considerably
improved with this original technique, mainly when the sound source is in
presence of a background noise. Finally, a unique set of features are extracted
from the multiple energy detector structure, evaluated, and compared with
other common features used for the recognition of acoustic sounds. The
results obtained with the new features considerably improve the classi�cation
accuracy, especially in low signal-to-noise ratios.
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Preamble





Chapter 1

Introduction

Only those who will risk going too far
can possibly �nd out how far one can go.

T.S. Eliot

The goal of this thesis is to study the feasibility of detecting unknown

signals with general applicability to di�erent noise conditions. These

conditions replicate those commonly found in real-world acoustic sce-

narios where information about the noise and signal characteristics is

frequently lacking. For this purpose, di�erent techniques, extensions,

and even new structures for improving the robustness in detection are

considered and explained.

1.1 Motivation and objectives

The simplest problem in detection is to decide whether the observation vec-
tors are formed by a known signal in the presence of noise, or just noise.
However, this requires knowing the characteristics of the signal to be de-
tected and the noise in which it is found. Therefore, the degree of di�culty
of a detector is inversely related to the degree of knowledge about the signal
and the background noise, in terms of probability density function (PDF).
The ideal detection case occurs when the PDF of the signal and noise are
fully known, since this situation o�ers the possibility of obtaining the opti-
mum detector [43]. When the characteristics of the signals are not entirely
known, some other detection solutions, though probably not optimal, can be
attempted in order to obtain a suitable detector.

Gaussian distribution is frequently considered because of its widespread
theoretical and practical applications. Detection of unknown deterministic

3



4 Chapter 1. Introduction

signals in background Gaussian noise is a classic detection problem. The
energy detector (ED) implements a generalized likelihood ratio test (GLRT)
when the noise is Gaussian; but when the noise is non-Gaussian and non-
independent, the performance decreases. The Gaussian and independent
noise assumptions are typically used in various scenarios for mathematical
simplicity when studying the behavior of a detector. In numerous applica-
tions and real-world problems, utilizing this approach is very useful as it
makes the implementation of simpler detectors feasible. However, not all
scenarios can be characterized as independent Gaussian noise due to the un-
predictable characteristics of each particular case. In these situations, the
Gaussian model cannot be considered. Moreover, it is important to model
the noise more accurately, as failure to do so can lead to deterioration in
the performance of the detector. For this reason, it is also advantageous
to study the detectors in the presence of noise with a non-Gaussian distri-
bution. Similarly, another problem that may often arise is the dependence
of the samples, which is particularly complex to deal with scenarios where
the noise is not Gaussian. In this case, it is possible to apply several ex-
tensions to the classical ED to improve the behavior of the detector. Thus,
the �rst objective of this thesis is to obtain extensions of the en-

ergy detector appropriate to this general case of non-Gaussian and

non-independent noise samples.

It is important to note a highly-relevant issue a�ecting detection, yet
which is often overlooked: the actual duration of the signals to be detected.
In some applications such as echo detection in radar, sonar or acoustics, an
approximate idea of the signal length may be available. However, in the
context of novelty or event detection, where the characteristics of the signals
are unknown, no information about the duration is available since any type
of signal may appear in the environment under study. Selecting the temporal
duration of the observation vector is very challenging and may signi�cantly
a�ect the detection. In these cases, for example, the size of the observa-
tion interval is de�ned by the practical implementation constraints related
to computational requirements, the permitted delay before deciding or the
non-stationary behavior of the background noise. Consequently, the obser-
vation duration could be too long or too short for the actual signal duration,
thereby producing a signi�cant loss in the probability of detection. A simi-
lar problem is observed in the frequency domain, where signal bandwidth
(instead of signal duration) is di�cult to determine. Hence, signal dura-
tion introduces a degree of uncertainty to the detection problem. A detailed
study is thus necessitated to determine how the behavior of the detector used
will be a�ected. The second objective of this thesis addresses this

issue by deriving procedures and structures focused on the use of

energy detectors, and capable of dealing, in an optimal manner,

with signals of unknown duration and bandwidth.
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Finally, this thesis will also focus on the development of new technologies
in a growing application area: security and surveillance systems, particularly
those systems which incorporate techniques to automatically detect events
or novelties in a monitored environment. Recently, surveillance based on
sound analysis has become increasingly important and has been proposed
for use in a variety of contexts. Hence, sound-based systems are good candi-
dates for verifying and evaluating the behavior of an energy detector; they
de�ne scenarios where both background noise and events may have vari-
able and unpredictable characteristics. These systems are currently being
assessed by the �Grupo de Tramiento de Señal (GTS)� in the �Universitat
Politècnica de València (UPV)� for incorporation within the framework of
di�erent projects. Sound o�ers surveillance in situations where cameras are
blind (e.g., hidden people, low lightning conditions and blind spots), and in
situations where the images are apparently normal, but the sounds could be
abnormal. Moreover, sound may be used in combination with video to im-
prove general performance through information fusion, or to index the video
stream. Also, when compared to video, sound captures di�erent levels of
privacy when surveillance has to be conducted in public sites. In this thesis,
we will consider two related applications currently under development by the
GTS:

• The �rst falls within the �eld of security in public places. Video infor-
mation is complemented by simultaneous audio information gathered
by distributed arrays of microphones. The acoustic events present in
the acoustic scene are detected, classi�ed and, �nally, localized. The
detection phase in this process is fundamental to achieving higher qual-
ity results in the latter two phases.

• The second application lies within the framework of a cooperation pro-
gram from the �Grupo de Tratamiento de Señal (GTS)� of �Universitat
Politècnica de València (UPV)� and the �Acoustic scene analysis group�
of �Universität Karlsruhe (TH)� (Germany). The cooperation is part
of a project conducted by the Humanoid Robots research group. As
the goal of the project is to design service robots to assist humans,
analysis of the environment scene is required. The system is based on
cameras and microphones which attempt to emulate human abilities
by implementing subsequent signal processing stages.

The two aforementioned projects provide real-world scenarios to test the new
energy detector algorithms proposed herein. Hence, the third objective of
the thesis is the application of the new extended energy detectors

to surveillance and sound-based monitoring systems.
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1.2 State of the art

Energy detectors are employed in automatically detecting signals in the pres-
ence of background noise when there is no exact knowledge of the signal
waveform [43]. In a more general context, energy detection is of interest in
detecting departures from a known background due to imprecisely de�ned
changes (event or novelty detection) [56]. The energy detector is optimal
when both signal and background noise are modeled as random uncorre-
lated Gaussian; or, it is at least a GLRT when the signal is deterministic
and completely unknown [43].

The original energy detector proposed in [86] dealt with the detection
of unknown deterministic signals in Gaussian noise. This detector was later
extended in [47] to detect random signals corrupted by Gaussian noise. In
[15], an improved energy detector for random signals in Gaussian noise is
presented. A great deal of research has been devoted to obtaining general-
izations about the energy detector when the background noise is Gaussian
and non-independent (colored), or non-Gaussian and independent. The for-
mer is usually solved by means of pre-whitening transformations [67], while
the latter is addressed by a scalar non-linear function applied to every com-
ponent of the observation vector, subsequently followed by summation of
all the components. This second solution is most germane to the present
thesis. To wit, a number of alternative non-linear functions have been pro-
posed [40, 77], and have lead to the creation of di�erent detectors commonly
termed generalized energy detector (GED). In light of this previous work,
a new scalar non-linear transformation is herein proposed and can be thus
considered a new variation of the GED. However, the statistical depen-
dence problem present in the non-Gaussian case requires greater attention.
Moreover, the literature reveals a paucity of e�orts directed at uncovering a
solution. In contrast, the search for linear transformations to achieve vec-
tors with independent components has received much greater attention in
recent years and has yielded various techniques [36, 50]. In fact, indepen-
dent component analysis (ICA) is currently being applied to multiple types
of problems, such as blind source separation (BSS); it is, therefore, a natural
candidate for pre-processing the original observation vectors in a detection
context where the original noise samples are dependent. In other words, ICA
may be applied to obtain vectors with independent components by means of
a linear transformation.

The problem of detecting unknown signals of unknown duration has been
previously considered in [45] using a GLRT approach in which the starting
sample of the signal is known, but the signal length represents an unknown
parameter. It is shown that, assuming white Gaussian noise, the maximum
likelihood estimate of the signal duration always coincides with the whole
duration of the original observation interval. Therefore, this new approach
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does not o�er any solution to the detection problem of unknown signal du-
ration; thus, the ED still remains the GLRT solution. If the starting time
of the signal is set as an unknown parameter, a straightforward extension
to the previously-posed problem is generated; however the logical conclusion
remains unavailing. In [45], a new modi�cation of the energy detector is pro-
posed, based on the theory of embedded probability density functions [44].
The method consists of applying the energy detector to every possible inter-
val of the original observation vector and, subsequently, the corresponding
statistic (the normalized energy) is transformed using the non-linear function
proposed. The maximum of the transformed statistic is then compared with
a threshold. When the assumed signal duration is increasing, the non-linear
function avoids the systematic growth of the likelihood. This aspect points
to the earlier conclusion regarding the GLRT solution. Unfortunately, the
non-linear function complicates the task of deriving closed expressions for the
probability of detection (PD) and the probability of false alarm (PFA). A
di�erent approach is thus proposed in this thesis to overcome this complexity
problem brought on by the non-linear function. Instead of employing only a
single detector, whose results are complex statistics based on the non-linear
transformed energy for every possible signal duration, the implementation
of multiple energy detectors matched to di�erent possible signal durations is
proposed.

Numerous areas require the detection of unknown events. One of the
most interesting areas being research today is acoustic scene analysis, de-
voted to surveillance applications in which the signals recorded by a set of
microphones are processed to extract as much information as possible from
the environment. In [3], processing audio signals yields the detection of dif-
ferent human activities, such as shouting, talking, walking, and crying. In
[17] and [68], public spaces and metro stations were selected to test auto-
matic detection of potentially dangerous acoustic events. Moreover, under
particularly adverse lighting conditions, with hidden objects and blind spots,
for example, it is possible to use acoustic sensors to cull information not cap-
tured by video sensors [58, 91]. Other related studies have utilized acoustic
event detection to determine the presence of sounds in real life scenarios
[1]. Furthermore, earlier studies were conducted to evaluate the detection
performance in the frequency domain [13], as well as in applications (e.g.,
echo detection in radar, sonar, and acoustics) where an approximate idea of
the signal is obtainable, assuming knowledge of its bandwidth [16]. Despite
these advances, much of this research does not take into account the noise
characteristics and the actual duration of the signal, in turn, the segment
length of the observation vector).

The localization and classi�cation of sound sources has been recently
applied to surveillance applications in which the use of audio sensors is be-
coming increasingly decisive [72, 87]. However, much of the recent work
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in these research areas disregards the presence of background noise. This
critical factor normally decreases the performance of the localization and
classi�cation phases, thereby leading to an increase in false localizations and
to a poor recognition rate.

With regards to the classi�cation phase, most of the earlier studies are
based on supervised classi�ers such as Gaussian mixture model (GMM) and
support vector machine (SVM). Some examples can be found in home ap-
plications [35] and public transport scenarios [73], as well as in surveillance
environments, as detailed in [29]. Other unsupervised classi�cations meth-
ods, such as the classical k-means, may likewise be employed [33]. Turning to
the features selection, previous studies have presented the mel-frequency ce-
sptral coe�cient (MFCC) as the most suitable features for speech and sound
source identi�cation [27]. MFCC typically o�ers good performance, but the
noise vulnerability of these features degrades the recognition performance;
thus, more appropriate features for noisy environments are generally desired.
In [92], for example, an attempt was made to address this di�culty with a
noise-robust feature extraction method. However, in overcoming this hurdle,
this thesis has turned to a new direction; and thus will present a new set of
features extracted from a multiple detection structure.

The localization of acoustic sounds is widely employed in surveillance
applications for intrusion detection [93], and di�erent techniques have been
presented in the literature [11], most of them based on the estimation of time
di�erence of arrival (TDOA) for each microphone pair [46]. When several
microphones pairs are available, the SRP-PHAT algorithm is used [24], but
the background noise can considerably decrease the localization results. In
the present work, an adaptive ED is employed in combination with this last
technique to suppress the background noise e�ect and, at the same time, to
take into account events of a varying nature.

1.3 Organization of this research

1.3.1 Structure

In this thesis, emphasis is placed on the detection problem of unknown sig-
nals in the presence of background noise of unknown characteristics. The
following chapters will review the most pertinent principles and theories in-
volved, and then will proceed with a detailed description of the numerous
experiments realized using simulated and real signals.

Chapter 2 reviews the possible detection methods available for use when
the signal to be detected is known, but complete knowledge about its charac-
teristics is not at hand. Two di�erent detectors are presented, the matched
�lter and the energy detector, and they are analyzed in the presence of Gaus-
sian uncorrelated and correlated noise.
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In Chapter 3, the problem of detecting unknown signals in non-Gaussian
noise conditions is analyzed, with special interest given to the case of de-
pendent noise samples. The use of non-linear functions and independent
component analysis is studied, and alternative extensions of the energy de-
tector and the matched subspace �lter are presented. The performance of
these extensions is analyzed by means of the receiver operating characteristic
(ROC) curves. Following this, the problem of detecting signals of unknown
duration is studied in Chapter 4. A novel structure of multiple detectors is
presented and analyzed, including ROC curves for di�erent signal durations
in time and frequency.

Acoustic event detection is the subject of Chapter 5, where the robustness
of a complete detection system is evaluated. The behavior of the proposed
energy detector and its extensions is studied to detect sound sources in the
presence of real background noise whose characteristics di�er from Gaussian
and independent assumptions. Chapter 6 studies diverse possibilities for
combining single and multiple energy detectors with other techniques, such
as the classi�cation and localization of sound sources. The improvements
achieved by coupling the aforementioned techniques with the energy detector
are shown in di�erent acoustic applications and scenarios.

Finally, Chapter 7 presents the principal conclusions reached, along with
future lines of research.

1.3.2 Main contributions

The chief scienti�c contributions are found in the innovative detection tech-
niques presented and their combination with well-known classi�cation and
localization algorithms for subsequent application to real acoustic scenarios.
They are listed below:

• Energy detectors degrade when the noise is non-independent and non-
Gaussian. Therefore, two extensions, the extended energy detector
(EED) and the pre-processed extended energy detector (PEED), are
presented in this work to deal with these situations. Independence is
achieved by means of a linear matrix transformation derived from ICA.
Non-Gaussianity is avoided by applying a scalar non-linear function to
every element of the linearly transformed observation vector. Practi-
cal procedures for estimating the linear and nonlinear transformations
are given in this work. A signal-to-noise ratio (SNR) enhancement
factor has been de�ned for the weak signal case, which is indicative
of the expected improvement of the proposed extension of the energy
detectors.

• A generalization of the matched subspace �lter (MSF) termed as GMSF
is proposed for the detection of unknown signals in a background of
non-Gaussian and non-independent noise. The generalization is based
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on a modi�cation of the Rao test by including a linear transformation
derived from ICA. The ROC curves computed for simulated examples
illustrate the signi�cant improvements achieved with the generalized
solution.

• An extension of the classical ED is proposed to deal with the case
of unknown signal duration. Multiple energy detectors (MED) are
applied to subintervals of the original observation interval, and a global
criterion is establish to discern the signal presence. A speci�c strategy
of employing successive half segmentations of the original interval is
applied to obtain a layered structure of energy detectors. Moreover,
the corresponding probabilities of false alarm and detection are derived.
The novel structure shows signi�cant improvements in detectability in
comparison with the ED when there is large mismatch between the
original observation length and the actual duration of the signal.

• The EED and the PEED are evaluated in real acoustic scenarios. These
�ndings are further extended by considering a new generalization based
on the rejection of the false alarms induced by the di�culty of estimat-
ing the noise statistic in non-stationary conditions. The evaluation of
the di�erent detectors has been conducted by measuring their perfor-
mance in terms of the ROC curves. Several acoustic sources and a
variety of real and simulated noise scenarios were tested. It is demon-
strated that the generalization approach works signi�cantly better than
the ED in low SNR, but in real scenarios there is a loss in detectability.
In such non-Gaussian and non-independent noise conditions, the pro-
posed generalization of the EED and the PEED improve performance,
leading to a signi�cant enhancement in the event detection.

• A MED structure is applied to both the time and frequency domains,
and is subsequently evaluated in real acoustic scenarios. The results
obtained demonstrate the robustness of the MED structure and the
improvements in performance reached versus the ED.

• Two novel approaches are presented for the detection and localiza-
tion of impulsive and non-impulsive sound sources in the presence of
non-stationary background noise. Both approaches combine the in-
formation provided by an adaptive ED with the standard SRP-PHAT
localization method. The �rst modi�ed approach uses the ED to calcu-
late the noise correlation; the second distinguishes between impulsive
and non-impulsive sound sources and, additionally, aligns the detec-
tion window to the event. In both cases, the localization rates are
considerably improved with the novel techniques.

• A MED structure is applied to extract a new set of features for clas-
si�cation: time MED (TMED) and frequency MED (FMED). The
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combination of these two types of features leads to the combined MED
(CMED) features. These novel feature sets are compared with the
commonly used MFCC features, and their performance is evaluated in
a general sound classi�cation task with di�erent acoustic sources and
adverse noise conditions. It is shown that, in low SNR, the proposed
CMED features work signi�cantly better than the MFCC.





Chapter 2

Energy detector

A man can succeed at almost anything
for which he has unlimited enthusiasm.

Charles Schwab

This chapter o�ers a review of the possible detectors that can be used

when the signal to be detected is known and when complete knowledge

about its characteristics remains unavailable. In both cases, the prob-

ability density function (PDF) of the background noise, in which the

signals are immersed, is assumed to be Gaussian distributed. Further-

more, the statistical dependence problem of the noise samples is also

studied within this framework and the performance of the energy de-

tector under these scenarios is discussed.

2.1 Detectors design

The detection theory is essential for the design of systems which implement
an automatic processing of the signal for both decision making and infor-
mation extraction. Examples of this kind of systems are communication
systems, radar, biomedicine, image processing, etc. All of them share the
common aim of being able to decide when an event of interest occurs and to
determine as much information as possible about it. The detection theory is
based on making a decision between two options from the available measures.
In many of the typical applications mentioned, such as radar systems, de-
tection algorithms must decide between �noise only� or �signal masked with
noise�.

The problem resides in de�ning a decision rule that indicates which of
two hypotheses should be chosen: hypothesisH0, where only noise is present,

13



14 Chapter 2. Energy detector

or hypothesis H1, which indicates the presence of a signal and noise. The
decision rule can be represented by the following expression:

Λ(y)
H1

>
<
H0

λ (2.1)

where λ is the threshold and Λ(y) is a function that depends on the mea-
surements. If it exceeds the threshold, then H1 is selected; otherwise, H0 is
decided. The aim of the detection theory is, hence, to design the most e�-
cacious detector by de�ning Λ(y) and λ. For that purpose, two approaches
are described below.

2.1.1 Bayes detector

The aim of the Bayes detector is to minimize the mean cost, whose expression
can be calculated as:

C = C10P (C10) + C01P (C01) + C11P (C11) + C00P (C00) (2.2)

where Cij is the cost of deciding hypothesis i, when hypothesis j is the
correct option. From this expression it is possible to derive the decision rule,
expressed as [43]:

f1(y)

f0(y)

H1

>
<
H0

C10P0

C01P1
(2.3)

where λ takes the value
C10P0

C01P1
; the function Λ(y) =

f1(y)

f0(y)
is called the like-

lihood ratio; and fi(y) is the probability density function (PDF) of y under
hypothesis Hi. The logarithm of this expression is often used, obtaining
ln(Λ(y)). Thus, it is necessary to know the PDF of y under the hypotheses
H0 and H1, and then to compare their ratio with the threshold in order to
implement the optimal Bayes detector.

Some extensions of optimal Bayes signal detection with known prior
statistics are given in [69], where the likelihood function is extended to in-
clude overlapping signal classes, which occur in adaptive detection and in
stochastic signal detection.

2.1.2 Neyman Pearson detector

The Neyman-Pearson detector [66] follows a di�erent philosophy than that of
the Bayes detector. In this kind of detector, �rst, a probability of false alarm
(PFA) is �xed and then, the probability of detection (PD) is maximized.
Following a similar procedure to the one performed for the Bayes detector,
we can reach the following equation:

f1(y)

f0(y)

H1

>
<
H0

λ (2.4)
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where Λ(y) is, again, the likelihood ratio. But, to obtain the threshold λ, it
is �rst necessary to apply the restriction imposed by the required maximum
PFA [43]:

PFA =

∫ ∞
λ

f0(Λ)dΛ = α. (2.5)

Therefore, with this detector we can maximize the PD for a given PFA by
selecting the detection threshold obtained from the restricted PFA = α.

2.2 Signal detection in presence of Gaussian noise

When the background noise is Gaussian distributed (see Appendix A.1),
several scenarios can be di�erentiated, each determined by the degree of
uncertainty related to the knowledge of the signal characteristics. First,
a case is considered in which the signal to be detected is perfectly known
and deterministic in the presence of white Gaussian noise (WGN). Then,
the detection problem is studied with signals that are totally unknown and
modeled as a random process. The detection of both known and unknown
signals is considered in the presence of Gaussian noise, but with correlated
components. Finally, the detection of signals in a subspace is studied.

2.2.1 Deterministic signal

Based on the simplest example, where the desired signal is known and the
noise is white and Gaussian, the optimal detector for this case is called the
matched �lter (MF). By applying the criterion of Neyman-Pearson (NP), the
resulting test will consist of di�erentiating between the following hypotheses
[43]:

H0 : y = w w : N(0, σ2wI)
H1 : y = as+w a > 0, sT s = 1

(2.6)

where y is the observation data vector. The signal vector is given by x =
[x1, . . . , xN ], and it can be expressed as x = as; so it is known, except for its
level. The vector w = [w1, . . . , wN ] is the WGN with variance σ2w, and the
NP detector will decide the hypothesis H1 if the logarithm likelihood ratio
(log-likelihood) exceeds a certain threshold:

ln(Λ(y)) = ln

(
f1(y)

f0(y)

)
=
yT s

σ2w

H1

>
<
H0

ln(λ) = λ0. (2.7)

This is a uniformly most powerful (UMP) test, since the statistic compared
with the threshold does not depend on the unknown parameter a [51]. The
threshold λ0 will be �xed by imposing a certain PFA:

PFA = 1− erf(λ0). (2.8)
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Attention should be paid to the limitations of this detector at the time of
its implementation with real signals. On the one hand, the background noise
should be white and Gaussian, and it is necessary to adaptively estimate
the parameter σ2w. On the other hand, in order to reach proper detector
performance, the desired signal s must be known, but is often quite di�cult
to discern.

2.2.2 Random signal

This section will �rst focus on the optimal detector when the desired sig-
nal is modeled as a random signal, which follows a zero mean and Gaussian
distribution with an arbitrary covariance matrix (Cx). Then, we will par-
ticularize for the case in which the signal has a known covariance. In both
cases the WGN is also considered with a known variance (σ2w) and totally
independent of the signal.

Estimator correlator

Taking the above considerations into account, the hypotheses H0 and H1

can be expressed as follows:

H0 : y = w w : N(0, σ2wI)
H1 : y = x+w x : N(as,Cx).

(2.9)

The covariance matrix of the signal is:

Cx = E[(x− as)(x− as)T ] (2.10)

where s is normalized (sT s = 1) and the signal is also uncorrelated with the
noise E[wxT ] = 0. After considering the PDF of y under the two hypotheses,
it is possible to arrive at the expression of the likelihood ratio:

−1

2
(y− as)TA−1(y− as) +

1

2σ2w
yTy

H1

>
<
H0

lnλ− ln
σN

(detA)1/2
= λ1 (2.11)

where A is de�ned as A = Cx+σ2I. In this case, it is not a UMP test, since
the detector decision is not independent of the parameter a. It is possible to
modify (2.11), obtaining:

1

2σ2w
yTy− 1

2
yTA−1y+ ayTA−1s

H1

>
<
H0

λ1 +
a2

2
sTA−1s = λ2. (2.12)

After de�ning x̂ =
1

2σw
y − σw

2
A−1y + aσA−1s, this detector can thus be

expressed in the form:

yT x̂

σw

H1

>
<
H0

λ2. (2.13)
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This expression is similar to the one derived in (2.7) for the matched �lter,
but in this case, the detector correlates the received data y with an estimate
of the signal x̂ and not with the known signal s as before. This detector is
therefore termed the estimator-correlator [85].

Energy detector (ED)

One particular case of (2.11) is obtained when the signal is modeled as a zero
mean, white Gaussian random process. This implies that a = 0 and, there-
fore, from (2.10), we can express the covariance matrix as Cx = E[xxT ]. If
the signal is also white, Cx = σ2xI is ful�lled, and the previous test becomes:

yTy

σ2w

H1

>
<
H0

2
σ2x + σ2w
σ2w

λ = λ3 (2.14)

which is known as the energy detector (ED), since it ultimately compares
the energies of the measurements with a certain threshold λ3.

Energy detectors are used in the automatic detection of signals in the
presence of a background noise when the signal waveform is not precisely
known. In a more general context, energy detection is of interest for detect-
ing departures from a known background (event or novelty detection [56]).
Energy detectors have a very simple structure and are easily implementable.
The ED is optimum when the signal is independent of the noise and it is
possible to model it as a random uncorrelated Gaussian process [43]. Other-
wise, when the signal is completely unknown, the ED can only be considered
a generalized likelihood ratio test (GLRT) [41]. The GLRT yields the like-
lihood ratio test statistic, obtained by replacing the unknown parameter
under each hypothesis with their maximum likelihood estimate (MLE) [55].
It is intuitively deduced that when the signal s is present, the energy of the
received data y will increase. In fact, the test of the expression (2.14) can be
considered as an estimator of the data variance and, after comparing it with
a threshold, it can be decided whether it has a variance under hypothesis H0

(σ2w), or under hypothesis H1 (σ
2
w + σ2x). That said, it is possible to express

the test (2.14) under each of the hypotheses as:

yTy

σ2w
∼ χ2

N under H0 (2.15)

and
yTy

σ2x + σ2w
∼ χ2

N under H1. (2.16)

The expression of the energy calculation follows a known distribution,
χ2
N chi-square with N degrees of freedom (see Appendix A.2). Therefore, it

is possible to �nd the PFA and the PD, as well as �x the threshold of this
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detector for a given PFA from the following expressions [43]:

PFA = Pr

{
yTy

σ2w
>

γ′

σ2w
;H0

}
= Qχ2

N

(
γ′

σ2w

)
(2.17)

and

PD = Pr

{
yTy

σ2x + σ2w
>

γ′

σ2x + σ2w
;H1

}
= Qχ2

N

(
γ′

σ2x + σ2w

)
(2.18)

where Qχ2
ν
is the right-tail probability for a χ2

ν random variable, given by:

Qχ2
ν
(x) =



2Q(
√
x) ν = 1

2Q(
√
x) +

exp(−1
2x)

√
π

ν−1
2∑

k=1

(k − 1)!(2x)k−
1
2

(2k − 1)!
ν > 1 and ν odd

exp(−1

2
x)

ν−1
2∑

k=1

(x2 )k

k!
ν even

(2.19)
where Q(x) is the probability that a Gaussian random variable with zero
mean and unit variance exceeds x, as shown in Appendix A.5.

In summary, the ED is optimum for detecting zero-mean uncorrelated
Gaussian signals, and is a GLRT detector in the case of an unknown de-
terministic signal. In both cases, the background noise must be zero-mean
uncorrelated Gaussian.

2.2.3 Detection in correlated Gaussian noise

In the two previous cases, i.e., the matched �lter and the energy detector,
it was assumed that the noise was white. But sometimes this is not the
case, and the implications of this fact must necessarily be examined. In this
section, the two types of detectors mentioned above are studied when the
noise is not white and the tests for each case are reformulated [34].

The hypotheses are similar to those presented in (2.6) and (2.9). This
time, however, the noise is characterized by w : N(0,Rw), where the co-
variance matrix of the noise is not de�ned by the expression Rw = σ2wI, as
in the case of white noise. Now there is some correlation between the noise
samples that must be taken into account, and therefore the new detection
model can be expressed as follows:

H0 : y = w w : N(0,Rw)

H1 : y = s+w s : N(0, σ2sI).
(2.20)

We �rst study the resulting test of the energy detector when the signal
is in presence of correlated noise and the covariance matrix is consequently
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not equivalent to the identity, as assumed in the previous models. For the
Gaussian case, independence and uncorrelation are equivalent, hence simple
pre-whitening is enough. The original observation vector y is transformed
into a pre-whitened observation vector yp:

yp = R
−1/2
w y (2.21)

whereRw = E[wwT ] represents the noise covariance matrix. The ED is then
applied to the pre-processed observation vectors, obtaining the following test:

yTp yp
σ2wp

H1

>
<
H0

λ ⇔ yTR−1w y
H1

>
<
H0

λ. (2.22)

Notice that Rwp = E[wpw
T
p ] and, hence, σ2wp = 1. So, we can verify that

the transformation used in the pre-whitening yields independent samples and
also normalizes the variance of the original noise observation vector. This
test (2.22) will be henceforth referred to as pre-processed energy detector
(PED). This modi�ed test is optimum in case of assuming low signal-to-
noise ratio (SNR), that is when σ2s � σ2w, the most di�cult detection case.

For the matched �lter case, a similar procedure can be employed. Using
test (2.7), it is possible to obtain a modi�ed version in which it also becomes
necessary to apply the pre-whitening transformation by means of the inverse
matrix R−1w :

yTR−1w s
H1

>
<
H0

λ2. (2.23)

In this case, it is also possible to separate the �rst term in yTR−1w s = yTp sp,

and thereby de�ne sp = R
−1/2
w s. The signals yTp and sp are the observed

samples pre-processed by means of a transformation matrix R
−1/2
w . This

matrix can be estimated from a training set of K noise vectors wk, with
k = 1, . . . ,K, using the sample estimate:

R̂w =
1

K

K∑
k=1

wkw
T
k (2.24)

which is the noise covariance matrix known as the pre-whitening matrix.
Note that in (2.22) and (2.23), it is not necessary to divide by σ2w since
the pre-whitening also represents a normalization of the original observation
noise vector.

2.2.4 Signal in subspace

The linear model will be considered here so as to introduce the special de-
tection problem when the signal is unknown, but can be assumed to be



20 Chapter 2. Energy detector

included in a subspace. To brie�y review the classical linear model, consider
the following detection problem:

H0 : y = w w : N(0, σ2wI)
H1 : y = s+w s : Hθ

(2.25)

where y is the observation vector in each hypothesis (dimension N), w is
the noise background vector with zero-mean and Gaussian distribution, and,
�nally, s is the signal vector. It is assumed that s is de�ned in a subspace
formed by p < N columns of the known matrix H (N × p), termed the
observation matrix, and modeled by a vector of unknown parameters θ, as
follows s = Hθ.

