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Abstract

As the complexity of the world in which we live increases, system thinking is becoming

a major factor in success and even in survival. This is why robust tools of complex

dynamic systems can give answers to several problems and can be applied to many

different areas, such as business, society and ecosystems, as well as in ordinary life such

as compulsive shopping, drug abuse, tobacco addiction, obesity, etc. When experiments

to test the real world cannot be carried out, simulation becomes the best way to learn

about the dynamic of these systems. For this reason I am pleased to present this Ph.D.

Dissertation, in which theory and practice of the dynamic systems are combined. It also

embraces epidemiologic models of some parasitic diseases with transmission vector.

The Toxoplasmosis and the bovine Babesiosis are parasitic diseases (zoonoses), which

are spread through a transmission vector and affect both human beings and livestock.

As a public health problem, Toxoplasmosis causes high health care costs when treating

unborn and newborn babies. It also causes a great amount of sick leaves. In addition to

this, livestock economic sector in tropical countries, such as Colombia, must bear an extra

cost of millions of dollars due to the high mortality rates and to the low productivity

levels in by-products of farming.

Mathematical models try to describe and represent reality using mathematical tech-

niques. The importance of mathematical modeling when studying the way some diseases

can spread lies in forecasting the behaviour of these biological phenomena and their ef-

fects wherever they may occur. Thus mathematical models supply a valuable tool for

doctors to use for containment methods, estimation and safety, as well as many other

different decisions aimed to reduce economic costs.

Three mathematical models, which describe the behaviour of two parasitic diseases with

transmission vector, are presented in this dissertation. Two of these models are dedicated

to Toxoplasmosis and they explore the dynamic of the disease in relation to human

population and pet cats. In this model, cats play the role of infectious agents and carrier

of the protozoan Toxoplasma Gondii. The qualitative dynamic of the model is established

by the basic reproduction threshold R0. If the parameter R0 < 1, then the solution

converges to the equilibrium point disease free. However, if R0 > 1, convergence leads to

the equilibrium point endemic. Numerical simulations of the models illustrate different

dynamics according to the threshold parameter R0 and show the importance of this

parameter. Finally, bovine babesiosis is modeled starting from a mathematical model,

which is composed of five ordinary differential equations that explain the influence of the

epidemiological parameters over the evolution of the disease. The stationary states of

the system and the basic reproduction number R0 are determined. The existence of the
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endemic point and the disease free point are calculated and they depend on the threshold

parameter R0, which determines the local and global stability of the equilibrium points.



Resumen

A medida que la complejidad de nuestro mundo aumenta el pensamiento sistémico se

está convirtiendo en un factor cŕıtico para el éxito, e incluso la supervivencia. Es por

eso que las herramientas robustas de los sistemas dinámicos complejos pueden dar res-

puesta a varios problemas, aplicándolas en: Negocios, poblaciones o ecosistemas y en la

experiencia cotidiana como: Compras compulsivas, la adicción a las drogas, la adicción

al tabaco, obesidad, etc. Cuando los experimentos en el mundo real son imposibles, la si-

mulación se convierte en la principal forma de que podamos aprender de manera efectiva

sobre la dinámica de dichos sistemas. Por esta razón me complace presentar esta Tesis,

donde se combina la teoŕıa y la práctica de los sistemas dinámicos, abarcando a modelos

epidemiológicos de algunas enfermedades parasitarias con vector de transmisión.

La Toxoplasmosis y la Babesiosis bovina son enfermedades parasitarias (Zoonosis) que

se transmiten a través de un vector transmisor afectando a la población de humanos y

al sector ganadero respectivamente. Como problema de salud pública la Toxoplasmosis

genera altos costes de atención en salud prenatal y natal sin mencionar la perdida de d́ıas

laborales; de igual manera la Babesiosis bovina le cuesta miles de millones de dólares

al sector ganadero en páıses tropicales como Colombia por la mortalidad bovina y baja

productividad de los derivados.

Los modelos matemáticos pretenden mitigar, copiar, describir o representar la realidad

mediante el uso de técnicas matemáticas. La importancia de la modelización matemática

de la propagación de enfermedades radica en la predicción del comportamiento de di-

chos fenómenos biológicos y sus efectos en el entorno donde suceden, proporcionando

una valiosa herramienta en los métodos de contención, estimación y seguridad para el

personal médico y en otras múltiples decisiones encaminadas a la minimización de costes

económicos.

En esta tesis doctoral se presentan tres modelos matemáticos que describen el compor-

tamiento de dos enfermedades parasitarias con vector de transmisión; de los cuales dos

modelos están dedicados a la Toxoplasmosis donde se explora la dinámica de la enfer-

medad a nivel de la población humana y de gatos domésticos. Los gatos en este modelo

juegan un papel de agentes infecciosos y conductores del protozoo Toxoplasma gondii. La

dinámica cualitativa del modelo es determinada por el umbral básico de reproducción,

R0. Si el parámetro R0 < 1, entonces la solución converge al punto de equilibrio libre de

la enfermedad. Por otro lado, siR0 > 1, la convergencia es al punto de equilibrio endémi-

co. Las simulaciones numéricas de los modelos ilustran diferentes dinámicas en función

del parámetro umbral R0 y muestra la importancia de este parámetro. Y finalmente la

Babesiosis bovina se modela a partir de un modelo matemático constituido por cinco
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ecuaciones diferenciales ordinarias, que permiten explicar la influencia de los parámetros

epidemiológicos en la evolución de la enfermedad. Los estados estacionarios del sistema

y el número básico de reproducción R0 son determinados. La existencia de los puntos de

equilibrio endémico y libre de enfermedad son calculados, los cuales depende del valor

del parámetro umbral R0 y determina la estabilidad local y global de dichos puntos.



Resum

A mesura que la complexitat del nostre món augmenta, el pensament sistèmic està

convertint-se en un factor cr̀ıtic per al éxit i inclós, la supervivencia. És per això que

que les ferramentes robustes dels sistemes dinàmics complexos poden donar resposta a

varios problemes aplicant-les en negocis, poblacions o ecosistemes i en la experiència

quotidiana com les compres compulsives, adicció a les drogues i al tabac, obesitat, etc.

Quant els experiments al món reial són impossibles, la simul.lació es convertix en la

principal forma de que puguem ensenyarmos de manera efectiva sobre la dinámica dels

estos sistemes. Per eixa raó em complau presentar esta Tesi, on es combina la teoŕıa i la

pràctica dels sistemes dinàmics, abarcant models epidemiològics de algunes enfermetats

parasitàries amb vector de transmissió.

La Toxoplasmosi i la Babasiosi bovina son enfermetats parasitàries (Zoonosi) que es

transmiteixen a través d’un vector transmisor afectant a poblacó d’humans i al sec-

tor ramader. Com a problema de salut pública, la Toxoplasmosi genera alts costos

d’atenció en salut prenatal i natal, sense mencionar la pèrdua de diez de treball; de

igual forma la Babesiosi bovina costa milers de milions de dolars al sector ramader en

päısos tropicals com Colómbia per la mortalitat bovina i la baixa productivitat dels

derivats. Els model matemàtics permitixen descriure i representar la realitat mitjan-

tant l’us de tècniques matemàtiques. La impotància de la modelització matemática de

la propagació d’enfermetats radica en la predicció del comportament d’eixos fenómens

biològics i els seus efectes en el entorn on succeixen, proporcionant una valuosa ferra-

menta en els métodes de contenció, etimació i seguretat per al personal metge i en altres

múltiples decisions encaminades a la minimització dels costos económics.

En esta tesi doctoral es presenten tres models matemàtics que descriuen el comportament

de dues enfermetats parasitàries amb vector de transmissió. Dos d’ells están dedicats a la

Toxoplasmosi, on s’explora la dinámica de l’enfermetat a nivel de la población humana i

dels gats domèstics. Els gats en este model juguen el paper d’agents infecciosos i conduc-

tors del protozoo Toxoplasma Gondii. La dinámica qualitativa del model es determinada

per l’umbral bàsic de reproducció R0. Si el paràmetre R0 < 1, entonces la solución con-

vergix al punt d’equilibri lliure d’enfermetat. Per altra part, si R0 > 1 la convergencia

és al punt d’equilibri endèmic. Les simulacions numèriques dels modelos il.lustren difer-

ents dinàmiques en funció del paràmetre umbral R0 i mostra la importància d’este

paràmetre. I finalment la Babesiosi bovina es model.la a partir d’un model matemàtic

format per cinc equacions diferencials ordinàries, que permiteixen explica l’influència

dels paràmetres epidemiològics en l’evolució de l’enfermetat. Es determinen els estats

estacionaris dels sistemes i el número básic de reproducció R0. La existencia dels punts
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de equilibri endèmic i lliure d’enfermetat es calculen i depenen del paràmetre umbral

R0, que determina l’estabilitat local i global dels punts d’equilibri.



Chapter 1

Introduction

Parasitic diseases have been linked to the history of mankind and can be found in both

animals or plants. Some parasites have been found in fossils of foraminifera (Protozoa)

which are more than 530 million years old. The origin of parasites in humans comes from

ancient times and has been defined by different cultures as Greek, Egyptian and Chinese

[12]. Then we may say that the parasites have coexisted with humanity and the diseases

produced by them affect the health and economy of regions [55]. This is especially

noticeable, in tropical countries, where the spread among humans and their livestock is

becoming a public health problem with high rates of morbidity and mortality because

of the poor social and economic conditions of most of the people in these countries [12].

