

Master's Degree in Automatic and Industrial Computing

Modeling, identification and control of an

elastic joint

Author:

Rafael Sergio Celis García

Teacher:

Ranko Zotovic Stanisic Convocatoria: Septiembre 2018

ABSTRACT

Nowadays the use of harmonic drive systems has become common because its high reduction ratio

and high torque transmission in a compact mechanism, especially in robotics where the weight of the

robot it’s an important factor, lower weight transmission with high torque means less energy is spent

for operation.

On the other hand, the harmonic drive transmissions have more complex dynamic behaviour than

conventional gear transmissions. In this project, an experimental platform has been set up in order to

analyse the behaviour of the polymeric low cost Harmonic Drive transmission that will be integrated

into the joints of the WRAD robot, a prototype developed in previous projects to assist disabled

persons. The first part of the project is focused on the experimental platform materials used as the

BLDC Motor, the ESCON power stage and the Discovery board mainly. Its configuration as well as the

connections and building in order to acquire data from the real system are explained.

After that, the different mathematical models that have been researched in the last years are studied

in order to integrate them in a Grey-box model to identify the parameters.

Finally, the results are tested under simulation and results between the simulations and the real data

are compared as well as the difference between models. The mathematical modelling of the Harmonic

Drive transmission is reviewed, from the most simple to the most complex model containing nonlinear

friction, hysteresis and non-linear cubic elasticity, this will allow in the final part of the project to

compare the results obtained and integrated in those models.

As long as the project is developed in a low cost prototype platform some limitations were found while

working with the system in order to achieve the goals proposed, this limitations would have a

repercussion on later results, anyway most of them are solved or treated to reduce its impact in the

project.

All the process involved in the data acquisition with the Discovery STM32F4 board will be explained

together with the signal processing applied before the identification procedure where different models

are identified, from the most basic to the most complex with non-linearities, which allows comparing

the accuracy of the different models. In order to simplify the identification task, some parameters are

estimated from different experiments designed to appreciate the physical phenomena in the data

taken. This will be useful in order to reduce the number of parameters being identified, which might

lead to bad model identification due to local minima. In addition, the different methods for prediction

error minimization used by the matlab functions are explained, and then the model is estimated in

steps according to different data sets of the same system with different inputs. The parameters

obtained in the identification will be simulated with the models studied and according to the results

obtained the parameter variation will allow us to study how it affects the response of the system, this

will be important for later conclusions. In addition, the models that have not been identified will be

simulated, as well as the effect of the variation of the parameters in the model.

Key words: BLDC motor, Harmonic Drive, Elastic robot joint, Identification, Grey-box modelling, Matlab

IDNLGREY, Discovery STM32F4.

RESUMEN

Hoy en día el uso de reductores del tipo Harmonic Drive se ha vuelto algo común debido a sus

propiedades ideales para robótica como gran ratio de reduccion y gran transmisión de par en un

mecanismo compacto, esto es imprescindible en robótica donde el peso juega un papel muy

importante, especialmente en lo que a ahorro de energía se refiere durante el funcionamiento del

robot. Por otra parte, este tipo de transmisiones suponen un reto a la hora de ser modeladas y

controladas ya que presentan un comportamiento dinámico mucho más complejo que las

transmisiones convencionales. Este proyecto se ha llevado a cabo en una plataforma experimental

montada en el departamento DISA, donde se dispone de un prototipo diseñado previamente por otros

estudiantes dirigidos por el profesor Ranko Zotovic, se trata del brazo robot para asistencia a

discapacitados “WRAD”, en él se han empleado reductores Harmonic Drive de bajo coste de material

polimérico como transmisión para los motores de los eslabones 1 y 2.

La primera parte del proyecto se centra en explicar la plataforma experimental, así como el material

del que se dispone, motores BLDC, etapa de potencia ESCON, tarjeta Discovery, encoders y todas las

conexiones y montaje correspondiente para la toma de datos del sistema real con el que realizar en

pasos posteriores la identificación. Al tratarse de una plataforma de bajo coste se han encontrado

algunas limitaciones durante el desarrollo del proyecto, sin embargo en la medida de lo posible se ha

tratado de solventar estos problemas con el material del que se dispone.

 En siguientes capítulos los diferentes modelos de Harmonic Drive propuestos por investigadores

expertos en la materia que han sido estudiados y analizados con equipamiento profesional son

presentados para su posterior implementación en Matlab en lo que se conoce como modelo de caja

gris o “Grey-box modeling” donde se obtiene un modelo parametrizado donde el objetivo es encontrar

el valor de dichos parámetros que proporciona una respuesta lo más parecida posible a los datos

medidos del sistema.

Para la identificación con los datos obtenidos con la tarjeta Discovery, se explica el proceso a seguir

paso a paso para la obtención del vector que contiene dichos datos. Estos datos han de ser

preprocesados antes de identificar y se evaluará el efecto de dicho pre procesamiento al comparar

modelos obtenidos aplicando dicho paso y sin aplicarlo.

Finalmente los resultados son evaluados por medio de diferentes indicadores que permiten

determinar qué grado de exactitud tiene el modelo obtenido, también se comprarán las respuestas de

diferentes modelos y se verá cómo la inclusión de fenómenos físicos adicionales puede proporcionar

una mejora del modelo obtenido. Debido a la complejidad del sistema, se dividirá la identificación en

varios pasos tratando de aislar lo máximo posible el valor de los parámetros en base a la información

que se dispone del sistema, esto ayudará a que el proceso de optimización de la identificación

encuentre mínimos locales, lo que conlleva a un modelo incorrecto.

Por último se presenta un generador de trayectoria de cuarto orden junto a simulaciones de los

modelos obtenidos variando los parámetros característicos de la transmisión.

Palabras clave: BLDC motor, Harmonic Drive, Elastic robot joint, Identification, Grey-box modelling,

Matlab IDNLGREY, Discovery STM32F4.

GENERAL INDEX OF DOCUMENTS

- DOCUMENT I: PROJECT MEMORY

- DOCUMENT II: ANNEXES

DOCUMENT I: PROJECT MEMORY

1. Introduction ... 1

2. System setup ... 4

2.1 Mechanical structure... 4

2.1.1 Prototype robot structure .. 4

2.1.2 Harmonic drive ... 5

2.2 Electric and electronic components .. 7

2.2.1 BLDC motor .. 7

2.2.2 Encoder headers and codewheels.. 8

2.2.3 Discovery STM32F429Zi ... 11

2.2.4 EPOS/ESCON modules .. 12

2.2.6 Auxiliary electronic circuits .. 26

2.2.7 System architecture ... 27

3. Modelling robots with flexible joints... 29

3.1 Modelling the Harmonic Drive transmission in a robot joint .. 30

3.2 Harmonic Drive state space modelling.. 34

3.3 Modelling non-linearities .. 35

3.3.1 Hysteresis spring .. 35

3.3.2 Non-linear friction modelling ... 38

3.3.3 Backslash .. 41

4. System limitations ... 43

4.3.1 Encoder saturation ... 43

4.3.2 Velocity estimation ... 45

4.3.3 DAC mismatch .. 47

4.3.4 Speed saturation in current control ... 49

4.3.5 ESCON data recorder low sampling time ... 52

5. Identification ... 54

5.1 Methods for nonlinear least squares curve-fitting problems ... 59

5.1.1 The gradient descent method .. 60

5.1.2 Gauss-Newton method .. 61

5.1.3 The Levenberg-Marquardt method .. 62

5.2 Reduction ratio comprobation .. 62

5.2.1 Constant step ... 63

5.2.2 Stairs ... 64

5.2.3 Sinusoidal ... 65

5.3 Voltage control identification .. 66

5.3.1 Static friction parameters ... 66

5.3.2 Rigid body parameters ... 70

5.3.3 Harmonic drive (simplified model) parameter identification .. 77

5.3.4 Harmonic drive with nonlinear friction and elasticity parameter identification 93

5.4 Current control identification.. 100

5.4.1 Harmonic drive with nonlinear friction and elasticity parameter identification 100

5.5 Frequency response analysis ... 107

6. Simulations and trajectory generator ... 110

6.1 Simulations with the parameters identified.. 110

6.1.1 Model simulation ... 110

6.1.2 Bouc-Wen model .. 113

6.2 Fourth order trajectory generator for Keil uVision ... 116

7. Conclusions and future works ... 118

8. Budget ... 119

9. References ... 121

FIGURES’S INDEX

Figure 1. Harmonic Drive transmission components. ... 2

Figure 2. Built prototype CAD.. 4

Figure 3. Robot arm built systematically. .. 5

Figure 4. Harmonic Drive used for the project. ... 5

Figure 5. Harmonic Drive specified dimensions. ... 6

Figure 6. Correct assembly. ... 6

Figure 7. EC motor dimensions. .. 7

Figure 8. EC motor used for the project. ... 7

Figure 9. Encoder and codewheel HEDS-9100. ... 9

Figure 10. Encoder channels signal. .. 9

Figure 11. Encoder header dimensions. .. 10

Figure 12.BLDC Motor with encoder header and codewheel mounted. .. 10

Figure 13. Discovery STM32F429Zi. .. 11

Figure 14. ESCON module 50/5. .. 13

Figure 15. ESCON module 50/5 dimensions and pin assignment. .. 14

Figure 16. Enable pin configuration in ESCON Studio. .. 15

Figure 17. Motor type select. .. 15

Figure 18. Motor parameters from datasheet. ... 16

Figure 19. Motor operating point specified in datasheet. .. 16

Figure 20. Hall sensor pattern configuration. ... 17

Figure 21. Current control ESCON diagram. .. 17

Figure 22. DAC input, Current averaged and motor speed in the ESCON data recorder. 18

Figure 23. Set point configuration for current control. ... 18

Figure 24.Offset needed for operating in two directions ... 19

Figure 25.Current control ESCON monitored. ... 19

Figure 26. Proportional current controller tuning. ... 20

Figure 27. Voltage control diagram. .. 20

Figure 28. Power stage gain definition. ... 21

Figure 29. Current limitation and speed control ramp configuration. .. 21

Figure 30. Speed control offset. .. 22

Figure 31. ESCON studio speed control (open loop). .. 22

Figure 32. ESCON power supply cable... 23

Figure 33. ESCON motor cable. ... 24

Figure 34. Hall sensor cable. .. 25

Figure 35. ESCON Module and the motor cables. ... 25

Figure 36. System connections diagram. .. 26

Figure 37. Electronic circuit in the power stage. ... 27

Figure 38. Experimental platform mounted in the DISA. .. 28

Figure 39. Elastic joint approach. .. 29

Figure 40. Harmonic Drive configuration used in the application. ... 31

Figure 41. Current control block diagram. .. 33

Figure 42 Voltage control block diagram .. 33

Figure 43. Nonlinear elasticity (cubic polynomial) Simulink implementation. 36

Figure 44. Non-linear elastic polynomial. .. 36

Figure 45. Typical hysteresis shape in Harmonic Drives. .. 37

Figure 46. Internal state of the hysteretic differential equation. ... 38

Figure 47. LuGre Simulink implementation. .. 39

Figure 48. Striebeck function Simulink implementation. .. 39

Figure 49. General view of the elastic joint implemented in Simulink. .. 40

Figure 50. One joint with non-linearities Simulink representation. .. 40

Figure 51. Backlash in the gear transmission contact teeth. .. 41

Figure 52. Gear transmission with elasticities and backslash. .. 42

Figure 53. Encoder readings with timer auto reload. ... 43

Figure 54. Encoder position fixed. ... 44

Figure 55. "Pulses" from zero to 3.14 estimated when moving at low speeds. 45

Figure 56. Quantization error in the encoder two measurements. .. 46

Figure 57. Velocity 2 filtered with no phase filter “filtfilt”. ... 46

Figure 58. Velocity 2 after medfilt with values 1, 10 and 50. .. 47

Figure 59. ESCON analog input2. ... 48

Figure 60. DISCOVERY input voltage data. .. 48

Figure 61. Input with initial peak for friction break. ... 50

Figure 62. Input signal, step at 0.9V. ... 50

Figure 63. ESCON data record showing speed (voltage) saturation and current (torque) saturation when

reached the maximum speed. ... 51

Figure 64. ESCON Studio data recorder. ... 52

Figure 65. Current acquired from ESCON and resampled signal. ... 53

Figure 66. Terminal receiving data example. .. 54

Figure 67. Flux diagram of the identification procedure. ... 55

Figure 68. ESCON studio data recorder configuration. ... 56

Figure 69. Compile and load buttons on Keil uVision. .. 56

Figure 70. Code writing data on the SDRAM. .. 56

Figure 71. Data is not transmitted until the state is true. ... 57

Figure 72. Teraterm connection options. .. 57

Figure 73. Log save screen. ... 57

Figure 74. Matlab data script. ... 58

Figure 75. Velocity filter applied. .. 58

Figure 76. Kinematic error estimation. ... 59

Figure 77. Signal plot script. .. 59

Figure 78. Constant input voltage. .. 63

Figure 79. Motor and link positions for constant input voltage. .. 63

Figure 80.Stairs input voltage. ... 64

Figure 81. Motor and link position for stair input voltage. ... 64

Figure 82. Sum of sinusoidals input voltage. ... 65

Figure 83.Encoder 1 and 2 measurements for the given experiment. ... 65

Figure 84. Input step and velocity response. .. 66

Figure 85. Steady state velocity vs. DAC Voltage input. .. 66

Figure 86. Velocity plot of the data set 1. ... 71

Figure 87. Simulated response vs. real data. .. 74

Figure 88. One-step prediction error. ... 74

Figure 89. Amplitude of one of the "bars" equal to pi. ... 75

Figure 90.Residuals of the model estimated. .. 75

Figure 91. Input signal plot for data set “sins1”. ... 78

Figure 92. Input signal plot for data set "scs1". .. 79

Figure 93. Input signal plot for data set “scs2”. .. 79

Figure 94.Input signal plot for data set “bdsins”. .. 80

Figure 95. Input signals of the data sets.. 84

Figure 96. Simulated response vs. real data measurements. ... 86

Figure 97. Residuals of the obtained model. ... 87

Figure 98. Noise velocity2 estimated response. ... 89

Figure 99. Filtfilt velocity2 estimated response. ... 89

Figure 100. Residual correlation analysis for the identified models. .. 92

Figure 101. Left side residuals from first ident, Right side residuals from last ident. 92

Figure 102. Identified NLGR with one direction simulated response compared with both directions data

set. ... 93

Figure 103. Inputs used for both directions movement and friction identification. 94

Figure 104. Simulated response comparison for the model obtained and the validation data set. 97

Figure 105. 1-Step prediction error for the identified model. .. 98

Figure 106. Residue correlation for the estimated model. ... 98

Figure 107. Step response for the identified model. .. 99

Figure 108. Current response for high frequency DAC input. ... 100

Figure 109. Low frequency input for current control identification. .. 100

Figure 110.Simulated response comparison for the first data set. ... 103

Figure 111. Simulated response comparison for the second data set. ... 104

Figure 112. 1-Step prediction error. .. 104

Figure 113. Residue correlation. ... 105

Figure 114.Step response of the identified system. .. 106

Figure 115. Typical bode plot shape of link velocity respect to the current(left), and motor velocity

respect to the current (right) .. 109

Figure 116. General view of the elastic joint model implemented in Simulink. 110

Figure 117. Elastic joint Simulink implementation. ... 111

Figure 118. Trigonometric function for the friction implemented on Simulink. 111

Figure 119. Simulink real data vs simulated signal.. 112

Figure 120. Bouc-Wen model implementation in simulink. .. 113

Figure 121.Bouc-Wen subsystem for plastic-elastic balance. ... 113

Figure 122. Bouc-Wen internal state Simulink implementation. .. 114

Figure 123. Hysteresys shape obtained by simulation. ... 115

Figure 124.Friction force vs velocity, x axis velocity, y axis friction force. .. 115

TABLES INDEX

Table 1. Harmonic Drive manufacturer specifications. ... 6

Table 2. EC motor parameters. ... 8

Table 3. Discovery board pins used. .. 12

Table 4. Electrical rating properties. ... 13

Table 5. Inputs and outputs used. ... 13

Table 6. Pin assignment table.. 14

Table 7. ESCON power cable information. .. 23

Table 8. ESCON motor cable information. .. 24

Table 9. Hall sensor cable information. ... 24

Table 10.Motor response in current control mode. ... 50

Table 11. Motor response in current control mode. ... 51

Table 12. Motor response in current control mode. ... 51

Table 13.Estimated reduction ratio from the three experiments. .. 65

Table 14. Friction parameters identified. .. 69

Table 15. Parameters identified in the first try. .. 73

Table 16. Parameters identified in the second try. ... 73

Table 17. Parameters used in the next step. ... 73

Table 18. Data set properties. ... 77

Table 19. Data set properties. ... 78

Table 20. Data set properties. ... 79

Table 21. Data set properties. ... 80

Table 23. Identification 1 procedure info. ... 84

Table 24. Initial parameters values and boundaries. .. 85

Table 25. Final estimated parameters for both velocity 2 filter data sets. ... 85

Table 26. Final parameter value after transformation. ... 86

Table 27. Identification 2 procedure info. ... 87

Table 28.Identification 2 initial parameters and its boundaries. .. 88

Table 29. Final estimated parameters for both velocity 2 filter data sets. ... 88

Table 30.Final values obtained after transformation. ... 89

Table 30.Results comparison between identification 1 and 2. ... 90

Table 31.Identification friction initial parameters and its boundaries. .. 95

Table 32. Final estimated parameters for both velocity 2 filter data sets. ... 95

Table 33.Identification friction initial parameters and its boundaries. .. 101

Table 34. Final estimated parameters for both velocity 2 filter data sets. ... 101

Table 35.Material budget. ... 119

DOCUMENT I:

PROJECT MEMORY

Notation and abbreviations

Notation Meaning

 �̇� First derivative

 �̈� Second derivative

 �̂� Estimated

 𝜽 Reference to motor variables

 𝝉 Torque

𝝆 Parameter vector

 𝜹 Generalized coordinate vector (Multivariable case)

 𝝑 Rayleigh function

 ∆𝜽 Kinematic error

 𝑽𝒔𝒖𝒑𝒑 Supply voltage

LS Least squares

SDRAM Synchronous dynamic random access memory

D.O.F Degree(s) of freedom

LSQNONLIN Least squares nonlinear search

GNA Gauss Newton adaptive search

LM Levenberg-Marquardt search

EMF Electromotive force

H.D Harmonic Drive

NLGR Nonlinear grey box

DAC Digital to analog converter

VCP Virtual com port

Modelling, identification and control of an elastic joint.

1

1. Introduction

During the past decades, industrial robots have become a very important factor in the manufacturing

industry. Nowadays robots can be found in new areas, because of this and to be able to go into new

markets, the new robots require better performance or lower price. To achieve these goals the physical

robot structures are built lighter and weaker, the unique performance features of harmonic drives,

such as high gear ratios and high torque capacities in a compact geometry, justify their use as

mentioned above.

Since the 60’s the harmonic drive has found widespread acceptance, this mechanical transmission

employs a continuous deflection wave along a non-rigid gear to allow for gradual engagement of gear

teeth. Because of this unconventional gear-tooth meshing action, harmonic drives can deliver high

reduction ratios in a very small package; this particular way of operation has created a new area of

exploration and understanding. The harmonic drive exhibits performance features both superior and

inferior compared to conventional gear transmissions. Its performance advantages are:

- High torque capacity.

- Concentric geometry.

- Lightweight and compact design.

- Near-zero backslash.

- High efficiency and back drivability.

Harmonic drive systems however have some disadvantages as:

- High flexibility.

- Resonance vibration.

- Friction and structural damping nonlinearities.

The unique performance features of the harmonic drive allows it to be used in many different fields,

from space robots, assembly equipment to measuring instruments or like in this project for wearable

robot arms for its lightweight and compact geometry specifically.

In the last years, there has been an increasing use of the technologies in the robotic field, as usual,

new technologies are applied first at the industrial sector and after that, it is applied to another social

fields, by means of this tools robots can be used to be exposed in dangerous zones to keep safe workers

health.

In the industrial sector, last years with the industry 4.0 the collaborative robotics have seen its demand

increased, this kind of robots allows to work together with the workers with its tasks without the need

of barriers or security systems between the robot and the person.

To achieve the security of the user force and torque control that allows controlling and preventing

collisions. This control system also allow an easier programming for the user.

However, harmonic drives can exhibit surprisingly more complex dynamic behaviour than

conventional gear transmissions. As higher demand on the accuracy of the robot models used in the

Modelling, identification and control of an elastic joint.

2

controllers are growing, this means good models are needed for the new applications, so there is a

need for an automated way of getting mathematical models and also the estimation of its parameters.

It has to be taken into account that in robot identification, the amount of sensors is limited; usually

the only variable that is measured is the position of the motors. Others also include a torque sensor

for estimating physical phenomena such as mechanical hysteresis and different friction models [4],[6],

in this case with the test platform used there are two encoders in the motor and link side so both

measurements are available, also some parameters are isolated for identifying some physical

properties of the motor-gear transmission structure.

This project is part of a bigger project where the goal is to design a wearable robot arm prototype for

assistance to people with reduced mobility in the superior body extremities. All the mechanic structure

has been designed and developed previously in past projects; also, some simulations and control for

the 2-link arm structure have been developed before.

The robotic arm is thought to be worn in a vest, and it will be supplied with batteries.

Figure 1. Harmonic Drive transmission components.

In the present project, the gear is built into a BLDC Motor from the Maxon motor company, which are

characterized by high efficiency, wide rotational speeds range and long lifespan, the motor

corresponds to the “flat” lines of the motors manufactured by Maxon. When modelling the motor in

later chapters it will be considered as a DC motor for modelling purposes.

In robotics, the motors are actuated by means of the so-called power stage. The power stage selected

for this project was the ESCON Module 50/5 from Maxon, which is specified to work with the motor

available. The different modes of operation as well as the overlay of the ESCON Module will be

described and the setup procedure will be explained.

For the data acquisition the Discovery STM32F4 board developed by STMicroelectronics is used

recording the encoder measurements from both sides of the elastic joint, after storing the data in the

Modelling, identification and control of an elastic joint.

3

Discovery SDRAM, it is transmitted to the PC via USB by means of the VCP com port, this data will be

used for the identification procedure.

This data has to be preprocessed in order to make a proper identification, in the section 4, when

explaining the system limitations, the data processing will be explained.

Once the data has been treated, the identification procedure is design, depending on the physical

behaviour that will be identified, different model approaches will be used, also the data will be

informative enough about this physical phenomena in order to achieve a good identification.

The model is implemented in a MEX file that will contain the model state equations as well as the

parameters of that precise model. Then in a Matlab script, the steps are the following:

 Define name and units for the input, states and outputs.

 Define the parameter vector with its boundaries.

 Define the initial states from the data, in this case as the outputs are directly the states, we

can define the initial states precisely.

 Integrate the model defined in the MEX file into the Matlab script.

 Create an iddata object containing all the data sets, that will be called later on each step.

 Estimate the model until there is one data set left, this one will be used for validation purpose.

 Each estimation step saves the parameter values and use them as initial guess for the next

estimation step.

 Compare the identified models in each estimation step with the validation data set.

When estimating the model, different criterion of fit or searchmethod can be used, these are explained

in later sections.

Modelling, identification and control of an elastic joint.

4

2. System setup

In this chapter, the whole system used for the purpose of this project will be explained; this point has

been divided into mechanical equipment and electric and electronic. During the project some things

were changed, here the final version used will be described and some of those changes needed from

the initial version of the system will be explained.

Jose Antonio Mulet Alberola and Cristóbal Haro Galarza, who were directed by the teacher Santiago

Gutierrez, designed the robot structure in previous works. For the Discovery, other students that

developed its projects with Ranko developed configuration and functions in previous works. Anyway

when starting the project to understand the whole system and to make it work properly many things

had to be checked and changed such as encoder headers that were burnt, codewheels damaged and

the flexpline of the Harmonic drive dropped after operating with it during some period of time. All this

problems had to be fixed in order to start the latter steps of the project; the mechanical problems with

the structure were fixed by adding new pieces or fixing the structure treating it with chemical products.

All the mechanical materials as well as the electric and electronics are detailed in the following section.

2.1 Mechanical structure

2.1.1 Prototype robot structure

The robot structure was built in a 3D printer, with ABS as main material, after some years and taking

into account previous works, the first challenge presented was that new pieces needed for the proper

work of the system were needed, these are used for fixing the flexpline and the plastic ring used for

the first motor.

Figure 2. Built prototype CAD.

Modelling, identification and control of an elastic joint.

5

As a main feature for this project, a new piece was designed in order to keep the flexpline inside the

circular spline, because with the previous design, these two-pieces would separate during operation.

Figure 3. Robot arm built systematically.

2.1.2 Harmonic drive

Explain the harmonic drive use, its properties, its use in nowadays robots, possible configurations and

the configuration chosen for our robot (CS fixed, WG input, FS output, with -1/N reduction).

Figure 4. Harmonic Drive used for the project.

The main goal of this project consists in the identification of the Harmonic Drive developed by the

Harmonic Drive polymer GMBH Company. This specific model was developed few years ago and it

cannot be bought nowadays since it is not being produced anymore, also the specifications given by

the manufacturer are very poor, this can be consulted in the annexes where all the datasheets and

pdfs from the materials used for this project are presented.

Some of the technical specifications provided are shown in the following table.

Modelling, identification and control of an elastic joint.

6

Table 1. Harmonic Drive manufacturer specifications.

Reduction ratio 70

Rated torque (Nm) 6

Peak torque (N) 16

Efficiency (rated operation) 61%

Rated input speed (rpm) 3000

Maximum input speed (4000 rpm) 4000

No-load running torque (0.05 Nm) 0.05

Weight (g) 149

Repeatability (arcmin) +/- 0.2

Figure 5. Harmonic Drive specified dimensions.

The gear is attached to an EC motor and built inside the prototype arm structure, when assembled

properly the dedoidal form shown below should be avoided.

Figure 6. Correct assembly.

Modelling, identification and control of an elastic joint.

7

2.2 Electric and electronic components

2.2.1 BLDC motor

Figure 7. EC motor dimensions.

All electric motors work by the interaction of two magnetic fields pushing on each other. One field is

created by the rotor and one by the stator. The difference between motor types is in how these fields

are created and controlled. BLDC motors use permanent magnets to create the rotor field, and a series

of coils controlled by an electronic controller or commutator to create the stator field.

The fact of being brushless avoids the sparking and short life of brushed motors, so they are rapidly

becoming more popular than the brushed DC motors used conventionally as long as they need less

maintenance and have longer life span. Because they have electronics controlling the stator this

motors don’t need to waste power inducing the rotor field, they give better performance and

controllability, and run cooler than induction. In addition, they are very high efficiency, and maintain

a high efficiency level at part speed.

Figure 8. EC motor used for the project.

Modelling, identification and control of an elastic joint.

8

Some of the parameters of the motor can be directly extracted from the datasheet, the most important

are:

Table 2. EC motor parameters.

Nominal Voltage (Vsupp) 36.0

Nominal speed (rpm) 1240

Nominal current (A) 1.78

Nominal torque (mNm) 405

Terminal resistance phase to phase (Ohm) 2.3

Terminal inductance phase to phase (mH) 2.5

Torque constant (mNm/A) 217

Speed constant (rpm/V) 44.0

Rotor inertia (gcm2) 3060

When modelling the motor in later points of this project, it will be considered as a usual DC motor to

simplify the modelling, but as long as the current measured by the ESCON power stage is the current

in one phase, the electrical torque can be estimated, as stated in [26], knowing that the three phases

are symmetrical as follows:

𝜏𝑚(𝑡) = 2𝐾𝑎𝑖𝑝(𝑡) (2.1)

Which will be used later to identify the friction models containing the Striebeck curve from current and

velocity measurements.

2.2.2 Encoder headers and codewheels

To integrate the Harmonic Drive transmission in a robotic system it is necessary to know the kinematic

error variation during the rotation, for this task, an encoder is implemented, on each side of the gear.

The encoders are sensors that generate digital signals according to a rotational movement, more

precisely the incremental encoders are the ones used for the rotational movement. This kind of

encoder determines its position counting pulses generated by a light passing through the holes of the

codewheel attached to the rotational axis which wants to be measured. For determining the direction

of the rotation two channels are used to measure the phase respect each other to know which

direction is moving towards.