As the signal is deterministic signal with unknown parameters, the de-
tector used in this case is the matched subspace �lter (MSF). This kind of
detector is based on the estimated energy of the observation vector contained
in the signal subspace by implementing the following test [43]:

T (y) = yTC−1w Hθ̂
H1

>
<
H0

λ. (2.26)

According to the hypothesis described in (2.25), the covariance matrix of the
noise can be expressed as Cw = σ2wI, and the vector of unknown parameters
can be estimated as θ̂ = (HTC−1w H)−1HTC−1w y. This leads to the following
test:

yTH(HTH)−1HTy

σ2w

H1

>
<
H0

λ (2.27)

where we can de�ne P = H(HTH)−1HT as the projection matrix onto the
subspace signal H. The statistic yTPy/σ2w follows a chi-square distribution
with p degrees of freedom (χ2

p) and, therefore, the threshold λ is easily cal-
culated for a given PFA. For the particular case of p = N , the matrix P
becomes the identity matrix I because we shall consider the entire observa-
tion space and (2.27) becomes the classical energy detector.

Current work on matched subspace and �lter detection has been con-
ducted in [75] and [76], where Gaussian noise and signal interference is as-
sumed. Other variations of this problem include adaptive subspace detection
and are mainly studied in [48].

2.3 Performance of the ED and the PED

2.3.1 Detector evaluation: ROC performance factor

Detector evaluation can be conducted by studying the performance of the
receiver operating characteristic (ROC) curves, which represent the PD of
the detector as a function of the PFA. It must be noted that the PD and the
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PFA depend on the threshold λ and are calculated according to a speci�c
threshold range. In addition, the PD not only depends on the threshold, but
also on the SNR. Therefore, the ROC curves can be considered indicative of
the quality of a detector, as will be seen below.

In general terms, the performance of a detector is improved when it
presents a ROC curve above another detector curve, given the same length
of the observation vector, SNR, and threshold (or PFA). This means that
the detector has a higher PD for a speci�c PFA or a lower PFA for a speci�c
PD. The limiting curve PD = PFA corresponds to a random detector.
As an example, Figure 2.1 shows the theoretical ROC curves of an ED for
several signal-to-noise ratios. The interval of SNR shown extends from −8
dB to 4 dB. As seen, as the SNR increases, a higher PD is obtained for the
same PFA, indicating a higher detector performance.

Figure 2.1: Theoretical ROC curves of the ED for di�erent SNRs.

However, sometimes relying only on a cursory observation of the ROC
curves can be misleading, and incorrect conclusions may be drawn due to
the fact that the curves may behave di�erently, depending on the area of the
curve under study. For this reason, a new parameter is needed to measure
and compare the performance of di�erent detectors through a consideration
of the entire ROC curve, or only those parts in which the designated detector
will work.

Let us de�ne the two vectors of PFAs and PDs, which de�ne the ROC
curve of a detector:

a = [PFA1, PFA2, PFA3, . . . , PFAL]

d = [PD1, PD2, PD3, . . . , PDL]
(2.28)
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where L is the number of total points used to characterize the ROC curve.
Therefore, to measure the performance of two detectors (D1 and D2), their
ROC curves are compared by means of a new factor, denoted by γ. This
new parameter is computed using a subset of PFAs and PDs extracted only
from the interval of interest of the ROC curve. This interval is determined
by the maximum PFA (maxPFA) considered, as seen in Figure 2.2.

Figure 2.2: Calculation of the ROC factor (γ) for detectors D1 and D2
(maxPFA = 0.25).

Let us denote a1 as the vector of PFAs of D1, and the corresponding
vector of PDs as d1. Similarly, for D2 vectors a2 and d2 are used. Thus, the
ROC factor is obtained �rst by substracting the PDs values of both detectors
for the same PFAs (between 0 and maxPFA). After this, the same procedure
is repeated, but in this case substracting the PFAs of both detectors, given
the same PDs. A vector of di�erences is obtained as a result, and then their
mean can be computed as shown below:

∆̄PD =
1

M

M∑
m=1

(d2(m)− d1(m)) (2.29)

and

∆̄PFA =
1

M

M∑
m=1

(a2(m)− a1(m)). (2.30)

M is the number of PFAs (or PDs) used to compute the ROC factor, and
its value will depend on the sections of the ROC under analysis. It must be
noted that these factors represent an absolute mean value of improvement or
deterioration in the PD and PFA of D2 with respect to D1 (depending on if



2.3. Performance of the ED and the PED 23

they are > 0 or < 0, respectively). Furthermore, considering that increases
in ∆̄PD and decreases in ∆̄PFA indicate that D2 is better than D1, the γ
factor is de�ned as shown below:

γ =
∆̄PD − ∆̄PFA

2
. (2.31)

Note that ∆̄PD and ∆̄PFA ∈ [0, 1], and therefore γ ∈ [−1, 1]. The perfor-
mance of this factor can be summarized as follows:

• γ > 0: the ROC curve of D2 is above the ROC curve of D1, and
therefore, this detector performs better. This improvement will be
more signi�cant as γ increases.

• γ < 0: the ROC curve of D2 is below the ROC curve of D1, and
therefore, this detector performs poorly. This deterioration will be
more signi�cant as γ decreases.

• γ = 0: the ROC curve of D2 is equal to the ROC curve of D1, and
therefore, both detectors have the same performance.

In what follows, we will use this parameter to evaluate and compare the
performance of two detectors in similar conditions. This is a more concise
parameter, and an alternative to simply observing the ROC curves.

2.3.2 Comparison of the ED and the PED in Gaussian noise

In the previous sections, the ED was presented as a practical solution to the
detection of unknown signals in presence of Gaussian and independent noise.
Furthermore, the particular case of dependence between the noise samples
was analyzed and it was studied how the PED can address these situations
when the noise is Gaussian.

Let us now evaluate and compare the performance of both detectors in
the presence of Gaussian noise and observe how they behave in two di�erent
situations, independent and non-independent samples. This fact can con-
siderably a�ect the outcomes obtained by the detectors, often leading to
unacceptable PFA or poor PD.

Figure 2.3 reveals the experimental ROC curves of the ED and the PED,
obtained from (2.14) and (2.22), respectively, when detecting a random
Gaussian signal in the presence of non-independent Gaussian noise samples.
Both results are compared for the same SNR, with the theoretical ROC
curve of the ED (EDtheo) obtained from (2.17) and (2.18), where indepen-
dent Gaussian noise is assumed. As seen in the graph, the performance of the
ED signi�cantly decreases in comparison to the EDtheo curve, since the ED
is not prepared to work correctly with non-independent noise samples; con-
sequently, a negative ROC factor of γ = −0.1459 is obtained (dashed arrow).
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Figure 2.3: Simulated ROC curves of the ED and the PED (correlated Gaus-
sian noise) in comparison to the EDtheo (uncorrelated Gaussian noise) for
SNR = −2 dB.

However, when using the PED in the same situation, a pre-whitening trans-
formation is applied prior to calculating the energy, it can be observed how a
signi�cant improvement in detection performance is achieved (solid arrow).
In this case, the ROC curve is overlapped with the theoretical curve, and
computing the ROC factor of the PED curve in comparison to the EDtheo,
a value near 0 (γ = 9.1e−4) is obatined. Therefore, we can conclude that
the PED compensates for the deterioration experimented by the ED with
non-independent Gaussian noise.

2.4 Conclusions

In this chapter, we have introduced the detection problem related to the
amount of available knowledge about a signal and the background noise in
which it is immersed. The Bayes and Neyman Pearson criterion were stud-
ied for the detector design and we reviewed the possible detection solutions
which depended on the degree of knowledge available about the signal to
be detected. The MF and the ED were presented as the optimal solutions
for the detection of known deterministic and unknown signals, respectively.
Furthermore, it has been demonstrated that when the signal is unknown, but
is present in a subspace, the MSF is used. In all these cases, the noise was
assumed to be uncorrelated and Gaussian distributed. However, the parti-
cular case of the ED having correlated noise samples was examined leading
to the PED. A new ROC factor was presented to evaluate the detector per-
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formance in terms of its ROC curve. Finally, the behavior of the ED and
the PED was compared in the case of correlated Gaussian noise, showing the
signi�cant improvement achieved with the PED in comparison to the ED for
the same noise conditions and SNR.
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Chapter 3

Extensions of the energy
detector in non-Gaussian and
non-independent noise

It is the unsolved problems that keep the
mind alert, not the ones that have been

solved already.

Erwin Guido

In this chapter, the Rao test is presented as a possible solution to ad-

dress the problem of detecting signals in the presence of non-Gaussian

noise. Some limitations of this test are studied when it is used in

the particular case of energy detection. Therefore, some alternative

extensions based on the use of two possible non-linear functions are

presented. The principal objective is to reach a noise distribution in

which samples are as Gaussian distributed as possible. Furthermore,

when the background noise is not only non-Gaussian distributed, but

also non-independent, the detection problem becomes more complicated.

Thus, the use of a linear transformation based on independent compo-

nent analysis (ICA) is also presented, leading to further extensions of

the energy detector (ED) and the matched subspace �lter (MSF).

3.1 Detection in presence of non-Gaussian noise

This section o�ers a brief analysis of di�erent types of noises that do not
follow a Gaussian distribution, as well as two approaches to characteriz-
ing them. The detection of deterministic signals in non-Gaussian noise is

29
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reviewed. Then the problem is generalized to unknown signal detection,
leading to a study of the Rao test.

3.1.1 Study of Gaussianity

To properly evaluate the behavior of a detector, it is very important to
recognize or to characterize the background noise in which the signal to be
detected is immersed. It is therefore necessary to have some parameter or
method to perform even a generic classi�cation of the noise.

A random variable which follows a Gaussian distribution is de�ned with
the terms described in Appendix A. However, the bibliography lists a widely
studied range of distributions [80], such as Laplacian, Gamma, Rayleigh and
Uniform. The utilization of the ED to detect unknown signals in the presence
of these noise distributions leads to an increase of unacceptable false alarms.
Therefore, it is of special interest to study all these distributions.

There are several methods to test the non-Gaussianity in a particular
distribution of given data, but in our case two main techniques are used:

• Histogram: This method is simple and widely employed because it al-
lows one to approximate the PDF of the data. This method also allows
one to identify, graphically, the shape of the distribution. If it is plotted
in combination with the theoretical Gaussian PDF, it is possible to dif-
ferentiate between Gaussian and non-Gaussian by evaluating, subjec-
tively, the similarity between the two distributions. Figure 3.1 shows
the histograms of two di�erent non-Gaussian distributions, Gamma
and Uniform, each with zero mean and unit variance. Both are shown
alongside a Gaussian distribution of the same standard deviation and
mean for purposes of comparison. As can be observed, the PDFs di�er
from the Gaussianity assumption.

• Kurtosis: The degree of non-Gaussianity can be more speci�cally cal-
culated by estimating the kurtosis. De�ned as the fourth cumulant
divided by the square of the second cumulant, kurtosis measures the
degree of peakedness or �atness of a distribution, in comparison with
a Gaussian PDF [4, 37]. For the Gaussian case, the kurtosis value
is 3; and, depending on whether the kurtosis of the data is > 3 or
< 3, platikurtic or leptokurtic distributions can be respectively dif-
ferentiated. Thus, a kurtosis higher than 3 de�nes a more peaked
distribution while, on the other hand, a kurtosis lower than 3 de�nes a
�atter distribution than a Gaussian distribution. Randomly generated
examples of non-Gaussian data distributions are listed here, along with
their respective estimated kurtosis value in parentheses: Laplacian (6),
Rayleigh (3.26), Gamma (8.45), and Uniform (1.8).
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(a) (b)

Figure 3.1: PDF of two di�erent non-Guassian distributions in comparison
to a Gaussian PDF (solid line) of the same standard deviation and mean.
(a) Gamma data distribution. (b) Uniform data distribution.

3.1.2 Detection of random signals: Rao test

As seen in the previous chapter (Section 2.2), EDs are used to detect random
signals in the presence of background noise when there is no information
about the waveform to be detected. EDs provide optimal solutions to the
detection problem for both Bayes and Neyman-Pearson criteria when the
signal and noise follow a Gaussian distribution with zero-mean, and the
samples are uncorrelated.

However, when the noise characteristics di�er from the assumption of
Gaussianity, the ED is neither optimum nor does it implement a generalized
likelihood ratio test (GLRT). For example, taking into account the approach
used in Neyman-Pearson, the search for the optimal detector is based on
maximizing the PD for a given PFA. In this case, the ED will not reach the
maximum PD if the assumption of the Gaussian noise model is not achieved.
Moreover, considering the most general case in which the characteristics
of the signal are completely unknown, the statistic yTy/σ2w could have an
unpredictable distribution, and therefore the calculation of the appropriate
threshold would be a challenge.

Unfortunately, there is no general optimum solution for the ED when the
noise is non-Gaussian. However, for the subspace signal case y = Hθ + w,
where the matrix H with dimension N × p represents the subspace signal,
θ denotes the parameters of the unknown signal, and w is the noise vector
whose components are random and independent and identically distributed
(i.i.d.), it is possible to attain the following, a particular implementation of
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the general Rao test [43]:

g(y)TH(HTH)−1HT g(y)

Pg(w)

H1

>
<
H0

λ. (3.1)

Prior to calculating the energy of the vector y, function g(·) is applied
element-wise to the vector y in the following manner:

g(y) = [g(y0)g(y1) . . . g(yN−1)]. (3.2)

If p(w) represents the noise PDF, it can be de�ned as:

g(w) = −

dp(w)

dw
p(w)

(3.3)

and

Pg(w) =

∫ ∞
−∞

[
dp(w)

dw

]2
p(w)

dw. (3.4)

Note that the preprocessed noise mean-power Pg(w) can be expressed as
follows:

Pg(w) =

∫ ∞
−∞

g2(w)p(w)dw = E[g2(w)] (3.5)

where E[·] calculates the statistical average.
Therefore, particularizing the Rao test for the energy detector and as-

suming that p = N , H(HTH)−1HT = I is obtained. From this, it is possible
to arrive at the following expression:

g(y)T g(y)

Pg(w)

H1

>
<
H0

λ. (3.6)

Hence, (3.6) is a generalization of (2.14) in the sense that it is necessary to
apply some pre-processing function g(·) to our observation data vector prior
to the calculation of the normalized energy. Note that for the Gaussian case,
g(w) = w, so g(y) = y. The parameter Pg(w) = Pw will take the value σ2w,
thus (2.14) and (3.6) will be equivalent.

Finally, it should be noted that the statistic g(y)T g(y)/Pg(w), as in the
Gaussian case, also follows a chi-square distribution (χ2

N ), and therefore, it
is possible to estimate the threshold value λ for the PFA required by the
system.
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Rao test example and limitations

An example of typical non-Gaussian noise is one that follows a Laplacian dis-
tribution. The PDF with a zero-mean is given in this case by the expression:

p(w) =
1√
2σ
exp

(
−
√

2

σ
|w|

)
−∞ < w <∞ (3.7)

where σ is the noise standard deviation. Comparing this distribution with a
Gaussian having the same variance and zero-mean (see Appendix A.1), it can
be observed from Figure 3.2 that the principal di�erence is the appearance
of noise samples of greater magnitude in the Laplacian distribution versus
the Gaussian example. This leads to the appearance of spikes and outliers
in the time domain, clearly seen in Figure 3.3, where a realization of each
type of noise is represented.

Figure 3.2: PDF of Laplacian distribution in comparison to a Gaussian PDF
(solid line) of the same standard deviation.

In the presence of non-Gaussian noise, one would expect the detector
to be able to take into account these outliers from the background noise.
Thus, this fact would not a�ect nor excessively damage the detector PFA.
As seen earlier, it is possible to use detectors that are able to manage such
situations. As a solution to this problem, the particularization of the Rao test
was presented in (3.1) and (3.6) for the case of subspace deterministic signals
with unknown parameters and for completely unknown signals, respectively.
In both cases, the use of a non-linear function g(·) was employed with the
aim of reducing the spikes and outliers of the non-Gaussian noise. However,
it will be demonstrated how it is not always possible to use the expression
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(a) (b)

Figure 3.3: Time realization of two di�erent noise distributions. (a) Lapla-
cian noise distribution. (b) Gaussian noise distribution.

g(·) given in (3.3), particularly in the generalization of the Rao test for the
energy detector given in (3.6).

In (3.6), the function g(·) must be known in order to apply the appro-
priate pre-processing to the data when the noise is non-Gaussian. As seen
in (3.3), the function g(·) depends on the probability density function of
the noise, p(w). For example, to detect the presence of an unknown sig-
nal in a Laplacian background noise with independent samples, a non-linear
function, which takes into account both (3.3) and (3.7), is de�ned as:

g(w) = −

dp(w)

dw
p(w)

= −d ln p(w)

dw

=

√
2

σ2
d |w|
dw

=

√
2

σ2
sgn(w) (3.8)

where

sgn(w) =

 1 if w ≥ 0

−1 if w ≤ 0
(3.9)

and the pre-processed noise mean-power is given by Pg(w) = 2/σ2 [42].
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Therefore, the Rao test can be expressed as:

T (y) =
g(y)T g(y)

Pg(w)

=

(√
2
σ2 sgn(y)

)T (√
2
σ2 sgn(y)

)
2/σ2

= sgn(y)T sgn(y) = N (3.10)

where N is the dimension of the observation vector y. The energy is always
constant, equal to N , and independent of the observation vector. Hence, it is
necessary to �nd alternative non-linear functions for the Rao test when it is
particularized for the energy detector case. This is discussed in the following
section, where two di�erent transformations are presented.

3.2 Extended energy detector (EED)

3.2.1 Alternative estimates of the non-linear function

Let us �rst consider the simplest case in which the components of the noise
vector w = [w0, w1, . . . , wN−1]

T are i.i.d., and sampled from a non-Gaussian
distribution. As the ED is either optimum or GLRT when the noise is Gaus-
sian, the use of a non-linear function g(·) is proposed to convert a random
variable w having arbitrary distribution function Fw(w) to a zero-mean and
unit-variance Gaussian random variable. Thus, an extended energy detec-
tor (EED) is obtained by applying this transformation, denoted by g(·), to
every component of the observation vector y before computing the energy,
and then by subsequently implementing the following test [64]:

g(y)T g(y)

Pg(w)

H1

>
<
H0

λ. (3.11)

This test resembles the particularization of the Rao test for detecting un-
known signals. Pg(w) is the mean power of the transformed background noise
and λ is the detection threshold �xed by the PFA selected. The non-linear
transformation g(·) in (3.11) can be implemented using di�erent techniques.
Of these, the well-known parametric Box-Cox transformation will be exam-
ined �rst; followed by the presentation of a new non-linear transformation,
itself based on the estimation of the noise PDF which has to be transformed
into Gaussian. In both cases, the Gaussianization process consists of per-
forming a non-linear transformation of the data without memory to ensure
that the distribution of values is as close as possible to a Gaussian function.
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3.2.2 The parametric power transformation

One of the most common transformations used to achieve Gaussianity was
proposed by Box and Cox in [10], where a parametric power transformation
was presented to reduce departures from normality. These authors demon-
strated that a distribution can be approximated to Gaussian only by applying
a transformation based on raising to a power of the non-Gaussian variable
w as follows:

gβ(w) =


wβ − 1

β
if β 6= 0

logw if β = 0

(3.12)

where the Gaussianization process can be controlled by the transformation
parameter β. The most recommended studies and theoretical analyses use
the expression given by (3.12), instead of merely wβ , since this is continuous
at β = 0. For vectors w, the transformation is applied to each element
separately with the same β, so independent components of the vectors are
assumed.

The transformation in equation (3.12) is only valid for w > 0, and there-
fore another version of this transformation must be considered. Accordingly,
Box and Cox proposed a shifted power version where w can take negative
values:

gβ(w) =


(w + β2)

β1 − 1

β1
if β1 6= 0

log(w + β2) if β1 = 0 .

(3.13)

In this case, β = (β1, β2); in practice, the β2 must be selected so that w+β2 >
0 for any value of w. Therefore, β1 can be considered the transformation
parameter as β2 is only necessary to ensure positive values.

This technique has been extensively studied, although there is a family
of possible variants that partially modify this transformation. Some of them
are reviewed in [74]. For example, in [54] an exponential transformation is
proposed; in [38] the so-called modulus transformation was introduced; and
in [6] another modi�cation was suggested in order to support the normal
distribution.

Nevertheless, our e�orts here are focused on the original transformation
proposed in (3.13) and on the estimation of the parameter β1, denoted in
the following by β. In [74], a review of the most common techniques used in
the estimation of the transformation parameter β is presented. One is the
maximum likelihood method, commonly used since it is conceptually easy to
implement and the pro�le likelihood function is easy to compute in this case.
Another approach is based on a Bayesian method, as presented in [71]. Some
others are focused on the estimation of the transformation parameter on the
basis of enforcing a particular assumption [84]. However, we will not attempt
to estimate this parameter using these aforementioned methods, but rather,
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we shall experimentally study the e�ect of β; that is, observe the resulting
ROC curve of the EED when it implements this transformation, as will be
shown in Section 3.5.

It is important to note that, clearly, not all non-Gaussian data may
be power-transformed to normal. This problem was studied in [25], where
it was concluded that even in cases where no power transformation could
bring the distribution to exact normal, the usual estimates of β will lead
to a distribution which tends toward this requirement. Therefore, and in
general, we can use the central assumption that, for some β, the transformed
observations can be treated as more normally distributed than the original
data.

3.2.3 Transformation based on the data PDF

The Box-Cox transformation shown in the previous section can be easily
implemented, but it presents the disadvantage of not taking into account
the distribution of the original data when the non-linear transformation is
applied. As a result, it is possible that some distributions are closer to
Gaussianity, and as such, need a softer transformation than others that are
not so Gaussian. It is therefore necessary to �nd another transformation
that best �ts the input data.

Considering the solutions proposed in [70], it is not possible to directly

transform a non-Gaussian random variable into a Gaussian one. However, a
random variable with Uniform distribution can be transformed into another
with a speci�c distribution (Gaussian in this case). The problem can thus
be addressed by introducing an intermediate step in which the data distri-
bution becomes Uniform and is then transformed into the desired Gaussian
distribution. Hence, the transformation process described consists of trans-
forming a random variable w with a known PDF Fw(w) into another called
v with a Gaussian distribution function de�ned by Fv(v). For this purpose,
the function g(w) must be found so that the distribution of the random vari-
able v = g(w) follows the speci�ed data distribution. Therefore, the process
will be divided into two steps, as illustrated in Figure 3.4:

• Known PDF to Uniform distribution (Fw(w) → Fz(z)): given
a random variable w with a known distribution Fw(w), we �nd the
function g1(w) to transform it into another called z, which is uniformly
distributed in the interval (0,1). In this case, the transformation is
g1(w) = Fw(w) and, therefore:

z = Fw(w) where Fz(z) = z for 0 ≤ z ≤ 1. (3.14)

The random variable z can be considered as the output of a non-linear
system without memory, whose input is w, and whose transfer function
is de�ned by Fw(w).
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Figure 3.4: Transformation of a known PDF into a Gaussian distribution.

• Uniform to Gaussian distribution (Fz(z) → Fv(v)): in this case,
given the random variable z uniformly distributed in the interval (0,1),
we wish to �nd the function g2(z) that yields a new random variable v
with the distribution de�ned by the function Fv(v). In this case, the
required transformation is given by g2(z) = F−1v (z) and, hence:

v = F−1v (z). (3.15)

Finally, by applying the above two steps, a random variable v, whose
data follow a Gaussian distribution Fv(v), with zero-mean and variance σ2g
is obtained. The resulting transformation can be expressed as follows:

v = g(w) = F−1v (Fw(w)) (3.16)

where

Fv(z) =
1

σg
√

2π

∫ z

−∞
e−(1/2σ

2
g)t

2
dt. (3.17)

3.2.3.1 Known noise PDF

Taking into account (3.16), and considering the case in which the random
variable to be transformed corresponds to the noise w, it becomes necessary
to know the distribution function Fw(w) to obtain g(w). If this information
were known in advance, the transformation could be immediately calculated.

For example, a Laplacian noise distribution can be transformed into a
Gaussian distribution following the steps above. So, from (3.16), it is neces-
sary to calculate Fw(w) (of the Laplacian noise), and F−1v (of the Gaussian
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noise). As the Laplacian data distribution (with zero-mean and standard
deviation σl) is de�ned by (3.7), the expression Fw(w) is yielded:

Fw(w) =
1

2

[
1 + sgn(w)

(
1− e

−
√
2|w|
σl

)]
(3.18)

where sgn is a function de�ned in (3.9). Then, using (3.17), the inverse of
the Gaussian distribution function is obtained as follows:

F−1v (v) = σg
√

2 erf−1(2v − 1) (3.19)

where σg represents the standard deviation of the Gaussian noise. The error
function can be expressed as:

erf(x) =
2√
π

∫ x

0
e−t

2
dt. (3.20)

Hence, assuming (3.18) and (3.19), the non-linear transformation that
should be applied to a Laplacian noise variable w to convert it into Gaussian
noise can be de�ned by the follow expression:

g(w) = σl
√

2 erf−1
(
sgn(w)

(
1− e

−
√
2|w|
σl

))
. (3.21)

3.2.3.2 Unknown noise PDF

In most applications, the information about the noise distribution is unavail-
able. Therefore, to maintain the generalization of the transformation and
to ensure its applicability in several scenarios of background noises, a non-
parametric estimation of the noise PDF (Fw(w)) must be attempted. For this
purpose, the non-parametric estimator described in [78] is employed to esti-
mate the PDF of the random variable w using a set of samples wl, l = 1, . . . , L
corresponding to various realizations of w. As a result, the following expres-
sion is attained:

p̂(w) = a
L∑
l=1

exp

(
−1

2

(
w − wl
h

)2
)

(3.22)

where a =
1

Lh
√

2π
is a normalization constant and h is a parameter which

controls the degree of smoothing of the estimated PDF.

With (3.22), the estimation of Fw(w) can therefore be derived:

F̂w(w) =

∫ w

−∞
a

L∑
l=1

exp

(
−1

2

(
x− wl
h

)2
)
dx

=
1

L

L∑
l=1

1

2

[
1 + erf

(
w − wl
h
√

2

)]
. (3.23)
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In (3.23), samples w are the components of the noise vectors to be trans-
formed into Gaussian, and samples wl, l = 1, . . . , L correspond to the com-
ponents of the original training noise, where L is the total number of training
samples.

Hence, taking into account (3.16); (3.19) with σg = 1; and (3.23); it be-
comes possible to express the non-linear and non-parametric transformation
as follows:

ĝ(w) = Φ−1(F̂w(w))

=
√

2 erf−1

(
2

L

L∑
l=1

1

2

[
1 + erf

(
w − wl
h
√

2

)]
− 1

)
(3.24)

where Φ(x) is de�ned in Appendix (A.4).

It is possible to illustrate the behavior of this function g(·) for di�erent
non-Gaussian data distributions, as displayed in Figure 3.5 for the following
distributions: Laplacian, Rayleigh, Gamma and Uniform. It becomes appar-
ent that one of the e�ects of the function g(·) consists of cutting the peaks
and outliers of the signal, as is expected.

3.2.4 Optimality study of the EED

An extension of the ED has been presented to deal with the most general
case of non-Gaussianity of the background noise. This detector applies a
scalar non-linear function with the aim of converting the non-Gaussian noise
in Gaussian. As a rule, the extended detector will not be optimum, but it
will be shown that, under the weak signal assumption, it is GLRT.

The EED test is obtained by applying one of the two non-linear transfor-
mations studied in the previous section to every component of the observa-
tion vector y. However, the present focus is on the EED when implementing
the non-parametric transformation, since this type of processing is more ap-
propriate when di�erent types of noise are present. Therefore, for the study
of optimality, the following de�nition of the new transformed variable u is
used:

u = g(w) = Φ−1(Fw(w)). (3.25)

Assuming that the samples are i.i.d., the energy is thereby calculated:

g(y)T g(y)
H1

>
<
H0

λ. (3.26)

Notice that as the transformed random variable u in (3.25) is zero mean and
unit-variance, the noise mean-power Pw = E[g2(w)] = 1.

Regarding the control of the PFA, the proposed EED statistic in (3.26)
follows a chi-squared distribution (χ2

N ) under H0, as in the ED. This allows
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(a) (b)

(c) (d)

Figure 3.5: Non-linear function g(·) for di�erent unit-variance and zero-
mean non-Gaussian noise distributions. (a) Laplacian noise distribution.
(b) Rayleigh noise distribution. (c) Gamma noise distribution. (d) Uniform
noise distribution.

one to calculate the required threshold λ for a speci�c PFA. But, what can
we say about the optimality of the new detector? Note that the actual per-
formance of the EED depends on how the non-linear transformation a�ects
the signal under H1. Therefore, it is di�cult to establish the optimality of
the EED in a general form. However, let us assume the more interesting
case of a low signal-to-noise ratio (SNR), since every reasonable detector
must work well with a high SNR. Thus, the next detection model will be
considered:

H0 : y = w w : pw(w) = pw(w0) · pw(w1) . . . pw(wN−1)

H1 : y = s+w
(3.27)

where pw(w) is an arbitrary noise probability density function. By applying
the non-linear transformation to these hypotheses, it is possible to obtain a
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new model:

H0 : g(y) = g(w) g(w) : N(0, I)

H1 : g(y) = g(s+w) = g(w) + diag[g′(w)]s = g(w) + z
(3.28)

where the assumption of low SNR is considered by means of a linear approx-
imation of g(s + w) and following a Taylor series expansion. The matrix
diag[g′(w)] is de�ned as a diagonal matrix whose main diagonal is formed
by vector g′(w). Notice that z cannot be considered, generally, as a Gaus-
sian distribution with uncorrelated variables, even in the case that s could
follow a Gaussian distribution with uncorrelated samples. Hence, all these
considerations lead us to conclude that EED will not be optimum in most
cases. However, considering z as a completely unknown vector, the achieved
Gaussianity of the noise after transformation guarantees that ED is GLRT.
This is an interesting property, but it remains necessary to consider how the
SNR is modi�ed after the non-linear transformation.

To perform this analysis, an enhancement factor, denoted α, is de�ned. It
is calculated as the quotient of the SNR after the non-linear transformation
(SNRg), and before it (SNRo). Using the results and de�nitions of (3.27)
and (3.28), α may be expressed as follows:

α =
SNRg
SNR0

=
E[zT z]/E[g(w)T g(w)]

E[sT s]/E[wTw]
=
E[sTdiag(g′2(w))s]

E[sT s]/E[w2]

=
E[g′2(w)] · E[sT s]

E[sT s]/E[w2]
= E[g′2(w)] · E[w2]. (3.29)

The following expressions were considered concurrently:

E[wTw] =
N∑
n=1

E[w2
n] = N · E[w2]

E[g(w)T g(w)] =

N∑
n=1

E[g2(wn)] = N · E[g2(w)] = N (3.30)

E[sTdiag(g′2(w))s] = E

[
N−1∑
n=1

g′2(wn)s2n

]

=

N−1∑
n=1

E[g′2(wn)] · E[s2n] = E[g′2(w)] · E[sT s].

