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Abstract

The present Ph.D. thesis is motivated by the growing need in most companies, and
specially (but not solely) those in the pharmaceutical, chemical, food and bioprocess
fields, to increase the flexibility in their operating conditions in order to reduce produc-
tion costs while maintaining or even improving the quality of their products. To this
end, this thesis focuses on the application of the concepts of the Quality by Design for
the exploitation and development of already existing methodologies, and the develop-
ment of new algorithms aimed at the proper implementation of tools for the design of
experiments, multivariate data analysis and process optimization, specially (but not
only) in the context of mixture design.

Part I — Preface, where a summary of the research work done, the main goals it aimed
at and their justification, are presented. Some of the most relevant concepts related to
the developed work in subsequent chapters are also introduced, such as those regarding
design of experiments or latent variable-based multivariate data analysis techniques.

Part Il — Mixture design optimization, in which a review of existing mixture design
tools for the design of experiments and data analysis via traditional approaches, as well
as some latent variable-based techniques, such as Partial Least Squares (PLS), is pro-
vided. A kernel-based extension of PLS for mixture design data analysis is also pro-
posed, and the different available methods are compared to each other. Finally, a brief
presentation of the software MiDAs is done. MiDAs has been developed in order to
provide users with a tool to easily approach mixture design problems for the construc-
tion of Designs of Experiments and data analysis with different methods and compare
them.

Part III — Design Space and optimization through the latent space, where one of
the fundamental issues within the Quality by Design philosophy, the definition of the
so-called ‘design space’ (i.e. the subspace comprised by all possible combinations of
process operating conditions, raw materials, etc. that guarantee obtaining a product
meeting a required quality standard), is addressed. The problem of properly defining
the optimization problem is also tackled, not only as a tool for quality improvement but
also when it is to be used for exploration of process flexibilisation purposes, in order to
establish an efficient and robust optimization method in accordance with the nature of
the different problems that may require such optimization to be resorted to.

Part IV — Epilogue, where final conclusions are drawn, future perspectives suggested,
and annexes are included.
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Resumen

La presente tesis doctoral surge ante la necesidad creciente por parte de la mayoria de
empresas, y en especial (pero no unicamente) aquellas dentro de los sectores farmacéu-
tico, quimico, alimentacion y bioprocesos, de aumentar la flexibilidad en su rango ope-
rativo para reducir los costes de fabricacion, manteniendo o mejorando la calidad del
producto final obtenido. Para ello, esta tesis se centra en la aplicacion de los conceptos
del Quality by Design para la aplicacion y extension de distintas metodologias ya exis-
tentes y el desarrollo de nuevos algoritmos que permitan la implementacion de herra-
mientas adecuadas para el disefio de experimentos, el andlisis multivariante de datos y
la optimizacion de procesos en el ambito del disefio de mezclas, pero sin limitarse ex-
clusivamente a este tipo de problemas.

Parte I — Prefacio, donde se presenta un resumen del trabajo de investigacion realiza-
do y los objetivos principales que pretende abordar y su justificacion, asi como una
introduccion a los conceptos mas importantes relativos a los temas tratados en partes
posteriores de la tesis, tales como el disefio de experimentos o diversas herramientas
estadisticas de andlisis multivariado.

Parte II — Optimizacion en el disefio de mezclas, donde se lleva a cabo una recapitu-
lacion de las diversas herramientas existentes para el disefio de experimentos y andlisis
de datos por medios tradicionales relativos al disefio de mezclas, asi como de algunas
herramientas basadas en variables latentes, tales como la Regresion en Minimos Cua-
drados Parciales (PLS). En esta parte de la tesis también se propone una extension del
PLS basada en kernels para el andlisis de datos de disefios de mezclas, y se hace una
comparativa de las distintas metodologias presentadas. Finalmente, se incluye una
breve presentacion del programa MiDAs, desarrollado con la finalidad de ofrecer a sus
usuarios la posibilidad de comparar de forma sencilla diversas metodologias para el
disefo de experimentos y analisis de datos para problemas de mezclas.

Parte III — Espacio de disefio y optimizacion a través del espacio latente, donde se
aborda el problema fundamental dentro de la filosofia del Quality by Design asociado a
la definicion del llamado ‘espacio de disefio’, que comprenderia todo el conjunto de
posibles combinaciones de condiciones de proceso, materias primas, etc. que garanti-
zan la obtencion de un producto con la calidad deseada. En esta parte también se trata
el problema de la definicion del problema de optimizacién como herramienta para la
mejora de la calidad, pero también para la exploracion y flexibilizacion de los procesos
productivos, con el objeto de definir un procedimiento eficiente y robusto de optimiza-
cion que se adapte a los diversos problemas que exigen recurrir a dicha optimizacion.

Parte IV — Epilogo, donde se presentan las conclusiones finales, la consecucion de
objetivos y posibles lineas futuras de investigacion. En esta parte se incluyen ademas
los anexos.
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Resum

Aquesta tesi doctoral sorgeix davant la necessitat creixent per part de la majoria d'em-
preses, 1 especialment (perd no unicament) d’aquelles dins dels sectors farmaccutic,
quimic, alimentari i de bioprocessos, d'augmentar la flexibilitat en el seu rang operatiu
per tal de reduir els costos de fabricaci6, mantenint o millorant la qualitat del producte
final obtingut. La tesi se centra en l'aplicaci6 dels conceptes del Quality by Design per
a l'aplicaci6 1 extensio de diferents metodologies ja existents i el desenvolupament de
nous algorismes que permeten la implementacié d'eines adequades per al disseny d'ex-
periments, 1'analisi multivariada de dades i l'optimitzacié de processos en l'ambit del
disseny de mescles, pero sense limitar-se exclusivament a aquest tipus de problemes.
Part I- Prefaci, en que es presenta un resum del treball de recerca realitzat i els objec-
tius principals que pretén abordar i la seua justificacid, aixi com una introduccio6 als
conceptes més importants relatius als temes tractats en parts posteriors de la tesi, com
ara el disseny d'experiments o diverses eines estadistiques d'analisi multivariada.

Part II — Optimitzacié en el disseny de mescles, on es duu a terme una recapitulacio
de les diverses eines existents per al disseny d'experiments i analisi de dades per mit-
jans tradicionals relatius al disseny de mescles, aixi com d'algunes eines basades en
variables latents, tals com la Regressiéo en Minims Quadrats Parcials (PLS). En aquesta
part de la tesi també es proposa una extensid del PLS basada en kernels per a l'analisi
de dades de dissenys de mescles, i es fa una comparativa de les diferents metodologies
presentades. Finalment, s'inclou una breu presentacio del programari MiDAs, que ofe-
reix la possibilitat als usuaris de comparar de forma senzilla diverses metodologies per
al disseny d'experiments i I’analisi de dades per a problemes de mescles.

Part III- Espai de disseny i optimitzacié a través de l'espai latent, on s'aborda el
problema fonamental dins de la filosofia del Quality by Design associat a la definicio
de l'anomenat ‘espai de disseny’, que comprendria tot el conjunt de possibles combina-
cions de condicions de procés, matéries primeres, etc. que garanteixen l'obtencié d'un
producte amb la qualitat desitjada. En aquesta part també es tracta el problema de la
definicio del problema d'optimitzacié com a eina per a la millora de la qualitat, pero
també per a l'exploracio i flexibilitzacid dels processos productius, amb l'objecte de
definir un procediment eficient i robust d'optimitzacié que s’adapti als diversos pro-
blemes que exigeixen recorrer a aquesta optimitzacio.

Part IV- Epileg, on es presenten les conclusions finals i la consecucié d'objectius i es
plantegen possibles linies futures de recerca arran dels resultats de la tesi. En aquesta
part s'inclouen a més els annexos.
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Justification, objectives and contributions

Chapter 1

Justification, objectives
and contributions

1.1. Justification

The present Ph.D. thesis aims at providing better insight and novel algorithmic tools to
address two main fields of interest, namely that concerning what are known as mixture
design problems, as well as the problematic associated to the optimization of produc-
tion processes through the so-called Quality by Design philosophy, which is originated
by the need to guarantee the desired quality of a given product before its production
while allowing as much flexibility as possible in the setting of the processing condi-
tions, the selection of raw materials, etc.

Particularly, the present Ph.D. thesis project addresses some of the issues of practical
interest in regards to both mixture design problems and process optimization via data-
driven (i.e. empirical) approaches, such as:

1. efficient experimental design required given a particular purpose (e.g. data-
driven exploration, prediction or optimization...) and availability of resources
(e.g. time, costs, equipment...), particularly for mixture design problems;

2. comparison of data-driven model building strategies for explanatory, predic-
tive and optimization purposes, specially for mixture design problems, with
both data from a statistical Design of Experiments and historical data;

3. sensible definition of the different sets of processing conditions that allow
meeting the products specifications;

4. data-driven process optimization.
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Addressing these points will, potentially, guarantee:

1. reduced costs (by e.g. minimizing required experimentation, the amount of
production outside of specifications, or optimizing the processing conditions);

2. increased process flexibility;

3. more consistent product.

1.2. Objectives of the thesis

In this section a more thorough description of the objectives of this Ph.D. thesis and the
proposals to accomplish them is provided.

1.2.1. Traditional and latent variable-based approaches applied to
mixture design problems

With a wide range of products currently used in daily life resulting from processing
blends of two or more ingredients, where the properties of these products mainly de-
pend on the raw materials being mixed and on the proportions in which they are added,
mixture design problems are of great relevance. However, the special nature of these
problems requires special modifications to be made to traditional approaches aimed at
selecting which experimentation to perform in order to construct reliable data-based
models. These are needed in most real scenarios nowadays given the large amounts of
data being made available continuously and the complexity of most processes nowa-
days, for which the use of first principles models may be unfeasible. Furthermore, the
structure and interpretation of the models traditionally selected to be fitted in mixture
design also require special reformulations and tools, and even then these methods may
suffer whenever a process is characterised by the presence of strong non-linear behav-
iours and complex relationships among the variables involved.

Part IT of this Ph.D. thesis will serve as a review of some of the most widely used tradi-
tional approaches to mixture design, concerning both the experimental design and the
model definition and fitting steps (Chapter 5). As an alternative, latent variable-based
approaches will also be presented and compared to traditional approaches in order to
assess the advantages and limitations of each of them (Chapter 6). A Matlab-powered
software with graphic interface has been developed to allow users without knowledge
in Matlab or programming to make use of most the tools illustrated in previous chap-
ters in Chapter 7.
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1.2.2. Latent variable-based approaches for efficient processes opti-
mization

Extensive work has been done in the past for the optimization of production processes
through the use of a wide range of tools. Some of the most recent one has been focused
on the use of latent variable-based techniques in order to take advantage of the increas-
ingly large amount of data continuously being stored regarding the processes and prod-
ucts on which the optimization is intended to be applied, due to the several advantages
that latent variable-based methods offer in this context. However, some of the proposed
tools present a series of drawbacks or aspects that leave some room for improvement,
such as the lack of a standardized procedure for the optimization of quality attributes
expressed as linear combinations of process outputs, the steps to follow when solving a
minimization/maximization problem while avoiding involuntarily assigning too
much/too little importance to certain optimization criteria, or the use of excessively
complex optimization tools when simpler ones will provide equally good results with
fewer risks and computational cost.

In Part IIT, Chapter 10, some of these issues are addressed, and in Chapter 11 the appli-
cation of the proposed algorithms is illustrated.

1.2.3. Latent variable-based approaches applied to the Quality by
Design initiative, to increase processes flexibility and guaran-
tee the desired quality

Although slightly related to the optimization approach, one other topic of increasing
relevance in the last years has been that regarding the philosophy of the so-called Qual-
ity by Design and the way it should be applied in practice. In both cases, the main ob-
jective is being able to obtain combinations of processing operating conditions and raw
material properties that guarantee the desired results, with the subspace comprised by
all possible combinations being frequently referred to as the Design Space. As in the
optimization field, latent variable-based methods have been shown to be powerful tools
when trying to accurately define this so-called Design Space. However, not much in-
sight has been offered until recent years regarding precisely the explicit definition of
such subspace of operating conditions, nor in how the accuracy in its estimation could
be improved.

Chapter 9 in Part III of this Ph.D. thesis aims at providing some novel formulations of
the Design Space, the subspace of process conditions most likely to contain it, and the
subspace of process conditions least likely to not be fully contained by it (i.e. most
likely to guarantee that the quality attributes of interest of a given product will meet
their corresponding specifications). In Chapter 12 several of the concepts addressed in
Chapters 9 to 11 will be resorted to in order to propose a novel sequential experimental
approach to improve the accuracy in the estimation of the Design Space.
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Chapter 2

On optimal design of
experiments

2.1. Introduction

Exploring, understanding, optimizing or making a production process more robust and
flexible requires, in most cases if not all, building a causal model that explains how
changes in input variables (e.g. materials and their properties, processing conditions...)
relate to changes in the outputs (e.g. amount of product obtained, its quality, purity,
value, generated pollutants...). To this purpose, deterministic (i.e. first principles)
models are always desirable. However, the lack of sufficient knowledge and the gener-
ally ample need of resources required to properly construct such models makes their
use unfeasible in a large number of cases. This is why data-driven models are often
resorted to [1,2].

To guarantee causality when using data-driven approaches, however, independent vari-
ation in the input variables is required [3]. But, even if nowadays large amounts of data
are available in most production processes, the variation in the inputs is commonly not
independent. If classical polynomial model fitting by traditional methods (such as Or-
dinary Least Squares — OLS [4,5]) is to be resorted to, or if not enough data is yet
available, this implies that controlled experimentation will have to be carried out,
which usually requires extensive time and resources due to the large amount of inputs
and outputs involved in most production processes at present. In such situations, defin-
ing the experiment to perform (i.e. the test or series of tests to carry out) in order to
gather the necessary data [6] is commonly referred to as a design of experiment
(DOE). An optimal DOE will be that which allows satisfying the purpose that moti-
vated the experiment in the most efficient way, according to some optimality criterion.

When resorting to data-driven models, the aim of an experiment can be, as noted by
Fedorov [7], characterized as one of the following in most cases:
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1. Given a known (e.g. first principles) model that defines the analytical function
relating the outputs of a process with its inputs, but whose parameters are un-
known, a DOE may be carried out in order to obtain proper estimates of them.

2. If a process if governed by one among a series of possible functions, a DOE
may be carried out in order to identify which of them is the correct one, as
well as to estimate the corresponding parameters.

