
Universitat Politècnica de València
Departamento de Informática de Sistemas y Computadores

Design Space Exploration

for Networks On-chip

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

Author

Francisco Gilabert Villamón

Advisors

Maŕıa Engracia Gómez Requena

Davide Bertozzi

Valencia, 2011

ii

Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.

First and foremost, I thank my family for their unending support. I would

like to thank Merlyx (my wife) for giving the most important step of my entire

life with me: starting our own family. Also, I would like to thank her for her

patience during the months I spent out of home in stays and conferences.

I would like to thank my parents and my sister for all the help they have

provided to me.

In second place, I would like to thank my friends, for their support and

company. Mainly, I would like to thank Cris, Blas, Ricardo and Simone.

Cris is the closest friend I ever had, and we spent most of our free time

together playing computer games, watching movies or just talking. Also, we

have traveled around the world together, and we shared several moments that

I will never forget. I would like to thank Blas for the great moments spend

playing football, as well as for the great meals we shared together with Ricardo

in our preferred restaurant. Finally, I would like to thank Simone for his help

during my stays on Italy.

I am indebted to my advisors, Davide Bertozzi and Maŕıa Engracia, for

their enthusiasm, their inspiration, and their sound advices, as well as for

the encouragement they provided to me. I would have been lost without

them. I would like to thank Davide Bertozzi for being such an amazing host

during my stays in Italy. Also, I would like to thank Prof. José Duato for

including me in his Parallel Architecture Group: a big family composed by

good professionals and excellent persons. I would like to thanks Pedro López, I

will always remember his help and understanding during my first steps into the

research world. Many of the other faculty members in the Parallel Architecture

iii

iv

Group did help me too, either professionally or personally, thanks to you all.

Finally, I would like to thanks Sören Sonntag for showing their advices and

their guidance during my stay at Lantiq.

I have met many students and professionals from around the world along

the years, either in the lab, or during my trips and stays. Although I cannot

possibly mention everyone who has enriched my experience or provided moral

support, I wish to specifically thank a few individuals: Cris, Simone, Ricardo,

Daniele, Gaspar, Carles, Blas, Héctor and Knut. All of them have helped

me at any point on my research and on my personal life, and I would like to

thanks them for it.

Contents

Acknowledgments iii

Abstract xv

Resumen xix

Resum xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 4

1.3 Dissertation outline . 7

2 Background and State of the art 9

2.1 Networks on-Chip . 10

2.1.1 Systems on-Chip . 11

2.1.2 Shared bus . 14

2.1.3 A new design paradigm 16

2.1.4 Networks on-Chip components 17

2.1.5 Topology . 31

2.1.6 Virtual Channels . 33

2.1.7 Networks on-Chip performance evaluation 35

2.1.8 Networks on-Chip physical synthesis evaluation 35

2.1.9 Reference architecture 36

2.1.10 Design challenges for Networks on-Chip architectures . . 41

2.2 State of the Art . 44

v

vi Contents

3 Topology exploration for Networks On-Chip 51

3.1 Introduction . 51

3.2 The high level view . 53

3.2.1 High level topology properties 53

3.2.2 Topologies for Networks on-Chip 57

3.2.3 High level topology exploration 70

3.3 Networks on-Chip modelling . 74

3.3.1 Networks on-Chip behavior abstraction 75

3.3.2 Network traffic generation 76

3.3.3 Validation of Transaction-Level simulator accuracy . . . 77

3.3.4 Case study: Parametrical exploration 81

3.4 Physical design pitfalls . 92

3.5 Case study: 16-tiles systems . 96

3.5.1 Total wire length . 97

3.5.2 Switch degree . 100

3.5.3 Link length . 101

3.5.4 Link performance boosting 102

3.6 Case study: 64-tiles topologies 110

3.6.1 Characterization methodology 111

3.6.2 Physical implementation 113

3.6.3 Pipeline stage insertion for 64-tiles systems 115

3.6.4 The performance prediction gap 117

3.7 Case study: assessing Multi-stage Interconnection Networks . . 121

3.7.1 Topologies under test 121

3.7.2 Floorplanning . 126

3.7.3 Physical evaluation . 129

3.7.4 Performance evaluation 132

3.8 Conclusions . 134

4 Virtual Channels for Networks On-Chip 137

4.1 Introduction . 138

4.2 Classical virtual channel design 140

4.2.1 Classical virtual channel switch architecture 140

4.2.2 Conventional multi-stage virtual channel switch 142

Contents vii

4.3 Bringing virtual channels to Networks On-Chip 146

4.3.1 Motivation . 146

4.3.2 Proposed multi-switch implementation 147

4.3.3 Full network replication 149

4.4 Architecture comparison . 150

4.4.1 Physical synthesis . 151

4.4.2 Performance comparison 158

4.5 Conclusions . 165

5 Design Space Exploration for Networks On-Chip 167

5.1 Introduction . 168

5.2 The industry point of view . 170

5.2.1 Network architecture . 170

5.2.2 Target domain . 170

5.2.3 Traffic characterization 171

5.2.4 Core placement strategies 171

5.2.5 Full custom design . 172

5.2.6 Simulation framework 173

5.2.7 NaNoC compatibility 173

5.3 LDSET . 174

5.3.1 LDSET NoC simulator framework 175

5.3.2 Design space definition 177

5.3.3 Design space initialization 184

5.3.4 Design space exploration 186

5.3.5 Output generation . 189

5.3.6 Example . 190

5.4 Place & Route . 191

5.5 Conlucions . 197

6 Conclusions 199

6.1 Conclusions . 199

6.2 Future Work . 201

6.3 Contributions . 203

Bibliography 207

viii Contents

List of Figures

2.1 Example of a System on-Chip: CW4512 12

2.2 Schema of a shared bus. 14

2.3 Schema of a Network on-Chip. 16

2.4 Schema of a Network Interface. 18

2.5 Schema of a Network on-Chip switch. 20

2.6 Switch architecture by buffer allocation: (a) Input queued (b)

Output queued (c) Input/Output queued 22

2.7 Example of a deadlock of 4 packets in a mesh topology. 25

2.8 Flow control mechanisms for a link with 2 cycles of latency. . . 30

2.9 Example of direct topologies . 30

2.10 Example of indirect topologies 31

2.11 Head-of-Line blocking. 33

2.12 Xpipes Lite network interface initiator architecture. 37

2.13 Xpipes Lite switch architecture. 39

2.14 Area and power breakdown. 40

3.1 Example of symmetric and non-symmetric topologies. 53

3.2 Examples of topology bisection bandwidth. 55

3.3 Representations of a 3-hypercube. 55

3.4 Switch distribution of several mesh configurations. 59

3.5 Switch distribution of several torus configurations. 60

3.6 Switch distribution in WK-Recursive first level virtual nodes. . 62

3.7 Switch distribution of several WK-Recursive configurations. . . 63

3.8 Examples of fat-tree configurations. 64

3.9 Examples of butterfly configurations. 65

ix

x List of Figures

3.10 Switch distribution of several C-Mesh configurations. 67

3.11 Examples of flattened butterfly configurations. 69

3.12 Experimental setup . 77

3.13 Experimental setup results . 78

3.14 Tile abstraction and mapping of producer-consumer communi-

cation handshake on network transactions. 81

3.15 System organization and workload distribution. 83

3.16 Performance comparison (in execution cycles) of topologies. . . 87

3.17 Implementation space: 4-ary 2-mesh vs 2-ary 4-mesh. 89

3.18 Floorplanning directives for a 2-ary 2-mesh with 4 tiles per switch. 90

3.19 Implementation space: 4-ary 2-mesh vs concentrated 2-ary 2-

mesh. 91

3.20 High-level sketch of a 2-ary 4-tree. 93

3.21 Floorplan of a 2-ary 4-tree. Only the main wiring patterns are

reported. 94

3.22 Floorplan directives. 98

3.23 Total wire length. 99

3.24 Switch frequency scaling (courtesy of [123]). 100

3.25 Critical path trend when increasing link length. 101

3.26 Normalized area. 106

3.27 Real elapsed time of topologies under test. 107

3.28 Total power. 108

3.29 Clock tree power impact. 109

3.30 Normalized time, power and energy with link synthesis techniques.110

3.31 Normalized area for 64-tiles topologies. 114

3.32 Normalized area for 64-cores topologies with pipeline stages. . . 116

3.33 Performance of 64-tiles systems with uniform traffic. 118

3.34 Normalized performance of 64-tiles systems. 119

3.35 Normalized area efficiency of 64-tiles systems. 120

3.36 A 2-ary 3-tree topology. 123

3.37 RUFT derived from a 2-ary 3-tree. 124

3.38 Floorplans of topologies of 4-ary 2-mesh and 4-ary 2-ruft. Only

the main wiring patterns are reported. 125

List of Figures xi

3.39 Floorplan of a 2-ary 4-tree. Only the main wiring patterns are

reported. 126

3.40 Floorplan of a 2-ary 4-ruft. Only the main wiring patterns are

reported. 128

3.41 Normalized area of 16-cores systems. 131

3.42 Normalized area of 64-cores systems. 131

3.43 Performance of evaluated topologies. 132

4.1 Schema of a conventional wormhole virtual channel switch ar-

chitecture. 141

4.2 Input port schematic of the multi-stage virtual channel switch. 142

4.3 Detailed control path of the multi-stage virtual channel switch. 143

4.4 Output port schematic of the multi-stage virtual channel switch. 144

4.5 Multi-switch implementation of a virtual channel switch. 147

4.6 Multi-stage virtual channel switch vs multi-network compound

switch: aggregate link width and switch buffering are kept con-

stant. 149

4.7 Area scalability as a function of the target delay constraint. 2

virtual channels. 153

4.8 Area scalability as a function of the target delay constraint. 4

virtual channels. 154

4.9 Area breakdown of 32-bit multi-switch (maximum and relaxed

performance) and multi-stage implementations. 155

4.10 Power analysis with 50% switching activity and with idleness. . 156

4.11 Average latency vs Throughput for uniform traffic. 160

4.12 Multi-switch performance normalized to multi-stage. 161

4.13 Multi-switch performance normalized to multi-network. 162

4.14 Multi-switch area efficiency normalized to multi-network. . . . 164

5.1 LDSET execution flow . 174

5.2 NoC simulator hierarchy . 175

5.3 Example of CEF input file DSE definition 178

5.4 Example range of values . 179

5.5 Example numerical comparison in evaluation rules 179

5.6 Example of traffic flow description in CEF. 181

xii List of Figures

5.7 Example of library with a switch and a NI 183

5.8 Optimal placement of target and initiator a) for a write trans-

action and b) for a read transaction. 184

5.9 Core placement algorithm . 185

5.10 Candidate calculation for optimal and suboptimal sets of can-

didate templates for different system sizes. 187

5.11 Flow diagram of the simulation engine. 188

5.12 Performance results of a DSE for an SoC with 36 cores. 190

5.13 Example of core definition in CEF format. 192

5.14 Place and route at 1 mm inter-switch spacing at a target speed

of 1 GHz (IP Core size not drawn to scale). 193

5.15 Place and route at 1.5 mm inter-switch spacing at a target speed

of 1 GHz (IP Core size not drawn to scale). 194

5.16 Place and route at 3 mm inter-switch spacing at a target speed

of 1 GHz (IP Core size not drawn to scale). 195

5.17 Cell distribution of a core. 196

List of Tables

2.1 Minimum buffer requirements of flow control mechanisms by

link latency. 29

3.1 High level properties of analyzed topologies. 58

3.2 High level parameters of solutions for 16 cores. 70

3.3 High level parameters of solutions for 64 cores. 73

3.4 Simulation accuracy for a 4-ary 2-mesh. 80

3.5 Topologies under test. 85

3.6 Topologies under test. 96

3.7 Timing results. 104

3.8 Topologies under test. 113

3.9 Post-place&route results of 64-tiles topologies with pipeline stage

insertion. 115

3.10 Network topologies under test. 122

3.11 Critical delay for 16-cores systems. 129

4.1 Overhead for VC support. 146

4.2 Configurations for the compound switch architectures for 32 bits.151

4.3 Configurations for the compound switch architectures under

test for 64 bits. 152

4.4 Packet length for a burst of 10 32-bit words. Aggregate link

width in the NoC: 32 bits. 157

xiii

xiv List of Tables

Abstract

Multi-core designs are becoming a more and more popular solution to most

of the single-core designs limitations. A multi-core design follows the System

on-Chip (SoC) paradigm, in which several cores are integrated into a single

chip. The performance of SoC designs is heavily influenced by the interconnec-

tion infrastructure implemented: while small SoCs designs can employ buses

as their interconnection, more complex interconnections are required as the

number of cores of the design increases.

In this context, the Network on-Chip (NoC) paradigm arises as a solution

to the interconnection challenges of new SoC designs. In a NoC, transactions

between cores are encapsulated into packets, and delivered through a shared

interconnection network. This concept is adopted from the off-chip intercon-

nection networks field, and thus it can inherit most of the techniques of this

mature field. Anyway, the on-chip environment presents different constraints

than the off-chip one. For example, buffer size is a critical design parameter

for any on-chip design, while it is a more relaxed constraint in off-chip ones.

For this reason, techniques from the off-chip domain should not be taken for

granted when implementing a NoC, but revised and adapted by taking into

account the special characteristics of the on-chip domain.

In particular, in the on-chip domain the relentless pace of technology scal-

ing to the nanoscale regime is bringing physical effects into the forefront. For

this reason, visibility of the lower layers of the design hierarchy is required to

accurately assess the capabilities of any given NoC design. In SoCs, the on-chip

interconnect will be implicated in every communication stream. Therefore, the

NoC physical characteristics are critical for overall SoC performance. In this

context, SoC designs will be viable only when taking silicon aware decision at

xv

xvi Abstract

each layer of the design hierarchy. However, this does not affect to need for

fast design space exploration frameworks by means of abstract tools, hence

making the accuracy-exploration speed trade-off increasingly difficult to cope

with. For a given design space, the high heterogeneity (architectural and tech-

nological) of NoC solutions increases the complexity of selecting the optimal

NoC configuration. A common approach is to use high level tools to provide

performance estimations that the designer will use to select the most promis-

ing candidates at the earlier stages of the design flow. But there is a gap

between the performance predictions of high-level tools and the real perfor-

mance achieved after the system is implemented. In fact, this gap is growing,

as the number of libraries available for a given technology node increases,

forcing to increase the number of design re-spins due to inaccurate high level

predictions, which results in increased design cost. The ultimate implication is

that back-annotations from the lower layers of the design hierarchy need to be

exposed to design tools operating at the upper layers, finding a new trade-off

between simulation and/or exploration speed and layout awareness. Current

front-end tools for use in the early design stages suffer from performance mis-

predictions, since they often ignore the technology platform. The challenge in

finding the new trade-off point is that when considering both front-end and

back-end issues (e.g., multiple technology libraries, core size), the design space

becomes even wider than it is now.

This dissertation focuses on the development of a new set of front-end

design, modeling and simulation tools for layout-aware pruning of the design

space toward the most promising candidates. As an outcome of this disser-

tation, NoC designers will be able to take advantage of a new set of design

space exploration tools reducing time-to-market and bridging the accuracy

gap with the lower layers of the design process. In a first step, we focused

on the design and development of an experimental setting for use in the anal-

ysis of alternative architecture design techniques. Since the objective is the

analysis of a large range of implementation alternatives, it was decided to

pursue transaction-level simulations. Hence, the dissertation reports on an

extensive abstraction and modeling effort of NoC architecture building blocks

while retaining accuracy of functionally equivalent Register Transfer Level

(RTL) models. As a result, dramatic improvements in simulation speed were

Abstract xvii

achieved. At the same time, all abstract models were parameterized with

some key parameters from the physical synthesis (e.g., target frequency, link

latency), thus being able to evaluate points in the design space quickly and

with high accuracy.

In the second step, by using the developed abstract simulation framework

layout awareness was brought to the upper layers of NoC design, by reviewing

architectural design techniques mutated from the off-chip domain in light of

layout constraints, selecting the most promising candidates and in some cases

even exploiting the distinctive features of the on-chip setting to come up with

radically new (and even counterintuitive) solutions. This activity, which was

preliminary to the design of the Design Space Exploration (DSE) tool, was

aimed at gaining that layout awareness that the tool itself should have. The

activity was split into two stages.

On one hand, starting from a theoretical description of the most popular

topologies proposed for NoCs in the open literature, the developed simulation

framework was employed in order to demonstrate and address the above men-

tioned gap. Concrete examples of the abstraction and accuracy gap will be

provided for industry-relevant NoC configurations and the methodology will

be put at work to close this gap, hence coming up with trustworthy cross-

benchmarking indications. To demonstrate the potentials of the new NoC

investigation framework, the topology analysis process will be extended to a

number of architecture variants, featuring different size, floorplanning con-

straints, technologies and even HW/SW interaction patterns. Additionally,

the most common pitfalls of topology physical design will be highlighted, and

most common techniques to address them will be analyzed both in terms of

achieved performance and cost overhead.

On the other hand, during the research on the topology exploration topic,

several topologies were considered that require the use of the virtual channels

flow control mechanism in order to reach their maximum potential. This very

popular technique has been used for several years in off-chip networks for a

broad number of reasons, and thus, its use has been widely advocated for

NoCs. The most common VC architecture for NoCs proposed in the open

literature is mutated from off-chip networks. Although fully functional in the

NoC context, this architecture is aimed to a different environment and results

xviii Abstract

in an overly large area and delay overhead. For this reason, we propose and

evaluate an implementation of VC better suited for the constraints of NoCs

and therefore able to provide a considerable improvement both in performance

and in area/power over the commonly proposed implementation, with the aim

of demonstrating the mismatch between smart architecture design techniques

conceived for off-chip interconnection networks and an on-chip setting.

Finally, we focused on the development of the Design Space Exploration

(DSE) tool. Our approach to this challenge is two-folded. On one hand, we

capitalize the knowledge gained in previous steps on silicon-aware architecture

design choices and simulation tools, to build a CAD tool to aid in the design

of NoC-based systems. On the other hand, we introduce some techniques to

reduce the time-to-market of new designs via DSE acceleration and fast re-spin

techniques.

Resumen

Los diseños multi-núcleo se están convirtiendo en la solución más popular a

la mayoŕıa de las limitaciones de los diseños mono-núcleo. Un diseño multi-

núcleo sigue el paradigma de diseño conocido como Sistema dentro del Chip

(o SoC , del inglés System on-Chip), en el cuál varios núcleos se integran en

un mismo chip. Las prestaciones de un diseño SoC dependen en gran medida

de la infraestructura de interconexión que implemente: mientras que un SoC

pequeño puede utilizar una interconexión de tipo bus, interconexiones más

complejas serán necesarias conforme el número de núcleos del diseño aumente.

En este contexto, el paradigma de diseño conocido como red dentro del

chip (o NoC, del inglés Network on-Chip) surge como una solución a los de-

saf́ıos de interconexión presentes en los nuevos diseños de tipo SoC. En una

NoC, las transacciones entre núcleos se encapsulan en paquetes, lo cuales serán

entregados a su destinatario a través de la red de interconexión. Este concepto

está adoptado del campo de las redes de interconexión de altas prestaciones, y

como tal, puede heredar la mayoŕıa de las técnicas diseñadas para un campo de

investigación tan maduro como este. Pero a pesar de las similitudes existentes,

ambos campos presentan diferentes limitaciones. Por ejemplo, el tamaño de

los buffers es un factor cŕıtico para el coste de diseños NoC, mientras que es un

factor mucho menos relevante en el coste de las redes fuera del chip. Por ello,

las técnicas diseñadas en el dominio de las redes fuera del chip no debeŕıan

suponerse directamente disponibles en NoCs, sino que deberán ser revisadas

y adaptadas a sus particularidades.

En concreto, la reducción continua de las escalas de integración de las

nuevas tecnoloǵıas hace que los efectos f́ısicos afecten cada vez más a las presta-

ciones de una NoC. Dado que en la NoC está involucrada en todos los flujos de

xix

xx Resumen

comunicaciones de cualquier SoC, es necesario que todas las etapas del flujo

de diseño de una NoC tengan en cuenta de las consecuencias a nivel f́ısico de

todas las decisiones tomadas. Sin embargo, para un diseño concreto, el alto

número de posibles soluciones basadas en NoCs (tanto a nivel de arquitecturas

como a nivel de tecnoloǵıas) incrementa la complejidad de analizar el espacio

de diseño y de elegir la NoC óptima. La solución más común a este prob-

lema pasa por la utilización de herramientas de alto nivel para la obtención de

estimaciones sobre las prestaciones de cada posible solución NoC, que poste-

riormente serán utilizadas por el diseñador para cribar el espacio de diseño en

las primeras etapas del proceso de diseño. Pero hay una gran diferencia entre

las prestaciones estimadas por herramientas de alto nivel y las prestaciones

reales obtenidas una vez el sistema se implementa. De hecho, esta diferencia

aumenta conforme la cantidad de libreŕıas disponibles para cada nodo tec-

nológico aumenta, generando un mayor número de errores en el proceso de

diseño, lo que se traduce en un mayor coste de diseño. Para evitar estos prob-

lemas, es necesario extraer las caracteŕısticas f́ısicas de las NoCs de las capas

de nivel más bajo del proceso de diseño y anotarlas en las herramientas que

operan en los niveles más altos, encontrando nuevos puntos de compromiso

entre velocidad de exploración del espacio de diseño y su precisión. Las her-

ramientas actuales para la exploración temprana del espacio de diseño sufren

de una pobre precisión, dado que es una práctica habitual el ignorar los efectos

de la implementación f́ısica en ellas. El principal desaf́ıo es que al añadir las

implicaciones de la implementación f́ısica al espacio de diseño, el tamaño de

éste es incluso mayor de lo que era en un principio.

Este trabajo se centra en el desarrollo de nuevas herramientas de alto nivel

de diseño, modelado y simulación de NoCs, con el fin de cribar el espacio de

diseño de los candidatos menos atractivos mediante simulaciones de alta pre-

cisión basadas en la anotación de las caracteŕısticas f́ısicas de los candidatos.

Como resultado de este trabajo, los diseñadores de NoCs serán capaces de

aprovechar un nuevo conjunto de herramientas para la exploración del espacio

de diseño que reducen el tiempo de desarrollo y minimizan los problemas de

precisión mencionados anteriormente. En un primer paso, nos centraremos

en el diseño y desarrollo de una plataforma experimental para analizar arqui-

tecturas alternativas para el diseño de NoCs. Por ello, este trabajo presenta

Resumen xxi

los esfuerzos realizados en el desarrollo de modelos abstractos de los bloques

básicos de arquitecturas NoC con una funcionalidad y precisión similares a

las de modelos equivalentes con precisión a nivel de registro (o modelos RTL,

del inglés Register Transfer Level). Como resultado de dichos esfuerzos, se

obtuvieron dramáticas mejoras en los tiempos de simulación sobre modelos

RTL funcionalmente equivalentes. Al mismo tiempo, todos los modelos de-

sarrollados permiten anotar algunos parámetros claves del proceso de śıntesis

f́ısica (como la frecuencia de operación o la latencia de los enlaces), de forma

que permiten evaluar cualquier punto del espacio de diseño de forma rápida y

precisa.

En el segundo paso, mediante el uso de la plataforma de simulación de-

sarrollada en el primer paso, las capas superiores del proceso de desarrollo

de una NoC fueron aumentadas con la capacidad de considerar efectos f́ısicos

derivados de la implementación de una NoC sobre sus prestaciones. Mediante

esta metodoloǵıa, se revisaron arquitecturas y técnicas de diseño adoptadas

del dominio de las redes de interconexión fuera del chip, seleccionando las más

prometedoras y, en algunos casos, explotando las caracteŕısticas propias de las

redes dentro de chip para obtener nuevas soluciones. Este paso, preliminar al

desarrollo de la herramienta para la realización de exploraciones del espacio

de diseño (o herramientas DSE, del inglés Design Space Exploration), tiene

como objetivo depurar las técnicas para la abstracción de los efectos de la

implementación f́ısica de las NoCs sobre sus prestaciones. Este paso se dividió

en dos etapas.

Por un lado, partiendo de un punto de vista puramente teórico, se analizaron

las topoloǵıas más populares presentes en la literatura. Posteriormente, la

plataforma de simulación desarrollada se utilizó para demostrar y corregir los

fallos de precisión anteriormente mencionados. Ejemplo concretos relaciona-

dos con dichos problemas de precisión fueron analizados para configuraciones

de NoCs relevantes para la industria, utilizando la metodoloǵıa desarrollada

para corregirlos. Para demostrar el potencial de la nueva plataforma para

la investigación de NoCs, el análisis de topoloǵıas se extendió a un variado

número de arquitecturas, con diferentes tamaños, restricciones de mapeado,

tecnoloǵıas en incluso patrones de interacción entre hardware y software. Adi-

cionalmente, los problemas más comunes que se pueden encontrar a la hora

xxii Resumen

de analizar el diseño f́ısico de topoloǵıas, aśı como las técnicas para corre-

girlos, fueron analizados en términos tanto de prestaciones como de coste de

implementación.

Por otra parte, varias de las topoloǵıas consideradas durante la investi-

gación sobre topoloǵıas para NoCs requieren del uso de un mecanismo de

control de flujo basado en canales virtuales para poder rendir a su máximo

potencial. Esta popular técnica de control de flujo ha sido utilizada en el

dominio de las redes de interconexión durante varios años por una gran var-

iedad de razones, y por ello, se ha propuesto en numerosas ocasiones su uso

en NoCs. La arquitectura con canales virtuales para NoCs más común en la

literatura es importada del dominio de redes off-chip. Aunque es completa-

mente funcional en el contexto de las NoCs, esta arquitectura está diseñada

para un entorno diferente, lo que se traduce en penalizaciones en términos de

frecuencia de operación y área. Por este motivo, proponemos y evaluamos una

implementación de canales virtuales adaptada a las caracteŕısticas de las NoCs,

y consecuentemente capaz de mejorar considerablemente las prestaciones, el

área y el consumo de potencia comparado con la implementación comúnmente

aceptada.

Finalmente, nos centramos en el desarrollo de la propia herramienta para

la realización de DSE. Nuestra solución a este desaf́ıo es doble. Por un lado,

aprovechamos las técnicas desarrolladas en los pasos previos relativas al im-

pacto de la implementación f́ısica sobre las prestaciones de las NoCs para

construir una herramienta CAD para el apoyo al diseño de sistemas basados

en NoCs. Por otro lado, introducimos algunas técnicas para reducir el coste

de desarrollo de nuevos diseños mediante la aceleración de la exploración y

técnicas para la corrección rápida de errores en el proceso de diseño.

Resum

Els dissenys multi-nucli s’estàn convertint en la solució més popular a la majo-

ria de les limitacions dels dissenys mono-nucli. Un disseny multi-nucli segueix

el paradigma de disseny conegut com a Sistema dins del Xip (o SoC, de l’anglés

System on-Chip), en el qual diversos nuclis s’integren en un mateix xip. Les

prestacions d’un disseny SoC depenen en gran mesura de la infraestructura

d’interconnexió que implemente: mentres que un SoC petit pot utilitizar una

interconnexión de tipus bus, interconnexions més complexes seràn necessàries

conforme el nombre del disseny augmente.

En aquest context, el paradigma de disseny conegut com a red dins del

xip (o NoC, de l’anglés Network on-Chip) sorgeix com una solución als desafi-

aments d’interconnexión presents en els nous dissenys de tipus SoC. En una

NoC, les transaccions entre els nuclis s’encapsulen en paquets, els quals seràn

entregats al seu detsinatari a través de la xarxa d’interconnexió. Aquest con-

cepte està adoptat del camp de les xarxes d’interconnexió d’altes prestacions,

i com a tal, pot heretar la majoria de les tècniques dissenyades per a un camp

d’investigació tan madur com aquest. Però a pesar de les similituds existents,

ambdós camps presenten diferents limitacions. Per exemple, el tamany dels

buffers és un factor cŕıtic per al cost de dissenys NoC, mentre que és un factor

molt menys relevant en el cost de les xarxes fora del xip. Per això, les tècniques

dissenyades en el domini de les xarxes fora del xip no haurien de suposar-se

directament disponibles en NoCs, més bé haurien de ser revisades i adaptades

a les seues particularitats.

Concretament, la reducció cont́ınua de les escales d’integració de les noves

tecnologies fa que els efectes f́ısics afecten cada vegada més a les prestacions

de una NoC.

xxiii

xxiv Resum

Atès que en la NoC està involucrada en tots els fluxs de comunicacions de

qualsevol SoC, és necessari que totes les etapes del flux de disseny d’una NoC

tinguen en compte les conseqències, a nivell f́ısic, de totes les decisions preses.

No obstant això, per a un disseny concret, l’elevat númeo de possibles solu-

cions basades en NoCs (tant d’arquitectures com de tecnologies) incrementa

la complexitat d’analitzar l’espai de disseny i d’escollir la NoC òptima. La

solució més comú a aquets problema pasa per la utilització d’eines d’alt nivell

per a l’obtenció d’estimacions sobre les prestacions de cada possible solució

NoC, que posteriorment seran utilitzades pel dissenyador per tal de garbel-

lar l’espai de disseny en les primeres etapes del procés de disseny. Però hi

ha una gran diferència entre les prestacions estimades per eines d’alt nivell i

les prestacions reals obtingudes una vegada el sistema s’implementa. De fet,

aquesta diferència augmenta segons la quantitat de llibreries disponibles per

a cada nòdul tecnològic augmenta, generant un major nombre d’errors en el

procès de disseny, la qual cosa es tradueix en un major cost de disseny. Per tal

d’evitar aquests problemes, és necessari extraure les caracteŕıstiques f́ısiques

de les NoCs de les capes del nivell més baix del procés i anotar-les en les eines

que operen en els nivells més alts, encontrant nous punts de compromı́s entre

velocitat d’exploración de l’espai de disseny i la seua precisió. Les eines actuals

per a l’exploració temprana de l’espai de disseny pateixen una pobre precisió,

ja que és una pràctica habitual ignorar els efectes de la implementació f́ısica

en aquestes. El principal desafiament és que en afegir les implicacions de la

implementació f́ısica a l’espai de disseny, el tamany d’aquest és fins i tot major

del que era al principi.

Aquest treball es centra en el desenvolupament de les noves eines d’alt niv-

ell de disseny, modelat i simulació de NoCs, amb l’objectiu de garbellar l’espai

de disseny dels candidats menys atractius mitjanant simulacions d’alta precisió

basades en l’anotació de les caracteŕıstiques f́ısiques dels candidats. Com a re-

sultat d’aquest treball, els dissenyadors NoCs seran capaos d’aprofitar un nou

conjunt d’eines per a l’exploració de l’espai de disseny que redueixen el temps

de desenvolupament i minimitzen els problemes de precisió mencionats ante-

riorment. En un primer pas, ens centrarem en el disseny i desenvolupament

d’una plataforma experimental per tal d’analitzar arquitectures alternatives

per al disseny de NoCs. Per això, aquest treball presenta els esforos realitzats

Resum xxv

en el desenvolupament de models abstractes dels blocs bàsics d’arquitectures

NoC amb una funcionalitat i precisió similars a les dels models equivalents amb

precisió de registre (o models RTL, de l’anglès Register Transfer Level). Com

a resultat dels esforos mecionats, es van obtindre dramàtiques millores en els

temps de simulació sobre models RTL funcionalment equivalents. Al mateix

temps, tots els models desenvolupats permeten anotar alguns paràmetres claus

del procés de śıntesi f́ısica (com la freqència d’operació o la latència dels enl-

laos), de forma que permeten evaluar qualsevol punt de l’espai de disseny de

forma ràpida i precisa.

En el segon pas, mitjanant l’ús de la plataforma de simulació desenvolupada

en el primer pas, les capes superiors del procés de desenvolupament de una

NoC foren augmentades amb la capacitat de considerar efectes f́ısics derivats

de la implementació de una NoC sobre les seues prestacions. Mitjanant aque-

sta metodologia, es revisaren arquitectures i tècniques de disseny adaptades

del domini de les xarxes d’interconnexió fora del xip, seleccionant les més

prometedores i, en alguns casos, explotant les caracteŕıstiques pròpies de les

xarxes dins del xip per tal d’obtindre noves solucions. Aquest pas, preliminar

al desenvolupament de l’eina per a la realització d’exploracions de l’espai de

disseny (o eines DSE, de l’anglès Design Space Exploration), té com a objec-

tiu depurar les tècniques per a l’abstracció dels efectes de la implementació

f́ısica de les NoCs sobre les seues prestacions. Aquest pas es va dividir en dues

etapes.

D’una banda, partint d’un punt de vista purament teòric, es van anal-

itzar les topologies més populars presents en la literatura. Posteriorment, la

plataforma de simulació desenvolupada es va utilitzar per tal de demostrar i

corregir les fallades de precisió anteriorment mencionades. Exemples concrets

relacionats amb els problemes de precisió foren analitzats per a configuracions

de NoCs relevants per a la indústria, utilitzant la metolodologia desenvolupada

per a corregir-los. Per tal de demostrar el potencial de la nova plataforma per

a la investigació de NoCs, l’anàlisi de topologies es va extendre a un variat

nombre d’arquitectures, amb diferents tamanys, restriccions de mapatge, tec-

nologies en fins i tot patrons d’interacció entre hardware i software. Adicional-

ment, els problemes més comuns que es poden encontrar a l’hora d’analitzar

el disseny f́ısic de topologies, aix́ı com les tècniques per a corregir-los, foren

xxvi Resum

analitzatz en termes tant de prestacions com de cost d’implementació.

D’altra banda, diverses de les topologies considerades durant la investigació

sobre topologies per a NoCs requereixen l’ús d’un mecanisme de control de

flux basat en canals virtuals per tal de poder rendir al seu màxim potencial.

Aquesta popular tècnica de control de flux ha estat utilitzada en el domini

de les xarxes d’interconnexió durant diversos anys per una gran varietat de

raons, i per això, s’ha proposat en nombroses ocasions el seu ús en NoCs.

L’arquitectura amb canals virtuals per NoCs més comú en la literatura és

importada del domini de xarxes off-xip.

Encara que és completament funcional en el context de les NoCs, aquesta

arquitectura està dissenyada per a un entorn diferent, la qual cosa es tradueix

en penalitzacions en termes de freqència d’operació i àrea. Per aquest motiu,

proposem i avaluem una implementació de canals virtuals adaptada a les car-

acteŕıstiques de les NoCs, i conseqentment capa de millorar considerablement

les prestacions, l’àrea i el consum de potència comparat amb la implementació

comunament acceptada

Finalment, ens centrem en el desenvolupament de la pròpia eina per a la

realització de DSE. La nostra solució a aquest desafiament és doble. D’una

banda, aprofitem les tècniques desenvolupades en els passos previs relatives

a l’impacte de la implementació f́ısica sobre les prestacions de les NoCs per

construir una eina CAD per al suport al disseny de sistemes basats en NoCs.

D’altra banda, introdüım algunes tècniques per reduir el cost de desenvolupa-

ment de nous dissenys mitjanant l’acceleració de l’exploració i tècniques per a

la correcció ràpida d’errors en el procés de disseny

Chapter 1

Introduction

“Motivation is a fire from within. If someone else tries to light

that fire under you, chances are it will burn very briefly.”

Stephen R. Covey

In this chapter, we describe the reasons that have motivated this disser-

tation (Section 1.1). Then, we briefly define the objectives aimed by the

dissertation (Section 1.2). Finally, we conclude this chapter by presenting the

structure of this thesis (Section 1.3).

1.1 Motivation

The increment on the integration densities will have to be exploited to meet

the computational requirements of applications from different domains. Tradi-

tionally, scalable performance was requested for high-performance micropro-

cessors, but nowadays this request is also common to embedded computing

systems. In the recent past, microprocessors designers followed two main

trends in order to address this challenge. First, mono-core architectures with

advanced techniques to improve their performance were employed. Second,

the operating frequency of new generation designs was significantly increased

with respect to previous generations. But those design trends have run out of

steam. The resulting architectures present power consumption and heat dis-

sipation levels too high to be attractive for commercial products. Also, their

1

2 Chapter 1. Introduction

complexity is increasing up to the point in which the designs are too complex

and error prone, which increases the number and cost of design re-spins.

As mono-core architectures are ill-suited to solve the above exposed chal-

lenges, multi-core architectures have risen as the most elegant solution to

address them. Multi-core architectures are composed by several cores that

communicate with each other by means of some on-chip interconnection in-

frastructure, and are usually referred as Systems-on-Chip (SoC). In order to

exploit the computation scalability provided by multi-core architectures, the

communication bottleneck will have to be addressed. In this context, perfor-

mance of gigascale SoCs will be communication dominated. Current on-chip

interconnects consist mostly of shared arbitrated buses, based on the serializa-

tion of bus access requests. The main drawback of this solution is its poor scal-

ability, which will result in unacceptable performance degradation for SoCs of

medium or higher complexity (more than a dozen of integrated cores). More-

over, the connection of new blocks to a shared bus increases its associated

load capacitance, increasing the energy consumption of bus transactions asso-

ciated with the broadcast communication paradigm. Thus, Networks-on-Chip

(NoCs) emerged as an scalable communication infrastructure that better sup-

ports the trend of the SoC paradigm [29,49,154]. The basic idea behind NoCs

is borrowed from the interconnection networks domain, and envisions the on-

chip interconnection as a network on which packet-switched communication

takes place. NoCs are able to inherit design techniques from interconnection

networks, which is a nice quality as interconnection networks are a very ma-

ture field. A good example of this quality that can be analyzed in the open

literature is the virtual channels flow control mechanism. Virtual channels are

very popular in interconnection networks. First proposed by [47] as an effective

workaround for head-of-line blocking, this design technique was then proposed

for a wide range of aims, like implementing fault tolerance mechanisms [38]

or guaranteeing deadlock freedom in adaptive routing algorithms [52]. The

original virtual channel switch architecture of off-chip networks was further

analyzed in [118], and then became the de facto solution for NoCs, with min-

imal changes to adapt it to this new environment. But this practice is not

free of risks. NoCs and interconnection networks impose different constraints.

As an example, in NoCs links are a cheaper resource than in interconnection

1.1. Motivation 3

networks, while buffers are much more expensive. This implies that NoC de-

signers should adapt the techniques developed for interconnection networks,

not just adopt them. Following the example of the virtual channel flow con-

trol mechanism, it is possible that either feasible implementations for off-chip

networks become unfeasible in NoCs or unfeasible implementations for inter-

connection networks become feasible, and even competitive, in NoCs.

The design process of a SoC consists of a chain of design decisions. Among

those decisions, a choice of utmost importance for global system performance is

topology selection. A topology describes the connectivity pattern of networked

cores, defining hard boundaries to the maximum performance achievable by

the NoC as well as influencing other critical parameters like area requirements

and power consumption. In particular, those boundaries stem from the com-

bination of the theoretical properties of a NoC topology (e.g., average latency,

bisection bandwidth) with the quality of its physical synthesis (e.g., link la-

tencies, maximum operating frequency). For this reason it is very important

to choose the most suitable topology for the requirements of each design.

The most popular NoC topology proposed in the open literature is the

2D-mesh, in which network cores are distributed in a grid-like structure. This

topology provides great modularity and a predictable physical layout, but

it is known it presents serious scalability issues as the number of network

cores connected to it increases. This fact has motivated several works propos-

ing alternative topologies for NoCs [23, 81], as well as techniques to improve

the scalability of 2D-meshes by adapting them to the needs of a given de-

sign [110], or methodologies to build ad-hoc topologies for application specific

designs [27, 109]. Some works based on abstract level analysis and simula-

tion of topologies [23,81] lack of accurate performance predictions to support

their conclusions. For this reason, other works employ synthesizable Register

Transfer Level (RTL) tools, instead of abstract level ones, as the backbone of

their performance predictions [27]. This approach solves the accuracy issue,

being able to provide signal accurate results that will consider the quality of

the physical synthesis of the design. But it presents a serious drawback: al-

though RTL models are usually very accurate, they tend to be slow and/or

memory-intensive, at least when compared with more abstract models. This

limitation becomes very noticeable when exploring the candidates that com-

4 Chapter 1. Introduction

pose the design space of any given SoC. When the possible topologies valid for

a design are combined with several routing algorithms, network architectures

and core placements, the number of combinations starts to be overwhelm-

ing. And this number of combinations will grow even higher when considering

several technology libraries, with different aims (e.g., low power or high perfor-

mance libraries). This fact points to the need of using more accurate abstract

models able to provide cycle accurate performance estimations while at the

same time being able to reflect the impact of the physical synthesis over per-

formance predictions. Also, CAD tools will be needed to guide the designers

towards the configurations that are more suitable to the peculiarities of each

design.

Just to sum up, this dissertation will make a set of proposals intended for:

• Close the gap between performance predictions based on abstract mod-

els and real system performance by enhancing abstract modeling frame-

works with layout awareness.

• Evaluate the viability and feasibility of regular NoC topologies other

than a 2D-mesh, under different design constraints.

• Demonstrate the benefits of adapting design techniques to the NoC envi-

ronment, as opposed to simply borrowing them from off-chip networks.

• Implement a CAD tool to assist designers in the process of selecting the

most suitable network candidates out of a large design space with layout

awareness.

1.2 Objectives

This section presents the objectives of this dissertation. As commented in the

previous section, we expect to provide an evaluation framework for a wide

range of SoC configurations, as well as demonstrating the benefits of adapting

off-chip design techniques to the NoC environment. In order to do this, we

pursue the following goals:

• To evaluate the viability and feasibility of several topologies for NoCs

under different design constraints and architectural conditions by devel-

1.2. Objectives 5

oping a methodology to perform fast and accurate topology explorations.

Our proposal should consider several key points:

– The proposed methodology should use a simulation framework faster

than existing RTL models while achieving similar performance es-

timations. Our proposed simulation framework should be able to

run several simulations in the same time than existing RTL models

take to run a single simulation.

– Physical synthesis impact over topology performance should be re-

flected with as much accuracy as possible, helping in this way to

close the aforementioned gap in performance estimations.

– The methodology should be able to support different design tech-

niques unique to NoCs, (e.g., cross-domain clocking mechanisms

or link pipelining techniques). In this way it would be possible to

analyze the impact of different implementation techniques over the

selection of the best candidate topology for a given design.

In other words, we want to develop a topology exploration framework

that will allow us to evaluate a wide range of topologies under different

design constraints and with layout awareness.

• To show the benefits that can be achieved when off-chip design tech-

niques are adapted to the NoC environment, even when those techniques

can be directly adopted. As virtual channel flow control is a popular de-

sign choice that can be used for a wide variety of purposes, we aim to

demonstrate how it can be adapted to NoCs, while achieving the follow-

ing improvements over the adopted solution in interconnection networks.

– Reduced power consumption and area cost. As the number of vir-

tual channels of a design is increased, the power consumption and

area cost of the design typically tends to skyrocket.

– Improved scalability. The operating frequency of a classical vir-

tual channel switch for NoCs quickly deteriorates as the number

of virtual channels grows up. Our solution should have a better

6 Chapter 1. Introduction

scalability, helping to alleviate one of the main issues of complex

switch architectures in NoCs: their maximum operating frequency.

– Lower design cost. A common drawback of most proposals of new

switch architectures is the cost of implementation, validation and

verification. Although this cost is usually neglected in the open

literature, it is one of the main reasons that prevents new proposal

to be used in real system implementations. Our aim is to provide

a new virtual channel switch architecture with a low design cost,

which means to use simpler blocks as the foundation of the archi-

tecture, even reusing previously designed blocks when possible.

• To design and implement a tool to automatically explore the whole de-

sign space. Starting from the system specification, it should be able to

provide a detailed description of the most suitable candidates inside the

design space. For this reason it is required that it implements:

– A layout-aware topology exploration, using the methodology pre-

sented in this dissertation.

– The capability to consider a design space as large as possible. That

is, it should be able to support different SoC designs with different

applications, architectures, requirements, etc.

– A highly modular implementation, which should allow to easily

change any part of the tool without affecting the rest of the modules.

For example, expanding the number of supported topologies should

not affect other parts of the tool.

– A versatile simulation framework, which should be able to explore

the design space as fast as possible.

– Support to fast design re-spins, in such a way that it should be

possible for the designer to switch candidates later on the design

flow without having to repeat the design space exploration process.

For example, this can be achieved by providing a classified list of

candidates instead of a single one.

1.3. Dissertation outline 7

1.3 Dissertation outline

The rest of the dissertation is organized as follows. Chapter 2 describes the

fundamentals of NoCs and several works related to the contributions of this

dissertation. Chapter 3 presents an analysis of a set of topologies proposed

as NoC topologies in the open literature, as well as a topology exploration

methodology. Chapter 4 describes a new virtual channel implementation for

NoCs as a way of demonstrating the advantages of the adapt not adopt philos-

ophy. Chapter 5 presents the Design Space Exploration (DSE) tool developed

in collaboration with the company Lantiq Deutschland GmbH. The disser-

tation ends with Chapter 6, which summarizes our contributions and their

advantages.

8 Chapter 1. Introduction

f

Chapter 2

Background and State of the

art

“The complexity for minimum component costs has increased at

a rate of roughly a factor of two per year... Certainly over the

short term this rate can be expected to continue, if not to increase.

Over the longer term, the rate of increase is a bit more uncertain,

although there is no reason to believe it will not remain nearly

constant for at least 10 years. That means by 1975, the number of

components per integrated circuit for minimum cost will be 65,000.

I believe that such a large circuit can be built on a single wafer.”

Gordon Earle Moore

This chapter describes the basics and terminology for understanding the

main aspects of Networks on-Chip. An in-depth view of the whole Networks

on-Chip topic is not provided, since it is very complex with a multitude of

aspects of no relevance for this dissertation. For this reason, we provide an

overview of Networks on-Chip. We refer the reader to the established text-

books on this topic, as well as textbooks for classical off-chip interconnection

networks, for further background and introductory material [31, 45, 52, 60].

This chapter is composed by two sections. Section 2.1 is devoted to the

aforementioned background on Networks on-Chip, while Section 2.2 provides

9

10 Chapter 2. Background and State of the art

the state of the art in topology exploration and design space exploration, as

well as for virtual channels architectures, for Networks on-Chip.

2.1 Networks on-Chip

Moore’s law states that the number of transistors that can be placed inexpen-

sively on an integrated circuit will double approximately every two years [104].

This increment on the integration densities will have to be exploited to meet

the computational requirements of applications from different domains such

as multimedia processing, high-end gaming, biomedical signal processing, ad-

vanced networking services, automotive or ambient intelligence. Traditionally,

scalable performance was requested for high-performance microprocessors, but

nowadays this request is also common to embedded computing systems. As an

example, systems designed for ambient intelligence use high-speed digital sig-

nal processing with computational loads ranging from 10 MOPS for lightweight

audio processing, 3 GOPS for video processing, 20 GOPS for multilingual con-

versation interfaces and up to 1 TOPS for synthetic video generation. Those

requirements define a computational challenge that must be addressed at man-

ageable power levels and affordable costs [35].

In the recent past, microprocessors designers followed two main trends in

order to address those challenges. First, mono-core architectures were pre-

ferred and advanced techniques were employed in order to improve their per-

formance (e.g., executing of instructions out-of-order [135] and/or in an spec-

ulative way [111]) together with improvements to some components externals

to microprocessors (e.g., placing parts of the cache inside the microprocessor

chip, increasing the cache hierarchy or increasing its size and speed [147]).

