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Abstract 
 
The present Ph.D. thesis is motivated by the growing need in most companies, and 
specially (but not solely) those in the pharmaceutical, chemical, food and bioprocess 
fields, to increase the flexibility in their operating conditions in order to reduce produc-
tion costs while maintaining or even improving the quality of their products. To this 
end, this thesis focuses on the application of the concepts of the Quality by Design for 
the exploitation and development of already existing methodologies, and the develop-
ment of new algorithms aimed at the proper implementation of tools for the design of 
experiments, multivariate data analysis and process optimization, specially (but not 
only) in the context of mixture design. 

Part I – Preface, where a summary of the research work done, the main goals it aimed 
at and their justification, are presented. Some of the most relevant concepts related to 
the developed work in subsequent chapters are also introduced, such as those regarding 
design of experiments or latent variable-based multivariate data analysis techniques. 

Part II – Mixture design optimization, in which a review of existing mixture design 
tools for the design of experiments and data analysis via traditional approaches, as well 
as some latent variable-based techniques, such as Partial Least Squares (PLS), is pro-
vided. A kernel-based extension of PLS for mixture design data analysis is also pro-
posed, and the different available methods are compared to each other. Finally, a brief 
presentation of the software MiDAs is done. MiDAs has been developed in order to 
provide users with a tool to easily approach mixture design problems for the construc-
tion of Designs of Experiments and data analysis with different methods and compare 
them. 

Part III – Design Space and optimization through the latent space, where one of 
the fundamental issues within the Quality by Design philosophy, the definition of the 
so-called ‘design space’ (i.e. the subspace comprised by all possible combinations of 
process operating conditions, raw materials, etc. that guarantee obtaining a product 
meeting a required quality standard), is addressed. The problem of properly defining 
the optimization problem is also tackled, not only as a tool for quality improvement but 
also when it is to be used for exploration of process flexibilisation purposes, in order to 
establish an efficient and robust optimization method in accordance with the nature of 
the different problems that may require such optimization to be resorted to. 

Part IV – Epilogue, where final conclusions are drawn, future perspectives suggested, 
and annexes are included. 
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Resumen 
 

La presente tesis doctoral surge ante la necesidad creciente por parte de la mayoría de 

empresas, y en especial (pero no únicamente) aquellas dentro de los sectores farmacéu-

tico, químico, alimentación y bioprocesos, de aumentar la flexibilidad en su rango ope-

rativo para reducir los costes de fabricación, manteniendo o mejorando la calidad del 

producto final obtenido. Para ello, esta tesis se centra en la aplicación de los conceptos 

del Quality by Design para la aplicación y extensión de distintas metodologías ya exis-

tentes y el desarrollo de nuevos algoritmos que permitan la implementación de herra-

mientas adecuadas para el diseño de experimentos, el análisis multivariante de datos y 

la optimización de procesos en el ámbito del diseño de mezclas, pero sin limitarse ex-

clusivamente a este tipo de problemas. 

Parte I – Prefacio, donde se presenta un resumen del trabajo de investigación realiza-

do y los objetivos principales que pretende abordar y su justificación, así como una 

introducción a los conceptos más importantes relativos a los temas tratados en partes 

posteriores de la tesis, tales como el diseño de experimentos o diversas herramientas 

estadísticas de análisis multivariado. 

Parte II – Optimización en el diseño de mezclas, donde se lleva a cabo una recapitu-

lación de las diversas herramientas existentes para el diseño de experimentos y análisis 

de datos por medios tradicionales relativos al diseño de mezclas, así como de algunas 

herramientas basadas en variables latentes, tales como la Regresión en Mínimos Cua-

drados Parciales (PLS). En esta parte de la tesis también se propone una extensión del 

PLS basada en kernels para el análisis de datos de diseños de mezclas, y se hace una 

comparativa de las distintas metodologías presentadas. Finalmente, se incluye una 

breve presentación del programa MiDAs, desarrollado con la finalidad de ofrecer a sus 

usuarios la posibilidad de comparar de forma sencilla diversas metodologías para el 

diseño de experimentos y análisis de datos para problemas de mezclas. 

Parte III – Espacio de diseño y optimización a través del espacio latente, donde se 

aborda el problema fundamental dentro de la filosofía del Quality by Design asociado a 

la definición del llamado ‘espacio de diseño’, que comprendería todo el conjunto de 

posibles combinaciones de condiciones de proceso, materias primas, etc. que garanti-

zan la obtención de un producto con la calidad deseada. En esta parte también se trata 

el problema de la definición del problema de optimización como herramienta para la 

mejora de la calidad, pero también para la exploración y flexibilización de los procesos 

productivos, con el objeto de definir un procedimiento eficiente y robusto de optimiza-

ción que se adapte a los diversos problemas que exigen recurrir a dicha optimización. 

Parte IV – Epílogo, donde se presentan las conclusiones finales, la consecución de 

objetivos y posibles líneas futuras de investigación. En esta parte se incluyen además 

los anexos. 
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Resum 
 
Aquesta tesi doctoral sorgeix davant la necessitat creixent per part de la majoria d'em-
preses, i especialment (però no únicament) d’aquelles dins dels sectors farmacèutic, 
químic, alimentari i de bioprocessos, d'augmentar la flexibilitat en el seu rang operatiu 
per tal de reduir els costos de fabricació, mantenint o millorant la qualitat del producte 
final obtingut. La tesi se centra en l'aplicació dels conceptes del Quality by Design per 
a l'aplicació i extensió de diferents metodologies ja existents i el desenvolupament de 
nous algorismes que permeten la implementació d'eines adequades per al disseny d'ex-
periments, l'anàlisi multivariada de dades i l'optimització de processos en l'àmbit del 
disseny de mescles, però sense limitar-se exclusivament a aquest tipus de problemes. 
Part I– Prefaci, en què es presenta un resum del treball de recerca realitzat i els objec-
tius principals que pretén abordar i la seua justificació, així com una introducció als 
conceptes més importants relatius als temes tractats en parts posteriors de la tesi, com 
ara el disseny d'experiments o diverses eines estadístiques d'anàlisi multivariada. 

Part II – Optimització en el disseny de mescles, on es duu a terme una recapitulació 
de les diverses eines existents per al disseny d'experiments i anàlisi de dades per mit-
jans tradicionals relatius al disseny de mescles, així com d'algunes eines basades en 
variables latents, tals com la Regressió en Mínims Quadrats Parcials (PLS). En aquesta 
part de la tesi també es proposa una extensió del PLS basada en kernels per a l'anàlisi 
de dades de dissenys de mescles, i es fa una comparativa de les diferents metodologies 
presentades. Finalment, s'inclou una breu presentació del programari MiDAs, que ofe-
reix la possibilitat als usuaris de comparar de forma senzilla diverses metodologies per 
al disseny d'experiments i l’anàlisi de dades per a problemes de mescles. 

Part III– Espai de disseny i optimització a través de l'espai latent, on s'aborda el 
problema fonamental dins de la filosofia del Quality by Design associat a la definició 
de l'anomenat ‘espai de disseny’, que comprendria tot el conjunt de possibles combina-
cions de condicions de procés, matèries primeres, etc. que garanteixen l'obtenció d'un 
producte amb la qualitat desitjada. En aquesta part també es tracta el problema de la 
definició del problema d'optimització com a eina per a la millora de la qualitat, però 
també per a l'exploració i flexibilització dels processos productius, amb l'objecte de 
definir un procediment eficient i robust d'optimització que s’adapti als diversos pro-
blemes que exigeixen recórrer a aquesta optimització. 

Part IV– Epíleg, on es presenten les conclusions finals i la consecució d'objectius i es 
plantegen possibles línies futures de recerca arran dels resultats de la tesi. En aquesta 
part s'inclouen a més els annexos. 
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Chapter 1  
Justification, objectives 

and contributions 

1.1. Justification 
The present Ph.D. thesis aims at providing better insight and novel algorithmic tools to 
address two main fields of interest, namely that concerning what are known as mixture 
design problems, as well as the problematic associated to the optimization of produc-
tion processes through the so-called Quality by Design philosophy, which is originated 
by the need to guarantee the desired quality of a given product before its production 
while allowing as much flexibility as possible in the setting of the processing condi-
tions, the selection of raw materials, etc. 

Particularly, the present Ph.D. thesis project addresses some of the issues of practical 
interest in regards to both mixture design problems and process optimization via data-
driven (i.e. empirical) approaches, such as: 

1. efficient experimental design required given a particular purpose (e.g. data-
driven exploration, prediction or optimization…) and availability of resources 
(e.g. time, costs, equipment…), particularly for mixture design problems; 

2. comparison of data-driven model building strategies for explanatory, predic-
tive and optimization purposes, specially for mixture design problems, with 
both  data from a statistical Design of Experiments and historical data; 

3. sensible definition of the different sets of processing conditions that allow 
meeting the products specifications; 

4. data-driven process optimization. 

 

 



Quality by Design Through Multivariate Latent Structures 

 

4 

Addressing these points will, potentially, guarantee: 

1. reduced costs (by e.g. minimizing required experimentation, the amount of 
production outside of specifications, or optimizing the processing conditions); 

2. increased process flexibility; 

3. more consistent product. 

1.2. Objectives of the thesis 
In this section a more thorough description of the objectives of this Ph.D. thesis and the 
proposals to accomplish them is provided. 

1.2.1. Traditional and latent variable-based approaches applied to 
mixture design problems 

With a wide range of products currently used in daily life resulting from processing 
blends of two or more ingredients, where the properties of these products mainly de-
pend on the raw materials being mixed and on the proportions in which they are added, 
mixture design problems are of great relevance. However, the special nature of these 
problems requires special modifications to be made to traditional approaches aimed at 
selecting which experimentation to perform in order to construct reliable data-based 
models. These are needed in most real scenarios nowadays given the large amounts of 
data being made available continuously and the complexity of most processes nowa-
days, for which the use of first principles models may be unfeasible. Furthermore, the 
structure and interpretation of the models traditionally selected to be fitted in mixture 
design also require special reformulations and tools, and even then these methods may 
suffer whenever a process is characterised by the presence of strong non-linear behav-
iours and complex relationships among the variables involved. 

Part II of this Ph.D. thesis will serve as a review of some of the most widely used tradi-
tional approaches to mixture design, concerning both the experimental design and the 
model definition and fitting steps (Chapter 5). As an alternative, latent variable-based 
approaches will also be presented and compared to traditional approaches in order to 
assess the advantages and limitations of each of them (Chapter 6). A Matlab-powered 
software with graphic interface has been developed to allow users without knowledge 
in Matlab or programming to make use of most the tools illustrated in previous chap-
ters in Chapter 7. 
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1.2.2. Latent variable-based approaches for efficient processes opti-
mization 

Extensive work has been done in the past for the optimization of production processes 
through the use of a wide range of tools. Some of the most recent one has been focused 
on the use of latent variable-based techniques in order to take advantage of the increas-
ingly large amount of data continuously being stored regarding the processes and prod-
ucts on which the optimization is intended to be applied, due to the several advantages 
that latent variable-based methods offer in this context. However, some of the proposed 
tools present a series of drawbacks or aspects that leave some room for improvement, 
such as the lack of a standardized procedure for the optimization of quality attributes 
expressed as linear combinations of process outputs, the steps to follow when solving a 
minimization/maximization problem while avoiding involuntarily assigning too 
much/too little importance to certain optimization criteria, or the use of excessively 
complex optimization tools when simpler ones will provide equally good results with 
fewer risks and computational cost. 

In Part III, Chapter 10, some of these issues are addressed, and in Chapter 11 the appli-
cation of the proposed algorithms is illustrated.  

1.2.3. Latent variable-based approaches applied to the Quality by 
Design initiative, to increase processes flexibility and guaran-
tee the desired quality 

Although slightly related to the optimization approach, one other topic of increasing 
relevance in the last years has been that regarding the philosophy of the so-called Qual-
ity by Design and the way it should be applied in practice. In both cases, the main ob-
jective is being able to obtain combinations of processing operating conditions and raw 
material properties that guarantee the desired results, with the subspace comprised by 
all possible combinations being frequently referred to as the Design Space. As in the 
optimization field, latent variable-based methods have been shown to be powerful tools 
when trying to accurately define this so-called Design Space. However, not much in-
sight has been offered until recent years regarding precisely the explicit definition of 
such subspace of operating conditions, nor in how the accuracy in its estimation could 
be improved. 

Chapter 9 in Part III of this Ph.D. thesis aims at providing some novel formulations of 
the Design Space, the subspace of process conditions most likely to contain it, and the 
subspace of process conditions least likely to not be fully contained by it (i.e. most 
likely to guarantee that the quality attributes of interest of a given product will meet 
their corresponding specifications). In Chapter 12 several of the concepts addressed in 
Chapters 9 to 11 will be resorted to in order to propose a novel sequential experimental 
approach to improve the accuracy in the estimation of the Design Space. 
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Chapter 2  
On optimal design of 

experiments 

2.1. Introduction 
Exploring, understanding, optimizing or making a production process more robust and 
flexible requires, in most cases if not all, building a causal model that explains how 
changes in input variables (e.g. materials and their properties, processing conditions…) 
relate to changes in the outputs (e.g. amount of product obtained, its quality, purity, 
value, generated pollutants…). To this purpose, deterministic (i.e. first principles) 
models are always desirable. However, the lack of sufficient knowledge and the gener-
ally ample need of resources required to properly construct such models makes their 
use unfeasible in a large number of cases. This is why data-driven models are often 
resorted to [1,2]. 

To guarantee causality when using data-driven approaches, however, independent vari-
ation in the input variables is required [3]. But, even if nowadays large amounts of data 
are available in most production processes, the variation in the inputs is commonly not 
independent. If classical polynomial model fitting by traditional methods (such as Or-
dinary Least Squares – OLS [4,5]) is to be resorted to, or if not enough data is yet 
available, this implies that controlled experimentation will have to be carried out, 
which usually requires extensive time and resources due to the large amount of inputs 
and outputs involved in most production processes at present. In such situations, defin-
ing the experiment to perform (i.e. the test or series of tests to carry out) in order to 
gather the necessary data [6]  is commonly referred to as a design of experiment 
(DOE).  An optimal DOE will be that which allows satisfying the purpose that moti-
vated the experiment in the most efficient way, according to some optimality criterion. 

When resorting to data-driven models, the aim of an experiment can be, as noted by 
Fedorov [7], characterized as one of the following in most cases: 
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1. Given a known (e.g. first principles) model that defines the analytical function 
relating the outputs of a process with its inputs, but whose parameters are un-
known, a DOE may be carried out in order to obtain proper estimates of them. 

2. If a process if governed by one among a series of possible functions, a DOE 
may be carried out in order to identify which of them is the correct one, as 
well as to estimate the corresponding parameters. 

3. When no analytical function governing a process is known, a DOE is used to 
find the model (or models) that better approximates the unknown function in 
the region of interest for the experimenter (i.e. the experimental region). 

Due to the increasingly large amounts of data and variables involved, the third of these 
scenarios will be the most frequent one in most real world applications in industrial 
processes, and therefore the identification of the experimental region becomes a crucial 
prior step to the DOE exercise. Any test to be performed must, then, be within this 
subspace, which is usually constrained by factors such as safety, equipment-operating 
range, and possibly additional restrictions imposed by the experimenter based on their 
prior knowledge of the process. 

In this Ph.D. thesis, a discussion on the different optimality criteria commonly consid-
ered when resorting to DOE is presented, and algorithmic tools aimed at efficiently 
defining the experimental region and carrying out the DOE are provided, especially for 
mixture design problems and highly restricted experimental regions in general. 

2.2. Optimality criteria for the design of experiments 
When resorting to DOE, there are many criteria that may be taken into account in order 
to determine the efficiency or optimality of a given DOE, and to construct an optimal 
DOE [8]. Three of the most commonly considered criteria are: 

a. D-optimality: this criterion is concerned with the minimization of the variance 
of parameter estimations. This is useful when the objective behind the DOE is 
factor screening, that is, determining which of the many potentially relevant 
manipulable inputs (commonly referred to as factors in DOE) actually have a 
significant effect on the output of interest. This criterion is useful in the second 
and third scenarios mentioned in Section 2.1. 

b. I-optimality: this criterion is concerned with the response (i.e. output) estima-
tion, and in particular with the average variance of prediction of the response 
over the experimental region, which is to be minimized. It is therefore a more 
useful criterion in scenarios such as the first one mentioned in Section 2.1. 

c. G-optimality: similar to the I-optimality, this criterion refers to the maximum 
variance of prediction of the response over the experimental region, which 
again is to be minimized. 
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Although one of the most common criticisms of the optimal DOE approach is that 
different criteria will lead to different DOEs, the different criteria should be understood 
as seeking to provide a solution for the specific problem that motivated the experimen-
tation. Constructing a D-optimal [7,9–11], I-optimal [12] or G-optimal [13] DOE will 
then depend on the problem being addressed. Furthermore, several criteria can be con-
sidered simultaneously, in order to obtain a DOE that performs well on multiple crite-
ria at the same time [8]. 

2.2.1. D-optimal design of experiments 

Consider a matrix of inputs �� [N�M] and a vector of the output variable �� [N�1] 
where N is the number of samples or observations and M is the number of inputs. Con-
sider also the inputs model matrix � [N�P] and the outputs model vector � [N�1], 
obtained by appropriately pre-processing �� and �� for DOE or model-fitting purposes 
(by e.g. adding a column of ones and additional terms to �� corresponding to interac-
tion terms, or second or higher order terms, and/or by centring or scaling each in-
put/output variable), such that the matrix form of model that relates � and �, referred to 
as a regression model, can be expressed as: 

� � � � � � � (2.1) 

Where � [ � � � �1] is the vector that relates the � inputs to the output (plus an inter-
cept or constant), and � [N�1] is the vector of disturbances or random errors. 

The Ordinary Least Squares estimator of the vector of unknown model coefficients �, 
�, is 

� � �� � � �� � �� � � (2.2) 

and the variance-covariance matrix of this estimator, assuming the distribution of dis-
turbances to be the same for all observations, results: 

��� � � ��� � �� � � �� 

��� � �

���� ��� ��� ��
��� ��� �� ����

� ��� ��� ��
��� ��� ��

� � �
��� ��� �� ��� ��� �� � ����

 
(2.3) 

Where ��� is the variance of the disturbances, which is, a priori, unknown, but can be 
estimated using the mean squared prediction error: 

��� � ��� �
�

� � � � � � � � � � � � � � � � � �  (2.4) 
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When planning an experiment, however, ��� cannot yet be estimated. Therefore, only 
the elements of �� � � �� are considered. The elements of the diagonal of this matrix 
correspond to the relative variances of the estimation of the model parameters, which 
are desired to be as small as possible, and provide an estimate of how large the vari-
ances are compared to ���. If the factors are scaled so that their values in � range within 
the interval [-1, +1] (which is common practice when building a DOE), then the mini-
mum achievable relative variance of an estimate is 1/N, and is attained for all estimates 
when the DOE is orthogonal for its associated model. The relevance of a DOE being 
orthogonal resides in the fact that the parameters in a model can be estimated inde-
pendently only when this is the case, but these estimates will be correlated to each 
other otherwise. 

For a model matrix � to be orthogonal for its associated model, the sum of the element-
wise products of all the pairs of columns in � must be zero. This means that, for a 
model that includes interactions of order as high as � � �, all of the ��

��� ��� �
�
���  

submatrices of � that can be defined by taking �������� � ���� � � ��� different columns 
of � (each of which will be referred to as � �  for simplicity) must meet that: 

� � �� �
�

���

�

���
� � (2.5) 

If this equality holds for every submatrix � �  as defined before, then �� � � �� is a 
diagonal matrix with diagonal elements ��� and determinant �� � � �� � ��� �, 
which is the smallest possible value for �� � � �� . 

The inverse of the variance-covariance matrix in Equation 2.3 is the so-called infor-
mation matrix, and serves as a summary of the available information on the model 
parameters. The larger the determinant of the information matrix is, the smaller 
�� � � ��  and the variance of the estimation of the parameters of the model. Small 

variances in these estimations are useful because the aim of screening experiments 
(where a D-optimal DOE is most useful) is to identify inputs (i.e. factors) or interac-
tions of these have a statistically significant effect on the output/s, which is assessed 
via significance tests that are affected by, among other elements, the variance of the 
disturbances (which is not affected by the DOE) and the relative variance of the estima-
tion of the parameters (which will depend on the DOE). 

A D-optimal DOE will then be that which maximizes the determinant of the infor-
mation matrix, �� � �  being the D-optimality criterion. This criterion, however, is 
only useful when comparing DOEs with the same number of tests or runs and parame-
ters for the model to be estimated. To account for this, the D-efficiency may be consid-
ered instead: 
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� � ���������� � �� � �
��

���
� �� � � ���

�  (2.6) 

However, one must be aware that the D-efficiency as defined by Equation 2.6 presents 
the issues of depending in the scale used for the experimental variables when construct-
ing the DOE, and that it implicitly assumes that an orthogonal (and therefore D-
optimal) experiment can be designed, which is not necessarily true in most real world 
applications, where the shape of the experimental region makes it impossible. The D-
efficiency is useful nonetheless to compare different competing DOEs and select the 
one with highest D-efficiency to carry out the corresponding experimentation. 

2.2.2. I-optimal and G-optimal design of experiments 

Consider the model matrix as defined in Section 2.2.1, and its n-th row to be ���. The 
variance of the prediction of the output corresponding to this set of inputs/factors, ��, 
can be computed as: 

��� ���� � ��� � � ��� � ��� � �� � � �� � �� (2.7) 

Again, since ��� is unknown and cannot be estimated prior to the experimentation, the 
relative variance of prediction is computed instead. Two criteria can be evaluated then 
with regards to the variance of prediction:  

1. the average relative value for this variance over the experimental space; 

2. the maximum relative value for this variance in the experimental space. 

The former corresponds to the I-optimality criterion, and can be computed as: 

� ��� ��� �
�� � �� � � �� � � ���

�
���

�
 (2.8) 

where � ��� ���  represents the expectation of the variance of the prediction of the 
output � over the experimental region, denoted by �, and ���

�  is the volume of the 
experimental region. 

For the calculation of the numerator, given that �� � �� � � �� � � is a scalar: 

�� � �� � � �� � � � �� �� � �� � � �� � �  (2.9) 

Applying the fact that the trace of a product of matrices is the same even if they are 
cyclically permutated, then: 

�� �� � �� � � �� � � � �� �� � � �� � �� � �  (2.10) 

Therefore: 
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� ��� ��� �
�� �� � � �� � �� � � ���

�
���

�
�
�� �� � � �� � �� � � ���

�
���

�
 (2.11) 

where �� � � ���
�  is called the moments matrix, which can be calculated exactly for 

cuboidal and spherical experimental regions [14].  

It must be noted that � ��� ���  can be interpreted as the I-efficiency of a DOE given 
�, and its relative I-efficiency with respect to another DOE can be computed in the 
same way as the relative D-efficiency of one model with respect to another was com-
puted. 

When estimating the I-efficiency of a DOE for a model, however, being able to com-
pute the volume of the experimental space becomes especially relevant. With respect to 
this, the volume can be easily calculated whenever the shape of the experimental region 
is that of a hyperrectangle, as is the case when all the factors are scaled to values rang-
ing inside the interval [-1, +1] and all of them can be simultaneously set at their ex-
treme values (in this particular case, the experimental region is said to be cuboidal, a 
particular case of the hyperrectangle). A spherical region is another common alterna-
tive to the cuboidal one. In most real world applications, however, the experimental 
region is neither one nor the other. In such cases, and specially for very irregular 
shapes, it may be necessary to resort to algorithms such as the Delaunay triangulation 
[15–17] to calculate this volume, although they may present some limitations as the 
dimensionality of the experimental space increases. 

An alternative to the I-optimality is the G-optimality criterion, which seeks to minimize 
the maximum variance of prediction along the experimental region, ��� ��� ��� , 
instead of � ��� ��� . Building exact G-optimal designs, however, is not trivial, and 
comes at the cost of worse prediction variances over most of the region of interest [13]. 

2.3. Additional considerations for the design of experiments 
When choosing a DOE, some aspects related to the individual parameters of the chosen 
model, and the chosen model itself, should be taken into account in addition to the 
criteria discussed in Section 2.2, namely the variance inflation, the aliasing and the 
principles of effect-sparsity, hierarchy and heredity. 

2.3.1. Variance inflation 

While it has already been stated that the relative variances of the estimation of the 
model parameters is minimum when an orthogonal design is resorted to, and equal to 
1/N with [-1, +1] scaling of the factors, it is more often than not the case that the se-
lected DOE will not be orthogonal, mainly because of budget or feasibility constraints, 
among possibly others. Because of this, it can be expected that the variance of the es-
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timate for at least some of the parameters will be inflated. The degree to which this 
increase in variability takes place is called the Variance Inflation Factor (VIF). When 
factors are scaled to the range [-1, +1], the VIF for the p-th parameter of the model is 
equal to N times the relative variance of the estimation of that same parameter. 

2.3.2. Aliasing 

The selection of an a priori model for which a DOE is constructed implicitly assumes 
such model to be adequate for the problem under study. However, by doing so, the 
effects of some two-factor interactions or higher order terms are assumed to be negligi-
ble, while this not being necessarily the case. In such case, the estimates of the parame-
ters of the estimated model will be biased by the parameters not included in the model. 

Consider the true model to be expressed as 

� � �� � �� � �� � �� � � (2.12) 

and the selected model as 

� � �� � �� � � (2.13) 

The expected value of the least squares estimation of �� is: 

� �� � � ��� � ��
�� � ��� � � � ��� � ��

�� � ��� � � �
� �� � ��� � ��

�� � ��� � �� � �� � �� � ��
� �� � �� � ��� � ��

�� � ��� � �� � �� � �� � � � ��

 (2.14) 

� being the alias matrix. This means that, in general, the estimator of ��, ��, is biased 
unless �� � � (i.e. the effects assumed to be negligible actually are) or ��� � �� is a 
matrix of zeros, i.e. none of the effects corresponding to the factors in �� biases the 
estimate of any of the effects corresponding to the factors in ��. 

2.3.3. Principles of effect-sparsity, hierarchy and heredity 

The principle of effect sparsity (or factor sparsity) is a restatement of the Pareto princi-
ple that concerns mainly screening experimentation. According to this principle, most 
of the variability in the output or response variable is expected to be captured by a 
relatively small number of factors (although the probability of correctly identifying 
these “large effect” will, logically, be affected by the DOE).  

The principle of hierarchy concerns model selection, in that it states that main effects 
(as opposed to e.g. two-factor effect or higher order interaction effects) comprise the 
largest source of variability in most processes, followed by two-factor interaction ef-
fects, quadratic effects, and later on by higher order interaction effects, cubic effects, 
etc. This means that considering main and lower-order effects into the regression mod-
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el, for which the DOE is to be constructed, should precede the addition of higher-order 
effects. 

Finally, the principle of heredity states that models with strong heredity that include 
e.g. two-factor interaction effects will also include the main effects of the factors in-
volved (and the same could be said regarding higher-order-factor interactions effects 
with respect to lower-order-factor interaction effects). Models with weak heredity, 
however, may e.g. only include the main effect of one of the factors involved in a two-
order interaction. Models with strong heredity present the advantage that predictions 
made with them are not affected by a different scaling of the factors used to fit it. 

Although these principles have been validated to an extent, it must also be noted that 
violations of them are more common than suggested by the literature on screening 
experimentation [18]. 
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Chapter 3  
On latent variable and 

kernel-based multivariate 
data analysis 

3.1. Introduction 
Nowadays large amounts of data are being continuously generated at a high frequency 
in many fields thanks to the increasing variety of measurement tools and technologies 
rapidly being integrated in most scientific activities and production processes. This so-
called data tsunami [19] could be rendered useless, however, if such a huge volume of 
data were not converted into valuable information through its appropriate analysis and 
interpretation. Consider, e.g., a present-day industrial environment, where most statisti-
cal process control schemes, used for fault detection and to monitor the evolution of the 
process, are based on the univariate control of one or small numbers of measured vari-
ables (temperatures, pressure, pH, etc.). While useful in the past, this strategy is com-
pletely inadequate given the huge quantities of instrumental responses being continu-
ously and automatically registered in modern plants. This is specially true when a 
process is being monitored by many automated sensors, a common occurrence at pre-
sent, since any undesired special events that would bring the process out of its so-called 
Normal Operating Conditions (NOC) and impact the quality of the final products will 
be reflected not just in a change in the magnitude of some of the measured process 
variables, but potentially also in the relationship among them. This change in their 
relationship (or correlation structure) is, however, difficult to detect by classical statis-
tical approaches that can only handle independent or, at most, slightly correlated varia-
bles. 

Alternative methods, based on the so-called latent variables, may be used instead to 
take advantage of such correlation in order to model the structure of the process space. 
These techniques can deal with large volumes of data that contain little useful infor-
mation (i.e. low signal-to-noise ratio), and also allow the use of happenstance (i.e. ‘rou-
tine’ data, not from a DOE, and therefore not causal in nature [20]) data to build mod-
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els for optimization purposes, by allowing causal relationships to be inferred in the 
space of the latent variables. 

In this Ph.D. thesis, use will be made of some of these methodologies for a variety of 
purposes presented in the distinct chapters of the manuscript, from mixture design data 
analysis and model-fitting, to model inversion and optimization. 

3.2. Latent variable-based multivariate data analysis techniques 
By projecting the high-dimensional original variables space onto a low-dimensional, 
latent orthogonal (i.e. uncorrelated) variables space, multivariate latent variable-based 
methods (widely resorted to in the field of chemometrics) reduce the dimensionality of 
the data under study and permit describing their underlying sources of variation. Prin-
cipal Component Analysis (PCA) and Partial Least Squares (PLS) regression are some 
of the most well-known and extended techniques of this kind. 

3.2.1. Principal Component Analysis (PCA) 

PCA [21,22] is one of the most widely used multivariate statistical tools to compress, 
describe and interpret large sets of data. Consider a matrix � [N�M], defined as in 
Chapter 2, so that M denotes the number of measured variablesi and N is the number of 
observations registered (e.g. at N time instants or for N individuals). When M is very 
large (maybe even � � �) the relevant information contained in � will usually be 
intercorrelated among a number of the variables in the dataset. This makes it possible 
to reduce, with a certain degree of acceptable accuracy, the original M-dimensional 
space spanned by these variables values for the registered observations into an A-
dimensional subspace (� � �) associated to the directions of maximum variability for 
the available data, and onto which the N individuals can be projected as new points. 
Mathematically, PCA is based on the following bilinear structure model: 

� � � � �� � ��� � � ���
� � � (3.1) 

Where � [N�A] contains in its n-th row the projection coordinates or scores values of 
the latent variables of the n-th row of � onto the A-dimensional subspace, � [M�A] is 
the array of the so-called loadings which determine the A basis vectors (which are the 
vectors signalling the A directions of maximum variability of the data in �, also known 
as principal components or factorsii) of the PCA subspace, and � [N�M] stands for the 
matrix of unmodelled residuals, i.e. the portion of � outside of the PCA subspace not 

 
i M is used here for simplicity although, as in Chapter 2, this matrix may be extended to have P columns including interaction and 
second- or higher order-effects. In that case, when using PCA in this manuscript, the matrix containing the values for the main 

ii To avoid confounding the meaning of ‘factor’ here with that in Chapter 2, only the term ‘principal component’ will be used from 
this point onwards when referring to the basis vectors in PCA 
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explained for the chosen rank, A; �� [M�1] and ��� [M�M] are, respectively, the 
column vector of centring factors (usually the mean values of the variables in �) and 
the diagonal matrix of scaling factors (usually the standard deviation of the variables in 
�) applied to the M input variables before performing the PCA; and � [N�1] is a vector 
of ones. 

The PCA solution may also be formulated in many equivalent ways and attained by 
Singular Value Decomposition (SVD) [23], among other algorithms, such that: 

� � � � � � �� � �� (3.2) 

with the columns of � [N�A] and � [M�A] being the left and right singular vectors of 
�, respectively, and � [A�A] a diagonal matrix with the squares of the first A non-zero 
singular values of �, ��, as its diagonal elements. By comparing Equations 3.1 and 
3.2 It can be easily seen that � � � � �, � � ����� � � and �� � � ���

� � �. The follow-
ing properties are assumed: 

�� � � � ��
�� � � � ���� ��

 (3.3) 

where �� is the [A�A] identity matrix, and the a-th element of �� is the eigenvalue of 
the a-th PCA component. 

3.2.2. Partial Least Squares regression (PLS) 

PLS [24–26] is a latent variable-based approach used to model the inner relationships 
between a matrix of inputs or predictors, � [N�M], and a matrix of outputs or response 
variables, � [N�L], through few, uncorrelated Latent Variables (LV) that identify the 
underlying causal relationship between � and �. PLS is usually resorted to in order to 
predict � from the A-dimensional subspace associated to � such that its covariance 
with � is maximised. The PLS regression model structure can be expressed as follows:  

� � � � �� � ��� � � ���
� � �

� � � � �� � ��� � � ���
� � �

� � � � � ���
� � ����� �� � �� �� �� � � � � ���

� � ����� ���
 (3.4) 

being � [N��], � [M��] and E [N�M] the X scores, loadings and residuals matrices, 
respectively; � [L��] and � [N�L] the respective Y loadings and residuals matrices, 
and � [M��] the weighting matrix, such that � � ��, �� being the rank of �, i.e. the 
maximum number of latent variables that can be considered when fitting the PLS re-
gression model; �� and ��� being the [M�1] column vector of centring factors and the 
[M�M] diagonal matrix with the scaling factors applied to the M input variables before 
fitting the PLS-regression  model, respectively, and �� and ��� the corresponding 
[L�1] column vector and [L�L] diagonal matrix associated to the output variables, and 
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� a vector of ones as defined in Section 3.2.1. 

Alternatively, � can be expressed as a function of �: 

� � � � � � � � ��� � � ���
� � �

� � ����� ��� � �� � ���
�� � �� � ��� � � ���� � ����� ���

 (3.5) 

where�� [M�L] is an array of regression coefficients, and �� [L�1] a vector of inter-
cepts of the regression model. 

PLS presents several advantages over most classical statistical predictive methods such 
as Ordinary Least Squares regression (OLS) [4,5], such as not needing to assume line-
arly independent regressors and being able to simultaneously model several outputs 
while simultaneously taking into account the correlation structure not only among the 
inputs but also the outputs. Furthermore, since causal relationships can be inferred in 
the latent space [27], this permits the use of historical datasets for optimization purpos-
es, which reduces the amount of experimentation required, or even prevents it altogeth-
er [28]. Lastly, since the initial number of variables involved (M) has been reduced to a 
smaller number of uncorrelated LV (A), the computational cost of any optimization 
problem in the latent space will be reduced when compared to the equivalent problem 
in the original space, even more so as the number of variables in the original space 
increases with the complexity of the problem addressed while the number of LV re-
mains relatively low. 

3.3. Kernel-based techniques 
Although latent variable-based multivariate data analysis techniques such as PCA and 
PLS have proven to be very powerful tools for the analysis and interpretation of multi-
variate data, they a priori assume the underlying structure of the datasets to which they 
are applied to be linear. While several approaches have been proposed to address situa-
tions where this assumption is far from appropriate, such as non-linear PLS [29–36] or 
artificial neural networks [37], they often require optimising many adjustable parame-
ters, with the additional risk of being affected by local minima and show overfitting. 
Kernel-based techniques [38] are then a good alternative [39], as can be seen by their 
broad application in fields such as chemistry [40,41], biology [42], informatics [43,44] 
and continuous process monitoring [45,46]. Kernel-based approaches usually suffer 
from an important disadvantage when it comes to the interpretation of the influence of 
the original variables or its importance on the model, however, since this information is 
lost after the kernel transformation. Although possibilities to recover this information 
exist their implementation is not straightforward, most of them do not permit graphical 
nor intuitive interpretation, and their use for continuous process monitoring requires an 
appropriate database containing past identified failures for comparison, which is usual-
ly not available in real case studies [41,47–50]. An extension of the principles of non-
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linear bi-plots and pseudo-sample projection [51], however, have been proposed in 
recent years to overcome these limitations [52–55]. 

An adaptation of these kernel techniques will be presented here for mixture data analy-
sis, and therefore the basic principles behind them as well as a brief explanation regard-
ing the pseudo-samples and pseudo-sample projection are succinctly explained in the 
following sections. 

3.3.1. Basic principles of kernel-based techniques 

All of the kernel-based data analysis techniques are based on the so-called kernel trans-
formation, given by: 

� ��� ��� ��� � �� �� ��� � (3.6) 

where ��� [1�M] and ����  [1�M] represent the �-th and ��-th rows of the original data 
matrix � [N�M], � the mapping function applied to them (which is not needed to be 
known a priori with kernel-based approaches), and � and � denote the inner product. 

Applying this transformation to every possible couple of row vectors that constitute �, 
a squared symmetric matrix � [N�N] is obtained whose elements represent the dis-
similarity (or distance measurements) between every two observations. All the many 
generic kernel functions that can be applied to obtain � present the two fundamental 
properties: 

i. They allow the original data to be projected onto the so-called feature space, a 
space of higher dimension than the original one, such that non-linear relation-
ships in �, if they exist, may be described in a linear way. 

ii. They permit the inner product between observations to be performed in the 
feature space, which makes it possible to apply in this space algorithms of 
classical multivariate linear methodologies based on the calculation of the in-
ner product matrix of � (e.g. PCA and PLS) [39]. 

Only three types of kernel functions will be applied in the second part of this thesis: the 
linear (first-order), the ���-order polynomial, and the Gaussian or Radial Basic Func-
tion (RBF) kernel. Table 3.1 gathers their mathematical formulations and, for the last 
one, its possible adjustable parameter. It must be noted that, although only the PLS 
technique will be used in this manuscript together with the kernel transformation, once 
the kernel matrix � has been computed, any classical bilinear technique can be applied 
to it generating, e.g., a Kernel-PCA (K-PCA) or Kernel-PLS (K-PLS) model when a 
PCA or PLS, respectively, is applied to �. 
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Table 3.1. Kernel functions used in the second part of this thesis and their adjustable parameters 

Kernel type Kernel function Adjustable parameter 

Linear (first-order) ������ - 

���-order polynomial ������ � - 

Gaussian/RBF ��� � �� � ��� �

� � �  � 

3.3.2. Pseudo-samples and pseudo-sample projection 

As stated in [56]iii, the term pseudo-sample is used to refer to an observation whose 
weight is put in one single variable, such that, for example, a vector of zeros of all of 
its elements except for a one in its m-th position, � [M�1], would represent one of the 
many possible pseudo-samples associated the m-th variable of a dataset �. The score of 
such a sample, when projected onto the latent space of a PLS model fitted with a single 
latent variableiv, can be calculated as in Equation 3.7: 

��� � �� ��� � ���  (3.7) 

Which is the m-th value of the weighting vector �� and provides information regarding 
the contribution of the m-th variable, ��, to the model. Instead of a vector like��, a 
matrix �� [V�M] can be created that contains V samples instead of a single one, such 
that its entries are as follows: 

�� �
� � �
� � �

��� ��
�

� � �
� � �

� � �
� � �

�
��� ��

� � �
� � �

 (3.8) 

Its projection onto the latent space will, therefore, define a trajectory of the form: 

�� ��� �
��� �� � ���

�
��� �� � ���

 (3.9) 

In a more general case, where A latent variables (� � �) are considered when fitting 
the PLS regression model (or more than one component chosen for PCA), the matrix 
resulting from the previous operation provides the geometrical locus of all the points 

 
iii Note that most of the contents of Section 3.3.2, as well as the appendices in Sections 14.1.1 and 14.1.2, can be found in [56], and 
have been put together here to avoid making the reader look for the original source. 
iv The presented mathematical derivation can be easily extended to PCA 
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along the direction determined by the origin of the latent space and each point, whose 
coordinates represent the weights of �� on the A latent variables. While the representa-
tion of these trajectories does not provide, per se, additional information to that given 
by the PLS (or PCA) model, some insight can still be obtained regarding the evolution 
of the original variables in the latent space when kernel-based methods are resorted to. 
As demonstrated by Postma et al. [53], pseudo-sample projection does in fact permit 
recovering information related to the contribution of the original variables when a Eu-
clidean distance matrix, �, is dealt with. This strategy can be resorted to when using K-
PCA/K-PLS, since �, if double-centred, is directly generated through a linear kernel 
transformation of a mean-centred dataset (see Section 14.1.1). By transforming each 
pseudo-sample array into a pseudo-sample kernel one, as done with �, a new V�N 
array is then obtained that contains information about the dissimilarity between the V 
pseudo-samples and the N original observations (see Section 14.1.2). Furthermore, the 
pseudo-sample projection can be used with any kernel transformation as long as they 
generate sets of distances which may be embedded in a Euclidean space [51]. 

3.4. Important additional notions: cross-validation and jackknifing 
In some parts of the manuscript concerning model-fitting statistical techniques, the 
concepts of cross-validation and jackknifing may appear, thus shall be defined.  

Cross-validation refers to a model validation technique commonly resorted to in order 
to select the most appropriate number latent variables to extract when a latent variable-
based technique (e.g. PLS) is used to fit a model for, e.g., predictive purposes. Cross-
validation is performed as follows: 

1. The data under study are split into several complementary subsets (i.e. no two 
subsets contain the same observation) 

2. The analysis (e.g. via PLS) is carried out using of all but one of these subsets 

3. The remaining subset is exploited for testing (e.g. to evaluate the predictive 
capability of the regression model fitted with all other subsets) 

Multiple rounds of cross-validation are usually performed under different partitions 
and the final results are averaged to reduce variability. When used to assess the per-
formance of the model for prediction, this is generally done by evaluating the evolution 
of the prediction error as the complexity of the model (e.g. number of latent variables 
extracted in PLS) increases. 

Jackknifing, on the other hand, is a resampling approach used to quantify a particular 
statistic (e.g. variance of a prediction, bias…) by iteratively removing an individual 
from a data matrix and compute the estimate of interest, to then calculate the mean or a 
percentile of the resulting distribution of values for the corresponding estimate. 

 
 



 

 



Materials and methods 

 

25 

Chapter 4  
Materials and methods 

4.1. Hardware 
Most of the computations executed for the elaboration of this Ph.D. thesis were run on 
a MacBook Pro equipped with a 2.9 GHz Intel Core i5 and 8 GB 1867 MHz DDR3 
RAM. 

The testing of the software MiDAs, presented in Section 7, and the simulations per-
formed with the software PRO/II, necessary to illustrate some of the examples in Sec-
tions 9 and 12, were run on an HP-Pavilion with a 2.33 GHz Core2 Quad Q8200 and 5 
GB 800 MHz DDR2 RAM. 

4.2. Software 
The software packages exploited here are: 

• macOS X Yosemite, Version 10.10.5; 
• MATLAB R2014B, Version 8.4.0.150421 

• Microsoft Windows 10 Pro 

• PRO/II, Version 9.3 

4.3. Datasets and methods 
 
To facilitate a more friendly reading of this manuscript, the information regarding da-
tasets, materials and methods presented and used along this manuscript can be found in 
the corresponding chapter where they are resorted to or applied.  



Quality by Design Through Multivariate Latent Structures 

 

26 

A short summary can be seen below nonetheless. 

• In Chapter 6, Section 6.1, datasets from the following sources were used: 

- R.D. Snee, Developing Blending Models for Gasoline and Other Mixtures, 
Technometrics. 23 (1981) 119–130. 

- J.A. Cornell, Experiments with Mixtures, Second Edi, Wiley, New York, USA, 
1990. 

• In Chapter 6, Section 6.2, datasets from the following sources were used: 

- L. Eriksson, E. Johansson, C. Wikstrom, Mixture design — design generation , 
PLS analysis , and model usage, (1998). 

- D. Alman, C. Pfeifer, Empirical colorant mixture models, Color Res. Appl. 12 
(1987) 210–222. 

- J.A. Cornell, How to run mixture experiments for product quality, Asq Press, 
1990. 

• In Chapter 9, datasets where generated by means of: 

- The mathematical model in 

P. Facco, F. Dal Pastro, N. Meneghetti, F. Bezzo, M. Barolo, Bracketing the Design 
Space within the Knowledge Space in Pharmaceutical Product Development, Ind. Eng. 
Chem. Res. 54 (2015) 5128–5138. 

