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ABSTRACT 

 

Nowadays the use of harmonic drive systems has become common because its high reduction ratio 

and high torque transmission in a compact mechanism, especially in robotics where the weight of the 

robot it’s an important factor, lower weight transmission with high torque means less energy is spent 

for operation.  

On the other hand, the harmonic drive transmissions have more complex dynamic behaviour than 

conventional gear transmissions. In this project, an experimental platform has been set up in order to 

analyse the behaviour of the polymeric low cost Harmonic Drive transmission that will be integrated 

into the joints of the WRAD robot, a prototype developed in previous projects to assist disabled 

persons. The first part of the project is focused on the experimental platform materials used as the 

BLDC Motor, the ESCON power stage and the Discovery board mainly. Its configuration as well as the 

connections and building in order to acquire data from the real system are explained.  

After that, the different mathematical models that have been researched in the last years are studied 

in order to integrate them in a Grey-box model to identify the parameters.  

Finally, the results are tested under simulation and results between the simulations and the real data 

are compared as well as the difference between models. The mathematical modelling of the Harmonic 

Drive transmission is reviewed, from the most simple to the most complex model containing nonlinear 

friction, hysteresis and non-linear cubic elasticity, this will allow in the final part of the project to 

compare the results obtained and integrated in those models.  

As long as the project is developed in a low cost prototype platform some limitations were found while 

working with the system in order to achieve the goals proposed, this limitations would have a 

repercussion on later results, anyway most of them are solved or treated to reduce its impact in the 

project. 

All the process involved in the data acquisition with the Discovery STM32F4 board will be explained 

together with the signal processing applied before the identification procedure where different models 

are identified, from the most basic to the most complex with non-linearities, which allows comparing 

the accuracy of the different models. In order to simplify the identification task, some parameters are 

estimated from different experiments designed to appreciate the physical phenomena in the data 

taken. This will be useful in order to reduce the number of parameters being identified, which might 

lead to bad model identification due to local minima. In addition, the different methods for prediction 

error minimization used by the matlab functions are explained, and then the model is estimated in 

steps according to different data sets of the same system with different inputs. The parameters 

obtained in the identification will be simulated with the models studied and according to the results 

obtained the parameter variation will allow us to study how it affects the response of the system, this 

will be important for later conclusions. In addition, the models that have not been identified will be 

simulated, as well as the effect of the variation of the parameters in the model. 

 

Key words: BLDC motor, Harmonic Drive, Elastic robot joint, Identification, Grey-box modelling, Matlab 

IDNLGREY, Discovery STM32F4. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

RESUMEN 

 

Hoy en día el uso de reductores del tipo Harmonic Drive se ha vuelto algo común debido a sus 

propiedades ideales para robótica como gran ratio de reduccion y gran transmisión de par en un 

mecanismo compacto, esto es imprescindible en robótica donde el peso juega un papel muy 

importante, especialmente en lo que a ahorro de energía se refiere durante el funcionamiento del 

robot. Por otra parte, este tipo de transmisiones suponen un reto a la hora de ser modeladas y 

controladas ya que presentan un comportamiento dinámico mucho más complejo que las 

transmisiones convencionales. Este proyecto se ha llevado a cabo en una plataforma experimental 

montada en el departamento DISA, donde se dispone de un prototipo diseñado previamente por otros 

estudiantes dirigidos por el profesor Ranko Zotovic, se trata del brazo robot para asistencia a 

discapacitados “WRAD”, en él se han empleado reductores Harmonic Drive de bajo coste de material 

polimérico como transmisión para los motores de los eslabones 1 y 2. 

La primera parte del proyecto se centra en explicar la plataforma experimental, así como el material 

del que se dispone, motores BLDC, etapa de potencia ESCON, tarjeta Discovery, encoders y todas las 

conexiones y montaje correspondiente para la toma de datos del sistema real con el que realizar en 

pasos posteriores la identificación. Al tratarse de una plataforma de bajo coste se han encontrado 

algunas limitaciones durante el desarrollo del proyecto, sin embargo en la medida de lo posible se ha 

tratado de solventar estos problemas con el material del que se dispone. 

 En siguientes capítulos los diferentes modelos de Harmonic Drive propuestos por investigadores 

expertos en la materia que han sido estudiados y analizados con equipamiento profesional son 

presentados para su posterior implementación en Matlab en lo que se conoce como modelo de caja 

gris o “Grey-box modeling” donde se obtiene un modelo parametrizado donde el objetivo es encontrar 

el valor de dichos parámetros que proporciona una respuesta lo más parecida posible a los datos 

medidos del sistema. 

Para la identificación con los datos obtenidos con la tarjeta Discovery, se explica el proceso a seguir 

paso a paso para la obtención del vector que contiene dichos datos. Estos datos han de ser 

preprocesados antes de identificar y se evaluará el efecto de dicho pre procesamiento al comparar 

modelos obtenidos aplicando dicho paso y sin aplicarlo. 

Finalmente los resultados son evaluados por medio de diferentes indicadores que permiten 

determinar qué grado de exactitud tiene el modelo obtenido, también se comprarán las respuestas de 

diferentes modelos y se verá cómo la inclusión de fenómenos físicos adicionales puede proporcionar 

una mejora del modelo obtenido. Debido a la complejidad del sistema, se dividirá la identificación en 

varios pasos tratando de aislar lo máximo posible el valor de los parámetros en base a la información 

que se dispone del sistema, esto ayudará a que el proceso de optimización de la identificación 

encuentre mínimos locales, lo que conlleva a un modelo incorrecto.  

Por último se presenta un generador de trayectoria de cuarto orden junto a simulaciones de los 

modelos obtenidos variando los parámetros característicos de la transmisión. 

Palabras clave: BLDC motor, Harmonic Drive, Elastic robot joint, Identification, Grey-box modelling, 

Matlab IDNLGREY, Discovery STM32F4. 
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1. Introduction 

During the past decades, industrial robots have become a very important factor in the manufacturing 

industry. Nowadays robots can be found in new areas, because of this and to be able to go into new 

markets, the new robots require better performance or lower price. To achieve these goals the physical 

robot structures are built lighter and weaker, the unique performance features of harmonic drives, 

such as high gear ratios and high torque capacities in a compact geometry, justify their use as 

mentioned above.  

Since the 60’s the harmonic drive has found widespread acceptance, this mechanical transmission 

employs a continuous deflection wave along a non-rigid gear to allow for gradual engagement of gear 

teeth. Because of this unconventional gear-tooth meshing action, harmonic drives can deliver high 

reduction ratios in a very small package; this particular way of operation has created a new area of 

exploration and understanding. The harmonic drive exhibits performance features both superior and 

inferior compared to conventional gear transmissions. Its performance advantages are: 

- High torque capacity. 

- Concentric geometry. 

- Lightweight and compact design. 

- Near-zero backslash. 

- High efficiency and back drivability. 

 

Harmonic drive systems however have some disadvantages as: 

- High flexibility. 

- Resonance vibration. 

- Friction and structural damping nonlinearities. 

 

The unique performance features of the harmonic drive allows it to be used in many different fields, 

from space robots, assembly equipment to measuring instruments or like in this project for wearable 

robot arms for its lightweight and compact geometry specifically. 

In the last years, there has been an increasing use of the technologies in the robotic field, as usual, 

new technologies are applied first at the industrial sector and after that, it is applied to another social 

fields, by means of this tools robots can be used to be exposed in dangerous zones to keep safe workers 

health. 

In the industrial sector, last years with the industry 4.0 the collaborative robotics have seen its demand 

increased, this kind of robots allows to work together with the workers with its tasks without the need 

of barriers or security systems between the robot and the person. 

To achieve the security of the user force and torque control that allows controlling and preventing 

collisions. This control system also allow an easier programming for the user. 

However, harmonic drives can exhibit surprisingly more complex dynamic behaviour than 

conventional gear transmissions. As higher demand on the accuracy of the robot models used in the 
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controllers are growing, this means good models are needed for the new applications, so there is a 

need for an automated way of getting mathematical models and also the estimation of its parameters.  

It has to be taken into account that in robot identification, the amount of sensors is limited; usually 

the only variable that is measured is the position of the motors. Others also include a torque sensor 

for estimating physical phenomena such as mechanical hysteresis and different friction models [4],[6], 

in this case with the test platform used there are two encoders in the motor and link side so both 

measurements are available, also some parameters are isolated for identifying some physical 

properties of the motor-gear transmission structure. 

This project is part of a bigger project where the goal is to design a wearable robot arm prototype for 

assistance to people with reduced mobility in the superior body extremities. All the mechanic structure 

has been designed and developed previously in past projects; also, some simulations and control for 

the 2-link arm structure have been developed before.  

The robotic arm is thought to be worn in a vest, and it will be supplied with batteries. 

 

 

Figure 1. Harmonic Drive transmission components. 

In the present project, the gear is built into a BLDC Motor from the Maxon motor company, which are 

characterized by high efficiency, wide rotational speeds range and long lifespan, the motor 

corresponds to the “flat” lines of the motors manufactured by Maxon. When modelling the motor in 

later chapters it will be considered as a DC motor for modelling purposes. 

In robotics, the motors are actuated by means of the so-called power stage. The power stage selected 

for this project was the ESCON Module 50/5 from Maxon, which is specified to work with the motor 

available. The different modes of operation as well as the overlay of the ESCON Module will be 

described and the setup procedure will be explained. 

For the data acquisition the Discovery STM32F4 board developed by STMicroelectronics is used 

recording the encoder measurements from both sides of the elastic joint, after storing the data in the 
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Discovery SDRAM, it is transmitted to the PC via USB by means of the VCP com port, this  data will be 

used for the identification procedure. 

This data has to be preprocessed in order to make a proper identification, in the section 4, when 

explaining the system limitations, the data processing will be explained. 

Once the data has been treated, the identification procedure is design, depending on the physical 

behaviour that will be identified, different model approaches will be used, also the data will be 

informative enough about this physical phenomena in order to achieve a good identification. 

The model is implemented in a MEX file that will contain the model state equations as well as the 

parameters of that precise model. Then in a Matlab script, the steps are the following: 

 Define name and units for the input, states and outputs. 

 Define the parameter vector with its boundaries. 

 Define the initial states from the data, in this case as the outputs are directly the states, we 

can define the initial states precisely. 

 Integrate the model defined in the MEX file into the Matlab script. 

 Create an iddata object containing all the data sets, that will be called later on each step. 

 Estimate the model until there is one data set left, this one will be used for validation purpose. 

 Each estimation step saves the parameter values and use them as initial guess for the next 

estimation step. 

 Compare the identified models in each estimation step with the validation data set. 

When estimating the model, different criterion of fit or searchmethod can be used, these are explained 

in later sections.  
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2. System setup 

In this chapter, the whole system used for the purpose of this project will be explained; this point has 

been divided into mechanical equipment and electric and electronic. During the project some things 

were changed, here the final version used will be described and some of those changes needed from 

the initial version of the system will be explained. 

Jose Antonio Mulet Alberola and Cristóbal Haro Galarza, who were directed by the teacher Santiago 

Gutierrez, designed the robot structure in previous works. For the Discovery, other students that 

developed its projects with Ranko developed configuration and functions in previous works. Anyway 

when starting the project to understand the whole system and to make it work properly many things 

had to be checked and changed such as encoder headers that were burnt, codewheels damaged and 

the flexpline of the Harmonic drive dropped after operating with it during some period of time. All this 

problems had to be fixed in order to start the latter steps of the project; the mechanical problems with 

the structure were fixed by adding new pieces or fixing the structure treating it with chemical products. 

All the mechanical materials as well as the electric and electronics are detailed in the following section. 

 

2.1 Mechanical structure 

2.1.1 Prototype robot structure 

The robot structure was built in a 3D printer, with ABS as main material, after some years and taking 

into account previous works, the first challenge presented was that new pieces needed for the proper 

work of the system were needed, these are used for fixing the flexpline and the plastic ring used for 

the first motor. 

 

Figure 2. Built prototype CAD. 
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As a main feature for this project, a new piece was designed in order to keep the flexpline inside the 

circular spline, because with the previous design, these two-pieces would separate during operation. 

 

Figure 3. Robot arm built systematically. 

 

2.1.2 Harmonic drive  

Explain the harmonic drive use, its properties, its use in nowadays robots, possible configurations and 

the configuration chosen for our robot (CS fixed, WG input, FS output, with -1/N reduction). 

 

 
Figure 4. Harmonic Drive used for the project. 

 

The main goal of this project consists in the identification of the Harmonic Drive developed by the 

Harmonic Drive polymer GMBH Company. This specific model was developed few years ago and it 

cannot be bought nowadays since it is not being produced anymore, also the specifications given by 

the manufacturer are very poor, this can be consulted in the annexes where all the datasheets and 

pdfs from the materials used for this project are presented. 

Some of the technical specifications provided are shown in the following table. 
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Table 1. Harmonic Drive manufacturer specifications. 

Reduction ratio 70 

Rated torque (Nm) 6 

Peak torque (N) 16 

Efficiency (rated operation) 61% 

Rated input speed (rpm) 3000 

Maximum input speed (4000 rpm) 4000 

No-load running torque (0.05 Nm) 0.05 

Weight (g) 149 

Repeatability (arcmin) +/- 0.2 

 

 

Figure 5. Harmonic Drive specified dimensions. 

The gear is attached to an EC motor and built inside the prototype arm structure, when assembled 

properly the dedoidal form shown below should be avoided. 

 

Figure 6. Correct assembly. 
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2.2 Electric and electronic components 

2.2.1 BLDC motor 

 
Figure 7. EC motor dimensions. 

 

All electric motors work by the interaction of two magnetic fields pushing on each other. One field is 

created by the rotor and one by the stator. The difference between motor types is in how these fields 

are created and controlled. BLDC motors use permanent magnets to create the rotor field, and a series 

of coils controlled by an electronic controller or commutator to create the stator field. 

The fact of being brushless avoids the sparking and short life of brushed motors, so they are rapidly 

becoming more popular than the brushed DC motors used conventionally as long as they need less 

maintenance and have longer life span. Because they have electronics controlling the stator this 

motors don’t need to waste power inducing the rotor field, they give better performance and 

controllability, and run cooler than induction. In addition, they are very high efficiency, and maintain 

a high efficiency level at part speed. 

 

 

Figure 8. EC motor used for the project. 
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Some of the parameters of the motor can be directly extracted from the datasheet, the most important 

are: 

Table 2. EC motor parameters. 

Nominal Voltage (Vsupp) 36.0 

Nominal speed (rpm) 1240 

Nominal current (A) 1.78 

Nominal torque (mNm) 405 

Terminal resistance phase to phase (Ohm) 2.3 

Terminal inductance phase to phase (mH) 2.5 

Torque constant (mNm/A) 217 

Speed constant (rpm/V) 44.0 

Rotor inertia (gcm2) 3060 

 

When modelling the motor in later points of this project, it will be considered as a usual DC motor to 

simplify the modelling, but as long as the current measured by the ESCON power stage is the current 

in one phase, the electrical torque can be estimated, as stated in [26], knowing that the three phases 

are symmetrical as follows: 

𝜏𝑚(𝑡) = 2𝐾𝑎𝑖𝑝(𝑡) (2.1) 

Which will be used later to identify the friction models containing the Striebeck curve from current and 

velocity measurements. 

 

2.2.2 Encoder headers and codewheels 

To integrate the Harmonic Drive transmission in a robotic system it is necessary to know the kinematic 

error variation during the rotation, for this task, an encoder is implemented, on each side of the gear. 

The encoders are sensors that generate digital signals according to a rotational movement, more 

precisely the incremental encoders are the ones used for the rotational movement. This kind of 

encoder determines its position counting pulses generated by a light passing through the holes of the 

codewheel attached to the rotational axis which wants to be measured. For determining the direction 

of the rotation two channels are used to measure the phase respect each other to know which 

direction is moving towards.  
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Figure 9. Encoder and codewheel HEDS-9100. 

 

The incremental encoders channel A and B give two square waves with 90º phase between them. 

Sometimes a third channel called Index is implemented to know when the axis moved 360º; this 

channel is usually used for initialization of the motors, also called Homing. In this project, some Homing 

functions have been implemented, but due to the bad state of the codewheels, the interruptions 

generated by the index channel triggered more than once per revolution, so it wasn’t working properly. 

 

 

Figure 10. Encoder channels signal. 

 

The given encoders use 2000 pulses per revolution so it’s equivalent in radians can be calculated in the 

code when extracting the data for identification. In addition, the counter of the microcontroller has 16 

bits, so each time the encoder readings reach this maximum the value is resetted, this is known as 

wrap or auto-reload, all this will be shown in more detail in the system limitations section. 
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Figure 11. Encoder header dimensions. 

 

The same encoder header and codewheel has been used in both motor and link side measurements, 

as it will be seen later, this has become one of the main system limitations when identifying the H.D 

flexibility parameters, as long as this parameters give the main information about the link side 

movement. The H.D reduces by 70 the velocity, this means that compared to the motor velocity, it will 

move very slowly so the quantization error will appear, then when estimating the velocity with signal 

differentiation from this encoder measurements will provide an inaccurate signal measured which will 

make the identification of the experimental platform a complex challenge. 

 

 

Figure 12.BLDC Motor with encoder header and codewheel mounted.  
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2.2.3 Discovery STM32F429Zi 

The needs of this project at the hardware level requires, mainly, encoder readings, actuator signals, 

and data storage and transmission. For this purpose, the Discovery STM32F429Zi has been used in the 

project. Some of its more important features for the project are GPIOs, timers, DACs, SDRAM and USB 

VCP.  

The GPIOs are used for the encoder readings, each channel of the encoder is connected to a GPIO pin, 

which is configured and attached to a timer, there is an encoder mode when configuring the GPIO in 

the code, so the counts are stored in a timer and then the value is read from the counter of that timer. 

The DAC value range is from 0V to 3.3V by specification, in reality this value may vary between devices. 

When configuring the DAC it is assigned to a pin in the board, the user can also set the speed or wave 

generator mode if needed; in this case, the signal will be generated by an equation depending on the 

time of the experiment. 

The experiments are run with a control timer, which is configured to generate an interruption each 

millisecond that will be the sample time of the data measured. All the data collected will be transmitted 

via USB with the VCP, the virtual com port allows, when installed the proper drivers, to acquire data in 

the computer by connecting it to the Discovery board via USB. 

The discovery board also has its own supply pins, which will be used to supply the encoder headers at 

+5Vdc. 

 

 

Figure 13. Discovery STM32F429Zi. 

 

In this case, the C program consists in a Setup and a While, the Setup configures all the functionalities 

of the board used and this sequential way of working is simple and good when all the tasks have similar 

priority. 

The STM32F4 has two DAC channels (12 bit) that can be used to send analog signals to the ESCON, 

which are implemented in the code, the ST-LINK V2, and VCP COM port drivers have to be installed in 
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order to load the programs to the board and send the data via USB both. In the table below all the pins 

used for the project are listed with its corresponding functionality. 

Table 3. Discovery board pins used. 

PIN Function 

GPIOC P6 Encoder 1 CHA 

GPIOC P7 Encoder 1 CHB 

GPIOD P12 Encoder 2 CHA 

GPIOD P13 Encoder 2 CHB 

GPIOA P5 DAC output 

GPIOG P15 ESCON Enable digital signal 

Vcc (+5Vdc) Encoder 1 header 

Vcc (+5Vdc) Encoder 2 header 

GND Ground Encoder/DAC circuit 

Remark that there are different pins used as GND but they are all internally connected inside the board. 

 

2.2.4 EPOS/ESCON modules  

When started, this project was using as a power stage for the motors the EPOS 24/5 positioning 

controller. However once the project is finished and the robot arm is placed in a vest where all the 

electronic components have to be fitted, the size is an important factor as well as the weight, if we add 

that the ESCON module can also work with the motors given for the application needed at lower price. 

Then it is obvious that the ESCON modules are more appropriate to be used in this project instead the 

EPOS, in this section, the ESCON modules are described and its operating modes are explained as well 

as some of its configurations used in the present project. 

The ESCON Module 50/5 is a small sized servo controller for the highly efficient control of BLDC motors 

up to approx. 250 Watts. 

The operating modes available are: 

 Speed control (Closed loop). 

 Speed control (Open loop). 

 Current control. 

For the identification procedure, only the speed control in open loop as well as the current control will 

be used. In the first, the DAC signal from the discovery is scaled to the voltage drop in the armature of 

the motor, when actuating over the voltage as input, the angular speed of the motor as output is 

changing. When in current control mode, the DAC signal is proportional to the current sent to the 

motor, thus, the electrical torque generated by the motor is controlled. The main problem of this, as 

it will be seen in later points is that in current control mode the voltage saturates, this means that the 

motor will reach its maximum speed in this control mode and so the data taken at saturating levels 
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cannot be used for the identification tasks. This is the main reason why voltage control experiments 

have been carried out in order to identify the parameters of the whole system. The ESCON Module 

50/5 is designed to be commanded by an analog set value (DAC signal). 

 

Figure 14. ESCON module 50/5. 

This device is designed to be configure via USB interface using the graphical user interface “ESCON 

Studio” for windows PCs.  

Some of its electrical rating properties as well as pin I/O used are shown in the tables below. 

 

Table 4. Electrical rating properties. 

Nominal operating voltage +Vcc 10-50 Vdc 

Output voltage (max) 0.98 x + Vcc 

Output current Icont/Imax (<20 s) 5A/15A 

Max speed EC motor 150000 rpm 
 

Table 5. Inputs and outputs used. 

Analog input 1/2 12bit resolution; -10…+10V; differential 

Hall sensor signals H1, H2, H3 

Digital input +2.4…+36 Vdc (Ri=38.5 kOhm) 

EC motor connection Motor winding 1, 2 and 3 

Status indicator Operation/Error Green/Red Led 

 

The supply has been set to 36V, which is the maximum the motor can use, this was done as long as the 

load is not known, otherwise the supply voltage should be calculated depending on the load. Note that 

the necessary output current is depending on the load torque. 

All the pins available in the ESCON are shown in the figure below. 
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Figure 15. ESCON module 50/5 dimensions and pin assignment. 

 

In the Table 6, the pins used are mentioned with its corresponding functionality described. 

 

Table 6. Pin assignment table. 

Pin Signal Description 

1/2 Motor winding 1 EC motor winding 1 

3/4 Motor winding 2 EC motor winding 2 

5/6 Motor winding 3 EC motor winding 3 

7/8 +Vcc Nominal operating voltage 

9/10 Power_GND/GND Vcc GND/GND 

11 +5Vdc Hall sensor supply 

13 Hall sensor 1 Hall sensor 1 input 

15 Hall sensor 2 Hall sensor 2 input 

17 Hall sensor 3 Hall sensor 3 input 

21 DigIN2 Digital input 2 

23 GND Ground 

26 AnIN2- Analog input 2, negative signal 

27 AnIN2+ Analog input 2, positive signal 

 

In the next point the cables used for the ESCON supply, motor windings and Hall sensors are described. 

The analog input is the DAC signal amplified to adapt the DAC voltage range from [0V - 3.3V] to [0V-

5V], also the before mentioned ENABLE signal corresponds to the Digital Input 2 which is configured 
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to activate the ESCON while the experiment is running and turn it off when the experiment ends for 

safety reasons. 

 

Figure 16. Enable pin configuration in ESCON Studio. 

The ESCON studio is the software provided by the manufacturer of the power stage module and the 

BLDC motor. When configuring the power stage the mode that the motor is being actuated by the 

ESCON power stage depending on the analog signal received from the Discovery DAC is configured, 

here the different modes of control used to identify are explained. All the motor parameters have to 

be introduced into the ESCON studio, the steps are the following: 

1. Choose type of motor (EC/BLDC or DC). 

 

Figure 17. Motor type select. 
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2. Motor data specified by the manufacturer. 

 

Figure 18. Motor parameters from datasheet. 

 

3. System operating conditions (boundaries). 

 

Figure 19. Motor operating point specified in datasheet. 
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4. Hall sensor polarity. 

 

Figure 20. Hall sensor pattern configuration. 

Once these steps are completed, the following step is to choose the operating mode; this is basically 

define if the DAC input will control the current in the motor or the voltage (speed). Both operating 

modes are explained in the following section. 

Current control 

In this mode, the current is proportional to the DAC signal, this means if the DAC is a sinus wave, the 

current will have the same shape but scaled by a factor, which is defined in the ESCON studio software, 

the diagram of this operating mode is the following. 

 

Figure 21. Current control ESCON diagram. 

Therefore, to keep the current signal following the reference, the real current measured in the motor 

phase is feedbacked and compared to the set value. In the following figure, the effect can be 

appreciated. 
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Figure 22. DAC input, Current averaged and motor speed in the ESCON data recorder. 

 

The yellow signal corresponds to the current measured in one phase of the motor, the red one 

corresponds to the DAC input, in current control, the current follows the DAC signal, while in voltage 

control the speed signal follows the DAC input. 

Define the set point depending on the working range of the input and output. 

 

 

Figure 23. Set point configuration for current control. 

Apply an offset, in Amperes, for moving the motor in both directions. 
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Figure 24.Offset needed for operating in two directions 

If the configuration is as shown in figure 23 and 24, at 0V the power stage will deliver 0A. When adding 

the negative offset, that is he half of the maximum value we set as a maximum for the current output, 

we get the symmetric range for positive and negative sides. With 2.5V being the motor stopped, and 

the values from 0V to 2.5V negative direction and 2.5V to 5V positive direction. 

In the ESCON Studio the values for the operating loop can be monitorized on-line, and some values 

can be modify if needed, these are the offset and the power stage Gain. 

 

Figure 25.Current control ESCON monitored. 

In the case of the gain tuning, there is an assistant where, when specifying the current and speed values 

for the motor, it calculates the gain needed in order to meet the requirements specified. 

For achieving this, the motor will move, so a notification will appear for safety reasons before starting 

the regulator tuning. 
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In the figure below, the maximum current in amperes and the maximum speed in revolutioons per 

minute are specified, then click the button init and let the motor move for the regulator tuning. 

 

Figure 26. Proportional current controller tuning. 

 

Voltage control 

The voltage control, as can be seen in the figure below actuates on the voltage of the motor armature, 

here the back EMF acts, being the rotational speed times the motor speed constant substracted to the 

voltage in the armature. 

 

Figure 27. Voltage control diagram. 
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Define the set point depending on the working range of the input and output. 

 

 

Figure 28. Power stage gain definition. 

 

When selecting the set point value, the upper and lower values have to be specified, this means that 

the value of the maximum speed of the motor corresponds to the maximum value on the ESCON 

analog input. In the figure shown the system was set to operate only in one direction, this means 0V 

corresponds to the motor stop and 5V corresponds to the maximum value the motor can rotate. 

When configuring the power stage for controlling the voltage in two directions, the maximum value of 

the speed has to be doubled, then an offset has to be set equal to the maximum value but negative. 

 

Figure 29. Current limitation and speed control ramp configuration. 
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When working in voltage control, the offset has to be specified in rpm’s in order to move the motor in 

both directions. 

 

 

Figure 30. Speed control offset. 

In a similar way, compared to current control, the speed control can be monitorized, in this case as 

long as the voltage can be varied precisely depending on the DAC input, no regulation loop is needed 

in order to follow the signal demand, so no regulation tuning is needed. 

 

 

Figure 31. ESCON studio speed control (open loop). 