Second, the operating frequency of new generation designs was increased with

respect to previous generations. Although it is still possible to design mono-

core microprocessors based on the above exposed trends, this design model

is exhausted, as it produces designs with a power consumption and heat dis-

sipation too high for attractive commercial products. Also, the techniques

required to keep the competitiveness of mono-core architectures are becom-

ing too complex, increasing the design and implementation cost of mono-core

architectures. On the other hand, new generation applications require an

2.1. Networks on-Chip 11

increasing amount of parallel capabilities, both in high-performance micro-

processors and in embedded systems, like domestic systems (e.g., multi-task

systems, game consoles, mobile phones, etc.), scientific applications (e.g., ge-

netic sequentiation, numerical calculus, etc.) and in specialized servers (e.g.,

digital video encoder/decoder, Internet servers, etc.). Thus, consumers of next

generation microprocessors are becoming more demanding, expecting products

that achieve performance levels difficult to support in mono-core architectures

In the case of domestic and high-performance systems, the power consump-

tion has been a limiting factor for some time now, as it has a direct impact

over the operating cost of any system. But with the increment of popularity of

mobile devices (smartphones, PDA, even laptops, etc.) the need for providing

designs with a high energy efficiency has increased the pressure of power-wise

designs [76], with the aim of maximizing battery life. In addition, the power

consumption effect over system cost is two-folded, as the heat dissipation cost

of a system is directly related to its power consumption. As new designs be-

come more compact, it becomes more expensive to remove the excess of heat

dissipation, an effect that is aggravated by the growing cost of heat dissipation

systems.

The most accepted solution to address the above exposed issues consists of

simplifying the architecture of microprocessors. But in order to do this and to

keep up with the ever increasing demand of performance, the design should be

composed of several simple processors integrated into a single chip, in what is

commonly referred as Systems-on-Chip (SoCs). In this way, a SoC would be

composed of several cores with a manageable operating frequency, for instance

by implementing simple processors for generic use and specialized ones for the

heaviest tasks, instead of a big complex processor able to carry out all the

task by itself. The resulting architecture will be capable of achieving similar

or better raw performance than an equivalent mono-core microprocessor, with

less heat dissipation and power consumption issues.

2.1.1 Systems on-Chip

A typical SoC is composed by one or more processors, several memory blocks

(possibly heterogeneous) and several devices and interfaces to provide connec-

tions with the external world (e.g., USB, FireWire, Ethernet, etc.), all of them

12 Chapter 2. Background and State of the art

Figure 2.1: Example of a System on-Chip: CW4512

interconnected through a shared infrastructure, like a bus. As an example of

a SoC architecture, Figure 2.1 shows the diagram of the CW4512 System on-

Chip [1], which is composed by a ChipWrightsCWv8 [1] processor attached to

a shared bus that interconnects the different components: processor, memories

and other peripherals.

By following this paradigm designers are able to tackle the above exposed

challenges. First, SoC designs are by definition better suited than classical

mono-core designs to work with multi-thread applications and multi-task sys-

tems, as they are able to execute several threads and/or applications at the

same time in different cores. Second, they offer a great potential to reduce the

development cost of new designs due to their modular nature, either by up-

2.1. Networks on-Chip 13

grading old designs by just re-designing a sub-set of the cores or by developing

new design that reuse cores developed for previous designs. Third, SoC design

are highly scalable as a wide range of characteristics can be adjusted just by

altering the number and type of cores of a design, which allows designers to

easily derive a whole product family from a single SoC design. Finally, the

SoC design paradigm presents high power saving capabilities, as they favor

designs with lower operating frequency than an equivalent classical mono-core

design. Additionally, it exists the possibility to drastically reduce the power

consumption of the system by shutting down idle cores transparently to ap-

plications.

Based on the type of cores that compose a SoC, this latter can be grouped

into two main classes. On one hand, a SoC is homogeneous when composed

by cores of the same type. Commonly used in general purpose systems (e.g.,

multi-core processors for cluster of computers for scientific computation), sev-

eral examples of commercial homogeneous SoCs exists, like the Intel Core2

Quad [2] and the AMD Phenom X4 Quad-Core [3] processors, which are com-

posed by four identical processing cores. On the other hand, a SoC is hetero-

geneous if it is composed by cores with a variety of types, like programmable

processors of generic use, different kinds of memories, processors optimized for

specific applications and/or hardware accelerators. The high degree of hetero-

geneity of those SoCs makes it possible to use the optimal core for each task.

For example, a real-time MPEG4 encoder will use several specialized cores to

code the video frames, while another core will code the audio track. A commer-

cial example of heterogeneous SoC is the Nokia N770 Internet Tablet, which

implements an OMAP 1710 processor [4] composed by an ARM926TEJ [5]

generic processor and by a TMS320C55x digital signal processor [4].

SoCs can also be named after their target market. On one hand, Multi-

Procesor Systems-on-Chip (MPSoCs) are SoCs aimed to the embedded system

market, and therefore are heavily constrained in their power and area cost.

Additionally, the extreme commercial competitiveness of this market push

designers to reduce the Time To Market (TTM) of the new designs to the limit,

favoring the use of standard cell libraries and synthesis-based design flows. On

the other hand, Chip Multi-Processors (CMPs) aim at the high-performance

market. Favoring high performance over area and power efficiency over other

14 Chapter 2. Background and State of the art

Core

Figure 2.2: Schema of a shared bus.

considerations, full custom designs techniques are largely adopted, rendering

TTM as a second rate design constraint.

In this context SoC performance is mainly defined by the cores that com-

pose it, but the impact of the interconnection over SoC performance should

not be underestimated; an inadequate interconnection infrastructure may be-

come the system bottleneck, increasing the power consumption of the system

and decreasing its performance. For this reason, the choice of the adequate

communication infrastructure is a critical step in any SoC design process.

2.1.2 Shared bus

Traditionally, on-chip interconnects consist of low-cost shared arbitrated buses

[21,43]. Those networks employ one of the most simple interconnection infras-

tructures, in which there is a unique communication medium that is shared by

all the devices (see Figure 2.2). In a shared medium, transactions are serial-

ized, as usually it is no possible to carry out more than a single simultaneous

transaction, thus at any given time only a single device, called master, can

send data through the bus, while all the other devices can only read data from

the bus, acting as slaves. In some bus implementations simultaneous transac-

tions are supported, but usually with serious limitations, like a low number of

concurrent transactions. This serialization makes the arbitration mechanism

a key design factor for any bus based system. The arbitration decides which

master device will write in the bus when the number of masters trying to

write in the bus is higher than the supported number of simultaneous transac-

tions. The information sent through the bus is divided into three kinds: data,

2.1. Networks on-Chip 15

address and control. It is possible to send it through a single multiplexed

channel or to send each kind through an independent one. Also, bus networks

are usually passive, meaning that the network does not generate messages on

its own. Besides, a shared bus is naturally well-suited to work with broadcast

communications, in which a single device sends the same data set to a group

of devices.

Modern bus-based designs usually implement backplane buses, that are

designed as a low-overhead communication infrastructure aimed for systems

composed by a low number master devices and a variable number of slave

devices. While master devices can initiate transactions slave devices are not,

being limited to respond to the transactions initiated by the masters. In

modern buses the most common arbitration solution is a centralized mech-

anism, implemented as a bus arbiter module. In this mechanism a master

device must obtain permission from the arbiter module before starting any

transaction. Centralized arbitration has a negative impact over the system

performance due to the overhead introduced by the requests to the arbiter

module, so the arbitration should be as fast and infrequent as possible.

An example of a commercial shared bus is the AMBA (Advanced Micro-

controller Bus Architecture) 2.0 standard, designed for the ARM [5] processor

family. This simple bus, which has been widely used in SoC designs, uses

the AHB protocol (Advanced High-performance Bus) to interconnect on-chip

integrated devices, like ARM processors and RAM memories. It supports

differentiated transmission of data and address, both in normal and burst

modes1. This latter is also utilized to alleviate the overhead introduced by

the implemented centralized arbiter. However, the 3.0 version of this same

standard supports several simultaneous transactions as well as out-of-order

transaction resolution.

To summarize, shared buses are the most well-known and the most widely

used communications architecture for SoCs, as they are very simple and cost

effective. But their scalability is quire limited: it is a viable solution for SoCs

with up to five processors and up to ten master devices [31]. For bigger systems

it presents unaffordable congestion rates, becoming a bottleneck with a severe

1In burst mode, the master device schedules several consecutive data transfers to the

same destination with a single round of arbitration

16 Chapter 2. Background and State of the art

Core

Switch

Network
Interface

Link

Figure 2.3: Schema of a Network on-Chip.

negative impact over system performance and increasing the system waiting

time, therefore wasting a considerable amount of power. For these reasons,

the performance achievable by bus-based high-scale SoCs is very limited. As

an example, a possible commercial design in which a bus would be ill-suited to

satisfy the system communication demands would be the MPSoC TILE64 [6],

an MPSoC composed by 64 processors.

Thus, more powerful communication infrastructures are needed in order

to fulfill the needs of SoCs with a growing number of components. Although

it may seems that this requires to develop new solutions, the truth is that we

can adapt solutions developed for similar issues in other research fields. In

particular, interconnection networks are the most common high performance

communication infrastructures used in other environments, like in supercom-

puters. The Network on-Chip (NoC) concept is born from the application of

interconnection networks to SoC designs [29, 49].

2.1.3 A new design paradigm

Networks-on-Chip (NoCs) were proposed as the solution to shared bus scal-

ability issues, emerging as the new parading for designing scalable communi-

cation infrastructures in SoCs. The main advantage of a NoC over a shared

bus is its capability to reduce design costs while providing high-performance

communications.

In a NoC, each core is connected by a Network Interface (NI) to a network

link. Those links are point-to-point data lines connected with other links via

switches. A link can connect a switch with another switch or with a NI, in

such a way that it exists direct or indirect connection between any two cores.

2.1. Networks on-Chip 17

Due to the similarities between interconnection networks and NoCs, it is

possible to borrow concepts and techniques from the former and apply them

to NoCs. Even so, most of the techniques developed for interconnection net-

works cannot be directly applied in NoCs, while other ones would be com-

pletely unaffordable using current technologies. The reason for this lies in the

restrictions imposed by each environment. For example, while in intercon-

nection networks buffers are a relatively abundant and affordable resource, in

NoCs they are scarce and expensive, with high area requirements and power

consumption, which hinders even more their use in NoCs. On the contrary,

links are an expensive resource in interconnection networks, that must be used

with austerity, while in NoCs links are more abundant. Additionally, the total

area available and the tolerable power consumption bugdet of a SoC are very

limited. An ideal NoC must meet the communications needs of the design

while minimizing power and area consumption. This latter fact implies that

the switches should be as fast, small and power-efficient as possible, which

hinders even more the application of interconnection solutions in NoC de-

signs. The architecture of each NoC component directly or indirectly affects

all kinds of design parameters, like maximum operating frequency, buffering

requirements, etc. The compilation of architectures of the components that

compose the network is referred as network architecture.

2.1.4 Networks on-Chip components

Most of the terminology used in NoCs is inherited from the interconnection

network domains. Transactions between cores are compacted and divided in

packets, which are divided into parts of the size of a flow control unit, known as

flits. Flits can be classified based on their position inside the packets as header,

tail or payload. Header flits are located at the beginning of the packet, and

contain all the information required to route the packet towards its destination.

The tail flit is the last flit of the packet, and its main role is to act as an end-

of-packet marker. Flits located between the header and the payload qualify

as payload, and their function is to carry data. On the other hand, a phit is

the minimal data that can be transmitted through a link in a single cycle. In

other words, flits represent logical data units while phits represent physical

data units. In the case that the phit size of a link is lower than flit size it will

18 Chapter 2. Background and State of the art

Core
Front
end

Back
end

Switch

Network Interface

Figure 2.4: Schema of a Network Interface.

take several cycles to transmit a single flit through this link. For this reason,

it is a common design technique to build architecures in such a way that flit

size and phit size are similar.

As a general rule, a good NoC design should be modular, that is, composed

by basic building blocks that can be combined in order to build the network

most suitable for the final implementation requirements. The most common

components are: network interfaces, switches and links [16]. Figure 2.3 shows

the scheme of a generic NoC.

Network Interface

The network interface (NI) is the basic block allowing connectivity of commu-

nicating cores to the NoC. It is in charge of providing several services, spanning

from session to transport layers of the Open Systems Interconnection (OSI)

model (e.g., decoupling computation from communication, definition of QoS

requirements of network transactions, packetization) up to the layers closer to

the physical implementation (e.g., flow control, clock domain crossing).

The NI provides basic core wrapping services, acting as a layer between

cores and the switches. Its role is to adapt the communication protocol of

the attached core to the communication protocol of the network. Layering

naturally decouples processing elements from the system where they reside,

enabling the partition of a design into numerous sub-designs that can be solved

concurrently, since they present a minimal degree of inter-dependency. It also

facilitates core reutilization across different systems without reusing time by

selecting the same industry standard interface in all the cores.

Packetization/depacketization is the very basic service the NI should offer.

During the packetization process, incoming signals from the core are trans-

2.1. Networks on-Chip 19

lated into packets compliant with the NoC communication protocol, while in

the depacketization process, incoming packets from the network are converted

back into signals compliant with the core communication protocol. Addition-

ally, this service is critical in order to design modular NoCs, as it nullifyies

the cost of expanding the NoC design when adding cores that use the same

communication protocol. Even in the case that an existing NoC design must

be modified to work with a different communication protocol, it should be

enough to upgrade the part of the NI responsible for this. Notice that in or-

der to achieve high-performance network operation frequency and to reduce

implementation complexity of the network building blocks, this service should

carefully optimize packet and flit size.

Another critical service provided in the NI is the clock synchronization

between cores and the network, known as clock domain crossing mechanism.

Even when the clock frequency is the same over the entire design, communica-

tions will still need for phase adaptation. In a more general case, the system

might consist of multiple clock domains which act as islands of synchronicity.

Clearly, proper synchronizers are needed at the clock domain boundaries. A

simplified case of this scenario occurs when each communicating core coincides

with one clock domain, while the network gives rise to an additional clock do-

main with an operating frequency which is typically much higher that that of

the attached cores. A more complex case envisions a true Global Asynchronous

Local Synchronous (GALS) paradigm, with a fully asynchronous interconnect

fabric, in which each core and the network run at its own frequency. In both

cases, clock domain crossing has to be performed at the network interfaces.

The NI is also the right place to enforce latency and/or bandwidth con-

straints and thus implementing Quality of Service (QoS) mechanisms. For

instance, this can be achieved by prioritizing the reception of the messages in

the attached core. In addition to those services, the NI is expected to pro-

vide the traditional transport layer services. Transaction ordering is one of

them: whenever the network deliver packets unordered, it may arise memory

consistency issues. In this case, NIs should reorder the transaction before for-

warding data or control information to the attached core. Another transport

layer service involves the reliable delivery of packets from source to destination

cores. The on-chip communication medium has been historically considered

20 Chapter 2. Background and State of the art

Crossbar

Input N-1

Input 0 Output 0

Output N-1

.

.

.

.

.

.

Scheduler

Datapath

Control

Figure 2.5: Schema of a Network on-Chip switch.

as a reliable medium. However, recent studies expect this to be no longer the

case in the context of nanoscale technologies [28, 69, 103, 115, 141]. The NI is

the natural place to implement some solutions for those issues, for example by

implementing end-to-end error control.

Finally, NIs must be involved in the flow control mechanism. This mech-

anism takes care of regulating the flow of packets through the network: when

a given buffering resource in the network is full, there needs to be a mecha-

nism to stall the packet propagation and to propagate the stalling condition

upstream. The NI is in charge of the flow control signals exchanged with

the attached switch, as well as to manage the flow control signals with the

connected cores. In fact, when the network cannot accept more new packets

because of congestion, new transactions can still be accepted in the NI from

the connected core as long as the necessary amount of buffers is available in the

NI. However, when these buffers are also full, the core behaviour is impacted

by congestion in the network and it has to be stalled if further communication

services are required.

A generic template for the NI architecture is illustrated in Figure 2.4. As

can be seen, it is composed by two sub-modules: front-end and back-end.

On one hand, the front-end module implements a standardized point-to-point

protocol. The interface then assumes the attributes of a socket, that is, an

attachment interface which should capture all signalling between the core and

the system (such as dataflow signalling, errors, interrupts, flags, software flow

control, testing). On the other hand, the back-end module implements the

2.1. Networks on-Chip 21

OSI model transport layer, for instance, establishing end-to-end communica-

tion connections. It additionally provides transparent transfer of data be-

tween cores using the services of the network layer (e.g., data packetization

and computing some routing decisions at packet injection time), as well as

several data link layer services. First, communication reliability has to be

ensured by means of proper error control strategies and effective error re-

covery techniques. Second, flow control is handled at this module, either by

means of upstream/downstream signals for regulating data arrival from/to the

attached core and switch, or by using other techniques like buffer/credit flush-

ing. Finally, the physical channel interface to the network has to be properly

designed by considering some NoCs distinctive challenges, like clock domain

crossing (exposed above), high frequency link operation, low-swing signalling

and noise-tolerant communication services.

Switch architecture

Switches carry packets injected into the network to their destination. A switch

forwards packets from one of its input ports to one or more of its output ports,

using some sort of arbitration to solve conflicts between packets. Figure 2.5

shows a scheme of a typical NoC switch. As can be observed, each port is

attached to a physical link from which it receives (input port) or transmits

(output port) information. Inside the switch, input and output ports are

connected through a dynamically reconfigurable switch matrix or crossbar,

while the scheduler or allocator receives the control information from the input

ports. The allocator task is to calculate which switch input will be connected

to which output at any given time and to configure the crossbar accordingly.

An allocator assigns an output port to an input request when the input port

is requesting for this particular output port, considering that at most one

output can be assigned to an input port and that each output port cannot

be assigned to more than one input port at any given time. Any assignment

that satisfies this statement is called a match. An allocator provides maximum

matching when is capable of satisfying the highest possible number of requests

in a single cycle. In this scheme, flits received at the input ports are evaluated

in the allocator, which will configure the crossbar so that each flit reach the

right output port. The term switch radix defines the number of ports of a

22 Chapter 2. Background and State of the art

.

.

.

Output 0

Crossbar

.

.

.

.

.

.

Input N-1

.

.

.

Input 0

.

.

.

Output N-1

.

.

.

(a)

.

.

.

Output 0

Crossbar

.

.

.

.

.

.

Input N-1

.

.

.

Input 0

.

.

.

Output N-1

.

.

.

(b)

Crossbar

.

.

.

.

.

.

Input N-1

.

.

.

Input 0 Output 0

.

.

.

.

.

.

Output N-1

.

.

.

(c)

Figure 2.6: Switch architecture by buffer allocation: (a) Input queued (b)

Output queued (c) Input/Output queued

switch.

Buffer distribution inside the switch affects several characteristics of both,

the switch and the network. In addition to the power and area cost, buffer

in NoCs may act as pipeline stages between the links and the switch, thus

decoupling their operating frequencies. As depicted in Figure 2.6 a switch

may allocate buffers at the input ports, at the output ports or both:

• Input queuing : As shown in Figure 2.6(a), buffers are located at the

input of the switch, so arriving flits can be stored before the crossbar.

In this strategy, output ports are connected directly to the physical link,

without the use of buffers, thus the critical path is the sum of the switch

critical path and the physical link critical path. In this context, the max-

imum link length and the maximum operating frequency of the switch

are interrelated. Therefore, input queued switches are prone to require

2.1. Networks on-Chip 23

additional buffer resources for retiming reasons, usually in the form of

link repeater stages, in order to support high switch operating frequen-

cies and/or increased link lengths.

• Output queuing : As shown in Figure 2.6(b), in this case the buffers

are located in between the crossbar and the output port, thus there

are no buffers between the input ports and the physical link. Output

queued architectures present similar issues to input queued ones, with

the addition of some issues when contention is present, as flits that suffer

from congestion in the input ports have no buffer where to be allocated.

The straightforward solution is to drop flits that must wait due to the

scheduler, but this solution is hardly acceptable in NoCs. A more elabo-

rated solution is to propagate the scheduler control signal to the previous

switch, so the latter send flits only when they can be safely stored in the

output buffer, at the cost of an increased control signal delay.

• Input-output queuing : As depicted in Figure 2.6(c) this strategy is a

merge of the two previous strategies. In this case buffers are located

in every port, between the switch and the links. In this way switch

operating frequency and link length are completely decoupled, at the

cost of an overall higher number of buffer slots.

The switching technique determines the way that network resources (e.g.,

buffer slots or link bandwidth) are allocated to packets traversing the network:

• Bufferless switching: As NoC power consumption is heavily driven

by buffering resources, this scheme would be the optimal solution from

a power consumption view-point but it presents serious implementation

issues. In particular, whenever a packet cannot proceed on its way to

destination due to a conflict with another packet, it should be either

discarded (which is not acceptable for on-chip networks) or misrouted.

Anyway, some recent work exists that addresses those issues in the NoC

environment [67].

• Circuit switching: This is the most basic switching technique. In

this case, a path between origin and destination cores is reserved in a

24 Chapter 2. Background and State of the art

first step; once the path is established, the packet is sent in the second

step, guaranteeing that the route is free of contention. In this switching

technique, the latency of each transaction is penalized due to the path

establishment cost. Additionally, in some cases the network may suf-

fer from low utilization due to long-term path reservation, like when an

answer for the packet that reserved the path is expected. Nevertheless,

circuit switching requires minimal buffer resources only for two reason:

store control packets (e.g., packets used to reserve the path) or as re-

timing stages to cope with long critical paths. This scheme is usually

employed when the traffic pattern is burst intensive or when the connec-

tion patterns are relatively static [155], that is, in the cases in which the

cost of reserving the path is alleviated by a high path utilization.

• Packet switching: In this scheme an entire packet is received and

stored in a switch before forwarding it to the next switch. This is the

most inefficient switching scheme in terms of latency and memory re-

quirements, except for those systems in which the maximum packet

length is small enough to compensate the need to store the whole packet.

On the other hand, this scheme does a good work in high network con-

tention situations, as a stalled packet will be stored inside a single buffer

of a single switch.

• Virtual cut-through switching: This scheme is similar to the packet

switching scheme, but in this case a packet can be forwarded as soon

as the header is receiver and the next switch guarantees that the whole

packet can be allocated. In this way, packet switching latency issues are

addressed while keeping contention management capabilities, but it still

presents high memory size requirements, since switches must be able to

store entire packets.

• Wormhole switching: Like in virtual cut-through switching, a packet

can also be forwarded as soon as the header is received, but flits are

sent as soon as they can be allocated in the next switch, even when the

full packet cannot be allocated. Notice that in case the header flit is

stalled, subsequent flits have to wait at their current locations and are

therefore spread over multiple switches, thus blocking the intermediate

2.1. Networks on-Chip 25

Packet A

Packet C

Packet B

Packet D

Figure 2.7: Example of a deadlock of 4 packets in a mesh topology.

links and switches. This scheme avoids buffering the full packet at one

switch and keeps end-to-end latency low, therefore fixing the main issues

of the above mentioned switching schemes, but at the cost of being very

sensitive to packet contention due to conflicts in the switches as well as

contention induced by cores with a slow packet absorption rate.

Finally, the routing algorithm has a heavy impact over the system perfor-

mance. The main function of the routing algorithm is to define the paths that

packets must follow across the network in order to reach their destinations.

Due to deadlock issues, some algorithms are easier to implement than oth-

ers. Deadlocks may arise when a set of packets cannot advance through the

network because the needed network resources are reserved by one or more

different packets from the same set. Figure 2.7 shows a classical example of

deadlock. The figure represents four packets (denoted as A, B, C and D) that

are in deadlock. The next switch for each packet is pointed by a dotted arrow.

In the example each packet is allocated in the switch input port, utilizing all of

its buffering resources, thus preventing a new packet to be received until some

of those buffering resources are freed. As can be observed, it is impossible to

recover from this situation unless the cycle is broken by removing a packet. As

a general guideline, the higher the number of loops and cycles of a topology

26 Chapter 2. Background and State of the art

(either introduced by the routing algorithm or intrinsic to the topology wiring

pattern) the more it is deadlock prone.

Routing algorithms can be classified as source or distributed. In source

routing, the path of the packet across the network is fixed and embedded in

the header before packet injection into the network, thus increasing packet

size. In this case switch architecture is rather simple, as the only functions it

has to perform are reading the header and selecting the right output port, pro-

viding minimal routing latency. On the other side, in distributed routing the

header contains only the destination identifier, and the path is not fixed but

dynamically calculated at each switch, which has to decide the optimal output

port for each destination. This routing mechanism can be implemented in sev-

eral ways, being the most common the use of local routing tables at switches

or dedicated logic in order to calculate the routing algorithm. Additionally,

both routing schemes can employ deterministic and adaptive routing algo-

rithms. The selection of the routing algorithm also has a heavy impact over

the system performace, as it selects the paths that packets follow through the

NoC in order to reach their destination. In deterministic routing algorithms,

the path between any origin-destination pair is always the same regardless the

network status, therefore packets cannot avoid neither congestions nor faulty

links. On the contrary, in adaptive routing paths are not fixed, so packets

can avoid potentially problematic spots in the network. While source routing

enables simple and fast switches, it presents scalability issues, and makes the

implementation of adaptive routing algorithms difficult. On the other hand,

distributed routing favors the implementation of adaptive routing algorithms

at the cost of producing more complex and slower switches. Finally, deter-

ministic routing algorithms provide worse performance than adaptive ones,

although these latter present a higher implementation complexity.

Links

A link is a data line connecting either two switches or a NI and a switch.

Links can be considered as unidirectional or bidirectional, based on data being

transmitted in a single or in both directions, respectively. A bidirectional link

can be implemented either as a link composed by two independent unidirec-

tional links (one for each way) or as a single data line in which transmission

2.1. Networks on-Chip 27

can be carried out in both directions [31].

The maximum link length of a SoC is a limiting factor of system perfor-

mance, as in current nanoscale technologies long wires increasingly determine

the maximum clock rate, and hence performance, of the entire design. This

problem increases as new technologies become available, in fact, it has been

estimated that only a fraction of the chip area (between 0.4 and 1.4%) will be

reachable in one clock cycle in the foreseen future [19]. A solution to overcome

this problem consists of pipelining interconnects [39, 131]. Links will be par-

titioned into segments (by means of repeaters stages) whose length satisfies

pre-defined timing requirements (e.g., desired clock speed of the design). In

this way, link length is converted into link latency, but the NoC operating

frequency is not bounded by the link length anymore. That is, the latency of

a link connecting two modules may turn out to be more than one clock cycle.

In this context, the optimum buffer size required to provide maximum

link utilization is directly related to the link latency and to the flow control

mechanism implemented [52]. The flow control mechanism controls the flit

injection rate at the links, and manages stalling conditions by stalling packet

propagation and propagating the stalling conditions upstream. Several flow

control mechanisms have been proposed in the open literature:

• XON/XOFF: In this flow control mechanism the receiver notifies the

buffer slots available to allocate new flits to the transmitter. The receiver

attached to the link sends a XOFF signal when the buffer utilization is

above a given maximum threshold, at this point, the transmitter stops

the injection of new flits in the link until it receives a XON signal, which

is generated by the receiver when the buffer utilization is under a given

minimum threshold. As the information control must travel through

the link in the opposite direction, it is also affected by the link latency.

In order to guarantee an uninterrupted flow of flits between devices, the

XON signal has to be raised only while the receiver buffer has enough flits

stored to cover the reception time of the signal at the transmitter side

and the fly time of the first flit from the transmitter to the receiver. That

implies that the minimum number of slots in the receiver buffer must

be twice the link latency. In the case of the XOFF signal, the receiver

buffer must allocate all the flits that can be received in the time frame

28 Chapter 2. Background and State of the art

elapsed between the signal activation and the reception of the signal in

the transmitter, that is, a maximum of a flit per each latency cycle of

the link. Overall, to avoid the presence of waiting cycles introduced by

the XON/XOFF flow control mechanism, that is, to achieve a sustained

throughput of one flit per cycle, the minimum number of slots of the

receiver buffer is three times the link latency.

• Credit based: In this flow control mechanism the transmitter has the

number of flits (credits) that can be stored in the receiver. Each time

the transmitter sends a flits it spends a credit, and new flits can be

injected only if there are available credits. In this way, it is assured that

the flits injected in the link can be allocated in the receiver. At the

same time, the receiver sends a new credit to the transmitter each time

it frees enough buffer space to allocate a new flit. In this mechanism,

a sustained throughput of one flit per cycle can be achieved when the

receiver has a minimal number of buffers of twice the link latency plus

one. In this way, it is guaranteed that the first credit consumed by the

transmitter is returned by the receiver before the transmitter runs out

of credits.

• ACK/NACK: This flow control mechanism manages transmission er-

rors in addition to perform data flow control duties. The transmitter

stores a copy of each flit sent, and the receiver sends an ACK signal

to the transmitter whenever a flit is successfully received and stored.

When this signal is received by the transmitter, the copy of the flit that

triggered it can be destroyed. The NACK signal is generated by the

receiver in case of transmission error or when its buffer is full, discarding

the flit that triggered the signal as well as any following flits. When the

transmitter receives the NACK signal, it keeps sending the same copy of

the flit that generated the signal until it reads an ACK signal. Due to

the fact that the transmitter keeps sending flits in presence of a NACK

signal and to the need to temporary store copies of the sent flits, this

mechanism is highly inefficient in terms of power consumption. In this

mechanism, a sustained throughput of one flit per cycle can be achieved

only if the transmitter can allocate a number of flits equal to twice the

2.1. Networks on-Chip 29

XON/XOFF Credits ACK/NACK STALL/GO

Transmitter − − 4 ∗ Lat 2

Receiver 3 ∗ Lat (2 ∗ Lat) + 1 − −

Repeater Stage Lat − 1 Lat − 1 Lat − 1 2 ∗ (Lat − 1)

Overall (4 ∗ Lat) − 1 (3 ∗ Lat) (5 ∗ Lat) − 1 2 ∗ Lat

Table 2.1: Minimum buffer requirements of flow control mechanisms by link

latency.

link latency.

• STALL/GO: In order to implement multi-cycle links, all the above

exposed flow control mechanisms employ simple repeater stages, which

have enough space to allocate a single flit. The STALL/GO flow control

mechanism presented in [122] is an example of a flow control mechanism

that requires the use of more complex repeaters stages. This mechanism

is an evolution of the XON/XOFF mechanism, in which the control sig-

nal is handled at each segment 2 of the link instead of being attached to

both sides of the link. The STALL signal notifies a congestion situation

that must stop the data flow, while the GO signal indicates the need to

resume the data flow. STALL/GO physical implementation involves the

use of distributed buffering techniques, as the flow control management

is spread along the link instead of being concentrated in the devices at-

tached to it. In particular, each repeater stage and each device attached

to the link requires enough buffer space to allocate two flits. In order

to guarantee a sustained throughput of one flit per cycle, the flow con-

trol mechanism requires a total number of buffer slots of twice the link

latency. Notice that in this case, the flow control mechanism buffers

include the buffer of the repeater stages, while in the previously exposed

flow control mechanism the buffer requirements do not include the re-

peater stages buffers.

Table 2.1 summarizes the minimal buffer requirements of each flow control

mechanism above exposed based on the link latency (Lat) when guaranteeing

2A link segment is part of the link delimited by two pipeline stages (repeaters stages,

switch input/ouput buffers or NI network buffers).

30 Chapter 2. Background and State of the art

Transmitter Receiver

Flit Flit

XOFF XOFF

XON XON

(a) ON/OFF

Transmitter Receiver

Flit Flit

Credit Credit

(b) Credits

Transmitter Receiver

Flit Flit

ACK ACK
NACK NACK

(c) ACK/NACK

Transmitter Receiver

Flit Flit

GO GO
STALL STALL

(d) STALL/GO

Figure 2.8: Flow control mechanisms for a link with 2 cycles of latency.

Core + Switch

(a) Regular

Core + switch

(b) Irregular

Figure 2.9: Example of direct topologies

a throughput of one flit per cycle. As can be observed, despite presenting the

highest buffering requirements in the repeater stages, STALL/GO requires the

lowest overall buffer requirements of all the exposed flow control mechanisms.

For example, for an unidirectional link with 2 cycles of latency the XON/XOFF

mechanism will require 7 buffer slots, the credits mechanism will require 6

buffer slots, ACK/NACK will increase the number up to 9 buffer slots, while

the STALL/GO mechanism requires only 4. This later example is graphically

depicted in Figure 2.8.

2.1. Networks on-Chip 31

Core

Switch

(a) Regular

Core

Switch

(b) Irregular

Figure 2.10: Example of indirect topologies

2.1.5 Topology

A topology defines the number of links, switches and NIs that will compose

the system, as well as their connection pattern. That is, the topology defines

which switches are attached to which NIs or other switches by means of net-

work links. The implications of this statement are wide, affecting several key

design parameters of any NoC design. For instance, as the topology defines

the number of connections of a switch, it will have a direct impact over the

switch performance, area and power consumption. Moreover, the topology

definition of the connection pattern will surely affect the layout of the design,

thus becoming a key factor for maximum system link length, which will di-

rectly affect the maximum achievable operating frequency or even the design

buffering requirements (in case link pipelining techniques are implemented).

In this context, performance and cost of any given NoC-based solution can

be strongly improved at design time by selecting a suitable topology for the

system at hand. In fact, together with the network architecture, the net-

work topology is one of the most important factors for NoC performance and

power/area consumption.

Network topologies can be classified as direct or indirect based on their

implementation. In direct topologies (see Figure 2.9), each core is directly

connected to the network since it also includes a tightly coupled switching

32 Chapter 2. Background and State of the art

fabric for connection to its neighbor cores. In indirect topologies (see Figure

2.10), the core accesses the network indirectly through a link that is connected

to a switch, in turn connected to the network. In indirect topologies, switches

can be classified into two general groups: the group of switches that connect to

core and other switches, and the group that connects only to other switches.

Notice that direct topologies may not need the use of NI modules, as cores

and switches are integrated on the same block. On the other hand, in indi-

rect topologies core and switch blocks are clearly decoupled, favoring modular

designs.

On the other hand, regardless of their implementation, topologies can also

be classified based on their interconnection pattern as regular or irregular (see

Figure 2.9 and Figure 2.10). In regular topologies there is a regular prede-

fined pattern that defines the way links connect switches with other switches

and/or core, while irregular topologies have no predefined interconnection pat-

tern. Usually, regular topologies show better scalability than irregular ones, al-

though their main advantage is topology re-usability and reduced design time.

While regular topologies are most suited for general purpose designs [144],

irregular topologies are typically used in the embedded computing domain,

where NoCs are customized for the communication load of a specific appli-

cation or set of applications that are known at design time [30]. Although

regular topologies are the typical choice for high-performance CMPs, there

are external factors to the system design process that may affect the regular-

ity of the topology like power management, and permanent or transient errors.

In particular, errors may happen in new systems or along the working life of

the system, affecting the network topology. When these errors are not serious

enough to render the system unusable, the resulting topology will likely be-

come irregular. Although it is impossible to predict when and where an error

will happen at NoC design time, it is possible to design fault tolerant NoCs,

with routing algorithms that adapt to changes in the interconnection pattern,

alleviating the system performance degradation in presence of errors.

Most popular topologies in CMPS are orthogonal, in which switches are

arranged in , so designers can quickly change the candidate without having to

repeat the design space exploration processan orthogonal n-dimensional space,

in such a way that every link produces a displacement in one dimension. Their

2.1. Networks on-Chip 33

To Terminal 0 To Terminal 1 To Terminal 2

AB X

Blocking condition

(a) Without virtual channel flow control

To Terminal 0 To Terminal 1 To Terminal 2

A
B

X

Blocking condition

(b) With virtual channel flow control

Figure 2.11: Head-of-Line blocking.

main advantage is their natural support for simple routing algorithms and

their relatively simple implementation. Figure 2.9(a) shows an example of a

direct regular orthogonal topology: the 2D-mesh. Currently, the 2D-mesh is

the most popular topology for CMPs, due to its scalable wiring connection

pattern, which translates into simple layouts with easily predictable physical

parameters. On the contrary, among indirect topologies, multistage networks

(non-orthogonal topologies in which cores are interconnected through a num-

ber of intermediate switch stages, as depicted in Figure 2.10(a)) are well known

for their high performance scalability properties.

2.1.6 Virtual Channels

Virtual channels are an appealing flow control technique that allows to poten-

tially avoid deadlock while improving link utilization and network throughput.

However, their use in NoCs is still controversial, due to their significant over-

head in terms of area, power and cycle time degradation, particularly in the

heavily constrained MPSoC domain.

As exposed, a typical switch architecture associates a single buffer with

each link, either at the receiver end, the transmitter end or both. In those ar-

34 Chapter 2. Background and State of the art

chitectures, Head-of-Line (HoL) blocking is a significant performance limiting

factor in NoCs, due to the use of FIFO queues. This issue raises when two

packets are allocated in the same input port and one of them is forced to wait

due to a congestion that is not directly involved in its path. An example of

HoL can be observed in Figure 2.11(a). This example depicts two packets (A

and B) with different destinations, which are currently allocated in the same

buffer of the same switch. The destination of Packet A is Terminal 1, while

packet B is addressed to Terminal 2. As can observed, packet B is waiting for

packet A, while packet A is waiting for some blocking condition to disappear

in order to be delivered to its destination (Terminal 1). That is, packet B is

waiting due to a congestion condition that is not directly in the path to its

destination (Terminal 2), but because the packet in the head position of the

buffer is blocking the whole buffer. Virtual channel flow control was firstly

proposed by [47] as an effective workaround for HoL blocking.

A virtual channel is a buffer that can allocate flits of a packet and store its

associated state information [48]. Several virtual channels can be multiplexed

over a single physical link, decoupling buffer allocation from link allocation.

Figure 2.11(b) shows how virtual channel flow control would help in the pre-

vious example. As can be seen, the use of virtual channels allows packet B to

overcome packet A, thus avoiding unnecessary delays due the blocking condi-

tion affecting packet A. Notice that the use of virtual channels increases the

complexity of the switch arbiter, as the arbiter must allocate not only an out-

put port of each packet, but the required virtual channel inside that output

port. This additional step in the arbitration phase is usually referred as virtual

channel allocation.

Nevertheless, the use of virtual channels is not limited to overcome HoL

blocking. Their main advantage is their versatility. Along the years, virtual

channels have been proposed for a wide range of purposes in the open lit-

erature, like as part of Quality of Service (QoS) mechanisms, or to provide

deadlock freedom in adaptive routing algorithms. But in NoCs, virtual chan-

nels must be used with care, since its implementation requires extra buffers,

the switch power consumption may increase with the number of virtual chan-

nels [25]. Moreover, virtual channels may arise additional complications that

must be addressed, like not delivering packets in injection order, increasing the

2.1. Networks on-Chip 35

critical path to unacceptable levels or introducing race conditions that may

affect the coherence of the memory registers.

2.1.7 Networks on-Chip performance evaluation

When comparing the performance of systems with different characteristics

(e.g., architecture, topology, . . .) there are several parameters to consider.

This section summarizes the two main metrics that are usually used in this

dissertation when evaluating the performance of two or more systems.

The first metric is the latency from generation, that is defined as the

elapsed time from the packet injection into the network interface (its gen-

eration) until its reception at the destination core. On the other hand, the

network latency of a packet is defined as the elapsed time from the packet

header introduction into the network until its reception in the destination

core network interface. Unless otherwise stated, from now on we will refer

to latency as the latency from generation, as it is a more accurate metric of

the system performance. Additionally, the average latency is defined as the

average of the latency of all the packets sent and received during the system

evaluation. Usually, the lower the average latency the better performance the

system achieves.

The other performance metric used in this dissertation is throughput. It is

defined as the amount of information that the network delivers to the cores

per time unit. In order to provide fair comparisons, this metric must be

made independent of the system size, so throughput is measured as the total

information delivered to all the cores divided by the total number of cores per

time unit. Usually, the higher the throughput of a system configuration, the

better.

2.1.8 Networks on-Chip physical synthesis evaluation

The evaluation of design techniques for NoCs is coupled with the evaluation

of their physical characteristics. At some points, this dissertation presents

and evaluates the results of the physical synthesis of different NoC designs.

This section clarifies some concepts required to fully understand those re-

sults. Please notice that evaluation of core synthesis is outside the scope of

36 Chapter 2. Background and State of the art

this dissertation. For this reason, when synthesizing NoC designs, cores are

represented as black boxes obstructing their corresponding area in the design

floorplan.

Timing closure is the process in which the design is modified to meet its

timing requirements. Most of the modifications are handled by the backend

tools based on directives given by the designer. This term is also used for the

goal that is achieved when the design has reached the end of the toolflow and

its timing requirements are satisfied. The main steps of this process are: logic

synthesis, floorplanning, and placement&routing. The first step is to perform

logic synthesis, where an RTL description of the design is changed into a gate-

level netlist (i.e., logic-gates and specification of their interconnection). At this

level, the real wire length is ignored, hence the wire load is simply estimated

by means of abstract (and often largely inaccurate) models. Post-synthesis

results however provide a rough idea about the critical path delay and the cell

area. The next step is floorplanning, which defines where design blocks are

placed within the chip area (in this case, IP cores, switches, network interfaces

and pipeline stages, if any). In our experiments, this task is carried out by

defining rigid fences that limit the area where the cells of each module can be

placed. From a practical viewpoint, this turns out to be the best approach

for extremely regular designs like an on-chip network. Finally, place&route

performs the physical placement of standard cells on the layout (determining,

among the other things, row utilization), followed by the interconnection step

between them. At this stage, the final wire routing is performed between the

placed cells and the actual wire load capacitance can be quantified. Post-

place&route analysis provides accurate information regarding floorplan area

and critical path delay of the design and of its sub-blocks, as well as accurate

estimations of the power consumption.

2.1.9 Reference architecture

Due to the wide impact of the network architecture over NoC capabilities, NoC

design flows should be able to adapt the NoC architecture to the constraints of

the design at hand. This requirement introduces a new degree of complexity

in the design flow, as the consequences of the physical implementation of each

possible architecture should be carefully evaluated. Nevertheless, it is not in

2.1. Networks on-Chip 37

Figure 2.12: Xpipes Lite network interface initiator architecture.

the scope of this dissertation to evaluate the performance of each possible NoC

architecture, but to provide a methodology and a framework to build design

space exploration tools that can be easily expanded. In this context, it is

convenient to resort to a NoC reference architecture when analyzing specific

techniques (i.e., analyzing the cons and pros of different network topologies) in

order to reduce the complexity of the evaluation process by removing the need

for network architecture validation and verification. For this reason, unless

otherwise noted, this dissertation uses the xpipes Lite NoC architecture [140]

as its reference architecture.

The NI of the xpipes Lite architecture implements a lightweight archi-

tecture for best effort NoCs, thus no error control mechanism is considered.

Designed as a bridge between an Open Core Protocl (OCP) [7] interface and

the NoC switching fabric, its purposes are:

38 Chapter 2. Background and State of the art

a) Protocol conversion between OCP and network protocol.

b) Packetization.

c) Computation of routing information (stored in a Look-Up Table, LUT).

d) Clock domain crossing.

e) Flit buffering to improve performance and flow control.

The xpipes Lite architecture implements OCP traffic generators. In the

OCP protocol, there are two kinds of transactions: request and response.

Request transactions are blocking, which means that whenever an OCP core

starts one of them, this core will be unable to carry out other tasks until the

response for that particular transaction is received. Additionally, for any given

transaction, some fields have to be transmitted once, while other fields need

to be transmitted repeatedly, for instance, in an OCP burst transaction the

address field is transmitted once, while the data field is trasnmitted once per

burst beat. There are two kinds of NIs: initiator and target. While the former

are attached to communication initiators, the latter are attached to targets.

Figure 2.12 depicts the network interface initiator of the xpipes Lite ar-

chitecture. The NI is built around two registers: one stores the transaction

header (1 refresh per OCP transaction), while the second one stores the pay-

load (refreshed at each OCP burst beat). During the packetization process, a

set of flits encodes the header register, followed by multiple sets of flits encod-

ing the payload register for each new burst beat. The xpipes Lite architecture

employs source based deterministic routing, therefore routing information is

attached to the header flit of a packet by checking the destination address

against a LUT. The length in bits of the routing path depends on the maxi-

mum switch degree and the maximum number of hops in the network instance

at hand. The header and payload registers represent the boundary between

the NI front-end and the attached OCP device. But they also act as clock do-

main decoupling buffers, as they can be read from the NI back-end at a much

higher speed than the writing speed of the OCP side. In practice, network

and attached cores can operate at different frequencies. The only constraint

posed by this architecture is that the OCP frequency is obtained by apply-

ing an integer divider to the network frequency (an approach which is called

frequency-ratioed synchronization).

2.1. Networks on-Chip 39

PATH_SHIFT

IN_BUF

IN_BUF

IN_BUF

IN_BUF

IN_BUF

C

R

O

S

S

B

A

R

OUT_BUFFER

OUT_BUFFER

OUT_BUFFER

OUT_BUFFER

OUT_BUFFER

ARB0

ARB4

ARB3

ARB2

ARB1

OUT0

OUT4

OUT3

OUT2

OUT1

STALL0

STALL1

STALL2

STALL3

STALL4

MANAGER

CONTROL

FLOW

IN0

STALL0

STALL1

STALL2

STALL3

STALL4

IN1

IN2

IN3

IN4

PATH_SHIFT

PATH_SHIFT

PATH_SHIFT

PATH_SHIFT

Figure 2.13: Xpipes Lite switch architecture.

The xpipes Lite switch architecture is represented in Figure 2.13. It fea-

tures a latency of one cycle for traversing from the input ports to the output

ports, and another one for traversing the output link, thus traversing the

switch fabric overall has a minimum cost of 2 cycles. The implemented buffer

allocation scheme is input-output queuing, therefore allocating a buffer in each

output port and just a repeater stage in each input port, which are latched to

break the timing path. The selected switching scheme is wormhole switching,

as it provides low latency communications while requiring minimal buffering

resources. The use of a static source routing scheme keeps the switch routing

logic minimal: it simply has to read the routing information from the header

and then perform the arbitration process. This latter process is handled by an

allocator module for each output port based on a round-robin priority algo-

rithm. After a packet wins the arbitration, the routing information concerning

the current switch is rotated away in the header flit by the path shifter mod-

ules. This allows to keep the next hop at a fixed offset within the header flit,

thus simplifying the switch architecture. At this point, access to the output

port is granted until the tail flit arrives. The critical path of the switch starts

from the input buffer, goes through the arbiter, the crossbar selection signals,

the header path shifters and finally includes a library setup time for correct

sampling at the output port.

40 Chapter 2. Background and State of the art

Figure 2.14: Area and power breakdown.

The xpipes Lite architecture is parameterizable in the number of input

and output ports, in the link width and in the output buffer size, as well

as supporting several flow control mechanisms. Anyway, as demonstrated

in [122], the STALL/GO flow control mechanism proves to be the most low-

overhead and efficient flow control mechanism in non-error tolerant designs,

thus being the most suitable for the needs of this dissertation.

Fig.2.14 illustrates the area and power breakdown of a 5x5 xpipesLite

switch synthesized for maximum performance on a 65nm STMicroelectronics

technology library. This figure is reproduced for a better understanding of

the architecture design techniques that will be exposed in this dissertation.

Due to the maximum speed required, combinational circuits are inferred into

area-expensive gate level netlists. The crossbar takes about 15% of the total

area, while input and output buffers all together take about 68%. Power

was measured post-place&route with a 50% switching activity on all input

ports. The contribution named other coincides almost entirely with the clock

tree power. In relative terms, the arbiter’s contribution to total power is

lower than to total area, while clock tree plus input/output buffers consume

approximately 70% of total power. This breakdown reflects typical conditions

for wormhole switches in the MPSoC domain (e.g., [24]), while at network level

the clock tree typically plays a greater role in determining total power [93].