Possible changes in the SNR (resulting from the e�ects of the non-linear
transformation) are indicated by α. To calculate this factor, it is necessary
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to obtain g′(w) by using the expression from (3.25):

g′(w) =
du

dFw(w)

dFw(w)

dw
=

1

dFw(w)/du
pw(w) =

1

Φ′(u)
pw(w)

=
1

1√
2π
e−

1
2
u2
pw(w) =

√
2π e

1
2
g2(w) pw(w). (3.31)

And �nally, using (3.29) and (3.31), the factor α can be de�ned as:

α = E[g′2(w)] · E[w2]

= 2π

∫ ∞
−∞

eg
2(w)p3w(w)dw ·

∫ ∞
−∞

w2pw(w)dw. (3.32)

As detailed in (3.32), the factor α can be computed to evaluate the change
in SNR due to the non-linear transformation for a speci�c noise distribution.
Note that, as expected, for zero-mean Gaussian noise distribution, and uti-
lizing (3.25), g(w) = w/σw is a linear transformation; hence, g′(w) = 1/σw
(obtained from (3.31)), and thus α = 1. It is important to emphasize that
for α > 1, an EED operating in non-Gaussian background noise performs
better than an ED operating in Gaussian background noise, given the same
SNR. This fact is not guaranteed when α < 1, but improvements in the
PD of the EED with respect to the ED, and with both operating on the
same non-Gaussian noise, are still possible. This performance can only be
veri�ed experimentally for each speci�c noise distribution, as we will see in
Section 3.5.

3.3 Detection with statistical dependence between
noise samples

3.3.1 Introduction

Both the ED (studied in Section 2.2) and the EED (3.26) assume i.i.d. com-
ponents of the noise vector w. When this is not the case, and the samples
exhibit some form of dependence, it is necessary to apply additional pre-
processing. As seen in Section 2.2.3, independence and uncorrelation are
equivalent for the Gaussian case; hence simple pre-whitening is su�cient
and the pre-processed energy detector (PED) can be utilized.

However, the statistical dependence problem for the non-Gaussian case
is not so easily solved. One of the techniques used to reach vectors with
independent components is to apply an independent component analysis
(ICA), explained more fully in Section 3.3.2. Essentially, ICA may be applied
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to yield an observation vector yp with independent components by means of
a linear transformation U of vector y:

yp = Uy. (3.33)

Equation (3.33) is a generalization of (2.21), where matrix U not only
pre-whitens, but also achieves statistical independence. Actually, the es-
timation of U is usually divided into two steps: the �rst decorrelates the
elements of vector y, as performed in equation (2.21), and the second yields
the desired independence by means of a unitary transformation (equivalent
to a rotation).

Although there are several options to implement the decorrelation pro-
cess, the pre-whitening step shown in (2.21) is used here to enhance the
generalization from Gaussian to non-Gaussian. Thus, matrix U can be de-
composed as:

U = QR
− 1

2
w where QTQ = I. (3.34)

As a result, the ED for non-Gaussian, non-independent noise is de�ned as
follows:

g(QR
− 1

2
w y)T g(QR

− 1
2

w y)
H1

>
<
H0

λ. (3.35)

It will be referred to hereafter as the pre-processed extended energy detector
(PEED). Notice that, as in (3.26), normalization by the noise mean-power is
not required, as the non-linear transformation generates random zero-mean
unit-variance Gaussian variables. Section 3.3.3 will address the problem of
estimating the transformation U in (3.35) from a training set of noise data
samples.

All the considerations given in Section 3.2.4 are now valid and applica-

ble to the linearly transformed observation vector yp = QR
− 1

2
w y. Therefore,

(3.35) implements a GLRT test for the detection of unknown signals, whose
observation vector is represented as zp = diag[g′(wp)]sp, in a Gaussian and
uncorrelated background noise. In this case, notice that the transformation
Q is unitary (a rotation), so the energy of the pre-whitened signal is con-
served. Hence, the parameter α can still be considered an indicator of how
PEED enhances the performance of the PED when the noise is non-Gaussian
and non-independent.

3.3.2 Review of ICA model

ICA is a generalization of Principal Component Analysis (PCA) [50], whose
goal is to �nd a linear transformation from an original data set with a mixture
of components, so that the transformed data samples are statistically inde-
pendent, or at least as independent as possible. As a result, ICA algorithms
have proven successful in separating linear mixtures of independent source



3.3. Detection with statistical dependence between noise samples 45

signals in many applications, for example, biomedical data analysis (EEG,
ERP, fMRI, optical imaging) and computational modeling, as reviewed in
[83].

To de�ne the ICA problem, it is convenient to use the vector-matrix nota-
tion. Thus, let w denote the random vector whose elements are the mixture
samples w1, . . . , wN , and u the random vector with elements u1, . . . , uN . In
addition, A shall denote the matrix with elements aij . Using this vector-
matrix notation, the above mixing model is written as:

w = Au (3.36)

which is known as the ICA model [36]. The independent components cannot
be directly observed and the mixing matrix is assumed to be unknown. The
only observed data is the random vector w, and both A and u must be
estimated by using it. The starting point of the ICA is the very simple
assumption that the components ui are statistically independent, while the
independent components must have non-Gaussian distributions. Therefore,
after estimating A, we can compute the inverse, denoted as U, and thereby
attain not only uncorrelated but also the independent components simply
by equating:

u = Uw. (3.37)

There are several approaches that can be implemented for the ICA es-
timation. Some are based on the minimization of the mutual information
[5], but we shall focus on the maximum likelihood estimation. In this case,
a statistical model of the data is often assumed; but when this assumption
is inaccurate, the algorithms perform suboptimally (or even fail to produce
the source separation), as commented in [9]. For this reason, an alternative
method is turned to. It consists of employing a more �exible model for the
PDF of the source signals, based on a non-parametric kernel density estima-
tion technique of the PDF [78], as will be described in greater detail in the
following section.

3.3.3 Estimating the transformation matrix U

First of all, let us o�er some important comments about ICA identi�ability.
Problems with identi�ability appear when ICA is applied to blind source
separation (BSS): sources can be recovered up to some scaling factor and
permutation, with the only constraint being a maximum of one Gaussian
source [18]. In our case, ICA enters as a consideration in the context of
detection not to separate sources, but rather to obtain transformed vectors
with components as i.i.d. as possible. This transformation is achieved using
a training set of dependent vectors; consequently, the constraints appearing
in BSS become of no concern in this case. There are many algorithms in
block or iterative versions which are able to obtain estimates of matrix U.
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Let us consider a maximum likelihood approach for this estimate. Thus, the
set of training observation noise vectors wk with k = 1, . . . ,K, are grouped
into matrix W = [w1, . . . ,wK ]. From now on, it will be assumed that wk

are independent observation vectors of non-independent noise. In practice,
this means that vectors wk must correspond to non-overlapped (and rather
well separated) segments of the noise record, or, preferably, that di�erent
noise records be used for every wk. A very popular approach for estimating
the ICA model is to �nd the maximum likelihood estimation of matrix U,
given matrix W. Therefore, after employing logarithms, the log-likelihood
function is de�ned as:

L(W/U) = log p(W/U) =
K∑
k=1

log p(wk/U). (3.38)

But, from (3.33) and using well-known properties of functions for random
variables [77], (3.38) can be expressed as:

L(W/U) =
K∑
k=1

[log |detU|+ log p(Uwk)] (3.39)

where maximization leads to the following expression

dL(W/U)

dU
=

K∑
k=1

[
d log |detU|

dU
+

(dp(Uwk)/(dU))

p(Uwk)

]

=

K∑
k=1

[
(UT )−1 − f(Uwk)w

T
k

]
. (3.40)

In (3.40), assuming that the components of vectors wpk = Uwk are i.i.d.,
the same non-linear scalar function f(·) can be separately applied to every
component of the linearly transformed vector wpk as follows:

f(Uwk) = [f(wpk1), . . . , f(wpkN )]T . (3.41)

Notice that assuming the same non-linear function for all the components
guarantees that all the elements of the transformed vector have identical
distribution. Similarly, separate application of the scalar function entails in-
dependence. Therefor, given the training set of dependent vectors, a trans-
formation is obtained that leads to new vectors with components as i.i.d. as
possible.

Equating (3.40) to zero, a set of non-linear equations with unknown ma-
trix Û (estimated U) can be obtained:

Û
T

=

(
1

K

K∑
k=1

f(Ûwk)w
T
k

)−1
. (3.42)
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For the Gaussian case, f(Ûwk) = Ûwk and Û must satisfy the following
expression:

Û
T

=

(
1

K

K∑
k=1

Ûwkw
T
k

)−1
=

(
1

K

K∑
k=1

wkw
T
k

)−1
Û
−1

(3.43)

where

Û
T
Û =

(
1

K

K∑
k=1

wkw
T
k

)−1
. (3.44)

Note that for the Gaussian case, the solution for matrix Û can be expressed
as:

Û = Û
T

= R̂
− 1

2
w =

(
1

K

K∑
k=1

wkw
T
k

)− 1
2

. (3.45)

In general, however, iterative procedures [23, 28] are necessary to solve
(3.42). For example, one possible solution is to use conventional gradient
algorithms to obtain the following expression for matrix Û:

Ûi+1 = Ûi + β
d̂L(W/U)

d̂U

= Ûi + β
K∑
k=1

[
(Û

T
i )−1 − f̂i(Ûiwk)w

T
k

]
. (3.46)

Considering this algorithm and the decomposition of U indicated in (3.34),
convergence can be accelerated by �rst estimating Rw from a set of training
noise vectors, and subsequently employing a classical estimator as follows:

R̂w =
1

M

M∑
m=1

wmw
T
m. (3.47)

Then, an iterative gradient algorithm is applied to the pre-whitened training
vectors in order to estimate the rotation matrix Q in the iteration i+ 1, as
follows:

Q̂
′
i+1 = Q̂i + β

K∑
k=1

[(
Q̂
T
i

)−1
− f̂

(
Q̂iwpk

)
wT
pk

]
(3.48)

where in this case wpk = R̂
− 1

2
w wk are the pre-whitened training noise vectors.

To estimate Q, a unitary matrix must be implemented in each iteration,
yielding the following normalization:

Q̂i+1 = Q̂
′
i+1

(
Q̂
′T
i+1Q̂

′
i+1

)− 1
2
. (3.49)
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The implementation of the iterative algorithm in (3.48) and (3.49) re-

quires the estimation of function f̂i(x) =
p̂′i(x)

p̂i(x)
at every iteration i. To

perform such an estimate, it is necessary to �rst know the data distribution
p̂(x). Hence, to reach a general applicability valid for any distribution, a
non-parametric estimation of p(x), as described in (3.22), is used. Let us
consider the set of samples xl, with l = 1, . . . , L corresponding to realiza-
tions of the random variable x (whose PDF must be estimated). In this case,
the samples correspond to components of Qiwpk, k = 1, . . . ,K obtained at
every iteration; thus, a total number of L = K ·N samples will be calculated.
Therefore, the following expression is derived:

p̂′(x) = a
L∑
l=1

exp

(
−1

2

(
x− xl
h

)2
)(
−x− xl

h

)
1

h

=
a

h2

[
L∑
l=1

xl exp

(
−1

2

(
x− xl
h

)2
)

−
L∑
l=1

x exp

(
−1

2

(
x− xl
h

)2
)]

(3.50)

where xl (with l = 1, . . . , L) corresponds to a set of training samples of the
data distribution to be estimated. Hence, the estimate of function f(x) will
be de�ned as:

f̂(x) =
1

h2

x−
L∑
l=1

xl exp

(
−1

2

(
x− xl
h

)2
)

L∑
l=1

exp

(
−1

2

(
x− xl
h

)2
)
 . (3.51)

Using this expression it is possible to calculate R̂w and Q̂ in (3.47) and
(3.49), respectively, and, in turn, to obtain the �nal transformation matrix
Û.

3.4 Generalized matched subspace �lter: GMSF

3.4.1 Introduction

The matched subspace �lter (MSF) is known to be an uniformly most power-
ful (UMP) detector for the detection of a subspace signal in a background of
uncorrelated Gaussian noise. Optimality of the MSF is kept even in the pres-
ence of subspace interferences [76]. Also in [22], similar detector solutions are
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proposed in the presence of interference for speci�c types of independent non-
Gaussian noise (called generalized Gaussian distributions). Unfortunately,
there is no general UMP solution for the subspace signal detection problem
when the noise is non-Gaussian and non-independent. Hence, suboptimal
detectors will be devised.

A GLRT could be implemented, but it requires a maximum likelihood
estimate (MLE) of the unknown parameters (in our case, µ and θ), which is
not a very practical option. Other well-known suboptimal alternatives exist,
such as the Wald and Rao tests [43]. The Wald test, although simpler to
implement than the GLRT, also requires estimates of the involved parameters
under H1. The Rao test, in contrast, does not have such a requirement;
in its most general form, only an MLE of the nuisance parameters under
H0 is required. Notice that in the problem considered here, the vector of
parameters is given by θr = 0 (under H0) and θr = [µ,θT ]T (under H1); i.e.,
no nuisance parameters appear. Thus, the Rao test becomes an attractive
alternative to deal with the non-Gaussian and independent noise case. It
is worth mentioning that GLRT, Wald, and Rao tests are asymptotically
equivalent in any case. Moreover, it has been recently shown that, for a �nite
number of observations, the three tests either coincide or are statistically
equivalent in a number of typical detection problems [20, 21]. In particular, it
is demonstrated in [21] that coincidence exists in detection problems without
nuisance parameters when the observation PDF belongs to the exponential
family, thus covering a broad range of practical cases.

3.4.2 Rao test generalization

Here, our attention turns to the Rao test. It is rather simple to adapt the
general form of this test to the signal subspace detection problem in non-
Gaussian noise assuming that the components of the noise vector w are i.i.d.
random variables. This has been already shown in (3.1), and it can also be
expressed in the form:

g(y)TPg(y)

Pg(w)

H1

>
<
H0

λ (3.52)

whereP = H(HTH)−1HT is the projection matrix onto the subspace de�ned
by the columns of matrix H.

Therefore, (3.52) is an extension of the MSF seen in Section 2.2.4, in
the sense that a non-linear transformation g(·) is applied to the original
observation vector prior to computing the normalized subspace energy. Note
that for the Gaussian case g(w) = w; therefore, g(y) = y and Pg(w) = Pw =
σ2w. So, (2.14) and (3.52) are equivalent. In addition to the aforementioned
equivalences with the GLRT and the Wald test, the Rao test has another
interesting property: the statistic g(y)TPg(y)/Pg(w) is χ

2
p as in (2.14), hence

the value λ can be easily computed for a required PFA. In the following,
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the expression de�ned in (3.52) and found suitable for independent and non-
Gaussian noise will be denoted by MSF.

3.4.3 Extension of the MSF

In this section, a further generalization of the MSF given in (3.52) is pro-
posed in order to consider the most general case of non-Gaussian and non-
independent noise. It is based on the use of ICA, which implements a linear
matrix transformation to make the components of the transformed obser-
vation vector as independent as possible. The same idea was exploited
in Section 3.3 to derive energy detectors in the presence of non-Gaussian
and non-independent noise samples. Actually, ICA could be an option to
implement a linear pre-processing step in any detection problem involving
non-Gaussianity and statistical dependence among the observed vector com-
ponents. However, each detector requires particular attention due to the
speci�c implementation of the non-linear transformation g(·). An "ad hoc"
non-linear function was proposed in Section 3.2.3 to make the linearly trans-
formed observation vector as Gaussian as possible, but the GLRT condition
of the extended energy detector used was not entirely demonstrated. Nev-
ertheless, this is not the case in the detection problem considered in this
section since the non-linear transformation required in (3.52) is inherent to
the Rao test (de�ned in (3.3)), thereby preserving its properties.

Test (3.52) assumes that the components of w are i.i.d. When this is not
the case, the non-independent observation vector could be transformed into a
new one having independent components. This can be done by means of ICA
and an appropriate linear transformation leading to a new generalization of
the MSF that will be termed hereafter as generalized matched subspace �lter
(GMSF) [63]. Therefore, using U as the linear transformation to obtain i.i.d.
vector noise samples with u=Uw, the GMSF is proposed:

g(Uy)TPUg(Uy)

Pg(u)

H1

>
<
H0

λ (3.53)

where Pg(u)=E[g2(u)], and the pre-processed subspace matrix can be ex-
pressed as:

PU = HU (HT
UHU )−1HT

U with HU = UH. (3.54)

Notice that the non-linear transformation appearing in (3.53) must be
de�ned from the PDF of the linearly transformed noise samples u, which
generally have a di�erent (non-Gaussian) PDF from the original noise w.
Hence, using (3.3), and changing w to u, we obtain:

g(u) = −

dp(u)

du
p(u)

. (3.55)
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Thus, it is guaranteed that equation (3.53) implements a Rao test in the
linearly transformed observation vector yp=Uy, while maintaining all the
mentioned properties of the Rao test such as the χ2

p distribution of the

statistic g(Uy)TPUg(Uy)/Pg(u), and the asymptotic equivalence with the
GLRT and the Wald test.

Di�erent criteria have been proposed to estimate the required ICA trans-
formation, but in essence, all of them are trying to minimize some appropri-
ate measure of the dependence between the vector components. In particu-
lar, the same approach as the one presented in Section 3.3.1 (where a matrix

U = QR
− 1

2
w was applied to the dependent data) is used.

Equation (3.48) and test (3.53) require knowledge of function f̂(.) and
the pre-processing function g(·), respectively. In this case, both functions are
equivalent and depend on the noise PDF p(u) as shown in (3.55). If there
is a priori knowledge of p(u), the non-linear function g(·) can be directly
computed. But, in general, there will not be any available knowledge about
the PDF of u; hence, a non-parametric approach becomes necessary. Let
us consider the set of samples {ul}, l = 1 . . . L, corresponding to realizations
of the random variable u (whose PDF is to be estimated). The classical
non-parametric estimator takes the form p̂(u) of (3.22). Assuming that the
quality of the estimate p̂(u) is appropriate to consider p(u) ∼= p̂(u), the non-
linear pre-processing function g(·) can be computed as in (3.55), thereby
leading to:

g(u) =
1

h2

u−
L∑
l=1

ul · exp

(
−1

2

(
u− ul
h

)2
)

L∑
l=1

exp

(
−1

2

(
u− ul
h

)2
)

 . (3.56)

One may identify in (3.56) a linear and a non-linear term. The latter accounts
for the possible non-Gaussianity of the random variable u.

3.5 Evaluation results of the EED in non-Gaussian
independent noise

In order to illustrate the performance of the two possible transformations de-
scribed in Section 3.2 (parametric Box-Cox and non-parametric) and which
can be implemented when using the EED, a number of experiments using a
variety of simulated signals and noises of di�erent characteristics were per-
formed. First, the procedure followed in estimating the power transformation
parameter (β), required for the Box-Cox transformation, is detailed. Then,
both methods were compared, analyzing the performance of the two non-
linear functions, and �nally, a conclusion was drawn about which was most
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suitable for the EED, when confronted with the general task of detecting
unknown signals in the presence of non-Gaussian and independent noise. In
both methods, the new ROC factor explained in Section 2.3.1 was used to
compare the performance of di�erent detectors.

3.5.1 Estimation of the power transformation parameter

In situations where an assumption of noise normality is not guaranteed, one
of the possible solutions is to transform the data such that the distributions
are nearer to the Gaussian assumption. Box and Cox proposed a paramet-
ric power transformation to reduce departures from normality, as shown in
Section 3.2.2. Although there is a family of possible variants that can be im-
plemented, our study is focused on analyzing the EED when implementing
the original transformation described in (3.13). Since this transformation
is parametric dependent, the usual practice when using some of these tech-
niques is to �rst estimate the parameter β.

As mentioned in Section 3.2.2, the transformation parameter β is found
experimentally by observing the detection results of the EED. Following an
evaluation of the resultant ROC curves (indicative of a successful transfor-
mation of the non-Gaussian noise), the optimum parameter is then selected
from the best EED performance. The following simulations are focused on
estimating the most suitable β parameter, required to detect a Gaussian
signal among di�erent independent and non-Gaussian noises (i.e. Laplacian,
Rayleigh, Gamma and Uniform distributions). A total of 40 ·103 vectors and
2 · 103 di�erent PFAs from 0 to 10−10 were considered in order to calculate
the experimental ROC curves of the EED. The range of PFA used to com-
pute the ROC factor was set between 0 and 0.1, since this is a reasonable
operation area for a detector.

Figure 3.6 illustrates the ROC factor of the EED (using the original Box-
Cox variant) for di�erent β values in comparison with an ED, but under the
same conditions. Four di�erent non-Guassian noises were used and, due to
the variety of the examples selected, a wide interval of β values were tested,
extending from −3 to 3. Several SNR were simulated (from 6 dB to −6 dB)
but since the same performance was observed in all cases, only the results
for SNR = −2 dB are presented. These results reveal that the β parameter
is fairly related to the characteristics of the non-Gaussian noise in which
the signal is immersed. For this particular Box-Cox variant, when β > 0,
positive ROC factors were achieved; this means that in the remaining cases
the EED performs poorer than the ED. Upon observing these curves, it
is possible to estimate the best β parameter for a particular non-Gaussian
noise by selecting that which yields the maximum ROC factor.

Table 3.1 gives the optimum β values for each non-Gaussian noise. As
can be observed, there is no common value for all of them, and the preci-
sion with which this parameter is estimated depends greatly on the noise
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Figure 3.6: ROC factor (γ) for di�erent β values when using the original
Box-Cox variant for detecting a Gaussian signal in presence of several non-
Gaussian noises with a SNR = −2 dB and N = 25.

characteristics. We must also notice that, in principle, the EED is expected
to outperform the ED since the former can address the detection problem
in the presence of non-Gaussian noise. However, it is possible that even
when the optimum β is used, the EED curve will not follow this behavior.
The explanation for this e�ect is related to the fact that when applying the
Box-Cox transformation, we cannot generally ensure that the transformed
observations are independent and normally distributed. To some extent the
reasonableness of this assumption can be tested with a comparative analysis
of the ROC curves generated by both the EED and the ED, as shown in the
next section. It follows that the corresponding ROC factor between both
detectors can be considered an indicator of the e�ectiveness of the Box-Cox
transformation.

Laplacian Rayleigh Gamma Uniform

β 0.6 1.8 1.4 2

Table 3.1: Optimum β from the original Box-Cox transformation when de-
tecting a Gaussian signal in the presence of di�erent non-Gaussian and in-
dependent noise distributions.
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3.5.2 Comparison of the EED using the non-parametric and

parametric Box-Cox transformation

In the previous section, simulation results led to the derivation of the op-
timum β to be used with the parametric Box-Cox transformation for each
particular non-Gaussian noise tested. Now, the non-parametric approach for
the EED proposed in 3.2.3 must also be analyzed in order to compare both
methods. Thus, several simulations were performed to study the unknown
signal detection problem in the presence of non-Gaussian and independent
noise, when using the EED.

First, let us describe in greater detail the implementation employed for
the non-parametric EED. In this case, the non-linear function described in
(3.24) was utilized and, based on a set of training samples, the noise PDF
was estimated as proposed in (3.22). In this particular experiment, a total
number of 10 · 103 noise samples were arbitrarily selected and used in a
previous training step. Thereafter, several experiments with di�erent SNR,
spanning from −6 dB to 4 dB, were performed (although only a portion of
the results are shown here). In addition, four di�erent noise distributions
(Laplacian, Rayleigh, Gamma, and Uniform) were tested.

Figure 3.7 illustrates the resultant ROC curves of the EED after apply-
ing both the non-parametric (EEDnopar) and the Box-Cox transformation
(EEDboxcox ). A Gaussian signal is detected in the presence of the four dif-
ferent non-Gaussian noises with independent samples. In addition, the ROC
curves of the ED in the same noise conditions are likewise shown to facilitate
a useful comparison of relative performance. As expected, the EED utilizing
both non-linear functions outperformed the ED when the noise did not follow
a normal distribution. Furthermore, one can observe how the improvement
reached by the non-parametric EED is more signi�cant than that reached
with the parametric EED over the ED. This improvement is related to the
α parameter, obtained for the non-parametric case using (3.29) and given
in Table 3.2 for each non-Gaussian noise. Not surprisingly, high values of α
are associated with large improvements in the EED ROC curve over the ED
curve.

Laplacian Rayleigh Gamma Uniform

α 1.3055 1.3732 3.9912 2.0355

Table 3.2: Enhancement factor α obtained for the non-parametric EED when
detecting a Gaussian signal in the presence of di�erent non-Gaussian and
independent noise distributions.
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(a) (b)

(c) (d)

Figure 3.7: ROC curves of the EED using the Box-Cox (EEDboxcox ) and the
non-parametric approach (EEDnopar). Generated when detecting a Gaus-
sian signal in the presence of di�erent noise distributions with SNR = −4
dB and N = 25. (a) Laplacian noise. (b) Rayleigh noise. (c) Gamma noise.
(d) Uniform noise.

In Table 3.3, a more precise evaluation of both the EED and the ED is
presented. The objective of this table is to summarize the behavior of the
EED versus the ED, and to analyze in greater detail the ROC curves shown
in Figure 3.7. It must �rst be pointed out how the ROC factor obtained is
positive when comparing both the EEDnopar as well as the EEDboxcox with
the ED. This means that the corresponding ROC curves of the EED lie above
those of the ED. Then, it is also important to remark that the maximum
values are reached for the Gamma noise in both cases. In light of the ROC
curves shown in Figure 3.7, this result falls in line with our expectations.
Furthermore, greater values of the factor are achieved with the EEDnopar
than with the EEDboxcox, which is indicative of better performance under
the same conditions. Finally, when comparing the ROC curves of the two
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EED transformations, the ROC factor is again above 0; hence, it can be
concluded that the EEDnopar performs better in all noise conditions.

Comparison Laplacian Rayleigh Gamma Uniform

EEDnopar Vs ED 0.0142 0.2101 0.4392 0.3025
EEDboxcox Vs ED 0.0088 0.0237 0.0117 0.2411

EEDnopar Vs EEDboxcox 0.0079 0.1731 0.4373 0.0651

Table 3.3: ROC factor comparing the ED with the EED non-parametric
and the EED using the Box-Cox transformation with SNR = −4 dB and
N = 25.

It has been demonstrated that the non-parametric transformation used
in the EED performs better based on the improved ROC curves. However,
other considerations must be taken into account when deciding which of the
two approaches to implement. Although the implementation of the Box-Cox
transformation is much less time consuming, it is worthwhile in this case to
use the non-parametric approach as it can adapt to changes in noise char-
acteristics. Therefore, when referring to the EED, only the non-parametric
transformation will be used.

3.6 Performance evaluation of the PEED

In Section 3.5, the problem of detecting unknown signals in the presence of
non-Gaussian noises was evaluated. In that case, the samples of the non-
Gaussian noise were assumed to be i.i.d.. When this is not the case, simple
pre-whitening is insu�cient; a more complex detector must be implemented,
as detailed in Section 3.3. This detector was termed a PEED, and this section
presents a precise analysis of its performance when the noise is not only non-
Gaussian, but also non-independent. In addition, it will be compared with
other detectors, such as the ED and the PED (described in Chapter 2), in
order to examine the di�erences between them in non-independent scenarios,
as well as with independent noise samples.

3.6.1 Non-independent noise samples

In the �rst simulation setup, the detector evaluation required the generation
of random variables corresponding to non-Gaussian and non-independent
noise, denoted wd. They were obtained by �rst generating non-Gaussian
independent random variables wi, leading to noise vectors wi. They were
subsequently transformed as follows: wd = U−1wi. The elements of the
mixture matrix U−1 (dimension N × N) were calculated from a random
variable with a standard uniform distribution across the open interval (0,1).
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A total of 3·104 noise vectors were generated for each simulation. In addition,
a Gaussian signal was generated and di�erent SNR conditions covering the
range of −8 dB to 4 dB were simulated.

In order to evaluate the PEED, it was assumed that both the estimate
of the linear transformation U and the pre-processing function g(·) required
in (3.35) were obtained in a previous training step where only noise was
present. Thus, selecting the number of noise training vectors K used to
estimate of U becomes an important issue of practical interest. Obviously,
good estimates of U require a relatively high value of K. However, it cannot
be made arbitrarily large as there are some limiting factors, namely, the
computational burden and the time interval duration allowed for training.
In general, this decision may be considered part of the overall calibration of
the detector for each application, but unfortunately, it is not easy to �nd a
closed analytic equation providing the best values. Instead, an experimental
�tting was used, taking the value that resulted from the best performance
(in terms of the ROC curves). For this task, a total of 2 ·103 training vectors
were used.

Figure 3.8 summarizes the performance of the PEED when detecting
a Gaussian signal in the presence of four di�erent non-Gaussian and non-
independent background noises, with SNR = −4 dB. In addition, the ROC
curves of the PED and the EED are also shown to better compare and
understand the performance of the PEED. First, it is important to notice
how the EED o�ers a truly poor performance: a random detector for all noise
conditions resulted, as it could not address the noise sample dependence.
Thus, let us examine the performance of the PED. As described in (2.22),
this detector applies a simple pre-whitening to the observation vector and,
as can be observed, the ROC curve experiments a considerable improvement
in performance, particularly when viewed alongside the EED. However, the
results of this solution remain insu�cient: when the non-Gaussian noise
samples are dependent, not only pre-whitening but also ICA must be applied.
This requirement makes using the PEED more attractive, as its ROC curve
presents the best results of all non-Gaussian examples. The improvement
reached is related to the enhancement factor α, given in brackets for each
case: Laplacian (α = 1.2998), Rayleigh (α = 1.3196), Gamma (α = 3.9956),
and Uniform (α = 2.0546).

Table 3.4 summarizes the results obtained in Figure 3.8 after evaluating
the performance of the PEED versus the EED and the PED, on the basis of
the ROC factor. As observed, and concurring with the results illustrated in
Figure 3.8, the calculated ROC factor revealed that the PEED outperforms
the other two detectors, in particular for the Gamma and Uniform noises.
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(a) (b)

(c) (d)

Figure 3.8: ROC curves comparing the PEED with the PED and the EED.
The non-parametric approach was used to detect a Gaussian signal in the
presence of di�erent noise distributions with dependent samples, SNR = −4
dB, and N = 25. (a) Laplacian noise. (b) Rayleigh noise. (c) Gamma noise.
(d) Uniform noise.

Comparison Laplacian Rayleigh Gamma Uniform

PEED vs PED 0.0177 0.1813 0.4337 0.3048
PEED vs EED 0.0398 0.2251 0.4355 0.4218

Table 3.4: ROC factor comparing the PEED with the PED and the EED,
using the non-parametric transformation with SNR = −4 dB and N = 25.

3.6.2 Independent noise samples

To conclude with our evaluation of the PEED, let us study its performance
when the noise is non-Gaussian, yet independent. In this case, no pre-
whitening nor linear transformation are required and thus the estimation
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of matrix Q should tend toward the identity I, while R̂w shall only repre-
sent normalization.

Figure 3.9 represents the ROC curves of the EED and the PEED are
represented when detecting a Gaussian signal in the presence of the four
previously mentioned non-Gaussian noises. It is possible to observe here
how the PEED performance is similar to that of EED, and as expected,
consistently better than the ED. Therefore, under these particular noise
conditions, we can conclude that both detectors are equivalent; thus, the
general applicability of the PEED in the detection of unknown signals in the
presence of any kind of noise is demonstrated.