3. When no analytical function governing a process is known, a DOE is used to
find the model (or models) that better approximates the unknown function in
the region of interest for the experimenter (i.e. the experimental region).

Due to the increasingly large amounts of data and variables involved, the third of these
scenarios will be the most frequent one in most real world applications in industrial
processes, and therefore the identification of the experimental region becomes a crucial
prior step to the DOE exercise. Any test to be performed must, then, be within this
subspace, which is usually constrained by factors such as safety, equipment-operating
range, and possibly additional restrictions imposed by the experimenter based on their
prior knowledge of the process.

In this Ph.D. thesis, a discussion on the different optimality criteria commonly consid-
ered when resorting to DOE is presented, and algorithmic tools aimed at efficiently
defining the experimental region and carrying out the DOE are provided, especially for
mixture design problems and highly restricted experimental regions in general.

2.2. Optimality criteria for the design of experiments

When resorting to DOE, there are many criteria that may be taken into account in order
to determine the efficiency or optimality of a given DOE, and to construct an optimal
DOE [8]. Three of the most commonly considered criteria are:

a. D-optimality: this criterion is concerned with the minimization of the variance
of parameter estimations. This is useful when the objective behind the DOE is
factor screening, that is, determining which of the many potentially relevant
manipulable inputs (commonly referred to as factors in DOE) actually have a
significant effect on the output of interest. This criterion is useful in the second
and third scenarios mentioned in Section 2.1.

b. I-optimality: this criterion is concerned with the response (i.e. output) estima-
tion, and in particular with the average variance of prediction of the response
over the experimental region, which is to be minimized. It is therefore a more
useful criterion in scenarios such as the first one mentioned in Section 2.1.

c. G-optimality: similar to the [-optimality, this criterion refers to the maximum
variance of prediction of the response over the experimental region, which
again is to be minimized.

10
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Although one of the most common criticisms of the optimal DOE approach is that
different criteria will lead to different DOEs, the different criteria should be understood
as seeking to provide a solution for the specific problem that motivated the experimen-
tation. Constructing a D-optimal [7,9—11], I-optimal [12] or G-optimal [13] DOE will
then depend on the problem being addressed. Furthermore, several criteria can be con-
sidered simultaneously, in order to obtain a DOE that performs well on multiple crite-
ria at the same time [8].

2.2.1. D-optimal design of experiments

Consider a matrix of inputs X, [NXM] and a vector of the output variable y, [NX1]
where N is the number of samples or observations and M is the number of inputs. Con-
sider also the inputs model matrix X [NXP] and the outputs model vector y [NX1],
obtained by appropriately pre-processing X, and y, for DOE or model-fitting purposes
(by e.g. adding a column of ones and additional terms to X, corresponding to interac-
tion terms, or second or higher order terms, and/or by centring or scaling each in-
put/output variable), such that the matrix form of model that relates X and y, referred to
as a regression model, can be expressed as:

y=X:f+u (2.1

Where B [(P + 1)x1] is the vector that relates the P inputs to the output (plus an inter-
cept or constant), and u [NX1] is the vector of disturbances or random errors.

The Ordinary Least Squares estimator of the vector of unknown model coefficients (3,
b, is
b=X"-X)"1.XT.y (2.2)

and the variance-covariance matrix of this estimator, assuming the distribution of dis-
turbances to be the same for all observations, results:

var(b) = 62 - (XT-X)?

01?0 cov(by, by) _ cov(by, bp)
var(b) = cov(bg, by) . o'gl . Cov(l?l,bp) (2.3)
cov(bg,bp) cov(by,bp) - ap,

Where 2 is the variance of the disturbances, which is, a priori, unknown, but can be
estimated using the mean squared prediction error:

3 1
d=sf=y—p7n O-XD-G-X-b) (24)

11
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When planning an experiment, however, ¢ cannot yet be estimated. Therefore, only
the elements of (XT - X)~! are considered. The elements of the diagonal of this matrix
correspond to the relative variances of the estimation of the model parameters, which
are desired to be as small as possible, and provide an estimate of how large the vari-
ances are compared to 2. If the factors are scaled so that their values in X range within
the interval [-1, +1] (which is common practice when building a DOE), then the mini-
mum achievable relative variance of an estimate is 1/N, and is attained for all estimates
when the DOE is orthogonal for its associated model. The relevance of a DOE being
orthogonal resides in the fact that the parameters in a model can be estimated inde-
pendently only when this is the case, but these estimates will be correlated to each
other otherwise.

For a model matrix X to be orthogonal for its associated model, the sum of the element-
wise products of all the pairs of columns in X must be zero. This means that, for a

model that includes interactions of order as high as K < P, all of the ZI,\f:l#!_k)'

submatrices of X that can be defined by taking k (for k = 1,2,.., K) different columns
of X (each of which will be referred to as X4 for simplicity) must meet that:

N k
D [xwmo =0 2.5)

n=1i=1
If this equality holds for every submatrix X4 as defined before, then XT-X)tisa

diagonal matrix with diagonal elements 1/N and determinant |(XT 'X)_1| = (1/N)F,
which is the smallest possible value for |(XT - X)71|.

The inverse of the variance-covariance matrix in Equation 2.3 is the so-called infor-
mation matrix, and serves as a summary of the available information on the model
parameters. The larger the determinant of the information matrix is, the smaller
|(XT - X)~!| and the variance of the estimation of the parameters of the model. Small
variances in these estimations are useful because the aim of screening experiments
(where a D-optimal DOE is most useful) is to identify inputs (i.e. factors) or interac-
tions of these have a statistically significant effect on the output/s, which is assessed
via significance tests that are affected by, among other elements, the variance of the
disturbances (which is not affected by the DOE) and the relative variance of the estima-
tion of the parameters (which will depend on the DOE).

A D-optimal DOE will then be that which maximizes the determinant of the infor-
mation matrix, [XT - X| being the D-optimality criterion. This criterion, however, is
only useful when comparing DOEs with the same number of tests or runs and parame-
ters for the model to be estimated. To account for this, the D-efficiency may be consid-
ered instead:

12



On optimal design of experiments

(2.6)

XT X 1/P (XT . X)l/P
NP ) - N

D — efficiency = <

However, one must be aware that the D-efficiency as defined by Equation 2.6 presents
the issues of depending in the scale used for the experimental variables when construct-
ing the DOE, and that it implicitly assumes that an orthogonal (and therefore D-
optimal) experiment can be designed, which is not necessarily true in most real world
applications, where the shape of the experimental region makes it impossible. The D-
efficiency is useful nonetheless to compare different competing DOEs and select the
one with highest D-efficiency to carry out the corresponding experimentation.

2.2.2. I-optimal and G-optimal design of experiments

Consider the model matrix as defined in Section 2.2.1, and its n-th row to be x.. The
variance of the prediction of the output corresponding to this set of inputs/factors, y,,,
can be computed as:

var(P|x,) = var(b) = g2 - xF - XT-X)7! - x,, 2.7)

Again, since ¢ is unknown and cannot be estimated prior to the experimentation, the
relative variance of prediction is computed instead. Two criteria can be evaluated then
with regards to the variance of prediction:

1. the average relative value for this variance over the experimental space;
2. the maximum relative value for this variance in the experimental space.
The former corresponds to the [-optimality criterion, and can be computed as:

[ xT-XT-X)"!-xdx
E(var(ly) == T ax
x

where E(var(j?lx)) represents the expectation of the variance of the prediction of the
output ¥ over the experimental region, denoted by ¥, and fx dx is the volume of the

(2.8)

experimental region.
For the calculation of the numerator, given that xT - (XT.X)"!-xis a scalar:
xT - XT-X) - x=tr[xT- (XT -X)"1.x] (2.9)

Applying the fact that the trace of a product of matrices is the same even if they are
cyclically permutated, then:

tr[xT - (XT-X)"1-x] = tr[(XT-X)"1 - xT - x] (2.10)

Therefore:

13
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[ar[(XT-X)"1-xT-x]dx tr|(XT-X)71- [ xT-xdx
E(var(j}b()) =X [ dx = [ I dxx ]
X X

where fx xT - xdx is called the moments matrix, which can be calculated exactly for

@2.11)

cuboidal and spherical experimental regions [14].

It must be noted that E(Var(ﬂx)) can be interpreted as the I-efficiency of a DOE given
X, and its relative I-efficiency with respect to another DOE can be computed in the
same way as the relative D-efficiency of one model with respect to another was com-
puted.

When estimating the I-efficiency of a DOE for a model, however, being able to com-
pute the volume of the experimental space becomes especially relevant. With respect to
this, the volume can be easily calculated whenever the shape of the experimental region
is that of a hyperrectangle, as is the case when all the factors are scaled to values rang-
ing inside the interval [-1, +1] and all of them can be simultaneously set at their ex-
treme values (in this particular case, the experimental region is said to be cuboidal, a
particular case of the hyperrectangle). A spherical region is another common alterna-
tive to the cuboidal one. In most real world applications, however, the experimental
region is neither one nor the other. In such cases, and specially for very irregular
shapes, it may be necessary to resort to algorithms such as the Delaunay triangulation
[15-17] to calculate this volume, although they may present some limitations as the
dimensionality of the experimental space increases.

An alternative to the I-optimality is the G-optimality criterion, which seeks to minimize
the maximum variance of prediction along the experimental region, max(var(ﬂx)),
instead of E(Var(ﬂx)). Building exact G-optimal designs, however, is not trivial, and
comes at the cost of worse prediction variances over most of the region of interest [13].

2.3. Additional considerations for the design of experiments

When choosing a DOE, some aspects related to the individual parameters of the chosen
model, and the chosen model itself, should be taken into account in addition to the
criteria discussed in Section 2.2, namely the variance inflation, the aliasing and the
principles of effect-sparsity, hierarchy and heredity.

2.3.1. Variance inflation

While it has already been stated that the relative variances of the estimation of the
model parameters is minimum when an orthogonal design is resorted to, and equal to
1/N with [-1, +1] scaling of the factors, it is more often than not the case that the se-
lected DOE will not be orthogonal, mainly because of budget or feasibility constraints,
among possibly others. Because of this, it can be expected that the variance of the es-

14
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timate for at least some of the parameters will be inflated. The degree to which this
increase in variability takes place is called the Variance Inflation Factor (VIF). When
factors are scaled to the range [-1, +1], the VIF for the p-th parameter of the model is
equal to N times the relative variance of the estimation of that same parameter.

2.3.2. Aliasing

The selection of an a priori model for which a DOE is constructed implicitly assumes
such model to be adequate for the problem under study. However, by doing so, the
effects of some two-factor interactions or higher order terms are assumed to be negligi-
ble, while this not being necessarily the case. In such case, the estimates of the parame-
ters of the estimated model will be biased by the parameters not included in the model.

Consider the true model to be expressed as
y=X; B +X,-B,+u (2.12)
and the selected model as
y=X;-B;+u (2.13)

The expected value of the least squares estimation of B, is:
=~ -1 -1
E(ﬁ1) =E [(XI ‘X1) -X{ 'Y] = (XI ’ X1) - X1 - Elyl
E(B.) = (T 'Xl)_l X7 - (Xy B+ X0 B2) (2.14)
=~ -1
E(B) =B+ (X Xy) X[ X, B, =B +A-B,;

A being the alias matrix. This means that, in general, the estimator of 8, El, is biased
unless B, = 0 (i.e. the effects assumed to be negligible actually are) or X - X, is a
matrix of zeros, i.e. none of the effects corresponding to the factors in X, biases the
estimate of any of the effects corresponding to the factors in X;.

2.3.3. Principles of effect-sparsity, hierarchy and heredity

The principle of effect sparsity (or factor sparsity) is a restatement of the Pareto princi-
ple that concerns mainly screening experimentation. According to this principle, most
of the variability in the output or response variable is expected to be captured by a
relatively small number of factors (although the probability of correctly identifying
these “large effect” will, logically, be affected by the DOE).

The principle of hierarchy concerns model selection, in that it states that main effects
(as opposed to e.g. two-factor effect or higher order interaction effects) comprise the
largest source of variability in most processes, followed by two-factor interaction ef-
fects, quadratic effects, and later on by higher order interaction effects, cubic effects,
etc. This means that considering main and lower-order effects into the regression mod-
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el, for which the DOE is to be constructed, should precede the addition of higher-order
effects.

Finally, the principle of heredity states that models with strong heredity that include
e.g. two-factor interaction effects will also include the main effects of the factors in-
volved (and the same could be said regarding higher-order-factor interactions effects
with respect to lower-order-factor interaction effects). Models with weak heredity,
however, may e.g. only include the main effect of one of the factors involved in a two-
order interaction. Models with strong heredity present the advantage that predictions
made with them are not affected by a different scaling of the factors used to fit it.

Although these principles have been validated to an extent, it must also be noted that
violations of them are more common than suggested by the literature on screening
experimentation [18].

16



On latent variable and kernel-based multivariate data analysis

Chapter 3

On latent variable and
kernel-based multivariate
data analysis

3.1. Introduction

Nowadays large amounts of data are being continuously generated at a high frequency
in many fields thanks to the increasing variety of measurement tools and technologies
rapidly being integrated in most scientific activities and production processes. This so-
called data tsunami [19] could be rendered useless, however, if such a huge volume of
data were not converted into valuable information through its appropriate analysis and
interpretation. Consider, e.g., a present-day industrial environment, where most statisti-
cal process control schemes, used for fault detection and to monitor the evolution of the
process, are based on the univariate control of one or small numbers of measured vari-
ables (temperatures, pressure, pH, etc.). While useful in the past, this strategy is com-
pletely inadequate given the huge quantities of instrumental responses being continu-
ously and automatically registered in modern plants. This is specially true when a
process is being monitored by many automated sensors, a common occurrence at pre-
sent, since any undesired special events that would bring the process out of its so-called
Normal Operating Conditions (NOC) and impact the quality of the final products will
be reflected not just in a change in the magnitude of some of the measured process
variables, but potentially also in the relationship among them. This change in their
relationship (or correlation structure) is, however, difficult to detect by classical statis-
tical approaches that can only handle independent or, at most, slightly correlated varia-
bles.

Alternative methods, based on the so-called latent variables, may be used instead to
take advantage of such correlation in order to model the structure of the process space.
These techniques can deal with large volumes of data that contain little useful infor-
mation (i.e. low signal-to-noise ratio), and also allow the use of happenstance (i.e. ‘rou-
tine’ data, not from a DOE, and therefore not causal in nature [20]) data to build mod-
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els for optimization purposes, by allowing causal relationships to be inferred in the
space of the latent variables.