Different parasitic diseases have existed. Some of them are important problems because

of the difficulty to control them: Malaria, Esquistosomiasis, Leishmaniasis, Chagas’s dis-

ease, Toxoplasmosis, Babesiosis and the intestinal parasitosis are some examples [48].

Parasitic diseases constitute a problem in Colombia and are common in all the popula-

tion. The most vulnerable population are the to-be-borns and newborns [56, 61].

1.1. Toxoplasmosis

The etiological agent of Toxoplasmosis is Toxoplasma gondii, which is a protozoan of the

order Eucoccidiorida and family Sarcocystidae, characterized as an intracellular parasite

that lives in the host cell by regulating vital processes to acquire nutrients, guaranteeing

its survival and thus evading the host immune system [36]. It is common in warm-blooded

vertebrate animals in the world [31], including humans [36], and it is transmitted through

food chains, mainly through carnivores and scavengers [11].

1



introduction 2

This parasite has a life cycle divided into three stages: The first is oocyst, when the

parasite can survive for long periods of time outside the host due to its high resistance

to environmental factors [34]; In the second, called bradyzoite, the latent form of

the parasite (chronic) is present in microscopic conglomerates and is found in infected

muscle and brain tissues [39]; And the third, tachyzoite, is a rapid multiplying stage

in the development of the tissue phase in acute infections of Toxoplasmosis, when cysts

in tissues infected by toxoplasma are formed by tachyzoites found in vacuoles within

infected cells [17].

Cats and some felines are the definitive hosts of T. gondii [38]. It can develop its life

cycle in the intestinal epithelium of these animal [36, 49]. Once infected cats excrete

their wastes (oocysts) to the environment, it may infect any vertebrate animal that

consumes the oocysts, including humans [12]. Ingestion and manipulation of raw or un-

dercooked meat, unwashed vegetables and fruits, the consumption of the unboiled water

and contact with cats are risk factors that increase the likelihood of ingesting oocysts and

consequently the development of Toxoplasmosis [37]. In humans, if the infection happens

during the stage of pregnancy, the Toxoplasma gondii can be transmitted vertically to

the fetus through the tachyzoites [40], invade the cells and infect all the organs of the

fetus [58], primarily retina, brain, muscle, heart, lung, etc., and thus cause congenital

Toxoplasmosis [53].

Congenital Toxoplasmosis [36] leaves irreversible sequelae in the infant at birth, such

as epilepsy, mental retardation, retinochoroiditis, macrocephaly, microcephaly, develop-

mental delay microphthalmia, strabismus and retinochoroiditis plates [12]. The disease

may be present in latent form, manifesting itself years later [53]. Toxoplasmosis can be

remarkably aggressive if it affects patients with AIDS, transplant, in steroid or antineo-

plastic therapy [27].

In the United States, Toxoplasma gondii the third most common cause of transmission

by oral ingestion. Health authorities, report 225000 cases of infection by Toxoplasma

gondii per year; caused 5000 hospitalizations and 750 deaths [41]. In Europe there is

variation in the sero-prevalence among pregnant women: in France it is around 54 %,

while in Sweden is 12 % [2]. In Latin America, Mexico has a prevalence of 35 % [2] and in

Brazil (Sao Paulo, Rio de Janeiro) reported different values, have been reported between

59 % and 78 % [7].

In a study done between 1977 and 1980 in Colombia [26], the seroprevalence rate ranged

between 42.5 % and 54.4 % in women of childbearing age. The prevalence was determined

by antibody detection techniques (IgG, IgM and IgA) [28, 42]. This study estimated that

between 2 and 10 live newborns have Toxoplasmosis out of every 1000 births in Colombia,

i.e., between 600 and 3000 children out of 300000 new live births per year would be born
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with the congenital infection, most of them totally asymptomatic (450-2250), only 150-

750 would display symptoms in the first months of life [28].

1.2. Bovine Babesiosis

The etiological agent of the Bovine Babesiosis and Babesia Bigemina is the Babesia

Bovis, which is an hemoparasite of order Piroplasm and family Babesiidae, discovered

in 1888 by Romanian biologist Victor Babes [6]. The first case documented in humans

occurred in 1957 in the former Yugoslavia [21]. Between 1982 and 2001 there were 200

reported cases in the EE.UU [21].

This disease takes on importance in the livestock sector due to the high economic impact,

especially in tropical regions. In Colombia there is an economic loss due to the high

bovine death, limiting the productivity increase of bovine derivatives and affecting the

Gross Domestic Product (GDP) [9].

The bovine babesiosis is a typical disease that is transmitted through the tick (trans-

mission vector) [62]. A bovine could be infected through a sting and if it is pregnant,

it is possible a vertical transmission [51]. Furthermore, the vector could be infected if it

has a direct contact with a bovine infected and vertical transmission is a fact [62, 64].

The parasite has a life cycle in the ticks: When a tick bites an infected cow, the gametes

fuse in the gut of the tick, resulting in a zygote; Zygotes become in mobile ookinete,

entering the salivary glands of the tick, then a cycle of sporogony starts, resulting in

new sporozoites, which can be re-injected into a bovine through a tick bite [62].

Thus, the parasite life cycle in the bovine begins when the sporozoites enter into the

blood of the bovine by the bite of an infected tick. This initial stage of sexual repro-

duction may cause infection in the bovine [6, 62]. Some of the most critical pathologies

in bovine are the acute anemia due to destruction of red blood cells and dehydration

caused by the vomiting due to retention of bile in the animal [13].

In the tropics zones there are approximately 1.3 billion of cattle at risk due to Babesiosis

[62] which may cause an economic bankruptcy for the livestock sector all over the world.

A study conducted in Colombia, in which 2909 blood samples of bovine from 104 farms

were analyzed, showed a prevalence of 4.1 % [20]. The detection techniques used were

real-time PCR [47].
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1.3. Epidemiological mathematical models

Mathematical models in epidemiology have been used since 1760, when Daniel Bernoulli

published a treatise on the smallpox epidemic [1]. In 1906 Hamer presented a discrete

model for mumps; shortly after Ronald Ross, in the edition of 1911 of his book The Pre-

vention of Malaria, formulated a simple mathematical model; According to Ross’ model,

the eradication of malaria would be achieved by decreasing the population of mosquitoes,

whose extinction would not be essential [57]. Later in 1927, Kermack and McKendrick

formulated a mathematical model to describe the bubonic epidemic of plague in India

in 1906 [3].

Mathematical models are helpful in different areas. One of them is epidemiology, which

has become an important tool used in the analysis and control of infectious diseases. A

classical technique to model diseases in the population is the use of systems of ordinary

differential equations describing the evolution of the number of individuals in different

subpopulations. In particular, mathematical models using first order nonlinear differen-

tial equations for parasitic diseases with vector of transmission have been presented

in [4, 5, 22, 23]. In these articles, the authors model the spread of parasitic diseases,

calculate the basic reproduction threshold R0 [46], estimate some unknown parameters,

carry out numerical simulations using Matlab packages with private data and study the

behaviour of analytical solutions.

The field of nonlinear dynamical systems provides powerful tools to analyze the dynamic

behaviour of diseases. The study of the eigenvalues of Jacobian associated to the linea-

rized system leads to the identification of local stability. Sometimes it is possible to

demonstrate the global stability using the Lyapunov function [5, 22].

Using the above tools, we tackle this research in the epidemiological mathematical mode-

ling in parasitic diseases such as Toxoplasmosis and Bovine Babesiosis in order to un-

derstand their spread and epidemiological behaviour over time and predict their impact.



Chapter 2

Mathematical Model of

Toxoplasmosis Disease in Varying

Size Population

The prevalence of Toxoplasmosis has increased dramatically around the world. Despite

the fact that congenital Toxoplasmosis cannot be considered a disease of epidemic pro-

portions, it may cause either death in humans or serious effects in developing fetus. In

this chapter we present an initial model with varying population size for the evolution of

the infected people with Toxoplasmosis. We explore the dynamics of the Toxoplasmosis

disease at population level by using an epidemiological model. Statistical data are used

to estimate some of the parameters of the model. Numerical simulations of the mod-

el, which have been carried out by varying parameters, show different scenarios of the

spread of the disease.

2.1. Introduction

The protozoan Toxoplasma Gondii is a prevalent parasite in wild and domestic animals

worldwide, transmitted through the food chain by carnivorous feeding and scavenging.

Toxoplasma normally divides asexually to yield a haploid form that can infect virtually

any vertebrate, but also has a well-defined sexual cycle that occurs exclusively in cats.

If the first contact happens during pregnancy, Toxoplasma Gondii can be transmitted

vertically by tachyzoites, which are passed to the fetus via the placenta [59].

5
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The Toxoplasma Gondii has become important as an opportunist pathogen in patients

with AIDS, although the 15 %-85 % of the adult human population that is chronically in-

fected with T. gondii is typically asymptomatic [59]. Infections in immunocompromised

hosts have variable outcomes. In the USA, recent outbreaks of acute Toxoplasmosis in

humans have been associated with oocyst contamination of the environment [59]. Over

the course of recent history, humans have domesticated many different animal species,

but the principal ones have been dogs, domesticated 12000 years ago, and cats, domesti-

cated 4000 years ago. However, from these modest and comparatively recent beginnings,

the cat is now on the verge of becoming the Western world’s most popular pet. Current

predictions state that cats will soon overtake dogs as the most commonly kept pet. Ac-

cording to the Pet Food Institute in Washington, DC, cats already outnumber dogs in

the United States, with 70.2 million, and in Spain with 5.5 million of cats [65].