Modelling, identification and control of an elastic joint.

9

Figure 9. Encoder and codewheel HEDS-9100.

The incremental encoders channel A and B give two square waves with 90º phase between them.

Sometimes a third channel called Index is implemented to know when the axis moved 360º; this

channel is usually used for initialization of the motors, also called Homing. In this project, some Homing

functions have been implemented, but due to the bad state of the codewheels, the interruptions

generated by the index channel triggered more than once per revolution, so it wasn’t working properly.

Figure 10. Encoder channels signal.

The given encoders use 2000 pulses per revolution so it’s equivalent in radians can be calculated in the

code when extracting the data for identification. In addition, the counter of the microcontroller has 16

bits, so each time the encoder readings reach this maximum the value is resetted, this is known as

wrap or auto-reload, all this will be shown in more detail in the system limitations section.

Modelling, identification and control of an elastic joint.

10

Figure 11. Encoder header dimensions.

The same encoder header and codewheel has been used in both motor and link side measurements,

as it will be seen later, this has become one of the main system limitations when identifying the H.D

flexibility parameters, as long as this parameters give the main information about the link side

movement. The H.D reduces by 70 the velocity, this means that compared to the motor velocity, it will

move very slowly so the quantization error will appear, then when estimating the velocity with signal

differentiation from this encoder measurements will provide an inaccurate signal measured which will

make the identification of the experimental platform a complex challenge.

Figure 12.BLDC Motor with encoder header and codewheel mounted.

Modelling, identification and control of an elastic joint.

11

2.2.3 Discovery STM32F429Zi

The needs of this project at the hardware level requires, mainly, encoder readings, actuator signals,

and data storage and transmission. For this purpose, the Discovery STM32F429Zi has been used in the

project. Some of its more important features for the project are GPIOs, timers, DACs, SDRAM and USB

VCP.

The GPIOs are used for the encoder readings, each channel of the encoder is connected to a GPIO pin,

which is configured and attached to a timer, there is an encoder mode when configuring the GPIO in

the code, so the counts are stored in a timer and then the value is read from the counter of that timer.

The DAC value range is from 0V to 3.3V by specification, in reality this value may vary between devices.

When configuring the DAC it is assigned to a pin in the board, the user can also set the speed or wave

generator mode if needed; in this case, the signal will be generated by an equation depending on the

time of the experiment.

The experiments are run with a control timer, which is configured to generate an interruption each

millisecond that will be the sample time of the data measured. All the data collected will be transmitted

via USB with the VCP, the virtual com port allows, when installed the proper drivers, to acquire data in

the computer by connecting it to the Discovery board via USB.

The discovery board also has its own supply pins, which will be used to supply the encoder headers at

+5Vdc.

Figure 13. Discovery STM32F429Zi.

In this case, the C program consists in a Setup and a While, the Setup configures all the functionalities

of the board used and this sequential way of working is simple and good when all the tasks have similar

priority.

The STM32F4 has two DAC channels (12 bit) that can be used to send analog signals to the ESCON,

which are implemented in the code, the ST-LINK V2, and VCP COM port drivers have to be installed in

Modelling, identification and control of an elastic joint.

12

order to load the programs to the board and send the data via USB both. In the table below all the pins

used for the project are listed with its corresponding functionality.

Table 3. Discovery board pins used.

PIN Function

GPIOC P6 Encoder 1 CHA

GPIOC P7 Encoder 1 CHB

GPIOD P12 Encoder 2 CHA

GPIOD P13 Encoder 2 CHB

GPIOA P5 DAC output

GPIOG P15 ESCON Enable digital signal

Vcc (+5Vdc) Encoder 1 header

Vcc (+5Vdc) Encoder 2 header

GND Ground Encoder/DAC circuit

Remark that there are different pins used as GND but they are all internally connected inside the board.

2.2.4 EPOS/ESCON modules

When started, this project was using as a power stage for the motors the EPOS 24/5 positioning

controller. However once the project is finished and the robot arm is placed in a vest where all the

electronic components have to be fitted, the size is an important factor as well as the weight, if we add

that the ESCON module can also work with the motors given for the application needed at lower price.

Then it is obvious that the ESCON modules are more appropriate to be used in this project instead the

EPOS, in this section, the ESCON modules are described and its operating modes are explained as well

as some of its configurations used in the present project.

The ESCON Module 50/5 is a small sized servo controller for the highly efficient control of BLDC motors

up to approx. 250 Watts.

The operating modes available are:

 Speed control (Closed loop).

 Speed control (Open loop).

 Current control.

For the identification procedure, only the speed control in open loop as well as the current control will

be used. In the first, the DAC signal from the discovery is scaled to the voltage drop in the armature of

the motor, when actuating over the voltage as input, the angular speed of the motor as output is

changing. When in current control mode, the DAC signal is proportional to the current sent to the

motor, thus, the electrical torque generated by the motor is controlled. The main problem of this, as

it will be seen in later points is that in current control mode the voltage saturates, this means that the

motor will reach its maximum speed in this control mode and so the data taken at saturating levels

Modelling, identification and control of an elastic joint.

13

cannot be used for the identification tasks. This is the main reason why voltage control experiments

have been carried out in order to identify the parameters of the whole system. The ESCON Module

50/5 is designed to be commanded by an analog set value (DAC signal).

Figure 14. ESCON module 50/5.

This device is designed to be configure via USB interface using the graphical user interface “ESCON

Studio” for windows PCs.

Some of its electrical rating properties as well as pin I/O used are shown in the tables below.

Table 4. Electrical rating properties.

Nominal operating voltage +Vcc 10-50 Vdc

Output voltage (max) 0.98 x + Vcc

Output current Icont/Imax (<20 s) 5A/15A

Max speed EC motor 150000 rpm

Table 5. Inputs and outputs used.

Analog input 1/2 12bit resolution; -10…+10V; differential

Hall sensor signals H1, H2, H3

Digital input +2.4…+36 Vdc (Ri=38.5 kOhm)

EC motor connection Motor winding 1, 2 and 3

Status indicator Operation/Error Green/Red Led

The supply has been set to 36V, which is the maximum the motor can use, this was done as long as the

load is not known, otherwise the supply voltage should be calculated depending on the load. Note that

the necessary output current is depending on the load torque.

All the pins available in the ESCON are shown in the figure below.

Modelling, identification and control of an elastic joint.

14

Figure 15. ESCON module 50/5 dimensions and pin assignment.

In the Table 6, the pins used are mentioned with its corresponding functionality described.

Table 6. Pin assignment table.

Pin Signal Description

1/2 Motor winding 1 EC motor winding 1

3/4 Motor winding 2 EC motor winding 2

5/6 Motor winding 3 EC motor winding 3

7/8 +Vcc Nominal operating voltage

9/10 Power_GND/GND Vcc GND/GND

11 +5Vdc Hall sensor supply

13 Hall sensor 1 Hall sensor 1 input

15 Hall sensor 2 Hall sensor 2 input

17 Hall sensor 3 Hall sensor 3 input

21 DigIN2 Digital input 2

23 GND Ground

26 AnIN2- Analog input 2, negative signal

27 AnIN2+ Analog input 2, positive signal

In the next point the cables used for the ESCON supply, motor windings and Hall sensors are described.

The analog input is the DAC signal amplified to adapt the DAC voltage range from [0V - 3.3V] to [0V-

5V], also the before mentioned ENABLE signal corresponds to the Digital Input 2 which is configured

Modelling, identification and control of an elastic joint.

15

to activate the ESCON while the experiment is running and turn it off when the experiment ends for

safety reasons.

Figure 16. Enable pin configuration in ESCON Studio.

The ESCON studio is the software provided by the manufacturer of the power stage module and the

BLDC motor. When configuring the power stage the mode that the motor is being actuated by the

ESCON power stage depending on the analog signal received from the Discovery DAC is configured,

here the different modes of control used to identify are explained. All the motor parameters have to

be introduced into the ESCON studio, the steps are the following:

1. Choose type of motor (EC/BLDC or DC).

Figure 17. Motor type select.

Modelling, identification and control of an elastic joint.

16

2. Motor data specified by the manufacturer.

Figure 18. Motor parameters from datasheet.

3. System operating conditions (boundaries).

Figure 19. Motor operating point specified in datasheet.

Modelling, identification and control of an elastic joint.

17

4. Hall sensor polarity.

Figure 20. Hall sensor pattern configuration.

Once these steps are completed, the following step is to choose the operating mode; this is basically

define if the DAC input will control the current in the motor or the voltage (speed). Both operating

modes are explained in the following section.

Current control

In this mode, the current is proportional to the DAC signal, this means if the DAC is a sinus wave, the

current will have the same shape but scaled by a factor, which is defined in the ESCON studio software,

the diagram of this operating mode is the following.

Figure 21. Current control ESCON diagram.

Therefore, to keep the current signal following the reference, the real current measured in the motor

phase is feedbacked and compared to the set value. In the following figure, the effect can be

appreciated.

Modelling, identification and control of an elastic joint.

18

Figure 22. DAC input, Current averaged and motor speed in the ESCON data recorder.

The yellow signal corresponds to the current measured in one phase of the motor, the red one

corresponds to the DAC input, in current control, the current follows the DAC signal, while in voltage

control the speed signal follows the DAC input.

Define the set point depending on the working range of the input and output.

Figure 23. Set point configuration for current control.

Apply an offset, in Amperes, for moving the motor in both directions.

Modelling, identification and control of an elastic joint.

19

Figure 24.Offset needed for operating in two directions

If the configuration is as shown in figure 23 and 24, at 0V the power stage will deliver 0A. When adding

the negative offset, that is he half of the maximum value we set as a maximum for the current output,

we get the symmetric range for positive and negative sides. With 2.5V being the motor stopped, and

the values from 0V to 2.5V negative direction and 2.5V to 5V positive direction.

In the ESCON Studio the values for the operating loop can be monitorized on-line, and some values

can be modify if needed, these are the offset and the power stage Gain.

Figure 25.Current control ESCON monitored.

In the case of the gain tuning, there is an assistant where, when specifying the current and speed values

for the motor, it calculates the gain needed in order to meet the requirements specified.

For achieving this, the motor will move, so a notification will appear for safety reasons before starting

the regulator tuning.

Modelling, identification and control of an elastic joint.

20

In the figure below, the maximum current in amperes and the maximum speed in revolutioons per

minute are specified, then click the button init and let the motor move for the regulator tuning.

Figure 26. Proportional current controller tuning.

Voltage control

The voltage control, as can be seen in the figure below actuates on the voltage of the motor armature,

here the back EMF acts, being the rotational speed times the motor speed constant substracted to the

voltage in the armature.

Figure 27. Voltage control diagram.

Modelling, identification and control of an elastic joint.

21

Define the set point depending on the working range of the input and output.

Figure 28. Power stage gain definition.

When selecting the set point value, the upper and lower values have to be specified, this means that

the value of the maximum speed of the motor corresponds to the maximum value on the ESCON

analog input. In the figure shown the system was set to operate only in one direction, this means 0V

corresponds to the motor stop and 5V corresponds to the maximum value the motor can rotate.

When configuring the power stage for controlling the voltage in two directions, the maximum value of

the speed has to be doubled, then an offset has to be set equal to the maximum value but negative.

Figure 29. Current limitation and speed control ramp configuration.

Modelling, identification and control of an elastic joint.

22

When working in voltage control, the offset has to be specified in rpm’s in order to move the motor in

both directions.

Figure 30. Speed control offset.

In a similar way, compared to current control, the speed control can be monitorized, in this case as

long as the voltage can be varied precisely depending on the DAC input, no regulation loop is needed

in order to follow the signal demand, so no regulation tuning is needed.

Figure 31. ESCON studio speed control (open loop).

In the ESCON Studio the analog input value, this is the voltage of the DAC multiplied by the amplifier

gain 5/3 can be monitored. At this point the DAC1 assigned to PA4 in the STM32F429 Discovery had

an offset error, this means that when 0 volts are required as DAC output, the Discovery provides

constant 0.12V instead 0V, known this the DAC2 in PA5 is tested and there is no such offset. When

implementing the system the DAC calibration has to be a primary thing, but for the low cost platform

in which this project is based is enough.

Modelling, identification and control of an elastic joint.

23

2.2.5 Wires

In this section the wires used to connect the motor to the power stage ESCON will be explained, the

motor cable and the hall sensor cable are shielded, the main reason is to reduce the electrical noise

from affecting the signals and to reduce the electromagnetic radiation that may interfere with other

devices. Mainly three kind of cables are needed to connect the BLDC motor to the power stage, these

are:

 Power supply cable.

 Motor power cable.

 Hall sensor cable.

The particular shape of the back EMF in the BLDC motors makes necessary to know the electrical

degrees of the motor which is recorded by the hall sensor, this means that the ESCON won’t work until

it detects the Hall sensor cable is connected and working properly.

Table 7. ESCON power cable information.

ESCON Power cable technical data and pin assignment

Cable cross-section 2 x 0.75mm2

Head A Cable connected to the supply

Head B Cable sleeves 0.75 mm2, Solded to the ESCON

Wire Black Head A pin 1 (-) Ground of supply voltage

Wire Black Head A pin 2 (+) Supply voltage +11…+36 Vdc

Figure 32. ESCON power supply cable.

Modelling, identification and control of an elastic joint.

24

Table 8. ESCON motor cable information.

ESCON Motor cable technical data and pin assignment

Cable cross-section 3 x 0.75 mm2 shielded

Head A Molex Micro-Fit 4P female crimp terminals (Motor)

Head B Cable sleeves 0.75 mm2, Solded to the ESCON Pins

Wire White Head A pin 1 BLDC Motor: Winding 1

Wire Brown Head A pin 2 BLDC Motor: Winding 2

Wire Green Head A pin 3 BLDC Motor: Winding 3

Wire Black Head A pin 4 Cable shield

Figure 33. ESCON motor cable.

Table 9. Hall sensor cable information.

Hall sensor cable technical data and pin assignment

Cable cross-section 5 x 0.14 mm2 shielded

Head A Molex Micro-Fit 6P female crimp terminals (Motor)

Head B Cable sleeves 0.75 mm2, Solded to the (ESCON) Pins

Wire Green Head A pin 1 Hall sensor 1

Wire Brown Head A pin 2 Hall sensor 2

Wire White Head A pin 3 Hall sensor 3

Wire Yellow Head A pin 4 GND

Wire Grey Head A pin 5 Hall sensor supply voltage +5Vdc

Wire Black Head A pin 6 Hall shield

Modelling, identification and control of an elastic joint.

25

Figure 34. Hall sensor cable.

In the following picture these connections are shown for the actual assembly of the power stage.

Figure 35. ESCON Module and the motor cables.

Modelling, identification and control of an elastic joint.

26

2.2.6 Auxiliary electronic circuits

Signal conditioning from the Discovery DAC (0-3V) to the ESCON input (0-5V) Battery for the

autonomous system.

Figure 36. System connections diagram.

Remark that this would be the general diagram for one DAC into the ESCON power stage. When

mounting as many ESCONs as motors are needed, this diagram should be repeated if the Discovery

DAC is used as analog signal to demand the current or voltage needed in order to move the motor.

Modelling, identification and control of an elastic joint.

27

Figure 37. Electronic circuit in the power stage.

2.2.7 System architecture

The system used in this project is a part of a bigger system, where the robot arm will be controlled

with a Raspberry pi, and many Discoveries will be used to access to low level hardware, this means all

the encoders for the robot arm, all the DACs for sending the actuator signal and communication

between dispositives.

In the project, the Discovery is connected to the PC with the ST-Link USB and the VCP USB (in case the

experiments are carried out for taking data of the system), for using these appropriately, the ST-Link

and VCP com port drivers are installed in the PC. The Harmonic Drive transmission is mounted into the

EC motor, once assembled, it is mounted into the prototype robot structure. The encoders are

connected from the headers built inside the structure to the Discovery. The DAC is connected to the

auxiliary amplifier circuit, which amplifies the voltage range from 3V to 5V, then this voltage is the

analog input to the ESCON, which is supplied by a 36V power source. The ESCON and the EC motor are

connected through the cables explained in the section above. The ESCON requires the hall sensor

signals to operate properly, so this connection cannot be avoided, also the three wires for the motor

windings are connected, and the ESCON module is connected to the PC via USB and the ESCON studio

software has to be installed into the computer in order to manage the operation conditions of the

ESCON.

Modelling, identification and control of an elastic joint.

28

Figure 38. Experimental platform mounted in the DISA.

Modelling, identification and control of an elastic joint.

29

3. Modelling robots with flexible joints

When modelling robot dynamics, the usual assumption is that manipulators consist only of rigid

bodies. However, this ideal situation may be considered valid only for slow motion and small

interacting forces. If flexibility is not taken into account when considering robot design and control, a

degradation of the overall expected performance of the robot occurs.

From a modelling point of view, flexibility can be assumed as concentrated at the robot joints, the

dynamic modelling steps are similar to the rigid case, with the need to introduce additional generalized

coordinate besides those used to describe the rigid motion of the robot arm.

The presence of joint flexibility in the present work is given by the use of Harmonic Drives as the

transmission and reductor element, which, as stated before provides high reduction ratios with power-

efficient compact inline devices.

When subject to the forces/torques arising in normal robot operation, this components are flexible, in

this case the “flexspline” of the harmonic drive, this introduces a time varying displacement between

the position of the actuators and that of the driven links. Without a specific control action, an

oscillatory behaviour typically of small magnitude by at relatively high frequency, is observed at the

robot-end effector level during free motion. In addition, some form of instability may occur in tasks

involving contact with environment.

Figure 39. Elastic joint approach.

Dynamic models that include joint flexibility are used to evaluate quantitatively vibratory effects

superposed on the rigid motion, for the multivariable case some assumptions are made for obtaining

a simplified but still good dynamic model, but this is out of the scope of this project, and maybe will

be part of posterior projects.

Modelling, identification and control of an elastic joint.

30

3.1 Modelling the Harmonic Drive transmission in a robot joint

Considering the topology of an elastic robot joint as shown in Figure 40. In terms of the input-output

behaviour, the proposed structure does not differ from a simple fourth order linear dynamic model of

two connected masses. An external exciting torque 𝜏𝑚 applied by the motor, which constitutes the

input value. The relative position of the second moving mass 𝑞 constitutes one of the outputs and its

the angular position at the link side, 𝜃 is the motor side angular position, which is also measured, the

derivatives of both signals are also in the model related to the non-conservative terms of the equations

which are frictions and damping parameters.

The Lagrange equations, which is a method that allows writing down the dynamic equations of a

general mechanical system from a generalized coordinates system, allows to represent the dynamic

model as follows:

𝑑

𝑑𝑡
(
𝜕𝐾𝑒

𝜕𝑞�̇�
) −

𝜕𝐾𝑒

𝜕𝑞𝑖
− 𝐹𝑖 = 0

(3.1)

Where:

𝑞𝑖 Generalized coordinates of the system or degrees of freedom.

𝐾𝑒 Kinetic enegy of the system.

𝐹𝑖 Generalized force.

The generalized force term 𝐹𝑖 considers all the forces interacting in the system, these forces can be of

three different categories:

1. Interaction forces between different punctual masses of the system.

2. External forces, included gravity.

3. Friction forces.

Forces 1 and 2 are conservative and they can be obtained differentiating a potential energy function

𝑈 with respect to a generalized coordinate, force 3 represent friction force which is non-conservative

and its obtained deriving respect to the velocity a potential dependent of the velocity, which is the

Rayleigh function 𝜗. So the generalized force can be written as:

𝐹𝑖 = −
𝜕𝑈

𝜕𝑞𝑖
−

𝜕𝜗

𝜕𝑞�̇�

(3.2)

Where the generalized force is represented with its conservative and non-conservative terms.

Modelling, identification and control of an elastic joint.

31

Figure 40. Harmonic Drive configuration used in the application.

Therefore, for the basic configuration shown in Figure 41, the Lagrange equations can be applied as a

mechanical system with two D.O.F.

1. Position or angle of the motor 𝜃𝑚, which is the input to the system.

2. Kinematic error ∆𝜃, which is expressed as a function of the output position of the H.D (𝜃𝑙)

which is determined by experimental measurements and its calculated as:

𝑞 = 𝜃 − ∆𝜃

(3.3)

The kinetic energy 𝐾𝑒 it’s due to the movement in the motor axis and in the output axis where the load

is.

𝐾𝑒 =
1

2
𝐽𝑚�̇�𝑚

2 +
1

2
 𝐽𝑒�̇�

2

(3.4)

The elastic potential energy it’s due to the flexibility of the mechanism, and it is defined as:

𝑈 = ∫ 𝐾𝑒𝑙∆𝜃𝑑∆𝜃
0

−𝜃𝑠

(3.5)

The Rayleigh function is defined as:

𝜗 = ∑
1

2
𝐵𝑖�̇�𝑖

2

𝑛

𝑖=1

(3.6)

When applied to the friction terms the following expression is obtained:

𝜗𝑓 =
1

2
𝐵𝑚�̇�𝑚

2 +
1

2
𝐵𝑒�̇�

2

(3.7)

Modelling, identification and control of an elastic joint.

32

In addition, the spring damping has to be included in this kind of function, as long as it is a dissipative

term.

𝜗𝑑 =
1

2
𝐵∆�̇�2

(3.8)

There is one Lagrange equation per each generalized coordinate, so for representing the H.D system 2

equations are needed.

𝜏𝑚 =
𝑑

𝑑𝑡
(
𝜕𝐾𝑒

𝜕�̇�𝑚

) −
𝜕𝐾𝑒

𝜕𝜃𝑚
+

𝜕𝑈

𝜕𝜃𝑚
+

𝜕𝜗𝑓

𝜕�̇�𝑚

−
𝜕𝜗𝑑

𝜕�̇�𝑚

(3.9)

0 =
𝑑

𝑑𝑡
(
𝜕𝐾𝑒

𝜕�̇�
) −

𝜕𝐾𝑒

𝜕𝑞
+

𝜕𝑈

𝜕𝑞
+

𝜕𝜗𝑓

𝜕�̇�
−

𝜕𝜗𝑑

𝜕�̇�

(3.10)

Including all the terms developed above, the two last equations can be written as:

𝐽𝑚�̈�𝑚 − 𝐾∆𝜃 − 𝐵∆�̇� + 𝐵𝑚�̇�𝑚 = 𝜏𝑚

(3.11)

𝐽𝑒�̈� + 𝐾∆𝜃 + 𝐵𝑒�̇� + 𝐵∆�̇� = 0

(3.12)

Where:

𝐽𝑒 Link intertia moment.

𝑏𝑒 Link viscous friction.

𝐵 Spring damping.

𝐾 Linear spring stiffness coefficient.

𝐽𝑚 Motor inertia moment.

𝑏𝑚 Motor viscous friction.

For simplicity in the equations above, the reduction ration has been omitted, when the reduction ratio

is taken into account, all the torques in the motor side of the equation are divided by N, so the

equations (3.11) and (3.12) can be rewritten as:

𝜏𝑚 = 𝐽𝑚�̈� + 𝑏𝑚�̇� +
𝐾

𝑁
(
𝜃

𝑁
− 𝑞) +

𝐵

𝑁
(
�̇�

𝑁
− �̇�)

(3.13)

0 = 𝐽𝑒�̈� + 𝑏𝑒�̇� + 𝐾 (𝑞 −
𝜃

𝑁
) + 𝐵 (�̇� −

�̇�

𝑁
)

(3.14)

Here the input is the torque generated by the motor, which is proportional to the current in the motor

armature, this means working in current control mode, as shown in the following block diagram.

Modelling, identification and control of an elastic joint.

33

Figure 41. Current control block diagram.

The terms (
𝜃

𝑁
− 𝑞) and its derivatives are the kinematic error and its derivative.

The input is the torque generated by the motor is calculated from the current, the motor current to

torque constant gives the torque applied by the motor as follows:

𝜏𝑚(𝑡) = 2𝐾𝑎𝑖(𝑡) (3.15)

In this case, as long as there are two control modes available in the power stage (ESCON module) the

formulas that include the input (motor action) can be rewritten as follows for voltage control:

�̈�(𝑡) =

((𝑢𝐷𝐴𝐶(𝑡)𝐾𝑖𝑛 −
𝜏𝑐𝑅

𝐾𝑎
) +

(
𝐵

𝑁
 (�̇�(𝑡)−

�̇�(𝑡)

𝑁
)+

𝐾

𝑁
(𝑞(𝑡)−

𝜃(𝑡)

𝑁
))𝑅

𝐾𝑎
− (𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
)�̇�(𝑡))

𝐽𝑚𝐾𝑎/𝑅

(3.16)

With the following block diagram considered:

Figure 42 Voltage control block diagram

Where the back EMF acts as a “virtual friction” and its added to the viscous friction coefficient as in

equation (3.16).

Despite this, when identified, the parameters from voltage control and the ones from current control

will be separated.

Modelling, identification and control of an elastic joint.

34

3.2 Harmonic Drive state space modelling

The most usual way to study a system is through the relationship between the inputs given to the

system and the outputs obtained from it. The system modelling in state space is based on describing

the dynamic system by means of n first order differential equations or difference equations (for

discrete systems), and then those equations can be represented in matrix form so the mathematical

expressions are simplified.

A dynamic system, once the differential equations are known, the variables that define the system or

the state variables are defined, then the equations are rearranged as a function of these and the state

equations of the system are obtained

�̇�(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡)]
(3.17)

𝑦(𝑡) = 𝑔[𝑥(𝑡), 𝑢(𝑡)]
(3.18)

Where:

𝑥(𝑡) It’s the state variables vector.

�̇�(𝑡) It’s the derivative of the state variables vector.

𝑢(𝑡) It’s the input vector.

𝑦(𝑡) It’s the output vector.

If the system is linear and time invariant the state equations can be written as:

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
(3.19)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
(3.20)

We consider the following state space vector:

𝑥 = [𝜃 �̇� 𝑞 �̇�]𝑇
(3.21)

Rearranging the equations taking into account the spring damping:

𝐽𝑚𝑥4̇ + 𝐵𝑚𝑥4 +
𝐾𝑥3

𝑁2
−

𝐾𝑥1

𝑁
+

𝐵𝑥4

𝑁2
−

𝐵𝑥2

𝑁
= 𝜏𝑚

(3.22)

𝐽𝑒𝑥2̇ + 𝑏𝑒𝑥2 + 𝐾𝑥1 −
𝐾𝑥3

𝑁
+ 𝐵𝑥2 −

𝐵𝑥4

𝑁
= 0

(3.23)

From equations (3.19), (3.20) and (3.21) the following matrix are obtained which gives the state space

representation of the given system.

Modelling, identification and control of an elastic joint.

35

𝐴 =

[

 0

−
𝐾

𝑁2𝐽𝑚
0
𝐾

𝑁𝐽𝑒

1

−
𝑏𝑚 +

𝐵

𝑁2

𝐽𝑚
0
𝐵

𝑁𝐽𝑒

0
𝐾

𝑁𝐽𝑚
0

−
𝐾

𝐽𝑒

0
𝐵

𝑁𝐽𝑚
1

−(𝑏𝑒 + 𝐵)/𝐽𝑒
]

(3.24)

𝐵 = [

0
𝐾𝑎𝐾𝑚/𝐽𝑚

0
0

]

(3.25)

𝐶 = [

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

]

(3.26)

D = 0

(3.27)

3.3 Modelling non-linearities

Nonlinear behaviour in elastic robot joints can be found by different phenomenas such as transmission

compliance, resulting from gear tooth interaction and wave-generator deformation due to high radial

forces that is commonly approximated by a nonlinear or piecewise linear stiffness. In addition,

hysteresis torsion in elastic robot joints occurs as a coupled nonlinearity due to different factors as

backlash, internal friction, and nonlinear stiffness. These interact inside of mechanical transmission

assemblies. The nonlinear joint torsion leads to hysteresis lost motion and can provoke control errors

in relation to the joint output at both trajectories tracking and positioning. In this chapter, the studied

models includes the Bouc–Wen-like hysteresis model, together with nonlinear cubic polynomial for

elasticity, which is originated from structural mechanics, both arranged according to the assumed

torque transmitting structure.