In this Ph.D. thesis, use will be made of some of these methodologies for a variety of
purposes presented in the distinct chapters of the manuscript, from mixture design data
analysis and model-fitting, to model inversion and optimization.

3.2. Latent variable-based multivariate data analysis techniques

By projecting the high-dimensional original variables space onto a low-dimensional,
latent orthogonal (i.e. uncorrelated) variables space, multivariate latent variable-based
methods (widely resorted to in the field of chemometrics) reduce the dimensionality of
the data under study and permit describing their underlying sources of variation. Prin-
cipal Component Analysis (PCA) and Partial Least Squares (PLS) regression are some
of the most well-known and extended techniques of this kind.

3.2.1. Principal Component Analysis (PCA)

PCA [21,22] is one of the most widely used multivariate statistical tools to compress,
describe and interpret large sets of data. Consider a matrix X [NXM], defined as in
Chapter 2, so that M denotes the number of measured variables’ and N is the number of
observations registered (e.g. at N time instants or for N individuals). When M is very
large (maybe even M > N) the relevant information contained in X will usually be
intercorrelated among a number of the variables in the dataset. This makes it possible
to reduce, with a certain degree of acceptable accuracy, the original M-dimensional
space spanned by these variables values for the registered observations into an A-
dimensional subspace (A < M) associated to the directions of maximum variability for
the available data, and onto which the N individuals can be projected as new points.
Mathematically, PCA is based on the following bilinear structure model:

X=T-P"-Dg, +1 -mg +E (3.1)

Where T [NXA] contains in its n-th row the projection coordinates or scores values of
the latent variables of the n-th row of X onto the A-dimensional subspace, P [MXA] is
the array of the so-called loadings which determine the 4 basis vectors (which are the
vectors signalling the 4 directions of maximum variability of the data in X, also known
as principal components or factors”) of the PCA subspace, and E [NxM] stands for the
matrix of unmodelled residuals, i.e. the portion of X outside of the PCA subspace not

M is used here for simplicity although, as in Chapter 2, this matrix may be extended to have P columns including interaction and
second- or higher order-effects. In that case, when using PCA in this manuscript, the matrix containing the values for the main

" To avoid confounding the meaning of ‘factor’ here with that in Chapter 2, only the term ‘principal component’ will be used from
this point onwards when referring to the basis vectors in PCA
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explained for the chosen rank, 4; mx [MX1] and Ds, [MXM] are, respectively, the

column vector of centring factors (usually the mean values of the variables in X) and
the diagonal matrix of scaling factors (usually the standard deviation of the variables in
X) applied to the M input variables before performing the PCA; and 1 [NX 1] is a vector
of ones.

The PCA solution may also be formulated in many equivalent ways and attained by
Singular Value Decomposition (SVD) [23], among other algorithms, such that:

X=U-S-VI+E, (3.2)
with the columns of U [NXA] and V [MXA] being the left and right singular vectors of
X, respectively, and S [4XA] a diagonal matrix with the squares of the first 4 non-zero
singular values of X, /A4, as its diagonal elements. By comparing Equations 3.1 and

3.2 It can be easily seenthat T =U-S, P = DS_X1 -Vand E, = 1 - my + E. The follow-
ing properties are assumed:

PT.-P=1,

TT - T = diag(A,) (3-3)

where 1, is the [4XA] identity matrix, and the a-th element of A4 is the eigenvalue of
the a-th PCA component.

3.2.2. Partial Least Squares regression (PLS)

PLS [24-26] is a latent variable-based approach used to model the inner relationships
between a matrix of inputs or predictors, X [NXM], and a matrix of outputs or response
variables, Y [NXL], through few, uncorrelated Latent Variables (LV) that identify the
underlying causal relationship between X and Y. PLS is usually resorted to in order to
predict Y from the 4-dimensional subspace associated to X such that its covariance
with Y is maximised. The PLS regression model structure can be expressed as follows:

X=T-PT Dy, +1-mg+E
Y=T-Q" Dy, +1 -my+F (3.4)
T=(X-1-m})-D;} W-(PT-W)™'=(X-1-mj) D5} W

being T [NXA], P [MXA] and E [NXM] the X scores, loadings and residuals matrices,
respectively; Q [LXA] and F [NXL] the respective Y loadings and residuals matrices,
and W [MXA] the weighting matrix, such that A < ry, rx being the rank of X, i.e. the
maximum number of latent variables that can be considered when fitting the PLS re-
gression model; my and Dy, being the [Mx1] column vector of centring factors and the
[MxM] diagonal matrix with the scaling factors applied to the M input variables before
fitting the PLS-regression model, respectively, and my and Dy, the corresponding
[Lx1] column vector and [LXL] diagonal matrix associated to the output variables, and
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1 a vector of ones as defined in Section 3.2.1.
Alternatively, Y can be expressed as a function of X:
Y=X-B+1-bj+1-mj+F
B=Dg/ W Q"D (3.5)
b, =my—Dg,-Q- W -D;! my

where B [MXL] is an array of regression coefficients, and b, [LX1] a vector of inter-
cepts of the regression model.

PLS presents several advantages over most classical statistical predictive methods such
as Ordinary Least Squares regression (OLS) [4,5], such as not needing to assume line-
arly independent regressors and being able to simultaneously model several outputs
while simultaneously taking into account the correlation structure not only among the
inputs but also the outputs. Furthermore, since causal relationships can be inferred in
the latent space [27], this permits the use of historical datasets for optimization purpos-
es, which reduces the amount of experimentation required, or even prevents it altogeth-
er [28]. Lastly, since the initial number of variables involved (M) has been reduced to a
smaller number of uncorrelated LV (4), the computational cost of any optimization
problem in the latent space will be reduced when compared to the equivalent problem
in the original space, even more so as the number of variables in the original space
increases with the complexity of the problem addressed while the number of LV re-
mains relatively low.

3.3. Kernel-based techniques

Although latent variable-based multivariate data analysis techniques such as PCA and
PLS have proven to be very powerful tools for the analysis and interpretation of multi-
variate data, they a priori assume the underlying structure of the datasets to which they
are applied to be linear. While several approaches have been proposed to address situa-
tions where this assumption is far from appropriate, such as non-linear PLS [29-36] or
artificial neural networks [37], they often require optimising many adjustable parame-
ters, with the additional risk of being affected by local minima and show overfitting.
Kernel-based techniques [38] are then a good alternative [39], as can be seen by their
broad application in fields such as chemistry [40,41], biology [42], informatics [43,44]
and continuous process monitoring [45,46]. Kernel-based approaches usually suffer
from an important disadvantage when it comes to the interpretation of the influence of
the original variables or its importance on the model, however, since this information is
lost after the kernel transformation. Although possibilities to recover this information
exist their implementation is not straightforward, most of them do not permit graphical
nor intuitive interpretation, and their use for continuous process monitoring requires an
appropriate database containing past identified failures for comparison, which is usual-
ly not available in real case studies [41,47-50]. An extension of the principles of non-
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linear bi-plots and pseudo-sample projection [51], however, have been proposed in
recent years to overcome these limitations [52-55].

An adaptation of these kernel techniques will be presented here for mixture data analy-
sis, and therefore the basic principles behind them as well as a brief explanation regard-
ing the pseudo-samples and pseudo-sample projection are succinctly explained in the
following sections.

3.3.1. Basic principles of kernel-based techniques

All of the kernel-based data analysis techniques are based on the so-called kernel trans-
formation, given by:

K(anxn’) =< ¢(Xn): ¢(Xn’) > (36)

where X} [1xM] and XZI [1XM] represent the n-th and n'-th rows of the original data
matrix X [NXM], ¢ the mapping function applied to them (which is not needed to be
known a priori with kernel-based approaches), and < and > denote the inner product.

Applying this transformation to every possible couple of row vectors that constitute X,
a squared symmetric matrix K [NXN] is obtained whose elements represent the dis-
similarity (or distance measurements) between every two observations. All the many
generic kernel functions that can be applied to obtain K present the two fundamental
properties:

1. They allow the original data to be projected onto the so-called feature space, a
space of higher dimension than the original one, such that non-linear relation-
ships in X, if they exist, may be described in a linear way.

il. They permit the inner product between observations to be performed in the
feature space, which makes it possible to apply in this space algorithms of
classical multivariate linear methodologies based on the calculation of the in-
ner product matrix of X (e.g. PCA and PLS) [39].

Only three types of kernel functions will be applied in the second part of this thesis: the
linear (first-order), the g™-order polynomial, and the Gaussian or Radial Basic Func-
tion (RBF) kernel. Table 3.1 gathers their mathematical formulations and, for the last
one, its possible adjustable parameter. It must be noted that, although only the PLS
technique will be used in this manuscript together with the kernel transformation, once
the kernel matrix K has been computed, any classical bilinear technique can be applied
to it generating, e.g., a Kernel-PCA (K-PCA) or Kernel-PLS (K-PLS) model when a
PCA or PLS, respectively, is applied to K.
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Table 3.1. Kernel functions used in the second part of this thesis and their adjustable parameters

Kernel type Kernel function Adjustable parameter
Linear (first-order) Xp Xy -
q™-order polynomial (xFx,)1 -
X, — X |?
Gaussian/RBF exp <— M) o
20
3.3.2. Pseudo-samples and pseudo-sample projection

As stated in [56]", the term pseudo-sample is used to refer to an observation whose
weight is put in one single variable, such that, for example, a vector of zeros of all of
its elements except for a one in its m-th position, g [MX 1], would represent one of the
many possible pseudo-samples associated the m-th variable of a dataset X. The score of
such a sample, when projected onto the latent space of a PLS model fitted with a single
latent variable", can be calculated as in Equation 3.7:

tyr =g W' =wp, (3.7)

Which is the m-th value of the weighting vector w* and provides information regarding
the contribution of the m-th variable, x,,, to the model. Instead of a vector like g, a
matrix V,, ["XM] can be created that contains V" samples instead of a single one, such
that its entries are as follows:

0 0 - min(x,) 0 0
L G
o o0 - max(xm) 0 0
Its projection onto the latent space will, therefore, define a trajectory of the form:
min(x,,) - wy,
Vi - W* = [ : (3.9)
max(x,,) - wy,

In a more general case, where 4 latent variables (A = 1) are considered when fitting
the PLS regression model (or more than one component chosen for PCA), the matrix
resulting from the previous operation provides the geometrical locus of all the points

m Note that most of the contents of Section 3.3.2, as well as the appendices in Sections 14.1.1 and 14.1.2, can be found in [56], and
have been put together here to avoid making the reader look for the original source.

™ The presented mathematical derivation can be easily extended to PCA

22



On latent variable and kernel-based multivariate data analysis

along the direction determined by the origin of the latent space and each point, whose
coordinates represent the weights of x,,, on the 4 latent variables. While the representa-
tion of these trajectories does not provide, per se, additional information to that given
by the PLS (or PCA) model, some insight can still be obtained regarding the evolution
of the original variables in the latent space when kernel-based methods are resorted to.
As demonstrated by Postma et al. [53], pseudo-sample projection does in fact permit
recovering information related to the contribution of the original variables when a Eu-
clidean distance matrix, D, is dealt with. This strategy can be resorted to when using K-
PCA/K-PLS, since D, if double-centred, is directly generated through a linear kernel
transformation of a mean-centred dataset (see Section 14.1.1). By transforming each
pseudo-sample array into a pseudo-sample kernel one, as done with X, a new VXN
array is then obtained that contains information about the dissimilarity between the
pseudo-samples and the N original observations (see Section 14.1.2). Furthermore, the
pseudo-sample projection can be used with any kernel transformation as long as they
generate sets of distances which may be embedded in a Euclidean space [51].

34. Important additional notions: cross-validation and jackknifing

In some parts of the manuscript concerning model-fitting statistical techniques, the
concepts of cross-validation and jackknifing may appear, thus shall be defined.

Cross-validation refers to a model validation technique commonly resorted to in order
to select the most appropriate number latent variables to extract when a latent variable-
based technique (e.g. PLS) is used to fit a model for, e.g., predictive purposes. Cross-
validation is performed as follows:

1. The data under study are split into several complementary subsets (i.e. no two
subsets contain the same observation)

2. The analysis (e.g. via PLS) is carried out using of all but one of these subsets

3. The remaining subset is exploited for testing (e.g. to evaluate the predictive
capability of the regression model fitted with all other subsets)

Multiple rounds of cross-validation are usually performed under different partitions
and the final results are averaged to reduce variability. When used to assess the per-
formance of the model for prediction, this is generally done by evaluating the evolution
of the prediction error as the complexity of the model (e.g. number of latent variables
extracted in PLS) increases.

Jackknifing, on the other hand, is a resampling approach used to quantify a particular
statistic (e.g. variance of a prediction, bias...) by iteratively removing an individual
from a data matrix and compute the estimate of interest, to then calculate the mean or a
percentile of the resulting distribution of values for the corresponding estimate.
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Chapter 4
Materials and methods

4.1. Hardware

Most of the computations executed for the elaboration of this Ph.D. thesis were run on
a MacBook Pro equipped with a 2.9 GHz Intel Core i5 and 8 GB 1867 MHz DDR3
RAM.

The testing of the software MiDAs, presented in Section 7, and the simulations per-
formed with the software PRO/II, necessary to illustrate some of the examples in Sec-
tions 9 and 12, were run on an HP-Pavilion with a 2.33 GHz Core2 Quad Q8200 and 5
GB 800 MHz DDR2 RAM.

4.2. Software

The software packages exploited here are:
*  macOS X Yosemite, Version 10.10.5;
e MATLAB R2014B, Version 8.4.0.150421
*  Microsoft Windows 10 Pro

PRO/II, Version 9.3

4.3. Datasets and methods

To facilitate a more friendly reading of this manuscript, the information regarding da-
tasets, materials and methods presented and used along this manuscript can be found in
the corresponding chapter where they are resorted to or applied.
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A short summary can be seen below nonetheless.
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In Chapter 6, Section 6.1, datasets from the following sources were used:

- R.D. Snee, Developing Blending Models for Gasoline and Other Mixtures,
Technometrics. 23 (1981) 119-130.

- J.A. Cornell, Experiments with Mixtures, Second Edi, Wiley, New York, USA,
1990.

In Chapter 6, Section 6.2, datasets from the following sources were used:

- L. Eriksson, E. Johansson, C. Wikstrom, Mixture design — design generation ,
PLS analysis , and model usage, (1998).

