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Resumen

Esta tesis estd dedicada al desarrollo de nuevos detectores de energia para
la detecciéon de seniales desconocidas en presencia de ruido no gaussiano con
muestras no independientes. Para ello, se ha llevado a cabo un amplio estudio
de las diferentes estructuras de deteccion existentes basadas en energia y se
han propuesto nuevas técnicas capaces de resolver este tipo de situaciones.

El detector de energia se presenta como la solucién 6ptima para la de-
teccion de senales gaussianas no correladas, o como un test de razbén de
verosimilitud generalizado cuando las senales son completamente descono-
cidas. En ambos casos, el ruido de fondo debe ser gaussiano e incorrelado.
Sin embargo, su comportamiento se degrada cuando el ruido de fondo no
cumple estas caracterfsticas. En primer lugar se proponen dos extensiones,
por un lado el detector de energia extendido cuando el ruido es no gaussiano,
y por otro el detector con preprocesado de energia extendido cuando ademés
es no independiente. En segundo lugar, se presenta una generalizacién del
filtro adaptado a subespacio basada en una modificaciéon del test de Rao.
Para evaluar el comportamiento de estas extensiones con respecto al detec-
tor de energia clasico, se define un factor de ganancia que ilustra las mejoras
logradas en deteccién.

A continuacién, se demuestra como el desconocimiento de la duraciéon de
la sefial puede deteriorar el comportamiento del detector. Para hacer frente a
este problema, se presenta una novedosa estructura de miltiples detectores
de energia basada en la subdivisién sucesiva del intervalo de observacién
original. Esta técnica de deteccién nos conduce a una estructura en capas
con varios detectores de energia cuyos vectores de observacién se ajustan
a diferentes intervalos de duracién de la sehal. Se ha desarrollado todo el
analisis requerido para el calculo de las correspondientes probabilidades de
falsa alarma y de deteccién para una estrategia de subdivisiones particular,
estableciendo los procedimientos necesarios para su generalizacidén a otros
casos. Las simulaciones realizadas muestran las ventajas de utilizar la nueva
estructura con respecto a un solo detector cuando la duracién real de la senal
y el intervalo de observacion original son diferentes.

Los buenos resultados alcanzados en las simulaciones han permitido el
empleo de dichos detectores en aplicaciones reales de vigilancia basada en
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xil RESUMEN

sonido. Estos sistemas presentan un interesante &mbito de aplicacién donde
es posible comprobar la robustez de los detectores analizados en los de-
sarrollos tedricos de esta tesis. Para ello, se han analizado varias fuentes
acusticas en diferentes escenarios de ruido de fondo, tanto reales como simu-
lados, presentandose ademas dos enfoques novedosos. En el primero de ellos,
la informacién proporcionada por el detector de energia se combina con un
método de localizacion sonora de fuentes. Gracias a la utilizacion de esta
nueva técnica, se demuestra como la localizacién de sonidos en presencia de
ruido de fondo mejora considerablemente. Por ultimo, un nuevo conjunto de
caracteristicas extraidas a partir de la estructura de multiples detectores son
evaluadas y comparadas con otras caracteristicas comtinmente utilizadas en
el reconocimiento de sonidos actusticos. De nuevo, los resultados obtenidos
con las nuevas caracteristicas ofrecen mejores probabilidades de acierto en la
clasificacion, especialmente en baja relacion senal a ruido.



Resum

Aquesta tesi estd dedicada al desenvolupament de nous detectors d’energia
per a la deteccié de senyals desconeguts en preséncia de soroll no gaussia
i les mostres del qual sén no independents. Per a aix0, s’ha dut a terme
un ampli estudi de les diferents estructures existents en deteccié basada en
energia i s’han proposat noves técniques capaces de resoldre aquest tipus de
situacions.

Fl detector d’energia es presenta com la solucié optima per a la deteccio
de senyals gaussians no correlats o com un test de radé de versemblancga
generalitzat quan els senyals sén completament desconeguts. En ambdés
casos, el soroll de fons ha de ser gaussia i incorrelat. No obstant aixo, el
seu comportament es degrada quan el soroll de fons no complix aquestes
caracteristiques. En primer lloc es proposen dues extensions, per un costat
el detector d’energia estés quan el soroll és no gaussia i per un altre el detector
amb preprocessat d’energia estés quan a més és no independent. En segon
lloc, es proposa una generalitzacid del filtre adaptat a subespai basada en
una modificacié del test de Rao. Per a avaluar el comportament d’aquestes
extensions respecte al detector d’energia classic, es definix un factor de guany
que il-lustra les millores en deteccié aconseguides.

D’altra banda, es demostra com el desconeixement de la duracié del
senyal pot deteriorar el comportament del detector. En aquest sentit, per a
millorar aquest comportament, es presenta una estructura de miltiples de-
tectors d’energia basada en la subdivisié successiva de 'interval d’observacié
original. Aquesta nova técnica de deteccié ens conduix a una estructura en
capes amb diversos detectors d’energia els vectors d’observacié de la qual
s’ajusten a diferents intervals de duraci6 del senyal. Les corresponents prob-
abilitats de falsa alarma i de deteccié es calculen per a una estratégia de
subdivisions particular establint els procediments necessaris per a la seua
generalitzaci6 a altres casos. Les simulacions realitzades mostren els avan-
tatges d’utilitzar la nova estructura respecte a un sol detector quan la duracié
real del senyal i I'interval d’observacié original sén diferents.

FEls resultats bons aconseguits en les simulacions han permés la utilitzacié
dels esmentats detectors a aplicacions reals de vigilancia basada en so. Aque-
sts sistemes presenten un interessant ambit d’aplicacié on és possible com-
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xiv RESuUM

provar la robustesa dels detectors analitzats en els desenvolupaments teorics
d’aquesta tesi. Per a aixo, diverses fonts acistiques s’han analitzat en presén-
cia de diferents escenaris de soroll de fons, tant reals com simulats, presentant
a més a més dos enfocaments novedosos. En el primer d’ells, la informacié
proporcionada pel detector d’energia es combina amb un métode de local-
itzacié sonora de fonts. Gracies a la utilitzacié d’aquesta nova técnica, es
demostra com la localitzacié de sons en preséncia de soroll de fons millora
considerablement. Per Gltim, un nou conjunt de caracteristiques extretes a
partir de I’estructura de miltiples detectors sén avaluades i comparades amb
altres caracteristiques comunament utilitzades en el reconeixement de sons
acustics. De nou els resultats obtinguts amb les noves caracteristiques ofer-
ixen millors probabilitats d’encert en la classificacié, especialment en baixa
relaci6 senyal a soroll.



Abstract

This thesis is dedicated to the development of new energy detectors employed
in the detection of unknown signals in the presence of non-Gaussian and
non-independent noise samples. To this end, an extensive study has been
conducted on different energy detection structures, and novel techniques
have been proposed which are capable of dealing with these problematic
situations.

The energy detector is proposed as an optimum solution to detect uncor-
related Gaussian signals, or as a generalized likelihood ratio test to detect
entirely unknown signals. In both cases, the background noise must be
uncorrelated Gaussian. However, energy detectors degrade when the noise
does not fulfill these characteristics. Therefore, two extensions are proposed.
The first is the extended energy detector, which deals with the problem
of non-Gaussian noise; and the second is the preprocessed extended energy
detector, used when the noise also possesses non-independent samples. A
generalization of the matched subspace filter is likewise proposed based on a
modification of the Rao test. In order to evaluate the expected improvement
of these extensions with respect to the classical energy detector, a signal-
to-noise ratio enhancement factor is defined and employed to illustrate the
improvement achieved in detection.

Furthermore, we demonstrate how the uncertainty introduced by the un-
known signal duration can decrease the performance of the energy detector.
In order to improve this behavior, a multiple energy detector, based on suc-
cessive subdivisions of the original observation interval, is presented. This
novel detection technique leads to a layered structure of energy detectors
whose observation vectors are matched to different intervals of signal dura-
tion. The corresponding probabilities of false alarm and detection are derived
for a particular subdivision strategy, and the required procedures for their
general application to other possible cases are indicated. The experiments
reveal the advantages derived from utilizing this novel structure, making it
a worthwhile alternative to the single detector when a significant mismatch
is present between the original observation length and the actual duration
of the signal.
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The important simulation results yielded by the new energy detectors
offer promising opportunities for real-world applications, such as surveillance
systems based on sound analysis. These systems present a suitable scope
for verifying the robustness of the theoretical detectors presented in this
thesis. Thus, several acoustic sources and a variety of real and simulated
noise scenarios were tested and two novel approaches were presented. The
first combines the information provided by an adaptive energy detector with
the standard localization method. The localization rates are considerably
improved with this original technique, mainly when the sound source is in
presence of a background noise. Finally, a unique set of features are extracted
from the multiple energy detector structure, evaluated, and compared with
other common features used for the recognition of acoustic sounds. The
results obtained with the new features considerably improve the classification
accuracy, especially in low signal-to-noise ratios.
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Chapter 1

Introduction

Only those who will risk going too far
can possibly find out how far one can go.

T.S. Eliot

The goal of this thesis is to study the feasibility of detecting unknown
signals with general applicability to different noise conditions. These
conditions replicate those commonly found in real-world acoustic sce-
narios where information about the noise and signal characteristics is
frequently lacking. For this purpose, different techniques, extensions,
and even new structures for improving the robustness in detection are
considered and explained.

1.1 Motivation and objectives

The simplest problem in detection is to decide whether the observation vec-
tors are formed by a known signal in the presence of noise, or just noise.
However, this requires knowing the characteristics of the signal to be de-
tected and the noise in which it is found. Therefore, the degree of difficulty
of a detector is inversely related to the degree of knowledge about the signal
and the background noise, in terms of probability density function (PDE).
The ideal detection case occurs when the of the signal and noise are
fully known, since this situation offers the possibility of obtaining the opti-
mum detector [43]. When the characteristics of the signals are not entirely
known, some other detection solutions, though probably not optimal, can be
attempted in order to obtain a suitable detector.

Gaussian distribution is frequently considered because of its widespread
theoretical and practical applications. Detection of unknown deterministic
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signals in background Gaussian noise is a classic detection problem. The
energy detector (ED)) implements a generalized likelihood ratio test (GLRI))
when the noise is Gaussian; but when the noise is non-Gaussian and non-
independent, the performance decreases. The Gaussian and independent
noigse assumptions are typically used in various scenarios for mathematical
simplicity when studying the behavior of a detector. In numerous applica-
tions and real-world problems, utilizing this approach is very useful as it
makes the implementation of simpler detectors feasible. However, not all
scenarios can be characterized as independent Gaussian noise due to the un-
predictable characteristics of each particular case. In these situations, the
Gaussian model cannot be considered. Moreover, it is important to model
the noise more accurately, as failure to do so can lead to deterioration in
the performance of the detector. For this reason, it is also advantageous
to study the detectors in the presence of noise with a non-Gaussian distri-
bution. Similarly, another problem that may often arise is the dependence
of the samples, which is particularly complex to deal with scenarios where
the noise is not Gaussian. In this case, it is possible to apply several ex-
tensions to the classical to improve the behavior of the detector. Thus,
the first objective of this thesis is to obtain extensions of the en-
ergy detector appropriate to this general case of non-Gaussian and
non-independent noise samples.

It is important to note a highly-relevant issue affecting detection, yet
which is often overlooked: the actual duration of the signals to be detected.
In some applications such as echo detection in radar, sonar or acoustics, an
approximate idea of the signal length may be available. However, in the
context of novelty or event detection, where the characteristics of the signals
are unknown, no information about the duration is available since any type
of signal may appear in the environment under study. Selecting the temporal
duration of the observation vector is very challenging and may significantly
affect the detection. In these cases, for example, the size of the observa-
tion interval is defined by the practical implementation constraints related
to computational requirements, the permitted delay before deciding or the
non-stationary behavior of the background noise. Consequently, the obser-
vation duration could be too long or too short for the actual signal duration,
thereby producing a significant loss in the probability of detection. A simi-
lar problem is observed in the frequency domain, where signal bandwidth
(instead of signal duration) is difficult to determine. Hence, signal dura-
tion introduces a degree of uncertainty to the detection problem. A detailed
study is thus necessitated to determine how the behavior of the detector used
will be affected. The second objective of this thesis addresses this
issue by deriving procedures and structures focused on the use of
energy detectors, and capable of dealing, in an optimal manner,
with signals of unknown duration and bandwidth.
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Finally, this thesis will also focus on the development of new technologies
in a growing application area: security and surveillance systems, particularly
those systems which incorporate techniques to automatically detect events
or novelties in a monitored environment. Recently, surveillance based on
sound analysis has become increasingly important and has been proposed
for use in a variety of contexts. Hence, sound-based systems are good candi-
dates for verifying and evaluating the behavior of an energy detector; they
define scenarios where both background noise and events may have vari-
able and unpredictable characteristics. These systems are currently being
assessed by the “Grupo de Tramiento de Senial ([GTJ)” in the “Universitat
Politécnica de Valencia (UPV)” for incorporation within the framework of
different projects. Sound offers surveillance in situations where cameras are
blind (e.g., hidden people, low lightning conditions and blind spots), and in
situations where the images are apparently normal, but the sounds could be
abnormal. Moreover, sound may be used in combination with video to im-
prove general performance through information fusion, or to index the video
stream. Also, when compared to video, sound captures different levels of
privacy when surveillance has to be conducted in public sites. In this thesis,
we will consider two related applications currently under development by the

e The first falls within the field of security in public places. Video infor-
mation is complemented by simultaneous audio information gathered
by distributed arrays of microphones. The acoustic events present in
the acoustic scene are detected, classified and, finally, localized. The
detection phase in this process is fundamental to achieving higher qual-
ity results in the latter two phases.

e The second application lies within the framework of a cooperation pro-
gram from the “Grupo de Tratamiento de Senial (GTS)” of “Universitat
Politécnica de Valéncia (UPV)” and the “Acoustic scene analysis group”
of “Universitat Karlsruhe (TH)” (Germany). The cooperation is part
of a project conducted by the Humanoid Robots research group. As
the goal of the project is to design service robots to assist humans,
analysis of the environment scene is required. The system is based on
cameras and microphones which attempt to emulate human abilities
by implementing subsequent signal processing stages.

The two aforementioned projects provide real-world scenarios to test the new
energy detector algorithms proposed herein. Hence, the third objective of
the thesis is the application of the new extended energy detectors
to surveillance and sound-based monitoring systems.
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1.2 State of the art

Energy detectors are employed in automatically detecting signals in the pres-
ence of background noise when there is no exact knowledge of the signal
waveform [43]. In a more general context, energy detection is of interest in
detecting departures from a known background due to imprecisely defined
changes (event or novelty detection) [56]. The energy detector is optimal
when both signal and background noise are modeled as random uncorre-
lated Gaussian; or, it is at least a when the signal is deterministic
and completely unknown [43].

The original energy detector proposed in [86] dealt with the detection
of unknown deterministic signals in Gaussian noise. This detector was later
extended in [47] to detect random signals corrupted by Gaussian noise. In
[15], an improved energy detector for random signals in Gaussian noise is
presented. A great deal of research has been devoted to obtaining general-
izations about the energy detector when the background noise is Gaussian
and non-independent (colored), or non-Gaussian and independent. The for-
mer is usually solved by means of pre-whitening transformations [67], while
the latter is addressed by a scalar non-linear function applied to every com-
ponent of the observation vector, subsequently followed by summation of
all the components. This second solution is most germane to the present
thesis. To wit, a number of alternative non-linear functions have been pro-
posed [40] [77], and have lead to the creation of different detectors commonly
termed generalized energy detector ([GEDI). In light of this previous work,
a new scalar non-linear transformation is herein proposed and can be thus
considered a new variation of the [GEDI However, the statistical depen-
dence problem present in the non-Gaussian case requires greater attention.
Moreover, the literature reveals a paucity of efforts directed at uncovering a
solution. In contrast, the search for linear transformations to achieve vec-
tors with independent components has received much greater attention in
recent years and has yielded various techniques [36, 50]. In fact, indepen-
dent component analysis ([CA) is currently being applied to multiple types
of problems, such as blind source separation (BSS); it is, therefore, a natural
candidate for pre-processing the original observation vectors in a detection
context where the original noise samples are dependent. In other words, TCAl
may be applied to obtain vectors with independent components by means of
a linear transformation.

The problem of detecting unknown signals of unknown duration has been
previously considered in [45] using a approach in which the starting
sample of the signal is known, but the signal length represents an unknown
parameter. It is shown that, assuming white Gaussian noise, the maximum
likelihood estimate of the signal duration always coincides with the whole
duration of the original observation interval. Therefore, this new approach
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does not offer any solution to the detection problem of unknown signal du-
ration; thus, the [ED] still remains the solution. If the starting time
of the signal is set as an unknown parameter, a straightforward extension
to the previously-posed problem is generated; however the logical conclusion
remains unavailing. In [45], a new modification of the energy detector is pro-
posed, based on the theory of embedded probability density functions [44].
The method consists of applying the energy detector to every possible inter-
val of the original observation vector and, subsequently, the corresponding
statistic (the normalized energy) is transformed using the non-linear function
proposed. The maximum of the transformed statistic is then compared with
a threshold. When the assumed signal duration is increasing, the non-linear
function avoids the systematic growth of the likelihood. This aspect points
to the earlier conclusion regarding the GLRT solution. Unfortunately, the
non-linear function complicates the task of deriving closed expressions for the
probability of detection (PDI]) and the probability of false alarm (PEA). A
different approach is thus proposed in this thesis to overcome this complexity
problem brought on by the non-linear function. Instead of employing only a
single detector, whose results are complex statistics based on the non-linear
transformed energy for every possible signal duration, the implementation
of multiple energy detectors matched to different possible signal durations is
proposed.

Numerous areas require the detection of unknown events. One of the
most interesting areas being research today is acoustic scene analysis, de-
voted to surveillance applications in which the signals recorded by a set of
microphones are processed to extract as much information as possible from
the environment. In [3], processing audio signals yields the detection of dif-
ferent human activities, such as shouting, talking, walking, and crying. In
[17] and [68], public spaces and metro stations were selected to test auto-
matic detection of potentially dangerous acoustic events. Moreover, under
particularly adverse lighting conditions, with hidden objects and blind spots,
for example, it is possible to use acoustic sensors to cull information not cap-
tured by video sensors [58, [91]. Other related studies have utilized acoustic
event detection to determine the presence of sounds in real life scenarios
[1]. Furthermore, earlier studies were conducted to evaluate the detection
performance in the frequency domain [I3], as well as in applications (e.g.,
echo detection in radar, sonar, and acoustics) where an approximate idea of
the signal is obtainable, assuming knowledge of its bandwidth [I6]. Despite
these advances, much of this research does not take into account the noise
characteristics and the actual duration of the signal, in turn, the segment
length of the observation vector).

The localization and classification of sound sources has been recently
applied to surveillance applications in which the use of audio sensors is be-
coming increasingly decisive [72, 87]. However, much of the recent work



8 CHAPTER 1. Introduction

in these research areas disregards the presence of background noise. This
critical factor normally decreases the performance of the localization and
classification phases, thereby leading to an increase in false localizations and
to a poor recognition rate.

With regards to the classification phase, most of the earlier studies are
based on supervised classifiers such as Gaussian mixture model (GMM)]) and
support vector machine (SVYM]). Some examples can be found in home ap-
plications [35] and public transport scenarios [73], as well as in surveillance
environments, as detailed in [29]. Other unsupervised classifications meth-
ods, such as the classical k-means, may likewise be employed [33]. Turning to
the features selection, previous studies have presented the mel-frequency ce-
sptral coefficient as the most suitable features for speech and sound
source identification [27]. [MECC] typically offers good performance, but the
noise vulnerability of these features degrades the recognition performance;
thus, more appropriate features for noisy environments are generally desired.
In [92], for example, an attempt was made to address this difficulty with a
noise-robust feature extraction method. However, in overcoming this hurdle,
this thesis has turned to a new direction; and thus will present a new set of
features extracted from a multiple detection structure.