Elasticities in robotic joints always have drawn an attention in the research since being one of the key

challenges for an accurate joint dynamics modeling and control.

To this end it can be emphasized that evermore lightweight design co-determine the development of

modern robotics as well, where evermore nonlinearities constitute a growing challenge.

3.3.1 Hysteresis spring

The input angle 𝜃 is converted into the harmonic drive output angle by the reduction ratio N, where

the reductor deformation can be observed through ∆𝜃 as equation (3).

Where the “flexspline” rotation, 𝑞 has an opposite direction respect to the “wave generator” 𝜃.

Instead using the typical linear relation (𝐾(∆𝜃)), the transmission acting between the input and output

is approximated by a cubic polynomial, which is function of the kinematic error as follows:

Modelling, identification and control of an elastic joint.

36

𝑇𝑒(∆𝜃) = 𝐾1(∆𝜃) + 𝐾3(∆𝜃)3 (3.28)

Where 𝐾1 and 𝐾3 are the cubic stiffness coefficients.

Figure 43. Nonlinear elasticity (cubic polynomial) Simulink implementation.

The torsional stiffness curve can be also approximated by three straight lines having stiffness of K1, K2

and K3, but in the present work a cubic polynomial with two coefficients is used instead as long as

provides good enough results.

Stiffness K1 applies for output torque of zero to T1 and stiffness K3 applies for output torque greater

than T2, stiffness K2 applies for output torque between T1 and T2.

Figure 44. Non-linear elastic polynomial.

The fact of using this king of function is justified for using it together with the Bouc-Wen hysteresis

model, which contemplate the plastic behaviour of the transmission, then putting together the plastic-

elastic physical phenomena in the same dynamic equation.

Modelling, identification and control of an elastic joint.

37

Figure 45. Typical hysteresis shape in Harmonic Drives.

The Bouc-Wen hysteresis model uses a first-order non-linear differential equation that relates in

hysteretic way the relative displacement to the restoring force. In this equation, the shape of the

hysteresis curve is modified by a set of free parameters, the main advantage of the Bouc-Wen

hysteresis model is the possibility to include the complex non-linear stiffness characteristics exposed

above. The restoring torque, which is a hysteresis spring, can be decomposed in an elastic and plastic

term, a weighted of both determines the reversible and irreversible contribution to the overall

transmitted torque value, and it is represented in the following equation:

𝑇ℎ(∆𝜃, 𝑡) = 𝑤𝑇𝑒(∆𝜃)|∆𝜃(𝑡)| + (1 − 𝑤)𝑇𝑒(∆𝜃)|𝑥(𝑡)| (3.29)

The weighting factor w provides the relation between purely elastic (𝑤 = 1) or purely plastic
(𝑤 = 0) torque responses.

The dynamic state variable 𝑥 which captures the hysteresis map, is described by the
differential equation:

�̇�(𝑡) = ∆�̇� − 𝛽|∆�̇�||𝑥(𝑡)|𝑛−1𝑥(𝑡) − 𝛾∆�̇�|𝑥(𝑡)|𝑛 (3.30)

Modelling, identification and control of an elastic joint.

38

The amplitude and shape of the hysteresis is controlled by the parameters 𝛽 and 𝛾. When both

hysteresis paramters are zero no hysteresis loop occurs after the input direction change, the power

factor 𝑛 ≥ 1 assigns the smoothness of transitions between elastic and hysteretic parts.

This equation has been implemented in Simulink for the simulations.

Figure 46. Internal state of the hysteretic differential equation.

This model has been studied in depth in many research as [3], [8], [12] and [15].

3.3.2 Non-linear friction modelling

Under the increasing demand of more accurate high-performance motion systems, many friction

models appropriate for control purpose of mechanical systems have been proposed. These friction

models formulate a dynamical model based on typical friction properties, in this project the friction

studied models are the LuGre, Maxwell-Slip and Modified Maxwell-Slip, which can be found in more

detail in [2], [14] and [18] for example.

LuGre friction model

The LuGre friction model was developed at the universities of Lund and Grenoble, it has arbitrary

steady-state characteristics such as the Striebeck curve 𝑔(𝑣).The interpretation of the internal state is

that of the bristle model, where friction is visualized as forces produced by bending bristles behaving

like springs. Instead of modelling the random behaviour of friction, it is based on the average behaviour

of the bristles. The average deflection of the bristles is denoted as the state variable z as shown in the

following equation:

𝑑𝑧

𝑑𝑡
= 𝑣 −

𝜎0

𝑔(𝑣)
𝑧|𝑣|

(3.31)

Where 𝑔(𝑣) is the Striebeck curve, which is a decreasing function for increasing velocity
bounded by an upper limit equal to the static force 𝐹𝑠 and a lower limit equal to the Coulomb
force 𝐹𝑐.

Modelling, identification and control of an elastic joint.

39

𝑔(𝑣) = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒−(𝑣 𝑣𝑠⁄)2 (3.32)

The friction force is given as a function of the state variable z and the velocity 𝑣.

𝐹 = 𝜎0𝑧 + 𝜎1

𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣

(3.33)

Where the parameters 𝜎0, 𝜎1, 𝜎2 equal the asperity stiffness, the micro-viscous friction coefficient and

the viscous friction coefficient, which as stated in the previous point is 𝜎2 = 𝐵𝑚.

Another equivalent form of the equation can be:

𝐽�̇� = 𝑢 − 𝜎0𝑧 + 𝜎1

𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣

(3.34)

Equations (3.31), (3.32) and (3.33) also have been implemented in Simulink.

Figure 47. LuGre Simulink implementation.

Figure 48. Striebeck function Simulink implementation.

Modelling, identification and control of an elastic joint.

40

In the following figure the whole system Simulink block diagram is shown.

Figure 49. General view of the elastic joint implemented in Simulink.

Figure 50. One joint with non-linearities Simulink representation.

Modelling, identification and control of an elastic joint.

41

Maxwell-Slip friction modelling

After the LuGre model, the design of a new model structure was based on the LuGre equations (4.31)

and (4.33) that need to be adapted to describe frictional lag.

The Generalized Maxwell Slip model is a parallel connection of different single state friction, the

friction gorce is given as the sum of the N elementary parts as seen in eq (3.35).

𝐹𝑓(𝑡) = ∑𝐹𝑖(𝑡)

𝑁

𝑖=1

+ 𝜎2𝑣(𝑡)
(3.35)

So the dynamic behavios of each elementary model can be written as:

If the elementary block is sticking:

𝑑𝐹𝑖

𝑑𝑡
= 𝑘𝑖𝑣

(3.36)

Each elementary block will remain sticking until the threshold of the breakaway force
 𝐹𝑖 > 𝛼𝑖𝑠(𝑣) is trespassed.

If the elementary block breaks that condition, switches its state to slipping and the

differential equation is given by:

𝑑𝐹𝑖

𝑑𝑡
= 𝑠𝑔𝑛(𝑣)𝐶(𝛼𝑖 −

𝐹𝑖

𝑠(𝑣)
)

(3.37)

Once the state is slipping, each elementary block resets its state to stick when the velocity crosses zero.

3.3.3 Backslash

Backlash in some gear transmissions is introduced to let the gears mesh without binding and to provide

space for a film of lubricating oil between the teeth, this prevents overheating and tooth damage.

Figure 51. Backlash in the gear transmission contact teeth.

On the other hand, this causes lost motion between the reducer input and output shafts, making it

difficult to achieve accurate positioning in equipment.

The mechanical gear transmission can be considered as a passive transducer of the actuator motion to

the output torque that drives the joint load. The angular position of the link side constitutes the

Modelling, identification and control of an elastic joint.

42

feedback value, which contains the signature of elasticities and backlash acting in the transmission

system. The gear transmissions are the main source of non-linearities as presented above.

Figure 52. Gear transmission with elasticities and backslash.

Depending on the type of gear used different level of torsional compliance and backslash can be found,

Harmonic Drive manufacturers state that for this kind of transmission the backslash is near zero, so

this won’t be included in the final model, and also can be neglected when the play size stays below the

resolution of 𝑞 and 𝜃 measurements.

Modelling, identification and control of an elastic joint.

43

4. System limitations

As long as this project has been developed in a low cost experimental platform, there are some

limitations arising when accuracy is one of the main things taken into account when doing a research

work and even more when modelling systems that will be controlled later on. Many of the researches

that identify the complex physical behaviour that the Harmonic Drive transmission produce in robot

joints were done by M.Ruderman, Dhaouadii and F.Ghorbel in [3], [5], [6]. These, used very

sophisticated and precise equipment with encoders with higher resolution than the ones used in this

project as well as torque sensors at the input and output of the gear transmission. Some others also

include accelerometers to get the acceleration measurement without estimating it from the encoder

position readings.

Despite this, some of the problems were solved or just considered negligible, while some others limited

the goals achieved for this project, anyway all these things have been taken into consideration in order

to improve or change some of the equipment used in the present project for future works.

4.3.1 Encoder saturation

When configuring the DAC pins for reading the encoder information, a timer is assigned to the pin. This

timer will be “read” later on in the code and it will record the pulses read by the header. The timer has

the so called auto reload, which means when it counts up to the maximum value (Depending if its

16bits or 32bits), the counting will start from zero, this effect can be appreciated in the encoder

measurements for an experiment, as shown in the figure:

Figure 53. Encoder readings with timer auto reload.

In order to use the data in the identification procedure, the vector containing the signal has to be

rearranged, for this purpose a matlab function has been created where the “jumps” are detected from

the velocity estimation with the following formula:

𝑣𝑘 =
𝜃𝑘 − 𝜃𝑘−1

𝑇𝑠

(4.1)

Modelling, identification and control of an elastic joint.

44

So when substracting the actual value that has “reset”, the value of 𝑣𝑘 will be high, so this instant is

used to add an offset corresponding to the “jump” value, the function implemented is shown in the

following code.

Therefore, the function takes as arguments the vector with the data with auto reload and the velocity

estimated from this position to detect the auto reload instant. Then an offset equal to the maximum

value that the encoder can read is added or substracted depending on the direction of movement, the

last argument is a value that is bit higher than the maximum speed reached in order to detect the high

value of the estimated velocity, to know which instant has the offset to be added.

Figure 54. Encoder position fixed.

function

[datos_ordenados]=saturacionencoder(datos_medidos,velocidad,offset,

vumbral)

N = size(datos_medidos);

saturador=0;

for i=1:N

 if(velocidad(i)<-vumbral)

 saturador=saturador+offset;

 elseif(velocidad(i)>vumbral)

 saturador=saturador-offset;

 end

 datos_ordenados(i)=datos_medidos(i)+saturador;

end

Modelling, identification and control of an elastic joint.

45

4.3.2 Velocity estimation

As explained above, the velocity is estimated from the position read by the encoders, but if the encoder

has the auto reload problem, then the velocity estimated has “peaks” in the instant the auto reload

happens. In order to avoid this to use the velocity as a feedback in the future if the control is

implemented in the Discovery board, and to have the velocity signal already well estimated in-line

without extra off-line work, the following part of the code implemented in Keil uVision fixes this

problem.

This provides a good velocity estimation signal for the motor side, because its moving at medium

speeds, this have been checked comparing the velocity estimated to the one read by the ESCON data

recorder.

Nevertheless, when moving at lower speeds, this algorithm results in a bad signal estimation, as it can

be seen in the following figure:

Figure 55. "Pulses" from zero to 3.14 estimated when moving at low speeds.

// if timer saturates, the speed equals the previous speed .

if (Encoder1_rad - Encoder1_rad_previous >= 200 | Encoder1_rad_previous - Encoder1_rad

>=200) { // encoder 1

vel_Encoder1 = vel_Encoder1_anterior; }

else vel_Encoder1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling; // (rad/s)

if (Encoder2_rad - Encoder2_rad_previous >= 200 | Encoder2_rad_previous - Encoder2_rad

>=200) { // encoder 2

vel_Encoder2 = vel_Encoder2_anterior; }

else vel_Encoder2 = (Encoder2_rad - Encoder2_rad_previous) / tsampling; // (rad/s)

Modelling, identification and control of an elastic joint.

46

The main reason of this is the low resolution of the encoder (low for slow speeds) that causes the so-

called quantization error as can be seen in the figure:

Figure 56. Quantization error in the encoder two measurements.

When calculating the speed as in equation (4.1) when the encoder value doesn’t change the velocity

is equal to zero, but when detecting a change the value read from the counter is converted to radians,

this results in the pulses having values multiple of pi. If the velocity 2 is filtered with a no phase filter

and a median filter, the result is the following.

Figure 57. Velocity 2 filtered with no phase filter “filtfilt”.

Modelling, identification and control of an elastic joint.

47

After the no phase filter, a medfilt can be applied to see the waveforms to have a medium value, this

filter removes all the oscillations so the signal gets damped, this means that if its used to identify the

elasticity probably a lot of information will be lost when applying the filter and the results obtained

are bad.

Figure 58. Velocity 2 after medfilt with values 1, 10 and 50.

4.3.3 DAC mismatch

In the identification procedure, the input signal has to be chosen depending on which physical

phenomena is going to be analysed. When programing the microcontroller, the waveform defined as

a function of the time is recorded in the SDRAM and then read as a value as if it were another

measurement. So when reading this value, it has to be taken into account that it’s the value which has

been demanded to the DAC and this can differ from the real value the DAC is sending, this can be

checked when comparing the DAC signal read from the SDRAM and the signal measured in the ESCON

and recorded in the data analyzer from the ESCON Studio.

Modelling, identification and control of an elastic joint.

48

Figure 59. ESCON analog input2.

Figure 60. DISCOVERY input voltage data.

When comparing the peaks of the signals from the DAC at the instant 0.6 seconds the value is above

4.5 Volts while the signal measured in the ESCON at the same instant the value doesn’t reach the 4.5

Volts, this mismatch can be appreciated all along the signal. The ideal case would be to use the ESCON

measurement, which in fact is more accurate, but as long as this error is small, the data read from the

SDRAM will be used, even though some trials and comparisons will be made using the ESCON

measurements.

Modelling, identification and control of an elastic joint.

49

4.3.4 Speed saturation in current control

When operating in current control, the DAC signal that is Analog input to the ESCON is defined as a

mathematical equation in the Keil code. The current control allows the current sent to the motor to

be equal to the signal generated by the DAC, with this usual configuration used in robotics, the torque

applied by the motor is estimated from the torque constant of the motor 𝐾𝑎, which is proportional to

the current as related in the following formula.

𝜏𝑚(𝑡) = 𝐾𝑎𝑖(𝑡) (4.2)

In the case of BLDC, three phase motor, the formula as stated in [26] if the three phases are equal:

𝜏𝑚(𝑡) = 2𝐾𝑎𝑖(𝑡) (4.3)

Where the current is measured in one of the phases.

Therefore, when configuring the ESCON in current control the relationship between the DAC value and

the current requested has to be set according to the specifications of the system, in this case the

current nominal for the motor is 1.78A and the maximum voltage the DAC can send is 5V so knowing

this the voltage to current constant given by:

𝐾𝑖𝑣 =
1.78 𝐴

5 𝑉
= 0.356 𝐴/𝑉

(4.4)

Therefore, the set value of the current for the control loop in the ESCON studio is given by:

𝑖𝑠𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 = 0.356 · 𝑉𝑖𝑛 (4.5)

Once we know the operating point in which the motor is working, the boundaries to the input signal

are calculated, this is because there is speed saturation for the upper boundary input voltage and a

friction force to break for the lower boundary input voltage. In addition, the minimum input voltage

that breaks the friction in steady state will be estimated.

Now the main goal is to determine which are the boundaries of the input value that makes no

saturation in the speed, in order to set sinusoidal waves inside these values to get velocity

measurements with no saturation.

The first experiment will determine the minimum value that breaks the friction for the given operating

point, this is achieved increasing the value of the step at the input, until the minimum value for

breaking the friction is found to be 𝑉𝑚𝑖𝑛_𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑟𝑒𝑎𝑘 = 0.9 𝑉 .

The next experiments will determine the minimum 𝑉𝑖𝑛 that keeps the velocity constant in steady state.

The input signal will have an initial peak with 0.9V for breaking the friction and then will set into a

constant value.

Modelling, identification and control of an elastic joint.

50

Figure 61. Input with initial peak for friction break.

The following table shows the properties from the velocity estimated at the given 𝑉𝑖𝑛 for N = 20000,

this means 20s experiments with 0.001s as sample time.

Table 10.Motor response in current control mode.

𝐕𝐢𝐧 (V) 𝐭𝐬 (s) Speed sat Friction break Stop SS Input Signal (V)

0.4 4.5 No Initial peak No 0.9 / 0.4

0.3 - - Initial peak Yes 0.9 / 0.3

0.35 - - Initial peak Yes 0.9 / 0.35

0.375 - - Initial peak Yes 0.9 / 0.375

From the table above it can be determined that the minimum 𝑉𝑖𝑛 to move in steady state without

stopping because the friction force is 𝑉min_𝑠𝑠 = 0.4 𝑉 .

Last value to be determined is the minimum voltage input in steady state that does not reach the speed

saturation zone.

Since it is not known if the minimum value for breaking the friction (𝑉𝑚𝑖𝑛_𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑟𝑒𝑎𝑘 = 0.9 𝑉) makes

the speed saturate, the first approach will be using the following input signal.

Figure 62. Input signal, step at 0.9V.

Modelling, identification and control of an elastic joint.

51

From this input signal the following results are given:

Table 11. Motor response in current control mode.

𝐕𝐢𝐧 (V) 𝐭𝐬 (s) Speed sat Friction break Stop SS Input Signal (V)

0.9 2 Yes Yes - 0 / 0.9

0.8 - - No - 0 / 0.8

Therefore, in the given context we cannot break friction with a constant value without saturating the

output speed.

Then the input signal has to be changed since the maximum value at the input voltage has to be known

for defining the sinusoidal input in the following experiments, this means the initial peak at 0.9V and

then constant value will be used again as input signal.

Table 12. Motor response in current control mode.

𝐕𝐢𝐧 (V) 𝐭𝐬 (s) Speed sat Friction break Stop SS Input Signal (V)

0.7 6 Yes Initial peak x 0.9 / 0.7

0.6 Curve +7 No Initial peak x 0.9 / 0.6

0.65 Curve +7
Yes, at some

points
Initial peak x 0.9 / 0.65

0.625 Curve +7 No Initial peak x
0.9 / 0.625

N=30k

0.637 Curve +7 No Initial peak x
0.9 / 0.637

N=20k

From the last experiment, it can be concluded that the maximum input voltage that does not saturate

speed at steady state is 𝑉max_ss ≈ 0.64 𝑉.

Figure 63. ESCON data record showing speed (voltage) saturation and current (torque) saturation when reached the
maximum speed.

Modelling, identification and control of an elastic joint.

52

4.3.5 ESCON data recorder low sampling time

The ESCON Studio software has a tool to monitorize the signals of interest as the current in the phase,

the voltage drop, the analog signal received from the Discovery DAC. The problem using this data for

identification tasks is that it has limited data storage with a maximum of N samples and the user cannot

modify this value. Instead, the time of the experiment is set and the sample period is adjusted in order

to fit the data spaced with the same interval of time, in the figure below an example of this data record

is shown.

Figure 64. ESCON Studio data recorder.

The sample time of the ESCON depends on how long is the experiment, this means that it has a fixed

number of samples (256) so depending on the time of the experiment the sampling time is calculated

to fit the 256 samples in the given time.

Therefore, there is a mismatch between the sampling time of the Discovery measurements and the

ESCON measurements. In Matlab, this data can be treated with an interpolation script where a time

series object is created containing the data and its corresponding time vector with different sample

times. Then, using the command resample, the data is interpolated in order to obtain a vector with

the same sample time using a linear hold. So if the experiment is set to be short, the sample time

difference will be smaller so there will be less error in the measurements by using this method, the

script implemented in Matlab is shown below.

% Transform the data to the same sample time

t_escon = linspace(0,9.028,256);

ts_escon = timeseries(VarName2,t_escon);

ts_out = resample(ts_escon, tiempo);

current = ts_out.Data;

Modelling, identification and control of an elastic joint.

53

In this example, the experiment length is 9.028 seconds, this value is calculated by the ESCON in order

to fit the number of samples spaced with the same sample time, then the time series created is

resampled giving as argument the new time vector with the Discovery sampling time, then the data is

extracted from the time series data.

Figure 65. Current acquired from ESCON and resampled signal.

Modelling, identification and control of an elastic joint.

54

5. Identification

The construction of a model from data involves three basic entities:

1. A data set, with N samples

2. A set of candidate models

3. A rule by which candidate models can be assessed using the data, like the Least Squares

selection rule.

The input-output data are sometimes recorded during a specifically designed identification

experiment, where the used may determine which signals to measure and when to measure them and

may choose the input signals. The objective with experiment design is thus to make these choices so

that the data become maximally informative, subject to constraints that may be at hand.

Figure 66. Terminal receiving data example.

Before explaining in detail all the procedures and steps done in the project a flux diagram is presented

where all the information about the identification process is shown, this step by step process can be

applied to all the identifications done in the present project.

Modelling, identification and control of an elastic joint.

55

Figure 67. Flux diagram of the identification procedure.

Now, the procedure used for taking the data from the experiments is explained in detail.

1. Initialization of the system

First, turning on the ESCON supply, once the green LED starts blinking, we can connect the ESCON to

the computer by USB, it is important to do it in this order, otherwise the supply has to be disconnected

and connected again to connect properly the ESCON to the computer. The Discovery is supplied when

connected to the PC via USB, this is also the way for loading the code to the board via the ST-LINK

driver. The mini USB for data transmission is also connected to the computer, the code has been

designed in a way that this connection can be made once the experiment has finished, and this means

the Discovery is not sending data until the mini USB connection is done.

Modelling, identification and control of an elastic joint.

56

2. ESCON configuration

Before loading the code and executing, the ESCON configuration will be checked, also the data

recorder will be prepared, the ESCON studio software provides a way of triggering the data record

when enabled with the GPIO logic signal sent, also there are four channels where the user can choose

which signals are monitorized.

Figure 68. ESCON studio data recorder configuration.

So depending on the experiment that will be done, the voltage or current control is selected, then the

offsets and other control parameters.

3. Keil uVision code load

Once the ESCON is prepared the code, containing the identification experiments is loaded to the board.

When the program is loading, some of the functionalities in the Discovery are reset, so the user has to

be careful because the DAC will reach its maximum value for some seconds, if the ESCON is enabled

the motor may run at maximum speed for a few seconds, this is anyway solved with the enable/disable

input in the ESCON. If some changes are made in the code, the project has to be built and loaded again.

Figure 69. Compile and load buttons on Keil uVision.

After this, the experiment will run and the data will be recorded into the SDRAM.

Figure 70. Code writing data on the SDRAM.

Modelling, identification and control of an elastic joint.

57

4. Run the experiment

The experiment will be running for the time specified in the code, when the experiment ends the data

stored in the SDRAM waits for the VCP USB connection to start sending data and receive it on the

personal computer.

Figure 71. Data is not transmitted until the state is true.

Anyway, as long as the Teraterm has to be turned on and the serial port where the USB is connected

has to be selected, it is better to let the USB connected from the beginning of the experiment.

5. Receive data in Teraterm

When opening the Teraterm, the following window is shown:

Figure 72. Teraterm connection options.

The option chosen is the serial port, the one that has the STMmicroelectronics name, after that the

data will be received, but the file has to be saved with extension “.m” to open it with Matlab.

Figure 73. Log save screen.

Modelling, identification and control of an elastic joint.

58

6. Load the data to Matlab

After finishing the data transmission, the log saved can be open with Matlab, in the code the data is

saved as a matrix with of size 𝑁𝑥6 where, 𝑁, is the number of samples in the experiment, this value is

calculated knowing the sampling time 𝑇𝑠 = 0.001𝑠 and the experiment duration.

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑇𝑠

(5.1)

Then the following matlab script reads the matrix:

Figure 74. Matlab data script.

Encoder position 1 and position 2 are directly measured. The velocity is estimated by differentiation,

the time is obtained from the control timer and the signal of the voltage from the value given by the

math functions implemented in the code, this value might vary from the real voltage provided by the

DAC, this can be seen when comparing the ESCON signal to this one.

As long as the velocities are estimated there is a need to filter the signals in order to remove noise but

without affecting the phase or amplitude of the waves.

Figure 75. Velocity filter applied.

The kinematic error also has to be calculated from both measurements at the input and output side,

with given configuration (input and output with opposite directions) the kinematic error is calculated

as follows:

Modelling, identification and control of an elastic joint.

59

Figure 76. Kinematic error estimation.

This matlab script also contains all the plots for all the signals needed.

Figure 77. Signal plot script.

Depending on the kind of experiment carried, it may be convenient to choose the range of the signal

that wants to be visualized, or to know which are the initial states of the identification procedure.

Once all the data is ready, the identification procedure can start, before that, the search methods

available for solving nonlinear data fitting problems with Matlab are presented.

5.1 Methods for nonlinear least squares curve-fitting problems

The data acquisition procedure has been explained; the models have been studied and implemented,

now the last point is to know the procedures used in order to fit the data into the models by adjusting

the parameters in the model.

Least squares problems arise in the context of fitting a parametrized function to a set of measured

data points by minimizing the sum of the squares of the errors between the data points and the

function. If the fit function is non-linear in the parameters, then the LS problem is nonlinear.

Nonlinear LS methods iteratively reduce the sum of the squares of the errors between the function

and the measured data points through a sequence of updates to parameter values. The Levenberg-

Marquardt curve fitting method is a combination of two minimization methods:

 Gradient descent method: The sum of the squared errors is reduced by updating the

parameters in the steepest-descent direction.

 Gauss-Newton method: The sum of the squared errors is reduced by assuming the LS

function is locally quadratic, and finding the minimum of the quadratic.

The LM method acts more like a gradient descent method when the parameters are far from their

optimal value, and acts more like the Gauss-Newton method when the parameters are close to their

optimal value.

Modelling, identification and control of an elastic joint.

60

Knowing this it would be appropriate to use a gradient descent method with the first estimation data

set, and then apply GNA or LM method for validation purposes.

When fitting a function �̂�(𝑡, 𝜌) of independent variable t and vector of n parameters 𝜌 , to a set of N

data points (𝑡𝑖, 𝑦𝑖), it is customary and convenient to minimize the sum of the weighted squares of the

errors (or weighted residuals) between the measured data 𝑦(𝑡𝑖) and the curve fit function �̂�(𝑡, 𝜌). This

goodness of fit measure is called the chi-squared error criterion and is defined as follows:

𝜒2(𝜌) = ∑[
𝑦(𝑡𝑖) − �̂�(𝑡, 𝜌)

𝜎𝑦𝑖

]

𝑁

𝑖=1

2

(5.2)

= (𝑌 − �̂�(𝜌))
𝑇
𝑊 (𝑌 − �̂�(𝜌))

(5.3)

= 𝑌𝑇𝑊𝑌 − 2𝑌𝑇𝑊�̂� + �̂�𝑇𝑊�̂�
(5.4)

Where 𝜎𝑦𝑖
 is the measurment error for measurement 𝑦(𝑡𝑖).

Typically, the weighting matrix 𝑊 is diagonal with 𝑊𝑖𝑖 = 1/𝜎𝑦𝑖
.

If the function is nonlinear in the model parameters then the minimization of chi square with respect

to the parameters must be carried out iteratively. The goal of each iteration is to find a perturbation ℎ

to the parameters 𝜌 that reduces 𝜒2.

5.1.1 The gradient descent method

The steepest descent method is a general minimization method that updates the parameters in the

direction opposite to the gradient of the objective function. This method converges well for problems

with simple objective functions. For problems with many parameters gradient descent methods are

sometimes the only viable choice.

Said this, the gradient of the chi-squared objective function with respect to the parameters is:

𝜕

𝜕𝜌
𝜒2 = 2(𝑌 − �̂�(𝜌))

𝑇
𝑊

𝜕

𝜕𝜌
(𝑌 − �̂�(𝜌))

(5.5)

= −2 (𝑌 − �̂�(𝜌))
𝑇
𝑊 [

𝜕�̂�(𝜌)

𝜕𝜌
]

(5.6)

= −2 (𝑌 − �̂�(𝜌))
𝑇
𝑊𝐽

(5.7)

Where the m x n Jacobian matrix [
𝜕�̂�(𝜌)

𝜕𝜌
] represents the local sensitivity of the function �̂�(𝑡, 𝜌) with

respect to the paramters. As mentioned before, we search for the parameter update ℎ, this update

moves the parameters value in the direction of steepest descent, and is given by:

ℎ = 𝛼𝐽𝑇𝑊(𝑌 − �̂�) (5.8)

Where 𝛼 is the length of the step in the steepest-descent direction.