In the United States there are approximately 225,000 cases of Toxoplasma Gondii infec-

tion per year. This results in 5000 hospitalizations and 750 deaths, making Toxoplasma

gondii the third most common cause of fatality. Since more than 90 % of primary Tox-

oplasmosis infections in immunocompetent persons are asymptomatic, the diagnosis of

maternal infection can be difficult. In asymptomatic women, the only sign of prima-

ry infection during pregnancy is seroconversion via detection of IgG or IgM by the

immunofluorescence antibody test, the enzyme-linked immune filtration assay, the im-

munosorbent agglutination assay (ISAGA), or other similar assays. IgG antibody levels

become detectable 1-2 weeks after infection and remain elevated indefinitely, while IgM

antibody levels increase within days and usually remain elevated during 2-3 months.

However, up to 27 % of women have IgM antibodies during more than 2 years, making

difficult to pinpoint the timing of infection. Thus, the detection of IgG in a woman at

the beginning of pregnancy indicates prior infection and eliminates the risk of congenital

transfer of tachyzoi [41].

In Colombia, in accordance with the National Research of Health, 47 % of the human

population have antibody vs Toxoplasma it shows that people have contact with proto-

zoan during their life goes unnoticed in people with an excellent immune system [28].

The most important health consequences affect newborns with the infection acquired

in uterus and immune deficiency in patients with AIDS. It is estimated that between

2 and 10 newborns have Toxoplasmosis out of 1000 births in Colombia. Therefore, be-

tween 600 and 3000 children of the 300,000 new births per year, would be born with the

congenital infection, most of them totally asymptomatic (450-2250), while only 150-750

would display symptoms in the first months of life [28].

We should mention that, as far as we know, this is the first mathematical model of the

evolution of Toxoplasmosis in the human population.
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In this chapter a first approach to model the evolution of the Toxoplasmosis disease

in human population is introduced using a SIC model (susceptible-infected-controlled).

In Section 2.2, we present the mathematical model for the evolution of Toxoplasmosis.

Section 2.3, is devoted to scale the model properly to match with available data. In

Section 2.4, mathematical simulations for three different scenarios are performed. Finally

in Section 2.5, conclusions are presented.

2.2. Mathematical model

In this section a first mathematical model for the evolution of the Toxoplasmosis in

the population is formulated. Following the basic ideas and structure of mathematical

modeling in epidemiology, the model for the Toxoplasmosis disease will be developed

under the next basic hypotheses [14, 29, 46].

1. The total population N(t) is divided into three subpopulations:

Susceptible S(t): members of the population who may become infected.

Infected E(t): members of population infected by the Toxoplasmosis parasite,

both asymptomatic and symptomatic.

Controlled C(t): members of the population who have been treated for the

Toxoplasmosis.

2. A susceptible individual transits at a rate β to the infected subpopulation I(t).

An infected person transits to the controlled subpopulation C(t) at a rate γ.

3. The birth rate µ is assumed time-independent as well as the natural death rate d.

The transmission rate β is assumed to be dependent on the population of cats, the

accumulation of oocyst in the environment and the population of other animals

(birds, rats and mice), but also time-independent. A newborn has a probability p

to be healthy, i.e., to be born without Toxoplasmosis. The additional death rate

caused by Toxoplasmosis is ε.

4. All members of the susceptible subpopulation S(t) have the same probability to

be infected [14].

A summary of the description of parameters is presented in Table 2.1
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Figure 2.1: Diagram of the Toxoplasmosis disease on the population.

Parameter Description

γ Individuals with Toxoplasma controlled rate

p Probability to be born without Toxoplasma

ε Death rate caused by Toxoplasma

d Natural death rate

β Transmission rate

µ Birth rate

Table 2.1: Basic parameters of the mathematical model

Under the above assumptions, an epidemiological model for Toxoplasmosis is given by

the following linear system of ordinary differential equations.

Ṡ(t) = pµN(t)− dS(t)− βS(t),

Ė(t) = βS(t) + µ(1− p)N(t)− (d+ ε)E(t)− γE(t),

Ċ(t) = γE(t)− dC(t),

N(t) = S(t) + E(t) + C(t),

(2.1)

where S(t), E(t) and C(t) represent the number of individuals in the three subpopu-

lations at time t. The schematic representation of the flow of individuals between the

different subpopulations is shown in Figure 2.1. This model is used to estimate some

unknown parameters related to Toxoplasmosis. Numerical simulations are carried out to

analyse the effect of different control measures against the disease.

2.3. Scaling the model

Since data available are in percentages, and the model in Eq. (2.1) is referred to number

of individuals, it leads us to scale the model into the same units as data. Therefore,

following ideas developed in papers [15, 44] about how to scale models with populations
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varying in size, adding the first three equation of the system (2.1) and using the last

one, we obtain that,

Ṅ(t) = (µ− d)N(t)− εE(t). (2.2)

Dividing both members of (2.2) by N(t) one gets

Ṅ(t)
N(t)

= µ− d− εE(t)
N(t)

. (2.3)

If we define the ratios (dependent on time)

s(t) =
S(t)
N(t)

, e(t) =
E(t)
N(t)

, c(t) =
C(t)
N(t)

, (2.4)

the Eq. (2.3) can be transformed into

Ṅ(t)
N(t)

= µ− d− εe(t). (2.5)

Now, let us calculate the derivative of s using (2.5). Then, we obtain that

ṡ(t) =
Ṡ(t)N(t)− S(t)Ṅ(t)

N2(t)
=
Ṡ(t)
N(t)

− S(t)
N(t)

Ṅ(t)
N(t)

=
Ṡ(t)
N(t)

− s(t)(µ− d− εe(t)),

(2.6)

and analogously, one gets that,

ė(t) =
Ė(t)
N(t)

− e(t)(µ− d− εe(t)), ċ(t) =
Ċ(t)
N(t)

− c(t)(µ− d− εe(t)). (2.7)

Now, let us consider the first equation of system (2.1). If we divide by N(t), we have

Ṡ(t)
N(t)

= pµ− d S(t)
N(t)

− β S(t)
N(t)

, (2.8)

and substituting by the corresponding ratios defined in (2.4) and using (2.8) we obtain

the scaled equation.
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ṡ(t) = pµ− s(t)(µ+ β − εe(t)). (2.9)

Remaining parts of the system (2.1) can be scaled similarly to obtain

ė(t) = βs(t) + µ(1− p)− (γ + µ+ ε− εe(t))e(t),
ċ(t) = γe(t)− (µ− εe(t))c(t),

1 = s(t) + e(t) + c(t).

(2.10)

Notice that, after scaling the model, it has been transformed into a nonlinear one. As

1 = s(t) + e(t) + c(t) we can eliminate c(t) and consider the two-dimensional system

ṡ(t) = pµ− s(t)(µ+ β − εe(t)),
ė(t) = βs(t) + µ(1− p)− (γ + µ+ ε− εe(t))e(t).

(2.11)

Parameter Values

p 0.9898

ε 5.08× 10−6

d 0.00601

µ 0.233

Table 2.2: Parameters of the model

Some of the model parameters can be estimated and summarized in Table 2.2 from the

following sources:

Between 2-10 out of 1000 newborns in Colombia have Toxoplasmosis [28].

In the United States there are 225,000 cases of Toxoplasmosis per year and 750

deaths caused by the parasite [41].

National statistics from Colombia [45].

The parameters β and γ are unknown and we vary them in the next section to simulate

different scenarios.
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2.4. Numerical simulation

In this section, we simulate three possible scenarios and observe the effects of the pa-

rameters β and γ on the transmission dynamics of the Toxoplasmosis disease. Taking

into account that in Colombia approximately 47.74 % of the population have antibodies

against the Toxoplasma Gondii [28], we assume as initial condition in all scenarios the

following values

s(0) = 0.5253 e(0) = 0.47 c(0) = 0.0047. (2.12)

Figure 2.2: Dynamics of the different subpopulations β= 0.0206055 and γ = 0.000232.

Equilibrium point Values

s∗ 0.5253

e∗ 0.47

c∗ 0.0047

Table 2.3: Equilibrium point when β = 0.0206055 and γ = 0.000232 of system (2.11)

Eigenvalues Values

λ1 -0.0439

λ2 -0.0235

Table 2.4: Eigenvalues of the Jacobian J(s∗, e∗) when β=0.0206055 and γ=0.000232 of

system (2.11)
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For the first simulation we consider that the spread of Toxoplasmosis in the population

of Colombia is in equilibrium, i.e., proportions of susceptible infected and controlled are

invariant over time. This fact is possible by taking the parameter values

β = 0.0206055 γ = 0.000232. (2.13)

Thus, we can compute the equilibrium point (s∗, e∗) and the jacobian J(s∗, e∗) of system

(2.11). The eigenvalues of J(s∗, e∗) are negative and therefore the equilibrium point

(s∗, e∗) is locally asymptotically stable [30] See Tables 2.3 and 2.4. In Fig. 2.1 it can be

seen that the solutions s(t), e(t) and c(t) remain invariant over time.