In the ESCON Studio the analog input value, this is the voltage of the DAC multiplied by the amplifier 

gain 5/3 can be monitored. At this point the DAC1 assigned to PA4 in the STM32F429 Discovery had 

an offset error, this means that when 0 volts are required as DAC output, the Discovery provides 

constant 0.12V instead 0V, known this the DAC2 in PA5 is tested and there is no such offset. When 

implementing the system the DAC calibration has to be a primary thing, but for the low cost platform 

in which this project is based is enough. 
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2.2.5 Wires 

In this section the wires used to connect the motor to the power stage ESCON will be explained, the 

motor cable and the hall sensor cable are shielded, the main reason is to reduce the electrical noise 

from affecting the signals and to reduce the electromagnetic radiation that may interfere with other 

devices. Mainly three kind of cables are needed to connect the BLDC motor to the power stage, these 

are: 

 Power supply cable. 

 Motor power cable. 

 Hall sensor cable. 

The particular shape of the back EMF in the BLDC motors makes necessary to know the electrical 

degrees of the motor which is recorded by the hall sensor, this means that the ESCON won’t work until 

it detects the Hall sensor cable is connected and working properly. 

 

Table 7. ESCON power cable information. 

ESCON Power cable technical data and pin assignment 

Cable cross-section 2 x 0.75mm2 

Head A Cable connected to the supply 

Head B Cable sleeves 0.75 mm2, Solded to the ESCON 

Wire Black Head A pin 1 (-) Ground of supply voltage 

Wire Black Head A pin 2 (+) Supply voltage +11…+36 Vdc 

 

 

Figure 32. ESCON power supply cable. 
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Table 8. ESCON motor cable information. 

ESCON Motor cable technical data and pin assignment 

Cable cross-section 3 x 0.75 mm2 shielded 

Head A Molex Micro-Fit 4P female crimp terminals (Motor) 

Head B Cable sleeves 0.75 mm2, Solded to the ESCON Pins 

Wire White Head A pin 1 BLDC Motor: Winding 1 

Wire Brown Head A pin 2 BLDC Motor: Winding 2 

Wire Green Head A pin 3 BLDC Motor: Winding 3 

Wire Black Head A pin 4 Cable shield 

 

 

Figure 33. ESCON motor cable. 

 

Table 9. Hall sensor cable information. 

Hall sensor cable technical data and pin assignment 

Cable cross-section 5 x 0.14 mm2 shielded 

Head A Molex Micro-Fit 6P female crimp terminals (Motor) 

Head B Cable sleeves 0.75 mm2, Solded to the (ESCON) Pins 

Wire Green Head A pin 1 Hall sensor 1 

Wire Brown Head A pin 2 Hall sensor 2 

Wire White Head A pin 3 Hall sensor 3 

Wire Yellow Head A pin 4 GND 

Wire Grey Head A pin 5 Hall sensor supply voltage +5Vdc 

Wire Black Head A pin 6 Hall shield 
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Figure 34. Hall sensor cable. 

In the following picture these connections are shown for the actual assembly of the power stage. 

 

Figure 35. ESCON Module and the motor cables.  
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2.2.6 Auxiliary electronic circuits 

Signal conditioning from the Discovery DAC (0-3V) to the ESCON input (0-5V) Battery for the 

autonomous system. 

 

Figure 36. System connections diagram. 

Remark that this would be the general diagram for one DAC into the ESCON power stage. When 

mounting as many ESCONs as motors are needed, this diagram should be repeated if the Discovery 

DAC is used as analog signal to demand the current or voltage needed in order to move the motor. 
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Figure 37. Electronic circuit in the power stage. 

 

2.2.7 System architecture 

The system used in this project is a part of a bigger system, where the robot arm will be controlled 

with a Raspberry pi, and many Discoveries will be used to access to low level hardware, this means all 

the encoders for the robot arm, all the DACs for sending the actuator signal and communication 

between dispositives. 

In the project, the Discovery is connected to the PC with the ST-Link USB and the VCP USB (in case the 

experiments are carried out for taking data of the system), for using these appropriately, the ST-Link 

and VCP com port drivers are installed in the PC. The Harmonic Drive transmission is mounted into the 

EC motor, once assembled, it is mounted into the prototype robot structure. The encoders are 

connected from the headers built inside the structure to the Discovery. The DAC is connected to the 

auxiliary amplifier circuit, which amplifies the voltage range from 3V to 5V, then this voltage is the 

analog input to the ESCON, which is supplied by a 36V power source. The ESCON and the EC motor are 

connected through the cables explained in the section above. The ESCON requires the hall sensor 

signals to operate properly, so this connection cannot be avoided, also the three wires for the motor 

windings are connected, and the ESCON module is connected to the PC via USB and the ESCON studio 

software has to be installed into the computer in order to manage the operation conditions of the 

ESCON. 
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Figure 38. Experimental platform mounted in the DISA. 
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3. Modelling robots with flexible joints 

 

When modelling robot dynamics, the usual assumption is that manipulators consist only of rigid 

bodies. However, this ideal situation may be considered valid only for slow motion and small 

interacting forces. If flexibility is not taken into account when considering robot design and control, a 

degradation of the overall expected performance of the robot occurs. 

From a modelling point of view, flexibility can be assumed as concentrated at the robot joints, the 

dynamic modelling steps are similar to the rigid case, with the need to introduce additional generalized 

coordinate besides those used to describe the rigid motion of the robot arm. 

The presence of joint flexibility in the present work is given by the use of Harmonic Drives as the 

transmission and reductor element, which, as stated before provides high reduction ratios with power-

efficient compact inline devices. 

When subject to the forces/torques arising in normal robot operation, this components are flexible, in 

this case the “flexspline” of the harmonic drive, this introduces a time varying displacement between 

the position of the actuators and that of the driven links. Without a specific control action, an 

oscillatory behaviour typically of small magnitude by at relatively high frequency, is observed at the 

robot-end effector level during free motion. In addition, some form of instability may occur in tasks 

involving contact with environment. 

 

 

Figure 39. Elastic joint approach. 

 

Dynamic models that include joint flexibility are used to evaluate quantitatively vibratory effects 

superposed on the rigid motion, for the multivariable case some assumptions are made for obtaining 

a simplified but still good dynamic model, but this is out of the scope of this project, and maybe will 

be part of posterior projects. 
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3.1 Modelling the Harmonic Drive transmission in a robot joint 

Considering the topology of an elastic robot joint as shown in Figure 40. In terms of the input-output 

behaviour, the proposed structure does not differ from a simple fourth order linear dynamic model of 

two connected masses. An external exciting torque 𝜏𝑚 applied by the motor, which constitutes the 

input value. The relative position of the second moving mass 𝑞 constitutes one of the outputs and its 

the angular position at the link side, 𝜃 is the motor side angular position, which is also measured, the 

derivatives of both signals are also in the model related to the non-conservative terms of the equations 

which are frictions and damping parameters. 

The Lagrange equations, which is a method that allows writing down the dynamic equations of a 

general mechanical system from a generalized coordinates system, allows to represent the dynamic 

model as follows: 

 

𝑑

𝑑𝑡
(
𝜕𝐾𝑒

𝜕𝑞�̇�
) −

𝜕𝐾𝑒

𝜕𝑞𝑖
− 𝐹𝑖 = 0 

 

 
(3.1) 

Where: 

𝑞𝑖 Generalized coordinates of the system or degrees of freedom. 

𝐾𝑒 Kinetic enegy of the system. 

𝐹𝑖 Generalized force. 

The generalized force term 𝐹𝑖 considers all the forces interacting in the system, these forces can be of 

three different categories: 

1. Interaction forces between different punctual masses of the system. 

2. External forces, included gravity. 

3. Friction forces. 

Forces 1 and 2 are conservative and they can be obtained differentiating a potential energy function 

𝑈 with respect to a generalized coordinate, force 3 represent friction force which is non-conservative 

and its obtained deriving respect to the velocity a potential dependent of the velocity, which is the 

Rayleigh function 𝜗. So the generalized force can be written as: 

 

𝐹𝑖 = −
𝜕𝑈

𝜕𝑞𝑖
−

𝜕𝜗

𝜕𝑞�̇�
 

 

 
(3.2) 

Where the generalized force is represented with its conservative and non-conservative terms. 
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Figure 40. Harmonic Drive configuration used in the application. 

 

Therefore, for the basic configuration shown in Figure 41, the Lagrange equations can be applied as a 

mechanical system with two D.O.F.  

1. Position or angle of the motor 𝜃𝑚, which is the input to the system. 

2. Kinematic error ∆𝜃, which is expressed as a function of the output position of the H.D (𝜃𝑙) 

which is determined by experimental measurements and its calculated as: 

𝑞 = 𝜃 − ∆𝜃 
 

 
(3.3) 

The kinetic energy 𝐾𝑒 it’s due to the movement in the motor axis and in the output axis where the load 

is. 

𝐾𝑒 =
1

2
𝐽𝑚�̇�𝑚

2 +
1

2
 𝐽𝑒�̇�

2  

 

 
(3.4) 

The elastic potential energy it’s due to the flexibility of the mechanism, and it is defined as: 

𝑈 = ∫ 𝐾𝑒𝑙∆𝜃𝑑∆𝜃
0

−𝜃𝑠

 

 

 
(3.5) 

The Rayleigh function is defined as: 

𝜗 = ∑
1

2
𝐵𝑖�̇�𝑖

2 

𝑛

𝑖=1

 

 

 
(3.6) 

When applied to the friction terms the following expression is obtained: 

𝜗𝑓 =
1

2
𝐵𝑚�̇�𝑚

2 +
1

2
𝐵𝑒�̇�

2 

 

 
(3.7) 
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In addition, the spring damping has to be included in this kind of function, as long as it is a dissipative 

term. 

𝜗𝑑 =
1

2
𝐵∆�̇�2 

 

 
(3.8) 

There is one Lagrange equation per each generalized coordinate, so for representing the H.D system 2 

equations are needed. 

𝜏𝑚 =
𝑑

𝑑𝑡
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𝜕𝐾𝑒
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(3.9) 

0 =
𝑑

𝑑𝑡
(
𝜕𝐾𝑒

𝜕�̇�
) −

𝜕𝐾𝑒

𝜕𝑞
+

𝜕𝑈

𝜕𝑞
+

𝜕𝜗𝑓

𝜕�̇�
−

𝜕𝜗𝑑

𝜕�̇�
 

 

 
(3.10) 

Including all the terms developed above, the two last equations can be written as: 

 

𝐽𝑚�̈�𝑚 − 𝐾∆𝜃 − 𝐵∆�̇� + 𝐵𝑚�̇�𝑚 = 𝜏𝑚 
 

 
(3.11) 

𝐽𝑒�̈� + 𝐾∆𝜃 + 𝐵𝑒�̇� + 𝐵∆�̇� = 0 
 

 
(3.12) 

Where: 

𝐽𝑒  Link intertia moment. 

𝑏𝑒 Link viscous friction. 

𝐵  Spring damping. 

𝐾  Linear spring stiffness coefficient. 

𝐽𝑚 Motor inertia moment. 

𝑏𝑚 Motor viscous friction. 

 

For simplicity in the equations above, the reduction ration has been omitted, when the reduction ratio 

is taken into account, all the torques in the motor side of the equation are divided by N, so the 

equations (3.11) and (3.12) can be rewritten as: 

𝜏𝑚 = 𝐽𝑚�̈� + 𝑏𝑚�̇� +
𝐾

𝑁
(
𝜃

𝑁
− 𝑞) +

𝐵

𝑁
(
�̇�

𝑁
− �̇�) 

(3.13) 
 

  

0 = 𝐽𝑒�̈� + 𝑏𝑒�̇� + 𝐾 (𝑞 −
𝜃

𝑁
) + 𝐵 (�̇� −

�̇�

𝑁
)   

 
(3.14) 

Here the input is the torque generated by the motor, which is proportional to the current in the motor 

armature, this means working in current control mode, as shown in the following block diagram. 
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Figure 41. Current control block diagram. 

The terms (
𝜃

𝑁
− 𝑞) and its derivatives are the kinematic error and its derivative.  

The input is the torque generated by the motor is calculated from the current, the motor current to 

torque constant gives the torque applied by the motor as follows: 

𝜏𝑚(𝑡) = 2𝐾𝑎𝑖(𝑡) (3.15) 
 

In this case, as long as there are two control modes available in the power stage (ESCON module) the 

formulas that include the input (motor action) can be rewritten as follows for voltage control: 

 

�̈�(𝑡) =

((𝑢𝐷𝐴𝐶(𝑡)𝐾𝑖𝑛 −
𝜏𝑐𝑅

𝐾𝑎
) +

(
𝐵

𝑁
 (�̇�(𝑡)−

�̇�(𝑡)

𝑁
)+

𝐾

𝑁
( 𝑞(𝑡)−

𝜃(𝑡)

𝑁
))𝑅

𝐾𝑎
− (𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
)�̇�(𝑡))

𝐽𝑚𝐾𝑎/𝑅
 

 
(3.16) 

 

With the following block diagram considered: 

 

Figure 42 Voltage control block diagram 

Where the back EMF acts as a “virtual friction” and its added to the viscous friction coefficient as in 

equation (3.16). 

Despite this, when identified, the parameters from voltage control and the ones from current control 

will be separated. 
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3.2 Harmonic Drive state space modelling 

The most usual way to study a system is through the relationship between the inputs given to the 

system and the outputs obtained from it. The system modelling in state space is based on describing 

the dynamic system by means of n first order differential equations or difference equations (for 

discrete systems), and then those equations can be represented in matrix form so the mathematical 

expressions are simplified. 

A dynamic system, once the differential equations are known, the variables that define the system or 

the state variables are defined, then the equations are rearranged as a function of these and the state 

equations of the system are obtained 

�̇�(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡)]  
(3.17) 

𝑦(𝑡) = 𝑔[𝑥(𝑡), 𝑢(𝑡)]  
(3.18) 

Where: 

𝑥(𝑡) It’s the state variables vector. 

�̇�(𝑡) It’s the derivative of the state variables vector. 

𝑢(𝑡) It’s the input vector. 

𝑦(𝑡) It’s the output vector. 

 

If the system is linear and time invariant the state equations can be written as: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)  
(3.19) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)  
(3.20) 

We consider the following state space vector: 

𝑥 = [𝜃 �̇� 𝑞 �̇�]𝑇  
(3.21) 

Rearranging the equations taking into account the spring damping: 

𝐽𝑚𝑥4̇ + 𝐵𝑚𝑥4 +
𝐾𝑥3

𝑁2
−

𝐾𝑥1

𝑁
+

𝐵𝑥4

𝑁2
−

𝐵𝑥2

𝑁
= 𝜏𝑚 

 
(3.22) 

𝐽𝑒𝑥2̇ + 𝑏𝑒𝑥2 + 𝐾𝑥1 −
𝐾𝑥3

𝑁
+ 𝐵𝑥2 −

𝐵𝑥4

𝑁
= 0 

 
(3.23) 

From equations (3.19), (3.20) and (3.21) the following matrix are obtained which gives the state space 

representation of the given system. 
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𝐴 =

[
 
 
 
 
 
 0

−
𝐾

𝑁2𝐽𝑚
0
𝐾

𝑁𝐽𝑒

 

1

−
𝑏𝑚 +

𝐵

𝑁2

𝐽𝑚
0
𝐵

𝑁𝐽𝑒

  

0
𝐾

𝑁𝐽𝑚
0

−
𝐾

𝐽𝑒

 

0
𝐵

𝑁𝐽𝑚
1

−(𝑏𝑒 + 𝐵)/𝐽𝑒
]
 
 
 
 
 
 

 

 

 
(3.24) 

𝐵 = [

0
𝐾𝑎𝐾𝑚/𝐽𝑚

0
0

] 

 

 
(3.25) 

𝐶 = [

1
0
0
0

 

0
1
0
0

  

0
0
1
0

 

0
0
0
1

] 

 

 
(3.26) 

D = 0 
 
 

 
(3.27) 

3.3 Modelling non-linearities 

Nonlinear behaviour in elastic robot joints can be found by different phenomenas such as transmission 

compliance, resulting from gear tooth interaction and wave-generator deformation due to high radial 

forces that is commonly approximated by a nonlinear or piecewise linear stiffness. In addition, 

hysteresis torsion in elastic robot joints occurs as a coupled nonlinearity due to different factors as 

backlash, internal friction, and nonlinear stiffness. These interact inside of mechanical transmission 

assemblies. The nonlinear joint torsion leads to hysteresis lost motion and can provoke control errors 

in relation to the joint output at both trajectories tracking and positioning. In this chapter, the studied 

models includes the Bouc–Wen-like hysteresis model, together with nonlinear cubic polynomial for 

elasticity, which is originated from structural mechanics, both arranged according to the assumed 

torque transmitting structure. 

Elasticities in robotic joints always have drawn an attention in the research since being one of the key 

challenges for an accurate joint dynamics modeling and control. 

To this end it can be emphasized that evermore lightweight design co-determine the development of 

modern robotics as well, where evermore nonlinearities constitute a growing challenge. 

 

3.3.1 Hysteresis spring 

The input angle 𝜃 is converted into the harmonic drive output angle by the reduction ratio N, where 

the reductor deformation can be observed through ∆𝜃 as equation (3). 

Where the “flexspline” rotation, 𝑞 has an opposite direction respect to the “wave generator” 𝜃. 

Instead using the typical linear relation (𝐾(∆𝜃)), the transmission acting between the input and output 

is approximated by a cubic polynomial, which is function of the kinematic error as follows: 
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𝑇𝑒(∆𝜃) = 𝐾1(∆𝜃) + 𝐾3(∆𝜃)3 (3.28) 

Where 𝐾1 and 𝐾3 are the cubic stiffness coefficients. 

 
Figure 43. Nonlinear elasticity (cubic polynomial) Simulink implementation. 

 

The torsional stiffness curve can be also approximated by three straight lines having stiffness of K1, K2 

and K3, but in the present work a cubic polynomial with two coefficients is used instead as long as 

provides good enough results. 

Stiffness K1 applies for output torque of zero to T1 and stiffness K3 applies for output torque greater 

than T2, stiffness K2 applies for output torque between T1 and T2. 

 

 

Figure 44. Non-linear elastic polynomial. 

 

The fact of using this king of function is justified for using it together with the Bouc-Wen hysteresis 

model, which contemplate the plastic behaviour of the transmission, then putting together the plastic-

elastic physical phenomena in the same dynamic equation. 
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Figure 45. Typical hysteresis shape in Harmonic Drives. 

 

The Bouc-Wen hysteresis model uses a first-order non-linear differential equation that relates in 

hysteretic way the relative displacement to the restoring force. In this equation, the shape of the 

hysteresis curve is modified by a set of free parameters, the main advantage of the Bouc-Wen 

hysteresis model is the possibility to include the complex non-linear stiffness characteristics exposed 

above. The restoring torque, which is a hysteresis spring, can be decomposed in an elastic and plastic 

term, a weighted of both determines the reversible and irreversible contribution to the overall 

transmitted torque value, and it is represented in the following equation: 

 

𝑇ℎ(∆𝜃, 𝑡) = 𝑤𝑇𝑒(∆𝜃)|∆𝜃(𝑡)| + (1 − 𝑤)𝑇𝑒(∆𝜃)|𝑥(𝑡)| (3.29) 

 
The weighting factor w provides the relation between purely elastic (𝑤 = 1) or purely plastic 
(𝑤 = 0) torque responses. 
 
The dynamic state variable 𝑥 which captures the hysteresis map, is described by the 
differential equation: 
 

 

�̇�(𝑡) = ∆�̇� − 𝛽|∆�̇�||𝑥(𝑡)|𝑛−1𝑥(𝑡) − 𝛾∆�̇�|𝑥(𝑡)|𝑛 (3.30) 
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The amplitude and shape of the hysteresis is controlled by the parameters 𝛽 and 𝛾. When both 

hysteresis paramters are zero no hysteresis loop occurs after the input direction change, the power 

factor 𝑛 ≥ 1 assigns the smoothness of transitions between elastic and hysteretic parts. 

This equation has been implemented in Simulink for the simulations. 

 

Figure 46. Internal state of the hysteretic differential equation. 

This model has been studied in depth in many research as [3], [8], [12] and [15]. 

 

3.3.2 Non-linear friction modelling 

Under the increasing demand of more accurate high-performance motion systems, many friction 

models appropriate for control purpose of mechanical systems have been proposed. These friction 

models formulate a dynamical model based on typical friction properties, in this project the friction 

studied models are the LuGre, Maxwell-Slip and Modified Maxwell-Slip, which can be found in more 

detail in [2], [14] and [18] for example. 

LuGre friction model 

The LuGre friction model was developed at the universities of Lund and Grenoble, it has arbitrary 

steady-state characteristics such as the Striebeck curve 𝑔(𝑣).The interpretation of the internal state is 

that of the bristle model, where friction is visualized as forces produced by bending bristles behaving 

like springs. Instead of modelling the random behaviour of friction, it is based on the average behaviour 

of the bristles. The average deflection of the bristles is denoted as the state variable z as shown in the 

following equation: 

𝑑𝑧

𝑑𝑡
= 𝑣 −

𝜎0

𝑔(𝑣)
𝑧|𝑣| 

(3.31) 

 
Where 𝑔(𝑣) is the Striebeck curve, which is a decreasing function for increasing velocity 
bounded by an upper limit equal to the static force 𝐹𝑠 and a lower limit equal to the Coulomb 
force 𝐹𝑐.  
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𝑔(𝑣) = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒−(𝑣 𝑣𝑠⁄ )2 (3.32) 

  

The friction force is given as a function of the state variable z and the velocity 𝑣. 
 

 

𝐹 = 𝜎0𝑧 + 𝜎1

𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣 

(3.33) 

Where the parameters 𝜎0, 𝜎1, 𝜎2 equal the asperity stiffness, the micro-viscous friction coefficient and 

the viscous friction coefficient, which as stated in the previous point is 𝜎2 = 𝐵𝑚. 

 

Another equivalent form of the equation can be: 

𝐽�̇� = 𝑢 − 𝜎0𝑧 + 𝜎1

𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣 

(3.34) 

 

Equations (3.31), (3.32) and (3.33) also have been implemented in Simulink. 

 

 

Figure 47. LuGre Simulink implementation. 

 

Figure 48. Striebeck function Simulink implementation. 
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In the following figure the whole system Simulink block diagram is shown. 

 

Figure 49. General view of the elastic joint implemented in Simulink. 

 

 

Figure 50. One joint with non-linearities Simulink representation. 
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Maxwell-Slip friction modelling 

After the LuGre model, the design of a new model structure was based on the LuGre equations (4.31) 

and (4.33) that need to be adapted to describe frictional lag. 

The Generalized Maxwell Slip model is a parallel connection of different single state friction, the 

friction gorce is given as the sum of the N elementary parts as seen in eq (3.35). 

𝐹𝑓(𝑡) = ∑𝐹𝑖(𝑡)

𝑁

𝑖=1

+ 𝜎2𝑣(𝑡) 
(3.35) 

So the dynamic behavios of each elementary model can be written as: 

If the elementary block is sticking: 

𝑑𝐹𝑖

𝑑𝑡
= 𝑘𝑖𝑣 

(3.36) 

 
Each elementary block will remain sticking until the threshold of the breakaway force 
 𝐹𝑖 > 𝛼𝑖𝑠(𝑣)  is trespassed. 
 
If the elementary block breaks that condition, switches its state to slipping and the 

differential equation is given by: 

 

 
𝑑𝐹𝑖

𝑑𝑡
= 𝑠𝑔𝑛(𝑣)𝐶(𝛼𝑖 −

𝐹𝑖

𝑠(𝑣)
) 

(3.37) 

 

Once the state is slipping, each elementary block resets its state to stick when the velocity crosses zero. 

3.3.3 Backslash 

Backlash in some gear transmissions is introduced to let the gears mesh without binding and to provide 

space for a film of lubricating oil between the teeth, this prevents overheating and tooth damage. 

 

Figure 51. Backlash in the gear transmission contact teeth. 

On the other hand, this causes lost motion between the reducer input and output shafts, making it 

difficult to achieve accurate positioning in equipment. 

The mechanical gear transmission can be considered as a passive transducer of the actuator motion to 

the output torque that drives the joint load. The angular position of the link side constitutes the 



Modelling, identification and control of an elastic joint. 

 

42 

 

feedback value, which contains the signature of elasticities and backlash acting in the transmission 

system. The gear transmissions are the main source of non-linearities as presented above. 

 

 

Figure 52. Gear transmission with elasticities and backslash. 

 

Depending on the type of gear used different level of torsional compliance and backslash can be found, 

Harmonic Drive manufacturers state that for this kind of transmission the backslash is near zero, so 

this won’t be included in the final model, and also can be neglected when the play size stays below the 

resolution of 𝑞 and 𝜃 measurements.  
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4. System limitations 

As long as this project has been developed in a low cost experimental platform, there are some 

limitations arising when accuracy is one of the main things taken into account when doing a research 

work and even more when modelling systems that will be controlled later on. Many of the researches 

that identify the complex physical behaviour that the Harmonic Drive transmission produce in robot 

joints were done by M.Ruderman, Dhaouadii and F.Ghorbel in [3], [5], [6]. These, used very 

sophisticated and precise equipment with encoders with higher resolution than the ones used in this 

project as well as torque sensors at the input and output of the gear transmission. Some others also 

include accelerometers to get the acceleration measurement without estimating it from the encoder 

position readings. 

Despite this, some of the problems were solved or just considered negligible, while some others limited 

the goals achieved for this project, anyway all these things have been taken into consideration in order 

to improve or change some of the equipment used in the present project for future works. 

4.3.1 Encoder saturation 

When configuring the DAC pins for reading the encoder information, a timer is assigned to the pin. This 

timer will be “read” later on in the code and it will record the pulses read by the header. The timer has 

the so called auto reload, which means when it counts up to the maximum value (Depending if its 

16bits or 32bits), the counting will start from zero, this effect can be appreciated in the encoder 

measurements for an experiment, as shown in the figure: 

 

Figure 53. Encoder readings with timer auto reload. 

In order to use the data in the identification procedure, the vector containing the signal has to be 

rearranged, for this purpose a matlab function has been created where the “jumps” are detected from 

the velocity estimation with the following formula: 

𝑣𝑘 =
𝜃𝑘 − 𝜃𝑘−1

𝑇𝑠
 

(4.1) 
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So when substracting the actual value that has “reset”, the value of 𝑣𝑘 will be high, so this instant is 

used to add an offset corresponding to the “jump” value, the function implemented is shown in the 

following code. 

 

 

 

Therefore, the function takes as arguments the vector with the data with auto reload and the velocity 

estimated from this position to detect the auto reload instant. Then an offset equal to the maximum 

value that the encoder can read is added or substracted depending on the direction of movement, the 

last argument is a value that is bit higher than the maximum speed reached in order to detect the high 

value of the estimated velocity, to know which instant has the offset to be added. 

 

 

Figure 54. Encoder position fixed. 