Modelling, identification and control of an elastic joint.

61

5.1.2 Gauss-Newton method

This method minimizes the sum of squares objective function, the objective function is approximately

quadratic in the parameters near the optimal solution, if the problem is not big sized, this method

converges much faster than gradient descent method.

The function evaluated with perturbed model parameters may be locally approximated through a first-

order Taylor series expansion.

�̂�(𝜌 + ℎ) ≈ �̂�(𝜌) + [
𝜕�̂�(𝜌)

𝜕𝜌
] ℎ = �̂� + 𝐽ℎ

(5.9)

Substituting the approximation for the perturbed function, �̂� + 𝐽ℎ for �̂� in the equation (x[3]) gives:

𝜒2(𝜌 + ℎ) ≈ 𝑌𝑇𝑊𝑌 + �̂�𝑇𝑊�̂� − 2𝑌𝑇𝑊�̂� − 2(𝑌 − �̂�)
𝑇
𝑊𝐽ℎ + ℎ𝑇𝐽𝑇𝑊𝐽ℎ (5.10)

This shows that 𝜒2 is approximately quadratic in the perturbation ℎ, and that the Hessian of the chi-

squared fit criterion is approximately 𝐽𝑇𝑊𝐽.

The parameter update ℎ that minimizes 𝜒2 is found from
𝜕

𝜕ℎ
𝜒2 = 0, so:

𝜕

𝜕ℎ
𝜒2(𝜌 + ℎ) ≈ −2(𝑌 − �̂�)

𝑇
𝑊𝐽 + 2ℎ𝑇𝐽𝑇𝑊𝐽

(5.11)

Moreover, the resulting normal equations for the Gauss-Newton update are

[𝐽𝑇𝑊𝐽]ℎ = 𝐽𝑇𝑊(𝑌 − �̂�) (5.12)

Modelling, identification and control of an elastic joint.

62

5.1.3 The Levenberg-Marquardt method

The Levenberg-Marquardt algorithm adaptively varies the parameter updates between the gradient

descent update and the Gauss-Newton update.

[𝐽𝑇𝑊𝐽 + 𝜆𝐼]ℎ𝑙𝑚 = 𝐽𝑇𝑊(𝑌 − �̂�) (5.13)

Where small values of the algorithmic parameter 𝜆 result in a Gauss-Newton update and a large value

results in a gradient descent update. The parameter 𝜆 is initialized to be large so that first updates are

small steps in the steepest-descent direction. If any iteration happens to result in a worse

approximation 𝜒2(𝜌 + ℎ𝑙𝑚) > 𝜒2(𝜌) then 𝜆 is increased. Otherwise, as the solution improves, lambda

is decreased so the LM method approaches the GN method and the solution typically accelerates to

the local minimum.

In the following Marquardt’s, update relationship

[𝐽𝑇𝑊𝐽 + 𝜆 𝑑𝑖𝑎𝑔(𝐽𝑇𝑊𝐽)]ℎ𝑙𝑚 = 𝐽𝑇𝑊(𝑌 − �̂�) (5.14)

The values of lambda are normalized to the values of 𝐽𝑇𝑊𝐽.

5.2 Reduction ratio comprobation

First, the reduction ratio of the gear will be analysed, as the manufacturer stated, the reduction ratio

is 70, this is anyway easy to check with simple experiments where the motor is moved and both

measurements at the input and output are used to calculate it as follows:

𝑁 = 𝜃/𝑞 (5.15)

The provided gear ratio is ideal, this is however hard to achieve in the real world, imperfections in the

manufacturing or assembly may vary the real value specified; also this can occur by error in the

measurements as long as sensors aren’t perfect.

For determining the experimental value of the reduction ratio, different inputs will be used and the

results between the experiments will be compared, these experiments consist on a constant step, stair

input and a sum of sinusoidals. The following lines of code allows us to estimate N from the positions

vectors.

As long as both directions are opposite due to the H.D configuration (Circular spline fixed), the

reduction ratio sign has to be changed.

A=encoders1(1000:end);
B=encoders2(1000:end);
N=-A/B

Modelling, identification and control of an elastic joint.

63

5.2.1 Constant step

First, a constant voltage will be applied. In this case, the ESCON was configured with offset for both

sides direction, so the 2.5 volts correspond to the motor stopped value.

Figure 78. Constant input voltage.

Figure 79. Motor and link positions for constant input voltage.

Modelling, identification and control of an elastic joint.

64

5.2.2 Stairs

For the following experiment, random stairs in positive and negative direction are given as input,

having the same ESCON configuration for the motor stopped value.

Figure 80.Stairs input voltage.

Figure 81. Motor and link position for stair input voltage.

Modelling, identification and control of an elastic joint.

65

5.2.3 Sinusoidal

Four sinus with frequencies 0.25, 0.5, 2, 5.

Figure 82. Sum of sinusoidals input voltage.

Figure 83.Encoder 1 and 2 measurements for the given experiment.

Table 13.Estimated reduction ratio from the three experiments.

Input signal Estimated reduction ratio

Step 69.1322

Stairs 69.1577

Sinus 69.7731

Modelling, identification and control of an elastic joint.

66

5.3 Voltage control identification

5.3.1 Static friction parameters

Given the step input, the following results are obtained with Vin = [1 2 3 4 5] since the input range is

[0V-5V].

Figure 84. Input step and velocity response.

From the experimental data above a linear approximation can be made, if the different input values

are plot against its respective output values the linear behaviour can be appreciated.

First way to determine the static friction range is to analyse the velocity in steady state, this mean

given a constant input at different values inside the input range value [-2.5 , 2.5]V measure the steady

state velocity and plot the following graph.

Figure 85. Steady state velocity vs. DAC Voltage input.

Modelling, identification and control of an elastic joint.

67

After obtaining the steady state velocity response the linear fit is applied at both sides (positive and

negative) and then obtain the coefficients of the straight lines.

From the equations above, we can obtain the values of the friction parameters taking into account the

model:

𝑢𝐷𝐴𝐶𝑠𝑠
= 𝑈𝑠𝑠𝐾𝑖𝑛 (5.16)

𝑈𝑠𝑠 = (𝑅
𝐵𝑚

𝐾𝑚
+ 𝐾𝑤) �̇�𝑠𝑠 + (

𝑅

𝐾𝑚
) 𝜏𝑐

(5.17)

𝑝1 = (𝑅
𝐵𝑚

𝐾𝑚
+ 𝐾𝑤)/𝐾𝑖𝑛

(5.18)

𝑝2 =
𝑅

𝐾𝑚𝐾𝑖𝑛

(5.19)

As long as the parameters obtained from the linear fit above have some tolerance the calculations are

made also for the higher and lower values obtained also, it is implemented in the code shown below:

r_fit_positive = Linear model Poly1:

 r_fit_positive(x) = p1*x + p2

 Coefficients (with 95% confidence bounds):

 p1 = 0.01978 (0.01918, 0.02038)

 p2 = 0.02628 (-0.01275, 0.06532)

r_fit_neg = Linear model Poly1:

 r_fit_neg(x) = p1*x + p2

 Coefficients (with 95% confidence bounds):

 p1 = 0.01984 (0.01921, 0.02046)

 p2 = -0.02435 (-0.06497, 0.01626)

Modelling, identification and control of an elastic joint.

68

% Both directions

%negative

p1_n = 0.01984;

p2_n = -0.02435;

p1_n_max = 0.02046;

p1_n_min = 0.01921;

p2_n_max = 0.01626;

p2_n_min = -0.06497;

%positive

p1_p = 0.01978;

p2_p = 0.02628;

p1_p_max = 0.02038;

p1_p_min = 0.01918;

p2_p_max = 0.06532;

p2_p_min = -0.01275;

%datasheet parameters

Km = 0.217; % (Datasheet) [Nm/A]

Kw = 1/4.6076; % Back emf (Datasheet) [rad/Vs]

R = 2.3; % Armature resistance (Datasheet) [Ohms]

Kin = 36/2.5; % From u(Disc DAC) to U(Voltage in the armature)

Modelling, identification and control of an elastic joint.

69

Which gives the following results:

Table 14. Friction parameters identified.

Parameter Value Min Max

Bm positive 0.0064 0.0056 0.0072

Bm negative 0.0065 0.0056 0.0073

𝝉𝒄 positive 0.0357 -0.0173 0.0887

𝝉𝒄 negative -0.0331 -0.0883 0.0221

 Now, the viscous friction value obtained can be used as initialization value in the Idnlgrey identification

procedure, despite this values have been identified already, its value might change in later

identification procedures, where this parameters are included and interact with other model

parameters.

%% FROM NEGATIVE SIDE
bm_n = (p1_n*Kin-Kw)*Km/R;
tc_n = (p2_n*Kin*Km)/R;

bm_n_min = (p1_n_min*Kin-Kw)*Km/R;
tc_n_min = (p2_n_min*Kin*Km)/R;

bm_n_max = (p1_n_max*Kin-Kw)*Km/R;
tc_n_max = (p2_n_max*Kin*Km)/R;

% %% FROM POSITIVE SIDE
bm_p = (p1_p*Kin-Kw)*Km/R;
tc_p = (p2_p*Kin*Km)/R;

bm_p_min = (p1_p_min*Kin-Kw)*Km/R;
tc_p_min = (p2_p_min*Kin*Km)/R;

bm_p_max = (p1_p_max*Kin-Kw)*Km/R;
tc_p_max = (p2_p_max*Kin*Km)/R;

bm_pos = [bm_p, bm_p_min, bm_p_max]
bm_neg = [bm_n, bm_n_min, bm_n_max]
tc_pos = [tc_p, tc_p_min, tc_p_max]
tc_neg = [tc_n, tc_n_min, tc_n_max]

Modelling, identification and control of an elastic joint.

70

5.3.2 Rigid body parameters

From the previous step, two parameters have been identified, the friction parameters identified using

the steady state response of the system will be used to initialize the value of the parameters in the

following step. Now the objective is to find the total inertia of the system, which is given by:

𝐽𝑡 = 𝐽𝑚 +
𝐽𝑒
𝑁2

(5.17)

In other types of identification experiments discussed in the paper by Wernholt and Gunnarsson the

from the overall inertia, the motor side and link side can be calculated if a scaling factor is defined as

follows:

𝐽𝑚 = 𝐽𝑗𝑚𝐽𝑡 ; 𝐽𝑒 = 𝐽𝐽𝑒𝐽𝑡 (5.18)

In the following steps, after identifying the total inertia, this scaling will be used to determine the value

of the motor and link side inertia.

This is the conventional gear transmission inertia in the mechanical equation of the system; to identify

the total inertia of the Harmonic drive system the input should not have high frequencies in order to

avoid the elasticity excitation, so the reduced model torque equation is:

�̈�(𝑡) =
(𝐾𝑎𝑖(𝑡) − 𝜏𝑐) − 𝐵𝑚�̇�(𝑡)

𝐽𝑡

(5.19)

In the given context with the input being the voltage, the equation has to be rewritten, and keep all

the units in terms of voltages instead torques, the equation rewritten is:

�̈�(𝑡) =
(𝐾𝑖𝑛𝑢(𝑡) −

𝜏𝑐𝑅

𝐾𝑎
) − (𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
)�̇�(𝑡)

𝐽𝑡𝑅

𝐾𝑎

(5.20)

Therefore, when estimating the model, the parameters calculated will be:

𝒑𝟏 =
𝐽𝑡𝑅

𝐾𝑎
; 𝒑𝟐 = 𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
 ; 𝒑𝟑 = 𝐾𝑖𝑛 ; 𝒑𝟒 =

𝜏𝑐𝑅

𝐾𝑎

In addition, knowing the values 𝑅 = 2.3 and 𝐾𝑎 = 𝐾𝑤 = 0.217 from the motor datasheet, we can

obtain the physical parameters:

𝑱𝒕 =
𝑝1𝐾𝑎

𝑅
= [𝑲𝒈𝒎𝟐]; 𝑩𝒎 = (𝑝2 − 𝐾𝑤)

𝐾𝑎

𝑅
= [𝑵𝒎𝒔/𝒓𝒂𝒅]; 𝝉𝒄 =

𝑝4𝐾𝑎

𝑅
= [𝑵𝒎]

As long as 𝐾𝑖𝑛 is the relation between the DAC voltage and the voltage in the armature of the motor,

this parameter is dimensionless.

Knowing the values of 𝐵𝑚 and 𝜏𝑐 from the previous step, we can get an initial guess for parameters p2

and p4, and knowing from the BLDC motor datasheet the motor inertia

𝐽𝑚𝐷𝑆
= 0.000306 [𝑲𝒈𝒎𝟐]

We can set the boundaries in the initial guess of the parameter values, this motor inertia from the

datasheet does not correspond to the value of the motor side inertia in the model because the

Harmonic drive wave generator inertia has to be added as well as the vibration reducer attached to

Modelling, identification and control of an elastic joint.

71

the motor axis. This value from the datasheet, scaled to voltage control by means of the motor

constants can be set as a lower boundaries as long as it’s the minimum value the total inertia will have.

If during the identification procedure the total inertia identified is close or equal to this value the

identification procedure should be discarded and calculated again with different data sets or different

initial states, until a good fit to the data is approached with a “logical”value of this parameter.

Input signal

Now that the model has been defined for this step, the input waveform has to be chosen. As stated

above the input must contain low frequencies in order to avoid flexibility excitation, this is necessary

to determine the total inertia of the system. So for generating the 3 data sets a single sinus wave with

different frequencies and the same amplitude is used, this sinusoidal has an offset to avoid the

coulomb friction region, as long as we want to determine the dynamical properties of the system and

the coulomb friction term has been identified before, as an example the velocity plot of the first data

set is shown in the figure below, which has been obtained with an input equation as follows:

𝑢𝐷𝐴𝐶 = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡) + 𝑂𝑓𝑓𝑠𝑒𝑡 (5.20)

Where the value of the frequency has been changed from one experiment to another.

Figure 86. Velocity plot of the data set 1.

Model implementation

Once the data sets are collected, the next step would be to implement the reduced model in a MEX

file, defining the parameters and the dynamic equation of the model containing these. This model will

be called later by the identification script and will be put into an IDNLGREY object together with the

initial states and parameters, the code of the MEX file used is in the annexes. When using high

frequencies for the identification, the model will be changed to the Harmonic drive simplified model

first, then more equations will be added in order to try to improve the response of the identified

compared to the simulated response.

Modelling, identification and control of an elastic joint.

72

Identification procedure

First of all, the data sets have to be loaded, when acquiring the data with the Teraterm the matrix

containing all the information is renamed, so the different data sets are saved in the matrix A, B and C

and loaded into matlab with the following script. Remark that only the velocity is taken from the matrix

even though all the measurements from the link side encoder also have been recorded only the motor

side values of the velocity will be used.

%% This script needs functions: corregir_vel and saturacionencoder

addpath('C:\Users\Rafael C\Desktop\Ident_low_freq')

%% REMEMBER TO CHANGE THE NAME OF THE MATRIX CONTAINING THE DATA IN THE

FILES (A B C)...

% A

run ('lowfreq0075');

% B

run ('lowfreq_025');

% C

run ('LF_test1_2');

%Vel Filter design (filtfilt -> zero phase digital filter)

[b,a] = butter(5,0.3,'low');

vel1_mdfiltval = 1;

%Encoder saturation function parameters

pos1off = 205.9;

pos2off = 205.8811;

threshold = 5000;

Ts = 0.001;

% EXTRACT DATA FROM TERATERM

%% Data set 1

Posencoder1 = A(:,1);

vel1_noise = A(:,3);

tension_s = A(:,5);

tiempo = A(:,6);

% Encoder 1 motor position correction

v_aux1 = corregir_vel(Posencoder1,Ts);

encoders1 = saturacionencoder(Posencoder1,v_aux1,pos1off,threshold);

%Motor velocity filtering

vel1_f = filtfilt(b,a,vel1_noise);

vel1 = medfilt1(vel1_f,vel1_mdfiltval);

Modelling, identification and control of an elastic joint.

73

Only the script applied to the first data set is shown in the script, but the procedure is the same for

data set 2 and 3, only changing the name of the matrix and the values where the signals are stored

with the subscript b and c.

This script is included in the overall identification script, where all the information of the model is

collected (this includes names of the inputs, states, parameters as well as its units and initial states),

also an IDDATA object is built which contains all the input-output pairs for the three experiments, also

when changing from the estimation of one data set to another, the previous values of the parameters

are saved and used as an initial value for the following validation steps.

Results

At the end of the script, based on the estimated parameters, the following physical parameters are

obtained:

Table 15. Parameters identified in the first try.

Jt Bm Kin 𝝉𝒄

7.7311e-04 0.0059 14 0.033

As a first conclusion, knowing the initial value of the gain input parameter was set randomly and it

converged to a close value of which it is supposed to be 𝐾𝑖𝑛 =
36

2.5
= 14.4 we can repeat the procedure,

giving a tight tolerance around this value and estimating the parameters again.

Table 16. Parameters identified in the second try.

Jt Bm Kin 𝝉𝒄

7.6788e-04 0.0059 14.4 0.0330

Which gives a similar value for all the parameters, anyway when introducing the initial value for this

parameter in the following steps, the voltage transformation should be conserved as long as the

system is still working in voltage control, so we can state that the initial value for these parameters in

the next step will be:

Table 17. Parameters used in the next step.

JtRK BmRK Kin 𝝉𝒄RK

0.00823878 0.289754 14.9999 0.37

After obtaining these values, the simulated response is compared to the real data and a % fit is given,

as long as the velocity is estimated through numerical differentiation and knowing there are also some

Modelling, identification and control of an elastic joint.

74

oscillations due to the BLDC motor phases commutation the % fit won’t be close to 100 but still will be

good as it can be shown in the following figure:

Figure 87. Simulated response vs. real data.

The fit is 68.06% but the simulated response follows very well the velocity data.

For dynamic systems, we can also examine the prediction errors using PE. We do this to see if the
residuals seem to have a random nature:

Figure 88. One-step prediction error.

Modelling, identification and control of an elastic joint.

75

As can be seen in the obtained plot, there is some kind of sinusoidal waves plus noise, the main reasons

for these are:

 Signal obtained by numerical differentiation

This is the main reason why the prediction error has this kind of “bars” around the sinusoidal wave, as

long as the encoder has an small quantization error when obtaining the velocity from the actual value

and the value in the previous instant and the transformation from pulses to radians this “bars” have

𝑛𝜋 amplitude as shown below:

Figure 89. Amplitude of one of the "bars" equal to pi.

 Simplified motor model

The BLDC motor has three phases, this means there is a commutation between phases as explained in

previous points, the back EMF in this kind of motors can be trapezoidal or sinusoidal, if the simplified

model of a DC motor has been used instead, this periodic shape of the back EMF force is left

unexplained in the model.

 Noise error

There is always a small error in the DAC signal generator, the measurement equipment, etc…

Figure 90.Residuals of the model estimated.

Modelling, identification and control of an elastic joint.

76

Summarizing, the NLGR object estimated has the following properties and values:

Now we have a good initial value estimate for these parameters that will be used in the next steps in

order to

Continuous-time nonlinear grey-box model defined by 'Reduced_mod' (MEX-file):

 dx/dt = F(t, u(t), x(t), p1, ..., p4)

 y(t) = H(t, u(t), x(t), p1, ..., p4) + e(t)

 with 1 input, 1 state, 1 output, and 4 free parameters (out of 4).

 Input:

 u(1) DAC voltage(t) [V]

 State: initial value

 x(1) th_p(t) [rad/s] xinit@exp1 0 (fix) in [-Inf, Inf]

 Output:

 y(1) th_p(t) [rad/s]

 Parameters: value standard dev

 p1 Jt*R/Ka 0.00823878 0.0377831 (est) in [0.00803878, 0.00823878]

 p2 Velocity term (Kw + R/Ka*Bm) 0.289754 1.33057 (est) in [0.22, 0.38]

 p3 Kin 14.4 66.1204 (est) in [14.4, 18]

 p4 tcRK 0.37 1.68788 (est) in [0.0028, 0.37]

Status:

Termination condition: Maximum number of iterations reached.

Number of iterations: 10, Number of function evaluations: 75

Estimated using Solver: ode45; Search: lm on time domain data "Datos del experimento".

Fit to estimation data: 80.59%

FPE: 8.258, MSE: 8.247

Modelling, identification and control of an elastic joint.

77

5.3.3 Harmonic drive (simplified model) parameter identification

The following step requires that the data should be informative enough for open loop operation. This

means that the input should be persistently exciting of at least
𝑛𝑝

2
 different frequencies, where 𝑛𝑝 is

the number of parameters to be identified in the system. This leaves a good amount of freedom for

the input choice, as L.Ljung stated in [27], the input must have limited amplitude and be periodic, this

may have certain advantages when obtaining the data set to estimate the parameters in an open loop

system. In addition, the sampling rates have some considerations to be made, as follows:

 Very fast sampling lead to numerical problems, model fits in high-frequency bands, and poor

returns for extra work.

 As the sampling time increases over the natural time constants of the system, the variance

increases drastically.

 Optimal choices of T for a fixed number of samples will lie in the range of the time constants

of the system. These are, however not exactly known, and overestimating them may lead to

very bad results.

From the considerations above it can be concluded that a sampling frequency that is about ten times

the bandwidth of the system should be a good choice in most cases. Note that this discussion concerns

the sampling rate chosen for the model building. With “cheap” data acquisition, we can always sample

as fast as possible during the experiment and leave the actual choice of T for later by digitally pre-

filtering and decimating the original data record.

Input signals

The inputs consist in the sum of 3 sinus and 1 cosines, the frequencies used are described in the table

below. The offset and the amplitude is adjusted in order to keep the motor working in the positive side

or both directions, knowing that the motor stop corresponds to 2.5V and boundaries at [0V- 5V], the

part of the code describing the equation of the input is the following:

To make easier the description of the identification procedure, the different data sets used in order to

identify the parameters are described in a table and some plots are shown where the frequencies as

well as the amplitudes of the resulting signals can be appreciated.

Table 18. Data set properties.

Data set “sins1”

Frequencies 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒 (Hz) 0.5, 0.75, 1, 5

Offset (V) 3.75

Amplitude (V) 1.13

float u = 1.75*(0.5*sin(2*3.1415*tiempo*5) + sin(2*3.1415*tiempo*0.75)+

sin(2*3.1415*tiempo*0.5) + 0.75*cos(2*3.1415*2*tiempo))/5 + 3.75;

Modelling, identification and control of an elastic joint.

78

Figure 91. Input signal plot for data set “sins1”.

Table 19. Data set properties.

Data set “scs1”

Frequencies 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒 (Hz) 0.5, 0.75, 2, 5

Offset (V) 3.75

Total amplitude (V) 1.13

float u = 1.75*(0.5*sin(2*3.1415*tiempo*0.75) + sin(2*3.1415*tiempo*4)+

sin(2*3.1415*tiempo*5) + 0.75*cos(2*3.1415*2*tiempo))/5 + 3.75;

float u = 1.75*(0.5*sin(2*3.1415*tiempo*5) + sin(2*3.1415*tiempo*0.75)+

sin(2*3.1415*tiempo*0.5) + 0.75*cos(2*3.1415*2*tiempo))/5 + 3.75;

Modelling, identification and control of an elastic joint.

79

Figure 92. Input signal plot for data set "scs1".

Table 20. Data set properties.

Data set “scs2”

Frequencies 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒 (Hz) 0.5, 2, 5, 15

Offset (V) 3.75

Total amplitude (V) 0.77

Figure 93. Input signal plot for data set “scs2”.

float u = (sin(2*3.1415*tiempo*5) + 5*sin(2*3.1415*tiempo*15)+ sin(2*3.1415*tiempo*0.5) +

0.75*cos(2*3.1415*2*tiempo))/10 + 3.75;

Modelling, identification and control of an elastic joint.

80

Table 21. Data set properties.

Data set “bdsins”

Frequencies 𝐟𝟏, 𝐟𝟐, 𝐟𝟑, 𝐟𝟒 (Hz) 0.75, 2, 4, 5

Offset (V) 2.5

Total amplitude (V) 1.62

Figure 94.Input signal plot for data set “bdsins”.

For now, on when describing the identification procedure, the data sets will be named as presented in

the present point, the last data set will be used to identify the hysteresis, that is appreciated in the

kinematic error signal.

All the data sets are recorded with the ESCON power stage working in voltage control, this means the

models used are the ones described in section 3 once the parameters are identified in voltage control

the values have to be transformed in order to keep the units of the S.I, the most usual way to model

robots are using the torques equations which implies that the measurements are the input torque, or,

for an electrical motor the current multiplied by its torque constant, in this case the “torque”

parameters are calculated after the values of the parameters are obtained.

float u = 2.5*(0.5*sin(2*3.1415*tiempo*0.75) + sin(2*3.1415*tiempo*4)+

sin(2*3.1415*tiempo*5) + 0.75*cos(2*3.1415*2*tiempo))/5 + 2.5;

Modelling, identification and control of an elastic joint.

81

Model implementation

Now the model used for the parameter estimation will be the simplified Harmonic drive model, with

12 parameters, where five of them are known from datasheet information or obtained in previous

steps, one input, four states and four outputs and it is given by the following equations:

�̈�(𝑡) =

((𝑢𝐷𝐴𝐶(𝑡)𝐾𝑖𝑛 −
𝜏𝑐𝑅

𝐾𝑎
) +

(
𝐵

𝑁
 (�̇�(𝑡)−

�̇�(𝑡)

𝑁
)+

𝐾

𝑁
(𝑞(𝑡)−

𝜃(𝑡)

𝑁
))𝑅

𝐾𝑎
− (𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
)�̇�(𝑡))

𝐽𝑚𝐾𝑎/𝑅

(5.22)

�̈�(𝑡) = −

(𝑏𝑒�̇�(𝑡) + 𝐾 (𝑞(𝑡) −
𝜃(𝑡)

𝑁
) + 𝐵 (�̇�(𝑡) −

�̇�(𝑡)

𝑁
))

𝐽𝑒

(5.23)

This model has been implemented in a MEX file for a grey box model identification.

Some things have to be clarified for this model:

Voltage control: Motor equation has to be changed from torque variables to voltage variables, only

for the motor side equation, the link side equation as long as the input is the elastic torque, no units

transformation are needed.

𝑉 = 𝐼𝑅 +
𝐿𝑑𝑖

𝑑𝑡
+ 𝐸

(5.24)

To demonstrate the effect voltage and torque have on speed, we are only concerned with steady-state

behaviour at the moment, which implies that the current is constant, so the inductor 𝐿 can be removed

and there is no change in speed, which means the torque produced by the motor and the torque

produced by the load must be equal.

The second assumption implies that the torque is produced by the motor as given in the following

equation:

𝜏𝑚 = 𝐾𝑡𝜑𝑖 (5.25)

Where 𝐾𝑡 is a constant inherited from its internal design, 𝜑 is the total flux and 𝜏𝑚 is the load torque

in steady state, rearranging for 𝑖 and including it in the previous equation:

𝑉 =
𝜏𝑚

𝐾𝑡𝜑
𝑅 + 𝐸

(5.26)

Now the EMF, which is dependent upon the total flux motor specific factors that make a second

constant 𝐾𝑤 and the speed of the motor 𝑛𝑚𝑜𝑡.

Modelling, identification and control of an elastic joint.

82

𝐸 = 𝐾𝑤𝜑𝑛 (5.27)

Which gives:

𝑉 =
𝜏𝑚

𝐾𝑡𝜑
𝑅 + 𝐾𝑤𝜑𝑛

(5.28)

The equation above actually represents a linear motor; in adapting this to an angular rotating motor,

we consider the flux constant at its full value. In doing so it is combined with each constant to produce

the torque constant and electrical constant of the motor, denoted 𝐾𝑎 , 𝐾𝑤 in the model.