In the second simulation the transmission rate β is reduced to the half value of the pre-

vious simulation i.e. β = 0.0103027. This assumption considers a situation where health

institutions of Colombia take hygienic actions against the oocyst in the environment and

create health education programs. The value of γ is maintained at the same value as the

first simulation. In Tables 2.5 and 2.6, the equilibrium point J(s∗, e∗) is shown.

Figure 2.3: Dynamics of the different subpopulations β= 0.010327 and γ = 0.000232.

Equilibrium point Values

s∗ 0.6863

e∗ 0.3105

c∗ 0.003092

Table 2.5: Equilibrium point when β = 0.010327 and γ = 0.000232 of system (2.11)

The obtained eigenvalues are negative, therefore the equilibrium point is locally asymp-

totically stable. In addition, Fig. 2.3 shows that the solutions s(t), e(t) and c(t) converge

to the equilibrium point, despite initial condition being far from the equilibrium point
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Eigenvalues Values

λ1 -0.0336

λ2 -0.0235

Table 2.6: Eigenvalues of the Jacobian J(s∗, e∗) when β=0.010327 and γ=0.000232 of

system (2.11)

(s∗, e∗, c∗). The effectiveness of the hygienic actions have been achieved since the infected

population decreased (see Fig. 2.3).

Finally, for the third simulation, we consider a scenario where the health institutions

take more control on the infected people, doing more tests for seropositive Toxoplasmosis

and giving more treatment for seropositive individuals. In Tables 2.7 and 2.8, the equi-

librium point (s∗, e∗, c∗) and the eigenvalues of the Jacobian J(s∗, e∗) are shown. The

obtained eigenvalues are negative, therefore the equilibrium point is locally asymptoti-

cally stable. Additionally in Fig. 4 it is possible to see that the solutions s(t), e(t) and

c(t) converge to the equilibrium point, despite the fact that the initial condition is far

from the equilibrium point (s∗, e∗, c∗). Since infected population decreases we conclude

that extreme preventive measures are good options to control the disease.

Figure 2.4: Dynamics of the different subpopulations β= 0.0206055 and γ = 0.1.

Equilibrium point Values

s∗ 0.5252

e∗ 0.08970

c∗ 0.3851

Table 2.7: Equilibrium point when β= 0.0206055 and γ = 0.1 of system (2.11)
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Eigenvalues Values

λ1 -0.1233

λ2 -0.04390

Table 2.8: Eigenvalues of the Jacobian J(s∗, e∗) when β= 0.0206055 and γ = 0.1 of system

(2.11)

2.5. Conclusions

In this chapter, we propose a simple mathematical model to study the dynamics of

Toxoplasmosis disease in the population of Colombia. The model divides the total popu-

lation into three subpopulations: susceptible, infected and controlled. The initial model

is constructed using a linear system of ODEs, but since in the model size populations

are varying and data are in percentages, the model is transformed into relative values in

order to observe the qualitative behaviour. The transformed model is a nonlinear system

of ODEs where it is possible to do a better analysis of the transmission dynamics of the

Toxoplasmosis disease. Afterwards, three numerical simulations are performed in differ-

ent scenarios, which are based on some situations that could happen in real life. In the

last two scenarios it is possible to see the effect of some strategies for the control of Tox-

oplasmosis, such as hygienic actions, educations programs, more testing and treatments.

Finally it should be mentioned that, as far as we know, this is the first mathematical

model for the evolution of Toxoplasmosis disease in the human population.

This work has been published in Computers and Mathematics with Applications 56

(2008) 690 - 696.



Chapter 3

Dynamics of a model of

Toxoplasmosis disease in human

and cat populations

A mathematical model for the transmission of Toxoplasmosis disease in human and cat

populations is proposed and analyzed. We explore the dynamics of the Toxoplasmosis

disease at the population level using a type-epidemiological model. Discussion of the

basic concepts of Toxoplasmosis transmission dynamics on human and cat populations

are presented. The cats in this model play the role of infectious agents and host of the

protozoan Toxoplasma Gondii parasite. Qualitative dynamics of the model are deter-

mined by the basic reproduction number, R0. If the threshold parameter R0 < 1, then

the solution converges to the disease free equilibrium point. However, if R0 > 1 the

convergence is to the endemic equilibrium point. Model numerical simulations illustrate

different dynamics depending on the threshold parameter R0 and show the importance

of this parameter.

3.1. Introduction

The protozoan Toxoplasma Gondii is a prevalent parasite in wild and domestic animals

worldwide. The life cycle of Toxoplasma is unusual, because this organism is capable of

indefinite replication using either sexual or asexual subcycles.

The asexual cycle is of special interest because it may occur in any warm-blooded animal,

especially in cats [50] and humans. The cats are considered immune to toxoplasma and

it can cast more than 20 million oocysts between 4 and 13 days after the infection and

15
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these may infect humans [35]. The asexual portion of its life cycle consists of just two

stages, the faster division of tachyzoites and the slower division of bradyzoites. The

bradyzoites may encyst in the brain, heart and other tissues. Theoretically, this asexual

life cycle could continue indefinitely, cycling around the food chain [10].

Transmission occurs when an animal ingests bradyzoite infected tissue through meat or

vegetables [8, 10]. It can also occur accidentally through contaminated food with animal

parts. In particular, vertical transmission is possible when tachyzoites enter into the

fetus via the placenta [58].

Throughout history, humans have domesticated different animals, mainly dogs and cats,

12,000 and 4000 years ago, respectively. However, the cat is now on the verge of becoming

the western world’s most popular pet. Current predictions state that cats will soon

overtake dogs as the most commonly kept pet. According to the Pet Food Institute in

Washington, DC, cats already outnumber dogs in the United States, with 70.2 million,

in Spain with 5.5 million cats [65] in Colombia 10 % of households have a cat as pet [70].

The cat is considered a transmission vector of the Toxoplasmosis disease, as it is consid-

ered the A. aegypti to dengue disease [22]. Moreover, in some small islands where there

are different kind of animals but not cats, the prevalence of Toxoplasmosis is null [8].

The oocysts released in the feces of infected cats contaminate the environment, including

vegetables and other kind of food. Therefore, the Toxoplasma gondii can be acquired

through ingestion. This type of transmission has been considered the main source of

infection in tropical countries [25]. The prevalence of the Toxoplasma gondii antibody in

some animals ranges from 12 % to 60 % and in pigs goes from 26 % to 78 %. These ranges

show the variability in different Latin American countries, such as Argentina, Brazil

and Colombia [32, 33]. Toxoplasma infection can be transmitted to humans either by

ingestion of tissue cysts in meat or by ingestion of oocysts in cat feces. Some researchers

have reported an increasing prevalence of infection of Toxoplasma gondii in the human

population [54]. Therefore, based on all the aforementioned facts, it is important to

construct models to study and prevent Toxoplasmosis disease.

Mathematical models, simpler than the reality, allow us to understand the global dynam-

ical behaviour of Toxoplasmosis disease in human and cat populations. An important

issue that is addressed here is the impact of the epidemics on the human population

taking the cat population as a transmission vector. In order to explore the dynamics of

the Toxoplasmosis disease in both populations, humans and cats, a type-epidemiological

model is used. A system of nonlinear differential equations to study the dynamics of

the human and cat infected populations is developed. This modeling approach is a stan-

dard way to investigate the dynamics of diseases in populations from a epidemiological
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point of view [14, 46]. The proposed system consists of modeling the interactions among

susceptible and infective individuals of the two species, assuming that the horizontal

transmission of the disease to humans happens only through the contact with infected

cats and vertical transmission in both cat and human populations. In the model, human

population is divided into three classes or subpopulations, susceptibles Sh(t), infectious

Ih(t) and controlled Ch(t) and the cat population into two classes, susceptibles Sc(t)

and infectious Ic(t).

The model is described by a system of nonlinear ordinary differential equations with

five equations, which allow us to discuss how the different epidemiological parameters

influence global behaviour in the evolution of Toxoplasmosis disease in human and cat

populations. The model includes the interactions among susceptible and infective indi-

viduals of the two species assuming that the horizontal transmission of the disease to

humans takes place through the contact with infected cats. This transmission is modeled

with a classical incidence rate, however it also may be modeled using another incidence

rate such a polynomial one [29, 66]. Additionally, vertical transmission in both cat and

human populations is considered. In human population vertical transmission is assumed

with probability 1. In the cat population, it is assumed that a cat borne from a infect-

ed one has a probability pc of not being infected. Furthermore, we assume that both

populations of cats and human are constant. This fact is reasonable in some environ-

ments where births are approximately balanced by the natural deaths and for short

time horizons. In [43] a computer simulation of the transmission of Toxoplasma Gondii

is developed considering equilibrium in the cat population size.