  

function 

[datos_ordenados]=saturacionencoder(datos_medidos,velocidad,offset, 

vumbral) 

  

N = size(datos_medidos); 

saturador=0; 

  

for i=1:N 

    if(velocidad(i)<-vumbral) 

        saturador=saturador+offset; 

    elseif(velocidad(i)>vumbral) 

        saturador=saturador-offset; 

    end 

 datos_ordenados(i)=datos_medidos(i)+saturador; 

end 
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4.3.2 Velocity estimation 

As explained above, the velocity is estimated from the position read by the encoders, but if the encoder 

has the auto reload problem, then the velocity estimated has “peaks” in the instant the auto reload 

happens. In order to avoid this to use the velocity as a feedback in the future if the control is 

implemented in the Discovery board, and to have the velocity signal already well estimated in-line 

without extra off-line work, the following part of the code implemented in Keil uVision fixes this 

problem. 

 

 

This provides a good velocity estimation signal for the motor side, because its moving at medium 

speeds, this have been checked comparing the velocity estimated to the one read by the ESCON data 

recorder. 

Nevertheless, when moving at lower speeds, this algorithm results in a bad signal estimation, as it can 

be seen in the following figure: 

 

Figure 55. "Pulses" from zero to 3.14 estimated when moving at low speeds. 

// if timer saturates, the speed equals the previous speed . 

if (Encoder1_rad - Encoder1_rad_previous >= 200 | Encoder1_rad_previous - Encoder1_rad 

>=200) { // encoder 1 

vel_Encoder1 = vel_Encoder1_anterior; } 

else vel_Encoder1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling;  // (rad/s) 

 

if (Encoder2_rad - Encoder2_rad_previous >= 200 | Encoder2_rad_previous - Encoder2_rad 

>=200) { // encoder 2 

vel_Encoder2 = vel_Encoder2_anterior; } 

else vel_Encoder2 = (Encoder2_rad - Encoder2_rad_previous) / tsampling;  // (rad/s) 
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The main reason of this is the low resolution of the encoder (low for slow speeds) that causes the so-

called quantization error as can be seen in the figure: 

 

Figure 56. Quantization error in the encoder two measurements. 

When calculating the speed as in equation (4.1) when the encoder value doesn’t change the velocity 

is equal to zero, but when detecting a change the value read from the counter is converted to radians, 

this results in the pulses having values multiple of pi. If the velocity 2 is filtered with a no phase filter 

and a median filter, the result is the following. 

 

 

Figure 57. Velocity 2 filtered with no phase filter “filtfilt”. 
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After the no phase filter, a medfilt can be applied to see the waveforms to have a medium value, this 

filter removes all the oscillations so the signal gets damped, this means that if its used to identify the 

elasticity probably a lot of information will be lost when applying the filter and the results obtained 

are bad. 

 

 

Figure 58. Velocity 2 after medfilt with values 1, 10 and 50. 

 

 

4.3.3 DAC mismatch 

In the identification procedure, the input signal has to be chosen depending on which physical 

phenomena is going to be analysed. When programing the microcontroller, the waveform defined as 

a function of the time is recorded in the SDRAM and then read as a value as if it were another 

measurement. So when reading this value, it has to be taken into account that it’s the value which has 

been demanded to the DAC and this can differ from the real value the DAC is sending, this can be 

checked when comparing the DAC signal read from the SDRAM and the signal measured in the ESCON 

and recorded in the data analyzer from the ESCON Studio.  
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Figure 59. ESCON analog input2. 

 

 

Figure 60. DISCOVERY input voltage data. 

 

When comparing the peaks of the signals from the DAC at the instant 0.6 seconds the value is above 

4.5 Volts while the signal measured in the ESCON at the same instant the value doesn’t reach the 4.5 

Volts, this mismatch can be appreciated all along the signal. The ideal case would be to use the ESCON 

measurement, which in fact is more accurate, but as long as this error is small, the data read from the 

SDRAM will be used, even though some trials and comparisons will be made using the ESCON 

measurements. 
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4.3.4 Speed saturation in current control 

When operating in current control, the DAC signal that is Analog input to the ESCON is defined as a 

mathematical equation in the Keil code. The current control allows the current sent to the motor to 

be equal to the signal generated by the DAC, with this usual configuration used in robotics, the torque 

applied by the motor is estimated from the torque constant of the motor 𝐾𝑎, which is proportional to 

the current as related in the following formula. 

𝜏𝑚(𝑡) = 𝐾𝑎𝑖(𝑡) (4.2) 

In the case of BLDC, three phase motor, the formula as stated in [26] if the three phases are equal: 

𝜏𝑚(𝑡) = 2𝐾𝑎𝑖(𝑡) (4.3) 

Where the current is measured in one of the phases. 

Therefore, when configuring the ESCON in current control the relationship between the DAC value and 

the current requested has to be set according to the specifications of the system, in this case the 

current nominal for the motor is 1.78A and the maximum voltage the DAC can send is 5V so knowing 

this the voltage to current constant given by:  

𝐾𝑖𝑣 =
1.78 𝐴

5 𝑉
= 0.356 𝐴/𝑉 

(4.4) 

Therefore, the set value of the current for the control loop in the ESCON studio is given by: 

𝑖𝑠𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 = 0.356 · 𝑉𝑖𝑛 (4.5) 

Once we know the operating point in which the motor is working, the boundaries to the input signal 

are calculated, this is because there is speed saturation for the upper boundary input voltage and a 

friction force to break for the lower boundary input voltage. In addition, the minimum input voltage 

that breaks the friction in steady state will be estimated. 

Now the main goal is to determine which are the boundaries of the input value that makes no 

saturation in the speed, in order to set sinusoidal waves inside these values to get velocity 

measurements with no saturation. 

The first experiment will determine the minimum value that breaks the friction for the given operating 

point, this is achieved increasing the value of the step at the input, until the minimum value for 

breaking the friction is found to be 𝑉𝑚𝑖𝑛_𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑟𝑒𝑎𝑘 = 0.9 𝑉 . 

The next experiments will determine the minimum 𝑉𝑖𝑛 that keeps the velocity constant in steady state. 

The input signal will have an initial peak with 0.9V for breaking the friction and then will set into a 

constant value. 
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Figure 61. Input with initial peak for friction break. 

The following table shows the properties from the velocity estimated at the given 𝑉𝑖𝑛 for N = 20000, 

this means 20s experiments with 0.001s as sample time. 

Table 10.Motor response in current control mode. 

𝐕𝐢𝐧 (V) 𝐭𝐬 (s) Speed sat Friction break Stop SS Input Signal (V) 

0.4 4.5 No Initial peak No 0.9 / 0.4 

0.3 - - Initial peak Yes 0.9 / 0.3 

0.35 - - Initial peak Yes 0.9 / 0.35 

0.375 - - Initial peak Yes 0.9 / 0.375 

 

From the table above it can be determined that the minimum 𝑉𝑖𝑛 to move in steady state without 

stopping because the friction force is 𝑉min_𝑠𝑠 = 0.4 𝑉 . 

Last value to be determined is the minimum voltage input in steady state that does not reach the speed 

saturation zone. 

Since it is not known if the minimum value for breaking the friction (𝑉𝑚𝑖𝑛_𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛_𝑏𝑟𝑒𝑎𝑘 = 0.9 𝑉) makes 

the speed saturate, the first approach will be using the following input signal. 

 

 

Figure 62. Input signal, step at 0.9V. 
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From this input signal the following results are given: 

Table 11. Motor response in current control mode. 

𝐕𝐢𝐧 (V) 𝐭𝐬 (s) Speed sat Friction break Stop SS Input Signal (V) 

0.9 2 Yes Yes - 0 / 0.9 

0.8 - - No - 0 / 0.8 

 

Therefore, in the given context we cannot break friction with a constant value without saturating the 

output speed. 

Then the input signal has to be changed since the maximum value at the input voltage has to be known 

for defining the sinusoidal input in the following experiments, this means the initial peak at 0.9V and 

then constant value will be used again as input signal. 

Table 12. Motor response in current control mode. 

𝐕𝐢𝐧 (V) 𝐭𝐬 (s) Speed sat Friction break Stop SS Input Signal (V) 

0.7 6 Yes Initial peak x 0.9 / 0.7 

0.6 Curve +7 No Initial peak x 0.9 / 0.6 

0.65 Curve +7 
Yes, at some 

points 
Initial peak x 0.9 / 0.65 

0.625 Curve +7 No Initial peak x 
0.9 / 0.625  

N=30k 

0.637 Curve +7 No Initial peak x 
0.9 / 0.637 

N=20k 

 

From the last experiment, it can be concluded that the maximum input voltage that does not saturate 

speed at steady state is 𝑉max_ss ≈ 0.64 𝑉. 

 

Figure 63. ESCON data record showing speed (voltage) saturation and current (torque) saturation when reached the 
maximum speed. 
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4.3.5 ESCON data recorder low sampling time 

The ESCON Studio software has a tool to monitorize the signals of interest as the current in the phase, 

the voltage drop, the analog signal received from the Discovery DAC. The problem using this data for 

identification tasks is that it has limited data storage with a maximum of N samples and the user cannot 

modify this value. Instead, the time of the experiment is set and the sample period is adjusted in order 

to fit the data spaced with the same interval of time, in the figure below an example of this data record 

is shown. 

 

 

Figure 64. ESCON Studio data recorder. 

 

The sample time of the ESCON depends on how long is the experiment, this means that it has a fixed 

number of samples (256) so depending on the time of the experiment the sampling time is calculated 

to fit the 256 samples in the given time. 

Therefore, there is a mismatch between the sampling time of the Discovery measurements and the 

ESCON measurements. In Matlab, this data can be treated with an interpolation script where a time 

series object is created containing the data and its corresponding time vector with different sample 

times. Then, using the command resample, the data is interpolated in order to obtain a vector with 

the same sample time using a linear hold. So if the experiment is set to be short, the sample time 

difference will be smaller so there will be less error in the measurements by using this method, the 

script implemented in Matlab is shown below.  

 

 

% Transform the data to the same sample time 

t_escon = linspace(0,9.028,256); 

ts_escon = timeseries(VarName2,t_escon); 

ts_out = resample(ts_escon, tiempo);  

current = ts_out.Data; 
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In this example, the experiment length is 9.028 seconds, this value is calculated by the ESCON in order 

to fit the number of samples spaced with the same sample time, then the time series created is 

resampled giving as argument the new time vector with the Discovery sampling time, then the data is 

extracted from the time series data. 

 

 

Figure 65. Current acquired from ESCON and resampled signal. 
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5. Identification 

The construction of a model from data involves three basic entities: 

1. A data set, with N samples 

2. A set of candidate models  

3. A rule by which candidate models can be assessed using the data, like the Least Squares 

selection rule. 

The input-output data are sometimes recorded during a specifically designed identification 

experiment, where the used may determine which signals to measure and when to measure them and 

may choose the input signals. The objective with experiment design is thus to make these choices so 

that the data become maximally informative, subject to constraints that may be at hand. 

 

 

Figure 66. Terminal receiving data example. 

 

Before explaining in detail all the procedures and steps done in the project a flux diagram is presented 

where all the information about the identification process is shown, this step by step process can be 

applied to all the identifications done in the present project. 
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Figure 67. Flux diagram of the identification procedure. 

 

Now, the procedure used for taking the data from the experiments is explained in detail. 

 

1. Initialization of the system 

First, turning on the ESCON supply, once the green LED starts blinking, we can connect the ESCON to 

the computer by USB, it is important to do it in this order, otherwise the supply has to be disconnected 

and connected again to connect properly the ESCON to the computer. The Discovery is supplied when 

connected to the PC via USB, this is also the way for loading the code to the board via the ST-LINK 

driver. The mini USB for data transmission is also connected to the computer, the code has been 

designed in a way that this connection can be made once the experiment has finished, and this means 

the Discovery is not sending data until the mini USB connection is done. 
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2. ESCON configuration  

Before loading the code and executing, the ESCON configuration will be checked, also the data 

recorder will be prepared, the ESCON studio software provides a way of triggering the data record 

when enabled with the GPIO logic signal sent, also there are four channels where the user can choose 

which signals are monitorized. 

 

Figure 68. ESCON studio data recorder configuration. 

So depending on the experiment that will be done, the voltage or current control is selected, then the 

offsets and other control parameters.  

 

3. Keil uVision code load 

Once the ESCON is prepared the code, containing the identification experiments is loaded to the board. 

When the program is loading, some of the functionalities in the Discovery are reset, so the user has to 

be careful because the DAC will reach its maximum value for some seconds, if the ESCON is enabled 

the motor may run at maximum speed for a few seconds, this is anyway solved with the enable/disable 

input in the ESCON. If some changes are made in the code, the project has to be built and loaded again. 

 

Figure 69. Compile and load buttons on Keil uVision. 

After this, the experiment will run and the data will be recorded into the SDRAM.  

 

Figure 70. Code writing data on the SDRAM. 
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4. Run the experiment 

The experiment will be running for the time specified in the code, when the experiment ends the data 

stored in the SDRAM waits for the VCP USB connection to start sending data and receive it on the 

personal computer. 

 

Figure 71. Data is not transmitted until the state is true. 

Anyway, as long as the Teraterm has to be turned on and the serial port where the USB is connected 

has to be selected, it is better to let the USB connected from the beginning of the experiment. 

 

5. Receive data in Teraterm 

When opening the Teraterm, the following window is shown: 

 

Figure 72. Teraterm connection options. 

The option chosen is the serial port, the one that has the STMmicroelectronics name, after that the 

data will be received, but the file has to be saved with extension “.m” to open it with Matlab. 

 

Figure 73. Log save screen. 
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6. Load the data to Matlab 

After finishing the data transmission, the log saved can be open with Matlab, in the code the data is 

saved as a matrix with of size 𝑁𝑥6 where, 𝑁, is the number of samples in the experiment, this value is 

calculated knowing the sampling time 𝑇𝑠 = 0.001𝑠 and the experiment duration. 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
𝑇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑇𝑠
 

 

(5.1) 

Then the following matlab script reads the matrix: 

 

Figure 74. Matlab data script. 

 

Encoder position 1 and position 2 are directly measured. The velocity is estimated by differentiation, 

the time is obtained from the control timer and the signal of the voltage from the value given by the 

math functions implemented in the code, this value might vary from the real voltage provided by the 

DAC, this can be seen when comparing the ESCON signal to this one. 

As long as the velocities are estimated there is a need to filter the signals in order to remove noise but 

without affecting the phase or amplitude of the waves. 

 

Figure 75. Velocity filter applied. 

The kinematic error also has to be calculated from both measurements at the input and output side, 

with given configuration (input and output with opposite directions) the kinematic error is calculated 

as follows: 
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Figure 76. Kinematic error estimation. 

This matlab script also contains all the plots for all the signals needed. 

 

Figure 77. Signal plot script. 

Depending on the kind of experiment carried, it may be convenient to choose the range of the signal 

that wants to be visualized, or to know which are the initial states of the identification procedure. 

Once all the data is ready, the identification procedure can start, before that, the search methods 

available for solving nonlinear data fitting problems with Matlab are presented. 

5.1 Methods for nonlinear least squares curve-fitting problems 

The data acquisition procedure has been explained; the models have been studied and implemented, 

now the last point is to know the procedures used in order to fit the data into the models by adjusting 

the parameters in the model. 

Least squares problems arise in the context of fitting a parametrized function to a set of measured 

data points by minimizing the sum of the squares of the errors between the data points and the 

function. If the fit function is non-linear in the parameters, then the LS problem is nonlinear. 

Nonlinear LS methods iteratively reduce the sum of the squares of the errors between the function 

and the measured data points through a sequence of updates to parameter values. The Levenberg-

Marquardt curve fitting method is a combination of two minimization methods: 

 Gradient descent method: The sum of the squared errors is reduced by updating the 

parameters in the steepest-descent direction. 

 Gauss-Newton method: The sum of the squared errors is reduced by assuming the LS 

function is locally quadratic, and finding the minimum of the quadratic. 

The LM method acts more like a gradient descent method when the parameters are far from their 

optimal value, and acts more like the Gauss-Newton method when the parameters are close to their 

optimal value. 
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Knowing this it would be appropriate to use a gradient descent method with the first estimation data 

set, and then apply GNA or LM method for validation purposes. 

When fitting a function �̂�(𝑡, 𝜌) of independent variable t and vector of n parameters 𝜌 , to a set of N 

data points (𝑡𝑖, 𝑦𝑖), it is customary and convenient to minimize the sum of the weighted squares of the 

errors (or weighted residuals) between the measured data 𝑦(𝑡𝑖) and the curve fit function �̂�(𝑡, 𝜌). This 

goodness of fit measure is called the chi-squared error criterion and is defined as follows: 

𝜒2(𝜌) = ∑[
𝑦(𝑡𝑖) − �̂�(𝑡, 𝜌)

𝜎𝑦𝑖

]

𝑁

𝑖=1

2

 

 

 
(5.2) 

= (𝑌 − �̂�(𝜌))
𝑇
𝑊 (𝑌 − �̂�(𝜌)) 

 
(5.3) 

= 𝑌𝑇𝑊𝑌 − 2𝑌𝑇𝑊�̂� + �̂�𝑇𝑊�̂�  
(5.4) 

Where 𝜎𝑦𝑖
 is the measurment error for measurement 𝑦(𝑡𝑖). 

Typically, the weighting matrix 𝑊 is diagonal with 𝑊𝑖𝑖 = 1/𝜎𝑦𝑖
. 

If the function is nonlinear in the model parameters then the minimization of chi square with respect 

to the parameters must be carried out iteratively. The goal of each iteration is to find a perturbation ℎ 

to the parameters 𝜌 that reduces 𝜒2. 

 

5.1.1 The gradient descent method 

The steepest descent method is a general minimization method that updates the parameters in the 

direction opposite to the gradient of the objective function. This method converges well for problems 

with simple objective functions. For problems with many parameters gradient descent methods are 

sometimes the only viable choice. 

Said this, the gradient of the chi-squared objective function with respect to the parameters is: 

𝜕

𝜕𝜌
𝜒2 = 2(𝑌 − �̂�(𝜌))

𝑇
𝑊

𝜕

𝜕𝜌
(𝑌 − �̂�(𝜌)) 

 
(5.5) 

= −2 (𝑌 − �̂�(𝜌))
𝑇
𝑊 [

𝜕�̂�(𝜌)

𝜕𝜌
] 

 
(5.6) 

= −2 (𝑌 − �̂�(𝜌))
𝑇
𝑊𝐽 

 
(5.7) 

Where the m x n Jacobian matrix [
𝜕�̂�(𝜌)

𝜕𝜌
] represents the local sensitivity of the function �̂�(𝑡, 𝜌) with 

respect to the paramters. As mentioned before, we search for the parameter update ℎ, this update 

moves the parameters value in the direction of steepest descent, and is given by: 

ℎ = 𝛼𝐽𝑇𝑊(𝑌 − �̂�) (5.8) 

Where 𝛼 is the length of the step in the steepest-descent direction. 
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5.1.2 Gauss-Newton method 

This method minimizes the sum of squares objective function, the objective function is approximately 

quadratic in the parameters near the optimal solution, if the problem is not big sized, this method 

converges much faster than gradient descent method. 

The function evaluated with perturbed model parameters may be locally approximated through a first-

order Taylor series expansion. 

�̂�(𝜌 + ℎ) ≈ �̂�(𝜌) + [
𝜕�̂�(𝜌)

𝜕𝜌
] ℎ = �̂� + 𝐽ℎ 

(5.9) 

 

Substituting the approximation for the perturbed function, �̂� + 𝐽ℎ for �̂� in the equation (x[3]) gives: 

𝜒2(𝜌 + ℎ) ≈ 𝑌𝑇𝑊𝑌 + �̂�𝑇𝑊�̂� − 2𝑌𝑇𝑊�̂� − 2(𝑌 − �̂�)
𝑇
𝑊𝐽ℎ + ℎ𝑇𝐽𝑇𝑊𝐽ℎ (5.10) 

 

This shows that 𝜒2 is approximately quadratic in the perturbation ℎ, and that the Hessian of the chi-

squared fit criterion is approximately 𝐽𝑇𝑊𝐽. 

The parameter update ℎ that minimizes 𝜒2 is found from 
𝜕

𝜕ℎ
𝜒2 = 0, so: 

𝜕

𝜕ℎ
𝜒2(𝜌 + ℎ) ≈ −2(𝑌 − �̂�)

𝑇
𝑊𝐽 + 2ℎ𝑇𝐽𝑇𝑊𝐽 

(5.11) 

 

Moreover, the resulting normal equations for the Gauss-Newton update are 

[𝐽𝑇𝑊𝐽]ℎ = 𝐽𝑇𝑊(𝑌 − �̂�) (5.12) 
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5.1.3 The Levenberg-Marquardt method 

The Levenberg-Marquardt algorithm adaptively varies the parameter updates between the gradient 

descent update and the Gauss-Newton update. 

[𝐽𝑇𝑊𝐽 + 𝜆𝐼]ℎ𝑙𝑚 = 𝐽𝑇𝑊(𝑌 − �̂�) (5.13) 

Where small values of the algorithmic parameter 𝜆 result in a Gauss-Newton update and a large value 

results in a gradient descent update. The parameter  𝜆 is initialized to be large so that first updates are 

small steps in the steepest-descent direction. If any iteration happens to result in a worse 

approximation 𝜒2(𝜌 + ℎ𝑙𝑚) > 𝜒2(𝜌) then 𝜆 is increased. Otherwise, as the solution improves, lambda 

is decreased so the LM method approaches the GN method and the solution typically accelerates to 

the local minimum. 

In the following Marquardt’s, update relationship  

[𝐽𝑇𝑊𝐽 + 𝜆 𝑑𝑖𝑎𝑔(𝐽𝑇𝑊𝐽)]ℎ𝑙𝑚 = 𝐽𝑇𝑊(𝑌 − �̂�) (5.14) 

The values of lambda are normalized to the values of 𝐽𝑇𝑊𝐽. 

 

5.2 Reduction ratio comprobation 

First, the reduction ratio of the gear will be analysed, as the manufacturer stated, the reduction ratio 

is 70, this is anyway easy to check with simple experiments where the motor is moved and both 

measurements at the input and output are used to calculate it as follows: 

𝑁 =  𝜃/𝑞 (5.15) 

The provided gear ratio is ideal, this is however hard to achieve in the real world, imperfections in the 

manufacturing or assembly may vary the real value specified; also this can occur by error in the 

measurements as long as sensors aren’t perfect. 

For determining the experimental value of the reduction ratio, different inputs will be used and the 

results between the experiments will be compared, these experiments consist on a constant step, stair 

input and a sum of sinusoidals. The following lines of code allows us to estimate N from the positions 

vectors. 

 

As long as both directions are opposite due to the H.D configuration (Circular spline fixed), the 

reduction ratio sign has to be changed. 

 

A=encoders1(1000:end); 
B=encoders2(1000:end); 
N=-A/B 
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5.2.1 Constant step 

First, a constant voltage will be applied. In this case, the ESCON was configured with offset for both 

sides direction, so the 2.5 volts correspond to the motor stopped value. 

 

 

Figure 78. Constant input voltage. 

 

 

Figure 79. Motor and link positions for constant input voltage. 
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5.2.2 Stairs 

For the following experiment, random stairs in positive and negative direction are given as input, 

having the same ESCON configuration for the motor stopped value. 

 

 

Figure 80.Stairs input voltage. 

 

 

Figure 81. Motor and link position for stair input voltage. 
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5.2.3 Sinusoidal 

Four sinus with frequencies 0.25, 0.5, 2, 5. 

 

Figure 82. Sum of sinusoidals input voltage. 

 

Figure 83.Encoder 1 and 2 measurements for the given experiment. 

 

Table 13.Estimated reduction ratio from the three experiments. 

Input signal Estimated reduction ratio 

Step 69.1322 

Stairs 69.1577 

Sinus 69.7731 
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5.3 Voltage control identification 

5.3.1 Static friction parameters 

Given the step input, the following results are obtained with Vin = [1 2 3 4 5] since the input range is 

[0V-5V]. 

 

Figure 84. Input step and velocity response. 

 

From the experimental data above a linear approximation can be made, if the different input values 

are plot against its respective output values the linear behaviour can be appreciated. 

First way to determine the static friction range is to analyse the velocity in steady state, this mean 

given a constant input at different values inside the input range value [-2.5 , 2.5]V measure the steady 

state velocity and plot the following graph. 

 

Figure 85. Steady state velocity vs. DAC Voltage input. 
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After obtaining the steady state velocity response the linear fit is applied at both sides (positive and 

negative) and then obtain the coefficients of the straight lines. 

 

 

From the equations above, we can obtain the values of the friction parameters taking into account the 

model: 

𝑢𝐷𝐴𝐶𝑠𝑠
= 𝑈𝑠𝑠𝐾𝑖𝑛 (5.16) 

𝑈𝑠𝑠 = (𝑅
𝐵𝑚

𝐾𝑚
+ 𝐾𝑤) �̇�𝑠𝑠 + (

𝑅

𝐾𝑚
) 𝜏𝑐 

(5.17) 

𝑝1 = (𝑅
𝐵𝑚

𝐾𝑚
+ 𝐾𝑤)/𝐾𝑖𝑛 

(5.18) 

𝑝2 =
𝑅

𝐾𝑚𝐾𝑖𝑛
 

(5.19) 

 

As long as the parameters obtained from the linear fit above have some tolerance the calculations are 

made also for the higher and lower values obtained also, it is implemented in the code shown below: 

r_fit_positive =  Linear model Poly1: 

     r_fit_positive(x) = p1*x + p2 

     Coefficients (with 95% confidence bounds): 

       p1 =     0.01978  (0.01918, 0.02038) 

       p2 =     0.02628  (-0.01275, 0.06532) 

r_fit_neg =  Linear model Poly1: 

     r_fit_neg(x) = p1*x + p2 

     Coefficients (with 95% confidence bounds): 

       p1 =     0.01984  (0.01921, 0.02046) 

       p2 =    -0.02435  (-0.06497, 0.01626) 
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% Both directions 

%negative 

p1_n = 0.01984; 

p2_n = -0.02435; 

p1_n_max = 0.02046; 

p1_n_min = 0.01921; 

p2_n_max = 0.01626; 

p2_n_min = -0.06497; 

 

%positive 

p1_p = 0.01978; 

p2_p = 0.02628; 

p1_p_max = 0.02038; 

p1_p_min = 0.01918; 

p2_p_max = 0.06532; 

p2_p_min = -0.01275; 

 

%datasheet parameters 

Km = 0.217; % (Datasheet) [Nm/A] 

Kw = 1/4.6076; % Back emf (Datasheet) [rad/Vs] 

R = 2.3; % Armature resistance (Datasheet) [Ohms] 

Kin = 36/2.5; % From u(Disc DAC) to U(Voltage in the armature) 
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Which gives the following results: 

 
Table 14. Friction parameters identified. 

Parameter Value Min Max 

Bm positive 0.0064 0.0056 0.0072 

Bm negative 0.0065 0.0056 0.0073 

𝝉𝒄 positive 0.0357 -0.0173 0.0887 

𝝉𝒄 negative -0.0331 -0.0883 0.0221 
 

 Now, the viscous friction value obtained can be used as initialization value in the Idnlgrey identification 

procedure, despite this values have been identified already, its value might change in later 

identification procedures, where this parameters are included and interact with other model 

parameters. 