- D. Alman, C. Pfeifer, Empirical colorant mixture models, Color Res. Appl. 12
(1987) 210-222.

- J.A. Cornell, How to run mixture experiments for product quality, Asq Press,
1990.

In Chapter 9, datasets where generated by means of:
- The mathematical model in

P. Facco, F. Dal Pastro, N. Meneghetti, F. Bezzo, M. Barolo, Bracketing the Design
Space within the Knowledge Space in Pharmaceutical Product Development, Ind. Eng.
Chem. Res. 54 (2015) 5128-5138.

- The procedure shown in

F. Arteaga, A. Ferrer, Building covariance matrices with the desired structure,
Chemom. Intell. Lab. Syst. 127 (2013) 80-88.

F. Arteaga, A. Ferrer, How to simulate normal data sets with the desired correlation
structure, Chemom. Intell. Lab. Syst. 101 (2010) 38—42.

- The simulated production process in PRO/II according to

PRO/II Casebook #1 Vinyl Chloride Monomer Plant, in: PRO/II Caseb. #1,
SIMULATION SCIENCES INC, 1992.

The code required for the Quadratic Programming (QP) and Linear Programming
(LP) optimization algorithms described in Chapter 10, and resorted to in Chapters
11 and 12, has been implemented in Matlab (MATLAB R2014B). As a part of this
code, the functions fmincon, fminunc and linprog are used for the constrained QP,
unconstrained QP, and LP, respectively.

In Chapter 12, datasets where generated following the same procedure as with the
first an third cases in Chapter 9.
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Chapter 5

Traditional approaches
to mixture design

Part of the content of this chapter has been included in:

1. Vitale, R.Y, Palaci-Lopez, D.*, Kerkenaar, H., Postma, G., Buydens, L. & Ferrer,
A. Kernel-Partial Least Squares regression coupled to pseudo-sample trajecto-
ries for the analysis of mixture designs of experiments. Chemometr. Intell. Lab.
175, 37-46 (2018).

5.1. Introduction

A wide range of products currently used in daily life results from processing blends of
two or more ingredients. Hence, the physicochemical properties of these products
mainly depend on the raw materials being mixed and on the proportions in which they
are added. Alloys, as well as drugs and foodstuffs, are just some of the numerous ex-
amples where this applies, and their manufacturing can be considered a so-called mix-
ture problem [57]. Traditionally, mixture problems are defined as those in which i) the
proportions x, of the QO different constituents are related to the aforementioned proper-
ties, ii) these proportions are of at least as much relevance as their absolute quantities,
and iii) their sum must be a fixed value (usually 1 or 100%):

Q

=
Il
[u=y

a (5.1)

O a
A A
R

A . .
These authors had equal contributions
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This perfect collinearity restriction makes it impossible to modify the composition of
any one of the ingredients independently from the rest, which significantly affects 1)
the shape of the experimental region within which a DOE, whenever necessary, is to be
built and in which experimentation should be performed, and ii) the way the data is to
be analysed, and models built and interpreted if classical polynomial fitting by tradi-
tional methods, like Ordinary Least Squares (OLS) or Generalised Least Squares
(GLS) [58-60], are to be resorted to.

Furthermore, it must be noted that not every process involving a blend should neces-
sarily be treated as a mixture design problem, nor does a problem not involving a mix-
ture prevent it from having to be addressed as such. Consider the following two cases:

a) When one of the ingredients of the blend, whose effect on the quality attribute
of interest is null, represents most of the bulk of the mixture itself, as in e.g. a
children’s cough medicine [61], any changes in the proportions of the other
constituents will remain almost insignificant, and therefore the absolute quan-
tities of those components will be more relevant than their relative amounts in
the blend. Such case should not be approached as a mixture design problem.

b) Goos & Jones [62] present an interesting case of a supplier of a milling opera-
tion aimed at reducing the thickness of sheet aluminium down to a specific
value in three steps (i.e. using three mills). Although each mill may contribute
to the reduction of thickness to different extents, the total amount of reduction
in thickness is fixed. This is equivalent to the so-called ‘mixture-amount prob-
lem’, where the ‘amount’ (i.e. absolute reduction in thickness of the sheet alu-
minium) may vary depending on the required girth, but the sum of the per-
centage of required reduction performed by each mill is constant (100%).
Therefore, although technically no blend is involved, this case should be ap-
proached as a mixture problem (more specifically a mixture-amount problem
where the quality of the product depends on both the relative and absolute
quantities of the ‘ingredients’).

Finally, dealing with ‘mixture variables’ adds additional complexity to most real world
production processes where ‘process variables’ (e.g. temperatures, pressures...) must
also be accounted for. These problems usually require fitting so-called mixture-process
variable models, which significantly increases the amount of data required to do so and
complicates its interpretation. Additionally, although not addressed in the present PhD.
Thesis, taking into consideration also the information regarding the ingredients/raw
materials properties in L or T-shaped data structures require the use of more complex,
latent variable-based approaches [63—65].

In this section of the manuscript, insight is provided regarding how the nature of the
mixture design problems affects the shape of the experimental region (also referred to
as Mixture Space) and the form and interpretation of mixture models, which ultimately
impact the way a mixture design of experiments has to be constructed and carried out.
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For the sake of simplicity terms such as ‘mixtures’, ‘blends’ and ‘ingredients’ will be
used even though it has already been stated that some ‘mixture design problems’ do not
necessarily concern an actual mixture, blend, or any ‘ingredient’.

5.2. The mixture space

Given a series of ingredients of a blend, and the process conditions under which the
blend is to be produced/processed, the mixture space is constituted by all feasible com-
binations of ratios of its constituents. By ‘feasible’ it is understood that restrictions may
be imposed on the ratios of some or all of the ingredients to e.g. guarantee the physico-
chemical stability of the blend or assure that it can be safely or easily manipulated un-
der those processing conditions. Lower bounds on the proportions of the ingredients
are usually set above zero, and upper bounds below one, in order to guarantee a small
amount of all/most of the constituents to be present in the blend, and to avoid ‘pure’
mixtures constituted by a single ingredient, respectively. Two different kinds of mix-
ture spaces must then be differentiated, depending on their shape: the so-called simplex
mixture spaces, which retain the original shape (but not necessarily size) it had before
any restrictions were imposed (other than the ones expressed in Equation 5.1), and
irregular mixture spaces for which this is no longer true.

5.2.1. Assessing the shape of the mixture space

A mixture design problem is said to be unconstrained if the only restrictions imposed
on the blend constituents proportions are i) the perfect collinearity restriction defined in
Equation 5.1, and ii) them being able to vary from 0 to 1. In such case, the mixture
space is said to be that of a simplex, and can be visualized as the convex hull envel-
oped by the (Q — 1)-dimensional generalization of a tetrahedron, with Q being the
number of mixture ingredients. In this case, and for Q = 2, the mixture space is the line
segment connecting the ‘pure mixtures’ with only the first and the second constituent
in it, respectively; for Q = 3, the mixture space is the convex hull of the equilateral
triangle; for Q = 4, it is the convex hull of a tetrahedron, and so on.

A mixture design problem is said to be constrained if at least one active/non-redundant
restriction is imposed on at least one of the blend constituents, in addition to those for
‘unconstrained’ mixture problems. A restriction is said to be redundant if it can be
discarded without modifying the shape/size of the convex hull. Otherwise, such re-
striction is active. By imposing additional active univariate inequality constraints on
the proportions of the blend ingredients, the resulting mixture space may remain a (dif-
ferently sized) simplex or not but, as a rule of thumb, imposing active multivariate
constraints on them (i.e. restrictions on linear combinations of the ratios/proportions)
will make the mixture space no longer a simplex.
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The importance of determining if the mixture space is a simplex or not lies on the fact
that 1) there exist pre-defined optimal DOEs that relay on the mixture design being a
simplex and ii) the interpretation of the mixture model’s parameters (discussed in Sec-
tion 5.3) may only have a practical sense as long as the mixture space is a simplex.

When only univariate restrictions are imposed on the ingredients’ proportions in the
blend, b, < x < ub,, assessing if the mixture space is a simplex is done as follows:
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a.

b.

C.

If the vector of lower bounds for the proportions, b, [OX 1], is the [QX1] vec-
tor of zeros [0X1], 0y, and the vector of upper bounds, uby [OX1], is the
[OX1] vector of ones [OX1], 1,, the mixture space is ‘unconstrained’ and
therefore a simplex.

If uby = 1,, three different scenarios must be considered:

I.

ii.

iii.

If 23:1 lbg < 1, the mixture space is a simplex, but some of the upper
bounds may be inconsistent (i.e. unachievable) given lb,. This occurs
whenever 1, = ubg — lbg > Ry, where R, = 1 — 23:1 lbg. In that case,
the corresponding consistent upper bound, ubg, is ubg = lby + Ry,

If 22=1 lbq = 1, the mixture space is a single point, and the consistent
upper bounds uby = lb,.

If 22:1 lbg > 1, the mixture space is the null set, since no blend can
simultaneously satisfy all lower bounds on its ingredients’ proportions.

If Iby = 0, four scenarios must be considered:

I.

ii.

iii.

iv.

If 22:1 uby > 1 and 23:1 ub, — min(ub,) < 1, the mixture space is a
simplex, but some of the lower bounds may be inconsistent given uby.
This occurs if 7, > Ry, where Ry = ZqQ
responding consistent lower bound, lbg, is lbg = uby; — Ry.

-1 uby — 1. In that case, the cor-

If 22:1 ub, = 1 and 23:1 ub, — min(ub,) < 1, the mixture space is a
single point, and the consistent lower bounds lby = ub,.

If Zgzlubq > 1, but 23:1 ub, — min(uby) > 1, the mixture space is
not a simplex.

If 23:1 ubg < 1, the mixture space is the null set, since no blend can
simultaneously satisfy all upper bounds on its ingredients’ proportions

If Iby # 0, and uby # 1, (the most general and realistic scenario), the con-
sistent bounds ought to be calculated as in scenarios ‘b’ and ‘c’, and then Ry,
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and Ry computed with the updated bounds. For the mixture space to not be
void it must be met that 23=1 lbg < 1and Zgzl ub, = 1. This being the case:

i. If R, # Ry and 1, = min(Ry, Ry) Vq € {1,2, ..., Q}, the mixture space
is a simplex. If Ry, < Ry, the simplex is referred to as an L-simplex, and
its facets are defined by the lower bounds imposed on the ingredients,
such that the simplex retains its original orientation. On the other hand,
If Ry, > Ry, the simplex is referred to as an U-simplex, and its facets are
defined by the upper bounds imposed on the ingredients, such that the
orientation of the simplex is inverted with respect to the ‘unconstrained’
simplex.

il. If R;, = Ry, the mixture space is not a simplex.

Whenever the mixture space is a simplex in scenarios ‘b’, ‘c’ and ‘d’, it is not uncom-
mon to substitute the so-called components, x,, whose values will typically not range

from 0 to 1, by the corresponding so-called pseudocomponentes, x4, whose values will:

o ;‘iﬂvq €{1,2,..,Q}ifRL <Ry
L

q
R (5.2)
s =" 0 € (1,2, QY if Ry > Ry

Ry

Figure 5.1 illustrates three examples of an unconstrained (L-simplex) mixture space, a
constrained U-simplex mixture space, and a constrained irregular mixture space for a
blend with 3 ingredients.

x=1 x,=0 x;=1  x,=1 x,=0 x3=1

Figure 5.1 Visualization of a) a L-simplex mixture space without restrictions imposed on the ingredi-
ents’ proportions (Iby = 03; uby = 13), b) a U-simplex mixture space where the restrictions
Ib, = [0.1;0.1;0.2]; ub, = [0.5;0.3;0.4] are imposed on the ingredients’ proportions
(Iby = [0.3;0.1; 0.2]; ub; = uby), and ¢) an irregular mixture space where the restrictions
Ib, = [0.1;0.1; 0.35]; ub, = [0.5;0.3;0.4] are imposed on the ingredients’ proportions
(Iby = [0.3;0.1; 0.35]; ub} = uby)

When multivariate restrictions are also imposed on the ingredients’ proportions in the
blend, and the previous assessment indicates that the mixture space is still a simplex
when only the univariate restrictions are accounted for, it must be evaluated if any of
the multivariate restrictions is redundant or not. To do so, the Q vertices of the simplex
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can be easily obtained from the consistent bounds. Unless all vertices of the simplex
meet all of the multivariate restrictions, at least one of such constraints is active (i.e.
not redundant) and the mixture space is no longer a simplex.

5.2.2. Identifying the envelope of the mixture space

Section 5.2.1 focused on assessing the shape of the mixture space in order to recognize
if it is a simplex or not. However, this may not suffice to properly build a DOE, spe-
cially when the mixture space is not a simplex and/or process variables are also in-
volved. ‘Identifying the envelope of the mixture space’ here means being able to define
which constraints of those initially imposed actually delimit the convex hull that is the
mixture space (i.e. are active/non-redundant constraints), and how these constraints
relate to every r-dimensional (r < Q@ — 1) element that is part of that envelope (verti-
ces, edges, planes and r-dimensional hyperplanes). This is required to increase the
computational efficiency of DOE construction algorithms, may they be point-exchange
[10] or coordinate-exchange-based ones [66]. The identification of this envelope is
easily done when the mixture space is a simplex and the consistent bounds are known,
since all of its facets, which are the (Q — 2)-dimensional elements of the envelope, are
defined directly by the lower bound (for the L-simplex) or upper bounds (for the U-
simplex). Every vertex is then a 0-dimensional element of the envelope that can be
obtained by defining the different feasible combinations of lower and upper bounds.
Two distinct algorithms for the identification of the envelope are proposed, given that
only linear restrictions (either univariate or multivariate) are imposed, based on the
following principles:

1. Each linear restriction (univariate or multivariate) imposed on the variables of
a M-dimensional space is associated to a (M — 1)-dimensional hyperplane.
1i. Each inequality restriction will divide the original M-dimensional space into
two half-M-dimensional spaces, but not reduce its dimensionality.
1il. If it exists, the intersection of R half-M-dimensional spaces defines an M-

dimensional convex space whose R facets are associated to the R restrictions
that defined those half-M-dimensional spaces.

iv. A minimum of M+1 compatible (i.e. they can be met simultaneously) inequali-
ty restrictions is required to define the envelope of a convex hull in a M-
dimensional space (e.g. the triangle and the tetrahedron are the geometric
shapes with less sides/faces that can be described as linear restrictions in a 2
and 3 dimensional space, respectively).

v. Each equality restriction will reduce the dimensionality of the originally M-
dimensional space by one. Therefore, at most M equality restrictions can be
imposed simultaneously, as long as they are compatible with each other.