In this chapter we study the stability of the steady states of the system and we find

that the basic reproductive number R0 controls completely the dynamics of the infec-

tion. This basic reproductive number should be regarded as a measure of the capacity

of the cats to transmit Toxoplasmosis. We prove that the basic reproduction number R0

is a threshold value that completely determines the global dynamics and the outcome

of the disease. If the threshold parameter R0 < 1, then the solution converges to the

disease free equilibrium point. Also, if R0 > 1 the solution tends to the endemic equi-

librium point. Numerical simulations of the model illustrate several different dynamics

depending on the threshold parameter R0. Additionally, the importance of the vector

vertical transmission to the dynamics of the infection is studied through numerical sim-

ulations. It is important to remark that some prevention and control strategies against

the Toxoplasmosis can be modeled using numerical simulations. In [4] a first approach to

model the evolution of Toxoplasmosis disease in human population has been proposed,

but considering that cat population remains constant and has an uniform behaviour as

for the disease. However, in this chapter, we propose a model to study the evolution of

Toxoplasmosis in a human population taking cats as vector of transmission. This model
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is more complex because two populations with interactions are included. The organi-

zation of this chapter is as follows. In the next section we formulate the mathematical

model. Section 3.3 is devoted to analyse the steady states and find the threshold value

R0 which determines the global dynamics and the outcome of the disease. Section 3.4

contains numerical results and finally, in Section 3.5, we present the conclusions.

3.2. Mathematical model

In this section, we present a continuous mathematical model for the transmission and

evolution of Toxoplasmosis disease in human and cat populations. Following the basic

ideas and structure of mathematical modeling in epidemiology, the Toxoplasmosis disease

model will be developed under the next basic hypotheses [14, 46].

1. The total population Nh(t) is divided into three subpopulations:

Susceptible Sh(t): members of the human population who may become in-

fected.

Infected Ih(t): members of human population infected by the Toxoplasma

Gondii parasite.

Controlled Ch(t): members of the population who have been treated for the

Toxoplasmosis.

2. The total population of cats Nc(t) is divided into two subpopulations:

Susceptible Sc(t): members of cats population who may become infected.

Infected Ic(t): members of cats population infected by the Toxoplasma Gondii

parasite.

3. A susceptible human can be infected through an effective direct or indirect contact

with an infected cat and transit to the infected subpopulation Ic(t). An infected

human transits to the controlled subpopulation Cc(t) at a rate γ.

4. A susceptible cat can be infected through an effective contact with an infected cat

and transit to the infected subpopulation Ic(t). A cat never recover from infection.

5. Both human and cat birth rate are assumed equal to their natural death rates,

therefore constant population sizes are assumed.

6. All members of the susceptible subpopulations Sh(t) and Sc(t) have the same

probability to be infected.
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7. Vertical transmission is assumed in human population, but in cat population it

is assumed that occurs with probability 1 − pc where pc is the probability that a

susceptible cat can be born from an infected one.

The total population of humans is denoted by

Nh(t) = Sh(t) + Ih(t) + Ch(t),

and the total population of cats is denoted by

Nc(t) = Sc(t) + Ic(t).

Under the above assumptions, the dynamic Toxoplasmosis disease model for human and

cat population is depicted graphically in Fig. 3.1 and it is given analytically by the

following first order nonlinear system of ordinary differential equations,

Figure 3.1: Flow diagram of the Toxoplasmosis disease model for human and cat populations

as defined in system (3.1).

Ṡh(t) = µhCh(t)− βhSh(t)
Ic(t)
Nc(t)

,

İh(t) = βhSh(t)
Ic(t)
Nc(t)

− γIh(t),

Ċh(t) = γIh(t)− µhCh(t),

Ṡc(t) = µcIc(t)pc − βcSc(t)
Ic(t)
Nc(t)

,

İc(t) = βcSc(t)
Ic(t)
Nc(t)

− µcIc(t)pc.

(3.1)
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3.3. Stability analysis of the model

In this section, the model (3.1) will be dynamically analysed to investigate the existence

and stability of its associated equilibrium. This analysis allows us to study different

scenarios about spread of the Toxoplasmosis disease in the human population caused by

direct or indirect contact with infected cats.

3.3.1. Scaling model

Following the ideas developed in [15, 44] with regard to scaling population models,the

next ratios (depend on time) are defined,

X(t) =
Sh(t)
Nh(t)

, Y (t) =
Ih(t)
Nh(t)

, Z(t) =
Ch(t)
Nh(t)

, A(t) =
Sc(t)
Nc(t)

, B(t) =
Ic(t)
Nc(t)

.

(3.2)

Thus, using the system (3.1) and the equations (3.2) one gets,

Ẋ(t) = µhZ(t)− βhX(t)B(t),

Ẏ (t) = βhX(t)B(t)− γY (t),

Ż(t) = γY (t)− µhZ(t),

Ȧ(t) = µcpcB(t)− βcA(t)B(t),

Ḃ(t) = βcA(t)B(t)− µcpcB(t).

(3.3)

Since human and cat total populations have been normalised to unity, the following

equations are obtained,

Z(t) = 1−X(t)− Y (t), (3.4)

and

B(t) = 1−A(t). (3.5)

Thus, from (3.3), and using (3.4) and (3.5) we obtain the following simplified equivalent

system
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Ẋ(t) = µh(1−X(t)− Y (t))− βhX(t)(1−A(t)),

Ẏ (t) = βhX(t)(1−A(t))− γY (t),

Ȧ(t) = µcpc(1−A(t))− βcA(t)(1−A(t)).

(3.6)

For the sake of clarity and without loss of generality, analysis of equilibrium points are

performed using the reduced system (3.6). Also, the dynamics of the system (3.6) are

restricted in the positive invariant subset Ω ⊂ R3
+ defined by

Ω = {(X,Y,A)T ∈ R3
+| 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ A ≤ 1}.

3.3.2. Equilibrium points of the model

We denote by (X∗, Y ∗, A∗) the equilibrium points of system (3.6), i.e., the steady state

where Ẋ∗ = 0, Ẏ ∗ = 0, Ȧ∗ = 0 for all t > t0. Therefore, from the last equation of system

(3.6) one gets that

B(t) = (1−A∗)[µcpc − βcA
∗]. (3.7)

Therefore,

A∗1 = 1, (3.8)

or

A∗2 =
µcpc

βc
. (3.9)

Now, if (3.8) holds, then from second equation of system (3.6) we can obtain that Y ∗1 = 0,

and from first equation of system (3.6) one gets that X∗1 = 1. Hence, the disease free

point is obtained as (X∗1 , Y
∗
1 , A

∗
1) = (1, 0, 1).

Also, if (3.9) holds, then from second equation of system (3.6) it follows that

Y ∗2 =
βhX

∗(1−A∗2)
γ

, (3.10)

and replacing in the first equation of system (3.6) it follows that
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X∗2 =
µhγ

µhγ + βh(1−A∗2)(µh + γ)
, (3.11)

and that

Y ∗2 =
µhβh(1−A∗2)

µhγ + βhµh(1−A∗2) + βhγ(1−A∗2)
. (3.12)

Indeed, the model has the endemic point of coordinates (X∗2 , Y
∗
2 , A

∗
2)

3.3.3. Stability analysis

Computing the Jacobian of system (3.6) evaluated at (X∗, Y ∗, A∗), one gets the following

matrix

J(X∗, Y ∗, A∗) =


−µh − βh(1−A∗) −µh βhX

∗

βh(1−A∗) −γ −βhX
∗

0 0 −µcpc − βc + 2βcA
∗

 .

Disease free point

In the absence of infection (Ih = 0) the model (3.6) has a disease free point F ∗1 =

(X∗, Y ∗, A∗) = (1, 0, 1), and evaluating the Jacobian J(F ∗1 ) it follows that

J(X∗, Y ∗, A∗) =



−µh −µh βh

0 −γ −βh

0 0 βc − µcpc


.

The stability of the equilibrium point F ∗1 is determined using the eigenvalues of J(F ∗1 ).

The disease free equilibrium point F ∗1 is locally asymptotically stable provided that the

real part of eigenvalues are all negative. Thus, computing the eigenvalues of J(F ∗1 ) we

obtain that all are negative if

βc < µcpc. (3.13)

Therefore, if we define
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R0 =
βc

µcpc
< 1, (3.14)

the disease free point F ∗1 is locally asymptotically stable for R0 < 1. Thus, we have

established the following Lemma:

Lemma 1. The disease free point F ∗1 is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

In addition, it can be shown that the disease free point F ∗1 is globally asymptotically

stable for R0 ≤ 1. The following theorem can be established,

Theorem 1. If R0 < 1 then the disease free point F ∗1 is globally asymptotically stable.

Proof. In order to prove this, we consider the following Lyapunov function V : Ω→ R+,

defined by

V (t) = V (X(t), Y (t), A(t)) =
1−A(t)
µcpc

(3.15)

It is clear that V ∈ C1(Ω) and V (X(t), Y (t), A(t)) ≥ 0 for all (X(t), Y (t), A(t))T ∈ Ω.

Next, taking the derivative of (3.15) with respect to time along of the solutions of system

(3.6) and using the third equation of (3.6), we have

V̇ (t) = −(1−A(t))−R0A(t)(1−A(t)) = −(1−R0A(t))(1−A(t)). (3.16)

Since 1− A(t) ≥ 0 and 1−R0A(t) > 0 from (3.16) it follows that V̇ (t) ≤ 0. Therefore,

the Liapunov-Lasalle theorem guarantees the global stability of the disease free point

(X∗, Y ∗, A∗), if R0 < 1. �

Endemic point

Taking into account that, in this case, Ih 6= 0, from (3.9) (3.11) and (3.12) the model

(3.6) has an endemic point E∗2 = (X∗, Y ∗, A∗). Evaluating the Jacobian J(E∗2) we obtain

that

J(E∗2) =



L −µh
βhγ

H

−µh − L −γ −βhγ

H

0 0 M


.
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where

H = γµh + (µh + γ)βh

(
1− 1
R0

)
,

K = µhβh

(
1− 1
R0

)
,

L = −µh − βh

(
1− 1
R0

)
,

M = −µcpc − βc +
2βc

R0
.