(a) (b)

(c) (d)

Figure 3.9: ROC curves comparing the PEED with the ED and the EED.
The non-parametric approach was used to detect a Gaussian signal in the
presence of di�erent noises with independent samples, SNR = −4 dB and
N = 25. (a) Laplacian noise distribution. (b) Rayleigh noise distribution.
(c) Gamma noise distribution. (d) Uniform noise distribution.
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3.7 Experimental results of the GMSF

Finally, several experiments were performed to verify the theoretical deriva-
tions and performance of the proposed GMSF. In this case, the signal was
assumed to be in a subspace, but in the presence of non-Gaussian and non-
independent noise. In order to evaluate the improvement of the GMSF ver-
sus the MSF, di�erent experiments were conducted using (3.53) and (3.52),
respectively.

3.7.1 Signal model

Subspace signals will be considered band-limited, i.e., formed by the sum of
one or more sinusoids as de�ned in (3.57). This is a speci�c subspace signal,
and it is of particular interest to examine the expected improvements when
using the GMSF, as will be seen in the experiments performed. Hence, the
detection problem is expressed as follows:

H0 : y[n] = w[n]

H1 : y[n] =

M∑
m=1

Am cos(2πmf0n+ φm) + w[n]
(3.57)

where n = 0, 1, . . . , N − 1, and m = 1, . . . ,M represents the number of
sinusoids used. The amplitude Am and phase φm are assumed to be un-
known, f0 is assumed to be known, and w[n] are the non-independent and
non-Gaussian noise samples. It is possible to rewrite the data model in the
linear model form as y = Hθ +w, with the subspace matrix given by:

H =




1 0
cos[ω1] sin[ω1]

...
...

cos[ω1(N − 1)] sin[ω1(N − 1)]


∥∥∥∥∥∥∥∥

. . .

. . .

. . .

. . .

. . .

. . .

∥∥∥∥∥∥∥∥∥


1 0

cos[ωM ] sin[ωM ]
...

...
cos[ωM (N − 1)] sin[ωM (N − 1)]


 . (3.58)

Here each sinusoid ωm=2πmf0 is represented by two column vectors, and
the operator ‖ simply signi�es column augmentation; that is, the abutting
parentheses are removed to o�er a wider matrix from the operands of the
operator ‖. Using the same notation, the unknown parameter vector θ can
be expressed as θ = [(α1β1)‖ . . . ‖(αMβM )]T , where αm = Am cosφm and
βm = −Am sinφm.
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3.7.2 Experimental setup

On the one hand, the detector evaluation required the generation of ran-
dom variables corresponding to non-Gaussian and non-independent noise.
They were obtained in a manner similar to that previously described in Sec-
tion 3.6.1 for the PEED. A total of 3 · 104 noise vectors were generated for
each simulation. On the other hand, generation of the subspace signals was
also required. In this case, the frequency f0 was set to 0.1, φm were samples
of a uniform random variable between [−π, π], and Am were selected for
every required SNR, de�ned as:

SNR =
M∑
m=1

|Am|2

σ2wi
. (3.59)

To evaluate the GMSF, it was assumed that the estimate of the linear
transformationU and the pre-processing function g(·) required in (3.53) were
obtained as part of a previous training step where only noise was present.
As mentioned in the previous section, selecting the corresponding number
of noise training vectors K is a challenging task since many factors can
in�uence this decision. However, it is also possible to use an experimental
�tting in order to select the number of noise training vectors K, used in
the estimation of U. In this case, we took the value of the best ROC curve
performance. For example, Figure 3.10 shows the results achieved for non-
Gaussian and non-independent noise wd (generated from Laplacian PDF),
with SNR = −2 dB, N = 25, M = 1, and di�erent K setups. It can be
observed how for K > 2 ·103, there is no signi�cant improvement in the ROC
curve. Similar results were achieved by varying SNR, N and M ; therefore,
in our experiments K was set to 2 · 103.

Once Û was obtained, it was then necessary to estimate the non-parametric
function g(·). To do so, the estimated linear transformation Û was applied
to the K available noise training vectors (wd) as follows: û = Ûwd. This
yielded K linearly pre-processed vectors û, and to a total set of K·N inde-
pendent samples of the random variable u, with PDFs similar to the original
wi. The parameter L was set based upon experiments similar to those con-
ducted to determine the most suitable value of K. To reduce computational
requirements, only a subset of L = NK/4 randomly selected samples were
used to estimate g(·), using (3.55).

3.7.3 Comparing GMSF and MSF

Several experiments were performed in order to assess the improvements of
the GMSF with respect to the MSF by varying di�erent parameters involved
in the detection problem.

First, it is of particular interest to observe how the GMSF behaved in the
presence of independent non-Gaussian noise (wi). Figure 3.11 presents the
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Figure 3.10: ROC curves of GMSF for non-Gaussian and non-independent
noise, generated from Laplacian noise PDF with SNR = −2 dB, N = 25,
M = 1, and di�erent K setups.

Figure 3.11: ROC curves of MSF and GMSF for independent Laplacian noise
(wi), with SNR = −2 dB, N = 25, and M = 1.

ROC curves of both detectors when using independent Laplacian noise for
SNR = −2 dB, N = 25, and M = 1. It can be observed that, as expected,
both detectors behaved similarly. Secondly, Figure 3.12 shows the ROC
curves obtained with the MSF and the GMSF when utilizing di�erent types
of non-independent noises (wd) for SNR = −6 dB, N = 25, and M = 1.
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As described in the previous sections, these dependent noise samples cor-
responded to linearly transformed independent noises having non-Gaussian
PDFs: Rayleigh, Laplacian, and Gamma. Furthermore, the ROC curve of
the MSF is also represented for the same parameters and non-Gaussian noise
PDFs, but with independent samples (wi). A comparison of the three curves

(a) (b)

(c)

Figure 3.12: ROC curves of MSF and GMSF for di�erent types of non-
independent (wd) and independent (wi) non-Gaussian noise distributions,
with SNR = −6 dB, N = 25, and M = 1. (a) Laplacian noise distribution.
(b) Rayleigh noise distribution. (c) Gamma noise distribution.

across all noise distributions �nds that the MSF detector experiments a con-
siderable deterioration with non-independent noise, while the GMSF curves
practically coincide with those corresponding to the MSF for independent
noise. Therefore, the results show the capability of the GMSF to compen-
sate for the degradation of the MSF, which itself becomes a random detector
in the presence of dependent noise. The above results are of particular im-
portance, since it is possible to demonstrate the generalization property of
the GMSF: it signi�cantly improves the MSF performance in the presence
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of non-independent noise (Figure 3.12) and it behaves like the MSF in the
presence of independent noise (Figure 3.11).

The previous results are expanded in Figure 3.13 by gauging the respec-
tive in�uence of di�erent experimental parameters. Figures 3.13a, 3.13b, and
3.13c show the ROC curves of the GMSF and the MSF with non-Gaussian
and non-independent noise (generated from Laplacian PDF) for di�erent val-
ues of SNR, N , and M , respectively. The improvements of the GMSF with
respect to the MSF become evident across all the examples, and the in�uence
of the parameter value follows this expected behavior. First, Figure 3.13a
illustrates how the PD increases with the SNR. It must be noticed that this
increase is not very signi�cant for the MSF, thus indicating that the SNR
should be much higher to compensate for the degradation of the MSF in

(a) (b)

(c)

Figure 3.13: ROC curves of MSF and GMSF with non-Gaussian and non-
independent noise distributions generated from Laplacian noise PDF. (a)
Di�erent SNR, N = 25 and M = 1. (b) Di�erent observation vector length
(N), SNR = −4 dB and M = 1. (c) Di�erent subspace matrix dimension
(M), SNR = −4 dB and N = 25.
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the presence of dependent noise. Similarly, Figure 3.13b reveals that, as ex-
pected, the PD also improves with the observation size N , since the normal
behavior of any detector implies that the test statistic increases the signal
to noise ratio gain with N . Again, it can be observed how the enhancement
in PD (when using the MSF) is not as signi�cant as that obtained with the
GMSF. Finally, Figure 3.13c shows the in�uence of varying M , the number
of involved sinusoids (i.e., varying the subspace dimensions). As expected,
the PD increases in the case of the GMSF when the subspace becomes more
restrictive (reduced dimensions), which means that the signal bandwidth be-
comes narrower, although this e�ect is insigni�cant in the MSF when it is
compared with the GMSF.

As a general conclusion, the degradation of the MSF brought on by the
presence of non-independent noise cannot be easily compensated for by rais-
ing the SNR, by increasing the observation size N , nor by reducing the
signal subspace dimension M . Therefore, use of the GMSF is perceived as a
practical solution to this problem.

3.8 Conclusions

This chapter has addressed the detection of totally unknown signals and
signals in a subspace (in both cases, with non-Gaussian and non-independent
noise).

When the noise is non-Gaussian, the Rao test was examined as a sub-
optimum solution to the detection problem. However, it was demonstrated
that in some particular situations it fails to o�er a satisfactory solution.
Therefore, alternative non-linear functions were proposed, leading to an ex-
tended version of the ED, termed EED. Two possible transformations were
studied: one that implements the parametric Box-Cox transformation, and
the other based on the non-parametric estimation of the data PDF to be
transformed. An analysis of the best Box-Cox parameter was conducted for
di�erent non-Gaussian distributions by means of an ROC factor evaluation.
The two transformations were compared for the same conditions, and it was
observed how the non-parametric solution o�ered better detection results in
terms of PD. Thus, it was decided to use it when implementing the EED. In
this latter case, a new enhancement factor α was de�ned, indicating possible
changes in SNR induced by the non-linear transformation.

When the noise is not only non-Gaussian, but also non-independent,
further extensions of the ED and the MSF were presented, leading to novel
detector solutions termed PEED and GMSF, respectively. In both cases,
ICA was applied to estimate the matrix transformation U that makes as
much i.i.d. as possible the components of the data vectors.

Thus, a detailed evaluation was carried out in order to compare the
performance of all the generalizations and extensions of the ED. First, the
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EED and the ED were evaluated across four di�erent non-Gaussian noise
distributions with independent samples. By calculating the enhancement
factor α for each case, the expected improvement attained by the EED was
demonstrated to be greater than the ED. Similar simulations were then
carried out with non-independent noise samples. In this case, the PEED
revealed the best results in comparison with the EED and the PED. A �nal
simulation showed the performance results of the GMSF versus the MSF for
non-independent non-Gaussian noise and for di�erent parameter setups. All
cases showed that the MSF su�ers a performance degradation in comparison
with the GMSF in the presence of non-independent noise.



Chapter 4

Structure of multiple energy
detectors (MED)

Courage and perseverance have a magical
talisman, before which di�culties

dissapear and obstacles vanish into air.

John Quincy Adams

In this chapter, a novel approach is proposed to overcome the de-

tection problem introduced by signal duration uncertainty. Instead of

using only one detector for every possible signal duration, the imple-

mentation of multiple energy detectors (MED), matched to di�erent

possible signal durations is introduced. Among the possible segmenta-

tion strategies that could be studied, we speci�cally concentrate on the

study of a particular case of successive segmentations of the original

observation vector. One of the main goals of this chapter is to obtain

the receiver operating characteristic (ROC) curves of this structure in

time and frequency domains, and to study the possible improvements

o�ered by this new method when compared with the use of a single

energy detector (ED).

4.1 Detection of signals with unknown duration

In the context of novelty or event detection, where the characteristics of the
signals to be detected are not known, there is also a lack of information
about the signal duration since the environment under study is susceptible
to any type of event. The selection of the temporal duration of the observa-
tion vector is a very challenging task that may signi�cantly a�ect detection.

67
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Therefore, an approach based on the use of multiple energy detectors, each
of which is matched to di�erent observation duration and bandwidth is con-
sidered. Thus, the simplicity of the energy detectors is maintained and the
complicated approach employed by the non-linear functions used in [45] is
likewise avoided.

4.1.1 Revision of the ED

As described in Chapter 2, the ED is a good solution for detecting unknown
signals in the presence of a background noise, and it is also generalized like-
lihood ratio test (GLRT) for the case of white Gaussian noise. In these con-
ditions, under hypothesis H0, the resulting statistic yTy/σ2w is chi-squared
distributed with N degrees of freedom (χ2

N ), where N corresponds to the ob-
servation vector dimension. Under hypothesis H1, the resulting statistic is
non-central chi-squared distributed with parameters of non-centrality equal
to the signal-to-noise ratio de�ned as SNR = sT s/σ2w, where s is the signal
vector and w the noise vector.

At this point, it is of particular importance to examine the relationship
between the dimensions of the observation vector N and the behavior of
the ED. To this end, when N is large, the chi-square distribution can be
approximated by a Gaussian distribution having mean N and variance 2N .
Similarly, the non-central chi-square distribution can be approximated by
a Gaussian one with a mean SNR + N and a variance 4SNR + 2N . In
consequence, the expression of the ROC for the ED when N is too large can
be easily obtained, as in [43]:

PD ≈ Q(Q−1(PFA)− SNRN) (4.1)

where Q is the error function de�ned in Appendix (A.5).

The term SNRN = SNR/
√

2N is de�ned as a normalized SNR, and,
taking into account (4.1), it can be clearly observed that, for a given PFA,
the PD not only depends on the SNR, but also on the dimension N of
the observation vector. Hence, for a speci�c SNR, if the signal duration
is signi�cantly smaller than N , the SNRN (and in consequence, the PD)
will be much lower than it would be with a choice of N that matched the
actual signal duration. To address this problem, a multiple energy detector
structure is proposed and will be analyzed in detail in the sections that
follow.

4.1.2 Description of the multiple energy detector structure

This section describes the new structure formed by multiple energy detectors
(MED). First, the distribution of the multiple EDs is detailed, followed by
a description of the decision rule employed.
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The MED consists of using several EDs, each of them using a di�erent
length of the observation vector. One could devise many strategies for parti-
tioning the initial observation vector of dimension N , but in absence of any
a priori information, L layers of partitions are considered to correspond to
di�erent segmentation degrees of the original observation length [89].

Figure 4.1 shows the proposed layered structure of the detectors, com-
posed of successive halved divisions of the original observation vector. Layer
l = 0 (top level), is formed by the original interval of N samples; while at
layer l = 1, the original interval is divided in two, thereby obtaining two
non-overlapped segments of N/2 samples each. Similarly, layer l = 2 is com-
posed of four non-overlapped segments of N/4 samples each. This patterns
continues successively until layer l = L− 1 (bottom level), where 2L−1 seg-
ments of N/2L−1 samples are present. Hence, L represents the total number
of layers in the structure.

Figure 4.1: Layered MED structure of L levels and a total number of T
detectors.

With the previously described structure, let us now introduce the new
decision rule by de�ning y as the observation vector of the top level, whose
number of samples is equal to N . Thus:

U =

T∑
i=1

ui

{
U > 0 decides H1

U = 0 decides H0
(4.2)

where T is the total number of detectors (de�ned as T = 2L − 1), and ui
is the decision of an ED applied to an observation vector yi of dimension
Ni ≤ N , which itself is a segment of the original observation vector y.
In this case, the presence of a signal is determined if at least one of the
energy detectors decides it. Each ED will be characterized by its PDi and
PFAi values; depending on the signal energy in each segment, di�erent
situations may arise. If the signal energy in a particular segment is zero,
then PDi = PFAi; if it is greater than zero, PDi > PFAi. In this latter
scenario, the corresponding PDi will depend on SNRNi, independent of the
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signal energy distribution across the segment. Therefore, it is independent
whether the signal is distributed throughout the observation vector or, on
the contrary, it is concentrated in a given area.

However, the analysis of this multiple energy detector structure is compli-
cated by the fact that the individual decisions of each ED used in the struc-
ture are statistically dependent, due to the fact that segments are obtained
by subdivision of other segments. This is a problem which is quite similar to
the fusion of correlated decisions extensively considered in the framework of
multi-sensor processing [88, 90]. This fact complicates the derivation of the
overall PFA and PD of the MED structure; hence, it is necessary to carry
out a theoretical study in order to obtain these expressions.

4.2 Theoretical performance of the MED

The analysis of the multiple energy detector structure, presented in the pre-
vious section, is complicated by the fact that the individual decisions are
statistically dependent as the segments are obtained from the successive
subdivision of others. To evaluate the behavior of the MED and to be able
to compare it with the ED, it is therefore necessary to calculate the probabil-
ities of false alarm and detection in the new structure. For this purpose, let
PFAMED and PDMED represent the respective probabilities of false alarms
and detection in the MED.

4.2.1 Derivation of the PFAMED

The �rst step consists of calculating the PFAMED. Since there are no special
reasons to do otherwise, the probability of false alarm of each detector ED
is assumed to be �xed to the same value for all EDs present in the structure,
PFAi = PFA, ∀i. This implies that di�erent thresholds are required for
each di�erent segment size Ni to maintain the same PFA. So, the threshold
λi corresponding to the i−th energy detector is given by:

PFAi = PFA = Q

(
λi −Ni√

2Ni

)
(4.3)

where Q stands for the error function de�ned in Appendix (A.5).

Based on the structure of MED described in Figure 4.1, let us now intro-
duce a double index notation for each energy detector. Thus, ulm will refer
to the decision corresponding to the m-th energy detector at layer l; where
l = 0, . . . , L− 1; and m = 1, . . . , 2l. Taking into account (4.2), the following
is yielded:

PFAMED = P (U > 0/H0) = 1− P (U = 0/H0)

= 1− P (ulm = 0,∀l,m/H0). (4.4)
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Now, let us de�ne the probability that all detectors at layer l decide H0

(conditioned to H0), and that all the detectors at lower levels have decided
H0:

Pl = P (ul1 = 0, ul2 = 0, . . . , ul2l = 0/H0;

ul′m′ = 0, l′ > l,m′ = 1, . . . , 2l
′
). (4.5)

Then,

P (U = 0/H0) =

0∏
l=L−1

Pl. (4.6)

Considering the WGN model w : N(0, σ2wI), and that all the segments
belonging to the same layer are non-overlapped, the corresponding energies
will be independent random variables. Therefore, the energy detectors of the
same layer will be statistically independent and hence,

Pl =
2l∏

m=1

Plm (4.7)

where Plm is the probability that the m-th detector at layer l decides H0,
(conditioned to H0 and to all the detectors at lower levels having decided
H0). Thus, this probability can be expressed as:

Plm = P (ulm = 0/H0;ul′m′ = 0, l′ > l,m′ = 1, . . . , 2l
′
). (4.8)

Now, we concentrate on evaluating Plm. At the lowest level (L− 1) the
following expression is reached:

P(L−1)m = 1− PFA, ∀m. (4.9)

And, for l < L− 1, (explained in Appendix B):

Plm =
1− PFA

1−Q
(√

2 ·Q−1(PFA)
) . (4.10)

Therefore, going back to (4.7), the probability that all the detectors at
layer l-th decide H0, and that all detectors at lower levels have decided H0,
will be given by:

Pl =



2l∏
m=1

Plm =

(
1− PFA

1−Q
(√

2 ·Q−1(PFA)
))2l

if l < L− 1

2L−1∏
m=1

P(L−1)m = (1− PFA)2
L−1

if l = L− 1

(4.11)
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So, combining (4.4) and (4.6) we may �nally write the PFAMED expres-
sion as follows:

PFAMED = 1− (1− PFA)2
l−1

0∏
l=L−2

(
1− PFA

1−Q
(√

2 ·Q−1(PFA)
))2l

= 1− (1− PFA)2
L−1

(1−Q(
√

2 ·Q−1(PFA)))2L−1−1
. (4.12)

Analyzing in detail the expression obtained in (4.12), a number of in-
teresting conclusions can be derived. On the one hand, the e�ect of the
statistical dependence among the di�erent detectors on PFAMED can be
observed. If the detectors were independent, the expression would be re-
duced to:

PFAMED = 1− (1− PFA)2
L−1 (4.13)

and hence, the denominator in (4.12) is due to the existence of dependence
among some of the individual detectors. On the other hand, notice that
the energy detector is a particular case of MED when only one layer in the
structure (L = 1) is considered. In this case, the expression is PFAMED =
PFA. It is also noteworthy that PFAMED depends only on the PFA and
the number of levels L, but not on N .

Finally, it is crucial to describe the procedure required to calculate the
thresholds of the detectors in the di�erent layers of the MED structure. First,
we begin by �xing the desired PFAMED, and then, taking into account
(4.12) and the determined number L of layers, the PFA is calculated. After
that, from the PFA and using (4.3) the thresholds λl is calculated for each
layer l = 0, . . . , L − 1, taking into account that the detectors at the same
level will have the same threshold and that the number of samples of the
detector in each level is Nl = N/2l, where N is the vector length at the top
layer.

4.2.2 Derivation of the PDMED

Following a similar procedure to that just described, we derive the PFAMED.
It is then possible to obtain the expression of the PDMED for the entire set
of detectors in the new structure. In this case, hypothesis H1 is consid-
ered instead of H0, and the signal presence is included where appropriate
(described below).

In order to simplify the calculation of the general PDMED expression for
any signal duration, the particular case in which the signal length is equal
to the segment duration of the lowest MED layer is �rst studied, and then,
this result is generalized.
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4.2.2.1 Particular case

Let us assume that the signal is completely included in the �rst segment
in the structure's bottom layer (l = L − 1). In this situation, the signal is
also entirely included in the �rst half of the �rst segment of the upper level
(L − 2). This pattern continues on this way until layer L = 0, as seen in
Figure 4.2 for the case of L = 5.

Figure 4.2: MED structure representation of L = 4 when the signal ex-
tends its energy uniformly throughout the �rst segment of the bottom layer
(shaded).

Concentrating exclusively on the signal in the �rst segment does not
imply any loss of generality in the calculation: the order in which multiple
detector decisions are added in (4.2) is irrelevant.

Taking into account (4.4)-(4.6), it is possible to achieve similar expres-
sions to calculate the PDMED, as follows:

PDMED = P (U > 0/H1) = 1− P (U = 0/H1)

= 1− P (ulm = 0, ∀l,m/H1),

P 1
l = P (ul1 = 0, ul2 = 0, . . . , ul2L = 0/H1;

ul′m′ = 0, l′ > l,m′ = 1, . . . , 2l
′
),

P (U = 0/H1) =
0∏

l=L−1
P 1
l , (4.14)

P 1
l =

2l∏
m=1

P 1
lm,

P 1
lm = P (ulm = 0/H1;ul′m′ = 0, l′ > l,m′ = 1, . . . , 2l

′
).
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Moreover, a derivation similar to that described in Appendix B (until the
�rst equality of (B.11)) can be followed, substituting H0 with H1:

P 1
lm =

P (Elm < λ1/H1)

P (Elm < 2λl+1/H1)
. (4.15)

Note that in those segments una�ected by the signal presence, the con-
ditioning on H0 is the same as the conditioning on H1. Due to the fact
that only the �rst segment of each layer contains the signal, the following
expression can be derived:

P 1
lm = Plm =

1− PFA
1−Q

(√
2 ·Q−1(PFA)

) ; m = 2, . . . , 2l. (4.16)

To calculate the P 1
lm in the �rst segment, let us consider the approxi-

mate expression of (4.1) and the derivation found at the end of Appendix B
between (B.12) and (B.16). It must be remembered that we are under hy-
pothesis H1; therefore, the following expression is valid under hypothesis H0

(the energy follows a chi-square distribution):

∆l = Q

(
2λl+1 −Nl√

2Nl

)
(4.17)

and it must be substituted by

∆1
l = Q

(
2λl+1 −Nl − SNR√

4SNR+ 2Nl

)
(4.18)

where the energy follows a non-central chi-squared distribution with mean
Nl + SNR and variance 4SNR+ 2Nl. Then, for l > L− 1:

P 1
l1 =

P (El1 < λ1/H1)

P (El1 < 2λl+1/H1)
=

1−Q(Q−1(PFA)− SNRNl)

1−Q(
√

2 ·Q−1(PFA)− SNRNl)
(4.19)

and, for l = L− 1:

P 1
L−1,1 = 1−Q(Q−1(PFA)− SNRNL−1) (4.20)

where SNRNl = SNR/
√

2Nl, as de�ned in (4.1). Using (4.16) and (4.20),
the PDMED can be expressed as a simple modi�cation of (4.12). So, chang-
ing the probabilities corresponding to the �rst segment at every level and
keeping the remaining probabilities unchanged, it is possible to reach

PDMED = 1− (1− PFA)2
L−1−1(1−Q(Q−1(PFA)− SNRNL−1))

·
0∏

l=L−2

[(
1− PFA

1−Q(
√

(2) ·Q−1(PFA))

)2l−1

· 1−Q(Q−1(PFA)− SNRNl)

1−Q(
√

2 ·Q−1(PFA)− SNRNl)

]
(4.21)
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where, adding terms, the following expression can be derived for L > 1:

PDMED = 1− (1− PFA)2
L−1−L

(1−Q(
√

2 ·Q−1(PFA)))2L−1−L

·

0∏
l=L−1

[1−Q(Q−1(PFA)− SNRNl)]

0∏
l=L−2

[1−Q(
√

2 ·Q−1(PFA)− SNRNl)]

. (4.22)

By analyzing in greater detail (4.22), the expression of PDMED can be
obtained for a single level by replacing L = 1. Taking into account that the
denominator of the second term is 1 (since it is de�ned only for L > 1), the
following expression can be reached:

PDMED = Q(Q−1(PFA)− SNRN0). (4.23)

Notice that this expression concurs with (4.1), where the PD for a single
detector has been de�ned. In the same way, it is also essential to notice
that PDMED depends on not only the PFA, but also on L and SNRN0,
the latter de�ned as the normalized signal-to-noise ratio at the top level
(L = 0). The normalized signal-to-noise ratio for a particular level of the
structure is thus expressed as follows:

SNRNl = SNRN0 ·
√

2l (4.24)

considering that Nl = N/2l, where N is the number of observation samples
at the top level.

4.2.2.2 Generalization of the PDMED

To derive the generalization of the PDMED expression viewed in (4.22) for
any signal length, it is necessary to modify the expression of the PFAMED

viewed in (4.12) in a manner similar to the preceding case. Therefore, the
probabilities corresponding to the segments a�ected by the presence of the
signal have to be changed at every layer and the remaining probabilities
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should stay unchanged. This brings us to the general equation:

PDMED = 1− (1− PFA)2
L−1−k(L−1)

·
k(L−1)∏
m=1

(1−Q(Q−1(PFA)− SNRNL−1m))

·
0∏

l=L−2

[(
1− PFA

1−Q(
√

(2) ·Q−1(PFA))

)2l−k(l)

·
k(l)∏
m=1

(
1−Q(Q−1(PFA)− SNRNlm)

1−Q(
√

2 ·Q−1(PFA)− SNRNlm)

)]
. (4.25)

And, by grouping terms:

PDMED = 1− (1− PFA)2
L−1−K

(1−Q(
√

2 ·Q−1(PFA)))2L−1−1−K+k(L−1)

·

0∏
l=L−1

k(l)∏
m=1

[1−Q(Q−1(PFA)− SNRNlm)]

0∏
l=L−2

k(l)∏
m=1

[1−Q(
√

2 ·Q−1(PFA)− SNRNlm)]

(4.26)

where the following terms have been introduced:

• k(l): number of a�ected segments at layer l where a signal is present.

• KM =
L−1∑
l=0

k(l): total number of a�ected segments with a signal pres-

ence in the MED.

• SNRNlm: normalized signal-to-noise ratio of the m-th a�ected seg-
ment at layer l.

In order to better understand the simpli�cation of these variables, let us
consider an example where a MED structure of 5 layers is used to detect
a signal concentrated in the �rst segment of the third layer, (Figure 4.3).
In this case, it is possible to obtain the aforementioned variables observing
Figure 4.4, where the detectors a�ected by the presence of signal at each
layer have been colored. Therefore, the variable k(l) is a vector containing
the following values [1, 1, 1, 2, 4], and KM is equal to 9.
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Figure 4.3: MED structure of L = 4 when the signal extends its energy
uniformly throughout the �rst segment of the third layer (shaded).

Considering the process as a whole until (4.26), the importance that
(4.12) plays throughout must be highlighted. This is not surprising, however,
considering the derivation of the PDMED is closely related to the PFAMED.
This can be attributed to the fact that the model of energy propagation from
lower to upper layers, described in (B.2), is independent of the conditioning
on H0 or H1. Following this model, if a segment is not a�ected by the

Figure 4.4: Detectors a�ected at each layer by the signal presence in a MED
structure of L = 4. The signal is uniformly distributed throughout the �rst
segment of the third layer.
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presence of the signal, all the segments from lower layers, which are subsets
of it, will not be a�ected either. Hence, the derivation of the conditioned
probabilities for non-a�ected segments is independent of the signal presence
and coincides with that obtained in the derivation (4.12). On the other hand,
in segments with signal, the derivation of the probabilities is the same as in
the previous case. But consideration must be made during the �nal steps for
the e�ect introduced by the SNRNlm in the calculation of such conditional
probabilities.

4.3 MED theoretical evaluation

As the behavior of the MED and its underlying theoretical principles have
been described, it is essential to validate its interest (as opposed to the use of
classic ED) when the signal has di�erent lengths (compared to the duration
of the observation segments) in di�erent layers of the MED. Assuming that
the length of the upper segment of the MED is �xed by a number of compu-
tational limitations, it will be demonstrated that the detector which gives the
best results is the one that is adapted to the signal duration. Thus, it is nec-
essary to verify the improvements achieved when the signal being detected
has a short duration, and when multiple detectors (MED) with an observa-
tion segment length comparable to the signal duration are used instead of a
single ED with a �xed number of observations samples. In addition, it is also
necessary to evaluate the possible degradation that is introduced by using
subdivisions of the original detector which are not required when the signal
duration is similar to the duration of the original observation interval. To
this end, three examples are considered below to bring forth the advantages
and disadvantages of the MED.

4.3.1 The signal duration is comparable to the observation

vector length at the top layer

First of all, the least favorable case for the MED (in comparison with ED) is
studied. This case occurs when the signal energy extends uniformly across
the whole initial observation vector, as seen in the Figure 4.5. This implies
that all detectors with shorter duration segments will corrupt the detection.
In this situation, all segments in the structure are a�ected by the signal.
With this in mind, and taking into account (4.26), the following expressions
can be derived:

• k(l) = 2l;

• KM = 2L − 1;

• SNRNlm =
SNRNl

2l
=
SNRN0 ·

√
2l

2l
=
SNRN0√

2l
.
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Figure 4.5: Detectors a�ected at each layer by the signal presence in a MED
structure of L = 4. The signal is uniformly distributed throughout the top
layer.

By substituting these values in the expression of PDMED in (4.26), we meet
the next case:

PDMED = 1−

0∏
l=L−1

[1−Q(Q−1(PFA)− SNRN0/
√

2l)]2
l

0∏
l=L−2

[1−Q(
√

2 ·Q−1(PFA)− SNRN0/
√

2l)]2
l

. (4.27)

The expression of the PFAMED is given by (4.12), as it is not a�ected by the
particular signal properties and it only depends on the noise characteristics.