Vi. Any r-dimensional element that is part of the envelope of a convex hull can be
defined as the intersection of M — r of the linear restrictions associated to the
facets of such envelope.
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For the application of the proposed algorithms, all restrictions will be expressed in
matrix form as follows:

Ay -x < dy

Fooxof, (5.3)

A, [[;XQ] being a matrix whose i-th row contains the coefficients of the i-th linear
combination of inputs (in this case, mixture ingredients’ proportions in the blend) to
which an inequality constraint is applied, and dy [I; X 1] is the column vector whose i-
th element indicates the maximum permitted value for that linear combination. Similar-
ly, Fy [I,XQ] and fy [I,X1] are associated to the equality restrictions imposed on dif-
ferent linear combinations of inputs. In accordance with the nomenclature used here, I;
inequality restrictions and I, equality restrictions (I, < Q) are assumed to be imposed.
Note that, for the particular case of an ‘unconstrained’ mixture space:

o | 0
Ay = [ IQQ] ; dy = 13]

F,=1); f, =1

(5.4)

The first of the proposed algorithms is a slight variant of the so-called CONSIM algo-
rithm [67], and the steps one must follow for its application are the following:

1. Evaluate if all of the equality restrictions are compatible with each other by
solving the corresponding system of linear equations.

If there is no solution, the mixture space is void.

b. If a single solution exists, check if it meets all inequality constraints.
If not, the mixture space is void. Otherwise it is just one mixture.

c. If more than one solution exist, continue to the next step.

2. Generate an arbitrarily large hyperrectangle and define a [29Xx Q] matrix of
initial vertices so that none of the vertices meet any restriction. Define also a
symmetric [29%29] ‘matrix of edges’ that serves to indicate which of these
initial vertices are connected to each other, which has a one in its i-th row, j-th
column if the i-th and j-th vertices are connected, and a zero otherwise.

3. Starting with the equality restrictions, evaluate which vertices are at one side
of the hyperplane defined by each restriction, which at the other side, and
which, if any, meet the restriction at its limit (i.e. as if it was an equality con-
straint). The initial matrices of vertices and edges are then updated according
to the following rules:

a. A new vertex results from the intersection of the hyperplane corre-
sponding to the equality/inequality restriction and the edge connection
two vertices located each at one side of such hyperplane.
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b. Vertices that do not meet the restriction being assessed at the moment
are discarded

c. The new vertices are connected to the remaining of the two vertices
checked in the current iteration, as well as to any new vertices gener-
ated during the same step that meet the same Q-1 current active re-
strictions at their limit/as an equality.

4. Check active and redundant restrictions among the ones applied so far. A re-

striction is active if at least M vertices meet it as if it was an equality constraint
(even if it is an inequality restriction). It is redundant otherwise.

Repeat steps 3 and 4 until all the restrictions have been used to ‘cut’ the cu-
boid. The final matrix of restrictions will contain only those that are not re-
dundant

If, during any step, all vertices are discarded, then no subspace exists that
meets all imposed restrictions

The second of the proposed algorithms will be referred to as ‘Segmentation by defining
and discarding vertices’, and the steps for its application are the following:

1.

Evaluate if all of the equality restrictions are compatible with each other by
solving the corresponding system of linear equations, and proceed identically
as in the first step in the previous algorithm. Proceed to the next step only if
appropriate.

Define all possible combinations of non-parallel inequality restrictions (usual-
ly 1,/2) taken (Q — I,) at a time. This requires generating an auxiliary matrix
. . Iy!
of at most dimension [(+) x(@Q -1 ]
@ o) <@~ 1)

For every combination defined in step 2, solve the system of linear equations
that results from concatenating the equality constraints with the corresponding
combination of inequality constraints. Check if this solution (if it is a single
point) meets all other inequality restrictions not considered to obtain it. Unless
it does, discard it. Otherwise, add it to a matrix of ‘final vertices’.

Once all ‘final vertices’ have been obtained, check active and redundant re-
strictions among the initial ones. A restriction is active if at least M vertices
meet it as if it was an equality constraint. It is redundant otherwise.

If no vertices are kept at any step, then no subspace exists that meets all im-
posed restrictions, and the mixture space is therefore void.

It is important to note that the computational efficiency of each algorithm will depend
on the number of constraints imposed and the dimensionality of the mixture space.
However, the ‘Segmentation by defining and discarding vertices’ is expected to be
more efficient in most scenarios, since the redundancy of the restrictions is only as-
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sessed at the very last step, and no ‘edges matrix’ or a initial matrix of vertices need to
be defined, both of which dramatically increase in size with Q. Algorithms for the def-
inition of extreme vertices DOEs such as the ones proposed by Snee & Marquadt [68]
or McLean & Anderson [69] may prove to be a sensible alternative to obtain the verti-
ces of an irregular mixture space when no multivariate constraints are imposed, alt-
hough they may present issues when applied to problems with high dimensionality.

5.3. Regression model structures in mixture design

Let y denote the output of interest being studied in a mixture problem, and let
xq (i € {1,2, ..., Q}) be the proportion of the i-th constituent in a blend with at most Q
ingredients. The variable y is considered as a random variable, whose distribution de-
pends on the values of the x;, such that:

E(W) = f(xy, x5, ...,xQ) (5.3)

Because of the perfect collinearity restriction in Equation 5.1, caution is advised when
trying to model the response function by means of classical polynomials. Consider, as
an example, the first-order polynomial to be used as an approximation of the response
function for a mixture problem with Q constituents involved:

Q
E(y) =ay+ Z a - x; (5.6)
i=1

The interpretation of the parameters of the model in Equation 5.6 is:

ay: expected average value of y when all the constituents of the mixture are absent
(x;=0Vie{1,2,..,Q})

a;: expected increase of the average value of y when the proportion of the i-th blend
ingredient is increased by 1, while keeping the proportions of all other compo-
nents unchanged

As can be observed, the interpretation of the coefficients makes no practical sense,
since 1) no blend can exist if all of its constituents are absent, and ii) it is impossible to
modify one of the ingredient’s proportion without altering the proportion of at least one
other ingredient. Alternative model structures are therefore required that account for
the particular nature of mixture variables. This still holds true when process variables
are involved.

5.3.1. The Scheffé models

One of the most common reparametrization of the classical polynomials to model mix-
tures is that of the Scheffé canonical polynomials [70], which result from applying the
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restriction in Equation 5.1 to the classical polynomials. Here the first-, second- and
third-order Scheffé canonical are presented, as they are the most commonly resorted to.

- Canonical form of the linear model/first-order polynomial:

Given a blend with Q constituents, the first-order Scheffé canonical polynomial can be
obtained by introducing the restriction in Equation 5.1 into the first-order polynomial
in Equation 5.6. By doing so:

Q Q Q
E(}’)=ao+zai'xi=a0- xi+Zai-xi 5.7
i=1 i=1 i=1
Reorganizing the different terms:
Q
E(y) = Z Bi - x; (5.8)
i=1

Bi = ag+ a;

Which is the first-order Scheffé canonical polynomial. What makes it different from its
classical polynomial counterpart, in terms of structure, is only the absence of an inter-
cept. The greatest difference, though, lies in its interpretation. Consider a ‘pure mix-
ture” with only the i-th ingredient present in it. In that case, x; = 1 and x; = 0 Vj # i,
and E(y|x; = 1) = B;. Therefore, fB; represents the expected average value for the
response variable y for the ‘pure mixture’ constituted solely by its i-th ingredient. A
more visual interpretation of the parameters of the first-order Scheffé canonical poly-
nomial is illustrated in Figure 5.2.

Figure 5.2 Interpretation of the §; parameters of the Scheffé canonical polynomial for a mixture with

0-3

This model is quite simple and implies that for any mixture E(y) is a weighted average
of the expected responses for the different ‘pure mixtures’, the weighting coefficients
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being the proportions x; of the respective components in the mixture. Although this
may seem an inconvenience, it is extremely useful in screening studies, when Q is very
high, and in cases where the constraints on the constituents’ proportions delimit the
mixture space to a very small region of the complete simplex. However, as already
mentioned and observed in Figure 5.2, 3; corresponds to the expected average value for
the response variable y for the ‘pure mixture’ with only the i-th ingredient. This may
make sense whenever the proportion of the i-th constituent can vary from 0 to 1, but
this is rarely the case in practice since the allowed proportion of each component in the
mixture is usually restricted. Therefore, in most real case studies the estimation of f3;,
b;, will hold more theoretical than practical sense, since it would be an estimator of the
expected average response for a mixture outside of the mixture space and/or without
practical interest.

Once the first-order Scheffé canonical polynomial model is fitted, it may be of interest
to study the effect that each component of the mixture has ‘by itself” on the response,
that is, if in general it can be said that a given component actually improves or worsens
the value of the response when added to a greater or lesser extent, or if it actually does
not really have a significant effect on it. This assessment can be done by computing the
so-called total or orthogonal effect of the g-th component, which is defined as the dif-
ference in the expected response between the ¢g-th ‘pure mixture’ and the mixture at the
centroid of the facet of the simplex opposite to the g-th vertex:

Q
q — th total effect = 8, — Z ,Bj/(Q -1 (5.9)
j=1
j*q
Since usually restrictions are imposed on the proportions of the constituents in the
mixture, it is very likely that the proportion of each component will not vary between 0
and 1, but along a narrower interval. Then computing the adjusted orthogonal effect of
each component is advised instead of their total effects. The adjusted orthogonal effect
is obtained as

Q

q — thadj.orth. effect =1, - | B, — Z ,Bj/(Q -1) (5.10)
=1
j#q

rq being defined in Section 5.2.1, where it was obtained to assess if a mixture space
was a simplex or not.

It should be noted that the calculation of both the total and adjusted effects of the blend
constituents implicitly takes the centroid of a simplex as the reference mixture. There-
fore their interpretation will be useful (even more so for the adjusted effects) whenever
the mixture space is effectively a simplex. Otherwise, which actually concerns most
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real problems, the orthogonal effects of the different components will generally have
little meaning, if any.

- Canonical form of the quadratic/second-order polynomial:

The classical form of the second-order polynomial is:

Q Q-1 Q Q
E(y)=a0+2ai~xi+zZaij~xi'xj+2aii~xi2 (5.11)
i=1 i=1

i=1 j=i+1

The quadratic terms can be reformulated as:

Q
x?=x; 1—ij (5.12)

j=1
Jj#i

Substituting Equations 5.1 and 5.12 in Equation 5.11, and reorganizing terms:

Q Q-1 @
E(y) =Zﬁi'xi+z Z Bij - xi - xj (5.13)
i=1

i=1 j=i+1
Bi=ao+ai+ay; Bij=ay;—ay—a;

The interpretation of the parameters f; is the same as for the linear model, and the
parameter f3;; indicates a synergistic interaction between the i-th and j-th constituents
its value is positive, an antagonistic interaction if it is negative. A synergistic interac-
tion between the i-th and j-th ingredients implies that, given a mixture that contains
both, the expected value of the response y will be greater than the weighted averages of
the individual responses corresponding to the respective ‘pure mixtures’, whereas if
there is a antagonistic interaction the opposite would be expected. Therefore, the ex-
pected response for a sample of a given composition will be the weighted average of
the simple effects, plus the effects of any significant synergistic/antagonistic pair-wise
interactions.

It must be noted, however, that this model assumes these interactions to remain syner-
gistic/antagonistic regardless of the proportions in which the corresponding two con-
stituents are found in the blend. To better understand the interpretation of the f;; pa-
rameters, consider the simplified scheme shown in Figure 5.3, where all but the i-th
and j-th components of a mixture are absent, and the proportions of these two compo-
nents vary from 0 to 1.
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Bi

Figure 5.3 Interpretation of the f8;; parameters of the Scheffé canonical polynomials

In Figure 5.3 a case is shown for which the parameter f;; is positive, so that the curve
represented for the expected response is always above the straight line connecting the
expected values of y for the i-th and j-th ‘pure mixtures’ (which the curve would coin-
cide with if B;; = 0). In this model it is assumed that the effect of the interaction be-
tween each pair of components is constant, that is, it is always of the same magnitude
and in the same direction (synergistic and antagonistic). Then, the maximum (if the
interaction is synergistic) or minimum (if it is antagonistic) of the curve is achieved

when x; = x; = 0.5, and E(ylxl =x; = 0. 5) ﬁl:l?,- +@.

As with the interpretation of §8; for the first-order canonical polynomial, this interpreta-
tion of f;; is valid in theory, but generally not in practice, since the presence of re-
strictions on the proportion of the different components in the mixture implies that, in
most cases, binary mixtures will not belong to the mixture space, or will not be of prac-
tical interest. Thus, although the interpretation of the sign of the parameters f;; may
still make theoretical sense, the strict interpretation of its value, without the aforemen-
tioned considerations, will often lack practicality.

- Canonical form of the cubic/third-order polynomial:

As with the previous cases, consider the classical form of the third-order polynomial:

E(y)—a0+Zal xl+z Z @ x; - xJ+Za”~

llj i+1
Q-2 Q-1
2
+ Z Z aijk-xi~xj-xk+z Z aii]-~xl- 'x]- (514)
i=1 j=i+1k=j+1 i=1 j=i+1
Q-1 @
+ Z Qjjj* Xi* Xj +Zam'
i=1 j=i+1
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The third-order Scheffé canonical polynomial is:

Q Q-1 @
E(y)=Z[>’i-xi+Z Z [Bij  xi - x5+ vij - xi 25 - (3 — 7))
i=1

i=1 j=i+1
Q-2 Q-1 Q

S5 S
i=1 j=i+1k=j+1 (5.15)
Bi=ao+a;+ay +ay
Bij = aij — @i — @jj — Ay — i
Yij = Qiij + aijj + ai + qjjj

Bijk = @ijic — Qiij — Aijj — ik — Aigk — Ajk — Xjkk — Az — Ajjj — Agckk

In this model, the interpretation of the parameters of the form f; and f;; remains, while
the f;j, parameters allow the quantification of the effect of possible ternary interac-
tions, and the y;; ones reflect, if significant, more complex types of binary interactions
between pairs of components with respect to the quadratic model, such that their inten-
sity or even the sign may vary (from synergistic to antagonistic) depending on the pro-
portion in which both constituents are found in the blend. While the interpretation of
the parameters f;j) is analogous to that of f;;, although hard to illustrate in a single
image, the interpretation that should be given of the parameters y;; may be clarified by
looking at Figure 5.4.

x=0.25 x=0
x=0 x=025 x=075 x~1

Figure 5.4 Interpretation of the y;; parameters of the Scheffé canonical polynomials

In Figure 5.4 the expected value for the response are shown for different compositions
of a binary mixture in which only the i-th and j-th constituents in the blend are present.
As can be seen, a positive value of y;; indicates that the interaction between the i-th

and j-th ingredients is synergistic when x; > x; (higher proportion of the i-th constitu-
ent), and antagonistic otherwise. As with the parameters f;, f;; and B;jx, caution is
advised when interpreting the parameters y;; must be carried out carefully, since in
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many situations the binary mixtures may not be a part of the mixture space, or will not
be of practical interest. Therefore, strictly adhering to the interpretation here presented
could be meaningless in practice.