(3.17)

The eigenvalues of J(E∗2) are calculated using Det(J(E∗2)− λI3) = 0, i.e.,

Det



L− λ −µh
βhγ

H

−µh − L −γ − λ −βhγ

H

0 0 M − λ


= 0.

Then, it follows that an eigenvalue is λ1 = M and the other two eigenvalues are, λ2, λ3,

the roots of the polynomial

λ2 − λ(L− γ) + µh(µh − L)− Lγ = 0. (3.18)

Now, the Eq. (3.18) has negative solutions if L − γ < 0 and µh(µh − L) − Lγ > 0. On

one hand

−γ + L = −γ − µh − βh

(
1− 1
R0

)
< 0,

since R0 > 1, and

µh

[
µh + µh + βh

(
1− 1
R0

)]
+
[
µh + βh

(
1− 1
R0

)]
γ > 0.

Therefore, if R0 =
βc

µcpc
> 1 the endemic point will be locally asymptotically stable.

Then, the following Lemma has been established.

Lemma 2. The endemic point E∗2 is locally asymptotically stable ifR0 > 1 and unstable

if R0 < 1.
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Based on the previous analysis we can summarize and state that there are two realistic

equilibrium points: One is the disease free point and the other is the unique endemic

equilibrium.R0 is the unique threshold parameter which determines the behaviour of the

Toxoplasmosis spread. Assuming that the stability result for the endemic equilibrium is

also global and assuming that initially there is, at least, one infectious cat, if R0 < 1, we

expect the disease dies out, whereas if R0 > 1, then we expect the Toxoplasmosis disease

tends to the unique endemic equilibrium, thereby establishing itself in the region.

3.4. Numerical simulations

In this section, we simulate different possible scenarios in order to observe the effect that

some relevant parameters have on the dynamics of the Toxoplasmosis disease in human

and cat populations. This is important from an epidemiological point of view, since it

is possible to obtain the best strategy to tackle the disease. The first two scenarios are

computed to check dynamic consistency between the theoretical results obtained in the

previous section and the numerical simulations of the model. One scenario is the disease

free with R0 < 1 and the other is the endemic with R0 > 1.

Another scenario is simulated varying the cats vertical transmission parameter pc. This

numerical simulation allows us to observe the effect of this parameter on the transmission

dynamics of the Toxoplasmosis disease in human and cat populations.

In order to perform the numerical simulations, we take into account that in Chile ap-

proximately 55 % of the cat population have antibodies against the Toxoplasma Gondii

and that in Colombia approximately 47.74 % of the population have antibodies against

the Toxoplasma and only 1 % is controlled [4, 28]. Parameter values of human birth rate

µh, βh and transition to controlled population rate γ were taken from [4]. The cats birth

rate µc was obtained from zootechnic sources [16]. Thus, for numerical simulations, it is

assumed as initial condition in the simulated scenarios the following values,

X(0) = 0.5253, Y (0) = 0.47 and A(0) = 0.45 (3.19)

The parameters of the model (3.6) are shown in Table 3.1.

Disease free point

Here, it is assumed a value for the parameter βc such that R0 < 1. As it can be observed

in Fig. 3.2 and as expected from the theoretical results of previous section, the system

tends to the disease free equilibrium point (X∗1 , Y
∗
1 , A

∗
1) = (1, 0, 1).
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Parameter Values

µh 0.233

βh 0.0206

µc 0.066

pc 0.01

γ Transmission rate

Table 3.1: Parameters of the model

Endemic point

Here, it is assumed a value of the parameter βc such that R0 > 1. As it can be observed

in Fig. 3.3, and as expected from the theoretical results of previous section, the system

tends to the endemic equilibrium point (X∗ = 0.0603, Y ∗ = 0.9386 and A∗ = 0.825).

High vertical transmission in cat population

Here, it is assumed a value of the parameter βc = 0.0008 and Pc = 0.0001. As it

can be observed in Fig. 3.4, the system tends to the endemic equilibrium point X∗ =

0.0112, Y ∗ = 0.9878 and A∗ = 0.00825. Notice that this equilibrium point has more

proportion of infected cats and infected humans at the steady state than the previous

case. This fact is expected because high vertical transmission leads to an increase in

the infected cats from one generation to the next. Consequently, since there are more

infected cats, transmission to humans increases.

Figure 3.2: Dynamics of the different subpopulations when βc = 0.00066, γ = 0.000232 and

R0 = 0.909. (X∗1 = 1, Y ∗1 = 0 and A∗1 = 1)

.
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Figure 3.3: Dynamics of the different subpopulations when βc = 0.0008, γ = 0.000232 and

R0 = 1.2121. (X∗ = 0.0603, Y ∗ = 0,9386 and A∗ = 0.825)

.

Figure 3.4: Dynamics of the different subpopulations when βc = 0.0008, γ = 0.000232,

pc = 0.0001 and R0 = 121.21. (X∗ = 0.0112, Y ∗ = 0.9878 and A∗ = 0.00825)

.

3.5. Discussion and conclusions

In this chapter a mathematical model was proposed to study the dynamics of Toxo-

plasmosis disease in human and cat populations. The model consists of modeling the

interactions among susceptible and infective individuals of the two species assuming that

the horizontal transmission of the disease to humans happens only through the contact

with infected cats. Human population is divided into three classes or subpopulations,

susceptibles Sh(t), infectious Ih(t) and controlled Ch(t) and the cat population into two

subpopulations, susceptibles Sc(t) and infectious Ic(t). We assume that both popula-

tions of cats and human are constant. Vertical and horizontal transmission in the cat
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population are considered. Transmission is assumed in the human population through

an effective direct or indirect contact with an infected cat and vertical transmission is

assumed with probability 1. However, vertical transmission in cat population is assumed

that occurs with probability 1− pc.

We show that the basic reproduction number R0 is a threshold value that completely

determines the global dynamics and the outcome of the disease. If the threshold param-

eter R0 < 1, then the solution converges, in long term, to the disease free equilibrium

point. Furthermore, if R0 > 1 the solution tends to the endemic equilibrium point. Ad-

ditionally, the importance of cats vertical transmission to the dynamics of the infection

is studied through numerical simulations. When a high vertical transmission is assumed

in cat population, the endemic equilibrium point has a higher proportion of infected cats

and infected humans at the steady state. This fact is expected from an intuitive point of

view, since high vertical transmission implies easier transmission from one generation of

cats to the next. Furthermore, since there are more infected cats, transmission to humans

is also higher. Therefore, the dynamics of Toxoplasmosis disease is strongly influenced

by vertical transmission in cat population. The numerical simulations show that this

transmission favors the establishment of a constant endemic level in both populations.

They also show an important increase in the endemic level of the cat and human popu-

lation. This last result reinforces the idea that vertical transmission can be an important

mechanism that favors the maintenance of the virus in areas with low human densities.

It is important to remark that the threshold number R0 is directly proportional to the

probability of effective infectious contact among cats and does not depend on direct

or indirect effective infectious contacts between humans and cats. Therefore, a control

strategy to reduce Toxoplasmosis prevalence should focus on reducing this probability.

One way of control is a vaccine program for cats. This also means that prevalence

in human population may be reduced, but not eradicated, with hygienic actions and

educations programs. In addition, probability of vertical transmission in cat population

is an intrinsic value that seems invariable to control strategies. Therefore, this mechanism

of transmission may be responsible for the permanence of the Toxoplasmosis infection

as has been suggested in [24] for dengue virus.

Finally, it is important to mention that our mathematical model considers the evolution

of Toxoplasmosis in human and cat populations with interaction among them, but it is

necessary to have further knowledge of the parameter values involved in order to have a

more accurate estimations of future health scenarios in the human and cat populations.

Moreover, the parameter values of the model vary depending on the environment be-

cause these parameters should be adjusted for different cities or regions in different real

world applications. Future work should include a model with vaccination and variable
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population size. More variables such as seasonal birth rate or oocyst survival time could

be considered.

These result have been published in Computers and Mathematics with Applications

57(2009)1692− 1700.



Chapter 4

Modeling dynamics of Babesiosis

disease in bovines and ticks

populations

In this chapter we analyse the Babesiosis transmission dynamics on bovine and tick

populations. Ticks play the role of infectious agent and vector of the protozoan Babesia

hemo-parasite. Then, we set out a mathematical model with constant size population

for the evolution of the infected bovines with Babesiosis and analyse its qualitative

dynamics. Statistical data are used to estimate some of the model parameters. Numerical

simulations of the model varying the parameters show different scenarios about the

spread of the disease.

4.1. Introduction

Bovine babesiosis, caused by Babesia bovis and Babesia bigemina is one of the most

important vector-transmitted diseases. Babesia is transmitted by the sting of ticks [62].

At least 1.3 billion of bovines all over the world are at risk of being infected because of

their frequent exposure to Babesia bigemina [62].

Babesiosis has an important economic impact on the livestock sector of tropical regions.

In warm and hot regions there is economic loss due to high bovine death, limiting the

productivity increase of bovine derivatives [9]. Moreover, the climate conditions in these

kind of regions favour the survival and reproduction of ticks and, consequently, bovines

have a permanent contact with these vectors [9]. Furthermore, the vertical transmission

30
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in bovines and ticks is possible provided that the ovaries of the females are infected by

parasites [51].