- The procedure shown in 

F. Arteaga, A. Ferrer, Building covariance matrices with the desired structure, 
Chemom. Intell. Lab. Syst. 127 (2013) 80–88. 

F. Arteaga, A. Ferrer, How to simulate normal data sets with the desired correlation 
structure, Chemom. Intell. Lab. Syst. 101 (2010) 38–42. 

- The simulated production process in PRO/II according to 

PRO/II Casebook #1 Vinyl Chloride Monomer Plant, in: PRO/II Caseb. #1, 
SIMULATION SCIENCES INC, 1992. 

• The code required for the Quadratic Programming (QP) and Linear Programming 
(LP) optimization algorithms described in Chapter 10, and resorted to in Chapters 
11 and 12, has been implemented in Matlab (MATLAB R2014B). As a part of this 
code, the functions fmincon, fminunc and linprog are used for the constrained QP, 
unconstrained QP, and LP, respectively. 

• In Chapter 12, datasets where generated following the same procedure as with the 
first an third cases in Chapter 9. 
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Chapter 5  
Traditional approaches 

to mixture design 

Part of the content of this chapter has been included in: 
1. Vitale, R.v, Palací-López, D.v, Kerkenaar, H., Postma, G., Buydens, L. & Ferrer, 

A. Kernel-Partial Least Squares regression coupled to pseudo-sample trajecto-
ries for the analysis of mixture designs of experiments. Chemometr. Intell. Lab. 
175, 37-46 (2018). 

 

5.1. Introduction 
A wide range of products currently used in daily life results from processing blends of 
two or more ingredients. Hence, the physicochemical properties of these products 
mainly depend on the raw materials being mixed and on the proportions in which they 
are added. Alloys, as well as drugs and foodstuffs, are just some of the numerous ex-
amples where this applies, and their manufacturing can be considered a so-called mix-
ture problem [57]. Traditionally, mixture problems are defined as those in which i) the 
proportions �� of the Q different constituents are related to the aforementioned proper-
ties, ii) these proportions are of at least as much relevance as their absolute quantities, 
and iii) their sum must be a fixed value (usually 1 or 100%): 

��
�

���
� �

� � �� � �
 (5.1) 

 
v These authors had equal contributions 
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This perfect collinearity restriction makes it impossible to modify the composition of 
any one of the ingredients independently from the rest, which significantly affects i) 
the shape of the experimental region within which a DOE, whenever necessary, is to be 
built and in which experimentation should be performed, and ii) the way the data is to 
be analysed, and models built and interpreted if classical polynomial fitting by tradi-
tional methods, like Ordinary Least Squares (OLS) or Generalised Least Squares 
(GLS) [58–60], are to be resorted to. 

Furthermore, it must be noted that not every process involving a blend should neces-
sarily be treated as a mixture design problem, nor does a problem not involving a mix-
ture prevent it from having to be addressed as such. Consider the following two cases: 

a) When one of the ingredients of the blend, whose effect on the quality attribute 
of interest is null, represents most of the bulk of the mixture itself, as in e.g. a 
children’s cough medicine [61], any changes in the proportions of the other 
constituents will remain almost insignificant, and therefore the absolute quan-
tities of those components will be more relevant than their relative amounts in 
the blend. Such case should not be approached as a mixture design problem. 

b) Goos & Jones [62] present an interesting case of a supplier of a milling opera-
tion aimed at reducing the thickness of sheet aluminium down to a specific 
value in three steps (i.e. using three mills). Although each mill may contribute 
to the reduction of thickness to different extents, the total amount of reduction 
in thickness is fixed. This is equivalent to the so-called ‘mixture-amount prob-
lem’, where the ‘amount’ (i.e. absolute reduction in thickness of the sheet alu-
minium) may vary depending on the required girth, but the sum of the per-
centage of required reduction performed by each mill is constant (100%). 
Therefore, although technically no blend is involved, this case should be ap-
proached as a mixture problem (more specifically a mixture-amount problem 
where the quality of the product depends on both the relative and absolute 
quantities of the ‘ingredients’). 

Finally, dealing with ‘mixture variables’ adds additional complexity to most real world 
production processes where ‘process variables’ (e.g. temperatures, pressures…) must 
also be accounted for. These problems usually require fitting so-called mixture-process 
variable models, which significantly increases the amount of data required to do so and 
complicates its interpretation. Additionally, although not addressed in the present PhD. 
Thesis, taking into consideration also the information regarding the ingredients/raw 
materials properties in L or T-shaped data structures require the use of more complex, 
latent variable-based approaches [63–65]. 

In this section of the manuscript, insight is provided regarding how the nature of the 
mixture design problems affects the shape of the experimental region (also referred to 
as Mixture Space) and the form and interpretation of mixture models, which ultimately 
impact the way a mixture design of experiments has to be constructed and carried out. 
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For the sake of simplicity terms such as ‘mixtures’, ‘blends’ and ‘ingredients’ will be 
used even though it has already been stated that some ‘mixture design problems’ do not 
necessarily concern an actual mixture, blend, or any ‘ingredient’. 

5.2. The mixture space 
Given a series of ingredients of a blend, and the process conditions under which the 
blend is to be produced/processed, the mixture space is constituted by all feasible com-
binations of ratios of its constituents. By ‘feasible’ it is understood that restrictions may 
be imposed on the ratios of some or all of the ingredients to e.g. guarantee the physico-
chemical stability of the blend or assure that it can be safely or easily manipulated un-
der those processing conditions. Lower bounds on the proportions of the ingredients 
are usually set above zero, and upper bounds below one, in order to guarantee a small 
amount of all/most of the constituents to be present in the blend, and to avoid ‘pure’ 
mixtures constituted by a single ingredient, respectively. Two different kinds of mix-
ture spaces must then be differentiated, depending on their shape: the so-called simplex 
mixture spaces, which retain the original shape (but not necessarily size) it had before 
any restrictions were imposed (other than the ones expressed in Equation 5.1), and 
irregular mixture spaces for which this is no longer true. 

5.2.1. Assessing the shape of the mixture space 

A mixture design problem is said to be unconstrained if the only restrictions imposed 
on the blend constituents proportions are i) the perfect collinearity restriction defined in 
Equation 5.1, and ii) them being able to vary from 0 to 1. In such case, the mixture 
space is said to be that of a simplex, and can be visualized as the convex hull envel-
oped by the � � � -dimensional generalization of a tetrahedron, with � being the 
number of mixture ingredients. In this case, and for � � �, the mixture space is the line 
segment connecting the ‘pure mixtures’ with only the first and the second constituent 
in it, respectively; for � � �, the mixture space is the convex hull of the equilateral 
triangle; for � � �, it is the convex hull of a tetrahedron, and so on. 

A mixture design problem is said to be constrained if at least one active/non-redundant 
restriction is imposed on at least one of the blend constituents, in addition to those for 
‘unconstrained’ mixture problems. A restriction is said to be redundant if it can be 
discarded without modifying the shape/size of the convex hull. Otherwise, such re-
striction is active. By imposing additional active univariate inequality constraints on 
the proportions of the blend ingredients, the resulting mixture space may remain a (dif-
ferently sized) simplex or not but, as a rule of thumb, imposing active multivariate 
constraints on them (i.e. restrictions on linear combinations of the ratios/proportions) 
will make the mixture space no longer a simplex. 
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The importance of determining if the mixture space is a simplex or not lies on the fact 
that i) there exist pre-defined optimal DOEs that relay on the mixture design being a 
simplex and ii) the interpretation of the mixture model’s parameters (discussed in Sec-
tion 5.3) may only have a practical sense as long as the mixture space is a simplex. 

When only univariate restrictions are imposed on the ingredients’ proportions in the 
blend, ��� � � � ���, assessing if the mixture space is a simplex is done as follows: 

a. If the vector of lower bounds for the proportions, ��� [Q�1], is the [Q�1] vec-
tor of zeros [Q�1], ��, and the vector of upper bounds, ��� [Q�1], is the 
[Q�1] vector of ones [Q�1], ��, the mixture space is ‘unconstrained’ and 
therefore a simplex. 

b. If ��� � ��, three different scenarios must be considered: 

i. If ����
��� � �, the mixture space is a simplex, but some of the upper 

bounds may be inconsistent (i.e. unachievable) given ���. This occurs 
whenever �� � ��� � ��� � ��, where �� � � � ����

��� . In that case, 
the corresponding consistent upper bound, ���� , is ���� � ��� � �� 

ii. If ����
��� � �, the mixture space is a single point, and the consistent 

upper bounds ���� � ���. 
iii. If ����

��� � �, the mixture space is the null set, since no blend can 
simultaneously satisfy all lower bounds on its ingredients’ proportions. 

c. If ��� � ��, four scenarios must be considered: 

i. If ����
��� � � and ����

��� ���� ��� � �, the mixture space is a 
simplex, but some of the lower bounds may be inconsistent given ���. 
This occurs if �� � ��, where �� � ����

��� � �. In that case, the cor-
responding consistent lower bound, ���� , is ���� � ��� � ��. 

ii. If ����
��� � � and ����

��� ���� ��� � �, the mixture space is a 
single point, and the consistent lower bounds ���� � ���. 

iii. If ����
��� � �, but ����

��� ���� ��� � �, the mixture space is 
not a simplex. 

iv. If ����
��� � �, the mixture space is the null set, since no blend can 

simultaneously satisfy all upper bounds on its ingredients’ proportions 

d. If ��� � �� and ��� � �� (the most general and realistic scenario), the con-
sistent bounds ought to be calculated as in scenarios ‘b’ and ‘c’, and then �� 
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and !! computed with the updated bounds. For the mixture space to not be 
void it must be met that !"!!

!!! ≤ 1 and !"!!
!!! ≥ 1. This being the case: 

i. If !! ≠ !! and !! = min !!,!! !∀! ∈ 1, 2,… ,! , the mixture space 
is a simplex. If !! < !!, the simplex is referred to as an L-simplex, and 
its facets are defined by the lower bounds imposed on the ingredients, 
such that the simplex retains its original orientation. On the other hand, 
If !! > !!, the simplex is referred to as an U-simplex, and its facets are 
defined by the upper bounds imposed on the ingredients, such that the 
orientation of the simplex is inverted with respect to the ‘unconstrained’ 
simplex. 

ii. If !! = !!, the mixture space is not a simplex. 

Whenever the mixture space is a simplex in scenarios ‘b’, ‘c’ and ‘d’, it is not uncom-
mon to substitute the so-called components, !!, whose values will typically not range 
from 0 to 1, by the corresponding so-called pseudocomponentes, !!∗ , whose values will: 

 
!!∗ =

!!!!"!∗
!!

!∀!! ∈ 1, 2,… ,! !if!!! < !!
!!∗ =

!"!∗!!!
!!

!∀!! ∈ 1, 2,… ,! !if!!! > !!
 (5.2)  

Figure 5.1 illustrates three examples of an unconstrained (L-simplex) mixture space, a 
constrained U-simplex mixture space, and a constrained irregular mixture space for a 
blend with 3 ingredients. 

 
Figure 5.1 Visualization of a) a L-simplex mixture space without restrictions imposed on the ingredi-
ents’ proportions (!"!∗ = !!; !!"!∗ = !!), b) a U-simplex mixture space where the restrictions 
!"! = 0.1; 0.1; 0.2 ; !!"! = 0.5; 0.3; 0.4  are imposed on the ingredients’ proportions              
(!"!∗ = 0.3; 0.1; 0.2 ; !!"!∗ = !"!), and c) an irregular mixture space where the restrictions 
!"! = 0.1; 0.1; 0.35 ; !!"! = 0.5; 0.3; 0.4  are imposed on the ingredients’ proportions           
(!"!∗ = 0.3; 0.1; 0.35 ; !!"!∗ = !"!) 

When multivariate restrictions are also imposed on the ingredients’ proportions in the 
blend, and the previous assessment indicates that the mixture space is still a simplex 
when only the univariate restrictions are accounted for, it must be evaluated if any of 
the multivariate restrictions is redundant or not. To do so, the ! vertices of the simplex 
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can be easily obtained from the consistent bounds. Unless all vertices of the simplex 
meet all of the multivariate restrictions, at least one of such constraints is active (i.e. 
not redundant) and the mixture space is no longer a simplex. 

5.2.2. Identifying the envelope of the mixture space 

Section 5.2.1 focused on assessing the shape of the mixture space in order to recognize 
if it is a simplex or not. However, this may not suffice to properly build a DOE, spe-
cially when the mixture space is not a simplex and/or process variables are also in-
volved. ‘Identifying the envelope of the mixture space’ here means being able to define 
which constraints of those initially imposed actually delimit the convex hull that is the 
mixture space (i.e. are active/non-redundant constraints), and how these constraints 
relate to every r-dimensional (� � � � �) element that is part of that envelope (verti-
ces, edges, planes and r-dimensional hyperplanes). This is required to increase the 
computational efficiency of DOE construction algorithms, may they be point-exchange 
[10] or coordinate-exchange-based ones [66]. The identification of this envelope is 
easily done when the mixture space is a simplex and the consistent bounds are known, 
since all of its facets, which are the � � � -dimensional elements of the envelope, are 
defined directly by the lower bound (for the L-simplex) or upper bounds (for the U-
simplex). Every vertex is then a 0-dimensional element of the envelope that can be 
obtained by defining the different feasible combinations of lower and upper bounds. 
Two distinct algorithms for the identification of the envelope are proposed, given that 
only linear restrictions (either univariate or multivariate) are imposed, based on the 
following principles: 

i. Each linear restriction (univariate or multivariate) imposed on the variables of 
a M-dimensional space is associated to a � � � -dimensional hyperplane. 

ii. Each inequality restriction will divide the original M-dimensional space into 
two half-M-dimensional spaces, but not reduce its dimensionality. 

iii. If it exists, the intersection of R half-M-dimensional spaces defines an M-
dimensional convex space whose R facets are associated to the R restrictions 
that defined those half-M-dimensional spaces. 

iv. A minimum of M+1 compatible (i.e. they can be met simultaneously) inequali-
ty restrictions is required to define the envelope of a convex hull in a M-
dimensional space (e.g. the triangle and the tetrahedron are the geometric 
shapes with less sides/faces that can be described as linear restrictions in a 2 
and 3 dimensional space, respectively). 

v. Each equality restriction will reduce the dimensionality of the originally M-
dimensional space by one. Therefore, at most M equality restrictions can be 
imposed simultaneously, as long as they are compatible with each other. 

vi. Any r-dimensional element that is part of the envelope of a convex hull can be 
defined as the intersection of � � � of the linear restrictions associated to the 
facets of such envelope. 
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For the application of the proposed algorithms, all restrictions will be expressed in 
matrix form as follows:  

�� � � � ��
�� � � � ��  (5.3) 

�� [���Q] being a matrix whose i-th row contains the coefficients of the i-th linear 
combination of inputs (in this case, mixture ingredients’ proportions in the blend) to 
which an inequality constraint is applied, and �� [���1] is the column vector whose i-
th element indicates the maximum permitted value for that linear combination. Similar-
ly, �� [���Q] and �� [���1] are associated to the equality restrictions imposed on dif-
ferent linear combinations of inputs. In accordance with the nomenclature used here, �� 
inequality restrictions and �� equality restrictions (�� � �) are assumed to be imposed. 
Note that, for the particular case of an ‘unconstrained’ mixture space: 

�� �
���
�� �� � ���� �

��
��

�� � ��� ��� ���� � �
 (5.4) 

The first of the proposed algorithms is a slight variant of the so-called CONSIM algo-
rithm [67], and the steps one must follow for its application are the following: 

1. Evaluate if all of the equality restrictions are compatible with each other by 
solving the corresponding system of linear equations. 

a. If there is no solution, the mixture space is void. 

b. If a single solution exists, check if it meets all inequality constraints. 
If not, the mixture space is void. Otherwise it is just one mixture. 

c. If more than one solution exist, continue to the next step. 

2. Generate an arbitrarily large hyperrectangle and define a [���Q] matrix of 
initial vertices so that none of the vertices meet any restriction. Define also a 
symmetric  [�����] ‘matrix of edges’ that serves to indicate which of these 
initial vertices are connected to each other, which has a one in its i-th row, j-th 
column if the i-th and j-th vertices are connected, and a zero otherwise. 

3. Starting with the equality restrictions, evaluate which vertices are at one side 
of the hyperplane defined by each restriction, which at the other side, and 
which, if any, meet the restriction at its limit (i.e. as if it was an equality con-
straint). The initial matrices of vertices and edges are then updated according 
to the following rules: 

a. A new vertex results from the intersection of the hyperplane corre-
sponding to the equality/inequality restriction and the edge connection 
two vertices located each at one side of such hyperplane. 
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b. Vertices that do not meet the restriction being assessed at the moment 
are discarded 

c. The new vertices are connected to the remaining of the two vertices 
checked in the current iteration, as well as to any new vertices gener-
ated during the same step that meet the same Q-1 current active re-
strictions at their limit/as an equality. 

4. Check active and redundant restrictions among the ones applied so far. A re-
striction is active if at least M vertices meet it as if it was an equality constraint 
(even if it is an inequality restriction). It is redundant otherwise. 

5. Repeat steps 3 and 4 until all the restrictions have been used to ‘cut’ the cu-
boid. The final matrix of restrictions will contain only those that are not re-
dundant 

6. If, during any step, all vertices are discarded, then no subspace exists that 
meets all imposed restrictions 

The second of the proposed algorithms will be referred to as ‘Segmentation by defining 
and discarding vertices’, and the steps for its application are the following: 

1. Evaluate if all of the equality restrictions are compatible with each other by 
solving the corresponding system of linear equations, and proceed identically 
as in the first step in the previous algorithm. Proceed to the next step only if 
appropriate. 

2. Define all possible combinations of non-parallel inequality restrictions (usual-
ly ����) taken � � ��  at a time. This requires generating an auxiliary matrix 
of at most dimension ���

���� �� ������� � � � � �� . 

3. For every combination defined in step 2, solve the system of linear equations 
that results from concatenating the equality constraints with the corresponding 
combination of inequality constraints. Check if this solution (if it is a single 
point) meets all other inequality restrictions not considered to obtain it. Unless 
it does, discard it. Otherwise, add it to a matrix of ‘final vertices’. 

4. Once all ‘final vertices’ have been obtained, check active and redundant re-
strictions among the initial ones. A restriction is active if at least M vertices 
meet it as if it was an equality constraint. It is redundant otherwise. 

5. If no vertices are kept at any step, then no subspace exists that meets all im-
posed restrictions, and the mixture space is therefore void. 

It is important to note that the computational efficiency of each algorithm will depend 
on the number of constraints imposed and the dimensionality of the mixture space. 
However, the ‘Segmentation by defining and discarding vertices’ is expected to be 
more efficient in most scenarios, since the redundancy of the restrictions is only as-
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sessed at the very last step, and no ‘edges matrix’ or a initial matrix of vertices need to 
be defined, both of which dramatically increase in size with Q. Algorithms for the def-
inition of extreme vertices DOEs such as the ones proposed by Snee & Marquadt [68] 
or McLean & Anderson  [69] may prove to be a sensible alternative to obtain the verti-
ces of an irregular mixture space when no multivariate constraints are imposed, alt-
hough they may present issues when applied to problems with high dimensionality.  

5.3. Regression model structures in mixture design 
Let � denote the output of interest being studied in a mixture problem, and let 
�� � � � ����� ��  be the proportion of the i-th constituent in a blend with at most � 
ingredients. The variable � is considered as a random variable, whose distribution de-
pends on the values of the ��, such that: 

� � � � ��� ���� � ��  (5.5) 

Because of the perfect collinearity restriction in Equation 5.1, caution is advised when 
trying to model the response function by means of classical polynomials. Consider, as 
an example, the first-order polynomial to be used as an approximation of the response 
function for a mixture problem with Q constituents involved: 

� � � �� � �� � ��
�

���
 (5.6) 

The interpretation of the parameters of the model in Equation 5.6 is: 

��:  expected average value of � when all the constituents of the mixture are absent 
(�� � ���� � ����� �� ) 

��:  expected increase of the average value of � when the proportion of the i-th blend 
ingredient is increased by 1, while keeping the proportions of all other compo-
nents unchanged 

As can be observed, the interpretation of the coefficients makes no practical sense, 
since i) no blend can exist if all of its constituents are absent, and ii) it is impossible to 
modify one of the ingredient’s proportion without altering the proportion of at least one 
other ingredient. Alternative model structures are therefore required that account for 
the particular nature of mixture variables. This still holds true when process variables 
are involved.  

5.3.1. The Scheffé models 

One of the most common reparametrization of the classical polynomials to model mix-
tures is that of the Scheffé canonical polynomials [70], which result from applying the 
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restriction in Equation 5.1 to the classical polynomials. Here the first-, second- and 
third-order Scheffé canonical are presented, as they are the most commonly resorted to. 

 

- Canonical form of the linear model/first-order polynomial: 

Given a blend with Q constituents, the first-order Scheffé canonical polynomial can be 
obtained by introducing the restriction in Equation 5.1 into the first-order polynomial 
in Equation 5.6. By doing so: 

! ! = !! + !! · !!
!

!!!
= !! · !!

!

!!!
+ !! · !!

!

!!!
 (5.7)  

Reorganizing the different terms: 

! ! = !! · !!
!

!!!
!! = !! + !!

 (5.8)  

Which is the first-order Scheffé canonical polynomial. What makes it different from its 
classical polynomial counterpart, in terms of structure, is only the absence of an inter-
cept. The greatest difference, though, lies in its interpretation. Consider a ‘pure mix-
ture’ with only the i-th ingredient present in it. In that case, !! = 1 and !! = 0!∀! ≠ !, 
and ! !|!! = 1 = !!. Therefore, !! represents the expected average value for the 
response variable y for the ‘pure mixture’ constituted solely by its i-th ingredient. A 
more visual interpretation of the parameters of the first-order Scheffé canonical poly-
nomial is illustrated in Figure 5.2. 
 

 
Figure 5.2 Interpretation of the !! parameters of the Scheffé canonical polynomial for a mixture with 
Q=3 

This model is quite simple and implies that for any mixture ! !  is a weighted average 
of the expected responses for the different ‘pure mixtures’, the weighting coefficients 
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being the proportions �� of the respective components in the mixture. Although this 
may seem an inconvenience, it is extremely useful in screening studies, when Q is very 
high, and in cases where the constraints on the constituents’ proportions delimit the 
mixture space to a very small region of the complete simplex. However, as already 
mentioned and observed in Figure 5.2, �� corresponds to the expected average value for 
the response variable y for the ‘pure mixture’ with only the i-th ingredient. This may 
make sense whenever the proportion of the i-th constituent can vary from 0 to 1, but 
this is rarely the case in practice since the allowed proportion of each component in the 
mixture is usually restricted. Therefore, in most real case studies the estimation of ��, 
��, will hold more theoretical than practical sense, since it would be an estimator of the 
expected average response for a mixture outside of the mixture space and/or without 
practical interest. 

Once the first-order Scheffé canonical polynomial model is fitted, it may be of interest 
to study the effect that each component of the mixture has ‘by itself’ on the response, 
that is, if in general it can be said that a given component actually improves or worsens 
the value of the response when added to a greater or lesser extent, or if it actually does 
not really have a significant effect on it. This assessment can be done by computing the 
so-called total or orthogonal effect of the q-th component, which is defined as the dif-
ference in the expected response between the q-th ‘pure mixture’ and the mixture at the 
centroid of the facet of the simplex opposite to the q-th vertex: 

� � ��������������� � �� � ��
�

���
���

� � �  (5.9) 

Since usually restrictions are imposed on the proportions of the constituents in the 
mixture, it is very likely that the proportion of each component will not vary between 0 
and 1, but along a narrower interval. Then computing the adjusted orthogonal effect of 
each component is advised instead of their total effects. The adjusted orthogonal effect 
is obtained as 

� � ������� ����� ������ � �� � �� � ��
�

���
���

� � �  (5.10) 

�� being defined in Section 5.2.1, where it was obtained to assess if a mixture space 
was a simplex or not. 

It should be noted that the calculation of both the total and adjusted effects of the blend 
constituents implicitly takes the centroid of a simplex as the reference mixture. There-
fore their interpretation will be useful (even more so for the adjusted effects) whenever 
the mixture space is effectively a simplex. Otherwise, which actually concerns most 
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real problems, the orthogonal effects of the different components will generally have 
little meaning, if any. 

- Canonical form of the quadratic/second-order polynomial: 

The classical form of the second-order polynomial is: 

� � � �� � �� � ��
�

���
� ��� � �� � ��

�

�����

���

���
� ��� � ���

�

���
 (5.11) 

The quadratic terms can be reformulated as: 

��� � �� � � � ��
�

���
���

 (5.12) 

Substituting Equations 5.1 and 5.12 in Equation 5.11, and reorganizing terms: 

� � ����� �� � ��
�

���
� ��� � �� � ��

�

�����

���

���
�� � �� � �� � ��� ��� ����� � ��� � ��� � ���

 (5.13) 

The interpretation of the parameters �� is the same as for the linear model, and the 
parameter ��� indicates a synergistic interaction between the i-th and j-th constituents 
its value is positive, an antagonistic interaction if it is negative. A synergistic interac-
tion between the i-th and j-th ingredients implies that, given a mixture that contains 
both, the expected value of the response � will be greater than the weighted averages of 
the individual responses corresponding to the respective ‘pure mixtures’, whereas if 
there is a antagonistic interaction the opposite would be expected. Therefore, the ex-
pected response for a sample of a given composition will be the weighted average of 
the simple effects, plus the effects of any significant synergistic/antagonistic pair-wise 
interactions.  

It must be noted, however, that this model assumes these interactions to remain syner-
gistic/antagonistic regardless of the proportions in which the corresponding two con-
stituents are found in the blend. To better understand the interpretation of the ��� pa-
rameters, consider the simplified scheme shown in Figure 5.3, where all but the i-th 
and j-th components of a mixture are absent, and the proportions of these two compo-
nents vary from 0 to 1. 
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Figure 5.3 Interpretation of the !!" parameters of the Scheffé canonical polynomials 

In Figure 5.3 a case is shown for which the parameter !!" is positive, so that the curve 
represented for the expected response is always above the straight line connecting the 
expected values of y for the i-th and j-th ‘pure mixtures’ (which the curve would coin-
cide with if !!" = 0). In this model it is assumed that the effect of the interaction be-
tween each pair of components is constant, that is, it is always of the same magnitude 
and in the same direction (synergistic and antagonistic). Then, the maximum (if the 
interaction is synergistic) or minimum (if it is antagonistic) of the curve is achieved 
when !! = !! = 0.5, and ! !|!! = !! = 0.5 = !!!!!

! + !!"
! .  

As with the interpretation of !! for the first-order canonical polynomial, this interpreta-
tion of !!" is valid in theory, but generally not in practice, since the presence of re-
strictions on the proportion of the different components in the mixture implies that, in 
most cases, binary mixtures will not belong to the mixture space, or will not be of prac-
tical interest. Thus, although the interpretation of the sign of the parameters !!" may 
still make theoretical sense, the strict interpretation of its value, without the aforemen-
tioned considerations, will often lack practicality. 

- Canonical form of the cubic/third-order polynomial: 

As with the previous cases, consider the classical form of the third-order polynomial: 

! ! = !! + !! · !!
!

!!!
+ !!" · !! · !!

!

!!!!!

!!!

!!!
+ !!! · !!!

!

!!!

+ !!"# · !! · !! · !!
!

!!!!!

!!!

!!!!!

!!!

!!!
+ !!!" · !!! · !!

!

!!!!!

!!!

!!!

+ !!"" · !! · !!!
!

!!!!!

!!!

!!!
+ !!!! · !!!

!

!!!
 

(5.14)  
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The third-order Scheffé canonical polynomial is: 

! ! = !! · !!
!

!!!
+ !!" · !! · !! + !!" · !! · !! · !! − !!

!

!!!!!

!!!

!!!

+ !!"# · !! · !! · !!
!

!!!!!

!!!

!!!!!

!!!

!!!
 

!! = !! + !! + !!! + !!!!
!!" = !!" − !!! − !!! − !!!! − !!!!
!!" = !!!" + !!"" + !!!! + !!!!

!!"# = !!"# − !!!" − !!"" − !!!" − !!"" − !!!" − !!"" − !!!! − !!!! − !!!!
 

(5.15)  

 
In this model, the interpretation of the parameters of the form !! and !!" remains, while 
the !!"# parameters allow the quantification of the effect of possible ternary interac-
tions, and the !!" ones reflect, if significant, more complex types of binary interactions 
between pairs of components with respect to the quadratic model, such that their inten-
sity or even the sign may vary (from synergistic to antagonistic) depending on the pro-
portion in which both constituents are found in the blend. While the interpretation of 
the parameters !!"# is analogous to that of !!", although hard to illustrate in a single 
image, the interpretation that should be given of the parameters !!" may be clarified by 
looking at Figure 5.4. 
 
  

 
Figure 5.4 Interpretation of the !!" parameters of the Scheffé canonical polynomials 

In Figure 5.4 the expected value for the response are shown for different compositions 
of a binary mixture in which only the i-th and j-th constituents in the blend are present. 
As can be seen, a positive value of !!" indicates that the interaction between the i-th 
and j-th ingredients is synergistic when !! > !! (higher proportion of the i-th constitu-
ent), and antagonistic otherwise. As with the parameters !!, !!" and !!"#, caution is 
advised when interpreting the parameters !!" must be carried out carefully, since in 
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many situations the binary mixtures may not be a part of the mixture space, or will not 
be of practical interest. Therefore, strictly adhering to the interpretation here presented 
could be meaningless in practice. 

Since the number of parameters of this model increases rapidly with Q, even with a 
relatively small number of blend constituents, an alternative one, the special cubic 
model, is often formulated instead. Consider the following variant of the classical 
third-order polynomial in Equation 5.14, where terms of the form ���� � ��� � �� and 
���� � �� � ��� are no longer taken into account: 

� � � �� � �� � ��
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(5.16) 

The special cubic model results: 
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(5.17) 

This model disregards the terms associated with the more complex effects of binary 
interactions, and therefore does not allow quantifying these effects. However, the re-
duced number of parameters to be estimated also permits a smaller number of tests to 
be performed, whenever a DOE is necessary, and provides better estimations of the 
coefficients with the same number of samples required to fit the complete third-degree 
Scheffé canonical polynomial. 

With regards to these so-called Scheffé models, it must be highlighted that: 

i. The reparametrization performed on the classical polynomials allows eliminat-
ing the perfect collinearity created by the mixture constraint (Equation 5.1). 
However, in most real problems there are restrictions that generate imperfect 
collinearity, which these models are unable to deal with. 

ii. These models present complicated forms even for uncomplicated problems, 
and the interpretation of their parameters is neither intuitive nor practical in 
most mixture problems, where the mixture space is not a simplex. 
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iii. The absence of an intercept makes centring the data around an average impos-
sible, which in practice may lead to unreliable estimates of the parameters of 
the model (i.e. highly dependant on the dataset used to fit the model). 

5.3.2. The Cox models 

The Cox models [71] are a reparametrization of the Scheffé models, one of the objec-
tives of which is to allow a more intuitive interpretation of the effects of each blend 
constituent in the response variable. For this purpose, a formulation that is visually 
very similar to the standard one is used, since they are polynomials with a constant. 
However, a restriction relative to a reference mixture is imposed on these coefficients. 
The first-order Cox model can be formulated as: 

� � � ��� � ��� � ��
�

���

�� ����� ��� � ��
�

���
� �

 (5.18) 

where �� is the proportion of the i-th blend constituent in a pre-specified reference mix-
ture, such that ��� is the expected value of the response variable for this same reference 
mixture. Thus the Cox linear model is the projection of a model in a Q-dimensional 
subspace onto a � � � -dimensional subspace whose centre is the reference mixture. 

For the interpretation of the parameters ���, consider that the proportion of the i-th 
component in the mixture is increased by �� from ��, while decreasing the proportions 
of all other components proportionally to their ratios in the reference mixture (this is 
the direction of the so-called Cox axis for the i-th component). This implies that: 
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�� � �� � �� �

��
� � ��

���� � � (5.19) 

And the variation in the expected response will be: 
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 (5.20) 

Because of the restriction in Equation 5.21: 
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Therefore: 
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 (5.22) 

Consequently, if ��� � � �� , it can be seen that ��� is the variation on the expected 
response when moving from the reference mixture to the vertex corresponding to the 
‘pure mixture’ constituted solely by the i-th ingredient. 

The second-order Cox model can be formulated as: 
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 (5.23) 

The interpretation of the parameters ���� is similar to the corresponding one for classi-
cal polynomials, while the interpretation of the parameters ���� is associated to the 
curvature of the response surface along the i-th Cox axis, i.e. the direction of the line 
that connects the reference mixture with the vertex corresponding to the i-th ‘pure mix-
ture’. 

It must be noted that the Scheffé model coefficients can be computed from the Cox 
ones in the same way as done when relating the model coefficients for the classical 
polynomials to the coefficients of the Scheffé canonical polynomials (see Section 
14.2.1). However, the Cox coefficients cannot be directly obtained from the Scheffé 
ones, and instead a reference mixture must be defined and a system of linear equations 
solved to do so. Alternatively, the Cox model may be obtained as the solution of an 
OLS problem with restrictions imposed on the model parameters (more specifically, 
those described in e.g. Equation 5.23 for the second-order polynomial). Given the 
complexity of estimating the Cox coefficients, and both the Scheffé and Cox models 
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(of the same degree) providing the same predictions of the response, resorting to one 
formulation or the other will depend mainly on how relevant the interpretability of the 
model’s parameters is for a given problem. 

5.3.3. Mixture-process variable models 

Both the Scheffé and Cox models presented in Sections 5.3.1 and 5.3.2 are useful when 
the mixture problem being addressed involve exclusively mixture variables (i.e. blend 
constituents proportions). This is not a realistic expectation, however, in many situa-
tions, and therefore different models are needed when the effect of mixture factors and 
process variables on the response variable is to be quantified simultaneously. Still, 
classical polynomial fitting by traditional methods, like Ordinary or Generalised Least 
Squares (OLS/GLS), require treating both kinds of variables differently: while mixture 
data analysis requires the formulation of special models, such as the Scheffé or Cox 
ones, classical polynomials can still be resorted to when fitting models associated to 
process variables. Historically, the models used to analyse data that include both mix-
ture factors and process variables has been carried out by formulating two models sepa-
rately, each one concerning mixture factors (a Scheffé model) and process variables (a 
classical polynomial), respectively, and then combining them. To exemplify this pro-
cedure, a common mixture-process variable model can be obtained by combining the 
second-order Scheffé model for proportions of the � mixture constituents,��� (Equa-
tion 5.13), with the polynomial model that includes main effects and two-factor-
interaction terms for the � process variables, ��: 
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 (5.24) 

The combined model results: 
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(5.25) 

Terms in the first row in Equation 5.25 correspond to the linear and non-linear proper-
ties of the mixture constituents and binary blends. Terms in the second row contain the 
linear effect of the k-th process variable, ��, in such properties, while terms in the third 
row quantify the effects of the interactions among the k-th and l-th process variables on 



Traditional approaches to mixture design 

 

47 

the mixture ingredients’ blending properties. The issue of its interpretability aside, one 
of the most severe drawbacks of this model is the large number of parameters whose 
estimation is required, which requires at least � � � � � � � �� � � �� �� �
� � � ��  runs if a DOE is resorted to. An alternative model is proposed by Kow-

alski et al. [72]: 
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(5.26) 

This model assumes that significant effects exist neither of the process variables nor 
the two-factor interactions between the k-th and l-th process variables on the mixture 
ingredients’ blending properties. It does, however, consider the additive effect of two-
factor-interactions and quadratic effects of the process variables on�� �  (as opposed 
to the multiplicative effect in Equation 5.25). This results in more parsimonious model 
for which � � � � � � � �� � � �� �� � � � � �� �� have to be estimated. 
The advantages and disadvantages that come from defining a more or less parsimoni-
ous model are discussed in the literature, and different proposals are provided by e.g. 
Prescott [73], who also presents a slightly less parsimonious model than that in Equa-
tion 5.26, with � � � � � � � � � �� �� � � � � � � � � �� parameters to be 
estimated. To better visualize the complexity of these models, the number of parame-
ters whose estimation is required depending on Q and M, for the three models, is 
shown in Table 5.1. Shading has been added to the cells corresponding to the combina-
tions of Q and M for which the model proposed by Prescott is more parsimonious than 
the one in Equation 5.25. 
Table 5.1. Number of parameters of the model in Equation 5.25, and the ones proposed by Kowalski 

et al. [72] and Prescott [73] (separated by a slash from each other), as a function of Q and M 

 
Q 

2 3 4 5 6 7 

M 

1 6/6/9 12/10/19 20/15/34 30/21/55 42/28/83 56/36/119 

2 12/10/16 24/15/31 40/21/52 60/28/80 84/36/116 112/45/161 

3 21/15/25 42/21/46 70/28/74 105/36/110 147/45/155 196/55/210 

4 33/21/36 66/28/64 110/36/100 165/45/145 231/55/200 308/66/266 

5 48/28/49 96/36/85 160/45/130 240/55/185 336/66/251 448/78/329 

6 66/36/64 132/45/109 220/55/164 330/66/230 462/78/308 616/91/399 
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In short, the study of even the simplest, yet realistic, mixture-process variables prob-

lems by traditional methods requires fitting excessively complex and hard to interpret 

models, which in turn demands large amounts of experimentation. 

The definition of combined mixture-process variables models, such as the one in Equa-

tion 5.25, adds further complexity to both the constructions of a DOE to gather the 

required data to fit them and to the process of estimating the model parameters them-

selves. This is because many of the columns in the matrix � corresponding to interac-

tions among mixture and process variables will be a linear combination of columns 

corresponding to lower-order interactions and simple effects. The procedure to estimate 

such parameters is illustrated with some examples in [57], and several proposals for the 

construction of appropriate DOEs for this sort of problems have also been provided in 

the literature [74–76]. 

5.4. Mixture design of experiments 
In this section the problematic associated to the construction of mixture designs of 

experiments will be addressed, first concerning mixture problems where the mixture 

space is a simplex, and then the case where the mixture space is irregular. The ap-

proach for the construction of DOE in irregular mixtures spaces that will be proposed 

in Section 5.4.3 is formulated in such a way that it can also be resorted to for address-

ing mixture-amount, mixture-process variables, and mixture-amount-process variables 

problems. 

5.4.1. Simplex-based DOE 

As long as the mixture space is a simplex, constructing a design of experiments is rela-

tively simple. The following are some basic designs of experiments commonly used in 

mixing problems in this situation: 

 

- Simplex lattice experimental design {Q, m}: 

These designs allow the estimation of m-order mixture model. In this design, m +1 

equidistant proportions varying from 0 to 1 �� �� �
�
� �� �

���
� � �  are defined for each 

of the Q blend constituents (the so-called pseudo-components can be used for restricted 

simplex spaces, and the ‘real’ proportions computed once the DOE has been construct-

ed) and then all feasible mixture resulting from the combinations of these proportions 

for the different blend constituents are defined. For a Q-dimensional mixture space, the 

simplex lattice DOE generates � � � equidistant points on each r-dimensional element 
(� � � � �) that is part of the envelope of the mixture space (not accounting for the 
extreme vertices, in the case of the edges). This type of design is especially suitable to 
estimate the parameter of e.g. a cubic model. However, if Q is not small and � � �, a 
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very high number of experimental runs !!!!!!!  is required. Two examples of sim-
plex lattice experimental designs appear in Figure 5.5.  

 
Figure 5.5 Examples of a) a simplex lattice design {3,3}, and b) a simplex lattice design {4,2}, to 
which the overall centroid of the simplex has been added 

- Simplex centroid design:  

This sort of design consists of 2!!! points corresponding to the centroids of all the r-
dimensional elements of the envelope of the mixture space, from !=0 (vertices) to 
! = ! − 1 (overall simplex centroid). Each blend from this DOE meets that, for the 
corresponding r-dimensional element they are the centroid of, the proportion of r + 1 
components in it is !

!!!, while all other constituents are absent. These designs are suita-
ble for problems where the number of components is not very high, and to estimate 
models such as the special cubic one, which can be especially useful for studying the 
shape of the response surface and identify the model that better fits it. Figure 5.6 illus-
trates two examples of this sort of design. 

It can easily be observed that, in the particular case of a problem with 3 components, 
the simplex centroid design is identical to the simplex lattice {3,2} when the general 
centroid of the mixture space is added to the latter. 
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Figure 5.6 Examples of simplex centroid designs for a) Q=3, and b) Q=4 

- Simplex axial designs: 

Unlike simplex lattice or simplex centroid designs, these designs include points inside 
the mixture space (other than its overal centroid), and not just on its envelope. More 
specifically, these points are located on the axis (or Cox axis) associated with each 
blend constituent. As a reminder, any blend located on the axis associated with the i-th 
component meets that, if the proportion of such component in the mixture is !!, then 
the proportions of all other ingredients are !! = 1 − !! ! − 1 ∀! ≠ !. There are 
two main variants of these designs: 

• Simplex axial 2Q+1 design:  

This design includes the Q vertices of the simplex, its overall centroid (which 
belongs to the Q axes) and the Q interior points resulting from taking, for the i-
th axis, the midpoint between the overall simplex centroid and the i-th vertex, 
for which the proportions of the blend ingredients are !! = !!!

!!  and 

!! = !
!! ∀! ≠ !. Figure 5.7 illustrates two examples of this kind of design. 



Traditional approaches to mixture design 

 

51 

 

Figure 5.7 Examples of simplex axial 2Q+1 designs for a) Q=3, and b) Q=4 

• Simplex axial 3Q+1 design:  

This design results from adding to the previous one the extreme points of the 
axes (i.e. the centroids of the facets of the simplex opposite to its vertices pass-
ing through its overall centroid) for which the proportions of the blend ingre-
dients are !! = 0 and !! = !

!!!∀! ≠ !. Figure 5.8 illustrates two examples of 
this kind of design. 

 
Figure 5.8 Examples of simplex axial 3Q+1 designs for a) Q=3, and b) Q=4 
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This type of designs are used mainly for screening purposes, or to study the nature of 
the effect of the components, since the estimates of the parameters of the model fitted 
with data from an axial design are less affected (compared to the simplex lattice and 
simplex centroid designs) by the bias associated to assuming a model less complex 
than the real one, whenever this occurs. However, axial designs do not allow the ad-
justment of, for example, the quadratic Scheffé model except when Q is small. 

It should be stressed nonetheless that a proper DOE is not usually limited to the points 
suggested by these designs. On the contrary, it is common practice to add replications 
or additional runs to those covered by these basic designs, either to study the lack of fit 
of the model obtained or to obtain a better estimate of its parameters. An example of 
this is the augmented simplex centroid design, which combines the simplex centroid 
and the simplex axial 2Q+1 designs. This design presents excellent properties to esti-
mate the parameters of a special quartic model, which is very useful to study the shape 
of the response surface of the model. When ! = 3, this design is identical to the axial 
3Q + 1. 

 

Figure 5.8 Example of an augmented simplex centroid design for Q=4 

In general, whenever the number of points obtained with any of these designs is too 
high compared to the number of model parameters to be estimated, and/or excessively 
resources-consuming, a selection of the most appropriate runs to carry out is done by 
generating an optimal DOE according to some criteria (see Section 2.2 for additional 
information). Regarding the I-optimality criterion in particular, the volume of the sim-
plex is necessary for its computation. Such volume can be obtained by means of the 
Cayley-Menger Determinant [77]. 
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5.4.2. DOE in irregular mixture spaces 

Whenever the mixture space is not a simplex, some of the most commonly resorted to 
designs are based on the use of vertices and centroids of edges, facets and other r-
dimensional (� � � � �) elements that constitute the mixture space as candidate points 
for the DOE matrix. Algorithms for the definition of extreme vertices such as the ones 
proposed by Snee & Marquadt [68] or McLean & Anderson  [69] are good options to 
obtain all of the vertices of the envelope of the mixture space, from which all other 
centroids may be determined. The former of this algorithms, also known as the 
XVERT algorithm, is computationally more efficient than the last, and operates as 
follows: 

1. The Q blend constituents are arranged from lowest to highest �� (see Section 
5.2.1). 

2. A ���� factorial design is constructed using the lower and upper consistent 
bounds of the first � � � constituents as two levels of each factor. 