 

 

 

%% FROM NEGATIVE SIDE 
bm_n = (p1_n*Kin-Kw)*Km/R; 
tc_n = (p2_n*Kin*Km)/R; 

  
bm_n_min = (p1_n_min*Kin-Kw)*Km/R; 
tc_n_min = (p2_n_min*Kin*Km)/R; 

  
bm_n_max = (p1_n_max*Kin-Kw)*Km/R; 
tc_n_max = (p2_n_max*Kin*Km)/R; 

  
% %% FROM POSITIVE SIDE 
bm_p = (p1_p*Kin-Kw)*Km/R; 
tc_p = (p2_p*Kin*Km)/R; 

  
bm_p_min = (p1_p_min*Kin-Kw)*Km/R; 
tc_p_min = (p2_p_min*Kin*Km)/R;  

  
bm_p_max = (p1_p_max*Kin-Kw)*Km/R; 
tc_p_max = (p2_p_max*Kin*Km)/R; 

  
bm_pos = [bm_p, bm_p_min, bm_p_max] 
bm_neg = [bm_n, bm_n_min, bm_n_max] 
tc_pos = [tc_p, tc_p_min, tc_p_max] 
tc_neg = [tc_n, tc_n_min, tc_n_max] 
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5.3.2 Rigid body parameters 

From the previous step, two parameters have been identified, the friction parameters identified using 

the steady state response of the system will be used to initialize the value of the parameters in the 

following step. Now the objective is to find the total inertia of the system, which is given by: 

𝐽𝑡 = 𝐽𝑚 +
𝐽𝑒
𝑁2

 
(5.17) 

In other types of identification experiments discussed in the paper by Wernholt and Gunnarsson the 

from the overall inertia, the motor side and link side can be calculated if a scaling factor is defined as 

follows: 

𝐽𝑚 = 𝐽𝑗𝑚𝐽𝑡  ;   𝐽𝑒 = 𝐽𝐽𝑒𝐽𝑡 (5.18) 

In the following steps, after identifying the total inertia, this scaling will be used to determine the value 

of the motor and link side inertia. 

This is the conventional gear transmission inertia in the mechanical equation of the system; to identify 

the total inertia of the Harmonic drive system the input should not have high frequencies in order to 

avoid the elasticity excitation, so the reduced model torque equation is: 

�̈�(𝑡) =
(𝐾𝑎𝑖(𝑡) − 𝜏𝑐) − 𝐵𝑚�̇�(𝑡)

𝐽𝑡
 

(5.19) 

In the given context with the input being the voltage, the equation has to be rewritten, and keep all 

the units in terms of voltages instead torques, the equation rewritten is: 

�̈�(𝑡) =
(𝐾𝑖𝑛𝑢(𝑡) −

𝜏𝑐𝑅

𝐾𝑎
) − (𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
)�̇�(𝑡)

𝐽𝑡𝑅

𝐾𝑎

 

(5.20) 

Therefore, when estimating the model, the parameters calculated will be: 

𝒑𝟏 =
𝐽𝑡𝑅

𝐾𝑎
;  𝒑𝟐 = 𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
 ;  𝒑𝟑 = 𝐾𝑖𝑛 ;  𝒑𝟒 =

𝜏𝑐𝑅

𝐾𝑎
 

In addition, knowing the values 𝑅 = 2.3 and 𝐾𝑎 = 𝐾𝑤 = 0.217 from the motor datasheet, we can 

obtain the physical parameters: 

𝑱𝒕 =
𝑝1𝐾𝑎

𝑅
= [𝑲𝒈𝒎𝟐]; 𝑩𝒎 = (𝑝2 − 𝐾𝑤)

𝐾𝑎

𝑅
= [𝑵𝒎𝒔/𝒓𝒂𝒅]; 𝝉𝒄 =

𝑝4𝐾𝑎

𝑅
= [𝑵𝒎] 

As long as 𝐾𝑖𝑛 is the relation between the DAC voltage and the voltage in the armature of the motor, 

this parameter is dimensionless. 

Knowing the values of 𝐵𝑚 and 𝜏𝑐 from the previous step, we can get an initial guess for parameters p2 

and p4, and knowing from the BLDC motor datasheet the motor inertia 

𝐽𝑚𝐷𝑆
= 0.000306 [𝑲𝒈𝒎𝟐] 

We can set the boundaries in the initial guess of the parameter values, this motor inertia from the 

datasheet does not correspond to the value of the motor side inertia in the model because the 

Harmonic drive wave generator inertia has to be added as well as the vibration reducer attached to 
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the motor axis. This value from the datasheet, scaled to voltage control by means of the motor 

constants can be set as a lower boundaries as long as it’s the minimum value the total inertia will have. 

If during the identification procedure the total inertia identified is close or equal to this value the 

identification procedure should be discarded and calculated again with different data sets or different 

initial states, until a good fit to the data is approached with a “logical”value of this parameter. 

Input signal 

Now that the model has been defined for this step, the input waveform has to be chosen. As stated 

above the input must contain low frequencies in order to avoid flexibility excitation, this is necessary 

to determine the total inertia of the system. So for generating the 3 data sets a single sinus wave with 

different frequencies and the same amplitude is used, this sinusoidal has an offset to avoid the 

coulomb friction region, as long as we want to determine the dynamical properties of the system and 

the coulomb friction term has been identified before, as an example the velocity plot of the first data 

set is shown in the figure below, which has been obtained with an input equation as follows: 

𝑢𝐷𝐴𝐶 = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡) + 𝑂𝑓𝑓𝑠𝑒𝑡 (5.20) 

  

Where the value of the frequency has been changed from one experiment to another. 

 

 

Figure 86. Velocity plot of the data set 1. 

 

Model implementation 

Once the data sets are collected, the next step would be to implement the reduced model in a MEX 

file, defining the parameters and the dynamic equation of the model containing these. This model will 

be called later by the identification script and will be put into an IDNLGREY object together with the 

initial states and parameters, the code of the MEX file used is in the annexes. When using high 

frequencies for the identification, the model will be changed to the Harmonic drive simplified model 

first, then more equations will be added in order to try to improve the response of the identified 

compared to the simulated response. 
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Identification procedure 

First of all, the data sets have to be loaded, when acquiring the data with the Teraterm the matrix 

containing all the information is renamed, so the different data sets are saved in the matrix A, B and C 

and loaded into matlab with the following script. Remark that only the velocity is taken from the matrix 

even though all the measurements from the link side encoder also have been recorded only the motor 

side values of the velocity will be used. 

 

 

%% This script needs functions: corregir_vel and saturacionencoder 

addpath('C:\Users\Rafael C\Desktop\Ident_low_freq') 

%% REMEMBER TO CHANGE THE NAME OF THE MATRIX CONTAINING THE DATA IN THE 

FILES (A B C)... 

% A 

run ('lowfreq0075');  

% B 

run ('lowfreq_025');  

% C 

run ('LF_test1_2'); 

%Vel Filter design (filtfilt -> zero phase digital filter) 

[b,a] = butter(5,0.3,'low'); 

vel1_mdfiltval = 1; 

%Encoder saturation function parameters 

pos1off = 205.9; 

pos2off = 205.8811; 

threshold = 5000; 

Ts = 0.001; 

% EXTRACT DATA FROM TERATERM 

%% Data set 1 

Posencoder1 = A(:,1); 

vel1_noise = A(:,3); 

tension_s = A(:,5); 

tiempo = A(:,6); 

% Encoder 1 motor position correction 

v_aux1 = corregir_vel(Posencoder1,Ts); 

encoders1 = saturacionencoder(Posencoder1,v_aux1,pos1off,threshold); 

%Motor velocity filtering 

vel1_f = filtfilt(b,a,vel1_noise); 

vel1 = medfilt1(vel1_f,vel1_mdfiltval); 

 



Modelling, identification and control of an elastic joint. 

 

73 

 

 

Only the script applied to the first data set is shown in the script, but the procedure is the same for 

data set 2 and 3, only changing the name of the matrix and the values where the signals are stored 

with the subscript b and c. 

This script is included in the overall identification script, where all the information of the model is 

collected (this includes names of the inputs, states, parameters as well as its units and initial states), 

also an IDDATA object is built which contains all the input-output pairs for the three experiments, also 

when changing from the estimation of one data set to another, the previous values of the parameters 

are saved and used as an initial value for the following validation steps. 

 

Results 

At the end of the script, based on the estimated parameters, the following physical parameters are 

obtained: 

Table 15. Parameters identified in the first try. 

Jt Bm Kin 𝝉𝒄 

7.7311e-04 0.0059 14 0.033 
 

As a first conclusion, knowing the initial value of the gain input parameter was set randomly and it 

converged to a close value of which it is supposed to be 𝐾𝑖𝑛 =
36

2.5
= 14.4 we can repeat the procedure, 

giving a tight tolerance around this value and estimating the parameters again. 

 

Table 16. Parameters identified in the second try. 

Jt Bm Kin 𝝉𝒄 

7.6788e-04 0.0059 14.4 0.0330 
 

Which gives a similar value for all the parameters, anyway when introducing the initial value for this 

parameter in the following steps, the voltage transformation should be conserved as long as the 

system is still working in voltage control, so we can state that the initial value for these parameters in 

the next step will be: 

Table 17. Parameters used in the next step. 

JtRK BmRK Kin 𝝉𝒄RK 

0.00823878 0.289754 14.9999 0.37 
 

After obtaining these values, the simulated response is compared to the real data and a % fit is given, 

as long as the velocity is estimated through numerical differentiation and knowing there are also some 
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oscillations due to the BLDC motor phases commutation the % fit won’t be close to 100 but still will be 

good as it can be shown in the following figure: 

 

Figure 87. Simulated response vs. real data. 

The fit is 68.06% but the simulated response follows very well the velocity data. 

For dynamic systems, we can also examine the prediction errors using PE. We do this to see if the 
residuals seem to have a random nature: 

 

  

Figure 88. One-step prediction error. 
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As can be seen in the obtained plot, there is some kind of sinusoidal waves plus noise, the main reasons 

for these are: 

 Signal obtained by numerical differentiation 

This is the main reason why the prediction error has this kind of “bars” around the sinusoidal wave, as 

long as the encoder has an small quantization error when obtaining the velocity from the actual value 

and the value in the previous instant and the transformation from pulses to radians this “bars” have 

𝑛𝜋 amplitude as shown below: 

 

 

Figure 89. Amplitude of one of the "bars" equal to pi. 

 Simplified motor model 

The BLDC motor has three phases, this means there is a commutation between phases as explained in 

previous points, the back EMF in this kind of motors can be trapezoidal or sinusoidal, if the simplified 

model of a DC motor has been used instead, this periodic shape of the back EMF force is left 

unexplained in the model. 

 Noise error 

There is always a small error in the DAC signal generator, the measurement equipment, etc… 

 

Figure 90.Residuals of the model estimated. 
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Summarizing, the NLGR object estimated has the following properties and values: 

 

Now we have a good initial value estimate for these parameters that will be used in the next steps in 

order to 

  

Continuous-time nonlinear grey-box model defined by 'Reduced_mod' (MEX-file):                                                                                                           

   dx/dt = F(t, u(t), x(t), p1, ..., p4)                                                           

    y(t) = H(t, u(t), x(t), p1, ..., p4) + e(t)                                                                                                                                                      

 with 1 input, 1 state, 1 output, and 4 free parameters (out of 4).                                                                                                                             

 Input:                                                                                            

    u(1)  DAC voltage(t) [V]                                                                       

 State:                     initial value                                                          

    x(1)  th_p(t) [rad/s]   xinit@exp1   0   (fix) in [-Inf, Inf]                                  

 Output:                                                                                           

    y(1)  th_p(t) [rad/s]                                                                          

 Parameters:                            value        standard dev                                  

    p1   Jt*R/Ka                        0.00823878   0.0377831   (est) in [0.00803878, 0.00823878] 

    p2   Velocity term (Kw + R/Ka*Bm)     0.289754     1.33057   (est) in [0.22, 0.38]             

    p3   Kin                                  14.4     66.1204   (est) in [14.4, 18]               

    p4   tcRK                                 0.37     1.68788   (est) in [0.0028, 0.37]                                                                                               

Status:                                                                                            

Termination condition: Maximum number of iterations reached.                                       

Number of iterations: 10, Number of function evaluations: 75                                                                                           

Estimated using Solver: ode45; Search: lm on time domain data "Datos del experimento".             

Fit to estimation data: 80.59%                                                                     

FPE: 8.258, MSE: 8.247     
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5.3.3 Harmonic drive (simplified model) parameter identification  

The following step requires that the data should be informative enough for open loop operation. This 

means that the input should be persistently exciting of at least 
𝑛𝑝

2
 different frequencies, where 𝑛𝑝 is 

the number of parameters to be identified in the system. This leaves a good amount of freedom for 

the input choice, as L.Ljung stated in [27], the input must have limited amplitude and be periodic, this 

may have certain advantages when obtaining the data set to estimate the parameters in an open loop 

system. In addition, the sampling rates have some considerations to be made, as follows: 

 Very fast sampling lead to numerical problems, model fits in high-frequency bands, and poor 

returns for extra work. 

 As the sampling time increases over the natural time constants of the system, the variance 

increases drastically. 

 Optimal choices of T for a fixed number of samples will lie in the range of the time constants 

of the system. These are, however not exactly known, and overestimating them may lead to 

very bad results. 

From the considerations above it can be concluded that a sampling frequency that is about ten times 

the bandwidth of the system should be a good choice in most cases. Note that this discussion concerns 

the sampling rate chosen for the model building. With “cheap” data acquisition, we can always sample 

as fast as possible during the experiment and leave the actual choice of T for later by digitally pre-

filtering and decimating the original data record. 

Input signals 

The inputs consist in the sum of 3 sinus and 1 cosines, the frequencies used are described in the table 

below. The offset and the amplitude is adjusted in order to keep the motor working in the positive side 

or both directions, knowing that the motor stop corresponds to 2.5V and boundaries at [0V- 5V], the 

part of the code describing the equation of the input is the following: 

 

To make easier the description of the identification procedure, the different data sets used in order to 

identify the parameters are described in a table and some plots are shown where the frequencies as 

well as the amplitudes of the resulting signals can be appreciated. 

Table 18. Data set properties. 

Data set “sins1” 

Frequencies 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒 (Hz) 0.5, 0.75, 1, 5 

Offset (V) 3.75 

Amplitude (V) 1.13 

float u = 1.75*(0.5*sin(2*3.1415*tiempo*5) + sin(2*3.1415*tiempo*0.75)+ 

sin(2*3.1415*tiempo*0.5) + 0.75*cos(2*3.1415*2*tiempo) )/5 + 3.75; 
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Figure 91. Input signal plot for data set “sins1”. 
 

Table 19. Data set properties. 

Data set “scs1” 

Frequencies 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒 (Hz) 0.5, 0.75, 2, 5 

Offset (V) 3.75 

Total  amplitude (V) 1.13 

 

 

float u = 1.75*(0.5*sin(2*3.1415*tiempo*0.75) + sin(2*3.1415*tiempo*4)+ 

sin(2*3.1415*tiempo*5) + 0.75*cos(2*3.1415*2*tiempo) )/5 + 3.75; 

float u = 1.75*(0.5*sin(2*3.1415*tiempo*5) + sin(2*3.1415*tiempo*0.75)+ 

sin(2*3.1415*tiempo*0.5) + 0.75*cos(2*3.1415*2*tiempo) )/5 + 3.75; 
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Figure 92. Input signal plot for data set "scs1". 

Table 20. Data set properties. 

Data set “scs2” 

Frequencies 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒 (Hz) 0.5, 2, 5, 15 

Offset (V) 3.75 

Total amplitude (V) 0.77 

 

 

 

Figure 93. Input signal plot for data set “scs2”. 

float u = (sin(2*3.1415*tiempo*5) + 5*sin(2*3.1415*tiempo*15)+ sin(2*3.1415*tiempo*0.5) + 

0.75*cos(2*3.1415*2*tiempo) )/10 + 3.75; 
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Table 21. Data set properties. 

Data set “bdsins” 

Frequencies 𝐟𝟏, 𝐟𝟐, 𝐟𝟑, 𝐟𝟒 (Hz) 0.75, 2, 4, 5 

Offset (V) 2.5 

Total amplitude (V) 1.62 

 

 

 

Figure 94.Input signal plot for data set “bdsins”. 

 

For now, on when describing the identification procedure, the data sets will be named as presented in 

the present point, the last data set will be used to identify the hysteresis, that is appreciated in the 

kinematic error signal. 

All the data sets are recorded with the ESCON power stage working in voltage control, this means the 

models used are the ones described in section 3 once the parameters are identified in voltage control 

the values have to be transformed in order to keep the units of the S.I, the most usual way to model 

robots are using the torques equations which implies that the measurements are the input torque, or, 

for an electrical motor the current multiplied by its torque constant, in this case the “torque” 

parameters are calculated after the values of the parameters are obtained. 

float u = 2.5*(0.5*sin(2*3.1415*tiempo*0.75) + sin(2*3.1415*tiempo*4)+ 

sin(2*3.1415*tiempo*5) + 0.75*cos(2*3.1415*2*tiempo) )/5 + 2.5; 
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Model implementation 

Now the model used for the parameter estimation will be the simplified Harmonic drive model, with 

12 parameters, where five of them are known from datasheet information or obtained in previous 

steps, one input, four states and four outputs and it is given by the following equations: 

 

�̈�(𝑡) =

((𝑢𝐷𝐴𝐶(𝑡)𝐾𝑖𝑛 −
𝜏𝑐𝑅

𝐾𝑎
) +

(
𝐵

𝑁
 (�̇�(𝑡)−

�̇�(𝑡)

𝑁
)+

𝐾

𝑁
( 𝑞(𝑡)−

𝜃(𝑡)

𝑁
))𝑅

𝐾𝑎
− (𝐾𝑤 +

𝐵𝑚𝑅

𝐾𝑎
)�̇�(𝑡))

𝐽𝑚𝐾𝑎/𝑅
 

 

 

(5.22) 

 

�̈�(𝑡) =  −

(𝑏𝑒�̇�(𝑡) + 𝐾 (𝑞(𝑡) −
𝜃(𝑡)

𝑁
) + 𝐵 (�̇�(𝑡) −

�̇�(𝑡)

𝑁
))

𝐽𝑒
 

 

(5.23) 

 

This model has been implemented in a MEX file for a grey box model identification. 

Some things have to be clarified for this model: 

Voltage control: Motor equation has to be changed from torque variables to voltage variables, only 

for the motor side equation, the link side equation as long as the input is the elastic torque, no units 

transformation are needed. 

𝑉 = 𝐼𝑅 +
𝐿𝑑𝑖

𝑑𝑡
+ 𝐸 

(5.24) 

 

To demonstrate the effect voltage and torque have on speed, we are only concerned with steady-state 

behaviour at the moment, which implies that the current is constant, so the inductor 𝐿 can be removed 

and there is no change in speed, which means the torque produced by the motor and the torque 

produced by the load must be equal. 

The second assumption implies that the torque is produced by the motor as given in the following 

equation: 

𝜏𝑚 = 𝐾𝑡𝜑𝑖 (5.25) 

Where 𝐾𝑡 is a constant inherited from its internal design, 𝜑 is the total flux and 𝜏𝑚 is the load torque 

in steady state, rearranging for 𝑖 and including it in the previous equation: 

𝑉 =
𝜏𝑚

𝐾𝑡𝜑
𝑅 + 𝐸 

(5.26) 

 

Now the EMF, which is dependent upon the total flux motor specific factors that make a second 

constant 𝐾𝑤 and the speed of the motor 𝑛𝑚𝑜𝑡. 
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𝐸 = 𝐾𝑤𝜑𝑛 (5.27) 

Which gives: 

𝑉 =
𝜏𝑚

𝐾𝑡𝜑
𝑅 + 𝐾𝑤𝜑𝑛 

(5.28) 

 

The equation above actually represents a linear motor; in adapting this to an angular rotating motor, 

we consider the flux constant at its full value. In doing so it is combined with each constant to produce 

the torque constant and electrical constant of the motor, denoted 𝐾𝑎 , 𝐾𝑤 in the model. 

 

𝑉 =
𝜏𝑚

𝐾𝑎
𝑅 + 𝐾𝑤�̇� 

(5.29) 

Alternatively, equivalent: 

�̇� =
𝑉

𝐾
−

𝑇

𝐾2
𝑅 

(5.30) 

 

This means that for a fixed load, the speed of the motor is affected by applied voltage so an increase 

in the voltage means an increase in the speed, on the other hand for a fixed voltage the speed of the 

motor is inversely affected by the load, so an increase in the load torque means a decrease in the 

speed. 

 Linear elasticity: Only the linear spring stiffness coefficient will be identified here, assuming 

the elastic torque is linear with respect the torsional angle. 

 No hysteresis effects modelled. 

 DC motor simplified model instead EC (BLDC) 3 phase with periodic back EMF waveform, this 

might add noise and probably a pattern when analysing the 1 step prediction error of the 

simulated response. 

 Simplified friction model, only coulomb term plus viscous friction. 

The MEX file implemented containing the model as well as the IDNLGREY script are included in the 

annexes. 

Identification procedure 

This main script calls another script used for loading the data, where the position of the encoder signal 

is unwrapped, the velocity is estimated from the fixed position and then a phase delay filter is applied 

with the command “filtfilt”, this gives different context for the data generated, given the following 

scenarios: 

 Velocity estimated with noise 

 Velocity filtered with no phase filter 

 

The link side velocity is moving 70 times slower than the motor input, this means that for the given 

encoder resolution there is a quantization error in the measurements. So, when estimating velocity by 



Modelling, identification and control of an elastic joint. 

 

83 

 

differentiation with position increments with fixed time (Ts = 0.001) the signal obtained are just pulses 

multiple of pi, the script used as well as the velocities from the link side are shown. 

 

 

The function “corregir_vel” estimates the velocity with “jumps” produced by the wrapping of the 

%% This script needs functions: corregir_vel and saturacionencoder 

addpath('C:\Users\Rafael C\Desktop\Ident_high_freq\newdata') 

%% REMEMBER TO CHANGE THE NAME OF THE MATRIX CONTAINING THE DATA IN THE 

FILES (A B C)... 

run ('frequs3'); %% Check Ts = 0.001 

run ('frequs2');%% Check Ts = 0.001 

%Vel Filter design (filtfilt -> zero phase digital filter) 

[b,a] = butter(5,0.3,'low'); 

vel1_mdfiltval = 1; 

vel2_mdfiltval = 30; 

%Encoder saturation function parameters 

pos1off = 205.9; 

pos2off = 205.8811; 

threshold = 5000; 

Ts = 0.001; 

% EXTRACT DATA FROM TERATERM 

Posencoder1 = A(:,1); 

Posencoder2 = A(:,2); 

vel1_noise = A(:,3); 

vel2_noise = A(:,4); 

tension_s = A(:,5); 

tiempo = A(:,6); 

% Encoder 1 motor position correction 

v_aux1 = corregir_vel(Posencoder1,Ts); 

encoders1 = saturacionencoder(Posencoder1,v_aux1,pos1off,threshold); 

% Encoder 2 link position correction 

v_aux2 = corregir_vel(Posencoder2,Ts); 

encoders2 = saturacionencoder(Posencoder2,v_aux2,pos2off,threshold); 

%Motor velocity filtering 

vel1_f = filtfilt(b,a,vel1_noise); 

vel1 = medfilt1(vel1_f,vel1_mdfiltval); 

%Link velocity filtering 

vel2_f = filtfilt(b,a,vel2_noise); 

vel2 = medfilt1(vel2_f,vel2_mdfiltval); 
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encoder measurements. The signal “v_aux” is used to detect this jumps and fix them with the function 

“saturacionencoder”. The velocity estimated online has the wrapping problem fixed already and can 

be filtered directly with the “filtfilt” command to apply a zero phase filtering, the medfilt can be used 

to see the shape of the sinus in the velocity link but it’s not used for identification. Now the 

identification script will be applied for the noisy data and the filtered one. 

Identification 1, noise vs. filtfilt velocity 2 filter 

In this section, the effect of the filter in the velocity 2 estimated signal in the identification procedure 

would be analysed, to do so the same data sets will be used to identify the parameters, first with noise 

velocity measurements, then with no phase-filtered velocity 2. 

 

Table 22. Identification 1 procedure info. 

Identification procedure 1 description 

Number of samples 7990 

Input signal 1 (Estimation 1) Scs2 

Input signal 2 (Estimation 2) Scs1 

Input signal 3 (Validation) Sins1 

Velocity 2 filter Filtfilt, noise 

Model identified HD simple 

Number of outputs 4 

Search methods (Estimation1, Estimation2) lsqnonlin, lm 

 

 

Figure 95. Input signals of the data sets. 
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With the given initial values. 

Table 23. Initial parameters values and boundaries. 

Parameter\Set values x0 x0 lower x0 upper 

JmRK 0.00736543 0.0073 0.009 

Je 0.05 0.01 1 

N 70 - - 

BmRK 0.29927 0.19927 0.39927 

D 1 0 50 

Be 0.001 eps(0) 1 

Kin 14.4 14.325 14.475 

K1 2000 10 80000 

𝝉𝒄RK 0.3007 0.28 0.315 

 

The following parameters are obtained for the velocity signal with no filter set and the different 

estimation methods applied to the same data sets. 

Data has 4 outputs, 1 inputs and 8991 samples. 
Termination condition: Change in cost was less than the specified tolerance.                                
Number of iterations: 10, Number of function evaluations: 11.                                                                                                        
Estimated using Solver: ode45; Search: lsqnonlin. 
 
 

Table 24. Final estimated parameters for both velocity 2 filter data sets. 

Search method = ‘Lsqnonlin’ , ‘lm’ 

Parameter\Value xf, filtfilt xf , noise 

JmRK 0.0073 0.0073 

Je 0.0214815 0.021495 

N 70 70 

BmRK 0.284971 0.284975 

D 0.0562333 0.0564026 

Be 0.153757 0.153803 

Kin 14.461 14.475 

K1 40.4364 40.4293 

𝝉𝒄RK 0.28 0.280456 

With FPE: 1.028e-05, MSE: 3.786 for filtfilt. 

With FPE: 0.0002831, MSE: 5.654 for noise. 
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In the velocity 2 noise identification, the validation data, which is being compared, has been filtered 

with the “filtfilt” matlab command as shown below. 

 

 

Figure 96. Simulated response vs. real data measurements. 

 

After transforming the units of the parameters, the following physical parameters are obtained, the 

first data set is estimated with the search method “lsqnonlin”, with the higher input frequencies data 

set because this method updates the value of the elasticity parameters. Then the second data set for 

estimation and fit of the rest of the parameters for this purpose the “lm” search method has been 

chosen because gives the smallest cost after finishing all the iterations in the identification procedure. 

 

Table 25. Final parameter value after transformation. 

Parameter\Value xf filtfilt Xf noise 

Jm 6.8874e-4 6.8874e-04 

Je 0.0215 0.0215 

N 70 70 

Bm 0.0064 0.0064 

D 0.0562 0.0564 

Be 0.1538 0.1538 

Kin 14.475 14.475 

K1 40.4364 40.4293 

𝝉𝒄 0.0265 0.0265 

Jt 6.9312e-04 6.9313e-04 
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Figure 97. Residuals of the obtained model. 

 

Identification 2, noise vs. filtfilt velocity 2 filter 

Now the same identification procedure will be made but with different data sets orders, this will be 

made in order to check the consistency of the parameters estimated in the first identification. 

 

Table 26. Identification 2 procedure info. 