2.1. Networks on-Chip 41

2.1.10 Design challenges for Networks on-Chip architectures

The evolution of NoC design techniques and tools will be driven by the design

challenges imposed by future design objectives and technologies. This section

presents a non-exhaustive list of future design challenges. While some chal-

lenges will be tackled in this dissertation, some others will not, as they fall

outside its scope.

Technology challenges

Link performance is likely going to be the system performance bottleneck in

the near future. While gate delays scale down with technology, wire delay

typically increases, forcing an increment of link repeaters in order to keep

viable operating frequencies, as the maximum operating frequency can be

preserved by breaking long timing paths.

Another technology related issue concerns global synchronization of large

multi-core chips. The difficulty to control clock skew and the power associated

with the clock distribution tree will probably cause a design paradigm shift

toward Globally Asynchronous and Locally Synchronous (GALS) systems [71].

The basic GALS paradigm is based on a system composed of a number of

synchronous blocks designed in a traditional way (and hence exploiting stan-

dard synthesis methodologies and tools). However, it is assumed that clocks of

such synchronous systems are not necessarily correlated and consequently that

those synchronous systems communicate asynchronously. Locally synchronous

modules are usually surrounded by asynchronous wrappers that handle inter-

block data transfers. Practical GALS implementations may form much more

complex structures, such as bus [149] or NoC structures [87], for inter-block

communications, and use different data synchronization mechanisms. Addi-

tionally, the GALS paradigm does not rely on absolute timing information

and therefore favours modularity, by means of local islands of synchronicity

that can be arbitrarily combined to build up larger systems [83]. NoC archi-

tectures are generally viewed as an ideal target for application of the GALS

paradigm [87]. To summarize, GALS NoCs are a promising means of tackling

a number of interconnect issues, from power reduction to clock skew manage-

ment, while preserving design modularity.

42 Chapter 2. Background and State of the art

Finally, signal integrity issues (cross-talk, power supply noise, soft errors,

etc.) will lead to an increment of transient and permanent failures, thus rais-

ing the reliability concern for NoCs [33]. In many cases, NoCs can be designed

as regular simple structures in which the electrical parameters of wires can

be easily optimised and well controlled. But even in those cases, communica-

tion failures can occur as an effect of the deviation of technology parameters

from nominal design values (such as effective gate length, threshold voltage

or metal width). In fact, precise control of chip manufacturing is becom-

ing increasingly difficult and expensive to maintain in nanoscale technologies.

This produces performance and power variabilities that result in increasing

yield degradation. Providing support for process variation tolerance in NoCs

poses unique design challenges. From a physical viewpoint, network circuits

should be able to adapt to the technology conditions, for instance by means

of the self-calibrating techniques proposed in [133,156]. From an architectural

viewpoint, one or more sections of the network might be unusable, requiring

routing and topology solutions able to preserve interconnection of operating

nodes, like the ones presented in [61].

Scalability challenges

The most promising approach to deliver massively scalable computation archi-

tectures, while effectively managing power and heat, is to split functions into

many concurrent operations and distribute them across many parallel process-

ing units. Those processors, known as Chip Multi-Processors (CMPs), achieve

a high performance by executing many operations in parallel, while keeping

affordable operating frequencies. Evidence of this CMP trend can be found

in several current commercial products: AMD’s OpteronTM, Intel’s CoreTM,

IBM’s CellTMand Power5TM. In the foreseen future, performance gains will

come from increases in the number of cores per chip, making the intrachip

communication infrastructure a key bottleneck for the system performance.

The scalability issue in NoCs can be tackled in several ways. It is possi-

ble to propose architectural solutions aimed at improving the performance of

the NoC architectural blocks, for instance by improving switch performance

by removing control overheads (routing and arbitration logic) from the crit-

ical path [106]. Additionally, the parameters of the NoC can be changed

2.1. Networks on-Chip 43

by modifying the physical interconnection pattern (i.e., different topologies),

and/or the communications paths (i.e., different routing strategies), in such

a way that the performance of the interconnection is improved. This issue

is naturally suited to exploit the similarities between NoC and off-chip high

performance interconnection networks by importing to the NoCs domains so-

lutions developed for the off-chip domain that have been widely tested and

verified. But this process has to be carefully carried out, as both environ-

ments present different enough conditions to have different gains from the

application of the same techniques. As an example, the topology topic has

been widely analyzed in off-chip interconnection networks, but the differences

between both environments make one of the most used topologies in off-chip

networks non-competitive in NoCs (as we will see in Chapter 3). And even

in those cases in which an off-chip solution that can be directly applied in

NoCs it is possible to exploit the distinctive characteristics of NoCs in order

improve one or more parameters (performance, power consumption, etc.) of

the imported solution. For this reason, techniques from the off-chip domain

should not be blindly adopted into NoCs designs, but adapted by taking into

account the special characteristics of the NoC domain.

Design productivity challenges

A bug advantage of NoCs is their capability to reduce design costs while pro-

viding high-performance communications. But due to the high heterogeneity

of NoC solutions, the process to select the optimal solution for a given design

is complex, and it is growing more complex as new technologies for NoCs are

proposed. Moreover, this complexity makes it very difficult to provide accurate

performance estimations of these solutions in the earlier stages of the design

process, raising a potential design risk. Hence, new tools are needed to guide

the designer to the best candidates inside the design space. As mentioned,

the selection of the right topology is a key step of any NoC-based design. Due

to the wide range of topologies available to be designed, topology exploration

is likely going to be a key factor of these tools. But there are other design

decisions which will impact the design viability and that are not fixed by the

topology, like the selection of the optimal buffer distribution inside the switch.

In order to address this challenge, early Design Space Exploration (DSE)

44 Chapter 2. Background and State of the art

is required to find appropriate system architectures out of many candidate

architectures. Usually, early exploration is carried out by means of abstract

level tools that provide performance estimations that the designer will use to

select the most promising candidates at the earlier stages of the design flow.

There are several challenges that future DSE tools must overcome.

First, the number of possible solutions for a given design increases as new

technologies are introduced, further increasing the size of the design space. In

order to keep design time within affordable limits, new techniques to speed up

NoC design flows are needed. Second, there is a gap between the performance

predictions of those tools and the real performance achieved after the system

is implemented. In fact, this gap grows as the scale of new technologies is

reduced, forcing to increase the number of design re-spins due to inaccurate

high level predictions, which results in increased design cost. To minimize its

impact, layout-aware tools must be used in each step of the design process,

thus considering the impact of the physical design of the solution at hand. This

raises the need for new DSE tools for NoC design, requiring the development of

new abstract level models able to provide accurate layout-aware performance

estimations, as well as tools to guide the designer towards the most promising

candidates inside a given design space within an affordable time cost. Finally,

design re-spins may occur at any stage of the design process, increasing the

TTM and cost due to inaccurate performance predictions of design candidates,

design errors, wrong design constraints, etc. In this context, new design tools

for NoC systems should consider this fact, providing support to fast design

re-spin techniques. For instance, providing a list of candidates classified by

their suitability for different design constraints and/or by reducing the tool

computational cost to a minimum.

2.2 State of the Art

In this section, we provide the results of our search along the open literature

in the research fields that are treated in this dissertation. Due to the simi-

larities between NoCs and off-chip interconnection networks, the adoption of

off-chip solutions, in particular topologies and architectures, into NoCs is a

very popular topic.

2.2. State of the Art 45

Due to the relevance of the network topology over interconnection perfor-

mance and power efficiency, network topologies have been extensively studied

in the past for off-chip interconnects [46, 72, 88]. In the NoC field, topology

optimization for power efficiency is a very popular research domain. The au-

thors of [151] perform an analysis on the power efficiency of several topologies,

concluding that from an energy standpoint, high-dimensional tori should never

be selected over hierarchical or express cubes. However, the unpredictability

of actual physical parameters and the fact that different optimal topologies

were indicated for different traffic patterns prevents to accurately quantify

the benefits of the studied topologies. The analysis presented in [82] shows

that fat-tree topology is a strong candidate to fulfill tight latency constraints.

Unfortunately, the wiring complexity inherent to fat-trees compromises its

viability. Ring, spidergon, crossbar and 2D-mesh topologies are compared

in [36, 37], pointing out the nice properties of the spidergon topology with-

out analyzing the physical issues and the feasibility concerns of the analyzed

topologies. Mesh and torus topologies are compared in [101] under different

routing algorithms and traffic models.

Still related to the topology for NoCs topic, a growing number of works

propose to exploit the relatively abundant wiring resources of NoCs. In this

trend, the work in [116] proposes the use of topologies with a core:switch con-

nectivity of N:M (N cores attached to M switches), instead of traditional 1:1

(a core for each switch) or N:1 (N cores for each switch). The work in [23]

proves the limited scalability of 2D-meshes and proposes a concentrated mesh

architecture with several cores per switch and express channels, as well as a

version with replicated subnetworks. Also, the somehow exceedingly wiring of

NoCs favours the use of wiring intensive topologies, like tree-based topologies

(i.e., fat-trees). Low latency communication and performance scalability are

the main reasons behind the use of fat-trees in early network-on-chip proto-

types, like in the SPIN micronetwork [17, 70]. Also, butterfly fat-trees are

used in [113, 114] with the motivation that the number of switches converges

to a constant independent of the number of cores, at the cost of an increment

on the switch radix. More recently, optimized tree-based topologies have been

proposed to address the implementation overhead of traditional fat-trees. One

approach is to combine the properties of grid-based topologies like mesh and

46 Chapter 2. Background and State of the art

torus with those of tree-based topologies. In this direction, [95] proposes a

new tree-like topology for NoCs: the fat H-tree The extension of this solution

to 3D NoCs is illustrated in [96].

Due to the wide variety of topologies available for a given design, a whole

research branch is dedicated to development of tools and methodologies to

perform topology exploration, that is, to select the optimal topology for a

given design. Topology exploration and DSE are two tightly related topics,

as most DSE tools include some kind of topology exploration. In this direc-

tion, some works present roadmapping tools aimed at restricting the design

space to a small subset, to be further investigated by means of more accurate

analysis tools [138]. Although roadmapping tools are very useful in the early

design stages, their power/area/delay estimations are necessarily based on In-

ternational Technology Roadmap of Semiconductors (ITRS) projections [15],

architecture-level power models [78, 150], pipeline delay models [118], analyt-

ical power models [159] or floorplan assumptions that are often referred to

generic NoC architectures. Roadmapping tools relay in abstract models of

key system parameters (performance, power [40,41,99,112,146,150,158,159],

reliability [18, 79, 145]), which should be eventually validated at lower levels

of abstraction. However, the aim of pruning wide design spaces by selecting

the most promising candidates justifies their low modeling accuracy. On the

contrary, other works propose more accurate analysis by using synthesis tools,

with the objective to select the optimal NoC for a given design and generate

it [32]. These tools have a more restricted scope and need to capture physical

synthesis effects very accurately, thus employing layout-aware techniques to

close the aforementioned gap between the architectural and physical design

phases. The authors of [77] propose a toolchain for SoCs that, starting from

the traffic specifications, instantiates a model of the NoC, synthesizes it and

then evaluates it in order to detect timing and performance issues. The work

in [20] presents a physical planning tool that optimizes link power consumption

during topology design. With a similar aim, the authors of [139] introduce a

floorplanning tool based on sliced trees. The work in [108] considers the wiring

complexity of each topology in order to detect link length issues early in the

design process. A similar approach is used in [74] and [117] to address link

delay and power issues.

2.2. State of the Art 47

During the design process of a SoC, the selection of the right architecture is

a key design point. Therefore, DSE tools must consider the optimal architec-

ture for the needs of each design, providing additional features (e.g., fault tol-

erance) when required. The maturity of the off-chip interconnection network

research provides designers with a lot of opportunities to import solutions into

the on-chip domain. For example, providing designers with architectures that

implement Quality of Service (QoS) mechanisms or fault tolerance architec-

tures. Among these imported solutions, virtual channels are an iconic example.

Virtual channel flow control was first proposed as an effective workaround for

head-of-line blocking for interconnection networks in [47]. Virtual channels use

is widespread in interconnection networks, not only as a flow control mecha-

nism, but as a foundation for more advanced techniques, like fault tolerance,

Quality of Service (QoS) or deadlock avoidance.

The use of virtual channels has been widely proposed in NoCs, but since

its implementation requires extra buffers, the switch power consumption will

increase with the number of virtual channels [25]. State-of-the-art virtual

channel switch architectures for NoCs are illustrated in [118]. This work also

develops canonical architectures for classical wormhole switches, the original

virtual channel switch architecture presented in [47] and a version of it in

which the virtual channel allocation phase is carried out speculatively, thus

providing a single-cycle switch architecture that looses some cycles when the

speculative step fails.

Further, more efforts were carried out in order to reduce the delay and

power consumption of virtual channels switch architectures for NoCs. For

example, the work in [75] presents a novel approach for improving the perfor-

mance of virtual channels for the cases when the target application of the de-

sign is known, consisting of the customization of the virtual channel allocation

based on the traffic characteristics of the target application. The work in [90]

proposes to use virtual channels for flit admission in the network in order to re-

duce the complexity of the crossbar. Summarizing, the basic techniques to im-

prove switch energy and delay are: speculation [106, 118], bypassing [85, 105],

lookahead [68, 84], modified virtual channels allocators [26, 80, 84, 160] and

lookahead routing [62]. A brief description of each one follows:

• Speculative techniques try to reduce the delay by assuming that the

48 Chapter 2. Background and State of the art

virtual channels are always free to be allocated, when this is not the case

some cycles are required in order to recover from the speculation failure.

• Bypassing solutions try to avoid the virtual channel allocation overload

by acting as plain wormhole switches when possible, and using virtual

channels only when required.

• Simplified virtual channel allocation proposals aim at reducing the

delay of the virtual channel allocation phase by trading off performance

for reduced complexity. For instance, by providing sub-optimal virtual

channels allocations with a significant reduction in its implementation

complexity.

• Lookahead solutions exploit the available wiring density of NoCs in or-

der to increase the control information transfer between adjacent switches.

In this way, a given switch is performing the arbitration and virtual chan-

nel allocation of a packet when its header is actually still crossing the

previous switch of the packet path.

Other works exist with different proposals. For example the work in [157]

proposes the use of dynamic virtual channels that can be allocated by any

input port when an additional virtual channel is needed, aiming at a global

channel resource sharing. Although highly flexible, the proposal has a signif-

icant overhead in terms of area and power since tables (whose size depends

on the packet length) are needed to track the flits traversing traversing each

switch.

To summarize, the actual trend when designing virtual channel architec-

tures for NoC is to to optimize the switch critical path by proposing complex

architectures that are often derived from the original virtual channel proposal

in [47]. Additionally, in many CMP NoC implementations, custom-designed

crossbars are used, like the one in [148]. Custom designs do not employ stan-

dard cell libraries, thus allowing designers to produce very optimized imple-

mentations at the cost of an increased design time. Those implementations

reach ultra-high operating frequencies while providing a significant reduction

on power consumption over designs based on standard cells libraries.

2.2. State of the Art 49

Finally, other steps of the DSE process are addressed in the open liter-

ature. For example, core mapping is the topic of the work in [124], which

aims to address it by a design space exploration methodology based on ge-

netic algorithms. Limited to a single topology (2D-mesh) and to a single step

of the DSE process (core mapping), this work proposes to use the trade-off

between accuracy and performance inherent to genetic algorithms in order to

quickly explore the possible core mappings that form the design space, picking

up one of the most promising candidates in terms of both performance and

power consumption. The accuracy of the methodology is a parameter that can

be adjusted, therefore producing better mappings at the cost of an increased

computational cost. Core mapping in a 2D-mesh topology is also the topic

of [107]. In this work, an algorithm based on graph theory and mathematical

models of 2D-mesh topologies is presented. The algorithm requires to know

beforehand the exact traffic pattern of the applications to be executed in the

design. These traffic pattern are later on converted into a graph model that is

manipulated by the proposed algorithm in order to be mapped into a 2D-mesh

while maximizing performance. Although it shows promising results, it has a

narrow scope, due to its limitation to work with a single topology and known

and fixed traffic patterns.

If we focus on works directly related to the DSE topic, in [102] a whole

tool to perform DSE of embedded systems is presented, while the work in [94]

presents a process to perform design space exploration of Very Long Instruc-

tion Word (VLIW) architectures. Both works require to have some complex

estimations of the system traffic pattern, like traces. Although such traffic

estimations are usually difficult to find in the earlier steps of the design cy-

cle, their use simplifies the selection of the optimal NoC configuration for the

design at hand. Finally, in [42] a full design methodology for automatic gen-

eration of heterogeneous NoC-based systems is presented. This work is aimed

to a very limited market niche, as the presented methodology is limited to

multi-user systems in which the user behavior with similar devices of previous

generations is available, thus providing the perfect tool to effectively guide the

design process of new generations of similar devices [129].

50 Chapter 2. Background and State of the art

Chapter 3

Topology exploration for

Networks On-Chip

“Never underestimate the bandwidth of a station wagon full of tapes

hurtling down the highway.”

Andrew S. Tanenbaum, Computer Networks, 4th Ed.

This chapter presents the simulation framework developed in order to per-

form topology explorations. After a brief introduction (Section 3.1), a short

description of several topologies proposed for NoCs and their high-level prop-

erties is presented in Section 3.2. Next, the simulation framework proposed in

this dissertation is introduced and validated in Section 3.3. Finally, Section

3.4 introduces the reader to the most common pitfalls of physical design of

topologies for NoCs. Additionally, several cases studies are presented both,

as a demonstration of the proposed simulation framework and as a mean of

showing the reader the actual gap between abstract and layout-aware topology

explorations methodologies.

3.1 Introduction

The network topology is a key factor for the performance and cost of any NoC

design. As anticipated in Chapter 2, the actual trend in CMPs designs is to

51

52 Chapter 3. Topology exploration for Networks On-Chip

choose a 2D-mesh because of its regular connection pattern. It provides a high

suitability for the bidimensional silicon surface as well as highly predictable

electrical parameters. However, as the number of cores in future NoCs de-

signs increases, this topology might not be the best choice, since the 2D-mesh

bandwidth and latency scalability issues are well known. This raises the need

to search for substitute topologies, as well as to assess their suitability for the

design at hand by means of a topology exploration framework for use in the

early design stages [32].

The topology exploration topic has been extensively analyzed in the do-

main of off-chip interconnection networks. However, the on-chip environment

has radically different constraints than the off-chip one, especially when it

comes to link characteristics, wiring cost, signaling techniques and synchro-

nization mechanisms. In the off-chip domain, a significant cost arises from

network links, and the available wiring density is quite limited. On the other

hand, in the on-chip environment most of the cost is due to silicon area and

power, which is typically dominated by storage resources (buffering), while

wire density is certainly higher than in the off-chip domain and is not con-

strained by pin limitations. The gap between the constraints driving the design

of on-chip vs off-chip interconnection networks (and hence the gap between

the final network topology selected for use in each domain) is widening even

more as an effect of technology scaling. New physical effects come into play

and may either degrade performance/power in an unpredictable way or even

affect feasibility of specific connectivity patterns or architecture design tech-

niques. In particular, the delay of on-chip interconnects increases as an effect

of the decreased cross-section area of links, making the performance of de-

signs targeting sub-45nm silicon technologies increasingly dominated by the

on-chip interconnection. This effect becomes more and more severe as tech-

nology scales down and tends to widen the gap between post-synthesis and

post-place&route performance figures, even moving critical path delays from

logic blocks to long global wires.

Performance, and even feasibility, of topologies for NoCs is extremely sen-

sitive to on-chip specific design issues, with deep implications on the network

architecture. In an on-chip setting, topologies must in fact match the 2D

silicon surface, while off-chip realizations are dictated by a board/rack organi-

3.2. The high level view 53

End node

Switch

(a) Symmetric

End node

Switch

(b) Non-symmetric

Figure 3.1: Example of symmetric and non-symmetric topologies.

zation. The 2D mapping constraint raises implementation issues such as wire

crossings, wires of uneven length, in addition to other issues, like the decrease

of switch operating frequency with the number of I/O ports. As an ultimate

consequence, topologies borrowed from off-chip networks should be reassessed

in the on-chip environment and validated against the design constraints of this

domain. This is the motivation which is at the core of this chapter. Many

regular topologies feature better abstract properties (e.g., diameter, bisection

bandwidth) than a 2D-mesh, however their silicon implementation is very

challenging. The objective of this chapter is to quantify to which extent their

inherently better abstract properties are impacted by the degradation effects

of the physical implementation on nanoscale silicon technologies.

3.2 The high level view

3.2.1 High level topology properties

As the number of topologies that can be considered for a NoC increases, the

need to predict their capabilities arises. Several properties exist that help to

predict topology characteristics from a theoretical point of view. The rest

of this section enumerates and defines some of the most common high-level

properties utilized in abstract topology analysis and comparison.

54 Chapter 3. Topology exploration for Networks On-Chip

• Symmetry: A topology is symmetric when the network looks the same

from every switch. Figure 3.1(a) and Figure 3.1(b) show two different

topologies, only the first one has the symmetric property. Although sym-

metric topologies may provide abundant communications paths between

any two cores, taking advantage of this effect while providing deadlock

free routing is usually a complex task, due to the abundance of cycles.

• Switch degree: Defined as the total number of input/output ports of

a switch. The operating frequency of a switch and its area requirements

are strongly related to its degree: the higher the switch degree, the lower

the switch maximum operating frequency and the higher its area cost.

• Homogeneity: A topology is homogeneous if all its switches have the

same degree, that is, the same number of ports. Figure 3.1(a) and Fig-

ure 3.1(b) show two different topologies where only the first one has

the homogeneous property. In the NoC environment, non-homogeneous

topologies may present switches with different maximum operating fre-

quency, since it strongly depends on the switch degree. This may force

faster switches to work at the speed of the slower ones, or to use tech-

niques to support switches with different operating frequencies in the

same NoC. Although homogeneous topologies are more modular and in

principle easier to implement, homogeneity is a desirable property but

not an indispensable one. As an example, the widely used 2D-mesh is

not homogeneous. This property is in fact secondary to other impor-

tant qualities of a topology such as the minimization of communication

resources and/or the simplification of the connectivity pattern.

• Bisection Bandwidth: It is defined as the smallest aggregated band-

width of all the pairs obtained by dividing the topology into two equal-

size halves. It is a common measure of theoretical network performance:

the higher the bisection bandwidth, the better the topology is suited to

cope with high traffic loads. Figure 3.2 shows two examples of bisection

bandwidth (depicted as a dotted line).

• Hop count: It is defined as the maximum number of switches that

must be traversed in the topology in order to travel between any two

3.2. The high level view 55

End node

Switch

(a) 4×4 Mesh

End node

Switch

(b) 4-Hypercube

Figure 3.2: Examples of topology bisection bandwidth.

(a) Conceptual (b) Projected into a 2D plane

Figure 3.3: Representations of a 3-hypercube.

cores by means of minimal routes. The higher the value of this property,

the longer messages take to reach their destinations and the higher the

probability of collision with other messages. Figure 3.2 shows two regular

indirect topologies with the same number of cores. While it takes 7 hops

to travel from top-left to bottom-right in the 4×4 mesh, this number is

only 5 in the 4-hypercube.

• Diameter: Notice that multi-cycle links may distort the hop count met-

ric, as the hop count of a path may differ too much form the real cost

in cycles of traversing this path. In order to have a more accurate pa-

rameter, the diameter of a topology is defined as the maximum distance

56 Chapter 3. Topology exploration for Networks On-Chip

between any two cores in cycles. This property is completely dependent

on the physical implementation of the topology. For example, Figure 3.3

shows a conceptual 3-hypercube and its projection into a bi-dimensional

plane. Of interest, longer links are the candidates to become multi-cycle,

therefore, although both representations of the same topology have the

same hop count, they may end up presenting a different diameter. This

is a classical example of a theoretical metric that does not hold when the

topology is laid-out on silicon because it needs some engineering effort

to be effective.

• Connectivity: Defined as the minimum number of network links that

have to be disconnected in order to prevent a core from sending and/or

receiving messages. This property indicates the maximum number of

network links failures that a topology can tolerate without isolating any

core.

• Total number of switches: Defined as the total number of switches

required to fully interconnect all the cores with a particular topology.

This property is usually related to the number of cores that need to be

interconnected.

• Total number of network links: It is defined as the number of uni-

directional network links required to fully interconnect all cores of a

certain topology. As links are not a critical resource in NoCs, this is not

an interesting property for NoC designers but the delay of each link is a

key factor. In fact, as it will be discussed in section 3.4, a long link may

require several pipeline stages to be inserted in order to keep the whole

topology frequency above a certain threshold, thus affecting its link de-

lay. Furthermore, since the real link delay is dependent on the topology

mapping strategy and the technology library used, it is very difficult to

provide an accurate estimation of this parameter in the earlier design

stages. On the other hand, this property is still a good implementation

cost indicator, as it is directly related to the total number of ports of a

topology. The total number of ports of a topology is equal to the total

number of unidirectional network links plus the total number of cores.

Notice that to perform a comparative analysis of the implementation

3.2. The high level view 57

cost of topologies with equal number of cores, only the number of unidi-

rectional network (switch-to-switch) links varies between topologies, as

the core–to–switch links are a constant in this case. For this reason, from

now on this dissertation will refer only to the total number of networks

links.

The properties listed above allow to perform generic but inaccurate topol-

ogy comparisons in terms of both, performance and cost, since they are com-

pletely agnostic of any physical implementation property of the topologies

they describe. While this makes sense for a rough estimate of abstract system

level properties, this chapter will demonstrate later on the risks of selecting

the topology for a NoC system based only on these considerations.

3.2.2 Topologies for Networks on-Chip

As mentioned, the 2D-mesh is the most common topology for NoCs in the open

literature. It is also the common solution for the latest commercial proposals

and industrial prototypes, like the Tilera multi-core processor family [6] or the

Intel 80-cores Polatis chip [2]. However, this trend is expected to change in the

near future due to the 2D-mesh limitations. Alterative topologies are either

optimizations or modifications of a 2D-mesh, like the C-Mesh [23], or based

on radically different connectivity patterns, like WK-Recursive [126] or Fat-

Tree [82]. This section presents some of the most promising regular topologies

that have been recently proposed for NoCs in the open literature. Table 3.1

summarizes the properties of all the presented topologies, as well as those of

their most common sub-types (if any).

Mesh

Although commonly depicted as a direct topology, a mesh can be implemented

as both, direct and indirect. In the former case, every core is directly connected

to other cores. In the latter case, every core is connected to the network

through a link and a switch. Regardless of their type, meshes are always

orthogonal.

A generic mesh is defined by three parameters: the number of dimensions

n, the number of cores attached to each switch m, and a n-tuple 〈k1, k2, ...kn〉,

58 Chapter 3. Topology exploration for Networks On-Chip

Topology Switches Cores/ Total Max. switch Symm. Homog.

switch cores degree

k-ary n-mesh kn m mkn 2n+m No No

k-ary 2-mesh k2 m mk2 4+m No No

2-ary n-mesh 2n m m2n n+m Yes Yes

k-ary n-cube kn m mkn 2n+m Yes Yes

k-ary l-rec kl m mkl k+m No No

k-ary n-tree nkn−1 0 or k kn 2k No No

k-ary n-fly nkn−1 0 or k kn k No Yes

k-cmesh k2 m mk2 4+m No Yes/No

k-ary n-flat kn−1 k kn (n-1)(k-1)+k Yes Yes

Topology Unidirectional Bisection Hop Connect.

networks links bandwidth count

k-ary n-mesh 2n(k-1)kn−1 2kn−1 n(k-1)+1 n

k-ary 2-mesh 4(k-1)k 2k 2k-1 2

2-ary n-mesh n2n 2n n+1 n

k-ary n-cube 2nkn 4kn−1 n(k/2)+1 2n

k-ary l-rec kl+1-k k2/2 2l k-1

k-ary n-tree 2kn(n-1) kn 2n-1 k

k-ary n-fly kn(n-1) kn/2 n 1

k-cmesh 4k2 4k k+1 4

k-ary n-flat (n-1)(k-1)kn−1 kn/2 n (n-1)(k-1)

Table 3.1: High level properties of analyzed topologies.

in which each ki defines the number of switches in dimension i. This nomencla-

ture is usually represented as: k1xk2x...xkn. When the value of k of different

dimensions differ, the topology become asymmetric, thus worsening the topol-

ogy hop count and its bisection bandwidth. For this reason it is common to

consider a subset of meshes in which the value of k is constant for all the

dimensions, known as k-ary n-mesh.

A k-ary n-mesh has kn switches distributed across n dimensions with k

switches in each dimension. Each switch may have up to m cores attached

to each switch, thus interconnecting up to mkn cores. The switch degree

increases with the number of dimensions and depends on switch placement

inside the topology. The maximum degree is found in switches located at

3.2. The high level view 59

(a) 3-ary 3-mesh (b) 4-ary 2-mesh (c) 2-ary 4-mesh

Figure 3.4: Switch distribution of several mesh configurations.

the middle of the mesh, with 2n + m ports. The hop count is n(k − 1) + 1,

while the total number of unidirectional network links is: 2n(k − 1)kn−1.

Finally, the bisection bandwidth is 2kn−1 unidirectional links, and the topology

connectivity is n links, corresponding with the number of switch–to–switch

links of switches located at the corners. As a general rule, a k-ary n-mesh

is neither symmetric nor homogeneous, with the exception mentioned below.

Figure 3.4 shows several examples of the switch distribution in k-ary n-mesh

topologies. Notice that each switch may have several cores attached (although

they are not shown).

There are two subsets of meshes that require special attention: hypercubes

and 2D-meshes. A 2D-mesh (see Figure 3.4(b)) is a mesh with two dimensions,

so it can be represented as k-ary 2-mesh. On the other hand, a hypercube

(see Figure 3.4(c)) is a 2-ary n-mesh, that is a mesh in which the number

of switches in each dimension is always 2, thus they may also be defined as

n-hypercubes. Hypercubes are the only subset of k-ary n-mesh that is both,

symmetric and homogeneous, with a switch degree of n + m, regardless of

switch placement.

The 2D-mesh is the most common topology for NoCs, but meshes with

more than two dimensions are less common in the open literature. While a

2D-mesh perfectly matches the layout of the cores, other meshes present a

more complex layout, introducing long links and high degree switches. When

mapping a mesh with more than two dimensions (n greater than 2) the links

60 Chapter 3. Topology exploration for Networks On-Chip

21 3

4 5 6 7

8 9 10 11

12 13 14 15

0

(a) 4-ary 2-cube

1

3

0

12 13

1415

2

8

6

9

1011

4

7

5

(b) 4-ary 2-cube folded

Figure 3.5: Switch distribution of several torus configurations.

used to connect the dimensions greater than two are longer. For instance,

assuming uniform core size, links of dimensions 2 and 3 will have twice the

length of the links of dimensions 1 and 2, the ones of dimensions 4 and 5 four

times that length, and so on. As a general rule, the length of a link of the

dimension t is k(d−2)/2 times the length of a link of dimension 1, where d is

equal to t if t is an even number and d is equal to t + 1 if it is an odd number.

But that length may change based on the placement constraints and the cores

geometry. Anyway, the work in [81] introduces the flattened butterfly topology,

which in some cases is equivalent to a hypercube with several cores attached

to each switch, as we will present in this section. Moreover, 3-D technologies

are becoming a real possibility for multi-core designs [152], favoring the use of

topologies with more complex wiring patterns. For example, a 3-D mesh (see

Figure 3.4(a)) may have the optimal wiring pattern for a 3-D environment.

Torus

A generic torus is constructed by adding wrap-around links to the equivalent

mesh and thus they can be defined by similar parameters, with the main

difference that torus can be either unidirectional or bidirectional topologies,

according with the type of links it implements. Tori are orthogonal topologies

that are usually implemented as a direct topology. But, like in meshes, it is

3.2. The high level view 61

possible to get the switch outside the core, converting a torus into an indirect

topology. For example, Figure 3.5(a) shows the switch distribution of the torus

resulting of adding wrap-around links to the 2D-mesh in Figure 3.4(b). A torus

can be defined by the number of dimensions (n), the number of cores attached

to each switch (m), and the n-tuple that defines the number of switches per

dimension (〈k1, k2, ...kn〉). But as in the case of the mesh, a torus with varying

number of switches per dimension may not be the best choice.

For this reason, it is usual to consider k-ary n -cubes, a subset of torus

in which the number of switches per dimension (k) is constant. A k-ary n-

cube has kn switches distributed across n dimensions with k switches in each

dimension, with up to m cores attached to each switch, thus interconnecting

up to mkn cores. The switch degree increases with the number of dimensions

and is constant for all the switches: 2n+m ports. The hop count is n(k/2)+1,

while the total number of unidirectional network links is: 2nkn. The bisection

bandwidth is 4kn−1 unidirectional links, and the topology connectivity is 2n

links. Finally, a k-ary n-cube is symmetric and homogeneous. Therefore, it

provides better performance and fault tolerance, but at the cost of a slightly

higher number of links. Also, the wrap-around links of a torus may present

length issues. A common way to solve this problem is to use a folded torus,

in which the nodes are re-allocated over the floorplan, obtaining an equivalent

topology with reduced wrap-around link length at the cost of increasing the

length of the other links. Figure 3.5(b) shows the folded version of the 4-ary

2-cube shown in Figure 3.5(a).

Although not as common as 2D-meshes, tori have been proposed in several

NoC works. The Proteo NoC [132] employs a ring topology, and rings can be

defined as a k-ary 1-cubes. Also, 2D-folded tori have been proposed for their

use in NoC [49,86,101,130]. Although rings and 2D-torus have been proposed

as NoC topologies, more complex structures than them are very difficult to

find even in the open literature due to their complexity and expected layout

intricacy. Additionally, 2-ary n-cube and hypercubes (2-ary n-mesh) are con-

sidered as equivalent topologies, as wrap-around links are redundant in this

case.

62 Chapter 3. Topology exploration for Networks On-Chip

(a) Degree 2 (b) Degree 3 (c) Degree 4 (d) Degree 5

Figure 3.6: Switch distribution in WK-Recursive first level virtual nodes.

WK-Recursive

WK-Recursive topologies were first proposed in [51], and are regular direct

non-orthogonal topologies, constructed by recursively replicating a basic struc-

ture called virtual node. The first virtual node is constructed by connecting k

switches with k network ports in a fully connected structure, leaving k links

free. Like in meshes and tori, it is possible to take the switch out of the node,

thus converting the WK-Recursive topology into an indirect topology. In this

case, m cores could be attached to each switch. Hence, a virtual node is vir-

tually similar to a switch of degree k, with mk cores attached to it. Figure 3.6

shows the switch interconnection of several first level virtual nodes. Following

the same strategy, k virtual nodes can be used to define a second level virtual

node of degree k. In fact, a level l virtual node is constructed by using k virtual

nodes of level (l − 1). Based on this definition, a WK-Recursive topology is

defined by two parameters: the virtual node k and the expansion level l. The

most common nomenclature of this topology in the open literature is to use

the pair (k,l), but, in order to provide an homogeneous nomenclature among

all the topologies described in this chapter, for now on, this topology will be

addressed as k-ary l-rec. Figure 3.7 shows several WK-Recursive topologies

for different values of k and l.

A k-ary l-rec has kl switches, with m cores attached to each switch, thus

interconnecting mkl cores. The switch degree is directly defined by virtual

node degree and depends on the switch placement inside the topology (for ex-

ample, switches at the corners of Figure 3.7(c) employ one less port than other

switches), being the maximum switch degree k+m ports. The hop count is 2l,

3.2. The high level view 63

(a) 3-ary 2-rec (b) 3-ary 3-rec (c) 4-ary 2-rec (d) 4-ary 3-rec

Figure 3.7: Switch distribution of several WK-Recursive configurations.

while the total number of unidirectional network links is: kl+1 −k. The bisec-

tion bandwidth is k2/2 unidirectional links, and the topology connectivity is

k − 1 links. Finally, a k-ary l-rec is neither symmetric nor homogeneous. No-

tice that in the case of k-ary 1-rec configurations, the maximum switch degree

is k − 1 + m ports and the topology becomes symmetric and homogeneous.

Although it is difficult to provide efficient deadlock-free routing in a k-ary l-

rec [126], this topology has attracted the attention of NoC researches [126,142],

due to some appealing properties. First, 4-ary l-rec has similar layout than

2D-mesh with the same number of cores and cores per switch. Second, the

switch degree is exactly the same in both topologies. Third, the number of

switches is exactly the same in both topologies, although the number of links

is slightly higher in the WK-Recursive topology. Finally, a WK-Recursive

topology has a much lower hop count than its equivalent 2D-mesh. Anyway,

the improvements of 4-ary l-rec topologies over 2D-meshes comes at a cost, as

its bisection bandwidth scales worse than in a 2D-mesh.

Fat-Tree

Fat-Trees are regular indirect topologies based on complete trees. The dif-

ference between a fat-tree and a complete tree is that a fat-tree gets thicker

(offers more bandwidth) near the root, thus making switch degree higher the

closer the switch is placed to the root. If the switch degree becomes too high,

the physical implementation may become infeasible due to an unrealistically

low operating frequency and/or cost. For this reason, some alternative imple-

mentations have been proposed in order to use switches of fixed degree.

64 Chapter 3. Topology exploration for Networks On-Chip

End node

Switch

(a) 2-ary 3-tree

End node

Switch

(b) 2-ary 4-tree

Figure 3.8: Examples of fat-tree configurations.

Among those alternatives, one of the most common subclasses are butterfly

fat-tree or folded butterfly, also known as k-ary n-trees [119]. In this notation,

a fat-tree is defined by two parameters: the number of stages n and the switch

degree k. A k-ary n-tree belongs to the Multistage Interconnection Network

family (MIN), and thus switches are organized in stages, in which a switch

only has connections to the next and the previous stage based on a regular

pattern, and only switches belonging to the first stage have connections to

cores. In particular, a k-ary n-tree is composed composed by nkn−1 switches

distributed in n stages. Each switch of the first stage has k cores attached,

thus the topology provides connection to kn cores. Each switch employs k

bidirectional links to connect with the next stage and k bidirectional links to

connect to the previous stage, with the exception of switches belonging to the

first and last stages. Switches of the last stage have a switch degree of k,

while all the other switches have a degree of 2k. The hop count is 2n − 1,

while the total number of unidirectional network links is: 2kn(n − 1). The

bisection bandwidth is kn unidirectional links, and the topology connectivity

is k links. Finally, a k-ary n-tree is neither symmetric nor homogeneous.

Figure 3.8 shows several configurations of k-ary n-trees. Notice that unlike

3.2. The high level view 65

End node

Switch

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(a) 2-ary 3-fly

End node

Switch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) 2-ary 4-fly

Figure 3.9: Examples of butterfly configurations.

the previous topologies, in this case the number of cores connected by the

topology is strictly fixed.

Due to their low hop count and high bisection bandwidth, fat-trees have

been proposed as topologies for NoC aiming at low latency communication,

like the works presented in [17, 114]. Anyway, k-ary n-trees require a much

higher number of switches and links that an equivalent mesh with the same

number of cores.

Unidirectional topologies

Most topologies proposed for NoC in the open literature employ bidirectional

links. But, in resource constrained environments like NoCs, unidirectional

topologies may be a better cost-performance trade-off in the design space.

An unidirectional topology require unidirectional (one-way) ports and links,

so the number of links of the topology can be smaller than in a 2D-mesh

66 Chapter 3. Topology exploration for Networks On-Chip

with equal number of cores. This translates in important area and power

consumption savings, but there are several issues that question the viability of

these topologies in NoCs. For example, simple unidirectional topologies only

offer a unique path between any two cores, making them highly vulnerable

to link failure, as there is no way to avoid those faulty links. Although it

is possible to use more complex unidirectional topologies to overcome this

limitation, this is likely to increase the cost of the topology, thus offsetting the

low cost advantage of unidirectional topologies.

There are two kind of unidirectional topologies that are well known in the

open literature: rings and multistage. Unidirectional rings are just a sub-case

of the torus family (see Section 3.2.2). Regarding multistage topologies, unidi-

rectional multistage interconnection networks (uMINs) have some properties

that make them appealing as NoC topologies. For example, the work in [22]

proposes the use of the butterfly topology as mean to provide high performance

communications with an affordable implementation cost.

In an uMIN, switches are organized in stages, and each stage only connects

to the previous and next stage following a regular pattern, with the exception

of the first and the last stage, that have connections to the cores. In those

topologies, communications are one-way: messages are always delivered from

the first stage to the last stage. An uMIN is characterized by the pattern

defining how stages interconnect with each other. There are several common

patterns, and one of the most common patterns is the butterfly, which is also

used in the building of the k-ary n-tree topology. The butterfly topology,

also known as k-ary n-fly, is a regular indirect topology, composed by nkn−1

switches distributed in n stages. The topology provides connection to kn

cores. Switch degree is constant and equal to k, while the hop count is n, and

the total number of unidirectional network links is: kn(n − 1). The bisection

bandwidth is kn/2 unidirectional links. Due to the existence of a single path

between any pair of cores, the topology does not tolerate any link failure, thus

its connectivity is 1 unidirectional link. Finally, a k-ary n-fly is homogeneous,

but it is not symmetric.

Figure 3.9 shows several configurations of k-ary n-fly. As can be observed,

at the first stage, each switch has k cores attached only to send messages

through the topology, while at the last stage, each switch has k cores attached

3.2. The high level view 67

only to receive messages from the topology.

Concentrated Mesh

The Concentrated Mesh (or C-Mesh) topology was first proposed in [23]. This

topology is an evolution of a 2D-mesh, and aims at solving 2D-mesh scalability

issues while keeping its advantages.

(a) 4-ary 2-cmesh (b) 8-ary 2-cmesh

Figure 3.10: Switch distribution of several C-Mesh configurations.

In [23] a C-Mesh is built around a 4×4 2D-mesh with four cores attached

to each switch. This way, a lower hop count with respect to that of a classical

2D-mesh, with one core per switch, can be achieved. However, this comes at

the cost of a diminished bisection bandwidth. For this reason, the adoption of

express links is used to improve C-Mesh bisection bandwidth. Express links are

added only along the perimeter of the network, thus taking advantage of the

switches that have a lower degree than the maximum one. In this way, switch

degree remains constant across all the switches of the topology, and equal to

the 2D-mesh maximum one. Although the main goal of using express links is

to increase the bisection bandwidth, they may be also used to greatly reduce

the hop count as they effectively represent alternative routes. Unfortunately,

68 Chapter 3. Topology exploration for Networks On-Chip

this opportunity comes with a cost, as deadlock may more easily become an

issue. Therefore, the provision of deadlock-free routing algorithms is a more

complex task with respect to the original mesh. For this reason, in the original

proposal, express links are used only to advance messages that travel along

the perimeter of the topology a distance equal or higher than the switches

that this express link overtakes. Albeit the use of the express links considered

in [23] is limited, those express links can be used in a similar way to the wrap-

around links of a torus, regardless of whether the message is traveling through

the perimeter of not. From a pure topology point of view, a C-Mesh can be

seen as a classical 2D-mesh with express links, regardless of the number of

cores attached to each switch. Figure 3.10 shows several examples of switch

distribution of generalized C-Meshes, in which each switch can connect to a

parameterizable number cores.

A C-Mesh is defined by the same parameters that a conventional 2D-mesh,

so it can be defined as a k-cmesh, with k2 switches distributed across 2 dimen-

sions and k switches in each dimension, with m cores attached to each switch,

interconnecting a total of mk2 cores. Express links connect switches from the

same dimension that are located at the perimeter of the network and are k/2

hops distant from each other, thus configurations with a number of switches

per dimensions (k) of less than three, are infeasible in this topology. The max-

imum switch degree is equal to 4+m ports, and is constant only when k is an

even number. The hop count is k+1, while the total number of unidirectional

network links is: 4k2. The bisection bandwidth is 4k unidirectional links, and

the topology connectivity is 4 links. Finally, a k-cmesh is not symmetric, and

it is is homogeneous only for even values of k.

Flattened Butterfly

The flattened butterfly topology was first proposed as a NoC topology in [81],

as a solution for cost-efficient high-degree networks. This topology is an evo-

lution of the butterfly topology, and it is formed by flattening the switches

in each column of a butterfly while keeping the same inter-switch connec-

tions. The resulting topology is a regular orthogonal topology that provides

the same bisection bandwidth that a butterfly and a lower hop count, at the

cost of a greatly increased switch degree. Notice than the switch degree greatly

3.2. The high level view 69

End node

Switch

0

1 2

3

4

5 6

7

(a) 2-ary 3-flat

0

1 2

3

4

5 6

7

8

9 10

11

12

13 14

15

End node

Switch

(b) 2-ary 4-flat

Figure 3.11: Examples of flattened butterfly configurations.

increases with both original butterfly parameters: switch degree (k) and num-

ber of stages (n), thus the real performance achievable is extremely sensitive

to the network architecture employed in the final implementation.

A flattened butterfly may be defined as a k-ary n-flat, with k cores attached

to each switch. In this way, a flattened butterfly can be designed as a k-

ary n-flat, with kn−1 switches distributed across n − 1 dimensions with k

switches in each dimension, interconnecting a total of kn cores. The switch

degree is constant and increases with the number of dimensions, being equal

to (n − 1)(k − 1) + k ports. The hop count is n, while the total number of

unidirectional network links is: (n−1)(k−1)kn−1. The bisection bandwidth is

kn/2 unidirectional links, and the topology connectivity is (n−1)(k−1) links.

Finally, a k-ary n-flat is both symmetric and homogeneous. Figure 3.11 shows

the flattened butterfly configurations obtained from flattening the butterfly

configurations presented in Figure 3.9.

Notice that this topology may overlap with previous topologies in several

cases. First, as can be observed in Figure 3.11, when flattening a 2-ary n-fly,

the resulting topology will be identical to a 2-ary (n− 1)-mesh with two cores

attached to each switch. Second, when flattening a butterfly of two stages, the

resulting topology is equivalent to the basic virtual node of the WK-Recursive

of degree k with k cores attached to each switch. In particular, a k-ary 2-flat

will be equivalent to a k-ary 1-rec with k cores attached to each switch, for

any value of k. Finally, a k-ary n-flat is completely equivalent to a generalized

hypercube [34] of degree k and n−1 dimensions, with k cores attached to each

switch.

70 Chapter 3. Topology exploration for Networks On-Chip

Topology Switches Cores/ Max. Unidir. Bisection Hop Connect.

switch degree links bandwidth count

4-ary 2-mesh 16 1 5 48 8 7 2

2-ary 4-mesh 16 1 5 64 16 5 4

2-ary 3-mesh 8 2 5 24 8 4 3

2-ary 2-mesh 4 4 6 4 4 3 2

4-ary 2-cube 16 1 5 64 16 5 4

4-ary 2-rec 16 1 5 60 8 4 3

8-ary 1-rec 8 2 9 56 32 2 7

2-ary 4-tree 32 0 or 2 4 96 16 7 2

4-ary 2-tree 8 0 or 4 8 32 16 3 4

2-ary 4-fly 32 0 or 2 2 48 8 4 1

4-ary 2-fly 8 0 or 4 4 16 8 2 1

4-ary 2-flat 4 4 7 12 8 2 3

4-cmesh 16 1 5 64 16 5 4

Table 3.2: High level parameters of solutions for 16 cores.

3.2.3 High level topology exploration

It is possible to utilize the above exposed properties to perform a high-level

comparison of topology capabilities. This analysis, may be employed in the

early stages of a system design in order to select the subset of the most promis-

ing topology candidates. This section presents an example of high-level topol-

ogy exploration for two system with different sizes: 16 and 64 cores. The

number of cores attached to each switch in those topologies has been limited

to four not to limit too much the maximum operating speed of the switches.