Since the number of parameters of this model increases rapidly with O, even with a
relatively small number of blend constituents, an alternative one, the special cubic
model, is often formulated instead. Consider the following variant of the classical
third-order polynomial in Equation 5.14, where terms of the form a;;; - x? - xj and

@ijj - X sz are no longer taken into account:

E(y)—a0+2al xl+z Z aj - x; - x]+2au-

i= 1] i+1
Q-2 Q-1 (5.16)
+ Z aijk~xi-xj‘xk+2aiii-x
i=1 j=i+1k=j+1 i=1

The special cubic model results:

Q-2 Q-1
E()’)—Zlgt xl+z Z ﬂu Xi* x]"'z Z Z Bljk Xi - x] Xk
i=1 j=i+1 i=1 j=i+1k=j+1

5.17
Bi =ap+a; +ay + ay G-17

Bij = aij — @i — @jj — @iy — Qjjj

Bijk = Qijk — Qi — @jjj — Ak
This model disregards the terms associated with the more complex effects of binary
interactions, and therefore does not allow quantifying these effects. However, the re-
duced number of parameters to be estimated also permits a smaller number of tests to
be performed, whenever a DOE is necessary, and provides better estimations of the
coefficients with the same number of samples required to fit the complete third-degree

Scheffé canonical polynomial.

With regards to these so-called Scheffé models, it must be highlighted that:

i The reparametrization performed on the classical polynomials allows eliminat-
ing the perfect collinearity created by the mixture constraint (Equation 5.1).
However, in most real problems there are restrictions that generate imperfect
collinearity, which these models are unable to deal with.

ii. These models present complicated forms even for uncomplicated problems,
and the interpretation of their parameters is neither intuitive nor practical in
most mixture problems, where the mixture space is not a simplex.
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iii. The absence of an intercept makes centring the data around an average impos-
sible, which in practice may lead to unreliable estimates of the parameters of
the model (i.e. highly dependant on the dataset used to fit the model).

5.3.2. The Cox models

The Cox models [71] are a reparametrization of the Scheffé models, one of the objec-
tives of which is to allow a more intuitive interpretation of the effects of each blend
constituent in the response variable. For this purpose, a formulation that is visually
very similar to the standard one is used, since they are polynomials with a constant.
However, a restriction relative to a reference mixture is imposed on these coefficients.
The first-order Cox model can be formulated as:

Q
EG) =Blo+ ) Bl
i=1 (5.18)

Q
S.t. Z,B’i‘si =0
i=1

where s; is the proportion of the i-th blend constituent in a pre-specified reference mix-
ture, such that B’ is the expected value of the response variable for this same reference
mixture. Thus the Cox linear model is the projection of a model in a O-dimensional
subspace onto a (Q — 1)-dimensional subspace whose centre is the reference mixture.

For the interpretation of the parameters B';, consider that the proportion of the i-th
component in the mixture is increased by A; from x;, while decreasing the proportions
of all other components proportionally to their ratios in the reference mixture (this is
the direction of the so-called Cox axis for the i-th component). This implies that:

xi—>xi+AL-

S, . 5.19)
X=X — A —2— Vj#i (
R (T
And the variation in the expected response will be:
Q Q
b : Ai -5 : :
AE(}’)=ﬁo+5i'(xi+Ai)+Zﬁj‘(xj—1_S_)— .30+Z.Bi'xi
j=1 ¢ i=1
JE (5.20)

Q
: A; :
DEG) =B b= D By
j=1
j#i

Because of the restriction in Equation 5.21:
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Q
i Al ! !
AE(}’):,Bi'Ai_m' —ﬁi'5i+23i‘5i
' i=1 (5.21)
A BN
DAE(Y) =i D+ By s —— ==
b Eo0 -5 1-s;

Therefore:

AE (y) xXi—=xi+A;
[xj—’xj_Ai'Sj/(l_Si)]
A/(1 =)

Consequently, if A;= (1 — s;), it can be seen that B'; is the variation on the expected

response when moving from the reference mixture to the vertex corresponding to the
‘pure mixture’ constituted solely by the i-th ingredient.

(5.22)

B'i =

The second-order Cox model can be formulated as:

Q Q-1 Q@ Q
E(y) =p's +Zﬂ'i‘xi+z Z ﬁ,ij'xi'xj‘i'z.glii'xiz
i=1 i=1

i=1 j=i+1

( Q
Zﬁ'i‘5i=0
i=1 (5.23)
s.t. S , _
Zci]--ﬁij~sj=0VlE{l,Z,...,Q}
j=1
_{1/2 ifi#j
\ YT ifi=j

The interpretation of the parameters f’; j 1s similar to the corresponding one for classi-
cal polynomials, while the interpretation of the parameters f';; is associated to the
curvature of the response surface along the i-th Cox axis, i.e. the direction of the line
that connects the reference mixture with the vertex corresponding to the i-th ‘pure mix-
ture’.

It must be noted that the Scheffé model coefficients can be computed from the Cox
ones in the same way as done when relating the model coefficients for the classical
polynomials to the coefficients of the Scheffé canonical polynomials (see Section
14.2.1). However, the Cox coefficients cannot be directly obtained from the Scheffé
ones, and instead a reference mixture must be defined and a system of linear equations
solved to do so. Alternatively, the Cox model may be obtained as the solution of an
OLS problem with restrictions imposed on the model parameters (more specifically,
those described in e.g. Equation 5.23 for the second-order polynomial). Given the
complexity of estimating the Cox coefficients, and both the Scheffé and Cox models
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(of the same degree) providing the same predictions of the response, resorting to one
formulation or the other will depend mainly on how relevant the interpretability of the
model’s parameters is for a given problem.

5.3.3. Mixture-process variable models

Both the Scheffé and Cox models presented in Sections 5.3.1 and 5.3.2 are useful when
the mixture problem being addressed involve exclusively mixture variables (i.e. blend
constituents proportions). This is not a realistic expectation, however, in many situa-
tions, and therefore different models are needed when the effect of mixture factors and
process variables on the response variable is to be quantified simultaneously. Still,
classical polynomial fitting by traditional methods, like Ordinary or Generalised Least
Squares (OLS/GLS), require treating both kinds of variables differently: while mixture
data analysis requires the formulation of special models, such as the Scheffé or Cox
ones, classical polynomials can still be resorted to when fitting models associated to
process variables. Historically, the models used to analyse data that include both mix-
ture factors and process variables has been carried out by formulating two models sepa-
rately, each one concerning mixture factors (a Scheffé model) and process variables (a
classical polynomial), respectively, and then combining them. To exemplify this pro-
cedure, a common mixture-process variable model can be obtained by combining the
second-order Scheffé model for proportions of the @ mixture constituents, x, (Equa-
tion 5.13), with the polynomial model that includes main effects and two-factor-
interaction terms for the M process variables, z,,:

M M-1 M
E(y)=ao+zak-zk+z Z A1 " 2y * 2 (5.24)
k=1

k=1 l=k+1

The combined model results:

Q Q-1 Q
E() =ZVo,i '%"‘Z Z Yo,ij * Xi * Xj
=1

i=1 j=it+1
M Q Q-1 Q

+ Z Z Yii Xt Z Z Yi,ij * Xi " Xj| - Zg (5.25)
k=1|i=1 i=1 j=it+1
M-1 M Q Q-1 @

+ ZVkl,i"Q"‘Z Z)/kl,ij'xi‘xj " Zy " Z)
k=1 1=k+1 | i=1 i=1 j=i+1

Terms in the first row in Equation 5.25 correspond to the linear and non-linear proper-
ties of the mixture constituents and binary blends. Terms in the second row contain the
linear effect of the k-th process variable, z;, in such properties, while terms in the third
row quantify the effects of the interactions among the k-th and /-th process variables on
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the mixture ingredients’ blending properties. The issue of its interpretability aside, one
of the most severe drawbacks of this model is the large number of parameters whose
estimation is required, which requires at least [Q + Q- (Q —1)/2] - [1+ M+ M -
(M — 1)/2] runs if a DOE is resorted to. An alternative model is proposed by Kow-

alski et al. [72]:
Q-1 M Q
Z Yoij * Xi "X + Zyk,i'xi'zk

Q
E(y) = Zyo,i “Xp+
=1

i=1 j=i+1 k=1i=1
Me1 i Iy (5.26)
+ Z akl'Zk'Zl+zak‘Z}%
k=1 l=k+1 k=1

This model assumes that significant effects exist neither of the process variables nor
the two-factor interactions between the k-th and /-th process variables on the mixture
ingredients’ blending properties. It does, however, consider the additive effect of two-
factor-interactions and quadratic effects of the process variables on E(y) (as opposed
to the multiplicative effect in Equation 5.25). This results in more parsimonious model
for which Q+Q-(Q—-1)/2+Q-M+M-(M—1)/2+ M have to be estimated.
The advantages and disadvantages that come from defining a more or less parsimoni-
ous model are discussed in the literature, and different proposals are provided by e.g.
Prescott [73], who also presents a slightly less parsimonious model than that in Equa-
tion 5.26, with Q- (Q+1)-(Q+2)/6+M-Q-(M+ Q + 2)/2 parameters to be
estimated. To better visualize the complexity of these models, the number of parame-
ters whose estimation is required depending on Q and M, for the three models, is
shown in Table 5.1. Shading has been added to the cells corresponding to the combina-
tions of O and M for which the model proposed by Prescott is more parsimonious than
the one in Equation 5.25.

Table 5.1. Number of parameters of the model in Equation 5.25, and the ones proposed by Kowalski
et al. [72] and Prescott [73] (separated by a slash from each other), as a function of Q and M

0
2 3 4 5 6 7
1 6/6/9 12/10/19 20/15/34 30/21/55 42/28/83 56/36/119
2 ] 12/10/16 | 24/15/31 40/21/52 60/28/80 84/36/116 | 112/45/161
3 )21/15/25 | 42/21/46 70/28/74 | 105/36/110 | 147/45/155 | 196/55/210
. 4 133/21/36 | 66/28/64 | 110/36/100 | 165/45/145 | 231/55/200 | 308/66/266
51 48/28/49 | 96/36/85 | 160/45/130 | 240/55/185 | 336/66/251 | 448/78/329
6 | 66/36/64 | 132/45/109 | 220/55/164 | 330/66/230 | 462/78/308 | 616/91/399
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In short, the study of even the simplest, yet realistic, mixture-process variables prob-
lems by traditional methods requires fitting excessively complex and hard to interpret
models, which in turn demands large amounts of experimentation.

The definition of combined mixture-process variables models, such as the one in Equa-
tion 5.25, adds further complexity to both the constructions of a DOE to gather the
required data to fit them and to the process of estimating the model parameters them-
selves. This is because many of the columns in the matrix X corresponding to interac-
tions among mixture and process variables will be a linear combination of columns
corresponding to lower-order interactions and simple effects. The procedure to estimate
such parameters is illustrated with some examples in [57], and several proposals for the
construction of appropriate DOEs for this sort of problems have also been provided in
the literature [74-76].

5.4. Mixture design of experiments

In this section the problematic associated to the construction of mixture designs of
experiments will be addressed, first concerning mixture problems where the mixture
space is a simplex, and then the case where the mixture space is irregular. The ap-
proach for the construction of DOE in irregular mixtures spaces that will be proposed
in Section 5.4.3 is formulated in such a way that it can also be resorted to for address-
ing mixture-amount, mixture-process variables, and mixture-amount-process variables
problems.

5.4.1. Simplex-based DOE

As long as the mixture space is a simplex, constructing a design of experiments is rela-
tively simple. The following are some basic designs of experiments commonly used in
mixing problems in this situation:

- Simplex lattice experimental design {O, m}:

These designs allow the estimation of m-order mixture model. In this design, m +1
equidistant proportions varying from 0 to 1 (O,%,%, ,mT_l, 1) are defined for each

of the O blend constituents (the so-called pseudo-components can be used for restricted
simplex spaces, and the ‘real’ proportions computed once the DOE has been construct-
ed) and then all feasible mixture resulting from the combinations of these proportions
for the different blend constituents are defined. For a O-dimensional mixture space, the
simplex lattice DOE generates m — r equidistant points on each r-dimensional element
(r < m — 1) that is part of the envelope of the mixture space (not accounting for the
extreme vertices, in the case of the edges). This type of design is especially suitable to
estimate the parameter of e.g. a cubic model. However, if Q is not small and m > 2, a
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very high number of experimental runs (C,?l+m+1) is required. Two examples of sim-
plex lattice experimental designs appear in Figure 5.5.

A

B (o

a) b)

Figure 5.5 Examples of a) a simplex lattice design {3,3}, and b) a simplex lattice design {4,2}, to
which the overall centroid of the simplex has been added

- Simplex centroid design:

This sort of design consists of 2971 points corresponding to the centroids of all the 7-
dimensional elements of the envelope of the mixture space, from r=0 (vertices) to
r = Q — 1 (overall simplex centroid). Each blend from this DOE meets that, for the
corresponding r-dimensional element they are the centroid of, the proportion of » + 1

components in it is —, while all other constituents are absent. These designs are suita-

ble for problems where the number of components is not very high, and to estimate
models such as the special cubic one, which can be especially useful for studying the
shape of the response surface and identify the model that better fits it. Figure 5.6 illus-
trates two examples of this sort of design.