Identification procedure 1 description 

Number of samples 7990 

Input signal 1 (Estimation 1) Scs1 

Input signal 2 (Estimation 2) Scs2 

Input signal 3 (Validation) Sins1 

Velocity 2 filter Filtfilt, noise 

Model identified HD simple 

Number of outputs 4 

Search methods (Estimation1, Estimation2) lsqnonlin, lm 
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With the same initial values used before. 

Table 27.Identification 2 initial parameters and its boundaries. 

Parameter\Set values x0 x0 lower x0 upper 

JmRK 0.00736543 0.0073 0.009 

Je 0.05 0.01 1 

N 70 - - 

BmRK 0.29927 0.19927 0.39927 

D 1 0 50 

Be 0.001 eps(0) 1 

Kin 14.4 14.325 14.475 

K1 2000 10 80000 

𝝉𝒄RK 0.3007 0.28 0.315 

 
The following parameters are obtained for the different velocity 2 filter. 
 

Table 28. Final estimated parameters for both velocity 2 filter data sets. 

Search method = ‘Lsqnonlin’ , ‘lm’ 

Parameter\Value xf, filtfilt xf , noise 

JmRK 0.00755584 0.00755577 

Je 0.0259733 0.0260556 

N 70 70 

BmRK 0.286499 0.286499 

D 15.0979 15.0953 

Be 0.00025576 0.000251888 

Kin 14.4181 14.4181 

K1 6569.23 6568.81 

𝝉𝒄RK 0.315 0.315 

 

With FPE: 9.745e-07, MSE: 3.05 for filtfilt 

With FPE: 2.737e-05, MSE: 4.818 for noise 
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When comparing the response of the estimated model with velocity 2 filter and wihout filterwin we 

got the same result as shown in figure 99 and 100. 

 

Figure 98. Noise velocity2 estimated response. 

 

 

Figure 99. Filtfilt velocity2 estimated response. 

After transforming the parameters, the following values are obtained. 

Table 29.Final values obtained after transformation. 

Parameter\Value xf filtfilt Xf noise 

Jm 7.1288e-04 7.1287e-04 

Je 0.0260 0.0261 

N 70 70 

Bm 0.0066 0.0066 

D 15.0979 15.0953 

Be 2.5576e-04 2.5189e-04 

Kin 14.4181 14.4181 

K1 6.5692e+03 6.5688e+03 

𝝉𝒄 0.0297 0.0297 

Jt 7.1818e-04 7.1819e-04 
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From the data obtained now, we can compare between the identification 1 and identification 2 results 

in the following table and make some conclusions. 

 

Table 30.Results comparison between identification 1 and 2. 

Parameter\Value xf Ident 1 xf Ident 2 

Jm 6.8874e-4 7.1287e-04 

Je 0.0215 0.0261 

N 70 70 

Bm 0.0064 0.0066 

D 0.0562 15.0953 

Be 0.1538 2.5189e-04 

Kin 14.475 14.4181 

K1 40.4364 6.5688e+03 

𝝉𝒄 0.0265 0.0297 

Jt 6.9312e-04 7.1819e-04 

 

From the data obtained the main conclusions are: 

 Velocity 2 filter “filtfilt” does not change the value of the estimated model parameters. 

 The search method applied gives different results depending on the frequency of the input 

signal. 

 The values for the previous steps remain unchanged, so those values will be fixed for the 

following identification steps. 

 The values identified that are similar independently of the order of the estimation data sets 

will remain unchanged too. 

Now the main problem is to determine: 

 Which input signal is more appropriate for identifying the elasticity parameters 

 

How number of iterations affect to the final estimated values 

With the same initial parameters value the estimation 2 identification will be carried out with an “lm” 

search method, first with seven iterations, then with 35. The initial parameter value used is let free 

without restrictions in all the values excepting Bm and tau_c. 
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Reducing the second searchmethod iterations to 7: 

 

From the results we can conclude that more iterations don’t provide a better result in the second 

estimation data set, however when comparing the correlation residuals with the one obtained 

previously we can see that there is an small improvement in the cross correlation between the 

positions and the input as well as the autocorrelation of the velocity 2. 

 

Parameters:                                       value          standard dev                             

    p1   Motor inertia [kgm^2]                       0.00388188    0.26255   (est) in [3.36543e-05, 0.007] 

    p2   Link side inertia [kgm^2]                     0.641145    43.3925   (est) in ]0, 1]               

    p3   HarmonicDrive reduction ratio                       70          0   (fix) in [70, 70]             

    p4   Motor viscous friction [Nms/rad]              0.319736    21.6272   (est) in [0.249278, 0.349278] 

    p5   Spring Damping [Nms/rad]                   4.04852e-07    5.23149   (est) in [0, 50]              

    p6   Link viscous friction [Nms/rad]           4.94066e-324   0.720346   (est) in ]0, 10]              

    p7   Current to torque motor constant [Nm/A]        16.1707    1093.85   (est) in [14.325, 19.475]     

    p8   Spring stiffness constant [Nm/rad]             13160.8     890858   (est) in [10, 80000]          

    p9   Coulomb friction                                0.2875      19.45   (est) in [0.2875, 0.315]      

With the second searchmethod iterations 35: 

Parameters:                                       value          standard dev                             

    p1   Motor inertia [kgm^2]                       0.00384738   0.266723   (est) in [3.36543e-05, 0.007] 

    p2   Link side inertia [kgm^2]                     0.654684    45.4157   (est) in ]0, 1]               

    p3   HarmonicDrive reduction ratio                       70          0   (fix) in [70, 70]             

    p4   Motor viscous friction [Nms/rad]              0.319741    22.1684   (est) in [0.249278, 0.349278] 

    p5   Spring Damping [Nms/rad]                             0    1.01122   (est) in [0, 50]              

    p6   Link viscous friction [Nms/rad]           4.94066e-324   0.962467   (est) in ]0, 10]              

    p7   Current to torque motor constant [Nm/A]         16.171    1121.21   (est) in [14.325, 19.475]     

    p8   Spring stiffness constant [Nm/rad]             13160.8     913091   (est) in [10, 80000]          

    p9   Coulomb friction                                0.2875    19.9364   (est) in [0.2875, 0.315]    
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Figure 100. Residual correlation analysis for the identified models. 

 

 

Figure 101. Left side residuals from first ident, Right side residuals from last ident. 

When analyzing the residue correlation we detect a bad cross correlation in the previous identified 

model, even though the fit to data was good enough, now in the next step more phenomenas will be 

added to the model and the residuals of the model analyzed will be compared. 
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5.3.4 Harmonic drive with nonlinear friction and elasticity parameter identification  

Until now all the identification procedures have been done with data running only in the positive 

direction, this mean that the voltage sent by the DAC was set between [2.5V – 5V]. So with the 2.5V in 

the DAC corresponding to the motor stopped, now some experiments will be carried out in both 

directions this implies zero velocity crossing. The simplified model used before with the Coulomb 

friction having only one sign results in an incorrect simulated response due to the fact that the model 

was considered only for the motor running in one direction. The response simulated when crossing 

zero velocities with the model identified in the previous section is shown in the figure below. 

 

Figure 102. Identified NLGR with one direction simulated response compared with both directions data set. 

Some considerations made above will change, being now: 

 Nonlinear elasticity: The cubic polynomial for the elasticity will be introduced, as stated in 

equation (3.28). 

 Nonlinear friction will be modeled through a trigonometric function, this is because other 

models add discontinuities at zero crossing, which makes numerical implementation a hard 

task, implemented  in the following equation: 

𝜏𝑓 = 𝐵𝑚�̇� + (𝜏𝑐 +
𝐹𝑠

cosh(𝛼�̇�)
) tanh (𝛽�̇�) 

(5.31) 

 

So for this model the inputs used will cross zero velocity in order to identify the friction phenomena 

that arises when the system runs at zero or very small velocities. 
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For this purpose the following inputs are used: 

 

Figure 103. Inputs used for both directions movement and friction identification. 

The experiments are carried out in voltage control, so the parameters identified will differ from the 

ones estimated with the same procedure but for current control, here the initial values are shown, the 

values obtained in previous steps are used as initial values, and as long as we know the values of K and 

D are not precise, these will remain fixed as the value calculated in the preceding step. 
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Table 31.Identification friction initial parameters and its boundaries. 

Parameter\Set values x0 x0 lower x0 upper 

JmRK 0.0073 0.00036543 0.9 

Je 0.3 0.01 1 

N 70 70 70 

BmRK 0.299278 0.249278 0.349278 

D 0.05 0.045 0.075 

Be 0.1 Eps(0) 0.7 

Kin 14.4 14.025 14.975 

K1 40 37 43 

𝝉𝒄RK 0.315 0.28 2.75 

K3 150 149 151 

Fs 1.60667 1.36 10 

Alpha 0.465822 0.04 1.5 

Beta 0.0445634 0.004 1.05 

 

Once the model for this step is integrated in the IDNLGREY script the following results are obtained. 

Table 32. Final estimated parameters for both velocity 2 filter data sets. 

Search method = ‘lm’ , ‘lm’ 

Parameter\Value xf Std. dev 𝝈 

JmRK 0.00557276 9.12065e-06    

Je 0.0264691 0.000865728    

N 70 0 

BmRK 0.30773 0 

D 0.075 0.00252879    

Be 0.178733 0.00570538 

Kin 14.9589 0 

K1 39.8319 1.26379 

𝝉𝒄RK 0.57484 3.21678e-05 

K3 149.999 2292.04  

Fs 1.36 0.0217614 

Alpha 0.29442 0.00188563 

Beta 0.27002 0.0044257 
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nlgr2 =                                                                                                 

Continuous-time nonlinear grey-box model defined by 'model1' (MEX-file):                                                                                                                                

   dx/dt = F(t, u(t), x(t), p1, ..., p13)                                                               

    y(t) = H(t, u(t), x(t), p1, ..., p13) + e(t)                                                                                                                                                           

 with 1 input, 4 states, 4 outputs, and 10 free parameters (out of 13).                                                                                                                                    

 Input:                                                                                                 

    u(1)   DAC voltage(t) [V]                                                                           

 States:                     initial value                                                              

    x(1)   theta(t) [rad]    xinit@exp1            0   (fix) in [-Inf, Inf]                             

    x(2)   q(t) [rad]        xinit@exp1           -0   (fix) in [-Inf, Inf]                             

    x(3)   th_p(t) [rad/s]   xinit@exp1    0.0384371   (fix) in [-Inf, Inf]                             

    x(4)   q_p(t) [rad/s]    xinit@exp1   6.2353e-13   (fix) in [-Inf, Inf]                             

 Outputs:                                                                                               

    y(1)   theta(t) [rad]                                                                               

    y(2)   q(t) [rad]                                                                                   

    y(3)   th_p(t) [rad/s]                                                                              

    y(4)   q_p(t) [rad/s]                                                                               

 Parameters:                                   value        standard dev                                

    p1    Motor inertia [kgm^2]                0.00557276   9.12065e-06   (est) in [0.00036543, 0.9]    

    p2    Link side inertia [kgm^2]             0.0264691   0.000865728   (est) in [0.01, 1]            

    p3    HarmonicDrive reduction ratio                70             0   (fix) in [70, 70]             

    p4    Motor viscous friction [Nms/rad]        0.30773             0   (fix) in [0.249278, 0.349278] 

    p5    Spring Damping [Nms/rad]                  0.075    0.00252879   (est) in [0.045, 0.075]       

    p6    Link viscous friction [Nms/rad]        0.178733    0.00570538   (est) in ]0, 0.7]             

    p7    Input gain [Nm/A]                       14.9589             0   (fix) in [14.025, 14.975]     

    p8    Spring stiffness constant [Nm/rad]      39.8319       1.26379   (est) in [37, 43]             

    p9    Coulomb friction                        0.57484   3.21678e-05   (est) in [0.28, 2.75]         

    p10   k3 [k3]                                 149.999       (est) in [149, 151]           

    p11   striebeck                                  1.36     0.0217614   (est) in [1.36, 10]           

    p12   alpha                                  0.294424    0.00188563   (est) in [0.04, 1.5]          

    p13   beta                                   0.270028    0.00442576   (est) in [0.004, 1.05]        

                                                                                                        

Name: Respuesta simulada                                                                                

                                                                                                        

Status:                                                                                                 
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Figure 104. Simulated response comparison for the model obtained and the validation data set. 

From the simulated response we can compare it with the one shown in figure 102, now the error in 

the position that appeared before when the velocity was crossing the zero value is gone, also remak 

that the standard deviations obtained are very small, this indicates that the model, a low standard 

deviation means that the data points are close to the expected value, while the higher value means 

that the data points are spread out over a wider range of values. This is logical since the only value 

big is related to the K which identification is highly dependent on the velocity of the link signal, that 

in this case isn’t accurate. 

 Name: Respuesta simulada                                                                                                                                                                                    

Status:                                                                                                 

Termination condition: Maximum number of iterations reached.                                            

Number of iterations: 15, Number of function evaluations: 76                                                                                                                                             

Estimated using Solver: ode45; Search: lm on time domain data "Datos del experimento".                  

Fit to estimation data: [99.27;98.61;94.18;19.22]%                                                      

FPE: 1.331e-08, MSE: 0.9208                                                                             

More information in model's "Report" property.                                                          
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Also the prediction error and the residuals are analyzed and shown in the following figures. 

 

Figure 105. 1-Step prediction error for the identified model. 

 

Figure 106. Residue correlation for the estimated model. 
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When comparing the obtained prediction error and the residuals we find that for the prediction error 

there is still a non modelled phenomena, this is probably the hysteresis in the kinematic error that 

affects the position, for the residue analysis we can conclude that the autocorrelation for both velocity 

signals is not ideal, as long as both are estimations from the discretized position signals, having noise 

and error (also induced by the kinematic error in the Harmonic Drive). Despite that, the cross 

correlation for the four outputs related to the input now are inside the confidence range, this means 

that the model now  represents the reality better than previous simplified models. 

 

Figure 107. Step response for the identified model. 

Finally the step response is analyzed, here the main problem appears in the velocity link step response, 

where the oscillations due to the torsional spring that is the Harmonic drive transmission are notified, 

in the motor side its not that obvious since the torque is reduced seventy times, so the relationship 

between the K and the D will affect this step response oscillations in the link side velocity, this will be 

analyzed later on through simulations of the system. 
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5.4 Current control identification 

In this section the same procedure carried in 5.3.4 will be used, but for current control. In this mode it 

has been comprobed that for a high input in the DAC, the current cant follow the frequency, this means 

the ESCON acts as a low pass filter, rejecting higher frequencies, that’s the main reason why these 

experiments have been carried with low frequencies at the input, an example of this problem is shown 

in the figure 109. 

 

Figure 108. Current response for high frequency DAC input. 

The yellow line represents the current, the red the DAC value and the blue the velocity of the motor. 

5.4.1 Harmonic drive with nonlinear friction and elasticity parameter identification  

So for this experiment, the following inputs are used to generate the data sets 1 and 2. 

 

Figure 109. Low frequency input for current control identification. 
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The initial parameters as well as its boundaries are shown in the following table 

Table 33.Identification friction initial parameters and its boundaries. 

Parameter\Set values x0 x0 lower x0 upper 

Jm 6.8874e-4 3.06e-6 1 

Je 0.0215 0 10 

N 70 70 70 

Bm 0.0064 0 100 

D 0.0562 1e-06 1000 

Be 0.1538 Eps(0) 2 

Kin 0.3090 0.002 1000 

K1 40.43 2 90000 

𝝉𝒄 0.0297 0.0001 0.4 

alpha 0.398629 0.0004 1.75 

Fs 0.2 0.0001 200 

Alpha 0.399435 1e-05 200 

K3 150 140 151 

Once the model for this step is integrated in the IDNLGREY script the following results are obtained. 

Table 34. Final estimated parameters for both velocity 2 filter data sets. 

Search method = ‘lm’ , ‘lm’ 

Parameter\Value xf Std. dev 𝝈 

Jm 0.0264089 0.160579 

Je 1.34695e-06 3.21398e-06 

N 70 0 

Bm 0.0064 0 

D 0.0562 0 

Be 0.063377 0.310624 

Kin 11.0924 67.191 

K1 40.4364 0 

𝝉𝒄 0.355817 0 

K3 150 0 

Fs 1.75 14.1792 

Alpha 0.0001 0.260249 

Beta 150 0 
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The estimated model properties are shown below: 

 

nlgr2 =                                                                                            

Continuous-time nonlinear grey-box model defined by 'model_current' (MEX-file):                                                                                                                    

   dx/dt = F(t, u(t), x(t), p1, ..., p13)                                                          

    y(t) = H(t, u(t), x(t), p1, ..., p13) + e(t)                                                                                                                                                     

 with 1 input, 4 states, 4 outputs, and 7 free parameters (out of 13).                                                                                                                              

 Input:                                                                                            

    u(1)   DAC(t) [V]                                                                              

 States:                     initial value                                                         

    x(1)   theta(t) [rad]    xinit@exp1              0   (fix) in [-Inf, Inf]                      

    x(2)   q(t) [rad]        xinit@exp1             -0   (fix) in [-Inf, Inf]                      

    x(3)   th_p(t) [rad/s]   xinit@exp1    8.65465e-29   (fix) in [-Inf, Inf]                      

    x(4)   q_p(t) [rad/s]    xinit@exp1   -1.06372e-33   (fix) in [-Inf, Inf]                      

 Outputs:                                                                                          

    y(1)   theta(t) [rad]                                                                          

    y(2)   q(t) [rad]                                                                              

    y(3)   th_p(t) [rad/s]                                                                         

    y(4)   q_p(t) [rad/s]                                                                          

 Parameters:                                   value         standard dev                          

    p1    Motor side inertia [kgm^2]             0.0264089      0.160579   (est) 

in [3.06e-06, 1]  

    p2    Link side inertia [kgm^2]            1.34695e-06   3.21398e-06   (est) 

in [0, 10]        

    p3    HarmonicDrive reduction ratio                 70             0   (fix) 

in [70, 70]       

    p4    Motor viscous friction [Nms/rad]          0.0064             0   (fix) 

in [0, 100]       

    p5    Spring Damping [Nms/rad]                  0.0562             0   (fix) 

in [1e-06, 1000]  

    p6    Link viscous friction [Nms/rad]         0.063377      0.310624   (est) 

in ]0, 2]         

    p7    Input constant [Nm/A]                    11.0924        67.191   (est) 

in [0.002, 1000]  

    p8    Spring stiffness constant [Nm/rad]       40.4364             0   (fix) 

in [2, 90000]     

    p9    Coulomb friction [Nm/rad]               0.355817             0   (fix) 

in [0.0001, 0.4]  

    p10   Striebeck                                   1.75       14.1792   (est) 

in [0.0004, 1.75] 

    p11   Alpha_f                                   0.0001        1.2262   (est) 

in [0.0001, 200]  

    p12   Beta_f                                  0.079195      0.260249   (est) 
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Take into account that, as long as in this step the power stage, ESCON module 50/5 is working in 

current control, the parameters directly identified will differ from the ones obtained in voltage control, 

more precisely the ones related to the trigonometric friction and those from the motor side equations.  

 

Figure 110.Simulated response comparison for the first data set. 

  

    p9    Coulomb friction [Nm/rad]               0.355817             0   (fix) in [0.0001, 0.4]  

    p10   Striebeck                                   1.75       14.1792   (est) in [0.0004, 1.75] 

    p11   Alpha_f                                   0.0001        1.2262   (est) in [0.0001, 200]  

    p12   Beta_f                                  0.079195      0.260249   (est) in [1e-05, 200]   

    p13   k3                                           150             0   (fix) in [140, 151]                                                                                                    

Name: Respuesta simulada                                                                                                                                                                           

Status:                                                                                            

Termination condition: Maximum number of iterations reached.                                       

Number of iterations: 10, Number of function evaluations: 54                                                                                                                                    

Estimated using Solver: ode45; Search: lm on time domain data "Datos del experimento".             

Fit to estimation data: [90.31;88.01;93.16;73.2]%                                                  

FPE: 0.1007, MSE: 116                                                                              

More information in model's "Report" property. 
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Figure 111. Simulated response comparison for the second data set. 

As a result, the estimated model provides a good fit to data, now the 1-Step prediction error will be 

analyzed. 

 

Figure 112. 1-Step prediction error. 
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When analyzing the 1-step error, there are some things left unexplained, as long as the ESCON is 

working in current control, the current is now the input to the system, this means that the real input 

should be the current instead the DAC voltage value programmed in the Keil code, this means that 

there is a noise behaviour left unexplained when considering the input used for the system. 

Also the velocity oscillations due to the BLDC motor phase conmutation represented as ripples are 

observed, this behaviour is presented in  [26], where the back EMF may take trapezoidal or sinusoidal 

shape. Also the error in the position is appreciated, this is mainly due to the Kinematic error, also the 

link velocity as long as its estimated from the link position measurements with low resolution, the 

quantization error appears as pulses when differenciating the position in order to obtain the velocity 

signal, this is also appreciated in the 1-Step prediction error. 

 

Figure 113. Residue correlation. 

The residuals for the link velocity auto correlation are the same as for voltage control identifications, 

as well as the autocorrelations of the positions, the cross correlations are close to the confidence 

boundaries, this means the model can be still improved, probably  with torque measurements as well 

as with higher resolution encoders. 
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Figure 114.Step response of the identified system. 

The identified step response of the system corresponds to the typical shape of a DC motor actuated 

by current, where there is a time until the motor reaches steady state velocity.  
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5.5 Frequency response analysis 

When analyzing the frequency response, two transfer functions are of main interest, motor velocity 

respect to the current, and link velocity respect to the current. 

From the equations of the system presented in section 3, (3.13) and (3.14), applying Laplace transform 

to the differential equations to make them algebraic expressions, first applied to the motor equation: 

𝑢 ∗ 𝐾𝑎𝐾𝑚 = 𝐽𝑚𝑠2𝜃 + 𝑏𝑚𝑠𝜃 +
𝐾

𝑁2
𝜃 −

𝐾

𝑁
𝑞 +

𝐵

𝑁2
𝑠𝜃 −

𝐵

𝑁
 𝑠𝑞 

(5.32) 

𝑢 ∗ 𝐾𝑎𝐾𝑚 = 𝜃(𝐽𝑚𝑠2 + (𝑏𝑚 +
𝐵

𝑁2
)𝑠 +

𝐾

𝑁2
) − 𝑞(

𝐾 + 𝐵𝑠

𝑁
) 

(5.33) 

Now obtain the motor position from link equation: 

𝑞(𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾) = 𝜃(

𝐾 + 𝐵𝑠

𝑁
) 

(5.34) 

𝑞 = 𝜃
(𝐵𝑠 + 𝐾)

(𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

 ;  𝜃 = 𝑞
(𝐽𝑒𝑠

2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

(𝐵𝑠 + 𝐾)
 

(5.35) 

After that in the motor equation, depending on the transfer function desired (from input to motor, 

and from input to link) use q or 𝜃 to obtain the desired transfer function: 

From input to link: 

𝑢 ∗ 𝐾𝑎𝐾𝑚 = 𝑞[
(𝐽𝑒𝑠

2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

(𝐵𝑠 + 𝐾)
∗ (𝐽𝑚𝑠2 + (𝑏𝑚 +

𝐵

𝑁2
)𝑠 +

𝐾

𝑁2
)] − 𝑞(

𝐾 + 𝐵𝑠

𝑁
) 

(5.36) 

 

(𝑏𝑚𝐵 + 𝑏𝑚𝑏𝑒 +
𝐵2

𝑁2 +
𝐵𝑏𝑒

𝑁2 ))𝑠2 + (
𝐾

𝑁2 (𝑏𝑒 + 𝐵) + 𝐾(𝑏𝑚 +
𝐵

𝑁2)𝑠 +
𝐾2

𝑁2)

(𝐵𝑠 + 𝐾)
𝑞 − (

𝐾 + 𝐵𝑠

𝑁
)𝑞 

(5.37) 

 

Now rearrange with common denominator: 

From input to motor: 

𝑢 ∗ 𝐾𝑎𝐾𝑚 =  𝜃(𝐽𝑚𝑠2 + (𝑏𝑚 +
𝐵

𝑁2
)𝑠 +

𝐾

𝑁2
) − 𝜃 (

(𝐵𝑠 + 𝐾)

(𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

 ) 
(5.38) 

The desired TF is obtained by getting 𝐺𝑡ℎ𝑁 = 𝜃/𝑢, so it can be expressed as: 

𝜃

𝑢
=

𝐾𝑎𝐾𝑚 ∗ (𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

[(𝐽𝑚𝑠2 + (𝑏𝑚 +
𝐵

𝑁2)𝑠 +
𝐾

𝑁2) ∗ (𝐽𝑒𝑁𝑠2 + (𝐵𝑁 + 𝑏𝑒𝑁)𝑠 + 𝐾𝑁)] − (𝐵𝑠 + 𝐾)
 

(5.39) 

 

Now arranging the denominator: 
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𝑑𝑒𝑛𝜃 = 𝐽𝑒𝐽𝑚𝑠4 + (𝐽𝑚(𝑏𝑒 + 𝐵) + 𝐽𝑒(𝑏𝑚 +
𝐵

𝑁2
))𝑠3 + (𝐾 (𝐽𝑚 +

𝐽𝑒
𝑁2

) + (𝐵𝑏𝑚 + 𝑏𝑒𝑏𝑚 + 𝐵
𝑏𝑒

𝑁2
))𝑠2

+ (𝐾(𝑏𝑚 +
𝑏𝑒

𝑁2
))𝑠 

(5.40) 

So after that the final expression can be analyzed for all the frequencies range: 

𝐺𝜃 =
𝜃(𝑠)

𝑢(𝑠)
=

𝐾𝑎𝐾𝑚 ∗ (𝐽𝑒𝑠
2 + (𝐵 + 𝑏𝑒)𝑠 + 𝐾)𝑁

𝑑𝑒𝑛(𝑠)
 

(5.41) 

 

This procedure can be repeated to obtain both transfer functions, from input to motor velocity and 

from input to link velocity, after that the numerators and denominators of the transfer function will 

be. 