Also, the placement of cores around the switches in those cases would not be a

trivial task, since as the length of the injection/ejection links grows, the NoC

would suffer from a significant drop in performance.

Table 3.2 summarizes the values of the parameters of all 16 cores con-

figurations considered for each topology. For such small systems, there are

only a small number of different configurations to consider. As can be seen,

apart from the classical 2D-mesh, several hypercubes (that is 2-ary n-mesh

topologies) with different concentration degrees of cores at each switch are

considered. On the other hand, only one torus configurations is considered.

3.2. The high level view 71

Although it is possible to concentrate cores in a torus, for this particular sys-

tem size, the resulting torus topologies will have a k value of 2, resulting in

the same hypercubes already considered in the table. Also, two WK-Recursive

configurations with different concentration degree of cores are considered. In

the case of the C-Mesh topologies, there is only a single valid configuration, as

configurations with a k value lower than three are not valid in this topology.

Regarding MINs, two kinds of fat-trees are considered, with switch degrees

(k) of four and eight. Also, the equivalent unidirectional butterflies of the

analyzed fat-trees are considered, together with their flattened versions, with

the exception of the 2-ary 4-flat configuration, as it is completely equivalent

to the 2-ary 3-mesh with two cores attached to each switch. Finally, when

flattening the 4-ary 2-fly solution, the resulting topology overlaps with a 4-ary

1-rec solutions with four cores attached to each switch.

As can be observed, the 8-ary 1-rec solution shows the highest bisection

bandwidth, making this configuration the best proposal for high load configu-

rations. It also provides the minimum possible number of hops, while requiring

the highest switch degree of all the considered solutions. This fact questions

the achievable maximum operating frequency of its physical implementation.

On the other hand, from a low-latency (low number of hops) view-point there

is not a clear winner. There are three solutions that can reach any destination

in only two hops: 4-ary 2-fly, 8-ary 1-rec and 4-ary 2-flat. The 4-ary 2-fly

solution seems the best choice: it requires a similar number of switches of

lower degree than the 8-ary 1-rec solution, with a lower number of links as

well. Unfortunately, it has an important drawback associated with its con-

nectivity. In fact, with a connectivity of only a single unidirectional link,

this solution is highly sensitive to faulty links. Regarding the 4-ary 2-flat,

although it offers a smaller bisection bandwidth than the other two solutions,

it has the lowest number of switches and links with respect to the other two

low-latency solutions. However, there is an issue that further complicates the

comparison in this case: the switch degree. While the 8-ary 1-rec and the

4-ary 2-flat solutions require high-degree switches, the 4-ary 2-fly solution has

a maximum degree of four. Finally, the 2-ary 4-mesh, 4-ary 2-cube, 4-ary 2-fly,

and 4-cmesh solutions appear to be equivalent topologies providing the sec-

ond highest bisection bandwidth with an acceptable number of hops. Among

72 Chapter 3. Topology exploration for Networks On-Chip

them, the only topology that shows a clear inconvenient is the 4-ary 2-tree,

that has a switch degree almost as big as the 8-ary 1-rec.

In overall, the high-level analysis for 16 cores systems shows that the

best topology is the 8-ary 1-rec solution. This topology has a low number

of switches and links, while providing a high connectivity, the highest bisec-

tion bandwidth and the lowest number of hops. As anticipated, the only

parameter that may arise some concerns is its switch degree, which maybe is

too high for such a small system. In the case that the 8-ary 1-rec topology

proves inefficient for physical implementation, the best solution might be one

of the following solutions: 2-ary 4-mesh, 4-ary 2-cube, or 4-cmesh. These lat-

ter solutions provide the second best bisection bandwidth and an acceptable

number of hops.

Regarding the 64 cores analysis, Table 3.3 summarizes the properties of all

64 cores configurations considered for each family of topologies. In this case,

due to the increased system size, there are more topology configurations to be

considered, even when excluding overlapped topologies. Notice that there are

two configurations that are excluded from the analysis due to an extremely

high switch degree. Those configurations are the 8-ary 2-flat, 8-ary 2-tree,

and the 16-ary 1-rec with 4 cores concentrated in each switch, thus resulting

in a switch degree of 15, 16 and 19 respectively. Unless full custom solutions

are conceived, the implementation of such high-degree switches will present

unaffordable low operating frequencies.

For this system size, the solutions best suited for high traffic loads are

the 2-ary 6-mesh, 4-ary 3-cube, 2-ary 6-tree, 4-ary 3-tree. Among those, the

2-ary 6-tree solution has the highest hop count (11 hops), making it the worst

candidate for latency sensitive systems and/or applications. Also, it requires

the highest amount of resources: 192 switches of degree 4 and 640 unidirec-

tional links. Regarding the 4-ary 3-tree, it has an acceptable number of hops

(5 hops), while requiring a moderate amount of resources: 48 switches of de-

gree 8 and 256 unidirectional links. On the other hand, the 2-ary 6-mesh

and 4-ary 3-cube solutions are similar from a high-level viewpoint, as both

of them require 64 switches of degree 7 and 384 unidirectional links, that is

more switches and links than the 4-ary 3-tree solution, with only one port

less in each switch. They also have a higher number of hops than the 4-ary

3.2. The high level view 73

Topology Switches Cores/ Max. Unidir. Bisection Hop Connect.

switch degree links bandwidth count

8-ary 2-mesh 64 1 5 224 16 15 2

4-ary 3-mesh 64 1 7 288 32 10 3

4-ary 2-mesh 16 4 8 48 8 7 2

2-ary 6-mesh 64 1 7 384 64 7 6

2-ary 5-mesh 32 2 7 160 32 6 5

2-ary 4-mesh 16 4 8 64 16 5 4

8-ary 2-cube 64 1 5 256 32 9 4

4-ary 3-cube 64 1 7 384 64 7 6

4-ary 2-cube 16 4 8 64 16 5 4

4-ary 3-rec 64 1 5 252 8 8 3

4-ary 2-rec 16 4 8 60 8 4 3

8-ary 2-rec 64 1 9 504 32 4 7

2-ary 6-tree 192 0 or 2 4 640 64 11 2

4-ary 3-tree 48 0 or 4 8 256 64 5 4

2-ary 6-fly 192 0 or 2 2 320 32 6 1

4-ary 3-fly 48 0 or 4 4 128 32 3 1

8-ary 2-fly 16 0 or 8 8 64 32 2 1

4-ary 3-flat 16 4 10 96 32 3 6

8-cmesh 64 1 5 256 32 9 4

4-cmesh 16 4 8 64 16 5 4

Table 3.3: High level parameters of solutions for 64 cores.

3-tree solution: 7 hops against 5. So, the best configuration for high traffic

loads in a 64 cores system is the 4-ary 3-tree, as it has the lower hardware

resources requirement and number of hops among the best solutions for high

communications loads.

On the contrary, from a low-latency view-point, the best solution is the 8-

ary 2-fly, which needs only two hops to reach any core. This solution employs

16 switches of degree 8 and only 64 links, providing a bisection bandwidth of

32 unidirectional links. Its only drawback is its low connectivity, common to

all butterfly topology.

Overall, for bandwidth-intensive systems the 4-ary 3-tree solution seems to

be the best option, while for latency-sensitive systems the 8-ary 2-fly topology

seems the most promising one. However, the 8-ary 2-fly solution offers the

74 Chapter 3. Topology exploration for Networks On-Chip

second best bisection bandwidth, becoming the overall best solution unless

a higher bisection bandwidth is required. Unfortunately, it is not suited to

systems that require some degree of fault tolerance and/or a variety of paths

between any pair of cores. In this case, the 4-ary 3-flat solution provides the

same bisection bandwidth than the 8-ary 2-fly, while increasing the number of

hops by one. The specific requirements of the system designer and the features

of the network architecture can push one solution instead of another, as there

is in general no clearly winning topology but a trade-off between many factors.

3.3 Networks on-Chip modelling

High level topology properties provide fast early topology explorations. How-

ever, explorations based in high-level methodologies are oblivious to the physi-

cal synthesis of the different topologies, so their accuracy is questionable. This

accuracy problem is aggravated by the effects of nanoscale technologies over

NoC physical design. Issues such as interconnect delay and maximum achiev-

able frequency cannot be ignored by NoC synthesis flows. Moreover, a single

technology library no longer exists for standard cell design. In fact, manu-

facturing technologies are spreading across a variety of libraries optimized for

specific uses, such as low power or high performance, with several intermedi-

ate levels featuring for example different threshold voltages. Using different

libraries at the same design generates large differences in synthesis results,

and their spread is increasing as technology scales down [121]. Therefore, it

is of utmost importance to reduce the gap between both design layers. This

objective can be achieved in two ways. On one hand, layout information can

be annotated into abstract exploration tools in order to increase the accu-

racy of their predictions. On the other hand, high-level exploration tools can

provide feedback to the backend flow in order to guide the synthesis process

to the most suitable candidates in the implementation space [108]. The way

these issues are addressed in the early design phases not only results in more

or less efficient NoC designs, but can even limit their practical feasibility. As

a general guideline, driving NoC designs under severe technology constraints

consists of making silicon-aware decisions at each hierarchical level of the de-

sign flow [54]. This is likely going to result in less design re-spins and in faster

3.3. Networks on-Chip modelling 75

timing closure.

This chapter capitalizes on the concept of Transaction Level Modelling

(TLM) to come up with a fast and accurate simulation environment that

abstracts all relevant NoC architecture-level mechanisms while maintaining

execution time accuracy of Register Transfer Level (RTL) simulations. This

simulation environment can be used to explore the implementation space either

by performing implementation space parametrical explorations or by back-

annotating physical design information.

In parametrical explorations the ranges of network operating frequencies

and link latencies in which performance of one topology is consistently better

than another one are identified. The results of the implementation space ex-

ploration are then changed into directives for the backend synthesis flow. The

degrees of freedom in the synthesis flow (e.g., mix of technology libraries, floor-

planning decisions, pipelined link insertion) should then be exploited to meet

those constraints. In this way, the physical constraints that, if met, would al-

low not to waste the better theoretical properties of a particular topology as a

result of physical implementation are derived. In the case of back-annotation,

the physical characteristics of a particular topology are first obtained (e.g.,

by means of a physical synthesis or technology characterization or a predic-

tive model). This physical design information is then distributed back to the

simulation framework, that will use this information in such a way that perfor-

mance predictions reflect the impact of the topology physical characteristics.

3.3.1 Networks on-Chip behavior abstraction

Our simulation framework takes its steps from the synthesizable RTL model of

the reference architecture exposed in Section 2.1.9. The starting point of the

simulation framework was first presented in [89]. This work presents a simu-

lator for interconnection networks developed in MODULA-2. However, that

simulator just models a concept architecture, does not carry any information

about physical implementation and models network interfaces only approxi-

mately. Deep modifications of the native simulator were carried out in order

to abstract the behavior of the reference architecture as well as to add the

capability of back-annotate physical implementation information.

The main difference between the RTL and TLM models is that while the

76 Chapter 3. Topology exploration for Networks On-Chip

former (developed in SystemC [8]) is cycle and network signal accurate, the

latter is only cycle accurate. The simulation framework includes abstract

models of each NoC component that is relevant to the topology performance:

switches, links (including repeater stages) and network interfaces. A great

effort was devoted to modeling the Network Interfaces (NIs), as the native

simulator did not model design challenges specific to on-chip environments

that define the flit injection rate into the network (e.g, clock domain crossing

mechanism and OCP protocol conversion). The RTL structure of the com-

ponents is abstracted as a set of counters and logical functions: while buffers

are represented as counters, component behavior is defined as a set of logical

functions. The simulator framework is event driven, and events are scheduled

only when there is a change in the network status.

3.3.2 Network traffic generation

In a relatively immature field such as NoCs, realistically capturing traffic be-

havior is a challenging task. In literature, three major traffic generation ap-

proaches exist. First, synthetic traffic patterns are used to send generic mes-

sages to predefined or random destinations at a given rate. Second, bench-

marks and traces can be used, but hardware architectures and application

constraints must match the target design. Third, mathematical models could

be used, however it is difficult to ensure that they are representative for given

application constraints.

Our approach to address this issue is two folded. On one hand, OCP

transactions can be generated based on traffic traces specified in an exter-

nal file. This mechanism can be used when the traffic pattern is known at

design time or for validating TL simulator behavior with respect to the RTL-

equivalent SystemC simulator, as the same input traffic specification can be

reused for both RTL and TL simulation. On the other hand, the TL simu-

lator implements synthetic traffic generators, allowing designers to evaluate

NoC performance when the traffic pattern is not available at design time.

3.3. Networks on-Chip modelling 77

Processors Switch

NI Initiator

Memory

NI Target

Figure 3.12: Experimental setup

3.3.3 Validation of Transaction-Level simulator accuracy

The accuracy of the abstract models is proved through experimental evidence.

Individual OCP read and write transactions need to be validated in both sim-

ulation environments. Main parameters include the OCP burst length and the

inter-burst idle time, in addition to OCP parameters for each transaction. Sev-

eral test runs were performed and the cycles that the simulated design would

require to process the injected traffic pattern estimated by the TL simulator

were compared with the results of the RTL simulator.

The first test runs aim at capturing the accuracy with which the injection

and ejection interfaces were modeled, as well as the flow control mechanism

inside the switches. This experimental setup is shown in Figure 3.12. As

depicted, it is composed of a single switch to which 4 processor cores are

attached via their network interfaces. Packets from the cores are directed

to a single shared OCP memory connected to one output port of the switch

via its network interface. The operating frequency of the cores was assumed

to reflect the trend for the speed of industrial ARM cores. 470 MHz is a

worst case operating frequency for an ARM926EJ-S in 90 nm [9], while CPUs

in the ARM11 MPCore can be operated up to 620 MHz in the worst case

[10]. In this context, 500 MHz seems to be a reasonable assumption for core

speed in current designs, while the network is assumed to work at 1GHz.

Figure 3.13(a) show the results obtained for the first series of tests when

78 Chapter 3. Topology exploration for Networks On-Chip

(a) First series - Network interfaces & Flow control

(b) Second series - Clock crossing mechanism

(c) Third series - Simulation length & Inter-switch communication

Figure 3.13: Experimental setup results

3.3. Networks on-Chip modelling 79

100 random OCP transactions (both read and write) are generated in each

processor. In the figure, the horizontal axis shows the configuration of the

OCP traffic generators, which generate bursts of given length L (number of

beats) with inter-burst idle wait M (represented as L M pairs in Figure 3.13).

The vertical axis shows the times that TL simulator is faster than the RTL

one. Finally, the deviation of the TL estimation over the one of the RTL

simulator for each configuration of the OCP traffic generators is shown as a

number over each bar. As can be observed, the TL simulator presents an

excellent accuracy, while the simulation speedup varied from 20x to 35x. The

justification for speedup numbers is in the way that the abstraction was done.

The TL simulator only simulates those cycles in which some event is scheduled

and only pays attention to the signals and components that are affected by

that event, while the RTL simulator re-evaluates every signal at every cycle.

This implies that the speedup factor heavily depends on the number of idle

cycles in the simulation.

The second series of experiments assesses the accuracy with which the clock

domain crossing mechanism is abstracted. The experimental setup is the same

as in the first case, with the exception of the core operating frequencies, that

changes between tests in order to test different clock ratios between core and

network. In particular clock ratios of 1:2, 1:4 and 1:8 where tested, that is,

core frequency is half of the network one, four times less or eight times less,

respectively. In this case, OCP traffic generators were configured with two

traffic patterns: 8 4 and 8 100. Both traffic patterns test different behaviours,

the 8 100 pattern presents a low-congestion environment, in which all proces-

sors generate a burst of length 8 and then wait 100 cycles before generating

the next transaction, thus providing the memory with some time to absorb

all the remaining transactions before generating new ones. On the contrary,

the 8 4 traffic configuration presents a high-contention environment, in which

each processors generates transactions after just 4 cycles of idle time. Results

are reported in Figure 3.13(b). The legend explicits ratio between OCP and

network clock frequencies. As can be observed, the TL simulator accuracy

remains excellent. Regarding speedup, it increases with the clock ratio. As

slowing down cores implies an increment of the network idle time, those results

confirm the above exposed trend about the speedup behaviour.

80 Chapter 3. Topology exploration for Networks On-Chip

Traffic configuration 8 100 8 4 8 4

Total Bursts 1764 1764 4900

Speedup 100x 85x 114x

Deviation 0.01% 0% 0%

Table 3.4: Simulation accuracy for a 4-ary 2-mesh.

The third series aims at testing the across-switch communication model,

as well as stressing the accuracy of the TL simulator by increasing the number

of transactions of the simulation. This involves accurate abstraction of the

switching and of the flow control mechanisms, as well as of buffer control and

congestion resolution mechanisms. For this purpose, the number of switches

of the previous experimental setting was increased to 5, in such a way that the

switches form a line in which all processors are attached to the first switch and

the memory to the last one. Figure 3.13(c) shows the results obtained for this

test. As in the previous case, the figure shows the speedup of the TL simulator

over the RTL one, as well as the deviation in the performance estimations, but

in this case the horizontal axis shows the number of transactions simulated on

each test. The results show that regardless of the congestion degree of the test

and the number of transactions, the TL simulator performance estimations

remain highly accurate.

Finally, a more complex configuration was tested. This topology is a 4-

ary 2-mesh, with one processor attached to each switch. Only one switch

located in the middle has attached a shared memory instead of a processor

core. This tests simulates a heavy contention traffic scenario, where each

processor performs write accesses to the centralized shared memory. As it

can be observed from Table 3.4, the results show that the model is still very

accurate.

The following section present a case study as an example of the potential

of the developed simulation framework when performing a parametrical ex-

ploration of mesh topologies. Several examples of back-annotation of physical

parameters will be presented after section 3.4.

3.3. Networks on-Chip modelling 81

(b)

Processor

Core

Memory

Core

Initiator
Network IF

Target

Network IF

Initiator
Network IF

Target

Network IF

1N
E
T
W
O
R
K

4

3
2

Local polling

1

2

Write message
Read operation

Reset semaph.

3

4

Consumer tile

local

polling

local

polling

Consumer tile

Processor Memory

CoreCore

Producer tile

Local polling notify message
availability

Request for

data

data transfer

notify transfer

completion

Producer tile

(a)

Figure 3.14: Tile abstraction and mapping of producer-consumer communica-

tion handshake on network transactions.

3.3.4 Case study: Parametrical exploration

This case study explores the feasibility and the efficiency of topologies of the

k-ary n-mesh family by means of a parametrical exploration. For the same

number of communicating cores, the performance of a 2D-mesh is compared

against that of an equivalent hypercube and of concentrated mesh topologies

(see Section 3.2.2). This case study focuses on CMP tiled-based design, com-

posed of 16 tiles system with access to external I/O devices. The I/O devices

are in charge of providing new raw data to the system and retrieving the pro-

cessed data, while the tiles are responsible of processing raw data. The TL

simulator above exposed will be combined with the computation tile simulation

model described in this case study in order to explore regular NoC topologies.

At first, performance of topologies was derived from TL simulation in terms

of clock cycles. Next, the possible variants in the implementation space (clock

frequency, link latency) of topologies were explored.

82 Chapter 3. Topology exploration for Networks On-Chip

Tile architecture

In essence, the tile architecture consists of a processor core and a local memory

core, as illustrated in Figure 3.14(a). Both cores are connected to the network

through a network interface initiator and target respectively. It is assumed

that the two network interfaces can be used in parallel. While the processor

is reading/writing from/to other tiles, the processor core of other tiles can

read/write from/to the tile local memory. This can be achieved through a

dual-port memory and a proper tile architecture, which however falls outside

the scope of this dissertation.

Communication protocol

The optimal topology for a given design is highly dependant on the traffic

pattern it is going to accommodate and which is used during topology explo-

ration. This case study aims at projecting network traffic based on moderns

communication middleware for MPSoCs and to assess its performance with an

NoC as the communication backbone. The guidelines for producer-consumer

interaction are derived from the queue-based library in [31]. That library is

suitable for a number of MPSoC architectures, including distributed architec-

tures with local and tightly coupled memories for each processor core. This

matches the tiled CMP scenario addressed in this study.

An abstraction layer was built on top of the TL simulator, which models

the behavior of a processor tile and of its HW/SW communication support.

While read and write transactions to the network are modelled with almost

cycle-true accuracy, timings for communication control and for computation

in the tile were estimated based on the work presented in [120].

A producer-consumer communication scheme between tiles based on the

handshake in Figure 3.14(b) is assumed. The producer checks local semaphores

indicating whether there are previous pending messages for the target desti-

nation. If not, it writes communication data to the local tile memory and

notifies data availability to the consumer by unblocking a remote semaphore.

The consumer was meanwhile performing local polling on that semaphore.

The producer is then free to carry out other computation or communication

activities to other consumer tiles. The consumer then reads computation data

3.3. Networks on-Chip modelling 83

P

W

W

W

W

W

W

W

W

W

W

W

W

P C C

I/O DEVICES

Figure 3.15: System organization and workload distribution.

from the producer tile, and sends a notification upon completion. This al-

lows the producer to send another message to this specific consumer. The

implementation of this communication protocol involves 4 network transac-

tions: notification of data availability, read request, actual data transfer and

notification of transfer completion.

The producer local polling to check pending messages for the target con-

sumer is performed in order to avoid congesting the network in case the con-

sumer is slow in absorbing its input messages. This behavior may result in

low network bandwidth utilization, thus making global performance mainly

sensitive to network latency.

The consumer local polling for incoming messages allows the consumer to

synchronize data transfer operations from multiple producers. This avoids

the collision of multiple packets in the network from the producers to the

same consumer, since this latter serves all transfers once at a time. Under

these conditions, topologies trading bandwidth for latency become attractive.

However, physical implementation effects might put this picture in discussion.

84 Chapter 3. Topology exploration for Networks On-Chip

Workload distribution

In order to simplify the analysis, a workload distribution between the tiles

which de-emphasizes the role of the topology mapping algorithm with respect

to overall performance is assumed. In fact, a parallel benchmark consisting

of one or more producer tasks, a scalable number of worker tasks and 1 or

more consumer tasks is considered (see Figure 3.15). Every task is assumed

to be mapped on a different computation tile. The producer task(s) reads data

units from the I/O interface of the chip and distributes it to the worker tasks.

There are no constraints on which worker tile has to process a given data unit.

The higher the number of worker tiles, the higher the data processing rate,

assuming that the I/O interfaces can keep up with it. Output data from each

worker tile is then collected by a consumer tile, which writes them back to the

I/O interface.

The following assumptions were made regarding the I/O interface. It mod-

els input (output) data streams that are read from (written to) I/O devices,

which are accessed through read/write operations like in SDRAM accesses.

We assume that input and output streams do not interfere with each other,

but are handled through different I/O ports. A maximum of 5 I/O ports is

assumed, that can be used for input or for output. Such ports are accessed

through sidewall tiles. The mapping of producer(s) and consumer(s) tasks is

therefore constrained to these tiles. This I/O architecture is compliant with

that of commercial network-based embedded multi-core products, such as [6].

In order to stress the topology differentiation, it is assumed that the I/O tiles

are located on the same side of the chip, due for instance to floorplanning

constraints. This constraint assures that collisions between input and output

streams are generated. The case where input and output tiles are located on

opposite sides of the chip did not show significant performance differentia-

tion between alternative topologies, due to the effects of the communication

protocol above exposed.

Topologies under test

The topologies to evaluate are: a 4-ary 2-mesh (a classical 2D-mesh) with one

tile per switch, a 2-ary 4-mesh (also known as 4-hypercube) with one tile per

3.3. Networks on-Chip modelling 85

Topology 4-ary 2-ary 2-ary 2-ary

2-mesh 4-mesh 3-mesh 2-mesh

Switches 16 16 8 4

Tiles per Switch 1 1 2 4

Maximum Switch Degree 6 6 7 10

Unidirectional Links 48 64 24 8

Bisection Bandwidth 8 16 8 4

Hops Count 7 5 4 3

Connectiviy 2 4 3 2

Table 3.5: Topologies under test.

switch, a 2-ary 3-mesh with 2 tiles per switch, and a 2-ary 2-mesh with 4

tiles per switch. These two latter solutions are denoted as the concentrated

topologies. Table 3.5 shows the high-level properties exposed in Section 3.2

of the four studied topologies. Please note that switch degree numbers do not

follow the guidelines exposed in this section. The reason is that for each tile

2 switch input and 2 switch output ports are required, since the tile includes

an initiator and a target NI, each with one input and one output port to the

switch for receiving/sending data.

Regarding the routing algorithm, the reference architecture forces the use

of deterministic routing algorithms. The implemented routing algorithm was

the commonly used Dimension Order Routing (DOR). In this deterministic

routing algorithm, the dimensions of the topology are first ordered, then pack-

ets move in the lowest dimension in which current and destination switches

are not aligned. This latter step is repeated until the destination switch is

reached. As an example, for a 2D-mesh, dimensions are usually labelled as

X and Y. Each switch has an identifier based on its X and Y coordinates,

forming a tuple (X, Y). Assuming that X is the lowest dimension and Y is the

highest one, a packet actually allocated in switch (0, 0) that must reach switch

(2, 2) will first move in the X dimension, thus reaching switch (1, 0) and then

switch (2, 0). After, it will move in the Y dimension, thus crossing through

switch (2, 1) to finalize its travel through the network at switch (2, 2). More

86 Chapter 3. Topology exploration for Networks On-Chip

details about DOR can be found in [52].

Topology performance results

The reference architecture requires the ratio between core and network clock

cycles, which is constrained to be an integer divider. Previous works of the

reference architecture suggest that for the systems under test, a target clock

frequency of 1 GHz is to be expected for the network switches, while the

links are assumed to be able to cope with this frequency. Regarding the tiles

frequency, as above exposed, a reasonable frequency is 500 MHz, while I/O

devices were assumed to work at that same frequency. As a consequence, ratio

of 1:2 for all clock domain crossings is set. Should such network frequencies

prove infeasible, the implications would be assessed during the implementation

space exploration. An initial latency of 20 cycles for external I/O device access

was set. By varying the number of producer and consumer (I/O) tiles and the

computation time of the worker tiles for each data unit, 4 different performance

scenarios were defined. Figure 3.16 shows the estimated cost in cycles that

each topology requires to process 64000 data units, normalized to the results

obtained for the 2D-mesh (4-ary 2-mesh).

A. Bottleneck in the workers: In this scenario, the I/O interfaces are

fast enough to feed workers with raw data and to absorb processed data from

them. As a consequence, producer and consumer tiles experience idleness,

since they are waiting for workers to complete. As shown in Figure 3.16(a),

in this case performance does not depend on the topology, since the network

is not the bottleneck. Even though some topologies provide lower latency,

the time a worker takes to read input/write output data is masked by other

workers processing their data in parallel. Overall, the performance advantage

of concentrated topologies is almost negligible in this scenario. Interestingly,

topology selection is just a physical issue here, since the concentrated solutions

certainly involve less resources and probably less power, but are likely to run

at lower frequencies.

B. Bottleneck in the consumers: Figure 3.16(b) shows that this sce-

nario provides the largest performance differentiation among topologies. The

input interface is fast enough to minimize the time that worker tiles expend

waiting for new computation data. On the contrary, each worker waits almost

3.3. Networks on-Chip modelling 87

(a) Bottleneck in the workers

(b) Bottleneck in the consumers

(c) Bottleneck in the producers

(d) Balanced

Figure 3.16: Performance comparison (in execution cycles) of topologies.

88 Chapter 3. Topology exploration for Networks On-Chip

50% of its execution time in the simulation to forward its output data to the

consumer tile, which cannot keep up with the needed consumption rate. In

this case, the shorter the transfer time to the consumer, which is impacted

by network latency, the sooner a new data unit can be processed. This is

in essence a network latency-sensitive scenario, where concentrated topologies

outperform the others, due to a lower hop count.

C. Bottleneck in the producers: This is the case where a lower network

transaction latency does not help. In fact, the producer tile is not able to

keep up with data requirements from the workers. The use of low-latency

topologies allows the workers to read input data more rapidly, but then, once

the computation of those data is complete, the worker becomes idle again

waiting for new data units to process. A longer data unit processing time

would not have impacted performance. In summary, workers and consumers

suffer from starvations, so all topologies perform the same in this scenario (see

Figure 3.16(c)). Again, the choice among topologies will be based on physical

implementation considerations (e.g., power vs performance trade-off).

D. Balanced scenario: In this scenario, the idle time of all tiles in

the system (producer, consumer and worker) for mutual synchronization was

minimized. This system configuration puts the highest bandwidth pressure to

the network. This explains the performance results in Figure 3.16(d). The

2-ary 4-mesh provides more bandwidth and therefore achieves the shortest

execution time. In contrast, concentrated topologies trade bandwidth for low

latency, and therefore provide worst performance than the 2-ary 4-mesh in

this bandwidth-sensitive scenario, but still outperform the 2D-mesh.

Implementation space exploration

The next step consist of an analysis about how performance ratios between

alternative topologies are impacted by possible implementation degradation

effects. These considerations will drive the synthesis process by posing opti-

mization directives to specific logic modules and/or links in order to preserve

theoretical performance benefits. As an example, the two most relevant sce-

narios from the previous step are explored.

In particular, scenarios B and D were selected. B is a latency-sensitive sce-

nario, while D is a bandwidth-sensitive one. In D, the implementation space

3.3. Networks on-Chip modelling 89

Figure 3.17: Implementation space: 4-ary 2-mesh vs 2-ary 4-mesh.

exploration is restricted to the 4-ary 2-mesh (reference topology for many

NoC designers) and to the promising 2-ary 4-mesh solution. Both topologies

require the same switch degree. Therefore, the operating frequencies for the

two topologies might differ only as an effect of the different wiring patterns

and of the critical path being in the links. Since all NoC modules in the ref-

erence architecture feature input and output latching, the critical path will

be determined either by the switch or by the network interface. If link delay

exceeds this maximum delay, it is assumed that such critical links will be bro-

ken via retiming and repeating stages, following the link pipelining technique

exposed in Chapter 2.

While links of the first and the second dimension in both topologies can

be retained of comparable length in many floorplan variants, the links from

the third and the fourth dimension in the 2-ary 4-mesh are the most likely

candidates for retiming (see Section 3.2.2). Figure 3.17 reports how the per-

formance of the 2-ary 4-mesh is affected by the latency on those links. In the

figure, the horizontal line represents the performance of the 4-ary 2-mesh, in

which all links have a latency of 0 cycles. As it can be observed the 2-ary

4-mesh remains a competitive solution with up to 5 cycles of latency on the

links of the higher dimensions. Higher latencies in those links make the 2D-

mesh the most competitive solution. This leaves ample margin to the physical

synthesis tool to work with.

90 Chapter 3. Topology exploration for Networks On-Chip

Tile

Network
Interface

Switch

(a) Latency in the network links

Tile

Network
Interface

Switch

(b) Latency in the injection/ejection links.

Figure 3.18: Floorplanning directives for a 2-ary 2-mesh with 4 tiles per switch.

Regarding scenario B, the implementation space complexity increases due

to another physical parameter that the exploration has to account for: the

maximum achievable frequency. In this scenario, the best two solutions are

compared: 4-ary 2-mesh vs. 2-ary 2-mesh concentrated. This latter requires

a switch degree of 10 (it is 6 in the 4-ary 2-mesh), which might lead to se-

vere cycle time degradations. Moreover, concentrated topologies present some

floorplanning challenges. In particular, a large number of cores (4 in this case)

need to be placed close to the same switch where they are attached to. This

might be achieved in many ways, posing different layout constraints. As an

example, a possible floorplan is to place all 4 cores as close as possible to the

switch, so the switch–to–switch links might be as long as the side of two tiles

in the best case, as depicted in Figure 3.18(a). Such links might be candidate

for retiming stage insertion. Alternatively, the floorplan might consist of a

central network around which all cores are placed (see Figure 3.18(b)). In this

variant, the critical links are those connecting the network interfaces (attached

to the tiles) to the switches, also known as injection/ejection links. In the two

floorplan variants, the latency incurred by different links might impact per-

formance in a radically different way, since different communication flows are

affected.

We kept the 4-ary 2-mesh topology at the reference frequency of 1 GHz,

while scaling clock frequency of the concentrated topology and the latency

in its switch–to–switch or injection/ejection links. Execution time results are

3.3. Networks on-Chip modelling 91

2-ary 2-mesh
4-ary 2-mesh

 0
 1

 2
 3

 4
Latency

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Frequency (Ghz)

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

Time (ns)

(a) Latency in the network links

2-ary 2-mesh
4-ary 2-mesh

 0
 1

 2
 3

 4
Latency

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Frequency (Ghz)

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

 1.4e+07

Time (ns)

(b) Latency in the injection/ejection links.

Figure 3.19: Implementation space: 4-ary 2-mesh vs concentrated 2-ary 2-

mesh.

92 Chapter 3. Topology exploration for Networks On-Chip

illustrated in Figure 3.19. As network frequencies are scaled, the computation

tile and external I/O device frequencies must be scaled accordingly, since the

reference architecture forces an integer divider between the frequencies in the

two clock domains. So, as network frequency scales down from 1 GHz to 600

MHz, tiles and I/O devices were forced to work from 500 MHz (their assumed

maximum speed) to 300 MHz, keeping a frequency divider of 2. If the 500

MHz case for the network were considered, the divider will have been changed

to 1 instead of further scaling down I/O frequency, but this would have led to

a different performance scenario than B.

The horizontal plane in Figure 3.19 represents 4-ary 2-mesh performance.

Figure 3.19(b) indicates that as soon as the frequency of the concentrated

topology falls below 900 MHz, the performance improvements of the concen-

trated topology are at first balanced and then progressively vanish. If the

physical synthesis is able to limit switch operating frequency degradation in

the concentrated topology to 100 MHz, then its performance benefits can be

retained even placing up to 2 retiming stages in the injection/ejection links. In

contrast, Figure 3.19(a) indicates that performance of the concentrated topol-

ogy is much less sensitive to latency in the switch–to–switch links. In this

case, not all communication flows are affected, since communications between

tiles attached to the same switch do not go through the longer links. On

the contrary, when latency of the injection/ejection links is increased, each

communication flow incurs always twice extra cycles latency, one time in the

injection and another one in the ejection links.

Once the parametrical exploration is performed, it outputs the directives

that will guide their physical synthesis. In the case where those constraints

became too tight, the topology can be safely discarded as non-competitive.

3.4 Physical design pitfalls

When exploring the design space for a given NoC design, it is necessary to

evaluate if the high-level properties of a given topology will hold when it is

mapped on a 2D-layout. There are many considerations putting the aforemen-

tioned claim in discussion. This section will point out several physical design

pitfalls that are not always easily recognizable at first glance. While the previ-

3.4. Physical design pitfalls 93

Figure 3.20: High-level sketch of a 2-ary 4-tree.

ous section presented a case study in which the simulation framework guided

the synthesis process by means of a parametrical exploration of the candidate

topologies, this section will show how to use the simulation framework in or-

der to back-annotate physical synthesis results in order to provide accurate

performance estimations.

A common approach to capture physical design implications of a topology

in the early design stages is by means of pencil–and–paper floorplanning con-

siderations. Unfortunately, a number of assumptions are often made that are

not verified on actual layouts.

For instance, with this approach, the same length is typically assumed for

all the links in the topology, thus neglecting the constraints imposed by the

2D silicon surface. The example in Figure 3.20 depicts the high-level connec-

tivity pattern of a 2-ary 4-tree topology, while a possible layout realization of

that connectivity pattern is shown in Figure 3.21 (where only some links are

illustrated). When comparing both figures it is clear that the physical view

is radically different from the abstract representation and it may not be intu-

94 Chapter 3. Topology exploration for Networks On-Chip

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

16

17

18

14

15

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 3.21: Floorplan of a 2-ary 4-tree. Only the main wiring patterns are

reported.

itive at all. Notice that the width/height of a core is much larger than that

of a simple network switch. This is a simple layout constraint that is often

neglected when devising a possible topology floorplan.

In other topologies, the use of long links may arise some issues. That

is the case of the C-Mesh, where the utilization of express links comes at a

considerable price. In fact, as an express link turns out to be a very long

link to be routed, it is likely to limit the overall operating frequency of the

topology. Obviously, there are well known methods to solve this problem,

namely repeater insertion and/or link pipelining. However, they come with

an area cost and in some cases they induce an ever higher overhead in the

architecture.

Another design pitfall concerns switch homogeneity. Some topologies may

3.4. Physical design pitfalls 95

require switches of different degree. For instance, in a 2D-mesh, there are

typically three different degrees. Assuming that a single core attached to each

switch and that a core requires a single I/O port towards the switch it is

connected to, switches located at the corners of the grid will have a degree

of 3, the ones placed in the border of the grid (but not in the corners) a

degree of 4, while any other switch will present a degree of 5. So, a switch in

the corner is potentially the fastest of the entire network. However, the final

operating frequency of the topology is set by the switch with the highest degree

in combination with the longest link in the topology. Therefore, these border

switches will end up being synthesized at a lower speed than the maximum

one they could achieve, resulting in lower area. An early area estimation

framework neglecting these effects in non-homogeneous topologies would be

highly misleading.

Finally, physical routing may become a design pitfall that is usually ig-

nored. Some designs employ a NoC to interconnect different IP blocks pro-

vided by various vendors. Those IP blocks could be provided either as non-

routable hard-macro, or as soft-macros. The formers prevent routing NoC

links through the IP blocks (also known as over-the-cell routing), forcing the

physical designer to reserve physical routing channels for the routing of links.

Instead, soft-macros made over-the-cell routing feasible, thus giving rise to

more compact layouts. However, even in this case, routing on top of IP blocks

may not be convenient due to the effects of inferring link repeaters in the same

fence of the IP block.

The next sections will provide more solid evidence of the design pitfalls

illustrated above by means of several case studies where the physical design

of several topologies turns out to be extremely challenging. In the first case

study, topologies for a 16-tiles system will be laid out on silicon. In the second

one, topologies for 64-tiles systems will be considered, although they will be

evaluated by means of a modeling framework of physical effects inspired by

the first case study. In those two case studies, MIN topologies will be left

out on purpose. Their intricate wiring pattern justifies a detailed case study

dedicated to the evaluation of their feasibility and viability. In each case study,

the proposed simulation framework will be used to show the gap between high-

level performance estimations and layout-aware ones. All physical synthesis

96 Chapter 3. Topology exploration for Networks On-Chip

Topology 4-ary 2-ary 2-ary

2-mesh 4-mesh 2-mesh

Max. Degree 6 6 10

Switches 16 16 4

Max. Hops 7 5 3

Bisection bandwidth 4 8 2

Tiles per Switch 1 1 4

Table 3.6: Topologies under test.

experiments of this chapter have been carried out by means of a commercial

synthesis toolflow on an industrial 65nm technology library.

3.5 Case study: 16-tiles systems

This analysis focuses on the k-ary n-mesh family of topologies (see Section

3.2.2), as it offers representative design points for our analysis. For example,

it may present links of uneven lengths or heterogeneous switch degrees.

The following topologies are considered. First, the baseline solution is

a 4-ary 2-mesh (denoted as 2D-mesh for now on) with one tile per switch.

Second, a 2-ary 4-mesh with one tile per switch as the high bandwidth solution.

Third and last, a 2-ary 2-mesh with 4 tiles per switch is considered as the low

latency solution (denoted as concentrated 2D-mesh). Table 3.6 shows some

representative data of the studied topologies. Please notice that the maximum

degree numbers does not follow the equations presented in Section 3.2.2. This

is due to the tile architecture considered in this case study, which is similar

to the one presented in the case study of Section 3.3.4. Regarding tile size,

assuming a core size of 1 mm x 1mm, a full tile size will be 1mm x 2mm. Such

an asymmetric size will heavily impact the physical synthesis of the studied

topologies.

Both the 2D-mesh and its concentrated counterpart feature 2 dimensions

and homogeneous inter-switch wire lengths. However, such wire length will

not be the same in the two topologies due to floorplan constraints. In par-

ticular, the concentrated solution requires to place cores around the switches

3.5. Case study: 16-tiles systems 97

they have to be connected to, thus separating the switches in space. Also,

the concentrated solution presents a switch degree higher than the baseline

solution (the 2D-mesh).

A different design point is represented by hypercubes (represented by the

2-ary 4-mesh in this analysis). This topology keeps the same maximum switch

degree than the 2D-mesh. Unfortunately, this comes at the cost of links with

uneven length. In fact, as state in Section 3.2.2, in a mesh with more than

two dimensions the links used to connect the dimensions greater than two are

longer, and this holds for 50% of the 2-ary 4-mesh switch–to–switch links.

Finally, the implemented routing algorithm was the commonly used Di-

mension Order Routing (DOR), exposed in the case study of Section 3.3.4.

3.5.1 Total wire length

The way link design techniques impact topology quality is twofold. On one

hand, when the critical path is not in the switches, it is the longest link in the

topology that determines the maximum achievable speed. Therefore, cutting

down on the delay of that link is beneficial for the whole topology. On the

other hand, it is possible to use link performance boosting techniques in order

to return the critical path to the switches or just alleviate it. But the cost

of such techniques becomes relevant for the topology, mainly when there are

more such critical links and they account for a significant fraction of the total

topology wirelength.

In the experiment that follows, the impact of switch–to–switch link on total

topology wirelength will be assessed. Moreover, it will be demonstrated that

drawing a conclusion on this based on abstract considerations on the topology

connectivity pattern is highly misleading.

Let us consider the floorplanning directives given for topology synthesis

reported in Figure 3.22.

The asymmetric tile size plays in favor of the 2-ary 4-mesh wiring, since

the length of the horizontal and of the vertical long links (3rd and 4th dimen-

sions) turns out to be comparable to that of horizontal wires in the 2D-mesh.

This latter also features horizontal and vertical links of unequal length, in-

dicating that the layout regularity often assumed in high-level considerations

does not materialize in practice. The floorplan definition aims at: shortening

98 Chapter 3. Topology exploration for Networks On-Chip

Tile

Switch

(a) 2D-mesh (4-ary 2-mesh)

Tile

Switch

(b) Hypercube (2-ary 4-mesh)

Tile

Switch

(c) Concentrated 2D-mesh (2-ary 2-mesh, 4 tiles per switch)

Figure 3.22: Floorplan directives.

3.5. Case study: 16-tiles systems 99

Figure 3.23: Total wire length.

the longest links in each topology and coming up with scalable floorplans. For

the 2-ary 2-mesh, the computation tiles have been placed around the switch

they are attached to, as it is the placement less sensitive to link latency, as

demonstrated in Section 3.3.4. In all cases, network interfaces were placed

close to their tile but also to the connected switch, so to move the critical

path away from these links.

As a result of topology synthesis and place&route, Figure 3.23 shows the

total wire length for the three topologies (Post-layout bar), normalized to

the least wire-hungry topology. Bar Ideal computes wire length based on

the theorethical formula given in Section 3.2.2. Bar Floorplan-aware updates

the previous formula with the knowledge of the asymmetric core size and of

switch placement. The ideal analysis largely overestimates the amount of

wiring needed for the 2-ary 4-mesh. Floorplan awareness allows to account

for specific floorplanning techniques that optimize wiring of a given topology,

and therefore leads to more conservative estimations of the wiring overhead.

However, this is still far away from synthesis results, where the post-layout

report of total wire length gives only a 10% overhead of the 2-ary 4-mesh wiring

with respect to 2D-mesh and a 43% with respect to the concentrated solution.

This is because switch–to–switch and switch–to–network interface wiring only

accounts for a relatively small percentage of total wiring, ranging from 7%

for the concentrated topology (2-ary 2-mesh) to 26% for the 2-ary 4-mesh.

This explains the relatively small total wire length difference between the

100 Chapter 3. Topology exploration for Networks On-Chip

Degree

Figure 3.24: Switch frequency scaling (courtesy of [123]).

topologies. This scenario plays in favor of engineering performance-optimized

inter-switch links with a possibly minor impact on topology cost metrics.

3.5.2 Switch degree

As mentioned, there is a direct correlation between the switch degree and the

final operating frequency of the switch itself. Essentially, an increment of the

switch degree has a direct consequence on the delay of the arbitration logic

and of the crossbar selection logic, which adds up to the critical path. The

effects of switch degree over the reference architecture have been previously

analyzed in [123]. What follows is a brief summary of [123], highlighting the

most relevant conclusions for this dissertation.

Figure 3.24 shows the evolution of the maximum achievable operating fre-

quency of a switch as its degree is increased. As can be seen, the above

mentioned trend is unmistakable. Regarding area and power figures, they

increase as the switch degree increases, as expected.

The most interesting result concerns feasibility of switches with a large

degree with a standard cell design flow. In fact, logic synthesis tools are typi-

cally aware of placement but not yet of routing. As a consequence, for a 14x14

switch, the wire density in the switch crossbar becomes unmanageable while

3.5. Case study: 16-tiles systems 101

Figure 3.25: Critical path trend when increasing link length.

keeping a high operating frequency. Two possible solutions exist: increasing

the switch area or decreasing the switch frequency. While the latter solution

obviously penalizes overall system performance, the former option proves only

partially effective, as the area efficiency of the switch quickly diminishes. In

fact, as the switch degree keeps growing, the area overhead of such solution

quickly becomes unaffordable.

Even in cases where those issues are fixed by some means, achieved re-

sults suggest that avoiding too large switches may be the best option. This is

also due to system-level effects that would result from using large centralized

blocks (i.e., many cores attached to the same switch), which are not immedi-

ately apparent from the results reported here. For example, the many cores

connected to such a switch would ideally need to be physically placed just

around it, causing obvious congestion in the floorplan. Alternatively, they

could be spread around, but then several long links would be needed to con-

nect remote cores to the switch. These links would require pipelining, bringing

further latency, area and power costs.

3.5.3 Link length

An interesting physical design issue is the location of the critical path. Tradi-

tionally, it is assumed to be inside the more complex network blocks (i.e.,switches

or network interfaces). However, the reverse scaling of the delay of on-chip

interconnects questions this assumptions. Let us now consider a simple system

102 Chapter 3. Topology exploration for Networks On-Chip

where, initially, two switch blocks are placed at the distance of 1mm. After

placement and routing at such distance, the critical path of the whole archi-

tecture is still inside the switch block. The reason is that the delay of the

inter-switch channel is not dominating yet the overall timing of the system.

By increasing the distance between both switches results differ, as depicted in

Figure 3.25. Switch block were synthesized with a target frequency of 500MHz

(critical path of 2ns), and even with such a low operating frequency the criti-

cal path shifts to the link already at the short distance of 2mm. In fact, from

this point on, the critical path is determined by the link delay, which is a typ-

ical phenomenon in interconnect dominated designs. That is, the link delay

dominates the whole design, shifting the critical path from the switch to the

communication channel going from the output of the first switch to the input

of the second one.

In general, this result points out the critical role played by the intercon-

nects in the on-chip domain. In fact, it defines the performance of the network

topology. If the main goal is performance, a topology with long links can not

be a good candidate as it will not be able to operate at high frequencies due

to large link delays. Even worse, as technology keeps scaling to the nanoscale

regime, the critical path tends to move to the switch–to–switch links at pro-

gressively shorter link lengths than illustrated in Figure 3.25, although the

break-even point depends on the actual constraints guiding switch synthesis.

For example, a switch synthesis targeting at low power designs, it is likely the

break-even point will be shifted to a large distance. In this context, link per-

formance boosting techniques are beneficial for the performance of the entire

network, and will be investigated in next section.

3.5.4 Link performance boosting

In this section, three fundamental link inference techniques are evaluated when

laying out a set of representative topologies. The objective is to speed up

topology implementation by boosting its links. Therefore, the primary design

objective is high-performance.