In Figure 4.6, the ROC curves represent the theoretical expressions of
PFAMED and PDMED shown in (4.12) and (4.27), respectively. In the
graph, the behavior of the MED using several layers L and with SNRNo = 2
become noticeable. This value was selected to ensure good detectability for
L = 1, which corresponds to the ED. As expected, some degradation in
the behavior of the MED curves is seen when using several layers of the
structure (L > 1) compared with the ED (L = 1). This is due to using
unnecessary subdivisions of the original observation segment, whose length
is similar to the signal. However, this deterioration in the MED performance
is not very signi�cant considering that, for example, a value of L = 7 entails
subdivisions up to a factor of 64 of the original segment and a total number
of 127 energy detectors in the MED layered structure.
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Figure 4.6: Theoretical ROC curves of the MED for SNRNo = 2 and for
di�erent number of layers used (L). The signal energy is concentrated in the
�rst segment of the top layer.

In this example, the "worst-case" scenario in which the use of the MED
can damage the detection results has been studied. However, in the following
examples it will be shown how it is possible to justify this behavior because
of the improvements achieved when the signal concentrates its energy in
segments of lower levels.

4.3.2 The signal duration is comparable to the observation

vector length at the bottom layer

The second example corresponds to the opposite case of that found in 4.3.1.
Here, the signal concentrates its energy in the �rst segment of the bottom
layer of the MED, as shown in Figure 4.2. Therefore, we are searching for
the most favorable case wherein the MED would clearly be a better choice
in terms of performance than the classical ED.

In this situation, the expressions of PDMED and PFAMED shown in
(4.22) and (4.12), respectively, can be used directly to obtain the corre-
sponding ROC curves. In Figure 4.7, the ROC curves of the MED have
been represented for di�erent values of L and for SNRNo = 0.5. This parti-
cular value was selected because of the interest in studying the ED (L = 1)
in the worst case (i.e. when it behaves nearly identically to random detector
PDMED

∼= PFAMED), thereby allowing one to observe the performance of
the MED in this situation. As expected, the degree of improvement achieved
with the MED increases with the number of layers required to match the ac-
tual signal duration.
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Figure 4.7: Theoretical ROC curves of the MED for SNRNo = 0.5 and for
di�erent number of layers used (L). The signal energy is concentrated in the
�rst segment of the bottom layer.

4.3.3 The signal duration is comparable to the observation

vector length at intermediate layers

Finally, two intermediate cases are compared in this scenario with the preced-
ing examples: in particular, those cases where the signal energy is uniformly
distributed across the �rst segment of the third and �fth level, representing
the 25% and the 6.25% of the whole length of the original observation vector,
respectively.

Figure 4.8a shows the theoretical ROC curves of the MED using di�erent
values of L when the signal has a duration similar to the segment length
of layer 3. The normalized signal-to-noise ratio was set to SNRNo = 1.3
because this particular value o�ered a good detectability for the case of
L = 3. As expected, the best result was reached when only the �rst three
levels of MED were used. However, notice that when using more levels the
resultant curves do not outperform those of the optimum; nevertheless, it is
possible to reach a performance enhancement in comparison with the classic
ED (L = 1). For example, for L = 5 (segments with duration 1/4 of the
actual signal duration were used at the bottom layer), a nearly identical
performance to that reached by the best case of L = 3 was achieved.

In Figure 4.8b, the signal had a similar duration to the observation seg-
ment of the �fth level and the SNRN0 was set to 0.7. The best ROC curve
was obtained for L = 5, as expected. As in the previous example, the im-
provement attained (relative to the ED) by increasing the number of levels
was quite signi�cant.
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(a) (b)

Figure 4.8: Theoretical ROC curves of the MED for di�erent numbers of
layers used (L). (a) Signal duration is equal to the segment length of layer
3 and SNRNo = 1.3. (b) Signal duration is equal to the segment length of
layer 5 and SNRNo = 0.7.

4.4 General comments on the MED

The previous section analyzed in detail the performance of the MED in
di�erent situations and examples. It is now possible to extract a general
conclusion about its behavior. In view of the results, using the MED (versus
the classic ED) reports a signi�cant improvement in speci�c situations. In
those cases where the MED uses an overestimated number of required layers,
a deterioration is produced. However, the improvement achieved is always
better than the possible degradation su�ered. This fact can be observed in
Table 4.1, where two opposing examples are examined for SNRNo = 0.7,
using a MED structure with a total number of 7 layers:

• Example A: The signal is mainly concentrated in the segment of the
top layer.

• Example B : The signal duration is comparable to the segment duration
of the bottom layer.

This table shows the increase in PDMED obtained for both situations and
three di�erent PFAMED values. The results are derived by subtracting the
PDMED achieved using all layers (L = 7), along with that obtained for
only one layer (L = 1). Thus, a negative value indicates MED degradation
when using all layers and, on the contrary, a positive value corresponds to an
enhancement in performance. As expected, one can clearly appreciate how
improvement is always greater than the resultant deterioration. Or more
informally, we can a�rm that using the MED o�ers �a lot to gain and little

to lose.�
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signal PFAMED

duration 10−1 10−2 10−3

Example A -0.12 -0.034 -0.0069

Example B 0.71 0.92 0.93

Table 4.1: PDMED increases in the MED structure for di�erent PFAMED

values comparing the case of using L = 7 with respect to L = 1. Two
examples of di�erent signal lengths are considered for the same SNRN0 =
0.7.

More speci�c conclusions about the behavior of the MED in other situ-
ations are hard to obtain unless prior information about the signal duration
and distribution energy across the observation vector is available. However,
due to the scope of application of such structures where the signals to be
detected are not completely known, it is di�cult to have any prior informa-
tion about the signal. Therefore, any assumption in this direction would be
unrealistic and it would reduce the generic character of the MED. Thus, the
aspect of greatest interest is that the theoretical expressions of PDMED and
PFAMED, described in (4.12) and (4.26), can be applied to the analysis of
every particular scenario. Hence, it is necessary to consider the general valid-
ity of these two equations, taking into account di�erent aspects, as discussed
below.

4.4.1 Segmentation techniques

First, it is necessary to emphasize the relationship between the PFAMED

and PDMED expressions with the technique used to segment the original
observation vector. In this case, the expressions (4.12) and (4.26) are linked
to the segmentation approach described in Figure 4.1, where the observa-
tion segment in the top layer is successively divided by two non-overlapping
segments. This detector structure has been used since, in principle, the in-
formation signal is completely unknown. However, in those cases where some
a priori information about the signal to be detected was available, it would
be possible to use other partition strategies that are more optimal than and
di�erent from the aforementioned. In this case, it would be necessary to
conduct a new analysis of the resulting detector structure to derive the new
expressions of the PFAMED and the PDMED. Hence, it can be concluded
that the optimal structure and their distribution are closely related to the
characteristics of the signal to be detected.

Thus, for a given application, a more appropriate structure of detectors
could be devised by knowing a priori the maximum (Nmax) and the minimum
(Nmin) durations of the expected signals. Then, it seems reasonable to choose
the shortest segment duration Nmin at the bottom layer of the structure of
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detectors, while at the top layer an observation segment will be selected
whose duration will be given by the following expression:

R(Nmax) = Nmin · 2L−1 (4.28)

where R(x) indicates upper round-o� to the closest power of two. So, it is
possible to determine the optimum number of layers that the MED will have
from the following condition:

L = 1 +

ln

(
R(Nmax)

Nmin

)
ln2

. (4.29)

In any case, as discussed in the beginning of this section, it is possible to
�nd other situations and particular applications in which some other infor-
mation about the signal detector could be available a priori. These would
be cases that need to be addressed speci�cally to �nd the optimal structure
of the MED.

4.4.2 Signal and noise models

Next, let us consider the validity of (4.12) and (4.26) with respect to the
di�erent noise and signal models. First of all, the expression of PFAMED,
shown in (4.12), is valid with the only constrain that the threshold at ev-
ery individual detector is computed by using (4.3). This means that the
background noise should be white Gaussian, although extension to non-
independent non-Gaussian noise could be attempted by using the extended
energy detector proposed in Chapter 3. Similarly, it would also be possible
to expand the use of the multiple detector structure to include the scenario
when the background noise is non-stationary. In this case, it is necessary
to employ a method to estimate the variance of the noise and normalize the
energy of the individual detector (ED) of the MED.

Secondly, the signal model used does not in�uence the behavior of the
PFAMED; nevertheless, it could, in principle, a�ect the validity of the
PDMED expression viewed in (4.26). However, any distribution of the signal
energy across the observation interval may be considered. Therefore, signal
energy is not required to be uniformly distributed across one or more seg-
ments at every layer. This is because the parameters including the presence
of the signal are the individual normalized signal-to-noise ratios SNRNlm.
Thus, very irregular distributions of the signal energy can be tested using
(4.26). In the selected examples of the preceding sections, some particular
cases were looked at in which the propagation of SNRNlm through the dif-
ferent layers adapted some simple forms. A myriad of possibilities exists for
the distribution of the signal energy, but in the absence of prior informa-
tion the selected examples are enough to draw a reliable conclusion when
evaluating the MED in comparison to the ED.
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4.4.3 Real-time applications

Finally, the proposed detector can be applied in a real-time framework, as
any other detector, by considering streams of successive observation intervals.
In every incoming observation interval, the partition of Figure 4.1 would be
applied. If the successive observation intervals are non-overlapped, on aver-
age one false alarm is obtained for every 1/PFAMED observation interval;
a correct decision is made on average every 1/PDMED observation interval
where a signal is present. However, if the successive observation intervals
are overlapped (for example, in the extreme case of only one sample chang-
ing from one interval to the next), a more complex derivation is required to
determine the average number of false alarms or correct detections due to
the dependence among successive decisions. Regardless, the PFAMED and
PDMED are always the key parameters in determining the performance of
the detector.

4.5 Performance of the MED in the time and fre-
quency domains

The purpose of this section is to validate with simulations the theoretical
expressions obtained for the MED, and then to compare the results with the
classical ED. In particular, the performance of the MED is evaluated, not
only in the time but also in the frequency domain, since detection of signals
with unknown bandwidth is also of particular interest.

4.5.1 Frequency MED structure

The signals to be detected are completely unpredictable and the spectrum
can also provide additional information. Some recent studies are devoted
to the evaluation of the detection performance in the frequency domain. In
[13], an optimal detector is derived in the discrete frequency domain and
the paper discussed the procedure for selecting the segment length as part
of the spectral estimation method. In this case, the knowledge of the signal
bandwidth is required. In some other applications (e.g, echo detection in
radar, sonar or acoustics) an algorithm is applied to the automatic target
detection of acoustic signals [16]. Again, an approximate knowledge of the
signal bandwidth is required. However, the detection problem in the fre-
quency domain can be attempted by using the MED structure in order to
detect signals of di�erent bandwidth. In this latter case, it is possible to
apply the same methodology previously described to derive a similar MED
structure. In consequence, both problems can be considered as conceptually
equivalent, and the frequency detection problem of the MED is addressed by
transforming the original observation vector y of dimension N (at layer 0),
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into the frequency domain Y by using the discrete Fourier transform (DFT)
as follows:

Y[k] =
N−1∑
n=0

y[n]e−j2πkn/N . (4.30)

The DFT length was set to the same dimensions as the original obser-
vation vector at the top layer (N), and the normalized angular frequency
was given by Ω = 2πk/N . The same subdivision strategy as the one used
in the time domain was then applied, and the detection problem at each in-
dividual segment was addressed using the classical ED and by subsequently
computing the test statistic in a similar manner. Considering Yml as the
observation vector corresponding to the m-th frequency segment at layer l,
it is possible to rewrite the hypothesis test as follows:

H0 : Ylm = Wlm Wlm : N(0, σ2
W
I)

H1 : Ylm = Slm +Wlm
(4.31)

where Wlm is the noise vector with zero-mean white Gaussian distribution
and Slm is the signal vector. Both are set to the m-th frequency slot, with
m = 2l equivalent to the number of subdivisions (or EDs) at layer l (l =
1, . . . , L). In hypothesis H0, the received signal in the m-th frequency slot is
assumed to contain only noise; if H1 is true, noise and signal are present.

In the following section, the performance of the MED structure in the
time and in the frequency domain will be studied, and results from both
will be compared with the classical ED. To do so, several experiments were
performed by considering the simple detection problem in which a Gaussian
signal (s) of di�erent time durations had to be detected in the presence of
white Gaussian noise (w) with zero-mean. The variance of the noise was
�xed to unity, while di�erent normalized signal-to-noise ratios (SNRNs)
were generated by properly scaling the Gaussian amplitude of the signal. A
MED structure of 7 layers (L = 7) was implemented and compared with
the classical ED (L = 1). The original observation vector size N was set
to 16384, leading to an observation segment on the bottom layer of 256
samples. The ROC curves, determined by the PFAMED and the PDMED,
were utilized to summarize the robustness of the MED detector. The results
obtained were averaged over 40 · 103 independent trials.

4.5.2 Time ROC curves

This section presents the results reached for the MED in the time domain
and in di�erent situations. Figure 4.9 shows the experimental (dashed) and
theoretical (solid) ROC curves when using the MED to detect a Gaussian
signal with several time durations in the presence of additive WGN. Dif-
ferent numbers of layers (L) were employed, but only the ROC curves of
the most representative ones are depicted. Notice that when L = 1, the
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MED structure corresponds to the classical ED since only one detector of
the original observation length N was being used to detect the signal.

(a) (b)

(c)

Figure 4.9: Theoretical and simulated ROC of time MED when detecting
a Gaussian signal uniformly distributed throughout the �rst segment of dif-
ferent layers and in the presence of white Gaussian noise. (a) Signal in
segment of L = 1 and SNRNo = 2.4. (b) Signal in segment of L = 4 and
SNRNo = 1.2. (c) Signal in segment of L = 7 and SNRNo = 0.6.

In Figure 4.9a, the signal had a time duration similar to that of the
original observation vector (N), and in Figures 4.9b and 4.9c, the signal
energy was uniformly distributed through the �rst segment of layers 4 and
7, respectively. Several SNRN0 were simulated, but only the most suitable
ones were selected from each case to show the MED performance results.
In all cases, the simulation results agreed quite closely with the theoretical
derivations. The reason that all experimental curves are below the theoretical
curves lies in that the chi-square distribution in (4.1) was approximated to
a Gaussian distribution for large N . This fact can be better appreciated
for large values of L, which results in a smaller number of samples in the
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observation vector. Apart from this point, the three examples reveal that the
best results are obtained when using a number of layers that includes an ED
with an observation length comparable to the signal duration. Therefore,
the optimum number of layers is L = 1 in the �rst case, and L = 4 and
L = 7 in the other two cases.

Let us now compare the two opposite examples shown in Figures 4.9a
and 4.9c. It is important to highlight the fact that in the �rst case the
degradation su�ered when the MED used unnecessary layers (L > 1), in
comparison to the optimum result (L = 1), is not as signi�cant as that
experimented in the second case, where the layers are necessary and are not
used. Therefore, this fact shows the superiority of the proposed structure
and demonstrates the general applicability to a wide variety of areas, as will
be seen in the following chapters.

4.5.3 Frequency ROC curves

The following analysis is based on the evaluation of the MED frequency
structure when detecting a Gaussian signal immersed in additive WGN.
Figure 4.10 depicts the same three time examples studied in the previous
section, but in this case, the time signal of the original observation vector
at the top layer was transformed beforehand in the frequency domain (using
the DFT algorithm) and then partitioned into di�erent segments. It can be
observed how the best performance in detection is achieved for L = 1 (clas-
sical ED) in all cases. Furthermore, increasing the number of layers used in
the MED leads to poorer behavior in the resultant ROC curves. This is due
to the �at spectrum of the simulated Gaussian signal used: its frequency
transformation has a uniform energy distribution throughout the original
observation vector, independent of the signal's time duration. In this case,
the MED frequency structure does not provide any valuable information.

Experiments similar to the preceding examples were performed; but this
time three Gaussian signals with di�erent bandwidth were used. The sig-
nal time durations were the same as those used in Section 4.5.2. In order
to simulate these situations, a white Gaussian signal with a �xed time du-
ration (comparable to the segment length of layer 1, with the dimension
N = 16384) was �ltered by applying a low pass �lter. By using di�erent fre-
quency stop parameters, it was possible to generate a signal spectrum with
di�erent bandwidths. Considering a sample frequency (fs) of 24 kHz and
using a DFT length equal to the observation vector (N), the following cut-o�
frequencies were set: fs/2, fs/4 and fs/7. This led to a �ltered signal with a
bandwidth whose energy was principally concentrated in the �rst segments
of layers 1, 3 and 6, respectively. The resulting ROC curves for each case
are presented in Figure 4.11. The simulation results show how the detector
performs better in each case with a di�erent value of L. As expected, the
optimum number of layers used corresponded to the layer containing a de-
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(a) (b)

(c)

Figure 4.10: Simulated ROC of frequency MED when detecting a Gaussian
signal uniformly distributed throughout the �rst segment of di�erent layers
and in the presence of white Gaussian noise. (a) Signal in segment of L = 1
and SNRNo = 2.4. (b) Signal in segment of L = 4 and SNRNo = 3. (c)
Signal in segment of L = 7 and SNRNo = 3.

tection segment with a length similar to that of the signal bandwidth. Once
more, again it is better to use as many layers as possible: the improvement
witnessed is always worthwhile in comparison to the possible deterioration
experimented when the number of layers is overestimated. These results also
demonstrate the necessity of using the frequency information for detection.
As observed, by using the frequency MED, valuable information about the
frequency characteristics of the signal to be detected is extracted. Further-
more, this information can be properly combined with the time MED to
better exploit the characteristics of the signals. The combined results of
time and frequency can o�er more reliable detection decisions. This aspect
remains a challenging task which should be considered as a future line of
research. Moreover, it is also possible to work with the information provided
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(a) (b)

(c)

Figure 4.11: Simulated ROC of frequency MED when detecting a Gaussian
signal which bandwidth is mainly distributed throughout the �rst segment
of di�erent layers, and in the presence of white Gaussian noise. (a) Signal
bandwidth in segment of L = 1 and SNRNo = 3. (b) Signal bandwidth in
segment of L = 3 and SNRNo = 1.8. (c) Signal bandwidth in segment of
L = 6 and SNRNo = 0.8.

by each MED structure, then to implement an enhanced recognition process,
as shown in Chapter 6.

4.6 Conclusions

This chapter has addressed the problem of detecting unknown signals with
undetermined duration. It has been demonstrated that the signal duration
incorporates an important uncertainty that in�uences the detection prob-
lem. Therefore, a novel approach based on the implementation of a MED
structure was proposed. The MED was formed by multiple EDs matched to
di�erent signal durations, and the segmentation strategy followed in this case



4.6. Conclusions 91

was based on several layers. Each layer was formed by successive segmen-
tations (of a factor of 2) of the original observation vector. The individual
decisions of the EDs were statistically dependent and therefore, a detailed
study and derivation of the new PFA and PD was conducted. After that,
the theoretical expressions were evaluated for di�erent signal time durations.
The results showed the improvement realized with the MED in comparison
to the single ED when the signal duration was smaller than the original
observation vector. It was also demonstrated that when the MED uses an
overestimated number of required layers, deterioration arose. However, this
deterioration was acceptable since it was always smaller than that experi-
mented by the single ED in the previous case. Extensions of the MED to the
frequency domain were also considered. Both time and frequency structures
were evaluated by performing several simulations with signals of di�erent
durations and in the presence of independent Gaussian noise. Again, the
results showed that the best performance was always achieved by the MED
when the number of layers used corresponded to the layer containing the
detection segment that was comparable to the signal length.
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Acoustic applications





Chapter 5

Acoustic event detection

If you are not prepared to be wrong, you
will never come up with anything

original.

Ken Robinson

The focus of this chapter is to present a detailed evaluation of the

di�erent detectors, presented in Chapters 3 and 4, with real acoustic

signals. Several acoustic sources and a variety of real and simulated

noise scenarios were tested. In particular, the ED is compared with a

new generalization that rejects false alarms induced by the di�culty of

estimating the noise statistics in non-stationary conditions. Further-

more, the EED and the PEED are evaluated in real-world scenarios

to deal with non-Gaussian and non-independent noise. In addition, as

no information about the duration of the acoustic event is available, a

MED structure matched to di�erent time durations is used in the time

and frequency domains. This evaluation is conducted by measuring the

performance of the di�erent energy detectors in terms of the ROC.

5.1 Detection in real acoustic applications

There are a great number of areas in which the detection of unknown events
is required. One one of the most interesting �elds of research is acoustic scene
analysis, devoted to surveillance applications in which the signals recorded
by a set of microphones are processed to extract as much information as
possible about the environment [93]. Moreover, under some particularly
adverse situations, such as hidden objects or low lighting scenarios, it is
possible to use acoustic sensors to capture information not perceived by
video sensors [91].

95
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In real acoustic applications, sound sources are not entirely known and
thus, the design of an appropriate detector is more di�cult. In this case,
energy detection is of interest since an ED is optimal for the automatic detec-
tion of unknown signals in the presence of independent and Gaussian noise.
However, non-Gaussian, non-independent and non-stationary acoustic back-
ground noises are expected to be present in real-world scenarios. Therefore,
alternative EDs are needed which are capable of continuously adapting to
the noise statistics and of calculating the appropriate threshold for a required
PFA.

Much of the recent work in this research area does not take into account
the background noise and its particular characteristics, nor of the time or
frequency duration of the event. As shown in Chapters 3 and 4, these facts
normally decrease the performance of the detection; the noise samples can be
highly correlated and they do not necessarily follow a Gaussian distribution.
Consequently, it is necessary to apply modern detection theory in order to
design an e�cient and robust acoustic detector capable of determining the
presence of an event within a background noise. In previous chapters, the
di�erent extensions of the ED were evaluated with simulated signals and
noises; however, now it is necessary to extend this study to the case of real-
world signals and noises.

5.1.1 Surveillance applications

Part of the present work was developed within the framework of a collabo-
rative research project between various companies and Spanish universities
called HESPERIA (in English: Homeland Security: Technologies for the
Security in Public Spaces and Infrastructures) [79]. The objective of this
consortium was to develop technologies that allow the creation of innovative
security systems, video surveillance and operation control in private building
and public places. The project sought to substantially increase the security
of strategic infrastructures (electrical substations, water deposits, telecom-
munications centers) and of public places (airports, railway stations, ports,
and urban environments like pedestrian areas, shopping centers, etc.). The
�Grupo de Tramiento de Señal (GTS)� of the �Universitat Politècnica de
València (UPV)� was tasked with acoustic monitoring of the environment
with the aim of preventing dangerous situations by detecting, classifying
and localizing suspicious events that might be enshrouded in a background
noise. Some results related to this line of research can be found in [30, 62].

The detection of such events has traditionally been attempted with tech-
niques of video processing, but not with acoustics. However, the video sys-
tems observe the information in a certain direction for a speci�c instant of
time, while acoustic processing allows one to listen in any direction at any
instant of time. Therefore, by using the detection of acoustic events it is
possible to overcome some of the technical de�ciencies of the video systems.
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Some advantages are related to the immunity to lighting conditions, the
ability to adapt to noisy and changing environments and, possibly the most
relevant, the ability to detect events that take place in hidden areas outside
the view of the security cameras.

It is of paramount interest, therefore, to apply all the detection techniques
described in the previous chapters to the acoustic monitoring of surveillance
environments. This will provide a cognitive audio system with the capability
of automatically detecting unusual events in di�erent scenarios, as shown in
Figure 5.1. Furthermore, the audio techniques employed will be enhanced to
achieve the necessary level of autonomy and functionality that the general
system requires by generating the required presentation contents.

Figure 5.1: General description of the surveillance system.

5.1.2 Equipment and scenarios

One of the goals of this work was to carry out a measurement campaign of
acoustic signals in various areas where experimental recordings of possible
background noises and events were available. This section describes the
di�erent types of recordings (acoustic database) and the acoustic signals
used to evaluate the potential performance of the di�erent energy detectors
and extensions described in previous chapters. On the one hand, di�erent
types of background noises that can be found in the scenarios considered were
recorded and, on the other hand, a subset of possible acoustic signals present
in these environments was also generated. For that purpose, a measurement
campaign of acoustic sounds was carried out in di�erent scenarios.

Prior to commencing, the preliminary selection of the equipment was of
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particular importance. Some common limiting factors of this type of acoustic
systems needed to be taken into account:

• The decrease in signal-to-noise ratio when increasing the distance be-
tween the acoustic event and the microphone.

• The background noise changes depending on the time of the day, lo-
cation of the sensors and other factors. These changes can a�ect both
the level and the statistics of the signal, and therefore it is necessary
that the system continuously adapts to the background noise.

• The waveform of the detected sound is not known, nor its duration,
frequency, intensity, etc. These parameters vary depending on many
factors that must necessarily be considered: the repetition of the sound,
the distance, and the impulse response between source and sensor.

(a) (b)

Figure 5.2: Recording equipment. (a) Microphone. (b) Data acquisition
card.

Accounting for the aforementioned limitations, the acoustic events and
background noises were recorded using a set of 8 omni-directional electret
condenser microphones similar to that one shown in Figure 5.2a. The fre-
quency response of the microphones was between 25 Hz and 20 kHz, which
was a su�cient range to cover all the frequency requirements of sounds and
noises recorded. In addition, a multichannel audio data acquisition unit (8
channels) with a sampling frequency of 48 kHz was used and is shown in
Figure 5.2b. The distribution of the microphones used consisted of two ar-
rays of four microphones each, with 109 cm of separation between each array.
Each microphone array was roughly an inverse t-shape geometry with a total
width of 30 cm, as can be observed in Figure 5.3.

Typical audio events and background noises that can arise in surveillance
applications are not easily available, mainly because of the con�dential na-
ture of the data and also because such abnormal situations or events are
rarely recorded. To be as close as possible to real-world surveillance applica-
tion conditions, acoustic data from two di�erent scenarios was collected, each
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(a) (b)

Figure 5.3: Michrophones array geometry (cm). (a) Array 1. (b) Array 2.

comprised of multiple recordings. In the �rst, acoustic events were recorded,
while in the second, noise recordings were recorded. Therefore, two di�erent
recording campaigns were conducted in the following scenarios:

• Indoor: For acoustic event recordings, it is necessary to have a very
low noise level. Thus, an o�ce room was selected. Figure 5.4 shows
the layout along with the microphone placement. The three di�erent
measurement locations are also marked; they were placed according to
a practical criterion which took into account the microphones' positions
and the SNR of the recordings.

• Outdoor: For the background noise recordings, two di�erent outdoor
scenarios were selected. In the �rst case, the noise present in a public
area of a shopping center was recorded (Figure 5.5a). In the second
case, an open-�eld space of around 250m2, shown in Figure 5.5b, was
selected to record the noise of a power generator.

5.1.3 Detection system

A robust detection system suitable for the automatic detection of danger-
ous acoustic events in public places and infrastructures was evaluated. The
proposed system processes and interprets the audio signals acquired by a dis-
tributed microphone array in order to discriminate between noise and novel
events. It must be pointed out that the system is capable of integrating any
of the energy detectors studied in Chapters 3 and 4. In this section, the over-
all architecture and main functionalities of the detection surveillance system
are presented. The system is based on the processing of the acoustic signals
and is made up of the following subsystems:

• Initialization module.
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Figure 5.4: Room layout and microphone placement (measurements in cm).

(a) (b)

Figure 5.5: Acoustic scenarios used for background noise recordings. (a)
Shopping center. (b) Open-�eld area with power generator.

• Acquisition module.

• Detection module.

Figure 5.6 shows the general architecture of the system. As can be ob-
served, the acoustic signals recorded by the di�erent sensors are collected
by the acquisition module, which provides a data frame to the detection
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module. This module is the central processing unit and it has the respon-
sibility of deciding when some acoustic event has taken place in the area
under study. Furthermore, it must be noticed that the detection and the ac-
quisition module take the initialization parameters set by the initialization
module.

Figure 5.6: Block diagram of the acoustic event detection system.

In the following sections the main features of the modules involved in the
acoustic detection system will be described.

5.1.3.1 Initialization module

In order to ensure proper functioning of the system, an initialization of the
parameters and components is required to con�gure the modules of the sys-
tem. The initialization module is responsible for setting all the internal
parameters needed for the acquisition and processing unit (e.g. the sample
frequency, number of channels, PFA, frame size, data bu�er length, etc.). It
also o�ers the possibility of selecting some of them by means of a con�gura-
tion �le which can be accessed and modi�ed outside the system, depending
on the particular scenario or situation.

5.1.3.2 Acquisition module

This module is responsible for acquiring the data from the digital devices,
such as the audio card, and organizing them in an appropriate format that
can be easily accessed by the further processing modules. For that purpose,
the input data is stored in circular bu�ers for later use. The circular bu�ers
are data structures that use a single �xed-size bu�er, as if it were connected
end-to-end. This type of structure is widely used for bu�ering data streams.
This type of structure is managed by pointers and the FIFO (First In, First
Out) criterion. When storing data, it �nds the �rst free slot; to extract
data, it eliminates the oldest one in the bu�er. The data are stored with
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this procedure in successive memory positions and thus, the space required
remains constant, with the bene�ts this entails.

5.1.3.3 Detection module

The detection module reports an event when it is detected in the presence of
a background noise. This module is of great importance since it is responsi-
ble for providing a good PD for the PFA (set in advance). Such a detection
system can be e�ciently used for the automatic detection of anomalous audio
events in public or private spaces. It also enables the possibility of combining
it with further processing stages (acoustic source identi�cation and localiza-
tion) if more than one sensor is used. Therefore, it has a considerable e�ect
on the performance of other modules, as will be discussed in Chapter 6.

It is important to notice that the detection module manages a detector
for each of the signal sources. If the system uses multiple microphones, this
module will manage them by initializing an independent detector for each
of them. The fact of using more than one microphone can be advantageous:
introducing this redundancy allows the possibility of combining the decisions
of each of them to reach a more reliable �nal decision. The use of multiple
channels of acquisition is not only advantageous for detection: obtaining
more reliable results and enabling the localization of sound sources when
several microphones are necessary may also prove useful to improving the
classi�cation of events. In our case, the presence of an event is decided when
at least half plus one of the detectors determine it. Other more complex
techniques of fusion decision could be applied [7, 31], but this is not relevant
to the objectives of this work.

Figure 5.7 presents a more detailed description of the detection module,
and its main functionalities and characteristics are found below:

• Background noise estimation: The detection module integrates
a training phase in which the background noise characteristics are
learned in order to estimate the whitening matrix Rw for the imple-
mentation of the PED; and the transformation U and the non-linear
function g(·) for both the EED and the PEED detectors. Due to the
possible changing noise conditions in real acoustic scenarios it is also
necessary to reestimate the noise characteristics to maintain a general
applicability of the system to any type of situation. This procedure is
based on a reestimate �ag, activated by the event manager submodule
after taking into account the result of the energy detector submodule.

• Pre-processing data: When necessary, this submodule is responsi-
ble for adapting the acoustic signal by applying the appropriate pre-
processing functions commented in the previous submodule. In the
case of non-Guassian or non-independent noise, the system will thereby
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Figure 5.7: Description of the detection module.

be in condition to reach the most appropriate decisions in the detection
of events by applying function g(·) and matrix Q.