𝑛𝑢𝑚𝑞 = 𝐾𝑎𝐾𝑚(𝐵𝑠 + 𝐾) (5.42) 

𝑛𝑢𝑚𝜃 = 𝐾𝑎𝐾𝑚(𝐽𝑒𝑠
2 + (𝑏𝑒 + 𝐵)𝑠 + 𝐾) (5.43) 

𝑑𝑒𝑛𝑞 = 𝑁(𝐽𝑒𝐽𝑚𝑠4 + (𝐽𝑚(𝑏𝑒 + 𝐵) + 𝐽𝑒(𝑏𝑚 +
𝐵

𝑁2
))𝑠3 + (𝐾 (𝐽𝑚 +

𝐽𝑒
𝑁2

) + (𝐵𝑏𝑚 + 𝑏𝑒𝑏𝑚 + 𝐵
𝑏𝑒

𝑁2
))𝑠2

+ (𝐾(𝑏𝑚 +
𝑏𝑒

𝑁2
))𝑠) 

(5.44) 

[

�̇�
�̈�
�̇�
�̈�

] = [

0
−𝐾/𝑁2𝐽𝑚

0
𝐾/𝑁𝐽𝑒

 

1
−(𝑏𝑚 + 𝐵/𝑁2)/𝐽𝑚

0
𝐵/𝑁𝐽𝑒

  

0
𝐾/𝑁𝐽𝑚

0
−𝐾/𝐽𝑒

 

0
𝐵/𝑁𝐽𝑚

1
−(𝑏𝑒 + 𝐵)/𝐽𝑒

] [

𝜃
�̇�
𝑞
�̇�

] + [

0
1/𝐽𝑚

0
0

]  

 

(5.45) 

When implemented on Matlab: 

 

%% Bode plot with Harmonic drive reduction 

numthN = [KaKm*Je; KaKm*(B+Be); KaKm*K]'; 

numqN = [KaKm*B; KaKm*K]'; 

denNth =[Je*Jm; 

    Jm*(Be+B)+Je*(Bm+B/(N^2)); 

    K*(Jm+Je/(N^2))+(B*Bm+Bm*Be+(B*Be/(N^2))); 

    K*(Bm+Be/(N^2));  

    0]'; 

denNq = N*[Je*Jm; 

    Jm*(Be+B)+Je*(Bm+B/(N^2)); 

    K*(Jm+Je/(N^2))+(B*Bm+Bm*Be+(B*Be/(N^2))); 

    K*(Bm+Be/(N^2));  

    0]'; 

GthN=tf(numthN,denNth);GqN=tf(numqN,denNq); 

bode(GthN,GqN) 
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Figure 115. Typical bode plot shape of link velocity respect to the current(left), and motor velocity respect to the current 
(right) 

As stated in [10],  the relation between torque and motor velocity can be written as: 

  

𝑑𝑒𝑛𝜃 = 𝑠3𝐽𝑒𝐽𝑚 + 𝑠2 (𝐽𝑒𝐵𝑚 + 𝐷 (𝐽𝑚 +
𝐽𝑒
𝑁2

)) + 𝑠 (𝐾 (𝐽𝑚 +
𝐽𝑒
𝑁2

) + 𝐷𝐵𝑚) + 𝐾𝐵𝑚 
(5.46) 

 

If the effect of the damping coefficient, D, is negligible the transfer function becomes: 

𝑛𝑢𝑚𝜃 = 𝐽𝑒𝑠
2 + 𝐾 (5.47) 

𝑑𝑒𝑛𝜃 = 𝑠3𝐽𝑒𝐽𝑚 + 𝑠2𝐽𝑒𝐵𝑚 + 𝑠𝐾 (𝐽𝑚 +
𝐽𝑒
𝑁2

) + 𝐾𝐵𝑚 
(5.48) 

 

The parameter 𝐵𝑚 affects the low frequency region, for this reason, the value estimated of this 

parameter can be considered good, the fact that this parameter has been identified with different 

procedures with the same result also is a good reason to validate this parameter value. 

The variation of the coefficient D, does not make any evident changes in the Bode plot, this means D 

is hard to estimate, as it can be seen in the results, this parameter give many different values for 

different identification procedures. 

The parameters K and Je have simmilar but opposite effects on the Bode plot, the angular frequency 

of the notch in the Bode plot of the physically parametrized model corresponds to the zero in the 

previous equation and it can be calculated as: 

𝜔𝑛1 = 𝐼𝑚 {−
𝐷

2𝐽𝑒
± √(

𝐷

2𝐽𝑒
)
2

−
𝐾

𝐽𝑒
} ≈ √

𝐾

𝐽𝑒
 

(5.49) 

The stiffer the spring is the higher the frequency will be, the depth of the notch is only dependent on 
𝐷

2𝐽𝑒
, the smaller this values is, the deeper the notch becomes. 
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6. Simulations and trajectory generator 

6.1 Simulations with the parameters identified 

Simulation with obtained parameters, with the same input as the DAC signal stored in the variable 

“tension_s” from workspace, the Harmonic drive model in the simulations will be evaluated in different 

scenarios, depending on the considered physical phenomenas in the model. 

For the parameters which value has the uncertainity of being well identified, mainly corresponding the 

elastic torque related parameters 𝐾,𝐷 the values will be varied in the simulation and its effects will be 

evaluated, this is also influent in the hysteresis modelling as long as the signal that provides most of 

the information about this effects are the link side signals, this is derived from the fact that the elastic 

torque is reduced by 𝑁 = 70 in the motor side and so its effect in the motor side signals is not 

noticeable.  

6.1.1 Model simulation 

In this section the model identified in voltage control is implemented in simulink, where the values of 

the parameters can be changed  in order to see how these affect to the response of the system, in 

future works, more complex models can be implemented or compared with the ones obtained. 

 

Figure 116. General view of the elastic joint model implemented in Simulink. 
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Figure 117. Elastic joint Simulink implementation. 

In this Simulink implementation, the real data for any experiment can be introduced and compared to 

the signals, this might help also in the future for taking a good initial guess for the parameters in the 

identification procedure. 

 

Figure 118. Trigonometric function for the friction implemented on Simulink. 

Here is shown as an example how the real data is compared to values close to the ones identified. 
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Figure 119. Simulink real data vs simulated signal. 
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6.1.2 Bouc-Wen model 

In order to see how the Bouc-Wen model behaves it has been implemented in simulink, in a simple 

inertial system actuated, the general view of this model is shown in the figure below. 

 

Figure 120. Bouc-Wen model implementation in simulink. 

And the hysteresis plus nonlinear cubic polynomial for the elasticity is implemented in the subsystem, 

where the internal state as well as the balance between purely elastic and purely plastic behaviour is 

implemented. 

 

Figure 121.Bouc-Wen subsystem for plastic-elastic balance. 
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Figure 122. Bouc-Wen internal state Simulink implementation. 

As it can be seen in the general view of the model, also the LuGre model has been implemented as a 

friction actuating in the motor. When simulating the following parameters were chosen for 

simulation, then the plots of the velocity against the friction force will be plot in a XY graph, in order 

to see the typical LuGre shape, then the same plot is done for observing the hysteresis between the 

internal state and the displacement, where a memory effect will be appreciated, and the typical 

hysteresis shape will be plot. 

 

%% Bouc Wen hysteresis 
mi = 0.5; 
a = mi; 
A = 1; 
beta=0.8; 
gam=0.7; 
Kz=1; 
Kx=10; 

 
%% Striebeck function 
Ms = 1; % Fricción Striebeck  
Mc =0.8; % Fricción Coulomb. 
vs = 0.092; %Velocidad Striebeck. 

 
%% Mechanical system with friction 

  
J = 1; % inertia moment 
Kmot = 0.5; % motor constant 

  
%% LuGre Parameters 
sig2 = 0.5; 
sig0= 100;  
sig1=1.70;  
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Figure 123. Hysteresys shape obtained by simulation. 

 

 

Figure 124.Friction force vs velocity, x axis velocity, y axis friction force. 
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6.2 Fourth order trajectory generator for Keil uVision 

A fourth order trajectory generator was implemented for future trajectory tracking tasks, the 

function speed_signal generates the 4th order trajectory with smooth acceleration transitions. 

It takes as an argument the time and the maximum value, the signal generated is symetric and the 

middle part is constant, so it only returns half the signal. 

To use it properly, the fucntion has to be called 2 times. The first one to generate the singal until half 

of the experiment time, then call the function with the time as a parameter until time_s/2. The 

second call is for the symetric part of the signal, calling the function with ( time_experiment - time ) 

as a parameter will generate the symetric part. The signal can be modified by changing the value of 

t1, t2 ... and Vmax 

 

#include "math.h" 

extern volatile float v_max; 

extern volatile float final_pos; 

float speed_signal(float i, float v_max, float final_pos){  

 float signal; 

 float k =3.19870022581016*v_max*v_max*v_max*v_max/ (final_pos*final_pos*final_pos); 

 float laps = 0.0909521553765987*final_pos/v_max; 

 float t1 = laps; 

 float t2 = 2*laps; 

 float t3 = 3*laps; 

 float t4 = 4*laps; 

 float t5 = 5*laps; 

 float t6 = 6*laps; 

 float t7 = 7*laps; 

 float t8 = 11*laps; 

 float t9 = 12*laps; 

 float t10 = 13*laps; 

 float t11 = 14*laps; 

 float t12 = 15*laps; 

 float t13 = 16*laps; 

 float t14 = 17*laps; 

 float t15 = 18*laps;  

 

 if(i>t2 && i<=t3) 

  signal = (k*((t1+t2)*i*i/2 - i*i*i/6 - (t1*t1/2+t2*t2/2)*i) 

       + k*(t2*t2*t2/6 + t1*t1*t1/6) 

 ); 
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if(i <= t1) 

signal = k/6*i*i*i; 

if(i>t1 &&  i<= t2) 

signal = (k*t1*(i*i/2-t1*i/2) + k*t1*t1*t1/6); 

if(i>t2 && i<=t3) 

signal = (k*((t1+t2)*i*i/2 - i*i*i/6 - (t1*t1/2+t2*t2/2)*i) 

+ k*(t2*t2*t2/6 + t1*t1*t1/6)); 

if(i>t3 && i<=t4) 

signal = ((k*((t1+t2)*t3 - t3*t3/2) - k*(t1*t1/2 + t2*t2/2) )*i 

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3)/6)); 

if(i>t4 && i<=t5) 

signal = (k*(t4*i*i/2 - i*i*i/6) + (k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4)/2)*i 

+ k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4)/6); 

if(i>t5 && i<=t6) 

signal = (k*(t4-t5)*i*i/2 +k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4 + t5*t5)/2*i 

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4 - t5*t5*t5)/6)); 

if(i>t6 && i<=t7) 

signal = (k*(i*i*i/6 - t7*i*i/2) + (k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4 + 2*t4*t6 + 

t5*t5 - 2*t5*t6 - t6*t6 + 2*t6*t7)/2)*i 

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4 - 3*t4*t6*t6 - 

t5*t5*t5 + 3*t5*t6*t6 + 2*t6*t6*t6 - 3*t6*t6*t7)/6)); 

if( i>t7 ) 

signal = (k*(t7*t7*t7/6 - t7*t7*t7/2) + (k*(-t1*t1 + 2*t1*t3 - t2*t2 + 2*t2*t3 - t3*t3 - t4*t4 + 

2*t4*t6 + t5*t5 - 2*t5*t6 - t6*t6 + 2*t6*t7)/2)*t7 

+ (k*(t1*t1*t1 - 3*t1*t3*t3 + t2*t2*t2 - 3*t2*t3*t3 + 2*t3*t3*t3 + t4*t4*t4 - 3*t4*t6*t6 - 

t5*t5*t5 + 3*t5*t6*t6 + 2*t6*t6*t6 - 3*t6*t6*t7)/6)); 

 

return signal; 

} 
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7. Conclusions and future works 

After finishing the project, many concepts studied were reviewed and implemented in the 

experimental platform used. During the project, many problems were arising when trying to make the 

system work in a proper way in different areas such as: 

 Electronic circuit design. 

 Mechanical structure building. 

 Mathematical modeling. 

 Microcontroller programming. 

 Signal processing. 

 Identification techniques. 

 Matlab programming. 

 Real world limitations. 

As stated in previous chapters, the results are not good enough for knowing the complete real 

behaviour of the system in order to apply control techniques to the real plant. Despite that with the 

given procedure if the experimental platform is improved, the project could be finished with more 

satisfactory results, this implies finishing the identification accurately for the elasticity parameters 

associated to the Harmonic Drive. This could be achieved by implementing load sensors and isolating 

the motor-reductor system intro a lock-load configuration in order to carry out different experiment 

with torque measurements, from where accurate models of hysteresis in the elastic force can be 

achieved. 

As long as this project is part of a bigger project as mentionated in section 1 “WRAD”. The Harmonic 

Drive transmissions will be implemented in the two first links of the robotic arm; this implies the 

identification of the whole robot arm with two elastic joints and normal transmissions for the last link 

and attached to the end effector.  

This robot will be worn in a vest by the patient so it will be an autonomous system, this means that 

the robot will have batteries and that power consumption is a crucial fact. For saving power, as much 

as possible optimal control would be applied in order to carry a control strategy that balances 

between energy consumption and trajectory tracking. 

For the prototype implementation, many Discovery boards will be needed as well as a communication 

protocol between them, the before mentionated control would be implemented in a Raspberry, which 

is perfect for matrix operations programmed in python.  
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8. Budget 

The project was carried in an experimental platform with material that have been used in previous 

projects; anyway, an estimation of the value of all the materials used is presented. 

Table 35.Material budget. 

Name of the component Price per unit(€) Units 

Maxon BLDC Motor 130 1 

Discovery STM32F429Zi 31.21 1 

Power Supply PULS Dimension Q-Series  229 1 

ESCON Module 50/5 139.18 1 

ESCON Power cable 14.82 1 

ESCON Motor cable 25.91 1 

ESCON Hall sensor cable 14.64 1 

USB Mini cable 1.75 2 

USB Standard cable 6.95 1 

Encoder header HEDX-9141 24.82 2 

Codewheels 11.12 2 

Encoder 3 channels cable 9.80 2 

Operational Amplifier 0.60 1 

Resistances 0.1 4 

Microcontroller cables 0.25 10 
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1. Matlab Scripts and functions 

1.1 Voltage control 

1.1.1 Reduced model (Total inertia) 

1.1.1.1 Reduced model MEX file 

 

 

  

void compute_dx(double *dx, double *x, double *u, double **p) 

{ 

    /* Declaration of model parameters and intermediate 

variables. */ 

    double *JtRK, *bmRK, *KaRK, *tcRK; 

                         

    double tau_f, sign;z 

  

    /* Retrieve model parameters. */ 

    JtRK = p[0];   /* Scaled total inertia */ 

    bmRK = p[1];   /* Scaled viscous friction */ 

    KaRK = p[2];   /* Input gain */ 

    tcRK = p[3];   /* Scaled Coulomb friction */ 

   

    tau_f = bmRK[0]*x[0];  

     

    /* State equations. */ 

    /* x[0] motor speed */ 

    dx[0] = ((KaRK[0]*u[0]-tcRK[0])-tau_f)/JtRK[0];   

} 

  

/* Output equations. */ 

void compute_y(double y[], double x[]) 

{ 

    y[0] = x[0];    

} 
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1.1.1.2 Identification script for low frequency inertias  

 

 

%% COMPILE THE FILE CONTAINING THE MODEL 

clc, clear; 

addpath('C:\Users\Rafael C\Desktop\Ident_low_freq') 

run ('script_3experiments_lf');  

mex Reduced_mod.c 

vel = vel1_noise; 

vel_b = vel1_noise_b; 

vel_c = vel1_noise_c; 

%% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS 

InputName = {'DAC voltage'}; 

InputUnit = {'V'}; 

StateName  = {'th_p';}; 

StateUnit  = {'rad/s';}; 

OutputName = StateName(1); 

OutputUnit = StateUnit(1); 

%% PARAMETERS 

n_p = 4; % Number of parameters 

ParName  = {'Jt*R/Ka';'Velocity term (Kw + R/Ka*Bm)';'Kin';'tcRK';}; 

ParUnit  = {'';'';'';'';}; 

ParValue= {0.02; 0.28; 0.217; 0.37;};    

ParMin= {1E-6; 0.26; 0.01; 0.27;}; 

ParMax = {5; 0.3; 100; 0.47;};   

%% INITIAL STATES OF THE EXPERIMENT 

val_state = 252;  

%InitialStates Data set 1 

InitialStates = {vel(val_state)}; 

InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates, ... 

    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

%InitialStates Data set 2 

InitialStates_b = {vel_b(val_state)}; 

InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates_b, ... 

    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

 

 

 

 

%% Create the idnlgrey object and the iddata object 

FileName      = 'Reduced_mod';               % File describing the model 

structure. 

Order         = [1 1 1];                 % Model orders [ny nu nx]. 

Parameters    = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue, 



Annexes. 

3 

 

 

%% Create the idnlgrey object and the iddata object 

FileName      = 'Reduced_mod';               % File describing the model 

structure. 

Order         = [1 1 1];                 % Model orders [ny nu nx]. 

Parameters    = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue, 

'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, 0,     ... 

    'Name', 'Respuesta simulada', 'InputName', InputName, ... 

    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 

    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

z= iddata({vel(val_state:end),vel_b(val_state:end),vel_c(val_state:end)}, 

{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-2.5 

tension_s_c(val_state:end)-2.5},0.001); 

z.Name = 'Datos del experimento'; 

z.InputName = nlgr.InputName; 

z.InputUnit = nlgr.InputUnit; 

z.OutputName = nlgr.OutputName; 

z.OutputUnit = nlgr.OutputUnit; 

z.ExperimentName = {'Estimation' 'Validation1' 'Validation2'}; 

z.Tstart = 0; 

z.TimeUnit = 's'; 

present(z) 

%% Identification of the parameters with the model structure specified in 

the idnlgrey object 

%% First data set: Estimation 

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on'); 

opt.SearchOption.MaxIter = 10; 

% First data set estimation 

nlgr = nlgreyest(getexp(z,1), nlgr, opt); 

% Get estimated parameters in the first step 

for i=1:n_p 

ParValue(i)={nlgr.Parameters(i).Value}; 

end 

% Introduce the parameters (ParValue) in the new structure 

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue, ... 

    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     ... 

    'Name', 'Respuesta simulada', 'InputName', InputName, ... 

    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 

    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

% Estimate again with the second data set and the parameters obtained in the 

previous step. 

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on'); 

opt.SearchOption.MaxIter = 10; 

nlgr = nlgreyest(getexp(z,2), nlgr, opt); 
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%% Third data set: Validation 2 

% Get estimated parameters in the second step 

for i=1:n_p 

ParValue(i)={nlgr.Parameters(i).Value}; 

end 

% Introduce the parameters (ParValue) in the new structure (Parameters) 

for the next estimation 

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue, 

... 

    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 

% Build the idnlgrey object with the parameters estimated in the last 

step and 

% with the new initial states 

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_c, Ts,     ... 

    'Name', 'Respuesta simulada', 'InputName', InputName, ... 

    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 

    'OutputUnit', OutputUnit,  'TimeUnit', 's');  

% Estimate again with the second data set and the parameters obtained in 

the previous step. 

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on'); 

opt.SearchOption.MaxIter = 10; 

nlgr = nlgreyest(getexp(z,3), nlgr, opt);  

%% Plot data and compare to identified NLGR and parameter result 

evaluation 

%% Compare the estimated model response with the 3 data sets 

n_ds = 3; % Number of data sets  

figure 

compare(getexp(z,n_ds), nlgr);  

%% 1 step prediction error 

figure 

pe(getexp(z,n_ds), nlgr);  

%% Check residuals  

figure('Name',[nlgr.Name ': residuals of estimated model']); 

resid(getexp(z,n_ds),nlgr);  

%% Check step response and covariance 

figure 

step(nlgr); 

getcov(nlgr) 

nlgr.NoiseVariance 

present(nlgr); 

 

%Parameter transformation to voltage control 

Ka = 0.217 ; Kw = 0.217 ; R = 2.3; 

Jt = nlgr.Parameters(1).Value*Ka/R 

Bm = (nlgr.Parameters(2).Value-Kw)*Ka/R 

tc = nlgr.Parameters(4).Value*Ka/R 
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1.1.2 Harmonic drive simplified model (Linear elasticity) 

1.1.2.1 Simplified H.D model (Linear elasticity, no hysteresis, simple friction) 

 

  

void compute_dx(double *dx, double *x, double *u, double **p){ 

    /* Declaration of model parameters and intermediate variables. */ 

    double *JmKR, *Jje, *N, *D, *be, *bmKw, *Kin, *k1, *tcKR;                     

    double delta_e, delta_ep, tau_e, tau_f; 

    JmKR = p[0];   /* Momento de inercia del motor                       

    Jje = p[1];    /* Momento de inercia del elemento                    

    N = p[2];       /* Factor de reduccoÃ³n del HarmonicDrive              

    bmKw=p[3]; 

    D=p[4]; 

    be=p[5]; 

    Kin=p[6]; 

    k1 = p[7]; 

    tcKR = p[8]; 

    delta_e = x[1]-x[0]/N[0];   // Torsional angle 

    delta_ep = x[3]-x[2]/N[0];  // Torsional speed 

    tau_e = k1[0]*delta_e+D[0]*delta_ep;      // Linear elastic torque 

    tau_f = bmKw[0]*x[2]; //Coulomb + viscous friction 

    /* State equations. */ 

    /* x[0] angulo del motor */ 

    /* x[1] angulo del elemento*/ 

    /* x[2] velocidad del motor*/ 

    /* x[3] velocidad del elemento*/ 

    dx[0] = x[2]; 

    dx[1] = x[3];   

    dx[2] = (Kin[0]*u[0]-tcKR[0]+(tau_e*10.5991/N[0])-tau_f)/JmKR[0]; 

    dx[3] = (-tau_e-be[0]*x[3])/Jje[0];          

} 

/* Output equations. */ 

void compute_y(double y[], double x[]) 

{ 

    y[0] = x[0]; 

    y[1] = x[1]; 

    y[2] = x[2]; 

    y[3] = x[3];} 
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1.1.2.2 Identification script for HD simple model 

 

 

%% COMPILE THE FILE CONTAINING THE MODEL 

clc, clear; 

addpath('C:\Users\Rafael C\Desktop\Ident_high_freq') 

run ('script_3experiments');  

mex model1.c 

% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS 

InputName = {'DAC voltage'}; 

InputUnit = {'V'}; 

StateName  = {'theta'; ...   %Motor angle 

    'q'; ...                 %Link angle 

    'th_p'; ...              %Motor speed 

    'q_p'; ...               %Link speed 

    }; 

StateUnit  = {'rad'; 'rad'; 'rad/s';... 

    'rad/s';... 

    }; 

OutputName = StateName(1:4); 

OutputUnit = StateUnit(1:4); 

%% PARAMETERS 

n_p = 9; % Number of parameters 

ParName  = {'Motor inertia'; ... 

    'Link side inertia '; ... 

    'HarmonicDrive reduction ratio'; ... 

    'Motor viscous friction';... 

    'Spring Damping';... 

    'Link viscous friction';... 

    'Current to torque motor constant';... 

    'Spring stiffness constant';... 

    'Coulomb friction';... 

    }; 

ParUnit  = {'kgm^2';'kgm^2'; '' ; ... 

  'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';'';... 

  }; 

Bm0 = 0.299278; 

  

%PARAMETER INITIALIZATION AND BOUNDARIES 

%           Jm      Jje  N    Bm   D     Be     Kin     K1      tc 

ParValue={0.00736543; 1;  70; Bm0; 0.05; 0.001; 14.4;  5000 ;0.3007 ... 

    }; 

     

ParMin={0.0073; 0;  70;Bm0-0.1;0.001; 0.00095; 14.325; 10;0.28;... 

    }; 
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%PARAMETER INITIALIZATION AND BOUNDARIES 

%           Jm      Jje  N    Bm   D     Be     Kin     K1      tc 

ParValue={0.00736543; 1;  70; Bm0; 0.05; 0.001; 14.4;  5000 ;0.3007 ... 

    }; 

ParMin={0.0073; 0;  70;Bm0-0.1;0.001; 0.00095; 14.325; 10;0.28;... 

    }; 

ParMax={0.00742;10;  70; Bm0+0.1; 1; 0.009;  14.475; 80000;0.315;... 

    };   

Parameters(4).Fixed = true; 

%% INITIAL STATES OF THE EXPERIMENT 

%Initial state instant 

val_state = 10; 

vel1 = vel1_noise;%vel1_f; 

vel1_b = vel1_noise_b;%vel1_f_b; 

vel2 = vel2_noise;%vel2_f; 

vel2_b = vel2_noise_b;%vel2_f_b; 

%InitialStates Data set 1 

InitialStates = {encoders1(val_state) ; -encoders2(val_state); 

vel1(val_state); -vel2(val_state)}; 

InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates, ... 

    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

%InitialStates Data set 2 

InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state; 

vel1_b(val_state); -vel2_b(val_state)}; 

InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates_b, ... 

    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

%% Create the idnlgrey object and the iddata object 

FileName      = 'model1';               % File describing the model 

structure. 

Order         = [4 1 4];                 % Model orders [ny nu nx]. 

Parameters    = struct('Name', ParName, 'Unit', ParUnit, 'Value', 

ParValue, ... 

    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, 0,     ... 

    'Name', 'Respuesta simulada', 'InputName', InputName, ... 

    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 

    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

 

 

z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)],... 

            [encoders1_b(val_state:end)' -encoders2_b(val_state:end)' 

vel1_b(val_state:end) -vel2_b(val_state:end)]... 

%             [encoders1_c(val_state:end)' -encoders2_c(val_state:end)' 

vel1_c(val_state:end) -vel2_c(val_state:end)].. 
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z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)],... 

            [encoders1_b(val_state:end)' -encoders2_b(val_state:end)' 

vel1_b(val_state:end) -vel2_b(val_state:end)]... 

             [encoders1_c(val_state:end)' -encoders2_c(val_state:end)' 

vel1_c(val_state:end) -vel2_c(val_state:end)].. 

            },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5... 

            tension_s_c(val_state:end)-2.5... 

            }, 0.001); 

 

z.Name = 'Datos del experimento'; 

z.InputName = nlgr.InputName; 

z.InputUnit = nlgr.InputUnit; 

z.OutputName = nlgr.OutputName; 

z.OutputUnit = nlgr.OutputUnit; 

z.ExperimentName = {'Estimation' 'Validation1' 'Validation2'}; 

z.Tstart = 0; 

z.TimeUnit = 's'; 

present(z) 

%% Identification of the parameters with the model structure specified 

in the idnlgrey object 

%% First data set: Estimation 

% Estimation options (Searchmethod, max iterations...) 

Searchmethod = 'lsqnonlin'; % 'lsqnonlin' 'gna' 'lm' 

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on'); 

opt.SearchOption.MaxIter = 5; 

% First data set estimation 

nlgr = nlgreyest(getexp(z,1), nlgr, opt); 

%% Second data set: Validation 1 

% Get estimated parameters in the first step 

for i=1:n_p 

ParValue(i)={nlgr.Parameters(i).Value}; 

end 

% Introduce the parameters (ParValue) in the new structure (Parameters) 

for the next estimation 

Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue, 

... 

    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 

% Fix parameters from nlgr 

Parameters(4).Fixed = true; 

% Build the idnlgrey object with the parameters estimated in the last 

step with the new initial states 

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     ... 

    'Name', 'Respuesta simulada', 'InputName', InputName, ... 

    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 

    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 
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% Fix parameters from nlgr 

Parameters(4).Fixed = true; 

% Build the idnlgrey object with the parameters estimated in the last 

step with the new initial states 

nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     ... 

    'Name', 'Respuesta simulada', 'InputName', InputName, ... 

    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 

    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  

% Estimate again with the second data set and the parameters obtained in 

the previous step. 

opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on'); 

opt.SearchOption.MaxIter = 30; 

nlgr = nlgreyest(getexp(z,2), nlgr, opt); 

 

% Compare the estimated model response with the 3 data sets 

n_ds = 2; % Number of data sets 

 

figure 

compare(getexp(z,n_ds), nlgr); 

  

%% 1 step prediction error 

figure 

pe(getexp(z,n_ds), nlgr); 

  

%% Check residuals  

figure('Name',[nlgr.Name ': residuals of estimated model']); 

resid(getexp(z,n_ds),nlgr); 

  

%% Check step response and covariance 

figure 

step(nlgr); 

%  

% getcov(nlgr) 

% nlgr.NoiseVariance 

  

present(nlgr); 

  

%Parameter transformation to voltage control 

Ka = 0.217 ; Kw = 0.217 ; R = 2.3; 

  

Jm = nlgr.Parameters(1).Value*Ka/R 

Je = nlgr.Parameters(2).Value 

N = nlgr.Parameters(3).Value; 
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1.1.3 Harmonic drive model with nonlinear elasticity and trigonometric friction. 