3. The proportion of the remaining constituent is computed as �� � � � �����
��� . 

If ���� � �� � ���� , the new point is a vertex. 

4. If no vertex was obtained in the previous step, then: 

a. If �� � ���� , make �� � ���� . Otherwise �� � ����  

b. Q-1 additional points are generated by adjusting the proportions of the 
remaining Q-1 components so that ���

��� � �. If the sum of the q 
components is 1. If ���� � �� � ����, a new vertex will have been ob-
tained. 

5. Possible duplicate points are eliminated. 

Despite this algorithm being able to find all of the vertices of an irregular mixture 
space as long as no multivariate constraints are imposed on the proportions of the blend 
constituents (other than the one defined in Equation 5.1), the computational cost may 
increase excessively for very large values of Q. In that case, the modified XVERT or 
MXVERT algorithm can be resorted to instead. The MXVERT algorithm does not 
provide all vertices of the mixture space, but a ������ subset of it. However, this sub-
set is easily obtained and usually has good statistical properties as a DOE or candidate 
set to construct one. The steps to apply it are: 

1. The Q blend constituents are arranged from lowest to highest �� (see Section 
5.2.1). 

2. A ������ factorial design is constructed using the lower and upper consistent 
bounds of the first � � � constituents as two levels of each factor. 
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3. The proportion of the remaining constituent is computed as �� � � � �����
��� . 

If ���� � �� � ���� , the new point is a vertex. 

4. If no vertex was obtained in the previous step, then: 

a. If �� � ���� , make �� � ���� . Otherwise �� � ����  

b. Adjust ���� as much as the restriction ������ � ���� � ������  allows 
it to make ���

���  as close to one as possible. If ���
��� � � after this 

adjustment, a new vertex has been obtained. 

c. If it was not possible to achieve ���
��� � � in ‘b’, repeat this step 

with ����, and if necessary with ����, ���� … until �� if necessary. 

Once ���
��� � � is achieved, a new vertex has been obtained. 

5. Possible duplicate points are eliminated. 

Both the XVERT and MXVERT algorithm are limited to mixture problems without 

multivariate constraints on the constituents other that Equation 5.1. Furthermore, they 

cannot be used in mixture-amount, mixture-process variables nor mixture-amount-

process variables problems when constraints on non-mixture variables are also im-

posed. Good alternatives in such case are the proposed variation of the CONSIM algo-

rithm or the ‘Segmentation by defining and discarding vertices’ presented in Section 

5.2.2, followed by a variation of the coordinate-exchange algorithm for mixture design 

proposed by Piepel et al. [66]. Consider that all inequality and equality restrictions 

have been checked, and it has been found that any � point within the experimental 

space (this can be applied to any problem where the experimental space is a convex 

hull) must meet that  

��� � � � ���
��� � � � ���  (5.27) 

where ��� , ��� , ���, and ��� are differentiated of ��, ��, �� and �� in that they refer exclu-
sively to the active, non-redundant restrictions that define the envelope of the experi-
mental space. If a design with N runs is desired, the steps one should follow to apply 
this generalized coordinate-exchange algorithm is the following: 

1. Generate a starting design constituted by N random feasible design points. 

2. Sequentially modify the coordinates of each point, starting from the first one, 
and focusing on modifying one variable at a time, starting again with the first 
one. Since some equality restrictions may prevent the coordinate associated to 
the m-th the variable to be changed independently, the procedure to modify the 
coordinates of a given �� is: 
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i. Generate a vector �� [��1], which is a vector of zeros except for its m-
th element, which is a one. This vector would provide the direction of 
maximum variability for the m-th variable if no equality constraints were 
imposed that affected it. 

ii. Project �� onto the subspace generated by the active, non-redundant 
equality restrictions. It can be demonstrated (see Section 14.2.2) that this 
projection, ��� , is: 

��� � �� � ���� � ��� � ����
�� � ��� � �� � ���� � ��� � ����

�� � ��� (5.28) 

iii. Vary the coordinates of �� following the direction of ���  and ����  with-
out moving outside of the experimental region (i.e. making sure that the 
inequality restrictions are always met), and assess the value for the opti-
mality criteria used to construct the DOE. 

iv. Repeat steps i-iii for the next coordinates, until all M variables have been 
modified following their feasible direction of maximum variability ���  
(or ���� ). 

3. Repeat step 2 for the N design points. 
4. Repeat steps 2 and 3 until no significant improvement in the DOE optimality 

criteria is observed. 

Regarding the I-optimality criteria, again the volume of the experimental space needs 
to be calculated. To do so, it is proposed to sequentially divide each r-dimensional 
subspace (� � � � �) whose union constitutes the whole experimental space into as 
many � � � -dimensional hyperpyramids as facets delimit it, such that these facets 
constitute their bases, and the opposite vertex is the centroid of the r-dimensional sub-
space. By sequentially calculating the volume of these hyperpyramids, and then calcu-
lating their sum, the volume of the r-dimensional can be computed exactly. Although 
there is no need to use this procedure in such a situation, consider a cube as an exam-
ple. The steps to follow would be: 

1. Divide the cube into 6 pyramids (3-dimensional hyperpyramids) whose bases 
are the facets of the cube, and the centroid of the cube is the vertex opposite to 
those bases, common to all the pyramids. 

2. Divide the base of each pyramid into 4 triangles (2-dimensional hyperpyra-
mids) whose bases are the edges of the cube/sides of the squares, and the cen-
troid of one face is the vertex opposite to the base of each triangle in that face, 
which is common to all of the triangles in the same facet. 

3. Calculate the areas of the triangles, and sum them up to obtain the area of each 
side of the cube, which is the area of the base of each one of the pyramids gen-
erated in the first step. 
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4. Calculate the volumes of the 6 pyramids. Their sum is the volume of the cube. 

The volume of an r-dimensional hyperpyramid is equal to the volume of its � � � -
dimensional base multiplied by its height, and divided by r. Its height is equal to the 
distance from the base to the opposite vertex, which can be calculated by projecting 
that vertex on the � � � -dimensional base by means of Equation 5.28, and computing 
the distance between that vertex and its projection. 
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Chapter 6  
Latent variable-based 

methods for mixture 
data analysis 

Part of the content of this chapter has been included in: 

1. Vitale, R.vi, Palací-López, D.vi, Kerkenaar, H., Postma, G., Buydens, L. & Fer-
rer, A. Kernel-Partial Least Squares regression coupled to pseudo-sample trajec-
tories for the analysis of mixture designs of experiments. Chemometr. Intell. 
Lab. 175, 37-46 (2018). 

 

6.1. Mixture design data analysis with Partial Least Squares 
Since Partial Least Squares regression (PLS) is a method based on projection to latent 
structures, it does not assume independence of the factors, and is therefore capable of 
operating in cases where there is collinearity, either perfect or imperfect, or both simul-
taneously. This means that, as opposed to classical polynomial model fitting approach-
es like OLS, no special model is required in order to use PLS-regression techniques 
when dealing with mixture data. Furthermore, additional sources of correlation are 
automatically accounted with PLS, and there is no need to treat mixture and process 
variables differently, since there is actually no difference in practice between the exist-
ing perfect collinearity relationship among mixture factors and amount or process fac-
tors upon which an equality constraint is imposed, or which are affected by collineari-
ty. It must be taken into account, however, that PLS is a method of projection to latent 
structures and, therefore, it is necessary to properly choose the dimensionality of the 
model, that is, the number of latent variables A to extract. To do this a cross-validation 
test may be sufficient to make a decision. When analysing mixture data with PLS, the 
unscaled, uncentred regression coefficients � that relate the ingredients’ proportions in 
 
vi These authors had equal contributions 
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the blend, �, with the output variable, �, can be interpreted in the same way as the pa-
rameters of the Cox model. This means that the Scheffé parameters can be estimated 
from the coefficients obtained through PLS regression. Furthermore, These regression 
coefficients are identical to those for the Cox model if the number of selected latent 
variables to fit the PLS model, A, is equal to the number of non-zero singular values of 
�. 

In this section some examples available in the literature are analysed using both OLS 
and PLS regression techniques in order to better illustrate some of the advantages of 
using PLS for mixture design data analysis. 

6.1.1. Methods and datasets 

To assess the differences in the interpretability of the results obtained by using OLS 
and PLS for the study of mixture problems, both techniques will be applied to the two 
real cases studies presented below. 

6.1.1.1        Example 1: seven-component octane blending experiment of Cornell 

The dataset used for this study is available in [78]. In this simple example the linear 
model will be fitted, and used to illustrate one of the major drawbacks of using classi-
cal regression techniques for mixture data analysis, which is the difficulty in detecting 
similarly behaving blend components, and the benefits of using PLS in this case. 

Table 6.1 shows the different blend constituents and the lower and upper bounds for 
their proportions in the mixture, which define the mixture space. 

Table 6.1. Example 1: blend ingredients and lower and upper bounds for their proportions in the 
mixture 

Blend constituent Lower bound Upper bound 

Straight run 0 0.21 

Reformate 0 0.62 

T.C. naphtha 0 0.12 

C.C. naphtha 0 0.62 

Polymer 0 0.12 

Alkylate 0 0.74 

Natural gasoline 0 0.08 
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6.1.1.2       Example 2: gasoline blending data of Snee 

The dataset used for this study can be found in [79]. In this example the potential rela-
tionship between the research octane number (RON) and the proportions of the blend 
constituents in it is evaluated. Both univariate and multivariate restrictions are imposed 
on the composition of the blend, resulting in an irregular mixture space. The quadratic 
model will be fitted via OLS and PLS, and the results compared. 

Table 6.2 shows the different blend constituents and the lower and upper bounds for 
their proportions in the mixture. 

Table 6.2. Example 2: blend ingredients and lower and upper bounds for their proportions in the 
mixture 

Blend constituent Lower bound Upper bound 

Butane (B) 0 0.15 

Isopentane (I) 0 0.30 

Reformate (R) 0 0.35 

Cat. cracked (C) 0 0.60 

Alkylate (A) 0 0.60 

 

In addition to these bounds, the following restrictions are imposed on the blend con-
stituents’ rates in the mixture, which also affect the shape of the mixture space (i.e. 
none of them are redundant): 

� � � � ����
� � � � ����

�� � ����� � � � ���� � � � ����� � � � ���� � � � ���� � � � ���
 (6.1) 

6.1.2. Results and discussion 

6.1.2.1        Example 1: seven-component octane blending experiment of Cornell 

In this example, the linear Scheffé polynomial is fitted for screening purposes using a 
reduced number of observations corresponding to a series of blends with the 7 constit-
uents within the mixture space described in Section 6.1.1.1. The response variable of 
interest is the octane of the blend. The summary of the results from fitting this model 
via OLS is shown in Table 6.3. 
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Table 6.3. (First) linear Scheffé polynomial parameters’ estimation via OLS for example 1  

Parameter Estimate SE 

�� 34.32 209.13 

�� 85.923 1.2482 

�� 141.25 375.33 

�� 77.18 9.2135 

�� 87.75 5.8157 

�� 100.3 3.4738 

�� 116.92 81.096 

 

As commented in Section 5.3.1, the i-th linear parameter �� corresponds to the ex-
pected average value for the response variable y (in this case the RON) for the ‘pure 
mixture’ with only the i-th ingredient. Therefore, studying the statistical significance of 
the �� coeficients is meaningless because there is no point in testing whether they are 
zero or not. Instead, the statistical significance of the adjusted effects (calculated as in 
Section 5.3.1) as a whole and of each one of them is assessed as illustrated in Section 
5.8 in [57]. The results are shown in Table 6.4. 

Table 6.4. Adjusted effects calculation and statistical significance assessment from the (first) linear 
Scheffé polynomial via OLS for example 1  (* on the right indicates p-value<0.05) 

Blend constituent Adjusted effect estimate p-value  

Overall - 7.5·10-5 * 

�� (Straight run) -14.12 0.81  

�� (Reformate) -4.36 0.76  

�� (T.C. naphtha) 6.90 0.90  

�� (C.C. naphtha) -10.68 0.44  

�� (Polymer) -0.59 0.83  

�� (Alkylate) 7.21 0.66  

�� (Natural gasoline) 2.33 0.79  
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Table 6.4 shows apparently contradictory results, since, although there seem to exist an 
overall statistical significant effect of the ingredients of the mixture on the octane, none 
of the tests performed to assess the statistical significance of the effect of each individ-
ual blend constituent permits identifying any of them as having a statistically signifi-
cant effect on the RON. However, a high degree of correlation between components �� 

(Straight run) and �� (T.C. naphtha) should be noted, as can be seen in Table 6.5, 
where cells with shading correspond to correlation coefficients whose absolute value is 
greater than or equal to 0.7. 

Table 6.5. Correlation matrix for the parameters of the (first) linear Scheffé polynomial fitted via 
OLS for example 1 

�� �� �� �� �� �� �� 

�� 1 0.0360 -0.9983 -0.5766 -0.3137 -0.5653 0.5987 

�� 0.0360 1 -0.0586 -0.1862 -0.1122 -0.3226 0.2133 

�� -0.9983 -0.0586 1 0.6201 0.3358 0.6099 -0.6432 

�� -0.5766 -0.1862 0.6201 1 0.4394 0.9535 -0.9924 

�� -0.3137 -0.1122 0.3358 0.4394 1 0.3241 -0.4753 

�� -0.5653 -0.3226 0.6099 0.9535 0.3241 1 -0.9649 

�� 0.5987 0.2133 -0.6432 -0.9924 -0.4753 -0.9649 1 

 

Table 6.6 provides the results from combining both constituents and treating them as a 

new one to fit a new linear Scheffé model. 

Table 6.6. (Second) linear Scheffé polynomial parameters’ estimation via OLS for example 1 

Parameter Estimate SE 

�� � �� 72.57 7.2776 

�� 85.934 1.1418 

�� 76.16 6.7208 

�� 87.401 5.032 

�� 99.923 2.5591 

�� 126.24 57.834 

 



Quality by Design Through Multivariate Latent Structures 

 

62 

On the other hand, the results from assessing the statistical significance of the adjusted 

effects for this new scenario can be seen in Table 6.7. 

Table 6.7. Adjusted effects calculation and statistical significance assessment from the (second) 

linear Scheffé polynomial via OLS for example 1  (* on the right indicates p-value<0.05) 

Blend constituent Adjusted effect estimate p-value  

(Overall) - 5.5·10
-6

 * 

�� � �� -7.45 0.22  

�� -4.04 0.44  

�� -11.32 0.30  

�� -0.57 0.69  

�� 7.59 0.39  

�� 3.35 0.52  

 

As with Table 6.4, Table 6.7 does not allow identifying the adjusted effect of any of the 
mixture ingredients, individually, as statistically significant. However, a high degree of 
correlation between the estimated effects of �� � ��  and �� should be noted, as can 
be seen in Table 6.8, where cells with shading correspond to correlation coefficients 
whose absolute value is greater than or equal to 0.7. 
Table 6.8. Correlation matrix for the parameters of the (second) linear Scheffé polynomial fitted via 

OLS for example 1 

�� � �� �� �� �� �� �� 

�� � �� 1 -0.3820 0.9179 0.3939 0.9310 -0.9589 

�� -0.3820 1 -0.1957 -0.1013 -0.3643 0.2335 

�� 0.9179 -0.1957 1 0.3204 0.9275 -0.9884 

�� 0.3939 -0.1013 0.3204 1 0.1701 -0.3664 

�� 0.9310 -0.3643 0.9275 0.1701 1 -0.9453 

�� -0.9589 0.2335 -0.9884 -0.3664 -0.9453 1 

 

Table 6.9 provides the results from combining the three constituents and treating them 
as a new one to fit a third (and last) linear Scheffé model. 
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Table 6.9. (Third) linear Scheffé polynomial parameters’ estimation via OLS for example 1 

Parameter Estimate SE 

�� � �� � �� 78.40 1.80 

�� 85.70 1.08 

�� 81.64 1.15 

�� 88.95 4.57 

�� 101.93 0.80 

R2=0,9916     R2-adj=0,9868 

Finally, the results from assessing the statistical significance of the adjusted effects for 
this third scenario can be seen in Table 6.10. 
Table 6.10. Adjusted effects calculation and statistical significance assessment from the (third) linear 

Scheffé polynomial via OLS for example 1  (* on the right indicates p-value<0.05) 

Blend constituent Adjusted effect estimate p-value  

(Overall) - 4.8·10-7 * 

�� � �� � �� -4.57 1.5·10-3 * 

�� -1.26 0.27  

�� -4.41 0.01 * 

�� 0.24 0.68  

�� 13.51 1.8·10
-5

 * 

 

As has been observed, three consecutive adjustments of a Scheffé model via OLS have 

been required, coupled with a careful inspection of the existing collinearity among the 

different components, in order to conclude that three of them could be considered, for 

the purposes of assessing their influence on the response, equivalent. 

If, instead, the linear Cox polynomial is fitted via PLS regression (A=3), the estima-

tions of the parameters shown in Table 6.11 are obtained. 
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Table 6.11. Linear Cox polynomial parameters’ estimation via PLS (A=3) for example 1 

Coefficient Scaled/centred estimate Unscaled/uncentred estimate 

��� 0 92.6759 

��� -0.1391 -9.8281 

��� -0.2087 -6.9602 

��� -0.1376 -16.6662 

��� -0.2932 -8.4218 

��� -0.0384 -4.3887 

��� 0.4564 10.1615 

��� -0.1434 -34.5288 

R2=0.99056     R2-adj=0.97922     Q2=0.90208 

In this case it is enough to observe that, for the components �� (Straight run), �� (T.C. 
naphta) and �� (Natural Gasoline), the centred and scaled coefficients are very similar. 
The estimated coefficients (without centring or scaling) are very different due to the 
difference in the ranges of possible variation of the composition of each of the compo-
nents in the mixture. In fact, the highest (absolute) value is detected for ��, the constit-
uent with the narrowest allowed range of compositions. 

In addition, it is possible to observe from the scaled and centred coefficients that the 
largest positive effect corresponds to �� (alkylate), the next most important compo-
nents being �� (C.C. naphtha) and then the combination of �� (Straight run), �� (T.C. 
naphta) and �� (Natural Gasoline). The range of variation in composition for �� 
(reformate) is very high, and therefore its total effect will be lower in spite of the value 
for its estimated centred and scaled parameter being higher. On the other hand, �� 
(polymer) is the one constituent that presents a smaller effect on the response, and can 
be considered practically null. 

6.1.2.2       Example 2: gasoline blending data of Snee 

In this example, the effect of 5 blend constituents on the RON of a gasoline mixture 
was studied. The estimations of the parameters from fitting a quadratic Scheffé model 
with the data provided via OLS is shown in Table 6.12. 
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From the Table 6.12 and Figure 6.1 it may seem that the fitted model is quite appropri-
ate to explain the response variable. It should be noted, however, that although many of 
the terms corresponding to two-factor interactions appear as statistically not significant, 
the correlation matrix (see Table 6.13) indicates a high collinearity among several of 
the estimated coefficients (cells with shading correspond to correlation coefficients 
whose absolute value is greater than or equal to 0.7).  

Furthermore, and according to the model fitted, the effect of butane (��; B in Figure 
6.2) seems to show a slight degree of non-linearity in the mixture, as is also reflected in 
the trace plot in Figure 6.2. This is in agreement with the statistical significance of the 
parameters of the model corresponding to the two-factor interactions, since only those 
in which the butane intervenes appear as clearly statistically significant. Additionally, 
these interactions are all negative, that is, the interaction of butane with the rest of the 
components of the mixture is antagonistic. The trace graph also allows us to observe 
this clearly, since the curve corresponding to the butane is convex with respect to the 
origin. 

Table 6.12. Quadratic Scheffé polynomial parameters’ estimation via OLS for example 2 (* on the 
right indicates p-value<0.07) 

Parameter Estimate SE tStat p-value  

�� 158.508 22.690 - -  

�� 97.384 7.139 - -  

�� 106.935 8.029 - -  

�� 92.342 2.365 - -  

�� 100.057 1.897 - -  

��� -56.029 27.468 -2.040 0.0661 * 

��� -88.109 27.483 -3.206 0.0084 * 

��� -62.866 28.776 -2.185 0.0514 * 

��� -57.709 26.594 -2.170 0.0528 * 

��� -5.978 10.297 -0.581 0.5732  

��� 7.005 14.155 0.495 0.6304  

��� 6.054 14.126 0.429 0.6765  

��� 10.913 17.632 0.619 0.5486  

��� 1.670 12.434 0.134 0.8956  

��� 3.368 2.720 1.238 0.2414  

R
2
=0.98262     R

2
-adj=0.9605 
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Figure 6.1 Studentized residual plots for the quadratic Scheffé model fitted via OLS for example 2 

 
Figure 6.2. Trace plot for the quadratic Scheffé model fitted via OLS for example 2 
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Alternatively, the quadratic Cox model can be obtained by fitting a PLS-regression 

model (A=4), which will provide the estimations for the Cox coefficients shown in 

Table 6.14. It should be noted that, in this case, the values of the parameters associated 

with the quadratic term for butane (����) and its interactions with other components 
remain high in comparison with the rest. The same is apparently no longer true for 
other interactions, while interactions such as the ones between isopentane (I) and 
reformate (R), and between isobutane and the catalytically cracked constituent of the 
blend (C) show relatively high values for their parameters estimation. 

These observed differences between the results obtained by OLS and PLS show how 
some interactions with a significant effect on the response have not been detected as 
such by OLS, due to the issues this regression methods suffers from when analysing 
mixture data in highly restricted or irregular mixture spaces, as is the case. By means of 
PLS, however, values have been obtained that seem to be more in line with the im-
portance of these interactions.  

To make a fairer comparison between OLS and PLS, one must consider that the Cox 
polynomial parameters estimated via PLS with � � �� (� being the number of LV 
extracted to adjust the model and �� the rank of �) are identical to those of the Cox 
model obtained via OLS (from the Scheffé one) if the overall centroid of the dataset 
(i.e. the centre of projection in PLS) is chosen as the reference mixture. 
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Table 6.14. Quadratic Cox polynomial parameters’ estimation via PLS (A=4) for example 2 

Parameter Scaled/centred estimate Unscaled/uncentred estimate 

��� 0 99.5439 

��� -0.0620 -1.3059 

��� -0.0993 -1.8248 

��� 0.4579 5.4746 

��� -0.5798 -3.2736 

��� 0.3792 2.0461 

���� 0.0985 13.0510 

���� -0.0557 -7.1456 

���� -0.0553 -2.2676 

���� 0.0138 1.6159 

���� 0.0384 9.2189 

���� -0.0414 -2.0978 

���� -0.0215 -0.4896 

���� 0.1657 4.5111 

���� -0.1210 -7.2758 

���� 0.0674 0.8566 

���� 0.1168 17.7973 

���� 0.0274 0.1538 

���� -0.0615 -5.5928 

���� -0.1161 -0.6575 

���� 0.0016 0.4425 

R2=0.96228     R2-adj=0.92746     Q2=0.7323 
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6.1.3. Conclusions and additional considerations 

In this section one of the major drawbacks of using classical regression techniques for 
mixture design data analysis, consisting in the difficult identification of blend constitu-
ents whose influence in the mixture properties is similar to each other, has been shown, 
as well as how resorting to PLS may be useful in avoiding this problem. 

Furthermore, as already stated, the model fitted with PLS is equivalent to the repara-
metrization of the Scheffé model into the Cox polynomial (of the same order) if the 
number of LV extracted to fit the PLS model is the maximum feasible, and the centre 
of projection of the latent subspace is taken as the reference mixture (in Section 6.2 
different examples will be illustrated in which the same Scheffé model is obtained in 
different scenarios through OLS and PLS, given these conditions are met). Because of 
this, PLS-regression can be resorted to in order to obtain the same model as with OLS 
when analysing mixture data while, at the same time, bypassing the limitations of this 
approach. This being of interest or not in practice is left to debate, given that e.g. one of 
the advantages of latent variable-based methods is the reduction in dimensionali-
ty/compression of the information, which is lost if as many latent variables as possible 
are extracted. 

From a more practical point of view, in terms of the available software for mixture 
design data analysis, it is also important to mention that not just any statistical software 
prepared for data analysis via OLS/GLS can be resorted to for this purpose, while any 
software aimed at data analysis via latent variable-based methods can also be used for 
mixture design model fitting. This is to say, specific/specialized software is required if 
traditional approaches are to be resorted to when dealing with mixture data, while no 
specific software is required when using latent variable-based algorithms. 

Finally, it must also be pointed out that most latent-variable based methods present an 
important limitation (although not just when it comes to mixture design), which is the 
lack of a standardized approach to determine the statistical significance of e.g. the ef-
fects/estimations of the parameters of the fitted regression model, specially in absence 
of replicates in the dataset available to fit such model. This is the reason why such tests 
did not appear in Tables 6.11 and 6.14. 

6.2. Kernel-PLS and pseudo-sample trajectories 
As previously discussed, PLS regression-based techniques can be resorted to in order 
to avoid some of the issues associated to the use of classical polynomial fitting by tra-
ditional methods such as OLS or GLS. In fact, PLS regression based-techniques have 
proven to guarantee satisfactory performance even when highly restricted mixture 
spaces have been dealt with and allow variables of different nature (e.g. component 
proportions and physicochemical properties, as well as production process conditions) 
to be fused and simultaneously analysed. Nevertheless, if the mixture data under study 
are affected by strong non-linear relationships (which is rather common in e.g. indus-
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trial scenarios), applying classical PLS (even taking into account additional interaction 
and/or higher-degree terms) may not constitute an appropriate modelling strategy since 
it assumes their underlying structure is linear [39]. A good alternative may be repre-
sented by the combination of K-PLS regression and pseudo-sample trajectories, but the 
described way of defining the different pseudo-sample matrices (see Section 3.2.2) is 
not suitable when mixture problems are concerned, because it violates the constraint in 
Equation 5.1 (i.e. it is impossible to vary the composition of any one of the constituents 
independently from the rest), and then needs to be slightly adapted. 

The main aim of this section is to evaluate the potential of such a combination in this 
particular field of interest, by comparing it with well-established methodologies, i.e. 
Scheffé model fitting by means of OLS and Cox model fitting by means of PLS. Both 
simulated and real case studies will be investigated. 

6.2.1. Methods 

PLS and K-PLS regression have been presented in Sections 3.2 and 3.3, and the basic 
principles of the Scheffé and Cox models in Sections 5.3.1 and 5.3.2. The extension of 
the pseudo-sample projection approach for mixture data handling is now illustrated. 

6.2.1.1       Pseudo-sample trajectories for mixture data 

In order to account for the perfect collinearity mixture constraint in Equation 5.1, the 
pseudo-samples matrices �� (similar to �� in Section 3.3.2) should be structured in 
such a way that the V values in their q-th column range from the minimum to the max-
imum proportion of the q-th ingredient and all the elements of each one of their rows 
sum up to 1. E.g. if a ternary mixture problem is faced, a hypothetical �� may have 
such an aspect: 

�� �

� ��� ���
��� ��� ���
���
���
���
�

���
���
���
�

���
���
���
�

 (6.2) 

More generally: 
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�� �

� � ����
� � �

� � ����
� � � �

� � ����
� � �

� � ����
� � � �

��� ��
�
�
�

� � � ����
� � �

� � ����
� � �

� � � ����
� � �

� � ����
� � �

� � �
� � ����
� � �

� � ����
� � � �

�
�

��� ��

� � �
� � � ����

� � �
� � ����
� � �

 (6.3) 

where �� is the q-th column vector of � and ���� refers to the  entry in the v-th row and 
q-th column of ��. As shown in Figure 6.3, this would mean spanning the mixture 
space (a simplex in this case) in the direction connecting the vertex associated to the 
‘pure mixture’ composed by only the q-th constituent ([1, 0, 0], if q = 1) and the mid-
point of its opposite side ([0, 0.5, 0.5], if q = 1)vii, which for the complete simplex is 
also de so-called Cox’s direction given the reference mixture [1/3, 1/3, 1/3]. As will be 
highlighted in Sections 6.2.3.3 and 6.2.3.4, the representation of the corresponding 
pseudo-sample trajectories yields the so-called trace plot, traditionally used in mixture 
design analysis to get an approximate idea of the linear and non-linear effects the 
change in the proportion of every q-th ingredient may have on the quality attribute of 
interest. However, because these effects are confounded with those due to the simulta-
neous variation of the proportion of the other blend constituents, a precise identifica-
tion of each of the Scheffé polynomial coefficients cannot be achieved this way. 

 
Figure 6.3. Graphical representation of the direction spanned by the pseudo-sample trajectory associ-
ated to the constituent A in a generic ternary mixture design space, coincident with the Cox’s direc-
tion for the reference mixture [1/3, 1/3, 1/3] 
 
vii Equation 6.2 is not valid if the design space is not a simplex or if it is a simplex but the ingredient proportions do not vary from 
0 to 1, but the extension of the described methodology to such situations is straightforward. 
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6.2.1.2       Pseudo-sample-based response surface and Scheffé model coefficients 

Alternatively, by using a combination of multiple pseudo-sample trajectories and gra-
phing them in a contour plot, the response surface for the full mixture space can be 
retrieved. To do this, every pseudo-sample matrix has to be constructed by i) fixing the 
proportions of all but two constituents, ii) increasing the proportion of one of these two 
constituents, and iii) decreasing the proportion of the other accordingly (so that Equa-
tion 5.1 is met). This procedure is iteratively repeated for different values of the fixed 
proportions of the rest of the ingredients, which graphically implies moving over the 
design space in a particular direction, as displayed in Figure 6.4.  

Notice that a measure of the Scheffé model coefficients for the first-order effects of the 
ingredients B and C and for their interaction can be derived from the trajectory cover-
ing the BC side of the simplex, as seen in Figure 5.3 and will be illustrated in Section 
6.2.3.1. This is also valid for the trajectories covering the AB and the AC side of the 
triangle, not represented in Figure 6.4. 

 

Figure 6.4. Graphical representation of the direction spanned by the pseudo-sample trajectories used 
to retrieve the response surface for a generic simplex for a ternary mixture. The resolution of the final 
plot will logically increase with the number of such trajectories. In this specific case, in every single 
pseudo-sample matrix, the proportion of A is fixed, while those for B and C vary 

6.2.2. Datasets 

Two simulated and real datasets from mixture designs of experiments will be object of 
this study. 
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6.2.2.1       Data simulated according to a second-order polynomial model 

66 artificial samples (with no replicates) of a ternary mixture homogeneously distribut-
ed inside a simplex and a single response variable were simulated according to the 
following second-order Scheffé model: 

! = !! · !! + !! · !! + !! · !! + !!,! · !! · !! + !!,! · !! · !! + !!,! · !! · !!
!! = 1.89!; !!! = −1.33!; !!! = 0.67

!!,! = −2.89!; !!!,! = 0.54!; !!!,! = −1.33

!!! 0, 1 !!!!!!!!. !. !! = 1
!

!!!

 (6.4)  

whose reformulation as a Cox model for a reference mixture where !! = !! = !! = !
! 

can be written as (see Section 5.3.2): 
! = !! + !! · !! + !! · !! + !! · !! + !!,! · !! · !! + !!,! · !! · !! +

+!!,! · !! · !! + !!,! · !!! + !!,! · !!! + !!,! · !!!
!! = 0!; !!! = 2!; !!! = −2.67!; !!! = 0.67!; !!!,! = −1.67

!!,! = 0.44!; !!!,! = 0!; !!!,! = −0.11!; !!!,! = 1.33!; !!!,! = 0

!!! 0, 1 !!!!!!!!. !.

!!
!

!!!
= 1

!! · !!
!

!!!
= 0

!!,! · !!,! · !!
!

!!!
= 0

!! = !! = !! = 1/3

 (6.5)  

According to Equation 6.5, a positive first-order and a small negative second-order 
term characterize the apparent (note that the terms in this model are not independent 
from one another) effect of the first constituent on the output. Conversely, the second 
one features a negative first-order and a positive second-order term. The third ingredi-
ent exhibits a small positive first-order and no second-order term. Positive interaction 
terms were generated for both !! · !! and !! · !!, while no interaction was assumed to 
involve !! and !!. No noise was added after the data simulation. 

6.2.2.2       Tablet data 

This dataset was first described in [61], where 10 pharmaceutical tablets resulting from 
distinct blends of cellulose, lactose and phosphate were prepared to assess the influence 
of these substances on the release time of the active ingredient of the final manufac-
tured drug. No replicates were performed. 
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6.2.2.3       Bubble data 

The bubbles data relate to an experiment also reported in [61]. Here different propor-
tions of two dish-washing liquids (DWL1 and DWL2), water and glycerol were com-
bined to produce 24 soap mixtures (21 unique samples and 3 replicates) in order to 
determine which composition would yield the most durable bubbles (i.e. longest bubble 
lifetime) of a minimum acceptable size. 

6.2.2.4       Colorant data 

This dataset was described in [80]. In it, 49 blends (46 unique samples and 3 replicates) 
of different proportions of white (��), black (��), violet (��) and magenta (��) paints 
were manufactured to optimise the values of three specific colour responses: lightness 
(��), red-green tone (��) and yellow-blue tone (��). 

6.2.2.5       Gasoline data 

An augmented simplex-centroid DOE was resorted to in order to generate the dataset 
used in this example, where different proportions of three gasoline constituents, cata-
lytically cracked, C5-isomer and reformate, were mixed to produce 10 distinct blend 
[81] to evaluate the effect of these constituents on the octane rating of the final product, 
and possibly maximise it. 

6.2.2.6       Data simulated according to a highly non-linear model 

12 artificial samples of a ternary mixture simulated according to an augmented simplex 
centroid design of experiments (with 2 replicates for the design centroid) were generat-
ed to obtain the dataset used in this example, based on the following model: 

� � �� � �� � �� � �� � �� � �� � �� � ��� �� � ���� �
��� � ��� � �� � ��� ���� � �� �
�� � ������ ��� � ������� ��� � ����
�� � ������� ��� � ������� ��� � ����

��� �� � ��������� �� �� � �
�

���

 (6.6) 

Normally distributed random noise was added in this case to the response variable 
estimated by Equation 6.6. 
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6.2.3. Results 

Both the simulated and real data were used for addressing an exploratory comparison 
among Scheffé polynomial fitting by means of OLS, Cox polynomial fitting by means 
of PLS, and K-PLS in terms of goodness-of-fit in calibration (R2), goodness-of-fit in 
leave-one-out cross validation (Q2), and Root Mean Square Error in leave-one-out 
Cross-Validation (RMSECV)viii [82], and for illustrating that under certain conditions 
K-PLS can guarantee improved prediction and interpretation. Moreover, a way of re-
trieving the coefficients of a Scheffé polynomial (when they hold) from the pseudo-
sample trajectories yielded by a K-PLS model with the same complexity was derived. 
The whole set of routines resorted to for data processing and analysis was self-coded in 
MATLAB R2012b (Version 8.0.0.783) and is available on request. 

6.2.3.1       Data simulated according to a second-order polynomial model 

This section will be focused on demonstrating how the pseudo-sample trajectories can be 
resorted to in order to recover the coefficients of the Scheffé model in Equation 6.4 given 
dataset generated following the procedure outlined in Section 6.2.2.1. Figure 6.5 shows the 
curves for the response variable y (predicted by means of a 3-latent variable second- 
order K-PLS model) corresponding to the trajectories spanning the three sides of the ternary 
mixture space of the simulated dataset, by moving from a vertex (pure blend) to another 
vertex of the simplex which is like the one in Figure 6.4. 

Note that, since every �� � ��� � � �� �  measures the expected y for the pure mixture 
composed by the only i-th constituent, each one of such parameters should match the 
predicted response at one of the two extremes of the respective pseudo-sample trajecto-
ry. As indicated in Figure 6.4, since the data at hand are noiseless, an exact corre-
spondence was here observed for ��, ���and��. Analogously, the coefficients for the 
interaction terms �� � ��, �� � �� and �� � �� can be computed as: 

���� �
���������� � ��� � �� � ��� � ��

���� � ����� � ��� � ���� � ��� � �����
���� � �����

���� �
���������� � ��� � �� � ��� � ��

���� � ���� � ��� � ���� � ��� � ����
���� � ����

���� �
���������� � ��� � �� � ��� � ��

���� � ����� � ��� � ����� � ��� � ����
���� � �����

 (6.7) 

where ����������, ���������� and ���������� denote the estimated average � value for the bina-
ry blends  with compositions �� � �� � ���, �� � �� � ��� and �� � �� � ���, re-
spectively (i.e. the mid-points of the three trajectories in Figure 6.5.a, 6.5.b and 6.5.c).  

 
viii  Notice that when extreme observations are left out of the original data, responses for mixtures that are outside of the calibration 
experimental domain are predicted (extrapolation). However, as this is the case for all the approaches under study, a fair compari-
son of the RMSECV values is still guaranteed. Furthermore, for K-PLS, the objects/samples to be iteratively left out are removed 
from the datasets before the kernel transformation 
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6.2.3.2       Tablet data  

Second-order Scheffé, Cox and K-PLS models were fitted for the analysis of the tablet 
datasetix. The number of extracted PLS and K-PLS latent variables was selected by 
leave-one-out cross-validation. As Tables 6.15 and 6.16 point out, the three modelling 
strategies returned comparable performance indices and regression coefficients, respective-
ly. Figure 6.6 displays their corresponding response surface plot, which are almost iden-
tical to one another (including the RBF K-PLS, not shown). They also enable a similar 
interpretation of the effects of the single constituents on the active ingredient release 
time, and allow assessing that high contents of phosphate, moderate contents of cellu-
lose and low contents of lactose clearly led to high values of such property of interest. 
More concretely, binary mixtures composed by roughly �� of phosphate and �

� of cellu-
lose are expected to exhibit the longest release time. Short release times are instead 
yielded by blends consisting of e.g.��� of lactose and �� of cellulose. Thus, it is quite 
reasonable to assume the presence of a positive contribution for the interaction phos-
phate/cellulose and a negative contribution for the interaction lactose/cellulose. As 
illustrated in Section 6.2.3.1, one can look at the pseudo-sample trajectories spanning 
the sides of the triangle in Figure 6.6.c for an accurate determination of the Scheffé 
model first-order and interaction parameters. 
Table 6.15. Tablet data: R2, Q2 and Root Mean Square Error in Cross-Validation (RMSECV) values 
resulting from second-order Scheffé model fitting by means of OLS, second- order Cox model fitting 

by means of PLS, and second-order K-PLS 

 # LV R2 Q2 RMSECV 

Scheffé second-order model (OLS) - 0.98 0.84 38.86 

Cox second-order model (PLS) 5 0.99 0.83 39.69 

K-PLS second-order model 5 0.98 0.83 38.86 

6.2.3.3       Bubble data 

As with the previous example, the second-order Scheffé, Cox and K-PLS models ad-
justed for the bubbles dataset rendered very close R2, Q2 and RMSECV values (see 
Tables 6.17 and 6.18). Since this particular mixture problem embraces up to four con-
stituents, the proportion of one of them has to be fixed to allow the response surfaces to 
be graphed as in Section 6.2.3.2. Given that glycerol presented a much more positive 
effect on the bubble lifetime and a much higher cost than any other ingredient, as also 
suggested in [61], its relative amount was set at 0.4. The results (virtually indistin-

 
ix The use of second-order models was originally suggested in [61] 

 



Quality by Design Through Multivariate Latent Structures 

 

78 

guishable) are represented in Figure 6.7. Figure 6.8 shows instead the corresponding 
trace plots. As one can easily see, although the effect of DWL2 on the response of inter-
est seems to be more positive than that of DWL1 and water, the interaction of these 
latter is crucial to guarantee high bubble lifetimes (i.e. more equilibrated blends of 
DWL1, DWL1 and water would feature more durable bubbles). 

The pseudo-sample trajectories spanning the sides of the simplex in Figure 6.7.c cannot 
be directly resorted to for the estimation of the related Scheffé model coefficients in this 
situation owing to the fact that the experimental space of the bubbles data is just a por-
tion of a whole simplex, and then they do not reflect the evolution of the predicted re-
sponse while moving from a pure mixture to another. On the other hand, if these trajec-
tories are constructed so that they exactly overlap the entire edges of this hypothetical 
tetrahedron, the methodology proposed in Section 6.2.3.1 for the retrieval of the first-
order and binary interaction parameters is still valid (assuming that any effect involv-
ing the two constituents of the concerned binary mixture do not vary outside the actual 
data space) [57]. 

 
Table 6.16. Tablet data:  Scheffé model coefficients estimated by Scheffé polynomial fitting by means 

of OLS, Cox polynomial fitting by means of PLS and K-PLS 

 Scheffé model fitting by OLS Cox model fitting by PLS K-PLS 

�� 198.16 198.10 198.16 

�� 114.06 111.94 114.06 

�� 328.97 326.21 328.97 

���� -403.26 -404.98 -403.26 

���� 350.56 347.54 350.56 

���� 330.37 323.14 330.37 
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Figure 6.5. Data simulated according to a second-order polynomial model (generation scheme in 
Equations 6.5-6.6: pseudo-sample trajectories representing the evolution of the predicted response 
while moving from a) the pure mixture composed solely by constituent B to the pure mixture com-
posed solely by constituent A; b) the pure mixture composed solely by constituent C to the pure mix-
ture composed solely by constituent A; and c) the pure mixture composed solely by constituent C to 
the pure mixture composed solely by constituent B 
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6.2.3.4       Colorant data 

When the colorant dataset was dealt with, second-, third- and fourth-order Scheffé, Cox 
and polynomial K-PLS models and RBF K-PLS models were fitted (separately for 
every response variable) in order to additionally assess the effect of their complexity on 
the final outcomes. Table 6.19 lists their main performance indices. It can be said that 
different approaches usually required a different complexity to achieve the minimum 
RMSECV, but, overall, their performance was found to be rather similar also in this 
case. For the sake of interpretation, as an illustration, the trace plots resulting from the 
best Scheffé, Cox and polynomial K-PLS models built for the prediction of the yellow-
blue tone (!∗) are displayed in Figure 6.9. They are almost in perfect agreement, and 
only negligible variations with respect to the outcomes obtained by Alman and Pfeifer 
in [80] were observed (the same goes for those derived for both !∗ and !∗ and for all 
those returned by RBF K-PLS, which are not shown). Concretely, all the constituents 
exhibited a positive effect on !∗. 
Table 6.17. Bubbles data: R2, Q2 and Root Mean Square Error in Cross-Validation (RMSECV) values 
resulting from second-order Scheffé model fitting by means of OLS, second- order Cox model fitting 

by means of PLS, and second-order K-PLS 

 # LV R2 Q2 RMSECV 

Scheffé second-order model (OLS) - 0.94 0.81 0.042 

Cox second-order model (PLS) 9 0.94 0.81 0.042 

K-PLS second-order model 9 0.94 0.81 0.042 

6.2.3.5       Gasoline data 

Second-order cross-validated Scheffé and Cox models were tentatively adjusted for the 
gasoline dataset. Due to the low number of samples, however, not enough degrees of 
freedom were available for the estimation of the coefficients of more complex polyno-
mials. As highlighted in Table 6.20, both approaches returned negative Q2 and poor 
RMSECV values. On the other hand, their performance was clearly outmatched by that 
of RBF K-PLS. In addition, RBF K-PLS was found to yield figures of merit just slight-
ly worse than those obtained by coding the constituent proportions in terms of so-called 
pseudo-components [81] and fitting a first-order Scheffé or Cox model including in-
verse terms, a more standard and common procedure for handling non-linear data com-
ing from a mixture design of experiments [57]. Still, the main advantage of K-PLS 
over it is that there is no need of performing such a domain transformation and defining 
these inverse terms prior to the analysis: the optimisation of the kernel transformation 
function and, in this case, of the σ parameter guarantees a certain flexibility when mod-
elling different types of non-linearities without requiring any further operation to be 
carried out. It is important to note that this domain transformation would cause all 
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pseudo-components proportions in the blend to potentially vary from zero to one. 
Therefore, a small number must be artificially added up to each pseudo-component’s 
proportion in the denominator of the inverse terms in order to avoid infinite values at 
the edges (i.e. when at least one of the pseudo-component’s proportion in the blend is 
zero). However, the magnitude of this number will affect the estimation of the model 
coefficients to a greater or lesser extent depending on the severity of the non-linearities 
of the real effects, thus increasing the relative effort required to properly fit a regres-
sion model via this approach when compared to K-PLS. 