It can easily be observed that, in the particular case of a problem with 3 components,
the simplex centroid design is identical to the simplex lattice {3,2} when the general
centroid of the mixture space is added to the latter.
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Figure 5.6 Examples of simplex centroid designs for a) 0=3, and b) 0=4

- Simplex axial designs:

Unlike simplex lattice or simplex centroid designs, these designs include points inside
the mixture space (other than its overal centroid), and not just on its envelope. More
specifically, these points are located on the axis (or Cox axis) associated with each
blend constituent. As a reminder, any blend located on the axis associated with the i-th
component meets that, if the proportion of such component in the mixture is x;, then
the proportions of all other ingredients are x; = (1 — x;)/(Q — 1)Vj # i. There are
two main variants of these designs:

*  Simplex axial 2Q+1 design:

This design includes the Q vertices of the simplex, its overall centroid (which
belongs to the O axes) and the Q interior points resulting from taking, for the i-
th axis, the midpoint between the overall simplex centroid and the i-th vertex,

for which the proportions of the blend ingredients are x; = @) and

X = %Vj # i. Figure 5.7 illustrates two examples of this kind of design.
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Figure 5.7 Examples of simplex axial 20+1 designs for a) 0=3, and b) 0=4

*  Simplex axial 30+1 design:

This design results from adding to the previous one the extreme points of the
axes (i.e. the centroids of the facets of the simplex opposite to its vertices pass-
ing through its overall centroid) for which the proportions of the blend ingre-

dients are x; = 0 and x; = ﬁ‘v’j # i. Figure 5.8 illustrates two examples of
this kind of design.

Figure 5.8 Examples of simplex axial 3Q+1 designs for a) 0=3, and b) 0=4
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This type of designs are used mainly for screening purposes, or to study the nature of
the effect of the components, since the estimates of the parameters of the model fitted
with data from an axial design are less affected (compared to the simplex lattice and
simplex centroid designs) by the bias associated to assuming a model less complex
than the real one, whenever this occurs. However, axial designs do not allow the ad-
justment of, for example, the quadratic Scheffé model except when Q is small.

It should be stressed nonetheless that a proper DOE is not usually limited to the points
suggested by these designs. On the contrary, it is common practice to add replications
or additional runs to those covered by these basic designs, either to study the lack of fit
of the model obtained or to obtain a better estimate of its parameters. An example of
this is the augmented simplex centroid design, which combines the simplex centroid
and the simplex axial 20+1 designs. This design presents excellent properties to esti-
mate the parameters of a special quartic model, which is very useful to study the shape
of the response surface of the model. When @ = 3, this design is identical to the axial

30+ 1.

Figure 5.8 Example of an augmented simplex centroid design for Q=4

In general, whenever the number of points obtained with any of these designs is too
high compared to the number of model parameters to be estimated, and/or excessively
resources-consuming, a selection of the most appropriate runs to carry out is done by
generating an optimal DOE according to some criteria (see Section 2.2 for additional
information). Regarding the I-optimality criterion in particular, the volume of the sim-
plex is necessary for its computation. Such volume can be obtained by means of the
Cayley-Menger Determinant [77].
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5.4.2. DOE in irregular mixture spaces

Whenever the mixture space is not a simplex, some of the most commonly resorted to
designs are based on the use of vertices and centroids of edges, facets and other r-
dimensional (r < Q — 1) elements that constitute the mixture space as candidate points
for the DOE matrix. Algorithms for the definition of extreme vertices such as the ones
proposed by Snee & Marquadt [68] or McLean & Anderson [69] are good options to
obtain all of the vertices of the envelope of the mixture space, from which all other
centroids may be determined. The former of this algorithms, also known as the
XVERT algorithm, is computationally more efficient than the last, and operates as
follows:

1. The Q blend constituents are arranged from lowest to highest 7; (see Section
5.2.1).

2. A 2971 factorial design is constructed using the lower and upper consistent
bounds of the first Q — 1 constituents as two levels of each factor.

3. The proportion of the remaining constituent is computed as xy = 1 — Z]-Q;ll X;.

If lby < xo < uby, the new point is a vertex.

4. If no vertex was obtained in the previous step, then:
a. Ifxy <lby, make xy = lby. Otherwise xo = ub

b. (-1 additional points are generated by adjusting the proportions of the
remaining Q-1 components so that ZjQzlx]- = 1. If the sum of the q
components is 1. If lb}k <x < ub;, a new vertex will have been ob-
tained.

5. Possible duplicate points are eliminated.

Despite this algorithm being able to find all of the vertices of an irregular mixture
space as long as no multivariate constraints are imposed on the proportions of the blend
constituents (other than the one defined in Equation 5.1), the computational cost may
increase excessively for very large values of Q. In that case, the modified XVERT or
MXVERT algorithm can be resorted to instead. The MXVERT algorithm does not
provide all vertices of the mixture space, but a 22717K subset of it. However, this sub-
set is easily obtained and usually has good statistical properties as a DOE or candidate
set to construct one. The steps to apply it are:

1. The Q blend constituents are arranged from lowest to highest 7; (see Section
5.2.1).

2. A 29717k factorial design is constructed using the lower and upper consistent
bounds of the first Q — 1 constituents as two levels of each factor.
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3. The proportion of the remaining constituent is computed as x5 = 1 — Z]-Q;ll X;.

If lby < xo < uby, the new point is a vertex.
4. If no vertex was obtained in the previous step, then:
a. Ifxy <lby, make xy = lby. Otherwise xo, = ub

b. Adjust xo_; as much as the restriction lby_; < xg_; < ub;_; allows
it to make Z]-Q=1 x; as close to one as possible. If ZjQzl x; = 1 after this
adjustment, a new vertex has been obtained.

c. If it was not possible to achieve ZjQ=1xj =1 in ‘b’, repeat this step
with xo_5, and if necessary with xy_3, Xg_4 ... until x; if necessary.
Once ZjQzl xj = 1is achieved, a new vertex has been obtained.

5. Possible duplicate points are eliminated.

Both the XVERT and MXVERT algorithm are limited to mixture problems without
multivariate constraints on the constituents other that Equation 5.1. Furthermore, they
cannot be used in mixture-amount, mixture-process variables nor mixture-amount-
process variables problems when constraints on non-mixture variables are also im-
posed. Good alternatives in such case are the proposed variation of the CONSIM algo-
rithm or the ‘Segmentation by defining and discarding vertices’ presented in Section
5.2.2, followed by a variation of the coordinate-exchange algorithm for mixture design
proposed by Piepel et al. [66]. Consider that all inequality and equality restrictions
have been checked, and it has been found that any X point within the experimental
space (this can be applied to any problem where the experimental space is a convex
hull) must meet that

AL -x < d
Fi-x=f]

where Ay, dy, Fy, and f; are differentiated of A,, dy, Fy and f, in that they refer exclu-
sively to the active, non-redundant restrictions that define the envelope of the experi-
mental space. If a design with N runs is desired, the steps one should follow to apply
this generalized coordinate-exchange algorithm is the following:

(5.27)

1. Generate a starting design constituted by N random feasible design points.

2. Sequentially modify the coordinates of each point, starting from the first one,
and focusing on modifying one variable at a time, starting again with the first
one. Since some equality restrictions may prevent the coordinate associated to
the m-th the variable to be changed independently, the procedure to modify the
coordinates of a given X, is:
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3.

1.

il

Om

iii.

1v.

Generate a vector 0,, [M X /], which is a vector of zeros except for its m-
th element, which is a one. This vector would provide the direction of
maximum variability for the m-th variable if no equality constraints were
imposed that affected it.

Project 0,, onto the subspace generated by the active, non-redundant
equality restrictions. It can be demonstrated (see Section 14.2.2) that this
projection, 0y,, is:

= [l —ET (B KD K] on+ KT (R (5.28)

Vary the coordinates of x,, following the direction of 0y, and —o;, with-
out moving outside of the experimental region (i.e. making sure that the
inequality restrictions are always met), and assess the value for the opti-
mality criteria used to construct the DOE.

Repeat steps i-iii for the next coordinates, until all M variables have been
modified following their feasible direction of maximum variability oy,
(or —op,).

Repeat step 2 for the N design points.
4. Repeat steps 2 and 3 until no significant improvement in the DOE optimality
criteria is observed.

Regarding the I-optimality criteria, again the volume of the experimental space needs
to be calculated. To do so, it is proposed to sequentially divide each r-dimensional
subspace (2 < r < M) whose union constitutes the whole experimental space into as
many (r — 1)-dimensional hyperpyramids as facets delimit it, such that these facets
constitute their bases, and the opposite vertex is the centroid of the -dimensional sub-
space. By sequentially calculating the volume of these hyperpyramids, and then calcu-
lating their sum, the volume of the r-dimensional can be computed exactly. Although
there is no need to use this procedure in such a situation, consider a cube as an exam-
ple. The steps to follow would be:

1.

Divide the cube into 6 pyramids (3-dimensional hyperpyramids) whose bases
are the facets of the cube, and the centroid of the cube is the vertex opposite to
those bases, common to all the pyramids.

Divide the base of each pyramid into 4 triangles (2-dimensional hyperpyra-
mids) whose bases are the edges of the cube/sides of the squares, and the cen-
troid of one face is the vertex opposite to the base of each triangle in that face,
which is common to all of the triangles in the same facet.

Calculate the areas of the triangles, and sum them up to obtain the area of each

side of the cube, which is the area of the base of each one of the pyramids gen-

erated in the first step.
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4. Calculate the volumes of the 6 pyramids. Their sum is the volume of the cube.

The volume of an r-dimensional hyperpyramid is equal to the volume of its (r — 1)-
dimensional base multiplied by its height, and divided by r. Its height is equal to the
distance from the base to the opposite vertex, which can be calculated by projecting
that vertex on the (r — 1)-dimensional base by means of Equation 5.28, and computing
the distance between that vertex and its projection.
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Chapter 6

Latent variable-based
methods for mixture
data analysis

Part of the content of this chapter has been included in:

1. Vitale, R, Palaci-Lopez, D.Y Kerkenaar, H., Postma, G., Buydens, L. & Fer-
rer, A. Kernel-Partial Least Squares regression coupled to pseudo-sample trajec-

tories for the analysis of mixture designs of experiments. Chemometr. Intell.
Lab. 175, 37-46 (2018).

6.1. Mixture design data analysis with Partial Least Squares

Since Partial Least Squares regression (PLS) is a method based on projection to latent
structures, it does not assume independence of the factors, and is therefore capable of
operating in cases where there is collinearity, either perfect or imperfect, or both simul-
taneously. This means that, as opposed to classical polynomial model fitting approach-
es like OLS, no special model is required in order to use PLS-regression techniques
when dealing with mixture data. Furthermore, additional sources of correlation are
automatically accounted with PLS, and there is no need to treat mixture and process
variables differently, since there is actually no difference in practice between the exist-
ing perfect collinearity relationship among mixture factors and amount or process fac-
tors upon which an equality constraint is imposed, or which are affected by collineari-
ty. It must be taken into account, however, that PLS is a method of projection to latent
structures and, therefore, it is necessary to properly choose the dimensionality of the
model, that is, the number of latent variables 4 to extract. To do this a cross-validation
test may be sufficient to make a decision. When analysing mixture data with PLS, the
unscaled, uncentred regression coefficients B that relate the ingredients’ proportions in

vi S
These authors had equal contributions
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the blend, X, with the output variable, y, can be interpreted in the same way as the pa-
rameters of the Cox model. This means that the Scheffé parameters can be estimated
from the coefficients obtained through PLS regression. Furthermore, These regression
coefficients are identical to those for the Cox model if the number of selected latent
variables to fit the PLS model, 4, is equal to the number of non-zero singular values of
X.

In this section some examples available in the literature are analysed using both OLS
and PLS regression techniques in order to better illustrate some of the advantages of
using PLS for mixture design data analysis.

6.1.1. Methods and datasets

To assess the differences in the interpretability of the results obtained by using OLS
and PLS for the study of mixture problems, both techniques will be applied to the two
real cases studies presented below.

6.1.1.1 Example 1: seven-component octane blending experiment of Cornell

The dataset used for this study is available in [78]. In this simple example the linear
model will be fitted, and used to illustrate one of the major drawbacks of using classi-
cal regression techniques for mixture data analysis, which is the difficulty in detecting
similarly behaving blend components, and the benefits of using PLS in this case.

Table 6.1 shows the different blend constituents and the lower and upper bounds for
their proportions in the mixture, which define the mixture space.

Table 6.1. Example 1: blend ingredients and lower and upper bounds for their proportions in the

mixture

Blend constituent | Lower bound | Upper bound
Straight run 0 0.21
Reformate 0 0.62
T.C. naphtha 0 0.12
C.C. naphtha 0 0.62
Polymer 0 0.12
Alkylate 0 0.74
Natural gasoline 0 0.08
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6.1.1.2 Example 2: gasoline blending data of Snee

The dataset used for this study can be found in [79]. In this example the potential rela-
tionship between the research octane number (RON) and the proportions of the blend
constituents in it is evaluated. Both univariate and multivariate restrictions are imposed
on the composition of the blend, resulting in an irregular mixture space. The quadratic
model will be fitted via OLS and PLS, and the results compared.

Table 6.2 shows the different blend constituents and the lower and upper bounds for
their proportions in the mixture.

Table 6.2. Example 2: blend ingredients and lower and upper bounds for their proportions in the
mixture

Blend constituent | Lower bound | Upper bound

Butane (B) 0 0.15
Isopentane (I) 0 0.30
Reformate (R) 0 0.35

Cat. cracked (C) 0 0.60
Alkylate (A) 0 0.60

In addition to these bounds, the following restrictions are imposed on the blend con-
stituents’ rates in the mixture, which also affect the shape of the mixture space (i.e.
none of them are redundant):

B+1<0.30
C+A<070 (6.1)
97 <1018-B+99.6-1+1124-R+94.2-C+99.8-4 <101

6.1.2. Results and discussion

6.1.2.1 Example 1: seven-component octane blending experiment of Cornell

In this example, the linear Scheffé polynomial is fitted for screening purposes using a
reduced number of observations corresponding to a series of blends with the 7 constit-
uents within the mixture space described in Section 6.1.1.1. The response variable of
interest is the octane of the blend. The summary of the results from fitting this model
via OLS is shown in Table 6.3.
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Table 6.3. (First) linear Scheffé polynomial parameters’ estimation via OLS for example 1

Parameter | Estimate SE
P 34.32 | 209.13
B 85.923 | 1.2482
B 141.25 | 375.33
Ba 77.18 | 9.2135
Bs 87.75 | 5.8157
Bs 100.3 | 3.4738
B 116.92 | 81.096

As commented in Section 5.3.1, the i-th linear parameter [§; corresponds to the ex-
pected average value for the response variable y (in this case the RON) for the ‘pure
mixture’ with only the i-th ingredient. Therefore, studying the statistical significance of
the B; coeficients is meaningless because there is no point in testing whether they are
zero or not. Instead, the statistical significance of the adjusted effects (calculated as in
Section 5.3.1) as a whole and of each one of them is assessed as illustrated in Section
5.8 in [57]. The results are shown in Table 6.4.