The localization of acoustic sounds is widely employed in surveillance
applications for intrusion detection [93], and different techniques have been
presented in the literature [I1], most of them based on the estimation of time
difference of arrival for each microphone pair [46]. When several
microphones pairs are available, the SRP-PHAT algorithm is used [24], but
the background noise can considerably decrease the localization results. In
the present work, an adaptive [ED]is employed in combination with this last
technique to suppress the background noise effect and, at the same time, to
take into account events of a varying nature.

1.3 Organization of this research

1.3.1 Structure

In this thesis, emphasis is placed on the detection problem of unknown sig-
nals in the presence of background noise of unknown characteristics. The
following chapters will review the most pertinent principles and theories in-
volved, and then will proceed with a detailed description of the numerous
experiments realized using simulated and real signals.

Chapter [2| reviews the possible detection methods available for use when
the signal to be detected is known, but complete knowledge about its charac-
teristics is not at hand. Two different detectors are presented, the matched
filter and the energy detector, and they are analyzed in the presence of Gaus-
sian uncorrelated and correlated noise.
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In Chapter 3], the problem of detecting unknown signals in non-Gaussian
noise conditions is analyzed, with special interest given to the case of de-
pendent noise samples. The use of non-linear functions and independent
component analysis is studied, and alternative extensions of the energy de-
tector and the matched subspace filter are presented. The performance of
these extensions is analyzed by means of the receiver operating characteristic
(ROCQ) curves. Following this, the problem of detecting signals of unknown
duration is studied in Chapter @l A novel structure of multiple detectors is
presented and analyzed, including curves for different signal durations
in time and frequency.

Acoustic event detection is the subject of Chapter[5] where the robustness
of a complete detection system is evaluated. The behavior of the proposed
energy detector and its extensions is studied to detect sound sources in the
presence of real background noise whose characteristics differ from Gaussian
and independent assumptions. Chapter [6] studies diverse possibilities for
combining single and multiple energy detectors with other techniques, such
as the classification and localization of sound sources. The improvements
achieved by coupling the aforementioned techniques with the energy detector
are shown in different acoustic applications and scenarios.

Finally, Chapter [7| presents the principal conclusions reached, along with
future lines of research.

1.3.2 Main contributions

The chief scientific contributions are found in the innovative detection tech-
niques presented and their combination with well-known classification and
localization algorithms for subsequent application to real acoustic scenarios.
They are listed below:

e Energy detectors degrade when the noise is non-independent and non-
Gaussian. Therefore, two extensions, the extended energy detector
and the pre-processed extended energy detector , are
presented in this work to deal with these situations. Independence is
achieved by means of a linear matrix transformation derived from
Non-Gaussianity is avoided by applying a scalar non-linear function to
every element of the linearly transformed observation vector. Practi-
cal procedures for estimating the linear and nonlinear transformations
are given in this work. A signal-to-noise ratio (SNRJ) enhancement
factor has been defined for the weak signal case, which is indicative
of the expected improvement of the proposed extension of the energy
detectors.

e A generalization of the matched subspace filter (MSE]) termed as[GMSF]
is proposed for the detection of unknown signals in a background of
non-Gaussian and non-independent noise. The generalization is based
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on a modification of the Rao test by including a linear transformation
derived from The curves computed for simulated examples
illustrate the significant improvements achieved with the generalized
solution.

An extension of the classical is proposed to deal with the case
of unknown signal duration. Multiple energy detectors (MEDI) are
applied to subintervals of the original observation interval, and a global
criterion is establish to discern the signal presence. A specific strategy
of employing successive half segmentations of the original interval is
applied to obtain a layered structure of energy detectors. Moreover,
the corresponding probabilities of false alarm and detection are derived.
The novel structure shows significant improvements in detectability in
comparison with the [EDI when there is large mismatch between the
original observation length and the actual duration of the signal.

The[EEDland the[PEED] are evaluated in real acoustic scenarios. These
findings are further extended by considering a new generalization based
on the rejection of the false alarms induced by the difficulty of estimat-
ing the noise statistic in non-stationary conditions. The evaluation of
the different detectors has been conducted by measuring their perfor-
mance in terms of the [ROC| curves. Several acoustic sources and a
variety of real and simulated noise scenarios were tested. It is demon-
strated that the generalization approach works significantly better than
the in low [SNR] but in real scenarios there is a loss in detectability.
In such non-Gaussian and non-independent noise conditions, the pro-
posed generalization of the and the improve performance,
leading to a significant enhancement in the event detection.

A [MEDI structure is applied to both the time and frequency domains,
and is subsequently evaluated in real acoustic scenarios. The results
obtained demonstrate the robustness of the [MED] structure and the
improvements in performance reached versus the

Two novel approaches are presented for the detection and localiza-
tion of impulsive and non-impulsive sound sources in the presence of
non-stationary background noise. Both approaches combine the in-
formation provided by an adaptive [ED| with the standard SRP-PHAT
localization method. The first modified approach uses the [EDlto calcu-
late the noise correlation; the second distinguishes between impulsive
and non-impulsive sound sources and, additionally, aligns the detec-
tion window to the event. In both cases, the localization rates are
considerably improved with the novel techniques.

A [MED structure is applied to extract a new set of features for clas-
sification: time TMED]) and frequency FMED). The
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combination of these two types of features leads to the combined [MEDI
(CMEDI) features. These novel feature sets are compared with the

commonly used [MFCC] features, and their performance is evaluated in
a general sound classification task with different acoustic sources and

adverse noise conditions. It is shown that, in low [SNR] the proposed
[CMED! features work significantly better than the [MFCCL






Chapter 2

Energy detector

A man can succeed at almost anything
for which he has unlimited enthusiasm.

Charles Schwab

This chapter offers a review of the possible detectors that can be used
when the signal to be detected is known and when complete knowledge
about its characteristics remains unavailable. In both cases, the prob-
ability density function (PDH) of the background noise, in which the
signals are immersed, is assumed to be Gaussian distributed. Further-
more, the statistical dependence problem of the noise samples is also
studied within this framework and the performance of the energy de-
tector under these scenarios is discussed.

2.1 Detectors design

The detection theory is essential for the design of systems which implement
an automatic processing of the signal for both decision making and infor-
mation extraction. Examples of this kind of systems are communication
systems, radar, biomedicine, image processing, etc. All of them share the
common aim of being able to decide when an event of interest occurs and to
determine as much information as possible about it. The detection theory is
based on making a decision between two options from the available measures.
In many of the typical applications mentioned, such as radar systems, de-
tection algorithms must decide between “noise only” or “signal masked with
noise”.

The problem resides in defining a decision rule that indicates which of
two hypotheses should be chosen: hypothesis Hy, where only noise is present,

13
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or hypothesis Hy, which indicates the presence of a signal and noise. The
decision rule can be represented by the following expression:

Hy

A(y) z A (2.1)

Hy
where )\ is the threshold and A(y) is a function that depends on the mea-
surements. If it exceeds the threshold, then H; is selected; otherwise, Hy is
decided. The aim of the detection theory is, hence, to design the most effi-
cacious detector by defining A(y) and A. For that purpose, two approaches
are described below.

2.1.1 Bayes detector

The aim of the Bayes detector is to minimize the mean cost, whose expression
can be calculated as:

C = C10P(Cho) + Co1 P(Co1) + C11P(Ci1) 4+ CooP(Cop) (2.2)

where Cj; is the cost of deciding hypothesis 4, when hypothesis j is the
correct option. From this expression it is possible to derive the decision rule,
expressed as [43]:
Aly) L CuoPy
foly) g, Conr

(2.3)

1050

C . hily) . :
where A takes the value ; the function A(y) = is called the like-
Cor Py ®) fo(y)

lihood ratio; and f;(y) is the probability density function (PDE]) of y under
hypothesis H;. The logarithm of this expression is often used, obtaining
In(A(y)). Thus, it is necessary to know the [PDE] of y under the hypotheses
Hy and H;, and then to compare their ratio with the threshold in order to
implement the optimal Bayes detector.

Some extensions of optimal Bayes signal detection with known prior
statistics are given in [69], where the likelihood function is extended to in-
clude overlapping signal classes, which occur in adaptive detection and in
stochastic signal detection.

2.1.2 Neyman Pearson detector

The Neyman-Pearson detector [66] follows a different philosophy than that of
the Bayes detector. In this kind of detector, first, a probability of false alarm
(PFA)) is fixed and then, the probability of detection (PD]) is maximized.
Following a similar procedure to the one performed for the Bayes detector,
we can reach the following equation:

fi(y)

Hy
>
foly) 7

(2.4)
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where A(y) is, again, the likelihood ratio. But, to obtain the threshold A, it
is first necessary to apply the restriction imposed by the required maximum

[43]:
PFA— / ol A)dA = a. (2.5)
A

Therefore, with this detector we can maximize the for a given by
selecting the detection threshold obtained from the restricted PFA = a.

2.2 Signal detection in presence of Gaussian noise

When the background noise is Gaussian distributed (see Appendix ,
several scenarios can be differentiated, each determined by the degree of
uncertainty related to the knowledge of the signal characteristics. First,
a case is congidered in which the signal to be detected is perfectly known
and deterministic in the presence of white Gaussian noise (WGNJ)). Then,
the detection problem is studied with signals that are totally unknown and
modeled as a random process. The detection of both known and unknown
signals is considered in the presence of Gaussian noise, but with correlated
components. Finally, the detection of signals in a subspace is studied.

2.2.1 Deterministic signal

Based on the simplest example, where the desired signal is known and the
noise is white and Gaussian, the optimal detector for this case is called the
matched filter (ME]). By applying the criterion of Neyman-Pearson (NP), the
resulting test will consist of differentiating between the following hypotheses
[43]:

Hy:y=w w: N(0,021)

Hi:y=as+w a>0,s"s=1 (2:6)

where y is the observation data vector. The signal vector is given by x =
[z1,...,2N], and it can be expressed as x = as; so it is known, except for its
level. The vector w = [wy, ..., wy] is the WGN] with variance o2, and the

NP detector will decide the hypothesis H; if the logarithm likelihood ratio
(log-likelihood) exceeds a certain threshold:

T, Hi
In(A(y)) = In (;;g;) - %s > In()) = Ao (2.7)

Hy

This is a uniformly most powerful ([UMDP)) test, since the statistic compared
with the threshold does not depend on the unknown parameter a [51]. The
threshold A\ will be fixed by imposing a certain [PFAL

PFA=1—erf(X). (2.8)
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Attention should be paid to the limitations of this detector at the time of
its implementation with real signals. On the one hand, the background noise
should be white and Gaussian, and it is necessary to adaptively estimate
the parameter o2, On the other hand, in order to reach proper detector
performance, the desired signal s must be known, but is often quite difficult
to discern.

2.2.2 Random signal

This section will first focus on the optimal detector when the desired sig-
nal is modeled as a random signal, which follows a zero mean and Gaussian
distribution with an arbitrary covariance matrix (Cx). Then, we will par-
ticularize for the case in which the signal has a known covariance. In both
cases the is also considered with a known variance (02,) and totally
independent of the signal.

Estimator correlator

Taking the above considerations into account, the hypotheses Hy and H;
can be expressed as follows:

Hy:y=w w: N(0,021) (2.9)
Hy:y=x+w x:N(as, Cx). ’
The covariance matrix of the signal is:
Cx = E[(x — as)(x — as)’] (2.10)

where s is normalized (s”'s = 1) and the signal is also uncorrelated with the
noise E[wx?] = 0. After considering the of y under the two hypotheses,
it is possible to arrive at the expression of the likelihood ratio:

_1( —as)TA Y (y — )+L T Iill A—1 7N =\ (2.11)
|y a8 VOO T ey Y < MAT R Gerayiz T

where A is defined as A = Cy + 0I. In this case, it is not a UMP test, since
the detector decision is not independent of the parameter a. It is possible to

modify (2.11]), obtaining:

Hy 2

1 1
— Ty = yTA ly+ayTA s 2 M+ SsTA s = . (212)
202, 2 2
Hy
1
After defining x = oY %NA_ly + acA™!s, this detector can thus be
Ow

expressed in the form:

Hy
Y X > (2.13)
Hy
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This expression is similar to the one derived in for the matched filter,
but in this case, the detector correlates the received data y with an estimate
of the signal X and not with the known signal s as before. This detector is
therefore termed the estimator-correlator [85].

Energy detector (ED)

One particular case of is obtained when the signal is modeled as a zero
mean, white Gaussian random process. This implies that a = 0 and, there-
fore, from , we can express the covariance matrix as Cyx = E[xxT]. If
the signal is also white, Cyx = 021 is fulfilled, and the previous test becomes:

2

T, H 2
Y Y oot wy (2.14)

2 < 2
Ow Hy w

which is known as the energy detector (ED)), since it ultimately compares
the energies of the measurements with a certain threshold As.

Energy detectors are used in the automatic detection of signals in the
presence of a background noise when the signal waveform is not precisely
known. In a more general context, energy detection is of interest for detect-
ing departures from a known background (event or novelty detection [56]).
Energy detectors have a very simple structure and are easily implementable.
The is optimum when the signal is independent of the noise and it is
possible to model it as a random uncorrelated Gaussian process [43]. Other-
wise, when the signal is completely unknown, the can only be considered
a generalized likelihood ratio test (GLRI)) [41]. The yields the like-
lihood ratio test statistic, obtained by replacing the unknown parameter
under each hypothesis with their maximum likelihood estimate [55].
It is intuitively deduced that when the signal s is present, the energy of the
received data y will increase. In fact, the test of the expression can be
considered as an estimator of the data variance and, after comparing it with
a threshold, it can be decided whether it has a variance under hypothesis Hy
(02), or under hypothesis Hy (02, + 02). That said, it is possible to express

w

the test (2.14)) under each of the hypotheses as:

¥ ~ X% under Hj (2.15)
UW
and
yly 5 d
~ H;. 2.16
o X% under 1 ( )

The expression of the energy calculation follows a known distribution,
X%V chi-square with IV degrees of freedom (see Appendix . Therefore, it
is possible to find the and the [PD] as well as fix the threshold of this
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detector for a given [PFAl from the following expressions [43]:
T / /
— yy_ . — o
PFA= Pr{ > U%,HO} = Q <U%v> (2.17)

and

PD:Pr{ vy o Hl} = Qy, <7/> (2.18)

;
oZ+02 " o0Z+02 o2+ 02,

where ()2 is the right-tail probability for a X2 random variable, given by:

20(v7) y=1
exp(—iz) Z (k — 1)'(293)167%
2 1 and dd
Qi ={ VT TR Ty e e
1 2 (g)k
exp(—=x) Y -2 v even
2 — k!

(2.19)
where Q(x) is the probability that a Gaussian random variable with zero
mean and unit variance exceeds z, as shown in Appendix [A.5]

In summary, the [EDI is optimum for detecting zero-mean uncorrelated
Gaussian signals, and is a detector in the case of an unknown de-
terministic signal. In both cases, the background noise must be zero-mean
uncorrelated Gaussian.

2.2.3 Detection in correlated Gaussian noise

In the two previous cases, i.e., the matched filter and the energy detector,
it was assumed that the noise was white. But sometimes this is not the
case, and the implications of this fact must necessarily be examined. In this
section, the two types of detectors mentioned above are studied when the
noise is not white and the tests for each case are reformulated [34].

The hypotheses are similar to those presented in and . This
time, however, the noise is characterized by w : N(0,Ry), where the co-
variance matrix of the noise is not defined by the expression Ry = 021, as
in the case of white noise. Now there is some correlation between the noise
samples that must be taken into account, and therefore the new detection
model can be expressed as follows:

Hy:y=w w: N(0,Ryw)

2.20
Hi:y=s+w s:N(0,0). (220

We first study the resulting test of the energy detector when the signal
is in presence of correlated noise and the covariance matrix is consequently
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not equivalent to the identity, as assumed in the previous models. For the
Gaussian case, independence and uncorrelation are equivalent, hence simple
pre-whitening is enough. The original observation vector y is transformed
into a pre-whitened observation vector y,;:

A (2.21)

where Ry = E[ww! ] represents the noise covariance matrix. The[EDlis then

applied to the pre-processed observation vectors, obtaining the following test:

yTy H, H,y
TR-1
SooA e YRJy A (2.22)
Wp Ho Ho

Notice that Ry, = E[prg} and, hence, U?NP = 1. So, we can verify that
the transformation used in the pre-whitening yields independent samples and
also normalizes the variance of the original noise observation vector. This
test will be henceforth referred to as pre-processed energy detector
(PED]). This modified test is optimum in case of assuming low signal-to-
noise ratio (SNRJ), that is when 02 < 02, the most difficult detection case.

For the matched filter case, a similar procedure can be employed. Using
test (2.7)), it is possible to obtain a modified version in which it also becomes
necessary to apply the pre-whitening transformation by means of the inverse

matrix Ry
Hy

's Z X (2.23)
Hy

y' Ry,
In this case, it is also possible to separate the first term in yTRv_Vls = ygsp,
and thereby define s, = Rv_vl/ %s. The signals yg and s, are the observed

samples pre-processed by means of a transformation matrix R;vl/ ®. This
matrix can be estimated from a training set of K noise vectors wy, with
k=1,..., K, using the sample estimate:

K
. 1
Ry = ;wkw;{ (2.24)

which is the noise covariance matrix known as the pre-whitening matrix.

Note that in (2.22) and (2.23), it is not necessary to divide by o2, since
the pre-whitening also represents a normalization of the original observation

noise vector.
2.2.4 Signal in subspace

The linear model will be considered here so as to introduce the special de-
tection problem when the signal is unknown, but can be assumed to be
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included in a subspace. To briefly review the classical linear model, consider
the following detection problem:

Hy:y=w w: N(0,021)

Hi:y=s+w s:H@ (2.25)

where y is the observation vector in each hypothesis (dimension N), w is
the noise background vector with zero-mean and Gaussian distribution, and,
finally, s is the signal vector. It is assumed that s is defined in a subspace
formed by p < N columns of the known matrix H (N x p), termed the
observation matrix, and modeled by a vector of unknown parameters 6, as
follows s = HO.

As the signal is deterministic signal with unknown parameters, the de-
tector used in this case is the matched subspace filter (MSE]). This kind of
detector is based on the estimated energy of the observation vector contained
in the signal subspace by implementing the following test [43]:

Hy
T(y) =y C,'HO Z X (2.26)
Hy

According to the hypothesis described in , the covariance matrix of the
noise can be expressed as Cy = 021, and the vector of unknown parameters
can be estimated as = (HTC'H)"'H”C_'y. This leads to the following
test: TH HTH 1HT H;

y HH H)"Hy > (2.27)
w Hy

g

where we can define P = H(HTH) 'H” as the projection matrix onto the
subspace signal H. The statistic y/ Py /o2, follows a chi-square distribution
with p degrees of freedom (XI%) and, therefore, the threshold A is easily cal-
culated for a given [PFAL For the particular case of p = N, the matrix P
becomes the identity matrix I because we shall consider the entire observa-
tion space and becomes the classical energy detector.

Current work on matched subspace and filter detection has been con-
ducted in [75] and [76], where Gaussian noise and signal interference is as-
sumed. Other variations of this problem include adaptive subspace detection
and are mainly studied in [48].