The first-order pseudo-component Scheffé and Cox models encompassing inverse 
terms led to identical surface plots (see Figure 6.10.a and 6.10.b). Certain dissimilari-
ties from the one rendered by RBF K-PLS (see Figure 6.10.c) are instead observable, 
which was expected considering the intrinsic differences among the compared algo-
rithmic methodologies and especially the fact that the first-order pseudo-component 
Scheffé and Cox models encompassing inverse terms are able to explain strong nonlin-
earities mainly at the borders of the design space but not in its central area. Neverthe-
less, a common explanation of the effect of the distinct ingredients on the response 
variable can be given: the maximum octane rating can be achieved by blending a high 
quantity of catalytically cracked and low quantities of C5-isomer and reformate. 
 

Table 6.18. Bubbles data:  Scheffé model coefficients estimated by Scheffé polynomial fitting by 
means of OLS, Cox polynomial fitting by means of PLS and K-PLS 

 Scheffé model fitting by OLS Cox model fitting by PLS K-PLS 

�� -1.49 -1.49 -1.49 

�� 2.35 2.35 2.35 

�� -1.35 -1.35 -1.35 

�� 2.11 2.11 2.11 

���� 2.08 2.08 2.08 

���� 14.55 14.55 14.55 

���� 7.51 7.51 7.51 

���� 6.70 6.70 6.70 

���� 2.63 2.63 2.63 

���� 7.82 7.82 7.82 
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Table 6.20. Gasoline data: R2, Q2 and RMSECV values resulting from second-order Scheffé model 
fitting by means of OLS, second-order Cox model fitting by means of PLS, first-order (plus inverse 
terms) pseudo-component Scheffé model fitting by means of OLS, first-order (plus inverse terms) 

pseudo-component Cox model fitting by means of PLS, and RBF K-PLS. If required and feasible (i.e. 
a sufficient number of degrees of freedom was available), non-linearity degree (tuned through the 

value of the σ parameter in RBF K-PLS) and complexity (number of latent variables) were optimised 
within a leave-one-out cross-validation loop. 

 
 # LV R2 Q2 RMSECV 

Second-order Scheffé model (OLS) - 0.85 -1.42 12.40 

Second-order Cox model (PLS) 2 0.99 -0.91 11.02 

First-order (plus inverse terms) pseudo-
component Scheffé model (OLS) 

- 0.98 0.88 2.73 

First-order (plus inverse terms) pseudo-
component Cox model (PLS) 

5 0.99 0.82 2.73 

RBF K-PLS second-order model (� � �) 8 0.99 0.82 3.46 

6.2.3.6       Data simulated according to a highly non-linear model 

This section will be focused on further emphasizing the added value of K-PLS with 
respect to the other methodologies concerned. The outcomes yielded by the application 
of Scheffé model fitting by means of OLS, Cox model fitting by means of PLS, and K-
PLS to the second simulated dataset are reported in Table 6.21. 
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Table 6.21. Data simulated according to a highly non-linear model (generation scheme in Equation 
6.7): R2, Q2 and RMSECV values resulting from second-order Scheffé model fitting by means of 
OLS, second-order Cox model fitting by means of PLS, first-order (plus inverse terms) pseudo-

component Scheffé model fitting by means of OLS, first-order (plus inverse terms) pseudo-
component Cox model fitting by means of PLS, and RBF K-PLS. If required and feasible (i.e. a suffi-
cient number of degrees of freedom was available), non-linearity degree (tuned through the value of 
the σ parameter in RBF K-PLS) and complexity (number of latent variables) were optimised within a 

leave-one-out cross-validation loop 
 

 # LV R2 Q2 RMSECV 

Second-order Scheffé model (OLS) - 0.95 0.56 2.14 

Second-order Cox model (PLS) 5 0.99 0.56 2.14 

First-order (plus inverse terms) pseudo-
component Scheffé model (OLS) 

- 0.69 -1.11 4.71 

First-order (plus inverse terms) pseudo-
component Cox model (PLS) 

1 0.96 -0.06 3.35 

RBF K-PLS second-order model (� � ���) 7 0.98 0.61 1.83 

 
The R2, Q2 and RMSECV displayed values corroborate what was stated before about 
K-PLS: when strong non-linear relationships (e.g. fourth order, logarithmic, etc.) char-
acterise the data under study, it may outperform in terms of fit and prediction quality 
both Scheffé model fitting by means of OLS and Cox model fitting by means of PLS. 
This applies even if first-order Scheffé or Cox models including inverse terms are fit-
ted. Notice that here a RBF kernel transformation and not a polynomial one was found 
to guarantee the best Q2 and RMSECV. As already mentioned, RBF K-PLS requires 
the optimisation of an additional parameter, σ. The variation of such a parameter allows 
different types of complex trends to be modelled, thus its utilisation might be highly 
recommended when combinations of unknown non-linearities influence the interde-
pendence between ingredient proportions and properties of interest. 

6.2.4. Conclusions 

In this section a novel approach for the analysis of data proceeding from mixture de-
signs of experiments and based on the combination of KPLS and pseudo-sample trajec-
tories was proposed. Two interesting points arose from the discussed examples: 

• if the considered mixture data were not affected by severe nonlinearities 
and/or featured a sufficiently high number of observations, K-PLS and pseu-
do-sample trajectories yielded very similar results to classical Scheffé model 
fitting by means of OLS and Cox model fitting by means of PLS (see Sections 
6.2.3.2, 6.2.3.3 and 6.2.3.4). A way of recovering the parameters of a Scheffé 
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model (provided that it holds and has the same complexity as the K-PLS one) 
from the trend of the pseudo-sample trajectories was also derived and validat-
ed via a simulated case-study (see Section 6.2.3.1); 

• on the contrary, when more non-linear and relatively small data structures had 
to be analysed, K-PLS proved to be a valid alternative for overcoming the 
main limitation of both Scheffé model fitting by means of OLS and Cox model 
fitting by means of PLS (see Sections 6.2.3.5 and 6.2.3.6): it resulted, in fact, 
in better fit and prediction quality when the nature of such non-linear data was 
not strictly polynomial. In addition, although the performance of these more 
classical methodologies can be improved by taking into account inverse terms, 
often not enough degrees of freedom are available for a stable estimation of 
the coefficients of these augmented models. K-PLS does not suffer from the 
same drawback. On top of that, RBF K-PLS through the optimisation of its pa-
rameter, σ, may allow different types of complex nonlinear relationships to be 
modelled. Its use might then be highly recommended when combinations of 
unknown non-linearities influence the nature of the interdependence between 
constituent proportions and response variables. 

Finally, it was also shown how graphs like the surface plots or the trace plots associat-
ed to the mixture design space can be retrieved by the pseudo-sample trajectories ena-
bling a reliable interpretation of the effect of changing the proportion of the different 
ingredients of the blend on its properties of interest. 
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Chapter 7  
MiDAs: a software for 
mixture DOE and data 

analysis 
7.1. Introduction 
The name of this tool stands for Mixture Design and Analysis. MiDAs is a Matlab-
powered software with graphic interface that allows to easily approach mixture design 
problems for the construction of model-based and space filling Designs of Experiments 
(DOE), as well as to analyse mixture design data using traditional approaches such as 
OLS (simply referred to as Multiple Linear Regression, or MLR, inside the software 
itself) and by Partial Least Squares. Although performing these studies requires some 
knowledge in statistics in general, and mixture design in particular, the aim of this 
software is to provide its users with an easy way to apply the tools it offers without 
requiring extensive knowledge of Matlab or other mathematical programming soft-
ware, and without requiring having Matlab itself to do so. 

MiDAs is structured in two main modules, the first of which is dedicated to the con-
struction of mixture DOEs (including DOEs for mixture problems which also include 
process or amount variables), and the second dedicated to mixture data analysis. The 
main menu of the software, shown in Figure 7.1, clearly differentiates both modules. 
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Figure 7.1. MiDAs main menu 

The main menu provides 3 options for creating or modifying designs, as well as one 
option for the analysis of mixture data: 

- Variable Input: this option permits introducing the mixture constituents as 
well as process variables (no differentiation is made here between ‘process 
variables’ and ‘amount variables’), and univariate and multivariate restrictions 
on them, which will determine the shape and size of the experimental space. 

- MODEL: this option allows selecting a model given the previously defined 
variables, and including or excluding terms of the model once selected. Alt-
hough a space filling design may be desired, choosing a model is still needed, 
even if it will not affect the final DOE. 

- DOE: given the defined variables, constraints on them and the model in previ-
ous options, this option will suggest a Design of Experiments, although the us-
er may want to (and can) specify a different one selecting some optimality cri-
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terion, the number of experiments that will constitute the desired DOE, and 
fixing some other parameters depending on the kind of DOE. 

- Analysis: this option allows fitting different mixture models with MLR and 
PLS if the appropriate data is provided. 

The main menu also presents the possibility of saving the current project into a MAT 
file or to load data from a MAT file from a previous project. 

 
Figure 7.2. Main menu - File menu 

The following subsections detail the tools provided by each of these four options. 

7.2. Variable input 
As seen in Figure 7.3, The window “Variable Input” has three tabs: “Variables”, “Uni-
variate Restrictions” and “Relational Constraints”, which must be resorted to sequen-
tially. The selected tab will be highlighted in bright green colour. 

 
Figure 7.3. Data Input window - Variables tab 
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To introduce new variables or modify the information of existing ones, one must click 
on the “Variables” tab, then “Add”. This will generate a new register with default val-
ues, as seen in Figure 7.4. 
 

 
Figure 7.4. Data Input window - Variables tab. Add variable 

 

The values for this register can be modified, and as many new registers as required can 
also be added before or after modifying the existing ones. The ‘properties’ of each 
register are: 

- Type: “Mixture” or “Process”. Select one from these in the dropdown menu 
(see Figure 7.5). 

- Label: short identifier for the variable, to be used later on in other windows. If 
changed, the new label must be as short as possible and not include blanks nor 
special characters. Clicking on the cell permits changing it. 

- Name: short name, to be used later on in other windows. It should be short but 
enough to identify the component or process, and it may be used in some re-
ports of interest for the user. Clicking on the cell permits changing it. 

- LongName: a more elaborate description of the corresponding variable, in 
case the user requires adding some clarification. It will not be used on any re-
port nor window. Clicking on the cell permits changing it. 

 

 

 

 

 
 

Figure 7.5. Data Input window - Variables tab table. Select variable type 
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The button “Save” allows saving all changes. Trying to move to a different tab will 
make a window pop up if changes have not been saved, as this is necessary to continue. 
This does not, however, save the data to a project file. To do so the option “File” must 
be used  

The button “Clear All” clear all inputs the information introduced up until now. It will 
not overwrite any existing data in the project file. 

The button “Delete Selected” deletes from the list the last clicked on register, which 
will have some cell highlighted in blue to indicate it has been selected. It will not 
overwrite any existing data in the project file. 

To introduce new univariate restrictions, the “Univariate Restrictions” tab must be 
clicked if it is not active already. This tab, which can be seen in Figure 7.6, can be used 
to modify lower and upper bounds imposed on all variables as required. 

 
Figure 7.6. Data input window - Univariate Restrictions tab (original). 

Row labels can show the short name or the label for the variables. Change this at any 
time by clicking on radio buttons “Names” or “Labels”. Default values are set to 0 for 
lower limit and 1 for upper limit. 

More than one set of bounds can be defined (see Figure 7.7). Clicking on “NewSet” 
allows creating a new set of bounds, while the dropdown menu “Set”, with the num-
bers associated to the different sets, permits selecting which list of bounds (from the 
ones already defined) will be used later on. 
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Figure 7.7. Univariate Restrictions. Change set 

The button “Reset” sets the lower and upper bounds values to default.  

The button “Check Restrictions”  (see Figure 7.8) computes the consistent bounds.  

 
Figure 7.8. Univariate Restrictions. Check Restrictions 

MiDAs notifies if any errors in the bounds make it impossible to continue with the 
creation of the design, for example when the ways the restrictions are defined generate 
an empty mixture space. It will also inform the user whether the mixture space is an L-
simplex, a U-simplex, not a simplex, if it is constituted by a single mixture of if it is 
void, via a pop up window. It must be noted that this button evaluates the shape of the 
mixture space by also accounting for any active “Relational Constraints”. 
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Clicking on the button “Original” shows again the original restrictions. 

In addition to univariate restrictions, defining multivariate ones (here called ‘relational 
constraints’) is possible. To add or modify already existing relational constraints click 
on “Relational Constraints” tab. By default, the values of the coefficients that accom-
pany each variable in the constraint are initially set to zero, the constraint is assumed to 
be an equality one (‘=’), and the ‘objective’ value (i.e. the one the linear combination 
of variables must be equal to or lower/higher than) is also set to zero. Additionally, the 
new relational constraint is set to ‘inactive’ (see Figure 7.9). 

 
Figure 7.9. Relational Constraints 

By clicking on a cell, the value within it can be changed. To change the type of con-
straint, the dropdown menu below ‘REL’ must be clicked, and one of the options se-
lected  (‘=’, ’<=’, ’>=’). Clicking on ‘Save’ will save the relational constraint. It is also 
possible to add more restrictions by clicking on “New” (see Figure 7.10).  

 
Figure 7.10. Relational Constraints 
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Multiple restrictions can be defined this way, but the model will consider only those 
flagged as “Active Restriction”. If after defining the restrictions (univariate or relation-
al) new variables are added or existing ones are deleted, or a new data file is loaded, all 
the defined restrictions will disappear and will have to be re-entered again if necessary. 
The perfect collinearity restrictions in Equation 5.1 among mixture variables is defined 
internally and therefore it is not necessarily for the user to include it among the rela-
tional constraints they may want to impose. 

7.3. Model selection 
Back at the main menu, and once information on variables (with at least 3 mixture 
variables) and restrictions has been introduced, the option “Model selection” can be 
accessed. MiDAs will propose the most simple model that can be defined while includ-
ing all variables introduced in the “Data Input” menu by default, but a different model 
can be chosen nonetheless (see Figure 7.11). 

 
Figure 7.11. Model Selection. 

In case there are process variables a list of proposed models for them is also shown in 
the “Process Variable Model” popup (see Figure 7.12). MiDAs will propose the mix-
ture-process variables model that combines both models in a multiplicative way. 
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Figure 7.12. Model Selection with process variables 

MiDAs will fill the dropdown menu for Model Selection with the corresponding model 
terms, based on the number and type of variables introduced before. Nonetheless, the 
user may be interested in excluding some of the terms of the complete model (see Fig-
ure 7.13). To do so, the term to be excluded must be clicked on, and clicking on the 
arrow pointing to the right will exclude such term and all other terms that depend on it 
according to the principle of hierarchy. The list of included terms is stored in a work-
space variable to be used in the DOE. 

 
Figure 7.13. Model Selection. Include/exclude terms 



Quality by Design Through Multivariate Latent Structures 

 

100 

7.4. DOE construction 
Once the model has been selected, the DOE option in the main menu can be accessed. 
By clicking on it, MiDAs will make use of the data introduced via the Data Input and 
Model Selection windows and suggest a DOE, referred to in the software as the “origi-
nal” one (see Figure 7.14), which can be modified by the user later on. Depending on 
the mixture space being a simplex or not, the presence of process variables or not, and 
the model selected, MiDAs may propose one of the simplex-based DOEs presented in 
Section 5.4.1, or will propose a list of optimality criteria to choose from (D-optimal, I-
optimal or distance-based, for a space filling DOE) to construct a DOE via the “Opti-
mize” tab. 

 
Figure 7.14. Design of Experiments. Original proposed design 

In all cases, a table with the points of the proposed design will be made visible, and a 
count of the number of points will appear next to the number of terms included in the 
model. If there are less than two or more than four mixture variables, a warning is dis-
played informing that the graphical representation of the design is not possible. Other-
wise, the option “Plot Design” can be clicked on to visualize the DOE in the mixture 
space (see Figure 7.15). 
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Figure 7.15. Original proposed design plot 

By clicking in “Optimize” tab, a new proposed design will be obtained based on the 
number of points of the desired design, and the number of iterations and max. length of 
excursion when the point-exchange algorithm is used to construct it. After setting new 
values for points, iterations and max.length of excursion, clicking on “Optimize” will 
provide the optimized DOE as well as its D-efficiency and G-efficiency (see Figure 
7.16). If the graphical representation is possible, the optimized DOE can be viewed by 
clicking on “Plot Design” in this same tab (see Figure 7.17). 

To save all the work done up until now, the option “Save to MAT file” in the menu bar 
option “File” must be selected. The DOE can also be exported to an excel file by click-
ing on the button “Export to EXCEL”, and all the data related to this design may be 
accessed later by loading a saved mat file from any other Matlab program or by import-
ing the data from the EXCEL file. 
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Figure 7.16. Optimized design 

 
Figure 7.17. Plot optimized design 
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7.5. Data analysis 
The option “Analysis” allows fitting different models using MLR or PLS if the appro-
priate data is provided. The main menu is shown in Figure 7.18. 

 
Figure 7.18. Data Analysis 

From the main menu experimental data from a previously constructed DOE of from an 
Excel file can be retrieved. If such data is loaded from an Excel file then the upper and 
lower bounds and multivariate/relational constraints must be defined. Two options 
exist the load the data: 

- Load / View variables info 

Pressing on “Load / View variables info” opens the screen “Regress Variable Info”, 
which can be seen in Figure 7.19. 
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Figure 7.19. Regress Variable Info screen 

By clicking “File” on the menu bar and then “Load mat file” (see Figure 7.20), data 
from previous analysis can be retrieved. “Save as” can be used to save the data of the 
current analysis in a .mat file. “Load DOE mat file” permits getting the data generated 
in a previous DOE project in MiDAs. 
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Figure 7.20. “File” options 

When loading data from a DOE previously generated using MiDAs it will be necessary 
to add the output variables and check, modify or add univariate and multivariate re-
strictions additional to the ones in the corresponding DOE project file.  

- Load X/Y data 

If this option is selected, experimental data will be loaded from an EXCEL file (see 
Figure 7.21)  

 
Figure 7.21. Load X/Y data screen 

Clicking on “Import Data From EXCEL” will show the menu in Figure 7.22, where it 
is possible to select an Excel file through the option “Select EXCEL”, and then click 
on the Excel sheet from which the data will be taken by pressing “Load Sheet”. If the 
first line of the Excel sheet contains variable labels, ticking the “With headers” check-
box will allow saving these labels. The loaded experimental data can be modified by 
clicking on the cells containing the values to edit them. 
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Figure 7.22. Excel file selection 

By default, all variables will be set as mixture type (see Figure 7.23), and therefore 
variables of other types must be changed to “Process” or “Output” accordingly. The 
variable labels can also be edited, and more variables added. Variables can also be 
excluded from the following analysis. 

 
Figure 7.23. Analysis data input screen 

To modify labels, clicking on the corresponding cell is enough to be able to change it. 
To change type, the “Type” popup should be opened for the corresponding variable 
and the correct one chosen from the list. To exclude a variable, the “Included” popup 
can be pressed to select “Excluded”, and vice versa (see Figure 7.24). 
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Figure 7.24. Change type and include 

Data of variables marked as “Excluded” cannot be edited, and the corresponding col-
umns will be highlighted in red (see Figure 7.25). 

 
Figure 7.25. Sample input data screen 

Once finished, simply closing this screen will save the loaded data and make it availa-
ble for posterior analysis.  

If any changes are required regarding the constraints that define the experimental 
space, they can be done by clicking on “Load/View variable info” in the main analysis 
screen. Doing this will open the window shown in Figure 7.26, which now contains the 
information regarding the variables from the loaded experimental data (either from a 
DOE MiDAs project or from an Excel file). If the data comes from an Excel file, 
MiDAs will automatically set lower and upper bounds equal to the minimum and max-
imum values from the experimental data matrix, respectively.  
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Figure 7.26. Review and change univariate restrictions 

It must be noted that the information in this screen regarding the type and label of each 
variable cannot be modified here. If any of them needs changing, this will have to be 
done in the screens seen in Figures 7.23 to 7.25. 

Multivariate/relational constraints are never considered if the data comes from an Excel 
file (except for the perfect collinearity restrictions in Equation 5.1 among mixture vari-
ables), and must therefore be added, if needed, or modified if required when the data 
has been retrieved from a pre-existing analysis or DOE project in MiDAs. This is done 
in the corresponding tab, which has the same aspect as the one in Figure 7.10. 

Finally, the button “Check Restrictions” ought to be pressed so that the consistent lim-
its are calculated, the simplex condition is checked, and a reference mixture (coincident 
by default with the centroid of the mixture space) and list of terms are proposed. By 
default the simplest model structure that can be considered with all variables involved, 
to be fit via MLR, is proposed. This will result in the main analysis window looking 
similar to the one in Figure 7.27. 
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Figure 7.27. Start Data Analysis 

- Choose the analysis method (MLR or PLS) 

By default, MiDAs assumes that the model will be fitted via OLS, and the appropriate 
model structure is proposed. However, the user can define a base model (for mixture 
and process variable separately if the method “Multiple Linear Regression” is selected, 
or for both types of variables without distinctions if PLS is chosen). 

Once the base model to be adjusted has been chosen, clicking on "List Model Terms" 
will generate the corresponding list of terms, some of which can be discarded if the 
user desires to do so (always respecting the hierarchical principle among terms con-
cerning mixture variables). If MLR is resorted to and there are more terms in the model 
than observations in the experimental dataset, a warning will appear informing the user 
that the analysis cannot continue until enough terms have been eliminated from the 
model or more observations are included into the data table. If there are enough data to 
fit the model, the "Fit Model" button is displayed. Pressing it will open another screen, 
which will be different depending on whether the model is fitted using MLR or PLS. 
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7.5.1. Data analysis with MLR 

The MLR Model window shows the results from fitting the selected model with the 
available data via OLS and, as seen in Figure 7.28, is separated into 4 parts. In the up-
per left corner, the model summary is available with the model parameters estimates, as 
well as the values for R2 and R2-adjusted. The results of the ANalysis Of VAriance 
(ANOVA) appear in the lower left side of the screen. A table of residuals is shown on 
the lower right side. In the upper right area, the traces plot can be seen. To the right of 
this graph, when there are process variables, sliding cursors (one for each process vari-
able) are displayed to choose different values of the process variables, and a button to 
repeat the trace graph once the values of the process variables have been changed to the 
desired ones. 

 
Figure 7.28. MLR 

The “Contour” button to the right of the residuals table allows plotting the representa-
tion of the contours plot of the response surface for the model obtained (see Figure 
7.29), after the proportions for all but 3 mixture components, and the values for all 
process variables, are fixed. 
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Figure 7.29. Contour plot 

The "Residuals Plot" button, also to the right of the residuals table, displays when 
pressed a normal probability plot of the studentized residuals (see Figure 7.30). 

 
Figure 7.30. Normal probability chart of studentized residuals 



Quality by Design Through Multivariate Latent Structures 

 

112 

Below the residuals table appears the "correlation matrix" view button, which repre-
sents the matrix of correlations between the parameters of the adjusted model (in the 
same order in which they are listed in the model summary table). If the adjusted model 
is linear, without process variables, and no terms have been removed from the model, 
the "summary RL (Scheffe-Cox)" view button also appears, which provides the table 
shown in Figure 7.31, that contains the Scheffé coefficients and the orthogonal and 
adjusted effects for the linear model, as well as the coefficients of the Cox model and 
the corresponding total and adjusted effects, with respect to the reference mixture in-
troduced in the main analysis window. 

 
Figure 7.31. Sample of Scheffé and Cox summary table of linear regression 

7.5.2. Data analysis with PLS 

If the model is fitted via PLS, a window similar to that of the MLR is shown instead, 
where the model summary also includes the value of the Q2, and the possibility to as-
sess the adequacy of selecting more or less latent variables (considering, at most, as 
many as indicated in the main analysis window when fitting the model) via cross-
validation.  
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Chapter 8  
Preliminary 

considerations 

Part of the content of this chapter has been included in: 

1. Palací-López, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental 
approach to improve the design space estimation using latent-variable model in-
version. Part I. Defining the Experimental Region. Submitted. 

8.1. Quality by Design and the Design Space 
The term Quality-by-Design (QbD) [83] has its origin in the pharmaceutical industry, 
and refers to an initiative that promotes the implementation of science-based method-
ologies to deliver products with the desired specifications by increasing the process 
flexibility and robustness, understood as the capability to tolerate changes in the mate-
rials involved and processing conditions (i.e. the inputs) without negatively affecting 
the quality of the outputs. In this context, the Design Space (DS) is a key concept de-
fined as “the multidimensional combination and interaction of input variables (e.g., 
material attributes) and process parameters that have been demonstrated to provide 
assurance of quality” [84]. The philosophy of the QbD, however, is not limited to the 
pharmaceutical field, but can be extended to any process where it may become relevant 
to find the most convenient combinations of inputs that guarantee the desired outputs 
(i.e. almost any manufacturing process). 

An important point must be highlighted with respect to this, because applying the QbD 
approach requires proper understanding of the process it will be applied to. This ap-
proach is meant to be used in an active environment, where a model is used for control, 
optimization or the design of new products, when the desired properties are known, and 
the way to obtain has to be defined, as opposed to passive environments in which the 
model would be used for, e.g., calibration or monitoring purposes. Therefore, any al-
ready available model ought to be inverted, since at this point it will not be used to 
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predict a process outputs from some specific inputs, but to define the necessary inputs 
to achieve some specific outputs. 

On the other hand, because of the way the DS is defined, this subspace is expected to 
comprise a subregion of the domain defined by the set of historical products that have 
already been developed [85,86], also referred to as knowledge space (KS)x. This, as 
well as the fact that in most cases a product is required to meet several specifications 
simultaneously, requires three scenarios to be considered, among which only one of 
them will guarantee the existence of the DS: 

1. If at least one of the specifications on the outputs for a given hypothetical 
product cannot be met, independently of the inputs, the DS cannot be said to 
exist. Only relaxing or modifying entirely the restrictions imposed by such 
specifications may lead to the existence of a DS (although not for the product 
as initially defined). 
 

2. If the specifications on the outputs for a given hypothetical product can only 
be met if operating outside of the KS, the DS cannot be said to exist, since it is 
assumed to be a subregion within the KS, not outside of it. However, whenev-
er possible, expanding the KS by modifying the operating conditions such that 
the subregion of operating conditions that guarantee the desired product falls 
within it may, at least theoretically, enable the definition of the DS. 
 

3. If all of the specifications on the outputs can be simultaneously met within the 
KS, the DS exists and may be comprised by a single combination of inputs 
(i.e. the dimensionality of the DS is equal to zero, or a single point) or differ-
ent combinations of inputs (i.e. the dimensionality of the DS is equal or greater 
than one, a line, and at most that of the KS) 

The DS, when it exists and its dimension is higher than zero, may be understood as the 
subspace of the KS within which any set of inputs leads to equally valid outputs in 
terms of meeting the defined specifications, therefore providing flexibility until addi-
tional constraints or some optimization criteria are considered. Thus, in some way, the 
DS may be interpreted as the set of all equally optimal solutions of an optimization 
problem. 

Consider, as an example, the following polynomial model defining a hypothetical in-
put-output causal relationship, used in one of the examples in [87]: 

 

 
x This definition of the DS assumes that the desired quality attributes are defined such that they can be obtained from products 
similar to the already produced ones in the past. In practice, the goal may be finding the most appropriate operating conditions to 
achieve new, significantly different products from past ones. While this is not an scenario accounted for in the present thesis, this 
must be considered outside of the context of this work.  
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! = −21 + 4.3 · !! + 0.022 · !! − 0.0064 · !! + 1.1 · !! − 0.12 · !! 

s.t. !! = !!!  ;  !! = !!!  ;  !! = !! · !! 
(8.1)  

where ! represents the ‘quality attribute of interest’ expressed as a function of the input 
variables !!, !!, !!, !! and !!. Notice that, although non-linear terms (interaction and 
quadratic terms) are included in Equation 8.1, this model is still linear in its parameters, 
and that only two of the five inputs (!! and !!) are independent. Figure 8.1a illustrates 
the results from plotting the response surface plot corresponding to the quadratic model 
including the terms !!, !!, !!!, !!! and !! · !!, by using noiseless data following Equa-
tion 8.1 without uncertainty in its parameters. Figure 8.1b shows the DS for a desired 
output !!"# = 204.86, as well as the DS for the more realistic case 184.86 ≤ !!"# ≤
224.86 (i.e. in practice, the DS usually encompasses ranges of acceptable values for 
the different quality attributes of interest, instead of specific ones), obtained after in-
verting Equation 8.1.  

 
Figure 8.1 a) Response surface plot for the model in Equation 8.1 in the experimental domain corre-
sponding to!!! ranging from 0 to 90 and !! from 0 to 20, and its intersection with the planes corre-
sponding to y=204.86 (green curve), and y=184.86 and y=224.86 (lower and upper red curves respec-
tively), and b) design space, which contains all combinations of {!!, !!} leading to y=204.86 (green 
line), y=184.86 and y=224.86 (lower and upper red curves respectively) and any combinations of {!!, 
!!} leading to values for y between y=184.86 and y=224.86 (grey area) 

As can be seen, if a range of values for the outputs within specified limits were is 
deemed acceptable instead of a single value, the DS is constituted by the union of the 
regions defined by the contour lines corresponding to the whole range of acceptable 
values within the specified limits (e.g. in Figure 1b, the grey area delimited by the two 
red curves). 

Consider a more general example to illustrate the differences between the knowledge 
space, the design space and the so-called Normal Operating Conditions (NOC), assum-
ing a process with only two input variables, !! and !!, and two output variables !! and 
!! (see Figure 8.2). 
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Figure 8.2 Hypothetical Knowledge Space (KS), Normal Operating Conditions (NOC), ‘acceptable 
product space’ (which is equivalent to the Design Space (DS) in the X space), and univariate histori-
cal limits in both the inputs (X) and outputs (Y) spaces for a generic production process with only two 
input and two output variables involved. 

In Figure 8.2, the NOC are differentiated from the KS in that the KS is constituted by 
all possible combinations of operating conditions the process has ever been run under, 
and the characteristics of the product (y1 and y2) achieved, while the NOC represents 
only the subset of different combinations of inputs under which the process “currently” 
operates. Note that, as is usually the case in practice, a small portion of the production 
in NOC is outside of specifications (i.e. outside of the ‘acceptable product space’), 
which are usually univariate. Furthermore, there is a larger region in the inputs sub-
space that would also guarantee the desired quality of the product, but is outside of the 
subspace of the NOC. This means that a proper definition of the DS would, in this 
example, increase the flexibility in the way the process is operating, while guaranteeing 
the desired outputs. 

8.2. Limitations of the optimization and DOE in the original space 
As commented in Section 2.1, independent variation in the input variables is required 
to guarantee causality when using data-driven approaches [3] and, although large 
amounts of ‘happenstance’ data are available in most production processes, the varia-
tion in the inputs is commonly not independent (i.e., data are not obtained from a DOE 
that guarantees this independent variation in the inputs). In these contexts, classical 
linear regression (LR) or even machine learning (ML) methods cannot be used for 
process optimization because none of many good prediction models that can be fitted is 
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unique or causal. This is because the process variables are usually highly correlated and 
the number of independent variations in the process is much smaller than the number 
of measured variables. Furthermore, when multiple quality attributes of interest (i.e. 
output variables) are involved, methods such as OLS present the added disadvantage of 
having to build one model for each of the outputs. 

Therefore, since causal models are required for optimization, but building these models 
by methods such as OLS requires resorting to DOEs in the original space (i.e. the space 
of the original variables), the optimization problem in the original space will indirectly 
suffer from the same drawbacks as the DOE in the original space (e.g. the selection of 
a representative model structure for the data, the requirement of extensive experimenta-
tion to fit it, collinearity among factors, etc.). Furthermore, and even if first principle 
models can be resorted to, most (if not all) optimization algorithms will suffer from 
significant computational cost and convergence issues due to the high dimensionality 
of the space within which the optimization takes place in most productions processes, 
and the presumably also large number of restrictions imposed. 

8.3. Optimization in the latent space 
Methods based on projection onto latent structures, such as Partial Least Squares (PLS) 
regression-based techniques, allow the analysis of large datasets with highly correlated 
data by relating the inputs and outputs through few, uncorrelated Latent Variables (LV) 
that identify the underlying causal relationship between process inputs and outputs, and 
provide models for both the X (inputs) and Y (outputs) spaces. Since causal relation-
ships can be inferred in the latent space [27], this permits the use of historical datasets 
for optimization purposes, which reduces the amount of experimentation required, or 
even prevents it altogether [28]. 

Furthermore, since the initial number of variables involved has been reduced to a 
smaller number of uncorrelated LV, the computational cost of any optimization prob-
lem in the latent space will be reduced when compared to the equivalent problem in the 
original space, even more so as the number of variables in the original space increases 
and the number of LV remain relatively few. 

One of the main drawbacks of using PLS regression-based techniques is, as with any 
data-driven approach, the uncertainty associated to the data and the model, which must 
be accounted for in the definition of the DS in the latent space, the transferral of re-
strictions from the space of the original variables to the LV, and the definition of the 
optimization problem. 

Assuming that at least one feasible combination of inputs exists that leads to the de-
sired outputs, some approaches based on Latent Variable Regression Model Inversion 
(LVRMI) have been proposed in the past to obtain a single combination of inputs via 
the direct inversion, or to define the so-called Null Space (NS) which contains the pro-
jection onto the latent space of all the combinations of inputs theoretically guarantying 
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the desired outputs. Jaeckle and MacGregor [88] proposed the guidelines to obtain 
points on the NS when as many outputs as the rank of the matrix of outputs used to fit 
the model are considered, through the definition of what they identify as the null com-
ponents. The subspace in which points obtained are located by using this approach is 
the so-called “combined pseudo-NS” by García-Muñoz et al [89]. These authors pre-
sented an alternative method to differentiate the NS associated to each output for which 
a desired value is specified, and propose a different approach to obtain points on each 
of these NS. Alternatively, an optimization problem may be solved to obtain such 
combination of inputs, depending on the restrictions imposed and the weight given to 
the different terms of the formulated objective function [90]. 

These data-driven methods, however, present several drawbacks: 

1. They suffer from the uncertainty associated to such data, which is not explicit-
ly taken into account neither when defining the NS, nor when solving the op-
timization problem, although this is an issue that has been addressed in the lit-
erature [91],[92]. Regarding this, DS bracketing has been suggested [87],[93] 
in order to define a restricted subspace within the KS, inside which the DS is 
expected to lay. Although experiments inside this region do not guarantee to 
provide the desired outputs, taking into account the uncertainty for this brack-
eting allows compensating for the lack of representativeness due to (relatively 
small) nonlinearities.  
 

2. They do not provide an analytical expression for the NS, which is necessary to 
obtain the analytical expression for the limits of the confidence region associ-
ated to it, therefore making it impossible to use them as constraints in e.g. the 
optimization approach as formulated in [90]. 
 

3. They are limited to the case in which the quality attributes of interest coincide 
with some of/all the output variables considered when fitting the PLS-
regression model. There are, however, some scenarios in which this may not 
suffice: 

 
a) If a quality attribute of interest (either an output or a linear combination of 

outputs) cannot be accurately explained by the PLS-regression model 
when included as an output variable, but its relationship with other output 
variables that are well explained by the model allows a linear combination 
of such outputs to be considered instead. As an example, let �� be the 
mass flow of a mixture resulting from a process, �� the proportion of the 

ingredient of interest in the mixture, and �� � �� � �� the absolute mass 
flow of such ingredient. If the quality attribute of interest is ��, but only �� 
and �� can be well predicted by the fitted PLS-regression model, then the 
estimation of the DS for a desired purity ������ will suffer from much 
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more uncertainty that would the definition of the NS for the linear combi-
nation ������ � �� � �� � �. 

 
b) If a quality attribute of interest can be expressed as a linear combination of 

outputs, but the weightings of the outputs involved in this linear combina-
tion suffer short-term changes (e.g. within a few hours, or even minutes). 
In this case, even if the quality attribute can be accurately explained by the 
PLS-regression model if included as another output before fitting such 
model, given a set of weightings, a different PLS-regression model would 
have to be fitted each time the weightings change. An example of this is 
the quality attribute being the expected monetary income from selling the 
products resulting from a manufacturing process, and the outputs being the 
generated mass or volume of each product. The monetary income can be 
expressed as a linear combination of these outputs weighted by their cor-
responding price per mass/volume unit, but frequent fluctuations in these 
prices would render a PLS-regression model including the incomes as an 
output useless every time one of these changes happens. 
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Chapter 9  
Defining the design 
space in the latent 

space 
Part of the content of this chapter has been included in: 

1. Palací-López, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental 
approach to improve the design space estimation using latent-variable model in-
version. Part I. Defining the Experimental Region. Submitted. 

 
9.1. Partial Least Squares model fitting and prediction uncertainty 
Partial Least Squares (PLS) regression [26] is a latent variable-based approach used to 
model the inner relationships between a matrix of inputs X [N�M] and a matrix of 
output variables Y [N�L] which was already presented in Section 3.2.2. In order to 
evaluate the model performance when projecting the n-th observation onto it, the Ho-
telling ��� and the squared prediction error ����� are used, where���� estimates the 
squared Mahalanobis statistical distance in the latent subspace between the projected 
observation and the average one for the historical dataset X, and ����� measures the 
squared Euclidean distance between the centred and scaled observation and its projec-
tion onto the latent subspace defined by the A LVs. 

��� can be calculated as: 

��� � ��� � ��� � �� (9.1) 

with ��� defined as the [A�A] diagonal matrix containing the inverse of the A vari-
ances of the scores associated to the LVs, and �� � ��� � ����� � �� ���  the [A�1] 
vector of scores corresponding to the projection of the n-th observation �� onto the 
latent subspace of the PLS model. �� and ��� are, as in Section 3.2.2, the [M�1] col-
umn vector of centring factors and the [M�M] diagonal matrix of scaling factors ap-
plied to the M input variables before fitting the PLS-regression  model, respectively. 
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On the other hand, given �� � ��� � � � � ���: 

����� � �� � �� � � ����� � �� � �� � ��� � ����� � �� (9.2) 

Assuming multinormally distributed scores and residuals for the projected observa-
tions, the ��� and ����� values for a given observation that conforms to those in the 
calibration dataset are expected to be below their ��� � � � � upper limits [94], �����  
and ������, respectively: 

����� � � � � � �
� � � ��������

������ � ����
� � ����

�������� �������
�

 (9.3) 

where �������� is the ��� � � �  percentile of a Fisher distribution with M and 
(N−M) degrees of freedom, ���� and ���� are the sample mean and standard deviation 
of the SPE for the observations from the calibration data set, and �������� �������

�  is the 
��� � � �  percentile of a �� distribution with � � ����� ����� degrees of freedom. 

Once the PLS-regression model has been fitted, it can be used directly to obtain the 
[L�1] vector of average predictions of the output variables, ����, given the [M�1] 
vector corresponding to a particular observation, ����, fulfilling that ������ � �����  and 
������� � ������, as 

���� � ��� � � � ���� ��� � ��� � � ���� � ����� � ���� ��� ���
���� � �� � ���� � ��
� � ����� ��� � �� � ���

�� � �� � ��� � � ���� � ����� ���

 (9.4) 

This prediction is not free from uncertainty. The estimation of prediction uncertainty is 
done by using Ordinary Least Squares (OLS) type expressions, as suggested in the 
approach proposed by Faber and Kowalski [95]. This approach assumes that the matrix 
of scores � obtained from fitting the PLS model is independent from Y, which is clear-
ly not true [96]. However, this approximation was observed to lead to similarly good 
results when compared with those achieved by means of other approaches such as line-
arization or re-sampling based methods, or the so-called U-deviation method used in 
the software the Unscrambler, while being easier to implement [91]. 

The ��� � � � � � confidence interval (CI) of the prediction of the l-th output varia-
ble ������ given an observation ���� is calculated as: 

�������� � ������ � ��������� � ������� (9.5) 

where ��������� is the ��� � � ���  percentile of a Student’s t-distribution with 
� � ��  degrees of freedom, �� being the degrees of freedom consumed by the PLS-
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regression model, which are suggested in [91] to be calculated as indicated in [97], and 
������� the estimated standard deviation of the prediction of the l-th output variable for a 
particular observation ����: 

������� � ��� � � � ���� �
�
� (9.6) 

where ���� is the observation leverage 

���� � ����� � �� � � �� � ���� (9.7) 

and ��� the standard error of calibration corresponding to the l-th output, obtained as 
suggested in [91] 

��� �
���� � ����

��
���

� � ��  (9.8) 

���� and ���� being, respectively, the n-th measured and predicted value for the l-th 
output of the model calibration dataset. 

It must be noted that, because of the way ������� is computed by following this proce-
dure, �������� depends on the leverage of the observation, and therefore the amplitude of 
the confidence interval is expected to be lower for observations close to the centre of 
projection (smaller leverage) than for those far away from it (higher leverage). Alterna-
tively, Romera [98]  has more recently been proposed a local linearization-based ap-
proach to explicitly express the (asymptotic) variance for the estimators of the PLS-
regression model parameters relating � to �, �, which can be used to obtain a less bi-
ased estimate of ������� than through the aforementioned approximation. In the follow-
ing sections, however, the expression in Equations 9.5 to 9.8 will be resorted to due to 
them being easily applied also to input variables, and not just to the outputs. 

9.2. Transferring restrictions to the latent space 
Since the DS has been defined as a subregion of the KS, the very first step to take is the 
definition of such KS. Because a Latent Variable Regression Model (LVRM), and 
more specifically a PLS-regression model, is used, once univariate or multivariate re-
strictions on the inputs and outputs have been defined, these constraints should be 
transferred to the latent space (i.e. as restrictions on the scores). While the projection of 
these restrictions onto the LV subspace has been a standard part of e.g. the ProMV 
software, the analytical explicit formulation of such projections has not been provided 
in past literature, and are presented in this section. Having these expressions makes it 
possible to compare restrictions in the latent space among each other and with re-
strictions such as the ones imposed by the Hotelling �� hyper-ellipsoid. 
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Consider a set of inequality constraints imposed on the input and output variables to be 
expressed as: 

�� � ���� � �� � ��� � � � ���� ��� � �����
�� � ���� � �� � ��� � � � ���� ��� � �����

 (9.9) 

�� and �� being [���M] and [���L] matrices whose i-th and j-th rows, respectively, 
contain the coefficients of the i-th linear combination of inputs and j-th linear combina-
tion of outputs; ����� and ����� being [���1] and [���1] column vectors whose i-th 
and j-th elements are, respectively, the values that must not be surpassed by the corre-
sponding linear combination of inputs and outputs; and ��, ��, ��� and ��� being as 
defined in Section 3.2.2. �� and �� are, respectively, the number of inequality con-
straints imposed on the inputs and on the outputs. 

After reorganizing terms in Equation 9.9, it yields: 
�� � ��� � � � ���� � ����� � �� ���
�� � ��� � � � ���� � ����� � �� ���

 (9.10) 

Then, a set of inequality constraints in the latent space can be defined: 
�� � ���� � �����

�� �
�� � ��� � �
�� � ��� � �

��� � �������� � ����� � �� ���
����� � �� ���

 (9.11) 

Similarly, if a set of equality constraints on some of the inputs and outputs is defined: 

�� � ���� � �� � ��� � � � ���� ��� � �����
�� � ���� � �� � ��� � � � ���� ��� � �����

 (9.12) 

 �� and �� being [���M] and [���L] matrices whose i-th and j-th rows, respectively, 
contain the coefficients of the i-th linear combination of inputs and j-th linear combina-
tion of outputs, defined in a similar way to �� and �� in Equations 9.9 to 9.11; and 
����� and ����� being [���1] and [���1] column vectors whose i-th and j-th elements 
are, respectively, the values that the corresponding linear combination of inputs and 
outputs are required to have. 