𝑉 =
𝜏𝑚

𝐾𝑎
𝑅 + 𝐾𝑤�̇�

(5.29)

Alternatively, equivalent:

�̇� =
𝑉

𝐾
−

𝑇

𝐾2
𝑅

(5.30)

This means that for a fixed load, the speed of the motor is affected by applied voltage so an increase

in the voltage means an increase in the speed, on the other hand for a fixed voltage the speed of the

motor is inversely affected by the load, so an increase in the load torque means a decrease in the

speed.

 Linear elasticity: Only the linear spring stiffness coefficient will be identified here, assuming

the elastic torque is linear with respect the torsional angle.

 No hysteresis effects modelled.

 DC motor simplified model instead EC (BLDC) 3 phase with periodic back EMF waveform, this

might add noise and probably a pattern when analysing the 1 step prediction error of the

simulated response.

 Simplified friction model, only coulomb term plus viscous friction.

The MEX file implemented containing the model as well as the IDNLGREY script are included in the

annexes.

Identification procedure

This main script calls another script used for loading the data, where the position of the encoder signal

is unwrapped, the velocity is estimated from the fixed position and then a phase delay filter is applied

with the command “filtfilt”, this gives different context for the data generated, given the following

scenarios:

 Velocity estimated with noise

 Velocity filtered with no phase filter

The link side velocity is moving 70 times slower than the motor input, this means that for the given

encoder resolution there is a quantization error in the measurements. So, when estimating velocity by

Modelling, identification and control of an elastic joint.

83

differentiation with position increments with fixed time (Ts = 0.001) the signal obtained are just pulses

multiple of pi, the script used as well as the velocities from the link side are shown.

The function “corregir_vel” estimates the velocity with “jumps” produced by the wrapping of the

%% This script needs functions: corregir_vel and saturacionencoder

addpath('C:\Users\Rafael C\Desktop\Ident_high_freq\newdata')

%% REMEMBER TO CHANGE THE NAME OF THE MATRIX CONTAINING THE DATA IN THE

FILES (A B C)...

run ('frequs3'); %% Check Ts = 0.001

run ('frequs2');%% Check Ts = 0.001

%Vel Filter design (filtfilt -> zero phase digital filter)

[b,a] = butter(5,0.3,'low');

vel1_mdfiltval = 1;

vel2_mdfiltval = 30;

%Encoder saturation function parameters

pos1off = 205.9;

pos2off = 205.8811;

threshold = 5000;

Ts = 0.001;

% EXTRACT DATA FROM TERATERM

Posencoder1 = A(:,1);

Posencoder2 = A(:,2);

vel1_noise = A(:,3);

vel2_noise = A(:,4);

tension_s = A(:,5);

tiempo = A(:,6);

% Encoder 1 motor position correction

v_aux1 = corregir_vel(Posencoder1,Ts);

encoders1 = saturacionencoder(Posencoder1,v_aux1,pos1off,threshold);

% Encoder 2 link position correction

v_aux2 = corregir_vel(Posencoder2,Ts);

encoders2 = saturacionencoder(Posencoder2,v_aux2,pos2off,threshold);

%Motor velocity filtering

vel1_f = filtfilt(b,a,vel1_noise);

vel1 = medfilt1(vel1_f,vel1_mdfiltval);

%Link velocity filtering

vel2_f = filtfilt(b,a,vel2_noise);

vel2 = medfilt1(vel2_f,vel2_mdfiltval);

Modelling, identification and control of an elastic joint.

84

encoder measurements. The signal “v_aux” is used to detect this jumps and fix them with the function

“saturacionencoder”. The velocity estimated online has the wrapping problem fixed already and can

be filtered directly with the “filtfilt” command to apply a zero phase filtering, the medfilt can be used

to see the shape of the sinus in the velocity link but it’s not used for identification. Now the

identification script will be applied for the noisy data and the filtered one.

Identification 1, noise vs. filtfilt velocity 2 filter

In this section, the effect of the filter in the velocity 2 estimated signal in the identification procedure

would be analysed, to do so the same data sets will be used to identify the parameters, first with noise

velocity measurements, then with no phase-filtered velocity 2.

Table 22. Identification 1 procedure info.

Identification procedure 1 description

Number of samples 7990

Input signal 1 (Estimation 1) Scs2

Input signal 2 (Estimation 2) Scs1

Input signal 3 (Validation) Sins1

Velocity 2 filter Filtfilt, noise

Model identified HD simple

Number of outputs 4

Search methods (Estimation1, Estimation2) lsqnonlin, lm

Figure 95. Input signals of the data sets.

Modelling, identification and control of an elastic joint.

85

With the given initial values.

Table 23. Initial parameters values and boundaries.

Parameter\Set values x0 x0 lower x0 upper

JmRK 0.00736543 0.0073 0.009

Je 0.05 0.01 1

N 70 - -

BmRK 0.29927 0.19927 0.39927

D 1 0 50

Be 0.001 eps(0) 1

Kin 14.4 14.325 14.475

K1 2000 10 80000

𝝉𝒄RK 0.3007 0.28 0.315

The following parameters are obtained for the velocity signal with no filter set and the different

estimation methods applied to the same data sets.

Data has 4 outputs, 1 inputs and 8991 samples.
Termination condition: Change in cost was less than the specified tolerance.
Number of iterations: 10, Number of function evaluations: 11.
Estimated using Solver: ode45; Search: lsqnonlin.

Table 24. Final estimated parameters for both velocity 2 filter data sets.

Search method = ‘Lsqnonlin’ , ‘lm’

Parameter\Value xf, filtfilt xf , noise

JmRK 0.0073 0.0073

Je 0.0214815 0.021495

N 70 70

BmRK 0.284971 0.284975

D 0.0562333 0.0564026

Be 0.153757 0.153803

Kin 14.461 14.475

K1 40.4364 40.4293

𝝉𝒄RK 0.28 0.280456

With FPE: 1.028e-05, MSE: 3.786 for filtfilt.

With FPE: 0.0002831, MSE: 5.654 for noise.

Modelling, identification and control of an elastic joint.

86

In the velocity 2 noise identification, the validation data, which is being compared, has been filtered

with the “filtfilt” matlab command as shown below.

Figure 96. Simulated response vs. real data measurements.

After transforming the units of the parameters, the following physical parameters are obtained, the

first data set is estimated with the search method “lsqnonlin”, with the higher input frequencies data

set because this method updates the value of the elasticity parameters. Then the second data set for

estimation and fit of the rest of the parameters for this purpose the “lm” search method has been

chosen because gives the smallest cost after finishing all the iterations in the identification procedure.

Table 25. Final parameter value after transformation.

Parameter\Value xf filtfilt Xf noise

Jm 6.8874e-4 6.8874e-04

Je 0.0215 0.0215

N 70 70

Bm 0.0064 0.0064

D 0.0562 0.0564

Be 0.1538 0.1538

Kin 14.475 14.475

K1 40.4364 40.4293

𝝉𝒄 0.0265 0.0265

Jt 6.9312e-04 6.9313e-04

Modelling, identification and control of an elastic joint.

87

Figure 97. Residuals of the obtained model.

Identification 2, noise vs. filtfilt velocity 2 filter

Now the same identification procedure will be made but with different data sets orders, this will be

made in order to check the consistency of the parameters estimated in the first identification.

Table 26. Identification 2 procedure info.

Identification procedure 1 description

Number of samples 7990

Input signal 1 (Estimation 1) Scs1

Input signal 2 (Estimation 2) Scs2

Input signal 3 (Validation) Sins1

Velocity 2 filter Filtfilt, noise

Model identified HD simple

Number of outputs 4

Search methods (Estimation1, Estimation2) lsqnonlin, lm

Modelling, identification and control of an elastic joint.

88

With the same initial values used before.

Table 27.Identification 2 initial parameters and its boundaries.

Parameter\Set values x0 x0 lower x0 upper

JmRK 0.00736543 0.0073 0.009

Je 0.05 0.01 1

N 70 - -

BmRK 0.29927 0.19927 0.39927

D 1 0 50

Be 0.001 eps(0) 1

Kin 14.4 14.325 14.475

K1 2000 10 80000

𝝉𝒄RK 0.3007 0.28 0.315

The following parameters are obtained for the different velocity 2 filter.

Table 28. Final estimated parameters for both velocity 2 filter data sets.

Search method = ‘Lsqnonlin’ , ‘lm’

Parameter\Value xf, filtfilt xf , noise

JmRK 0.00755584 0.00755577

Je 0.0259733 0.0260556

N 70 70

BmRK 0.286499 0.286499

D 15.0979 15.0953

Be 0.00025576 0.000251888

Kin 14.4181 14.4181

K1 6569.23 6568.81

𝝉𝒄RK 0.315 0.315

With FPE: 9.745e-07, MSE: 3.05 for filtfilt

With FPE: 2.737e-05, MSE: 4.818 for noise

Modelling, identification and control of an elastic joint.

89

When comparing the response of the estimated model with velocity 2 filter and wihout filterwin we

got the same result as shown in figure 99 and 100.

Figure 98. Noise velocity2 estimated response.

Figure 99. Filtfilt velocity2 estimated response.

After transforming the parameters, the following values are obtained.

Table 29.Final values obtained after transformation.

Parameter\Value xf filtfilt Xf noise

Jm 7.1288e-04 7.1287e-04

Je 0.0260 0.0261

N 70 70

Bm 0.0066 0.0066

D 15.0979 15.0953

Be 2.5576e-04 2.5189e-04

Kin 14.4181 14.4181

K1 6.5692e+03 6.5688e+03

𝝉𝒄 0.0297 0.0297

Jt 7.1818e-04 7.1819e-04

Modelling, identification and control of an elastic joint.

90

From the data obtained now, we can compare between the identification 1 and identification 2 results

in the following table and make some conclusions.

Table 30.Results comparison between identification 1 and 2.

Parameter\Value xf Ident 1 xf Ident 2

Jm 6.8874e-4 7.1287e-04

Je 0.0215 0.0261

N 70 70

Bm 0.0064 0.0066

D 0.0562 15.0953

Be 0.1538 2.5189e-04

Kin 14.475 14.4181

K1 40.4364 6.5688e+03

𝝉𝒄 0.0265 0.0297

Jt 6.9312e-04 7.1819e-04

From the data obtained the main conclusions are:

 Velocity 2 filter “filtfilt” does not change the value of the estimated model parameters.

 The search method applied gives different results depending on the frequency of the input

signal.

 The values for the previous steps remain unchanged, so those values will be fixed for the

following identification steps.

 The values identified that are similar independently of the order of the estimation data sets

will remain unchanged too.

Now the main problem is to determine:

 Which input signal is more appropriate for identifying the elasticity parameters

How number of iterations affect to the final estimated values

With the same initial parameters value the estimation 2 identification will be carried out with an “lm”

search method, first with seven iterations, then with 35. The initial parameter value used is let free

without restrictions in all the values excepting Bm and tau_c.

Modelling, identification and control of an elastic joint.

91

Reducing the second searchmethod iterations to 7:

From the results we can conclude that more iterations don’t provide a better result in the second

estimation data set, however when comparing the correlation residuals with the one obtained

previously we can see that there is an small improvement in the cross correlation between the

positions and the input as well as the autocorrelation of the velocity 2.

Parameters: value standard dev

 p1 Motor inertia [kgm^2] 0.00388188 0.26255 (est) in [3.36543e-05, 0.007]

 p2 Link side inertia [kgm^2] 0.641145 43.3925 (est) in]0, 1]

 p3 HarmonicDrive reduction ratio 70 0 (fix) in [70, 70]

 p4 Motor viscous friction [Nms/rad] 0.319736 21.6272 (est) in [0.249278, 0.349278]

 p5 Spring Damping [Nms/rad] 4.04852e-07 5.23149 (est) in [0, 50]

 p6 Link viscous friction [Nms/rad] 4.94066e-324 0.720346 (est) in]0, 10]

 p7 Current to torque motor constant [Nm/A] 16.1707 1093.85 (est) in [14.325, 19.475]

 p8 Spring stiffness constant [Nm/rad] 13160.8 890858 (est) in [10, 80000]

 p9 Coulomb friction 0.2875 19.45 (est) in [0.2875, 0.315]

With the second searchmethod iterations 35:

Parameters: value standard dev

 p1 Motor inertia [kgm^2] 0.00384738 0.266723 (est) in [3.36543e-05, 0.007]

 p2 Link side inertia [kgm^2] 0.654684 45.4157 (est) in]0, 1]

 p3 HarmonicDrive reduction ratio 70 0 (fix) in [70, 70]

 p4 Motor viscous friction [Nms/rad] 0.319741 22.1684 (est) in [0.249278, 0.349278]

 p5 Spring Damping [Nms/rad] 0 1.01122 (est) in [0, 50]

 p6 Link viscous friction [Nms/rad] 4.94066e-324 0.962467 (est) in]0, 10]

 p7 Current to torque motor constant [Nm/A] 16.171 1121.21 (est) in [14.325, 19.475]

 p8 Spring stiffness constant [Nm/rad] 13160.8 913091 (est) in [10, 80000]

 p9 Coulomb friction 0.2875 19.9364 (est) in [0.2875, 0.315]

Modelling, identification and control of an elastic joint.

92

Figure 100. Residual correlation analysis for the identified models.

Figure 101. Left side residuals from first ident, Right side residuals from last ident.

When analyzing the residue correlation we detect a bad cross correlation in the previous identified

model, even though the fit to data was good enough, now in the next step more phenomenas will be

added to the model and the residuals of the model analyzed will be compared.

Modelling, identification and control of an elastic joint.

93

5.3.4 Harmonic drive with nonlinear friction and elasticity parameter identification

Until now all the identification procedures have been done with data running only in the positive

direction, this mean that the voltage sent by the DAC was set between [2.5V – 5V]. So with the 2.5V in

the DAC corresponding to the motor stopped, now some experiments will be carried out in both

directions this implies zero velocity crossing. The simplified model used before with the Coulomb

friction having only one sign results in an incorrect simulated response due to the fact that the model

was considered only for the motor running in one direction. The response simulated when crossing

zero velocities with the model identified in the previous section is shown in the figure below.

Figure 102. Identified NLGR with one direction simulated response compared with both directions data set.

Some considerations made above will change, being now:

 Nonlinear elasticity: The cubic polynomial for the elasticity will be introduced, as stated in

equation (3.28).

 Nonlinear friction will be modeled through a trigonometric function, this is because other

models add discontinuities at zero crossing, which makes numerical implementation a hard

task, implemented in the following equation:

𝜏𝑓 = 𝐵𝑚�̇� + (𝜏𝑐 +
𝐹𝑠

cosh(𝛼�̇�)
) tanh (𝛽�̇�)

(5.31)

So for this model the inputs used will cross zero velocity in order to identify the friction phenomena

that arises when the system runs at zero or very small velocities.

Modelling, identification and control of an elastic joint.

94

For this purpose the following inputs are used:

Figure 103. Inputs used for both directions movement and friction identification.

The experiments are carried out in voltage control, so the parameters identified will differ from the

ones estimated with the same procedure but for current control, here the initial values are shown, the

values obtained in previous steps are used as initial values, and as long as we know the values of K and

D are not precise, these will remain fixed as the value calculated in the preceding step.

Modelling, identification and control of an elastic joint.

95

Table 31.Identification friction initial parameters and its boundaries.

Parameter\Set values x0 x0 lower x0 upper

JmRK 0.0073 0.00036543 0.9

Je 0.3 0.01 1

N 70 70 70

BmRK 0.299278 0.249278 0.349278

D 0.05 0.045 0.075

Be 0.1 Eps(0) 0.7

Kin 14.4 14.025 14.975

K1 40 37 43

𝝉𝒄RK 0.315 0.28 2.75

K3 150 149 151

Fs 1.60667 1.36 10

Alpha 0.465822 0.04 1.5

Beta 0.0445634 0.004 1.05

Once the model for this step is integrated in the IDNLGREY script the following results are obtained.

Table 32. Final estimated parameters for both velocity 2 filter data sets.

Search method = ‘lm’ , ‘lm’

Parameter\Value xf Std. dev 𝝈

JmRK 0.00557276 9.12065e-06

Je 0.0264691 0.000865728

N 70 0

BmRK 0.30773 0

D 0.075 0.00252879

Be 0.178733 0.00570538

Kin 14.9589 0

K1 39.8319 1.26379

𝝉𝒄RK 0.57484 3.21678e-05

K3 149.999 2292.04

Fs 1.36 0.0217614

Alpha 0.29442 0.00188563

Beta 0.27002 0.0044257

Modelling, identification and control of an elastic joint.

96

nlgr2 =

Continuous-time nonlinear grey-box model defined by 'model1' (MEX-file):

 dx/dt = F(t, u(t), x(t), p1, ..., p13)

 y(t) = H(t, u(t), x(t), p1, ..., p13) + e(t)

 with 1 input, 4 states, 4 outputs, and 10 free parameters (out of 13).

 Input:

 u(1) DAC voltage(t) [V]

 States: initial value

 x(1) theta(t) [rad] xinit@exp1 0 (fix) in [-Inf, Inf]

 x(2) q(t) [rad] xinit@exp1 -0 (fix) in [-Inf, Inf]

 x(3) th_p(t) [rad/s] xinit@exp1 0.0384371 (fix) in [-Inf, Inf]

 x(4) q_p(t) [rad/s] xinit@exp1 6.2353e-13 (fix) in [-Inf, Inf]

 Outputs:

 y(1) theta(t) [rad]

 y(2) q(t) [rad]

 y(3) th_p(t) [rad/s]

 y(4) q_p(t) [rad/s]

 Parameters: value standard dev

 p1 Motor inertia [kgm^2] 0.00557276 9.12065e-06 (est) in [0.00036543, 0.9]

 p2 Link side inertia [kgm^2] 0.0264691 0.000865728 (est) in [0.01, 1]

 p3 HarmonicDrive reduction ratio 70 0 (fix) in [70, 70]

 p4 Motor viscous friction [Nms/rad] 0.30773 0 (fix) in [0.249278, 0.349278]

 p5 Spring Damping [Nms/rad] 0.075 0.00252879 (est) in [0.045, 0.075]

 p6 Link viscous friction [Nms/rad] 0.178733 0.00570538 (est) in]0, 0.7]

 p7 Input gain [Nm/A] 14.9589 0 (fix) in [14.025, 14.975]

 p8 Spring stiffness constant [Nm/rad] 39.8319 1.26379 (est) in [37, 43]

 p9 Coulomb friction 0.57484 3.21678e-05 (est) in [0.28, 2.75]

 p10 k3 [k3] 149.999 (est) in [149, 151]

 p11 striebeck 1.36 0.0217614 (est) in [1.36, 10]

 p12 alpha 0.294424 0.00188563 (est) in [0.04, 1.5]

 p13 beta 0.270028 0.00442576 (est) in [0.004, 1.05]

Name: Respuesta simulada

Status:

Modelling, identification and control of an elastic joint.

97

Figure 104. Simulated response comparison for the model obtained and the validation data set.

From the simulated response we can compare it with the one shown in figure 102, now the error in

the position that appeared before when the velocity was crossing the zero value is gone, also remak

that the standard deviations obtained are very small, this indicates that the model, a low standard

deviation means that the data points are close to the expected value, while the higher value means

that the data points are spread out over a wider range of values. This is logical since the only value

big is related to the K which identification is highly dependent on the velocity of the link signal, that

in this case isn’t accurate.

 Name: Respuesta simulada

Status:

Termination condition: Maximum number of iterations reached.

Number of iterations: 15, Number of function evaluations: 76

Estimated using Solver: ode45; Search: lm on time domain data "Datos del experimento".

Fit to estimation data: [99.27;98.61;94.18;19.22]%

FPE: 1.331e-08, MSE: 0.9208

More information in model's "Report" property.

Modelling, identification and control of an elastic joint.

98

Also the prediction error and the residuals are analyzed and shown in the following figures.

Figure 105. 1-Step prediction error for the identified model.

Figure 106. Residue correlation for the estimated model.

Modelling, identification and control of an elastic joint.

99

When comparing the obtained prediction error and the residuals we find that for the prediction error

there is still a non modelled phenomena, this is probably the hysteresis in the kinematic error that

affects the position, for the residue analysis we can conclude that the autocorrelation for both velocity

signals is not ideal, as long as both are estimations from the discretized position signals, having noise

and error (also induced by the kinematic error in the Harmonic Drive). Despite that, the cross

correlation for the four outputs related to the input now are inside the confidence range, this means

that the model now represents the reality better than previous simplified models.

Figure 107. Step response for the identified model.

Finally the step response is analyzed, here the main problem appears in the velocity link step response,

where the oscillations due to the torsional spring that is the Harmonic drive transmission are notified,

in the motor side its not that obvious since the torque is reduced seventy times, so the relationship

between the K and the D will affect this step response oscillations in the link side velocity, this will be

analyzed later on through simulations of the system.

Modelling, identification and control of an elastic joint.

100

5.4 Current control identification

In this section the same procedure carried in 5.3.4 will be used, but for current control. In this mode it

has been comprobed that for a high input in the DAC, the current cant follow the frequency, this means

the ESCON acts as a low pass filter, rejecting higher frequencies, that’s the main reason why these

experiments have been carried with low frequencies at the input, an example of this problem is shown

in the figure 109.

Figure 108. Current response for high frequency DAC input.

The yellow line represents the current, the red the DAC value and the blue the velocity of the motor.

5.4.1 Harmonic drive with nonlinear friction and elasticity parameter identification

So for this experiment, the following inputs are used to generate the data sets 1 and 2.

Figure 109. Low frequency input for current control identification.

Modelling, identification and control of an elastic joint.

101

The initial parameters as well as its boundaries are shown in the following table

Table 33.Identification friction initial parameters and its boundaries.

Parameter\Set values x0 x0 lower x0 upper

Jm 6.8874e-4 3.06e-6 1

Je 0.0215 0 10

N 70 70 70

Bm 0.0064 0 100

D 0.0562 1e-06 1000

Be 0.1538 Eps(0) 2

Kin 0.3090 0.002 1000

K1 40.43 2 90000

𝝉𝒄 0.0297 0.0001 0.4

alpha 0.398629 0.0004 1.75

Fs 0.2 0.0001 200

Alpha 0.399435 1e-05 200

K3 150 140 151

Once the model for this step is integrated in the IDNLGREY script the following results are obtained.

Table 34. Final estimated parameters for both velocity 2 filter data sets.

Search method = ‘lm’ , ‘lm’

Parameter\Value xf Std. dev 𝝈

Jm 0.0264089 0.160579

Je 1.34695e-06 3.21398e-06

N 70 0

Bm 0.0064 0

D 0.0562 0

Be 0.063377 0.310624

Kin 11.0924 67.191

K1 40.4364 0

𝝉𝒄 0.355817 0

K3 150 0

Fs 1.75 14.1792

Alpha 0.0001 0.260249

Beta 150 0

Modelling, identification and control of an elastic joint.

102

The estimated model properties are shown below:

nlgr2 =

Continuous-time nonlinear grey-box model defined by 'model_current' (MEX-file):

 dx/dt = F(t, u(t), x(t), p1, ..., p13)

 y(t) = H(t, u(t), x(t), p1, ..., p13) + e(t)

 with 1 input, 4 states, 4 outputs, and 7 free parameters (out of 13).

 Input:

 u(1) DAC(t) [V]

 States: initial value

 x(1) theta(t) [rad] xinit@exp1 0 (fix) in [-Inf, Inf]

 x(2) q(t) [rad] xinit@exp1 -0 (fix) in [-Inf, Inf]

 x(3) th_p(t) [rad/s] xinit@exp1 8.65465e-29 (fix) in [-Inf, Inf]

 x(4) q_p(t) [rad/s] xinit@exp1 -1.06372e-33 (fix) in [-Inf, Inf]

 Outputs:

 y(1) theta(t) [rad]

 y(2) q(t) [rad]

 y(3) th_p(t) [rad/s]

 y(4) q_p(t) [rad/s]

 Parameters: value standard dev

 p1 Motor side inertia [kgm^2] 0.0264089 0.160579 (est)

in [3.06e-06, 1]

 p2 Link side inertia [kgm^2] 1.34695e-06 3.21398e-06 (est)

in [0, 10]

 p3 HarmonicDrive reduction ratio 70 0 (fix)

in [70, 70]

 p4 Motor viscous friction [Nms/rad] 0.0064 0 (fix)

in [0, 100]

 p5 Spring Damping [Nms/rad] 0.0562 0 (fix)

in [1e-06, 1000]

 p6 Link viscous friction [Nms/rad] 0.063377 0.310624 (est)

in]0, 2]

 p7 Input constant [Nm/A] 11.0924 67.191 (est)

in [0.002, 1000]

 p8 Spring stiffness constant [Nm/rad] 40.4364 0 (fix)

in [2, 90000]

 p9 Coulomb friction [Nm/rad] 0.355817 0 (fix)

in [0.0001, 0.4]

 p10 Striebeck 1.75 14.1792 (est)

in [0.0004, 1.75]

 p11 Alpha_f 0.0001 1.2262 (est)

in [0.0001, 200]

 p12 Beta_f 0.079195 0.260249 (est)

Modelling, identification and control of an elastic joint.

103

Take into account that, as long as in this step the power stage, ESCON module 50/5 is working in

current control, the parameters directly identified will differ from the ones obtained in voltage control,

more precisely the ones related to the trigonometric friction and those from the motor side equations.

Figure 110.Simulated response comparison for the first data set.

 p9 Coulomb friction [Nm/rad] 0.355817 0 (fix) in [0.0001, 0.4]

 p10 Striebeck 1.75 14.1792 (est) in [0.0004, 1.75]

 p11 Alpha_f 0.0001 1.2262 (est) in [0.0001, 200]

 p12 Beta_f 0.079195 0.260249 (est) in [1e-05, 200]

 p13 k3 150 0 (fix) in [140, 151]

Name: Respuesta simulada

Status:

Termination condition: Maximum number of iterations reached.

Number of iterations: 10, Number of function evaluations: 54

Estimated using Solver: ode45; Search: lm on time domain data "Datos del experimento".

Fit to estimation data: [90.31;88.01;93.16;73.2]%

FPE: 0.1007, MSE: 116

More information in model's "Report" property.

Modelling, identification and control of an elastic joint.

104

Figure 111. Simulated response comparison for the second data set.

As a result, the estimated model provides a good fit to data, now the 1-Step prediction error will be

analyzed.

Figure 112. 1-Step prediction error.

Modelling, identification and control of an elastic joint.

105

When analyzing the 1-step error, there are some things left unexplained, as long as the ESCON is

working in current control, the current is now the input to the system, this means that the real input

should be the current instead the DAC voltage value programmed in the Keil code, this means that

there is a noise behaviour left unexplained when considering the input used for the system.

Also the velocity oscillations due to the BLDC motor phase conmutation represented as ripples are

observed, this behaviour is presented in [26], where the back EMF may take trapezoidal or sinusoidal

shape. Also the error in the position is appreciated, this is mainly due to the Kinematic error, also the

link velocity as long as its estimated from the link position measurements with low resolution, the

quantization error appears as pulses when differenciating the position in order to obtain the velocity

signal, this is also appreciated in the 1-Step prediction error.

Figure 113. Residue correlation.

The residuals for the link velocity auto correlation are the same as for voltage control identifications,

as well as the autocorrelations of the positions, the cross correlations are close to the confidence

boundaries, this means the model can be still improved, probably with torque measurements as well

as with higher resolution encoders.

Modelling, identification and control of an elastic joint.

106

Figure 114.Step response of the identified system.

The identified step response of the system corresponds to the typical shape of a DC motor actuated

by current, where there is a time until the motor reaches steady state velocity.

Modelling, identification and control of an elastic joint.

107

5.5 Frequency response analysis

When analyzing the frequency response, two transfer functions are of main interest, motor velocity

respect to the current, and link velocity respect to the current.