3.5. Case study: 16-tiles systems 103

Performance boosting technique

The topologies under test are again those of Figure 3.22. The first round

of topology implementations implements un-repeated links. In essence, the

backend tools have been prevented from instantiating buffers or inverters along

the link.

The second round employs a performance boosting strategy consisting on

the insertion of repeaters along the link. The objective of those repeaters is

to strength the signal at some points along the link, allowing the signals to

travel a longer distance in the same time. An increase of instantiated buffers

can be expected, as well as a significant cut down on link delay.

Finally, link pipelining techniques were applied to break long timing paths

across links. Those techniques split problematic links into segments with the

aim to remove the critical path from them, but at the cost of introducing multi-

cycle links. That its, they offer a trade-off between link operating frequency

and the cost in cycles of traversing the link. Synthesis tools do not provide

a native support for this, thus requiring additional design effort. The ideal

approach is not to manually place pipeline stages in the floorplan, but to let

the tool handle this based on design constraints and optimization directives,

as the tool has better visibility of floorplan constraints and design rules. When

implementing link pipelining, flow control issues need to be re-considered. One

solution is to implement pipeline stages not as simple retiming stages, but as

retiming and flow control stages, as is the case of the reference architecture

(see Section 2.1.9), where pipeline stages consist of 2 flit buffers plus a control

logic and handle the STALL/GO flow control protocol.

Timing closure

Since the final goal is high-performance, the objective is to materialize the

maximum speed achievable by the slowest NoC module (synthesized in isola-

tion with post-place&route timing analysis). In the reference architecture the

critical module turns out to be always the switch with the highest degree in

the topology. The resulting delay defines the system speed upper bound, and

ignores the effect of inter-switch links (Table 3.7, first and second row). For

the slowest switch of each topology in isolation, the gap between post-synthesis

104 Chapter 3. Topology exploration for Networks On-Chip

Topology 4-ary 2-ary 2-ary

2-mesh 4-mesh 2-mesh

Post-Synthesis (WC Switch) 1 ns 1 ns 1.15 ns

Post-P&R (WC Switch) 1.12 ns 1.12 ns 1.4 ns

Post-P&R repeater-less (Topology) 1.27 ns 1.56 ns 1.67 ns

Post-P&R with buffers (Topology) 1.19 ns 1.56 ns 1.5 ns

Post-P&R with – 1.19 1.42

pipeline stages (Topology)

Table 3.7: Timing results.

and post-place&route speed ranges between 12% to 21%. The 2-ary 2-mesh

exhibits the highest post-synthesis delay due to its high switch degree.

When considering timing closure for the whole topology, the degradation

associated with inter-switch link routing becomes apparent. In the case of

repeater-less links first (Table 3.7, third row). While the 2D-mesh and the

2-ary 4-mesh present similar switch delays (since they have switches with the

same maximum degree), the complex routing of the 2-ary 4-mesh translates

into a 39% degradation of the critical path, while routing of the 2D-mesh is

less critical. Regarding the 2-ary 2-mesh, inter-switch routing has an even

more relevant impact, has it presents some links longer than 4mm. This effect

masks the issues of the higher switch degree, which in this case is not the

responsible for the slower operating frequency. For all topologies, the critical

path goes through the network links.

It is possible to optimize problematic links to overcome these large delays.

Activating repeater-insertion during topology synthesis enables the speedups

illustrated by the fourth row of Table 3.7, which denotes the best critical delay

at which timing closure was achieved. Results are quite heterogeneous. The

2D-mesh further benefits from repeaters and achieves a 6% speedup of its

critical path, which results in a delay of 1.19ns. This value is quite close to

the performance upper-bound (1.12ns), thus indicating that the degradation

of topology performance induced by network links can be made irrelevant in

this case.

On the contrary, the 2-ary 4-mesh does not improve it critical path when

3.5. Case study: 16-tiles systems 105

inserting repeaters in the problematic links. The reason for this lies in the

fact that horizontal routing channels (see Figure 3.22(b)) were sized conserva-

tively small: approximately 2.5 times the switch side. For this reason, switch–

to–switch links sometimes end up finding a switch on their way. This is a

placement constraint for the repeaters that prevents their insertion with ideal

spacing. The result is that link performance is not improved in this case,

demonstrating that buffer insertion should not be taken for granted in NoC

design, but should be carefully engineered to materialize its expected advan-

tages. In practice, widening the routing channel to 4 times the switch side

would solve the problem, but would also lead to a large floorplan area over-

head. Finally, no such constraints exist for the 2-ary 2-mesh, as its connec-

tivity pattern is trivial. Thus, it improves the critical delay by 10% over the

repeater-less case.

Further critical path improvements were expected from link pipelining.

When applying this technique, the objective was to materialize the same crit-

ical delay of the 2D-mesh (with repeaters) even for the 2-ary 4-mesh and the

2-ary 2-mesh. Interestingly, link pipelining turns out to be effective even for

the 2-ary 4-mesh solution, regardless of its under-sized routing channels. In

fact, the target critical delay of 1.19ns was achieved. This result clearly in-

dicates the lower sensitivity of link performance to non-ideal pipeline stage

placement compared with non-ideal repeater spacing. Hence, link pipelining

proves more robust for area-optimized floorplans with more challenging place-

ments. Pipelining was effective also for the 2-ary 2-mesh, however the upper

bound for its performance is the post-layout critical delay of its high-degree

switches (1.4ns), far worse than the 2D-mesh link delay of 1.19ns.

Area overhead for link performance boosting

In order to assess the implementation cost for link performance boosting tech-

niques, area reports are illustrated in Figure 3.26. Results are grouped by

topology and normalized to the baseline implementation (repeater-less) of each

topology.

Repeater insertion is quite cheap for the 2D-mesh and the 2-ary 4-mesh,

while it generates a significant area overhead for the 2-ary 2-mesh. This is

due to the backend tools, that have dealt with the performance maximization

106 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.26: Normalized area.

of long links by dramatically increasing the number of buffering gates. As

explained later on, this implies also a relevant power cost. However, when

pipeline stages are inferred, the additional area overhead of the 2-ary 2-mesh

is marginal. This is due to the fact that by inserting pipeline stages the tool

was able to remove an equal amount of buffering area introduced by the use

of repeaters, so that the two contributions offset each other.

This does not hold for the 2-ary 4-mesh, which raises its area by 14%

over the 2-ary 2-mesh solution when pipelining is used. Not only the area

overhead of the pipeline stages is incurred, but many repeaters are kept in the

link segments between pipeline stages, since the frequency boost is significant

when moving from repeaters to pipelining. The trend of leakage power fully

reflects that of area overhead.

Energy efficiency

Although there is a price to pay to boost link performance in terms of area and

power, the resulting speedup can be exploited to cut down the total energy

required to finish a given task by reducing its execution time. However, this

energy saving materializes only if the gain in execution time outweighs the

power overhead.

The power efficiency of the evaluated systems was analyzed with a set of

experiments with a traffic configuration similar to the one presented in Sec-

tion 3.3.4. In this case, the workload distribution scheme was configured with

3.5. Case study: 16-tiles systems 107

Figure 3.27: Real elapsed time of topologies under test.

1 producer task, 14 worker tasks and 1 consumer task, but the communica-

tion protocol was simplified. In particular, data is sent between the different

tasks without any previous check for destination availability to accept the

message, simplifying the power efficiency analysis by removing the additional

communications steps required by the original communication protocol. Also,

traffic generation rates were set to have a balanced system operation (i.e. to

avoid system related bottlenecks, like the I/O) thus avoiding to stress other

design issues different than network bandwidth and link performance. Phys-

ical synthesis results above exposed were back-annotated into the proposed

simulation framework in order to obtain realistic performance estimations of

the topologies under test.

Real elapsed time results for the different implementations of each topology

are reported in Figure 3.27. In those experiments, each system works at the

maximum achievable post-place&route speed (see Table 3.7). Since the refer-

ence network interface implements a frequency-ratioed clock domains crossing

mechanism, a clock divider of 2 is applied, forcing the tiles to run at half the

speed of the network. Regarding 2-ary 4-mesh, its execution time is always

higher in the repeater-less and the repeated implementations, due to its high

critical delay. The situation is even worse for the 2-ary 2-mesh, which is the

worst topology in those two implementations.

However, when the 2-ary 4-mesh can operate at the same speed of the

2D-mesh thanks to link pipelining, it becomes the most performance-efficient

108 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.28: Total power.

solution. The interesting point in this conclusion is that the increment of

the link latency in terms of cycle introduced by link pipelining techniques

does not have a negative impact over total performance. The reason behind

this behaviour is that in the reference architecture, pipeline stages provide

2 additional buffer slots, thus link pipelining enables a significant topology

speedup, while providing additional buffering to the topology.

Figure 3.28 shows the power cost incurred by link boosting techniques.

Power is affected by the operating frequency of each implementation. The

first conclusion that can be drawn is that the use of repeaters does not have

a relevant cost in terms of power for the 2D-mesh and for the 2-ary 4-mesh,

due to the low number of inter-switch links when compared to the overall wire

length. On the contrary, this is not true for the 2-ary 2-mesh, due to the large

power cost of driving such long links effectively.

Regarding link pipelining, it use abruptly increases power costs, especially

for the 2-ary 4-mesh. When we compare topologies with each other, we observe

that the topology of choice when low-power is the primary design goal is the 2-

ary 2-mesh. The lower power of the 2-ary 4-mesh with respect to the 2D-mesh

mostly derives from its lower speed, although this is not the only reason. This

is confirmed also by the marginal power overhead of the 2-ary 4-mesh when

it can run at the same speed of the 2D-mesh (see 2D-mesh with repeaters vs

pipelined 2-ary 4-mesh in Figure 3.28). This is counterintuitive, since the 2-

ary 4-mesh has many more buffering resources than the 2D-mesh. The answer

3.5. Case study: 16-tiles systems 109

Figure 3.29: Clock tree power impact.

has been sought in the power breakdown. This is reported in Figure 3.29 for

the repeater-less variants of the two topologies. Additionally, the 2D-mesh

was re-synthesized and analyzed both at the operating frequency of the 2-ary

4-mesh for a fair comparison. In all cases, it can be observed that the clock

tree has a relatively lower impact than register power (which depends mainly

on the buffer resources) in the 2-ary 4-mesh, while in the 2D-mesh it weighs

more. As a consequence, when the same speed is enforced, the two topologies

present the same power. While register power obviously increases for the 2-ary

4-mesh (due to the abundance of buffers), the clock tree is cheaper, and this

explains those results. The reason lies in the fact that while the 2D-mesh has

heterogeneous switch degrees, the 2-ary 4-mesh has all switches with exactly

the same degree. Hence, the clock tree is inherently more balanced and thus

easier to synthesize while meeting skew constraints.

By combining the performance results of Figure 3.27 with the power re-

ports of Figure 3.28, the energy results of Figure 3.30 are achieved. Overall,

the addition of repeaters to the links of a 2D-mesh is always an energy-efficient

strategy. On the contrary, the 2-ary 4-mesh and the 2-ary 2-mesh show mi-

nor energy variations when moving from one technique to the other. This

indicates that performance improvements have been achieved at the cost of a

proportional power overhead. That is, despite a reduced execution time, the

energy expended is the same.

110 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.30: Normalized time, power and energy with link synthesis tech-

niques.

3.6 Case study: 64-tiles topologies

The goal of this case study is to expand the physical design concepts pre-

sented in the previous one to a wider set of topologies. Unless otherwise

noted, assumptions made in the previous case study still holds for this sec-

tion. Specifically, this analysis concerns some of the large topologies for 64

cores presented in Section 3.2.3. This study aims at assessing the feasibility of

the connectivity patterns of those topologies in the context of nanoscale silicon

technologies. Like for 16-tiles topologies, the set of considered topologies for

64-tiles networks has been restricted for the need to keep the study focused.

The criterion to select topologies for physical implementation was based on

their suitability for a switch architecture without virtual channel. Introduc-

ing virtual channels is yet another degree of freedom which we prefer not to

consider in this analysis for the sake of clarification, but it will be tackled in

Chapter 4. So, the exclusion of a topology from the following analysis does not

mean that the topology is not competitive. The k-ary n-cube (Section 3.2.2)

and the k-ary n-rec (Section 3.2.2) family of topologies have issues associated

with the implementation of routing algorithms, as both feature abundant cy-

cles that must be broken in order to provide deadlock free communication. In

the case of torus topologies with wormhole switching, the most efficient ways of

providing deadlock free routing require the use of several virtual channels [52],

3.6. Case study: 64-tiles topologies 111

while the WK-Recursive topology requires the use of virtual channels plus

some additional hardware in order to be deadlock free [126]. Anyway, there

are still several generic routing strategies that allow to provide deadlock-free

deterministic routing in both cases without the need to modify the NoC archi-

tecture [52], but they are quite inefficient. In the case of the torus topology,

the turn model has been proposed to break cycles by prohibiting some turns

in the network. Unfortunately, this design choice transforms the torus into

an equivalent mesh, by breaking the cycles introduced by wrap-around links.

Also, the Up/Down model, which transforms the topology into a spanning

tree, has been proposed for its use in both topologies, but it incurs congestion

issues in the root switches, greatly reducing the performance of the topology.

For these reasons, k-ary n-cube and k-ary n-rec topologies have not been con-

sidered for the physical implementation analysis that follows. Also multi-stage

interconnection networks have not been considered in this case study since an

assessment of their implementation quality will be reporter in the next one.

3.6.1 Characterization methodology

The goal of this case study is to expand the physical design concepts pre-

sented so far to a wider set of topologies. Specifically, this analysis includes

large topologies with 64 tiles, presented in Section 3.2.3. The main objective

is to point out and evaluate the feasibility of such large scale networks for the

on-chip domain. The reference switch architecture was used as the basic build-

ing block to construct the 64-tiles topologies under test. However, exploring

the design space of topologies with such a large number of tiles by means of

their actual physical synthesis proved impractical, due to synthesis time and

memory capacity requirements. Therefore, a way to cut down on the number

of physical synthesis tests while still characterizing quality metrics of the full

topology with high accuracy was devised.

As reported in the previous case study, the performance bottleneck of

a topology lies in its longest switch-to-switch link. Aware of this, for each

topology under investigation, a sub-system composed of two communicating

switches at the maximum possible distance in the topology was built, thus

capturing the largest link delay in that topology floorplan. Logic synthesis for

maximum performance and place&route were then performed to capture the

112 Chapter 3. Topology exploration for Networks On-Chip

real switch-to-switch delay. Such delay (which is the critical path delay of the

network too) is then used as the target delay to re-synthesize, and place&route

all the possible switch-to-switch link distances in the topology under test. The

reason for this is to accurately capture the switch cell area at a certain target

speed. It is well known from logic synthesis theory that as the target speed is

decreased, large area savings can be achieved. In this direction, it would make

no sense to synthesize switches for maximum performance when a long link

limits overall network speed (unless decoupling techniques like link pipelining

are used, as we will see later on).

With this methodology, only few selected synthesis runs for each topology

need to be performed in order to obtain its delay and area as a whole. It is

assumed that enough routing channel space for regular routing of NoC links

is available. Although this methodology allows to efficiently asses topology

physical characteristics, the provided results are not 100% accurate, as the

impact of wire delays for links that undergo bending in the actual layout

is neglected. Anyway, the evaluated topologies present quite regular wiring

patters that are somehow based on grid structures, thus diminishing the effects

of this source of inaccuracy. Moreover, with this method it is also possible to

capture the link buffering cost when link performance is boosted via repeater

insertion. By leveraging the report of the utilized physical synthesis tool, the

inferred repeaters along switch-to-switch links can be traced.

In order to provide area reports as accurate as possible, switch ports con-

necting to the network interfaces of attached tiles were left unconnected. This

way, the tool is prevented from using large driving strengths for the gates on

those ports. Finally, for those cases where switches feature ports connected to

links of different lengths, the area of each switch output port is corrected by a

coefficient that reflects the driving strength needed to drive the corresponding

link. Such coefficients are experimentally derived beforehand by means of a

dedicated set of tests.

Also, with this methodology it is possible to estimate the number of

pipeline stages for each link required to speed up a topology. For this pur-

pose, such pipeline stages are instantiated along the communication links thus

breaking the switch-to-switch critical path. By incrementing the number of

pipeline stages, the critical path can be brought back to the switch. How-

3.6. Case study: 64-tiles topologies 113

Topology Degree Post-synthesis Post-p&r Longest link

critical delay critical delay

8-ary 2-mesh 6 0.93 ns 1.12 ns 1.5 mm

8-cmesh 6 0.93 ns 4 ns 6.75 mm

4-ary 3-mesh 8 1.05 ns 4.54 ns 6.9 mm

2-ary 6-mesh 8 1.05 ns 4.54 ns 6.9 mm

2-ary 5-mesh 9 1.23 ns 4.34 ns 6.96 mm

4-ary 2-mesh 12 1.38 ns 1.88 ns 3.0 mm

2-ary 4-mesh 12 1.38 ns 3.84 ns 6.4 mm

4-cmesh 12 1.38 ns 3.84 ns 6.4 mm

4-ary 3-flat 14 1.63 ns 8.33 ns 13.29 mm

Table 3.8: Topologies under test.

ever, in order to limit the area overhead, in the experiment that follows it

was decided to bring back the critical path to the links of the first or second

dimension of each topology, thus having a moderate impact on link area.

Next subsection starts by commenting physical synthesis results achieved

for 64-tiles topologies without link pipelining. Later, the analysis is shifted to

pipelined networks. Finally, physical synthesis results will be back-annotated

into the simulation framework presented in Section 3.3, thus gaining layout

awareness during the topology selection process.

3.6.2 Physical implementation

Table 3.8 shows the 64-tiles topologies considered for physical implementation.

The maximum switch radix for the topologies under test ranges from a rea-

sonable value of 6 to a large value of 14, which complicates the place&route of

switches (see Section 3.5.2). Please notice that the tile architecture considered

in this case study uses two port of the attached switch (as exposed in Section

3.3.4). Post-synthesis frequency results refer to the switches in isolation, re-

flecting the critical path delay of the switch with the highest degree in the

topology.

After place&route, the effect of the link delay comes into play. Most of the

topologies suffer from long switch-to-switch links. For the sake of the analysis,

only the longest link length per topology is reported in the 5th column of

114 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.31: Normalized area for 64-tiles topologies.

Table 3.8. The comparison of such column with the 4th one, shows a clear

correlation between the increasing link length and the decreasing operating

speed of the topology under test. Only topologies with short links (e.g., 8-ary

2-mesh and 4-ary 2-mesh) can work at a reasonable frequency.

Figure 3.31 reports the area cost of the evaluated topologies. Those re-

sults are influenced by the combination of many parameters such as: number

of switches in the topology, their degree and their operating frequency, and

the number of link repeaters implemented. As an example, let us consider

a very slow topology like the 2-ary 6-mesh. This topology features a larger

area footprint than the 8-ary 2-mesh. Such a network is operating at a fre-

quency much slower than the 8-ary 2-mesh, but since it has an equal number

of switches (64) with a higher radix (8 vs. 4, 5 or 6), the overall area of the

8-ary 2-mesh is 10% lower than the one in the 2-ary 6-mesh.

Another interesting result concerns the 4-ary 2-mesh. This topology has

a relatively short worst case link (3mm), thus it does not suffer from a high

speed degradation after place&route. As reported in Table 3.8, this topology

is the only one (along with 8-ary 2-mesh) that has a final working speed

above 500MHz. Interestingly, its area is 20% lower than in the 8-ary 2-mesh.

This is due to its low switch count (16), and to the fact that its high switch

degree (up to 12 ports) is compensated by its lower working speed than in the

8-ary -2-mesh. The overall conclusion is that most of the topologies are not

competitive with the 8-ary 2-mesh because of their long links that influence the

3.6. Case study: 64-tiles topologies 115

Topology Degree Post-synthesis Post-place&route

critical path critical path

8-ary 2-mesh 6 0.93 ns 1.12 ns

8-cmesh 6 0.93 ns 1.12 ns

4-ary 3-mesh 8 1.05 ns 1.17 ns

2-ary 6-mesh 8 1.05 ns 1.17 ns

2-ary 5-mesh 9 1.23 ns 1.78 ns

4-ary 2-mesh 12 1.39 ns 1.88 ns

2-ary 4-mesh 12 1.39 ns 1.88 ns

4-cmesh 12 1.39 ns 1.88 ns

Topology # of pipe-stages # links total pipe-stage total switch

per dimension area (um2) area (um2)

8-ary 2-mesh 0 112 0 2327712.8

8-cmesh express link⇒4 128 193425.9 2752108.8

4-ary 3-mesh dim.3⇒4 144 660216.3 3182953.2

2-ary 6-mesh dim.3,4⇒1 192 1087918.1 4362092.8

dim.5,6⇒5

2-ary 5-mesh dim.3⇒1 80 293081.6 2758480.4

dim.4,5⇒3

4-ary 2-mesh 0 24 0 1860718.3

2-ary 4-mesh dim.3,4⇒3 32 125574.7 2328426.4

4-cmesh express link⇒3 32 62787.4 2328426.4

Table 3.9: Post-place&route results of 64-tiles topologies with pipeline stage

insertion.

final operating frequency. A natural way to tackle this problem is to implement

link pipelining on such long links but the insertion policy has to be carefully

considerd. In fact, the studied 64-tiles topologies feature a high number of long

links that could quickly raise the area overhead to an unaffordable budget.

3.6.3 Pipeline stage insertion for 64-tiles systems

In order to cope with the high speed degradation of most topologies analyzed

in this case study, pipeline stages need to be inserted in very long links. By

adding pipeline stages it is possible to partially (if not completely) recover the

initial operating frequency of the basic switch block. Of course, this comes

116 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.32: Normalized area for 64-cores topologies with pipeline stages.

with a high cost in terms of area and power. Furthermore, for some topologies

with a high number of such long links, this technique may turn out to be

unaffordable due to the extremely high amount of additional area required to

implement such a strategy. The criteria that has been adopted for the insertion

of pipeline stages is to use them only from the third link dimension onwards.

Therefore, topologies such has the 8-ary 2-mesh and the 4-ary 2-mesh have

not been modified. Table 3.9 collects the results of this experiment. Please

note that the 4-ary 3-flat topology (with 4 tiles per switch) has not been

considered for the following analysis because its switch radix (14 ports) would

be a major limiting factor for the speed of the whole topology and for its

layout feasibility. A straightforward way to overcome such limitation would

be to consider a pipelined switch architecture or/and even a full custom design,

that fall outside the scope of this dissertation.

As clearly reported in the 3rd and 4th column (up), the insertion of pipeline

stages is a very effective way to reduce post-place&route frequency degrada-

tion. Column 2 (down) reports the number of pipeline stages inferred in each

link based on its dimension, whereas the 3rd column (down) points out the

number of links of each topology. The area weight of link pipelining comes

from the combination of these two factors and it is reported in the 4th col-

umn (down). Total cell area of the topologies along with the contribution of

pipeline stages is reported in Figure 3.32. Please note that the number of

pipeline stages per link depends on the maximum achievable frequency (dic-

3.6. Case study: 64-tiles topologies 117

tated by the maximum switch radix) along with the link length which is an

intrinsic characteristic of each topology. As reported in Figure 3.32, the 2-ary

6-mesh is the most area greedy topology because it has the highest number

of switches (64) which are placed&routed at the high frequency of 855MHz.

Moreover, this topology features 192 links with up to 5 pipeline stages on the

longest one. The main conclusion that can be extracted from those experi-

ments is that each topology has to pay a different price to restore the working

frequency allowed by the switching fabric.

3.6.4 The performance prediction gap

This section re-evaluates the topology abstract quality metrics for 64-tiles

topologies presented in Section 3.2.3 in light of the efficiency of their physical

implementation, thus pointing out how misleading conclusions can be when

the physical synthesis effects are ignored or underestimated.

For these experiments, dimension-order routing (DOR) was considered.

In order to remove the cycles introduced by the express links of k-ary n-

cmesh topologies, express links will be used only to advance messages that

travel along the perimeter of the topology a distance equal or higher than the

switches that this express link overcomes, like in [23].

Results exposed in this section were obtained by feeding the proposed

simulation framework with the high-level analysis assumptions and with the

results of the physical characterization of the evaluated topologies. In these

experiments, OCP generators were configured so destinations are generated

based on several synthetic traffic patterns. The size of the generated OCP

transactions is randomly selected with a minimum value of 4 burst beats, and

a maximum of 16 burst beats.

Figure 3.33(a) depicts accepted traffic vs. average message latency for a

uniform distribution of message destinations for different topologies when con-

sidering high-level estimations. Obtained results reflect the conclusions drawn

in Section 3.2.3. Figure 3.33(b) shows the same analysis where each topol-

ogy works at the operating frequency reported in the previous section when

pipeline stage insertion was not considered (see Table 3.8). By comparing

Figure 3.33(a) against 3.33(b), there is a misleading gap between the perfor-

mance predictions of the high-level analysis and the layout-aware one. In fact,

118 Chapter 3. Topology exploration for Networks On-Chip

 0

 100

 200

 300

 400

 500

 20 40 60 80 100 120 140

A
v
er

ag
e

M
es

sa
g
e

L
at

en
cy

 (
n
s)

Traffic (flits/ns/node)

8-ary 2-mesh
4-ary 3-mesh
2-ary 6-mesh
2-ary 5-mesh
2-ary 4-mesh
4-ary 2-mesh

8-cmesh
4-cmesh

(a) Theoretical

 0

 100

 200

 300

 400

 500

 20 40 60 80 100 120 140

A
v
er

ag
e

M
es

sa
g
e

L
at

en
cy

 (
n
s)

Traffic (flits/ns/node)

8-ary 2-mesh
4-ary 3-mesh
2-ary 6-mesh
2-ary 5-mesh
2-ary 4-mesh
4-ary 2-mesh

8-cmesh
4-cmesh

(b) Layout-aware, no-pipelining

 0

 100

 200

 300

 400

 500

 20 40 60 80 100 120 140

A
v
er

ag
e

M
es

sa
g
e

L
at

en
cy

 (
n
s)

Traffic (flits/ns/node)

8-ary 2-mesh
4-ary 3-mesh
2-ary 6-mesh
2-ary 5-mesh
2-ary 4-mesh
4-ary 2-mesh

8-cmesh
4-cmesh

(c) Layout-aware, with pipelining

Figure 3.33: Performance of 64-tiles systems with uniform traffic.

3.6. Case study: 64-tiles topologies 119

Figure 3.34: Normalized performance of 64-tiles systems.

while the theoretical results reported in 3.33(a) claim that several topologies

outperform the 8-ary 2-mesh, this latter topology is proved to be the best

solution in the layout-aware results of Figure 3.33(b). It is obvious that there

is a direct correlation between the operating frequency and the achieved per-

formance: the lower the operating frequency, the higher the average latency

and the lower the maximum achievable throughput, regardless of the results

obtained in the high-level analysis. In practice, layout degradation completely

offsets the better theoretical properties of the topologies.

However, when the impact of wiring complexity over the critical path is

alleviated by using link pipelining techniques, different conclusions can be

drawn. Figure 3.33(c) reports the same analysis results when each topology

works at the operating frequency (see Table 3.9) enabled by the usage of link

pipelining, and also accounting for the higher latency of pipelined links. In

this case, there are three network topologies that clearly outperform the 8-ary

2-mesh: 2-ary 6-mesh, 2-ary 5-mesh and 4-ary 3-mesh. Similar curves have

been drawn for several traffic patterns for each topology.

While the measured average latency did not vary too much among topolo-

gies, throughput results were more interesting. Those results are summarized

in Figure 3.34. This figure shows the normalized maximum throughput of

each topology with respect to the 8-ary 2-mesh solution. In this plot, a bar

120 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.35: Normalized area efficiency of 64-tiles systems.

higher than 1 implies an improvement of the maximum throughput over the

8-ary 2-mesh solution. Interestingly, those results follow the same trend as dis-

cussed for the uniform traffic pattern. All non-pipelined solutions are clearly

worse than the 8-ary 2-mesh, while pipelined solutions follow the same trend

than reported in the high level analysis: most of the solutions outperforms

the 8-ary 2-mesh, with the 2-ary 6-mesh being the best solutions for all the

traffic patterns. Although in this case the obtained performance is closer to

the high-level estimations, link pipelining techniques may have a great impact

over the implementation cost, thus requiring a new metric to asses the real

effectiveness of link pipelining techniques.

In particular, we have considered the area efficiency metric, defined as

throughput/area, which correlates the throughput improvement with the area

cost that has been paid to achieve that. Results are shown in Figure 3.35,

which depicts the area efficiency of each topology normalized with respect to

that of the 8-ary 2-mesh. Results are reported with and without pipelining

for several traffic patterns. In most of the cases, the area efficiency of both

pipelined and non-pipelined solutions is clearly lower than the 8-ary 2-mesh

solution. The key idea is that the performance improvements achieved by com-

plex topologies with pipelined links are not cost-effective. The only exception

is when the traffic pattern favors topologies with a low hop count, as in the

3.7. Case study: assessing Multi-stage Interconnection Networks 121

case of the perfect shuffle traffic. This characteristic, along with the fact that

some topologies feature a low area cost, leads to a higher area efficiency with

respect to the 8-ary 2-mesh.

3.7 Case study: assessing Multi-stage Interconnec-

tion Networks

This case study analyses the layout feasibility and the effects of physical

synthesis over performance figures of Multi-stage Interconnection Networks

(MINs) in NoCs. MINs present a highly irregular wiring pattern, relatively

large switch degree and significant area and power overheads when compared

against 2D-mesh topologies, the de facto solution for NoC designs. This raises

some skepticism about their practical feasibility. In spite of these concerns,

those topologies still seems to be competitive mainly due to their promising

performance scalability, which is a well known issue of 2D-mesh topologies.

Two families of MIN are analysed as an alternative to 2D-meshes. The

first family are fat-trees (see Section 3.2.2), which promise high performance

scalability at the cost of a high implementation cost. The second one is a

unidirectional MIN, in particular a new topology family that aims at solv-

ing 2D-mesh scalability issues with an affordable implementation cost: Re-

duced Unidirectional Fat-Tree (RUFT). At first, the physical implementation

of the candidate topologies is evaluated for designs of 16 and 64 cores. Then,

the proposed simulation framework is used to estimate performance figures

of the considered topologies by back-annotating implementation parameters

(i.e., link latency and operating frequency).

3.7.1 Topologies under test

Table 3.10 shows the high-level properties for the studied topologies. For each

topology, half of the cores are processor cores and half are memory cores. In

this analysis, the k-ary n-mesh topology family (see Section 3.2.2) is repre-

sented by two 2D-mesh configurations which are considered as the baseline

solutions: 4-ary 2-mesh for 16 cores configurations and 8-ary 2-mesh in the

64 cores category. In those topologies, the implemented routing algorithm is

122 Chapter 3. Topology exploration for Networks On-Chip

Network size 16 Cores

Topology 4-ary 2-mesh 2-ary 4-tree 2-ary 4-ruft 4-ary 2-ruft

Switches 16 32 32 8

Cores/Switch 1 0 or 2 0 or 2 0 or 4

Max. Degree 5 4 2 4

Unidir. links 48 96 48 16

Bis. Bandwidth 8 16 8 8

Hop count 7 7 4 2

Network size 64 Cores

Topology 8-ary 2-mesh 2-ary 6-tree 2-ary 6-ruft 4-ary 3-ruft

Switches 64 192 192 48

Cores/Switch 1 0 or 2 0 or 2 0 or 4

Max. Degree 5 4 2 4

Unidir. links 224 640 320 128

Bis. Bandwidth 16 64 32 32

Hop count 15 11 6 3

Table 3.10: Network topologies under test.

Dimension Order Routing (DOR) (see Section 3.3.4).

Regarding fat-trees, a 2-ary 4-tree is analyzed for the 16 cores case, while

the 64 cores one contemplates a 2-ary 6-tree. Notice that in both cases the

degree of the switches is 4 ports, which allows to keep a competitive maximum

operating frequency in the switches. Although solutions with less switches are

possible (4-ary 2-tree and 4-ary 3-tree for 16 and 64 cores, respectively), in this

case the degree of the switches would have been 8 ports. As demonstrated in

the previous case studies, the operating frequency slowdown introduced by the

use of this high degree switches would not be acceptable, thus overcoming the

theoretical advantages of the k-ary n-tree topology in terms of performance

over the 2D-mesh while conserving its increased implementation cost.

Routing in Fat-Trees is performed in two phases: ascending and descend-

ing. In the ascending phase, packets are forwarded upwards in the tree until

3.7. Case study: assessing Multi-stage Interconnection Networks 123

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3

5

6

7

0,2,6

1,3,5

5

2

3

0

1

2

4

2,4,6

1,5,7

3,5,7

0,4,6

1,3,7

0,2,4

6

7

0

1

4 0

4

1

5

2

6

3

7

0

2

1

3

4

6

5

7

Figure 3.36: A 2-ary 3-tree topology.

one of the nearest common ancestors1 between source core and destination

core is reached. At this point, the descending phase is started. While the

ascending phase present several minimal paths between any pair of cores, the

descending phase provides a single path to destination, which depends of the

common ancestor reached during the ascending phase. To provide a determin-

istic routing algorithm, as required by the reference architecture, a unique path

must be selected for each origin-destination pair among all the possible ones

in the ascending phase. To address this issue, the deterministic routing algo-

rithm presented in [66] is used. In this algorithm, during the ascending phase,

consecutive destinations are shuffled among the different ascending links of

the switches, as in Figure 3.36: each ascending port is labeled in italics with

the destination cores that are reachable through it. Also, Figure 3.36 shows

in bold how destinations are distributed in the descending phase. As can be

seen, each descending link is only used to reach a single destination, alleviating

in this way the effect of the Head-of-Line (HoL) blocking effect explained in

1A nearest common ancestor between two cores is the switch of the lowest possible stage

that allows the packet to reach the destination core by using only descending links.

124 Chapter 3. Topology exploration for Networks On-Chip

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

0,2,4,6

1,5

0

1

2

4

0,2,4,6

1,3,5,7

0,4

7

1,3,5,7

0,4

2,6

1,5

3,7

3,7

2,6

0

4

2

1

6

5

3
0,2,4,6

1,3,5,7

0,2,4,6

1,3,5,7

Figure 3.37: RUFT derived from a 2-ary 3-tree.

Chapter 2.

Finally, a new family of topologies is analyzed in this case study. Reduced

Unidirectional Fat-Tree (RUFT) was first introduced in [127] as a cost per-

formance trade-off. Like the butterfly topology introduced in Section 3.2.2,

RUFT are part of the uMIN topology family, and present similar high-level

properties. RUFTs are the result of the simplification of a k-ary n-tree when

using the deterministic routing algorithm for fat-trees above exposed. When

using this deterministic routing algorithm, if all packets are forced to reach

the last stage of the network, the whole descending phase can be reduced to a

single long link that connects the output ports of the switches of the last stage

with the input port of the corresponding destinations. This is possible thanks

to the routing algorithm that makes that each switch of the last stage only

receives packets destined to as many destinations as output descending ports

are in the switches; that is k destinations. For example, Figure 3.37 shows the

RUFT topology derived from a 2-ary 3-tree. In the figure, each switch shows in

italic the destinations reachable through its up ports. As can be seen, switches

of the last stage only receive packets destined to two destinations. Although

the use of long links may compromise the feasibility of this topology, all the

3.7. Case study: assessing Multi-stage Interconnection Networks 125

(a) 4-ary 2-mesh (b) 4-ary 2-ruft

Figure 3.38: Floorplans of topologies of 4-ary 2-mesh and 4-ary 2-ruft. Only

the main wiring patterns are reported.

hardware resources related to the descending phase are reduced to these long

links, simplifying the switch architecture. The resulting topology resembles

a unidirectional butterfly, with a permutation of the reachable destinations

from the last stage, which allows to keep the impact over HoL blocking of the

original routing algorithm.

When evaluating RUFT, we consider two different topologies for each net-

work size. The first ones are the unidirectional networks resulting from the

simplification of the considered fat-tree configurations: a 2-ary 4-ruft in the

16 cores category, and a 2-ary 6-ruft in the 64 cores category. These unidi-

rectional networks have the same number of switches of the original fat-trees

but, as can be seen in Table 3.10, the switch degree is reduced to one half.

This opens the way to consider an alternative RUFT implementation, trading

switch degree (making it equal to that of the equivalent fat-tree) for the switch

count. Thus, a 4-ary 2-ruft and a 4-ary 3-ruft were considered for 16 and 64

cores, respectively. In this way, the total number of switches is lower than

that in the original fat-tree, as reported in Table 3.10.

126 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.39: Floorplan of a 2-ary 4-tree. Only the main wiring patterns are

reported.

3.7.2 Floorplanning

This section presents the floorplan directives assumed for each topology. Pro-

cessor and memory cores size is assumed to be 1mm x 1mm. To account for

the worst case, over-the-cell routing was prevented for processing cores.

In the case of both 2D-mesh configurations (4-ary 2-mesh and 8-ary 2-

mesh) the floorplan is straightforward due to its regular grid structure match-

ing the 2D silicon surface. As an example, Figure 3.38(a) shows the mapping

strategy of the 4-ary 2-mesh.

The floorplanning of the fat-tree solutions (2-ary 4-tree and 2-ary 6-tree)

is more complex. Figure 3.39 shows the mapping strategy for the 2-ary 4-tree

design. This topology consists of 4 switch stages with 8 switches each one.

The floorplanning objective was to minimize wirelength between consecutive

3.7. Case study: assessing Multi-stage Interconnection Networks 127

switch stages. For this reason, cores are clustered in groups of four and the

connected switches of the first stage are placed in the middle of each cluster

(highlighted as grey switches in the figure). Each switch of the second stage is

placed in the middle of the same cluster where the connected switches of the

first stage are placed (yellow switches). The third switch stage is split into

2 subgroups and placed between the upper and lower clusters (red switches).

Each subgroup serves its relative counterpart from the first and second stage.

The last switch stage is located in the center of the chip (green switches). The

presented layout exhibits equalized wirelengths between the second, the third

and the last stage of switches. This floorplan can be easily scaled to the 64

cores configuration (2-ary 6-tree). In fact, the 64 cores fat-tree can be viewed

as built up by four clusters of the 16 cores one, with two additional switch

stages connecting them to each other. This new clusters can be placed as the

cluster of nodes in the 16 cores case. The additional switch stages can be

positioned as follows: the fifth stage is split and put in the upper and lower

part in the middle of the chip, in a similar way of the third stage in the 16

cores case, while the last stage is in the chip center.

The 2-ary 4-ruft (Figure 3.40) is a novel unidirectional fat-tree which has

never been laid out before, but it presents the same generic wiring character-

istics as other uMIN topologies. In particular, switches belonging to the last

stage are attached to the network interface of a core. This link is the intuitive

weakpoint of the layout of uMINs. To go around this problem, our floorplan-

ning directive in this case is to minimize the wirelength of this critical set of

links. Thus, switches from the last stage are positioned in the middle of each

4-core cluster (highlighted as green switches in the figure). Obviously, also

the first stage has to be close to the appropriate cores. Therefore, it is placed

above and below the middle of the chip between two neighboring clusters, so

to equalize the link length and keep the delay as homogeneous as possible on

the wires of the first stage (grey switches). As the third stage has to be con-

nected to the last one and to the second one, two groups of switches belonging

to the third stage are placed at the left and at the right of the chip center (red

switches) . This also achieves an easy connection with the second stage, which

is positioned in the center of the chip (yellow switches) . An interesting prop-

erty of the presented floorplan is that the link length is kept almost constant

128 Chapter 3. Topology exploration for Networks On-Chip

Figure 3.40: Floorplan of a 2-ary 4-ruft. Only the main wiring patterns are

reported.

on a stage-by-stage basis. For the 2-ary 6-ruft, again 4 clusters of 16 cores are

formed. However, the main issue is that unlike the usual fat-tree, the center

of each cluster is now occupied by the second stage of switches and not the

fourth one (i.e., the last in the 16-cores system). Therefore, the fourth stage

being scattered on the edges of the chip, the connection with the additional

switch stages is not equalized, leading to links of uneven lengths.

Finally, the floorplan for a 4-ary 2-ruft is illustrated in Figure 3.38(b).

Although the number of switch stages is small (just 2), this is a challenging

topology from a physical layout viewpoint. The problem stems from the fact

that each switch of the first stage is directly connected to all the switches of

the second stage. Moreover, a second stage switch is connected to network

interfaces of cores, since this is again a unidirectional topology. Following the

3.7. Case study: assessing Multi-stage Interconnection Networks 129

Topology Max. Degree Post-p&r critical delay

4-ary 2-mesh 5 1.19 ns

2-ary 4-ruft 2 1.15 ns

2-ary 4-tree 4 1.29 ns

4-ary 2-ruft 4 2.1 ns

Table 3.11: Critical delay for 16-cores systems.

same floorplanning strategy of the 2-ary 4-ruft, a switch from the last stage has

to be placed in the middle of a 4-core cluster (highlighted as green switches in

the figure). Unfortunately, in this case the switch has to be interconnected also

to all the switches of the first stage (grey switches), which should be necessarily

placed in the center of the chip to equalize link length. This results in very

long links going from each cluster to the switches at the center of the layout.

Finally, the 4-ary 3-ruft floorplanning turns out to be as inefficient as that of

the 2-ary 6-ruft topology, and results in very long links between the last stage

of switches and the network interface of connected cores.

3.7.3 Physical evaluation

The physical evaluation framework presented in Section 3.6 was used to char-

acterize the physical features of the topologies under test.

Timing

In all topologies, the network building blocks were synthesized for maximum

performance. Link pipelining techniques were not employed for the 16-cores

systems, as the area overhead is too high for such a small system scale. On the

contrary, when scaling the system to 64 cores, the high wiring complexity of

some topologies made necessary the use of link pipelining in order to mitigate

the impact of link delay over system performance.

Table 3.11 shows the post-layout speeds achievable for 16-cores topologies.

For all topologies (and even for the 2D-mesh) the critical path goes through

the switch–to–switch links. The effect of the complexity of the connectivity

pattern of each topology is obvious, as critical delays of the topologies are

130 Chapter 3. Topology exploration for Networks On-Chip

differentiated by the longest link in that topology. The main advantage of

the 2-ary 4-ruft is the high operating frequency of its switches, derived for

their low degree. As can be seen, this advantage is overcame by its intricate

wiring pattern, achieving a speed similar to that of the 2D-mesh. The 2-ary 4-

tree also incurs some speed degradation, as its post-synthesis performance was

lower than the 2D mesh even when the switch degree is one port lower. Finally,

in the case of the 4-ary 2-ruft those effects are aggravated due to the longer

wires that are needed, suffering a huge speed degradation after place&route,

and becoming the slowest solution among all the configurations evaluated.

Regarding the 64 cores systems, the use of link pipelining is required in

all MIN solutions. For this reason, those solutions were re-synthesized with

a target frequency of 750 MHz (a delay of 1.33 ns) for the network, inserting

pipeline stages in the links that were too long to achieve the target speed. This

target delay is close to the maximum speed of the 2D-mesh. At this target

speed, a high number of stages (11) were needed in the links connecting the

last stage to the network interfaces of destination cores in the 2-ary 6-ruft. For

the 2-ary 6-tree the latency of the links grows in the later stages. However,

due to the better scalability of the fat-tree floorplan, the worst-case latency of

the fat-tree is lower than in the 2-ary 6-ruft. The use of a lower target delay

would require a higher amount of pipeline stages, that will likely results in a

massive area overhead cost.

Overall, MINs typically suffer from a more significant performance degra-

dation after place&route due to their more complex wiring pattern.

Area

Figure 3.41, reports the total floorplan cell area of the analyzed topologies,

normalized to the 2D-mesh. In the 16 cores configurations, the 2D-mesh and

the 2-ary 4-ruft exhibit almost the same area. This is due to the fact that

both topologies have the same number of switch ports, which are the ones

that mainly determine the switch area. The 2-ary 4-tree has a significant 60%

area overhead with respect to the 4-ary 2-mesh, due to the increase in the

number of switch ports. As expected, the 2-ary 4-ruft achieves a significant

area saving with respect to the 2-ary 4-tree. Finally, the 4-ary 2-ruft presents

the lowest area footprint with just 8 4×4 switches.

3.7. Case study: assessing Multi-stage Interconnection Networks 131

Figure 3.41: Normalized area of 16-cores systems.

Figure 3.42: Normalized area of 64-cores systems.

The area projections for 64-cores systems are reported in Figure 3.42. As

can be appreciated, the area of the MINs solutions has increased much more

than that of the 2D-mesh, due to the higher number of switches required by

MINs when interconnecting a large number of cores, as well as to the high

number of pipeline stages required to provide competitive operating frequen-

cies. This makes area footprint of the 2-ary 6-tree hardly affordable and that

of 2-ary 6-ruft larger than the 2D-mesh. The 4-ary 3-tree is the more penalized

topology by the insertion of repeater stages: more than 50% of its area. Please

consider that this is a worst-case scenario pointing out scalability issues, which

can be mitigated by custom floorplans for a given system size.

132 Chapter 3. Topology exploration for Networks On-Chip

(a) 16 cores. OCP read transactions (b) 16 cores. OCP write transactions

(c) 64 cores. OCP read transactions (d) 64 cores. OCP write transactions

Figure 3.43: Performance of evaluated topologies.

3.7.4 Performance evaluation

The physical parameters reported above were annotated in the TL simulation

framework. Performance figures were obtained with a synthetic uniform traf-

fic pattern. In particular, OCP transaction destinations are randomly chosen

among all the available memories in the system. Transaction sizes are ran-

domly chosen with a minimum size of 4 data burst beats and a maximum

size of 16 burst beats. Different OCP transactions allows to test different

network characteristics. For instance, write transactions are changed into rel-

atively longer network packets, while read transactions generate short request

packets to the memory core and long response packets coming back. Moreover,

read transactions are blocking for the reference architecture network interface,

3.7. Case study: assessing Multi-stage Interconnection Networks 133

while write transactions are not (i.e., they are posted).

Regarding 16 cores systems, Figure 3.43(a) and Figure 3.43(b) shows the

average latency versus accepted throughput estimated for OCP read and write

transactions, respectively. As can be observed, in both cases the 4-ary 2-

ruft solution is unusable due to very low operating frequency. Despite the

additional resources required by the 2-ary 4-tree, it shows a higher latency

and an equal or lower throughput than the 4-ary 2-mesh solution. This latter

presents a similar performance than the 2-ary 4-ruft, while requiring a similar

area cost (see Figure 3.41) and displaying a lower wiring complexity. Thus,

for a 16 cores system, the 2D-mesh (4-ary 2-mesh) might be the best option.

In the case of the 64 cores solutions, Figure 3.43(c) and Figure 3.43(d) show

the performance projections for OCP read and write transactions, respectively.

Since link pipelining is now used, the same frequency of 750 MHz is enforced

and the proper latency is assumed for the links of the MINs. As can be seen,

this case presents a neater performance differentiation between topologies.

When considering read transactions, each transaction has to cross the network

twice: one for the request to reach the target core and another for the response

to reach the requesting core. In fact, due to the blocking behaviour of the

network interfaces on read transactions (until the response packet arrives),

the maximum number of outstanding transactions is one for each processor

core. It follows that performance is driven by the diameter of each topology.

Under these conditions, the 4-ary 3-ruft becomes the best topology, with the

lowest average latency and the highest maximum throughput. On the contrary,

the high diameter of the 2-ary 6-tree derived from its physical implementation

makes this topology the worst choice in this case. But this conclusions may

change when considering only write transactions. While the 2D-mesh solution

is still the best overall solution (due to its low latency), for systems with a high

throughput requirement, the 2-ary 6-tree becomes the best choice by a tight

margin, although at an unaffordable area cost overhead: more than twice the

area of the 2D-mesh.