Following the same procedure as with the inequality constraints: 
�� � ���� � �����

�� �
�� � ��� � �
�� � ��� � �

��� � �������� � ����� � �� ���
����� � �� ���

 (9.13) 

It should be noted that each equality restriction imposed implies the definition of a 
hyper-plane of dimensionality (A-1) inside the latent space of the model fitted with A 
latent variables, within which any ���� must be located. Therefore imposing two 
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equality constraints requires ���� to fall within the intersection of two (A-1)-
dimensional hyper-planes, that is, within an (A-1)-dimensional subspace, if both re-
strictions are equivalent, or an (A-2)-dimensional subspace otherwise, if such intersec-
tion exists. This means that, at most, A compatible (i.e. an intersection exists), non-
redundant equality constraints can be imposed, in which case a 0-dimensional (i.e. a 
point) subspace would result. Even then, there is no guarantee that this subspace falls 
within the subspace defined by any other inequality constraints that may have been 
imposed beforehand. 

Furthermore, it may be argued that hard equality constraints are too restrictive, consid-
ering that the uncertainty associated to the data may make it the case that no single 
point within the latent space meets all of them, but a set of inputs slightly outside of it 
and with ������� � ������ may be found. Therefore, while imposing some hard 
equality constraints such as the perfect linear correlation existing among the ingredi-
ents of a mixture (i.e. the proportions of all of the components of the mixture must sum 
up to 1, or 100%) may make sense, relaxing other equality constraints proportionally to 
the uncertainty in the prediction of the corresponding inputs, outputs or linear combina-
tions of them could be advisable as a first step in any optimization problem, whenever 
not doing so makes finding any acceptable set of inputs impossible. 

Consider, as an example, the dataset shown in Table 9.1, corresponding to five obser-
vations simulated following the input-output causal relationship in Equation 8.1, and 
adding noise to it so that it does not follow exactly such relationship. 

Table 9.1. Simulated dataset via Equation 8.1 with added random normal noise 

Observation 
(�) �� �� �� ���  �� ���  �� �� � ��  � 

1 5.43 7.54 125.64 58.51 50.49 61.85 

2 5.43 15.97 126.20 258.48 74.44 278.99 

3 99.23 7.54 9893.38 59.29 737.15 307.89 

4 99.23 15.97 9765.16 254.11 1576.28 436.40 

5 52.33 11.76 2787.64 139.21 583.76 266.08 

6 52.33 11.76 2849.95 135.67 630.73 260.52 

 

Consider also the following inequality restrictions imposed on the inputs: 
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Table 9.2. Lower and upper limits imposed as restrictions on the inputs involved in the input-output 

causal relationship in Equation 8.1 

Variable Lower limit Upper limit 

�� 5.43 99.23 

�� 7.54 15.97 

�� ���  125.64 9893.38 

�� ���  58.51 258.48 

�� �� � ��  50.49 1576.28 

 

It must be noted that the limits imposed as univariate restrictions on the inputs corre-
spond the lowest and highest observed values for the corresponding variables in the 
dataset shown in Table 9.1. Therefore, all of such observations fall within these limits 
when the restrictions are considered in the space of the original variables. Furthermore, 
the univariate restrictions on ��, �� and �� are imposed since, in practice, it is assumed 
that the true relationship among the variables and �� and �� would not be known. 

Consider now a PLS-regression model fitted with 2 LV, the univariate restrictions in 
Table 9.2 to be transferred to the latent space, and the observations in Table 9.1 to be 
projected onto the model subspace. Figure 9.1 illustrates the result from the projection 
of these restrictions (blue dashed line), the six observations (black crosses accompa-
nied by the number indicating which observation they correspond to) and the Hotelling 
�� 95% confidence ellipse (magenta dashed line). 

As seen in Figure 9.1, only five of the ten imposed univariate inequality constraints 
remain when projected onto the latent subspace of the PLS-regression model, with the 
remaining five being redundant. This shows that the reduction in dimensionality also 
affects which restrictions remain relevant. Furthermore, only the projection of half of 
the six observations (3, 5 and 6) fall within the region delimited by the projection of the 
univariate inequality constraints, which would represent an estimation the KS, with the 
other three (1, 2 and 4) being outside of it. 

It must be noted that all observations present ����� values below its ��� confidence 
limit, ������ � ����, as calculated in Equation 9.3, except for the fourth observation 
(����� � ����). 
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Figure 9.1 Representation of the restrictions in Table 9.2 transferred to the latent space (dashed blue 
lines) corresponding to a PLS-regression model fitted with 2 LV and the data in Table 9.1, and pro-
jection of these data onto the same subspace (black ‘x’) with one/two numbers besides close to each 
identifying the number of the observation in Table 9.1. 

Therefore, the fact that the projection of these observations falls outside of the region 
delimited by the projection of the restrictions that all observations actually meet in the 
original space can only be explained by the propagation of the uncertainty in the pre-
diction of the inputs to the projection of the restrictions imposed on them. In fact, alt-
hough the PLS-regression model fitted with 2 LV explains more than 97% of the vari-
ability in the X space (!! ! ≈ 0.9714), the unexplained variability is enough for this 
to happen. 

If a PLS-regression model is fitted using the same data, but with 4 LV instead of 2 LV, 
all of the projected observations will meet all of the projected restrictions. In practice, 
when a larger number of variables are involved and equality restrictions may also be 
imposed, increasing the number of LV would present several disadvantages, such as i) 
introducing additional, undesired noise into the model as ‘information’, and ii) increas-
ing the dimensionality of the model subspace, which will also increase the computa-
tional cost in any optimization problem and in the definition of the DS. 

An alternative approach would include relaxing these constraints to account for the 
uncertainty. To do so in a sensible way, however, a procedure would be required to 
back-propagate this uncertainty such that analytical expressions for the new, relaxed 
restrictions are obtained, but such procedure has not yet been made available in the 
literature. An approach to do this is proposed in Section 9.3. 
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9.3. Partial Least Squares model inversion 

9.3.1. The direct inversion 

The most common use of a PLS model is in its direct form, that is, as a predictive tool 
for the output variables given some input data. However, the same model can be used 
in its inverse form to suggest a combination of inputs ���� [M�1], with projection 
����, needed to achieve a set of desired values ���� for the outputs, ���� � ����. In 
theory, this will be valid as long as ���� conforms to the correlation structure from the 
calibration dataset used to fit the PLS-regression model. 

As pointed out in [86], however, since a reduction in the dimensionality of the space 
has taken place (from operating in the space of the original variables to doing so in the 
latent space), three possible scenarios must be taken into account: 

I. L>A: in this case, since the number of outputs (L) for which desired values are 
defined is greater than the dimensionality of the latent space (A), the most like-
ly case is that no solution exists that provides the desired values for all of the 
outputs. 

II. L=A: in this situation, a single solution exists that provides all ���� 
III. L<A: this is the most common scenario, and corresponds to a case in which 

multiple sets of inputs ���� and their projections ���� will theoretically lead 
to the same desired outputs ����. 

For the first scenario, the least squares solution can be obtained as indicated by Equa-
tion 9.14: 

���� � �� � � �� � �� � ����� � ���� ���  (9.14) 

When applied to the second and third scenarios, this solution is sometimes also referred 
to as the direct inversion of the PLS model, and provides a single set of scores ���� 
corresponding to a set of inputs (i.e., the combination of initial settings, process condi-
tions, raw material properties, etc.) theoretically leading to ����, as well as the inputs 
themselves, ����.  

This solution is unique in the second scenario. In the third scenario, a subspace usually 
referred to as Null Space (NS) can be found in which, according to the model, the same 
set of desired values for the outputs, ����, will be theoretically obtained for different 
inputs combinations. In such case, the solution in Equation 9.14 it corresponds, among 
all of those input combinations, to the one whose projection onto the latent space is 
closest to the centre of projection of the model subspace (not the one with lowest lever-
age), as demonstrated in Section 14.3.1.  

In the second scenario a more correct expression for the solution of the direct inversion 
is shown in Equation 9.15. 
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���� � ��� � ����� � ���� ���  (9.15) 

Finally, for the third scenario: 

���� � �� � � � �� �� � ����� � ���� ���  (9.16) 

And for all three different scenarios: 

���� � ��� � � � ���� ��� (9.17) 

9.3.2. Direct inversion-dependant definitions of the Null Space 

According to [88], the solution to the LVRMI is unique if the effective rank of Y, ��, is 
the same as the number of LV used to fit the PLS regression model (i.e. �� � �). Oth-
erwise, as mentioned in [88] the � � �� -dimensional NS can be found. To guarantee 
this, and as mentioned in [88], first a selective PCA [99] is performed in order to select 
the �� outputs most representative of �. The resulting subspace is usually referred to as 
Null Space (NS) because, according to the PLS model, no change in the outputs is 
expected when moving from one point to another on it, and any set of inputs ��� asso-
ciated to it can be obtained as: 

��� � ��� � � � � � � ��� (9.18) 

where � is an [�� � � �� ] matrix whose columns are the left singular vectors of � 
associated with its � � ��  zero singular values, and � is an [ � � �� ��] vector of 
random real values used to obtain arbitrary points on the NS. Which of these combina-
tions of inputs are feasible or practical will ultimately depend on the constraints im-
posed on them [88]. 

It must be noted that this approach implicitly assumes that �� � �. Otherwise, a selec-
tion of the most representative output variables must be performed beforehand to re-
duce the dimensionality of the � matrix until �� � �. Since the ‘discarded’ output vari-
ables will be highly correlated with some/all of the ones left when fitting the model, the 
values they take them can be computed afterwards. 

A slightly different approach has also been used in the literature [89], where the term 
‘combined pseudo null-space’ is used to refer to the subspace in which points meeting 
Equations 9.18 are obtained, and different NS are defined for each output variable. 
This alternative definition is based on the fact that, if a displacement ����� from the 
direct inversion solution to any other point on the latent space is produced, such that 
����� � �, then: 

� � ����� � � (9.19) 

Which can be reformulated as  
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���� � ������� � ���� � ������� ��� ���� � ������� � �
���� � ������� � ���� � ������� ��� ���� � ������� � �

�
���� � ������� � ���� � ������� ��� ���� � ������� � �

 (9.20) 

where the ‘combined pseudo null-space’ corresponds to the hyper-plane that best ap-
proximates all of the L equalities in Equation 9.20 and contains the result of the direct 
inversion obtained through Equations 9.16 and 9.17, while each equality provides the 
directions that, together with the direct inversion, define the NS of one of the outputs. 

It is important to note that these approaches are implicitly limited by the fact that they 
require the solution of the direct inversion to provide the desired values for all of the 
outputs. Otherwise neither the ‘combined pseudo null-space’ nor some/any of the NS 
associated to each of the outputs, as defined in [89] will contain any point satisfying its 
own definition. 

9.3.3. Analytical definition of the Null Space 

An alternative approach for the definition of the NS is presented in this section, which 
does not suffer from the limitations, associated to the formulation of the NS as done in 
Section 9.3.2. Namely, the presented method does not depend on the existence of at 
least one combination of inputs/scores leading to the desired values for all of the out-
puts. Additionally, it provides a more informative, analytical definition of the NS asso-
ciated to each output variable, as will be later discussed. 

To this end, consider the l-th NS to be defined as the subspace constituted by all com-
binations of inputs that theoretically guarantee the desired value for the l-th (with l=1, 
2, …, L) output variable, but not necessarily for the rest.  

Then, given a desired value ������ for the l-th output variable, a [L�1] vector ���� cor-
responding to any set of values for the outputs associated to a set of scores ���� on the 
l-th NS can be found such that 

��� � ���� � ��� � ��� � � � ���� ��� � ��� � ���� � ������ (9.21) 

with �� being the [L�1] vector whose l-th element is equal to one, and the rest are ze-
ros. 

Equation 9.21 can be reorganized as: 

��� � �� � ���� � ��� � ��� � � � ���� � � (9.22) 

which is the equation of a hyper-plane in the latent space associated to the l-th  NS of 
the form: 
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���� � ���� � ������
�

���
� ��� �� � ������ ������ � ������

���� � ��� � �� � ����
�� � �� � ��� � ��

 (9.23) 

When applied to all L output variables: 
�� � � � ��� � �

�� �
����
����
�
����

� �� � �������� ���� �
���
���
�
���

� ��� � �
 (9.24) 

���� being the [L�1] column vector with ������ as its l-th element, and ��� a set of 

scores in the intersection of the L NS (if it exists).  

It must be noted that the [L�(A+1)] matrix ����  contains in each row the (A+1) pa-

rameters of the equation of the NS associated to the desired valued for the l-th quality 

attribute, with the l-th element in the first column being the expected difference be-

tween the centring factor for the l-th output and its desired value, and the A remaining 

corresponding to ��, the vector signalling the direction of maximum variability in the 

latent space for the expected value of the l-th output, such that a displacement of mod-

ule one in the same direction, in the latent space, will produce an increase in the ex-

pected value of the l-th output equal to the module of ��. 
Furthermore, as long as the rank of X, ��, is higher than one (the rank corresponding to 

one output variable) it will be possible to define a NS corresponding to the desired 

value of one of the outputs. The intersection of all these NS, if it exists, will be (A-L)-

dimensional subspace and that may be referred to as ‘combined NS’, and coincident 

with the ‘combined pseudo-NS’ presented in [88] only if A>L. This subspace can be 

expressed as function of the inputs instead of the scores by simply considering the 

relationship among them expressed in the third equality in Equation 3.4. 

It is also important to note that this definition of the NS only requires its position (����) 
and a single vector orthogonal to the NS (��), unlike the definition in [89], which re-
quires a point in the NS and (A-1) linearly independent vectors parallel to it. 

An added benefit of this formulation is the possibility to extend the definition of the NS 
not just to the desired values for the outputs, but also for a linear combination of them. 

Consider R quality attributes to be defined as a linear combination of the L outputs, and 
the r-th quality attribute of interest to be expressed as �� � ��� � �, with �� being the 
[L�1] vector that contains the coefficients that relate the L output variables with the r-
th quality attribute. Let the r-th NS be the subspace constituted by all combinations of 
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inputs that theoretically guarantee the desired value for the r-th quality attribute of 
interest, but not necessarily for the rest. Then, given a desired value ������ for the r-th 
quality attribute, a [L�1] vector ���� corresponding to any set of values for the outputs 
associated to a set of scores ���� on the r-th NS can be found such that 

��� � ���� � ��� � ��� � � � ���� ��� � ������ (9.25) 

Equation 9.25 is simply a more general expression of Equation 9.21, where �� has been 
substituted by ��, and therefore the same steps can be followed so that, in the end: 

�� � � � ��� � �

�� �
����
����
�

����
� �� ��� � �������� ���� �

���
���
�
���

� �� � ��� � �
 (9.26) 

�� being a [R�L] matrix with ��� as its r-th row, ���� a [R�1] column vector with 
������ as its r-th element, and ��� a set of scores in the intersection of the R NS (if it 
exists). Again, as long as the rank of X, ��, is higher than one (the rank corresponding 
to one quality attribute) it will be possible to define a NS corresponding to the desired 
value of one of the quality attributes of interest. 

It should be noted that Equation 9.24 is a particular case of Equation 9.26 where 
�� � ��, �� being the [L�L] identity matrix. 

9.3.4. Confidence region of the Null Space 

As previously stated, neither prediction is free from uncertainty, and neither is any 
result achieved by model inversion. Several studies have been carried out and different 
proposals exist that aim at providing an estimation of the DS. In particular, Tomba et 
al. [90] propose a jackknife approach to determine the confidence regions for both the 
direct inversion and the NS estimation. On the other hand, a Bayesian-based procedure 
is suggested by Bano et al. [100] for the probabilistic definition of the DS in the latent 
space. Both of these approaches, however, present the drawback of being computation-
ally costly as dataset size and/or the dimensionality of the latent space increases. Alter-
natively, Facco et al. [87] propose a methodology to account for the back-propagation 
of the uncertainty in model inversion to bracket the design space, which can be used 
whenever a single output is considered. The steps to apply it can be summarized as 
follows: 

1. Fit a PLS-regression model relating the inputs with the output of interest 
2. Define the desired value for the output, ����. 
3. Obtain the direct inversion ���� and ���� as in Equations 9.16 and 9.17.  
4. Determine the ��� � � � � CI of the prediction of the output variable given 

���� 
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5. Draw the two NS corresponding to the limits of the CI defined in step 4, by us-
ing Equation 9.18. 

6. Define the “experimental space” as the subspace of the latent space inside the 
Hotelling �� confidence hyper-ellipsoid and delimited by the two NS obtained 
in step 5. 

The DS estimate obtained this way can be understood as a subspace within which ex-
perimentation can be performed to more easily identify the true DS. 

However, since an analytical expression for the NS can be obtained, as illustrated in 
Section 9.3.3, defining analytically the limits of the confidence region associated to it 
is also possible. Consider Equations 9.5 to 9.8 for the ��� � � � � � CI of the predic-
tion of the l-th output variable ������ given an observation ����. Then, the confidence 
region associated to the NS for the l-th output, whose equation can be obtained through 
Equation 9.23, can be defined by back-propagating this uncertainty when inverting the 
model. It can then be demonstrated (see Section 14.3.2) that any new sample ���� 
with projection ���� onto the latent space within the confidence limits for the estima-
tion of the l-th NS must meet the following condition: 

��������� �
���� � ��� � �����

�������
� ��������

������� � ���� � � � ����� � ���� � ��� � �����
��� � ��

�
� ��� � �� � � �� � �� �

�
�

 (9.27) 

������� being the estimated standard deviation of the l-th output for a hypothetical ob-
servation ���� with projection onto the latent space ���� such that ���� is the set of 
scores located in the l-th NS (corresponding to the desired value for the l-th output) 
closest to ����. 

This suggested formulation of the confidence interval can be used to define an experi-
mental region as in [87] but slightly differs from it in that this one takes into account 
the leverage of the new sample, leading to non-linear confidence limits that are tangent 
in the narrowest point to the limits as calculated in [87] when only one output is con-
sidered and using standardized scores.  

However, since in practice the DS will usually encompass a range of acceptable values 
for the outputs/quality attributes of interest, and not a specific single value, a more 
realistic definition of the experimental region will account for this. To do so, consider 
the Lower Specification Limit (LSL), ������, and the Upper Specification Limit, ������, 
such that a new product will be considered to be within specifications regarding the l-th 
output if ������ � ������ � ������. Two NS may be defined associated to the LSL and 
USL, to which hyperplanes of the form shown in Equation 9.23 correspond with inter-
cepts �������� � ��� ��� � ������ and �������� � ��� ��� � ������, respectively. Then, 
any new sample ���� with projection ���� onto the latent space within this experi-
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mental region must meet: 
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 (9.28) 

The adaptation of the expression in Equations 9.27 and 9.28 for the NS corresponding 
to the r-th output variable requires substituting the expression for the NS associated to 
the desired value (in Equation 9.27) or the LSL and USL (in Equation 9.28) for the l-th 
output with that for the corresponding values for the r-th quality attribute of interest. 
Estimating the standard deviation of the r-th quality attribute of interest, expressed as a 
linear combination of outputs, is also needed. To do this, consider R quality attributes 
of interest to be defined, each being a linear combination of the L outputs, such that the 
r-th quality attribute �� for a given observation ���� with outputs ���� is expressed as: 

������ � ��� � ���� (9.29) 

�� being the [L�1] vector that contains the coefficients relating the L output variables 
with the r-th quality attribute of interest. 

The ��� � � � � � CI of the prediction of ������ given an observation ���� is calcu-
lated as: 

�������� � ��� � ���� � �������� � ������� (9.30) 

������� being the estimated standard deviation of the r-th linear combination of outputs 
for an observation ����, which can be obtained as: 

������� � ��� � �� � �� � � � ���� �
�
�  (9.31) 

where �� is the variance-covariance matrix of prediction errors: 
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 (9.32) 

as illustrated in Section 14.3.3, ���� and ���� being, respectively, the n-th measured and 
predicted value for the l-th output of the model calibration dataset. 

It can be easily seen that Equations 9.5 to 9.8 constitute a particular case of Equations 
9.30 to 9.32, when �� is substituted by ��, a vector of zeros except for a ‘one’ in the l-
th position (i.e. for the l-th output variable). 

The analytical expressions for the confidence region of the NS and the experimental 
region corresponding to the r-th linear combination of outputs are equivalent to Equa-
tions 9.27 and 9.28, substituting e.g. �������, the estimated standard deviation of the l-th 
output, by �������, the estimated standard deviation of the r-th quality attribute.  

It must also be noted that these expressions can also be extended to confidence regions 
for NS and experimental regions associated to inputs and linear combinations of inputs, 
not just outputs. This may be of interest e.g. whenever the uncertainty is to be consid-
ered when restrictions are imposed on inputs whose values can be observed but not 
freely manipulated, or even if this is possible. Consider the example illustrated in Fig-
ure 9.1. Figure 9.2 shows the same example, but now the 95% confidence limits asso-
ciated to the restrictions in Table 9.2 in the latent space, instead of the projection of 
such restrictions, are represented. In this case all the projected observations fall inside 
the region delimited by the projection of the 95% confidence limits associated to the 
univariate inequality constraints. Note that the lower confidence limits for ‘greater than 
or equal to’-type restrictions, and upper confidence limits for the ‘lower than or equal 
to’-type restrictions are represented, but not their respective upper and lower limits. 
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Figure 9.2 Representation of the 95% confidence limits associated to the restrictions in Table 9.2 
transferred to the latent space corresponding to a PLS-regression model fitted with 2 LV and the data 
in Table 9.1, and projection of these data onto the same subspace. 

9.4. Subspace most likely to contain the True Design Space 
Once the restrictions on the original variables have been projected onto the latent 
space, and considering the confidence limits of the definition of the NS associated to 
the desired values for the quality attributes of interest, !!"#, the subspace most likely 
to contain the True Design Space (TDS) will be the portion of the latent space within 
these limits and inside the Hotelling !! confidence hyperellipsoid for a given confi-
dence level. The estimation of this subspace is important because, as the experimental 
region defined in [87], it can be understood as a subspace within which experimenta-
tion can be performed to more easily identify the TDS. 

In this section three examples will be illustrated in order to compare this proposed 
experimental region with that defined in [87] as well as the subspace of acceptable 
solutions for an optimization problem as defined in [90].  

For the first one the hypothetical input-output causal relationship in Equation 8.1 is 
used to allow a simple graphical visualization of the procedure. This case study will 
serve as an example to illustrate the application of the proposed approach to define the 
experimental region, and to compare the results obtained with those from the literature.  

A second case study addresses another example with four moderately correlated inputs 
and two moderately correlated outputs, in which specific values are desired for both 
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outputs. This helps to illustrate a more complicated scenario in which more than one 
quality attribute is considered, and that can not be addressed by means of the available 
methodologies proposed in the literature. 

Up until now, in all the case studies discussed, both in this Section and in the literature, 
the quality attributes of interest coincide with one or more of the outputs used to fit the 
PLS-regression model, and it is assumed that such model is able to predict them with 
enough accuracy. As mentioned in Section 8.3, however, this may not be enough in 
some situations. The third case study serves to illustrate this scenario, and corresponds 
to the synthesis of 1,2-dichloroethane (EDC) in a vinyl-chloride monomer (VCM) 
production process plant, simulated by using the software PRO/II and in accordance 
with the guidelines provided in [101]. In this example, the quality attribute of interest 
cannot be well explained or predicted by the PLS-regression model, but a linear com-
bination of other process outputs can be used to bypass such limitation. This is, howev-
er, a problem that could no be addressed with the methodologies proposed in the litera-
ture. 

9.4.1. Datasets 

9.4.1.1       Case study 1: mathematical model 

For the first case study, data were simulated according to the model in Equation 8.1. In 
this example, �� and �� are manipulated variables (i.e., those an operator would be able 
to freely adjust), while ��, �� and �� are three measured variables (i.e. those the opera-
tor would not be able to freely manipulate, but can measure), and � is the quality at-
tribute of interest. An initial dataset with 6 observations from a D-optimal DOE with 
5% of the variability of each variable added as noise to the measured values of ��, ��, 
�� and � is used. Table 9.3 shows the mean and standard deviation for such dataset, for 
all �� variables, as well as for �. The lower and upper limit imposed on the different �� 
are also indicated, which are, in this case, both the levels of factors �� and �� used to 
build the D-optimal DOE (for the limits corresponding to these two inputs), and the 
hard constraints that would be imposed on all variables for optimization. The true rela-
tionship of ��, �� and �� with �� and �� is assumed not to be known, as would be the 
case in most real situations. This is the reason why the lower and upper limits on ��, �� 
and �� are imposed (if the relationship among them was known, these restrictions 
would be known to be redundant). 

This first case study corresponds to an example already addressed in [87], where an 
estimation of the DS was considered for a given ���� by accounting for the uncertainty 
in definition of the NS and delimiting the corresponding subspace to the fraction of it 
within the Hotelling �� ellipsoid. 
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Table 9.3. Case Study 1: Characterization of the input and output calibration datasets 

Variable Mean Std. dev. Lower limit Upper limit 

�� 52.33 41.95 5.43 99.23 

�� 11.76 3.77 7.54 15.97 

�� ���  4257.99 4480.60 125.64 9893.38 

�� ���  150.88 88.91 58.51 258.48 

�� �� � ��  608.81 556.93 50.49 1576.28 

� 52.33 41.95 - - 

9.4.1.2       Case study 2: simulated data with two correlated outputs 

For the second case study, a multi-normally distributed dataset with 50 observations, 
with 4 input variables and 2 output variables following a specific correlation structure, 
was simulated following the procedure explained in [102] and [103] to generate multi-
variate normal data. The correlation matrix used to generate the dataset can be seen in 
Table 9.4 

Table 9.4. Case Study 2: Correlation matrix used so construct the dataset 

 �� �� �� �� �� 

�� 0.45    

�� 0.54 0.50   

�� 0.30 0.55 0.70  

�� 0.50 -0.10 -0.15 0.20  

�� -0.30 0.34 0.50 -0.15 -0.70 

 

Table 9.5 shows the mean and standard deviation for the generated dataset, for all �� 
and �� variables. 
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Table 9.5. Case Study 2: Characterization of the input and output calibration datasets 

Variable Mean Std. dev. Lower limit Upper limit 

�� 0 1 -2.39 2.92 

�� 0 1 -1.91 1.79 

�� 0 1 -1.87 1.87 

�� 0 1 -2.22 1.87 

�� 0 1 - - 

�� 0 1 - - 

 

9.4.1.3       Case study 3: simulated Vinyl-Chloride Monomer manufacturing 

Data corresponding to the production of ethylene dichloride (EDC) as an intermediate 
product to VCM were simulated according to the information detailed in [101] in 
Pro/II. In order to introduce some variability in this process without loss of validity of 
any assumption made during the simulation, manipulated variables were allowed to 
vary a maximum of 5% around the assigned values in [101]. 

Figure 9.3 illustrates a simplified block diagram corresponding to such production 
process. In this case study, focus is directed towards the purity of EDC obtained after 
saturation during the EDC purification step (stream EDC4).  The top section (blue 
section in Figure 9.3) corresponds to the direct chlorination section of the plant, to 
which two stream with pure chlorine and ethylene, respectively, are fed. The bottom 
section (yellow section in Figure 9.3) corresponds to the oxy-chlorination section, to 
which air and pure ethylene are fed together with a recycled stream constituted mostly 
by hydrochloric acid. Both streams are mixed and subjected to saturation (green section 
in Figure 9.3) as the first step during the EDC purification. 
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Figure 9.3 Simulated EDC production process as an intermediate product to obtain VCM 

Table 9.6 shows the name and the meaning of the variables involved in this case study. 
Process variables !! to !! are manipulated input variables, while variables !! to !! are 
measured ones; !!is a molar fraction of the predominant reagent in stream TOP3, and 
!! and !! are the relevant outputs in this case study. A distinction has been explicitly 
established between !! variables and !!, since the last one is a molar fraction of a 
stream and must take values between 0 (or 0%) and 1 (or 100%), while no similar con-
straints tie !! variables. 

Table 9.6. Case Study 3: Definition of the variables involved 

Name Meaning  

!! Flow (lb-mol/h) of  CL2F (Cl2) 

!! Flow (lb-mol/h) of C2F1 (Ethylene) 

!! Flow (lb-mol/h) of AIR (O2+N2) 

!! Flow (lb-mol/h) of C2F2 (Ethylene) 

!! Flow (lb-mol/h) of WTR1 (Water) 

!! Temperature (ºC) of TOP3 

!! Pressure (Psig) of TOP3 

!! Molar flow (lb-mol/h) of TOP3 

!! Molar fraction of Hydrochloric Acid (HCl) in  TOP3 

!! Total molar flow (lb-mol/h) of stream EDC4 

!! Molar rate of EDC in stream EDC4 
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An initial dataset with 20 simulated samples uniformly spanning the hyperrectangle 
defined by the upper and lower limits on variables �� to �� and �� is used for this ex-
ample. Table 9.7 shows the mean and standard deviation for each variable in this da-
taset. The lower and upper limit constraints imposed on the �� variables and ��, which 
bound the experimental domain, are also indicated. These restrictions are defined in 
order to simulate the univariate limits usually imposed on the input variables in prac-
tice to avoid extrapolation outside of the historical, normal operating conditions. 

Table 9.7. Case Study 3: Characterization of the input and output calibration datasets 

Variable Mean Std. dev. Lower limit Upper limit 

�� 142.19 13.36 121.22 161.47 

�� 157.21 16.70 132.45 179.71 

�� 312.24 32.17 278.21 344.08 

�� 118.02 13.99 105.70 136.83 

�� 54.53 4.59 45.73 67.28 

�� -30.93 0.53 -31.87 -29.91 

�� 135.23 2.55 130.51 141.02 

�� 241.76 24.98 228.50 252.56 

�� 0.99 4.443·10-5 0.99 0.99 

�� 240.52 19.43 - - 

�� 0.98 7.6·10-4 - - 

 

Additionally, the constraint �� � ����� � �� is imposed to guarantee that at least 99.5% 
of chlorine can be converted during the direct chlorination step of the process, so that it 
meets the requirements for its proper simulation. 

9.4.2. Results 

9.4.2.1       Case study 1: mathematical model 

Figure 9.4 shows the procedure followed in order to define the experimental space 
given ���� � ������ in the first example, by considering all of the aforementioned 
issues in Sections 9.2 and 9.3. Two LV were chosen to fit the PLS-regression model in 
order to allow easier graphical representation of the results, although four LV would be 
a much better option according to the leave-one-out cross validation method [104] 
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(Q2(2LV)=0.336; Q2(4LV)=0.955). The proposed methodology, however, allows the 
definition of the experimental region independently of the dimensionality of the latent 
space. 

 
Figure 9.4 For the first case study and !!"# = !"#.!": a) Representation of all restrictions in the 
latent space; and delimitation of the experimental space (grey area) b) by bracketing the DS as in [87], 
c) as in the optimization approach in [90], and d) with the proposed approach.  

In Figure 9.4a, the Hotelling !! 95% confidence ellipses when a PLS-regression model 
with 2 LV was fitted, the initial dataset being as described in Section 9.4.1.1. To do 
this, Equation 9.3 is used to calculate the Hotelling !!. The projections of the 6 sam-
ples (two of them superimposed close to the centre) and the NS (black line) for 
!!"# = 204.86 on the model subspace and its confidence limits (red lines) defined as 
in Equation 9.27 are also represented, as well as the restrictions imposed on the inputs 
(lower and upper limits as defined in Table 1) when transferred onto the latent space 
through Equation 9.11 (dashed blue lines). These restrictions are included in order to 
avoid solutions outside of the subspace defined by the range of variability of the inputs 
in the past, which if accepted as an estimation of the knowledge space does not coin-
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cide, in this case, with the interior of the Hotelling �� confidence ellipse, but only a 
fraction of it. Note that, although ten restrictions are originally applied to the inputs 
(five lower bounds and five upper bounds) only half of them remain in the latent space 
(five dashed blue lines) because, due to the existing correlation among the inputs, the 
other half are redundant in the 2-dimensional latent space. 

It should also be noted that, because of the uncertainty associated to the PLS regression 
model, the projection of some of the samples in the initial dataset fall outside of the 
area within the constraints on the inputs (dashed blue lines), as opposed to what would 
have been intuitively expected. More specifically, the two samples up and left fall out-
side of the boundaries defined by the restrictions on the inputs because of the lack of 
representativeness of the PLS model fitted with 2 LV, which is unable to explain the 
non-linear relationship among the two independent inputs (�� and ��) and the observa-
ble inputs (��, �� and ��). If the restrictions ��, �� and �� are not applied, or are de-
fined by taking into account their relationship with �� and ��, the projection of both 
observations would be within boundaries. The same would occur if 4 LV were used to 
fit the model, but the graphical representation would become more complex and less 
intuitive. On the other hand, the sample on the right side is outside of the boundaries as 
a consequence of being the worst predicted sample because of the amount of noise 
introduced. 

The grey area in Figure 9.4b corresponds to the delimitation of the DS as proposed in 
[87] (although no analytical expressions for the red lines were provided nor were they 
used as hard constraints), while the shadowed area in Figure 9.4c is the experimental 
space as would be defined in the optimization approach described in [90] (although in 
this optimization approach no analytical expressions where provided for the restrictions 
in the latent space, either, they would be implicitly used as hard constraints). Lastly, 
Figure 9.4d shows the experimental space as would be obtained by applying the ap-
proach proposed in this section. 

It can be concluded that, in this example, the delimitation proposed leads to a smaller 
experimental space than with the approaches in [87] or [90]. Although a small subset of 
input combinations not inside the bracketed DS according to [87] could be accepted 
now, due to the curvature of the confidence limits as defined here, a larger subset of 
input combinations inside the experimental space according to [87] are excluded for 
not actually being a part of the KS (i.e. outside of the boundaries defined by the lower 
and upper limits in Table 9.3). On the other hand, a subset of input combinations ac-
ceptable according to [90] are excluded because they fall outside of the 95% confi-
dence region of the NS for ���� � ������. 

9.4.2.2       Case study 2: simulated data with two correlated outputs 

This second case study is peculiar in that two quality attributes are considered simulta-
neously, as opposed to the approach in [87]. Regarding the optimization, the only dif-
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ference with the approach in [90] is in the definition of the confidence regions for the 
two NS and the use of their limits as hard constraints.  

Figure 9.5 shows the same procedure followed in the previous case study, but now 
applied to this example, with !!"# = 1.2375;−0.4024 . To differentiate the two 
output variables considered, the NS and corresponding confidence limits for !!,!"# are 
represented with continuous lines, and dashed lines are used for !!,!"#. Two LV were 
chosen to fit the PLS-regression model in order to allow easier graphical representation 
of the results, although four LV would have been better option to explain more of the 
variability of ! (R2(!,2LV)=0.642; R2(!,4LV)=0.87), and to better predict Y according 
to the leave-one-out cross validation method (Q2(2LV)=0.858; Q2(4LV)=0.997). 
Again, the proposed methodology could be applied with a higher-dimensional latent 
space, although visualizing the experimental space becomes more difficult in such 
case. 

 
Figure 9.5 For the second case study and !!"# = 1.2375,−0.4024 : a) Representation of all re-
strictions in the latent space; and delimitation of the experimental space b) by bracketing the DS as in 
[87], c) as in the optimization approach in [90], and d) with the proposed approach.  
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Figure 9.5a is the equivalent to Figure 9.4a for this second case study. In this case, only 
the projection of one of the observations falls outside of the area defined by the re-
strictions on the inputs. Furthermore, assuming the Hotelling �� ellipse to be a good 
estimation of the knowledge space would have been a much better approximation than 
in the first case study, although a small fraction of it would still be left out by the re-
strictions on the inputs. It must be noted that, again, only half of the eight restrictions 
imposed on the inputs remain in the latent space, with the other four ones being redun-
dant in the latent space due to the existing correlation structure among them. 

The shadowed area in Figure 9.5b corresponds to the intersection between the corre-
sponding delimitations of the DS for ������ and ������ that would have been obtained 
by applying a slight variation of the methodology in [87], using as leverages for the 
corresponding NS those of the scores with minimum leverage on each NS instead of 
the leverage of the direct inversion (i.e. the intersection of both NS) to determine the 
amplitude of the CI in the fourth step of that methodology (see Section 9.3.4). The 
intersection of both subspaces is considered to define the experimental space, and not 
the union, because only combinations of inputs leading to the desired values for both 
outputs simultaneously would be accepted. It must be noted that in this case such inter-
section exists and at least some part of it is located within the subspace defined by the 
Hotelling �� ellipse and all the other restrictions on the inputs, but this may not be the 
case in more complex examples or if different values for ������ and ������ are speci-
fied. Furthermore, by defining the intersection this way, the correlation between �� and 
�� is disregarded, which implicitly overestimates the size of the subspace most likely to 
provide the desired values for both outputs simultaneously. 

The shadowed area in Figure 9.5c is the experimental space as would be defined in the 
optimization approach described in [90]. Lastly, Figure 9.5d shows the experimental 
space as would be obtained by applying the approach proposed in this thesis, which 
happens to be almost identical to what would have been obtained if the slight variation 
of the methodology in [87] (only applied when a single output variable was considered) 
shown in Figure 9.5b  had been applied. This similarity decreases if fewer samples are 
used to fit the PLS-regression model (resulting in a more pronounced curvature of the 
limits of the NS confidence regions when using the proposed approach) and the lever-
age of the direct inversion solution is used for the estimation of the width of the NS 
confidence region with the methodology in [87]. 

9.4.2.3       Case study 3: simulated Vinyl-Chloride Monomer manufacturing 

This third case study is interesting because neither the methodology to bracket the DS 
in [87] nor the optimization formulation in [90] allow approaching a problem like this. 

In this example, previous to the application of the proposed methodology, the initial 
fitting of the corresponding models relating input variables �� to �� and �� with the 
output variables �� and �� via PLS led to models with relatively poor explanatory and 
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predictive capability with regards to !! (R2(!)<0.95, R2(!!)<0.46 and Q2(!!)<<0.01 
even with 5 LV), which is the most relevant quality attribute of interest in this example. 

However, if !!, which represent the relative amount of a chemical compounds in a 
stream, is transformed into a new variable !! = !! · !!, and if !! is substituted by 
!! = !! · !!, the PLS regression models fitted with these ‘new’ variables provide much 
better explanatory and predictive capabilities (for example, R2(!)>0.953 and 
R2(!)>0.563 when using two LVs, and R2(!)>0.965 and R2(!)>0.863 when using five 
LVs). 

It should be noted that, although the quality attribute of interest in this case is !!, the 
model fitted does not include it. Instead, !! and !! are used. However, since 
!! = !! · !!, then it can also be said that !! = !!/!!, and given that !! > 0, if a de-
sired value !!,!"# for !! is specified, then any combination of values for the input vari-
ables in the DS shall satisfy the next equality: 

!!,!"# · !! − !! = 0 (9.33)  

As in previous example, although five LV would provide a better fit, and the method-
ology proposed in this paper could be applied nonetheless, a PLS-regression model 
with only two LV is fitted here in order to better illustrate the results achieved. Figure 
9.6 shows the NS associated to Equation 9.33 for !!,!"# = 0.9792, and the model 
fitted with data as described in Section 9.4.1.3, together with the corresponding confi-
dence interval. 

Figure 9.6 For the third case study and !!,!"# = 0.9792: a) Representation of all restrictions in the 
latent space; and b) delimitation of the experimental space by bracketing the DS as in [87] (green + 
grey areas), and as in the optimization approach in [90] and with the proposed approach (grey area). 

In Figure 9.6a the Hotelling !! confidence ellipse when a PLS-regression model with 2 
LV was fitted, the initial dataset being as described in Section 9.4.1.3.  The 95% confi-
dence limits for the NS and the restrictions on the inputs transferred onto the latent 
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space are also represented. It can be seen that in this case, due to the uncertainty in the 
DS estimate, the hard restrictions associated to the NS confidence limits are redundant, 
as is the Hotelling �� hard constraint.  

Figure 9.6b represents a zoomed in version of Figure 9.6a to better visualize the exper-
imental space. In this case, the experimental space resulting from applying the method-
ology in [87] would include the whole interior of the Hotelling �� (green and grey 
area), while both the optimization approach in [90] and the proposed approach would 
further restrict the experimental space (grey area). Therefore, the procedure presented 
in this section again guarantees the more robust delimitation of the experimental space, 
by simultaneously accounting for the restrictions on the inputs and a variation of the 
bracketing of the DS as suggested in [87]. 

9.4.3. Conclusions 

The proposed methodology for the definition of the subspace of the latent space most 
likely to contain the TDS combines the already proposed constraints in the literature 
for optimization [90] with the idea of bracketing the DS [87]. This procedure has been 
shown to provide robust results in the delimitation of the experimental region, in the 
sense that this subspace is shown to be at least as reduced as the one resulting from the 
most restrictive approach between those in [90] and [87], as illustrated in the second 
and third case studies, if not more restricted, as seen in the first case study. This is 
achieved by having developed a new way to analytically define the NS, as well as the 
limits of its confidence region. This new definition presents three main advantages: 

1. It allows the use of the limits of the confidence region for each NS as hard 
constraints in the definition of the experimental region, which was not possible 
in the optimization problem defined in [90]. 

2. The non-linearity of the limits of the confidence region of each NS, due to the 
effect of the leverage on the prediction uncertainty, can also be accounted for 
in their analytical expression, which could not be explicitly considered in the 
bracketing of the DS proposed in[87] . 

3. An extension of the definition of the NS for quality attributes defined as linear 
combinations of outputs is made possible. This is useful to approach problems 
that could not be addressed otherwise, as illustrated in the third case study pre-
sented in this paper. 

In a similar way, the procedure to transfer restrictions on the inputs and outputs to the 
latent space has been proposed. This allows comparing restrictions that are not directly 
comparable when defined as affecting the inputs or the outputs, both among themselves 
as well as with constraints defined in the latent space, such as those regarding the Ho-
telling ��. As an example, the hard constraint on the Hotelling �� in the first and third 
case studies is seen to be redundant (i.e. less restrictive) with respect to the constraints 
on the inputs. This assessment is not possible without transferring the restrictions on 
the inputs to the latent space. 
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It must be noted that, although not illustrated in this section, the extension of this 
methodology for the DS associated to a range of desired values, instead of specific 
ones, for one or more quality attributes of interest, is straightforward (as detailed in 
Section 9.3.4).  

9.5. Subspace least likely to fall outside of the True Design Space 
In Section 9.4 the procedure to define the subspace most likely to contain the TDS is 
outlined. Such strategy may be useful for experimental purposes, when the interest is 
mainly not discarding any set of processing conditions that may be a part of the TDS. 
A more common desire is to guarantee that the specifications demanded by the cus-
tomer are met, or at least that they are not met as few times as possible. This means, in 
practice, that defining the subspace least likely to fall outside of the TDS is at least as 
important, if not more, as defining the subspace most likely to contain it. 

In order to define this subspace, and for the more general case of a quality attribute 
being a linear combination of the output variables included in the fitted PLS-regression 
model, consider again Equations 9.30 to 9.32 for the ��� � � � � � CI of the predic-
tion of the r-th quality attribute ������ given an observation ����. Consider also a range 
of acceptable values for the r-th quality attribute of interest, such that two specification 
limits can be defined, the Lower Specification Limit (LSL), ������, and the Upper 
Specification Limit, ������, such that a product will be considered to be within specifi-
cations regarding this quality attribute if its observed value, ������, meets that 
������ � ������ � ������. 

Let ������ be a vector of scores such that the lower limit for the ��� � � � � � confi-
dence interval (CI) of the prediction of a linear combination ������ for an observation 
������, with projection ������, is coincident with the LSL for the r-th quality attribute; 
and let ������ be a vector of scores such that the upper limit for the ��� � � � � � 
confidence interval (CI) of the prediction of a linear combination ������ for an observa-
tion ������, with projection ������, is coincident with the USL for the r-th quality at-
tribute.  

To put it another way, consider ������ to be an observation such that the prediction of 
the linear combination of outputs ��, �� � ������, and ������ to be the projection of 
������ onto the latent subspace. ������ is the set of scores closest to ������ such that the 
lower limit for the ��� � � � � � CI of the prediction of �� is equal to ������. Equiv-
alently, if ������ is the projection of a vector ������ such that �� � ������, then ������ 
is the set of scores closest to ������ such that the upper limit for the ��� � � � � � CI 
of the prediction of �� is equal to ������. 