The parasite in bovines is detected by microscopical examination of blood [20]. A group

of 2909 blood samples of bovine from 104 farms were analysed and the results showed

a prevalence of 4.1 % and 1.65 % with presence of the parasitic forms in milk. Further

analysis are required to generate new programs, prevention polices and control against

the disease.

In this chapter, we propose and analyse a mathematical model of the babesiosis disease

given by a system of nonlinear differential equations, in which the populations of bovines

and ticks are considered to study their transmission dynamics. This model allow us to

study the important role of ticks in the diseases dynamics. This modeling approach is

the standard way to study the dynamic behaviour of diseases in populations from an

epidemiological point of view (see [14, 29, 46]).

At the initial stages, the system is formed by five ordinary differential equations, which

allow us to explain the influence of the epidemiological parameters considered in the

evolution of the disease. Once the model is stated, steady states of the system and the

basic reproduction number R0 are calculated. Then, we prove that the existence of the

endemic equilibrium point depends on the value of threshold parameter R0 and demon-

strate that it determines the local and the global stability of the disease free equilibrium

point, as well as the endemic equilibrium point. This number should be regarded as a

measure of the capacity of the ticks to transmit babesia. The basic reproduction number

is a key concept in epidemiology and abundant literature has been devoted to R0 (see

[19, 60, 67]).

The chapter is organized as follows. In Section 4.2 the mathematical model is set out.

Section 4.3 is devoted to analyse the steady states and find out the threshold value

R0. Moreover, conditions for local and global stability of the equilibrium points which

determine the dynamics of the disease are also proven. Some numerical simulations are

shown in Section 4.4. Finally, in Section 4.5, conclusions are presented.

4.2. Mathematical model

In this section, we introduce a continuous mathematical model for the transmission and

evolution of the Babesiosis disease in bovine and tick populations. Following the basic

ideas and structure of mathematical modeling in epidemiology, the Babesiosis disease

model will be developed under the next hypotheses [14, 46]:



Mathematical model 32

The total bovine populationNB(t) is divided into three subpopulations: Cattle who

may become infected (Susceptible S̄B(t)), bovine infected by the Babesia parasite

(Infected ĪB(t)) and bovine who have been treated for the Babesiosis (Controlled

C̄B(t)).

The parameter µB is the birth rate of the cattle. The birth rate µB is assumed

equal to the natural death.

The total tick population NT (t) is divided into two subpopulations: Ticks who

may become infected S̄T (t) and ticks infected by the Babesia parasite ĪT (t).

The parameter µT is the birth rate of the ticks and it is assumed that it is equal

to the death rate.

A susceptible bovine can transit to the infected subpopulation ĪB(t) because of an

effective transmission due to a sting of an infected tick at rate βB [52].

A susceptible tick can be infected if there is an effective transmission when it stings

an infected bovine, at rate βT [52].

We assume hundred percent vertical transmission in the bovine population µB [63].

In the tick population it occurs with probability 1 − p where p is the probability

that a susceptible tick is born from an infected one [5].

A fraction λB of the infected cattle is controlled, i.e., they are treated against

Babesia parasite.

A fraction αB of the controlled bovine may return to susceptible state [51].

Homogeneous mixing is assumed, i.e., all susceptible cattle have the same prob-

ability to be infected and all susceptible ticks have the same probability to be

infected.

Under the above hypotheses, the dynamic transmission of Babesiosis disease for bovine

and tick population can be modeled by the following system of nonlinear first order

differential equations:

S̄′B(t) = µB(S̄B(t) + C̄B) + αBC̄B(t)− µBS̄B(t)− βBS̄B(t)
ĪT (t)
NT (t)

,

Ī ′B(t) = µB ĪB + βBS̄B(t)
ĪT (t)
NT (t)

− µB ĪB − λB ĪB(t),

C̄ ′B(t) = λB ĪB(t)− (µB + αB)C̄B(t),

S̄′T (t) = µT (S̄T + pĪT )− βT S̄T (t)
ĪB(t)
NB(t)

− µT S̄T (t),

Ī ′T (t) = βT S̄T (t)
ĪB(t)
NB(t)

+ (1− p)µT ĪT (t)− µT ĪT (t).

(4.1)
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The diagram is depicted in Fig. 4.1

Figure 4.1: Dynamics of the Babesiosis disease in bovine and tick populations

Simplifying the system (4.1), we have

S̄′B(t) = (µB + αB)C̄B(t)− βBS̄B(t)
ĪT (t)
NT (t)

,

Ī ′B(t) = βBS̄B(t)
ĪT (t)
NT (t)

− λB ĪB(t),

C̄ ′B(t) = λB ĪB(t)− (µB + αB)C̄B(t),

S̄′T (t) = µT pĪT − βT S̄T (t)
ĪB(t)
NB(t)

,

Ī ′T (t) = βT S̄T (t)
ĪB(t)
NB(t)

− µT pĪT (t).

(4.2)

Adding, from the three first equations, we can obtain,

N ′B(t) = S̄′B(t) + Ī ′B(t) + C̄ ′B(t) = 0,

and therefore the bovine population is constant. Analogously, adding the two last equa-

tions we have that

N ′T (t) = S̄′T (t) + Ī ′T = 0,

and likewise the tick population is also constant.

All parameters in this model are non-negative. It is easy to prove that (4.2) is well-posed,

i.e., if the initial data (S̄B(t0), ĪB(t0), C̄B(t0), S̄T (t0), ĪT (t0)) are in the region R5
+, then

the solutions are defined for all time t ≥ 0 and remain in this region.
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Introducing the following proportions in system (4.2),

SB =
S̄B

NB
, IB =

ĪB
NB

, CB =
C̄B

NB
, ST =

S̄T

NT
, IT =

ĪT
NT

,

and using the relations CB(t) = 1− SB(t)− IB(t) and ST (t) = 1− IT (t), we can obtain

the following system that describes the dynamics of the proportion of cattle in each

subpopulation,


S′B(t) = (µB + αB)(1− SB(t)− IB(t))− βBSB(t)IT (t),

I ′B(t) = βBSB(t)IT (t)− λBIB(t),

I ′T (t) = βT (1− IT (t))IB(t)− µT pIT (t).

(4.3)

The region, Ω = {(SB, IB, It)|0 ≤ SB + IB ≤ 1, 0 ≤ IT ≤ 1} is a positive invariant set

for the system (4.3) and we consider it as the state space of this system.

4.3. Analysis of the model

In this section, we study the existence and stability of the equilibrium points of the

system (4.3). This analysis allows us to study different scenarios concerning the spread

of Babesiosis disease in the bovine population caused by direct contact with infected

ticks. In order to do that, we shall use the following threshold parameter:

R0 =
βBβT

λBµT p
. (4.4)

4.3.1. Model equilibrium points

Proposition 1. The system (4.3) has a disease free equilibrium point and it is given by

(S∗B1
, I∗B1

, I∗T1
) = (1, 0, 0) for all the values of the parameters in this system and only if

R0 > 1, there is an endemic equilibrium point (unique) (S∗B2
, I∗B2

, I∗T2
) in the interior of

Ω.

Proof. We denote by (S∗Bi
, I∗Bi

, I∗Ti
) the equilibrium points of system (4.3), i.e, the steady

state where S′B = 0, I ′B = 0, I ′T = 0 for all t > t0. Then, the disease free point is

(S∗B1
, I∗B1

, I∗T1
) = (1, 0, 0) and the endemic point is given by,

S∗B2
=
βTλB(αB + µB) + pλB(αB + λB + µB)µT

βT (αB(βB + λB) + λBµB + βB(λB + µB))
(4.5)
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I∗B2
=

(αB + µB)(βBβT − pλBµT )
βT (αB(βB + λB) + λBµB + βB(λB + µB))

(4.6)

I∗T2
=

(αB + µB)(βBβT − pλBµT )
βTβB(αB + µB) + pβB(αB + λB + µB)µT

(4.7)

Notice that if R0 > 1, then (βBβT − pλBµT ) > 0. Then, taking into account that all

model parameters are positive, we have

S∗B2
, I∗B2

, I∗T2
> 0.

Thus, there is a (unique) endemic equilibrium point (S∗B2
, I∗B2

, I∗T2
) in the interior of Ω.

Now, we are going to demonstrate that if R0 ≤ 1 the unique equilibrium point in Ω is

the disease free point (S∗B1
, I∗B1

, I∗T1
) = (1, 0, 0).

We distinguish two cases:

R0 < 1: In this situation, βBβT − pλBµT < 0. Thus, looking at the fractions that

define the coordinates of the endemic point, it is easy to check that I∗B2
, I∗T2

< 0,

except when µB + αB = 0. However, this is not possible because the bovine birth

rate µB > 0. Therefore, when µB + αB 6= 0 this point remains in the outside of

the region Ω.

R0 = 1: In this case, since βBβT − pλBµT = 0, we have that I∗B2
, I∗T2

= 0 and

S∗B2 = 1.

�

Observe that this last case has real sense because, when R0 = 1, we have I∗B2
, I∗T2

= 0,

i.e., the number of infected are 0, and therefore, the endemic point cannot exist.