2.3 Performance of the ED and the PED

2.3.1 Detector evaluation: ROC performance factor

Detector evaluation can be conducted by studying the performance of the
receiver operating characteristic (ROC]) curves, which represent the of
the detector as a function of the[PFAlL It must be noted that the and the
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[PFAl depend on the threshold A and are calculated according to a specific
threshold range. In addition, the not only depends on the threshold, but
also on the SNR. Therefore, the curves can be considered indicative of
the quality of a detector, as will be seen below.

In general terms, the performance of a detector is improved when it
presents a curve above another detector curve, given the same length
of the observation vector, SNRL and threshold (or [PFA]). This means that
the detector has a higher for a specific [PFAl or a lower [PFAlfor a specific
[PDlL The limiting curve PD = PFA corresponds to a random detector.
As an example, Figure [2.1] shows the theoretical [ROC curves of an [EDI for
several signal-to-noise ratios. The interval of SNR shown extends from —8
dB to 4 dB. As seen, as the SNR increases, a higher is obtained for the
same [PFAl indicating a higher detector performance.

o P
| /“/ /?//
S |

0.4p ——SNR = -8dB ]
03 ——SNR =-6dB ||
. SNR = -4dB
0.2 —&—SNR =-2dB ||
SNR = 0dB

0.1 SNR =2dB |
——SNR = 4dB

02 03 04 05 06 07 08 09 1

Figure 2.1: Theoretical [ROC curves of the for different SN Rs.

However, sometimes relying only on a cursory observation of the [ROCI
curves can be misleading, and incorrect conclusions may be drawn due to
the fact that the curves may behave differently, depending on the area of the
curve under study. For this reason, a new parameter is needed to measure
and compare the performance of different detectors through a consideration
of the entire[ROC| curve, or only those parts in which the designated detector
will work.

Let us define the two vectors of PFAs and PDs, which define the [ROC
curve of a detector:

a=[PFA,,PFA,, PFAs,... PFAL)
(2.28)
d = [PDy,PD,,PDs, ..., PDy]
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where L is the number of total points used to characterize the [ROC] curve.
Therefore, to measure the performance of two detectors (D; and Ds), their
curves are compared by means of a new factor, denoted by ~. This
new parameter is computed using a subset of PFAs and PDs extracted only
from the interval of interest of the curve. This interval is determined
by the maximum (mazxPFA) considered, as seen in Figure

0.9
o
08 /
0.7 0\
/APDmi
0.6} .
205

0.4+

03

0.2
maxPFA

0.1}, / D1
——D2

0 01 02 03 04 05 06 07 08 09 1
PFA

Figure 2.2: Calculation of the [ROC factor () for detectors D1 and D2
(maxPFA = 0.25).

Let us denote a; as the vector of PFAs of Dy, and the corresponding
vector of PDs as dy. Similarly, for Dy vectors as and do are used. Thus, the
[ROC factor is obtained first by substracting the PDs values of both detectors
for the same PFAs (between 0 and mazPFA). After this, the same procedure
is repeated, but in this case substracting the PFAs of both detectors, given
the same PDs. A vector of differences is obtained as a result, and then their
mean can be computed as shown below:

) | M
App = — 57 (do(m) — dy(m)) (2.29)
PD =17 n; 2 !
and
_ 1 X
Appa = Vi Z (az(m) — ai(m)). (2.30)
m=1

M is the number of [PEAk (or [PDE) used to compute the factor, and
its value will depend on the sections of the under analysis. It must be
noted that these factors represent an absolute mean value of improvement or
deterioration in the and of Dy with respect to Dy (depending on if
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they are > 0 or < 0, respectively). Furthermore, considering that increases
in App and decreases in Appy4 indicate that D5 is better than Dy, the
factor is defined as shown below:

_ APD - APFA

5 (2.31)

Note that App and Appa € [0,1], and therefore v € [~1,1]. The perfor-
mance of this factor can be summarized as follows:

e v > 0: the [RO{ curve of Dy is above the [ROC] curve of Dy, and
therefore, this detector performs better. This improvement will be
more significant as v increases.

e v < 0: the [ROC] curve of Dy is below the [ROC] curve of Dy, and
therefore, this detector performs poorly. This deterioration will be
more significant as v decreases.

e v = 0: the [ROC| curve of Dy is equal to the [ROC| curve of Dy, and
therefore, both detectors have the same performance.

In what follows, we will use this parameter to evaluate and compare the
performance of two detectors in similar conditions. This is a more concise
parameter, and an alternative to simply observing the [ROC] curves.

2.3.2 Comparison of the ED and the PED in Gaussian noise

In the previous sections, the was presented as a practical solution to the
detection of unknown signals in presence of Gaussian and independent noise.
Furthermore, the particular case of dependence between the noise samples
was analyzed and it was studied how the can address these situations
when the noise is Gaussian.

Let us now evaluate and compare the performance of both detectors in
the presence of Gaussian noise and observe how they behave in two different
situations, independent and non-independent samples. This fact can con-
siderably affect the outcomes obtained by the detectors, often leading to
unacceptable or poor [PDl

Figure [2.3| reveals the experimental curves of the [EDland the
obtained from and , respectively, when detecting a random
Gaussian signal in the presence of non-independent Gaussian noise samples.
Both results are compared for the same SNR, with the theoretical
curve of the (ED¢heo) Obtained from and (2.18)), where indepen-
dent Gaussian noise is assumed. As seen in the graph, the performance of the
significantly decreases in comparison to the [ED}j., curve, since the
is not prepared to work correctly with non-independent noise samples; con-
sequently, a negative RO factor of v = —0.1459 is obtained (dashed arrow).
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Figure 2.3: Simulated [ROC] curves of the[EDland the [PEDI (correlated Gaus-
sian noise) in comparison to the [EDkpe, (uncorrelated Gaussian noise) for
SNR = -2 dB.

However, when using the [PED] in the same situation, a pre-whitening trans-
formation is applied prior to calculating the energy, it can be observed how a
significant improvement in detection performance is achieved (solid arrow).
In this case, the curve is overlapped with the theoretical curve, and
computing the factor of the [PED] curve in comparison to the [EDkxeo,
a value near 0 (y = 9.1e™%) is obatined. Therefore, we can conclude that
the [PED] compensates for the deterioration experimented by the [ED] with
non-independent Gaussian noise.

2.4 Conclusions

In this chapter, we have introduced the detection problem related to the
amount of available knowledge about a signal and the background noise in
which it is immersed. The Bayes and Neyman Pearson criterion were stud-
ied for the detector design and we reviewed the possible detection solutions
which depended on the degree of knowledge available about the signal to
be detected. The and the were presented as the optimal solutions
for the detection of known deterministic and unknown signals, respectively.
Furthermore, it has been demonstrated that when the signal is unknown, but
is present in a subspace, the is used. In all these cases, the noise was
assumed to be uncorrelated and Gaussian distributed. However, the parti-
cular case of the [ED| having correlated noise samples was examined leading
to the A new factor was presented to evaluate the detector per-
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formance in terms of its ROC curve. Finally, the behavior of the [EDI and
the PEDI was compared in the case of correlated Gaussian noise, showing the
significant improvement achieved with the in comparison to the for
the same noise conditions and
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Chapter 3

Extensions of the energy
detector 1n non-Gaussian and
non-independent noise

It is the unsolved problems that keep the
mind alert, not the ones that have been
solved already.

Erwin Guido

In this chapter, the Rao test is presented as a possible solution to ad-
dress the problem of detecting signals in the presence of non-Gaussian
noise. Some limitations of this test are studied when it is used in
the particular case of energy detection. Therefore, some alternative
extensions based on the use of two possible non-linear functions are
presented. The principal objective is to reach a noise distribution in
which samples are as Gaussian distributed as possible. Furthermore,
when the background noise is not only non-Gaussian distributed, but
also non-independent, the detection problem becomes more complicated.
Thus, the use of a linear transformation based on independent compo-
nent analysis ([CAl) is also presented, leading to further extensions of
the energy detector (ED) and the matched subspace filter (MSH).

3.1 Detection in presence of non-Gaussian noise

This section offers a brief analysis of different types of noises that do not
follow a Gaussian distribution, as well as two approaches to characteriz-
ing them. The detection of deterministic signals in non-Gaussian noise is

29
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reviewed. Then the problem is generalized to unknown signal detection,
leading to a study of the Rao test.

3.1.1 Study of Gaussianity

To properly evaluate the behavior of a detector, it is very important to
recognize or to characterize the background noise in which the signal to be
detected is immersed. It is therefore necessary to have some parameter or
method to perform even a generic classification of the noise.

A random variable which follows a Gaussian distribution is defined with
the terms described in Appendix[A] However, the bibliography lists a widely
studied range of distributions [80], such as Laplacian, Gamma, Rayleigh and
Uniform. The utilization of the[EDlto detect unknown signals in the presence
of these noise distributions leads to an increase of unacceptable false alarms.
Therefore, it is of special interest to study all these distributions.

There are several methods to test the non-Gaussianity in a particular
distribution of given data, but in our case two main techniques are used:

e Histogram: This method is simple and widely employed because it al-
lows one to approximate the PDF]of the data. This method also allows
one to identify, graphically, the shape of the distribution. If it is plotted
in combination with the theoretical Gaussian [PDF] it is possible to dif-
ferentiate between Gaussian and non-Gaussian by evaluating, subjec-
tively, the similarity between the two distributions. Figure [3.1] shows
the histograms of two different non-Gaussian distributions, Gamma
and Uniform, each with zero mean and unit variance. Both are shown
alongside a Gaussian distribution of the same standard deviation and
mean for purposes of comparison. As can be observed, the PDFs differ
from the Gaussianity assumption.

e Kurtosis: The degree of non-Gaussianity can be more specifically cal-
culated by estimating the kurtosis. Defined as the fourth cumulant
divided by the square of the second cumulant, kurtosis measures the
degree of peakedness or flatness of a distribution, in comparison with
a Gaussian [4, B7]. For the Gaussian case, the kurtosis value
is 3; and, depending on whether the kurtosis of the data is > 3 or
< 3, platikurtic or leptokurtic distributions can be respectively dif-
ferentiated. Thus, a kurtosis higher than 3 defines a more peaked
distribution while, on the other hand, a kurtosis lower than 3 defines a
flatter distribution than a Gaussian distribution. Randomly generated
examples of non-Gaussian data distributions are listed here, along with
their respective estimated kurtosis value in parentheses: Laplacian (6),
Rayleigh (3.26), Gamma (8.45), and Uniform (1.8).
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Figure 3.1: [PDE] of two different non-Guassian distributions in comparison
to a Gaussian (solid line) of the same standard deviation and mean.
(a)| Gamma data distribution. |(b)| Uniform data distribution.

3.1.2 Detection of random signals: Rao test

As seen in the previous chapter (Section , [EDk are used to detect random
signals in the presence of background noise when there is no information
about the waveform to be detected. EDs provide optimal solutions to the
detection problem for both Bayes and Neyman-Pearson criteria when the
signal and noise follow a Gaussian distribution with zero-mean, and the
samples are uncorrelated.

However, when the noise characteristics differ from the assumption of
Gaussianity, the [ED]is neither optimum nor does it implement a generalized
likelihood ratio test (GLRT]). For example, taking into account the approach
used in Neyman-Pearson, the search for the optimal detector is based on
maximizing the for a given [PFAL In this case, the will not reach the
maximuin if the assumption of the Gaussian noise model is not achieved.
Moreover, considering the most general case in which the characteristics
of the signal are completely unknown, the statistic y’y /o2, could have an
unpredictable distribution, and therefore the calculation of the appropriate
threshold would be a challenge.

Unfortunately, there is no general optimum solution for the [ED|when the
noise is non-Gaussian. However, for the subspace signal case y = HO + w,
where the matrix H with dimension N X p represents the subspace signal,
0 denotes the parameters of the unknown signal, and w is the noise vector
whose components are random and independent and identically distributed
(Lidl), it is possible to attain the following, a particular implementation of
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the general Rao test [43]:

o(y)"H(HH)'H g(y) 7 51)
Z A )
g(w) Hg

Prior to calculating the energy of the vector y, function g¢(-) is applied
element-wise to the vector y in the following manner:

9(y) = [9(v0)g(vy1) - - - g(yn—1)]- (3.2)

If p(w) represents the noise [PDI] it can be defined as:

and

]
Pw—/wm”m. (3.4)

Note that the preprocessed noise mean-power Py, can be expressed as
follows:

(e.9]
Pwy = [ wlptu)du = Blg? ) (35)
—0o0
where E[-] calculates the statistical average.
Therefore, particularizing the Rao test for the energy detector and as-
suming that p = N, HHTH) 'H” = I is obtained. From this, it is possible
to arrive at the following expression:

93 gy) T | (35)
Pow)

Hence, is a generalization of in the sense that it is necessary to
apply some pre-processing function g(+) to our observation data vector prior
to the calculation of the normalized energy. Note that for the Gaussian case,
g(w) = w, so g(y) = y. The parameter Py, = P, will take the value o2,
thus and will be equivalent.

Finally, it should be noted that the statistic g(y)Tg(y)/Pg(w), as in the
Gaussian case, also follows a chi-square distribution (X?\,), and therefore, it
is possible to estimate the threshold value A for the [PFAl required by the
system.
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Rao test example and limitations

An example of typical non-Gaussian noise is one that follows a Laplacian dis-
tribution. The with a zero-mean is given in this case by the expression:

p(w) = 1Jexp <—\£§ |w|> —00 < w< 00 (3.7)

where o is the noise standard deviation. Comparing this distribution with a
Gaussian having the same variance and zero-mean (see Appendix, it can
be observed from Figure that the principal difference is the appearance
of noise samples of greater magnitude in the Laplacian distribution versus
the Gaussian example. This leads to the appearance of spikes and outliers
in the time domain, clearly seen in Figure [3.3] where a realization of each
type of noise is represented.
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Figure 3.2: of Laplacian distribution in comparison to a Gaussian
(solid line) of the same standard deviation.

In the presence of non-Gaussian noise, one would expect the detector
to be able to take into account these outliers from the background noise.
Thus, this fact would not affect nor excessively damage the detector
As seen earlier, it is possible to use detectors that are able to manage such
situations. As a solution to this problem, the particularization of the Rao test
was presented in and for the case of subspace deterministic signals
with unknown parameters and for completely unknown signals, respectively.
In both cases, the use of a non-linear function g(-) was employed with the
aim of reducing the spikes and outliers of the non-Gaussian noise. However,
it will be demonstrated how it is not always possible to use the expression
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Figure 3.3: Time realization of two different noise distributions. Lapla-
cian noise distribution. Gaussian noise distribution.

g() given in (3.3), particularly in the generalization of the Rao test for the
energy detector given in (3.6).

In (3.6), the function g(-) must be known in order to apply the appro-
priate pre-processing to the data when the noise is non-Gaussian. As seen
in (3.3), the function g(-) depends on the probability density function of
the noise, p(w). For example, to detect the presence of an unknown sig-
nal in a Laplacian background noise with independent samples, a non-linear

function, which takes into account both (3.3]) and (3.7), is defined as:

dp(w) dnp(w)
_ __dw _ _ampw
2 dw 2
= 3 d|w| =/ ;sgn(w) (3.8)
where
1 ifw>0
sgn(w) = (3.9)
-1 ifw<0

and the pre-processed noise mean-power is given by Py, = 2/0% [42).
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Therefore, the Rao test can be expressed as:

T(y) =

(\/gsgn(y))T (\/%59”(}’))

2/0?

= sgn(y)"sgn(y) = N (3.10)

where N is the dimension of the observation vector y. The energy is always
constant, equal to NV, and independent of the observation vector. Hence, it is
necessary to find alternative non-linear functions for the Rao test when it is
particularized for the energy detector case. This is discussed in the following
section, where two different transformations are presented.

3.2 Extended energy detector (EED)

3.2.1 Alternative estimates of the non-linear function

Let us first consider the simplest case in which the components of the noise
vector w = [wo, w1, ..., wy_1]’ are[id] and sampled from a non-Gaussian
distribution. As the[EDlis either optimum or [GLRT]Iwhen the noise is Gaus-
sian, the use of a non-linear function g(-) is proposed to convert a random
variable w having arbitrary distribution function F,(w) to a zero-mean and
unit-variance Gaussian random variable. Thus, an extended energy detec-
tor is obtained by applying this transformation, denoted by ¢g(-), to
every component of the observation vector y before computing the energy,
and then by subsequently implementing the following test [64]:

H
Pyw) g,

This test resembles the particularization of the Rao test for detecting un-
known signals. Py, is the mean power of the transformed background noise
and A is the detection threshold fixed by the [PFA] selected. The non-linear
transformation g(-) in (3.11]) can be implemented using different techniques.
Of these, the well-known parametric Box-Cox transformation will be exam-
ined first; followed by the presentation of a new non-linear transformation,
itself based on the estimation of the noise PDF] which has to be transformed
into Gaussian. In both cases, the Gaussianization process consists of per-
forming a non-linear transformation of the data without memory to ensure

that the distribution of values is as close as possible to a Gaussian function.
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3.2.2 The parametric power transformation

One of the most common transformations used to achieve Gaussianity was
proposed by Box and Cox in [10], where a parametric power transformation
was presented to reduce departures from normality. These authors demon-
strated that a distribution can be approximated to Gaussian only by applying
a transformation based on raising to a power of the non-Gaussian variable
w as follows: 5

w” —1

gs(w) = B 570 (3.12)
log w ifg=0

where the Gaussianization process can be controlled by the transformation
parameter 8. The most recommended studies and theoretical analyses use
the expression given by , instead of merely w?, since this is continuous
at 8 = 0. For vectors w, the transformation is applied to each element
separately with the same (3, so independent components of the vectors are
assumed.

The transformation in equation is only valid for w > 0, and there-
fore another version of this transformation must be considered. Accordingly,
Box and Cox proposed a shifted power version where w can take negative
values: 5

WHB)" =1 g g
gp(w) = e (3.13)
log(w + B2) if =0

In this case, 5 = (1, 52); in practice, the 53 must be selected so that w4y >
0 for any value of w. Therefore, 81 can be considered the transformation
parameter as 3o is only necessary to ensure positive values.

This technique has been extensively studied, although there is a family
of possible variants that partially modify this transformation. Some of them
are reviewed in [74]. For example, in [54] an exponential transformation is
proposed; in [38] the so-called modulus transformation was introduced; and
in [6] another modification was suggested in order to support the normal
distribution.

Nevertheless, our efforts here are focused on the original transformation
proposed in and on the estimation of the parameter i, denoted in
the following by /. In [74], a review of the most common techniques used in
the estimation of the transformation parameter 5 is presented. One is the
maximum likelihood method, commonly used since it is conceptually easy to
implement and the profile likelihood function is easy to compute in this case.
Another approach is based on a Bayesian method, as presented in [71]. Some
others are focused on the estimation of the transformation parameter on the
basis of enforcing a particular assumption [84]. However, we will not attempt
to estimate this parameter using these aforementioned methods, but rather,
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we shall experimentally study the effect of 3; that is, observe the resulting
curve of the [EED] when it implements this transformation, as will be
shown in Section B.5

It is important to note that, clearly, not all non-Gaussian data may
be power-transformed to normal. This problem was studied in [25], where
it was concluded that even in cases where no power transformation could
bring the distribution to exact normal, the usual estimates of 8 will lead
to a distribution which tends toward this requirement. Therefore, and in
general, we can use the central assumption that, for some 3, the transformed
observations can be treated as more normally distributed than the original
data.