Using OLS type expressions: 
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������ � ������ � �������� � �������
������ � ������ � �������� � �������

 (9.34) 

By taking into account Equations 9.30 to 9.32, Equation 9.34 can also be expressed as: 

��� ���������� ��� � ������� � ���� � � ������� ��� �������� �
�
� � ������ � �

��� ���������� ��� � ������� � ���� � � ������� ��� �������� �
�
� � ������ � �

 (9.35) 

Which provides the expressions corresponding to the limits of the region within which 
any set of scores is associated to a set of inputs theoretically guaranteeing that at least 
��� � � � � � of the time the value for the corresponding quality attribute of interest 
will be within the specifications limits. Consequently, any set of scores ����� for a 
product within specifications with respect to the r-th quality attribute will meet that: 

��� ��������� ��� � ������� � ���� � � ������ ��� ������� �
�
� � ������ � �

��� ��������� ��� � ������� � ���� � � ������ ��� ������� �
�
� � ������ � �

 (9.36) 

For, e.g., graphical representation purposes, ������ and ������ can be also obtained 
given the closest points ������ and ������ located in the corresponding NS for the r-th 
LSL and USL, respectively. Consider, for ������, the equation for the NS associated to 
the r-th LSL, �������which can be expressed as: 

�������� � ���� � ��������
�

���
� ��� �� � ������ ������ � ������

�������� � ��� ��� � ������
�� � �� � ��� � ��

 (9.37) 

The relationship between ������ and ������ can be expressed as: 

������ � ������ � �� ������ �������� � ����
�� ������ �������� � ��������

��� � ��
� ����� � ����������� �������� �

��
��� � ��

 (9.38) 

where ���� is the unitary vector orthogonal to ������� (or �������) and 
�� ������ ��������  is the directed distance, which  has the same sign and magnitude as 
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the Euclidean distance when the direction of the vector from ������� to ������ is the 
same as that of ����, but is negative if they have opposing directions. 

The first equality in Equation 9.35 can then be written: 

�� ������ �������� �
������� � ����
��� � ����

� � � ������� �
�
�

������� � ������� � �� � � �� � ������
 (9.39) 

This equation can be solved recursively, such that �� ������ ��������  is obtained given 
����, and from them both ���� is computed directly following Equation 9.38. The pro-
cedure to obtain ���� is almost identical. 

It is important to note that the existence of the subspace defined this way (i.e. at least 
one ����� exists that meets both restrictions in Equation 9.36) will depend on the dif-
ference between the r-th ��� and ���, and the uncertainty of the model. To assess this, 
consider the points with lowest leverages from the curves defined by Equation 9.35, 
denoted as �������  and ������� , respectively. These sets of scores will be related to the 
corresponding sets of scores in the NS for the r-th LSL and USL with lowest leverages, 
�������  and ������� . To obtain �������  and ������� , the equations for the corresponding NS 
as a function of the standardized scores is required. 

For ����� , Equation 9.37 can be reformulated as: 

�������� � ��� � ���� � ������� � ��
�������� � ��� ��� � ������

�� � �� � ��� � ��
 (9.40) 

where ������ � ���� � ������� , ���� being the [A�A] diagonal matrix containing the A 
standard deviations of the scores associated to the LVs in the calibration dataset. ��������� , 
the set of standardized scores closest to the centre of projection (and with lowest lever-
ages), can be demonstrated to be: 

��������� � ����� � �� � ��� � � � �� �� � �������� (9.41) 

Therefore: 

������� � �� � �� � ��� � � � �� �� � ��������
������� � �� � �� � ��� � � � �� �� � ��������

�������� � ��� ��� � ������
�������� � ��� ��� � ������

�� � �� � ��� � ��

 (9.42) 
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�������  and �������  can then be obtained through the aforementioned recursive approach, 
via Equations 9.38 and 9.39. For the subspace to exist, the following equality must be 
met: 

��� � ��� � � � ����� � ����� � � (9.43) 

If Equation 9.38 and 9.39 are taken into account, Equation 9.43 can be reformulated as: 

������ � ������ � ��� � ��� � � � �� ������� �������� � �� ������� �������� � ����

�� ������� �������� �
������� � ����
��� � ����

� � � �������� � �
� � �

�� ������� �������� �
������� � ����
��� � ����

� � � �������� � �
� � �

 (9.44) 

Therefore: 

������ � ������ � ���� � ������� � � � �������� � �
� � � � �������� � �

�  (9.45) 

where ��������  and ��������  can be obtained through the aforementioned recursive ap-
proach, via Equation 9.38 and 9.39, given �����  and ����� , which depend exclusively on 
���� and ����. 

The subspace least likely to fall outside of the TDS will exist only if Equation 9.45 can 
be met. This means that, for example, this subspace does not exist if a single value is 
specified for a given quality attribute, instead of a range of values, since in such a case 
������ � ������ � �, while ���� � � already in most cases, due to the uncertainty as-
sociated to the model. 

9.6. Assessing the adequacy of a PLS-regression model for inversion 
While Sections 9.4 and 9.5 provide tools to define subspaces most appropriate for ex-
perimentation and for guaranteeing the quality of the products, respectively, no a priori 
assessment of the PLS-regression model as more or less adequate for its inversion was 
made. In e.g. [90] assessing the performance of the model for the prediction of the 
input variables from the scores, and extracting the required number of LV to properly 
predict both � and � is suggested, but this still does not actually provide a measure of 
the performance of the model used in its inverse form. In this section two different 
approaches to perform this evaluation are discussed, and a modification of the second 
proposed. 
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9.6.1. Assessment via direct inversion 

Similarly to �� and ��, commonly used as a measure to quantify the explanatory or 
predictive capability of a model used in its direct form (either for � or �), ��� and ��� 
are defined here to refer to the explanatory or predictive capability of the PLS-
regression model used in its inverse form to obtain the sets of inputs theoretically lead-
ing to the outputs for observations already used to fit this model and for observations 
not used to fit it, respectively. 

Intuitively, it may seem that a way to estimate ��� and ��� could be via cross-validation, 
as done for �� and ��, by ‘predicting’ each of the observations in the input space 
through direct inversion, given the corresponding values for the outputs for those ob-
servations, and comparing the ‘predicted’ values with the ‘real’ ones. However, this 
procedure is only valid as long as each combination of values for the output variables 
can only be achieved with a given combination of values for the inputs. This is because 
otherwise, as explained in Section 9.3, the direct inversion provides a single set of in-
puts among all possible combinations of them theoretically providing certain outputs. 

9.6.2. Assessment by comparison with the closest solution in the null-space 

Considering the issue mentioned in the previous section, Jaeckle & MacGregor [88] 
already proposed an approach to obtain ��� and ���. This approach considered the exist-
ence of the NS by comparing the projection of each observation (in the calibration or 
validation dataset) not with the result from the direct inversion, but with the set of 
scores in the corresponding (combined pseudo) NS closest to this projection. However, 
this approach presents some limitations or drawbacks, because: 

i) it is based on a definition of the NS (the so-called combined pseudo NS in Sec-
tion 9.3.2) that makes it impossible to assess how appropriate a PLS-regression 
model may be for inversion when information of only one, or some, but not all 
of the outputs is available (i.e. there are missing data) or relevant (i.e. not all of 
the outputs available in the dataset are of interest at a certain moment); 

ii) since a priori a selective PCA on � has been performed before obtaining the NS, 
the information of the outputs discarded as a consequence of the selective PCA 
is missing; and  

iii) it cannot be applied to quality attributes defined as a linear combination of out-
puts. In this section, a new way to compute �� and �� is provided which aims at 
overcoming these limitations. 

The procedure proposed by Jaeckle & MacGregor [88], however, can be slightly modi-
fied by accounting for the analytitcal definition of the NS as presented in Section 9.3.3, 
both for the outputs and for any quality attribute expressed as a linear combination of 
them. To do this, consider the set of equations for the R NS associated to the values of 
the R quality attributes of interest for the n-th observation in a dataset: 
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�

������
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���
���
�
���

� �� � ��� � �
 (9.46) 

�� and � being defined as in Equation 9.26, and ��being the [R�1] column vector 

with the observed (or calculated) value for the r-th quality attribute of interest, for the 

n-th observation, as its r-th element. As long as the number of latent variables used to 

fit the PLS model is greater than the number of quality attributes considered (i.e. 

� � �) a subspace may exist corresponding to more than one set of inputs ����, and 

therefore a set of scores ����, that theoretically guarantee ��. 

From all such scores, Jaeckle & MacGregor [88] wisely suggest computing the one 

closest to ��, ����, and comparing them with each other. In their approach, the ‘com-

bined pseudo-NS’ is considered, and because of the way it is computed it is expected 

that such subspace will not necessarily coincide with the intersection of the R hyper-

planes whose equations define the elements of ���� and the rows of � in Equation 9.46. 

In this thesis it can be demonstrated that: 

���� � �� � �� � � � �� �� � � � �� � �� � � � �� �� � ���� (9.47) 

And therefore: 

�� � ���� � �� � � � �� �� � � � �� � �� � � � �� �� � ���� (9.48) 

As in [88], ��� and ��� are defined as: 

��� � � � �� �� � ���������
�� �� �����

���

��� � � � �� �� � ���������
�� �� ������

���

 (9.49) 

Where �� denotes the number of observations used for the comparison, which includes 
only those whose prediction would not require extrapolation outside of the convex hull 
defined by all other remaining observations in a cross-validations exercise; �� is the 
average of the scores for those observations, while ��� is the average for the scores of 
the observations used to fit the model at the corresponding iteration during the cross-
validation to obtain ��. 

The only differences between ��� and ��� as defined here with respect to [88] up until 
now lies in the combination of Equations 9.48 and 9.49. Here all R quality attributes of 
interest are accounted for, and these quality attributes could here be a linear combina-
tion of outputs, and not the outputs per se. Consider now, however, a subset of quality 
attributes, such that the set of NS equations in matrix form would now be expressed as 
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����� � �� � ����� � ��, where the asterisk is used to denote that �����  and �� result from 
extracting some rows from ���� and �, respectively. This means that some of the in-
formation regarding some outputs may be missing, irrelevant or unreliable. Then ����� , 
equivalent to ���� when some of the outputs are not taken into account, can be ob-
tained with Equation 9.47 by substituting ���� and � with �����  and ��, and variations of 
��� and ��� can be defined as: 

��� ��� � � � �� �� � ����������
�� �� �����

���

��� ��� � � � �� �� � ����������
�� �� ������

���

 (9.50) 

Where ���  denotes that ��� and ��� have been computed only with the information 
provided by a subset (which must be defined previously) of the quality attributes, and 
not all of them. 

9.7. Additional considerations  
This chapter focused on providing efficient tools for the estimation of the DS (as well 
as the subspaces most likely to contain the TDS and least likely to fall outside of it) 
when resorting to a PLS-regression model, and the assessment of its performance in its 
inverse form. However, equipment wear, process modifications etc. will change the 
TDS of a process and, similarly, the estimated DS will change when new raw materials 
are tested and process operation is adapted to them (i.e., new conditions not in the his-
torical data used to build the PLS model). A more reasonable approach would seem to 
be comprised, in this case, by a combination of the methodologies proposed here with 
recursive PLS-based algorithms for model updating. Nevertheless, this is out of the 
scope of this thesis and deserves future research. 
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Chapter 10  
Optimization problem 

formulation in 
Quality by Design 

Part of the content of this chapter has been included in: 

1. Palací-López, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental 
approach to improve the design space estimation using latent-variable model in-
version. Part II. Optimization problem reformulation and sequential experi-
mental approach. Submitted. 

10.1. Introduction 
As mentioned in Section 8.2 and proposed in [90], PLS model inversion can be formu-
lated as an optimization problem in order to find new combinations of inputs leading to 
a product with the desired quality attributes. In any process, some - but not necessarily 
all - quality attributes are usually required to meet particular values or some (generally 
univariate) specifications, while restrictions on the input variables may be imposed, 
either for feasibility reasons or due to specific combinations of operating conditions 
being favoured. Regarding the formulation of the optimization problem as presented in 
[90], which is in the form of a quadratic optimization problem, two similar yet distinct 
ways in which it can be approached will be presented in this section: the optimization 
problem in the original space through the latent space, and the optimization problem 
in the latent space. 

10.1.1. Optimization in the original space through the latent space 

The optimization problem formulated this way is shown in Equation 10.1. 
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         s.t. 
         � � ��� � ����� � ���� ���  
         ���� � ��� � � � � ��� 
         ���� � ��� � � � � ��� 
         ��� � �� � ��� � � � �����  
         ������� � ���� � ���� � � ����� � ���� � ���� � ��� � ������ 
         ������ � ���� � ������          
         ������ � ���� � ������ 
         �� � ���� � ����� 

(10.1) 

where � is a [L�L] diagonal matrix where the l-th element in the diagonal represents 
the weight given to achieving the desired value for l-th output variable; ��, �� and �� 
are the weights given to each term in the objective function when solving the optimiza-
tion problem; ��� is a coefficient between 0 and 1 to impose a hard constraint on 
�������; �����  and ������ are the Hotelling �� and ���� upper limits as calculated in 
Eq. 8; �� and �� are the lower and upper bounds for ���� and ����; and �� and 
����� are defined as �� and ����� in Equation 9.16, but defining restriction on ���� 
instead of ����. It should be noted here that ���� corresponds to the vector of inputs 
obtained from � through model inversion (i.e. ���� � � � �), while ���� is the vector 
of inputs the objective function is expressed as a function of, and whose projection 
onto the latent space is � (i.e. � � ��� � ����). ������� is, consequently, a measure 
of the squared difference between ���� with projection � and the vector of inputs 
���� obtained from � by indirect inversion of the model when solving Equation 10.1. 

A distinction must be made regarding the different restrictions imposed on the solution 
of this optimization approach. On one hand, the different terms inside the objective 
function are referred to as soft constraints, since they favour solutions close to the NS, 
with low Hotelling ������  and low ������� values, but do not define a threshold for 
such values, nor force the solution to meet any specific values. On the other hand, the 
different restrictions defined outside the objective function in Equation 10.1 are re-
ferred to as hard constraints, since they define the subspace outside of which a solution 
will not be accepted, but they do not favour any specific solution inside the subspace of 
acceptable solutions. It is these hard constraints, then, that define the region of accepta-
ble solutions. It should also be noted that the way this optimization problem is formu-
lated does not make use of the concept of the NS presented in [88], or ‘combined pseu-
do-NS’ in [89]. Instead, the term ���� � ���� � � � � ����� � ���� � ����  in the 
objective function implicitly acknowledges the presence of L different NS as referred 
to in [89], and whose analytical expression have been provided in Section 9.3.3, so that 
the result from the optimization, �, has to be as close as possible to these NS. Each of 
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them is therefore constituted by all combinations of inputs that theoretically guarantee 
the desired value for a single output variable, but not the rest. If these NS intersect, at 
least a solution meeting all the desired values for the L out variables, ����, exists. If 
this intersection results in a subspace of dimension higher than 0 (i.e. a line, plane or 
hyper-plane), then such intersection is coincident with, or very close to, the NS as de-
fined in [88], or combined pseudo-NS in [89]. 

This formulation of the optimization problem is said to take place in the original space 
because the objective function whose value is to be minimized is ultimately being ex-
pressed as a function of a vector of input variables ���� that do not necessarily belong 
to the subspace of the PLS-regression model that best adjusts the available data (i.e. 
������� � �); but it is also said to be carried out through the latent space because the 
PLS-regression model is used to predict restrictions ����, and restrictions are imposed 
on both the Hotelling �� and ������� to guarantee that any solution obtained will fall 
within acceptable limits for both parameters (i.e. neither too far away from the centre 
of projection of the latent subspace, nor from the model’s subspace itself). This way, 
the optimization algorithm will provide a vector of inputs ���� that theoretically guar-
antees the desired outputs (or values as close to the desired ones as possible) while 
respecting, to an extent, the correlation structure found in the dataset used to fit the 
PLS-regression model, but without being forced to comply exactly with it. 

For all of its advantages, however, this approach to solving the optimization problem 
suffers from one severe drawback: as the objective function is expressed as a function 
of ����, the dimensionality of the space within which it is to be minimized increases 
linearly with the number of input variables, and the growth of its size is exponential. 
Being a quadratic optimization problem, an algorithm to solve it may yield one of 
many local minima as its solution, instead of the global minimum. To avoid this as 
much as possible, a large number of seeds spanning the space of acceptable solutions 
(i.e. meeting all restrictions) may be provided to the algorithm, but this may become 
computationally very costly or even untenable as the number of input variables in-
volved increases. 

10.1.2. Optimization in the latent space 
The optimization problem formulated this way is shown in Equation 10.2, where �, �� 
and �� are defined as in Equations 10.1; �� and �� are the lower and upper bounds for 
���� and ����; and �� and ����� are defined as �� and ����� in Equation 9.16. It 
should be noted here that ���� corresponds to the vector of inputs obtained from � 
through model inversion (i.e. ���� � � � �), and therefore any solution achieved by 
solving this optimization problem will be located on the PLS-regression model sub-
space. Although a restriction is imposed on the Hotelling ��, none affects the ������� 
since, in this case, ������� � � for any � achieved by approaching the optimization 
problem this way. 
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         �� � ���� � ����� 

(10.2) 

This implies that the optimization algorithm will provide a vector of inputs ���� that 
theoretically guarantees the desired outputs (or values as close to them) and complies 
exactly with the correlation structure found in the dataset used to fit the PLS-regression 
model. As opposed to the approach in Section 10.1.1, this may make it impossible to 
find a set of inputs ���� that meets all of the restrictions imposed on them, while an 
hypothetical ���� outside of the model subspace but close enough to it (i.e. 
������� � ������) could be found that meets all constraints on the inputs. Consider, 
for example, the data in Table 9.1 and its projection onto the latent subspace of a PLS-
regression model fitted with 2 LV. Trying to solve the optimization problem as formu-
lated in Equation 10.2, and imposing as hard constraints on the solution that all of the 
inputs must meet exactly the values corresponding to one of the six samples used to fit 
the PLS-regression model, yields no feasible solution at all. However, a solution can be 
found for all but one case (the one corresponding to the fourth observation) if the opti-
mization problem is formulated as in Section 10.1.1, since all but the fourth observa-
tion meet that ����� � ������. This limitation comes as a consequence of the optimi-
zation taking place in the A-dimensional latent subspace instead of the original M-
dimensional space (� � �), as constitutes an example of the issue explained in Section 
9.2, where it is stated that at most A equality restrictions (including restrictions im-
posed on the outputs, and not just on the inputs) may be imposed on the optimization 
solution as hard constraints without it being highly unlikely that a solution exists at all. 

The optimization problem as formulated this way presents, however, a very relevant 
advantage in practice with respect to the one illustrated in Section 10.1.1, derived pre-
cisely from the reduction in dimensionality of the subspace of acceptable solutions, 
which can significantly reduce the computational cost of the algorithm used for the 
optimization, as well as the risk of it getting ‘trapped’ in local minima. Furthermore, 
given the uncertainty associated to the PLS-regression model’s predictions of both 
inputs and outputs and the fact that, in a number of real scenarios, more hard equality 
constraints may have to be imposed on some of the input variables than the number of 
LV variables used to fit the PLS-regression model, a two-steps optimization ought to 
be resorted to in order to bypass to an extent the limitation regarding how many hard 
equality constraints can be simultaneously imposed, by i) relaxing some of the equality 
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constraints into pairs of inequality restrictions when solving Equation 10.2; ii) modify-
ing the values for the restricted variables in ���� accordingly to meet the equality 
constraints while penalising as little as possible the objective function, to get ����; 
and iii) evaluating if ������ � �����  and ������� � ������, in which case a valid solu-
tion would have been obtained. 

In the following sections, the optimization in the latent space (and not the one in the 
original space) will be addressed in more detail, and some modifications of it and/or 
alternative approaches will be provided to address different problems of interest. Some 
of these issues are: 

1. The formulation of the objective function is useful when the quality attributes 
of interest are coincident with the output variables used to fit the PLS-
regression model, but not when one or more of them are expressed as a linear 
combination of such outputs (and they are not explicitly included in the � ma-
trix when fitting the PLS regression model for any of the reasons mentioned in 
the third point in Section 8.3, and as illustrated in the example addressed in 
Section 9.4.2.3). 

2. The presence of a soft constraint on the Hotelling �� will necessarily cause a 
solution that would otherwise meet all desired values for all of the outputs to 
not do so (e.g. in the example illustrated in Figure 9.5a, Section 9.4.2.2, a set 
of scores exists that meets all hard constraints and provides the desired values 
for the two outputs, but imposing a soft constraint on the Hotelling �� would 
cause the solution of the optimization to drift away from this set of scores). Its 
absence in this same scenario, however, may lead the optimization algorithm 
to provide a different solution each time it is executed, provided the combined 
NS (i.e. a subspace within which all sets of inputs theoretically guarantee the 
desired values for all of the outputs) exists. Part of this is because of the lack 
of soft constraints on the inputs being included in the objective function and 
hard equality constraints on the outputs, the inclusion of both of which may 
sometimes be advisable. Take as examples the case studies illustrated in Sec-
tions 9.4.2.1 and 9.4.2.3, where the NS for the respective quality attributes of 
interest is seen to exist within the experimental region/region of acceptable so-
lutions for the optimization problem, and be comprised of many different sets 
values for the inputs/scores: 

a. The optimization problem as formulated in Equation 10.2 with �� � � 
and �� � � will provide a solution as close as possible to the NS and, 
at the same time, as close as possible to the centre of projection. How 
close ���� is to each will depend on the values given to �� and ��, 

but it will surely not be a set of scores on the NS. 
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b. The optimization problem as formulated in Equation 10.2 with �� � � 

and �� � � will provide any of the many possible solution on the NS, 

since any of them is equally valid according to the objective function 

(i.e. the distance to the NS is zero). Which of these is obtained will 

define, in most cases, on the seed provided to the algorithm as an 

starting point for the algorithm and from which the ‘search’ for an op-

timum begins. 

c. Alternatively, the optimization problem as formulated in Equation 

10.2 with �� � � and the soft constraint defined by its first term being 

substituted by a hard constraint on the output variable will provide as 

a solution the set of scores exactly on the NS with smallest leverage. 

3. Even accounting for the issue mentioned in the second point of this list, if 

more than one solution for the optimization problem is desired, solving it more 

than once will provide the same or almost equal solutions, unless the 

weighting of the soft constraints in the objective function or the hard con-

straints are modified from one iteration to the next one. 

4. While the first term in objective function in Equation 10.2 is formulated as a 

weighted sum of quadratic differences between ���� and ����, which implies 

���� must be defined, there are a number of scenarios where the value for one 

or more of the outputs/quality attributes of interest is to be minimized or max-

imized. In some of those cases, a minimum or maximum value can be intro-

duced as the ‘desired value’ for one or more of these quality attributes, when it 

is already known that such quality attributes cannot achieve values below or 

above those thresholds, respectively. However, this is not always the case (i.e. 

because such limits do not exist or, more frequently, are not known) and, even 

if it is, defining such values as the ‘desired ones’ may lead to an artificial in-

crease in the weight given to minimizing or maximizing the value of one of the 

quality attributes with respect to others.  

Section 10.2 aims at covering these issues and proposing different ways to deal with 

each of them, as well as to reduce the uncertainty in the DS estimation, while Sections 

10.3 and 10.4 provide alternative formulations to the quadratic one for the optimization 

problem. 
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10.2. Quadratic optimization formulation 

10.2.1. Optimization of a linear combination of outputs  

Consider Equation 9.25 to be the expression corresponding to any set of output varia-

bles ���� for which the desired value for the r-th quality attribute of interest, �� � is met, 
that is ��� � ���� � ������. The first term in the objective function in Equation 10.2 is 
expressed as a function of ���� and ����, and not ��� � ���� and ������. To evaluate 
the adequacy of this formulation when the r-th quality attribute is taken into account, 
instead of one or more outputs, consider the following objective function: 

���� �� � ��� � ���� � ������
� � �� � ����� � ��� � ���� � ������ � �� �

���
���

�

���
 (10.3) 

Where �� is a scalar that represents the weight given to achieving the desired value for 
the r-th quality attribute of interest, such that the sum of the absolute values for the 
weights given to achieving the desired values for each quality attribute is one (if only 
one quality attribute is considered, as in this case, then �� � �); and ����� is the inverse 
of the estimated variance for the r-th quality attribute from the observations in the cali-
bration dataset. 

For the objective functions in Equations 10.2 and 10.3 to be equivalent, the first term in 
each of them must be so. This first term in Equation 10.3 can be reformulated as: 

���� � ����
� � �� � �� � ����� � ��� � ���� � ����  (10.4) 

where ���� is any set of outputs that meets that ��� � ���� � ������. When ���� in 
Equation 10.4 coincides with ���� in Equation 10.2, then: 

� � ����� � �� � �� � ����� � ��� (10.5) 

It must be noted, however, that the estimated variance for the quality attribute from the 
observations in the calibration dataset, ���� , is calculated as: 
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���� � ��� � �� � ��

�� �
���� ��� ��� ��

��� ��� �� ����
� ��� ��� ��

��� ��� ��
� � �

��� �� � �� ��� �� � �� � ����

���� � ���� � ��
��

���
� � ��

��� �� � ��� � ���� � �� � ����� � �������
� � ��

 (10.6) 

�� and ���� being, respectively, the average and n-th measured value for the l-th output 
of the model calibration dataset, and �� the degrees of freedom consumed by the mod-
el. Therefore: 

� � �� � �� � ��� � �� � ��
�� � ��� � ����  (10.7) 

Since � in Equation 10.2 is defined as a diagonal matrix of weightings, the objective 
function in Equation 10.2 and the one formulated in Equation 10.3 will only be equiva-
lent, with � remaining a diagonal matrix, if the outputs are uncorrelatedxi. 

Therefore, a more general reformulation of Equation 10.2 to account for quality attrib-
utes of interest expressed as linear combinations of the outputs is: 

���
�

��� ������� �

��� ������� � � ��� � �� � � � � � � �� � ����� � �� � � � � � �� �
���
���

�

���

 

         s.t. 
         ���� � ��� � � � � ��� 
         ���� � ��� � � � � ��� 
         ��� � �� � ��� � � � �����  
         �� � � � ��          
         �� � � � �� 

(10.8) 

where �� and � are as defined in Equation 9.26xii, and correspond to the NS associated 
to the desired values of the R quality attributes of interest, ���� [R�1]; �� is now a 
[R�R] diagonal matrix where the r-th element in the diagonal represents the weight 

 
xi The extension of this demonstration when all R quality attributes of interest are considered is straightforward 
xii Note that �� and � can be re-defined to also include the ‘null spaces’ of the different linear combinations of inputs if/whenever 
necessary. Doing so is straightforward, and has not been done in the objective function presented here for the sake of simplicity 
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given to the goal of achieving the desired value for r-th quality attribute; ����� is the 
[R�R]  diagonal matrix with ����� (calculated as in Equation 10.6) as its r-th element; 
��� and �� are defined as �� and �� in Equations 10.2; �� and �� as �� and ����� in 
Equation 9.11; and �� and �� as �� and ����� in Equation 9.13. 

10.2.2. Optimization for exploration and DOE in the latent space 

As mentioned in Section 10.1, one other drawback of the optimization formulation in 

Equation 10.2 is the need to actively modify the soft and/or hard constraints (or the 

weight given to the former in the objective function) in order to guarantee that different 

iterations will provide solutions different to previous ones, or to already available ob-

servations in the calibration dataset used to fit the PLS-regression model. Furthermore, 

when the optimization approach is resorted to in order to perform new experiments 

(e.g. in unexplored areas of the knowledge space or the subspace thought to most likely 

contain the TDS), and additional issue must be considered, and that is the fact that the 

first term in the objective function favours/penalizes equally acceptable solutions at the 

same distance (in the latent space) from the NS. However, if it is accepted that the 

limits of the confidence region for the NS are non-linear (and, in particular and as an 

approximation, of the form presented in Section 9.3.4) due to the prediction error vary-

ing with the leverage associated to each set of inputs/scores, then it makes sense for 

exploratory purposes to penalize less solutions equally close to the NS but with higher 

leverage, and vice versa. 

When both of these concerns are accounted for, the following optimization problem 

can be formulated: 

���� ��� �������������� �
��� �������������� � �

��
��� ������� � � ��� � ���� ���� � �� � ��� ���� �
��� � ��� ���

 

         s.t. 
         ���� � ��� � � � � ��� 
         ���� � ��� � � � � ��� 

         ���� ����� � ����������
�������

� ������� ������ � � �� ��� ��  

         ��� � �� � ��� � � � �����  
         �� � � � ��          
         �� � � � �� 

(10.9) 

where �� holds the same meaning as in Equation 10.8; ��� and �� are the weights 
given to each of the new added terms in the objective function; ��� ����  is a [R x 1] 
vector with ���� �����  as its r-th element, which is a measure of the distance from 
the projection � of the solution to the r-th NS pondered by the inverse of  ������� (as 
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calculated in Equation 9.31), instead of the r-th diagonal element in �����; and 
��� ���  is the inverse of the squared statistical distance from the projection � of the 
solution to the closest already available sample in the calibration dataset � with projec-
tion � in the latent subspace, calculated as: 

��� ��� � �
��� � � �� � � ��� � � � �� � ����� ������� ����� � �  (10.10)

����� being a small positive real number introduced in order to avoid ��� ���  going 
to infinite, which may cause computational issues. 

It must be noted that the terms of the objective function weighted by ��� and ��� in 
Equation 10.9 both penalize solutions further away from the NS, but do so in different 
ways, and may be resorted to for different purposes (e.g. the first one for optimization 
purposes, as done in the literature, and the second one for DOE/exploratory purposes, 
as will be illustrated in Chapter 12). Therefore using one or the other, but not both 
simultaneously, is recommended. A hard constraint defined similarly to the soft one 
weighted by ��� may also be included in order to guarantee that any solution, if it sat-
isfies all hard constraints, falls within the subspace most likely to contain the TDS as 
defined in Section 9.4xiii.At the same time, ��� ���  guarantees that any solution ob-
tained from the optimization will not be coincident or too close to an already available 
observation in the dataset used to fit the PLS regression model. One of the main disad-
vantages of this optimization approach is that the solution achieved may change sub-
stantially depending not only on the constraints imposed but also on the weight given 
to each of the terms in the objective function ��� �������������� � , even when there 
is only one quality attribute of interest. To illustrate this, consider a PLS-regression 
model is fitted with 2 LV, using data consisting of six observations following the hypo-
thetical input-output causal relationship presented in Equation 8.1, already used in one 
of the examples in [87] and in Section 9.4. Then, consider the desired value for the 
output to be ���� � ������, and this problem to be addressed as an optimization prob-
lem. Figure 10.1 presents, for the same example shown in Figure 9.4 (Section 9.4.2.1), 
and at each point in the latent space, the values that the objective function in Equation 
10.9 takes when weight equal to 1 is given to one of the terms in it, and 0 to the rest. 
This highlights the different contribution to each of the terms in the objective function, 
and allows assessing the effect of different weights being given to each one (���, ���, 
�� and ��) prior to the optimization. 

 
xiii For the more likely scenario of a range of values within specifications limits being accepted for a given quality attribute, 
instead of a single value, these hard constraints can be substituted by the ones defined in Equation 9.28, extended for a linear 
combination of outputs as detailed in Section 9.3.4 



Optimization problem formulation in Quality by Design 

 

167 

 
Figure 10.1. Graphical representation of the contribution of each term in the objective function of the 
optimization framework of Equation 10.9 when using a PLS-regression model with 2 LV fitted with 
six observations following the input-output causal relationship presented in Equation 8.1, and 
!!"# = 204.86, as well as two combinations of these terms. The z-axis represents the value for the 
Objective Function (O.F.) in Equation 10.9 referred to in these plots as !.!. !!",!!",!!,!! . 

In Figure 10.1.a and Figure 10.1.c the contributions of each term in the O.F. of the 
optimization framework as formulated by Equation 10.2 can be assessed. It can be seen 
how these terms’ contributions to the O.F. are of similar order of magnitude if close to 
the centre of projection. Since during the optimization the lowest value for the O.F. is 
desired, the term corresponding to !.!. 1,0,0,0  penalizes solutions further away from 
the NS (for !!"# = 204.86), while the term associated to !.!. 0,0,1,0  favours solu-
tions with lower Hotelling !!!.  

On the other hand, the contribution of one of the new proposed terms can be evaluated 
through Figure 10.1.b, with !.!. 0,1,0,0  corresponding to !!"! !,NS! . This term 
favours solutions in a similar manner as !.!. 1,0,0,0 . However, it penalizes solutions 
farther away from the NS much more. Furthermore, solutions with a higher leverage 
(and therefore higher uncertainty in the prediction) are less penalized when compared 
to those with a lower leverage, which implies that this term will allow a wider area for 
the exploration of different solutions where the predictions are less reliable. Figure 
10.1.d permits assessing the impact of the other new proposed term for the O.F. on its 
value, through !.!. 0,0,0,1 . This term heavily penalizes solutions close to the projec-
tion onto the latent subspace of already available observations in the calibration da-
taset. 

Finally, Figure 10.1.e corresponds to !.!. 1,0,1,1 , that is, the sum of the terms plot-
ted in Figure 10.1.a, Figure 10.1.c and Figure 10.1.d. It must be noted that, because the 
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contributions of ���� �������  and ���� �������  are of a similar order of magnitude 
close to the centre of projection, there are solution further away from the NS that are 
equally optimal to solutions closer to it if ��� and �� are given the same values, ac-
cording to the O.F. as formulated this way. On the other hand, Figure 10.1.f corre-
sponds to ���� ������� , that is, the sum of the terms plotted in Figure 10.1.b, Figure 
10.1.c and Figure 10.1.d. In this case any solution will fall, even without hard re-
strictions, closer to the NS than if the weights given to each term were those corre-
sponding to Figure 10.1.e, even if ��� and �� are given the same values. This serves to 
illustrate the importance of giving the appropriate weight to each term in the objective 
function to guarantee that more desirable solutions are achieved. 

This graphical representation also highlights the importance of addressing if a more 
convenient formulation of the optimization problem would require dismissing the 
terms associated to soft constraints on the quality attributes in the objective function 
(i.e. ��� � ��� � �) and imposing, instead, hard constraints on them, such that the 
solution will be that exactly on the NS and with smallest leverage (and therefore a nar-
rower prediction confidence interval for the prediction of the quality attribute/s) or, ii) 
if the prediction error is not of concern at this stage, considering all the combinations 
of inputs/scores on the NS as ‘equally good’ solutions (which would, in fact, require 
defining this subspace instead of solving the optimization problem). 

Further application of this formulation of the optimization problem will be illustrated 
in Chapter 11. 

10.2.3. Tackling the maximization/minimization problem 

As mentioned in Section 10.1.2, and illustrated in Figure 10.1, the first term in the 
objective function of the optimization problem as formulated up until now penalizes 
solutions far away from the hyperplanes defined by the NS corresponding to a vector 
of ‘desired values’ for the considered outputs/quality attributes. This may present some 
issues when such ‘desired value’ is not a specific one, but instead the value for the 
corresponding quality attribute is to be minimized or maximized. Here three different 
ways to address this scenario are presented, as well as the reason why they are or not 
recommended if more than one output variable/quality attribute is present. 

10.2.3.1       Defining feasible minimum/maximum values as the desired ones 

Consider a scenario for which the information in Table 10.1 is available concerning 
two hypothetical output variables �� and ��, for their average, minimum and maximum 
values and their standard deviation in the calibration dataset used to fit the PLS-
regression model, as well as their minimum and maximum feasible values. 
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Table 10.1. Characterization of a hypothetical Y dataset with two output variables 

Variable 
Dataset Feasible 

Mean Std. dev Minimum Maximum Minimum Maximum 

�� 50 1.7 45 55 30 1000 

�� 95 3.4 90 110 0 120 

 

Consider now three different scenarios: 

1. Both �� and �� are to be maximized. If the vector of desired values for the 
outputs is defined as ����� � ���� ��� , the difference between ������ and 
the maximum observed value for �� is ~556 standard deviations, while the dif-
ference between ������ and the maximum observed value for �� is less than 3 
standard deviations. Therefore, defining �� � ��, �� being the [2�2] identity 
matrix, makes it look like the same importance is being given to achieved the 
‘desired’ (i.e. maximum) value for both outputs. However, accomplishing this 
goal for the first output is being given ~189 times as much weight as achieving 
it for the second one. This will only not be a problem when the combinations 
of inputs (e.g. process conditions) that maximize both �� and �� are the same. 

2. Both �� and �� are to be minimized. In this case, if the vector of desired values 
for the outputs is defined as ����� � �� � , the difference between ������ 
and the minimum observed value for �� is ~8.8 standard deviations, while the 
difference between ������ and the minimum observed value for �� is ~26.5 
standard deviations. In contrast to the previous scenario, when �� � �� the 
goal of minimizing �� is being given roughly 3 times the weight given to min-
imizing ��. Again, this will only not be a problem when the combinations of 
inputs that minimize both �� and �� are the same. 

3. �� is to be minimized/maximized, and �� is to take a specific desired value, or 
vice versa. A similar issue to that in the two previous cases occurs here, to 
higher or lower extent depending on which variable is to be mini-
mized/minimized, and the desired value for the other one. 

It can then be concluded that this way of defining ���� (or ����) may be inadequate in 
most cases, especially if a feasible minimum or maximum is not known or defining one 
does not make sense from a practical point of view, and therefore an arbitrarily low or 
high value would be set.  

10.2.3.2       Changing the sign of the weight given in the objective function 

This second approach relies in the way the first and second terms in the objective func-
tion as formulated in Equation 10.9 contribute to the value of the objective function 
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(which is to be minimised). Note that these terms are quadratic distances (which are 
always positive) weighted by the elements of the diagonal matrix ��. As a conse-
quence, when the r-th element in �� is positive, these terms are minimised when the r-
th quadratic distance (to ������) gets smaller. On the other hand, if the r-th element in 
�� is negative, then these terms are minimised when the r-th quadratic distance (to 
������)  gets larger. Therefore, making the r-th element in �� negative will penalize 
solutions that provide values close to the ‘desired’ one instead of values far away from 
the ‘desired’ one for the r-th quality attribute of interest. One can take advantage of 
this for minimization/maximization purposes, by: 

i. defining ������ as the average value for the r-th quality attribute in the calibration 
dataset, and imposing the hard inequality constraint ������ � ������ when the r-
th quality attribute is to be minimised; 

ii. defining ������ as the average value for the r-th quality attribute in the calibration 
dataset, and imposing the hard inequality constraint ������ � ������ when the r-
th quality attribute is to be minimised. 

Although apparently slightly better than the approach in Section 10.2.3.1, this one pre-
sents some issues derived from having to artificially impose additional constraints on 
the outputs/quality attributes of interest, which may make finding a solution other than 
the average in the dataset impossible, specially if maximizing/minimizing different 
quality attributes are competing objectives, which would not be a particularly interest-
ing nor useful solution. To avoid this, the maximum/minimum feasible value for the r-
th quality attribute may be used to define ������ and to impose the corresponding ine-
quality restrictions on them, but the same issue as the one presented in Section 10.2.3.1 
would then occur, although more weight would implicitly be given in this case to 
achieving the minimum/maximum values for the variables with highest variance in the 
calibration dataset. This approach is also slightly counter-intuitive, since ������ is not, 
actually, the desired value for the r-th quality attribute. 

10.2.3.3       Finding extreme achievable values below the Hotelling T2 limit 

This approach is based on the fact that not just any solution of the optimization prob-
lem as formulated in Equation 10.9 is equally valid (optimality aside), and particularly 
no solution outside of the Hotelling �� confidence hyperellipsoid, for a given confi-
dence level, will be accepted, independently of any other restrictions imposed on the 
inputs or outputs or the feasible minimum or maximum values for any variable. There-
fore, not accounting for additional constraints, the lowest and highest predicted values 
for a quality attribute according to the PLS-regression model will be those for two sets 
of scores located on opposite extremes of the Hotelling �� confidence hyperellipsoid. 
To identify them, consider that the vector �� orthogonal to the NS associated to the r-th 
quality attribute, and defined as the transpose of the r-th row of � in Equation 9.26, 
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provides the direction of maximum variability for such variable. Consider also that the 
equation of the Hotelling �� confidence hyperellipsoid can be written as: 

�� � �
��

�����
� � � � (10.11)

And, ��� being a diagonal matrix, the vector normal to such hyperellipsoid on a point 
��� on its surface, ����, is: 

���� �
�
�����

� ����� � ��� (10.12)

If ��� is the set of scores associated to the combination of inputs theoretically (i.e. ac-
cording to the PLS-regression model) guaranteeing the maximum achievable value for 
the r-th quality attribute without reaching outside of the Hotelling �� hyperellipsoid for 
a given confidence level, then: 

����

����� � ����
� ��

��� � ��

���� �
���
�����

� ��� � �
 (10.13)

On the other hand, if ��� is the set of scores associated to the combination of inputs 
theoretically guaranteeing the minimum achievable value for the r-th quality attribute 
without reaching outside of the Hotelling �� hyperellipsoid for a given confidence 
level, then: 

����

����� � ����
� ���

��� � ��

���� �
���
�����

� ��� � �
� ���� � ����� � ��� � ���� (10.14)

Equations 10.13 and 10.14 can then be solved to obtain ��� and ���, and from them the 
maximum and minimum achievable values for the r-th quality attribute while inside the 
Hotelling �� confidence hyperellipsoid, respectively. These values can be used as the 
r-th element of ���� in the optimization problem formulated in Equation 10.9. While 
using them does not necessarily guarantee that unbalanced weightings are implicitly 
given to the goals of maximizing/minimizing each of the quality attributes, the proce-
dure to define them does not depend on any “feasibility constraints” or on the decision 
of the person resorting to the optimization problem as formulated in Equation 10.9 to 
give them arbitrarily large/small values. Incidentally, if a single quality attribute is 
considered for the optimization, and if ��� or ��� meet all other hard constraints imposed 
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on the solution of the optimization algorithm, these scores can be considered the solu-
tion of the algorithm itself when no soft constraint is imposed on its Hotelling ��� (i.e. 
�� � �). 

10.3. Linear optimization formulation 
Section 10.2 addresses some limitations of the optimization problem as formulated in 
the literature, such as the optimization of quality attributes defined as linear combina-
tions of output variables, or the way to tackle the minimization/maximization prob-
lems. However, one yet unaddressed drawback is the fact that the quadratic optimiza-
tion formulation suffers from the possibility of the algorithm used to solve it getting 
stuck in a local minimum. The quadratic formulation is useful in this context because it 
can deal with non-linear constraints, such as the one imposed on the solution’s Ho-
telling ���, or the ones associated to the NS confidence regions’ limits. It must be noted, 
however, that quadratic formulation of the optimization problem may not be necessary 
if the soft constraint on the Hotelling ��� in the objective function is dismissed (while 
keeping the hard constraint to avoid extrapolation) and any non-linear hard constraints 
happen to be redundant, i.e. less restrictive than any other considered linear constraint. 
The linear formulation of the optimization problem is, then, as shown in Equation 
10.15. 

���� ��� � ����� � �� � � � �  
         s.t. 
         ���� � ��� � � � � ��� 
         ���� � ��� � � � � ��� 
         �� � � � ��          
         �� � � � �� 

(10.15)

where �� is a [R�1] vector that contains as its r-th element the weight given to mini-
mising r-th quality attribute (if it is to be maximised, the sign of the r-th element in �� 
must be changed). 

There are some distinctions that must be made between the linear and quadratic opti-
mization. First of all, the way the quadratic optimization is formulated guarantees the 
existence of at least one minimum (independently of the algorithm being able to reach 
it, or it being the global minimum), and required no hard constraints to achieve conver-
gence. When resorting to the linear optimization formulation, however, one does not 
minimize a quadratic distance, but a directed distance (i.e. it may be positive or nega-
tive), and therefore hard constraints must be imposed to guarantee the convergence of 
the algorithm. This means that, at the very least, a lower/upper limit must be defined 
when minimising/maximising. It also means, however, that no issues will arise when 
resorting to the linear optimization associated to ‘artificially’ giving too much/little 
importance to achieving the minimum/maximum value for one or more of the quality 
attributes of interest. 
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On the other hand, the quadratic formulation is especially useful when specific values 
are desired for the outputs (or even the inputs, or linear combinations of any of them), 
precisely because of the fact that quadratic distances to those values are minimized. 
The linear optimization formulation however requires, in this same scenario, artificially 
imposing a hard lower limit equal to the desired value for the r-th quality attribute as 
an inequality constraint on it.  