1.1.3.1 H.D model (Cubic elasticity, no hysteresis, trigonometric friction) 

 

 

void compute_dx(double *dx, double *x, double *u, double **p) 
{ 
    /* Declaration of model parameters and intermediate variables. */ 
    double *JmKR, *Jje, *N, *D, *be, *bmKw, *Kin, *k1, *tcKR,*k3, *Fs, 

*alpha_f, *beta_f;                   
    double delta_e, delta_ep, tau_h, tau_f, k_nl; 
    double c_c = 2.3/0.217; // Conversion from torque to voltage with 

motor constants   
    /* Retrieve model parameters. */ 
    JmKR = p[0];   /* Momento de inercia del motor                      
    Jje = p[1];    /* Momento de inercia del elemento                    
    N = p[2];       /* Factor de reduccoÃ³n del HarmonicDrive              
    bmKw=p[3]; 
    D=p[4]; 
    be=p[5]; 
    Kin=p[6]; 
    k1 = p[7]; 
    tcKR = p[8]; 
    k3 = p[9]; 
    Fs = p[10]; 
    alpha_f = p[11]; 
    beta_f = p[12]; 
    /*Ecuaciones + NL elasticidad*/ 
    /*Torsional angle*/ 
    delta_e = x[1]-x[0]/N[0];   // Torsional angle 
    delta_ep = x[3]-x[2]/N[0];  // Torsional speed 
    k_nl = k1[0]*delta_e+k3[0]*pow(delta_e,3); 
    tau_h = k_nl+D[0]*delta_ep;       
    tau_f = 

bmKw[0]*x[2]+(tcKR[0]+Fs[0]/cosh(alpha_f[0]*x[2])*tanh(beta_f[0]*x[2]))

; 
    /* State equations. */ 
    /* x[0] angulo del motor */ 
    /* x[1] angulo del elemento*/ 
    /* x[2] velocidad del motor*/ 
    /* x[3] velocidad del elemento*/ 
    /* x[4] Internal state hysteresis*/ 
    dx[0] = x[2]; 
    dx[1] = x[3];   
    dx[2] = (Kin[0]*u[0]+(tau_h*c_c/N[0])-tau_f)/JmKR[0]; 
    dx[3] = (-tau_h-be[0]*x[3])/Jje[0]; 
} 

  
/* Output equations. */ 
void compute_y(double y[], double x[]) 
{ 
    y[0] = x[0]; 
    y[1] = x[1]; 
    y[2] = x[2]; 
    y[3] = x[3]; 
} 
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1.1.3.2 Identification script for HD model with cubic NL elasticity and trigonometric friction. 

 

 

%% COMPILE THE FILE CONTAINING THE MODEL 
% clc, clear; 
addpath('C:\Users\Rafael C\Desktop\Ident_high_freq') 
run ('script_3experiments');  
mex model1.c 
% mex model1_3out.c 
%% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS 
InputName = {'DAC voltage'}; 
InputUnit = {'V'}; 
StateName  = {'theta'; ...   %Motor angle 
    'q'; ...                 %Link angle 
    'th_p'; ...              %Motor speed 
    'q_p'; ...               %Link speed 
    }; 
StateUnit  = {'rad'; 'rad'; 'rad/s';... 
    'rad/s';... 
    }; 
OutputName = StateName(1:4); 
OutputUnit = StateUnit(1:4); 
%% PARAMETERS 
n_p = 13; % Number of parameters 
ParName  = {'Motor inertia'; ... 
    'Link side inertia '; ... 
    'HarmonicDrive reduction ratio'; ... 
    'Motor viscous friction';... 
    'Spring Damping';... 
    'Link viscous friction';... 
    'Input gain';... 
    'Spring stiffness constant';... 
    'Coulomb friction';... 
    'k3';... 
    'striebeck';... 
    'alpha';... 
    'beta';... 
    }; 
ParUnit  = {'kgm^2';'kgm^2'; '' ; ... 
  'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';'';... 
  'k3';... 
  '';'';'';... 
  }; 
Bm0 = 0.299278; 
%PARAMETER INITIALIZATION AND BOUNDARIES 
%           Jt   Jje    N   Bm   D     Be   Kin   K    tc   K3 
ParValue={0.0073; 0.3;  70; Bm0; 0.05; 0.1; 14.4;  40 ;0.315 ; 150;... 
       1.60667; 0.465822; 0.0445634;... 
    }; 
ParMin={0.00036543; 0.01;  70;Bm0-0.05;0.0450; eps(0); 14.025; 37;0.28; 

149;... 
1.36;   0.04; 0.004;... 
    }; 
ParMax={0.9;1;  70; Bm0+0.05; 0.075; 0.7;  14.975; 43;2.75;151;... 
10;  1.5;    1.05;... 
    };   

  
%% INITIAL STATES OF THE EXPERIMENT 
%Initial state instant 
val_state = 10; 
ends = 12000; 
vel1 = vel1_f;%vel1_f; vel1_noise; 
vel1_b = vel1_f_b;%vel1_noise_b; 
vel2 = vel2_f;%vel2_noise; 
vel2_b = vel2_f_b;%vel2_noise_b; 
vel1_c = vel1_f_c; 
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%% INITIAL STATES OF THE EXPERIMENT 
%Initial state instant 
val_state = 10; 
ends = 12000; 
vel1 = vel1_f;%vel1_f; vel1_noise; 
vel1_b = vel1_f_b;%vel1_noise_b; 
vel2 = vel2_f;%vel2_noise; 
vel2_b = vel2_f_b;%vel2_noise_b; 
vel1_c = vel1_f_c; 
vel2_c = vel2_f_c; 
%InitialStates Data set 1 
InitialStates = {encoders1(val_state) ; -encoders2(val_state); 

vel1(val_state); -vel2(val_state)}; 
InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates, ... 
    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 
%InitialStates Data set 2 
InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state) ; 

vel1_b(val_state); -vel2_b(val_state)}; 
InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates_b, ... 
    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 
%% Create the idnlgrey object and the iddata object 
FileName      = 'model1';               % File describing the model 

structure. 
Order         = [4 1 4];                 % Model orders [ny nu nx]. 
Parameters    = struct('Name', ParName, 'Unit', ParUnit, 'Value', 

ParValue, ... 
    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 
Ts            = 0; 
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,     ... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 
%Adapt the data set sample time before puting it into the iddata object 
z = iddata({[encoders1(val_state:ends)' -encoders2(val_state:ends)' 

vel1(val_state:ends) -vel2(val_state:ends)],... 
            [encoders1_b(val_state:ends)' -encoders2_b(val_state:ends)' 

vel1_b(val_state:ends) -vel2_b(val_state:ends)]... 
            [encoders1_c(val_state:ends)' -encoders2_c(val_state:ends)' 

vel1_c(val_state:ends) -vel2_c(val_state:ends)]... 
            },{tension_s(val_state:ends)-2.5 

tension_s_b(val_state:ends)-2.5... 
            tension_s_c(val_state:ends)-2.5... 
            }, 0.001); 

         
z.Name = 'Datos del experimento'; 
z.InputName = nlgr.InputName; 
z.InputUnit = nlgr.InputUnit; 
z.OutputName = nlgr.OutputName; 
z.OutputUnit = nlgr.OutputUnit; 
z.ExperimentName = {'Estimation1' 'Estimation2'... 
    'Validation'... 
}; 
z.Tstart = 0; 
z.TimeUnit = 's'; 
present(z) 

  
%% Identification of the parameters with the model structure specified 

in the idnlgrey object 
%% First data set: Estimation 
% Parameters(1).Fixed = true; 
% Parameters(2).Fixed = true; 
Parameters(3).Fixed = true; 
Parameters(4).Fixed = true; 
% Parameters(5).Fixed = true; 
% Parameters(6).Fixed = true; 
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%% Identification of the parameters with the model structure specified 

in the idnlgrey object 
%% First data set: Estimation 
% Parameters(1).Fixed = true; 
% Parameters(2).Fixed = true; 
Parameters(3).Fixed = true; 
Parameters(4).Fixed = true; 
% Parameters(5).Fixed = true; 
% Parameters(6).Fixed = true; 
Parameters(7).Fixed = true; 
% Parameters(8).Fixed = true; 
% Parameters(9).Fixed = true; 
% Parameters(10).Fixed = true; 
% Estimation options (Searchmethod, max iterations...) 
% Searchmethod = 'lm'; % 'lsqnonlin' 'gna' 'lm' 
% nlgr.SimulationOptions.RelTol = 1e-5; 
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on'); 
opt.SearchOption.MaxIter = 15; 
% First data set estimation 
nlgr1 = nlgreyest(getexp(z,1), nlgr, opt); 

  
%% Second data set: Validation 1 
% Get estimated parameters in the first step 
for i=1:n_p 
ParValue(i)={nlgr1.Parameters(i).Value}; 
end 

  
% Introduce the parameters (ParValue) in the new structure (Parameters) 

for the next estimation 
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', 

ParValue, ... 
    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 
% Fix parameters from nlgr 
% Parameters(1).Fixed = true; 
% Parameters(2).Fixed = true; 
Parameters(3).Fixed = true; 
Parameters(4).Fixed = true; 
% Parameters(5).Fixed = true; 
% Parameters(6).Fixed = true; 
Parameters(7).Fixed = true; 
% Parameters(8).Fixed = true; 
% Parameters(9).Fixed = true; 
% Parameters(10).Fixed = true; 

  
% Build the idnlgrey object with the parameters estimated in the last 

step and 
% with the new initial states 
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     

... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
% Estimate again with the second data set and the parameters obtained 

in the previous step. 
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on'); 
opt.SearchOption.MaxIter = 15; 
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on'); 
% opt1.SearchOption.MaxIter = 2; 

  
%Same initial parameters with different search methods 
nlgr2 = nlgreyest(getexp(z,1), nlgr, opt); 
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1); 

  
%% Third data set : Validation 
% Plot data and compare to identified NLGR and parameter result 
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% Estimate again with the second data set and the parameters obtained 

in the previous step. 
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on'); 
opt.SearchOption.MaxIter = 15; 
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on'); 
% opt1.SearchOption.MaxIter = 2; 

  
%Same initial parameters with different search methods 
nlgr2 = nlgreyest(getexp(z,1), nlgr, opt); 
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1); 

  
%% Third data set : Validation 
% Plot data and compare to identified NLGR and parameter result 

evaluation 
%% Compare the estimated model response with the data sets 
n_ds = 3; % Number of data sets 
set(gcf,'DefaultLegendLocation','southeast'); 
figure 
compare(getexp(z,n_ds), nlgr1, nlgr2); 
figure 
compare(getexp(z,n_ds-1), nlgr1, nlgr2); 
%% 1 step prediction error 
% figure 
% pe(getexp(z,n_ds), nlgr,'b'); 

  
figure 
pe(getexp(z,n_ds), nlgr2,'k'); 

  
% Check residuals  
figure('Name',[nlgr.Name ': residuals of estimated model']); 
resid(getexp(z,n_ds),nlgr2); 

  
% figure 
% resid(getexp(z,n_ds),nlgr1,'r'); 

  
%% Check step response and covariance 
figure 
step(nlgr2); 

  
getcov(nlgr2) 
nlgr2.NoiseVariance 

  
present(nlgr1); 
present(nlgr2); 
% present(nlgr3); 
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1.1.4 Harmonic drive model with nonlinear elasticity, trigonometric friction and hysteresis. 

1.1.4.1 H.D model (Cubic elasticity, Bouc-Wen hysteresis, trigonometric friction) 

 

 
void compute_dx(double *dx, double *x, double *u, double **p) 
{ 
    /* Declaration of model parameters and intermediate variables. */ 
    double *JmKR, *Jje, *N, *D, *be, *bmKw, *Kin, *k1, *tcKR, *A, *B , 

*n, *w, *k3, *Fs, *alpha_f, *beta_f; 

                      
    double delta_e, delta_ep, tau_h, tau_f, k_nl; 
    double c_c = 2.3/0.217; // Conversion from torque to voltage with 

motor constants 
    /* Retrieve model parameters. */ 
    JmKR = p[0];   /* Momento de inercia del motor                       
    Jje = p[1];    /* Momento de inercia del elemento                    
    N = p[2];       /* Factor de reduccoÃ³n del HarmonicDrive              
    bmKw=p[3]; 
    D=p[4]; 
    be=p[5]; 
    Kin=p[6]; 
    k1 = p[7]; 
    tcKR = p[8]; 
    /*Hysteresis parameters*/ 
    A = p[9]; 
    n = p[10]; 
    B = p[11]; 
    w = p[12]; 
    k3 = p[13]; 
    C = p[14]; 
    Fs = p[15]; 
    alpha_f = p[16]; 
    beta_f = p[17]; 
    /*Ecuaciones + NL elasticidad*/ 
    /*Torsional angle*/ 
    delta_e = x[1]-x[0]/N[0];   // Torsional angle 
    delta_ep = x[3]-x[2]/N[0];  // Torsional speed 
    k_nl = k1[0]*delta_e+k3[0]*pow(delta_e,3); 
    tau_h = w[0]*k_nl+D[0]*delta_ep+(1-w[0])*k_nl*x[4];       
    tau_f = 

bmKw[0]*x[2]+(tcKR[0]+Fs[0]/cosh(alpha_f[0]*x[2])*tanh(beta_f[0]*x[2])); 
    /* State equations. */ 
    /* x[0] angulo del motor */ 
    /* x[1] angulo del elemento*/ 
    /* x[2] velocidad del motor*/ 
    /* x[3] velocidad del elemento*/ 
    /* x[4] Internal state hysteresis*/ 
    dx[0] = x[2]; 
    dx[1] = x[3];   
    dx[2] = (Kin[0]*u[0]+(tau_h*c_c/N[0])-tau_f)/JmKR[0]; 
    dx[3] = (-tau_h-be[0]*x[3])/Jje[0]; 
    dx[4] = (A[0]-pow(x[4],n[0])*B[0])*x[2]; 
} 

 

  
/* Output equations. */ 
void compute_y(double y[], double x[]) 
{ 
    y[0] = x[0]; 
    y[1] = x[1]; 
    y[2] = x[2]; 
    y[3] = x[3]; 
} 
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/* Output equations. */ 
void compute_y(double y[], double x[]) 
{ 
    y[0] = x[0]; 
    y[1] = x[1]; 
    y[2] = x[2]; 
    y[3] = x[3]; 
} 
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1.1.3.2 Identification script for HD model with cubicNL elasticity, hysteresis and trigonometric friction.  

 

 

%% COMPILE THE FILE CONTAINING THE MODEL 
clc, clear; 
addpath('C:\Users\Rafael C\Desktop\Complete_model_ident') 
run ('script_3experiments');  
mex model1_knl_h.c 

  
%% INPUT, OUTPUT AND STATE NAME AND UNITS DEFINITIONS 
InputName = {'DAC voltage'}; 
InputUnit = {'V'}; 

  
StateName  = {'theta'; ...   %Motor angle 
    'q'; ...                 %Link angle 
    'th_p'; ...              %Motor speed 
    'q_p'; ...               %Link speed 
    'z'; ...                 %Hysteresis internal state 
    }; 

  
StateUnit  = {'rad'; 'rad'; 'rad/s';... 
    'rad/s'; '';... 
    }; 

  
OutputName = StateName(1:4); 
OutputUnit = StateUnit(1:4); 

  
%% PARAMETERS 
n_p = 17; % Number of parameters 

  
ParName  = {'Motor inertia'; ... 
    'Link side inertia '; ... 
    'HarmonicDrive reduction ratio'; ... 
    'Motor viscous friction';... 
    'Spring Damping';... 
    'Link viscous friction';... 
    'Current to torque motor constant';... 
    'Spring stiffness constant 1';... 
    'Coulomb friction';... 
    'A';... 
    'n';... 
    'B';... 
    'w';... 
    'Spring stiffness constant 3';... 
    'Fs';... 
    'alpha';... 
    'beta';... 
    }; 

  
ParUnit  = {'kgm^2';'kgm^2'; '' ; ... 
  'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';'';... 
  'Nm';'';'';... 
  '';'';'';'';'';... 
  }; 
  

 
Bm0 = 0.299278; 

  
%PARAMETER INITIALIZATION AND BOUNDARIES 
%           Jt         Jje    N   Bm   D     Be     Kin     K1      tc 
ParValue={0.00736543; 0.03;  70; Bm0; 0; 0.001; 14.4;  650 ;0.3007 ;... 
     1.7218e-04; 0.1; 0.2; ... 
    0.2;   2;  0.2; 0.5;  110;... 
    }; 
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Bm0 = 0.299278; 

 
%PARAMETER INITIALIZATION AND BOUNDARIES 
%           Jt         Jje    N   Bm   D     Be     Kin     K1      tc 
ParValue={0.00736543; 0.03;  70; Bm0; 0; 0.001; 14.4;  650 ;0.3007 ;... 
     1.7218e-04; 0.1; 0.2; ... 
    0.2;   2;  0.2; 0.5;  110;... 
    }; 

     
ParMin={0.004; 0;  70;Bm0-0.1;0; eps(0); 14.325; 10;0.28;... 
    1e-4; 0.0001; 0.0001 ; ... 
    0.00001; 1;   0.001;   0; 0.001;... 
    }; 

  
ParMax={0.009;10;  70; Bm0+0.1; 0; 0.009;  14.475; 80000;0.315;... 
    2.5e-4; 100; 100; ... 
    200;    3; 200;  1;    20000;... 
    };   

  
Parameters(3).Fixed = true; 

  
%% INITIAL STATES OF THE EXPERIMENT 
%Initial state instant 
val_state = 10; 
vel1 = vel1_f;%vel1_f; vel1_noise; 
vel1_b = vel1_f_b;%vel1_noise_b; 
vel2 = vel2_f;%vel2_noise; 
vel2_b = vel2_f_b;%vel2_noise_b; 
vel1_c = vel1_f_c; 
vel2_c = vel2_f_c; 

  
%InitialStates Data set 1 
InitialStates = {encoders1(val_state) ; -encoders2(val_state); 

vel1(val_state); -vel2(val_state);0}; 
InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates, ... 
    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

  
%InitialStates Data set 2 
InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state) ; 

vel1_b(val_state); -vel2_b(val_state);0}; 
InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates_b, ... 
    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

  

  
%% Create the idnlgrey object and the iddata object 
FileName      = 'model1_knl_h';               % File describing the 

model structure. 
Order         = [4 1 5];                 % Model orders [ny nu nx]. 
Parameters    = struct('Name', ParName, 'Unit', ParUnit, 'Value', 

ParValue, ... 
    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 

  
Ts            = 0; 

  
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,     ... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
%Adapt the data set sample time before puting it into the iddata object 
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)],... 
            [encoders1_b(val_state:end)' -encoders2_b(val_state:end)' 
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nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,     ... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
%Adapt the data set sample time before puting it into the iddata object 
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)],... 
            [encoders1_b(val_state:end)' -encoders2_b(val_state:end)' 

vel1_b(val_state:end) -vel2_b(val_state:end)]... 
            [encoders1_c(val_state:end)' -encoders2_c(val_state:end)' 

vel1_c(val_state:end) -vel2_c(val_state:end)]... 
            },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5... 
            tension_s_c(val_state:end)-2.5... 
            }, 0.001); 

         
z.Name = 'Datos del experimento'; 
z.InputName = nlgr.InputName; 
z.InputUnit = nlgr.InputUnit; 
z.OutputName = nlgr.OutputName; 
z.OutputUnit = nlgr.OutputUnit; 
z.ExperimentName = {'Estimation' 'Validation1'... 
    'Validation2'... 
}; 
z.Tstart = 0; 
z.TimeUnit = 's'; 
present(z) 

  
%% Identification of the parameters with the model structure specified 

in the idnlgrey object 
%% First data set: Estimation 1 
% Estimation options (Searchmethod, max iterations...) 
Searchmethod = 'lm'; % 'lsqnonlin' 'gna' 'lm' 
% nlgr.SimulationOptions.RelTol = 1e-5; 
opt = nlgreyestOptions('SearchMethod', Searchmethod, 'Display', 'on'); 
opt.SearchOption.MaxIter = 15; 
% First data set estimation 
nlgr1 = nlgreyest(getexp(z,1), nlgr, opt); 

  
%% Second data set: Estimation 2 
% Get estimated parameters in the first step 
for i=1:n_p 
ParValue(i)={nlgr1.Parameters(i).Value}; 
end 

  
% Introduce the parameters (ParValue) in the new structure (Parameters) 

for the next estimation 
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', 

ParValue, ... 
    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 
% Fix parameters from nlgr 
Parameters(3).Fixed = true; 

  
% Build the idnlgrey object with the parameters estimated in the last 

step and 
% with the new initial states 
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     

... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
% Estimate again with the second data set and the parameters obtained 

in the previous step. 
opt = nlgreyestOptions('SearchMethod', 'lsqnonlin', 'Display', 'on'); 
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% Build the idnlgrey object with the parameters estimated in the last 

step and 
% with the new initial states 
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     

... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
% Estimate again with the second data set and the parameters obtained 

in the previous step. 
opt = nlgreyestOptions('SearchMethod', 'lsqnonlin', 'Display', 'on'); 
opt.SearchOption.MaxIter = 25; 
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on'); 
% opt1.SearchOption.MaxIter = 2; 

  
%Same initial parameters with different search methods 
nlgr2 = nlgreyest(getexp(z,2), nlgr, opt); 
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1); 

  
%% Third data set : Validation  
%% Plot data and compare to identified NLGR and parameter result 

evaluation 
%% Compare the estimated model response with the 3 data sets 
n_ds = 3; % Number of data sets 
set(gcf,'DefaultLegendLocation','southeast'); 
figure 
compare(getexp(z,n_ds), nlgr1,nlgr2); 

  
%% 1 step prediction error 
% figure 
% pe(getexp(z,n_ds), nlgr,'b'); 

  

  
% figure 
% pe(getexp(z,n_ds), nlgr1,'k'); 

  

  
%% Check residuals  
% figure('Name',[nlgr.Name ': residuals of estimated model']); 
% resid(getexp(z,n_ds),nlgr); 

  

  
% figure 
% resid(getexp(z,n_ds),nlgr1,'r'); 

  

  
%% Check step response and covariance 
% figure 
% step(nlgr); 
%  
% getcov(nlgr) 
% nlgr.NoiseVariance 

  
present(nlgr1); 
present(nlgr2); 
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1.2 Current control 

1.2.3 Harmonic drive model with nonlinear elasticity and trigonometric friction. 

1.2.3.1 H.D model (Cubic elasticity, no hysteresis, trigonometric friction) 

 

 

void compute_dx(double *dx, double *x, double *u, double **p) 
{ 
    /* Declaration of model parameters and intermediate variables. */ 
    double *Jm, *Je, *N, *D, *be, *bm, *Kin, *k1, *tc, *Fs, *alpha_f, 

*beta_f, *k3;                     
    double delta_e, delta_ep, tau_e, tau_f, k_nl; 
    /* Retrieve model parameters. */ 
    Jm = p[0];   /* Momento de inercia del motor                       
    Je = p[1];    /* Momento de inercia del elemento                   
    N = p[2];       /* Factor de reduccoÃ³n del HarmonicDrive              
    bm=p[3]; 
    D=p[4]; 
    be=p[5]; 
    Kin=p[6]; 
    k1 = p[7]; 
    tc = p[8]; 
    Fs = p[9]; 
    alpha_f = p[10]; 
    beta_f = p[11]; 
    k3 = p[12]; 
    /*Ecuaciones + NL elasticidad*/ 
    /*Torsional angle*/ 
    delta_e = x[1]-x[0]/N[0];   // Torsional angle 
    delta_ep = x[3]-x[2]/N[0];  // Torsional speed 
    k_nl = k1[0]*delta_e+k3[0]*pow(delta_e,3); 
    tau_e = k_nl+D[0]*delta_ep;      // Linear elastic torque 
    tau_f = 

bm[0]*x[2]+(tc[0]+Fs[0]/cosh(alpha_f[0]*x[2])*tanh(beta_f[0]*x[2])); 
    /* State equations. */ 
    /* x[0] angulo del motor */ 
    /* x[1] angulo del elemento*/ 
    /* x[2] velocidad del motor*/ 
    /* x[3] velocidad del elemento*/ 
    dx[0] = x[2]; 
    dx[1] = x[3];   
    dx[2] = (Kin[0]*u[0]+tau_e/N[0]-tau_f)/Jm[0]; 
    dx[3] = (-tau_e-be[0]*x[3])/Je[0];          
} 

  
/* Output equations. */ 
void compute_y(double y[], double x[]) 
{ 
    y[0] = x[0]; 
    y[1] = x[1]; 
    y[2] = x[2]; 
    y[3] = x[3]; 
} 
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1.2.3.2 Identification script for HD model with cubicNL elasticity, hysteresis and trigonometric friction.  

 

 

%% COMPILE THE FILE CONTAINING THE MODEL 
addpath('C:\Users\Rafael C\Desktop\SINGLESINUSCURRENT') 
mex model_current.c 
run('script_3experiments.m') 
%% INPUT, OUTPUT AND STATE DEFINITIONS 
InputName = {'DAC'}; 
InputUnit = {'V'}; 
StateName  = {'theta'; ...   %Motor angle 
    'q'; ...                 %Link angle 
    'th_p'; ...              %Motor speed 
    'q_p'; ...               %Link speed 
    }; 
StateUnit  = {'rad'; 'rad'; 'rad/s'; 'rad/s';}; 
OutputName = StateName(1:4); 
OutputUnit = StateUnit(1:4); 
%% PARAMETERS 
n_p = 13; 
ParName  = {'Motor side inertia'; ... 
    'Link side inertia'; ... 
    'HarmonicDrive reduction ratio'; ... 
    'Motor viscous friction';... 
    'Spring Damping';... 
    'Link viscous friction';... 
    'Input constant';... 
    'Spring stiffness constant';... 
    'Coulomb friction';... 
    'Striebeck';... 
    'Alpha_f';... 
    'Beta_f';... 
    'k3';... 
    }; 
ParUnit  = {'kgm^2'; 'kgm^2'; '' ; ... 
  'Nms/rad';'Nms/rad'; 'Nms/rad'; 'Nm/A';'Nm/rad';... 
  'Nm/rad';... 
  '';'';'';'';... 
  };  
Kin = 1.78/2.5*0.217*2; %P7 
tc = 0.0297;%previous steps 0.03 
Bm = 0.0064; %P4 
%PARAMETER INITIALIZATION AND BOUNDARIES 
%           Jm      Je     N    Bm      D     Be         Kin     K1       
ParValue={6.8874e-4; 0.0215;  70; Bm;  0.0562;  0.1538;     Kin;    

40.4364;... 
    tc;   0.398629;  0.2; 0.399435; 150;... % tc , Fs , alpha, beta 
    }; 
ParMin={0.00000306;     0;  70; 0;  1e-6; eps(0);  0.002;        2;... 
    0.0001; 0.0004;   0.0001;   0.00001; 140;... 
    };  
ParMax={         1;    10;  70; 100;   1000;     2;  1000;     

90000;... 
    0.4;    200; 200;  200; 151;... 
    };   

  

  
%% INITIAL STATES OF THE EXPERIMENT 
%Initial state instant 
val_state = 10; 
vel1 = vel1_f;%vel1_f; vel1_noise; 
vel1_b = vel1_f_b;%vel1_noise_b; 
vel2 = vel2_f;%vel2_noise; 
vel2_b = vel2_f_b;%vel2_noise_b; 
% vel1_c = vel1_f_c; 
% vel2_c = vel2_f_c; 
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%% INITIAL STATES OF THE EXPERIMENT 
%Initial state instant 
val_state = 10; 
vel1 = vel1_f;%vel1_f; vel1_noise; 
vel1_b = vel1_f_b;%vel1_noise_b; 
vel2 = vel2_f;%vel2_noise; 
vel2_b = vel2_f_b;%vel2_noise_b; 
% vel1_c = vel1_f_c; 
% vel2_c = vel2_f_c; 

  
%InitialStates Data set 1 
InitialStates = {encoders1(val_state) ; -encoders2(val_state); 

vel1(val_state); -vel2(val_state)}; 
InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates, ... 
    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

  
%InitialStates Data set 2 
InitialStates_b = {encoders1_b(val_state) ; -encoders2_b(val_state) ; 

vel1_b(val_state); -vel2_b(val_state)}; 
InitialStates_b = struct('Name', StateName, 'Unit', StateUnit, 'Value', 

InitialStates_b, ... 
    'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true); 

  

  

  
%% Create the idnlgrey object and the iddata object 
FileName      = 'model_current';               % File describing the 

model structure. 
Order         = [4 1 4];                 % Model orders [ny nu nx]. 