From the equations of the system presented in section 3, (3.13) and (3.14), applying Laplace transform

to the differential equations to make them algebraic expressions, first applied to the motor equation:

𝑢 ∗ 𝐾𝑎𝐾𝑚 = 𝐽𝑚𝑠2𝜃 + 𝑏𝑚𝑠𝜃 +
𝐾

𝑁2
𝜃 −

𝐾

𝑁
𝑞 +

𝐵

𝑁2
𝑠𝜃 −

𝐵

𝑁
 𝑠𝑞

(5.32)

𝑢 ∗ 𝐾𝑎𝐾𝑚 = 𝜃(𝐽𝑚𝑠2 + (𝑏𝑚 +
𝐵

𝑁2
)𝑠 +

𝐾

𝑁2
) − 𝑞(

𝐾 + 𝐵𝑠

𝑁
)

(5.33)

Now obtain the motor position from link equation:

𝑞(𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾) = 𝜃(

𝐾 + 𝐵𝑠

𝑁
)

(5.34)

𝑞 = 𝜃
(𝐵𝑠 + 𝐾)

(𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

 ; 𝜃 = 𝑞
(𝐽𝑒𝑠

2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

(𝐵𝑠 + 𝐾)

(5.35)

After that in the motor equation, depending on the transfer function desired (from input to motor,

and from input to link) use q or 𝜃 to obtain the desired transfer function:

From input to link:

𝑢 ∗ 𝐾𝑎𝐾𝑚 = 𝑞[
(𝐽𝑒𝑠

2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

(𝐵𝑠 + 𝐾)
∗ (𝐽𝑚𝑠2 + (𝑏𝑚 +

𝐵

𝑁2
)𝑠 +

𝐾

𝑁2
)] − 𝑞(

𝐾 + 𝐵𝑠

𝑁
)

(5.36)

(𝑏𝑚𝐵 + 𝑏𝑚𝑏𝑒 +
𝐵2

𝑁2 +
𝐵𝑏𝑒

𝑁2))𝑠2 + (
𝐾

𝑁2 (𝑏𝑒 + 𝐵) + 𝐾(𝑏𝑚 +
𝐵

𝑁2)𝑠 +
𝐾2

𝑁2)

(𝐵𝑠 + 𝐾)
𝑞 − (

𝐾 + 𝐵𝑠

𝑁
)𝑞

(5.37)

Now rearrange with common denominator:

From input to motor:

𝑢 ∗ 𝐾𝑎𝐾𝑚 = 𝜃(𝐽𝑚𝑠2 + (𝑏𝑚 +
𝐵

𝑁2
)𝑠 +

𝐾

𝑁2
) − 𝜃 (

(𝐵𝑠 + 𝐾)

(𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

)
(5.38)

The desired TF is obtained by getting 𝐺𝑡ℎ𝑁 = 𝜃/𝑢, so it can be expressed as:

𝜃

𝑢
=

𝐾𝑎𝐾𝑚 ∗ (𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

[(𝐽𝑚𝑠2 + (𝑏𝑚 +
𝐵

𝑁2)𝑠 +
𝐾

𝑁2) ∗ (𝐽𝑒𝑁𝑠2 + (𝐵𝑁 + 𝑏𝑒𝑁)𝑠 + 𝐾𝑁)] − (𝐵𝑠 + 𝐾)

(5.39)

Now arranging the denominator:

Modelling, identification and control of an elastic joint.

108

𝑑𝑒𝑛𝜃 = 𝐽𝑒𝐽𝑚𝑠4 + (𝐽𝑚(𝑏𝑒 + 𝐵) + 𝐽𝑒(𝑏𝑚 +
𝐵

𝑁2
))𝑠3 + (𝐾 (𝐽𝑚 +

𝐽𝑒
𝑁2

) + (𝐵𝑏𝑚 + 𝑏𝑒𝑏𝑚 + 𝐵
𝑏𝑒

𝑁2
))𝑠2

+ (𝐾(𝑏𝑚 +
𝑏𝑒

𝑁2
))𝑠

(5.40)

So after that the final expression can be analyzed for all the frequencies range:

𝐺𝜃 =
𝜃(𝑠)

𝑢(𝑠)
=

𝐾𝑎𝐾𝑚 ∗ (𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

𝑑𝑒𝑛(𝑠)

(5.41)

This procedure can be repeated to obtain both transfer functions, from input to motor velocity and

from input to link velocity, after that the numerators and denominators of the transfer function will

be.

𝑛𝑢𝑚𝑞 = 𝐾𝑎𝐾𝑚(𝐵𝑠 + 𝐾) (5.42)

𝑛𝑢𝑚𝜃 = 𝐾𝑎𝐾𝑚(𝐽𝑒𝑠
2 + (𝑏𝑒 + 𝐵)𝑠 + 𝐾) (5.43)

𝑑𝑒𝑛𝑞 = 𝑁(𝐽𝑒𝐽𝑚𝑠4 + (𝐽𝑚(𝑏𝑒 + 𝐵) + 𝐽𝑒(𝑏𝑚 +
𝐵

𝑁2
))𝑠3 + (𝐾 (𝐽𝑚 +

𝐽𝑒
𝑁2

) + (𝐵𝑏𝑚 + 𝑏𝑒𝑏𝑚 + 𝐵
𝑏𝑒

𝑁2
))𝑠2

+ (𝐾(𝑏𝑚 +
𝑏𝑒

𝑁2
))𝑠)

(5.44)

[

�̇�
�̈�
�̇�
�̈�

] = [

0
−𝐾/𝑁2𝐽𝑚

0
𝐾/𝑁𝐽𝑒

1
−(𝑏𝑚 + 𝐵/𝑁2)/𝐽𝑚

0
𝐵/𝑁𝐽𝑒

0
𝐾/𝑁𝐽𝑚

0
−𝐾/𝐽𝑒

0
𝐵/𝑁𝐽𝑚

1
−(𝑏𝑒 + 𝐵)/𝐽𝑒

] [

𝜃
�̇�
𝑞
�̇�

] + [

0
1/𝐽𝑚

0
0

]

(5.45)

When implemented on Matlab:

%% Bode plot with Harmonic drive reduction

numthN = [KaKm*Je; KaKm*(B+Be); KaKm*K]';

numqN = [KaKm*B; KaKm*K]';

denNth =[Je*Jm;

 Jm*(Be+B)+Je*(Bm+B/(N^2));

 K*(Jm+Je/(N^2))+(B*Bm+Bm*Be+(B*Be/(N^2)));

 K*(Bm+Be/(N^2));

 0]';

denNq = N*[Je*Jm;

 Jm*(Be+B)+Je*(Bm+B/(N^2));

 K*(Jm+Je/(N^2))+(B*Bm+Bm*Be+(B*Be/(N^2)));

 K*(Bm+Be/(N^2));

 0]';

GthN=tf(numthN,denNth);GqN=tf(numqN,denNq);

bode(GthN,GqN)

Modelling, identification and control of an elastic joint.

109

Figure 115. Typical bode plot shape of link velocity respect to the current(left), and motor velocity respect to the current
(right)

As stated in [10], the relation between torque and motor velocity can be written as:

𝑑𝑒𝑛𝜃 = 𝑠3𝐽𝑒𝐽𝑚 + 𝑠2 (𝐽𝑒𝐵𝑚 + 𝐷 (𝐽𝑚 +
𝐽𝑒
𝑁2

)) + 𝑠 (𝐾 (𝐽𝑚 +
𝐽𝑒
𝑁2

) + 𝐷𝐵𝑚) + 𝐾𝐵𝑚
(5.46)

If the effect of the damping coefficient, D, is negligible the transfer function becomes:

𝑛𝑢𝑚𝜃 = 𝐽𝑒𝑠
2 + 𝐾 (5.47)

𝑑𝑒𝑛𝜃 = 𝑠3𝐽𝑒𝐽𝑚 + 𝑠2𝐽𝑒𝐵𝑚 + 𝑠𝐾 (𝐽𝑚 +
𝐽𝑒
𝑁2

) + 𝐾𝐵𝑚
(5.48)

The parameter 𝐵𝑚 affects the low frequency region, for this reason, the value estimated of this

parameter can be considered good, the fact that this parameter has been identified with different

procedures with the same result also is a good reason to validate this parameter value.

The variation of the coefficient D, does not make any evident changes in the Bode plot, this means D

is hard to estimate, as it can be seen in the results, this parameter give many different values for

different identification procedures.

The parameters K and Je have simmilar but opposite effects on the Bode plot, the angular frequency

of the notch in the Bode plot of the physically parametrized model corresponds to the zero in the

previous equation and it can be calculated as:

𝜔𝑛1 = 𝐼𝑚 {−
𝐷

2𝐽𝑒
± √(

𝐷

2𝐽𝑒
)
2

−
𝐾

𝐽𝑒
} ≈ √

𝐾

𝐽𝑒

(5.49)

The stiffer the spring is the higher the frequency will be, the depth of the notch is only dependent on
𝐷

2𝐽𝑒
, the smaller this values is, the deeper the notch becomes.

Modelling, identification and control of an elastic joint.

110

6. Simulations and trajectory generator

6.1 Simulations with the parameters identified

Simulation with obtained parameters, with the same input as the DAC signal stored in the variable

“tension_s” from workspace, the Harmonic drive model in the simulations will be evaluated in different

scenarios, depending on the considered physical phenomenas in the model.

For the parameters which value has the uncertainity of being well identified, mainly corresponding the

elastic torque related parameters 𝐾,𝐷 the values will be varied in the simulation and its effects will be

evaluated, this is also influent in the hysteresis modelling as long as the signal that provides most of

the information about this effects are the link side signals, this is derived from the fact that the elastic

torque is reduced by 𝑁 = 70 in the motor side and so its effect in the motor side signals is not

noticeable.

6.1.1 Model simulation

In this section the model identified in voltage control is implemented in simulink, where the values of

the parameters can be changed in order to see how these affect to the response of the system, in

future works, more complex models can be implemented or compared with the ones obtained.

Figure 116. General view of the elastic joint model implemented in Simulink.

Modelling, identification and control of an elastic joint.

111

Figure 117. Elastic joint Simulink implementation.

In this Simulink implementation, the real data for any experiment can be introduced and compared to

the signals, this might help also in the future for taking a good initial guess for the parameters in the

identification procedure.

Figure 118. Trigonometric function for the friction implemented on Simulink.

Here is shown as an example how the real data is compared to values close to the ones identified.

Modelling, identification and control of an elastic joint.

112

Figure 119. Simulink real data vs simulated signal.

Modelling, identification and control of an elastic joint.

113

6.1.2 Bouc-Wen model

In order to see how the Bouc-Wen model behaves it has been implemented in simulink, in a simple

inertial system actuated, the general view of this model is shown in the figure below.

Figure 120. Bouc-Wen model implementation in simulink.

And the hysteresis plus nonlinear cubic polynomial for the elasticity is implemented in the subsystem,

where the internal state as well as the balance between purely elastic and purely plastic behaviour is

implemented.

Figure 121.Bouc-Wen subsystem for plastic-elastic balance.

Modelling, identification and control of an elastic joint.

114

Figure 122. Bouc-Wen internal state Simulink implementation.

As it can be seen in the general view of the model, also the LuGre model has been implemented as a

friction actuating in the motor. When simulating the following parameters were chosen for

simulation, then the plots of the velocity against the friction force will be plot in a XY graph, in order

to see the typical LuGre shape, then the same plot is done for observing the hysteresis between the

internal state and the displacement, where a memory effect will be appreciated, and the typical

hysteresis shape will be plot.

%% Bouc Wen hysteresis
mi = 0.5;
a = mi;
A = 1;
beta=0.8;
gam=0.7;
Kz=1;
Kx=10;

%% Striebeck function
Ms = 1; % Fricción Striebeck
Mc =0.8; % Fricción Coulomb.
vs = 0.092; %Velocidad Striebeck.

%% Mechanical system with friction

J = 1; % inertia moment
Kmot = 0.5; % motor constant

%% LuGre Parameters
sig2 = 0.5;
sig0= 100;
sig1=1.70;

Modelling, identification and control of an elastic joint.

115

Figure 123. Hysteresys shape obtained by simulation.

Figure 124.Friction force vs velocity, x axis velocity, y axis friction force.

Modelling, identification and control of an elastic joint.

116

6.2 Fourth order trajectory generator for Keil uVision

A fourth order trajectory generator was implemented for future trajectory tracking tasks, the

function speed_signal generates the 4th order trajectory with smooth acceleration transitions.

It takes as an argument the time and the maximum value, the signal generated is symetric and the

middle part is constant, so it only returns half the signal.

To use it properly, the fucntion has to be called 2 times. The first one to generate the singal until half

of the experiment time, then call the function with the time as a parameter until time_s/2. The

second call is for the symetric part of the signal, calling the function with (time_experiment - time)

as a parameter will generate the symetric part. The signal can be modified by changing the value of

t1, t2 ... and Vmax

#include "math.h"

extern volatile float v_max;

extern volatile float final_pos;

float speed_signal(float i, float v_max, float final_pos){

 float signal;

 float k =3.19870022581016*v_max*v_max*v_max*v_max/ (final_pos*final_pos*final_pos);

 float laps = 0.0909521553765987*final_pos/v_max;

 float t1 = laps;

 float t2 = 2*laps;

 float t3 = 3*laps;

 float t4 = 4*laps;

 float t5 = 5*laps;

 float t6 = 6*laps;

 float t7 = 7*laps;

 float t8 = 11*laps;

 float t9 = 12*laps;

 float t10 = 13*laps;

 float t11 = 14*laps;

 float t12 = 15*laps;

 float t13 = 16*laps;

 float t14 = 17*laps;

 float t15 = 18*laps;

 if(i>t2 && i<=t3)

 signal = (k*((t1+t2)*i*i/2 - i*i*i/6 - (t1*t1/2+t2*t2/2)*i)

 + k*(t2*t2*t2/6 + t1*t1*t1/6)

);

Modelling, identification and control of an elastic joint.

117

if(i <= t1)

signal = k/6*i*i*i;

if(i>t1 && i<= t2)

signal = (k*t1*(i*i/2-t1*i/2) + k*t1*t1*t1/6);

if(i>t2 && i<=t3)

signal = (k*((t1+t2)*i*i/2 - i*i*i/6 - (t1*t1/2+t2*t2/2)*i)

+ k*(t2*t2*t2/6 + t1*t1*t1/6));

if(i>t3 && i<=t4)

signal = ((k*((t1+t2)*t3 - t3*t3/2) - k*(t1*t1/2 + t2*t2/2))*i

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3)/6));

if(i>t4 && i<=t5)

signal = (k*(t4*i*i/2 - i*i*i/6) + (k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4)/2)*i

+ k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4)/6);

if(i>t5 && i<=t6)

signal = (k*(t4-t5)*i*i/2 +k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4 + t5*t5)/2*i

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4 - t5*t5*t5)/6));

if(i>t6 && i<=t7)

signal = (k*(i*i*i/6 - t7*i*i/2) + (k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4 + 2*t4*t6 +

t5*t5 - 2*t5*t6 - t6*t6 + 2*t6*t7)/2)*i

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4 - 3*t4*t6*t6 -

t5*t5*t5 + 3*t5*t6*t6 + 2*t6*t6*t6 - 3*t6*t6*t7)/6));

if(i>t7)

signal = (k*(t7*t7*t7/6 - t7*t7*t7/2) + (k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4 +

2*t4*t6 + t5*t5 - 2*t5*t6 - t6*t6 + 2*t6*t7)/2)*t7

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4 - 3*t4*t6*t6 -

t5*t5*t5 + 3*t5*t6*t6 + 2*t6*t6*t6 - 3*t6*t6*t7)/6));

return signal;

}

Modelling, identification and control of an elastic joint.

118

7. Conclusions and future works

After finishing the project, many concepts studied were reviewed and implemented in the

experimental platform used. During the project, many problems were arising when trying to make the

system work in a proper way in different areas such as:

 Electronic circuit design.

 Mechanical structure building.

 Mathematical modeling.

 Microcontroller programming.

 Signal processing.

 Identification techniques.

 Matlab programming.

 Real world limitations.

As stated in previous chapters, the results are not good enough for knowing the complete real

behaviour of the system in order to apply control techniques to the real plant. Despite that with the

given procedure if the experimental platform is improved, the project could be finished with more

satisfactory results, this implies finishing the identification accurately for the elasticity parameters

associated to the Harmonic Drive. This could be achieved by implementing load sensors and isolating

the motor-reductor system intro a lock-load configuration in order to carry out different experiment

with torque measurements, from where accurate models of hysteresis in the elastic force can be

achieved.

As long as this project is part of a bigger project as mentionated in section 1 “WRAD”. The Harmonic

Drive transmissions will be implemented in the two first links of the robotic arm; this implies the

identification of the whole robot arm with two elastic joints and normal transmissions for the last link

and attached to the end effector.

This robot will be worn in a vest by the patient so it will be an autonomous system, this means that

the robot will have batteries and that power consumption is a crucial fact. For saving power, as much

as possible optimal control would be applied in order to carry a control strategy that balances

between energy consumption and trajectory tracking.

For the prototype implementation, many Discovery boards will be needed as well as a communication

protocol between them, the before mentionated control would be implemented in a Raspberry, which

is perfect for matrix operations programmed in python.

Modelling, identification and control of an elastic joint.

119

8. Budget

The project was carried in an experimental platform with material that have been used in previous

projects; anyway, an estimation of the value of all the materials used is presented.

Table 35.Material budget.

Name of the component Price per unit(€) Units

Maxon BLDC Motor 130 1

Discovery STM32F429Zi 31.21 1

Power Supply PULS Dimension Q-Series 229 1

ESCON Module 50/5 139.18 1

ESCON Power cable 14.82 1

ESCON Motor cable 25.91 1

ESCON Hall sensor cable 14.64 1

USB Mini cable 1.75 2

USB Standard cable 6.95 1

Encoder header HEDX-9141 24.82 2

Codewheels 11.12 2

Encoder 3 channels cable 9.80 2

Operational Amplifier 0.60 1

Resistances 0.1 4

Microcontroller cables 0.25 10

Modelling, identification and control of an elastic joint.

120

Modelling, identification and control of an elastic joint.

121

9. References

[1] Timothy Douglas Tuttle. “Understanding and Modeling the Behavior of a Harmonic Drive Gear

Transmission”. Massachusetts Institute of Technology (MIT) Artificial Intelligence Laboratory, 1992.

[2] Vincent Lampaert, Farid Al-Bender, Jan Swevers. “A Generalized Maxwell-Slip Friction Model

appropriate for Control Purposes”. PhysCon, 2003.

[3] Michel Ruderman, Torsten Bertram, Makoto Iwasaki. “Modeling, observation, and control of

hysteresis torsion in elastic robot joints”. Mechatronics 24 407-415, 2014.

[4] W. Seyfferth, A.J. Maghzal, J. Angeles.”Nonlinear modeling and parameter identificication of

Harmonic Drive robotic transmissions”. IEEE International conference on robotics and automation,

1999. 0-7803-1965-6/95.

[5] Fathi H. Ghorbel, Prasanna S. Gandhi, Friedhelm Alpeter. “On the kinematic error in harmonic drive

gears”. Transactions of the ASME, Vol. 123, March 2001.

[6] Michel Ruderman, “Modeling of elastic robot joints with nonlinear damping and hysteresis.” DOI:

10.5772/25494, January 2011.

[7] Bruno Siciliano, Springer handbook of robotics, chapter 13. Robots with flexible elements.

[8] Ovidiu Solomon, “Some typical shapes of hysteretic loops using the Bouc-Wen model.”

[9] Cristina Castejón, Juan Carlos García-Prada, Omar José Lara, “Modelado de una transmisión

Harmonic drive. Análisis del error cinemático.” Revista iberoamericana de ingeniería mecánica, Vol. 13

Nº2 pp 51-65, 2009.

[10] Stig Moberg, “On modeling and control of flexible manipulators.” Linköping studies in science and

technology. Thesis No 1336.

[11] H.D. Taghirad, P.R. Bélanger, “Modelling and parameter identification of Harmonic drive systems.”

Journal of Dynamic systems, measurements and control, ASME publications.

[12] Mohammed Ismail, Fayçal Ikhouane, José Rodellar. “The hysteresis Bouc-Wen model, a survey”

Arch Comput Methods Eng (2009) 16: 161-188, DOI 10.1007/s11831-009-9031-8.

[13] T. Tjahjowidodo, F. Al-Bender, H. Van Brussel. “Nonlinear modelling and identification of torsional

behaviour in Harmonic drives.” Proceedings of ISMA, 2006.

[14] H. Olsson, K.J. Aström, C. Canudas de Wit, M. Gäfvert, P. Lischinsky. “Friction models and friction

compensation.” European journal of control, 176-195. 1998.

[15] Dr. Eleni Chatzi, K. Agathos, G. Abbiati. “Method of finite elements II, modeling of Hysteresis.”

Institute of structural engineering (IBK), DBAUG, ETH Zurich, Structural mechanics slides.

[16] Miniature geargeads, Harmonic drive gearhead, CSF Mini series, datasheet.

[17] Demosthenis D. Rizos, Spilios D. Fassois, “Friction identification based upon the LuGre and

Maxwell slip models.” Interntional federation of automatic and control, 2005.

[18] T. Tjahjowidodo, F. Al-Bender, H. Van Brussel. “Friction identification and compensation in a DC

motor.” Interntional federation of automatic and control, 16th Triennial world congress, 2005.

Modelling, identification and control of an elastic joint.

122

[19] Junki Oaki, Shuichi Adachi, “Grey box modeling of elastic joint robot with Harmonic drive and

timing belt.” Interntional federation of automatic and control, 16th IFAC Symposium on system

identification, July 2012.

[20] Erik Wernholt, Svante Gunnarsson, “Nonlinear grey-box identification of industrial robots

containing flexibilities.” Interntional federation of automatic and control, 16th Triennial world

congress, 2005.

[21] Hamid D. Taghirad, “On the modeling and identification of Harmonic drive systems.” Centre for

intelligent machines, McGill University, CIM-TR-97-02, January 1997.

[22] “Nonlinear least squares data fitting.” Appendix D.

[23] David di Ruscio, “Prediction error methods”, Telemark University College, revised April 3, 2014.

[24] A. Croeze, L. Pittman, W. Reynolds, “Solving nonlinear least-squares problems with the Gauss-

Newton and Levenberg-Marquardt methods.”

[25] Henri P. Gavin, “The Levenberg-Marquardt method for nonlinear least squares curve fitting

problems.”

[26] C.Cham, Z.Bin Samad, “Brushless DC motor Electromagnetic torque estimation with single-phase

current sensing.”

DOCUMENT II:

ANNEXES

DOCUMENT II: ANNEXES

1. Matlab Scripts and functions ... 1

1.1 Voltage control .. 1

1.1.1 Reduced model (Total inertia) .. 1

1.1.2 Harmonic drive simplified model (Linear elasticity) ... 5

1.1.3 Harmonic drive model with nonlinear elasticity and trigonometric friction. 10

1.1.4 Harmonic drive model with nonlinear elasticity, trigonometric friction and hysteresis. 15

1.2 Current control .. 21

1.2.3 Harmonic drive model with nonlinear elasticity and trigonometric friction. 21

2. Keil uVison code .. 26

2.1 Main.c .. 26

2.2 Fonctions.c .. 32

2.3 Init.c ... 33

2.4 Encoder.c ... 39

2.5 Stm32f4xx_it.c ... 42

Annexes.

1

1. Matlab Scripts and functions

1.1 Voltage control

1.1.1 Reduced model (Total inertia)

1.1.1.1 Reduced model MEX file

void compute_dx(double *dx, double *x, double *u, double **p)

{

 /* Declaration of model parameters and intermediate

variables. */

 double *JtRK, *bmRK, *KaRK, *tcRK;

 double tau_f, sign;z

 /* Retrieve model parameters. */

 JtRK = p[0]; /* Scaled total inertia */

 bmRK = p[1]; /* Scaled viscous friction */

 KaRK = p[2]; /* Input gain */

 tcRK = p[3]; /* Scaled Coulomb friction */

 tau_f = bmRK[0]*x[0];

 /* State equations. */

 /* x[0] motor speed */

 dx[0] = ((KaRK[0]*u[0]-tcRK[0])-tau_f)/JtRK[0];

}

/* Output equations. */

void compute_y(double y[], double x[])

{

 y[0] = x[0];

}

Annexes.

2

1.1.1.2 Identification script for low frequency inertias

%% COMPILE THE FILE CONTAINING THE MODEL

clc, clear;

addpath('C:\Users\Rafael C\Desktop\Ident_low_freq')

run ('script_3experiments_lf');

mex Reduced_mod.c

vel = vel1_noise;

vel_b = vel1_noise_b;

vel_c = vel1_noise_c;

%% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS

InputName = {'DAC voltage'};

InputUnit = {'V'};

StateName = {'th_p';};

StateUnit = {'rad/s';};

OutputName = StateName(1);

OutputUnit = StateUnit(1);

%% PARAMETERS

n_p = 4; % Number of parameters

ParName = {'Jt*R/Ka';'Velocity term (Kw + R/Ka*Bm)';'Kin';'tcRK';};

ParUnit = {'';'';'';'';};

ParValue= {0.02; 0.28; 0.217; 0.37;};

ParMin= {1E-6; 0.26; 0.01; 0.27;};

ParMax = {5; 0.3; 100; 0.47;};

%% INITIAL STATES OF THE EXPERIMENT

val_state = 252;

%InitialStates Data set 1

InitialStates = {vel(val_state)};

InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates, ...

 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%InitialStates Data set 2

InitialStates_b = {vel_b(val_state)};

InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates_b, ...

 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%% Create the idnlgrey object and the iddata object

FileName = 'Reduced_mod'; % File describing the model

structure.

Order = [1 1 1]; % Model orders [ny nu nx].

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue,

Annexes.

3

%% Create the idnlgrey object and the iddata object

FileName = 'Reduced_mod'; % File describing the model

structure.

Order = [1 1 1]; % Model orders [ny nu nx].

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue,

'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, 0, ...

 'Name', 'Respuesta simulada', 'InputName', InputName, ...

 'InputUnit', InputUnit, 'OutputName', OutputName, ...

 'OutputUnit', OutputUnit, 'TimeUnit', 's');

z= iddata({vel(val_state:end),vel_b(val_state:end),vel_c(val_state:end)},

{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-2.5

tension_s_c(val_state:end)-2.5},0.001);

z.Name = 'Datos del experimento';

z.InputName = nlgr.InputName;

z.InputUnit = nlgr.InputUnit;

z.OutputName = nlgr.OutputName;

z.OutputUnit = nlgr.OutputUnit;

z.ExperimentName = {'Estimation' 'Validation1' 'Validation2'};

z.Tstart = 0;

z.TimeUnit = 's';

present(z)

%% Identification of the parameters with the model structure specified in

the idnlgrey object

%% First data set: Estimation

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on');

opt.SearchOption.MaxIter = 10;

% First data set estimation

nlgr = nlgreyest(getexp(z,1), nlgr, opt);

% Get estimated parameters in the first step

for i=1:n_p

ParValue(i)={nlgr.Parameters(i).Value};

end

% Introduce the parameters (ParValue) in the new structure

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue, ...

 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts, ...

 'Name', 'Respuesta simulada', 'InputName', InputName, ...

 'InputUnit', InputUnit, 'OutputName', OutputName, ...

 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained in the

previous step.

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on');

opt.SearchOption.MaxIter = 10;

nlgr = nlgreyest(getexp(z,2), nlgr, opt);

Annexes.

4

%% Third data set: Validation 2

% Get estimated parameters in the second step

for i=1:n_p

ParValue(i)={nlgr.Parameters(i).Value};

end

% Introduce the parameters (ParValue) in the new structure (Parameters)

for the next estimation

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue,

...

 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);

% Build the idnlgrey object with the parameters estimated in the last

step and

% with the new initial states

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_c, Ts, ...

 'Name', 'Respuesta simulada', 'InputName', InputName, ...

 'InputUnit', InputUnit, 'OutputName', OutputName, ...

 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained in

the previous step.

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on');

opt.SearchOption.MaxIter = 10;

nlgr = nlgreyest(getexp(z,3), nlgr, opt);

%% Plot data and compare to identified NLGR and parameter result

evaluation

%% Compare the estimated model response with the 3 data sets

n_ds = 3; % Number of data sets

figure

compare(getexp(z,n_ds), nlgr);

%% 1 step prediction error

figure

pe(getexp(z,n_ds), nlgr);

%% Check residuals

figure('Name',[nlgr.Name ': residuals of estimated model']);

resid(getexp(z,n_ds),nlgr);

%% Check step response and covariance

figure

step(nlgr);

getcov(nlgr)

nlgr.NoiseVariance

present(nlgr);

%Parameter transformation to voltage control

Ka = 0.217 ; Kw = 0.217 ; R = 2.3;

Jt = nlgr.Parameters(1).Value*Ka/R

Bm = (nlgr.Parameters(2).Value-Kw)*Ka/R

tc = nlgr.Parameters(4).Value*Ka/R

Annexes.