4.3.2. Stability analysis

Computing the Jacobian of system (4.3) evaluated at the disease free point, one gets the

following matrix
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J(1, 0, 0) =


−(αB + µB) −(αB + µB) −βB

0 −λB βB

0 βT −µT p

 ,

and, consequently, the eigenvalues of J(F ∗1 ) are

γ1 = −(αB + µB), (4.8)

γ2,3 =
−(λB + µT p)±

√
4βBβT + λ2

B − 2λBµT p+ µ2
T p

2

2
.

(4.9)

The stability of the equilibrium point F ∗1 is determined using the eigenvalues of J(F ∗1 ).

The disease free equilibrium point F ∗1 is locally asymptotically stable if the real part of

eigenvalues are all negative. In fact, the eigenvalues of J(F ∗1 ) are negative, if

R0 =
βBβT

λBµT p
< 1. (4.10)

Thus, we can state the next result.

Lemma 1. The disease free point F ∗1 is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Moreover, we can prove the following Theorem.

Theorem 1. If R0 < 1, then the disease free point F ∗1 is globally asymptotically stable.

Proof. First of all, we are going to move the origin of the coordinate system to the

position of our disease free point. To do that, we only have to make the change of

variables

XB = 1− SB,

and the system (4.3) becomes


X ′B(t) = −(µB + αB)XB(t) + (µB + αB)IB(t) + βBIT (t)− βBXB(t)IT (t)

I ′B(t) = −λBIB(t) + βBIT (t)− βBXB(t)IT (t)

I ′T (t) = βT IB(t)− µT pIT (t)− βT IB(t)IT (t)

(4.11)
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To abbreviate, we refer F (XB(t), IB(t), IT (t)) as the function defining this system of

ordinary differential equations, that is, the system (4.11) can be expressed as

(X ′B(t), I ′B(t), I ′T (t)) = F (XB(t), IB(t), IT (t)).

At this point, we consider the function V : Ω→ R+ defined by

V (t) = V (XB(t), IB(t), IT (t)) = βT IB(t) + λBIT (t).

This function V ∈ C1(Ω) and the escalar product ∇V (XB, IB, IT )·F (XB, IB, IT ) is given

by

βT (−λBIB(t) + βB(t)IT (t)− βBXB(t)IT (t)) + λB(βT IB(t)− µT pIT (t)− βT IB(t)IT (t)).

Simplifying this last expression, we have,

(βTβB − λBµT p)IT (t)− βTβBXB(t)IT (t)− λBβT IB(t)IT (t)).

Under the hypothesis R0 6 1, we have that βTβB − λBµT p 6 0. Taking into account

that all the parameters and variables appearing are greater than 0, we get

∇V (XB, IB, IT ) · F (XB, IB, IT ) 6 0.

Consequently, the LaSalle-Lyapunov theorem guarantees the global stability of the di-

sease free point (S∗B1
, I∗B1

, S∗T1
) if R0 6 1.

�

4.4. Numerical simulations

In this section, we simulate different possible scenarios in order to observe the effect that

some relevant parameters have on the dynamics of Babesia disease in bovine and tick

populations. This is important from an epidemiological point of view, since it is possible

to simulate strategies to tackle the disease. The first two scenarios are computed to illus-

trate the dynamic consistency between the theoretical results obtained in the previous

section and the numerical simulations. One scenario is the disease free equilibrium with

R0 < 1 and other is the endemic equilibrium with R0 > 1.
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Additionally, another scenario is simulated by varying the transmission parameters βB

and βT ; if the value of the parameter βB is bigger than 0.005, then there is a growth of

the infected bovine subpopulation [18]. This numerical simulation allows us to observe

the effect of these parameters on the transmission dynamics of Babesiosis disease in

bovine and tick populations.

In order to perform the numerical simulations we take into account that 60 % of ticks

in North Colombia are infected by Babesia, approximately 51.84 % of the bovines are

infected by Babesia, only 10 % are controlled [68] and the vertical transmission is 90 %

[63]. Thus, we assume these figures as initial condition for numerical simulation,

SB(0) = 0.3816 IB(0) = 0.5184 IT (0) = 0.60. (4.12)

The parameters of the model (4.3) are positive, and the following Table 4.1 shows its

values for North Colombia.

Parameter µB µT λB αB p βB βT

Values 0.0002999 0.001609 0.000265 0.001 0.1 0.00061 0.00048

Table 4.1: Parameters for simulation. The values βB , βT and αB have been calculated

assuming an ecologic stability.

Parameter values of bovines birth rate µB and transition to controlled population rate

λB have been provided by Efrain Benavides Ortiz Ph.D, Group of research Animal

Biotechnology GIBA, Faculty of Agrarian Sciences, Politécnico Colombiano Jaime Isaza

Cadavid, October 2008, Medelĺın-Colombia (not published data). The tick birth rate µT

has been obtained in [69].

Ecologic stability

For the first simulation we assume that the spread of Babesiosis in the populations of

cattle and ticks in Colombia is in equilibrium (ecologic stability), i.e., proportions of the

subpopulations (susceptible cattle, infected cattle and infected ticks) are positive and

constant over time. This scenario is possible taking the parameter original values (µB,

µT , αB and p) constants over time and estimate or fit the parameters (βB, βT and αB)

to obtain the ecologic stability. See Fig. 4.2.

In this case, the initial condition is the same as the endemic equilibrium point (0.3816,

0.5184, 0.60) and the eigenvalues of its Jacobian are (−0.7489, −0.7480, −0.7058), all

negative. Therefore, the equilibrium point is locally asymptotically stable.
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Figure 4.2: Ecologic stability, when βB = 0.00061, βT = 0.00048, αB = 0.001 and R0 = 6.8.

Disease free point

Figure 4.3: Dynamics of the different subpopulations when βB = 0.0003, λB = 0.0265,

p = 0.1 and R0 = 0.33

Here, we assume a scenario where the transmission of Babesia is downturn βB = 0.0003 in

the bovine subpopulation, a value for the parameter λB = 0.0265 that shows appropriate

control measures against the disease. The other parameters remain constant over time,

and then R0 < 1. We can see in Fig. 4.3 that, as expected from the theoretical results

of previous section, the model solution tends to the disease free equilibrium point.

Endemic point stability

In these two simulations, we take different values for initial conditions that simulate en-

demic situations of the disease and that show both tend to the same endemic equilibrium

point. This exhibits the global asymptotic stability of the endemic point. We simulate a
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Figure 4.4: Dynamics of the different subpopulations when βB = 0.006 and p = 0.1, with

initial condition SB(0) = 0.3816, IB(0) = 0.5184, ST (0) = 0.60 and R0 = 67.54.

Figure 4.5: Dynamics of the different subpopulations when βB = 0.006 and p = 0.1, with

initial condition SB(0) = 0.70, IB(0) = 0.10, ST (0) = 0.20 and R0 = 67.54.

scenario of high rate of transmission of Babesia in bovine population with a βB greater

than 0.005 [18] and high rate of vertical transmission in the tick population with a value

for the parameter p = 0.1. The other parameters remain constant over time and R0 > 1

(see in Figs. 4.4, 4.5). In both cases, the endemic equilibrium point is (0.0498, 0.7893,

0.70).

The sensitivity of the transmission parameters

In these numerical simulations, the variation of the transmission parameters βB and βT

allows us to observe the effect of these parameters on the dynamics of transmission of

the disease in the bovine and tick population. The results can be seen in Fig. 4.6
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Figure 4.6: The dynamics of the subpopulations is sensitive to the parameters βB and βT .

4.5. Conclusions

We proved that the basic reproduction number R0 is a threshold value that completely

determines the global dynamics and the outcome of the disease. On one hand, if the

threshold parameter R0 < 1, then the solution converges to the disease free equilibrium

point. On the other hand, if R0 > 1 the solution converges to the endemic equilibrium

point. When a high rate of vertical transmission in the tick population and a high

rate of transmission of the parasite in the bovine population are assumed, the endemic

equilibrium point has a higher proportion of infected ticks and infected bovines. These

facts are expected from an intuitive point of view. Furthermore, if there are more infected

ticks, transmission to bovines will be greater. Therefore, the dynamics of Babesiosis

disease are influenced by the sensitivity of the parameters transmission βB and βT .

Because of this, it is possible to state that this transmission helps to establish a constant

endemic level in both populations.

It is worthwhile to remark that the threshold number R0 is directly proportional to

the probability of effective contacts among bovines infected and among ticks infected.

Therefore, a control strategy to reduce Babesiosis prevalence should focus on reducing
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this probability. One way of control could be to fumigate with tick killer insecticides.

In this form, prevalence in bovine population may be reduced. However, probability of

vertical transmission in tick population is an intrinsic value that seems to be invariant

to control strategies. Therefore, this mechanism of transmission may be responsible for

the permanence of the Babesiosis infection as it has been suggested in [23] for dengue.

Finally, it is important to mention that our mathematical model considers the evolution

of Babesiosis in the bovine and tick populations with interaction among them, but it

is necessary to have further knowledge of the parameter values involved in order to

have more accurate estimation of future scenarios in the bovine and tick populations.

Moreover, the parameter values of the model may vary depending on the environment.

Paper accepted in Mathematical Methods in Applied Sciences, March 2011, doi 10.1002-

/mma .1544.
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[20] Doḿınguez-Alpizar, J. L., Rodŕıguez-Vivas, R. I., Oura, C., and Cob-

Galera, L. A. Determinación de la especificidad y sensibilidad de las técnicas
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