3.2.3 Transformation based on the data PDF

The Box-Cox transformation shown in the previous section can be easily
implemented, but it presents the disadvantage of not taking into account
the distribution of the original data when the non-linear transformation is
applied. As a result, it is possible that some distributions are closer to
Gaussianity, and as such, need a softer transformation than others that are
not so Gaussian. It is therefore necessary to find another transformation
that best fits the input data.

Considering the solutions proposed in [70], it is not possible to directly
transform a non-Gaussian random variable into a Gaussian one. However, a
random variable with Uniform distribution can be transformed into another
with a specific distribution (Gaussian in this case). The problem can thus
be addressed by introducing an intermediate step in which the data distri-
bution becomes Uniform and is then transformed into the desired Gaussian
distribution. Hence, the transformation process described consists of trans-
forming a random variable w with a known [PDF] F},(w) into another called
v with a Gaussian distribution function defined by F,(v). For this purpose,
the function g(w) must be found so that the distribution of the random vari-
able v = g(w) follows the specified data distribution. Therefore, the process
will be divided into two steps, as illustrated in Figure

e Known to Uniform distribution (F,(w) — F,(z)): given
a random variable w with a known distribution Fj,(w), we find the
function g1 (w) to transform it into another called z, which is uniformly
distributed in the interval (0,1). In this case, the transformation is
g1(w) = Fy(w) and, therefore:

z=Fy,(w) where F,(z)=2z for 0<z<L1 (3.14)

The random variable z can be considered as the output of a non-linear
system without memory, whose input is w, and whose transfer function

is defined by F,,(w).
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Figure 3.4: Transformation of a known into a Gaussian distribution.

e Uniform to Gaussian distribution (F,(z) — F,(v)): in this case,
given the random variable z uniformly distributed in the interval (0,1),
we wish to find the function ga(z) that yields a new random variable v
with the distribution defined by the function F,(v). In this case, the

required transformation is given by go(z) = F,!(2) and, hence:

v=F12). (3.15)

Finally, by applying the above two steps, a random variable v, whose
data follow a Gaussian distribution F,(v), with zero-mean and variance 03
is obtained. The resulting transformation can be expressed as follows:

v =g(w) = F, ' (Fy(w)) (3.16)
where
Fu(z) = — / T gy (3.17)
! OgV2T J—co

3.2.3.1 Known noise PDF

Taking into account , and considering the case in which the random
variable to be transformed corresponds to the noise w, it becomes necessary
to know the distribution function Fi,(w) to obtain g(w). If this information
were known in advance, the transformation could be immediately calculated.

For example, a Laplacian noise distribution can be transformed into a
Gaussian distribution following the steps above. So, from , it is neces-
sary to calculate F,(w) (of the Laplacian noise), and F, ! (of the Gaussian
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noise). As the Laplacian data distribution (with zero-mean and standard
deviation o;) is defined by (3.7)), the expression F,(w) is yielded:

Fy(w) = % [1 + sgn(w) <1 - emﬂ (3.18)

where sgn is a function defined in (3.9). Then, using (3.17), the inverse of
the Gaussian distribution function is obtained as follows:

FY(v) = o0,V2erf (20— 1) (3.19)

where o4 represents the standard deviation of the Gaussian noise. The error
function can be expressed as:

2 [T
e'rf(x)—ﬁ/o e " dt. (3.20)

Hence, assuming (3.18)) and (3.19), the non-linear transformation that
should be applied to a Laplacian noise variable w to convert it into Gaussian
noise can be defined by the follow expression:

g(w) = o1V/2 erfL <3gn(w) (1 _ A >) . (3.21)

3.2.3.2 Unknown noise PDF

In most applications, the information about the noise distribution is unavail-
able. Therefore, to maintain the generalization of the transformation and
to ensure its applicability in several scenarios of background noises, a non-
parametric estimation of the noise PDEI(Fy,(w)) must be attempted. For this
purpose, the non-parametric estimator described in [78] is employed to esti-
mate the[PDFlof the random variable w using a set of samples w;,l = 1,...,L
corresponding to various realizations of w. As a result, the following expres-
sion is attained:

L 2
plw) = aZe:cp <—; (w ;M) ) (3.22)
=1

where a = is a normalization constant and h is a parameter which

Lhv/27
controls the degree of smoothing of the estimated

With (3.22)), the estimation of F,(w) can therefore be derived:
Fy(w) = /w aZex _L(frzw 2 dz
L SRR S W A

_ ii; [1+erf (wh\/g”ﬂ . (3.23)
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In , samples w are the components of the noise vectors to be trans-
formed into Gaussian, and samples w;,l =1,..., L correspond to the com-
ponents of the original training noise, where L is the total number of training
samples.

Hence, taking into account ; with o, = 1; and ; it be-
comes possible to express the non-linear and non-parametric transformation
as follows:

iw) = o7 (Fuw)

_ \/ierf_1< i;[l—f—erf(ll}}l_\/;ul)}—l) (3.24)

=1

o

where ®(z) is defined in Appendix (A.4).

It is possible to illustrate the behavior of this function g(-) for different
non-Gaussian data distributions, as displayed in Figure for the following
distributions: Laplacian, Rayleigh, Gamma and Uniform. It becomes appar-
ent that one of the effects of the function g(-) consists of cutting the peaks
and outliers of the signal, as is expected.

3.2.4 Optimality study of the EED

An extension of the [ED] has been presented to deal with the most general
case of non-Gaussianity of the background noise. This detector applies a
scalar non-linear function with the aim of converting the non-Gaussian noise
in Gaussian. As a rule, the extended detector will not be optimum, but it
will be shown that, under the weak signal assumption, it is

The [EEDI test is obtained by applying one of the two non-linear transfor-
mations studied in the previous section to every component of the observa-
tion vector y. However, the present focus is on the [EEDI when implementing
the non-parametric transformation, since this type of processing is more ap-
propriate when different types of noise are present. Therefore, for the study
of optimality, the following definition of the new transformed variable wu is
used:

u = g(w) = & HF,(w)). (3.25)
Assuming that the samples are i.i.d., the energy is thereby calculated:
Hy
g(y) 9ly) Z X (3.26)
Hy

Notice that as the transformed random variable u in is zero mean and
unit-variance, the noise mean-power P, = E[g?(w)] = 1.

Regarding the control of the [PFAl the proposed [EEDI statistic in
follows a chi-squared distribution (x%;) under Hy, as in the [EDl This allows
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Figure 3.5: Non-linear function g¢(-) for different unit-variance and zero-
mean non-Gaussian noise distributions. Laplacian noise distribution.
[(b)] Rayleigh noise distribution. Gamma noise distribution. [(d)| Uniform
noise distribution.

one to calculate the required threshold X for a specific PEAl But, what can
we say about the optimality of the new detector? Note that the actual per-
formance of the [EED| depends on how the non-linear transformation affects
the signal under Hi. Therefore, it is difficult to establish the optimality of
the [EEDI] in a general form. However, let us assume the more interesting
case of a low signal-to-noise ratio (SNRI), since every reasonable detector
must work well with a high ENRL Thus, the next detection model will be
considered:

Hy:y=w W pw (W) = puw(wo) - puw(w1) ... pw(wn-1)

(3.27)
H :y=s+w

where pyw(w) is an arbitrary noise probability density function. By applying
the non-linear transformation to these hypotheses, it is possible to obtain a
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new model:

Ho:g(y) = g(w) g(w) : N(0,I)
(s +w) = g(w) + diaglg'(w)]s = g(w) + z

(3.28)
where the assumption of low SNR]is considered by means of a linear approx-
imation of g(s + w) and following a Taylor series expansion. The matrix
diag|g’(w)] is defined as a diagonal matrix whose main diagonal is formed
by vector ¢'(w). Notice that z cannot be considered, generally, as a Gaus-
sian distribution with uncorrelated variables, even in the case that s could
follow a Gaussian distribution with uncorrelated samples. Hence, all these
considerations lead us to conclude that [EED] will not be optimum in most
cases. However, considering z as a completely unknown vector, the achieved
Gaussianity of the noise after transformation guarantees that [EDI is
This is an interesting property, but it remains necessary to consider how the
is modified after the non-linear transformation.

To perform this analysis, an enhancement factor, denoted «, is defined. It
is calculated as the quotient of the after the non-linear transformation
(SNRy), and before it (SNR,). Using the results and definitions of
and , « may be expressed as follows:

SNR, _ Elz"2]/Elg(w)"g(w)] _ E[s"diag(g”(w))s]
SN Ry E[sTs|/ElwTw] E[sTs]/E|w?|

2] - T
= e = Pl Bl (329)

The following expressions were considered concurrently:

N
Ew'w] = Y E[w}]=N-E[uw’]
n;l
Elg(w) g(w)] = > Elg*(wn)] = N - Elg*(w)] = N (3.30)
n_lN—l
E[s"diag(¢”(w))s] = E | ¢*(wn)s,
N—lni1
= Y Elg*(wn)] - E[s;) = Elg”*(w)] - E[s"s]
n=1

Possible changes in the (resulting from the effects of the non-linear
transformation) are indicated by «. To calculate this factor, it is necessary
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to obtain ¢’'(w) by using the expression from (3.25)):

du dF,(w) 1 1

9@ = Grw) dw  dFgw)jda "™ = w P
= ﬁpu}(w):\/ﬂe%grz(w)pw(w). (3.31)
Vo

And finally, using (3.29)) and (3.31)), the factor o can be defined as:

a = Blg*(w)] Blw’]

= 277/ egz(w)pfu(w)dw'/ w2 puy (w)duw. (3.32)

—0o0

As detailed in , the factor a can be computed to evaluate the change
in due to the non-linear transformation for a specific noise distribution.
Note that, as expected, for zero-mean Gaussian noise distribution, and uti-
lizing (3.25), g(w) = w/oy is a linear transformation; hence, ¢'(w) = 1/0y,
(obtained from (3.31))), and thus o = 1. It is important to emphasize that
for @ > 1, an operating in non-Gaussian background noise performs
better than an [EDl operating in Gaussian background noise, given the same
SNRI This fact is not guaranteed when a < 1, but improvements in the
of the [EEDI with respect to the [EDl and with both operating on the
same non-Gaussian noise, are still possible. This performance can only be
verified experimentally for each specific noise distribution, as we will see in

Section B.5l

3.3 Detection with statistical dependence between
noise samples

3.3.1 Introduction
Both the (studied in Section and the (3-26) assume com-

ponents of the noise vector w. When this is not the case, and the samples
exhibit some form of dependence, it is necessary to apply additional pre-
processing. As seen in Section [2.2.3] independence and uncorrelation are
equivalent for the Gaussian case; hence simple pre-whitening is sufficient
and the pre-processed energy detector can be utilized.

However, the statistical dependence problem for the non-Gaussian case
is not so easily solved. One of the techniques used to reach vectors with

independent components is to apply an independent component analysis
(ICA]), explained more fully in Section[3.3.2] Essentially, [CAlmay be applied
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to yield an observation vector y, with independent components by means of
a linear transformation U of vector y:

y, = Uy. (3.33)

Equation (3.33)) is a generalization of (2.21]), where matrix U not only
pre-whitens, but also achieves statistical independence. Actually, the es-

timation of U is usually divided into two steps: the first decorrelates the
elements of vector y, as performed in equation , and the second yields
the desired independence by means of a unitary transformation (equivalent
to a rotation).

Although there are several options to implement the decorrelation pro-
cess, the pre-whitening step shown in is used here to enhance the
generalization from Gaussian to non-Gaussian. Thus, matrix U can be de-
composed as:

_1
U=QR,2 where QTQ=1 (3.34)

As a result, the for non-Gaussian, non-independent noise is defined as

follows:
Hy

y) z A (3.35)
Hy

NI
N[

9(QRw?*y)" 9(QRw
It will be referred to hereafter as the pre-processed extended energy detector
(PEED). Notice that, as in , normalization by the noise mean-power is
not required, as the non-linear transformation generates random zero-mean
unit-variance Gaussian variables. Section will address the problem of
estimating the transformation U in from a training set of noise data
samples.

All the considerations given in Section are now valicli and applica-

ble to the linearly transformed observation vector y, = QR ’y. Therefore,
implements a test for the detection of unknown signals, whose
observation vector is represented as z, = diag[g’(wp)]sp, in a Gaussian and
uncorrelated background noise. In this case, notice that the transformation
Q is unitary (a rotation), so the energy of the pre-whitened signal is con-
served. Hence, the parameter « can still be considered an indicator of how
[PEEDI enhances the performance of the PED|when the noise is non-Gaussian
and non-independent.

3.3.2 Review of ICA model

[CAlis a generalization of Principal Component Analysis (PCA) [50], whose
goal is to find a linear transformation from an original data set with a mixture
of components, so that the transformed data samples are statistically inde-
pendent, or at least as independent as possible. As a result, [CAl algorithms
have proven successful in separating linear mixtures of independent source
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signals in many applications, for example, biomedical data analysis (EEG,
ERP, fMRI, optical imaging) and computational modeling, as reviewed in
[83].

To define the [CAlproblem, it is convenient to use the vector-matrix nota-
tion. Thus, let w denote the random vector whose elements are the mixture
samples wi, ..., wy, and u the random vector with elements uy,...,uy. In
addition, A shall denote the matrix with elements a;;. Using this vector-
matrix notation, the above mixing model is written as:

w = Au (3.36)

which is known as the [CAlmodel [36]. The independent components cannot
be directly observed and the mixing matrix is assumed to be unknown. The
only observed data is the random vector w, and both A and u must be
estimated by using it. The starting point of the is the very simple
assumption that the components u; are statistically independent, while the
independent components must have non-Gaussian distributions. Therefore,
after estimating A, we can compute the inverse, denoted as U, and thereby
attain not only uncorrelated but also the independent components simply
by equating:

u=Uw. (3.37)

There are several approaches that can be implemented for the [[CAJ es-
timation. Some are based on the minimization of the mutual information
[5], but we shall focus on the maximum likelihood estimation. In this case,
a statistical model of the data is often assumed; but when this assumption
is inaccurate, the algorithms perform suboptimally (or even fail to produce
the source separation), as commented in [9]. For this reason, an alternative
method is turned to. It consists of employing a more flexible model for the
[PDE] of the source signals, based on a non-parametric kernel density estima-
tion technique of the [78], as will be described in greater detail in the
following section.

3.3.3 Estimating the transformation matrix U

First of all, let us offer some important comments about [[CAlidentifiability.
Problems with identifiability appear when is applied to blind source
separation (BSS): sources can be recovered up to some scaling factor and
permutation, with the only constraint being a maximum of one Gaussian
source [I8]. In our case, [CAl enters as a consideration in the context of
detection not to separate sources, but rather to obtain transformed vectors
with components as L1.d] as possible. This transformation is achieved using
a training set of dependent vectors; consequently, the constraints appearing
in BSS become of no concern in this case. There are many algorithms in
block or iterative versions which are able to obtain estimates of matrix U.
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Let us consider a maximum likelihood approach for this estimate. Thus, the
set of training observation noise vectors wy with £k =1,..., K, are grouped
into matrix W = [wy,...,wg|. From now on, it will be assumed that wy,
are independent observation vectors of non-independent noise. In practice,
this means that vectors wj must correspond to non-overlapped (and rather
well separated) segments of the noise record, or, preferably, that different
noige records be used for every wi. A very popular approach for estimating
the [CAl model is to find the maximum likelihood estimation of matrix U,
given matrix W. Therefore, after employing logarithms, the log-likelihood
function is defined as:

K
L(W/U) =logp(W/U) = > log p(w;/U). (3.38)
k=1

But, from (3.33) and using well-known properties of functions for random
variables [77], (3.38)) can be expressed as:

K
L(W/U) = [log|detU]| + log p(Uwy,)] (3.39)
k=1

where maximization leads to the following expression

dL(W/U) & [dlog|detU| | (dp(Uwy)/(dU))
U ;{ a0 p(Uw)
K
= > [Uh) T = f(Uwp)wi]. (3.40)
k=1

In (3.40)), assuming that the components of vectors wy, = Uwy, are LLd]
the same non-linear scalar function f(-) can be separately applied to every
component of the linearly transformed vector wyy, as follows:

F(Uwg) = [flwpr1)s - - - flwpen)] T (3.41)

Notice that assuming the same non-linear function for all the components
guarantees that all the elements of the transformed vector have identical
distribution. Similarly, separate application of the scalar function entails in-
dependence. Therefor, given the training set of dependent vectors, a trans-
formation is obtained that leads to new vectors with components as as
possible.

Equating to zero, a set of non-linear equations with unknown ma-
trix U (estimated U) can be obtained:

1 & o
~T ~
U = (Kkzl f(ka)w;{> : (3.42)
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For the Gaussian case, f(ﬂwk) = Uwy, and U must satisfy the following
expression:

1 & o 1 & o

T o T _ T o1

U = (KZUWkwk> = (K ;Wkwk> U (3.43)
where

-1
Ulo = (;{ Z Wkw;‘g> . (3.44)

Note that for the Gaussian case, the solution for matrix U can be expressed
as:

[SIES

. _
- T A1 1
U=U =R, = (K ;wkw{> . (3.45)

In general, however, iterative procedures [23] 28] are necessary to solve
(3.42). For example, one possible solution is to use conventional gradient
algorithms to obtain the following expression for matrix U:

A

.- .dL(W/U
Uiy = Ui+/37( /Y)

du
N K ~T A A
- U458 [(Ui )1 fi(ink)wﬂ : (3.46)
k=1

Considering this algorithm and the decomposition of U indicated in (3.34)),
convergence can be accelerated by first estimating Ry from a set of training
noise vectors, and subsequently employing a classical estimator as follows:

. 1
Ry=—> Wnwph. (3.47)

Then, an iterative gradient algorithm is applied to the pre-whitened training
vectors in order to estimate the rotation matrix Q in the iteration ¢ + 1, as
follows:

Q;H -Q,+5 EK: [(Q;[>_1 ~f (inpk) ng} (3.48)
k=1

_1
where in this case wp, = R, *wy, are the pre-whitened training noise vectors.

To estimate Q, a unitary matrix must be implemented in each iteration,
yielding the following normalization:

D=

A/

Qi1 = Qiy (Qg-lQ;—H) - (3.49)
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The implementation of the iterative algorithm in (3.48) and (3.49) re-

pi(x)

A~

quires the estimation of function fi(z) =

at every iteration ¢. To
perform such an estimate, it is necessary to ﬁ]lrst know the data distribution
p(x). Hence, to reach a general applicability valid for any distribution, a
non-parametric estimation of p(x), as described in (3.22), is used. Let us
consider the set of samples x;, with [ = 1,..., L corresponding to realiza-
tions of the random variable z (whose [PDFlmust be estimated). In this case,
the samples correspond to components of Q,wp, k= 1,..., K obtained at
every iteration; thus, a total number of L = K- N samples will be calculated.
Therefore, the following expression is derived:

o - (46 5
2 [lz:xz exp (—; (:1: ;Ll’l)Q)
—ZZL;xexp (—; <x 2%)2)] (3.50)

where x; (with [ = 1,..., L) corresponds to a set of training samples of the
data distribution to be estimated. Hence, the estimate of function f(x) will

be defined as:
~ ix e _1 <1;—[L‘l>2 -
o) = — =il 2 (3.51)
f(x)_hQ T 1 z—a\° . .
> e (=5 (557
L =1
Using this expression it is possible to calculate Ry and Q in 1) and

(3.49)), respectively, and, in turn, to obtain the final transformation matrix
U.

b“g

3.4 Generalized matched subspace filter: GMSF

3.4.1 Introduction

The matched subspace filter (MSE) is known to be an uniformly most power-
ful detector for the detection of a subspace signal in a background of
uncorrelated Gaussian noise. Optimality of the[MSFElis kept even in the pres-
ence of subspace interferences [76]. Also in [22], similar detector solutions are
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proposed in the presence of interference for specific types of independent non-
Gaussian noise (called generalized Gaussian distributions). Unfortunately,
there is no general solution for the subspace signal detection problem
when the noise is non-Gaussian and non-independent. Hence, suboptimal
detectors will be devised.