5

1.1.2 Harmonic drive simplified model (Linear elasticity)

1.1.2.1 Simplified H.D model (Linear elasticity, no hysteresis, simple friction)

void compute_dx(double *dx, double *x, double *u, double **p){

 /* Declaration of model parameters and intermediate variables. */

 double *JmKR, *Jje, *N, *D, *be, *bmKw, *Kin, *k1, *tcKR;

 double delta_e, delta_ep, tau_e, tau_f;

 JmKR = p[0]; /* Momento de inercia del motor

 Jje = p[1]; /* Momento de inercia del elemento

 N = p[2]; /* Factor de reduccoÃ³n del HarmonicDrive

 bmKw=p[3];

 D=p[4];

 be=p[5];

 Kin=p[6];

 k1 = p[7];

 tcKR = p[8];

 delta_e = x[1]-x[0]/N[0]; // Torsional angle

 delta_ep = x[3]-x[2]/N[0]; // Torsional speed

 tau_e = k1[0]*delta_e+D[0]*delta_ep; // Linear elastic torque

 tau_f = bmKw[0]*x[2]; //Coulomb + viscous friction

 /* State equations. */

 /* x[0] angulo del motor */

 /* x[1] angulo del elemento*/

 /* x[2] velocidad del motor*/

 /* x[3] velocidad del elemento*/

 dx[0] = x[2];

 dx[1] = x[3];

 dx[2] = (Kin[0]*u[0]-tcKR[0]+(tau_e*10.5991/N[0])-tau_f)/JmKR[0];

 dx[3] = (-tau_e-be[0]*x[3])/Jje[0];

}

/* Output equations. */

void compute_y(double y[], double x[])

{

 y[0] = x[0];

 y[1] = x[1];

 y[2] = x[2];

 y[3] = x[3];}

Annexes.

6

1.1.2.2 Identification script for HD simple model

%% COMPILE THE FILE CONTAINING THE MODEL

clc, clear;

addpath('C:\Users\Rafael C\Desktop\Ident_high_freq')

run ('script_3experiments');

mex model1.c

% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS

InputName = {'DAC voltage'};

InputUnit = {'V'};

StateName = {'theta'; ... %Motor angle

 'q'; ... %Link angle

 'th_p'; ... %Motor speed

 'q_p'; ... %Link speed

 };

StateUnit = {'rad'; 'rad'; 'rad/s';...

 'rad/s';...

 };

OutputName = StateName(1:4);

OutputUnit = StateUnit(1:4);

%% PARAMETERS

n_p = 9; % Number of parameters

ParName = {'Motor inertia'; ...

 'Link side inertia '; ...

 'HarmonicDrive reduction ratio'; ...

 'Motor viscous friction';...

 'Spring Damping';...

 'Link viscous friction';...

 'Current to torque motor constant';...

 'Spring stiffness constant';...

 'Coulomb friction';...

 };

ParUnit = {'kgm^2';'kgm^2'; '' ; ...

 'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';'';...

 };

Bm0 = 0.299278;

%PARAMETER INITIALIZATION AND BOUNDARIES

% Jm Jje N Bm D Be Kin K1 tc

ParValue={0.00736543; 1; 70; Bm0; 0.05; 0.001; 14.4; 5000 ;0.3007 ...

 };

ParMin={0.0073; 0; 70;Bm0-0.1;0.001; 0.00095; 14.325; 10;0.28;...

 };

Annexes.

7

%PARAMETER INITIALIZATION AND BOUNDARIES

% Jm Jje N Bm D Be Kin K1 tc

ParValue={0.00736543; 1; 70; Bm0; 0.05; 0.001; 14.4; 5000 ;0.3007 ...

 };

ParMin={0.0073; 0; 70;Bm0-0.1;0.001; 0.00095; 14.325; 10;0.28;...

 };

ParMax={0.00742;10; 70; Bm0+0.1; 1; 0.009; 14.475; 80000;0.315;...

 };

Parameters(4).Fixed = true;

%% INITIAL STATES OF THE EXPERIMENT

%Initial state instant

val_state = 10;

vel1 = vel1_noise;%vel1_f;

vel1_b = vel1_noise_b;%vel1_f_b;

vel2 = vel2_noise;%vel2_f;

vel2_b = vel2_noise_b;%vel2_f_b;

%InitialStates Data set 1

InitialStates = {encoders1(val_state) ; -encoders2(val_state);

vel1(val_state); -vel2(val_state)};

InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates, ...

 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%InitialStates Data set 2

InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state;

vel1_b(val_state); -vel2_b(val_state)};

InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates_b, ...

 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%% Create the idnlgrey object and the iddata object

FileName = 'model1'; % File describing the model

structure.

Order = [4 1 4]; % Model orders [ny nu nx].

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value',

ParValue, ...

 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, 0, ...

 'Name', 'Respuesta simulada', 'InputName', InputName, ...

 'InputUnit', InputUnit, 'OutputName', OutputName, ...

 'OutputUnit', OutputUnit, 'TimeUnit', 's');

z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)],...

 [encoders1_b(val_state:end)' -encoders2_b(val_state:end)'

vel1_b(val_state:end) -vel2_b(val_state:end)]...

% [encoders1_c(val_state:end)' -encoders2_c(val_state:end)'

vel1_c(val_state:end) -vel2_c(val_state:end)]..

Annexes.

8

z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)],...

 [encoders1_b(val_state:end)' -encoders2_b(val_state:end)'

vel1_b(val_state:end) -vel2_b(val_state:end)]...

 [encoders1_c(val_state:end)' -encoders2_c(val_state:end)'

vel1_c(val_state:end) -vel2_c(val_state:end)]..

 },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5...

 tension_s_c(val_state:end)-2.5...

 }, 0.001);

z.Name = 'Datos del experimento';

z.InputName = nlgr.InputName;

z.InputUnit = nlgr.InputUnit;

z.OutputName = nlgr.OutputName;

z.OutputUnit = nlgr.OutputUnit;

z.ExperimentName = {'Estimation' 'Validation1' 'Validation2'};

z.Tstart = 0;

z.TimeUnit = 's';

present(z)

%% Identification of the parameters with the model structure specified

in the idnlgrey object

%% First data set: Estimation

% Estimation options (Searchmethod, max iterations...)

Searchmethod = 'lsqnonlin'; % 'lsqnonlin' 'gna' 'lm'

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on');

opt.SearchOption.MaxIter = 5;

% First data set estimation

nlgr = nlgreyest(getexp(z,1), nlgr, opt);

%% Second data set: Validation 1

% Get estimated parameters in the first step

for i=1:n_p

ParValue(i)={nlgr.Parameters(i).Value};

end

% Introduce the parameters (ParValue) in the new structure (Parameters)

for the next estimation

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue,

...

 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);

% Fix parameters from nlgr

Parameters(4).Fixed = true;

% Build the idnlgrey object with the parameters estimated in the last

step with the new initial states

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts, ...

 'Name', 'Respuesta simulada', 'InputName', InputName, ...

 'InputUnit', InputUnit, 'OutputName', OutputName, ...

 'OutputUnit', OutputUnit, 'TimeUnit', 's');

Annexes.

9

% Fix parameters from nlgr

Parameters(4).Fixed = true;

% Build the idnlgrey object with the parameters estimated in the last

step with the new initial states

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts, ...

 'Name', 'Respuesta simulada', 'InputName', InputName, ...

 'InputUnit', InputUnit, 'OutputName', OutputName, ...

 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained in

the previous step.

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on');

opt.SearchOption.MaxIter = 30;

nlgr = nlgreyest(getexp(z,2), nlgr, opt);

% Compare the estimated model response with the 3 data sets

n_ds = 2; % Number of data sets

figure

compare(getexp(z,n_ds), nlgr);

%% 1 step prediction error

figure

pe(getexp(z,n_ds), nlgr);

%% Check residuals

figure('Name',[nlgr.Name ': residuals of estimated model']);

resid(getexp(z,n_ds),nlgr);

%% Check step response and covariance

figure

step(nlgr);

%

% getcov(nlgr)

% nlgr.NoiseVariance

present(nlgr);

%Parameter transformation to voltage control

Ka = 0.217 ; Kw = 0.217 ; R = 2.3;

Jm = nlgr.Parameters(1).Value*Ka/R

Je = nlgr.Parameters(2).Value

N = nlgr.Parameters(3).Value;

Annexes.

10

1.1.3 Harmonic drive model with nonlinear elasticity and trigonometric friction.

1.1.3.1 H.D model (Cubic elasticity, no hysteresis, trigonometric friction)

void compute_dx(double *dx, double *x, double *u, double **p)
{
 /* Declaration of model parameters and intermediate variables. */
 double *JmKR, *Jje, *N, *D, *be, *bmKw, *Kin, *k1, *tcKR,*k3, *Fs,

*alpha_f, *beta_f;
 double delta_e, delta_ep, tau_h, tau_f, k_nl;
 double c_c = 2.3/0.217; // Conversion from torque to voltage with

motor constants
 /* Retrieve model parameters. */
 JmKR = p[0]; /* Momento de inercia del motor
 Jje = p[1]; /* Momento de inercia del elemento
 N = p[2]; /* Factor de reduccoÃ³n del HarmonicDrive
 bmKw=p[3];
 D=p[4];
 be=p[5];
 Kin=p[6];
 k1 = p[7];
 tcKR = p[8];
 k3 = p[9];
 Fs = p[10];
 alpha_f = p[11];
 beta_f = p[12];
 /*Ecuaciones + NL elasticidad*/
 /*Torsional angle*/
 delta_e = x[1]-x[0]/N[0]; // Torsional angle
 delta_ep = x[3]-x[2]/N[0]; // Torsional speed
 k_nl = k1[0]*delta_e+k3[0]*pow(delta_e,3);
 tau_h = k_nl+D[0]*delta_ep;
 tau_f =

bmKw[0]*x[2]+(tcKR[0]+Fs[0]/cosh(alpha_f[0]*x[2])*tanh(beta_f[0]*x[2]))

;
 /* State equations. */
 /* x[0] angulo del motor */
 /* x[1] angulo del elemento*/
 /* x[2] velocidad del motor*/
 /* x[3] velocidad del elemento*/
 /* x[4] Internal state hysteresis*/
 dx[0] = x[2];
 dx[1] = x[3];
 dx[2] = (Kin[0]*u[0]+(tau_h*c_c/N[0])-tau_f)/JmKR[0];
 dx[3] = (-tau_h-be[0]*x[3])/Jje[0];
}

/* Output equations. */
void compute_y(double y[], double x[])
{
 y[0] = x[0];
 y[1] = x[1];
 y[2] = x[2];
 y[3] = x[3];
}

Annexes.

11

1.1.3.2 Identification script for HD model with cubic NL elasticity and trigonometric friction.

%% COMPILE THE FILE CONTAINING THE MODEL
% clc, clear;
addpath('C:\Users\Rafael C\Desktop\Ident_high_freq')
run ('script_3experiments');
mex model1.c
% mex model1_3out.c
%% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS
InputName = {'DAC voltage'};
InputUnit = {'V'};
StateName = {'theta'; ... %Motor angle
 'q'; ... %Link angle
 'th_p'; ... %Motor speed
 'q_p'; ... %Link speed
 };
StateUnit = {'rad'; 'rad'; 'rad/s';...
 'rad/s';...
 };
OutputName = StateName(1:4);
OutputUnit = StateUnit(1:4);
%% PARAMETERS
n_p = 13; % Number of parameters
ParName = {'Motor inertia'; ...
 'Link side inertia '; ...
 'HarmonicDrive reduction ratio'; ...
 'Motor viscous friction';...
 'Spring Damping';...
 'Link viscous friction';...
 'Input gain';...
 'Spring stiffness constant';...
 'Coulomb friction';...
 'k3';...
 'striebeck';...
 'alpha';...
 'beta';...
 };
ParUnit = {'kgm^2';'kgm^2'; '' ; ...
 'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';'';...
 'k3';...
 '';'';'';...
 };
Bm0 = 0.299278;
%PARAMETER INITIALIZATION AND BOUNDARIES
% Jt Jje N Bm D Be Kin K tc K3
ParValue={0.0073; 0.3; 70; Bm0; 0.05; 0.1; 14.4; 40 ;0.315 ; 150;...
 1.60667; 0.465822; 0.0445634;...
 };
ParMin={0.00036543; 0.01; 70;Bm0-0.05;0.0450; eps(0); 14.025; 37;0.28;

149;...
1.36; 0.04; 0.004;...
 };
ParMax={0.9;1; 70; Bm0+0.05; 0.075; 0.7; 14.975; 43;2.75;151;...
10; 1.5; 1.05;...
 };

%% INITIAL STATES OF THE EXPERIMENT
%Initial state instant
val_state = 10;
ends = 12000;
vel1 = vel1_f;%vel1_f; vel1_noise;
vel1_b = vel1_f_b;%vel1_noise_b;
vel2 = vel2_f;%vel2_noise;
vel2_b = vel2_f_b;%vel2_noise_b;
vel1_c = vel1_f_c;

Annexes.

12

%% INITIAL STATES OF THE EXPERIMENT
%Initial state instant
val_state = 10;
ends = 12000;
vel1 = vel1_f;%vel1_f; vel1_noise;
vel1_b = vel1_f_b;%vel1_noise_b;
vel2 = vel2_f;%vel2_noise;
vel2_b = vel2_f_b;%vel2_noise_b;
vel1_c = vel1_f_c;
vel2_c = vel2_f_c;
%InitialStates Data set 1
InitialStates = {encoders1(val_state) ; -encoders2(val_state);

vel1(val_state); -vel2(val_state)};
InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates, ...
 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);
%InitialStates Data set 2
InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state) ;

vel1_b(val_state); -vel2_b(val_state)};
InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates_b, ...
 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);
%% Create the idnlgrey object and the iddata object
FileName = 'model1'; % File describing the model

structure.
Order = [4 1 4]; % Model orders [ny nu nx].
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value',

ParValue, ...
 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);
Ts = 0;
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');
%Adapt the data set sample time before puting it into the iddata object
z = iddata({[encoders1(val_state:ends)' -encoders2(val_state:ends)'

vel1(val_state:ends) -vel2(val_state:ends)],...
 [encoders1_b(val_state:ends)' -encoders2_b(val_state:ends)'

vel1_b(val_state:ends) -vel2_b(val_state:ends)]...
 [encoders1_c(val_state:ends)' -encoders2_c(val_state:ends)'

vel1_c(val_state:ends) -vel2_c(val_state:ends)]...
 },{tension_s(val_state:ends)-2.5

tension_s_b(val_state:ends)-2.5...
 tension_s_c(val_state:ends)-2.5...
 }, 0.001);

z.Name = 'Datos del experimento';
z.InputName = nlgr.InputName;
z.InputUnit = nlgr.InputUnit;
z.OutputName = nlgr.OutputName;
z.OutputUnit = nlgr.OutputUnit;
z.ExperimentName = {'Estimation1' 'Estimation2'...
 'Validation'...
};
z.Tstart = 0;
z.TimeUnit = 's';
present(z)

%% Identification of the parameters with the model structure specified

in the idnlgrey object
%% First data set: Estimation
% Parameters(1).Fixed = true;
% Parameters(2).Fixed = true;
Parameters(3).Fixed = true;
Parameters(4).Fixed = true;
% Parameters(5).Fixed = true;
% Parameters(6).Fixed = true;

Annexes.

13

%% Identification of the parameters with the model structure specified

in the idnlgrey object
%% First data set: Estimation
% Parameters(1).Fixed = true;
% Parameters(2).Fixed = true;
Parameters(3).Fixed = true;
Parameters(4).Fixed = true;
% Parameters(5).Fixed = true;
% Parameters(6).Fixed = true;
Parameters(7).Fixed = true;
% Parameters(8).Fixed = true;
% Parameters(9).Fixed = true;
% Parameters(10).Fixed = true;
% Estimation options (Searchmethod, max iterations...)
% Searchmethod = 'lm'; % 'lsqnonlin' 'gna' 'lm'
% nlgr.SimulationOptions.RelTol = 1e-5;
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on');
opt.SearchOption.MaxIter = 15;
% First data set estimation
nlgr1 = nlgreyest(getexp(z,1), nlgr, opt);

%% Second data set: Validation 1
% Get estimated parameters in the first step
for i=1:n_p
ParValue(i)={nlgr1.Parameters(i).Value};
end

% Introduce the parameters (ParValue) in the new structure (Parameters)

for the next estimation
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value',

ParValue, ...
 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);
% Fix parameters from nlgr
% Parameters(1).Fixed = true;
% Parameters(2).Fixed = true;
Parameters(3).Fixed = true;
Parameters(4).Fixed = true;
% Parameters(5).Fixed = true;
% Parameters(6).Fixed = true;
Parameters(7).Fixed = true;
% Parameters(8).Fixed = true;
% Parameters(9).Fixed = true;
% Parameters(10).Fixed = true;

% Build the idnlgrey object with the parameters estimated in the last

step and
% with the new initial states
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,

...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained

in the previous step.
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on');
opt.SearchOption.MaxIter = 15;
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on');
% opt1.SearchOption.MaxIter = 2;

%Same initial parameters with different search methods
nlgr2 = nlgreyest(getexp(z,1), nlgr, opt);
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1);

%% Third data set : Validation
% Plot data and compare to identified NLGR and parameter result

Annexes.

14

% Estimate again with the second data set and the parameters obtained

in the previous step.
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on');
opt.SearchOption.MaxIter = 15;
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on');
% opt1.SearchOption.MaxIter = 2;

%Same initial parameters with different search methods
nlgr2 = nlgreyest(getexp(z,1), nlgr, opt);
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1);

%% Third data set : Validation
% Plot data and compare to identified NLGR and parameter result

evaluation
%% Compare the estimated model response with the data sets
n_ds = 3; % Number of data sets
set(gcf,'DefaultLegendLocation','southeast');
figure
compare(getexp(z,n_ds), nlgr1, nlgr2);
figure
compare(getexp(z,n_ds-1), nlgr1, nlgr2);
%% 1 step prediction error
% figure
% pe(getexp(z,n_ds), nlgr,'b');

figure
pe(getexp(z,n_ds), nlgr2,'k');

% Check residuals
figure('Name',[nlgr.Name ': residuals of estimated model']);
resid(getexp(z,n_ds),nlgr2);

% figure
% resid(getexp(z,n_ds),nlgr1,'r');

%% Check step response and covariance
figure
step(nlgr2);

getcov(nlgr2)
nlgr2.NoiseVariance

present(nlgr1);
present(nlgr2);
% present(nlgr3);

Annexes.

15

1.1.4 Harmonic drive model with nonlinear elasticity, trigonometric friction and hysteresis.

1.1.4.1 H.D model (Cubic elasticity, Bouc-Wen hysteresis, trigonometric friction)

void compute_dx(double *dx, double *x, double *u, double **p)
{
 /* Declaration of model parameters and intermediate variables. */
 double *JmKR, *Jje, *N, *D, *be, *bmKw, *Kin, *k1, *tcKR, *A, *B ,

*n, *w, *k3, *Fs, *alpha_f, *beta_f;

 double delta_e, delta_ep, tau_h, tau_f, k_nl;
 double c_c = 2.3/0.217; // Conversion from torque to voltage with

motor constants
 /* Retrieve model parameters. */
 JmKR = p[0]; /* Momento de inercia del motor
 Jje = p[1]; /* Momento de inercia del elemento
 N = p[2]; /* Factor de reduccoÃ³n del HarmonicDrive
 bmKw=p[3];
 D=p[4];
 be=p[5];
 Kin=p[6];
 k1 = p[7];
 tcKR = p[8];
 /*Hysteresis parameters*/
 A = p[9];
 n = p[10];
 B = p[11];
 w = p[12];
 k3 = p[13];
 C = p[14];
 Fs = p[15];
 alpha_f = p[16];
 beta_f = p[17];
 /*Ecuaciones + NL elasticidad*/
 /*Torsional angle*/
 delta_e = x[1]-x[0]/N[0]; // Torsional angle
 delta_ep = x[3]-x[2]/N[0]; // Torsional speed
 k_nl = k1[0]*delta_e+k3[0]*pow(delta_e,3);
 tau_h = w[0]*k_nl+D[0]*delta_ep+(1-w[0])*k_nl*x[4];
 tau_f =

bmKw[0]*x[2]+(tcKR[0]+Fs[0]/cosh(alpha_f[0]*x[2])*tanh(beta_f[0]*x[2]));
 /* State equations. */
 /* x[0] angulo del motor */
 /* x[1] angulo del elemento*/
 /* x[2] velocidad del motor*/
 /* x[3] velocidad del elemento*/
 /* x[4] Internal state hysteresis*/
 dx[0] = x[2];
 dx[1] = x[3];
 dx[2] = (Kin[0]*u[0]+(tau_h*c_c/N[0])-tau_f)/JmKR[0];
 dx[3] = (-tau_h-be[0]*x[3])/Jje[0];
 dx[4] = (A[0]-pow(x[4],n[0])*B[0])*x[2];
}

/* Output equations. */
void compute_y(double y[], double x[])
{
 y[0] = x[0];
 y[1] = x[1];
 y[2] = x[2];
 y[3] = x[3];
}

Annexes.

16

/* Output equations. */
void compute_y(double y[], double x[])
{
 y[0] = x[0];
 y[1] = x[1];
 y[2] = x[2];
 y[3] = x[3];
}

Annexes.

17

1.1.3.2 Identification script for HD model with cubicNL elasticity, hysteresis and trigonometric friction.

%% COMPILE THE FILE CONTAINING THE MODEL
clc, clear;
addpath('C:\Users\Rafael C\Desktop\Complete_model_ident')
run ('script_3experiments');
mex model1_knl_h.c

%% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS
InputName = {'DAC voltage'};
InputUnit = {'V'};

StateName = {'theta'; ... %Motor angle
 'q'; ... %Link angle
 'th_p'; ... %Motor speed
 'q_p'; ... %Link speed
 'z'; ... %Hysteresis internal state
 };

StateUnit = {'rad'; 'rad'; 'rad/s';...
 'rad/s'; '';...
 };

OutputName = StateName(1:4);
OutputUnit = StateUnit(1:4);

%% PARAMETERS
n_p = 17; % Number of parameters

ParName = {'Motor inertia'; ...
 'Link side inertia '; ...
 'HarmonicDrive reduction ratio'; ...
 'Motor viscous friction';...
 'Spring Damping';...
 'Link viscous friction';...
 'Current to torque motor constant';...
 'Spring stiffness constant 1';...
 'Coulomb friction';...
 'A';...
 'n';...
 'B';...
 'w';...
 'Spring stiffness constant 3';...
 'Fs';...
 'alpha';...
 'beta';...
 };

ParUnit = {'kgm^2';'kgm^2'; '' ; ...
 'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';'';...
 'Nm';'';'';...
 '';'';'';'';'';...
 };

Bm0 = 0.299278;

%PARAMETER INITIALIZATION AND BOUNDARIES
% Jt Jje N Bm D Be Kin K1 tc
ParValue={0.00736543; 0.03; 70; Bm0; 0; 0.001; 14.4; 650 ;0.3007 ;...
 1.7218e-04; 0.1; 0.2; ...
 0.2; 2; 0.2; 0.5; 110;...
 };

Annexes.

18

Bm0 = 0.299278;

%PARAMETER INITIALIZATION AND BOUNDARIES
% Jt Jje N Bm D Be Kin K1 tc
ParValue={0.00736543; 0.03; 70; Bm0; 0; 0.001; 14.4; 650 ;0.3007 ;...
 1.7218e-04; 0.1; 0.2; ...
 0.2; 2; 0.2; 0.5; 110;...
 };

ParMin={0.004; 0; 70;Bm0-0.1;0; eps(0); 14.325; 10;0.28;...
 1e-4; 0.0001; 0.0001 ; ...
 0.00001; 1; 0.001; 0; 0.001;...
 };

ParMax={0.009;10; 70; Bm0+0.1; 0; 0.009; 14.475; 80000;0.315;...
 2.5e-4; 100; 100; ...
 200; 3; 200; 1; 20000;...
 };

Parameters(3).Fixed = true;

%% INITIAL STATES OF THE EXPERIMENT
%Initial state instant
val_state = 10;
vel1 = vel1_f;%vel1_f; vel1_noise;
vel1_b = vel1_f_b;%vel1_noise_b;
vel2 = vel2_f;%vel2_noise;
vel2_b = vel2_f_b;%vel2_noise_b;
vel1_c = vel1_f_c;
vel2_c = vel2_f_c;

%InitialStates Data set 1
InitialStates = {encoders1(val_state) ; -encoders2(val_state);

vel1(val_state); -vel2(val_state);0};
InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates, ...
 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%InitialStates Data set 2
InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state) ;

vel1_b(val_state); -vel2_b(val_state);0};
InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates_b, ...
 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%% Create the idnlgrey object and the iddata object
FileName = 'model1_knl_h'; % File describing the

model structure.
Order = [4 1 5]; % Model orders [ny nu nx].
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value',

ParValue, ...
 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);

Ts = 0;

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

%Adapt the data set sample time before puting it into the iddata object
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)],...
 [encoders1_b(val_state:end)' -encoders2_b(val_state:end)'

Annexes.

19

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

%Adapt the data set sample time before puting it into the iddata object
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)],...
 [encoders1_b(val_state:end)' -encoders2_b(val_state:end)'

vel1_b(val_state:end) -vel2_b(val_state:end)]...
 [encoders1_c(val_state:end)' -encoders2_c(val_state:end)'

vel1_c(val_state:end) -vel2_c(val_state:end)]...
 },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5...
 tension_s_c(val_state:end)-2.5...
 }, 0.001);

z.Name = 'Datos del experimento';
z.InputName = nlgr.InputName;
z.InputUnit = nlgr.InputUnit;
z.OutputName = nlgr.OutputName;
z.OutputUnit = nlgr.OutputUnit;
z.ExperimentName = {'Estimation' 'Validation1'...
 'Validation2'...
};
z.Tstart = 0;
z.TimeUnit = 's';
present(z)

%% Identification of the parameters with the model structure specified

in the idnlgrey object
%% First data set: Estimation 1
% Estimation options (Searchmethod, max iterations...)
Searchmethod = 'lm'; % 'lsqnonlin' 'gna' 'lm'
% nlgr.SimulationOptions.RelTol = 1e-5;
opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on');
opt.SearchOption.MaxIter = 15;
% First data set estimation
nlgr1 = nlgreyest(getexp(z,1), nlgr, opt);

%% Second data set: Estimation 2
% Get estimated parameters in the first step
for i=1:n_p
ParValue(i)={nlgr1.Parameters(i).Value};
end

% Introduce the parameters (ParValue) in the new structure (Parameters)

for the next estimation
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value',

ParValue, ...
 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);
% Fix parameters from nlgr
Parameters(3).Fixed = true;

% Build the idnlgrey object with the parameters estimated in the last

step and
% with the new initial states
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,

...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained

in the previous step.
opt = nlgreyestOptions('SearchMethod', 'lsqnonlin', 'Display', 'on');

Annexes.

20

% Build the idnlgrey object with the parameters estimated in the last

step and
% with the new initial states
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,

...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained

in the previous step.
opt = nlgreyestOptions('SearchMethod', 'lsqnonlin', 'Display', 'on');
opt.SearchOption.MaxIter = 25;
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on');
% opt1.SearchOption.MaxIter = 2;

%Same initial parameters with different search methods
nlgr2 = nlgreyest(getexp(z,2), nlgr, opt);
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1);

%% Third data set : Validation
%% Plot data and compare to identified NLGR and parameter result

evaluation
%% Compare the estimated model response with the 3 data sets
n_ds = 3; % Number of data sets
set(gcf,'DefaultLegendLocation','southeast');
figure
compare(getexp(z,n_ds), nlgr1,nlgr2);

%% 1 step prediction error
% figure
% pe(getexp(z,n_ds), nlgr,'b');

% figure
% pe(getexp(z,n_ds), nlgr1,'k');

%% Check residuals
% figure('Name',[nlgr.Name ': residuals of estimated model']);
% resid(getexp(z,n_ds),nlgr);

% figure
% resid(getexp(z,n_ds),nlgr1,'r');

%% Check step response and covariance
% figure
% step(nlgr);
%
% getcov(nlgr)
% nlgr.NoiseVariance

present(nlgr1);
present(nlgr2);

Annexes.