• Energy detector: This is the main core of the module and it im-
plements any of the energy detector types and extensions described in
Chapters 3 and 4, depending on the background noise conditions and
on the available a priori knowledge of the sound sources. In all cases,
the amplitude of the acoustic signal is observed and the energy is com-
puted and compared, frame by frame, with an appropriate threshold.
The resulting test provides meaningful evidence of the presence of an
acoustic event when the energy is above the threshold.
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• Event manager: The detection result of the previous submodule in-
dicates the presence of a signal at a sampling interval determined by
the frame size selected. Due to the computational constraints, this
range of samples can sometimes be very limited, and thus insu�cient
by itself, to determine the presence of an event. For this reason, it is
necessary to consider several consecutive intervals in order to establish
the presence of an event, and then activate the output �ag, denoted
by event. This approach leads to a new generalization of the energy
detectors that will be described in greater detail in Section 5.3.2. In
addition, this submodule is responsible of activating the reestimate �ag
in case the environment conditions change. This fact permits the re-
calculation of the background noise characteristics and the subsequent
adaptation of the ED to either sudden or slow variations of the noise
level or variance.

5.2 Acoustic database

With the objective of studying the performance of the energy detector and
the extensions presented in the previous chapters, an acoustic database was
created. This database is composed of di�erent acoustic signals. On the
one hand, various sound events were recorded indoors. On the other hand,
two types of real background noises were considered (both are analyzed and
described below). The equipment and scenarios used for the recordings were
previously described in Section 5.1.2.

5.2.1 Analysis of real background noises

In many practical problems of interest, it is entirely appropriate to assume
stationary uncorrelated Gaussian noise: it results in easily implemented de-
tectors. However, in real-world acoustic scenarios, it is not always possible to
characterize the noise under these conditions due to its variability over time.
For this reason, this section o�ers an analysis of the recorded background
noises based on Gaussianity and independence. The study of the noise char-
acteristics is essential for the detection problem since they can considerably
in�uence the detector performance and can determine some speci�c param-
eters, such as the values N (observation vector size) and K (bu�er size), as
will be shown in Section 5.3.1.

Two real ambient noises were studied. The �rst was a crowd of people
present in a shopping center, and the second consisted of the noise from a con-
tinuous power generator that can typically be found in o�ce air conditioners.
These are good examples of acoustic noises with non-Gaussian distribution,
non-independent samples, and non-stationary evolution over time. In the
�rst case, approximately 16 minutes of ambient noise was recorded at dif-
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ferent periods of time; in the second, approximately 42 minutes of ambient
noise was acquired. For the recordings of the background noise sources, the
stereo microphones from a digital video camera were utilized.

5.2.1.1 Gaussianity

Section 3.2 included an examination of how the presence of non-Gaussian
noise can lead to poor detection performance. Therefore, it is very impor-
tant to study the non-Gaussian characteristics of the real acoustic noises
considered.

In this case, the two methods to measure the non-Gaussianity of a given
process (explained in Section 3.1.1) are applied: histogram plots and kurtosis
estimation. Histograms are widely used as a simple, but informative, method
of approximating the PDF of the data displayed, as they provide a visual
impression of the distribution shape. In Figure 5.8, the histograms of the
shopping center and the power generator noises are illustrated and compared
with a Gaussian PDF of the same standard deviation and mean, respectively.
In both cases, the objective is to observe how the noise PDF di�ers from the
Gaussianity assumption.

(a) (b)

Figure 5.8: Estimated PDF of two real acoustic noises versus a Gaussian
PDF (solid line) of the same standard deviation and mean (N = 512). (a)
Shopping center. (b) Power generator.

The degree of non-Gaussianity can be more speci�cally calculated by
estimating the kurtosis, which measures the degree of peakedness or �atness
of a distribution. The kurtosis was calculated for the two types of noises and
was found to be 3.53 for the shopping center noise, and 3.97 for the power

generator noise (where 0 stands for the Gaussian PDF).
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5.2.1.2 Statistical dependence

The statistical dependence problem for the non-Gaussian case is quite com-
plex (as was demonstrated in Section 3.2), and there has not been much
e�ort devoted to it within the �eld of detection, especially with regards to
high dimensional data vectors. Mathematically, statistical independence is
de�ned in terms of probability densities. The random variables x and y are
said to be independent if, and only if,

px,y(x, y) = px(x)py(y). (5.1)

This means that the joint density px,y of x and y must factorize into the
product of their marginal densities px(x) and py(y), respectively. In other
words, the information about the value of x does not yield any information
about the value of y.

Figure 5.9: Joint distribution of two dependent components of the shopping
center noise with non-Gaussian densities.

To illustrate the statistical dependence of the background noise, two ran-
dom variables x and y are considered. They correspond to the even and
odd samples extracted from the shopping center noise, respectively. In Fig-
ure 5.9, the joint density of the two variables is plotted for 256 samples. As
observed, they are not independent: it is possible to predict the value of one
of them, say x, from the value of the other, y. Similar results were obtained
for the power generator noise. Furthermore, it is also possible to experi-
mentally observe the statistical dependence of the noise by comparing the
results achieved with real noises versus the equivalent results obtained for
the Gaussian independent simulated noise, as will be shown in Section 5.4.2.



5.2. Acoustic database 107

5.2.2 Description of the acoustic events

A complete sound database of di�erent acoustic events was recorded and used
for the experiments reported in Sections 5.4 and 5.5. In this case, the sounds
were recorded in an indoor room like the one described in Section 5.1.2. It
is possible to divide the sounds into two main types, according to their
respective time duration:

• Impulsive (IM): This type of sound is characterized by a short im-
pulse response in time, which consists of an initial and high intensity
peak of energy followed by a transition in which the energy decreases
slowly. This means that most of the energy of the impulsive sounds
is concentrated at the beginning of the event. In our case, the acous-
tic events that ful�ll these characteristics, and have a time duration
shorter than 1 second, were considered as impulsive sounds.

• Non-impulsive (NIM): The non-impulsive sounds have a longer du-
ration in time. They are characterized by a lower amplitude than the
impulsive ones and a more uniform response (in terms of energy distri-
bution) over a speci�c period of time. We considered as non-impulsive
sounds those acoustic events with the aforesaid characteristics and with
a time duration equal to or greater than 1 second.

It must be noticed that one of the reasons for selecting a variety of impulsive
and non-impulsive sounds is related to the fact that they occupy di�erent
frequency bands in the spectrum. This issue is of particular interest since
the detection process can be challenging not only in the time but also in the
frequency domain as will be studied in Section 5.5.

Due to the di�culty of recording sound events commonly found in dan-
gerous situations (such as gun�re or explosions), the measurement cam-
paign involved recording a number of alternative sounds which are easier to
generate and o�er similar behavior in terms of acoustic response. There-
fore, impulsive sound sources such as bursting balloons, claps and breaking

glass were generated and recorded. Additionally, metallic sounds and human

speech were also analyzed as non-impulsive sound sources. Approximately 3
minutes of data (corresponding to 25 events) were acquired for each sound
source in 3 di�erent room positions. The room and microphones placement
layout was the same as that shown in Figure 5.4. The structure of 8 micro-
phones led to the recording of a total of 600 acoustic events for each sound
source. Figure 5.10 illustrates the time realization of three impulsive sounds,
while Figure 5.11 depicts the waveforms of the non-impulsive examples.

In order to study the detector performance in these situations, it is nec-
essary to obtain the experimental results of PD and PFA. The events of
the recordings then have to be automatically annotated using a tool which
speci�es the exact location (start and end time) of each audible event within
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(a) (b)

(c)

Figure 5.10: Time realization of impulsive sound events. (a) Balloon. (b)
Clap. (c) Breaking glass.

(a) (b)

Figure 5.11: Time realization of non-impulsive sound events. (a) Metallic

sounds. (b) Speech.
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the audio �le. Figure 5.12 presents an example of the annotation process ap-
plied to the bursting balloon and the speech recordings. It must be taken into
account that this annotation method provides an estimated window in which
the sound event is assumed to be present, and this includes the decreasing
part of the signal. This fact can be better appreciated in the impulsive sound
example. It a�ects the evaluation process of the di�erent detectors when
comparing them with their theoretical results as the impulsive sounds are
obtained assuming that the signal energy is uniformly distributed through
the whole observation interval.

(a) (b)

Figure 5.12: Annotation result. (a) Balloon. (b) Speech.

5.3 Practical background noise considerations

One of the most problematic aspects in the application of the proposed de-
tectors is the necessity for a priori knowledge about the noise autocorrelation
matrix Rw. In practice, it can be estimated using (2.24) with a set of train-
ing samples of observation noise vectors (K). Obviously, good estimates of
Rw require a relativy great value of K. This can be obtained by using a
large interval of training noise samples (let us call T the total number avail-
able) and/or reducing the observation vector size N . However, the value T
cannot be made arbitrarily large as there are some limiting factors: namely,
the computational burden and time interval duration allowed for training,
as well as the possible medium and long-term non-stationarity of the noise
(which imposes a limit on the maximum interval where the obtained estimate
is valid). On the other hand, N cannot be made arbitrarily small since this
would produce an observation time scale that is too small, thereby leading to
unstable behavior in the detectors. All these factors in�uence the estimate
of Rw and can result in a much greater PFA than that designated.
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5.3.1 Experimental parameter setting

Selecting the best combination of K and N becomes an important problem
of practical interest. Unfortunately, it is not easy to �nd an analytic closed
equation giving us the best values. Instead, an experimental �tting which
may be considered part of the overall calibration of the detector is considered.
We describe a procedure, which, although adapted to our particular case,
may have general applicability to other scenarios. The choice of N and
K was carried out from among a prede�ned range of values that took into
account the aforementioned aspects and the applicability to di�erent types
of detectors. The two available background noise recordings were processed
using the ED. As only noise was present, setting a very restrictive PFA (i.e.
10−12) no detections were expected. Therefore, we selected the combination
of N and K that resulted in the minimum number of measured false alarms.

H
HHHHN

K
512 1024 2048 4096

128 0.0153 0.0147 0.0122 0.0135

256 0.0308 0.0302 0.0310 0.0310

512 0.0577 0.0577 0.0579 0.0527

1024 0.1007 0.0995 0.0856 0.0874

Table 5.1: PFA of the ED in the presence of shopping center noise.

Four di�erent vector sizes (N) were used: 128, 256, 512, and 1024; and
for each one of them, four bu�er sizes (K) were tested: 512, 1024, 2048, and
4096. In Tables 5.1 and 5.2, the results of PFA are presented when using the
ED with the shopping center and the power generator noises, respectively.
Considering the smallest PFA obtained as an indicator of better performance,
the best combinations are marked in bold. Notice that the experimental PFA
obtained di�ers from the designed one. This is due to the non-Gaussian and
non-independent real noise characteristics, and to the sample estimate e�ects
ofRw. For the shopping center noise, the best PFA was achieved for a vector
size of 128 and 256 using a bu�er size of 2048 and 1024, respectively. In this
case, since both combinations are possible solutions, one of them was selected
bearing in mind the computational requirements. Since the power generator
noise has di�erent stationarity characteristics, the best results were achieved
for a 1024 vector length and a 1024 bu�er size. We used other types of energy
detectors (EED and PEED) and, as expected, similar results were obtained
as the adjustment of N and K depend primarily on the noise characteristics.
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H
HHHHN

K
512 1024 2048 4096

128 0.0522 0.0503 0.0511 0.0501

256 0.0531 0.0512 0.0536 0.0526

512 0.0317 0.0323 0.0321 0.0307

1024 0.0210 0.0207 0.0208 0.0208

Table 5.2: PFA of the ED in the presence of power generator noise.

5.3.2 Generalization of the energy detector

The previous section outlined the procedure to select the best combination
of K and N . In such cases, where N can be assumed to be lower than the
signal time duration, unstable detector behavior is expected. Therefore, the
following generalization of the detectors is proposed in an e�ort to compen-
sate for this degradation. This generalization will be evaluated as well when
it is applied to the ED, but similar procedure can be derived for the other
detectors.

Considering (2.27), the ED output, denoted detection, is the result of
comparing the energy of the observation vector yp (size N) with the cor-
responding threshold λ. It is set to 1, in case the energy overcomes the
threshold H1, and to 0 for the H0 hypothesis. The generalization is based
on this procedure, but in addition, a consecutive number of detections (M )
will be required to activate the output, termed hereafter as event. The result-
ing event energy detector (EDe) is capable of reducing the PFA by ignoring
the outlying detections that do not correspond to real acoustic events and
only detecting the presence of those desired.

Taking into account the previous statements, the behavior of the EDe can
be modeled following a binomial distribution. Considering the probability of
getting exactly M detections in p trials, the corresponding PFAe and PDe
of the EDe can be derived as follows:

PFAe =

(
p

M

)
PFAM (1− PFA)p−M (5.2)

PDe =

(
p

M

)
PDM (1− PD)p−M (5.3)

where the PFA and PD are obtained from the ED described in (2.17) and
(2.18). The performance of this new generalization is illustrated in Fig-
ure 5.13, where the ROC curves of the ED and the EDe are derived from
the theoretical expressions described before. In this example, the minimum
resolution time for acoustic events is set to 40 ms, corresponding to 4 consec-
utive detections using 256 as the observation vector size (N) and a sample
frequency of 24 kHz. This means that 4 active detections are required across
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Figure 5.13: ROC curves of the ED and the EDe with independent Gaussian
noise, SNR = −8 dB and N = 256.

four trials to obtain an activated EDe output (event = 1). The EDe curve
obtains an improvement in PD up to 25.9% over the ED for a PFA of 10−3

thanks to the considerable reduction in false alarms arising in the ED. In
the following, this generalization will be extended to the detectors presented
in Chapter 3, thus yielding the EEDe and PEEDe.

5.4 Performance of the ED and its generalization
with acoustic signals

In this section, the results of our experiments are presented and discussed.
First, our attention turns to the evaluation of the ED and the EDe with
di�erent sound sources and in the presence of Gaussian noise. Then, the
performance of the EDe is studied with non-Gaussian and non-independent
real noise and then compared with the results of the generalized extensions
presented in Chapter 3.

For all experiments (and considering the computational limitations), the
reestimate time of the noise characteristics was 1.5 seconds, the PFA range
studied was from 10−8 to 1 and the minimum resolution time event was set
to 40 ms. Di�erent SNR were considered, and the sizes of the observation
vector N and the noise bu�er K were set according to the results obtained
in Table 5.1.
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5.4.1 Acoustic event detection in Gaussian noise using the

ED and the EDe

We tested both the ED and the proposed EDe by means of the probability of
detection (calculated for di�erent adverse SNR), and using Gaussian noise
and the �ve types of acoustic events: balloon, hammer, clap, glass, and speech.
It is worth noting how, as expected, there was an improvement in PD when
using the EDe versus the ED. Table 5.3 shows the absolute percentage of
improvement reached (in terms of PD) across all measurements, for a PFA of
10−3. For low SNR, the number of missdetections increased; the ED cannot
avoid them, unlike the EDe. In the case of balloon event and SNR = −6
dB, an absolute improvement in PD of up to 30.5% was attained.

SNR(dB) balloon hammer clap glass speech

-2 28.6 29.9 26.3 11.8 5.3
-4 27.8 30.3 26.7 10.6 11.5
-6 30.5 30.4 22.9 10.7 9.1
-8 27.1 28.9 19.7 9.8 6.1
-10 23.3 28.4 14.8 8.6 3.4

Table 5.3: Improvement percentage (%) in PD of the EDe versus the ED for
PFA = 10−3.

Now, let us highlight this improvement by comparing the graphed out-
puts of the ED (detection) and the EDe (event), using the corresponding
threshold for a PFA of 10−8. Figure 5.14 shows three acoustic events of type
clap in the presence of Gaussian noise and with SNR = −4 dB, where 0
stands for no detection and 1 for sound detection. As can be observed, the
number of false detections is considerably reduced when 4 consecutive active
detections are required to generate one event in the EDe. This circumstance
ensures reliable detection results for all sound sources and leads to an im-
provement of performance. In the following this generalization will also be
used with the extended detectors seen in Chapter 3.

5.4.2 Comparison of EDe, EEDe and PEEDe with real back-

ground noises

Since the particular acoustic event does not in�uence the comparison results
of the di�erent energy detectors, the experiments were conducted using one
of the sound sources of the database, in this case the hammer blows. In
Figure 5.15, the resulting ROC curves of the EDe are shown for the shopping
center and the power generator noises (dashed lines), and they are compared
with the Gaussian noise case (solid line). The SNR is set to −4 dB and the
observation vector length N to 256. As expected, a loss in detectability can
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be appreciated when using the EDe with non-Gaussian and non-independent
noises.
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Figure 5.14: Output of the ED (detection) and EDe (event) when detecting
an acoustic signal of type clap in white Gaussian noise and SNR = −4 dB.

Figure 5.15: ROC curves of the EDe with Gaussian and non-Gaussian noises
(shopping center and power generator) with SNR = −4 dB and N = 256.
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However, in real non-Gaussian noise scenarios, the detectability can be
signi�cantly improved by using the EEDe and the non-parametric trans-
formation proposed in Section 3.2.3. In Figure 5.16, the ROC curves of the
EEDe and the PEEDe are set against the EDe when detecting hammer blows

in the presence of the shopping center noise. Only the results of this noise
are presented since it is more non-stationary than the power generator one.
The SNR was approximately −6 dB while the observation vector length (N)
was set to 100 (due to the highly time-consuming e�ort required to estimate
the ICA transformation and the inexistent convergence of the algorithm for
N = 128).

Figure 5.16: ROC curves of the EDe, the EEDe and the PEEDe in the
presence of the shopping center noise with SNR = −6 dB and N = 100.

The results show that, since the EEDe considers the non-Gaussianity
of the noise, it performs better than the EDe achieving an improvement
in PD up to 12.5% for a PFA of 10−3. However, and especially for low
PFA values, the EEDe does not achieve the same results of the EDe for
uncorrelated Gaussian noise, as it does not take into account the dependence
of the real noise. In order to deal with the non-independence of the noise,
it was necessary to use the PEEDe, which resulted in an improved overall
performance in the EEDe, evidenced in Figure 5.16. For a PFA of 10−3, the
PEEDe achieves an absolute improvement in PD of up to 8%. Notice that
the PEEDe operating in non-Gaussian and non-independent noise performs
better than the EDe operating in Gaussian and independent noise, given the
same SNR. This fact is discussed in [64] and is related to the change in SNR
experienced after applying the non-linear transformation g(·).
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5.5 Performance of the MED in acoustic event de-
tection

The theoretical problem of detecting unknown signals with unknown dura-
tion was previously presented in Chapter 4, where a MED structure was
implemented in order to match the di�erent possible signal durations. No
evaluation of this novel approach was performed in any real-world scenario or
practical application; but the improvements achieved by the theoretical re-
sults justify the utility and applicability to acoustic scenarios. Therefore, the
focus of this section is to present a detailed evaluation within the framework
of acoustic scene analysis, where the multiple energy detector can provide
signi�cant improvement in the detection of acoustic events. In particular, the
performance of the MED is studied in the time and frequency domains since
detection of signals with unknown bandwidth is also of particular interest
[60].

5.5.1 Experimental setup and analysis of acoustic events

These experiments were performed with the objective of studying the perfor-
mance of the MED in real-world acoustic scenarios. Various acoustic events
of varying nature and duration were recorded in a typical o�ce room, using
a multichannel audio data acquisition unit with a sampling frequency of 24
kHz (as previously described in Section 5.1.2 and 5.2). As an example, a
time and frequency MED structure of 7 layers was used with an original
observation vector in the highest layer of N = 16384 samples, leading to a
total duration of 0.68 seconds and a total bandwidth of 12 kHz, respectively.
The PFA of the individual EDs was set to 10−8 since this is a reasonable
value used in detection systems.

In order to contemplate the largest set of cases, three acoustic events
(arranged according to time duration) were considered. Impulsive sound
sources (claps and breaking glass) were analyzed, along with human speech

as a non-impulsive sound source. In Figure 5.17, a time realization of the
acoustic events is superimposed on the time MED structure. As can be ob-
served, the speech signal extends its energy uniformly across the whole initial
observation vector. On the contrary, the clap signal concentrates its main
energy across the �rst segment of layer 6, corresponding to N/32 samples.
Finally, as an intermediate example between the two aforementioned cases,
the breaking glass signal extends its energy primarily throughout the �rst
segment of the third layer.

Figure 5.18 shows the absolute value of the normalized frequency re-
sponse of each acoustic signal. Again the frequency MED structure used
is superimposed. As we can see, the acoustic signals selected have di�er-
ent spectrums and characteristics. The most important spectral information
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(a) (b)

(c)

Figure 5.17: Realizations of the acoustic signals superimposed on the time
MED structure of L = 7. (a) Speech. (b) Clap. (c) Breaking glass.

about the speech signal is concentrated mainly between 0 and 1 kHz. The
clap example presents a low frequency spectrum mainly concentrated be-
tween 500 Hz and 2.2 kHz. The third reveals a totally di�erent frequency
response and corresponds to the breaking glass signal. In this case, the
spectrum has higher frequency components and a wider bandwidth, mainly
spanning between 3 and 6 kHz.

5.5.2 Acoustic detection results

This section presents and discusses the experiment results. The time and
frequency ROC curves of the MED are obtained for di�erent sound signals.
In both cases, several SNRNo de�ned in the �rst layer of the structure
(SNRNo = SNR/

√
2N) were generated by adding WGN; but only those

that permitted a reasonable comparison between the di�erent ROC curves
under study were presented for each sound source. In addition, in the time
as well as in the frequency domain, the ROC curves comparison is studied
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(a) (b)

(c)

Figure 5.18: Normalized frequency response of the acoustic signals superim-
posed on the frequency MED structure of L = 7. (a) Speech. (b) Clap. (c)
Breaking glass.

for several partitions L (number or layers used in the MED structure) of the
original observation vector (with dimension N).

The principal objective is to show and validate the interest in using the
MED instead of the ED (only one layer, L = 1) when the signal duration
or bandwidth is unknown. Several cases are thus considered using the MED
to detect signals with a time duration and bandwidth comparable to the
segment length of di�erent layers.

5.5.2.1 Signals with unknown time duration

Figure 5.19 presents the time MED performance when detecting the three
acoustic signals of di�erent time duration. Figure 5.19a shows the ROC
curves for the speech signal, which extends uniformly across the whole initial
observation vector. In this case, the best performance is reached for L = 1,
equivalent to the single ED. As expected, some degradation is experienced
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in the ROC when using unnecessary partitions (L > 1). On the contrary, as
observed in Figure 5.19b (where a clap signal is to be detected), an improve-
ment in MED performance is achieved by increasing the number of layers
used, versus the single ED (L = 1). The best results are obtained for L = 7
since the signal duration is more comparable to the observation segment of
the bottom layer.

Figure 5.19c illustrates an intermediate example where the acoustic sig-
nal has a time duration similar to that of the segment used in layer 3. As
expected, the best ROC curve corresponds to L = 3. However, note how the
degradation su�ered when using more layers (L > 3) is not as signi�cant as
the degradation experimented when using no subdivisions (L = 1). There-
fore, it is advisable to use as many layers as possible in the MED, observed
by comparing the degradation in Figures 5.20c for L = 7 and L = 1.

(a) (b)

(c)

Figure 5.19: ROC curves of time MED structure using di�erent layers (L).
(a) Speech (SNRNo = 2). (b) Clap (SNRNo = 0.5). (c) Breaking glass

(SNRNo = 1.5).
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5.5.2.2 Signals with unknown bandwidth

Figure 5.20 shows the experimental ROC curves obtained when detecting
acoustic signals with the frequency MED structure. The �rst example is
shown in Figure 5.20a. The best detection results are obtained for L = 5
since the speech bandwidth has a similar length to the observation segment
of layer 5. The performance decreases when using more layers (L > 5), but
as expected, the degradation is more signi�cant when less layers (L < 5) are
used, especially for L = 1, which corresponds to the ED.

(a) (b)

(c)

Figure 5.20: ROC curves of frequency MED structure using di�erent layers
(L). (a) Speech (SNRNo = 1). (b) Clap (SNRNo = 1.5). (c) Breaking glass
(SNRNo = 2.5).

The remaining two examples are presented in Figures 5.20b and 5.20c,
where a clap and a breaking glass signals were detected. In both cases, the
optimal number of layers to be employed in the frequency MED structure
is equal to 3, as observed. Comparing the spectrums of both signals (Fig-
ure 5.18b and Figure 5.18c), we can observe how the breaking glass signal has
a broader bandwidth; therefore, a smaller number of optimal layers would
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be expected. This fact can be explained: in the breaking glass example, the
second best result is obtained for L = 1, while for the clap case it was L = 5,
corresponding to its actual bandwidth.

It must be pointed out that the frequency noise vectors are obtained tak-
ing the absolute value of the white Gaussian noise spectrum; therefore, they
are Rayleigh distributed [43]. When the noise follows a non-Gaussian distri-
bution, it is possible to implement other extensions of the ED, as presented
in Chapter 3. This would lead to a general improvement of PD for all ROC
curves in Figure 5.20, although the relative comparison among the di�erent
layers L would remain the same, and similar results would be achieved.

5.6 Conclusions

In this chapter, the ED and the possible extensions viewed in previous chap-
ters have been evaluated in real-world acoustic applications where the sound
sources are not entirely known. In particular, our study focused on surveil-
lance applications where the acoustic detection of sounds events can help to
prevent dangerous situations and to compensate some of the technical lim-
itations inherent in video systems. First, we described the equipment and
scenarios selected to generate a suitable acoustic database that permitted
the evaluation of the di�erent acoustic detectors. Then, the general detec-
tion system was described, and a detailed study of the background noises
and acoustic events was presented. Furthermore, the problem of estimating
the autocorrelation matrix in real noise conditions was studied. As a result,
a new generalization applicable to all the energy detectors seen before was
presented and evaluated, showing the improvements reached with this novel
approach.

A complete set of experiments was performed with real acoustic events
and background noises. First, a detailed evaluation of the EDe, EEDe, and
PEEDe showed that, as expected, for the case of non-Gaussian and non-
independent noise, the EEDe obtains better results in terms of PD, reaching
a signi�cant improvement of 12.5% for a PFA of 10−3 (compared with the
EDe). Furthermore, since the EEDe does not consider independence, the
PEEDe achieves the best results: a PD improvement of 8% versus the EEDe.
Second, the MED structure was also evaluated with real signals of unknown
duration and bandwidth. As expected, the MED o�ered the best detection
results in comparison to the single ED, when the acoustic signal duration
or bandwidth was smaller than the original observation vector length. In
addition, it was also demonstrated how this improvement was worthwhile,
despite of the possible degradation resulting from the opposite case of using
unnecessary layers of the MED.





Chapter 6

Application of the ED and the
MED to the acoustic scene
analysis

Knowledge is a treasure,
but practice is the key to it.

Thomas Fuller

The detection of novel sounds is a challenging task, as shown in

Chapter 5, but it can considerably improve the performance of fur-

ther systems. In this chapter, the focus is placed on the enhancements

achieved through other acoustic processing techniques when they are

used in combination with a previous detection phase. Therefore, a de-

tector is e�ciently used to advertise an automated system that an event

has occurred, and at the same time, to enable further processing (e.g.

acoustic source localization or classi�cation). Part of the research work

presented in this chapter is the fruit borne from a cooperative exchange

program of Ph.D. students from the �Grupo de Tratamiento de Señal

(GTS)� of �Universitat Politècnica de València (UPV)� and the acous-

tic scene analysis group of �Universität Karlsruhe (TH)�.

6.1 Improvement of localization algorithms by means
of an adaptive energy detector approach

6.1.1 Introduction

One of the most important areas in which the acoustic scene analysis is
required is in the interaction between man and machine. Appropriate situ-

123
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ations occur in scenarios where a human cooperates with a humanoid robot,
or is assisted by one [2]. In this case, several active sound sources can ex-
ist in the robot's proximity, for example in a kitchen, which contains many
di�erent acoustically observable appliances. However, the localization of
these sound sources is highly in�uenced by the unpredictable waveforms of
the signals and the presence of background noise. Thus, to resolve the two
aforementioned issues, two novel localization approaches are presented in
this section. They combine the information provided by an energy detector
with the well-known localization method SRP-PHAT [24].

In the �rst case, a microphone array is employed to localize dominant
acoustic sources in a given noisy environment. This capability is successfully
used in good SNR conditions, but its accuracy decreases considerably in the
presence of other background noise sources. In order to counteract this e�ect,
a novel approach is used: it implements a background noise suppression
algorithm based on the ED to improve the localization method SRP-PHAT,
as described in [59].

In the second case, it must be noted that for a complete acoustic scene
analysis, especially for surveillance applications or interaction with a hu-
manoid robot, it is necessary to localize and detect all types of sound events
which can occur in the proximity. Basically, two types of sound sources can
be di�erentiated: impulsive and non-impulsive. In many cases, only the non-
impulsive ones, mainly speech, are taken into account. But, especially for the
detection of dangerous or unusual situations, it is often necessary to local-
ize and detect also impulsive sound sources like slamming doors or breaking
glass. In order to be able to properly localize both types of events, a modi�-
cation of the standard SRP-PHAT algorithm is required. Therefore, a novel
approach using an ED in a temporal event alignment and a pre-classi�cation
is proposed [53].

The detection and the localization techniques in which the new ap-
proaches are based will be described. Subsequently, we will describe the
procedure followed to combine them, before obtaining the modi�ed localiza-
tion algorithm. Finally, some results of these novel techniques are presented.

6.1.2 Current techniques

The detection problem is inversely related to the knowledge of both the signal
to be detected and the characteristics of the background noise. The easiest
case would be to detect known events in a stationary white Gaussian back-
ground noise environment. But when the sound sources are not completely
known, designing the appropriate detector becomes more di�cult [49]. In
this case, energy detection can be useful to collect more information about
the actual event and improve the localization step.
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6.1.2.1 Adaptive energy detector

Since real audio signals are completely unpredictable, the energy detector is
of special interest in detecting the events in the presence of a background
noise which, in this case, is assumed to be Gaussian distributed. However, as
adjacent audio samples are highly correlated, the noise signals cannot be con-
sidered to have white properties. In this case, some additional pre-processing
is required and a PED is used (described in Section 2.2.3). Figure 6.1 depicts
the complete energy detector procedure used in this chapter. The acoustic
signal is divided into frames y of size N ; then these observed vectors are
linearly transformed (R̂w), so that a new white vector yp is obtained. After
that, the energy of the pre-whitened data is calculated (Ep) and compared
with a threshold λ �xed by the PFA.

Figure 6.1: Block diagram of an energy detector.

This whitening process assumes stationarity in the background noise en-
vironment. This assumption is not always correct and could considerably
reduce the performance of the energy detector when used in real scenarios
where the characteristics of the noise change considerably over time. For this
reason, knowledge about the noise which alters the desired sound sources at
any time is important in order to dynamically adapt the estimation of R̂w,
making our decision even more robust in the presence of background noise.
The initial estimation of the noise covariance matrix must therefore be com-
puted, and then the last K noise vectors (according to our energy detector
decision), are used to reestimate R̂w every τ seconds. This period of time
will depend on the characteristics of the noise, particularly on its stationarity.