134 Chapter 3. Topology exploration for Networks On-Chip

3.8 Conclusions

This chapter introduces the layout-aware transaction-level simulation frame-

work for NoCs developed in this thesis. Experiments on selected test-cases

proved an excellent accuracy with respect to RTL simulation, while providing

significant simulation time speed-ups.

This chapter also summarizes the first steps taken in the direction of devel-

oping DSE techniques. In particular, it aims at evaluating network topologies

proposed in the open literature for NoCs. At first, a short summary of these

topologies was presented, together with a comparative analysis of their high-

level properties.

Later on, the developed simulation framework is used in order to demon-

strate the risks of evaluating NoCs solutions based on high-level methodologies

oblivious to effects of the physical layer over overall system performance. Then,

two cases studies are presented with the aim of showing the potential of the

developed simulation framework. In the first case study, the proposed simula-

tion framework is used to perform a parametrical exploration of several mesh

configurations. Following, several case studies were presented in which the

proposed simulation framework is used to perform layout-aware topology ex-

plorations by back-annotating physical parameters. In the case in which the

layout-awareness comes from real backend synthesis tools, although highly

accurate, the cost in terms of synthesis was too high to support the quick

topology explorations required for a DSE tool. For this reason, a slightly less

accurate methodology that requires less synthesis iterations was devised.

Those case studies demonstrate that the conclusions drawn by a pure high-

level analysis of topology performance based on high-level metrics may be

highly misleading if not enlightened by the information provided by the phys-

ical synthesis. For example, a basic implementation of investigated topologies

in which simple non-pipelining links are considered (similar to the ones com-

monly used in high-level analysis) leads to very poor performance due to long

links forcing unacceptable critical path delays. A fact that is usually omitted

in those high-level analysis. A layout-aware analysis shows that it is possi-

ble to improve the performance of those topologies, by alleviating the impact

of long wires over the critical path with pipeline stage insertion. In spite of

3.8. Conclusions 135

a very competitive performance for such augmented topologies, the incurred

area overhead (area of pipeline stages plus that of the switches re-synthesized

to support the increased operating speed) is still too severe to make these

solutions fully cost-effective with respect to a 2-D mesh. Therefore, they are

a trade-off solution between communication performance and implementation

cost.

A good example of a family of topologies with high theoretical perfor-

mance scalability with implementation issues in the NoC environment are the

Fat-trees. When their performance figures are enlightened with the physical

characteristics of their implementation in NoCs, fat-trees can hardly materi-

alize such scalability, requiring big amounts of additional resources in order to

compensate the physical degradation of their complex wiring patterns. On the

other hand, other topologies are able to materialize their theoretical advan-

tages. That is the case of unidirectional MINs, like RUFT, the novel topology

evaluated in this chapter. RUFT becomes attractive for its reduced power and

area overhead. Unfortunately, their advantages cannot be easily materialized

due to a more intricate layout design, an issue that is usually underestimated

in high-level analysis.

136 Chapter 3. Topology exploration for Networks On-Chip

Chapter 4

Virtual Channels for

Networks On-Chip

“Don’t get set into one form, adapt it and build your own, and let

it grow, be like water. Empty your mind, be formless, shapeless

like water. Now you put water in a cup, it becomes the cup; You

put water into a bottle it becomes the bottle; You put it in a teapot

it becomes the teapot. Now water can flow or it can crash. Be

water, my friend.”

Bruce Lee, A Warrior’s Journey

This chapter discusses the adaptation of design techniques developed for

interconnection networks to the on-chip environment. As it will be shown the

same design must not be assumed for granted, instead they must be adapted.

This chapter presents an example how the virtual channels flow control mech-

anism originally designed for interconnection networks can be adapted to the

NoC environment in order to provide an efficient implementation. Section

4.1 introduces the key topics of this chapter. Then, the classic virtual channel

switch fabric architecture as well as its adaptation to the reference architecture

is explained in Section 4.2. After, two proposals of optimized implementations

of virtual channels for NoCs are presented in Section 4.3, which are compared

against the classical virtual channel architecture in Section 4.4. Finally, some

conclusions are drawn in Section 4.5.

137

138 Chapter 4. Virtual Channels for Networks On-Chip

4.1 Introduction

This chapter delves in the dangers of adapting to NoCs design techniques

developed from a different domain. While, Chapter 3 illustrates those risks

in the case of network topologies, this chapter will further develop this topic

by demonstrating the risks of blindly adopting design techniques with deeper

implications in the system characteristics, like the network architecture. Due

to the maturity of the research in the interconnection networks field and to

the similitudes between this field and NoCs, designers may resort to this field

in order to learn many handful design techniques. Although the advantages

of this practice should not be neglected, this practice can be dangerous, due

the differences between both environments. The physical implementation of

on-chip designs with design techniques inherited from the off-chip domain may

result in highly inefficient systems at best, and in unusable design at worst.

A good example of this practice in the open literature can be found in the

virtual channel flow control. First proposed by [47] as an effective workaround

for Head-of-Line (HoL) blocking, virtual channels are an appealing flow control

technique for NoCs, in that they can potentially avoid deadlock and improve

link utilization and network throughput. The original virtual channel switch

architecture from the interconnection networks domain has been adopted for

NoCs with minimal changes, being widely accepted in the open literature as

the de facto virtual channel switch architecture.

However, their use in the resource-constrained multi-processor system-on-

chip (MPSoC) domain is still controversial, due to their significant overhead

in terms of area, power and cycle time degradation. Even considering that a

virtual channel switch can implement the same amount of buffering resources

of its VC-less counterpart by simply splitting a single buffer into multiple

smaller virtual channels instead of a single queue [128], the incremental com-

plexity when augmenting a baseline switching fabric with virtual channels is

still severe [25, 41, 98]. Virtual channel overhead is associated with the addi-

tional levels of arbitration, the circuits keeping virtual channel state and the

management of flow control on a virtual channel basis (instead of at a port

based basis). Moreover, in order to avoid starvation between virtual channels,

it is desirable to perform arbitration at flit-level instead of packet-level granu-

4.1. Introduction 139

larity, at the cost of an increased switching activity. Finally, the delay of the

additional control logic typically adds up to the critical path, thus resulting

in a cycle time degradation that might offset the throughput improvements

achieved by HoL blocking alleviation. Those issues make virtual channels

the perfect candidate to demonstrate the advantages of adapting design tech-

niques, instead of just adopting them.

Most research efforts documented in the open literature aiming at mitigat-

ing such an overhead by providing optimized virtual channel switch architec-

tures fall in the domain of chip multi-processors (CMPs). Those researches

fundamentally aim at delay-optimized implementations [84, 106, 118]. This is

justified by the requirements of that domain, implying pipelined switches oper-

ating in the multi-GHz speed range, while shared memory traffic exerts strin-

gent latency-throughput demands. In those cases, full-custom design tech-

niques are typically adopted, thus making even single cycle implementations

of the classical virtual channel switch architecture feasible while meeting the

mentioned speed requirements.

In contrast, Multi-Processor Systems-on-Chip (MPSoCs) represent a much

more resource-constrained domain. Area and power efficiency are main objec-

tives to fulfill the requirements of embedded system platforms (e.g., multi-

media, broadband or networking applications). Here, operating frequencies

are typically lower, switches are not pipelined and the design flow is mainly

synthesis-based [121]. In this domain, resource oversizing is clearly not af-

fordable, therefore virtual channels are an attractive solution to maximize link

utilization. Unfortunately, MPSoCs are most sensitive to area and power over-

heads, and this explains why their use is still controversial in this domain and

an intensive effort is underway to minimize their implementation cost [97,160].

This chapter proposes a simple yet efficient approach to virtual channel im-

plementation, which results in more area- and power-saving solutions than the

classic virtual channel architecture. While the latter replicates only buffering

resources for each physical link, the key idea behind this chapter is to repli-

cate not just the buffering resources for each physical link but rather the entire

VC-less switch as many times as the desired number of virtual channels. The

resulting design is counterintuitively more area/power efficient while poten-

tially operating at higher speeds. Those results are based on a well known

140 Chapter 4. Virtual Channels for Networks On-Chip

principle of logic synthesis, namely the area-performance trade-off for infer-

ring the gate-level netlist of combinational logic. In practice, a design will

be synthesized as a low-area netlist when delay constraints are loose, while

high-performance designs can be materialized at the cost of area. In this way,

we will prove that when a designer is aware of the distinctive features of NoC

physical synthesis, highly optimized architectures can be conceived.

This proposal can be pushed to the limit by replicating not just the switch

but even the entire network multiple times. Although this solution was first

proposed by [23] and commercially exploited by [153], we feel that replicated

networks are a fair alternative to our multi-switch approach only while keeping

the aggregate switch buffering and flit width the same. The original proposal

in [23] envisions a replication of sub-networks that results in an increase of link

bandwidth: this solution addresses a different problem than the one investi-

gated in this chapter, which instead aims at switch architectures that improve

link bandwidth utilization with minimum area/power overhead.

4.2 Classical virtual channel design

This section will focus on the classical virtual channel switch architecture.

At first, the conventional virtual channel switch architecture is introduced.

Then, the reference switch architecture is augmented with virtual channels by

following conventional design techniques.

4.2.1 Classical virtual channel switch architecture

The original virtual channel architecture was first introduced in [47], and an in

depth explanation can be found in [45,118]. The following is a summary of this

architecture pointing out its most relevant characteristics for this dissertation.

Figure 4.1 illustrates the wormhole virtual channel switch architecture usu-

ally employed in the open literature for NoC designs. As shown, the parame-

ters affecting the delay of the various modules are: the number of I/O ports

(P), and the number of virtual channels (V). Consider a packet traversing the

switch of Figure 4.1 in isolation (i.e., no other packets are traversing the same

switch). Initially, when the header flit is received at an input port its virtual

4.2. Classical virtual channel design 141

Crossbar

SW Alloc

VC AllocInput port 0

.

.

.

Output port 0

Output port P-1

.

.

.

Flit in

Flow control out

Flit out

Flow control in

Flit out

Flow control in

Control

Control

Flit

VC V-1

VC 0
.

.

.

Input port P-1

Flit in

Flow control out

VC V-1

VC 0
.

.

.

Flow control

Flit

Figure 4.1: Schema of a conventional wormhole virtual channel switch archi-

tecture.

channel id field is decoded and the entire flit is buffered at the appropriate

virtual channel.

In the next cycle, the header flit is decoded in order to obtain the list of

output virtual channels usable by this packet. Then, a request for the desired

output virtual channels is sent to the virtual channel allocator, which collects

all the requests from each virtual channel of the input ports and returns avail-

able output virtual channels to successful requesters. Once the packet wins

the arbitration of an output virtual channel, this virtual channel is assigned

to it until the tail flit traverses the switch, thus virtual channel allocation is

done in a packet–by–packet basis.

Next, a request for the required output port is sent to the switch allocator,

that controls the access to the crossbar. In this case, arbitration is carried

out in a flit–by–flit basis, in order to avoid starvation issues due to unfair

distribution of the crossbar. Once the switch arbitration is won, a single flit

is sent through the crossbar from the input virtual channel to the output

port. If output ports are unbuffered, the flit will be directly sent through the

output link. In the case when output ports are buffered, output buffers must

also be structured as virtual channels, in order to accommodate flits in their

corresponding virtual channel. Finally, when the tail flit of the packet crosses

the crossbar, the switch allocator must notify the virtual channel allocator in

order to free the resources reserved to this packet. Notice that both allocation

142 Chapter 4. Virtual Channels for Networks On-Chip

VC 0

VC N

.

.

.

Data

Valid

Data

Valid

Data

Valid

VC_ID

Data

Valid

Data

Valid

Data

Valid

to first stage arbiter

VC_grant

Stall 0

Stall N

.

.

.

Grant 0

Grantl N

.

.

.

Figure 4.2: Input port schematic of the multi-stage virtual channel switch.

steps are carried out in a single cycle.

4.2.2 Conventional multi-stage virtual channel switch

In this section the reference architecture (denoted as VC-less from now on)

is upgraded with virtual channel flow control by means of conventional de-

sign techniques. This new architecture will act as the reference to which this

chapter proposals will be compared.

The reference architecture already presents some characteristics that help

to reduce switch delay. First, the use of source based routing reduces the com-

plexity of the switch logic, as routing logic is reduced to retrieve the desired

output port of each packet from the header flit. Second, the use of deter-

ministic routing reduces the complexity of the allocators, as requests will be

constrained to a single request per packet. Finally, it is assumed that packets

are delivered in the same order in which they are injected for a given origin

and destination pair. The OCP models require in-order delivery of packets

to avoid read–after–write errors. When in-order delivery is not enforced, it

is possible that when processor tries to read a memory address that it has

written in a previous transaction will instead get the unwritten memory ad-

dress, as the read transaction may be delivered faster than the write one. This

implies the use of statically allocated virtual channels, thus avoiding racing

conditions between virtual channels.

4.2. Classical virtual channel design 143

1−of−P

+
Control

Decode

+
Control

Decode

V:1

Arbiter

Flit Buffer

(VC V)

.

.

. .
.
.

.

.

.

V

V

VP*V

1

P

(VC 0)

Flit Buffer

Request + VC ID

Flits

P:1

Arbiter

.

.

.

1−of−V

1−of−V

1−of−P

Crossbar control signal

To other Output
Port Arbiters

Wants to tranmist a flit?

Port Arbiters

From other Output

VC Status

Succes

Datapath

Crossbar

Input Port 1 Output Port 1

Request

VC ID
VC ID

Figure 4.3: Detailed control path of the multi-stage virtual channel switch.

In static allocation of virtual channels, the virtual channel of a given packet

is determined and fixed at injection time, and kept along the path of the

packet through the network. Static virtual channel allocation is nonetheless

of paramount importance whenever message-dependent deadlock has to be

removed (different kinds of messages can be routed through distinct virtual

channels) or in-order delivery of packets needs to be enforced. This latter is a

critical abstraction for many higher-level protocols running on top of on-chip

interconnection networks (e.g., file transfers, optimized cache coherence proto-

cols) [53,73]. The reference virtual channel switch architecture is significantly

optimized for this scenario, and large effort was devoted to this optimization

step. We wanted our new approach to virtual channels implementation to

prove more area and power saving than the conventional one because of the

effectiveness of the underlying design principle, and not of the inefficiency of

the compared architecture.

A switch input port receives the virtual channel ID together with the flit

from the upstream switch (Figure 4.2). This ID is used to select the virtual

144 Chapter 4. Virtual Channels for Networks On-Chip

VC 0

VC N

.

.

.

Data

Valid

Data

Valid

Data

Valid

VC_ID

Data

Request

Data

Valid

Grant

Data

Request

Grant

Ouput
Port
Arbiter

Stall 0

Stall N

.

.

.

VC_ID

Figure 4.4: Output port schematic of the multi-stage virtual channel switch.

channel where arriving flits must be stored. Also, a stall signal is generated

by each virtual channel and propagated upstream to the attached output port

to notify availability of buffer space on a per-VC basis. Each virtual channel

implements its own buffering space and a very simple decoding logic that reads

the target output port for each packet from the routing field in the header.

In turn, each virtual channel sends head flits, that must be arbitrated,

to the internal arbitration logic and all flits to the datapath crossbar going

through a multiplexer. Flit space in the VC buffer remains reserved until

a grant signal from the arbitration logic is received. When this occurs, the

arbiter also drives the multiplexer control signals (see Figure 4.3-left).

Similarly to [84], switch allocation is performed immediately after the flit

arrives, and the routing information is used to identify the intended switch

output port. Virtual channels are assigned non-speculatively after switch al-

location: the winning virtual channel that is granted access to a given output

port automatically reserves the virtual channel with the same ID at that out-

put port. This is because virtual channels are statically allocated. As we will

clarify shortly hereafter, it can never occur that a virtual channel is granted

access to an output port and the intended VC at that port is occupied.

Switch allocation implies a second stage of arbitration, like in [106, 118].

The detailed architecture of a switch with P I/O ports and V virtual channels

per port is illustrated in Figure 4.3. We denote the resulting virtual channel

switch as the multi-stage architecture, due to the two stages of the arbitration.

First, each input port arbitrates among its virtual channels through a V : 1

4.2. Classical virtual channel design 145

VC arbiter, selecting a single virtual channel out of V that is considered for

arbitration in the next phase. Second, each of the P output ports makes use

of a P : 1 port arbiter to discriminate among all the input virtual channels

winning the first-stage arbitration and requiring that specific output port.

All arbiters implement a round-robin policy and, differently than the VC-less

switch, arbitration is now performed at flit-level instead of packet-level in order

to avoid starvation.

One rule that is enforced during switch allocation is that a flit can only

win the arbitration in the VC (first stage) arbiter if it is a payload flit or it is

a header that requires an output virtual channel that has free buffer space to

allocate the header and it is not in use by another input virtual channel. In

practice, the first stage arbiter filters the requests for non-free output virtual

channels. The port arbiters update at each cycle the status of each output

virtual channel (see signal ”VC Status” in Figure 4.3), and the first stage

arbiters use that information to validate incoming requests from the input

virtual channels. This way, it is not possible to waste a cycle by selecting a

winner in switch allocation that will find its target virtual channel reserved or

with no space. To provide fairness among all the input virtual channels, if the

winner of the VC arbiter does not win the port (second stage) arbitration, it

receives the highest priority in the virtual channel arbiter. We therefore make

sure that the last winner will be proposed again as soon as possible.

This architecture limits the amount of virtual channels of each output port

that can be allocated in a single cycle to 1. But, as the crossbar is only PxP ,

even if several output virtual channels of the same output port were assigned

in the same cycle, only a single flit would be able to reach that output port

at each cycle. So there is no performance penalty.

Figure 4.4 shows the schematic of the switch output port. Toward the

switch side, together with the new flit to be stored, the port arbiter indicates

the virtual channel that must store it. The output port implements a buffer

for each virtual channel. At the interface to the downstream switch, there is

a further arbiter that decides which virtual channel will send a flit based on

a round robin policy. A virtual channel only activates its request signal if the

corresponding stall signal of the downstream device is not asserted. When an

output port sends a flit out, it has to send also the ID of the virtual channel

146 Chapter 4. Virtual Channels for Networks On-Chip

Architecture Critical Path (ns) Area (normalized)

VC-less Switch (MAX Perf.) 0.98 0.52

M.Stage VC Switch (MAX Perf.) 1.2 1

VC-less Switch (Relaxed) 1.2 0.43

Table 4.1: Overhead for VC support.

that is actually sending the flit.

The dashed line in Figure 4.3 illustrates the critical path of the multi-

stage VC switch. Like the VC-less switch, it includes part of the control and

of the datapath (essentially, arbitration and crossbar selection). However, it

is actually longer due to the more complex 2-stage arbitration that was not

there in the VC-less switch.

4.3 Bringing virtual channels to Networks On-Chip

This section presents the proposals for optimized virtual channel switch archi-

tectures for NoCs, aiming at networks with static allocation of virtual channels

that implement deterministic source based routing algorithms.

4.3.1 Motivation

By inferring a 5x5 VC-less switch and a corresponding multi-stage switch ar-

chitectures in the same 65nm technology library with Synopsys Physical Com-

piler, the critical path delay and area results shown in Table 4.1 were obtained.

Two virtual channels were considered for the multi-stage architecture.

The conventional multi-stage realization of a virtual channel switch incurs

a delay overhead of 20%, associated with the more complex arbitration. For

the sake of fair area comparison, the VC-less switch was re-synthesized to

match the same delay of the multi-stage one. This relaxation of delay con-

straints enabled the logic synthesis tool to infer the same logic functions with a

more compact gate-level netlist, in practice moving the design point along the

performance-area optimization curve. This is a well known principle of logic

synthesis [100] and therefore holds in general, while the amount of achieved

4.3. Bringing virtual channels to Networks On-Chip 147

VC-less
switch 0

VC-less
switch V-1

.

.

.

Input link 0

VC ID

Input link P-1

VC ID

Output link 0

VC ID

Output link P-1

VC ID

.

.

.

.

.

.

Figure 4.5: Multi-switch implementation of a virtual channel switch.

area savings depends on the specific design, on the set of cells available in the

technology library and on the optimization techniques implemented by the

synthesis tool at hand, resulting in different combinational logic implementa-

tions.

When focusing on the crossbar, Synopsys Physical Compiler tends to im-

plement it under loose delay constraints by means of a tree of smaller multi-

plexers that combine more than two inputs at each level of the tree. As timing

constraints are made tighter, some optimizations are used automatically by

the tool that results in an increment of the area and power.

By looking at area numbers of the relaxed netlist, it can be observed that

twice the area of a VC-less switch accounts for only 86% of the area of the

multi-stage switch and that the relaxation resulted in almost 10% area sav-

ings with respect to the netlist synthesized for maximum performance. This

result suggested the novel VC switch implementation which will be illustrated

hereafter.

4.3.2 Proposed multi-switch implementation

Typically, a single buffer is associated with each physical channel. Virtual

channels provide multiple buffers for each channel, so that when a certain

virtual channel is congested, the packets in the other virtual channels can

148 Chapter 4. Virtual Channels for Networks On-Chip

still progress through the same physical channel and the network throughput

can be significantly improved. However, this technique makes switch control

logic more complex and the critical path delay is increased, as proved by the

multi-stage architecture.

As an alternative, the virtual channel switch architecture that we propose

consists of replicating not just buffers per channel, but rather the entire base-

line VC-less switch as many times as the intended number of virtual channels.

Replicated switches then share the same physical input and output links, sim-

ilar to what conventional virtual channels do, but with the main difference

that in the new implementation virtual channels have their own access to a

replicated crossbar and the first stage of arbitration can be finally removed, as

illustrated in Figure 4.5. We call this the multi-switch virtual channel imple-

mentation. The underlying principle is simple: instead of replicating buffering

resources inside a switch, we rather propose to replicate the baseline VC-less

switch without impacting its internal critical path.

Similar to the multi-stage architecture, also this solution requires an addi-

tional stage of link arbitration in order to multiplex the outputs of the baseline

VC-less switches into the same physical output links connecting to downstream

switches. As Figure 4.5 indicates, this stage is cascaded to the replicated VC-

less switches and it is exactly the same which is used at the output of the

multi-stage implementation (see output port arbiter in Figure 4.4). Like this

latter, it arbitrates on a flit–by–flit basis while the arbiters of the replicated

switches keep arbitrating at the packet level.

Interestingly, delay of this arbitration stage does not add up to that of the

VC-less switches to determine the critical path, since they are separated by

a retiming stage (the switch output buffers). In practice, the critical path of

the multi-switch architecture is the same of a VC-less switch, since it does not

make use of a multi-stage arbiter. However, one might argue that this comes

at the cost of replicating more physical resources (e.g., the crossbars).

At this point, a basic principle of logic synthesis comes into play and leads

to opposite conclusions. When comparing the multi-stage with the multi-

switch virtual channel implementations, this latter has less functions on the

critical path hence potentially resulting in a more area/power-efficient gate-

level netlist after logic synthesis. In fact, the multi-switch architecture cer-

4.3. Bringing virtual channels to Networks On-Chip 149

VC

SWITCH

SWITCH

network 1

network 2

SWITCH

Figure 4.6: Multi-stage virtual channel switch vs multi-network compound

switch: aggregate link width and switch buffering are kept constant.

tainly provides a higher maximum speed than the multi-stage one. However,

if we require the two architectures to be aligned to the speed of the slowest

one (the multi-stage), then combinational logic of the multi-switch design can

be inferred with relaxed delay constraints and therefore optimized for area

and power. In practice, a different design point along the area-performance

optimization curve is inferred.

Now, the issue is to determine whenever the area savings achieved by logic

synthesis are enough to compensate for the larger amount of hardware re-

sources that are instantiated in the multi-switch architecture, especially the

replicated crossbars. Please observe that the multi-stage and the multi-switch

architectures can be designed to instantiate the same overall amount of buffer-

ing resources: V virtual queues in the multi-stage switch are equivalent to a

single queue in V replicated switches.

4.3.3 Full network replication

By pushing the above mentioned strategy, the entire physical network should

be replicated multiple times instead of just the switches. This solution has al-

ready been adopted, e.g., in [143,153]. In [143] four separate and independent

NoCs are used, while [153] uses 5 mesh networks and leverages the on-chip

150 Chapter 4. Virtual Channels for Networks On-Chip

wiring resources to provide massive on-chip communication bandwidth. In

this dissertation, a different perspective is considered: the available link band-

width is satisfactory and we search for cost-effective design techniques for its

optimal exploitation. As a consequence, for the sake of comparison we con-

sider replicating multiple physical networks while keeping the aggregate link

width and aggregate switch I/O port buffering the same. In practice, in order

to construct the multi-network architecture, we equally partition the same

link bandwidth of the multi-stage/switch NoC across the multiple physical

networks (see Figure 4.6).

Therefore, aggregate switch buffering in all architectures is the same. In

the multi-stage solution, V virtual queues are instantiated in the same switch

for each input and output port. In the multi-switch solution, V replicated

switches have a single queue per port. In the multi-network architecture,

switches in each network have a flit width V times lower and single queues

with a size (in slots) V times larger. This way, the overall amount of flip flops

for buffering purposes stays the same throughout all the architectures under

test.

One clear disadvantage of the multi-network architecture lies in the fact

that due to the smaller flit width of its switching sub-modules, packet latency

increases. In particular, with V virtual channels in the multi-stage archi-

tecture, in each of the V replicated networks packets suffer from a latency

increase which is more than V times. This is due to the control bits in the

network protocol. In particular, in the reference architecture 3 bits in each

flit are devoted to the flit type, which in the simplest case can be either head,

payload or tail. Such constant size flit type consumes a percentage of the flit

width which grows as the flit width becomes smaller. In practice, as the num-

ber of replicated networks increases a lot to mimic a large number of virtual

channels, the packet latency grows unacceptably.

4.4 Architecture comparison

This section will provide an in depth comparison of the reference architecture

upgraded with virtual channel by the classical approach (multi-stage imple-

mentation) and both proposals (multi-switch and multi-network). At first, the

4.4. Architecture comparison 151

Multi Multi Multi

Stage Switch Network

2 virtual channels

Number of sub-modules – 2 switches 2 networks

Flit width per sub-module (bits) 32 32 16

Aggregated link width (bits) 32 32 32

Input queues per Sub-module 2 1 1

Output queues per Sub-module 2 1 1

Input queue slots (flits) 2 2 4

Output queue slots (flits) 6 6 12

Aggregated switch buffering (bits) 1280 1280 1280

4 virtual channels

Number of sub-modules – 4 switches 4 networks

Flit width per sub-module (bits) 32 32 8

Aggregated link width (bits) 32 32 32

Input queues per Sub-module 4 1 1

Output queues per Sub-module 4 1 1

Input queue slots (flits) 2 2 8

Output queue slots (flits) 6 6 24

Aggregated switch buffering (bits) 2560 2560 2560

Table 4.2: Configurations for the compound switch architectures for 32 bits.

physical synthesis of all three implementations will be evaluated. Then, an ac-

curate performance comparison among all three architectures is presented.

4.4.1 Physical synthesis

All three architectures were synthesized by means of the backend synthesis

flow employed in Chapter 3, for a 65nm STMicroelectronics technology. In all

experiments a switch degree of 5 was considered. Each experiment is defined

by two factors: the number of virtual channels and the flit/link width. In

particular, experiments were performed for configurations with 2 and 4 virtual

channels, and with 32 and 64 bits of aggregated link width. Table 4.2 and Table

4.3 show the configurations for the 32 and 64 bits experiments, respectively.

152 Chapter 4. Virtual Channels for Networks On-Chip

Multi Multi Multi

Stage Switch Network

2 virtual channels

Number of sub-modules – 2 switches 2 networks

Flit width per sub-module (bits) 64 64 32

Aggregated link width (bits) 64 64 64

Input queues per Sub-module 2 1 1

Output queues per Sub-module 2 1 1

Input queue slots (flits) 2 2 4

Output queue slots (flits) 6 6 12

Aggregated switch buffering (bits) 2560 2560 2560

4 virtual channels

Number of sub-modules – 4 switches 4 networks

Flit width per sub-module (bits) 64 64 16

Aggregated link width (bits) 64 64 64

Input queues per Sub-module 4 1 1

Output queues per Sub-module 4 1 1

Input queue slots (flits) 2 2 8

Output queue slots (flits) 6 6 24

Aggregated switch buffering (bits) 5120 5120 5120

Table 4.3: Configurations for the compound switch architectures under test

for 64 bits.

As can be observed, at any given experiment aggregated input/output link

width and aggregated switch I/O port buffering is the same for all compound

switches.

Initially, each configuration was synthesized at its maximum performance.

Next, the delay constraint was gradually relaxed in order to get area/critical

path curves. Figure 4.7 and Figure 4.8 illustrate such curves for the 2 and 4

virtual channels experiments, respectively. By looking at the figures, several

observations can be made.

First, the multi-switch architecture can achieve a higher speed than the

multi-stage one, since it implements less control functions on the critical path.

4.4. Architecture comparison 153

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

N
o

rm
a

li
ze

d
 A

re
a

Critical Path [ns]

Multi-Stage 64

Multi-Stage 32

Multi-Network 32

Multi-Network 64
Multi-Switch 32

Multi-Switch 64

Figure 4.7: Area scalability as a function of the target delay constraint. 2

virtual channels.

Therefore, the above mentioned principle of physical synthesis can be exploited

in order to reduce area of this design while relaxing its performance constraint.

Therefore, it is possible to match the same maximum speed of the multi-stage

architecture while incurring a lower area, since the area scalability process

for the internal combinational logic (e.g., the crossbar) is very effective. Area

savings in almost all cases amount to 10%.

Second, when operating at a lower speed, both gate-level netlists can be

optimized for the relaxed timing constraint and therefore save area. This op-

timization process saturates around a cycle time of 3ns for the multi-switch

solution, while the multi-stage can still be optimized until 4.5ns. As a con-

sequence, there is a target cycle time (3ns) beyond which the multi-stage

architecture actually saves area. Apart from the unrealistically low operating

speed at the break-even point, the area savings from there on are marginal

(maximum of 5% at 200 MHz for 4 virtual channels).

Third, while it is true that replicating a 64-bit mux-based crossbar is in

principle more expensive, it has to be considered that the multi-stage architec-

ture employs additional mux-based logic: one to select one virtual channel per

154 Chapter 4. Virtual Channels for Networks On-Chip

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

N
o

rm
a

li
ze

d
 A

re
a

Critical Path [ns]

Multi-Stage 64

Multi-Stage 32

Multi-Network 32

Multi-Network 64Multi-Switch 32

Multi-Switch 64

Figure 4.8: Area scalability as a function of the target delay constraint. 4

virtual channels.

input port and one demux to send the crossbar output to one output virtual

channel. In practice, the multi-stage solution has a larger overall mux-based

logic. Therefore, the results are again in favour of the multi-switch solution

(area-wise) even at 64 bits.

Finally, regarding multi-network, this architecture scales in the same way

as the multi-switch one. However, area is always consistently better. This

is due to the absence of de-mux logic at switch inputs, of the mux logic at

switch output and of the link arbiter controlling this latter. Moreover, this

architecture makes use of multiple smaller crossbars with respect to the multi-

switch solution. On average, area savings amount to around 5%. Even at very

low speeds, this solution is still very competitive area-wise with the multi-stage

architecture.

Let us now better detail how the area optimization process operates in

the multi-switch architecture (2nd and 3rd bars in Figure 4.9). When tim-

ing constraints are relaxed, area of the non-combinational circuits remains

almost unchanged. In contrast, gate-level netlist transformations during logic

synthesis enable a significant reduction of combinational logic area (crossbar,

4.4. Architecture comparison 155

Figure 4.9: Area breakdown of 32-bit multi-switch (maximum and relaxed

performance) and multi-stage implementations.

arbiters, multiplexers, buffer control logic). For the crossbar, what actually

happens when a lower delay is required is that driving strength of gates is

largely increased, and complex logic cells (like 4-input multiplexers) are de-

composed into simpler and individually tunable logic gates. When comparing

1st and 2nd bar in Figure 4.9, it is clear that the capability to relax perfor-

mance and optimize area of the multi-switch gate-level netlist enables a higher

area efficiency.

By comparing Figure 4.7 and Figure 4.8, it can be observed that for multi-

switch implementations, the maximum performance is always the same re-

gardless the number of virtual channels, while for the multi-stage case the ad-

dition of one virtual channel incurs an 8% degradation of the maximum speed

(around 16% for 2 virtual channels and so on). The multi-switch architecture

thus avoids the well-known degradation of maximum achievable speed with

number of virtual channels, since it keeps adding resources in parallel without

impacting the critical path. This holds until the critical path moves from the

switch internal logic to the switch-to-switch link (as explained in Chapter 3).

At that point, multi-stage and multi-switch architectures would feature the

same degradation since they have the same link architecture (including the

same link arbitration logic).

Regarding power-analysis, Figure 4.10 shows the resutls of all switch im-

156 Chapter 4. Virtual Channels for Networks On-Chip

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Multi

Switch

Multi

Network

Multi Stage Multi

Switch Idle

Multi

Network

Idle

Multi Stage

Idle

Clock

Out.Buff.

Crossbar

Arbiter

In.Buff.

Link Mux

Link Demux

Link Arbiter

Figure 4.10: Power analysis with 50% switching activity and with idleness.

plementations after place&route, for the 2 virtual channels with 32 bits of

flit/link width experiment. All architectures are operated at the speed of the

multi-stage one (700 MHz).

Idle power is typically determined by registers and by the clock tree. Since

all architectures have been designed with the same amount of aggregate buffer-

ing, their idle power is almost the same. Considering that a low-power, espe-

cially low-leakage industrial technology library at 25 degrees was used, leakage

contribution was not significant in this results.

By experimenting with an average switching activity at switch inputs of

50% (target output ports and virtual channel IDs randomly chosen), it is pos-

sible to notice a large power consumption increment in the combinational logic

blocks (crossbar, arbiter). One thing to notice is that the multi-switch total

crossbar power is lower than the multi-stage one. This is due to two reasons.

First, the multi-stage switch was synthesized at maximum performance while

4.4. Architecture comparison 157

Multi-Switch/ Multi-Network Multi-Network

Multi-Stage 2 VCs 4 VCs

32 bits 23 flits 36 flits 95 flits

64 bits 23 flits 34 flits 69 flits

Table 4.4: Packet length for a burst of 10 32-bit words. Aggregate link width

in the NoC: 32 bits.

the multi-switch was synthesized with relaxed delay constraints. Second, the

link injection rate typically constrains the crossbar transmission rate. Despite

having replicated crossbars, multi-switch does not have replicated links. Usu-

ally there is only one flit that can cross the crossbars per input port at a

given cycle, due to the link injection rate of one flit per cycle. Even though,

there are some cases in which it is possible to have several flits that can cross

both crossbars at the same cycle. For example, an input port with 2 virtual

channels may have one virtual channel recovering from a stall condition, while

the other will be transmitting a packet. In this case, both crossbars will be

in use until the buffers are depleted, after that the link injection rate will

be constraining the crossbar transmission rate to 1 flit per cycle. If we also

consider that input and output buffers in multi-stage are more complex than

the sum of the input and output buffers in the two VC-less switches, and that

some arbiters in the multi-switch architecture arbitrate on a packet- rather

than flit-basis, then it is possible to understand why multi-switch saves about

18% power with respect to multi-stage.

Regarding multi-network, its power consumption is 21% higher than the

multi-switch one. Packets in multi-network are in fact longer than in multi-

switch (higher number of flits for the same amount of real data). So, for a

given set of transactions, multi-network will always send a higher number of

flits, which translates into a higher switching activity. Thus, it features a

higher power consumption.

158 Chapter 4. Virtual Channels for Networks On-Chip

4.4.2 Performance comparison

Simulation framework setup

The simulation framework presented in Chapter 3 was upgraded with accurate

models of the evaluated virtual channel implementations. Then, physical syn-

thesis results were backannotated into the simulation framework, in order to

provide accurate performance estimations. In those experiments, it is assumed

that all the networks operate at the speed of the slowest one (multi-stage).

As mentioned, to provide a fair comparison between the considered ar-

chitectures, the aggregated switch buffering and link bandwidth of all three

solutions remain constant. Regarding the simulator framework, this decision

affects the configuration of the multi-network solution. The buffering flit slots

of every switch and network interface are increased over the other solutions

as many times as the number of virtual channels to account for the lower flit

width. Therefore, in multi-network, packet length for a single transaction in-

creases with the number of virtual channels. For this reason, all performed

simulations do not keep constant the packet length but rather the length of

the processor transactions, which range from 4 to 16-beat bursts.

Each data word of the burst consists of the actual 32 bits of data plus 4

byte enable control bits (64 bits of data plus 8 byte enable control bits for 64

bits architectures). Table 4.4 shows, for each switch architecture, the packet

lengths corresponding to a processor burst transaction of 10 words, for a NoC

aggregate link width of 32 and 64 bits. As can be observed, the packet length

in the case of multi-switch (or multi-stage) with 32 bits is 2 flits (3 flits for

the header and 20 for the payload). Notice that each processor data word is

translated into two flits. In the reference architecture, the flit generation of

consecutive words of data is decoupled from each other by guaranteeing that a

flit contains only bits of a single data word. In this way, the complexity (and

therefore the delay) of the translation processes is minimized. However, this

implies the use of padding when necessary, since the second flit decoding the

data word might be partially empty. In fact, as the link bandwidth grows up,

a higher amount of padding is required.

In contrast, by reducing the flit width, the removal of padding bits allows

the packet length to increase less than linearly. For example, in Table 4.4 the

4.4. Architecture comparison 159

multi-network solution with 4VCs for 32 bits requires 95 flits. This is less than

4 times more than the equivalent multi-switch solution, despite having a flit

width four times smaller (the flit width is 8 bits).

For multi-stage and multi-switch, the ideal link width to accommodate

32 bit processor data words into the lower number of flits and limit padding

would be 39 bits: 36 bits for data plus byte enable and 3 bits for flit type

encoding. Anyway, the standard 32 bit NoC link configuration is kept, which

enables to somehow containing packet length in the multi-network architecture

and therefore represents a best case for it. Similar considerations hold for 64

bit architectures.

Finally, for each test, we have considered two network sizes: a 4x4 mesh

with 16 cores and a 16x16 mesh with 256 cores. Both topologies were consid-

ered with 2 and 4 virtual channels, and for 32 bit and 64 bit NoC architectures.

Performance analysis

Figure 4.11(a) shows the throughput versus average latency of a 4x4 mesh

when considering an uniform traffic pattern with a link width of 32 bits. It

shows the results for all three switch architectures with 2 and 4 virtual chan-

nels. Regarding the comparison between multi-stage and multi-switch, the use

of two virtual channels increases the maximum throughput and decreases the

average latency over the vanilla VC-less architecture, but as we increase the

number of virtual channels, the improvement in performance becomes smaller.

The reason for this lies in the small size of the topology: the HoL blocking

effect is almost removed when two virtual channels are used. Notice that the

difference in performance between multi-stage and multi-switch is really small.

This is due to the fact that 16 cores can not inject traffic enough to saturate

the network before saturating the destinations, in other words, the ejection

links of each switch become congested sooner than the switch-to-switch links,

thus making the impact of the switch architecture over performance marginal.

On the other hand, multi-network achieves a lower maximum throughput

than the vanilla architecture, while obtaining a higher latency. This behavior

is caused by the increased packet length. Even in the absence of network

congestion, as the flit width is decreased, each packet requires a higher amount

of cycles to reach the destination, so the base latency increases with the number

160 Chapter 4. Virtual Channels for Networks On-Chip

MultiSwitch
MultiStage

(a) 4x4 mesh with 32 bits

MultiSwitch
MultiStage

(b) 4x4 mesh with 64 bits

 100

 150

 200

 250

 300

 350

 400

 450

 0.5 1 1.5 2 2.5

A
v
er

ag
e

M
es

sa
g
e

L
at

en
cy

 (
cy

cl
es

)

Traffic (bits/cycle/node)

2VC-MultiStage
2VC-MultiSwitch

2VC-MultiNetwork
4VC-MultiStage

4VC-MultiSwitch
4VC-MultiNetwork

Vanilla

(c) 16x16 mesh with 32 bits

 100

 150

 200

 250

 300

 350

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
er

ag
e

M
es

sa
g
e

L
at

en
cy

 (
cy

cl
es

)

Traffic (bits/cycle/node)

2VC-MultiStage
2VC-MultiSwitch

2VC-MultiNetwork
4VC-MultiStage

4VC-MultiSwitch
4VC-MultiNetwork

Vanilla

(d) 16x16 mesh with 64 bits

Figure 4.11: Average latency vs Throughput for uniform traffic.

4.4. Architecture comparison 161

(a) Throughput

(b) Average latency

Figure 4.12: Multi-switch performance normalized to multi-stage.

of virtual channels. Also, as the flit width is reduced, the number of bits that

can be injected into the network in a single cycle decreases, so the throughput

is also reduced as the number of virtual channels is increased. This produces an

undesired effect: as we increase the number of sub-networks in multi-network,

we are reducing the performance of the system. This effect is so critical that

even the vanilla solution outperforms the multi-network architecture with two

virtual channels. Figure 4.11(b) shows the same results for the 64 bits systems.

Asimilar trend can be observed in those experiments, with the difference that

the use of 64 bits architectures produce an overall increment in throughput

for all solutions, as expected.

162 Chapter 4. Virtual Channels for Networks On-Chip

(a) Throughput

(b) Average latency

Figure 4.13: Multi-switch performance normalized to multi-network.

Figure 4.11(c) and Figure 4.11(d) show the same results but for a 16x16

mesh with a link width of 32 and 64 bits, respectively. In those experiments,

multi-network is again the worst solution, even worse than the vanilla solution.

If we focus on comparing the multi-stage and the multi-switch solutions, the

use of two virtual channels is not enough to completely alleviate the effect of

HOL over performance. So, when four VCs are considered, the performance is

still improved, noticeably decreasing latency and increasing throughput over

the two virtual channels case. Regarding the comparison between multi-stage

and multi-switch, we can see that, as we increase the number of virtual chan-

4.4. Architecture comparison 163

nels, the multi-switch solution clearly outperforms the multi-stage one. As the

network becomes bigger, the bottleneck moves from the ejection links to the

switch-to-switch links, and in this case the replicated crossbars of multi-switch

architecture becomes an advantage. Multi-switch is able to move several flits

at the same cycle from different input ports to the same output port, so in the

case that a virtual channel becomes congested, it has a higher probability to

have another flit available to be transmitted through the output link.

Similar curves were derived for several synthetic traffic patterns for each

switch architecture. Those results are summarized in Figure 4.12 and Figure

4.13. Figure 4.12(a) and Figure 4.13(a) show the normalized throughput of

multi-switch with respect to multi-stage and multi-network, respectively. Fig-

ure 4.12(b) and Figure 4.13(b) show the normalized minimum average latency

of multi-switch with respect to multi-stage and multi-network, respectively.

In these plots, a bar higher than 1 means an improvement on performance of

multi-switch over the other solutions, while a bar lower than 1 means than

multi-switch achieves a lower performance.

In Figure 4.12(a) we can observe that the differences between multi-switch

and multi-stage throughputs are minimal (the maximum difference observed

in the tests was 2%). A similar trend regarding the latency metric can be

observed in Figure 4.12(b). Those figures show an important point: multi-

switch always achieves a performance similar to (or slightly better than) multi-

stage, but never worse.

On the other hand, as can be seen in Figure 4.13(a), multi-switch always

achieves a significant higher throughput than multi-network, and this improve-

ment grows up with the number of virtual channels. This is a constant for

each test that we have performed, achieving minimum improvement of 34%

and a maximum improvement of 200%. Notice that in the figure the improve-

ment of multi-switch over multi-network is lower for 2 VC configurations than

for 4 VC ones. The reason behind this behavior is that while in multi-switch

the throughput increases with the number of VCs, in multi-network it is the

opposite. Also, the improvement of multi-switch in 16x16 meshes for 4 VC

configurations is lower than the one obtained for 4x4 meshes. This is be-

cause the diameter of a 16x16 mesh is large enough to avoid the generation

of a congestion path going from the source to the destination cores in multi-

164 Chapter 4. Virtual Channels for Networks On-Chip

(a) Throughput/Area efficiency

(b) Average latency/Area efficiency

Figure 4.14: Multi-switch area efficiency normalized to multi-network.

network, thus alleviating the impact of the longest packets over performance.

Once again, the average latency metric follows a similar trend, as illustrated

in Figure 4.13(b).

Area efficiency

In the case of the comparison between multi-switch and multi-stage it is clear

that multi-switch is the best: it achieves higher or equal performance while

having a lower area requirement. On the other hand, although multi-network

is more area-saving than multi-switch, this latter clearly outperforms multi-

4.5. Conclusions 165

network, so we need a comprehensive metric to assess the two architectures.

We have considered the area efficiency metric, defined as performance/area,

which represents the area cost for achieving a particular performance. Those

results are shown in Figure 4.14, that plots the normalized area efficiency of

multi-switch with respect to multi-network. In particular, Figure 4.14(a) il-

lustrates throughput area efficiency, while Figure 4.14(b) shows the average

latency area efficiency. In the plots, a bar higher than 1 means a higher area ef-

ficiency of multi-switch over multi-network, and viceversa. As can be observed,

multi-switch is consistently more area efficient than multi-network: although

multi-network has a lower area footprint, this is not enough to overcome the

large performance gap between both architectures.

4.5 Conclusions

This chapter presents an example of the advantages of adapting off-chip de-

sign techniques to the NoCs environment, instead of just adopting them. In

particular, we have described a virtual channel switch architecture optimized

for a particular NoC scenario: a NoC architecture based on source routing

that implements deterministic routing algorithms where in-order delivery is

enforced.

With respect to a conventional virtual channel architecture, by simply

replicating switches as many times as the intended number of VCs, a simple

yet efficient implementation can be achieved. It can provide the same or

better cycle time at lower area and power due to the netlist transformations

during logic synthesis that can relax delay while saving area/power. Anyway,

although superior area properties were demonstrated for a flit width of 32

and 64 bits, it is possible that if flit width keeps increasing, at some point

the classical approach will be more area/power efficient, due to the lack of

replicated crossbars.

Regarding multi-network solutions, replicating the entire network while

keeping the aggregate link width and compound switch buffering constant is

slightly even more area efficient but results in a severe degradation in per-

formance. This is mainly due to the increment in packet length and to the

reduction in the bandwidth of the injection/ejection links. Although this con-

166 Chapter 4. Virtual Channels for Networks On-Chip

clusions are valid for 32 and 64 bits architectures, it is likely that if flit width

is several times higher than processor word bitwidth, the conclusions might

change, being multi-network the best architecture under these new condi-

tions. Anyway, the proposed multi-switch VC architecture is likely to be the

best choice for the embedded computing domain due to its superior power-

efficiency. Regarding, current CMPs, this conclusion still holds, however this

conclusion might change if the flit width increases dramatically (beyond 128

bits), as in this case the cost of replicating the crossbar may be prohibitive.

Summarizing, the proposed multi-switch implementation has demonstrated

its superiority for the analyzed case. This proves the benefits of adapting in-

terconnection networks solutions to the on-chip environment, opposed to the

most common approach of just adopting them. In particular, the proposed

multi-switch architecture may be synthesized to provide area/power savings

over the classical approach, or just a higher operating frequency. Additionally,

this proposal is optimal for those cases in which a VC-less switch architecture

is already available, reducing the design, validation and verification costs.