A could be implemented, but it requires a maximum likelihood
estimate (MLE]) of the unknown parameters (in our case, ¢ and ), which is
not a very practical option. Other well-known suboptimal alternatives exist,
such as the Wald and Rao tests [43]. The Wald test, although simpler to
implement than the[GLRT] also requires estimates of the involved parameters
under H;. The Rao test, in contrast, does not have such a requirement;
in its most general form, only an of the nuisance parameters under
Hy is required. Notice that in the problem considered here, the vector of
parameters is given by 8, = 0 (under Hp) and 6, = [, 87]7 (under H); i.e.,
no nuisance parameters appear. Thus, the Rao test becomes an attractive
alternative to deal with the non-Gaussian and independent noise case. It
is worth mentioning that [GLRT] Wald, and Rao tests are asymptotically
equivalent in any case. Moreover, it has been recently shown that, for a finite
number of observations, the three tests either coincide or are statistically
equivalent in a number of typical detection problems [20, 2I]. In particular, it
is demonstrated in [21] that coincidence exists in detection problems without
nuisance parameters when the observation [PDF] belongs to the exponential
family, thus covering a broad range of practical cases.

3.4.2 Rao test generalization

Here, our attention turns to the Rao test. It is rather simple to adapt the
general form of this test to the signal subspace detection problem in non-
Gaussian noise assuming that the components of the noise vector w are[L1.dl
random variables. This has been already shown in , and it can also be

expressed in the form:

T H,
P <
g(w) Hy

where P = H(H'H)'H7 is the projection matrix onto the subspace defined
by the columns of matrix H.

Therefore, is an extension of the [MSF] seen in Section in
the sense that a non-linear transformation g(-) is applied to the original
observation vector prior to computing the normalized subspace energy. Note
that for the Gaussian case g(w) = w; therefore, g(y) =y and Py, = Py =
02, So, (2.14) and (3.52) are equivalent. In addition to the aforementioned
equivalences with the and the Wald test, the Rao test has another
interesting property: the statistic g(y)TPg(y)/Pg(w) is X;QD as in , hence
the value A can be easily computed for a required [PFAl In the following,




50 CHAPTER 3. Extensions of the energy detector

the expression defined in (3.52)) and found suitable for independent and non-
Gaussian noise will be denoted by [MSE]

3.4.3 Extension of the MSF

In this section, a further generalization of the given in is pro-
posed in order to consider the most general case of non-Gaussian and non-
independent noise. It is based on the use of [CAl which implements a linear
matrix transformation to make the components of the transformed obser-
vation vector as independent as possible. The same idea was exploited
in Section to derive energy detectors in the presence of non-Gaussian
and non-independent noise samples. Actually, could be an option to
implement a linear pre-processing step in any detection problem involving
non-Gaussianity and statistical dependence among the observed vector com-
ponents. However, each detector requires particular attention due to the
specific implementation of the non-linear transformation g(-). An "ad hoc"
non-linear function was proposed in Section to make the linearly trans-
formed observation vector as Gaussian as possible, but the condition
of the extended energy detector used was not entirely demonstrated. Nev-
ertheless, this is not the case in the detection problem considered in this
section since the non-linear transformation required in is inherent to
the Rao test (defined in (3.3))), thereby preserving its properties.

Test assumes that the components of w are When this is not
the case, the non-independent observation vector could be transformed into a
new one having independent components. This can be done by means of
and an appropriate linear transformation leading to a new generalization of
the [MSF] that will be termed hereafter as generalized matched subspace filter
(GMSE) [63]. Therefore, using U as the linear transformation to obtain [LL.d]
vector noise samples with u=Uw, the is proposed:

T H,
Py(u) Ho

where Pg(u):E[g2(u)], and the pre-processed subspace matrix can be ex-
pressed as:

Py = Hy(H Hy)'HY, with Hy = UH. (3.54)

Notice that the non-linear transformation appearing in (3.53) must be
defined from the [PDE] of the linearly transformed noise samples u, which
generally have a different (non-Gaussian) [PDF] from the original noise w.
Hence, using (3.3), and changing w to u, we obtain:

dp(u)

W) = — du
g(u) T(U) ) (3.55)
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Thus, it is guaranteed that equation implements a Rao test in the
linearly transformed observation vector y,=Uy, while maintaining all the
mentioned properties of the Rao test such as the X;% distribution of the
statistic g(Uy)TPUg(Uy)/Pg(u), and the asymptotic equivalence with the
and the Wald test.

Different criteria have been proposed to estimate the required trans-
formation, but in essence, all of them are trying to minimize some appropri-
ate measure of the dependence between the vector components. In particu-
lar, the same approach as the one presented in Section m (where a matrix

1
U = QR4? was applied to the dependent data) is used.

Equation and test require knowledge of function f() and
the pre-processing function g(-), respectively. In this case, both functions are
equivalent and depend on the noise [PDE p(u) as shown in (3.55)). If there
is a priori knowledge of p(u), the non-linear function g(-) can be directly
computed. But, in general, there will not be any available knowledge about
the of u; hence, a non-parametric approach becomes necessary. Let
us consider the set of samples {u;},l =1... L, corresponding to realizations
of the random variable u (whose [PDE] is to be estimated). The classical
non-parametric estimator takes the form p(u) of (3.22). Assuming that the
quality of the estimate p(u) is appropriate to consider p(u) = p(u), the non-
linear pre-processing function g(-) can be computed as in , thereby

leading to:
l p 9 n
=l

1
g(u) = —= |u— = . (3.56)
h? ZL: o 1 fu—y 2
«p | —=
PA72
=1
One may identify in (3.56)) a linear and a non-linear term. The latter accounts
for the possible non-Gaussianity of the random variable .

3.5 Evaluation results of the EED in non-Gaussian
independent noise

In order to illustrate the performance of the two possible transformations de-
scribed in Section (parametric Box-Cox and non-parametric) and which
can be implemented when using the [EED] a number of experiments using a
variety of simulated signals and noises of different characteristics were per-
formed. First, the procedure followed in estimating the power transformation
parameter (), required for the Box-Cox transformation, is detailed. Then,
both methods were compared, analyzing the performance of the two non-
linear functions, and finally, a conclusion was drawn about which was most
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suitable for the [EED] when confronted with the general task of detecting
unknown signals in the presence of non-Gaussian and independent noise. In
both methods, the new factor explained in Section was used to
compare the performance of different detectors.

3.5.1 Estimation of the power transformation parameter

In situations where an assumption of noise normality is not guaranteed, one
of the possible solutions is to transform the data such that the distributions
are nearer to the Gaussian assumption. Box and Cox proposed a paramet-
ric power transformation to reduce departures from normality, as shown in
Section Although there is a family of possible variants that can be im-
plemented, our study is focused on analyzing the when implementing
the original transformation described in . Since this transformation
is parametric dependent, the usual practice when using some of these tech-
niques is to first estimate the parameter 5.

As mentioned in Section [3.2.2] the transformation parameter 8 is found
experimentally by observing the detection results of the Following an
evaluation of the resultant [ROC| curves (indicative of a successful transfor-
mation of the non-Gaussian noise), the optimum parameter is then selected
from the best [EED] performance. The following simulations are focused on
estimating the most suitable S parameter, required to detect a Gaussian
signal among different independent and non-Gaussian noises (i.e. Laplacian,
Rayleigh, Gamma and Uniform distributions). A total of 40-10% vectors and
2 - 103 different PFAs from 0 to 107!° were considered in order to calculate
the experimental curves of the [EEDL The range of used to com-
pute the factor was set between 0 and 0.1, since this is a reasonable
operation area for a detector.

Figure[3.6]illustrates the ROCl factor of the (using the original Box-
Cox variant) for different 8 values in comparison with an [ED] but under the
same conditions. Four different non-Guassian noises were used and, due to
the variety of the examples selected, a wide interval of 8 values were tested,
extending from —3 to 3. Several [SNR] were simulated (from 6 dB to —6 dB)
but since the same performance was observed in all cases, only the results
for SNR = —2 dB are presented. These results reveal that the 8 parameter
is fairly related to the characteristics of the non-Gaussian noise in which
the signal is immersed. For this particular Box-Cox variant, when g > 0,
positive factors were achieved; this means that in the remaining cases
the [EEDI performs poorer than the [EDI Upon observing these curves, it
is possible to estimate the best [ parameter for a particular non-Gaussian
noise by selecting that which yields the maximum factor.

Table gives the optimum  values for each non-Gaussian noise. As
can be observed, there is no common value for all of them, and the preci-
sion with which this parameter is estimated depends greatly on the noise
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Figure 3.6: [ROCI factor () for different S values when using the original
Box-Cox variant for detecting a Gaussian signal in presence of several non-
Gaussian noises with a SNR = —2 dB and N = 25.

characteristics. We must also notice that, in principle, the [EEDI is expected
to outperform the since the former can address the detection problem
in the presence of non-Gaussian noise. However, it is possible that even
when the optimum £ is used, the curve will not follow this behavior.
The explanation for this effect is related to the fact that when applying the
Box-Cox transformation, we cannot generally ensure that the transformed
observations are independent and normally distributed. To some extent the
reasonableness of this assumption can be tested with a comparative analysis
of the curves generated by both the and the [ED] as shown in the
next section. It follows that the corresponding factor between both
detectors can be considered an indicator of the effectiveness of the Box-Cox
transformation.

’ H Laplacian \ Rayleigh\ Gamma \ Uniform‘
(B 06 | 18 | 14 | 2 |

Table 3.1: Optimum S from the original Box-Cox transformation when de-
tecting a Gaussian signal in the presence of different non-Gaussian and in-
dependent noise distributions.
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3.5.2 Comparison of the EED using the non-parametric and
parametric Box-Cox transformation

In the previous section, simulation results led to the derivation of the op-
timum S to be used with the parametric Box-Cox transformation for each
particular non-Gaussian noise tested. Now, the non-parametric approach for
the [EED] proposed in must also be analyzed in order to compare both
methods. Thus, several simulations were performed to study the unknown
signal detection problem in the presence of non-Gaussian and independent
noise, when using the

First, let us describe in greater detail the implementation employed for
the non-parametric [EEDI In this case, the non-linear function described in
was utilized and, based on a set of training samples, the noise [PDF
was estimated as proposed in . In this particular experiment, a total
number of 10 - 10% noise samples were arbitrarily selected and used in a
previous training step. Thereafter, several experiments with different SNR]
spanning from —6 dB to 4 dB, were performed (although only a portion of
the results are shown here). In addition, four different noise distributions
(Laplacian, Rayleigh, Gamma, and Uniform) were tested.

Figure illustrates the resultant curves of the after apply-
ing both the non-parametric (EEDnopar) and the Box-Cox transformation
(EEDbozcoz). A Gaussian signal is detected in the presence of the four dif-
ferent non-Gaussian noises with independent samples. In addition, the [ROC]
curves of the in the same noise conditions are likewise shown to facilitate
a useful comparison of relative performance. As expected, the [EEDI utilizing
both non-linear functions outperformed the [ED| when the noise did not follow
a normal distribution. Furthermore, one can observe how the improvement
reached by the non-parametric is more significant than that reached
with the parametric [EED] over the [EDL This improvement is related to the
« parameter, obtained for the non-parametric case using and given
in Table for each non-Gaussian noise. Not surprisingly, high values of «
are associated with large improvements in the [EEDI[ROC] curve over the [EDI
curve.

’ H Laplacian \ Rayleigh \ Gamma \ Uniform ‘
o] 13055 [ 1.3732 [ 3.9912 | 2.0355 |

Table 3.2: Enhancement factor a obtained for the non-parametric [EEDI when
detecting a Gaussian signal in the presence of different non-Gaussian and
independent noise distributions.
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Figure 3.7: ROC| curves of the[EEDIusing the Box-Cox (EEDbozcoz) and the
non-parametric approach (EEDnopar). Generated when detecting a Gaus-
sian signal in the presence of different noise distributions with SNR = —4

dB and N = 25. Laplacian noise. Rayleigh noise. Gamma noise.
[@I Uniform noise.

In Table [3.3] a more precise evaluation of both the and the is
presented. The objective of this table is to summarize the behavior of the
[EEDI versus the [EDL and to analyze in greater detail the curves shown
in Figure It must first be pointed out how the factor obtained is
positive when comparing both the EEDnopar as well as the EEDbozcoz with
the[EDl This means that the corresponding[ROC] curves of the EEDIlie above
those of the [EDL Then, it is also important to remark that the maximum
values are reached for the Gamma noise in both cases. In light of the [ROC]
curves shown in Figure [B.7] this result falls in line with our expectations.
Furthermore, greater values of the factor are achieved with the EEDmnopar
than with the EEDbozcox, which is indicative of better performance under
the same conditions. Finally, when comparing the curves of the two
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[EED! transformations, the [ROC factor is again above 0; hence, it can be
concluded that the EEDnopar performs better in all noise conditions.

’ Comparison H Laplacian \ Rayleigh \ Gamma \ Uniform ‘
EEDmnopar Vs ED 0.0142 0.2101 0.4392 0.3025
EEDbozcozr Vs ED 0.0088 0.0237 0.0117 0.2411

EEDmnopar Vs EED bozcox 0.0079 0.1731 0.4373 0.0651

Table 3.3: [ROC] factor comparing the with the non-parametric
and the [EED] using the Box-Cox transformation with SNR = —4 dB and
N = 25.

It has been demonstrated that the non-parametric transformation used
in the performs better based on the improved [ROC| curves. However,
other considerations must be taken into account when deciding which of the
two approaches to implement. Although the implementation of the Box-Cox
transformation is much less time consuming, it is worthwhile in this case to
use the non-parametric approach as it can adapt to changes in noise char-
acteristics. Therefore, when referring to the [EED| only the non-parametric
transformation will be used.

3.6 Performance evaluation of the PEED

In Section [3.5] the problem of detecting unknown signals in the presence of
non-Gaussian noises was evaluated. In that case, the samples of the non-
Gaussian noise were assumed to be [L1.dl When this is not the case, simple
pre-whitening is insufficient; a more complex detector must be implemented,
as detailed in Section[3.3] This detector was termed a[PEED] and this section
presents a precise analysis of its performance when the noise is not only non-
Gaussian, but also non-independent. In addition, it will be compared with
other detectors, such as the and the (described in Chapter [2), in
order to examine the differences between them in non-independent scenarios,
as well as with independent noise samples.

3.6.1 Non-independent noise samples

In the first simulation setup, the detector evaluation required the generation
of random variables corresponding to non-Gaussian and non-independent
noigse, denoted wy. They were obtained by first generating non-Gaussian
independent random variables w;, leading to noise vectors w;. They were
subsequently transformed as follows: wq = U 'w;. The elements of the
mixture matrix U™! (dimension N x N) were calculated from a random
variable with a standard uniform distribution across the open interval (0,1).
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A total of 3-10% noise vectors were generated for each simulation. In addition,
a Gaussian signal was generated and different conditions covering the
range of —8 dB to 4 dB were simulated.

In order to evaluate the PEEDI it was assumed that both the estimate
of the linear transformation U and the pre-processing function g(-) required
in were obtained in a previous training step where only noise was
present. Thus, selecting the number of noise training vectors K used to
estimate of U becomes an important issue of practical interest. Obviously,
good estimates of U require a relatively high value of K. However, it cannot
be made arbitrarily large as there are some limiting factors, namely, the
computational burden and the time interval duration allowed for training.
In general, this decision may be considered part of the overall calibration of
the detector for each application, but unfortunately, it is not easy to find a
closed analytic equation providing the best values. Instead, an experimental
fitting was used, taking the value that resulted from the best performance
(in terms of the RO curves). For this task, a total of 2-103 training vectors
were used.

Figure summarizes the performance of the when detecting
a Gaussian signal in the presence of four different non-Gaussian and non-
independent background noises, with SNR = —4 dB. In addition, the [ROC]
curves of the and the are also shown to better compare and
understand the performance of the [PEEDI First, it is important to notice
how the[EEDoffers a truly poor performance: a random detector for all noise
conditions resulted, as it could not address the noise sample dependence.
Thus, let us examine the performance of the As described in ,
this detector applies a simple pre-whitening to the observation vector and,
as can be observed, the [ROC| curve experiments a considerable improvement
in performance, particularly when viewed alongside the [EEDL However, the
results of this solution remain insufficient: when the non-Gaussian noise
samples are dependent, not only pre-whitening but also [CAlmust be applied.
This requirement makes using the PEEDI more attractive, as its [ROC] curve
presents the best results of all non-Gaussian examples. The improvement
reached is related to the enhancement factor «, given in brackets for each
case: Laplacian (o = 1.2998), Rayleigh (o = 1.3196), Gamma (« = 3.9956),
and Uniform (o = 2.0546).

Table summarizes the results obtained in Figure after evaluating
the performance of the PEEDI versus the [EED| and the [PED] on the basis of
the factor. As observed, and concurring with the results illustrated in
Figure the calculated factor revealed that the PEED] outperforms
the other two detectors, in particular for the Gamma and Uniform noises.
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Figure 3.8: [ROC] curves comparing the [PEED] with the [PEDI and the [EEDI
The non-parametric approach was used to detect a Gaussian signal in the
presence of different noise distributions with dependent samples, SNR = —4

dB, and N = 25. Laplacian noise. Rayleigh noise. Gamma noise.
[@I Uniform noise.

’ Comparison H Laplacian \ Ragyleigh \ Gamma \ Uniform ‘
PEED vs PED 0.0177 0.1813 0.4337 0.3048
PEED vs EED 0.0398 0.2251 0.4355 0.4218

Table 3.4: [ROC] factor comparing the [PEEDI with the [PEDI| and the [EED]
using the non-parametric transformation with SNR = —4 dB and N = 25.

3.6.2 Independent noise samples

To conclude with our evaluation of the [PEEDI let us study its performance
when the noise is non-Gaussian, yet independent. In this case, no pre-
whitening nor linear transformation are required and thus the estimation
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of matrix Q should tend toward the identity I, while R, shall only repre-
sent normalization.

Figure represents the curves of the and the are
represented when detecting a Gaussian signal in the presence of the four
previously mentioned non-Gaussian noises. It is possible to observe here
how the [PEEDI performance is similar to that of [EED] and as expected,
consistently better than the [EDI Therefore, under these particular noise
conditions, we can conclude that both detectors are equivalent; thus, the
general applicability of the in the detection of unknown signals in the
presence of any kind of noise is demonstrated.
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Figure 3.9: [ROC curves comparing the [PEED] with the [ED] and the [EEDI
The non-parametric approach was used to detect a Gaussian signal in the
presence of different noises with independent samples, SNR = —4 dB and
N = 25. Laplacian noise distribution. Rayleigh noise distribution.
Gamima noise distribution. |(d)| Uniform noise distribution.
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3.7 Experimental results of the GMSF

Finally, several experiments were performed to verify the theoretical deriva-
tions and performance of the proposed [GMSFE] In this case, the signal was
assumed to be in a subspace, but in the presence of non-Gaussian and non-
independent noise. In order to evaluate the improvement of the [GMSE] ver-
sus the [MSE] different experiments were conducted using (3.53)) and (3.52]),
respectively.