The main advantage of this formulation of the optimization problem is that it will pro-
vide a solution that, if meeting all the inequality restrictions imposed in the quadratic 
formulation, is also its optimum, while not presenting the same convergence issues as 
the quadratic ones. One of the possible disadvantages of this formulation, other than 
not being able to account for non-linear restrictions when optimizing the objective 
function, is that in very heavily restricted convex spaces of acceptable solutions with 
narrow ‘corners’, the algorithm used may not find the global optimum. 

Alternatively, an approach to find an optimal solution is proposed which allows taking 
into account both linear and non-linear hard constraints (except non-linear equality 
constraints), while avoiding the convergence issues related to local minima for quadrat-
ic programming and those related to very narrow spaces of acceptable solutions for 
linear programming. The steps to follow for this sequential approach are: 

1. Define the space of acceptable solutions considering only linear hard con-
straints. This can be done by using either the variant of the COSIM algorithm 
or the ‘Segmentation by defining and discarding vertices’ approach explained 
in Section 5.2.2. By doing so, the [I�A] matrix and [I�1] vector of active line-
ar inequality hard constraints �� and ��, and the [J�A] matrix and [J�1] vec-
tor of I active linear equality hard constraints �� and �� can be obtained, as 
well as a matrix of vertices of the resulting convex space. If they exist (i.e. a 
subspace of acceptable solution exists given the linear hard constraints im-
posed), continue to the next step. Otherwise some restrictions may have to be 
relaxed or eliminated, if possible (if not, there is no solution for the optimiza-
tion). 

2. Check if at least one linear combination of the vertices of the envelope of the 
subspace of acceptable solutions within this subspace meets all the non-linear 
hard constraints imposed on the solution. If it does, define such linear combi-
nation as the ‘initial solution’ �� and continue to the next step (if not, there is 
no solution for the optimization). 

3. Define the ‘vector of maximum variability’ ��� � �� � ����� � ��, where the r-
th element of �� is positive if the corresponding quality attribute will be ‘max-
imized’, and negative otherwise, as well as the ‘original displacement vector’ 
�������, which is the projection of ��� onto the subspace defined by the active 
linear equality hard constraints such that: 

������� � �� � ��� � �� � ��� �� � �� � ������� � ��� � �� � ��� �� � �� (10.16)
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4. Obtain the projection of ������� on the vectors normal to the i-th hyperplane, ���  
(which is the transpose of the i-th row vector in ��), �������, as in Equation 
10.17, and the scalars �� such that �� � �� � ������� � ��� � ��� , where ���  is the 
i-th element of ��. 

������� �
���

� � �������

��� � � ���
� ���  (10.17)

5. Compute also ���, such that for the k-th non-linear hard constraint �� � �� �
������� meets it. 

6. Arrange all �� and ��� from lowest to highest values, and discard all the nega-
tive ones. 

If the space of acceptable solutions is a convex space, the solution (or solutions) of the 
optimization problem will be located in the intersection of the linear equality re-
strictions with the first � � �  inequality hard constraints (either linear or non-linear, 
depending which ones are ‘reached’ first) associated to the ordered list in step 6. Oth-
erwise this solution (or solutions) is not guaranteed to be optimal, but can be used as a 
good ‘seed’ for the quadratic optimization algorithm. 

10.4. A sequential optimization approach 
The linear optimization formulation presented in Section10.3 can be useful to tackle 
some of the disadvantages associated to the quadratic one. However, it may still prove 
to not be a powerful enough tool in presence of overly complex, not redundant, non-
linear, hard restrictions. At the same time, it may also be unnecessarily complex (from 
a computational point of view) in the absence of non-redundant non-linear constraints. 
Therefore, the following sequential procedure is proposed in order to minimize the 
computational cost of solving an optimization problem. This method makes use of the 
previous algorithms, from the simplest to the most complex ones, only when necessary: 

1. Define the space of acceptable solutions considering only linear hard con-
straints, as in the first step of the proposed algorithm in Section 10.3, and 
evaluate the objective function (as in Equation 10.9) for each vertex. If the 
vertex or vertices that optimize the value of the objective function meet all 
hard constraints imposed, then the solution/s of the optimization has been 
achieved. Otherwise, continue to the next step. 

2. Find the set of scores on the Hotelling �� confidence hyperellipsoid that opti-
mizes the objective function as defined in Equation 10.15 while meeting all 
linear hard equality constraints. If it meets all other hard inequality constraints, 
then the solution of the optimization has been achieved. Otherwise, continue to 
the next step. 
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3. Solve the optimization problem according to the proposed algorithm in Section 
10.3, using as a ‘seed’ or ‘starting solution’ the average of the vertices defined 
in step 1, or any linear combination of them (pondered by a vector of coeffi-
cients that sum up to one) that meets all constraints. If the achieved set or sets 
of scores meet all restrictions, then the solution of the optimization has been 
achieved. Otherwise, proceed to the next and last step. 

4. Solve the quadratic optimization problem as formulates in Equation 10.9, us-
ing as ‘seeds’ or ‘starting solutions’ the same as in the previous step, and/or 
the quasi-solution in the previous step. 

It is important to note that this procedure is useful as long as no non-linear hard equali-
ty constraints are imposed on the solution, in which case caution is advised. 
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Chapter 11  
Two real case studies of 

optimization in the 
latent space 

11.1. Introduction 
In Chapter 9 the procedure to transfer the restriction on the original space (both inputs 

and outputs) to the common subspace of the PLS-regression model was provided, as 

well as the definition of the DS, the NS as an estimation of it, and how to estimate the 

subspace most likely to contain (and least likely to fall out of) the projection of the 

TDS when PLS-regression is resorted to. Secondly, Chapter 10 provided different tools 

and methods to efficiently approach the optimization problem in the latent space de-

pending on the goal and constraints imposed on its solution. In this chapter, two real 

case studies will be presented that make use of most of the concepts and methods illus-

trated in Chapters 9 and 10, and a comparison of the different applicable approaches to 

the corresponding optimization problems will be carried out. 

11.2. Methods 
Linear PLS-regression, explained in Section 3.2.2, will be resorted to, as well as the 

methods for the transferal of constraints imposed on the original variables onto the 

latent space, and the definition of analytical expression of the NS both for an output 

and for a lineal combination of outputs, explained in Chapter 9, and the different ap-

proaches to the optimization problem detailed in Chapter 10. 

11.3. Datasets 
Although for confidentiality reasons the origin and details on the two real datasets used 

in this chapter cannot be disclosed, the most relevant information concerning them is 

provided in this section. 
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11.3.1. Case study 1: minimizing two output variables simultaneously 

The dataset used for this example consists of a matrix of inputs with 6609 hourly 
measurements made of 63 input variables, and a matrix of outputs with the same num-
ber of measurements of 2 output variables. The output variables are strongly correlated 
with each other. 

11.3.2. Case study 2: maximizing a linear combination of outputs 

The dataset used for this example consists of a matrix of inputs with 2075 hourly 
measurements made of 135 input variables, and a matrix of outputs with the same 
number of measurements of 10 output variables. All output variables are strongly cor-
related among each other, some positively and some negatively, and must meet a hard 
equality constraint that affects all of them. 

11.4. Results and discussion 

11.4.1. Case study 1: minimizing two output variables simultaneously 

Given the available data, and after a cross validation exercise to select the optimum 
number of latent variables, a PLS-regression model with ! = 8 LV was fitted capable 
of explaining ~ 61% of the variability of the inputs and ~78% of the variability of the 
outputs. The feasible absolute minima for the two (pre-treated) output variables, !! and 
!! are known to be -5.98 and -8.59. Therefore, if the vector of desired values for the 
outputs is defined as !!"#! = −5.98 −8.59 , the NS corresponding to these values 
can be also defined, which when represented on the space of the latent variables can be 
visualized as in Figure 11.1. 

 
Figure 11.1. Case study 1: Graphical representation of the projection of the calibration dataset (with 
the observations coloured according to the value of !!) and the intersection of the NS for !!"#! =
−5.98 −8.59  associated to the first (blue dashed line) and second (orange dashed line) output 

variables with a) the hyperplane defined by the two first LV and b) the hyperplane defined by the 
third and fourth LV 
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To illustrate the importance of properly formulating the optimization problem, the soft 
constraints (in this case !!"# and the restriction on the Hotelling !!) and the hard con-
straints (in this case !! and !! as a consequence of restrictions on the inputs, and again 
the restriction on the Hotelling !!), assume that the formulation in Equation 10.9 is 
resorted to, and the following scenarios are considered: 

i. !!" = 1 and  !!" = !! = !! = 0; ! = !! and !!"#! = −5.98 −8.59 ; and 
no hard constraints imposed on any variable, nor on the Hotelling !! of the so-
lution. 

ii. !!" = 1, !! = 1 and !!" = !! = 0; ! = !! and !!"#! = −5.98 −8.59 ; and 
hard constraints imposed on the inputs so that the solution will not be outside 
of the historical operating conditions (defined as the univariate restrictions cor-
responding to the lowest and highest values for the inputs), but without any 
hard restriction on the Hotelling !! of the solution. 

iii. !!" = 1, !! = 1 and !!" = !! = 0; ! = !! and !!"#! = −5.98 −8.59 ; and 
hard constraints imposed on the inputs so that the solution will not be outside 
of the historical operating conditions, as well as on the Hotelling !! of the so-
lution (so that its Hotelling !! is not above its corresponding 95% confidence 
limit). 

The projection of the solutions of these optimization problems are shown in Figure 
11.2, where it can be seen that only the third scenario (iii) provides a set of inputs that 
guarantee that no extrapolation outside of the Hotelling !! hyperellipsoid takes place. 

 
Figure 11.2. Case study 1: Graphical representation of the projection of solutions of the optimization 
problems in scenarios ‘i’ (red square), ‘ii’ (green circle) and ‘iii’ (violet triangle), as well as the pro-
jection of the set of process conditions corresponding to the historical minima for both outputs on a) 
the hyperplane defined by the two first LV and b) the hyperplane defined by the third and fourth LV 
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For each of these solutions, the vector �����  results: 

i. ����� � ����� � ����� �����  
ii. ����� � ����� �����  

iii. ����� � ����� �����  

While the historical minimum is ����� � ����� �����  

It is important to note the presence of a gradient in the values of the outputs, clearly 
visible in Figures 11.1a and 11.2b, with the lowest values apparently found for higher 
values in the first LV and lower values in the second one, which is also the least ex-
plored region of the latent space. In fact, all of the solutions obtained fall exactly within 
this area. Additionally, although the first and second solution seem to be significantly 
better than the third one in terms of the predicted values for both outputs, the third one 
is the only reliable one, since it is the only one that falls within the Hotelling �� confi-
dence hyperellipsoid and fulfils the restriction of being within the subspace of histori-
cal operating conditions. Furthermore, this solution also provides, in theory, better 
results than the set of process conditions corresponding to the historical minimum. 

With respect to the efficiency of the different optimization algorithms presented in 
Chapter 10, the quadratic optimization algorithm using the formulation in Equation 
10.9 provided these solutions consistently (i.e. always the same ones) and quickly (i.e. 
less than one second of computational time). The linear optimization formulation in 
Equation 10.15 could not provide, by itself, this same solutions, given that the re-
striction on the Hotelling �� is not redundant, but the slight variation proposed imme-
diately after did. On the other hand, the sequential optimization approach proposed in 
Section 10.4 was able to provide exactly the same solutions as the quadratic optimiza-
tion formulation in ~1/10th of that time, by ending in the second of its four steps. 

11.4.2. Case study 2: maximizing a linear combination of outputs 

After a cross validation exercise to select the optimum number of latent variables, a 
PLS-regression model with � � �� LV was fitted capable of explaining ~ 75.5% of the 

variability of the inputs and ~77.7% of the variability of the outputs. The maximum 

observable value for the quality attribute of interest, which is a linear combination of 

all of the outputs, was ������� � ������. 

Figure 11.3 shows the projection of the calibration dataset onto the subspace of the 

PLS-regression model for the eight first LV and the direction of maximum variability 

for the quality attribute of interest. 
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Figure 11.3. Case study 2: Graphical representation of the projection of the calibration dataset (with 
the observations coloured according to the value of the quality attribute of interest) and the direction 
of maximum variability for the quality attribute to maximize in a) the hyperplane defined by LV 1 
and 2; b) the hyperplane defined by LV 3 and 4; c) the hyperplane defined by LV 5 and 6; and d) the 
hyperplane defined by LV 7 and 8 

In this example, 4 of the 135 inputs are required to meet specific values in the solution. 
To illustrate the complexity and some of the issues with this optimization exercise, 
three different scenarios will be considered in which successively more constraints are 
imposed as in the first case study. Using the formulation in Equation 10.9: 

i. !!" = 1, !! = 1 and !!" = !! = 0; ! = 1 and !!"# = 174.66 (i.e. the max-
imum achievable solution inside the Hotelling !! confidence hyperellipsoid 
without accounting for any other restrictions, determined as explained in Sec-
tion 10.2.3.3); and no hard constraints imposed on the inputs. 
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ii. ��� � �, �� � � and ��� � �� � �; � � � and ���� � ������; and hard ine-
quality constraints imposed on the inputs so that the solution will not be out-
side of the historical operating conditions. 

iii. ��� � �, �� � � and ��� � �� � �; � � � and ���� � ������; and hard ine-
quality constraints imposed on the inputs so that the solution will not be out-
side of the historical operating conditions, in addition to the 4 hard equality 
constraints imposed on the inputs that must meet certain values. 

In all of these scenarios the hard constraint on the Hotelling �� value for the solution is 
imposed to guarantee that it is inside the corresponding confidence hyperellipsoid, as 
well as the hard equality constraint on the outputs. 

Figure 11.4 shows the solutions for all of these scenarios, as well as the observation of 
the calibration dataset for which the historical maximum was observed. For each of 
these solutions, ���� results: 

i. ���� � ������  
ii. ���� � ������ 

iii. ���� � ������ 

While the historical maximum was ������� � ������, it must be noted that the histori-
cal maximum for the quality attribute of interest among all observations with the input 
variables meeting the equality constraints imposed during the optimization was 
�������� � ������. Therefore, although this solution offers no improvement with re-
spect to the historical maximum, a significant improvement is theoretically achieved 
with respect to the maximum observed given the restriction on the four inputs to meet 
specific values. 

Another important aspect of this optimization problem is the fact that the computation-
al cost of the quadratic optimization formulation increased dramatically with respect to 
the previous example, specially if the ‘seeds’ provided to it were not defined carefully, 
which also lead to inconsistent solutions (i.e. the algorithm would provide a different, 
actually not globally optimal solution most times it was executed). In particular, 
providing to the quadratic programing algorithm in Matlab ‘seeds’ that already met all 
equality and inequality hard constraints significantly improved its performance, reduc-
ing the computational time from ~1.5-4 hours (depending on the computer) to ~5-15 
minutes, although slight (and arguably not significant) differences in the solutions were 
observed among solutions. By contrast, using the approach proposed in Section 10.4 
reduced the computational time to less than ~30 seconds, while providing consistent 
solutions every execution. 
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Figure 11.4. Case study 2: Graphical representation of the projection of solutions of the optimization 
problems in scenarios ‘i’ (red square), ‘ii’ (green circle) and ‘iii’ (violet triangle), as well as the pro-
jection of the set of process conditions corresponding to the historical maximum for the quality attrib-
ute of interest on a) the hyperplane defined by LV 1 and 2; b) the hyperplane defined by LV 3 and 4; 
c) the hyperplane defined by LV 5 and 6; and d) the hyperplane defined by LV 7 and 8 

11.5. Conclusions 
By applying the different optimization approaches proposed in Chapter 10 to two real 
case studies, it was possible to assess some of the issues they present, the importance of 
properly defining and imposing restrictions, and the limitations of the quadratic opti-
mization formulation in terms of computational efficiency and convergence issues 
when the dimension of the space of acceptable solutions increases and several hard 
equality constraints are imposed, as well as how a proper definition of the ‘seeds’ pro-
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vided to this algorithm can help mitigate some of them. Lastly, the approach proposed 
in Section 10.4 was observed to outperform the use of the quadratic optimization for-
mulation in Equation 10.9 in such scenario. 

It is also worth noting that two of the terms in the objective function for the quadratic 
optimization formulation were given, in both examples, null weight. These terms are 
precisely the ones detailed in Section 10.2.2, and proposed in order to be used for ex-
ploratory purposes and for DOE in the latent space. Since this was not the goal of any 
of the cases presented in this section, and a single solution was desired each time, these 
terms were not necessary. They will, however, be resorted to in Chapter 12.  
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Chapter 12  
On experimentation to 

improve the design 
space estimation 

Part of the content of this chapter has been included in: 

1. Palací-López, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental 
approach to improve the design space estimation using latent-variable model 
inversion. Part II. Optimization problem reformulation and sequential experi-
mental approach. Submitted. 

12.1. Introduction 
Chapter 9 focused on the definition of the DS, its relationship with the KS, and how to 
estimate the subspace most likely to contain the projection of the TDS (as well as the 
least likely to fall outside of it) in the latent space when PLS-regression is resorted to. 
On the other hand, Chapter 10 focused on how to efficiently approach the optimization 
problem in the latent space depending on the goal and the nature of the constraints 
imposed on the solution of the optimization. Finally, Chapter 11 served to illustrate two 
real case studies where some of the concepts addressed in Chapters 9 and 10 where 
applied in order to optimize different quality attributes of interest. None of them, how-
ever, aims at solving/minimizing the impact of one of the main issues that is always 
present when resorting to data-based approaches for the definition of the DS or for 
optimization purposes: the uncertainty. In this chapter, a sequential experimental ap-
proach aimed at reducing the uncertainty in the estimation of the DS is proposed. Re-
ducing the error in the estimation of the DS should result in a smaller subspace of the 
knowledge space being chosen to bracket the DS, and will improve the accuracy in the 
definition of different combinations of inputs to obtain the desired outputs.  
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12.2. Methods 
OLS and PLS-regression techniques, explained in Section 3.2.2, will be resorted to, as 
well as the general concepts of D-optimal DOE addressed in Section 2.2.1, the defini-
tion of the envelope of the experimental region discussed in Section 5.2.2, the estima-
tion of the subspace most likely to contain the DS as explained in Chapter 9, and the 
optimization approach detailed in Chapter 10. This taken into account, three proposed 
approaches will now be illustrated: 

• Method 1: OLS and DOE in the space of the original variables; this method is 

proposed here in order to establish a comparison between an approach based 

on ‘traditional’ methods and PLS-based methods;  

• Method 2: combines linear PLS regression model fitting with DOE in the la-

tent space and LVRMI;  

• Method 3: differs with the second one in the substitution of the ‘explicit’ DOE 

with an ‘implicit’ one via optimization in the latent space 

These methods aim at improving the DS estimation when specific values of the outputs 

(or quality attributes) are desired. When a range of values are considered acceptable, 

the procedure can be used to achieve a better estimations of the DS corresponding to 

the values for the LSL and USL defining such range. If the goal is to mini-

mize/maximize a quality attribute, but a feasible minimum/maximum cannot be clearly 

defined, this method can also be used to estimate the DS corresponding to the maxi-

mum/minimum admissible value. The two PLS-based methods will also allow in some 

cases, because of its sequential nature, the exploration of poorly known areas of the 

process, where the DS is (according to the model) expected to lay, specially when a 

quality attribute of interest is to be minimized/maximized. 

12.2.1. Method 1: Classical DOE and OLS model inversion approach 

The first method is based on traditional approaches for model fitting such as OLS, and 

as such happenstance data cannot be used. Instead, data from DOE must be resorted to 

for its application in order to infer causality and invert the model afterwards. These 

data shall be pre-treated to get rid of severe outliers, as well as apply the necessary 

transformations (logarithms, inverse terms, etc…) before fitting a model via OLS. Any 

improvements in the DS estimate are expected to occur when a more appropriate model 

structure is chosen and a better estimation of its corresponding parameters is achieved. 

This method is formulated in such a way that these two points are taken into account, 

while also proposing a way to evaluate the accuracy in the estimation of the DS and its 

improvement after subsequent experimentation. 

Figure 12.1 shows the different steps to follow for the application of this method.  
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Figure 12.1. Method 1: Classical Design of Experiments and OLS model inversion-based sequential 
approach to improve the estimation of the design space. Blocks identified with S0, S1, etc. correspond 
to different ‘steps’ of the approach, while those identified as C1, C2 or C3 are ‘checkpoints’ where 
the decision is made to continue one route or another or stop altogether 

Three main groups of steps have been highlighted: model structure definition and mod-
el fitting (blue; steps S1, S2 and S3), DS estimate exploration (green; steps S5 and S6) 
and experimentation to improve the DS estimation (red; step S7). A brief explanation 
of each of these steps in one iteration (i.e. a cycle starting at step S1 and ending at S4, 
or once it is decided that there is no need to continue at checkpoint 3), for a general 
scenario with a single output/quality attribute involvedxiv, is as follows: 

0. Step S0: this method permits only the use of data from which causality can be 
inferred between the inputs and outputs used to fit and invert the OLS regres-
sion model. Therefore happenstance/historical data cannot be resorted to. 

1. Step S1: additional terms (i.e. exponential or logarithmic terms, interaction 
terms among input variables, quadratic and higher order terms, etc.) are in-
cluded or discarded (e.g. due to not being considered relevant to the study) if 
deemed convenient prior to the next step. Missing data and/or outliers are also 
appropriately dealt with, if necessary. 

2. Step S2: an OLS-regression model is fitted relating the pre-treated matrix of 
inputs with the vector of observations for the pre-treated output varia-
ble/quality attribute of interest. 

3. Checkpoint C1: the statistical significance of the different terms included in 
the fitted model is analysed. The residuals from fitting the regression model 
are also evaluated to detect outliers and assess if more complex or different 
model structures should be considered.  

 
xiv If more than one output or quality attribute is considered, each iteration should be repeated for every output variable. 
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4. Step S3: if necessary, the model structure is redefined. 
5. Checkpoint C2: if enough data is available to fit the newly defined model, step 

S4 follows. Otherwise, step S7 goes next. 
6. Step S4: the dataset is updated by removing, if necessary, observations consid-

ered to be outliers, or adding new observations (if the previous step was S7) 
7. Step S5: the DS estimate is computed by simply inverting the OLS model, and 

refers to the subspace constituted by all possible combinations of inputs that, 
according to the fitted model, lead to the desired value for the quality attribute 
(���� for an output, or ���� for a quality attribute of interest) 

8. Step S6: the experimental region is comprised by the section of this DS esti-
mate within the KS, i.e. within the limits imposed by any defined constraints 
on the inputs. Such KS, also mentioned in step S7, can be defined by follow-
ing the procedure to obtain the envelope of the experimental region discussed 
in Section 5.2.2. Experimentation is carried out for a total of ��� samples dis-
tributed as uniformly as possible along this DS estimate, obtaining ���� (or 
����), a [�����] vector of values of the output (or quality attribute of inter-
est) for ��� observations. 

9. Checkpoint C3: the values in ���� (or ����) are compared to ���� (or ����). 
Then the ‘average distance to the DS’, or ADDS (defined as ���� � ����  in 
the block diagrams in Figures 12.1, 12.2 and 12.3), is estimated as:  

���� � �
���

� ���� � ������

���

���
 

    

(12.1) 

This value is compared to a ‘threshold’ representing the maximum allowed 
‘average deviation’ from the TDS when resorting to its estimation via model 
inversion. A value of ADDS below this limit would indicate that no more itera-
tions are required, since a good enough estimation of the DS has been 
achieved. Otherwise, step S7 follows. Note that the ADDS has the same units 
as the quality attribute of interest, and provides a measure of the expected av-
erage deviation of the values of this quality attribute along the estimated DS 
from the desired one. It must also be noted that an adaptation to OLS of the 
methodology to assess the adequacy of a PLS-regression model for inversion 
(see Section 9.6) is not suitable here, because that assessment concerns how 
good a model is for inversion in general, while here the only interest is in the 
determination of the DS for a specific ����. 

10. Step S7: since, when using this method, any improvement in the DS estimate 
is expected to occur as a consequence of a proper selection of the model struc-
ture and a better estimation of its parameters, the D-optimality criterion is sug-
gested for initial/subsequent experimentation, especially if a lot of restrictions 
are imposed on the process variables in the definition of the experimental re-
gion. If only a few process variables are involved, and little restrictions are 
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imposed, implementing a full factorial design may be feasible, but this is not 
expected to be the case in most scenarios. A total o ���� new experiments are 
carried out, resulting in ���� [������] and ���� [������], which would be 
added to previous data for the next iteration. 

This method presents some drawbacks: 

i) since data from DOE is required for its application, happenstance data 
cannot be resorted to; 

ii) using OLS requires resorting to either variable selection or more extensive 
experimentation as the number of variables and the complexity of the fit-
ted model increases. Since a candidate set of potential experiments has to 
be defined in the DOE step of the algorithm, computational cost increases 
along with the dimensionality of the problem; 

iii) regression methods such as OLS suffer from correlation among the regres-
sors, which is usually present in real, complex problems (and, unavoida-
bly, in data from mixture design problems). Furthermore, if multiple re-
sponse variables are involved their corresponding models must be fitted 
one at a time, and the information regarding any existing correlation 
among them is lost. 

12.2.2. Method 2: DOE in the latent space and LVRMI approach 

Although this method follows a similar path as Method 1, since now PLS-regression 
based methods are used, happenstance data (e.g. historical data) can be exploited in 
order to infer causality and later invert the model. Because in this study linear PLS is 
resorted to, these data must still be pre-treated as done in Method 1 prior to fitting a 
PLS-regression model.  

In practice, it is not uncommon that a large number of inputs are involved, and when 
making use of PLS-based methods the initial dataset is usually not expanded to account 
for possible interaction or non-linear terms among inputs before proceeding to fit the 
corresponding LVRM. Failing to account for these non-linearities in the formulation of 
the model may cause the LVRM to not be appropriate for predictive nor optimization 
purposes in presence of severe non-linearities, even if its overall performance along the 
knowledge space seems reasonable. In such situation local modeling techniques [105] 
may be more appropriate. A similar issue may arise when trying to obtain a good esti-
mation of the DS, since then the main goal is to accurately define a subspace of the KS, 
and not as much the construction of a model with good performance along the whole 
KS. This method, the steps of which are illustrated in Figure 12.2, is formulated so this 
is taken into account. 
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Figure 12.2. Method 2: latent variable regression model inversion plus Design of Experiments in the 
latent space-based sequential approach to improve the estimation of the design space 

A brief explanation of the different steps in one iteration is presented below: 

0. Steps S0 and S1 are equivalent to the same steps with Method 1. 
1. Step S2: a PLS-regression model is fitted relating the pre-treated matrix of in-

puts with the matrix of observations for the pre-treated output variables/quality 
attributes of interest. It is important to note here that a single PLS-regression 
model may suffice in this case to account for all outputs/quality attributes of 
interest simultaneously. 

2. Checkpoint C1: the residuals from fitting the PLS-regression model are evalu-
ated to detect outliers and assess if more complex or different model structures 
should be considered. The model performance for prediction (of both matrices 
of inputs and outputs) and optimization purposes is also assessed. 

3. Step S3 and S4 are equivalent to those in Method 1. 
4. Step S5: the NS here refers to the projection in the latent space of the DS esti-

mate corresponding to the desired value for the quality attribute of interest 
(!!"# or !!"#), whose general expression is provided by Equation 9.26. This 
subspace is further delimited by the constraints imposed on the input and out-
put variables, whose projection onto the latent space is done via Equation 9.11 
and 9.13, as well as the Hotelling !! confidence hyperellipsoid. 

5. Step S6: !!"# in this step is a [!!"×!] matrix with the scores of !!" samples 
distributed as uniformly as possible along the NS as defined in step S5. 

6. Step S7: !!"# is a [!!"×!] matrix obtained from !!"# through the inver-
sion of the PLS-regression model. 

7. Step S8: experimentation is carried out for the !!" samples defined in !!"#, 
obtaining !!"# (or !!"#), a [!!"×1] vector of values of the output (or quali-
ty attribute of interest) for those !!" observations. 

8. Checkpoint C2: this checkpoint is equivalent to C3 in Method 1.  
9. Step 9: a space filling DOE is constructed in the latent space via e.g. the Ken-

nard-Stone approach [106] as it allows uniformly spanning the area of feasible 
experimentation, given the maximum number of experiments that can be per-
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formed (namely, the resources that the experimenter could invest in terms of 
time and cost), without having to define any particular model structure (i.e. the 
‘optimality criterion’ of this sort of design does not depend on the model to be 
fit afterwards). With regards to the experimental region, the subspace more 
likely to contain the TDS, as defined in Section 9.4, is chosen for this method. 
This way, !!"# different sets of scores are defined, and the matrix !!"# 
[!!"#×!] is obtained. 

10. Steps S10 and S11 are carried out as steps S7 and S8, but starting from the ma-
trix !!"#, and obtaining !!"# [!!"#×!] and !!"# (or !!"#) [!!"#×1]. 
These new data would be added to previous data for the next iteration. 

The main drawback of this method is that it requires defining a candidate set for the 
DOE in step S9 in order to apply the Kennard-Stone algorithm (or any point-exchange 
algorithm), and therefore the computational cost increases according to the dimension-
ality of the latent space. However, since this dimensionality is not expected to be too 
high in most cases, the computational cost will rarely be a real hindrance in practice. 

12.2.3. Method 3: Optimization in the latent space and LVRMI approach 

This third method is almost identical to Method 2, being based on the same concepts. 
For the purpose of comparison, Figure 12.3 shows the different steps to follow for the 
application of this method. 

 
Figure 12.3. Method 3: latent variable regression model inversion plus optimization in the latent 
space-based sequential approach to improve the estimation of the design space 

As it can be seen in Figure 12.3, the only appreciable difference with respect to Method 
2 lays in step S9, where the optimization problem as formulated in Equation 10.9 (Sec-
tion 10.2.2) is resorted to. To obtain !!"# different solutions, the set of scores obtained 
as a solution of the optimization problem each time is added to the matrix of scores 
corresponding to the observations used to fit the PLS-regression model, before solving 
the optimization problem again, until it has been solved !!"# times (to obtain the last 
set of scores, !!"# − 1 different sets of scores will have been concatenated to the PLS 
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scores matrix before carrying out the optimization one last time). Note that, because of 
the way this optimization problem is formulated, there are two elements that set this 
method apart from Method 2: 

i) although the experimental space is the same, ‘soft constraints’ are also in-
cluded in this method in the form of the various terms of the objective 
function. This implies that the new experiments to perform in each itera-
tion, if any, will correspond to solutions of the optimization problem that 
are not simply required to fall within the experimental space, but will also 
be ‘pushed’ towards the NS and the centre of projection. 

ii) there is no need to define a candidate set for experimentation, which 
makes Method 3 less dependant on the proper definition of such candidate 
set, and less computationally costly. 

On the other hand, and as pointed out in Section 10.2.2 (see Figure 10.1), the contribu-
tion of each term to the objective function during the optimization step should be as-
sessed in order to properly select the weight give to each of these terms. 

12.3. Datasets 

12.3.1. Case study 1: mathematical model 

For the first case study, the same dataset as the one illustrated in Section 9.4.1.1 will be 
resorted to. As a reminder, this dataset is constituted by 6 observations from a D-
optimal DOE where the data were simulated according to the model in Equation 8.1, 
and �� and �� are treated as manipulated variables, while ��, �� and �� are three meas-
ured variables, with � being the quality attribute of interest. Furthermore, 5% of the 
variability of each variable is added as noise to the values of ��, ��, �� and �, both for 
the generation of the initial dataset and for the simulation of future samples. 

12.3.2. Case study 2: simulated Vinyl-Chloride Monomer manufacturing 

For the second case study, the same dataset as the one illustrated in Section 9.4.1.3 will 
be resorted to. As a reminder, this dataset contains 20 simulated samples corresponding 
to the simulated production of ethylene dichloride (EDC) as an intermediate product to 
VCM according to the information detailed in [101] in Pro/II. To allow some variabil-
ity in the process without loss of validity of any assumption required for the simulation, 
manipulated variables were made to vary independently a maximum of 5% around the 
assigned values in [101] for the generation of the dataset. Additionally, 5% of the vari-
ability of each variable is added as noise to the values of all non-manipulated variables, 
both for the generation of the initial dataset and for the simulation of future samples. It 
must be noted that, although the simulated dataset is not a result of a DOE, the data 
used has been generated following first-principle models and by changing manipulated 
variables independently from one another. Therefore causality can be inferred in the 
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relationship among the controlled input variables and the outputs involved. As a conse-
quence, Method 1 can still be applied in this case, since only the controlled variables 
are accounted for when fitting and inverting the OLS-regression model, and for the 
construction of the DOE in the original space. 

12.4. Results and discussion 
The mathematical example will be used to illustrate the three methods in an easier, 
more intuitive way, as well as to mention their main advantages and limitations. The 
purpose of the second example is to show how these same methods can be used in 
scenarios with a higher complexity and practical relevance. 

12.4.1. Case study 1: mathematical model 

As mentioned in Section 12.3.1, an initial dataset with 6 samples from a DOE is used 
for the application of all three methods. This dataset includes four samples located in 
the vertices defined by the univariate limits imposed on �� and ��, which are the two 
only manipulable variables and therefore the factors used to construct the DOE (with 
the lower and upper univariate limits corresponding to their respective low and high 
factor levels). Two replicates of the overall centroid of the KS in the original variables 
are also included in the DOE. This corresponds to a D-optimal DOE for a model with 
linear and two-factor interaction terms, plus the two added centroid replicates. 

For illustration purposes, Section 12.4.1.1 details the procedure used for the application 
of each of the proposed methods to this case study, and in Section 12.4.1.2 the results 
achieved through the use of each algorithm are compared. Some additional considera-
tions are discussed in Section 12.4.1.3. 

12.4.1.1       Detailed procedure for the application of all three methods 

For the application of Method 1, the detailed procedure is as follows: 

1. Given the initial dataset (step S0), the most simple regression model, the linear 
polynomial, is fitted using �� and �� (step S2). This reveals (checkpoint C1) 
that non-linearities may be present, and since enough data is available to do so 
the decision is made to re-define the model as the quadratic polynomial (S3). 

2. The fit of the quadratic model indicates significantly better results, and is 
therefore selected as the appropriate model. Coincidentally, this implies that, 
from now on, variables �� and ��, their interaction and their corresponding 
quadratic terms are used to fit a model (step S2) with the same structure as the 
mathematical model used to simulate the data. 

3. In step S3, the NS for ���� � ������ is almost coincident with the TDS (the 
only difference resulting from the presence of noise in the data). It is important 
to note that in almost any other practical situation this will not happen, since 
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the true relationship between manipulable and observed input variables is like-
ly to be more complex, and not included in the fitted regression model. 

4. In step S5, the matrix ���� is built by taking 100 samples uniformly spanning 
the NS (as an estimate of the DS). 

5. The DOE in step S7 is constructed on �� and ��, since variables �� to �� can-
not be freely manipulated when taking new samples. The DOE consists of a 
follow-up D-optimal design for a model with all linear, first-order interaction 
and quadratic terms, considering the already available samples. A sufficiently 
large candidate set of uniformly distributed points inside the knowledge space 
to span it ‘in its entirety’ (10000 in this case) is generated, and the point ex-
change algorithm [7,107,108] is used to select which experiments to perform. 
Although a matrix (����) is presented in figure 12.1, indicating that usually 
more than one experiment will be carried out, in this example a single new ex-
periment (����) is considered. 

6. To update the dataset prior to the next iteration of the method, the newly ac-
quired sample is added to the dataset used at the beginning of this iteration. 

For the application of Method 2, the detailed procedure is: 

1. An initial assessment of the relationship among the manipulated and measured 
input variables reveals a very strong correlation between �� and ���, �� and ���, 
and �� and �� � ��. Because of this, the restrictions �� � ���, �� � ��� and 
�� � �� � �� are applied later on for the estimation of the DS (this being an ap-
proximation, since differences exist as a consequence of the noise in the data) 

2. Data is mean-centred and scaled to unit variance in step S1.  
3. A PLS-regression model with 2 LV is fitted in order to allow easier graphical 

representation of some of the results. Since 4 LV would be a much better op-
tion according to the leave-one-out cross validation method (Q2(2LV)=0.336; 
Q2(4LV)=0.955), a second PLS-regression model with 4 LV is also fitted to il-
lustrate additional results afterwards. 

4. In step S6, 100 sets of scores meeting the condition that that �� � ���, �� � ��� 
and �� � �� � ��, and spanning the NS as uniformly as possible are sampled 
(����), and through model inversion ���� is obtained in step S7. 

5. The DOE in step S9 is a follow-up space filling design using the Kennard-
Stone algorithm after defining a sufficiently large candidate dataset (contain-
ing again 10000 potential samples in this case) of sets of scores distributed as 
uniformly as possible inside the subspace most likely to contain the TDS (as 
explained in Chapter 9) for ���� � ������. As with Method 1, although the 
matrix ���� in Figure 12.2 implies the definition of more than one set of 
scores, in this example only one (����) is obtained each iteration. 

6. Dataset updating in step S4 before the next iteration is done by simply adding 
���� and ���� to the dataset used at the beginning of the current iteration. 
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For the application of Method 3, the detailed procedure is almost identical to the one 
used for Method 2. The only notable difference lies in step 9, where the optimization 
problem as formulated in Equation 10.9 is resorted to, in which all the lower and upper 
limits in Table 9.3 are imposed as hard inequality restrictions on the solution, once 
transferred to the latent space, and ��� � � and ��� � �� � �� � �. Note that here 
��� � � and ��� � � since the proposed sequential experimental approach aims at 
exploring the subspace most likely to contain the TDS and as a consequence, given two 
sets of scores at the same Euclidean distance from the NS, it is desired to penalize less 
the one whose point in the NS closest to it has higher leverage (i.e. higher uncertainty 
in the NS estimation around it).  

12.4.1.2       Assessing the performance of each of the three methods 

To assess the performance of each of the three methods, the evolution of the similari-
ties between the TDS and the DS estimate can be visualized for e.g. 30 subsequent 
iterations. In Figure 12.4 such visualization can be done for the 10th and 30th iteration, 
where a clear improvement in the DS estimation is achieved by using Method 1 (i.e. 
the amplitude of the corresponding confidence intervals is visibly reduced), which is to 
be expected since the structure of the model being fitted matches perfectly the hypo-
thetical input-output causal relationship presented in Equation 8.1, and so the discrep-
ancies between the NS and the TDS will be due mostly to the noise in the data, whose 
effect gets diminished as more observations are available to fit the regression model. 
Method 2 and Method 3 also led to a better DS estimation, but their corresponding 
representations cannot be directly compared to those for Method 1, and the accom-
plished improvement is not visually as clear. Another severe drawback of using Figure 
12.4 to evaluate the performance of the algorithms presented in Section 12.2 is that, 
although it can be used in this particular example to assess the performance of all three 
methods, such thing will not be possible in most practical situations, since the DS is not 
known a priori (which is precisely the reason why these methods are proposed: to re-
duce the uncertainty in the DS estimation). 

A distinction is made in Figure 12.4 between the ‘theoretical new experiment’ and the 
‘feasible new experiment’ at each iteration. The difference between one and the other is 
that the former corresponds to ���� (����) as obtained in step S7 for Method 1 or S10 
for Method 2, or to ���� (����) in step S10 for Method 3, which implicitly assumes 
some values for variables ��, �� and ��, while the later corresponds to the vector in-
puts/scores with the same values for �� and ��, but the ‘real’ measured values for ��, 
�� and ��. 
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Figure 12.4. Graphical representation of the calibration dataset, TDS and NS with its corresponding 
95% confidence limits for Method 1 (Figures 12.4.a and 12.4.b), Method 2 (Figures 12.4.c and 
12.4.d) and Method 3 (Figures 12.4.e and 12.4.f) after 9 (Figures 12.4.a, 12.4.c and 12.4.e) and 29 
(Figures 12.4.b, 12.4.d and 12.4.f) additional experiments have been performed. All of the methods 
are applied starting from an initial calibration dataset with 6 samples affected by 5% noise on !!, !!, 
!! and !, and only one experiment is performed per iteration, with the experimentation carried out 
within the KS for Method 1 and within the subspace most likely to contain the TDS as defined in 
Chapter 9 for Method 2 and Method 3. Dataset updating consists in just adding each new observation. 
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Alternatively, the value of the ADDS can also be observed for the same 30 subsequent 
iterations. It should be noted that, in spite of the way the ADDS has been defined, such 
concept may have at least, the following two interpretations: 

a) Average absolute distance from each possible combination of process inputs 
that actually provide the desired values for the quality attributes of interest 
(process inputs from the DS) to the closest theoretical combination of process 
inputs leading to the same values for these quality attributes (process inputs 
from the NS). 

b) Average absolute difference between the desired values for the quality attrib-
utes of interest and those achieved by operating the process under the different 
combinations of process inputs from the DS estimate. 

The first of these two interpretations, however, requires the DS to be known, and is 
therefore not suitable for the purpose of this study. Because of this, the second meaning 
is applied in this work when referring to the ADDS. 

Figure 12.5 shows the average of these absolute differences per iteration for each algo-
rithm. 

 
Figure 12.5. Case study 1: Average distance to the DS (ADDS), defined in Equation 12.1, for 
!!" = 100, plotted against the number of iterations (coincident, in this case, with the number of 
additional performed experiments) using all three methods, with a PLS-regression model fitted with 4 
LV for Method 2 and Method 3. 
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It must be noted from Figure 12.5 that almost no significant improvement seems to be 
achieved after 5 additional experiments are performed with Method 1, nor after 10 
additional experiments for Method 2 or Method 3. Since random noise was added 
when simulating the data, and to assess if observable differences in Figure 12.5 may be 
statistically significant among different methods (specially Method 2 and Method 3), 
Method 1, Method 2 and Method 3 were applied 100 times, with 4 LV variables chosen 
to fit the PLS-regression model in Method 2 and Method 3. 100 curves as the ones 
shown in Figure 12.5 are obtained per algorithm, and a model with the following struc-
ture is fitted with this data: 

   ���� ���
�� � �� � � � �� ��� � �� ��� � �� � � ��� � �� � � ��� �
��� � �� � �� � �� ��� � �� � �� ���

 (12.2) 

Where i is the number of the corresponding iteration (in Figure 12.5, additional per-
formed experiments), and �� and �� are dummy variables that take the value 1 when 
Method 1 and Method 3 are used, respectively. To assess potential statistically signifi-
cant differences, the data corresponding to all iterations for each method are used to fit 
the model in Equation 12.2. Values for ��, ��, and �� significantly different from 0 
would signal statistically significant differences between Method 1 and Method 2, 
while non-zero significant values for ��, ��, and �� would point out statistically signif-
icant differences between Method 3 and Method 2. Table 12.1 shows the results from 
such model fitting, where only statistically significant effects remain in the model. 

Table 12.1. Case Study 1: Study of potential significant differences among methods in terms of the 
accuracy in the estimation of the DS 

Parameter Estimation p-value 

�� 9.38 0.0000 

�� -0.37 0.0000 

�� -3.03 0.0000 

�� 0.18 0.0001 

�� 7.81·10-3 0.0000 

�� -3.75·10-3 0.0076 

 

As shown in Table 12.1, no statistically significant differences were found between 
Method 2 and Method 3. As expected, differences between Method 1 and Method 2 are 
statistically significant, with Method 1 improving the estimation of the DS at a lower 
rate (�� � �) compared to Method 2 and Method 3. It should also be noted that the 
initial ADDS is very different when using Method 1, being statistically significantly 
lower than when using Method 2 or Method 3 (�� � �). Additionally, although 100 
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samples were taken along the NS in this example (��� � ���), taking as little as 3 of 
them (��� � �), as uniformly distributed as possible along the DS estimate (which was 
a line in this case) provided very similar numerical results and the same conclusions. 