Chapter 5

Design Space Exploration for

Networks On-Chip

“From then on, when anything went wrong with a computer, we

said it had bugs in it.”

Grace Hopper, On the removal of a 2-inch-long moth from the

Harvard Mark I experimental computer at Harvard (1945)

This chapter presents the tool to perform automated Design Space Explo-

rations (DSE) during a stay of the author of this dissertation in the company

Lantiq Deutschland GmbH [11], in the context of the collaborative European

research project NaNoC [12]. Although most of the work performed during the

stay is included in this chapter, there are some details that are not published

due to a confidentiality agreement between Lantiq Deutschland GmbH and

the author of this dissertation. This chapter starts with a short introduction

of the DSE topic presented in Section 5.1. Next, Section 5.2 summarizes the

inconsistencies between the work presented in the previous chapters of this

dissertation and the needs of the industry in the real world that guided the

development of the work presented in this chapter. After, the first version

of the tool is detailed in Section 5.3. Following, the second step of the tool

development is introduced in Section 5.4: the high level place&route model.

Finally, some conclusions are drawn in Section 5.5.

167

168 Chapter 5. Design Space Exploration for Networks On-Chip

5.1 Introduction

Despite its many advantages, the use of the System-on-Chip (SoC) design

paradigm greatly increases the complexity of the design process, due to the

variety and number of components that are integrated into a single chip. When

NoCs are used to provide the interconnection infrastructure required by the

design, this complexity is even further increased, due to the high heterogeneity

of the solutions provided by the NoC design paradigm. In overall, the number

of possible solutions might be overwhelming, making it hard to select the opti-

mal configuration for a given design. Additionally, because of the complexity

of some of these solutions, evaluating their performance in the early stages

of the design process becomes a very challenging task. This is a potential

design risk that raises the need for new tools to guide the designer to the best

candidates inside the design space.

In order to address this challenge, early Design Space Exploration (DSE)

is required to find appropriate system architectures out of many candidate

architectures. However, two fundamental issues exist. On one hand, as the

number of components of a SoC increases, the size of the design space and the

complexity of the candidates that compose it become too high to be handled

manually by the designer. This demands the use of automated tools, requiring

minimal interaction with the designer while exploring the design space. On

the other hand, early explorations are usually carried out by means of high

level tools that provide performance estimations that the designer will use in

order to select the most promising candidates at the earlier stages of the design

flow. But, as demonstrated in Chapter 3, there is a gap between high level

performance predictions and the real system performance, and this gap grows

as the scale of new technologies is reduced. This is a design issue, as it increases

the number of design re-spins caused by inaccurate high level predictions,

resulting in an increment of the design costs. Chapter 3 also demonstrates

that in order to minimize the negative impact of this gap, layout-aware tools

must be used in each step of the design process, thus considering the impact

over performance of the physical design effects.

In this context, a DSE tool must be capable of building and explore the

design space defined by the designer. This process should be as autonomous

5.1. Introduction 169

as possible, therefore alleviating the exploration cost of large design spaces

by minimizing the interaction with the designer. The first step would be the

definition of the design space by the designer, and should be the only one

requiring interaction with the user. The design space should be defined as

accurately as possible, as the smaller the design space, the lower the DSE

complexity.

The second step is the population of the design space, that is, the genera-

tion of all the candidates to evaluate. In this step, smart population techniques

will provide impressive performance improvements, as the lower the number

of candidates, the lower the DSE cost.

In the third step, the candidates must be evaluated in order to select the

best ones for the design at hand. This step presents two opportunities to

improve the tool performance and accuracy. On one hand, advanced explo-

ration algorithms will minimize the number of solutions considered in the DSE

process. On the other hand, an exploration methodology similar to the one

presented in Chapter 3 will reduce the number and impact of design re-spins

due to inaccurate predictions misleading designers towards non-optimal, or

even non-valid, solutions.

Finally, in the fourth step, the outcome of the exploration will be provided

to the designer. Typically, it is hard to achieve the best solution for a given

SoC, as all the solutions cannot satisfy all the requirements to the same extent.

However, there could be a best solution for any given scenario (e.g., overall

highest throughput or overall lowest latency).

In this chapter we present Lantiq’s Design Space Exploration Tool (LD-

SET), a tool chain for performing early DSE in which performance evaluation

is carried out using the Electronic System Level (ESL) performance evaluation

framework SystemQ [137]. Many parameters of the NoC, such as clock fre-

quency, buffer sizes, and topology are considered by the tool. It emphasizes the

importance of realistic traffic flows and layout-awareness for the performance

evaluations, while still retaining considerably high abstraction levels for the

simulations. It also implements a high-level place&route algorithm capable

of predicting the physical characteristics of the NoC topology in the earlier

stages of the design process, thus reducing the number of design re-spins due

to inaccurate performance predictions.

170 Chapter 5. Design Space Exploration for Networks On-Chip

5.2 The industry point of view

While the work presented in the previous chapters was developed from an aca-

demic point of view, the work summarized in this chapter was developed from

an industrial one. This shift of the view point was the perfect opportunity to

bridge the gap between academy and industry. Following, the main differences

between the work presented in the previous chapter and in this chapter is pre-

sented, highlighting the ways in which that academy works may influence the

development of industrial designs.

5.2.1 Network architecture

LDSET is not constrained to work with a single network architecture. Instead,

the network architecture becomes another design parameter that the designer

can modify in order to define which networks architectures are considered for

each design. As a development requirement of the tool was to facilitate the

inclusion of new architectures in the tool, minimal effort would be required

in order to introduce models for other architectures. This opens the way to

introducing innovative architectures developed in the academy into industry

designs flows. For example, the multi-switch virtual channel architecture pre-

sented in Chapter 4 could be easily added to LDSET in order to verify its

advantages under industry standards.

5.2.2 Target domain

Previous chapters were aimed to a homogeneous domain: the experiments

presented were performed in regular tile-based systems, in which all cores

were identical to each other. On the contrary, the development process of

LDSET was focused to a heterogeneous domain, in which each core may have

completely different characteristics and functions (i.e., processors, hardware

accelerators, peripherals, and memories). This opens the way to generalize

the conclusions extracted from those chapters in a wider variety of designs, as

homogeneous designs are a subset of the heterogeneous domain. Regarding the

conclusions exposed in Chapter 3, the physical characteristics of a topology will

still impact its performance regardless of the target domain, that is, long links

will still require pipelining techniques to remain competitive and high degree

5.2. The industry point of view 171

switches will still present operating frequency issues, although the exact value

in which the issues will arise might change with the switch architecture and the

technology library. Finally, Chapter 3 and Chapter 4 both demonstrate that

techniques developer from off-chip networks should not be blindly adopted

into NoCs, and this conclusion still holds regardless of the design domain.

5.2.3 Traffic characterization

In the previous chapters, the considered tiled-based designs affected the traf-

fic characterization. Those designs are usually employed in general purpose

systems, in which it is difficult to predict the exact traffic patterns of the

applications that will be executed in the system. For this reason, previous

abstract level evaluations were carried out by using synthetic traffic patterns

or generic parallel benchmarks.

On the contrary, LDSET aims at providing heterogeneous MPSoC designs,

in which the set of functions that each core must perform is usually known at

design time. That is, the designer knowns the traffic needs of each core. In

particular, LDSET traffic characterization is based on individual master-slave

flows for each pair of cores. Two main properties are especially important

for each flow: throughput and latency. Traffic flows with high throughput

requirements (i.e., bandwidth) need to be prioritized while not starving low-

throughput flows. Low-latency flows must be scheduled quickly by the inter-

connect independently of their throughput requirement.

5.2.4 Core placement strategies

Due to the use of tile-based designs, previous experiments presented in this

dissertation considered the core placement strategy irrelevant. In those exper-

iments, while the areas assigned as slots where to place a core were defined by

the topology, most (of all) cores were interchangeable: the final slot in which

a particular core was physically placed was irrelevant. In this context, task

mapping and core placement are decoupled, as any task can be assigned to

all, or to a wide range, of cores.

On the contrary, in the heterogeneous designs targeted by LDSET, task

and core are tightly related. In this context, the position of a given core inside

172 Chapter 5. Design Space Exploration for Networks On-Chip

the chip area is affected by its communication requirements: cores related by

the most demanding communication flows must be physically placed as close

to each other as possible while caring about network resource congestion (e.g.,

trying to avoid hot-spots in the network). Also, the core placement is further

complicated by the heterogeneous nature of the cores. Chapter 3 presented

a case study in which rectangular tiles affected the wiring pattern of several

topologies, and in this example all the tiles presented the same geometry (i.e.,

shape and size). This scenario is pushed to the limit in heterogeneous de-

signs, as each core may present a completely unique geometry. Therefore, the

physical placement of any given core is a trade-off between its communication

requirements and the effects of its geometry over the topology layout.

5.2.5 Full custom design

The methodology used in Chapter 3 and in Chapter 4 was driven by synthesis

results. That is, in a first step, the synthesis of the systems to evaluate was

performed. At a second step, those synthesis results were backannotated into

the simulation framework introduced in Chapter 3 in order to obtain accurate

performance estimations. Although extremely accurate, this methodology ex-

hibits serious scalability issues. In the case study for 64-tiles systems presented

in Chapter 3, those issues were serious enough to force the substitution of real

physical synthesis results by prediction of a more abstract model that par-

tially addressed those scalability issues. For this reason, this methodology is

ill-suited for wide range DSE explorations, in which dozens or even hundreds

of candidates must be evaluated.

In LDSET, the simulation framework does not backannotate synthesis re-

sults, but provides the designer with the optimal physical characteristics for

any given design. Later in the design process, the network modules must be

adapted to fulfill these characteristics. Anyway, this process can produce un-

realistic results. For this reason, the designer is able to define feasible values

of some physical characteristics, for example, providing a realistic range of

operating frequencies in which the NoC may operate.

Moreover, designs are affected by topology layout constrains. Long links

still pose limits to the maximum achievable frequency of the design (as demon-

strated in Chapter 3). For this reason, LDSET still backannotates information

5.2. The industry point of view 173

related to the link synthesis, for example, the maximum achievable distance

of a wire for a given operating frequency. In this way, the tool may predict

when and where pipelining stages are required, therefore providing accurate

estimations regarding link latency.

5.2.6 Simulation framework

In order to maximize LDSET compatibility with the other NaNoC partners,

a new simulation framework was implemented utilizing the development envi-

ronment accorded by the NaNoC partners.

In particular, the new simulation framework was developed in SystemQ [137].

SystemQ is an Electronic System Level (ESL) modelling and simulation frame-

work that can be used to implement abstracts models of a wide range of SoC

components (i.e., memories, processors, switches, links, etc.). SystemQ is im-

plemented in SystemC [8], a language for system-level modeling, design and

verification. A more detailed explanation of the new simulation framework

will be provided in Section 5.3.1.

5.2.7 NaNoC compatibility

LDSET was not conceived as a stand-alone tool. In fact, in the future, LDSET

will be part of a toolchain composed by LDSET and other tools developed

in the context of the NaNoC project. Therefore, based on the eXtensible

Markup Language (XML) standard [13], the NoC description language CEF

(Communication Exchange Format) was defined by the NaNoC partners with

the aim of improving productivity by removing the translation costs related to

the use of different files formats between partners and tools. For this reason,

it was a main design constraint of LDSET to use CEF whenever possible, even

extending it when needed.

From now on, when referring to the CEF format, a tag will be an identifier

placed between the symbols <>. A tag defines the beginning of a new block,

while the end of the block is represented by the same tag preceded by a

/ symbol. For example, the example block refers to everything contained

between <example> and </example>.

174 Chapter 5. Design Space Exploration for Networks On-Chip

Output generation

Design space definition

Design space initialization

Topologies + placements

Design space exploration

Generation

Simulation

Evaluation

Figure 5.1: LDSET execution flow

5.3 LDSET

Lantiq Design Space Exploration Tool (LDSET) is a tool built to perform

the exploration of user defined design spaces. LDSET was designed as two

independent, but tightly coupled, parts. First, it implements a versatile and

powerful simulation framework. Able to model any topology, it is used to

simulate the candidates from the design space. Around this backbone, Perl [14]

was used to build the required algorithms to perform the DSE, providing to the

designer a set of the best candidates of the given design space. It is important

to mention that due to the vast size that a design space may grow into, the

tool trades-off precision for performance in many algorithms, providing good

candidates instead of the best possible ones. For example, the first version of

the core placement algorithm was able to provide optimal candidates, but at

the cost of iterating several hours for small spaces (up to 10 cores), and up

to several days for large spaces (close to 100 cores), while the current version

trades off accuracy for speed, being able to place one hundred core designs in

less than 15 minutes.

Any DSE process is composed of 4 main stages: design space definition,

initialization, exploration and output generation. Figure 5.1 shows the main

5.3. LDSET 175

Basic building blocks: MAC, crossbar, buffer, ...

NoC Components: switch, NI, ...

SoC instantiator

Figure 5.2: NoC simulator hierarchy

parts of LDSET and the data flow that links them. As depicted, the above

mentioned stages are present, although the frontiers between each part are

blurred, as candidate generation (initialization) and evaluation (exploration)

are partially mixed, in order to provide support for more advanced space

exploration heuristics (as will be explained in Section 5.3.4).

What follows is a brief summary of each stage. A more detailed explanation

of each stage will be provided in the next sections of this chapter. The first

stage consists of the definition of the design space exploration (its boundaries,

targets, and characteristics) as well as the user commands to the tool. The

outcome of this stage is the design space. In the initialization stage, the design

space is prepared for the exploration process. This stage carries out part of

the candidate generation. In particular, it generates the base candidates, that

are like templates that define the immutable characteristics of each family of

candidates. An example of a template could be an instance of a topology with

a particular core placement. The exploration stage contains the interaction

between the simulator framework and LDSET. It carries out simulations and

analyzes results. Also, this stage instantiates detailed candidates starting from

the templates defined in the previous stage. Finally, in the output generation

stage, the user is provided with performance summaries, candidate lists and

detailed descriptions for each candidate.

5.3.1 LDSET NoC simulator framework

As mentioned, a new simulation framework for LDSET was developed. This

section will provide some generic information about it. It consists of a set of

modules developed in SystemQ [137]. Aimed at supporting a wide range of SoC

176 Chapter 5. Design Space Exploration for Networks On-Chip

wit NoC-based interconnects, the design and development of this simulation

framework was guided by four objectives:

• Accuracy: required in order to safely explore the design space, thus

minimizing the risk of discarding valid candidates due to inaccurate per-

formance estimations.

• Speed: as the number of candidates of the design space increases, the

speed of the simulations becomes critical in order to explore the design

space in an affordable time.

• Versatility: indispensable due to the wide range of possible candidates

that may be contained in a single design space.

• Reusability: required in order to provide a tool that can be easily

adapted to satisfy diverse needs and/or environments (e.g., other NaNoC

partners’ needs)

The developed modules were organized in a hierarchy, as depicted in Figure

5.2. The lowest level represents basic building blocks (e.g., crossbar, routing

modules). The middle level contains whole network components (e.g, switches,

network interfaces) built with the lowest level blocks. The top most level is the

most complex. It contains the models of the traffic generators and the top level

module, which is able to instantiate a wide range of NoC configurations by

using the lower level modules, thus, providing the degree of versatility required

to represent the wide variety of candidates that may be contained inside the

design space.

In this context, the speed objective was achieved in two ways. First, each

module was heavily optimized to reduce memory cost and processor usage.

Second, SystemQ is capable of modifying the behavior of any module, up to

some degree, without forcing to recompile them, by means of the parameter

file paradigm defined in [137]. In this way, the NoC simulator can be theoret-

ically configured to implement any possible NoC topology composed by any

number of cores and switches after a single compilation process. Therefore,

simulation time remains almost unaffected by the design space variety, even

when working with a multitude of network architectures and/or topologies. In

5.3. LDSET 177

fact, the builder algorithm does not impose any limitation to the system char-

acteristics other than the limitations imposed by the network architecture and

the computational resources available at the execution platform (i.e., number

of processors and amount of memory and speed at each one).

Finally, the accuracy objective is achieved by modeling any component

relevant to the system performance, in such a way that the simulation be-

havior is as close to the real system as possible. Moreover, the high degree

of modularity of this approach favors the reusability of the tool, for example,

by allowing designers to change some basic blocks in order to modify the net-

work architecture without affecting the more complex modules. Although the

current version of the NoC simulator implements as single network architec-

ture, the top level module is prepared to support any number of architectures.

Therefore, the effort of adding a new architecture are related to the actual

development, verification and validation of the new modules, while minimal

changes are required in the top level module.

Finally, the NoC simulator uses advanced traffic generators that can be

programmed to inject a wide arrange of synthetic traffic patterns as well as

use traffic traces, thus alleviating the impact of design re-spins produced by

inaccurate traffic estimations.

5.3.2 Design space definition

The first step is the definition of the design space constraints and parameters

by the designer. It comprises three main classes: design definition, design

constraints and performance objectives. In this context, LDSET builds the

design space by expanding the design definition with the design constraints,

and provides the best candidates that meet the performance objectives.

The design definition class includes all parameters that allow the designer

to define the design space, like the number of cores, the type of each core,

the different topology types that should be considered (i.,e. 2D mesh, rings,

trees, . . .) or the traffic flows that define the design communication pat-

tern. The design constraints class is composed by the range of parameters

that define the boundaries of the design space (e. g. frequency ranges, buffer

sizes or ranges of virtual channels). Finally, the performance objectives class

defines the evaluation rules that will distinguish between optimal and subop-

178 Chapter 5. Design Space Exploration for Networks On-Chip

<design_space_exploration>

<configuration>

<design_name>Example</design_name>

<bounds>

<bound>

<name>max_terms_x_switch</name>

<value>8</value>

</bound>

<bound>

<name>topology</name>

<value>All</value>

</bound>

</bounds>

</configuration>

<groups>

<group>

<constraints>

<constraint>

<name>num_vcs</name>

<value>4</value>

</constraint>

</constraints>

<evaluation_rules>

<evaluation_rule>

min(avg_latency) OR max(throughput)

</evaluation_rule>

</evaluation_rules>

</group>

</groups>

</design_space_exploration>

Figure 5.3: Example of CEF input file DSE definition

timal candidates, like throughput or latency requirements. Figure 5.3 shows

an example of design space definition in the CEF format. The design space

5.3. LDSET 179

<value>[0,4]:1 </value> => "0,1,2,3,4"

<value>[0,4] </value> => "0,1,2,3,4"

<value>[8,0]:-1 </value> => "8,7,6,5,4,3,2,1,0"

<value>[8,0] </value> => "8,7,6,5,4,3,2,1,0"

Figure 5.4: Example range of values

<evaluation_rule>latency[0,4]</evaluation_rule> => 0<=latency<=4

<evaluation_rule>latency]0,4[</evaluation_rule> => 0<latency<4

<evaluation_rule>latency[0,]</evaluation_rule> => 0<=latency

<evaluation_rule>latency[,4]</evaluation_rule> => latency<=4

Figure 5.5: Example numerical comparison in evaluation rules

is defined inside the design space exploration block. In this block, design def-

inition, design constraints and performance objectives are specified under the

tags configuration, constraints and evaluation rules, respectively. The config-

uration block defines the design space identification (design name) and the

design space fixed boundaries, that is, values that the tool cannot modify. Ex-

amples of those boundaries are the list of architectures and topologies allowed

in the design space, and the maximum number of cores that can be attached

to a single switch for any candidate.

Design constraints are identified by an identifier (name block) and a value

(values block), as depicted in Figure 5.3. Examples of design constraints are

the range of the number of virtual channels, and the range of sizes of each

buffer of the system (e.g., switch input buffer, switch output buffer or NIs

buffering) allowed in the candidates contained in the design space. The value

blocks can be of three types: simple value, list or range. A simple value is a

single number, either integer or real. A list of values is composed of a variable

quantity of numeric of values, separated by commas. Finally, a range of values

is defined in the following format: [min,max]:inc. This will define list of values

starting from min, finishing at max by steps of inc, if inc is not specified, it

is assumed to be 1 or -1, depending on the relative values of min and max.

Several examples of ranges can be found in Figure 5.4.

Regarding the performance objectives, their definition is critical to the out-

come of the DSE process. For this reason, LDSET implements a reduced but

180 Chapter 5. Design Space Exploration for Networks On-Chip

powerful language to define performance objectives. The evaluation language

supports the following operators: max, min, numerical comparisons and the

logic operator AND, OR and NOT. This operators can be applied to any

evaluable metric, like throughput or latency.

• max: This operator means that only the candidates with the maximum

value in the specified metric will be accepted. Example: <evaluation rule>

max(throughput) </evaluation rule>

• min: This operator means that only the candidates with the minimum

value in the specified metric will be accepted. Example: <evaluation rule>

min(latency) </evaluation rule>

• Numerical comparison: The XML standard does not allow the direct

usage of the > and the < characters, but defines the entities ‘>’ and

‘<’ respectively. To provide a more manageable format, numerical

comparisons are specified as intervals: valid metric[low,high]. If the first

character is [then valid metric >= low, if it is a] then valid metric >

low. On the other hand, if the last character is a] then valid metric <=

high, while if it is a [then valid metric < high. Also, in case one of the

boundaries is non-relevant, no value in the boundaries should be used.

Several examples of numerical comparisons can be found in Figure 5.5.

• Logical operators: complex evaluation rules can be defined with the

use of the logical operators AND, OR and NOT. Also, the use of brack-

ets it is enforced to define the order operators in complex rules. Ex-

ample: <evaluation rule> (min(latency) AND max(throughput)) OR

latency],100] </evaluation rule>

Notice that all the performance objectives are defined as a rule applied to

one or more metrics. The current implementation of the tools supports the

following metrics: throughput, average latency from generation, and maximum

latency. Anyway, the evaluation engine is designed to simplify the addition of

new metrics as much as possible. As a result, most of the effort that must be

dedicated to the addition of new metrics will be dedicated to the calculation

of the metric in the simulation framework, and not to the actual addition of

the metric to the LDSET engine.

5.3. LDSET 181

<comm_flows>

<usecase>

<name>Default Mode</name>

<id>0</id>

<initiators>

<initiator>

<name>INITIATOR</name>

<id>0</id>

<targets>

<target>

<name>TARGET</name>

<id>30</id>

<flows>

<flow>

<type>WR</type>

<load>0.40</load>

<data_length>4</data_length>

</flow>

<flow>

<type>RD</type>

<load>0.20</load>

<data_length>8</data_length>

</flow>

</flows>

</target>

</targets>

</initiator>

</initiators>

</usecase>

</comm_flows>

Figure 5.6: Example of traffic flow description in CEF.

Although the DSE process should run autonomously, we believe that the

designer must have a certain degree of control over the DSE decisions. In

182 Chapter 5. Design Space Exploration for Networks On-Chip

our approach design constraints and performance objectives are clustered in

groups that will be processed individually. In this way, the designer can sort

the groups in order to determine which constraints are evaluated first and

thereby defining a path through the design space. This is the role of the

groups tag in Figure 5.3.

Inside the design space definition class, the definition of the traffic flows

is the most complex and most important task as it defines the rules to guide

the core mapping for different topologies in the design space. The traffic flows

also impact the results of the DSE tool since the accuracy of the simulations

is heavily dependent on the way traffic generators work.

In the literature three major traffic generation approaches exist. First,

synthetic traffic patterns are used to send generic messages to predefined or

random destinations at a given rate [125] but this is too generic for the het-

erogeneous SoC designs at which LDSET is aimed to. Second, benchmarks

and traces can be used but hardware architectures and application constraints

must match the target design. Unfortunately, this information may not be

always available in the earlier design stages. Third, mathematical models

could be used, however it is difficult to ensure that they are representative

for any given application constraints. Our approach to address this issue is to

use fully programmable traffic generators, that allow the designer to specify

the traffic requirements of each core with as much accuracy as possible, for

example, providing support to several traffic flows per core (each one with dif-

ferent parameters, like communication frequency or size), or by distinguishing

between transaction types. The CEF format does not include the definition

of the traffic flows in the same tag as the rest of the design space definition,

defining instead a special tag to specify traffic flows: the communication flows

tag. Figure 5.6 shows how to configure one of LDSET traffic generators in

CEF format. In this example, a single traffic generator is configured to man-

age a communication flow to a single target. The flow is composed of two

sub-flows: generating write transactions for 40% of the simulation time, and

read transactions for only 20% of the simulation time. For the rest of the time

(40%) the communication flow is idle.

Finally, LDSET accepts component libraries as a way to control the compo-

sition of the design space, for example by limiting the possible switch degrees

5.3. LDSET 183

<blocks>

<block>

<name>2x2</name>

<id>0</id>

<type>300</type>

<description>2x2 switch</description>

<size>

<x>158.114</x>

<y>158.114</y>

</size>

<orientation>

<initialrotation>0</initialrotation>

</orientation>

<inports>2</inports>

<outports>2</outports>

</block>

<block>

<name>Generic NI</name>

<id>1</id>

<type>200</type>

<description>Just and example of NI</description>

<size>

<x>158</x>

<y>158</y>

</size>

<orientation>

<initialrotation>90</initialrotation>

</orientation>

</block>

</blocks>

Figure 5.7: Example of library with a switch and a NI

to use by the tool. Those libraries define the available switches, repeaters

and NIs that the tool can use to build any NoC. The libraries are defined in

184 Chapter 5. Design Space Exploration for Networks On-Chip

Initiator Target

InitiatorTarget

a)

b)

Figure 5.8: Optimal placement of target and initiator a) for a write transaction

and b) for a read transaction.

CEF format, as shown in Figure 5.7, which shows an example of a library

with one switch and one NI. Repeater stages are defined in a similar way as

NIs, being the only difference the type tag. As can be observed, libraries also

include information about the geometrical properties of the components, this

information will be used in the place&route algorithm presented in Section

5.4.

5.3.3 Design space initialization

In the first step of the initialization, each traffic flow is assigned a weight

based on the traffic flow communication frequency and the amount of data

of each transaction. In this step, the differentiation between read and write

transactions is very important. As an example, Figure 5.8 shows the optimal

placement of a flow in a unidirectional ring based on the transaction type.

In case of a write transaction, the distance from the initiator to the target is

critical, while the distance from the target to the initiator is irrelevant. On

the other hand, as read transactions are composed of a short request message

from the initiator to the target and a longer response message from target to

initiator, the distance from the target to the initiator is the one that becomes

critical.

In the second step the possible topologies that may accommodate the cores

of the design are calculated based on the design space definition. The tool only

implements a minimal set of topologies: rings (both unidirectional and bidirec-

tional), 2D-meshes and 3D-meshes. This small set of topologies was selected

with the aim of defining a proof of concept environment. It contains simple

5.3. LDSET 185

FOR (current_flow=0 to total_flows-1)

IF (origin_placed) THEN

topology1=get_origin_topology()

ELSE

topology1=new_topology(origin)

ENDIF

IF (destination_placed) THEN

topology2=get_destination_topology()

ELSE

topology2=new_topology(origin)

ENDIF

new_topologies=merge(topology1,topology2)

get_best_topology(new_topologies)

ENDFOR

Figure 5.9: Core placement algorithm

topologies (rings), the baseline topology (2D-mesh) and a wiring intensive one

(3D-mesh). As LDSET was designed to be easily upgradeable, it is possible

to easily add new topologies to the tool with a minimal impact on the rest of

its features. Once the topologies are calculated, for each one, cores are placed

based on the weight of the flows, in which they are involved, with the aim of

minimize the distance (in hops) of the flows with higher weights at the cost of

flows with lower weights. The outcome of this process is the set of template

candidates. A template candidate is defined by the topology instance (e.g,

4x4 mesh with 1 core per switch or bidirectional ring with 4 switches and 4

cores per switch) and by a core placement for its topology instance. Those

characteristics are immutable, that is, LDSET never modifies them. Tem-

plate candidates are not valid candidates but the backbone from which new

candidates will be generated.

It is possible to employ methods that will ensure that the best core place-

ment for any given topology inside the design space is chosen. However, these

methods are too complex, requiring high amounts of memory and time to pro-

cess medium sized spaces (20 to 30 cores). For this reason, the current imple-

mentation employs an advanced heuristic in order to provide good placements

186 Chapter 5. Design Space Exploration for Networks On-Chip

at the same time that it is able to cope with huge design spaces, being able to

calculate several topologies for a 100 cores design in a matter of minutes. 0Fol-

lowing, an explanation of the main strategy behind the placement algorithms

will be presented.

Figure 5.9 shows the pseudo-code of the generic placement algorithm. The

algorithm processes the communications flows one at a time, based on their

weight. For each core involved in flow (origin/destination), it checks if the

core was placed in a previous flow. If it is already placed, it retrieves its

current topology from the list of topologies, if not, it places the cores in an

empty topology composed by a single switch. Then, it merges the topologies

that contain the origin and the destination cores of the transaction in a single

topology. The merge process calculates all the possible combinations of this

two topologies, by means of basic operations (e.g., rotation, append, . . .).

Finally, among all the options provided by the merge operation, the one with

the lower overall weight is provided as the best candidate. The overall weight of

a topology is calculated based on the distance between origin and destination

of each flow placed in it. This step removes the two topologies that contained

the cores involved in the transaction from the list of current topologies and

adds the new topology.

It is critical to generate only optimal template candidates, since if irrele-

vant candidates are allowed in the set of templates, the later stages of the DSE

may waste a considerable amount of time in candidates that will be discarded.

Figure 5.10 shows the time spent calculating valid candidates for an optimal

set of template candidates and for a suboptimal one, for SoC composed by

different number of cores. The optimal set of topologies is composed of those

templates that have the best overall weight, while the suboptimal set was cal-

culated by a brute force approach, and includes all possible templates defined

in the design space. As shown in the figure, the calculation time is greatly

reduced when irrelevant candidates are removed as soon as possible.

5.3.4 Design space exploration

The evaluations of the candidates is carried out by the simulation engine. It is

the core of the DSE, playing a vital role in the DSE tool accuracy and speed.

Although the tool currently implements two heuristics, a brute force approach

5.3. LDSET 187

Figure 5.10: Candidate calculation for optimal and suboptimal sets of candi-

date templates for different system sizes.

and a genetic one, it is designed as a framework for simulation management

where different heuristics may be added. In any heuristic, the candidates are

generated by applying different values of the design constraints to the template

candidates or to other candidates.

The brute force approach is suitable for small designs, and it explores all

candidates inside the design space, guaranteeing that the best candidate inside

the design space is found.

Due to the high number of possible candidates that may form a design

space, advanced techniques to reduce the number of candidate evaluations are

required in order to keep the performance of the DSE tool within acceptable

levels. A common approach in this case is the use of genetic algorithms [124].

A good example of genetic algorithm is the NSGA-II algorithm [50] that en-

ables the exploration of huge sets of multi-parametric spaces at a relatively

low cost while keeping a good accuracy. Genetic algorithms are carried out

in several iterations, in which the best candidates of the previous iterations

evolve into a new generation of candidates during a pseudo-random mutation

process. Although it is not guaranteed that the best candidate will be found,

this method will provide good-enough results while significantly reducing the

188 Chapter 5. Design Space Exploration for Networks On-Chip

Simulation manager

Sub-task launcher

Simulation generator

Simulation writer

Simulations Pool

Simulation Sub-tasks

Figure 5.11: Flow diagram of the simulation engine.

number of candidates evaluated, thus becoming a good trade-off solution be-

tween accuracy and speed.

The implemented genetic heuristic starts by choosing a pseudorandom set

of candidates from the design space, which are simulated and evaluated. The

best candidates are chosen as survivors, and form the first generation of can-

didates. At this point, the genetic algorithm will mutate the first generation

into a new set of candidates that will be simulated and evaluated, forming the

second generation with the best candidates among the first generation and the

new candidates. The mutation process randomly modifies one constraint of

the design to a different value (e.g., modifying the number of virtual channels).

This process is repeated until the whole design space defined is explored or

until the maximum number of generations defined by the user is reached. It

must be noted that this heuristic is a performance-accuracy trade-off, as it

will not obtain the best candidate of the design space, but the best candidate

among all the evaluated ones.

Additionally, the simulation engine is highly parallelized, being capable

of calculating new simulation scenarios, while at the same time performing

and evaluating simulations in different processes. Moreover, simulations are

performed in parallel, exploiting the capabilities provided by modern clusters

of computers.

The simulation engine flow is depicted in Figure 5.11. It starts by ex-

5.3. LDSET 189

ecuting a variable number of subtasks that are responsible for running the

simulations. These tasks are the key enabler for parallel execution of LDSET

on different machines. They keep monitoring the pool looking for new simula-

tions to execute. When a simulation is found, the task executes the simulation

and notifies LDSET about the finalization of the simulation. After launching

the subtasks, the simulation engine initializes the subspaces and generates

candidates based on the selected heuristic. Then, each candidate is translated

into a simulation scenario that is added to the pool. The engine waits until all

the simulations required by the heuristic finalize. At this point, the simulation

manager is called to evaluate the candidates based on the defined evaluation

rules. Finally, the heuristic is called again to decide if the DSE has finished or

new simulations are required. The engine facilitates the introduction of new

heuristics by modifying only the simulation generation, and the simulation

manager steps. In this way, new heuristics will decide when and how new

candidates will be generated and evaluated.

5.3.5 Output generation

The last step is the generation of the DSE output. Although less critical to

the tool performance, this decision is important to the global design process

of any SoC. Re-spins may happen during a SoC design process. Although

DSE tools may help to reduce the number of re-spins by guiding the designer

to the best candidate, in case the candidate becomes unsuitable for the SoC

requirements in the later stages of the system design process, the designer

must restart the whole DSE process with a different design space definition.

The negative impact of the restart can be alleviated by providing a set of best

candidates, instead of a single one, when possible, thus giving the designer

the possibility to quickly change the candidate for the rest of the SoC design

process.

In LDSET the designer may choose to have a single or a set of best can-

didates by setting the performance objectives of the DSE. If those objectives

are very tight, LDSET output will consist of a reduced set of candidates,

even a single candidate in some cases. If those objectives are relaxed, it will

output a larger set of candidates, organized by network architectures and/or

topologies, and classified based on their suitability for latency or throughput

190 Chapter 5. Design Space Exploration for Networks On-Chip

Figure 5.12: Performance results of a DSE for an SoC with 36 cores.

sensitive scenarios.

The resulting set of candidates are also written out in the CEF format, so

that a whole description of each candidate is available for further processing

by other tools. This description consists of a detailed characterization of ev-

ery network component (i.e., switches, NIs, links, cores) including placement

information and network parameterization (number of buffers slots per buffer,

buffer distribution, . . .).

5.3.6 Example

As an example, this section shows the performance results obtained by LD-

SET for an SoC composed by 16 processors that communicate with their local

memories using read and write transactions. Additionally, four shared memo-

ries exist that are occasionally accessed by all processors. The design space is

composed of several NoC topologies that are capable to interconnect 36 cores.

The design allows several buffer sizes in the ports of both network switches

and Network Interfaces (NIs), together with several possible numbers of vir-

tual channels per port (both in the switches and in the NIs). We also allow

the tool to attach up to four cores per switch.

Figure 5.12 depicts the DSE results grouped by topology. The figure shows

5.4. Place & Route 191

the suitability for latency or throughput sensitive scenarios normalized to the

best candidate for each metric. Notice that in this step of the DSE, a given

topology can be part of two different candidates with different characteristics

(i.e., buffer allocation or number of virtual channels). For the sake of sim-

plicity, we show here only a few candidates for each topology. For latency

sensitive scenarios, we can classify the candidates in two groups, the ones that

provide the best average latency and the ones that provide the lowest maxi-

mum latency. While the former candidates are best suited for overall latency,

the latter are better for systems with a tight upper bound on communica-

tion latency. As illustrated in the figure, mesh configurations show a very

similar average latency, while the 3×4×3 mesh presents the lowest maximum

latency, making this topology the best choice for latency sensitive scenarios.

This topology also shows the best throughput of the whole design space. This

topology requires 36 switches, while the other options, like the 3×3×2 mesh

and the bidirectional ring with 18 switches require half this number of switches.

5.4 Place & Route

As demonstrated in Chapter 3, in order to provide accurate performance esti-

mations, the simulator framework should consider the physical characteristics

of each topology. Our approach to address this topic was a second development

stage in which high-level place & route capabilities were added to LDSET.

One of the most relevant physical properties of a NoC from a performance

point of view is the operating clock frequency, as a too low operating fre-

quency will probably lead to a non-valid candidate, regardless of any other

advantages it may present. In a NoC there are two main causes of NoC low

frequency: switches and links. Usually, when the critical path of the NoC

is in the switches, the straightforward solution is either to use an alternative

topology with smaller (and thus faster) switches, or to use another switch ar-

chitecture or technology library able to improve it. In the former case LDSET

has a little room for improvement: the tool already implements support for

alternative topologies/architectures. Regarding technology libraries, LDSET

and the simulation framework were both modified in order to accept some

parameter of the technology library as an input parameter. In this way, the

192 Chapter 5. Design Space Exploration for Networks On-Chip

<block>

<name>TERMINAL</name> <!-- Name of the block -->

<id>0</id> <!-- Unique numerical ID -->

<type>101</type>

<description>Terminals example</description>

<size>

<x>1200</x> <!-- in micro-meters -->

<y>500</y> <!-- in micro-meters -->

</size>

<bottomleftcorner_position>

<x>0</x> <!-- in micro-meters -->

<y>0</y> <!-- in micro-meters -->

<initialx>0</initialx> <!-- in micro-meters -->

<initialy>0</initialy> <!-- in micro-meters -->

<fixed>false</fixed> <!-- in micro-meters -->

</bottomleftcorner_position>

<orientation>

<rotation>0</rotation>

<initialrotation>0</initialrotation>

</orientation>

<bitwidth>32</bitwidth>

</block>

Figure 5.13: Example of core definition in CEF format.

range of operating frequencies of the design can be provided to the tool.

Regarding link length, a network link may become the critical path if it

is too long. In order to correctly evaluate the length of a link it is necessary

to synthesize the system and perform its place&route (as shown in Chapter

3). However, this task is quite time consuming, thus being ill-suited for a

DSE tool designed to work with design spaces with dozens or hundreds of

candidates. The solution we engineered consists of a high-level place&route

algorithm, able to estimate the length of a link based on several parameters of

the design space and of each candidate. In a heterogeneous system, each switch

and core may have a different area, shape or size. It is important to consider

5.4. Place & Route 193

Legend

master
fixed master
slave
fixed slave
node
repeater
Terminal link
Short link
Long link
ni

P3

LM14

P10 P1 P0

P7

LM12LM2

LM9

P6 P14

LM6
LM7

P13

LM1

SM2SM1

P11P16

SM3

LM11
LM0

P19

LM13
LM18

LM4

LM8 LM5

SM0

P4

P17 P12P18

LM10

LM17

LM15

L
M

1
6

P8

P2

P9 P15

LM3

P5

LM19

Figure 5.14: Place and route at 1 mm inter-switch spacing at a target speed

of 1 GHz (IP Core size not drawn to scale).

the impact of the geometry of each component once placed into the NoC, as

links will be wired around them. Also, the buffering strategy employed has a

direct impact over link length, as link length is less constrained when switches

may implement buffers between themselves and the links. The topology of

each candidate is required in order to perform the layout of the candidate’s

network. Additionally, the algorithm requires to know the maximum length

that a link operating at 1 GHz can reach, with and without buffers between

links and switches. Then the target frequency of each candidate is required.

With this data, using a methodology similar to the one presented in Chapter

3, the tool can extrapolate the operating frequency of a link based on its

length. As an additional parameter, we added the possibility of defining fixed

cores, whose positions in the layout are fixed by the designer and cannot be

modified by the tool. In this case, the algorithm will take care of them, thus

adapting the rest of the layout to those placement constraints. Fixed cores

are useful when some special layout constraint is present. For example, a core

requiring pin connections towards off-chip devices that is placed in the middle

of the chip will require wires between itself and the pins of the chip, which

194 Chapter 5. Design Space Exploration for Networks On-Chip

Legend

master
fixed master
slave
fixed slave
node
repeater
Terminal link
Short link
Long link
ni

P3

LM14

P10 P1 P0

P7

LM12LM2

LM9

P6 P14

LM6
LM7

P13

LM1

SM2SM1

P11P16

SM3

LM11
LM0

P19

LM13
LM18

LM4

LM8 LM5

SM0

P4

P17 P12P18

LM10

LM17

LM15

L
M

1
6

P8

P2

P9 P15

LM3

P5

LM19

Figure 5.15: Place and route at 1.5 mm inter-switch spacing at a target speed

of 1 GHz (IP Core size not drawn to scale).

are commonly placed in the sides of the chip. These wires are likely going to

interfere with the links of the network, increasing the complexity of the design

and reducing its maximum performance. On the contrary, if this core is place

in the edges of the chip, those issues are greatly alleviated. Figure 5.13 shows

the CEF code required to configure the placement of a single core.

Figure 5.14, Figure 5.15 and Figure 5.16 were generated by LDSET when

working with a 4x4 mesh and the cores are separated 1 mm, 1.5 mm and 3

mm far apart, respectively. In those experiments, LDSET was fed with a link

model derived from a 65nm technology. The target frequency is 1 GHz in all

cases. As can be observed, in order to achieve the target speed, the tool inserts

an increasing number of repeater stages as the interswitch spacing increases.

With this data, the algorithm generates a projection of the topology in a 2D-

plane, calculating an approximate value for the length of each link. Then,

it calculates the number of repeater stages required at each link in order to

achieve the target frequency.

In order to introduce this feature in LDSET, both parts of the tool were

modified. First, the network architecture was updated in order to implement a

5.4. Place & Route 195

Legend

master
fixed master
slave
fixed slave
node
repeater
Terminal link
Short link
Long link
ni

P3

LM14

P10 P1 P0

P7

LM12LM2

LM9

P6 P14

LM6
LM7

P13

LM1

SM2SM1

P11P16

SM3

LM11
LM0

P19

LM13
LM18

LM4

LM8 LM5

SM0

P4

P17 P12P18

LM10

LM17

LM15

L
M

1
6

P8

P2

P9 P15

LM3

P5

LM19

Figure 5.16: Place and route at 3 mm inter-switch spacing at a target speed

of 1 GHz (IP Core size not drawn to scale).

flow control mechanism similar to the Stall&Go mechanism exposed in Chap-

ter 3. Second, the NoC simulator was upgraded, adding models of multi-cycle

links, in order to represent the additional latency introduced in links when re-

peater stages are needed for breaking long timing paths. Finally, the topology

generation algorithm was updated with an additional step: place & route.

The place&route process consists of two parts. First, the communication

requirements of the design are considered in order to build a core placement,

similar to the one presented in Section 5.3.3. In this step, a memory structure

is generated that represents the switches of the NoC, as well as the wiring

pattern of the topology and the specific cores attached to each switch. Then

in the second part, the geometry of the topology and all the cores is consid-

ered, calculating the layout of the topology. The placement heuristic of each

topology is different, but the underlying method is the same. It is modeled as

2D matrix fill algorithm. The model requires the number of nodes that would

be allocated in the X and Y dimensions. Next, it forms a matrix of nodes

that represents the layout. In this matrix a node is internally represented as

depicted in Figure 5.17. As can be seen, each node is composed of nine cells.

196 Chapter 5. Design Space Exploration for Networks On-Chip

T T

TT

N

R

R

RR

Figure 5.17: Cell distribution of a core.

The center cell is reserved for the switch (label as N), while the cells that

are side by side to the node are routing channels (label as R). Finally, the

most external cells are reserved for cores (label as T). A single switch can be

placed in the center cell, while each core cell can allocate up to two cores. This

limitation in the number of cores by cell was imposed in order to reduce the

complexity of the automatic place&route algorithm. Notice that each node

size is determined based on the cores defined inside it, so the columns and

rows of the matrix are as tall/wide as the tallest/widest node they contain.

Once the matrix of nodes is built, connections between the nodes must

be defined, thus building the network topology. The connections maybe short

or long. Short connections are defined between adjacent nodes, while long

connections are defined between non-adjacent nodes. In case that the nodes

do not share the same row or column, a link with a turn is automatically

added. Finally, NIs and channels between NIs and nodes are automatically

added. Some special limitations follow for the case where fixed cores are

present, with the aim of lowering the computational cost of the place&route

algorithm:

a) Fixed cores must be placed with one side on the border of the floorplan

b) Fixed cores must be inside the floorplan

c) It is not possible to attach more than 4 fixed cores to the same node

5.5. Conlucions 197

d) It is not possible to attach more than two fixed cores of the same side of

the floorplan to the same node

Finally, the place&route algorithm is built as an additional layer providing

the basic functions required to implement automatic place&route algorithms

for any topology. Currently, only the topologies already supported by LDSET

were upgraded with place&route capabilities.

5.5 Conlucions

In modern SoC designs, it is required to have a DSE tool in order to reduce

the design costs down to acceptable levels. In this chapter, we have shown how

early design space exploration and performance evaluation can be used to find

an optimal system architecture for a NoC-based SoC with a reasonable design

effort. We introduced LDSET, a DSE tool designed to work with large design

spaces, and to suit the needs of competitive industrials environments. For

this reason, LDSET is heavily optimized, implementing advanced heuristics

in order to reduce the exploration cost of any given design space, at the cost

of the results accuracy. In particular, two parts of the tool implement such

heuristics. First, the topology builder is able to process design spaces with

up to 100 cores and complex traffic patterns in a matter of minutes. Second,

the simulation engine implements a genetic algorithm in order to reduce the

number of simulations required to explore any given design space.

Additional effort was dedicated to help reducing the number and cost of de-

sign re-spins, an issue that is ever present in current industry design flows. On

one hand, the CEF format was used for any interaction between the user and

LDSET, thus helping with the integration of LDSET with other tools. On the

other hand, the designer is provided with a list of candidates classified based

on their suitability for different scenarios, as well as a detailed description (in

CEF format) of all of those candidates. Finally, the approach to address the

gap between high-level performance estimations and real system performance

was presented, consisting of a high-level place&route algorithm, able to predict

the impact of the system layout and frequency on system performance.

198 Chapter 5. Design Space Exploration for Networks On-Chip

Chapter 6

Conclusions

“Simple things should be simple, complex things should be possible.”

Alan Curtis Kay

In this final chapter, we present the conclusions of this dissertation and a

brief list of points that will be addressed in the future. Finally, we also expose

the results in terms of scientific publications and other contributions derived

from the work presented in this dissertation.

6.1 Conclusions

In this dissertation, we have focused on proposing a complete methodology to

perform early design space explorations of SoCs that rely on the NoC paradigm

for their interconnection infrastructure.

First, we developed a layout-aware simulation framework for NoCs, with

the aim to enable fast and accurate network topology explorations. This latter

is not only able to backannotate synthesis results, but it is also capable of

performing parametrical explorations of the design space in order to guide the

synthesis process. Also, it provides excellent accuracy with respect to RTL

simulation, as well as significant simulation time speed-ups when compared to

signal-accurate synthesizable models.

Then, we demonstrated the risks of blindly adapting off-chip design tech-

niques to NoCs. In particular, we focused on the topology exploration topic.

199

200 Chapter 6. Conclusions

By using the developed framework simulation, we show how performance esti-

mations obtained by means of layout-oblivious methodologies are highly inac-

curate when compared to layout-aware ones. Additionally, an in-depth anal-

ysis of NoC physical design was provided, analyzing the most common design

pitfalls and the design techniques that can be used to solve them. The results

show that the more complex the wiring pattern of a topology, the higher the

performance degradation of its implementations, thus raising the need for ex-

pensive design techniques to compensate. Although the methodology allows

to characterize the physical implications of a given topology, the cost in terms

of synthesis time made our synthesis based methodology oddly suited for quick

topology explorations and for larger scale networks, which are the target of

this dissertation. For this reason, an approximate methodology that requires

less synthesis iterations was devised, capable of preserving visibility of layout

effects..