3.7.1 Signal model

Subspace signals will be considered band-limited, i.e., formed by the sum of
one or more sinusoids as defined in (3.57]). This is a specific subspace signal,
and it is of particular interest to examine the expected improvements when
using the [GMSF], as will be seen in the experiments performed. Hence, the
detection problem is expressed as follows:

Hy : y[n] = w(n]

-l (3.57)
Hi :yn] = Z Ap, cos(2mm fon + ¢m) + win] '
m=1
where n = 0,1,...,N — 1, and m = 1,..., M represents the number of

sinusoids used. The amplitude A,, and phase ¢,, are assumed to be un-
known, fy is assumed to be known, and w[n] are the non-independent and
non-Gaussian noise samples. It is possible to rewrite the data model in the
linear model form as y = HO + w, with the subspace matrix given by:

1 0
H — cos.[wl] sin 'I

[w1]
coslwr(N —1)] sinfwn (N — 1)]

1 0

cos|w] sin[wy] (3.58)

cos[wM(.N —1)] sin[wM(.N —1)]

Here each sinusoid w,,=2mmfj is represented by two column vectors, and
the operator || simply signifies column augmentation; that is, the abutting
parentheses are removed to offer a wider matrix from the operands of the
operator ||. Using the same notation, the unknown parameter vector 6 can
be expressed as @ = [(131)]| ... [[(arBum)]t, where a,,, = Ay, cos ép, and
Bm = — Ay, Sin ¢y,
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3.7.2 Experimental setup

On the one hand, the detector evaluation required the generation of ran-
dom variables corresponding to non-Gaussian and non-independent noise.
They were obtained in a manner similar to that previously described in Sec-
tion for the PEEDL A total of 3 - 10% noise vectors were generated for
each simulation. On the other hand, generation of the subspace signals was
also required. In this case, the frequency fy was set to 0.1, ¢,, were samples
of a uniform random variable between [—m, 7|, and A,, were selected for

every required [SNR] defined as:

A
SNR= Y ‘. (3.59)
a.

m=1 Wi

To evaluate the [GMSE] it was assumed that the estimate of the linear
transformation U and the pre-processing function g(-) required in were
obtained as part of a previous training step where only noise was present.
As mentioned in the previous section, selecting the corresponding number
of noise training vectors K is a challenging task since many factors can
influence this decision. However, it is also possible to use an experimental
fitting in order to select the number of noise training vectors K, used in
the estimation of U. In this case, we took the value of the best [ROC] curve
performance. For example, Figure shows the results achieved for non-
Gaussian and non-independent noise wy (generated from Laplacian [PDF)),
with SNR = —2 dB, N = 25, M = 1, and different K setups. It can be
observed how for K > 2-103, there is no significant improvement in the ROC]
curve. Similar results were achieved by varying SNR, N and M; therefore,
in our experiments K was set to 2 - 105.

Once U was obtained, it was then necessary to estimate the non-parametric
function g(-). To do so, the estimated linear transformation U was applied
to the K available noise training vectors (wq) as follows: @1 = Uwy. This
yielded K linearly pre-processed vectors 11, and to a total set of K-N inde-
pendent samples of the random variable u, with PDFs similar to the original
w;. The parameter L was set based upon experiments similar to those con-
ducted to determine the most suitable value of K. To reduce computational
requirements, only a subset of L = NK/4 randomly selected samples were

used to estimate g(-), using (3.55]).

3.7.3 Comparing GMSF and MSF

Several experiments were performed in order to assess the improvements of
the with respect to the by varying different parameters involved
in the detection problem.

First, it is of particular interest to observe how the [GMSE| behaved in the
presence of independent non-Gaussian noise (w;). Figure presents the
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Figure 3.10: [ROC] curves of IGMSE] for non-Gaussian and non-independent
noise, generated from Laplacian noise with SNR = —2 dB, N = 25,

M =1, and different K setups.
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Figure 3.11: RO curves of and [GMSE]for independent Laplacian noise
(wi), with SNR = -2 dB, N =25, and M = 1.

[ROC] curves of both detectors when using independent Laplacian noise for
SNR=-2dB, N =25, and M = 1. It can be observed that, as expected,
both detectors behaved similarly. Secondly, Figure shows the [ROC]

curves obtained with the [MSFE] and the when utilizing different types
of non-independent noises (wy) for SNR = —6 dB, N = 25, and M = 1.
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As described in the previous sections, these dependent noise samples cor-
responded to linearly transformed independent noises having non-Gaussian
PDFs: Rayleigh, Laplacian, and Gamma. Furthermore, the curve of
the [MSFlis also represented for the same parameters and non-Gaussian noise
[PDF%, but with independent samples (w;). A comparison of the three curves
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Figure 3.12: curves of and for different types of non-
independent (wy) and independent (w;) non-Gaussian noise distributions,
with SNR = —6 dB, N =25, and M = 1. Laplacian noise distribution.
[@I Rayleigh noise distribution. Gamma noise distribution.

across all noise distributions finds that the detector experiments a con-
siderable deterioration with non-independent noise, while the [GMSF] curves
practically coincide with those corresponding to the for independent
noise. Therefore, the results show the capability of the to compen-
sate for the degradation of the [MSE] which itself becomes a random detector
in the presence of dependent noise. The above results are of particular im-
portance, since it is possible to demonstrate the generalization property of
the [GMSFL it significantly improves the performance in the presence
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of non-independent noise (Figure [3.12) and it behaves like the [MSE]in the
presence of independent noise (Figure [3.11)).

The previous results are expanded in Figure by gauging the respec-
tive influence of different experimental parameters. Figures and
show the curves of the and the with non-Gaussian
and non-independent noise (generated from Laplacian [PDF]) for different val-
ues of SNR, N, and M, respectively. The improvements of the with
respect to the MSEIbecome evident across all the examples, and the influence
of the parameter value follows this expected behavior. First, Figure
illustrates how the increases with the SN R. It must be noticed that this
increase is not very significant for the [MSE] thus indicating that the SNR
should be much higher to compensate for the degradation of the in
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Figure 3.13: curves of and with non-Gaussian and non-
independent noise distributions generated from Laplacian noise [PDF]
Different SNR, N =25 and M = 1. Different observation vector length
(N), SNR=—-4dB and M = 1. Different subspace matrix dimension
(M), SNR=—4dB and N = 25.
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the presence of dependent noise. Similarly, Figure reveals that, as ex-
pected, the also improves with the observation size IV, since the normal
behavior of any detector implies that the test statistic increases the signal
to noise ratio gain with N. Again, it can be observed how the enhancement
in (when using the [MSE]) is not as significant as that obtained with the
[GMSFI] Finally, Figure shows the influence of varying M, the number
of involved sinusoids (i.e., varying the subspace dimensions). As expected,
the increases in the case of the when the subspace becomes more
restrictive (reduced dimensions), which means that the signal bandwidth be-
comes narrower, although this effect is insignificant in the when it is
compared with the [GMSFE|

As a general conclusion, the degradation of the brought on by the
presence of non-independent noise cannot be easily compensated for by rais-
ing the SNR, by increasing the observation size N, nor by reducing the
signal subspace dimension M. Therefore, use of the is perceived as a
practical solution to this problem.

3.8 Conclusions

This chapter has addressed the detection of totally unknown signals and
signals in a subspace (in both cases, with non-Gaussian and non-independent
noise).

When the noise is non-Gaussian, the Rao test was examined as a sub-
optimum solution to the detection problem. However, it was demonstrated
that in some particular situations it fails to offer a satisfactory solution.
Therefore, alternative non-linear functions were proposed, leading to an ex-
tended version of the [ED] termed [EEDI Two possible transformations were
studied: one that implements the parametric Box-Cox transformation, and
the other based on the non-parametric estimation of the data [PDE] to be
transformed. An analysis of the best Box-Cox parameter was conducted for
different non-Gaussian distributions by means of an factor evaluation.
The two transformations were compared for the same conditions, and it was
observed how the non-parametric solution offered better detection results in
terms of Thus, it was decided to use it when implementing the In
this latter case, a new enhancement factor a was defined, indicating possible
changes in induced by the non-linear transformation.

When the noise is not only non-Gaussian, but also non-independent,
further extensions of the [EDl and the [MSFE] were presented, leading to novel
detector solutions termed and [GMSE] respectively. In both cases,
was applied to estimate the matrix transformation U that makes as
much as possible the components of the data vectors.

Thus, a detailed evaluation was carried out in order to compare the
performance of all the generalizations and extensions of the [EDL First, the
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[EED! and the [ED] were evaluated across four different non-Gaussian noise
distributions with independent samples. By calculating the enhancement
factor « for each case, the expected improvement attained by the was
demonstrated to be greater than the [EDl Similar simulations were then
carried out with non-independent noise samples. In this case, the
revealed the best results in comparison with the [EED] and the PEDI A final
simulation showed the performance results of the versus the for
non-independent non-Gaussian noise and for different parameter setups. All
cases showed that the suffers a performance degradation in comparison
with the in the presence of non-independent noise.



Chapter 4

Structure of multiple energy
detectors (MED)

Courage and perseverance have a magical
talisman, before which difficulties
dissapear and obstacles vanish into air.

John Quincy Adams

In this chapter, a novel approach is proposed to overcome the de-
tection problem introduced by signal duration uncertainty. Instead of
using only one detector for every possible signal duration, the imple-
mentation of multiple energy detectors (MED), matched to different
possible signal durations is introduced. Among the possible segmenta-
tion strategies that could be studied, we specifically concentrate on the
study of a particular case of successive segmentations of the original
observation vector. One of the main goals of this chapter is to obtain
the receiver operating characteristic (ROQ) curves of this structure in
time and frequency domains, and to study the possible improvements
offered by this new method when compared with the use of a single
energy detector (ED).

4.1 Detection of signals with unknown duration

In the context of novelty or event detection, where the characteristics of the
signals to be detected are not known, there is also a lack of information
about the signal duration since the environment under study is susceptible
to any type of event. The selection of the temporal duration of the observa-
tion vector is a very challenging task that may significantly affect detection.

67
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Therefore, an approach based on the use of multiple energy detectors, each
of which is matched to different observation duration and bandwidth is con-
sidered. Thus, the simplicity of the energy detectors is maintained and the
complicated approach employed by the non-linear functions used in [45] is
likewise avoided.

4.1.1 Revision of the ED

As described in Chapter [2] the [EDlis a good solution for detecting unknown
signals in the presence of a background noise, and it is also generalized like-
lihood ratio test (GLRT)) for the case of white Gaussian noise. In these con-
ditions, under hypothesis Hy, the resulting statistic y’y/o2, is chi-squared
distributed with N degrees of freedom (x%), where N corresponds to the ob-
servation vector dimension. Under hypothesis H;, the resulting statistic is
non-central chi-squared distributed with parameters of non-centrality equal
to the signal-to-noise ratio defined as SNR = s”'s/02,, where s is the signal
vector and w the noise vector.

At this point, it is of particular importance to examine the relationship
between the dimensions of the observation vector N and the behavior of
the [EDl To this end, when N is large, the chi-square distribution can be
approximated by a Gaussian distribution having mean N and variance 2N.
Similarly, the non-central chi-square distribution can be approximated by
a Gaussian one with a mean SNR 4+ N and a variance 4SNR + 2N. In
consequence, the expression of the for the [EDlwhen N is too large can
be easily obtained, as in [43]:

PD ~ Q(Q '(PFA) — SNRN) (4.1)

where @ is the error function defined in Appendix (A.5]).

The term SNRN = SNR/v/2N is defined as a normalized SN R, and,
taking into account (4.1)), it can be clearly observed that, for a given
the not only depends on the SNR, but also on the dimension N of
the observation vector. Hence, for a specific SN R, if the signal duration
is significantly smaller than N, the SNRN (and in consequence, the [PD))
will be much lower than it would be with a choice of N that matched the
actual signal duration. To address this problem, a multiple energy detector
structure is proposed and will be analyzed in detail in the sections that
follow.

4.1.2 Description of the multiple energy detector structure

This section describes the new structure formed by multiple energy detectors
(MED)). First, the distribution of the multiple [EDk is detailed, followed by
a description of the decision rule employed.
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The [MEDI consists of using several [EDE, each of them using a different
length of the observation vector. One could devise many strategies for parti-
tioning the initial observation vector of dimension N, but in absence of any
a priori information, L layers of partitions are considered to correspond to
different segmentation degrees of the original observation length [89].

Figure shows the proposed layered structure of the detectors, com-
posed of successive halved divisions of the original observation vector. Layer
[ = 0 (top level), is formed by the original interval of N samples; while at
layer [ = 1, the original interval is divided in two, thereby obtaining two
non-overlapped segments of N/2 samples each. Similarly, layer | = 2 is com-
posed of four non-overlapped segments of N/4 samples each. This patterns
continues successively until layer [ = L — 1 (bottom level), where 2671 seg-
ments of N/2L~1 samples are present. Hence, L represents the total number
of layers in the structure.

/=0 Up1 N
Ugy Uiz N/2
Uoq Uz Uag Uy N/4
U1yt Ui-1ym Ut
/=L-1 N/24-1

Figure 4.1: Layered structure of L levels and a total number of T
detectors.

With the previously described structure, let us now introduce the new
decision rule by defining y as the observation vector of the top level, whose
number of samples is equal to N. Thus:

d U >0 decides H;

U= ;ui { U=0 decides H, (4.2)
where T is the total number of detectors (defined as T' = 2F — 1), and u;
is the decision of an [ED] applied to an observation vector y,; of dimension
N; < N, which itself is a segment of the original observation vector y.
In this case, the presence of a signal is determined if at least one of the
energy detectors decides it. Each will be characterized by its PD; and
PFA; values; depending on the signal energy in each segment, different
situations may arise. If the signal energy in a particular segment is zero,
then PD; = PFA;; if it is greater than zero, PD; > PFA;. In this latter
scenario, the corresponding PD; will depend on SN RN;, independent of the



70 CHAPTER 4. Structure of multiple energy detectors (MED)

signal energy distribution across the segment. Therefore, it is independent
whether the signal is distributed throughout the observation vector or, on
the contrary, it is concentrated in a given area.

However, the analysis of this multiple energy detector structure is compli-
cated by the fact that the individual decisions of each used in the struc-
ture are statistically dependent, due to the fact that segments are obtained
by subdivision of other segments. This is a problem which is quite similar to
the fusion of correlated decisions extensively considered in the framework of
multi-sensor processing [88], [@0]. This fact complicates the derivation of the
overall [PFA] and of the [MED] structure; hence, it is necessary to carry
out a theoretical study in order to obtain these expressions.

4.2 Theoretical performance of the MED

The analysis of the multiple energy detector structure, presented in the pre-
vious section, is complicated by the fact that the individual decisions are
statistically dependent as the segments are obtained from the successive
subdivision of others. To evaluate the behavior of the and to be able
to compare it with the[ED] it is therefore necessary to calculate the probabil-
ities of false alarm and detection in the new structure. For this purpose, let
PFAygp and PDygp represent the respective probabilities of false alarms
and detection in the [MED]

4.2.1 Derivation of the PF A gp

The first step consists of calculating the PF Ap;gp. Since there are no special
reasons to do otherwise, the probability of false alarm of each detector [EDI
is assumed to be fixed to the same value for all present in the structure,
PFA; = PFA, Vi. This implies that different thresholds are required for
each different segment size N; to maintain the same PF A. So, the threshold
A; corresponding to the ¢—th energy detector is given by:

Ai — N;
PFA; = PFA=Q < 3N, ) (4.3)
where @ stands for the error function defined in Appendix (A.5)).

Based on the structure of MEDI described in Figure [4.1] let us now intro-
duce a double index notation for each energy detector. Thus, ug, will refer
to the decision corresponding to the m-th energy detector at layer [; where
1=0,...,L—1;and m=1,...,2". Taking into account , the following
is yielded:

PFAyEp = P(U>0/H0):1—P(U:0/Ho)

= 1— P(uy, = 0,Vl,m/Hy). (4.4)
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Now, let us define the probability that all detectors at layer [ decide Hy
(conditioned to Hy), and that all the detectors at lower levels have decided
H():

P[ :P(ull :O,UZQ :O,...,ulzz :O/Ho;
W = 0,1 > 1,m’ =1,...,2"). (4.5)

Then,
0
P(U=0/H)= [] P (4.6)
I=L-1

Considering the model w : N(0,021), and that all the segments
belonging to the same layer are non-overlapped, the corresponding energies
will be independent random variables. Therefore, the energy detectors of the
same layer will be statistically independent and hence,

=] Pm (4.7)

where P, is the probability that the m-th detector at layer | decides Hy,
(conditioned to Hy and to all the detectors at lower levels having decided
Hp). Thus, this probability can be expressed as:

Pin = P(upn = 0/Hojupy = 0,1 > 1,m’ =1,...,2"). (4.8)

Now, we concentrate on evaluating Fj,,. At the lowest level (L — 1) the
following expression is reached:

P(L—l)m =1- PFA, VYm. (49)
And, for [ < L — 1, (explained in Appendix [B]):

1— PFA
P = — O3 O (PFA) (4.10)

Therefore, going back to (4.7)), the probability that all the detectors at
layer [-th decide Hy, and that all detectors at lower levels have decided Hy,
will be given by:

2 1— PFA 2
H P, = _ if l<L—1
m=1 1-Q(V2-Q 1 (PFA))
P = (4.11)
2L71
[T Pi-iym = (1= PFA* if I=L—1
m=1
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So, combining (4.4)) and (4.6)) we may finally write the PF Ay pp expres-

sion as follows:

R 1— PFA ?
PFA = 1—(1— PFA)?
MED ( ) 521;[2 <1—Q(\/§-Q_1(PFA))>
~ o1 (1= PRA) (4.12)

(1-QWV2-Q  (PFA) T

Analyzing in detail the expression obtained in , a number of in-
teresting conclusions can be derived. On the one hand, the effect of the
statistical dependence among the different detectors on PF Ay gp can be
observed. If the detectors were independent, the expression would be re-
duced to:

PFAypp =1—(1— PFA)? ! (4.13)

and hence, the denominator in is due to the existence of dependence
among some of the individual detectors. On the other hand, notice that
the energy detector is a particular case of [MED]| when only one layer in the
structure (L = 1) is considered. In this case, the expression is PF Ay pp =
PFA. Tt is also noteworthy that PF Ay;gpp depends only on the PFA and
the number of levels L, but not on N.

Finally, it is crucial to describe the procedure required to calculate the
thresholds of the detectors in the different layers of the MED]structure. First,
we begin by fixing the desired PFAjgp, and then, taking into account
and the determined number L of layers, the PF' A is calculated. After
that, from the PF A and using the thresholds )\; is calculated for each
layer I = 0,...,L — 1, taking into account that the detectors at the same
level will have the same threshold and that the number of samples of the
detector in each level is N; = N/QZ, where N is the vector length at the top
layer.

4.2.2 Derivation of the PDyrp

Following a similar procedure to that just described, we derive the PF Ay pp-
It is then possible to obtain the expression of the PDy;gp for the entire set
of detectors in the new structure. In this case, hypothesis H; is consid-
ered instead of Hp, and the signal presence is included where appropriate
(described below).

In order to simplify the calculation of the general PDyspp expression for
any signal duration, the particular case in which the signal length is equal
to the segment duration of the lowest [MEDI layer is first studied, and then,
this result is generalized.
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4.2.2.1 Particular case

Let us assume that the signal is completely included in the first segment
in the structure’s bottom layer (I = L — 1). In this situation, the signal is
also entirely included in the first half of the first segment of the upper level
(L — 2). This pattern continues on this way until layer L = 0, as seen in
Figure [4.2] for the case of L = 5.

0 N
1 N/2
©
22 N/4
[+
-
3 N/8
4 N6

samples

Figure 4.2: structure representation of L = 4 when the signal ex-
tends its energy uniformly throughout the first segment of the bottom layer
(shaded).