These results seem to show an overall better performance of Method 1 given the simu-
lated data for the input-output causal relationship in Equation 8.1. However, three 
points should be made to this respect, which greatly bias the results shown here in fa-
vour of Method 1: 

i. since all variables affecting the quality attribute of interest (y) were used to fit 
the regression model, the only expected discrepancies between the expected 
and the real response would be those caused by the noise introduced into the 
data. Furthermore, four LV were chosen to fit the PLS regression models with 
Method 2 and Method 3, as suggested by the cross-validation. Had five LV 
been selected, any statistically significant differences between Method 2 or 3 
and Method 1 would have disappeared; 

ii. a good estimation of the DS and experimentation in this DS estimate was pos-
sible when using Method 1 only because the quadratic model structure includ-
ing ��, ��, their square terms and interaction was a good approximation of the 
true model structure (it was, in fact the exact same model structure used to 
simulate the data). However, expecting such favourable results would be un-
wise in most practical situations, where a large number of variables are in-
volved, and more complex relationships among them exist. This is because de-
tecting the existence of this sort of relationships among them would be 
difficult and require extensive experimentation, and only manipulable factors 
can be considered when Method 1 is resorted to; 

iii. in most of the experiments performed during the application of Method 1, the 
resulting values for the quality attribute of interest were not close to the de-
sired one, while the opposite was true with Method 2 and Method 3.  See as an 
example Figures 12.4.a and 12.4.b, for Method 1, where most of the samples 
used to fit the regression model (which are selected during the DOE step) are 
located at the extremes of the KS (hence far away from the TDS), while in fig-
ures 12.4.c to 12.4.f, for Method 2 and 3, most of these samples (also selected 
during the DOE/Optimization step) are located close to the TDS. This means 
that, in practice, Method 2 and Method 3 are more likely to provide products 
satisfying the specifications on the quality attribute of interest for which a bet-
ter estimation of the corresponding TDS is desired. 

 
Note that the first of these items also highlights the importance of properly selecting 
the number of latent variables to extract when fitting a PLS-regression model when it is 
to be used in its inverse form, when applying Method 2 and Method 3. Although the 
cross-validation approach suggested 4 LV to be extracted, this resulted in results worse 
than those for the OLS-based approach, when 5 LV would have resulted in identical 
outcomes. 
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12.4.1.3       Additional considerations 

Several factors affect these algorithms, and their effect on the performance of each 
method was also assessed to evaluate their robustness. Some of these factors and the 
results from this study are listed below: 

i. Noise in the data: 

Regarding the effect of the amount of noise, the same procedure was carried out with 
0%, 1% and 10% of the natural variability of the different variables added as random 
noise to the data. All three methods were affected, increasing the amount of experimen-
tation required to achieve the same level of accuracy in the DS estimate as more noise 
was present, which was to be expected, but a clear improvement still occurred with 
relatively little experimentation. 

ii. Size of the initial dataset and level of dispersion around the TDS: 

With respect to the size of the initial dataset, the larger the amount of initial samples 
was, the better the initial DS estimation, and the slowest was the improvement 
achieved by using Method 2 and Method 3, although Method 1 was not affected by 
this. Furthermore, for a given size of the initial dataset and a set amount of noise, the 
DS estimate with Method 2 and Method 3 was always better whenever the samples 
were located closer to the DS. However, if all initial samples were selected such that 
they were located exactly on the DS corresponding to a specific value for the quality 
attribute of interest, no regression model could be fitted (no matter the method), as 
expected, since no variation in the output/quality attribute would exist in the dataset, in 
spite of any variations in the inputs (i.e. it would look as if variations in the inputs 
cause no variation in the output/quality attribute, and therefore no relationship exist 
among them, despite this not being true). 

iii. Number of experiments performed per iteration and dataset updating method: 

Instead of performing one single additional experiment per iteration (step S7 for Meth-
od 1, or steps S9-S11 for Method 2 and Method 3), the same procedure was followed, 
but 2, 3 or 5 new samples were taken per iteration. No significant differences were 
found for Method 1, but the performance of Method 2 and Method 3 were deteriorating 
as more new samples were taken per iteration due to the fact that more iterations were 
needed to achieved the same performance in terms of ADDS. This deterioration was 
more critical as the amount of noise present in the data was incremented. 

For the dataset updating method with Method 2 and Method 3 (step S4), eliminating 
samples that provided values for � (���� or ����) ‘too far from ����’, as an alternative 
to simply adding the new experiments performed, was also tested. This significantly 
improved the results achieved if done in the first iteration. However, being too strict 
when using this criterion at the beginning or during subsequent iterations led to PLS 
regression models with a high uncertainty in the prediction of �, which would back-
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propagate during the model inversion step. Ultimately, none of these two methods 
provided desirable results in such scenario. 

iv. Severity of the non-linearities in the process: 

Finally, regarding the severity of the non-linearities in the process, the first quadratic 
term (�� � ���) in the mathematical model was substituted by an inverse exponential 
term (�� � ����), an exponential term (�� � ���) and a logarithmic term (�� �
��� �� ) to account for three different cases to the original one.  In all of them, Method 
2 and Method 3 led to an improvement in the DS estimation only when a sufficiently 
narrow range of variability was allowed for ��. Large ranges of variability for ��, on 
the other hand, led to scenarios where the DS estimation would improve or worsen 
apparently at random from one iteration to the next. On the other hand, Method 1 did 
not provide any significant improvement, but no instability in the accuracy of the DS 
estimate was observed either. 

12.4.2. Case study 2: simulated Vinyl-Chloride Monomer manufacturing 

As done in Section 9.4.2.3, and previous to the application of the proposed methods, 
the initial fitting of the corresponding models relating input variables �� to �� and �� 
with the output variables �� and �� via PLS was observed to lead to models with rela-
tively poor explanatory and predictive capability with regards to ��, which is the most 
relevant quality attribute of interest in this example. Because of this �� was trans-
formed into a new variable �� � �� � ��, and �� is substituted by �� � �� � ��. By do-
ing so, a PLS regression models fitted with these ‘new’ variables can be obtained that 
provides much better explanatory and predictive capabilities (R2(�)>0.965 and 
R2(�)>0.863 when using five LVs). 

Since now the quality attribute of interest, ��, is no longer included when fitting the 
PLS-regression model, however, the NS for a linear combination of outputs (�� and ��) 
must be defined following the procedure detailed in Section 9.3.3, such that for a given 
desired value for ��, ������, such linear combination must satisfy Equation 9.33. The 
value ������ � ����� is used in this case as the minimum acceptable purity for EDC4 
(i.e. the DS is defined in this case as the subspace comprised by all possible combina-
tions of inputs guaranteeing at least this purity, and therefore determining the subspace 
of inputs guaranteeing exactly it is equivalent to defining the frontier of such DS). 

12.4.2.1       Detailed procedure for the application of all three methods 

For the application of Method 1, the detailed procedure is as follows: 

1. Since only manipulated variables (�� to ��) can be used for the application of 
Method 1, and in order to account for possible non-linearities (fitting a second 
order polynomial model would be preferable to fitting a first order one), an ini-
tial evaluation of the variables most likely to influence the process outputs was 



Quality by Design Through Multivariate Latent Structures 

 

202 

carried out. This was done via stepwise OLS regression considering different 
combinations of manipulated variables. As a result, only variables ��, �� and 
�� were chosen as factors with a significant impact on �� and ��. The values 
for �� and ��, which were not found to have a significant effect on the two 
quality attribute of interests according to the respective OLS regression mod-
els, were fixed. Specifically, �� was set to �� � ����� � ��, and �� was set to 
its lower bound (see Table 9.7). 

2. Given the initial dataset (step S0), only the aforementioned selected variables 
��, �� and �� are used in step S1 to construct the matrix of inputs used to fit 
the OLS-regression models, together with two-factor interaction and second 
order terms, to fit the OLS-regression models for �� and ��. This model struc-
ture is selected for both models (step S2). 

3. Equation 9.33 is used to combine both OLS-regression models fitted in step S2 
so that the DS estimate can be obtained for ������ � ����� in step S3.   

4. In step S5, the matrix ���� is built taking 12 samples uniformly spanning the 
DS estimate as obtained in step S3. Values for ��, �� are computed from them 
as mentioned in the previous item of this list. 

5. The DOE in step S7 is constructed on ��, �� and ��, since variables ��, �� and 
�� to �� cannot be freely manipulated when taking new samples. The DOE 
consists of a follow-up D-optimal design for a model with all linear, first-order 
interaction and quadratic terms, considering the already available samples. A 
sufficiently large candidate set of uniformly distributed points inside the 
knowledge space to span it ‘in its entirety’ (10000 in this case) is generated, 
and the point exchange algorithm is used to select a single new experiment 
(����) to carry out. 

6. To update the dataset prior to the next iteration of the method, the newly ac-
quired sample is added to the dataset used at the beginning of this iteration. 

For the application of Method 2, the detailed procedure is: 

1. Data, including all input variables (as opposed to Method 1) and �� and ��, is 
mean-centred and scaled to unit variance by rows in step S1.  

2. The linear PLS-regression technique is used to fit a PLS-regression model 
with 5 LV. 

3. In step S6, 12 sets of scores spanning the NS as uniformly as possible are 
sampled (����), and through model inversion ���� is obtained in step S7. 
The ‘experimentation’ in step S8 is done to obtain the feasible or ‘real’ ���� 
as well as ����. 

4. The DOE in step S9 is a follow-up space filling design using the Kennard-
Stone algorithm after defining a sufficiently large candidate dataset (contain-
ing again 10000 potential samples in this case) of sets of scores distributed as 
uniformly as possible inside the subspace most likely to contain the TDS (as 
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explained in Chapter 9) for !!,!"# = 0.979, from which a single new set of 
scores !!"# is selected. 

5. !!"# is obtained through model inversion in step S10, and the ‘real’ !!"# and 
!!"# are obtained in step S11. 

6. Dataset updating in step S4 before the next iteration is done by simply adding 
!!"# and !!"# to the dataset used at the beginning of the current iteration. 

The same differentiation made for the first case study, with regards to the application 
of Method 3 with respect to Method 2, can be done here. 

12.4.2.2       Assessing the performance of each of the three methods 

In this case the DS is not known, and the number of variables involved (either in the 
original or the latent space) would not allow for an easily interpretable graphical repre-
sentation of the DS estimate, such as the one in Figure 12.4. In its place, and similarly 
to Figure 12.5, Figure 12.6 shows the ADDS for !!,!"# = 0.979 per iteration for each 
algorithm. 

 
Figure 12.6. Case study 2: Average distance to the DS (ADDS), defined in Equation 12.1, for 
!!" = 12, plotted against the number of iterations (coincident, in this case, with the number of addi-
tional performed experiments) using all three methods. 

The same procedure as with the first case study was carried out in order to identify 
statistically significant differences among the methodologies, carrying out all three 
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methods thrice with 4 different datasets (for a total of 12 times per method). A model 
with the same structure as the one in Equation 12.2 was fitted, and the statistical signif-
icance of its terms assessed. Table 12.2 shows the results obtained from this evaluation. 

Table 12.2. Case Study 2: Study of potential significant differences among methods in terms of the 
accuracy in the estimation of the DS 

Parameter Estimation p-value 

�� ��
�����	� �������
�� ���

������ ���	

�
�� ������	� �������
�� 
��������� ���	�
�

 

Again, values for ��, ��, and �� different from 0 would signal statistically significant 

differences between Method 1 and Method 2, while non-zero values for ��, ��, and �� 

would point out statistically significant differences between Method 2 and Method 3. 

Taking this into account, Table 12.2 seems to point at statistically significant differ-

ences between Method 1 and the other two algorithms, with statistically significant 

differences in the rate of improvement in the accuracy in the definition of the DS, ac-

cording to which Method 1 is outperformed by the other two (although in practice this 

difference may be negligible). 

A more obvious statistically significant difference is observed between Method 1 and 

Method 2 in terms of the ‘baseline’ ADDS. This is in part due to PLS-regression meth-

ods being able to capture a larger part of the variability in the process when compared 

to OLS-regression methods. Note, with respect to this, that only manipulated variables 

can be taken into account for the application of Method 1, which also contributes to 

this difference. 

On the other hand, the statistical significance of �� and its negative value signal a de-

crease of the ADDS when resorting to Method 2 and Method 3. However, this im-

provement in the accuracy in the estimation of the DS is probably not relevant in prac-

tice. This is related to the size of the initial dataset when applying these algorithms. 

Note that, for the first case study, the initial dataset was comprised by six samples, and 

no apparent significant decrease of the ADDS was observed after 10 or 15 additional 

experiments were performed (i.e. when the PLS-regression model was fitted with 16 or 

21 experiments). In this second case study, the three methods were applied with an 

initial dataset with 20 observations. It may then be suspected that no improvement is 

observed in the accuracy of the DS estimate because it is already as good as it can be. 

In fact, Method 1 cannot be applied with an initial dataset with as few as 5 or 6 obser-
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vations, but Method 2 and Method 3 show, in this scenario, a fast initial decrease of the 
ADDS similar to that seen in Figure 12.5 (not shown). 

Finally, and similarly as in the first case study, values very different to ������ � ����� 
where obtained for the quality attribute of interest (molar rate of EDC in stream EDC4) 
in most of the experiments having to be carried out with Method 1 (from 0.9778 to 
0.9809), being the opposite true with Method 2 (from 0.9781 to 0.9793) and Method 3 
(from 0.9789 to 0.9792). 

12.5. Conclusions 
Three different algorithms have been presented aiming at the improvement in the esti-
mation of the DS, one of which is based on traditional approaches such as OLS-
regression and classical DOE in the space of the original variables, and the other two in 
the concepts of LVRMI and DOE and optimization in the latent space. 

The performance of these three methods has been tested in two case studies, and the 
following has been concluded: 

a) The first method (OLS-based) may work well whenever the problem is simple, 
well known and easy to model. However, it is outperformed by the other two 
methods if this is not the case. Furthermore, happenstance (e.g. historical) data 
cannot be exploited and further experimentation requires working under pro-
cessing conditions that will most probably not lead to the desired values for the 
quality attribute of interest. On the other hand, the other two methods (PLS-
based) allow historical data to be used and obtaining new processing condi-
tions that provide values close to the desired ones for the quality attribute of 
interest even while improving the accuracy of the DS estimate. 

b) The sensitivity to noise, the size of the initial dataset and the level of disper-
sion of the samples in this dataset around the DS has been assessed. Regarding 
this, the two PLS-based methods provided better initial results when the initial 
samples were located close to the DS, and a better rate of improvement in the 
estimation of the DS was observed when i) few observations close to the DS 
were present in the initial dataset, and ii) a smaller initial dataset, as opposed 
to a larger one, was available. This is most probably in line with the idea of lo-
cal modeling whenever more or less severe non-linearities are present in the 
‘true’ model structure. 

c) All of the algorithms were observed to be quite sensitive to the presence of se-
vere non-linearities in the process, and are negatively affected if this is the 
case. 

With respect to point b, it must be pointed out that the datasets used in the two exam-
ples illustrated in Sections 5 and 6 were comprised by observations located more or 
less uniformly along the whole KS. In most practical scenarios, where happenstance 
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data is resorted to, the TDS may be located in unexplored areas of the process, and the 
proposed methods are expected to provide a way to iteratively explore them and im-
prove their estimation. This, however, is yet to be assessed in a real case study. 

Finally, it is important to consider that only Method 2 and Method 3 can make com-
plete use of the available data through the latent space, since both manipulated and 
non-manipulated variables can be accounted for when fitting a PLS-regression model 
and inverting it. This is not possible with OLS-based approaches. 
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Chapter 13  
Conclusions and 

perspectives 

 

13.1. Accomplishment of the objectives 
Given the results shown in previous chapters, the degree of accomplishment of the 
different objectives formulated in Section 1.2 can be assessed from the following gen-
eral conclusions. 

13.1.1. Objective I - Traditional and latent variable-based approaches applied 
to mixture design problems 

Chapter 5 allowed assessing most of the complexities associated to the traditional ap-
proaches for mixture design of experiments and model definition and fitting strategies, 
also presenting some proposals for the definition of the experimental region and the 
construction of DOEs in irregular mixture/experimental spaces (i.e. both applicable not 
only to mixture problems, but also to mixture-process variable and/or mixture-amount 
problems). 

On the other hand, Chapter 6 illustrated some of the most relevant advantages in the 
use of latent variable-based regression techniques in terms of interpretability and easi-
ness of usage, including a novel approach making use of K-PLS and pseudo-samples 
trajectories for the retrieval, whenever applicable, of a mixture model’s Scheffé coeffi-
cients. Some of the advantages presented by these methods include: 

• latent variable-based regression methods allow the study of the effect of mix-
ture and non-mixture variables simultaneously without having to treat them 
differently; 
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• latent variable-based methods such as PLS allow an easier/more efficiently de-
tection of equally contributing mixture constituents in terms of their effect in 
the properties of a blend; 

• while, given mixture data not affected by severe nonlinearities and/or with a 
high number of observations, PLS and K-PLS with pseudo-sample trajectories 
yielded very similar results to classical Scheffé model fitting by means of 
OLS, when more severe non-linearities and/or a small data structures had to be 
analysed, K-PLS proved to be a valid alternative for overcoming the main lim-
itation of both OLS and PLS in terms of model-fitting for prediction purposes; 

• furthermore, a way to recover the parameters of a Scheffé model from the 
trend of the pseudo-sample trajectories was also derived and validated via a 
simulated case-study when using K-PLS, provided that fitting such model 
makes sense; 

• finally, although the performance of the OLS- and PLS-based methodologies 
was shown to improve in some cases by taking into account inverse terms, K-
PLS did not suffer from some of the drawbacks they did, such the lack of 
enough degrees of freedom for a stable estimation of the coefficients of these 
augmented models, while (for RBF K-PLS) allowing different types of com-
plex nonlinear relationships to be modelled, making it specially suitable when 
combinations of unknown non-linearities affect the sort of interdependence be-
tween constituent proportions and output variables. 

Lastly, a user-friendly software tool was developed to allow easily assessing the differ-
ences in performance of several of the methodologies and algorithms illustrated in 
Chapters 5 and 6. 

13.1.2. Objective II - Latent variable-based approaches for efficient processes 
optimization 

Chapter 10 in this Thesis presented one of the most commonly resorted to algorithms 
for process optimization using latent variable-based approaches, the quadratic optimi-
zation formulation, as well as some of its limitations or shortcomings as carried out in 
the literature. Then some extensions and proposed ways to standardize the way the 
optimization can be made in different scenarios were provided, in order to tackle them, 
such as: 

• the optimization problem as proposed in the literature was extended to include 
the possibility of quality attributes being expressed as linear combination of 
outputs, after demonstrating the impossibility of formulating such optimization 
problem for such quality attribute in terms of a multiple-objective problem 
concerning the different outputs separately (without the matrix of weights for 
them losing its original meaning); 
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• a discussion was presented regarding the importance of providing proper 
weights to each of the terms in the objective function in the quadratic formula-
tion of the optimization problem, as well as the kind of (both soft and hard) 
constraints to be imposed on the solution depending on the goal. In addition, 
two new soft constraints were proposed which can be useful for DOE and ex-
ploration purposes in the latent space, and one of which can also be resorted to 
in order to guarantee that different yet acceptable solutions may be achieved 
when the optimization it done sequentially/more than once without modifying 
any other restrictions; 

• when addressing a problem where one or more quality attributes are to be 
maximized or minimized, a method to objectively determine the values one 
should provide as the “desired ones” has been developed and illustrated, which 
may also be used, in some cases, to determine the solution of the optimization 
problem in a much more efficient way that resorting to the quadratic or linear 
formulations themselves, and that helps in avoiding involuntarily assigning 
excessive/insufficient importance (with respect to the intended one) to maxim-
izing or minimizing some quality attribute or output; 

• lastly, a sequential approach to the optimization problem has been proposed 
and demonstrated to be more efficient than directly resorting to the quadratic 
or even the linear formulation, while avoiding (or at the very least mitigating) 
the issues some of those present with regards to the convergence to the global 
optimum in a given space of acceptable solutions. 

The application of some of these contributions has been shown for two case studies in 
Chapter 11 and, to a lesser extent, another two in Chapter 12. 

13.1.3. Objective III - Latent variable-based approaches applied to the Quality 
by Design initiative, to increase processes flexibility and guarantee the 
desired quality 

Chapter 9 deals with some basic concepts regarding the transferal of restrictions on the 
original space to the latent space and their connection to the Knowledge Space, as well 
as the way in which the computation of the direct inversion, as a way to find a set of 
inputs (if any) that theoretically guarantees the desired quality, and the so-called null 
space, as a way to obtain several of them (if theoretically possible), have been present-
ed in past literature. In this context: 

• the explicit formulation of the projection of the restrictions on the original var-
iables onto the latent space has been shown, and a new analytical formulation 
of the null space has been provided and extended to any quality attributes of 
interest that can be expressed as a linear combination of outputs; 
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• a novel formulation of the confidence region for the NS, which coupled to the 
transferral of constraints onto the latent space allows a more robust estimation 
of the subspace most likely to contain the TDS with respect to past proposals, 
as well as the estimation of the subspace less likely to fall outside of the TDS, 
has been developed, with the application of the first having been illustrated 
with three simulated case studies; 

• finally, a novel sequential experimental approach to increase the accuracy in 
the estimation of the DS has been developed and applied to two simulated case 
studies in Chapter 12, and its robustness tested against several factors, present-
ing this way an efficient way to perform experimentation that provides prod-
ucts with quality characteristics close to the desired ones while simultaneously 
helping better define the DS.  

13.2. Future research lines 
The results achieved through the completion of this Ph.D. thesis open new and relevant 
perspectives that may merit further consideration in the near future: 

• Development and potential improvement of already existing algorithms for the 
analysis of mixture data including raw material properties. 

• Extension and/or adaptation of the different presented and proposed algorithms 
for the constructions of DOEs for mixture design problems (including mixture-
process variables and mixture-amount problems) to more rigorously define 
DOE construction methods in the latent space and for mixture problems in-
cluding the properties of the raw materials in L/T-shaped datasets. This may be 
achieved by e.g. considering the relationship between raw material properties 
and scores in the latent subspace of models constructed as in [63–65]. 

• Extension of the optimization and DS estimation methodologies coupled to 
model-updating algorithms for process optimization outside of the KS, and for 
situations with frequent changes in raw materials, process conditions, etc. 

• Application of the idea behind the definition of the subspace least likely to fall 
outside of the DS to the definition of regions of acceptable raw material prop-
erties, and to the assessment of a production process capability. 

• For mixture design including raw materials’ properties, and batch processes: 

o Extension of the proposed approach for the estimation of the subspace 
most likely to contain (and least likely to fall outside of) the DS. 

o Further development of the proposed optimization formulation. 

o Improvement of methodologies to increase the accuracy in the estima-
tion of the DS, and in the assessment of such accuracy. 
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Chapter 14  
Appendices 

 
14.1. Annex to Part I 

14.1.1. Relationship between the Euclidean distance matrix, �, and the 
inner product matrix, � � ��  

The Euclidean distance between two observations, ��� and ���� , of a generic dataset, � 
[���], can be expressed as: 
 
����� � �� � ��� � � �� � ��� � � �� � ��� � ��� � �� � ���� � ��� � � � ��� � ���  (14.1) 

Let � [���] be the inner product matrix and � [���] the Euclidean distance matrix, 
defined as: 

� � � � ��
�� � � � �� � � � �� � � � � (14.2) 

where � [���] denotes the diagonal vector of � and � [���] is a vector of ones.  

Centring � such that: 

� � � � �
� � � � �� � � (14.3) 

then: 

� � � � �� � � � �
� � � � �� � � � � � �

� � � � �� � �
�
�

� � � �
� � � � � � �� � �

� � � � �� � � � �
�� � � � �� � � � � � ��

 (14.4) 
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If � is double-centred as: 

� � � �� � � � � � �
� (14.5) 

where � represents the operator 

� � � � �
� � � � �� (14.6) 

and � is the [���] identity matrix, it follows: 
 

� � � �� � � � � � �
� � � � �� � � � � � �� (14.7) 

Since:  

� � �� � �� � � � �� � � � �
� � � � ��

�
� � � �� � � � �

� � �
� � �� � � (14.8) 

it is verified: 
� � � � �� � �� � � � � � � � �� � �� (14.9) 

Therefore: 

� � � � � � �� � � � �
� � � � �� � � � � � �

� � � � ��
�
�

� � � �
� � � � � � �� � �

� � � � �� � � � �
�� � � � �� � � � � � �� � �

 (14.10)

that is: 

� � � �� � � � � � �
� � � � �� (14.11)

And so it has been demonstrated that the double-centred Euclidean distance matrix � is 
equal to the inner product matrix, � � ��. 

14.1.2. Practical meaning of the pseudo-samples in the feature space 

Consider that � � � � �� has been used for calibrating a 1-latent variable PLS model. 
The scores of the N objects under study, �� [���], can be written as: 

�� � � ���� (14.12)

where ��� [���] represents the PLS vector of weights, which, in this case, does not 
contain any useful information about the J original variables in � . Substituting Equa-
tion 14.11 in Equation 14.12 it follows: 

�� � � � �� ���� � � ���� (14.13)
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where ��� [���]  is now relevant for interpretation purposes. Projecting the [���] 
vector of pseudo-samples �� � �� �� �� � �� �� �  onto the PLS model 
subspace: 

��� � �� � �� ���� � �� ���� � ���� (14.14)

which permits obtaining the j-th element of ���. 

14.2. Annex to Part II 

14.2.1. Relationship between the Scheffé and Cox models coefficients 

Consider formulation of the second-order Scheffé polynomial: 

� � ����� �� � ��
�

���
� ��� � �� � ��

�

�����

���

���
 (14.15)

And that of the second-order Cox polynomial: 

� � � ��� � ��� � ��
�

���
� ���� � �� � ��

�

�����

���

���
� ���� � ���

�

���

�� �����

��� � ��
�

���
� �

��� � ���� � ��
�

���
� ��������� ����� ��

��� �
����������� � �
������������� � �

 (14.16)

Consider also the perfect collinearity constraint in Equation 5.1: 

��
�

���
� � (14.17)

The second order terms ��� can then be reformulated as: 

��� � �� � � � ��
�

���
���

 (14.18)
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Then, from Equation 14.16: 

� � � ��� � ��
�

���
� ��� � ��

�

���
� ����� � �� � ��

�

���
���

�

���
� ���� � �� � � � ��

�

���
���

�

���

� � � ��� � ��� � ��
�

���
� ����� � �� � ��

�

���
���

�

���
� ���� � ��

�

���
� ���� � �� � ��

�

���
���

�

���

� � � ��� � ��� � ���� � ��
�

���
� ����� � ���� � �� � ��

�

���
���

�

���

 (14.19)

 

where the notation ����� permits to explicitly differentiate the interaction terms 
�� � �� and �� � ��. Note that, since ����� � �����, ���� � � � ����� � � � ����� whenever 
� � �. Therefore, Equation 14.19 can also be formulated as: 

� � � ��� � ��� � ���� � ��
�

���
� ���� � ���� � ���� � �� � ��

�

�����

���

���
 (14.20)

Since Equation 14.15 and 14.20 must be equivalent, then: 
�� � ��� � ��� � ����
��� � ���� � ���� � ����

 (14.21)

If, instead of the second-order, the first-order polynomial is considered, then 
���� � ���� � ���� � �, and therefore: 

�� � ��� � ��� (14.22)

For higher-degree polynomials the reader is referred to [57], where the correspond-
ing relationship between the Scheffé and Cox models’ coefficients it is shown. 

14.2.2. Projection of a point/vector onto the intersection of a group of hy-
perplanes 

Consider the existence of R hyperplanes of dimension A-1 in a space of dimension A, 
with R<A, and let the equation of the r-th hyperplane, ���, to be expressed as: 

�� � �� � ������
�

���
� ��� � � ���� ���� � ���� (14.23)
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Consider the intersection of these hyperplanes to exist and to be of dimension A-R. Let 
� be a point outside of this intersection, and � the point closest to � that belongs to the 
intersection of all R hyperplanes. The directed distance between � and the r-th hyper-
plane NS, can be calculated as: 

�� ����� � ����
��� � ��

� ����� � ������ �������� �
��
��� � ��

 (14.24)

where ���� is the unitary vector orthogonal to ��� and �� �����  has the same sign 
and magnitude as the Euclidean distance when the direction of the vector from the r-th 
�� to � is the same as that of ����, but is negative if the have opposing directions. 
Since � is a point in the intersection of the R hyperplanes, then �� ����� � �. 

On the other hand, the vector that connects � to � must be orthogonal to any vector that 
is also orthogonal to every �� in order to guarantee that � is the point closest to � that is 
also in the intersection of the R hyperplanes. As a consequence, � can be expressed as a 
function of � of the form 

� � � � �� � ��
�

���
� � � �� � ����� ���� �

���
���
�
���

 (14.25)

where � is the vector that relates � and �. Taking into account Equations 14.24 and 
14.25: 

�� ����� � ����
��� � ��

� ����� � � � �� � � � � (14.26)

This equality can be also expressed as 

��� � �� � � � � ���� � ��� � �  (14.27)

Therefore, the following system of R linear equations with R unknowns can be defined: 

� � �� � � � � �� � � � �

�� �
����
����
�

����
��� � ���� �

���
���
�
���

 (14.28)

Since the rank of � is R, � � �� is a [R�R] matrix with rank R and can therefore be 
inverted. Then: 

� � � � � �� �� � �� � � � �  (14.29)

Substituting Equation 14.29 in Equation 14.25: 
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� � � � �� � � � �� �� � �� � � � � �
� �� � �� � � � �� �� � � � � � �� � � � �� �� � ��

 (14.30)

Where �� is the [A�A] identity matrix. 

Therefore � is the projection of � onto the intersection of R (� � �) hyperplanes in an 
A-dimensional space. The extension of Equation 14.30 for a vector, instead of a point, 
is straightforward. 

14.3. Annex to Part III 

14.3.1. Relationship between the result of the PLS-regression direct inver-
sion and the point in the combined null space closest to the centre of 
projection/with lowest leverage 

 

Consider that, for the hyperplanes corresponding to the NS for ����: 
�� � �� � ����
� � ��� � �  (14.31)

�� and ��� being the [L�1] column vector of centring factors and the [L�L] diagonal 
matrix with the scaling factors applied to the L output variables before fitting the PLS-
regression  model, respectively. 

If � � � in Equation 14.30, then: 

� � ��� � � � �� �� � �� � �� � ��� � ��� � � � �� � ���
�� � ���� ���  (14.32)

where 

��� � � � �� � ���
�� � � � �� � ���

�� � ����� � ����� � � � �� �� � ����� (14.33)

And therefore: 

� � �� � � � �� �� � ����� � ���� ���  (14.34)

Which is, exactly, the expression of the scores ���� for the direct inversion, as seen in 
Equation 9.16. It must be noted that the point in the intersection of NS for a given ���� 
that is closest to the centre of projection is not necessarily the same as the point in that 
intersection with the smallest leverage. To demonstrate this, consider that, for the hy-
perplanes corresponding to the NS for ����, with standardized scores: 

�� � �� � ����
� � ��� � � � ���� (14.35)
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with ���� defined as the [A�A] diagonal matrix containing the A standard deviations of 
the scores associated to the LVs. If � � � in Equation 14.30, then: 

� � ���� � �� � ��� � ��� � � � � � �� � ���
�� � ���� ���  (14.36)

Simplifying, as in Equation 14.34: 

� � ���� � �� � � � � � �� �� � ����� � ���� ���  (14.37)

Therefore, Equations 14.34 and 14.37 are only equivalent if � is the [A�A] identity 
matrix. 

14.3.2. Analytical expression for the confidence region of the null space for 
a linear combination of outputs using OLS-type expression for the 
prediction’s confidence interval 

Let ���� be the vector of inputs for an observation, and ���� the prediction of the out-
puts, given ����, by a PLS regression model fitted with A latent variables relating the 
[N�M] matrix of inputs X and the [N�L] matrix of outputs Y. Let ���� be the value for 
the quality attribute of interest, which can be expressed as a linear combination of the 
outputs ���� such that 

���� � �� � ���� � �� � ��� � � � ���� ���  (14.38)

where � is the the [L�1] vector with the coefficients that relate ���� with ����; ��� is 
the estimated [L�A] matrix of loadings that relate ���� with ����; and ���� is the [A�1] 
vector of scores corresponding to the projection of ���� onto the latent space;��� and 
��� being the [L�1] column vector of centring factors and the [L�L] diagonal matrix 
with the scaling factors applied to the L output variables when fitting the PLS model, 
respectively. 

Let �� represent the Null Space (NS), that is, a subspace such that any combination of 
inputs inside it will theoretically guarantee the desired value for the quality attribute of 
interest, ����. Any vector of outputs ��� with projection ��� in this subspace will 
satisfy the following: 

�� � ��� � �� � ��� � � � ��� ��� � ���� (14.39)

Equation 14.39 can be reorganized as 

�� ��� � ���� � �� � ��� � � � ��� � � (14.40)

which is the equation of a hyper-plane in the latent space associated to �� of the form: 
 
xv � is used here to differentiate it from the theoretical loadings matrix �, as in the appendix in Section 14.3.3, to keep it con-
sistent with it since such distinction is required for the definition of the confidence region of the NS. 
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�� � �� � �����
�

���
� ��� � � ���� ���� � ����

�� � �� ��� � ����
� � �� � ��� � �

 (14.41)

Consider ���� to be a vector of scores on the hyper-plane defining the ��. Then, the 
��� � � � � � confidence interval (CI) of the prediction of a linear combination 
���� � ����, given an observation ���� with projection ����, and using OLS type 
expressions, is: 

������ � ���� � �������� � ����� (14.42)

Now consider ���� to be a vector of scores within the limits of the confidence region 
for the ��, such that ���� is the vector of scores closest to ���� and exactly on the hy-
per-plane defining ���. Then: 

�� � ��� � � � ���� � �������� � ����� � �� � ��� � � � ����
�� � ��� � � � ���� � �� � ��� � � � ���� � �������� � �����

 (14.43)

 

Or, equivalently: 

�� � ��� � � � ���� � ���� � �������� � ����� (14.44)

where �������� is the ��� � � � ���  percentile of a Student’s t-distribution with (N-
A) degrees of freedom, and ����� the estimated standard deviation for the prediction 
error of the linear combination of outputs: 

����� � ��� � � � ����� �
�
� (14.45)

��� being the standard error of calibration and ����� the leverage of ���� 
As illustrated in Section 14.3.3, ��� can be calculated as: 

��� � �� � �� � � (14.46)

where �� is the estimated [L�L]  variance-covariance matrix of prediction errors: 



Appendices 

 

221 

�� �

���� ��� ��� ��
��� ��� �� ����

� ��� ��� ��
��� ��� ��

� � �
��� �� � �� ��� �� � �� � ����

���� �
���� � ����

�����
���

��� �� � ��� � ���� � ���� � ����� � ���������
���

 (14.47)

���� and ���� being the observed and average predicted values of the l-th output variable 
for the n-th sample in the calibration dataset used to fit the regression model, and rdf 
the residual degrees of freedom (frequently rdf=N-A). 

On the other hand, ����� is computed as: 

����� � ����� � �� � � �� � ���� (14.48)

� being the [N�A] matrix of scores corresponding to the projection onto the latent 
space of the observations in the calibration dataset used to fit the PLS-regression mod-
el. The relationship between ���� and ����, considering ���� to be the vector of scores 
closest to ���� and exactly on the hyper-plane defining the ��, can be expressed as: 

���� � ���� � �� ����� ���� � ���
�� ����� ���� � ��

�� � �
� ���� � ��������� ������� �

�
�� � �

 (14.49)

where ��� is the unitary vector orthogonal to the �� and �� ����� ����  is the directed 
distance between ���� and ����, which has the same sign and magnitude as the Euclid-
ean distance when the direction of the vector ���� � ���� is the same as that of ���, 
but is negative if the have opposing directions. From this, ���� can be re-formulated as 
a function of ���� such that 

���� � ���� �
�� � �� � �����

�� � � � � (14.50)

Re-organizing Equation 14.44 and substituting Equation 14.50 in it: 

��������� �
�� � �� � �����

�����
� ��������

����� � ��� � � � ����� �
�� � �� � �����

�� � �
�
� �� � �� � � �� � � � �

�

 (14.51)



Quality by Design Through Multivariate Latent Structures 

 

222 

14.3.3. Confidence interval for the prediction of a linear combination of 
outputs in PLS using OLS type expression  

Let ���� be the vector of inputs for an observation, and ���� the vector of average pre-
dictions of the outputs ����, given ����, by a PLS regression model fitted with A latent 
variables relating the [N�M] matrix of inputs X and the [N�L] matrix of outputs Y. Let 
���� be a linear combination of ���� such that: 

���� � �� � ������
�

���
� �� � ���� � �� � � � ���� (14.52)

where � is the the [L�1] vector with the coefficients that relate ���� with ���� , � is 
the estimated [L�A] matrix of loadings that relate ���� with ����, and ���� is the [A�1] 
vector of scores corresponding to the projection of ���� onto the latent space. 

And the variance of ���� is: 

�����
� � �� � ����� � � (14.53)

where ����� is the [L�L] variance-covariance matrix corresponding to the average 
predictions of the output variables. In order to obtain the estimate of this matrix, �����, 
Ordinary Least Squares (OLS) type expressions will be used, as done by Faber and 
Kowalski [95], also assuming normalized scores. To obtain the variances, consider 

�� � � � �� � ��
�� � � � �� � ��
�� � � � ��

 (14.54)

� being the [N�A] scores matrix with ���, ���,…, ���  as its rows, �� and �� are the 
[A�1] vectors corresponding to the l-th rows of the theoretical loadings matrix � and 
its estimation, �, respectively, and ��and �� are the [N�1] vectors of disturbances and 
prediction errors for the N observationsxvi. 

The variance of average prediction for the conditions (scores) corresponding to the n-th 
observation and l-th output ���� is, from the previous expression: 

 
xvi Note that, in this section only, and for simplification purposes, it has been assumed that both input and output variables are 
already pre-treated (e.g. mean-centred and scaled to unit variance) 
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������ � � ���� � � ���� � ���� � � ����
�

������ � � ��� � �� � ��� � � �� � ��� � �� � ��� � � ��
�

������ � ��� � � �� � � �� � �� � � ��
� � �� � ��� � ��� � ��

 (14.55)

where � �  is the expectation operator and ��� is the [A�A] variance-covariance matrix 
corresponding to loadings of the matrix � associated with the l-th output variable.  

Then, if the formulation for the OLS estimate is applied: 

��� � � �� � � �� � �� � � ��
� � � �� � �� � �� � �� �  (14.56)

Since 

�� � ��� �� � �� � �� � ��� �� � �� � � � �� � �� �
� �� � ��� �� � �� � �� (14.57)

Then 

��� � � ��� �� � �� � �� � ��� � � � ��� ��

��� � ��� �� � �� � � �� � ��� � � � ��� ��  (14.58)

� �� � ���  can be expressed as: 

� �� � ��� � �
����� ���� � ����

���� � ���� �����
� ���� � ����

���� � ����
� � �

���� � ���� ���� � ���� � �����

� �� � ��� �

������ ��� ���� � ����
��� ���� � ���� ������ � ��� ���� � ����

��� ���� � ����
� � �

��� ���� � ���� ��� ���� � ���� � ������

 (14.59)

Assuming uncertainty to be the same for all observations,������� � ���� ����, and ���� and 
����� to be uncorrelated (� � ��) so that ��� ���� � ����� � �, then: 

� �� � ��� � ���� � �� (14.60)

where �� is the [���] Identity matrix. Therefore: 

��� � �� � � �� � �� � ���� � ���� � � � �� � � �� (14.61)

Reorganizing terms and simplifying: 
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��� � ���� � �� � � �� (14.62)

Substituting Equation 14.62 in Equation 14.55: 

������ � ���� � ��� � ��� �� � �� � ���� � �� (14.63)

Where ����  is the variance of the disturbances for the l-th output variable, while �� is 
the leverage for the n-th observation, which is a measure of the distance of the projec-
tion of the n-th observation to the centre of projection. 

The variance of the disturbances for the l-th output can be estimated from the predic-
tion errors as: 

���� � ���� �
���� � ����

�����
� � ��  (14.64)

Being df the degrees of freedom consumed by the model (usually df=A). 

Thus, the estimation ������  of the variance of the average prediction, ������ : 

������ � ������� � ���� � �� (14.65)

If, as it is usually the case when fitting a PLS regression model, the output variables 
have been centred, the error associated with the estimation of the mean has to be con-
sidered, resulting in the following modification to the previous expression: 

������
� � ���� � �� �

�
�  (14.66)

Where �����  denotes that output variables are not centred, as opposed to ���� . 

And for an individual observation the error of prediction (i.e. the estimation of the 
uncertainty) is included, which results in: 

��������� � ���� � � � �� �
�
�  (14.67)

Following the same procedure now for the covariance of average prediction for the 
conditions (scores) corresponding to the n-th covariate observation for the l-th output 
���� �and l’-th output ����� ��� � ���, it follows: 

��� �� �� ��� � � � ���� � � ���� � ����� � � �����
�

��� �� �� ��� � � ��� � � �� � �� � ��� � ��� � � ��
��� �� �� ��� � � ��� � ������� � ��

 (14.68)

In a similar way as for the variance: 
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������� � � ��� �� � �� � �� � ���� � � � ��� ��

������� � ��� �� � �� � � �� � ���� � � � ��� ��  (14.69)

And, since � �� � ����  can be expressed as: 

� �� � ���� � �
���� � ����� ���� � �����
���� � ����� ���� � ����� � ���� � �����

���� � �����
� � �

���� � ����� ���� � ����� � ���� � �����

� �� � ���� �
��� ���� � ����� ��� ���� � �����
��� ���� � ����� ��� ���� � �����

� ��� ���� � �����
��� ���� � �����

� � �
��� ���� � ����� ��� ���� � ����� � ��� ���� � �����

 (14.70)

Assuming uncertainty to be the same for all observations, 
��� ���� � ����� � ��� �� � ��� ����, and ���� and ������ to be uncorrelated (� � ��) so 
that ��� ���� � ������ � �, then: 

� �� � ���� � ��� �� � ��� � �� (14.71)

Therefore: 

������� � ��� �� � �� � ��� �� � ��� � ���� � � � ��� �� (14.72)

Reorganizing terms and simplifying: 

������� � ��� �� � ��� � ��� �� (14.73)

Substituting Equation 14.73 in Equation 14.68: 

��� �� � ��� � � ��� �� � ��� � ��� � ��� �� � �� � ��� �� � �� � �� (14.74)

Again, the estimation of the covariance of the disturbances for the l-th and l’-th output 
variables can be obtained as: 

��� �� � ��� � ���� � ���� � ����� � ������
���

� � ��  (14.75)

Finally, the estimated variance-covariance matrix of the average outputs prediction 
vector for the n-th observation ��, ���, can be expressed as: 

��� � �� � �� �

���� ��� ��� ��
��� ��� �� ����

� ��� ��� ��
��� ��� ��

� � �
��� �� � �� ��� �� � �� � ����

� �� (14.76)
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In order to account for the centring of the output variables: 

���� � �� � �� �
�
�  (14.77)

And for the prediction of an individual observation: 

������ � �� � � � �� �
�
�  (14.78)

Finally, since centring of the output variables is performed in almost all cases, the es-
timated variance of �� will be obtained for an individual observation as: 

���
� � �� � �� � � � � � �� �

�
�  (14.79)

Therefore, the confidence interval for the prediction of a linear combination of output 
variables, corresponding to a given observation ���� with projection ���� and predicted 
outputs ����, can be calculated as: 

������ � ���� � �������� � �����

����� � �� � �� � � � � � ���� �
�
�

 (14.80)

As a particular case, the confidence interval for the prediction of the l-th of output vari-
able for the same observation results: 

�������� � ������ � �������� � �������

������� � ���� � � � ���� �
�
�

 (14.81)

Note that, although here �� was computed assuming already pre-treated output varia-
bles (e.g. centred to zero mean and unitary variance), this matrix may also be obtained 
similarly without considering such pre-treatment in order to obtain the confidence in-
tervals for the prediction in the same units as the original Y matrix (this must be ac-
counted for also for ����/������). 
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