After, we delved into the adaptation of design techniques developed for

off-chip networks to the on-chip environment by focusing into network archi-

tectures designed for off-chip networks. In particular, we centered our efforts

into the virtual channels flow control mechanism. We selected this design tech-

nique for two reasons. First, it is one of the most popular network performance

boosting techniques in both domains, NoCs and off-chip interconnection net-

works. Second, the most popular virtual channels switch architecture for NoCs

is mostly adopted from the off-chip interconnection networks domains, with

minimal changes. The presented experiments showed that for a very common

system environment in NoCs (source routing schema working with determin-

istic routing algorithms and enforcing in-order delivery of packets), by simply

replicating switches as many times as the intended number of VCs, a simple

yet efficient implementation can be achieved, with respect to a conventional

virtual channel architecture. The resulting multi-switch architecture may be

synthesized to provide area/power savings over the classical approach, or just

a higher operating frequency, while providing excellent Intellectual Property

(IP) reuse capabilities. In this way, we showed with a clear example how to

optimize for NoCs an off-chip design technique. Even more, we did that by

replicating even the crossbar, something that is unthinkable in the off-chip

domain.

6.2. Future Work 201

Summarizing, up to this point, the research efforts of this dissertation were

aimed at pointing out the key layout effects that should not be ignored even by

abstract design space exploration and synthesis flows. In other words, it helped

find the proper mix of layout annotations and low-level detail abstractions that

enables a DSE tool to run in reasonable time while generating predictable

results.

Finally, based on our previous research, we developed an industrial tool to

perform early Design Space Exploration of SoC: LDSET. LDSET was designed

to work with large design spaces, and to suit the needs for competitive indus-

trials environments. Starting from the definition of the design parameters,

LDSET is able to automatically build and explore the design space, guiding

the designer towards the most promising solutions. It is heavily optimized

to work with large design spaces, implementing advanced heuristics in order

to reduce the exploration time. Additionally, the tool is heavily parallelized,

exploiting the potential of modern cluster of computers to further reduce the

exploration cost. Special effort was dedicated to reduce the number and cost

of design re-spins, an issue that is ever present in current industry design flows.

Summarizing, this dissertation develops a highly accurate DSE method-

ology. Starting by showing the gap between high-level and synthesis based

performance estimations of NoC systems, a high-level layout aware simulation

framework was developed. After, this simulation framework is used to develop

layout-aware methodologies to evaluate the effectiveness of several key factor

in the design of NoCs. Finally, those methodologies were used as the founda-

tion to develop an industrial tool designed to carry out earlier DSE optimized

for large design spaces.

6.2 Future Work

Our work present several research points that can be further expanded in the

future.

Regarding the topology exploration topic, our analysis was affected by the

considered reference architecture. In particular, the cross-domain clocking

mechanism implemented tightly relates network and core operating frequency.

This mechanism translates into an extremely simple, fast and cheap implemen-

202 Chapter 6. Conclusions

tation, but discourages the use of high-degree switches and/or long links, as

slower topologies will aggravate their performance issues by further decreasing

the operating frequency of the cores. Therefore, slow topologies require the use

of expensive performance boosting techniques in order to achieve competitive

performance. This effect can be partially alleviated by the use of Global Asyn-

chronous Local Synchronous (GALS) design techniques, that enables different

sections of the chip to run at different clock speeds. That is, while portions of

the system may run synchronously, the system as a whole is asynchronous. By

designing NIs using a GALS approach, the operating frequency of the network

and the cores can be completely decoupled, favoring the use of slow topologies.

Regarding the proposed multi-switch implementation of virtual channels,

the proposal can be expanded in two different ways. First, it is possible to

expand the functionality of the output port arbiters in order to allow packets to

shift virtual channels, improving the performance of the architecture when in-

order delivery of packets is not required. Second, the replication of resources

presents an optimal scenario to improve the reliability of the multi-switch

architecture. For example, it is possible to disable a virtual channel (i.e., a

VC-less switch) that presents any kind of failure in order to keep the compound

switch operative, although with diminished capabilities.

Finally, several directions exists in which LDSET can be extended. Apart

of the use of the above mentioned GALS approach, the inclusion of different

use-cases can also prove to be useful. A system may be used with different

operating conditions, some of which may be orthogonal to each other. This

means that they may not occur at the same time. Specially with multi-function

mobile devices, a lot of different use-cases may exist with significant commu-

nication requirements, but never at the same time (e.g. video capture and

video playback on a smartphone). Therefore, these use-cases exist separately

by themselves and their flows may not affect each other. On such occasions,

the tool will have to optimize the architecture in order to make it compliant

with all the different requirements. At the end, the architecture has to be

able to sustain all the traffic as generated by the separate use cases. Finally,

the inclusion of more different topologies besides the currently supported ones

will render the tool even more flexible and applicable to real-life industry prob-

lems. Ideally, LDSET would be able to support irregular structures, where the

6.3. Contributions 203

topology is built to be a custom fit for the system at hand, but this implies

an even larger design space to explore.

6.3 Contributions

While conducting the research presented in this dissertation we had the op-

portunity to publish our work in scientific conferences, journals, and books

related to the topics addressed in this dissertation. Following, we present the

list of published works for each of the proposals of this dissertation.

The publications in conferences corresponding to the topology exploration

topic are [44, 55, 57–59, 64, 65, 91, 92, 134]:

• F. Gilabert, M.E. Gómez, P. López y J. Duato. “Analysis of Topologies

in the Performance of On-Chip Networks“. Workshop on Interconnec-

tion Network Architectures: On-Chip, Multi-Chip as part of 2007 Inter-

national Conference on High Performance Embedded Architectures &

Compilers. January 2007. ISBN 978-90-382-1127-5

• F. Gilabert, M.E. Gómez, P. López y J. Duato. “Performance Anal-

ysis of Multidimensional Topologies for NoC“. ACACES 2007 Third

International Summer School on Advanced Computer Architecture and

Compilation for Embedded Systems. July 2007. ISBN 978-90-382-1127-

5.

• S. Medardoni, F. Gilabert, D. Bertozzi, M.E. Gómez, and P. López.

“Towards an Implementation-Aware Transaction-Level Modeling of On-

Chip Networks for Fast and Accurate Topology Exploration“. Workshop

on Interconnection Network Architectures: On-Chip, Multi-Chip as part

of 2008 International Conference on High Performance Embedded Ar-

chitectures & Compilers. January 2008.

• F. Gilabert, S. Medardoni, D. Bertozzi, L. Benini, M.E. Gómez, P. López

and J. Duato. “Exploring High-Dimensional Topologies for NoC De-

sign Through an Integrated Analysis and Synthesis Framework“. The

2nd IEEE International Symposium on Networks-on-Chip (NoCS 2008).

April 2008. ISBN 978-0-7695-3098-7

204 Chapter 6. Conclusions

• F. Gilabert, S. Medardoni, D. Bertozzi, L. Benini, M.E. Gómez, P. López

and J. Duato.“High-Dimensional Topologies for NoCs“. XIX Jornadas

de paralelismo. September 2008. ISBN 978-84-8021-676-0

• D. Ludovici, F. Gilabert, C. Gómez, M. E. Gómez, P. López, G. Gaydad-

jiev. “Buttery vs. Unidirectional Fat-Trees for Networks-on-Chip: not a

Mere Permutation of Outputs“. 3rd Workshop on Interconnection Net-

work Architectures: On-Chip, Multi-Chip, The 4th International Con-

ference on High Performance and Embedded Architectures and Compil-

ers. January 2009.

• D. Ludovici, F. Gilabert, S. Medardoni, C. Gómez, M.E. Gómez, P.

López, G.N. Gaydadjiev, D. Bertozzi “Assessing fat-tree topologies for

regular network-on-chip design under nanoscale technology constraints“.

DATE Design, Automation & Test in Europe. April 2009. IEEE Com-

puter Society Press. ISBN 978-1-4244-3781-8.

• F. Gilabert, D. Ludovici, S. Medardoni, D. Bertozzi, L. Benini, G.N.

Gaydadjiev. “Designing Regular Network-on-Chip Topologies under Tech-

nology, Architecture and Software Constraints“. 2009 International Work-

shop on Multi-Core Computing Systems (MuCoCoS’09), as a part of In-

ternational Conference on Complex, intelligent, and Software Intensive

Systems. March 2009. ISBN 978-0-7695-3575-3

• F. Gilabert, D. Ludovici, S. Medardoni, C. Gómez, M.E. Gómez, P.

López, G.N. Gaydadjiev, D. Bertozzi. “On the feasibility of fat-tree

topologies for Networks-on-chip“. XX Jornadas de paralelismo. Septem-

ber 2009. ISBN 84-9749-346-8

• Daniele Ludovici, Georgi N. Gaydadjiev, Francisco Gilabert, Maria E.

Gómez, Davide Bertozzi. “Contrasting Topologies for Regular Intercon-

nection Networks under the Constraints of Nanoscale Silicon Technol-

ogy“. Third International Workshop on Networks On Chip Architectures

(NoCARC). December 2010. ISBN 978-1-4503-0397-2

In addition, there are several works published as book chapters correspond-

ing to the topology exploration topic:

6.3. Contributions 205

• F. Gilabert, D. Bertozzi, L. Benini, and G. De Micheli. Networks-On-

Chip: An Interconnect Fabric For Multi-Processor Systems-On-Chip.

Chapter in “Embedded Systems Handbook, Second Edition: Embedded

Systems Design and Verification“. CRC Press/Taylor & Francis. 2009.

ISBN 978-14-398-0755-2

• F. Gilabert, Daniele Ludovici, M.E. Gómez and D. Bertozzi. Topol-

ogy Exploration. Chapter in “Designing Network-on-Chip Architectures

in the Nanoscale Era“, Chapman & Hall/CRC Computational Science.

2010. ISBN 978-1439837108

• D. Bertozzi, A. Strano, F. Gilabert, D. Ludovici, Technology-Aware

Communication Architecture Design for Parallel Hardware Platforms.

Chapter in “CMOS Advanced Circuits”, CRC Book, 2011, in press.

The publications corresponding to the virtual channels for NoCs topic

are [56, 63]:

• F. Gilabert, S. Medardoni, M.E. Gómez, D. Bertozzi. “Simple and Ef-

ficient Implementation of Virtual Channels for NoCs“. The 7th In-

ternational System-on-Chip (SoC) Conference, Exhibit & Workshops.

November 2009.

• F. Gilabert, S. Medardoni, M.E. Gómez, D. Bertozzi. “Improved Utiliza-

tion of NoC Channel Bandwidth by Switch Replication for Cost-Effective

Multi-Processor Systems-on-Chip“. The 4th ACM/IEEE International

Symposium on Networks-on-Chip. May 2010. ISBN 978-0-7695-4053-5

In addition, there is a work published as a book chapter corresponding to

the virtual channels for NoCs topic:

• Davide Bertozzi, Simone Medardoni, Antoni Roca, José Flich, Federico

Silla, and Francisco Gilabert. Appendix: Switch Models. Chapter in

“Designing Network-on-Chip Architectures in the Nanoscale Era“, Chap-

man & Hall/CRC Computational Science. 2010. ISBN 978-1439837108

Finally, the following publication was made regarding the design space

exploration topic for NoCs [136]:

206 Chapter 6. Conclusions

• Sören Sonntag and Francisco Gilabert. “Design Space Exploration and

Performance Evaluation at Electronic System Level for NoC-based MP-

SoC“. Tutorial session and article at International Conference in Com-

puter Aided Design (ICCAD). November 2010. ISBN 978-1-4244-8193-4

Bibliography

[1] http://www.chipwrights.com/.

[2] http://www.intel.com.

[3] http://www.amd.com.

[4] http://focus.ti.com.

[5] http://www.arm.com.

[6] http://www.tilera.com.

[7] http://www.ocpip.org.

[8] http://www.systemc.org/.

[9] http://www.arm.com/products/CPUs/ARM926EJ-S.html.

[10] http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html.

[11] http://www.lantiq.com/.

[12] http://www.nanoc-project.eu/.

[13] http://www.w3.org/XML.

[14] http://www.perl.org/.

[15] International Technology Roadmap for Semiconductors.

http://www.itrs.net.

207

208 Bibliography

[16] Networked Embedded Systems, vol. 2, Embedded Systems Handbook

2nd edition. CRC Press/Taylor & Francis, 2009, Edited by Richard

Zurawski.

[17] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C.A. Ze-

ferino. Spin: a scalable, packet switched, on-chip micro-network. In De-

sign, Automation and Test in Europe Conference and Exhibition, 2003.

[18] K. Agarwal, D. Sylvester, D. Blaauw, F. Liu, S. Nassif, and S. Vrudhula.

Variational delay metrics for interconnect timing analysis. In Design

Automation Conference, 2004. Proceedings. 41st.

[19] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger. Clock rate

versus ipc: the end of the road for conventional microarchitectures. In

Computer Architecture, 2000. Proceedings of the 27th International Sym-

posium on.

[20] Tapani Ahonen, David A. Sigüenza-Tortosa, Hong Bin, and Jari Nurmi.

Topology optimization for application-specific networks-on-chip. In Pro-

ceedings of the 2004 international workshop on System level interconnect

prediction, SLIP ’04, pages 53–60, New York, NY, USA, 2004. ACM.

[21] P.J. Aldworth. System-on-a-chip bus architecture for embedded applica-

tions. In Computer Design, 1999. (ICCD ’99) International Conference

on.

[22] M. Arjomand and H. Sarbazi-Azad. Performance evaluation of butterfly

on-chip network for MPSoCs. In International SoC Design Conference

2008, pages 296–299, Washington, DC, USA, 2008. IEEE Computer

Society.

[23] James Balfour and William J. Dally. Design tradeoffs for tiled CMP on-

chip networks. In Proceedings of the 20th annual international conference

on Supercomputing, ICS ’06, pages 187–198, New York, NY, USA, 2006.

ACM.

[24] Arnab Banerjee, Robert Mullins, and Simon Moore. A Power and Energy

Exploration of Network-on-Chip Architectures. In Proceedings of the

Bibliography 209

First International Symposium on Networks-on-Chip, NOCS ’07, pages

163–172, Washington, DC, USA, 2007. IEEE Computer Society.

[25] N. Banerjee, P. Vellanki, and K.S. Chatha. A power and performance

model for network-on-chip architectures. In Design, Automation and

Test in Europe Conference and Exhibition, 2004. Proceedings, volume 2,

pages 1250 – 1255 Vol.2, 2004.

[26] Daniel U. Becker and William J. Dally. Allocator implementations for

network-on-chip routers. In Proceedings of the Conference on High Per-

formance Computing Networking, Storage and Analysis, SC ’09, pages

52:1–52:12, New York, NY, USA, 2009. ACM.

[27] L. Benini. Application specific noc design. In Design, Automation and

Test in Europe, 2006. DATE ’06. Proceedings.

[28] L. Benini and D. Bertozzi. Network-on-chip architectures and design

methods. volume 152, pages 261 – 272, 2005.

[29] L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm.

Computer, 35(1):70 –78, 2002.

[30] Luca Benini. Application specific NoC design. In DATE ’06: Proceed-

ings of the conference on Design, automation and test in Europe, pages

491–495, 3001 Leuven, Belgium, Belgium, 2006. European Design and

Automation Association.

[31] G. Benini L., De Micheli. Networks on Chips: Technology and Tools.

Morgan Kaufmann, 2006.

[32] D. Bertozzi, A. Jalabert, Srinivasan Murali, R. Tamhankar, S. Stergiou,

L. Benini, and G. De Micheli. NoC synthesis flow for customized do-

main specific multiprocessor systems-on-chip. Parallel and Distributed

Systems, IEEE Transactions on, 16(2):113 – 129, 2005.

[33] Davide Bertozzi, Luca Benini, and Giovanni De Micheli. Energy-

reliability trade-off for NoCs, pages 107–129. Kluwer Academic Pub-

lishers, Hingham, MA, USA, 2003.

210 Bibliography

[34] L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hyperbus

Structures for a Computer Network. IEEE Trans. Comput., 33(4):323–

333, 1984.

[35] F. Boekhorst. Ambient intelligence: the next paradigm for consumer

electronics: how will it affect silicon? In Solid-State Circuits Conference,

2002. Digest of Technical Papers. ISSCC. 2002 IEEE International.

[36] L. Bononi and N. Concer. Simulation and analysis of network on chip

architectures: ring, spidergon and 2d mesh. In Design, Automation and

Test in Europe, 2006. DATE ’06. Proceedings.

[37] L. Bononi, N. Concer, M. Grammatikakis, M. Coppola, and R. Locatelli.

Noc topologies exploration based on mapping and simulation models.

In Digital System Design Architectures, Methods and Tools, 2007. DSD

2007. 10th Euromicro Conference on.

[38] R.V. Boppana and S. Chalasani. Fault-Tolerant Wormhole Routing Al-

gorithms for Mesh Networks. In IEEE Trans. Computers, volume 44,

1995.

[39] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. The-

ory of latency-insensitive design. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 20(9):1059 –1076, 2001.

[40] J. Chan and S. Parameswaran. NoCEE: energy macro-model extraction

methodology for network on chip routers. In Computer-Aided Design,

2005. ICCAD-2005. IEEE/ACM International Conference on, pages 254

– 259, 2005.

[41] Xuning Chen and Li-Shiuan Peh. Leakage power modeling and optimiza-

tion in interconnection networks. In Low Power Electronics and Design,

2003. ISLPED ’03. Proceedings of the 2003 International Symposium

on.

[42] Chen-Ling Chou and Radu Marculescu. User-centric design space explo-

ration for heterogeneous network-on-chip platforms. In Proceedings of

the Conference on Design, Automation and Test in Europe, DATE ’09,

Bibliography 211

pages 15–20, 3001 Leuven, Belgium, Belgium, 2009. European Design

and Automation Association.

[43] B. Cordan. An efficient bus architecture for system-on-chip design. In

Custom Integrated Circuits, 1999. Proceedings of the IEEE 1999.

[44] C. Gómez M. E. Gómez P. López G. Gaydadjiev D. Ludovici, F. Gi-

labert. Buttery vs. Unidirectional Fat-Trees for Networks-on-Chip: not a

Mere Permutation of Outputs. In 3rd Workshop on Interconnection Net-

work Architectures: On-Chip, Multi-Chip, The 4th International Confer-

ence on High Performance and Embedded Architectures and Compilers,

January 2009.

[45] William Dally and Brian Towles. Principles and Practices of Intercon-

nection Networks. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2003.

[46] W.J. Dally. Express cubes: improving the performance of k-ary n

-cube interconnection networks. Computers, IEEE Transactions on,

40(9):1016 –1023, 1991.

[47] W.J. Dally. Virtual-channel flow control. Parallel and Distributed Sys-

tems, IEEE Transactions on, 3(2):194 –205, 1992.

[48] W.J. Dally and C.L. Seitz. Deadlock-Free Message Routing in Multi-

processor Interconnection Networks. Computers, IEEE Transactions on,

C-36(5):547 –553, 1987.

[49] W.J. Dally and B. Towles. Route packets, not wires: on-chip intercon-

nection networks. In Design Automation Conference, 2001. Proceedings.

[50] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist

multiobjective genetic algorithm: NSGA-II. Evolutionary Computation,

IEEE Transactions on, 6(2):182 –197, April 2002.

[51] G. Della Veccia and C. Sanges. Recursively Scalable Networks for Mes-

sage Passing Architectures. In E. Chiricozzi and A. D’Amico, editors,

Parallel Processing and Applications, pages 33–40. Elsevier Science Pub-

lishers, North-Holland, 1987.

212 Bibliography

[52] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Net-

works: An Engineering Approach. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2002.

[53] Natalie D. Enright Jerger, Li-Shiuan Peh, and Mikko H. Lipasti. Virtual

tree coherence: Leveraging regions and in-network multicast trees for

scalable cache coherence. In Proceedings of the 41st annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 41, pages 35–46,

Washington, DC, USA, 2008. IEEE Computer Society.

[54] I.Hatirnaz et al. Early Wire Characterization for Predictable Network-

on-Chip Global Interconnects . SLIP’07, 2007.

[55] D. Bertozzi L. Benini M.E. Gómez P. López F. Gilabert, S. Medardoni

and J. Duato. High-Dimensional Topologies for NoCs. In XIX Jornadas

de paralelismo, September 2008.

[56] M.E. Gómez D. Bertozzi F. Gilabert, S. Medardoni. Simple and Ef-

ficient Implementation of Virtual Channels for NoCs. In The 7th In-

ternational System-on-Chip (SoC) Conference, Exhibit & Workshops,

November 2009.

[57] P. López F. Gilabert, M.E. Gómez and J. Duato. Analysis of Topologies

in the Performance of On-Chip Networks. In Workshop on Intercon-

nection Network Architectures: On-Chip, Multi-Chip as a part of 2007

International Conference on High Performance Embedded Architectures

& Compilers, pages 49 – 52, January 2007.

[58] P. López F. Gilabert, M.E. Gómez and J. Duato. Performance Anal-

ysis of Multidimensional Topologies for NoC. In ACACES 2007 Third

International Summer School on Advanced Computer Architecture and

Compilation for Embedded Systems, July 2007.

[59] S. Medardoni C. Gómez M.E. Gómez P. López G.N. Gaydadjiev

D. Bertozzi F. Gilabert, D. Ludovici. On the feasibility of fat-tree topolo-

gies for Networks-on-chip. In XX Jornadas de paralelismo, September

2009.

Bibliography 213

[60] J. Flich and D. Bertozzi. Designing Network On-Chip Architectures in

the Nanoscale Era. CRC Press, December 2010.

[61] J. Flich, S. Rodrigo, and J. Duato. An efficient implementation of dis-

tributed routing algorithms for nocs. In Networks-on-Chip, 2008. NoCS

2008. Second ACM/IEEE International Symposium on.

[62] M. Galles. Spider: a high-speed network interconnect. Micro, IEEE,

17(1):34 –39, 1997.

[63] F. Gilabert, M.E. Go andmez, S. Medardoni, and D. Bertozzi. Im-

proved utilization of noc channel bandwidth by switch replication for

cost-effective multi-processor systems-on-chip. In Networks-on-Chip

(NOCS), 2010 Fourth ACM/IEEE International Symposium on, pages

165 –172, May 2010.

[64] F. Gilabert, D. Ludovici, S. Medardoni, D. Bertozzi, L. Benini, and

G.N. Gaydadjiev. Designing regular network-on-chip topologies under

technology, architecture and software constraints. In Complex, Intel-

ligent and Software Intensive Systems, 2009. CISIS ’09. International

Conference on, pages 681 –687, 2009.

[65] Francisco Gilabert, Simone Medardoni, Davide Bertozzi, Luca Benini,

Maŕıa Engracia Gomez, Pedro Lopez, and José Duato. Exploring High-

Dimensional Topologies for NoC Design Through an Integrated Analysis

and Synthesis Framework. In Proceedings of the Second ACM/IEEE

International Symposium on Networks-on-Chip, NOCS ’08, pages 107–

116, Washington, DC, USA, 2008. IEEE Computer Society.

[66] C. Gomez, F. Gilabert, M.E. Gomez, P. Lopez, and J. Duato. Deter-

ministic versus adaptive routing in fat-trees. In Parallel and Distributed

Processing Symposium, 2007. IPDPS 2007. IEEE International.

[67] C. Gomez, M.E. Gomez, P. Lopez, and J. Duato. An efficient switch-

ing technique for nocs with reduced buffer requirements. In Parallel

and Distributed Systems, 2008. ICPADS ’08. 14th IEEE International

Conference on.

214 Bibliography

[68] P. Gratz, Changkyu Kim, R. McDonald, S.W. Keckler, and D. Burger.

Implementation and evaluation of on-chip network architectures. In

Computer Design, 2006. ICCD 2006. International Conference on.

[69] Cristian Grecu, Andre Ivanov, Res Saleh, and Partha Pratim Pande.

NoC Interconnect Yield Improvement Using Crosspoint Redundancy.

Defect and Fault-Tolerance in VLSI Systems, IEEE International Sym-

posium on, 0:457–465, 2006.

[70] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-

switched interconnections. In Design, Automation and Test in Europe

Conference and Exhibition 2000. Proceedings.

[71] F. K. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber, and W. Fichtner.

GALS at ETH Zurich: Success or Failure? Proceedings of the Twelfth

IEEE International Symposium on Asynchronous Circuits and Systems,

2006.

[72] S. Hauck, G. Borriello, and C. Ebeling. Mesh routing topologies for

multi-FPGA systems. Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, 6(3):400 –408, 1998.

[73] John L. Hennessy and David A. Patterson. Computer Architecture,

Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 2006.

[74] Jingcao Hu, Yangdong Deng, and Radu Marculescu. System-Level Point-

to-Point Communication Synthesis Using Floorplanning Information. In

Proceedings of the 2002 Asia and South Pacific Design Automation Con-

ference, ASP-DAC ’02, pages 573–, Washington, DC, USA, 2002. IEEE

Computer Society.

[75] Ting-Chun Huang, Umit Y. Ogras, and Radu Marculescu. Virtual Chan-

nels Planning for Networks-on-Chip. In Proceedings of the 8th Inter-

national Symposium on Quality Electronic Design, ISQED ’07, pages

879–884, Washington, DC, USA, 2007. IEEE Computer Society.

Bibliography 215

[76] Thomas Hubbard, Raimondas Lencevicius, Edu Metz, and Gopal

Raghavan. Performance Validation on Multicore Mobile Devices. In

Bertrand Meyer and Jim Woodcock, editors, Verified Software: Theo-

ries, Tools, Experiments, pages 413–421. Springer-Verlag, Berlin, Hei-

delberg, 2008.

[77] A. Jalabert, S. Murali, L. Benini, and G. De Micheli. Xpipescompiler:

a tool for instantiating application specific networks on chip. In De-

sign, Automation and Test in Europe Conference and Exhibition, 2004.

Proceedings.

[78] A.B. Kahng, Bin Li, Li-Shiuan Peh, and K. Samadi. Orion 2.0: A fast

and accurate noc power and area model for early-stage design space ex-

ploration. In Design, Automation Test in Europe Conference Exhibition,

2009. DATE ’09.

[79] A.B. Kahng, Bao Liu, and I.I. Mandoiu. Non-tree routing for reliability

and yield improvement. In Computer Aided Design, 2002. ICCAD 2002.

IEEE/ACM International Conference on.

[80] N. Kavaldjiev, G.J.M. Smit, and P.G. Jansen. A virtual channel router

for on-chip networks. In SOC Conference, 2004. Proceedings. IEEE In-

ternational.

[81] John Kim, James Balfour, and William Dally. Flattened Butterfly Topol-

ogy for On-Chip Networks. In MICRO ’07: Proceedings of the 40th An-

nual IEEE/ACM International Symposium on Microarchitecture, pages

172–182, Washington, DC, USA, 2007. IEEE Computer Society.

[82] M. Kreutz, C. Marcon, L. Carro, N. Calazans, and A.A. Susin. Energy

and latency evaluation of noc topologies. In Circuits and Systems, 2005.

ISCAS 2005. IEEE International Symposium on.

[83] M. Krstic, E. Grass, C. Stahl, and M. Piz. System integration by request-

driven GALS design. Computers and Digital Techniques, IEE Proceed-

ings -, 153(5):362 – 372, 2006.

216 Bibliography

[84] A. Kumar, P. Kundu, A.P. Singh, L.-S. Peh, and N.K. Jha. A 4.6tbits/s

3.6ghz single-cycle noc router with a novel switch allocator in 65nm

cmos. In Computer Design, 2007. ICCD 2007. 25th International Con-

ference on.

[85] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. Express

virtual channels: towards the ideal interconnection fabric. In Proceedings

of the 34th annual international symposium on Computer architecture,

ISCA ’07, pages 150–161, New York, NY, USA, 2007. ACM.

[86] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg,

K. Tiensyrja, and A. Hemani. A network on chip architecture and de-

sign methodology. In VLSI, 2002. Proceedings. IEEE Computer Society

Annual Symposium on.

[87] D. Lattard, E. Beigne, C. Bernard, C. Bour, F. Clermidy, Y. Durand,

J. Durupt, D. Varreau, P. Vivet, P. Penard, A. Bouttier, and F. Berens.

A telecom baseband circuit based on an asynchronous network-on-chip.

In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Tech-

nical Papers. IEEE International.

[88] Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient

supercomputing. IEEE Trans. Comput., 34:892–901, 1985.

[89] P. Lopez, J.M. Martinez, and J. Duato. A very efficient distributed dead-

lock detection mechanism for wormhole networks. In High-Performance

Computer Architecture, 1998. Proceedings., 1998 Fourth International

Symposium on.

[90] Zhonghai Lu and A. Jantsch. Flit admission in on-chip wormhole-

switched networks with virtual channels. In System-on-Chip, 2004. Pro-

ceedings. 2004 International Symposium on.

[91] D. Ludovici, F. Gilabert, S. Medardoni, C. Gomez, M.E. Gomez,

P. Lopez, G.N. Gaydadjiev, and D. Bertozzi. Assessing fat-tree topolo-

gies for regular network-on-chip design under nanoscale technology con-

straints. In Design, Automation Test in Europe Conference Exhibition,

2009. DATE ’09., pages 562 –565, 2009.

Bibliography 217

[92] Daniele Ludovici, Georgi N. Gaydadjiev, Francisco Gilabert, Maria E.

Gomez, and Davide Bertozzi. Contrasting topologies for regular inter-

connection networks under the constraints of nanoscale silicon technol-

ogy. In Proceedings of the Third International Workshop on Network

on Chip Architectures, NoCArc ’10, pages 37–42, New York, NY, USA,

2010. ACM.

[93] Daniele Ludovici, Georgi Nedeltchev Gaydadjiev, Davide Bertozzi, and

Luca Benini. Capturing topology-level implications of link synthesis

techniques for nanoscale networks-on-chip. In Proceedings of the 19th

ACM Great Lakes symposium on VLSI, GLSVLSI ’09, pages 125–128,

New York, NY, USA, 2009. ACM.

[94] Giovanni Mariani, Gianluca Palermo, Cristina Silvano, and Vittorio Za-

ccaria. An Efficient Design Space Exploration Methodology for Multi-

Cluster VLIW Architectures based on Artificial Neural Networks. In

IFIP VLSI-SoC 2008, International Conference on Very Large Scale In-

tegration of System-on-Chip. Proceedings, pages 213 –218, 2008.

[95] H. Matsutani, M. Koibuchi, and H. Amano. Performance, cost, and en-

ergy evaluation of fat h-tree: A cost-efficient tree-based on-chip network.

In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.

IEEE International.

[96] H. Matsutani, M. Koibuchi, D.F. Hsu, and H. Amano. Three-

dimensional layout of on-chip tree-based networks. In Parallel Archi-

tectures, Algorithms, and Networks, 2008. I-SPAN 2008. International

Symposium on.

[97] Hiroki Matsutani, Michihiro Koibuchi, Daihan Wang, and Hideharu

Amano. Adding Slow-Silent Virtual Channels for Low-Power On-Chip

Networks. In Proceedings of the Second ACM/IEEE International Sym-

posium on Networks-on-Chip, NOCS ’08, pages 23–32, Washington, DC,

USA, 2008. IEEE Computer Society.

[98] Aline Mello, Leonel Tedesco, Ney Calazans, and Fernando Moraes. Vir-

tual channels in networks on chip: implementation and evaluation on

218 Bibliography

hermes NoC. In Proceedings of the 18th annual symposium on Integrated

circuits and system design, SBCCI ’05, pages 178–183, New York, NY,

USA, 2005. ACM.

[99] Paolo Meloni, Igor Loi, Federico Angiolini, Salvatore Carta, Massimo

Barbaro, Luigi Raffo, and Luca Benini. Area and Power Modeling for

Networks-on-Chip with Layout Awareness, 2007.

[100] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits.

McGraw-Hill Higher Education, 1st edition, 1994.

[101] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram. An empiri-

cal investigation of mesh and torus noc topologies under different routing

algorithms and traffic models. In Digital System Design Architectures,

Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on.

[102] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid design

space exploration of heterogeneous embedded systems using symbolic

search and multi-granular simulation. In Proceedings of the joint confer-

ence on Languages, compilers and tools for embedded systems: software

and compilers for embedded systems, LCTES/SCOPES ’02, pages 18–27,

New York, NY, USA, 2002. ACM.

[103] M. Mondal, T. Ragheb, Xiang Wu, A. Aziz, and Y. Massoud. Provi-

sioning On-Chip Networks under Buffered RC Interconnect Delay Varia-

tions. In Quality Electronic Design, 2007. ISQED ’07. 8th International

Symposium on, pages 873 –878, 2007.

[104] G.E. Moore. Cramming More Components Onto Integrated Circuits.

Proceedings of the IEEE, 86(1):82 –85, 1998.

[105] S.S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The alpha

21364 network architecture. In Hot Interconnects 9, 2001.

[106] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel routers

for on-chip networks. In Computer Architecture, 2004. Proceedings. 31st

Annual International Symposium on.

Bibliography 219

[107] Srinivasan Murali and Giovanni De Micheli. Bandwidth-Constrained

Mapping of Cores onto NoC Architectures. In Proceedings of the confer-

ence on Design, automation and test in Europe - Volume 2, DATE ’04,

pages 20896–, Washington, DC, USA, 2004. IEEE Computer Society.

[108] Srinivasan Murali, Paolo Meloni, Federico Angiolini, David Atienza, Sal-

vatore Carta, Luca Benini, Giovanni De Micheli, and Luigi Raffo. De-

signing application-specific networks on chips with floorplan informa-

tion. In Proceedings of the 2006 IEEE/ACM international conference

on Computer-aided design, ICCAD ’06, pages 355–362, New York, NY,

USA, 2006. ACM.

[109] Umit Y. Ogras. Application-specific network-on-chip architecture cus-

tomization via long-range link insertion. In Proc. ICCAD, pages 246–

253. IEEE, 2005.

[110] U.Y. Ogras and R. Marculescu. Application-specific network-on-chip

architecture customization via long-range link insertion. In Computer-

Aided Design, 2005. ICCAD-2005. IEEE/ACM International Confer-

ence on.

[111] Randy B. Osborne. Speculative computation in multilisp. In Proceedings

of the 1990 ACM conference on LISP and functional programming, LFP

’90, pages 198–208, New York, NY, USA, 1990. ACM.

[112] Gianluca Palermo and Cristina Silvano. PIRATE: A Framework for

Power/Performance Exploration of Network-on-Chip Architectures. In

Enrico Macii, Vassilis Paliouras, and Odysseas Koufopavlou, editors,

Integrated Circuit and System Design, volume 3254 of Lecture Notes in

Computer Science, pages 521–531. Springer Berlin / Heidelberg, 2004.

[113] Partha Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh.

Performance evaluation and design trade-offs for network-on-chip inter-

connect architectures. Computers, IEEE Transactions on, 54(8):1025 –

1040, 2005.

[114] P.P. Pande, C. Grecu, A. Ivanov, and R. Saleh. Design of a switch for

network on chip applications. In Circuits and Systems, 2003. ISCAS ’03.

220 Bibliography

Proceedings of the 2003 International Symposium on, volume 5, pages

V–217 – V–220 vol.5, 2003.

[115] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C.R. Das. Explor-

ing fault-tolerant network-on-chip architectures. In Dependable Systems

and Networks, 2006. DSN 2006. International Conference on.

[116] Dongkook Park, C. Nicopoulos, Jongman Kim, N. Vijaykrishnan, and

C.R. Das. A distributed multi-point network interface for low-latency,

deadlock-free on-chip interconnects. In Nano-Networks and Workshops,

2006. NanoNet ’06. 1st International Conference on.

[117] Sudeep Pasricha, Nikil Dutt, Elaheh Bozorgzadeh, and Mohamed Ben-

Romdhane. Floorplan-aware automated synthesis of bus-based commu-

nication architectures. In Proceedings of the 42nd annual Design Au-

tomation Conference, DAC ’05, pages 565–570, New York, NY, USA,

2005. ACM.

[118] L.-S. Peh and W.J. Dally. A delay model and speculative architecture for

pipelined routers. In High-Performance Computer Architecture, 2001.

HPCA. The Seventh International Symposium on, pages 255 –266, 2001.

[119] Fabrizio Petrini and Marco Vanneschi. K-ary N-trees: High Performance

Networks for Massively Parallel Architectures. Technical report, 1995.

[120] Francesco Poletti, Antonio Poggiali, Davide Bertozzi, Luca Benini, Pol

Marchal, Mirko Loghi, and Massimo Poncino. Energy-Efficient Multipro-

cessor Systems-on-Chip for Embedded Computing: Exploring Program-

ming Models and Their Architectural Support. IEEE Trans. Comput.,

56:606–621, May 2007.

[121] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, Srinivasan Murali,

L. Raffo, G. De Micheli, and L. Benini. NoC Design and Implemen-

tation in 65nm Technology. In Networks-on-Chip, 2007. NOCS 2007.

First International Symposium on, pages 273 –282, 2007.

[122] Antonio Pullini, Federico Angiolini, Davide Bertozzi, and Luca Benini.

Fault tolerance overhead in network-on-chip flow control schemes. In

Bibliography 221

Proceedings of the 18th annual symposium on Integrated circuits and

system design, SBCCI ’05, pages 224–229, New York, NY, USA, 2005.

ACM.

[123] Antonio Pullini, Federico Angiolini, Srinivasan Murali, David Atienza,

Giovanni De Micheli, and Luca Benini. Bringing NoCs to 65nm. IEEE

Micro Magazine, 12(5, September/October):75–85, 2007.

[124] J. Rabindra and M. Prabhat. Design Space Exploration of NoC: A

System Level Approach. In International Journal of Computing and

ICT Researc, 2008.

[125] A.-M. Rahmani, I. Kamali, P. Lotfi-Kamran, A. Afzali-Kusha, and

S. Safari. Negative Exponential Distribution Traffic Pattern for

Power/Performance Analysis of Network on Chips. In VLSI Design,

2009 22nd International Conference on, pages 157 –162, 2009.

[126] D. Rahmati, A.E. Kiasari, S. Hessabi, and H. Sarbazi-Azad. A Per-

formance and Power Analysis of WK-Recursive and Mesh Networks for

Network-on-Chips. In Computer Design, 2006. ICCD 2006. Interna-

tional Conference, Washington, DC, USA, 2006. IEEE Computer Soci-

ety.

[127] Crispin Gomez Requena, Francisco Gilabert Villamon, Maria Gomez,

Pedro Lopez, and Jose Duato. Beyond Fat–tree: Unidirectional Load–

Balanced Multistage Interconnection Network. IEEE Computer Archi-

tecture Letters, 7:49–52, 2008.

[128] Mostafa Rezazad and Hamid Sarbazi-azad. The Effect of Virtual Chan-

nel Organization on the Performance of Interconnection Networks. In

Proceedings of the 19th IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS’05) - Workshop 14 - Volume 15, IPDPS ’05,

pages 264.1–, Washington, DC, USA, 2005. IEEE Computer Society.

[129] Alienor Richard, Dragomir Milojevic, Frederic Robert, Antonis Bartzas,

Alexandros abd Papanikolaou, Kostas Siozios, and Dimitrios Soudris.

222 Bibliography

Fast Design Space Exploration Environment Applied on NoC’s for 3D-

Stacked MPSoC’s. In ARCS ’10 - 23th International Conference on

Architecture of Computing Systens 2010, 2010.

[130] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van

Meerbergen, P. Wielage, and E. Waterlander. Trade Offs in the Design

of a Router with Both Guaranteed and Best-Effort Services for Networks

on Chip. In DATE ’03: Proceedings of the conference on Design, Au-

tomation and Test in Europe, page 10350, Washington, DC, USA, 2003.

IEEE Computer Society.

[131] L. Scheffer. Methodologies and tools for pipelined on-chip interconnect.

In Computer Design: VLSI in Computers and Processors, 2002. Pro-

ceedings. 2002 IEEE International Conference on.

[132] D. Siguenza-Tortosa and J. Nurmi. VHDL-based simulation environ-

ment for Proteo NoC. In Proceedings of the Seventh IEEE International

High-Level Design Validation and Test Workshop, pages 1–, Washington,

DC, USA, 2002. IEEE Computer Society.

[133] M. Simone, M. Lajolo, and D. Bertozzi. Variation tolerant noc design

by means of self-calibrating links. In Design, Automation and Test in

Europe, 2008. DATE ’08.

[134] D.Bertozzi M.E. Gomez S.Medardoni, F.Gilabert and P.Lopez. Towards

an Implementation-Aware Transaction-Level Modeling of On-Chip Net-

works for Fast and Accurate Topology Exploration. In Workshop on

Interconnection Network Architectures: On-Chip, Multi-Chip as part of

2008 International Conference on High Performance Embedded Archi-

tectures & Compilers, pages 97–108, January 2008.

[135] James E. Smith and Andrew R. Pleszkun. Implementation of precise

interrupts in pipelined processors. In Proceedings of the 12th annual

international symposium on Computer architecture, ISCA ’85, pages 36–

44, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[136] S. Sonntag and F. Gilabert. Design space exploration and performance

evaluation at electronic system level for noc-based mpsoc. In Computer-

Bibliography 223

Aided Design (ICCAD), 2010 IEEE/ACM International Conference on,

pages 336 –339, 2010.

[137] Sören Sonntag and Wenjian Wang. Area and power consumption estima-

tions at system level with systemq 2.0. In Proceedings of the 2nd Inter-

national Conference on Simulation Tools and Techniques, Simutools ’09,

pages 25:1–25:8, ICST, Brussels, Belgium, Belgium, 2009. ICST (Insti-

tute for Computer Sciences, Social-Informatics and Telecommunications

Engineering).

[138] V.. Soteriou, N.. Eisley, Hangsheng Wang, Bin Li, and Li-Shiuan Peh.

Polaris: A System-Level Roadmapping Toolchain for On-Chip Intercon-

nection Networks. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 15(8):855 –868, 2007.

[139] K. Srinivasan, K. S. Chatha, and G. Konjevod. An automated technique

for topology and route generation of application specific on-chip inter-

connection networks. In Proceedings of the 2005 IEEE/ACM Interna-

tional conference on Computer-aided design, ICCAD ’05, pages 231–237,

Washington, DC, USA, 2005. IEEE Computer Society.

[140] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and

G. De Micheli. xpipes lite: a synthesis oriented design library for net-

works on chips. In Design, Automation and Test in Europe, 2005. Pro-

ceedings.

[141] Alessandro Strano, Carles Hernandez, Federico Silla, and Davide

Bertozzi. Process Variation and Layout Mismatch Tolerant Design of

Source Synchronous Links for GALS Networks-on-Chip. In 12th IEEE

International Symposium on System-on-Chip (SoC 2010), 2010.

[142] S. Suboh, M. Bakhouya, and T. El-Ghazawi. Simulation and Evaluation

of On-Chip Interconnect Architectures: 2D Mesh, Spidergon, and WK-

Recursive Network. In NOCS ’08: Proceedings of the Second ACM/IEEE

International Symposium on Networks-on-Chip, pages 205–206, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

224 Bibliography

[143] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-

wald, H. Hoffman, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf,

M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and

A. Agarwal. Micro, IEEE.

[144] Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant

Agarwal. Scalar Operand Networks: Design, Implementation, and Anal-

ysis.

[145] N. Terrassan, D. Bertozzi, and A. Bogliolo. Spice-accurate systemc

macromodels of noisy on-chip communication channels. In Signal Prop-

agation on Interconnects, 2007. SPI 2007. IEEE Workshop on.

[146] M. Vachharajani, N. Vachharajani, D.A. Penry, J.A. Blome, and D.I.

August. Microarchitectural exploration with Liberty. In Microarchitec-

ture, 2002. (MICRO-35). Proceedings. 35th Annual IEEE/ACM Inter-

national Symposium on, pages 271 – 282, 2002.

[147] Ruud van der Pas. Memory Hierarchy in Cache-Based Systems. Sun

Microsystems Blueprints, 2002.

[148] S. Vangal, N. Borkar, and A. Alvandpour. A six-port 57gb/s double-

pumped nonblocking router core. In VLSI Circuits, 2005. Digest of

Technical Papers. 2005 Symposium on.

[149] T. Villiger, H. Kaslin, F.K. Gurkaynak, S. Oetiker, and W. Fichtner.

Self-timed ring for globally-asynchronous locally-synchronous systems.

In Asynchronous Circuits and Systems, 2003. Proceedings. Ninth Inter-

national Symposium on.

[150] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and S. Malik. Orion: a

power-performance simulator for interconnection networks. In Microar-

chitecture, 2002. (MICRO-35). Proceedings. 35th Annual IEEE/ACM

International Symposium on.

[151] Hangsheng Wang, Li-Shiuan Peh, and S. Malik. A technology-aware and

energy-oriented topology exploration for on-chip networks. In Design,

Bibliography 225

Automation and Test in Europe, 2005. Proceedings, pages 1238 – 1243

Vol. 2, 2005.

[152] Roshan Weerasekera, Li-Rong Zheng, Dinesh Pamunuwa, and Hannu

Tenhunen. Extending systems-on-chip to the third dimension: perfor-

mance, cost and technological tradeoffs. In ICCAD ’07: Proceedings of

the 2007 IEEE/ACM international conference on Computer-aided de-

sign, pages 212–219, Piscataway, NJ, USA, 2007. IEEE Press.

[153] D. Wentzlaff, P. Griffin, H. Hoffmann, Liewei Bao, B. Edwards,

C. Ramey, M. Mattina, Chyi-Chang Miao, J.F. Brown, and A. Agar-

wal. On-Chip Interconnection Architecture of the Tile Processor. Micro,

IEEE, 27(5):15 –31, 2007.

[154] Paul Wielage and Kees Goossens. Networks on Silicon: Blessing or

Nightmare? In EUROMICRO SYMPOSIUM ON DIGITAL SYSTEM

DESIGN (DSD 2002), pages 196–200, 2002.

[155] P.T. Wolkotte, G.J.M. Smit, G.K. Rauwerda, and L.T. Smit. An energy-

efficient reconfigurable circuit-switched network-on-chip. In Parallel and

Distributed Processing Symposium, 2005. Proceedings. 19th IEEE Inter-

national.

[156] F. Worm, P. Ienne, P. Thiran, and G. De Micheli. A robust self-

calibrating transmission scheme for on-chip networks. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 13(1):126 – 139,

2005.

[157] Sung-Tze Wu, Chih-Hao Chao, I-Chyn Wey, and An-Yeu Wu. Dynamic

Channel Flow Control of Networks-on-Chip Systems for High Buffer

Efficiency. In Signal Processing Systems, 2007 IEEE Workshop on, pages

493 –498, 2007.

[158] Jinwen Xi and Peixin Zhong. A Transaction-Level NoC Simulation

Platform with Architecture-Level Dynamic and Leakage Energy Mod-

els. In Proceedings of the 16th ACM Great Lakes symposium on VLSI,

GLSVLSI ’06, pages 341–344, New York, NY, USA, 2006. ACM.

226 Bibliography

[159] T.T. Ye, L. Benini, and G. De Micheli. Analysis of power consumption

on switch fabrics in network routers. In Design Automation Conference,

2002. Proceedings. 39th, pages 524 – 529, 2002.

[160] Min Zhang and Chiu-Sing Choy. Low-Cost VC Allocator Design for Vir-

tual Channel Wormhole Routers in Networks-on-Chip. In Networks-on-

Chip, 2008. NoCS 2008. Second ACM/IEEE International Symposium

on, pages 207 –208, 2008.