Concentrating exclusively on the signal in the first segment does not
imply any loss of generality in the calculation: the order in which multiple
detector decisions are added in is irrelevant.

Taking into account —, it is possible to achieve similar expres-
sions to calculate the PDy;gp, as follows:

PDygpp = PU >0/H))=1—-PU =0/H);)
= 1— P(upn = 0,Vl,m/Hy),
P! = Puy =0,u5=0,...,uqe =0/Hi;
U ! = O,ZI > l,m’ = 1,...,2”),

0
PU=0/H) = ] A (4.14)
I=L—-1
21
7t = 11 B
m=1
Pl = Plupn =0/Hy;up =0, > 1,m' =1,...,2").
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Moreover, a derivation similar to that described in Appendix [B| (until the
first equality of (B.11])) can be followed, substituting Hy with H;:

P(Elm < /\1/H1)
P(Ep, < 2N41/Hy)
Note that in those segments unaffected by the signal presence, the con-
ditioning on Hj is the same as the conditioning on H;. Due to the fact
that only the first segment of each layer contains the signal, the following
expression can be derived:

Py, = (4.15)

1— PFA .
1-Q(V2-Q Y(PFA))’

To calculate the Pl}n in the first segment, let us consider the approxi-
mate expression of and the derivation found at the end of Appendix
between and . It must be remembered that we are under hy-
pothesis Hy; therefore, the following expression is valid under hypothesis Hy
(the energy follows a chi-square distribution):

P =P, = m=2,...,2" (4.16)

2N 41 — N
A= _ 4.17
o Pt (@17
and it must be substituted by
2M41 — N — SN
A=A SNER (4.18)
VASNR + 2N,

where the energy follows a non-central chi-squared distribution with mean
N; + SNR and variance 4SNR + 2N;. Then, for [ > L — 1:

P(Ey <M\i/H1)  1-Q(Q '(PFA)—SNRN))
P(En <2XN/H1)  1-Q(V2-Q-'(PFA) — SNRN))
and, for [ = L — 1:

Py, =1-Q(Q '(PFA) -~ SNRNp_) (4.20)

where SNRN; = SNR/+/2Nj, as defined in (4.1). Using (4.16) and (4.20)),
the PDysgp can be expressed as a simple modification of (#.12)). So, chang-

ing the probabilities corresponding to the first segment at every level and
keeping the remaining probabilities unchanged, it is possible to reach

PDygp = 1—(1—PFA)? '"'(1-Q(Q (PFA) — SNRN. 1))

" [( 1- PFA )
i [ \1-Q(/(2)- Q7 (PFA))

 1-Q(Q'(PFA) — SNRN))
1-Q(vV2-Q L (PFA) — SNRN))

1_
Py =

(4.19)

(4.21)




4.2. Theoretical performance of the MED 75

where, adding terms, the following expression can be derived for L > 1:

(1— PFA)?"—1-L

PP = T QW @ PEA
0
H [1-Q(Q Y(PFA)— SNRN))
=L (4.22)
H “Y(PFA) — SNRN;)]

By analyzing in greater detail (£.22)), the expression of PDygp can be
obtained for a single level by replacing L = 1. Taking into account that the
denominator of the second term is 1 (since it is defined only for L > 1), the
following expression can be reached:

PDyep = Q(Q Y (PFA) — SNRNy). (4.23)

Notice that this expression concurs with , where the PD for a single
detector has been defined. In the same way, it is also essential to notice
that PDppp depends on not only the PFA, but also on L and SN RNy,
the latter defined as the normalized signal-to-noise ratio at the top level
(L = 0). The normalized signal-to-noise ratio for a particular level of the
structure is thus expressed as follows:

SNRN; = SNRN, - V2! (4.24)

considering that N; = N/2°, 2! where N is the number of observation samples
at the top level.

4.2.2.2 (Generalization of the PD,/gp

To derive the generalization of the PDysgp expression viewed in for
any signal length, it is necessary to modify the expression of the PF Ay gp
viewed in in a manner similar to the preceding case. Therefore, the
probabilities corresponding to the segments affected by the presence of the
signal have to be changed at every layer and the remaining probabilities
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should stay unchanged. This brings us to the general equation:

PDygp = 1-— (1 — PFA)QL_l*k(Lfl)

k(L—1)
[I 0-Q@ ' (PFA) = SNRNL 1))
m=1
1 [ ( 1- PFA )”“

oy Q(/(2)-Q~Y(PFA))
k(1)

Q(Q Y (PFA) — SNRN,)
(1 QW2-Q! (PFA)—SNRsz)>]'(4'25)

m=1

And, by grouping terms:

(1— PFA)? —1-K

PDypp = 1_(1_Q(\/Q'Q71(PFA)))QL—lflfKJrk(Lfl)
0o k@
IT TI1-Q@ ' (PFA)— SNRN,,)]
O=L lm=1 (4.26)
I ~Y(PFA) — SNRN,,)]
l:L—2m:1

where the following terms have been introduced:

e /(I): number of affected segments at layer [ where a signal is present.

o Ky = Z k(l): total number of affected segments with a signal pres-
1=0
ence in the [MEDI

o SNRN,: normalized signal-to-noise ratio of the m-th affected seg-
ment at layer [.

In order to better understand the simplification of these variables, let us
consider an example where a [MED| structure of 5 layers is used to detect
a signal concentrated in the first segment of the third layer, (Figure [4.3)).
In this case, it is possible to obtain the aforementioned variables observing
Figure where the detectors affected by the presence of signal at each
layer have been colored. Therefore, the variable k(1) is a vector containing
the following values [1,1,1,2,4], and K}y is equal to 9.
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Figure 4.3: IMEDI structure of L = 4 when the signal extends its energy
uniformly throughout the first segment of the third layer (shaded).

samples

Considering the process as a whole until , the importance that
plays throughout must be highlighted. This is not surprising, however,
considering the derivation of the PDj;gp is closely related to the PF Ay Ep.
This can be attributed to the fact that the model of energy propagation from
lower to upper layers, described in (B.2)), is independent of the conditioning
on Hy or Hi. Following this model, if a segment is not affected by the

N/2

N/4

N/8

N6

samples

Figure 4.4: Detectors affected at each layer by the signal presence in a[MEDI
structure of L = 4. The signal is uniformly distributed throughout the first

segment of the third layer.
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presence of the signal, all the segments from lower layers, which are subsets
of it, will not be affected either. Hence, the derivation of the conditioned
probabilities for non-affected segments is independent of the signal presence
and coincides with that obtained in the derivation . On the other hand,
in segments with signal, the derivation of the probabilities is the same as in
the previous case. But consideration must be made during the final steps for
the effect introduced by the SN RNy, in the calculation of such conditional
probabilities.

4.3 MED theoretical evaluation

As the behavior of the MEDI and its underlying theoretical principles have
been described, it is essential to validate its interest (as opposed to the use of
classic [ED]) when the signal has different lengths (compared to the duration
of the observation segments) in different layers of the Assuming that
the length of the upper segment of the [MEDIis fixed by a number of compu-
tational limitations, it will be demonstrated that the detector which gives the
best results is the one that is adapted to the signal duration. Thus, it is nec-
essary to verify the improvements achieved when the signal being detected
has a short duration, and when multiple detectors with an observa-
tion segment length comparable to the signal duration are used instead of a
single with a fixed number of observations samples. In addition, it is also
necessary to evaluate the possible degradation that is introduced by using
subdivisions of the original detector which are not required when the signal
duration is similar to the duration of the original observation interval. To

this end, three examples are considered below to bring forth the advantages
and disadvantages of the

4.3.1 The signal duration is comparable to the observation
vector length at the top layer

First of all, the least favorable case for the [MEDI (in comparison with [EDI) is
studied. This case occurs when the signal energy extends uniformly across
the whole initial observation vector, as seen in the Figure [£.5] This implies
that all detectors with shorter duration segments will corrupt the detection.
In this situation, all segments in the structure are affected by the signal.
With this in mind, and taking into account , the following expressions
can be derived:

o k(1) =24
o Ky =20 —1;

NRN, NRNp - V2 NRN,
.SNRNlm:S RN, _ SNRN, \F:S RNy

7 2 V7
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Figure 4.5: Detectors affected at each layer by the signal presence in a[MEDI
structure of L = 4. The signal is uniformly distributed throughout the top
layer.

By substituting these values in the expression of PDy/gp in (4.26]), we meet
the next case:

0
[T 1 - Q@' (PFA) — SNRNy/V2)*
PDygp=1— OZL ! (4.27)
H V2-Q Y (PFA) — SNRN,/V2)¥
I=L-2

The expression of the PF Ay pp is given by , as it is not affected by the
particular signal properties and it only depends on the noise characteristics.

In Figure [£.6] the curves represent the theoretical expressions of
PFAygp and PDygp shown in and , respectively. In the
graph, the behavior of the MEDI using several layers L and with SNRN, = 2
become noticeable. This value was selected to ensure good detectability for
L =1, which corresponds to the [EDl As expected, some degradation in
the behavior of the [) curves is seen When using several layers of the
structure (L > 1) compared with the [EDI (L = 1). This is due to using
unnecessary subdivisions of the original observation segment, whose length
is similar to the signal. However, this deterioration in the MEDI performance
is not very significant considering that, for example, a value of L = 7 entails
subdivisions up to a factor of 64 of the original segment and a total number
of 127 energy detectors in the layered structure.
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Figure 4.6: Theoretical RO curves of the [MEDI| for SNRN, = 2 and for
different number of layers used (L). The signal energy is concentrated in the
first segment of the top layer.

In this example, the "worst-case" scenario in which the use of the MED
can damage the detection results has been studied. However, in the following
examples it will be shown how it is possible to justify this behavior because
of the improvements achieved when the signal concentrates its energy in
segments of lower levels.

4.3.2 The signal duration is comparable to the observation
vector length at the bottom layer

The second example corresponds to the opposite case of that found in [4.3.1]
Here, the signal concentrates its energy in the first segment of the bottom
layer of the MED] as shown in Figure [£.2l Therefore, we are searching for
the most favorable case wherein the would clearly be a better choice
in terms of performance than the classical [EDL

In this situation, the expressions of PDy;gp and PF Ay gp shown in
and (4.12]), respectively, can be used directly to obtain the corre-
sponding [ROC] curves. In Figure 7] the curves of the [MEDI have
been represented for different values of L and for SNRN, = 0.5. This parti-
cular value was selected because of the interest in studying the [EDI (L = 1)
in the worst case (i.e. when it behaves nearly identically to random detector
PDypp = PFAyED), thereby allowing one to observe the performance of
the in this situation. As expected, the degree of improvement achieved
with the MED]increases with the number of layers required to match the ac-
tual signal duration.
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Figure 4.7: Theoretical ROC] curves of the [MEDI for SNRN, = 0.5 and for
different number of layers used (L). The signal energy is concentrated in the
first segment of the bottom layer.

4.3.3 The signal duration is comparable to the observation
vector length at intermediate layers

Finally, two intermediate cases are compared in this scenario with the preced-
ing examples: in particular, those cases where the signal energy is uniformly
distributed across the first segment of the third and fifth level, representing
the 25% and the 6.25% of the whole length of the original observation vector,
respectively.

Figure[d.8a] shows the theoretical curves of the using different
values of L when the signal has a duration similar to the segment length
of layer 3. The normalized signal-to-noise ratio was set to SNRN, = 1.3
because this particular value offered a good detectability for the case of
L = 3. As expected, the best result was reached when only the first three
levels of [MEDI were used. However, notice that when using more levels the
resultant curves do not outperform those of the optimum; nevertheless, it is
possible to reach a performance enhancement in comparison with the classic
[EDl (L = 1). For example, for L = 5 (segments with duration 1/4 of the
actual signal duration were used at the bottom layer), a nearly identical
performance to that reached by the best case of L = 3 was achieved.

In Figure the signal had a similar duration to the observation seg-
ment of the fifth level and the SN RNy was set to 0.7. The best [ROCI curve
was obtained for L = 5, as expected. As in the previous example, the im-
provement attained (relative to the [EDI) by increasing the number of levels
was quite significant.



82 CHAPTER 4. Structure of multiple energy detectors (MED)

09
0.8
0.7

506"
205
So.

0.3
0.2}
0.1

o o
= N
Ll ol o
LI T ]
|;
Ll ol o
LI T N}
~N 0w =

©
-

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 0.7 08 0.

PFAVeD PFAVeD

(a) (b)
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4.4 General comments on the MED

The previous section analyzed in detail the performance of the [MEDI in
different situations and examples. It is now possible to extract a general
conclusion about its behavior. In view of the results, using the [MED] (versus
the classic reports a significant improvement in specific situations. In
those cases where the MED]uses an overestimated number of required layers,
a deterioration is produced. However, the improvement achieved is always
better than the possible degradation suffered. This fact can be observed in
Table where two opposing examples are examined for SNRN, = 0.7,
using a [MEDI structure with a total number of 7 layers:

o FErample A: The signal is mainly concentrated in the segment of the
top layer.

o [rample B: The signal duration is comparable to the segment duration
of the bottom layer.

This table shows the increase in PDj;gp obtained for both situations and
three different PF Aprpp values. The results are derived by subtracting the
PDypp achieved using all layers (L = 7), along with that obtained for
only one layer (L = 1). Thus, a negative value indicates [MED]| degradation
when using all layers and, on the contrary, a positive value corresponds to an
enhancement in performance. As expected, one can clearly appreciate how
improvement is always greater than the resultant deterioration. Or more
informally, we can affirm that using the [MEDI offers “a lot to gain and little
to lose.”
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signal PFAMED
duration || 107" | 1072 | 1077
Example A || -0.12 | -0.034 | -0.0069
Ezxample B || 0.71 0.92 0.93

Table 4.1: PDy;gp increases in the structure for different PF Ay gp
values comparing the case of using L = 7 with respect to L = 1. Two
examples of different signal lengths are considered for the same SNRNy =
0.7.

More specific conclusions about the behavior of the in other situ-
ations are hard to obtain unless prior information about the signal duration
and distribution energy across the observation vector is available. However,
due to the scope of application of such structures where the signals to be
detected are not completely known, it is difficult to have any prior informa-
tion about the signal. Therefore, any assumption in this direction would be
unrealistic and it would reduce the generic character of the Thus, the
aspect of greatest interest is that the theoretical expressions of PDy;gp and
PF Ay gD, described in and , can be applied to the analysis of
every particular scenario. Hence, it is necessary to consider the general valid-
ity of these two equations, taking into account different aspects, as discussed
below.

4.4.1 Segmentation techniques

First, it is necessary to emphasize the relationship between the PF Ay Ep
and PDy/pp expressions with the technique used to segment the original
observation vector. In this case, the expressions (4.12)) and (4.26) are linked
to the segmentation approach described in Figure 4.1 where the observa-
tion segment in the top layer is successively divided by two non-overlapping
segments. This detector structure has been used since, in principle, the in-
formation signal is completely unknown. However, in those cases where some
a priori information about the signal to be detected was available, it would
be possible to use other partition strategies that are more optimal than and
different from the aforementioned. In this case, it would be necessary to
conduct a new analysis of the resulting detector structure to derive the new
expressions of the PF Ay gp and the PDy;gp. Hence, it can be concluded
that the optimal structure and their distribution are closely related to the
characteristics of the signal to be detected.

Thus, for a given application, a more appropriate structure of detectors
could be devised by knowing a priori the maximum (N4, ) and the minimum
(Npmin) durations of the expected signals. Then, it seems reasonable to choose
the shortest segment duration N, at the bottom layer of the structure of
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detectors, while at the top layer an observation segment will be selected
whose duration will be given by the following expression:

R(Nmax) = Nmzn ' 2L_1 (428)

where R(x) indicates upper round-off to the closest power of two. So, it is
possible to determine the optimum number of layers that the will have
from the following condition:

In <R§<7vmax)>
man
L=1+ n2
In any case, as discussed in the beginning of this section, it is possible to
find other situations and particular applications in which some other infor-
mation about the signal detector could be available a priori. These would
be cases that need to be addressed specifically to find the optimal structure

of the MEDI

(4.29)

4.4.2 Signal and noise models

Next, let us consider the validity of (4.12]) and (4.26)) with respect to the
different noise and signal models. First of all, the expression of PF Ay gD,
shown in , is valid with the only constrain that the threshold at ev-
ery individual detector is computed by using . This means that the
background noise should be white Gaussian, although extension to non-
independent non-Gaussian noise could be attempted by using the extended
energy detector proposed in Chapter 3] Similarly, it would also be possible
to expand the use of the multiple detector structure to include the scenario
when the background noise is non-stationary. In this case, it is necessary
to employ a method to estimate the variance of the noise and normalize the
energy of the individual detector (ED]) of the [MEDL

Secondly, the signal model used does not influence the behavior of the
PFApygp; nevertheless, it could, in principle, affect the validity of the
PDyrgp expression viewed in (4.26]). However, any distribution of the signal
energy across the observation interval may be considered. Therefore, signal
energy is not required to be uniformly distributed across one or more seg-
ments at every layer. This is because the parameters including the presence
of the signal are the individual normalized signal-to-noise ratios SN RNy,.
Thus, very irregular distributions of the signal energy can be tested using
. In the selected examples of the preceding sections, some particular
cases were looked at in which the propagation of SN RN, through the dif-
ferent layers adapted some simple forms. A myriad of possibilities exists for
the distribution of the signal energy, but in the absence of prior informa-
tion the selected examples are enough to draw a reliable conclusion when
evaluating the in comparison to the
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4.4.3 Real-time applications

Finally, the proposed detector can be applied in a real-time framework, as
any other detector, by considering streams of successive observation intervals.
In every incoming observation interval, the partition of Figure would be
applied. If the successive observation intervals are non-overlapped, on aver-
age one false alarm is obtained for every 1/PF Ayrgp observation interval;
a correct decision is made on average every 1/PDyspp observation interval
where a signal is present. However, if the successive observation intervals
are overlapped (for example, in the extreme case of only one sample chang-
ing from one interval to the next), a more complex derivation is required to
determine the average number of false alarms or correct detections due to
the dependence among successive decisions. Regardless, the PF Ay pp and
PDygp are always the key parameters in determining the performance of
the detector.

4.5 Performance of the MED in the time and fre-
quency domains

The purpose of this section is to validate with simulations the theoretical
expressions obtained for the MED] and then to compare the results with the
classical [EDI In particular, the performance of the is evaluated, not
only in the time but also in the frequency domain, since detection of signals
with unknown bandwidth is also of particular interest.

4.5.1 Frequency MED structure

The signals to be detected are completely unpredictable and the spectrum
can also provide additional information. Some recent studies are devoted
to the evaluation of the detection performance in the frequency domain. In
[13], an optimal detector is derived in the discrete frequency domain and
the paper discussed the procedure for selecting the segment length as part
of the spectral estimation method. In this case, the knowledge of the signal
bandwidth is required. In some other applications (e.g, echo detection in
radar, sonar or acoustics) an algorithm is applied to the automatic target
detection of acoustic signals [16]. Again, an approximate knowledge of the
signal bandwidth is required. However, the detection problem in the fre-
quency domain can be attempted by using the [MEDI structure in order to
detect signals of different bandwidth. In this latter case, it is possible to
apply the same methodology previously described to derive a similar [MEDI
structure. In consequence, both problems can be considered as conceptually
equivalent, and the frequency detection problem of the [MEDIis addressed by
transforming the original observation vector y of dimension N (at layer 0),
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into the frequency domain Y by using the discrete Fourier transform (DFTJ)

as follows:
N-1

Y[k =) ylnje 2N, (4.30)
n=0

The [DET] length was set to the same dimensions as the original obser-
vation vector at the top layer (IV), and the normalized angular frequency
was given by Q = 27k/N. The same subdivision strategy as the one used
in the time domain was then applied, and the detection problem at each in-
dividual segment was addressed using the classical and by subsequently
computing the test statistic in a similar manner. Considering Y,,; as the
observation vector corresponding to the m-th frequency segment at layer /|

it is possible to rewrite the hypothesis test as follows:

Ho:Yim =W Wi @ N(0,0%1)

4.31
Hy: Yy = Sim + Wi, (4:31)

where Wy, is the noise vector with zero-mean white Gaussian distribution
and S;,,, is the signal vector. Both are set to the m-th frequency slot, with
m = 2! equivalent to the number of subdivisions (or [EDk) at layer | (I =
1,...,L). In hypothesis Hy, the received signal in the m-th frequency slot is
assumed to contain only noise; if H; is true, noise and signal are present.