21

1.2 Current control

1.2.3 Harmonic drive model with nonlinear elasticity and trigonometric friction.

1.2.3.1 H.D model (Cubic elasticity, no hysteresis, trigonometric friction)

void compute_dx(double *dx, double *x, double *u, double **p)
{
 /* Declaration of model parameters and intermediate variables. */
 double *Jm, *Je, *N, *D, *be, *bm, *Kin, *k1, *tc, *Fs, *alpha_f,

*beta_f, *k3;
 double delta_e, delta_ep, tau_e, tau_f, k_nl;
 /* Retrieve model parameters. */
 Jm = p[0]; /* Momento de inercia del motor
 Je = p[1]; /* Momento de inercia del elemento
 N = p[2]; /* Factor de reduccoÃ³n del HarmonicDrive
 bm=p[3];
 D=p[4];
 be=p[5];
 Kin=p[6];
 k1 = p[7];
 tc = p[8];
 Fs = p[9];
 alpha_f = p[10];
 beta_f = p[11];
 k3 = p[12];
 /*Ecuaciones + NL elasticidad*/
 /*Torsional angle*/
 delta_e = x[1]-x[0]/N[0]; // Torsional angle
 delta_ep = x[3]-x[2]/N[0]; // Torsional speed
 k_nl = k1[0]*delta_e+k3[0]*pow(delta_e,3);
 tau_e = k_nl+D[0]*delta_ep; // Linear elastic torque
 tau_f =

bm[0]*x[2]+(tc[0]+Fs[0]/cosh(alpha_f[0]*x[2])*tanh(beta_f[0]*x[2]));
 /* State equations. */
 /* x[0] angulo del motor */
 /* x[1] angulo del elemento*/
 /* x[2] velocidad del motor*/
 /* x[3] velocidad del elemento*/
 dx[0] = x[2];
 dx[1] = x[3];
 dx[2] = (Kin[0]*u[0]+tau_e/N[0]-tau_f)/Jm[0];
 dx[3] = (-tau_e-be[0]*x[3])/Je[0];
}

/* Output equations. */
void compute_y(double y[], double x[])
{
 y[0] = x[0];
 y[1] = x[1];
 y[2] = x[2];
 y[3] = x[3];
}

Annexes.

22

1.2.3.2 Identification script for HD model with cubicNL elasticity, hysteresis and trigonometric friction.

%% COMPILE THE FILE CONTAINING THE MODEL
addpath('C:\Users\Rafael C\Desktop\SINGLESINUSCURRENT')
mex model_current.c
run('script_3experiments.m')
%% INPUT, OUTPUT AND STATE DEFINITIONS
InputName = {'DAC'};
InputUnit = {'V'};
StateName = {'theta'; ... %Motor angle
 'q'; ... %Link angle
 'th_p'; ... %Motor speed
 'q_p'; ... %Link speed
 };
StateUnit = {'rad'; 'rad'; 'rad/s'; 'rad/s';};
OutputName = StateName(1:4);
OutputUnit = StateUnit(1:4);
%% PARAMETERS
n_p = 13;
ParName = {'Motor side inertia'; ...
 'Link side inertia'; ...
 'HarmonicDrive reduction ratio'; ...
 'Motor viscous friction';...
 'Spring Damping';...
 'Link viscous friction';...
 'Input constant';...
 'Spring stiffness constant';...
 'Coulomb friction';...
 'Striebeck';...
 'Alpha_f';...
 'Beta_f';...
 'k3';...
 };
ParUnit = {'kgm^2'; 'kgm^2'; '' ; ...
 'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';...
 'Nm/rad';...
 '';'';'';'';...
 };
Kin = 1.78/2.5*0.217*2; %P7
tc = 0.0297;%previous steps 0.03
Bm = 0.0064; %P4
%PARAMETER INITIALIZATION AND BOUNDARIES
% Jm Je N Bm D Be Kin K1
ParValue={6.8874e-4; 0.0215; 70; Bm; 0.0562; 0.1538; Kin;

40.4364;...
 tc; 0.398629; 0.2; 0.399435; 150;... % tc , Fs , alpha, beta
 };
ParMin={0.00000306; 0; 70; 0; 1e-6; eps(0); 0.002; 2;...
 0.0001; 0.0004; 0.0001; 0.00001; 140;...
 };
ParMax={ 1; 10; 70; 100; 1000; 2; 1000;

90000;...
 0.4; 200; 200; 200; 151;...
 };

%% INITIAL STATES OF THE EXPERIMENT
%Initial state instant
val_state = 10;
vel1 = vel1_f;%vel1_f; vel1_noise;
vel1_b = vel1_f_b;%vel1_noise_b;
vel2 = vel2_f;%vel2_noise;
vel2_b = vel2_f_b;%vel2_noise_b;
% vel1_c = vel1_f_c;
% vel2_c = vel2_f_c;

Annexes.

23

%% INITIAL STATES OF THE EXPERIMENT
%Initial state instant
val_state = 10;
vel1 = vel1_f;%vel1_f; vel1_noise;
vel1_b = vel1_f_b;%vel1_noise_b;
vel2 = vel2_f;%vel2_noise;
vel2_b = vel2_f_b;%vel2_noise_b;
% vel1_c = vel1_f_c;
% vel2_c = vel2_f_c;

%InitialStates Data set 1
InitialStates = {encoders1(val_state) ; -encoders2(val_state);

vel1(val_state); -vel2(val_state)};
InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates, ...
 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%InitialStates Data set 2
InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state) ;

vel1_b(val_state); -vel2_b(val_state)};
InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value',

InitialStates_b, ...
 'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);

%% Create the idnlgrey object and the iddata object
FileName = 'model_current'; % File describing the

model structure.
Order = [4 1 4]; % Model orders [ny nu nx].

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value',

ParValue, ...
 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);

Parameters(3).Fixed = true;
Parameters(4).Fixed = true;
Parameters(5).Fixed = true;
Parameters(8).Fixed = true;
% Parameters(9).Fixed = true;
Parameters(13).Fixed = true;

Ts = 0;

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

%Adapt the data set sample time before puting it into the iddata object
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)],...
 [encoders1_b(val_state:end)' -encoders2_b(val_state:end)'

vel1_b(val_state:end) -vel2_b(val_state:end)]...
 [encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)]...
 },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5...
 tension_s(val_state:end)-2.5...
 }, 0.001);

z.Name = 'Datos del experimento';
z.InputName = nlgr.InputName;
z.InputUnit = nlgr.InputUnit;
z.OutputName = nlgr.OutputName;

Annexes.

24

%Adapt the data set sample time before puting it into the iddata object
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)],...
 [encoders1_b(val_state:end)' -encoders2_b(val_state:end)'

vel1_b(val_state:end) -vel2_b(val_state:end)]...
 [encoders1(val_state:end)' -encoders2(val_state:end)'

vel1(val_state:end) -vel2(val_state:end)]...
 },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5...
 tension_s(val_state:end)-2.5...
 }, 0.001);

z.Name = 'Datos del experimento';
z.InputName = nlgr.InputName;
z.InputUnit = nlgr.InputUnit;
z.OutputName = nlgr.OutputName;
z.OutputUnit = nlgr.OutputUnit;
z.ExperimentName = {'Estimation1' 'Estimation2'...
 'Validation'...
};
z.Tstart = 0;
z.TimeUnit = 's';
present(z)

% ESTIMATE THE MODEL
% nlgr.SimulationOptions.RelTol = 1e-5;

opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on');
opt.SearchOption.MaxIter = 20;

nlgr1 = nlgreyest(getexp(z,1), nlgr, opt);

%% Second data set: Validation 1
% Get estimated parameters in the first step
for i=1:n_p
ParValue(i)={nlgr1.Parameters(i).Value};
end

% Introduce the parameters (ParValue) in the new structure (Parameters)

for the next estimation
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value',

ParValue, ...
 'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);
% Fix parameters from nlgr
Parameters(3).Fixed = true;
Parameters(4).Fixed = true;
Parameters(5).Fixed = true;
Parameters(8).Fixed = true;
Parameters(9).Fixed = true;
Parameters(13).Fixed = true;

% Build the idnlgrey object with the parameters estimated in the last

step and
% with the new initial states
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,

...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained

in the previous step.
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on');
opt.SearchOption.MaxIter = 20;
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on');

Annexes.

25

% Build the idnlgrey object with the parameters estimated in the last

step and
% with the new initial states
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,

...
 'Name', 'Respuesta simulada', 'InputName', InputName, ...
 'InputUnit', InputUnit, 'OutputName', OutputName, ...
 'OutputUnit', OutputUnit, 'TimeUnit', 's');

% Estimate again with the second data set and the parameters obtained

in the previous step.
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on');
opt.SearchOption.MaxIter = 20;
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on');
% opt1.SearchOption.MaxIter = 2;

%Same initial parameters with different search methods
nlgr2 = nlgreyest(getexp(z,2), nlgr, opt);
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1);

%% Third data set : Validation
% Plot data and compare to identified NLGR and parameter result

evaluation
%% Compare the estimated model response with the data sets
n_ds = 3; % Number of data sets
set(gcf,'DefaultLegendLocation','southeast');
figure
compare(getexp(z,n_ds-1), nlgr1, nlgr2);

figure
compare(getexp(z,n_ds), nlgr1, nlgr2);
%
% % 1 step prediction error
% figure
% pe(z, nlgr);
%
% % Check residuals
% figure('Name',[nlgr.Name ': residuals of estimated model']);
% resid(z,nlgr);
%
% % Check step response
% figure
% step(nlgr);
%
% % Check covariance
%
getcov(nlgr)
nlgr.NoiseVariance
present(nlgr1)
present(nlgr2)

Annexes.

26

2. Keil uVison code

2.1 Main.c

/* Include core modules */

#include "stm32f4xx.h"

/* Include my libraries here */

#include "defines.h"

#include "tm_stm32f4_delay.h"

#include "tm_stm32f4_disco.h"

#include "tm_stm32f4_usb_vcp.h"

#include "tm_stm32f4_sdram.h"

#include <math.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "encoder.h"

#include "init.h"

#include "led.h"

#include "fonctions.h"

extern volatile int8_t flag_Exp;

// MAIN PROGRAM

int main(void) {

int32_t Encoder1, Encoder2 =0;

int32_t Encoder1_anterior, Encoder2_anterior=0;

float Encoder1_rad, Encoder2_rad = 0;

float Encoder1_rad_previous, Encoder2_rad_previous = 0;

float vel_Encoder1, vel_Encoder2 =0;

float vel_Encoder1_anterior, vel_Encoder2_anterior = 0;

float Read, Read2, Read3, Read4, Read5, Read6;

char cadena;

 uint32_t t, aux = 0;

 float tension_value;

 float vumbral = 1000;

 float saturador, saturador2 =0;

 float enc_offset = 205.22;

Annexes.

27

char cadena;

uint32_t t, aux = 0;

float tension_value;

float vumbral = 1000;

float saturador, saturador2 =0;

float enc_offset = 205.22;

float enc_offset2 = 205.22+0.67;

float v_aux1, v_aux2;

float tiempo;

float tsampling = 0.001; // change for different controltimer frequency

int time_experiment = 8000 ; // change for different controltimer frequency

int time_s = time_experiment/1000; // change for different controltimer frequency

int tsignal;

//--//

FULL_INIT_stm(); //System initialization

init_experiment(); // Experiment initialization

//--//

//-----------------experiment start ----------------------------//

int i = 0;

for(i=0;i<=time_experiment;i++){

flag_Exp = 0;

tiempo = t*tsampling;

tsignal = tiempo;

Encoder1 = TIM_GetCounter(TIM8);

Encoder2 = TIM_GetCounter(TIM4);

Encoder1_rad = Encoder1*2*3.1415/2000; // *2 pi/resolution

Encoder2_rad = Encoder2*2*3.1415/2000; // *2 pi/resolution

//--//

// if timer saturates, the speed equals the previous speed .

if (Encoder1_rad - Encoder1_rad_previous >= 200 | Encoder1_rad_previous - Encoder1_rad

>=200) { // encoder 1

vel_Encoder1 = vel_Encoder1_anterior; }

 else vel_Encoder1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling;

 // (rad/s)

 if (Encoder2_rad - Encoder2_rad_previous >= 200 | Encoder2_rad_previous -

Annexes.

28

//--//

// if timer saturates, the speed equals the previous speed .

if (Encoder1_rad - Encoder1_rad_previous >= 200 | Encoder1_rad_previous - Encoder1_rad >=200) {

// encoder 1

vel_Encoder1 = vel_Encoder1_anterior; }

else vel_Encoder1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling; // (rad/s)

if (Encoder2_rad - Encoder2_rad_previous >= 200 | Encoder2_rad_previous - Encoder2_rad >=200){

// encoder 2

vel_Encoder2 = vel_Encoder2_anterior;

}

else vel_Encoder2 = (Encoder2_rad - Encoder2_rad_previous) / tsampling; // (rad/s)

//--//

/*

// Corregir posición y volver a calcular la velocidad con posicion correcta

v_aux1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling;

v_aux2 = (Encoder2_rad - Encoder2_rad_previous) / tsampling;

if(v_aux1 <- vumbral){

saturador += enc_offset;

}else if(v_aux1 > vumbral){

saturador -= enc_offset;

}

if(v_aux2 <- vumbral){

saturador2 += enc_offset2;

}else if(v_aux2 > vumbral){

saturador2 -= enc_offset2; }

*/

//--//

//-------------+-- tension_value --------------------------------//

int r = rand() % 5;

 float urand = (r-2.5)*0.25;

float u = (sin(2*3.1415*tiempo*5) + 5*sin(2*3.1415*tiempo*15)+ sin(2*3.1415*tiempo*0.5) +

0.75*cos(2*3.1415*2*tiempo))/10 + 3.75;

Annexes.

29

//--------------- tension_value --------------------------------//

// Different signals as input for the experiments

// Random number generation

int r = rand() % 5;

float urand = (r-2.5)*0.25;

// Multisinus input

float u = (sin(2*3.1415*tiempo*5) + 5*sin(2*3.1415*tiempo*15)+ sin(2*3.1415*tiempo*0.5) +

0.75*cos(2*3.1415*2*tiempo))/10 + 3.75;

// Single sinus

float sins = (1.5*sin(2*3.1415*tiempo))+2.5+urand;

// Chirp signal

float chirp = 0.325*cos(2*3.1415*0.1*tiempo+(50-0.1)*tiempo*tiempo/(2*4))+2.5;

// Determining the signal sent

if (tiempo<0.25)

tension_value =2.5;

if (tiempo>0.25)

tension_value = u;

Motor1_Voltage(tension_value); //sending the value to the motor

//--//

//-------------Writing the data into the SDRAM, ENCODER WRAP FIXED----------------------------//

TM_SDRAM_WriteFloat(aux, Encoder1_rad +saturador);

TM_SDRAM_WriteFloat(aux+8, Encoder2_rad + saturador2);

TM_SDRAM_WriteFloat(aux+16, vel_Encoder1);

TM_SDRAM_WriteFloat(aux+24, vel_Encoder2);

TM_SDRAM_WriteFloat(aux+32, tension_value);

TM_SDRAM_WriteFloat(aux+40, tiempo);

aux += 48;

vel_Encoder1_anterior = vel_Encoder1;

 Encoder1_anterior = Encoder1;

 Encoder1_rad_previous = Encoder1_rad;

 vel_Encoder2_anterior = vel_Encoder2;

 Encoder2_anterior = Encoder2;

 Encoder2_rad_previous = Encoder2_rad;

Annexes.

30

vel_Encoder1_anterior = vel_Encoder1;

Encoder1_anterior = Encoder1;

Encoder1_rad_previous = Encoder1_rad;

vel_Encoder2_anterior = vel_Encoder2;

Encoder2_anterior = Encoder2;

Encoder2_rad_previous = Encoder2_rad;

while(flag_Exp != 1);

t++;

}

end_experiment();

//--//

//---------------READING THE DATA FROM THE SDRAM AND SENDING IT BY USB ----------------//

aux = 0;

if (TM_USB_VCP_GetStatus() == TM_USB_VCP_CONNECTED) {

TM_USB_VCP_Puts("A = [");

for (i = 0; i < time_experiment; i++) {

Read = TM_SDRAM_ReadFloat(aux);

Read2 = TM_SDRAM_ReadFloat(aux+8);

Read3 = TM_SDRAM_ReadFloat(aux+16);

Read4 = TM_SDRAM_ReadFloat(aux+24);

Read5 = TM_SDRAM_ReadFloat(aux+32);

Read6 = TM_SDRAM_ReadFloat(aux+40);

aux += 48;

sprintf(&cadena,"%f %f %f %f %f %f \r\n", Read , Read2, Read3, Read4, Read5, Read6);

 TM_USB_VCP_Puts(&cadena);

 Delayms(5);

 }

 TM_USB_VCP_Puts("];");

 }

//--//

//--//

Annexes.

31

sprintf(&cadena,"%f %f %f %f %f %f \r\n", Read , Read2, Read3, Read4, Read5, Read6);

TM_USB_VCP_Puts(&cadena);

Delayms(5);

}

TM_USB_VCP_Puts("];");

}

//--//

//--//

while(1);

}

//__

_________//

Annexes.

32

2.2 Fonctions.c

#include "stm32f4xx.h" // Device header

// ---

void Motor1_Voltage(float value){

// DAC->DHR12R1 = value*4095/3*3/5;

 DAC->DHR12R2 = value*4095/3*3/5;

}

// ---

// ---

void enable_escon(){ // Activation of PG15

// ESCON ON

 GPIO_ToggleBits(GPIOG, GPIO_Pin_15);

 GPIOG->ODR &= 0xFFFF2FFF;

 GPIOG->ODR |= 0x00002000;

 GPIOG->ODR &= 0xFFFFBFFF;

 GPIOG->ODR |= 0x00000000;

}

void desable_escon(){ // desactivation of PG15

// ESCON OFF

 GPIOG->ODR &= 0xFFFF7FFF;

 GPIOG->ODR |= 0x00000000;

 GPIOG->ODR &= 0xFFFFBFFF;

 GPIOG->ODR |= 0x00004000;

 GPIOG->ODR &= 0xFFFFDFFF;

 GPIOG->ODR |= 0x00000000;

}

Annexes.

33

2.3 Init.c

/* Include core modules */

#include "stm32f4xx.h"

/* Include my libraries here */

#include "defines.h"

#include "tm_stm32f4_delay.h"

#include "tm_stm32f4_disco.h"

#include "tm_stm32f4_usb_vcp.h"

#include "tm_stm32f4_sdram.h"

#include "encoder.h"

#include "led.h"

#include "fonctions.h"

int on=1, off=0;

/*---*/

void Control_TimerInit(uint32_t frequency){

 uint16_t PrescalerValue;

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

 NVIC_InitTypeDef NVIC_InitStructure;

 uint32_t ARR;

 uint32_t period;

 ARR = 84000000.0F / ((420+1)*frequency) -1;

 period = (int) ARR;

 if(ARR != period){

 period++;

 }// +1 en caso de numero fraccionario

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);

 //Set the prescaler value

 PrescalerValue =420;

 // Time base configuration

 TIM_TimeBaseStructure.TIM_Period = period;

 TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;

 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

Annexes.

34

// Time base configuration

 TIM_TimeBaseStructure.TIM_Period = period;

 TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;

 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

 TIM_Cmd(TIM2, ENABLE);

 // Enable the TIM2 gloabal Interrupt

 NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;

 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;

 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

 NVIC_Init(&NVIC_InitStructure);

}

/*---*/

void dac_init(void){

 GPIO_InitTypeDef GPIO_InitStructure;

 DAC_InitTypeDef DAC_InitStructure;

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

 /* GPIOA Periph clock enable */

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

Annexes.

35

void dac_init(void){

 GPIO_InitTypeDef GPIO_InitStructure;

 DAC_InitTypeDef DAC_InitStructure;

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

 /* GPIOA Periph clock enable */

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

 /* GPIOD Periph clock enable */

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

 /* Enable DAC and GPIOC clock */

 //RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO | RCC_APB2Periph_GPIOA, ENABLE);

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC | RCC_APB1Periph_TIM2, ENABLE);

 /* Configure PA.04/05 (DAC) as output -------------------------*/

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;

 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;

 GPIO_Init(GPIOA, &GPIO_InitStructure);

 /* DAC channel1 & DAC_Channel_2 Configuration */

 DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;

 DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;

 DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;

 DAC_Init(DAC_Channel_2, &DAC_InitStructure);

 DAC_Init(DAC_Channel_1, &DAC_InitStructure);

 /* Enable DAC Channel1 & Channel2: Once the DAC is enabled, PA.05 is

 automatically connected to the DAC converter. */

 DAC_Cmd(DAC_Channel_2, ENABLE);

 DAC_Cmd(DAC_Channel_1, ENABLE);

}

/*---*/

void LED_init(){

 // On active le port G

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);

 GPIO_InitTypeDef GPIO_InitStruct;

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;

Annexes.

36

void LED_init(){

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);

 GPIO_InitTypeDef GPIO_InitStruct;

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;

 GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;

 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;

 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;

 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_2MHz;

 GPIO_Init(GPIOG, &GPIO_InitStruct);

}

void bouton_init(){

 /* Enable clock for GPIOD */

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

 /* Enable clock for SYSCFG */

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);

 /* Set pin as input */

 GPIO_InitTypeDef GPIO_InitStructure;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;

 GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;

 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

 GPIO_Init(GPIOA, &GPIO_InitStructure);

 /* Tell system that you will use PA0 for EXTI_Line0 */

 SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource0);

 /* PA0 is connected to EXTI_Line0 */

 EXTI_InitTypeDef EXTI_InitStruct;

 EXTI_InitStruct.EXTI_Line = EXTI_Line0;

 EXTI_InitStruct.EXTI_LineCmd = ENABLE; /* Enable interrupt */

 EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt; /* Interrupt mode */

 EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising; /* Triggers on rising and falling edge */

 EXTI_Init(&EXTI_InitStruct); /* Add to EXTI */

 // Enable the EXTI0 gloabal Interrupt

 NVIC_InitTypeDef NVIC_InitStructure;

Annexes.

37

 EXTI_InitStruct.EXTI_LineCmd = ENABLE; /* Enable interrupt */

 EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt; /* Interrupt mode */

 EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising; /* Triggers on rising and falling edge */

 EXTI_Init(&EXTI_InitStruct); /* Add to EXTI */

 // Enable the EXTI0 gloabal Interrupt

 NVIC_InitTypeDef NVIC_InitStructure;

 NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;

 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00;

 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00;

 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

 NVIC_Init(&NVIC_InitStructure);

}

/* Set interrupt handlers */

/* Handle PA0 interrupt */

void EXTI0_IRQHandler() {

 /* Make sure that interrupt flag is set */

 if (EXTI_GetITStatus(EXTI_Line0) != RESET) {

 /* Do your stuff when PA0 is changed */

 GPIO_ToggleBits(GPIOG, GPIO_Pin_14 | GPIO_Pin_13);

 /* Clear interrupt flag */

 EXTI_ClearITPendingBit(EXTI_Line0);

 }

}

void homming_init(){

 /* Enable clock for GPIOD */

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

 /* Enable clock for SYSCFG */

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);

Annexes.

38

void FULL_INIT_stm(){

 SystemInit();

 encoder1_config();

 encoder2_config();

 encoder4_config();

 dac_init();

 TM_DELAY_Init();

 TM_USB_VCP_Init();

 TM_DISCO_LedInit();

 TM_SDRAM_Init();

 LED_init();

}

/*---*/

void init_experiment(){

 desable_escon();

 Motor1_Voltage(2.5); //2.5 for both directions (ESCON CONFIG OFFSET)

// homming_init();

 Delayms(10000); // Time to open teraterm

enable_escon(); // enable escon

 Control_TimerInit(1000); // Control de 1 ms

 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); // timer config

}

/*---*/

void end_experiment(){

 Motor1_Voltage(2.5); // le moteur ne bouge pas

 desable_escon(); // On désactive le Escon

 TIM_ITConfig(TIM2, TIM_IT_Update, DISABLE);

}

/*---*/

/*---*/

/*---*/

Annexes.

39

2.4 Encoder.c

/* Include core modules */

#include "stm32f4xx.h"

/* Include my libraries here */

#include "fonctions.h"

void encoder1_config(void){

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE);

 GPIO_InitTypeDef GPIO_InitStructure;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;

 GPIO_Init(GPIOC, &GPIO_InitStructure);

 //Timer AF Pins Configuration

 GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_TIM8);

 GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_TIM8);

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

 TIM_TimeBaseStructure.TIM_Period = 0xffff;

 TIM_TimeBaseStructure.TIM_Prescaler = 0;

 TIM_TimeBaseStructure.TIM_ClockDivision = 0;

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM8, &TIM_TimeBaseStructure);

 TIM_EncoderInterfaceConfig (TIM8, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising,

TIM_ICPolarity_Rising);

 TIM_SetAutoreload (TIM8, 0xffff);

 TIM_Cmd (TIM8, ENABLE);

}

// PD12 y PD13

void encoder2_config(void){

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);

Annexes.

40

// PD12 y PD13

void encoder2_config(void){

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);

 GPIO_InitTypeDef GPIO_InitStructure;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13;

 GPIO_Init(GPIOD, &GPIO_InitStructure);

 //Timer AF Pins Configuration

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_TIM4);

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_TIM4);

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

 TIM_TimeBaseStructure.TIM_Period = 0xffff;

 TIM_TimeBaseStructure.TIM_Prescaler = 0;

 TIM_TimeBaseStructure.TIM_ClockDivision = 0;

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);

 TIM_EncoderInterfaceConfig (TIM4, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising,

TIM_ICPolarity_Rising);

 TIM_SetAutoreload (TIM4, 0xffff);

 TIM_Cmd (TIM4, ENABLE);

}

// ---

// ---

void encoder4_config(){

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

 GPIO_InitTypeDef GPIO_InitStructure;

Annexes.

41

void encoder4_config(){

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE);

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

 GPIO_InitTypeDef GPIO_InitStructure;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_11;

 GPIO_Init(GPIOE, &GPIO_InitStructure);

 //Timer AF Pins Configuration

 GPIO_PinAFConfig(GPIOE, GPIO_PinSource9, GPIO_AF_TIM5);

 GPIO_PinAFConfig(GPIOE, GPIO_PinSource11, GPIO_AF_TIM5);

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

 TIM_TimeBaseStructure.TIM_Period = 0xffff;

 TIM_TimeBaseStructure.TIM_Prescaler = 0;

 TIM_TimeBaseStructure.TIM_ClockDivision = 0;

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);

 TIM_EncoderInterfaceConfig (TIM1, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising,

TIM_ICPolarity_Rising);

 TIM_SetAutoreload (TIM1, 0xffff);

 TIM_Cmd (TIM1, ENABLE);

 /* Enable the TIM5 global Interrupt */

 NVIC_InitTypeDef NVIC_InitStructure;

 NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn;

 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;

 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

 NVIC_Init(&NVIC_InitStructure);

}

//void TIM5_IRQHandler(void){

// if (TIM_GetITStatus(TIM5, TIM_IT_Update) != RESET){

//

// GPIO_ToggleBits(GPIOG, GPIO_Pin_14 | GPIO_Pin_13);

//

Annexes.

42

2.5 Stm32f4xx_it.c

#include "stm32f4xx_it.h"

#include "stm32f4xx_dac.h"

#include "main.h"

int8_t flag_Exp;

void TIM2_IRQHandler(void)

{

 if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)

 {

 //flag_Control = 1;

 flag_Exp = 1;

 //Clear interruption flag

 TIM_ClearITPendingBit(TIM2, TIM_IT_Update);

 }

 }

Annexes.

43