6.1.2.2 Localization algorithm

Nowadays, two approaches for acoustic localization are mainly used. The
�rst is based on the estimation of the time di�erence of arrival (TDOA) of
sound signals in a pair of spatially separated microphones. The other well-
known technique for acoustic localization is the so-called Power Field (PF),
also known as steered response power (SRP) [24]. They are described below.
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Time delay estimation

The estimation of the TDOA of sound signals is achieved by correlating the
sound signals of two paired microphones. The correlation function Rxixj (τ)
in the frequency domain can be de�ned as

Rxixj (τ) =

∫ +∞

−∞
Xi(ω)Xj(ω)∗ejωτ dω (6.1)

where Xi is the Fourier transformation of the given microphone signal xi. In
theory, the signals xi and xj in a given pair should be an exact copy of each
other, with a time delay τ . However, in real-world environments noise and
reverberation e�ects arise. This leads to the following system model:

xi(t) = hi(t) ∗ si(t) + ni(t) (6.2)

xj(t) = hj(t) ∗ sj(t) + nj(t), (6.3)

where hi(t) is the acoustic impulse response of the room from the source to
the ith microphone; the additive term ni(t) summarizes the channel noise in
the microphone system as well as the environmental noise for the ith sensor,
and sj(t) represents a delayed version of the signal si(t) by τij seconds.

In order to make the correlation more stable, the so-called phase trans-
form (PHAT) ψxixj is additionally used to weight the correlation function.
This leads to the well-known generalized cross correlation (GCC) function
[46]:

R(g)
xixj (τ) =

∫ +∞

−∞
ψPHATxixj (ω)Xi(ω)Xj(ω)∗ejωτ dω, (6.4)

with the PHAT weighting function de�ned by

ψPHATxixj (ω) =
1

|Xi(ω)Xj(ω)∗|
, (6.5)

which can also be regarded as a whitening �lter.

SRP-PHAT

Based on the time delay estimation, the spatial position of a sound source
can be calculated. Therefore, the SRP technique can be used. In this ap-
proach, beamforming is used to focus a microphone array on a speci�c spatial
area. To �nd the exact position of a sound source, the entire environment is
scanned, searching for the spatial position with the highest acoustic power.

The combination of SRP and the TDOA methods mentioned before leads
to a called SRP-PHAT [24], which combines the stability of the SRP against
reverberation with the e�ciency of the GCC method, thereby giving us the
possibility to build a real-time system.
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SRP-PHAT is computed as

A(v) =
1

|Mp|
∑

(i,j)∈Mp

R(g)
sisj (τij(v), (6.6)

where τij(s) denotes the theoretical delay between the microphones in pair
(i, j) for the assumed spatial source position v = (vx, vy, vz). Mp represents
a given set of microphone pairs. In order to estimate the source position v̂,
the position of the maximal value in A(v) has to be found in a given search
space V:

v̂ = arg max
v∈V

A(v). (6.7)

6.1.3 Modi�ed localization algorithms by means of an ED

Based on the ED and the localization algorithm previously described, two
possible combinations of these techniques are presented in this section. The
modi�ed localization approaches that are yielded serve to improve the lo-
calization results of the standard methods. Let us now describe them in
detail.

6.1.3.1 Background noise suppression

In acoustic scenarios, background noise (for example, the fan of an air condi-
tioner or long-lasting sounds) is ubiquitous. Depending on the type of sound,
the correlation of the background noise could be higher than the correlation
of the desired sound source to be localized. This problem can commonly
lead to a high degree of mislocalizations.

In order to improve the localization accuracy in noise conditions, common
spectral subtraction techniques described in the literature could be used for
the noise reduction purpose, especially in speech signal applications [8, 65].
In these scenarios, spectral subtraction method can suppress noise e�ectively
by subtracting its spectral magnitude from that of the noisy signal. Using a
voice activity detector (VAD) [14, 82], an estimate of the noise signal is mea-
sured during silence, or non-speech activity, in the signal. However, there
are several aspects that must be taken into account regarding these tech-
niques. On the one hand, since the subtraction is implemented on the signal
itself, the phase could change, and consequently, the localization algorithm
would be a�ected. On the other hand, the complexity of these methods is
considerably increased in order to obtain a robust performance of the VAD
under di�erent noise environments. In addition, most of the algorithms as-
sume that the noise is stationary, uncorrelated, additive and characterized
by Gaussian distributions, which di�ers from real-world applications.

To avoid this, a method to suppress these background noise sources has
been developed by using the adaptive ED described in Section 6.1.2.1. In
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this case, the acoustic signal is kept unaltered and thus does not a�ect the lo-
calization algorithm. Furthermore, the simple structure of the ED employed
permits adaptation to di�erent types of noise conditions, as is shown below.
Figure 6.2 shows this new approach. As can be observed, to suppress the

Figure 6.2: Block diagram description of the new localization approach,
based on the background noise suppression.

background noise, it is �rst necessary to collect information about it. Using
the adaptive energy detector makes it possible to distinguish between a sta-
tionary background noise source and another active source. Assuming a fully
correlated noise and an ideal room with a Dirac impulse response, a noise-
free estimation of the generalized cross correlation can be easily achieved in
a given microphone pair by subtracting the GCC of the noise from the GCC
of the received signal, as follows:

R(g)
sisj (τ) = R(g)

xixj (τ)−R(g)
ninj (τ). (6.8)

The estimation of R
(g)
ninj (τ) for each microphone pair is achieved by calculat-

ing (6.4) during phases of no activity in the sound source, detected by using
the PED. When no desired sound source is detected, our system estimates
the SRP-PHAT of the current background noise Bk(v), as indicated in (6.6),
where k = 1, . . . ,K and K represents the number of realizations. If a desired
sound source is detected, the mean of the last K SRP-PHAT computations
of the noise is computed and subtracted from the current SRP-PHAT esti-
mation in the following manner:

A(BNS)(v) = A(v)−B(v) (6.9)

where

B(v) =
1

K

K∑
k=1

Bk(v) (6.10)
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and the resulting Power-FieldA(BNS)(v) is estimated using background noise
suppression (BNS). The novel localization approach yielded is termed SP-
BNS. To estimate the sound source position v̂, we use the same maximum
search described in (6.7).

Results

To evaluate both the performance of this combined technique and the im-
provement introduced in the localization phase (in comparison to the case
without background noise suppression), two recording sets were tested in a
kitchen scenario where people and a robot interact [59]. In the �rst, the per-
formance of the presented localization system was assessed when a speaker

was active in several room positions. To better evaluate the proposed sys-
tem, a second signal source was conceived using a toaster as an impulsive
sound source. Three kinds of typical kitchen background noise sources were
studied in each setup in order to simulate di�erent signal-to-noise ratios and
to evaluate the system's ability to ignore the noise source (once localized). In
the �rst scenario (S1), only the desired sound source (without any additional
background noise) was recorded. In the second (S2), a fan was additionally
included as a background noise. In the third and �nal scenario (S3), sound
emitted by a kitchen grinder was added to the fan in S2. The microphone
array used in our experiments was built according to the head geometry of a
humanoid robot (Figure 6.3) and consisted of four omni-directional electret
condenser microphones. It was roughly an inverse T-shape geometry, with a
total width of 20 cm and a height of 5.5 cm.

Figure 6.3: Head of the humanoid robot ARMAR III.
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Table 6.1 shows the averaged results of all measurements for both sound
source types, speech (a) and the impulsive sound source (b), using the SRP-
PHAT method and the presented background noise suppression approach,
SP-BNS (SRP-PHAT plus BNS). The absolute percentage of the correct
localization rate is given for all combinations of active sound sources (noise
and desired) in the corresponding scenario (S). In order to highlight the
performance of the SP-BNS method, normalized values corresponding only
to the correct localization of active sound sources are presented in brackets.

S Method Fan Grinder Speech Wrong

S1
SRP-PHAT o� o�

95.0 5.0
(100.0) (�)

SP-BNS o� o�
93.2 6.8

(100.0) (�)

S2
SRP-PHAT

19.1
o�

73.0 7.9
(20.7) (79.3) (�)

SP-BNS
0.0

o�
95.4 4.6

(0.0) (100.0) (�)

S3
SRP-PHAT

0.0 83.7 15.9 0.4
(0.0) (84.0) (16.0) (�)

SP-BNS
0.0 1.2 88.3 10.5
(0.0) (1.4) (98.6) (�)

(a)

S Method Fan Grinder Toaster Wrong

S1
SRP-PHAT o� o�

39.5 60.5
(100.0) (�)

SP-BNS o� o�
38.7 61.3

(100.0) (�)

S2
SRP-PHAT

23.3
o�

25.1 51.6
(48.1) (51.9) (�)

SP-BNS
0.0

o�
46.6 53.4

(0.0) (100.0) (�)

S3
SRP-PHAT

0.2 40.0 30.2 29.6
(0.2) (56.8) (43.0) (�)

SP-BNS
0.0 0.0 35.8 64.2
(0.0) (0.0) (100.0) (�)

(b)

Table 6.1: Percentage of averaged measurement results. (a) Speech. (b)
Impulsive sound source (toaster).

In the case of speech, the correct localization rate was about 95% for
both methods in the scenario without any background noise (S1). When
using the SRP-PHAT method without BNS, we found, not surprisingly, that
the localization rate for the desired source decreases dramatically for the
scenarios with active background noise (S2 and S3) However, nearly 100%
suppression of the background noise was achieved when the SP-BNS method
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was used. This led to an improvement in the correct localization rate from
16% to 88% in S3. For the impulsive sound sources (i.e. a toaster), SRP-
PHAT did not reach the high accuracy obtained with speech. This is the
reason why the mislocalization rate already amounts to about 60% in the
scenario, without any background noise (S1). Since the purpose of this
section is to study the improvement of the acoustic localization SRP-PHAT
in comparison to the novel approach (SP-BNS), the normalized values are
given in brackets to avoid the in�uence of mislocalization on the results.
Then it can be seen that, in the case of the combination of SRP-PHAT and
BNS, for example, we observe an improvement in the correct localization
rate from 43% to 100% for S3. In scenarios S2 and S3, background noise is
totally suppressed, since there are no localizations of these noises.

6.1.3.2 Temporal event alignment

For the impulsive sound sources, SRP-PHAT does not reach the high ac-
curacy obtained with non-impulsive events (shown in the previous section).
This is the reason why even for scenarios without any background noise,
the mislocalization rate is very high. To localize both impulsive and non-
impulsive sound sources, the standard SRP-PHAT technique was modi�ed
(described in Section 6.1.2.2). The basic idea is to distinguish between the
di�erent types of sound sources, and adapt the localization algorithm ac-
cordingly. Therefore, in a pre-classi�cation phase, the sound source which
should be localized is classi�ed as an impulsive or non-impulsive event. This
is done by measuring the length of the event (counting detections of the en-
ergy detector) in a speci�c time interval. An event is handled as impulsive
if the total time duration of all detections in the time interval amounts to
less than one second.

Mislocalizations of impulsive events can be attributed mainly to rever-
beration. Because all possible re�ected paths of the sound are longer than
the direct path, the �rst wave which arrives at the microphone pair is not in-
�uenced by reverberation. In order to exploit this knowledge, it is necessary
to exactly align the correlation window and the event. This is done by po-
sitioning the beginning of an event to the middle of the correlation window,
using the detections of the adaptive energy detector. This alignment is done
for both sound source types. In the case of an impulsive event, however, the
window is additionally decreased to a quarter of its original size in order to
gain more in�uence of the �rst wave. After the �rst localization, the local-
ization algorithm has to handle two di�erent event types: for the impulsive,
it terminates and is waiting for the next event. For a non-impulsive event
type, it waits for a half-correlation window and the pre-classi�cation is then
repeated. This whole procedure is iterated until the classi�cation result is
impulsive again. That means that the ongoing event is �nished, and the
algorithm is awaiting the next event.
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Results

In order to evaluate the localization of impulsive and non-impulsive sound
sources using this algorithm, recordings were done with and without back-
ground noise. Di�erent signal-to-noise ratios are of particular interest be-
cause there are various noise sources which can arise, for example, in the
proximity of a humanoid robot [53]. In this application, a typical case was
represented by the cooling fans of the robot. For the evaluation, the fol-
lowing impulsive sound sources were analyzed: putting a cup on the table,
opening and closing a door, dropping a spoon on a table, and a toaster. A
mixer and human speech were used as non-impulsive sound sources. The
microphone array used for our experiments was the same as that described
in the previous section.

As a baseline localization method, the standard SRP-PHAT approach
was utilized. The sound data were divided into windows of a speci�c size
and with an overlap factor of 0.5. Each time an event inside of such a
window was detected by the energy detector, the data was �rst multiplied by
a Hamming window and then passed to the localization algorithm described
in Section 6.1.2.2. The window size used in this case was 8192 samples and
corresponded to 170 ms, leading to 11.7 localizations per second.

source
baseline method modi�ed method

correct [%] RMS [◦] correct [%] RMS [◦]

cup 29.23 42.08 93.41 10.91
door 60.81 39.77 79.77 17.46
spoon 48.18 37.22 100.00 3.26
toaster 73.39 23.78 97.87 6.35

mixer 96.89 7.12 98.75 4.58
speech 94.98 8.90 97.78 6.28

(a)

source
baseline method modi�ed method

correct [%] RMS [◦] correct [%] RMS [◦]

cup 30.38 42.08 93.26 6.19
door 65.43 31.29 74.97 26.06
spoon 27.28 34.28 97.78 4.02
toaster 55.64 30.53 80.22 17.94

mixer 79.44 16.04 80.22 12.65
speech 96.09 9.38 95.65 9.04

(b)

Table 6.2: Comparison between the baseline and the modi�ed localization
method based on percentage of correct localizations and the corresponding
RMS (in degrees). (a) Without background noise. (b) With background
noise.

In Table 6.2, it can be observed that for non-impulsive sound sources like
speech or a mixer, this setup delivers high correct localization rates (over
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95%) with a small root mean square error (RMS), under both conditions (i.e.
with and without background noise). But the disadvantages of this setup can
be clearly seen in the results for impulsive sound sources. In this case, the
localization rate occasionally drops under 50% and the RMS also increases
signi�cantly. For non-impulsive sources, the modi�ed algorithm results in
a slight improvement of 1-2%. However, the localization rate and the RMS
can be improved signi�cantly for impulsive sound sources. In this case, an
absolute improvement of up to 71% is attained, with a signi�cant decrease
in the RMS. For example, by using the modi�ed localization method, the
RMS decreases from 37◦ to 3◦ in the spoon case. Figure 6.4 highlights this
fact by comparing the baseline and the modi�ed localization method for the
azimuth estimation.
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Figure 6.4: Localization azimuth results for the case of a dropping spoon

in a noisy environment; comparison between the baseline and the modi�ed
localization method.

6.2 Acoustic classi�cation using time and frequency
MED features

6.2.1 Introduction

Within the framework of surveillance applications, the identi�cation of pos-
sible dangerous events that might occur in the scene under analysis is of
paramount importance. In that sense, the classi�cation of sound sources
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is the process of assigning an observed event to the most similar of several
previously de�ned classes. The classes are characterized in a training stage,
using sound events that are known to belong to each class. This is frequently
called supervised learning [26]. Usually, this task is not performed directly
with the signal, but rather with some data extracted from it, which forms
the feature vector. This data is then compared with the information ex-
tracted from the training data on the basis of its statistical properties, e.g.,
probabilistic models [26], linear discriminants [57], support vector machines
[12], etc. It is important, therefore, to identify the features that distinguish
these classes.

Most of the earlier studies in the literature present the mel-frequency
cepstral coe�cients (MFCC) to be the most suitable features for speech and
sound sources identi�cation [27]. MFCC usually o�ers good performance,
but the vulnerability of these features to noise degrades their recognition
performance. Thus better features are generally desired for noisy environ-
ments. In [92], for example, a noise-robust feature extraction method was
presented to deal with this problem. In this section, however, we propose
the use of the MED, presented in Chapter 4, to obtain a new set of features.
The MED is capable of determining the presence of an acoustic event within
a background noise. Furthermore, it can also provide information about it,
which can then be employed for classi�cation. On the one hand, a modi�ed
MFCC extraction method is presented; on the other, some appropriate novel
features are extracted by using the signature an event produces when it is
processed by the MED [61].

6.2.2 Classi�cation method

The proposed method adopts a hierarchical classi�cation approach to assign
a label to an event in a given audio frame, as shown in Figure 6.5. First,
a time and frequency MED detector is required to distinguish between an
acoustic event and the background noise. In a second step, the acoustic
sounds are pre-classi�ed into impulsive and non-impulsive events, thereby
allowing better classi�cation in a later stage. Finally, further classi�cation
is performed in the third level using a Bayesian classi�er to label the events.

6.2.2.1 Pre-classi�cation

Two kinds of acoustic events have been taken into account. The �rst are the
impulsive events, which are characterized by a short duration. In contrast,
the non-impulsive events have a longer duration. Therefore, the hierarchical
classi�cation used here requires an initial �rst step in which both types of
sounds are di�erentiated to better facilitate classi�cation later on, as will be
demonstrated.
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Figure 6.5: Hierarchical classi�cation scheme.

The sound source is pre-classi�ed as an impulsive (IM) or non-impulsive
(NIM) event. This is done by measuring the length of the event: counting
the number of detections in the lowest level of the temporal MED. An event
is handled as impulsive if the total time duration of all detections in the time
interval amounts to less than a given duration (con�gurable).

The importance of the pre-classi�er must be pointed out, since further
classi�cation steps can take advantage of this decision. When a new event
is detected, only the categories belonging to the pre-classi�ed class will be
considered, and a di�erent parameter setup will be adjusted. Furthermore,
due to the di�erent nature of the signals, di�erent parameter setups can be
set for IM and NIM events to enhance the subsequent classi�cation step.

6.2.2.2 Feature extraction

Prior to the recognition algorithm, an analysis is required of the signal to
be classi�ed to extract the feature vector. This is a critical step since it
produces the parameters upon which the recognition algorithm is based. In
this work, two types of feature are evaluated to compare the performance of
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the classi�er under bad SNR conditions:

1. A modi�ed version of the well-known MFCC features.

2. The novel features extracted from the MED structure.

The MED is able to determine the presence of an acoustic event in a
background noise and also provide information about it, useful for classi�-
cation. Thus, a modi�ed MFCC extraction method will �rst be presented.
Then some appropriate novel features will be extracted using the signature
an event generates when it is processed by the MED.

Modi�ed MFCC features

MFCC features are derived from a cepstral transformation and they represent
the power spectrum of an acoustic segment [19]. These features can attain
high recognition accuracy in controlled environments, but the performance in
real-world applications tends to degrade signi�cantly due to the mismatch
between distorted input signal and the pre-trained acoustic models. It is
therefore important to exclude segments with no event information since the
recognition rate can considerably decrease.

When classi�cation follows the detection phase, it must be noted that
the beginning and duration of the signal bu�er used in classi�cation are
both important, especially for low SNR. The correct bu�er size should be
chosen to �t the event time duration, but as signals of di�erent time durations
can arise in real-world applications, selecting this value is not an easy task.
Setting the bu�er size to the long term events will result in a considerable
decrease in the recognition rate of IM events as noise will be also present in
the bu�er. On the contrary, setting the bu�er size to the short term events
will generate a loss of information when classifying the NIM events.

To address this problem, a robust approach is used to extract features
only from active segments that contain the acoustic event. Thus, taking
advantage of the temporal MED structure, only the active detection seg-
ments in the lowest level will be considered in extracting the MFCC features
for the classi�cation phase (although other levels of the structure could be
also used). Then, once the activated parts of the event are selected, the
resulting signal is divided into frames of 21 ms and then characterized by
a 13-dimensional MFCC vector. The �rst component of the feature vector
corresponds to the DC component and is not used for classi�cation [52].

MED features

The information provided by the MED structures can be used not only for
detecting new sound sources but also for classifying them. Therefore, novel
features are extracted from the time as well as the frequency structures of the
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MED. These features are based on energy and o�er the advantage of being
noise-independent, as the MED continuously adapts to changes in noise over
time. They are calculated in the following way:

H(l) =
2l−1∑
m=1

u(l,m); ∀l = 1, . . . , L− 1 (6.11)

V (m) =

L∑
l=1

u
(
l,
⌈

m
2L−l

⌉)
; ∀m = 1, . . . , 2l (6.12)

where H(l) and V (m), are the horizontal and vertical energy distribution of
the event in the detection structure, respectively.

Afterwards, the coe�cients H(l) and V (m) are concatenated into a sin-
gle feature vector for each MED structure. PCA is applied to reduce the
dimensionality [32, 39]. The features extracted from the time domain are
called TMED features, and those extracted from the frequency domain are
denoted FMED features. Similarly, the combination of these two feature sets
through simple concatenation of both vectors and subsequent application of
PCA, leads to a new set, referenced as combined multiple energy detector
(CMED) features. This feature extraction method requires much less time
than the MFCC features since only sums in the two dimensions of the MED
are required. Furthermore, depending on the pre-classi�cation result, the
size of the TMED and FMED feature vector can be adjusted for impulsive
and non-impulsive sources.

In Figure 6.6, the vertical (V) and horizontal (H) TMED and FMED
features of di�erent sound sources have been plotted for a SNR of 20 dB.
We can observe how IM events (clap, hammer blow, and shot) have similar
TMED H and FMED H feature vectors, but highly di�erentiated FMED
V and TMED V feature vectors. This observation enables their correct
identi�cation. In addition, the breaking glass event presents a particular
TMED V feature vector that distinguishes it from the other events. With
regards to the NIM events (metallic sounds, siren, and speech), note that all
have similar features vectors except for those related to the FMED V; they
have di�erent bandwidths, but similar time durations.

6.2.2.3 Acoustic event modeling

The acoustic events are distinguished on the basis of their speci�c feature
vectors (described above) and by using a Bayesian classi�er [26]. Using a
supervised approach for the training phase, a parametric model is calculated
for each class. Then, a Bayes decision rule is applied to assign one of the
pre-trained classes to each new sound source.

Assuming K classes (noted ci, i = 1, . . . ,K), the posterior probability
that a feature vector x belongs to a certain class ci can be calculated using
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Figure 6.6: Vertical (V) and horizontal (H) TMED and FMED features for
SNR = 20 dB. For H features, ndet is the number of activated detectors for
each level; for the V features, nlev is the number of activated levels for each
detector. (a) Clap. (b) Hammer blow. (c) Breaking glass. (d) Shot (bursting
balloon). (e) Metallic sounds (keys). (f) Siren. (g) Speech.

the Bayes theorem:

P (ci|x) =
p(x|ci)P (ci)

K∑
j=1

p(x|cj)P (cj)

(6.13)

where P (ci) is the class prior to ci. Then, the acoustic event is assigned to
the class ci that satis�es

i = arg

{
max

i
P (ci|x)

}
. (6.14)
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In this work, the prior classes P (ci) are assumed to be equal for all classes
since there is no knowledge about the event occurrence.

The feature vectors have been modeled using a multivariate Gaussian
probability density function, where the sample mean and the sample covari-
ance matrix are the only parameters calculated for every class during the
training process:

p(x|ci) =
exp

[
−1

2(x− µi)TC−1i (x− µi)
]

(2π)
D
2

√
det(Ci)

(6.15)

where µi and Ci are respectively the sample mean vector and sample covari-
ance matrix of the class ci, estimated during the training process.

6.2.3 Evaluation results

Acoustic events of varying natures and durations that can be indicative of
dangerous situations in surveillance applications, were recorded. Impulsive
sound sources such as hammer blows, claps, breaking glass, and simulated
shots (bursting balloons) were generated. Additionally, human speech, sirens
and metallic sounds (e.g. keys) were also analyzed as non-impulsive events.
Furthermore, di�erent SNR were performed by adding correlated Gaussian
noise.

Real recordings were carried out in a typical o�ce room using a multi-
channel audio data acquisition unit with a sampling frequency of 24 kHz (as
described in Section 5.1.2). Approximately 3 minutes of data were acquired
for each sound source and each room position, cumulating in a total of 600
acoustic events for each SNR. The parameter setting, such as the number
of levels of the MED structure (L) or the observation vector length (N), is
in�uenced by the computational requirements �xed by the real-time process-
ing of the signals. Taking into account these considerations and the sample
frequency previously selected, a MED structure of 9 levels was implemented
with a total duration of 5.46 seconds in the highest level and an energy de-
tector of 256 samples (≈10 ms) in the lowest. The PFA was set to 10−8,
since this is an acceptable value used in detection systems.

To calculate the MFCC features, the signal was divided into frames of
21 ms and characterized by a 13-dimensional vector. The �rst element of
the vector corresponded to the DC component, and it was not used for
classi�cation. The number of features used for TMED and FMED depended
on the pre-classi�cation result. After applying PCA, a 14-dimensional and
a 40-dimensional vector for the impulsive and the non-impulsive events are
used, respectively.

Several experiments were carried out in order to test the performance of
the detection and classi�cation of acoustic events in the presence of simu-
lated Gaussian noise [61]. The database described in the experimental setup
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section was utilized and the results of each phase are presented below for
several SNR conditions.

6.2.3.1 Event detection

Table 6.3 shows the PD for impulsive and non-impulsive sounds. The detec-
tions obtained for the SNR (equal to 20 dB) are used as ground-truth and, as
expected, it can be observed how the PD decreases with SNR. Furthermore,
there are some impulsive events, like shot and glass, which are more robust
against the noise and present a high PD even in low SNR. However, for the
non-impulsive events, the PD decreases considerably since the beginning and
ending of the events are masked by the noise and are not detected.

source
SNR(dB)

10 0 -2 -4 -6 -8 -10

clap 99.3 99.3 99.3 98.1 90.1 82.1 72.9

hammer 98.1 94.6 93.3 92.4 90.9 84.6 74.6

glass 100 100 100 100 100 100 100

shot 99.4 99.4 99.4 99.4 99.4 99.4 99.4

metal 95.3 93.6 93.1 92.4 92.7 87.7 80.2

siren 90.3 83.8 78.1 73.3 64.9 52.1 36.9

speech 94.8 92.7 90.4 89.1 84.8 77.2 65.9

Table 6.3: PD(%) of impulsive and non-impulsive events in several SNR
conditions.

6.2.3.2 Pre-classi�er

The results of the pre-classi�er are presented in Table 6.4, where the per-
centage of the correct classi�cation for impulsive and non-impulsive events
is shown. It must be noticed that it functions better in IM events, since the
tails of the NIM sounds can be misclassi�ed. This fact can be appreciated
particularly in low SNR, where there are fewer detections. Therefore, the
pre-classi�er is more likely to decide IM.

source
SNR(dB)

20 10 0 -4 -8 -10

IM 97.6 97.6 97.5 97.5 99.1 99.0

NIM 89.9 90.4 89.8 87.2 84.1 80.7

Table 6.4: Pre-classi�cation results (%) of impulsive and non-impulsive
events in several SNR conditions.
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6.2.3.3 Feature evaluation

In this section, the classi�cation results are presented assuming that the
detection and the pre-classi�cation stages are correct. A comparison between
four audio features sets (MFCC, TMED, FMED and CMED) are evaluated
on their ability to di�erentiate acoustic events. Features extracted from
detections in 20 dB are used in the training step, while the other SNRs are
used for testing.

Figure 6.7 shows the results achieved when classifying the IM and NIM
sounds using the di�erent feature sets. In both cases, the results show
that the TMED features present the poorest performance, especially for the
non-impulsive events. This can be explained by the fact that these pyra-
mid features only consider the temporal information of the pyramid, which
makes more di�cult to distinguish between events of the same time dura-
tion. Therefore, these features are not very robust against events of the
same nature and they are greatly a�ected by the noise conditions. This

(a) (b)

Figure 6.7: Probability of classi�cation for several SNR conditions, L = 9,
N = 256, and PFA = 10−8. (a) NIM sounds. (b) IM sounds.

fact can be observed in Figure 6.7a: the recognition rates obtained for the
non-impulsive events using FMED, CMED and MFCC are above 96% in all
SNR, but the TMED features present the worst results. For the impulsive
sounds, it can also be observed in Figure 6.7b that FMED performs better
than TMED, and , they are complementary in the sense that they can be
combined (CMED) to reach an even better classi�cation rate. Comparing
these new features against MFCC, we can see that MFCC behaves slightly
better in SNRs higher than 5 dB; but as the noise conditions become worse,
its performance decreases considerably. In this case, the CMED features
reach better recognition rates, and an improvement up to 15% can be ob-
tained. Therefore, it can be seen that they are more robust against the noise
conditions.
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We must take into account that the results shown are obtained using
the modi�ed MFCC features that use the information provided by the tem-
poral MED structure. So, features are extracted from the pieces of signal
corresponding to active detectors in the lowest level of the MED structure
(modi�ed MFCC). Therefore, the classi�cation performance of these features
is also compared with the ones extracted from the entire bu�er in which the
signal is present. The improvement obtained in classi�cation by employing
the modi�ed MFCC (versus the standard ones) is shown in Table 6.5, for
impulsive and non-impulsive events. The results show that the classi�cation
rates are very similar in the case of non-impulsive events. In this kind of
detection there are usually a considerable number of active detections in the
MED, and a substantial part of the bu�er is involved in the classi�cation.
Meanwhile, for impulsive events, there is a big improvement when using the
modi�ed MFCC. There are numerous inactive detectors (signal is mainly
noise) which can corrupt the classi�cation if the standard ones are used.
Therefore, although MFCC features have been usually used in the context
of non-impulsive events, we have demonstrated that it is also possible to ex-
tend its use to the classi�cation of impulsive events when using the additional
information provided by the MED.

source
SNR(dB)

20 10 0 -4 -8 -10

IM 0.29 5.21 28.5 23.4 22.1 13.6

NIM 0.38 -0.04 -0.12 -0.21 -0.77 0.40

Table 6.5: Percentage (%) of improvement of the classi�cation rate of the
MFCC features after using the information provided by the temporal pyra-
mid.

6.3 Application in surveillance scenarios

6.3.1 General system structure

This section presents the architecture, the main functionalities, and the is-
sues related to dependability within a security system, based on the acous-
tic scene analysis. The system is able to detect impulsive as well as non-
impulsive sounds in the presence of a background noise and then extract
more information about it in order to classify and localize the source.

The system is highly heterogeneous in terms not only of the detection,
classi�cation, and localization technologies involved, but also in the program-
ming architecture. This maintains its capacity to communicate with other
systems and to provide them the information extracted from the acoustic
signal processing. The design of the system has to deal with the following
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types of sounds that can be indicative of dangerous situations: sounds gen-
erated by breaking glass, sirens, metallic knocks, shots and speech. Moreover,
the system must be able to adapt to the changes in background noise as the
scenario conditions can vary.