  
Parameters    = struct('Name', ParName, 'Unit', ParUnit, 'Value', 

ParValue, ... 
    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 

  
Parameters(3).Fixed = true; 
Parameters(4).Fixed = true; 
Parameters(5).Fixed = true; 
Parameters(8).Fixed = true; 
% Parameters(9).Fixed = true; 
Parameters(13).Fixed = true; 

  
Ts            = 0; 

  
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,     ... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
%Adapt the data set sample time before puting it into the iddata object 
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)],... 
            [encoders1_b(val_state:end)' -encoders2_b(val_state:end)' 

vel1_b(val_state:end) -vel2_b(val_state:end)]... 
            [encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)]... 
            },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5... 
            tension_s(val_state:end)-2.5... 
            }, 0.001); 

         
z.Name = 'Datos del experimento'; 
z.InputName = nlgr.InputName; 
z.InputUnit = nlgr.InputUnit; 
z.OutputName = nlgr.OutputName; 
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%Adapt the data set sample time before puting it into the iddata object 
z = iddata({[encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)],... 
            [encoders1_b(val_state:end)' -encoders2_b(val_state:end)' 

vel1_b(val_state:end) -vel2_b(val_state:end)]... 
            [encoders1(val_state:end)' -encoders2(val_state:end)' 

vel1(val_state:end) -vel2(val_state:end)]... 
            },{tension_s(val_state:end)-2.5 tension_s_b(val_state:end)-

2.5... 
            tension_s(val_state:end)-2.5... 
            }, 0.001); 

         
z.Name = 'Datos del experimento'; 
z.InputName = nlgr.InputName; 
z.InputUnit = nlgr.InputUnit; 
z.OutputName = nlgr.OutputName; 
z.OutputUnit = nlgr.OutputUnit; 
z.ExperimentName = {'Estimation1' 'Estimation2'... 
    'Validation'... 
}; 
z.Tstart = 0; 
z.TimeUnit = 's'; 
present(z) 

  
% ESTIMATE THE MODEL 
% nlgr.SimulationOptions.RelTol = 1e-5; 

  
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on'); 
opt.SearchOption.MaxIter = 20; 

  
nlgr1 = nlgreyest(getexp(z,1), nlgr, opt); 

  
%% Second data set: Validation 1 
% Get estimated parameters in the first step 
for i=1:n_p 
ParValue(i)={nlgr1.Parameters(i).Value}; 
end 

  
% Introduce the parameters (ParValue) in the new structure (Parameters) 

for the next estimation 
Parameters = struct('Name', ParName, 'Unit', ParUnit, 'Value', 

ParValue, ... 
    'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false); 
% Fix parameters from nlgr 
Parameters(3).Fixed = true; 
Parameters(4).Fixed = true; 
Parameters(5).Fixed = true; 
Parameters(8).Fixed = true; 
Parameters(9).Fixed = true; 
Parameters(13).Fixed = true; 

  
% Build the idnlgrey object with the parameters estimated in the last 

step and 
% with the new initial states 
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     

... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
% Estimate again with the second data set and the parameters obtained 

in the previous step. 
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on'); 
opt.SearchOption.MaxIter = 20; 
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on'); 
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% Build the idnlgrey object with the parameters estimated in the last 

step and 
% with the new initial states 
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates_b, Ts,     

... 
    'Name', 'Respuesta simulada', 'InputName', InputName, ... 
    'InputUnit', InputUnit, 'OutputName', OutputName,   ... 
    'OutputUnit', OutputUnit,  'TimeUnit', 's'); 

  
% Estimate again with the second data set and the parameters obtained 

in the previous step. 
opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on'); 
opt.SearchOption.MaxIter = 20; 
% opt1 = nlgreyestOptions('SearchMethod', 'gna', 'Display', 'on'); 
% opt1.SearchOption.MaxIter = 2; 

  
%Same initial parameters with different search methods 
nlgr2 = nlgreyest(getexp(z,2), nlgr, opt); 
% nlgr1 = nlgreyest(getexp(z,2), nlgr, opt1); 

  
%% Third data set : Validation 
% Plot data and compare to identified NLGR and parameter result 

evaluation 
%% Compare the estimated model response with the data sets 
n_ds = 3; % Number of data sets 
set(gcf,'DefaultLegendLocation','southeast'); 
figure 
compare(getexp(z,n_ds-1), nlgr1, nlgr2); 

  
figure 
compare(getexp(z,n_ds), nlgr1, nlgr2); 
%  
% % 1 step prediction error 
% figure 
% pe(z, nlgr); 
%  
% % Check residuals  
% figure('Name',[nlgr.Name ': residuals of estimated model']); 
% resid(z,nlgr); 
%  
% % Check step response 
% figure 
% step(nlgr); 
%  
% % Check covariance  
%  
getcov(nlgr) 
nlgr.NoiseVariance 
present(nlgr1) 
present(nlgr2) 
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2. Keil uVison code 

2.1 Main.c 

 

/* Include core modules */ 

#include "stm32f4xx.h" 

/* Include my libraries here */ 

#include "defines.h" 

#include "tm_stm32f4_delay.h" 

#include "tm_stm32f4_disco.h" 

#include "tm_stm32f4_usb_vcp.h" 

#include "tm_stm32f4_sdram.h" 

#include <math.h> 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include "encoder.h" 

#include "init.h" 

#include "led.h" 

#include "fonctions.h" 

extern volatile int8_t flag_Exp; 

// MAIN PROGRAM 

int main(void) { 

int32_t Encoder1, Encoder2 =0; 

int32_t Encoder1_anterior, Encoder2_anterior=0; 

float Encoder1_rad, Encoder2_rad = 0; 

float Encoder1_rad_previous, Encoder2_rad_previous = 0; 

float vel_Encoder1, vel_Encoder2 =0; 

float vel_Encoder1_anterior, vel_Encoder2_anterior = 0; 

float Read, Read2, Read3, Read4, Read5, Read6; 

char cadena; 

 uint32_t t, aux = 0; 

 

 float tension_value; 

 float vumbral = 1000; 

 float saturador, saturador2 =0; 

 float enc_offset = 205.22; 
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char cadena; 

uint32_t t, aux = 0; 

float tension_value; 

float vumbral = 1000; 

float saturador, saturador2 =0; 

float enc_offset = 205.22; 

float enc_offset2 = 205.22+0.67; 

float v_aux1, v_aux2; 

float tiempo; 

float tsampling = 0.001;  // change for different controltimer frequency 

int time_experiment = 8000 ; // change for different controltimer frequency 

int time_s = time_experiment/1000; // change for different controltimer frequency 

int tsignal; 

//--------------------------------------------------------------// 

FULL_INIT_stm();  //System initialization 

init_experiment(); // Experiment initialization 

//--------------------------------------------------------------// 

//-----------------experiment start ----------------------------// 

int i = 0; 

for(i=0;i<=time_experiment;i++){ 

flag_Exp = 0; 

tiempo = t*tsampling; 

tsignal = tiempo; 

Encoder1 = TIM_GetCounter(TIM8); 

Encoder2 = TIM_GetCounter(TIM4); 

Encoder1_rad = Encoder1*2*3.1415/2000; // *2 pi/resolution 

Encoder2_rad = Encoder2*2*3.1415/2000; // *2 pi/resolution 

//--------------------------------------------------------------// 

// if timer saturates, the speed equals the previous speed . 

if (Encoder1_rad - Encoder1_rad_previous >= 200 | Encoder1_rad_previous - Encoder1_rad 

>=200) { // encoder 1 

vel_Encoder1 = vel_Encoder1_anterior; } 

  else vel_Encoder1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling; 

 // (rad/s) 

   

  if (Encoder2_rad - Encoder2_rad_previous >= 200 | Encoder2_rad_previous - 
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//--------------------------------------------------------------// 

// if timer saturates, the speed equals the previous speed . 

if (Encoder1_rad - Encoder1_rad_previous >= 200 | Encoder1_rad_previous - Encoder1_rad >=200) { 

// encoder 1 

vel_Encoder1 = vel_Encoder1_anterior; } 

else vel_Encoder1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling;  // (rad/s) 

if (Encoder2_rad - Encoder2_rad_previous >= 200 | Encoder2_rad_previous - Encoder2_rad >=200){ 

// encoder 2 

vel_Encoder2 = vel_Encoder2_anterior; 

} 

else vel_Encoder2 = (Encoder2_rad - Encoder2_rad_previous) / tsampling;  // (rad/s) 

//--------------------------------------------------------------// 

/* 

// Corregir posición y volver a calcular la velocidad con posicion correcta 

 

v_aux1 = (Encoder1_rad - Encoder1_rad_previous) / tsampling; 

v_aux2 = (Encoder2_rad - Encoder2_rad_previous) / tsampling; 

if(v_aux1 <- vumbral){ 

saturador += enc_offset; 

}else if(v_aux1 > vumbral){ 

saturador -=  enc_offset; 

} 

if(v_aux2 <- vumbral){ 

saturador2 += enc_offset2; 

}else if(v_aux2 > vumbral){ 

saturador2 -= enc_offset2;  } 

*/ 

 

//--------------------------------------------------------------// 

//-------------+-- tension_value --------------------------------// 

int r = rand() % 5; 

 float urand = (r-2.5)*0.25; 

float u = (sin(2*3.1415*tiempo*5) + 5*sin(2*3.1415*tiempo*15)+ sin(2*3.1415*tiempo*0.5) + 

0.75*cos(2*3.1415*2*tiempo) )/10 + 3.75; 
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//--------------- tension_value --------------------------------// 

// Different signals as input for the experiments 

// Random number generation 

int r = rand() % 5; 

float urand = (r-2.5)*0.25; 

// Multisinus input 

float u = (sin(2*3.1415*tiempo*5) + 5*sin(2*3.1415*tiempo*15)+ sin(2*3.1415*tiempo*0.5) + 

0.75*cos(2*3.1415*2*tiempo) )/10 + 3.75; 

// Single sinus 

float sins = (1.5*sin(2*3.1415*tiempo))+2.5+urand; 

// Chirp signal 

float chirp = 0.325*cos(2*3.1415*0.1*tiempo+(50-0.1)*tiempo*tiempo/(2*4))+2.5; 

// Determining the signal sent 

if (tiempo<0.25) 

tension_value =2.5; 

if (tiempo>0.25) 

tension_value = u; 

Motor1_Voltage(tension_value); //sending the value to the motor 

//--------------------------------------------------------------// 

//-------------Writing the data into the SDRAM, ENCODER WRAP FIXED----------------------------// 

TM_SDRAM_WriteFloat(aux, Encoder1_rad +saturador ); 

TM_SDRAM_WriteFloat(aux+8, Encoder2_rad + saturador2 ); 

TM_SDRAM_WriteFloat(aux+16, vel_Encoder1); 

TM_SDRAM_WriteFloat(aux+24, vel_Encoder2); 

TM_SDRAM_WriteFloat(aux+32, tension_value); 

TM_SDRAM_WriteFloat(aux+40, tiempo ); 

aux += 48; 

 

vel_Encoder1_anterior = vel_Encoder1; 

  Encoder1_anterior = Encoder1; 

  Encoder1_rad_previous = Encoder1_rad; 

  

  vel_Encoder2_anterior = vel_Encoder2; 

  Encoder2_anterior = Encoder2; 

  Encoder2_rad_previous = Encoder2_rad; 
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vel_Encoder1_anterior = vel_Encoder1; 

Encoder1_anterior = Encoder1; 

Encoder1_rad_previous = Encoder1_rad; 

 

vel_Encoder2_anterior = vel_Encoder2; 

Encoder2_anterior = Encoder2; 

Encoder2_rad_previous = Encoder2_rad; 

 

while(flag_Exp != 1); 

t++; 

} 

end_experiment(); 

 

//--------------------------------------------------------------// 

//---------------READING THE DATA FROM THE SDRAM AND SENDING IT BY USB ----------------// 

aux = 0; 

if (TM_USB_VCP_GetStatus() == TM_USB_VCP_CONNECTED) { 

TM_USB_VCP_Puts("A = ["); 

for (i = 0; i < time_experiment; i++) { 

Read =  TM_SDRAM_ReadFloat(aux); 

Read2 = TM_SDRAM_ReadFloat(aux+8); 

Read3 = TM_SDRAM_ReadFloat(aux+16); 

Read4 = TM_SDRAM_ReadFloat(aux+24); 

Read5 = TM_SDRAM_ReadFloat(aux+32); 

Read6 = TM_SDRAM_ReadFloat(aux+40); 

aux += 48; 

 

sprintf(&cadena,"%f %f %f %f %f %f \r\n", Read , Read2, Read3, Read4, Read5, Read6); 

   TM_USB_VCP_Puts(&cadena); 

   Delayms(5); 

  } 

  TM_USB_VCP_Puts("];"); 

 } 

//--------------------------------------------------------------// 

//--------------------------------------------------------------// 
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sprintf(&cadena,"%f %f %f %f %f %f \r\n", Read , Read2, Read3, Read4, Read5, Read6); 

TM_USB_VCP_Puts(&cadena); 

Delayms(5); 

} 

TM_USB_VCP_Puts("];"); 

} 

//--------------------------------------------------------------// 

//--------------------------------------------------------------// 

while(1); 

} 

//____________________________________________________________________________

_________// 
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2.2 Fonctions.c 

 

 

  

#include "stm32f4xx.h"                  // Device header 

// ------------------------------------------------------- 

void Motor1_Voltage(float value){ 

// DAC->DHR12R1 = value*4095/3*3/5; 

 DAC->DHR12R2 = value*4095/3*3/5; 

}  

// ------------------------------------------------------- 

// ------------------------------------------------------- 

void enable_escon(){    // Activation of PG15 

// ESCON ON  

 GPIO_ToggleBits(GPIOG, GPIO_Pin_15); 

 GPIOG->ODR &= 0xFFFF2FFF; 

 GPIOG->ODR |= 0x00002000; 

 GPIOG->ODR &= 0xFFFFBFFF; 

 GPIOG->ODR |= 0x00000000;  

} 

void desable_escon(){    // desactivation of PG15 

// ESCON OFF  

 GPIOG->ODR &= 0xFFFF7FFF; 

 GPIOG->ODR |= 0x00000000; 

 GPIOG->ODR &= 0xFFFFBFFF; 

 GPIOG->ODR |= 0x00004000;  

 GPIOG->ODR &= 0xFFFFDFFF; 

 GPIOG->ODR |= 0x00000000; 

} 
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2.3 Init.c 

 

/* Include core modules */ 

#include "stm32f4xx.h" 

/* Include my libraries here */ 

#include "defines.h" 

#include "tm_stm32f4_delay.h" 

#include "tm_stm32f4_disco.h" 

#include "tm_stm32f4_usb_vcp.h" 

#include "tm_stm32f4_sdram.h" 

#include "encoder.h" 

#include "led.h" 

#include "fonctions.h" 

int on=1, off=0; 

/*-----------------------------------------------------------------------*/ 

void Control_TimerInit(uint32_t frequency){ 

 uint16_t PrescalerValue; 

 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure; 

 NVIC_InitTypeDef NVIC_InitStructure; 

 uint32_t ARR; 

 uint32_t period; 

 ARR = 84000000.0F / ((420+1)*frequency) -1; 

 period = (int) ARR; 

 if(ARR != period){ 

  period++; 

 }// +1 en caso de numero fraccionario  

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); 

 //Set the prescaler value 

 PrescalerValue =420; 

 

 // Time base configuration 

 TIM_TimeBaseStructure.TIM_Period = period; 

 TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue; 

 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; 

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 

 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);  
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// Time base configuration 

 TIM_TimeBaseStructure.TIM_Period = period; 

 TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue; 

 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; 

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 

 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);  

 

 TIM_Cmd(TIM2, ENABLE); 

 

 // Enable the TIM2 gloabal Interrupt 

 NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; 

 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; 

 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; 

 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

 

 NVIC_Init(&NVIC_InitStructure); 

 

} 

/*-----------------------------------------------------------------------*/ 

 

 

 

 

 

 

 

 

void dac_init(void){ 

  

 GPIO_InitTypeDef GPIO_InitStructure; 

 DAC_InitTypeDef DAC_InitStructure; 

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; 

 

 /* GPIOA Periph clock enable */ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); 
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void dac_init(void){  

 GPIO_InitTypeDef GPIO_InitStructure; 

 DAC_InitTypeDef DAC_InitStructure; 

 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; 

 /* GPIOA Periph clock enable */ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); 

 /* GPIOD Periph clock enable */ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); 

 /* Enable DAC and GPIOC clock */ 

 //RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO | RCC_APB2Periph_GPIOA, ENABLE); 

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC | RCC_APB1Periph_TIM2, ENABLE); 

 /* Configure PA.04/05 (DAC) as output -------------------------*/ 

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5; 

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; 

 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; 

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; 

 GPIO_Init(GPIOA, &GPIO_InitStructure); 

 /* DAC channel1 & DAC_Channel_2 Configuration */ 

 DAC_InitStructure.DAC_Trigger = DAC_Trigger_None; 

 DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; 

 DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; 

 DAC_Init(DAC_Channel_2, &DAC_InitStructure); 

 DAC_Init(DAC_Channel_1, &DAC_InitStructure); 

 /* Enable DAC Channel1 & Channel2: Once the DAC is enabled, PA.05 is 

  automatically connected to the DAC converter. */ 

 DAC_Cmd(DAC_Channel_2, ENABLE); 

 DAC_Cmd(DAC_Channel_1, ENABLE); 

} 

/*-----------------------------------------------------------------------*/ 

void LED_init(){ 

 // On active le port G 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);  

 

 GPIO_InitTypeDef GPIO_InitStruct; 

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; 
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void LED_init(){ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);  

 GPIO_InitTypeDef GPIO_InitStruct; 

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; 

 GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; 

 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14; 

 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; 

 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_2MHz; 

 GPIO_Init(GPIOG, &GPIO_InitStruct); 

} 

void bouton_init(){ 

 /* Enable clock for GPIOD */ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);  

 /* Enable clock for SYSCFG */ 

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); 

 /* Set pin as input */ 

 GPIO_InitTypeDef GPIO_InitStructure; 

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; 

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;  

 GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed; 

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN; 

 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;  

 GPIO_Init(GPIOA, &GPIO_InitStructure); 

 /* Tell system that you will use PA0 for EXTI_Line0 */ 

 SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOA, EXTI_PinSource0); 

 /* PA0 is connected to EXTI_Line0 */ 

 EXTI_InitTypeDef EXTI_InitStruct; 

 EXTI_InitStruct.EXTI_Line = EXTI_Line0; 

  EXTI_InitStruct.EXTI_LineCmd = ENABLE; /* Enable interrupt */ 

  EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt; /* Interrupt mode */ 

  EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising; /* Triggers on rising and falling edge */ 

  EXTI_Init(&EXTI_InitStruct); /* Add to EXTI */ 

   

 // Enable the EXTI0 gloabal Interrupt 

 NVIC_InitTypeDef NVIC_InitStructure; 
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  EXTI_InitStruct.EXTI_LineCmd = ENABLE; /* Enable interrupt */ 

  EXTI_InitStruct.EXTI_Mode = EXTI_Mode_Interrupt; /* Interrupt mode */ 

  EXTI_InitStruct.EXTI_Trigger = EXTI_Trigger_Rising; /* Triggers on rising and falling edge */ 

  EXTI_Init(&EXTI_InitStruct); /* Add to EXTI */ 

   

 // Enable the EXTI0 gloabal Interrupt 

 NVIC_InitTypeDef NVIC_InitStructure; 

 NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; 

 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00; 

 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; 

 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

 NVIC_Init(&NVIC_InitStructure); 

  

} 

 

/* Set interrupt handlers */ 

/* Handle PA0 interrupt */ 

void EXTI0_IRQHandler() { 

    /* Make sure that interrupt flag is set */ 

    if (EXTI_GetITStatus(EXTI_Line0) != RESET) { 

        /* Do your stuff when PA0 is changed */ 

   GPIO_ToggleBits(GPIOG, GPIO_Pin_14 | GPIO_Pin_13 ); 

        /* Clear interrupt flag */ 

   EXTI_ClearITPendingBit(EXTI_Line0); 

    } 

} 

 

 

void homming_init(){ 

  

 /* Enable clock for GPIOD */ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);  

 /* Enable clock for SYSCFG */ 

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); 
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void FULL_INIT_stm(){ 

 SystemInit(); 

 encoder1_config();  

 encoder2_config();  

 encoder4_config(); 

 dac_init();  

 TM_DELAY_Init(); 

 TM_USB_VCP_Init(); 

  TM_DISCO_LedInit(); 

  TM_SDRAM_Init(); 

 LED_init();  

} 

/*-----------------------------------------------------------------------*/ 

void init_experiment(){ 

 desable_escon(); 

 Motor1_Voltage(2.5);    //2.5 for both directions (ESCON CONFIG OFFSET) 

// homming_init(); 

 Delayms(10000);   // Time  to open teraterm 

enable_escon();      // enable escon 

 Control_TimerInit(1000);  //  Control de 1 ms 

 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); // timer config 

} 

/*-----------------------------------------------------------------------*/ 

void end_experiment(){ 

 Motor1_Voltage(2.5); // le moteur ne bouge pas  

 desable_escon();   // On désactive le Escon  

 TIM_ITConfig(TIM2, TIM_IT_Update, DISABLE); 

} 

/*-----------------------------------------------------------------------*/ 

/*-----------------------------------------------------------------------*/ 

/*-----------------------------------------------------------------------*/ 
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2.4 Encoder.c 

 

/* Include core modules */ 

#include "stm32f4xx.h" 

/* Include my libraries here */ 

#include "fonctions.h" 

void encoder1_config(void){  

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); 

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE);  

 GPIO_InitTypeDef GPIO_InitStructure; 

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; 

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; 

 GPIO_Init(GPIOC, &GPIO_InitStructure); 

 //Timer AF Pins Configuration 

 GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_TIM8); 

 GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_TIM8);  

 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure; 

 TIM_TimeBaseStructure.TIM_Period = 0xffff; 

 TIM_TimeBaseStructure.TIM_Prescaler = 0; 

 TIM_TimeBaseStructure.TIM_ClockDivision = 0; 

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 

 TIM_TimeBaseInit(TIM8, &TIM_TimeBaseStructure); 

 TIM_EncoderInterfaceConfig (TIM8, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, 

TIM_ICPolarity_Rising); 

 TIM_SetAutoreload (TIM8, 0xffff); 

 TIM_Cmd (TIM8, ENABLE); 

} 

 

// PD12 y PD13 

void encoder2_config(void){ 

 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);  

 

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);  
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// PD12 y PD13 

void encoder2_config(void){ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);  

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);  

 GPIO_InitTypeDef GPIO_InitStructure; 

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; 

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13; 

 GPIO_Init(GPIOD, &GPIO_InitStructure); 

 //Timer AF Pins Configuration 

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_TIM4); 

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_TIM4);  

 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure; 

 TIM_TimeBaseStructure.TIM_Period = 0xffff; 

 TIM_TimeBaseStructure.TIM_Prescaler = 0; 

 TIM_TimeBaseStructure.TIM_ClockDivision = 0; 

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 

 TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); 

 TIM_EncoderInterfaceConfig (TIM4, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, 

TIM_ICPolarity_Rising); 

 TIM_SetAutoreload (TIM4, 0xffff); 

 TIM_Cmd (TIM4, ENABLE); 

} 

 

// ----------------------------------------------------------------------------- 

// ----------------------------------------------------------------------------- 

 

 

void encoder4_config(){ 

  

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); 

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);  

 

 GPIO_InitTypeDef GPIO_InitStructure; 
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void encoder4_config(){ 

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); 

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);  

 GPIO_InitTypeDef GPIO_InitStructure; 

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; 

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; 

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_11; 

 GPIO_Init(GPIOE, &GPIO_InitStructure); 

 //Timer AF Pins Configuration 

 GPIO_PinAFConfig(GPIOE, GPIO_PinSource9, GPIO_AF_TIM5); 

 GPIO_PinAFConfig(GPIOE, GPIO_PinSource11, GPIO_AF_TIM5); 

 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure; 

 TIM_TimeBaseStructure.TIM_Period = 0xffff; 

 TIM_TimeBaseStructure.TIM_Prescaler = 0; 

 TIM_TimeBaseStructure.TIM_ClockDivision = 0; 

 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; 

 TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); 

 TIM_EncoderInterfaceConfig (TIM1, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, 

TIM_ICPolarity_Rising); 

 TIM_SetAutoreload (TIM1, 0xffff); 

 TIM_Cmd (TIM1, ENABLE); 

 /* Enable the TIM5 global Interrupt */ 

 NVIC_InitTypeDef NVIC_InitStructure; 

 NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn; 

 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; 

 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; 

 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; 

 NVIC_Init(&NVIC_InitStructure); 

} 

 

//void TIM5_IRQHandler(void){ 

// if (TIM_GetITStatus(TIM5, TIM_IT_Update) != RESET){ 

//   

//  GPIO_ToggleBits(GPIOG, GPIO_Pin_14 | GPIO_Pin_13 ); 

//   
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2.5 Stm32f4xx_it.c 

 

 

 

 

 

 

 

 

#include "stm32f4xx_it.h" 

#include "stm32f4xx_dac.h" 

#include "main.h" 

int8_t flag_Exp; 

void TIM2_IRQHandler(void)  

{ 

  if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) 

  { 

    //flag_Control = 1; 

   flag_Exp = 1; 

    

   //Clear interruption flag 

   TIM_ClearITPendingBit(TIM2, TIM_IT_Update);    

  } 

 }  
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