In the following section, the performance of the [MED] structure in the
time and in the frequency domain will be studied, and results from both
will be compared with the classical [EDL To do so, several experiments were
performed by considering the simple detection problem in which a Gaussian
signal (s) of different time durations had to be detected in the presence of
white Gaussian noise (w) with zero-mean. The variance of the noise was
fixed to unity, while different normalized signal-to-noise ratios (SNRNs)
were generated by properly scaling the Gaussian amplitude of the signal. A
structure of 7 layers (L = 7) was implemented and compared with
the classical (L = 1). The original observation vector size N was set
to 16384, leading to an observation segment on the bottom layer of 256
samples. The curves, determined by the PF Ay gp and the PDygp,
were utilized to summarize the robustness of the detector. The results
obtained were averaged over 40 - 103 independent trials.

4.5.2 Time ROC curves

This section presents the results reached for the [MED] in the time domain
and in different situations. Figure shows the experimental (dashed) and
theoretical (solid) curves when using the [MEDI to detect a Gaussian
signal with several time durations in the presence of additive Dif-
ferent numbers of layers (L) were employed, but only the curves of
the most representative ones are depicted. Notice that when L = 1, the
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[MED] structure corresponds to the classical [ED] since only one detector of
the original observation length N was being used to detect the signal.
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Figure 4.9: Theoretical and simulated of time when detecting
a Gaussian signal uniformly distributed throughout the first segment of dif-
ferent layers and in the presence of white Gaussian noise. Signal in
segment of L = 1 and SNRN, = 2.4. [(b)] Signal in segment of L = 4 and
SNRN, =1.2. Signal in segment of L =7 and SNRN, = 0.6.

In Figure f.9a] the signal had a time duration similar to that of the
original observation vector (NN), and in Figures and [£.9d the signal
energy was uniformly distributed through the first segment of layers 4 and
7, respectively. Several SN RNy were simulated, but only the most suitable
ones were selected from each case to show the performance results.
In all cases, the simulation results agreed quite closely with the theoretical
derivations. The reason that all experimental curves are below the theoretical
curves lies in that the chi-square distribution in was approximated to
a Gaussian distribution for large N. This fact can be better appreciated
for large values of L, which results in a smaller number of samples in the
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observation vector. Apart from this point, the three examples reveal that the
best results are obtained when using a number of layers that includes an [ED]
with an observation length comparable to the signal duration. Therefore,
the optimum number of layers is L = 1 in the first case, and L = 4 and
L =7 in the other two cases.

Let us now compare the two opposite examples shown in Figures [4.9a]
and It is important to highlight the fact that in the first case the
degradation suffered when the [MEDI used unnecessary layers (L > 1), in
comparison to the optimum result (L = 1), is not as significant as that
experimented in the second case, where the layers are necessary and are not
used. Therefore, this fact shows the superiority of the proposed structure
and demonstrates the general applicability to a wide variety of areas, as will
be seen in the following chapters.

4.5.3 Frequency ROC curves

The following analysis is based on the evaluation of the [MEDI frequency
structure when detecting a Gaussian signal immersed in additive WGN]
Figure depicts the same three time examples studied in the previous
section, but in this case, the time signal of the original observation vector
at the top layer was transformed beforehand in the frequency domain (using
the algorithm) and then partitioned into different segments. It can be
observed how the best performance in detection is achieved for L =1 (clas-
sical in all cases. Furthermore, increasing the number of layers used in
the MEDIleads to poorer behavior in the resultant [ROCI curves. This is due
to the flat spectrum of the simulated Gaussian signal used: its frequency
transformation has a uniform energy distribution throughout the original
observation vector, independent of the signal’s time duration. In this case,
the frequency structure does not provide any valuable information.
Experiments similar to the preceding examples were performed; but this
time three Gaussian signals with different bandwidth were used. The sig-
nal time durations were the same as those used in Section 1.5.2] In order
to simulate these situations, a white Gaussian signal with a fixed time du-
ration (comparable to the segment length of layer 1, with the dimension
N = 16384) was filtered by applying a low pass filter. By using different fre-
quency stop parameters, it was possible to generate a signal spectrum with
different bandwidths. Considering a sample frequency (fs) of 24 kHz and
using a DFT length equal to the observation vector (IV), the following cut-off
frequencies were set: fs/2, fs/4 and fs/7. This led to a filtered signal with a
bandwidth whose energy was principally concentrated in the first segments
of layers 1, 3 and 6, respectively. The resulting curves for each case
are presented in Figure The simulation results show how the detector
performs better in each case with a different value of L. As expected, the
optimum number of layers used corresponded to the layer containing a de-
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Figure 4.10: Simulated of frequency [MED] when detecting a Gaussian
signal uniformly distributed throughout the first segment of different layers
and in the presence of white Gaussian noise. [(a)] Signal in segment of L =1
and SNRN, = 2.4. Signal in segment of L = 4 and SNRN, = 3.
Signal in segment of L =7 and SNRN, = 3.

tection segment with a length similar to that of the signal bandwidth. Once
more, again it is better to use as many layers as possible: the improvement
witnessed is always worthwhile in comparison to the possible deterioration
experimented when the number of layers is overestimated. These results also
demonstrate the necessity of using the frequency information for detection.
As observed, by using the frequency valuable information about the
frequency characteristics of the signal to be detected is extracted. Further-
more, this information can be properly combined with the time to
better exploit the characteristics of the signals. The combined results of
time and frequency can offer more reliable detection decisions. This aspect
remains a challenging task which should be considered as a future line of
research. Moreover, it is also possible to work with the information provided
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Figure 4.11: Simulated of frequency [MED] when detecting a Gaussian
signal which bandwidth is mainly distributed throughout the first segment
of different layers, and in the presence of white Gaussian noise. [@] Signal
bandwidth in segment of L = 1 and SNRN, = 3. Signal bandwidth in
segment of L = 3 and SNRN, = 1.8. Signal bandwidth in segment of
L =6and SNRN, = 0.8.

by each MEDIstructure, then to implement an enhanced recognition process,
as shown in Chapter [0]

4.6 Conclusions

This chapter has addressed the problem of detecting unknown signals with
undetermined duration. It has been demonstrated that the signal duration
incorporates an important uncertainty that influences the detection prob-
lem. Therefore, a novel approach based on the implementation of a
structure was proposed. The [MED]| was formed by multiple [EDk matched to
different signal durations, and the segmentation strategy followed in this case
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was based on several layers. Fach layer was formed by successive segmen-
tations (of a factor of 2) of the original observation vector. The individual
decisions of the were statistically dependent and therefore, a detailed
study and derivation of the new and was conducted. After that,
the theoretical expressions were evaluated for different signal time durations.
The results showed the improvement realized with the [MED] in comparison
to the single when the signal duration was smaller than the original
observation vector. It was also demonstrated that when the [MED] uses an
overestimated number of required layers, deterioration arose. However, this
deterioration was acceptable since it was always smaller than that experi-
mented by the single in the previous case. Extensions of the to the
frequency domain were also considered. Both time and frequency structures
were evaluated by performing several simulations with signals of different
durations and in the presence of independent Gaussian noise. Again, the
results showed that the best performance was always achieved by the [MED!
when the number of layers used corresponded to the layer containing the
detection segment that was comparable to the signal length.
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Chapter 5

Acoustic event detection

If you are not prepared to be wrong, you
will never come up with anything
original.

Ken Robinson

The focus of this chapter is to present a detailed evaluation of the
different detectors, presented in Chapters[3 and [{], with real acoustic
signals. Several acoustic sources and a variety of real and simulated
noise scenarios were tested. In particular, the 18 compared with a
new generalization that rejects false alarms induced by the difficulty of
estimating the noise statistics in non-stationary conditions. Further-
more, the and the are evaluated in real-world scenarios
to deal with non-Gaussian and non-independent noise. In addition, as
no information about the duration of the acoustic event is available, a
structure matched to different time durations is used in the time
and frequency domains. This evaluation is conducted by measuring the
performance of the different energy detectors in terms of the [ROC

5.1 Detection in real acoustic applications

There are a great number of areas in which the detection of unknown events
is required. One one of the most interesting fields of research is acoustic scene
analysis, devoted to surveillance applications in which the signals recorded
by a set of microphones are processed to extract as much information as
possible about the environment [93]. Moreover, under some particularly
adverse situations, such as hidden objects or low lighting scenarios, it is
possible to use acoustic sensors to capture information not perceived by
video sensors [91].

95
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In real acoustic applications, sound sources are not entirely known and
thus, the design of an appropriate detector is more difficult. In this case,
energy detection is of interest since an [EDlis optimal for the automatic detec-
tion of unknown signals in the presence of independent and Gaussian noise.
However, non-Gaussian, non-independent and non-stationary acoustic back-
ground noises are expected to be present in real-world scenarios. Therefore,
alternative EDs are needed which are capable of continuously adapting to
the noise statistics and of calculating the appropriate threshold for a required
[PEAl

Much of the recent work in this research area does not take into account
the background noise and its particular characteristics, nor of the time or
frequency duration of the event. As shown in Chapters [3] and [, these facts
normally decrease the performance of the detection; the noise samples can be
highly correlated and they do not necessarily follow a Gaussian distribution.
Consequently, it is necessary to apply modern detection theory in order to
design an efficient and robust acoustic detector capable of determining the
presence of an event within a background noise. In previous chapters, the
different extensions of the were evaluated with simulated signals and
noises; however, now it is necessary to extend this study to the case of real-
world signals and noises.

5.1.1 Surveillance applications

Part of the present work was developed within the framework of a collabo-
rative research project between various companies and Spanish universities
called HESPERIA (in English: Homeland Security: Technologies for the
Security in Public Spaces and Infrastructures) [79]. The objective of this
consortium was to develop technologies that allow the creation of innovative
security systems, video surveillance and operation control in private building
and public places. The project sought to substantially increase the security
of strategic infrastructures (electrical substations, water deposits, telecom-
munications centers) and of public places (airports, railway stations, ports,
and urban environments like pedestrian areas, shopping centers, etc.). The
“Grupo de Tramiento de Senal (GTS)” of the “Universitat Politécnica de
Valéncia (UPV)” was tasked with acoustic monitoring of the environment
with the aim of preventing dangerous situations by detecting, classifying
and localizing suspicious events that might be enshrouded in a background
noise. Some results related to this line of research can be found in [30], 62].

The detection of such events has traditionally been attempted with tech-
niques of video processing, but not with acoustics. However, the video sys-
tems observe the information in a certain direction for a specific instant of
time, while acoustic processing allows one to listen in any direction at any
instant of time. Therefore, by using the detection of acoustic events it is
possible to overcome some of the technical deficiencies of the video systems.
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Some advantages are related to the immunity to lighting conditions, the
ability to adapt to noisy and changing environments and, possibly the most
relevant, the ability to detect events that take place in hidden areas outside
the view of the security cameras.

It is of paramount interest, therefore, to apply all the detection techniques
described in the previous chapters to the acoustic monitoring of surveillance
environments. This will provide a cognitive audio system with the capability
of automatically detecting unusual events in different scenarios, as shown in
Figure Furthermore, the audio techniques employed will be enhanced to
achieve the necessary level of autonomy and functionality that the general
system requires by generating the required presentation contents.
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Figure 5.1: General description of the surveillance system.

5.1.2 Equipment and scenarios

One of the goals of this work was to carry out a measurement campaign of
acoustic signals in various areas where experimental recordings of possible
background noises and events were available. This section describes the
different types of recordings (acoustic database) and the acoustic signals
used to evaluate the potential performance of the different energy detectors
and extensions described in previous chapters. On the one hand, different
types of background noises that can be found in the scenarios considered were
recorded and, on the other hand, a subset of possible acoustic signals present
in these environments was also generated. For that purpose, a measurement
campaign of acoustic sounds was carried out in different scenarios.

Prior to commencing, the preliminary selection of the equipment was of
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particular importance. Some common limiting factors of this type of acoustic
systems needed to be taken into account:

e The decrease in signal-to-noise ratio when increasing the distance be-
tween the acoustic event and the microphone.

e The background noise changes depending on the time of the day, lo-
cation of the sensors and other factors. These changes can affect both
the level and the statistics of the signal, and therefore it is necessary
that the system continuously adapts to the background noise.

e The waveform of the detected sound is not known, nor its duration,
frequency, intensity, etc. These parameters vary depending on many
factors that must necessarily be considered: the repetition of the sound,
the distance, and the impulse response between source and sensor.

(a) (b)

Figure 5.2: Recording equipment. Microphone. Data acquisition
card.

Accounting for the aforementioned limitations, the acoustic events and
background noises were recorded using a set of 8 omni-directional electret
condenser microphones similar to that one shown in Figure The fre-
quency response of the microphones was between 25 Hz and 20 kHz, which
was a sufficient range to cover all the frequency requirements of sounds and
noises recorded. In addition, a multichannel audio data acquisition unit (8
channels) with a sampling frequency of 48 kHz was used and is shown in
Figure The distribution of the microphones used consisted of two ar-
rays of four microphones each, with 109 cm of separation between each array.
Each microphone array was roughly an inverse t-shape geometry with a total
width of 30 cm, as can be observed in Figure |5.3]

Typical audio events and background noises that can arise in surveillance
applications are not easily available, mainly because of the confidential na-
ture of the data and also because such abnormal situations or events are
rarely recorded. To be as close as possible to real-world surveillance applica-
tion conditions, acoustic data from two different scenarios was collected, each
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Figure 5.3: Michrophones array geometry (cm). Array 1. Array 2.

comprised of multiple recordings. In the first, acoustic events were recorded,
while in the second, noise recordings were recorded. Therefore, two different
recording campaigns were conducted in the following scenarios:

e Indoor: For acoustic event recordings, it is necessary to have a very
low noise level. Thus, an office room was selected. Figure [5.4] shows
the layout along with the microphone placement. The three different
measurement locations are also marked; they were placed according to
a practical criterion which took into account the microphones’ positions
and the SNR of the recordings.

e Outdoor: For the background noise recordings, two different outdoor
scenarios were selected. In the first case, the noise present in a public
area of a shopping center was recorded (Figure . In the second
case, an open-field space of around 250 m?, shown in Figure was
selected to record the noise of a power generator.

5.1.3 Detection system

A robust detection system suitable for the automatic detection of danger-
ous acoustic events in public places and infrastructures was evaluated. The
proposed system processes and interprets the audio signals acquired by a dis-
tributed microphone array in order to discriminate between noise and novel
events. It must be pointed out that the system is capable of integrating any
of the energy detectors studied in Chapters[3|and[dl In this section, the over-
all architecture and main functionalities of the detection surveillance system
are presented. The system is based on the processing of the acoustic signals
and is made up of the following subsystems:

e Initialization module.
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Figure 5.4: Room layout and microphone placement (measurements in cm).

Figure 5.5: Acoustic scenarios used for background noise recordings. @
Shopping center. @ Open-field area with power generator.

e Acquisition module.

e Detection module.

Figure [5.6| shows the general architecture of the system. As can be ob-
served, the acoustic signals recorded by the different sensors are collected
by the acquisition module, which provides a data frame to the detection
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module. This module is the central processing unit and it has the respon-
sibility of deciding when some acoustic event has taken place in the area
under study. Furthermore, it must be noticed that the detection and the ac-
quisition module take the initialization parameters set by the initialization
module.

—> detection

Conf'SfJ.‘l”at'O” Initialization Detector
e Module Parameters N event

R l fffffffffff Detection
RN A Module

| imeD
Acoustic Acquisition frame | | timeDetector
Signals Module

—» | freqDetector

Figure 5.6: Block diagram of the acoustic event detection system.

In the following sections the main features of the modules involved in the
acoustic detection system will be described.

5.1.3.1 Initialization module

In order to ensure proper functioning of the system, an initialization of the
parameters and components is required to configure the modules of the sys-
tem. The initialization module is responsible for setting all the internal
parameters needed for the acquisition and processing unit (e.g. the sample
frequency, number of channels, [PFAL frame size, data buffer length, etc.). It
also offers the possibility of selecting some of them by means of a configura-
tion file which can be accessed and modified outside the system, depending
on the particular scenario or situation.

5.1.3.2 Acquisition module

This module is responsible for acquiring the data from the digital devices,
such as the audio card, and organizing them in an appropriate format that
can be easily accessed by the further processing modules. For that purpose,
the input data is stored in circular buffers for later use. The circular buffers
are data structures that use a single fixed-size buffer, as if it were connected
end-to-end. This type of structure is widely used for buffering data streams.
This type of structure is managed by pointers and the FIFO (First In, First
Out) criterion. When storing data, it finds the first free slot; to extract
data, it eliminates the oldest one in the buffer. The data are stored with
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this procedure in successive memory positions and thus, the space required
remains constant, with the benefits this entails.

5.1.3.3 Detection module

The detection module reports an event when it is detected in the presence of
a background noise. This module is of great importance since it is responsi-
ble for providing a good for the (set in advance). Such a detection
system can be efficiently used for the automatic detection of anomalous audio
events in public or private spaces. It also enables the possibility of combining
it with further processing stages (acoustic source identification and localiza-
tion) if more than one sensor is used. Therefore, it has a considerable effect
on the performance of other modules, as will be discussed in Chapter [6]

It is important to notice that the detection module manages a detector
for each of the signal sources. If the system uses multiple microphones, this
module will manage them by initializing an independent detector for each
of them. The fact of using more than one microphone can be advantageous:
introducing this redundancy allows the possibility of combining the decisions
of each of them to reach a more reliable final decision. The use of multiple
channels of acquisition is not only advantageous for detection: obtaining
more reliable results and enabling the localization of sound sources when
several microphones are necessary may also prove useful to improving the
classification of events. In our case, the presence of an event is decided when
at least half plus one of the detectors determine it. Other more complex
techniques of fusion decision could be applied [7, B1], but this is not relevant
to the objectives of this work.

Figure presents a more detailed description of the detection module,
and its main functionalities and characteristics are found below:

e Background noise estimation: The detection module integrates
a training phase in which the background mnoise characteristics are
learned in order to estimate the whitening matrix Ry, for the imple-
mentation of the [PED} and the transformation U and the non-linear
function g(-) for both the [EED] and the [PEED] detectors. Due to the
possible changing noise conditions in real acoustic scenarios it is also
necessary to reestimate the noise characteristics to maintain a general
applicability of the system to any type of situation. This procedure is
based on a reestimate flag, activated by the event manager submodule
after taking into account the result of the energy detector submodule.

e Pre-processing data: When necessary, this submodule is responsi-
ble for adapting the acoustic signal by applying the appropriate pre-
processing functions commented in the previous submodule. In the
case of non-Guassian or non-independent noise, the system will thereby
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