The surveillance prototype architecture is depicted in Figure 6.8. As we
can observe, the system is composed of �ve main modules: the acquisition
module, which is responsible of adapting the acoustic signal recorded by the
microphones to the rest of the processing modules; the initialization module
that will set all the internal and external parameters required for the correct
functioning of the algorithms used by the other modules; and �nally, the
detection, classi�cation, and localization modules, which are the processing
units responsible of providing the results, and which will be described in
more detail below.

Figure 6.8: Block diagram of the entire system.
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6.3.1.1 Detection module

The detection of impulsive and non-impulsive event was previously described
in Chapter 5. This module can be used for security applications. Now,
the most challenging task is to study the possible interaction with other
modules that can provide more functionalities, and thus acquire more precise
knowledge of the acoustic scene analysis. Its main objective is to detect
any acoustic event in the environment and, in this case, it is responsible for
activating the other two modules. That means that in case an acoustic event
is detected, other processing stages (such as the classi�cation and localization
algorithms) will start collecting more information about it in order to decide
which type of event it is and where it is located. For that reason, it is
important to note that the detection results for each input frame analyzed
are provided to the following modules. These detection results are:

• detection bu�er : output of the energy detector stored over time.

• event bu�er : output of the event manager submodule stored over time.

• timeDetector : structure with the time MED results.

• freqDetector : structure with the frequency MED results.

6.3.1.2 Classi�cation module

Whenever the detection module �nds anomalous events in the input signal,
the recognition process is activated and a two stage classi�cation process is
initiated. The block diagram of this module is shown in Figure 6.9. First,
in case a detection �ag is activated in the detection module, a prior analysis
of the signal is performed in order to pre-classify the detected sound and to
determine whether the event is impulsive or non-impulsive. This procedure is
implemented for each of the signals acquired by a single microphone, which
uses the results of the corresponding detection module to determine the
class. Then a combination of the results for all microphones is performed in
order to obtain a more reliable decision. In a second classi�cation step, and
taking advantage of the pre-classi�cation result and the detection structures
of multiple energy detectors performed in the detection module, the class
of the detected signal is determined after comparing it with di�erent sound
models, trained from a database (see Section 5.2). Again, the classi�cation
result is obtained for each microphone, and a �nal combined decision of the
current event is provided. The mean of the probability for each class is
obtained (accounting for all the microphones) and then the class with the
maximum probability from among all of them (classSecondLevel) is selected.
In addition, the ratios (ratios2ndLevel) representing the similarity of the
event with all the classes available are also provided.
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Figure 6.9: Block diagram description of the classi�cation module.

6.3.1.3 Localization module

The �nal objective of sound localization in most surveillance systems con-
sists of localizing the acoustic sound source position. Figure 6.10 depicts
the block diagram of the localization implemented. It can be observed how,
in addition to some con�guration parameters, it is necessary to provide the
event detection �ag (indicating the presence of an event), as well as the prior
classi�cation results obtained in the classi�cation module. These inputs are
required since the particularity of this localization approach is mainly con-
centrated in the additional two functionalities included so as to deal with the
localization of sounds in noisy environments (background noise suppression)
and the localization of sounds of di�erent nature (time event alignment).
In the �rst case, the detection result allows the localization to start only
when a sound occurs that is di�erent from the noise. At the same time, this
result collects localization information about the background noise in case
no acoustic event occurs. In the second case, the pre-classi�cation results
provided by the classi�cation module allows us to apply a di�erent param-
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Figure 6.10: Block diagram description of the localization module.

eter setup and alignment procedure, depending of the nature of the event
detected. The localization of impulsive and non-impulsive events is thereby
improved. As a result, the position of the sound is yielded.

6.3.2 Graphical user interface

As the di�erent algorithms used in the acoustic surveillance system have now
been described, the graphical user interface (GUI) we developed is presented.
It uses a combination of all those technologies providing a platform that the
user can interact with. This tool allows us to present a summarized rep-
resentation of the information and results from the di�erent modules that
make up the system. By using graphical icons and visual indicators (col-
ored detection structures, column bars, superposition of results, and typed
command labels), the tool presents the user with the information and the
available actions: for example, con�guring the parameter settings, performed
by manipulating the graphical elements.

Designing the visual appearance and the behavior of the GUI included
an important element of software programming. There were many types of
programming languages that could be utilized to develop the GUI; but since
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the algorithms were mainly implemented and tested using Matlab, the GUI
programming environment from this program was selected [81]. Thus, it was
possible to more easily adapt all the algorithms previously developed.

Let us now present the GUI of the acoustic surveillance system. The
design of the tool takes into account the three main modules of the system
and it is organized following this structure. Each of the modules has its
corresponding screen on the GUI. In addition, a parameter setting is intro-
duced to initialize and con�gure all of them. The screens that make up the
application are as follows:

• Parameter setting.

• Detection results.

• Classi�cation of each microphone and fusion decision of all rates.

• Combination of localization and classi�cation results.

6.3.2.1 Parameter con�guration

The �rst step is to con�gure all the parameters of the di�erent modules
involved in the system. Figure 6.11 shows the parameter setting screen. The
parameters are grouped into di�erent blocks, each of them responsible for
initializing a particular module of the overall system. The main groups are
listed here:

• Acquisition parameters: these parameters are used to initialize the
selected audio source to be processed. There are two possible sources:
the audio acquisition card or an audio �le. Some of the most important
parameters are the number of microphones used, the sample frequency,
and the frame size.

• Detection parameters: in this case, these parameters are responsible
for initializing the detection module. To do so, it is necessary to specify
the PFA; the frame size used (which can di�er from that used in the
acquisition data phase) and the minimum resolution that is going to
be considered (in ms) to detect an event.

• Localization parameters: the localization algorithm requires the
speci�cation of some internal parameters involved in the algorithm.
At the same time, and in order to determine the exact position of the
event, it is necessary to provide the exact microphone array location,
as well as the area in which the localization of sound events is going to
take place.

• Classi�cation parameters: since the classi�cation requires some
prede�ned trained classes to compare the current events detected, it
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Figure 6.11: Menu of parameter settings from the GUI.

is necessary to specify the training �le containing such classes. The
number of MED layers must also be speci�ed, since the classi�cation
phase extracts various novel features from this structure.

• Plot and save parameters: in order to select the diagrams and
graphic results shown, there is a check-box menu that permits the use
to represent the results of the di�erent modules, as well as store the
main results from the acoustic processing in a data �le.

6.3.2.2 Detection results

Figure 6.12 displays the detection results from a particular microphone for
two di�erent acoustic events. In both cases, the detection results are repre-
sented using a MED structure of 9 layers in the time and frequency domains.
Each layer is determined by a set of colored detectors: green (no detection
is activated), and red (the energy of this detector exceeds the corresponding
threshold). Due to the particular distribution of the detectors, the MED has
a pyramidal shape, as can be observed. In addition, the pre-classi�cation
result is also shown. On the one hand, an impulsive event characterized by
its short time duration and low bandwidth is detected by the MED (Fig-
ure 6.12a). On the other hand, the detection results of a non-impulsive
event are depicted (Figure 6.12b). In this case, the time MED has many
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(a)

(b)

Figure 6.12: Detection MED structure and pre-classi�cation results for two
sound sources. (a) Impulsive sound. (b) Non-impulsive sound.

more detections throughout the entire structure. The frequency structure
also reveals a wider bandwidth from the sound event than in the impulsive
case.
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6.3.2.3 Classi�cation results

Due to the fact that the system is equipped with a microphone array, the
redundancy of acquired audio signals can be exploited in order to improve
the �nal classi�cation decision. To do so, the classi�cation algorithm is �rst
applied separately to each channel.

(a)

(b)

Figure 6.13: Probability of classi�cation. (a) Independent channel classi�-
cation. (b) Combined classi�cation of all microphones.
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The resulting classi�cation rates of each microphone are shown in Fig-
ure 6.13a, where the probability that the current acoustic event detected
belongs to one of the pre-de�ned classes is depicted. As can be observed,
the correct class decision is not so clear in all microphones since there are
many factors that can in�uence each particular microphone (e.g. distance,
noise level, etc.). Therefore, a channel combination approach provides a
more reliable �nal decision. In Figure 6.13b, the global classi�cation deci-
sion, calculated by combining the classi�cation results from all channel-based
classi�ers, is shown for both the pre-classi�cation step and the Bayes classi-
�er.

6.3.2.4 Combination of localization and classi�cation results

The �nal GUI screen displays the localization of the acoustic events in combi-
nation with the classi�cation results. As can be observed in Figure 6.14, the
result of the channel combination used for the classi�cation of the detected
acoustic event is plotted at the top. Then, in the bottom left-hand side the

Figure 6.14: Block diagram description of the localization module.

area under study and its dimensions in combination with the exact location
of the microphone arrays are represented. When an event is detected, its ex-
act position in the room it is marked with a red circle, and the classi�cation
result is given. Finally, in the bottom right-hand side the real time image it
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is shown, acquired with a video camera installed in the opposite corner where
the microphones are placed. In this image, the limits of the area in which
the localization is considered are overlayed. In addition, the exact position
of the detected sound event is localized in the real image with a pink circle,
using a matrix transformation that converts the x, y and z coordinates into
the real image. This fact allows us to observe the area under surveillance
in real time, and at the same time, to compare the position given by the
localization algorithm with the actual location of the acoustic source.

6.4 Conclusions

This chapter has presented the promising results achieved by combining the
localization and classi�cation of acoustic sounds with energy detectors. Two
main acoustic applications were evaluated which combined these techniques:

• First, the well-known SRP-PHAT localization algorithm was presented,
and two modi�cations of this technique were proposed. The �rst was
devoted to solving the problem of mis-localizations caused by the pres-
ence of background noise. In this case, an ED is used to collect the
information about the background noise correlation to then substract
it when a desired sound source is detected and must be localized. The
localization of non-impulsive sound sources showed very stable results
(achieving an improvement up to 72% with speech data), while the
impulsive sound sources were not localized reliably. The second modi-
�cation faced the problem of localizing unpredictable waveforms, which
can profoundly in�uence localization accuracy. By using the informa-
tion provided by an ED over time, it was demonstrated how it is possi-
ble to pre-classify the acoustic events into impulsive and non-impulsive.
This enables a temporal alignment of the event and an adaptation of
some parameters of the localization algorithm. In both cases, acoustic
events extracted from a real kitchen scenario (where a man interacted
with a humanoid robot) were considered. This permitted an evaluation
of the two modi�cations and the improvement reached with the new
techniques in comparison with the standard SRP-PHAT algorithm. In
so doing, an absolute improvement of the localization accuracy of up
to 71% could be achieved.

• Then, a Bayesian classi�er, and features extracted from possible acous-
tic signals present in surveillance scenarios, were studied in order to
characterize the sound sources present in the acoustic scene. In this
case, a novel approach based on the utilization of a MED structure
for detection and for extracting new features, was presented. By us-
ing the time and frequency MED structure, a new set of features were
thereby extracted (TMED and FMED) and compared with the stan-
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dard MFCC. Real experiments with acoustic signals of varying natures
(impulsive and non-impulsive) were conducted. It was shown how the
combination of TMED and FMED, named CMED, o�ered the best
classi�cation rates, with an improvement of up to 15% (in low SNR
for the impulsive sounds) in comparison to the MFCC. No signi�cant
improvements were achieved for the non-impulsive ones.
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Chapter 7

Conclusions and future work

When one door closes,
another one opens.

Miguel de Cervantes

In closing this thesis, this chapter presents the conclusions reached

in this work, summarizing the most relevant aspects concerning two

principal points: the theoretical extensions proposed for the energy de-

tectors and the results obtained from the simulations and experiments

performed in real-world applications with acoustic signals. Taking into

consideration these concluding remarks, future lines of research arise

and are addressed to promote continued investigation into new tech-

niques for fusion decision in multiple detectors and its application to

other disciplines.

7.1 Conclusions

In this thesis, several strategies for designing detectors under di�erent signal
and noise conditions were presented. It was shown how the degree of di�-
culty of a detector is inversely related to the degree of knowledge about the
signal to be detected and the background noise in which it is present.

We �rst reviewed the detection problem when the signal was determinis-
tic, leading to the matched �lter (MF) detector. Our attention was mainly
focused on those cases where the signal was entirely unknown or it could
be assumed to be present in a subspace. These problems were analyzed in
detail in Chapter 2 and led us to the study of the energy detector (ED)
and the matched subspace �lter (MSF) for when the noise is Gaussian and
uncorrelated. The existing dependence between the noise samples was also
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examined in the energy detector, which led to the pre-processed energy de-
tector (PED).

In Chapter 3, it was demonstrated that both the ED and the MSF de-
grade when the noise background is non-independent and non-Gaussian.
Therefore, two extensions of the ED, denoted as extended energy detec-
tor (EED) and pre-processed extended energy detector (PEED) [64], and a
generalization of the MSF, de�ned as generalized matched subspace �lter
(GMSF) [63], were presented in this chapter to deal with this situation. In
both cases, independence was achieved by means of a linear matrix trans-
formation derived from independent component analysis (ICA). In order
to obtain a level of general applicability for the new proposed detectors, a
non-parametric estimation of the noise PDF was used after the linear trans-
formation. For each detector, the issue of non-Gaussianity was avoided in a
distinct manner:

• In the EED, a study of the standard Rao test solution demonstrated
the necessity of �nding an alternative transformation to the one pro-
posed by the Rao test. Therefore, two di�erent transformations were
analyzed: the Box-Cox transformation and a scalar non-linear function
based on the Gaussianization process using a random variable with un-
known PDF, which was estimated using a non-parametric approach.
Various experiments were performed to compare both techniques. The
non-linear function was selected for its higher performance (on the ba-
sis of the ROC curves) when given the same conditions. In this case,
the generalized likelihood ratio test (GLRT) condition of the extended
detector is not generally demonstrated. Thus, an SNR enhancement
factor α was de�ned after the non-linear transformation and subse-
quently used as an indicator of the expected improvement to be derived
from the proposed extension of the energy detectors.

• In the MSF, the non-linear transformation used to manage non-Gaussian
noise conditions was inherent to the solution proposed by the Rao test,
thus preserving its properties.

Several experiments were conducted with simulated examples in order to
evaluate the EED in comparison to the ED, and the PEED in comparison to
the PED. The results revealed improvements in performance gained when
using the PEED with non-Gaussian and non-independent noise versus the
ED and the PED. In a similar manner, the MSF was compared against the
GMSF; a study of the resulting ROC curves showed similar performance
enhancement with the generalized solution. More speci�cally, it was demon-
strated that the degradation of the MSF in the presence of non-independent
noise cannot be easily compensated for without the use of the GMSF.

In Chapter 4, an extension of the classical energy detector was proposed
to deal with the scenario in which signal duration and bandwidth are un-
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known. This can be especially interesting for the �eld of novelty detection,
where speci�c parameters of the signal are entirely unknown [89]. Multiple
energy detectors were applied to subintervals of the original observation in-
terval, leading to a multiple energy detector (MED) structure where signal
presence was decided if at least one of the EDs was in favor. We derived the
corresponding probabilities of false alarm and detection as part of a particu-
lar strategy of successive half-segmentations of the original interval, thereby
obtaining a layered structure of energy detectors. ROC curves were com-
puted to show the resulting improvements in detection performance when
the MED structure (L > 1) is employed (instead of the single ED (L = 1)),
given that the signal duration or bandwidth is smaller than the original ob-
servation vector of length N . Some degradation is to be expected when the
number of required layers is overestimated, but we showed that this factor
is not signi�cant when weighed against the expected improvements.

Chapter 5 o�ered a comparative study of the di�erent detectors utilized
in the framework of acoustic event detection, as part of surveillance appli-
cations. A detection system was introduced, and the performance of the
ED and the corresponding extensions (EED and PEED) were evaluated for
the more general case of non-Gaussian and non-independent noise. A new
generalization was also proposed to deal with non-stationary noise condi-
tions. The novel detection structure denoted by MED was evaluated using
acoustic signals where the duration of the sound sources and their bandwidth
were completely unknown. Subsequent data collection of real-world acoustic
events and background noises was carried out whereby signals of varying na-
tures and bandwidths were recorded. Several experiments were conducted in
order to evaluate the ED and the MED under these adverse noise conditions
with low SNR:

• Results from experimental testing of ED showed a considerable reduc-
tion in the number of false alarms, thereby demonstrating that the
proposed generalization (EDe) performed better. Consequently, it was
applied to other extensions. In real-world scenarios with non-Gaussian
and non-independent noise, the study of the ROC curves revealed a
loss in detectability when using the EDe; hence, the best results were
obtained with the PEEDe.

• The MED was applied in both the time and frequency domain by
using di�erent observation intervals, respectively. The experimental
results were illustrated with time and frequency ROC curves under
adverse noise conditions with low SNR. The improvements obtained
with the MED allowed us to validate the expected theoretical behavior
presented in Chapter 4. In addition, as the signal duration and band-
width are not known in advance, it was shown how this improvement
can be worthwhile despite any possible degradation arising from the
use of unnecessary layers of the MED structure [60].
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Finally, the in�uence of background noise and the waveform of the acous-
tic signals on the localization and classi�cation of sound sources was studied
in Chapter 6. As a result, the PED and the MED were used in combina-
tion with these techniques in order to improve the localization accuracy of
acoustic sounds and the classi�cation rates:

• In the �rst case, an adaptive energy detector was used in combination
with the common SRP-PHAT technique as part of the acoustic source
localization. The adaptive PED was able to adjust to a given sta-
tionary background noise and it distinguished between the background
noise and a real acoustic event. Several experiments were subsequently
conducted; the resulting modi�ed localization algorithm was evaluated
and revealed considerable improvements [59]. In addition, the problem
of localizing acoustic signals of di�erent nature was addressed, and an-
other modi�ed localization algorithm was proposed and evaluated to
enable reliable localization of both impulsive and non-impulsive sound
sources. Again, based on the standard SRP-PHAT localization ap-
proach, we showed that a much higher correct localization rate, with
and without background noise, can be obtained using an energy de-
tector in the temporal alignment and the pre-classi�cation of an event
[53].

• In the second case, the detection and classi�cation of acoustic events
in noisy environments was considered using a MED structure and a
two-stage classi�cation approach, respectively. Mel-frequency cepstral
coe�cients (MFCC) features are typically used for the classi�cation
of sound sources. Nevertheless, a novel set of features was extracted
from the time and frequency MED structure and were then compared.
Some experiments with real acoustic signals were conducted, with the
results demonstrating the performance of the detection structure and
the importance of the pre-classi�er. Furthermore, the new set of fea-
tures, denoted by TMED, FMED, and CMED, were evaluated and
compared with the MFCC. The experimental results showed that for
non-impulsive events the TMED features o�er the worst results. For
the impulsive sounds, MFCC performs slightly better in good SNR con-
ditions, but on the contrary CMED presents a signi�cant improvement
in the classi�cation accuracy in low SNR [61].

7.2 Future lines of research

The results achieved in the thesis does not seek in any way to close lines of
work, and they must be regarded as a rethinking of the problem, which al-
lows future developments not only in the �eld of acoustic scene analysis, but
in the �eld of any type of application in which a detection phase is required
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in general. Thus, from the results achieved throughout this thesis the fol-
lowing possible future lines of research arise. With regards to the innovative
extensions of the ED proposed in Chapter 3, it would be interesting to inves-
tigate other ICA algorithms that are capable to work with higher dimension
vectors and that are less time consuming in obtaining i.i.d. components . In
addition, other methods of Gaussianization could be tested and compared
against the ones presented in this work to reduce the computation required
at the moment due to the implementation of the non-parametric estimation
of the noise PDF. Further investigations should consider possible extensions
of the proposed MED structure that are described below:

• The case of non-Gaussian can be addressed by using extended energy
detectors in each individual member of the layered structure, thereby
dealing with the most general case of non-Gaussian background noise
and unknown signal duration. In a similar way, non-independent noise
samples could be dealt with by applying the pre-processed extended
energy detector.

• Extension to 2-D domains, such as time-frequency or image process-
ing, is straightforward if one simply considers multiple 2-D patches.
Other possible partitions of the initial observation vector and various
combined decisions of the time and frequency MED structures could
be devised in order to improve the �nal detection process. Therefore,
di�erent subdivisions strategies can be attempted, but new derivations
should be calculated to obtain the corresponding probabilities.

• A sequential version of the proposed detector is also possible by using
a double threshold at every individual energy detector. As a result,
the decision could be delayed until at least one of the energies is above
the corresponding upper thresholds, or all energies are below the cor-
responding lower thresholds. However, derivation of the corresponding
theoretical PDMED and PFAMED is not straightforward.

With regards to applying energy detectors with the goal of localizing and
classifying sound sources within real acoustic scenarios, further research can
be handled as follows:

• In relation to acoustic localization, di�erent microphone constellations
and various parameter settings could be considered in order to improve
the reliability of the localization when using SRP-PHAT. In addition,
a comparative evaluation should be performed between the modi�ed
SRP-PHAT algorithm and other localization algorithms. Furthermore,
they could be tested by introducing a previous energy detector step.
Other possible improvements are related to reducing mislocalization
rates by means of a tracking algorithm.
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• Focusing �nally on the classi�cation process, it was shown that the
novel features of CMED behave better than the MFCC when dealing
with impulsive sound sources. Therefore, future work must consider
the possibility of combining both in order to improve classi�cation
reliability, In addition, this pair should also be compared with some
other common acoustic features.

Furthermore, all the detection techniques could also be applied to other
acoustic applications such as underwater detection, characterization of dol-
phins, radar and sonar detection, image segmentation, etc. In general, to
all kind of application that requires a previous detection phase capable of
discerning between interesting and not interesting events.
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Appendix A

Probability density functions

The detector performance depends largely on the ability to determine

the Probability Density Function (PDF) of the noise samples. There-

fore, two well-known PDFs, widely used and referenced throughout

this work, are studied here: Gaussian and chi-squared distribution.

The �rst is used to evaluate the di�erent detectors with this type of

noise distribution, and the second describes the distribution followed

by the energy statistic in some detector cases.

A.1 Gaussian distribution

The PDF of a Gaussian random variable x (also known as normal distribu-
tion) is de�ned as:

p(x) =
1√

2πσ2
e

[
− 1

2σ2
(x−µ)2

]
−∞ < x <∞ (A.1)

where µ is the mean and σ2 the variance of x. It is denoted as N (µ, σ2)
and we can say that x ∼ N (µ, σ2) (∼ signi��es "is distributed according
to"). In Figure A.1, the representation of several Gaussian PDF for several
variances and zero-mean is represented.
If µ = 0, the moments are:

E(xn) =

{
(n− 1)σn!! n even
0 n odd.

(A.2)

For non-zero mean:

E[(x+ µ)n] =
n∑
k=0

(
n

k

)
E(xk)µn−k (A.3)
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Figure A.1: Gaussian PDF for di�erent values of variance.

where E(xn) is given by (A.2). For µ = 0 and σ2 = 1, the PDF is denoted
as a normal standard PDF, and the cumulative distribution function (CDF)
is de�ned as:

Φ(x) =

∫ x

−∞

1√
2π
e(−

1
2
t2)dt. (A.4)

On the other hand, it is also possible to provide a more convenient descrip-
tion. Known as the right-tail probability, it is the probability to exceed a
speci�ed value and is de�ned as Q(x) = 1− Φ(x), where

Q(x) =

∫ ∞
x

1√
2π
e(−

1
2
t2)dt. (A.5)

Function Q(x) is also known as the complementary cumulative distribution
function. Its approximation is normally employed and is given by:

Q(x) ≈ 1√
2πx

e(−
1
2
x2). (A.6)

If we know that a probability is given by P = Q(γ), then we can determine
γ for a speci�c probability P . Thus, γ = Q−1(P ), where Q−1 is the inverse
function [43].

A.2 Non-central chi-squared distribution

A generalization of the chi-squared distribution (χ2
ν) arises as a result of the

sum of several random squared Gaussian variables which are Independent
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and Identically Distributed (i.i.d.) with non-zero mean. More speci�cally,

if x =
n∑
i=1

x2i , where samples xi are independent and xi ∼ N(µi, 1), then

x has a non-central chi-squared PDF with ν degrees of freedom and a non-

centrality parameter denoted as λ =

ν∑
i=1

µ2i . The PDF is not obvious and it

must be expressed with integrals or with �nite series. It is possible to de�ne
it using integrals, as follows:

p(x) =

{
1
2(xλ)

ν−2
4 exp

[
−1

2(x+ λ)
]
I ν

2
−1(
√
λx) x > 0

0 x < 0.
(A.7)

Here, Ir(u) is the modi�ed Bessel function of type one and order r, de�ned
as:

Ir(u) =
(12u)r

√
πΓ(r + 1

2)

∫ π

0
exp(u cos(θ) sin2rθ dθ) (A.8)

and its series is given by:

Ir(u) =

∞∑
k=0

(12u)2k+r

k!Γ(r + k + 1)
. (A.9)

This PDF tends to the Gaussian distribution when ν increases. By using
the series expansion of (A.9), it can be expressed as a �nite series:

p(x) =
x
ν
2
−1exp

[
−1

2(x+ λ)
]

2
ν
2

∞∑
k=0

(λx4 )k

k!Γ(ν2 + k)
. (A.10)

Particularizing for λ = 0, the non-central chi-squared PDF is denoted as
simply chi-squared. In general, the non-central chi-squared PDF, with ν
degrees of freedom and non-centrality parameter λ, is denoted as χ

′2
ν (λ).

The mean and variance are:

E(x) = ν + λ
var(x) = 2ν + 4λ.

(A.11)

It is possible to denote the right-tail probability as:

Qχ′2ν (λ)(x) =

∫ ∞
x

p(t)dt x > 0. (A.12)

In the following �gures, it can be observed how the chi-squared PDF changes
when varying either the degrees of freedom (Figure A.2) or the non-centrality
parameter (Figure A.3).
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Figure A.2: Chi-squared PDF for di�erent degrees of freedom (ν).

Figure A.3: Chi-squared PDF for di�erent parameter λ.



Appendix B

Derivation of Plm

In order to obtain the PFAMED and the PDMED, it is necessary

to obtain the Plm. It can be de�ned as the probability that the m-

th detector at layer l decides H0 (conditioned to H0), and that the

detectors at the lower layers have also decided H0.

Let us call Elm the observed energy corresponding to the m-th detector
at layer l. The probability Plm can be de�ned in the form:

Plm = P (Elm < λl/H0; El′m′ < λl′ , l
′ > l,m′ = 1, . . . , 2l

′
) (B.1)

but it must be taken into account that

Elm = El+1,2m + El+1,2m−1

= (El+2,4m + El+2,4m−1) + (El+2,4m−2 + El+2,4m−3)

= . . . . (B.2)

For l′ > l, we can then write:

Elm = El′,2l′−lm + El′,2l′−lm−1 + . . .+ El′,2l′−lm−2l′−l+1. (B.3)

The conditional probability Plm de�ned in (B.1) is conditioned only to a
subset of the EDs at the lower levels, de�ned by (B.3). This leads to

Plm = P (Elm < λl/H0; El′m′ < λl′ ,

l′ > l,m′ = 2l
′−lm− k, k = 0 . . . 2l

′−l + 1). (B.4)

Considering (B.3), the conditioned probability in (B.4) can be expressed
in terms of Elm:

Plm = P (Elm < λl/H0; Elm < 2l
′−lλl′ , l

′ > l). (B.5)
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Let us now evaluate the relationship between the threshold λl′ (used in a
speci�c layer l′ of the MED) and the threshold λl (corresponding to another
layer l). As all EDs are operating with the same PFA, from (4.3) it is
possible to derive the following equality:

λl −Nl√
2Nl

=
λl′ −Nl′√

2Nl′
. (B.6)

Taking into account (B.6) and the existing relation between the length of
the observation vector at two di�erent layers (l and l′) Nl′ = Nl/2

l′−l, it is
possible to obtain threshold λl as a function of λl′ :

λl = λl′
√

2l−l′ +Nl(2
l−l′ −

√
2l−l′). (B.7)

Subsequently, the threshold used in (4.3) to compare the estimated en-
ergy can be obtained:

2l
′−lλl′ = λl

√
2l′−l +Nl(1−

√
2l′−l)

= (λl −Nl)
√

2l′−l +Nl. (B.8)

However, it must be taken into account that for PFA < 0.5 (which
holds for any practical implementation of the detector), λl = Nl is satis�ed.
This is because, as was previously explained, energy Elm is assumed to be
a Gaussian random variable having mean Nl. Hence, the expression 2l

′−lλl′

is an increasing function on l′, and the condition in (B.5) can be expressed
only for l′ = l + 1 as follows:

Plm = P (Elm < λl/H0; Elm < 2λl+1). (B.9)

Note that from (B.8) the relation between the thresholds of two successive
layers of the MED can be derived:

2λl+1 = (λl −Nl)
√

2 +Nl

= λl + (
√

2− 1)(λl −Nl) > λl. (B.10)

Using the Bayes's rule we can now rewrite (4.7) as follows:

Plm = P (Elm < λl/H0; Elm < 2λl+1)

=
P (Elm < 2λl+1/H0;Elm < λl)P (Elm < λl/H0)

P (Elm < 2λl+1/H0)

=
1− PFA

1−∆l
(B.11)



171

where

∆l = Q

(
2λl+1 −Nl√

2Nl

)
l < L− 1. (B.12)

The function ∆l is dependent on λl+1, whose value can be obtained with
the expression in (4.3):

Q−1(PFA) =
λl+1 −Nl+1√

2Nl+1

. (B.13)

Its value is then derived as follows:

λl+1 =
√

2Nl+1Q
−1(PFA) +Nl+1. (B.14)

Substituting (B.12) and noting that 2Nl+1 = Nl, the following expression
is obtained:

∆l = Q(
√

2 ·Q−1(PFA)) l < L− 1. (B.15)

Finally, this expression can be used in (B.11) to obtain the Plm:

Plm =
1− PFA

1−Q
(√

2 ·Q−1(PFA)
) l < L− 1. (B.16)





List of Acronyms

BNS Background Noise Suppression

BSS Blind Source Separation

CMED Combined Multiple Energy Detector

DFT Discrete Fourier Transform

ED Energy Detector

EED Extended Energy Detector

FMED Frequency Multiple Energy Detector

GMM Gaussian Mixture Model

GCC Generalized Cross Correlation

GED Generalized Energy Detector

GLRT Generalized Likelihood Ratio Test

GMSF Generalized Matched Subspace Filter

GTS �Grupo de Tratamiento de Señal�

ICA Independent Component Analysis

i.i.d. Independent and Identically Distributed

IM Impulsive

MED Multiple Energy Detectors

MF Matched Filter

MFCC Mel-Frequency Cepstral Coe�cient

MLE Maximum Likelihood Estimate

MSF Matched Subspace Filter
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NIM Non-Impulsive

PCA Principal Component Analysis

PDF Probability Density Function

PD Probability of Detection

PED Pre-processed Energy Detector

PEED Pre-processed Extended Energy detector

PFA Probability of False Alarm

PHAT Phase Transform

ROC Receiver Operating Characteristic

SNR Signal-to-Noise Ratio

SRP Steered Response Power

SVM Support Vector Machine

TDOA Time Di�erence of Arrival

TMED Time Multiple Energy Detector

UMP Uniformly Most Powerful

WGN White Gaussian Noise
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