Table 6.4. Adjusted effects calculation and statistical significance assessment from the (first) linear
Scheffé polynomial via OLS for example 1 (* on the right indicates p-value<0.05)

Blend constituent | Adjusted effect estimate | p-value
Overall - 7.5-107 | *
x4 (Straight run) -14.12 0.81
x, (Reformate) -4.36 0.76
x3 (T.C. naphtha) 6.90 0.90
x4 (C.C. naphtha) -10.68 0.44
x5 (Polymer) -0.59 0.83
Xe (Alkylate) 7.21 0.66
x7 (Natural gasoline) 2.33 0.79
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Table 6.4 shows apparently contradictory results, since, although there seem to exist an
overall statistical significant effect of the ingredients of the mixture on the octane, none
of the tests performed to assess the statistical significance of the effect of each individ-
ual blend constituent permits identifying any of them as having a statistically signifi-
cant effect on the RON. However, a high degree of correlation between components x;
(Straight run) and x5 (T.C. naphtha) should be noted, as can be seen in Table 6.5,
where cells with shading correspond to correlation coefficients whose absolute value is
greater than or equal to 0.7.

Table 6.5. Correlation matrix for the parameters of the (first) linear Scheffé polynomial fitted via
OLS for example 1

B B2 Bs Ba Bs Bs B7

28 B! 0.0360 [-0.9983 (-0.5766|-0.3137|-0.5653 | 0.5987
£210.0360 |1 -0.0586-0.1862 (-0.1122{-0.3226 | 0.2133
B3]-0.9983 | -0.0586 | 1 0.6201 |0.3358 | 0.6099 |-0.6432
P4 ]-0.5766-0.1862 [ 0.6201 |1 0.4394 10.9535 [-0.9924
Bs]-0.3137(-0.11220.3358 [{0.4394 |1 0.3241 [-0.4753
B |-0.5653 [-0.3226 | 0.6099 |0.9535 [0.3241 |1 -0.9649
B£710.5987 [0.2133 |-0.6432(-0.9924 | -0.4753 | -0.9649 | 1

Table 6.6 provides the results from combining both constituents and treating them as a
new one to fit a new linear Scheffé model.

Table 6.6. (Second) linear Scheffé polynomial parameters’ estimation via OLS for example 1

Parameter | Estimate | SE
P11+ B3 72.57 | 7.2776
B 85.934 | 1.1418
Ba 76.16 | 6.7208
Bs 87.401 | 5.032
Bs 99.923 | 2.5591
B 126.24 | 57.834
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On the other hand, the results from assessing the statistical significance of the adjusted

effects for this new scenario can be seen in Table 6.7.

Table 6.7. Adjusted effects calculation and statistical significance assessment from the (second)
linear Scheffé polynomial via OLS for example 1 (* on the right indicates p-value<0.05)

Blend constituent | Adjusted effect estimate | p-value

(Overall) - 55:10° | *
xq + x3 -7.45 0.22

Xy -4.04 0.44

X4 -11.32 0.30

X5 -0.57 0.69

X 7.59 0.39

X7 3.35 0.52

As with Table 6.4, Table 6.7 does not allow identifying the adjusted effect of any of the
mixture ingredients, individually, as statistically significant. However, a high degree of
correlation between the estimated effects of (x; + x3) and x; should be noted, as can
be seen in Table 6.8, where cells with shading correspond to correlation coefficients

whose absolute value is greater than or equal to 0.7.

Table 6.8. Correlation matrix for the parameters of the (second) linear Scheffé polynomial fitted via

OLS for example 1

Bit+Bs| B2 Ba Bs Bs B7
YA R 20.38200.9179 | 0.3939 [0.9310 [-0.9589
B -0.3820 | 1 -0.1957(-0.1013 [ -0.3643 | 0.2335
Ba 0.9179 |-0.1957|1 0.3204 10.9275 [-0.9884
Bs 0.3939 [-0.1013(0.3204 |1 0.1701 |-0.3664
Be 0.9310 |-0.3643(0.9275 |0.1701 |1 -0.9453
B -0.9589 | 0.2335 [-0.9884|-0.3664 [-0.9453 | 1

Table 6.9 provides the results from combining the three constituents and treating them

as a new one to fit a third (and last) linear Scheffé model.
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Table 6.9. (Third) linear Scheffé polynomial parameters’ estimation via OLS for example 1

Parameter Estimate | SE

Bi+PBs+ B, | 7840 | 1.80

B, 85.70 | 1.08
Bs 81.64 | 115
Bs 88.95 | 4.57
B 101.93 | 0.80

R’=0,9916 R*-adj=0,9868
Finally, the results from assessing the statistical significance of the adjusted effects for
this third scenario can be seen in Table 6.10.

Table 6.10. Adjusted effects calculation and statistical significance assessment from the (third) linear
Scheffé polynomial via OLS for example 1 (* on the right indicates p-value<0.05)

Blend constituent | Adjusted effect estimate | p-value
(Overall) - 48107 | *
X1 + x3 + x5 -4.57 1.5:10° | *
Xy -1.26 0.27
X4 -4.41 0.01 *
X5 0.24 0.68
Xe 13.51 1.8:107 | *

As has been observed, three consecutive adjustments of a Scheffé model via OLS have
been required, coupled with a careful inspection of the existing collinearity among the
different components, in order to conclude that three of them could be considered, for
the purposes of assessing their influence on the response, equivalent.

If, instead, the linear Cox polynomial is fitted via PLS regression (4=3), the estima-
tions of the parameters shown in Table 6.11 are obtained.
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Table 6.11. Linear Cox polynomial parameters’ estimation via PLS (4=3) for example 1

Coefficient | Scaled/centred estimate | Unscaled/uncentred estimate
B'o 0 92.6759
B'1 -0.1391 -9.8281
B, -0.2087 -6.9602
B's -0.1376 -16.6662
B4 -0.2932 -8.4218
B's -0.0384 -4.3887
B's 0.4564 10.1615
B'; -0.1434 -34.5288

R’=0.99056 R*-adj=0.97922 Q’=0.90208

In this case it is enough to observe that, for the components x; (Straight run), x5 (T.C.
naphta) and x, (Natural Gasoline), the centred and scaled coefficients are very similar.
The estimated coefficients (without centring or scaling) are very different due to the
difference in the ranges of possible variation of the composition of each of the compo-
nents in the mixture. In fact, the highest (absolute) value is detected for x, the constit-
uent with the narrowest allowed range of compositions.

In addition, it is possible to observe from the scaled and centred coefficients that the
largest positive effect corresponds to x4 (alkylate), the next most important compo-
nents being x, (C.C. naphtha) and then the combination of x; (Straight run), x5 (T.C.
naphta) and x, (Natural Gasoline). The range of variation in composition for x,
(reformate) is very high, and therefore its total effect will be lower in spite of the value
for its estimated centred and scaled parameter being higher. On the other hand, x5
(polymer) is the one constituent that presents a smaller effect on the response, and can
be considered practically null.

6.1.2.2 Example 2: gasoline blending data of Snee

In this example, the effect of 5 blend constituents on the RON of a gasoline mixture
was studied. The estimations of the parameters from fitting a quadratic Scheffé model
with the data provided via OLS is shown in Table 6.12.
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From the Table 6.12 and Figure 6.1 it may seem that the fitted model is quite appropri-
ate to explain the response variable. It should be noted, however, that although many of
the terms corresponding to two-factor interactions appear as statistically not significant,
the correlation matrix (see Table 6.13) indicates a high collinearity among several of
the estimated coefficients (cells with shading correspond to correlation coefficients
whose absolute value is greater than or equal to 0.7).

Furthermore, and according to the model fitted, the effect of butane (x;; B in Figure
6.2) seems to show a slight degree of non-linearity in the mixture, as is also reflected in
the trace plot in Figure 6.2. This is in agreement with the statistical significance of the
parameters of the model corresponding to the two-factor interactions, since only those
in which the butane intervenes appear as clearly statistically significant. Additionally,
these interactions are all negative, that is, the interaction of butane with the rest of the
components of the mixture is antagonistic. The trace graph also allows us to observe
this clearly, since the curve corresponding to the butane is convex with respect to the
origin.
Table 6.12. Quadratic Scheffé polynomial parameters’ estimation via OLS for example 2 (* on the
right indicates p-value<0.07)

Parameter | Estimate SE tStat | p-value
B1 158.508 | 22.690 - -

B 97.384 | 7.139 - -

B 106.935 | 8.029 - -

Ba 92.342 | 2.365 - -

Bs 100.057 | 1.897 - -

B2 -56.029 | 27.468 | -2.040 | 0.0661 | *
B3 -88.109 | 27.483 | -3.206 | 0.0084 | *
Bia -62.866 | 28.776 | -2.185 | 0.0514 | *
Bis -57.709 | 26.594 | -2.170 | 0.0528 | *
Bas -5.978 | 10.297 | -0.581 | 0.5732
Bos 7.005 14.155 | 0.495 | 0.6304
Bos 6.054 14.126 | 0.429 | 0.6765
Bas 10913 [ 17.632 | 0.619 | 0.5486
Bss 1.670 12.434 | 0.134 | 0.8956
Bas 3.368 2.720 | 1.238 | 0.2414

R°=0.98262 R*-adj=0.9605
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Normal Probability Plot
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Figure 6.1 Studentized residual plots for the quadratic Scheffé model fitted via OLS for example 2
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Figure 6.2. Trace plot for the quadratic Scheffé model fitted via OLS for example 2
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Alternatively, the quadratic Cox model can be obtained by fitting a PLS-regression
model (4=4), which will provide the estimations for the Cox coefficients shown in
Table 6.14. It should be noted that, in this case, the values of the parameters associated
with the quadratic term for butane (f';;) and its interactions with other components
remain high in comparison with the rest. The same is apparently no longer true for
other interactions, while interactions such as the ones between isopentane (I) and
reformate (R), and between isobutane and the catalytically cracked constituent of the
blend (C) show relatively high values for their parameters estimation.

These observed differences between the results obtained by OLS and PLS show how
some interactions with a significant effect on the response have not been detected as
such by OLS, due to the issues this regression methods suffers from when analysing
mixture data in highly restricted or irregular mixture spaces, as is the case. By means of
PLS, however, values have been obtained that seem to be more in line with the im-
portance of these interactions.

To make a fairer comparison between OLS and PLS, one must consider that the Cox
polynomial parameters estimated via PLS with A = rx (A being the number of LV
extracted to adjust the model and rx the rank of X) are identical to those of the Cox
model obtained via OLS (from the Scheffé one) if the overall centroid of the dataset
(i.e. the centre of projection in PLS) is chosen as the reference mixture.
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Table 6.14. Quadratic Cox polynomial parameters’ estimation via PLS (4=4) for example 2

Parameter | Scaled/centred estimate | Unscaled/uncentred estimate
B'o 0 99.5439
By -0.0620 -1.3059
B, -0.0993 -1.8248
B'3 0.4579 5.4746
B's -0.5798 -3.2736
B's 0.3792 2.0461
B'12 0.0985 13.0510
B'13 -0.0557 -7.1456
B'14 -0.0553 -2.2676
B'1s 0.0138 1.6159
B3 0.0384 9.2189
B 24 -0.0414 -2.0978
B'2s -0.0215 -0.4896
B'34 0.1657 45111
B'ss -0.1210 -7.2758
B'ss 0.0674 0.8566
B'11 0.1168 17.7973
B2z 0.0274 0.1538
B'33 -0.0615 -5.5928
B 44 -0.1161 -0.6575

's5 0.0016 0.4425

R’=0.96228 R*-adj=0.92746 Q’=0.7323
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6.1.3. Conclusions and additional considerations

In this section one of the major drawbacks of using classical regression techniques for
mixture design data analysis, consisting in the difficult identification of blend constitu-
ents whose influence in the mixture properties is similar to each other, has been shown,
as well as how resorting to PLS may be useful in avoiding this problem.

Furthermore, as already stated, the model fitted with PLS is equivalent to the repara-
metrization of the Scheffé model into the Cox polynomial (of the same order) if the
number of LV extracted to fit the PLS model is the maximum feasible, and the centre
of projection of the latent subspace is taken as the reference mixture (in Section 6.2
different examples will be illustrated in which the same Scheffé model is obtained in
different scenarios through OLS and PLS, given these conditions are met). Because of
this, PLS-regression can be resorted to in order to obtain the same model as with OLS
when analysing mixture data while, at the same time, bypassing the limitations of this
approach. This being of interest or not in practice is left to debate, given that e.g. one of
the advantages of latent variable-based methods is the reduction in dimensionali-
ty/compression of the information, which is lost if as many latent variables as possible
are extracted.

From a more practical point of view, in terms of the available software for mixture
design data analysis, it is also important to mention that not just any statistical software
prepared for data analysis via OLS/GLS can be resorted to for this purpose, while any
software aimed at data analysis via latent variable-based methods can also be used for
mixture design model fitting. This is to say, specific/specialized software is required if
traditional approaches are to be resorted to when dealing with mixture data, while no
specific software is required when using latent variable-based algorithms.

Finally, it must also be pointed out that most latent-variable based methods present an
important limitation (although not just when it comes to mixture design), which is the
lack of a standardized approach to determine the statistical significance of e.g. the ef-
fects/estimations of the parameters of the fitted regression model, specially in absence
of replicates in the dataset available to fit such model. This is the reason why such tests
did not appear in Tables 6.11 and 6.14.

6.2. Kernel-PLS and pseudo-sample trajectories

As previously discussed, PLS regression-based techniques can be resorted to in order
to avoid some of the issues associated to the use of classical polynomial fitting by tra-
ditional methods such as OLS or GLS. In fact, PLS regression based-techniques have
proven to guarantee satisfactory performance even when highly restricted mixture
spaces have been dealt with and allow variables of different nature (e.g. component
proportions and physicochemical properties, as well as production process conditions)
to be fused and simultaneously analysed. Nevertheless, if the mixture data under study
are affected by strong non-linear relationships (which is rather common in e.g. indus-
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trial scenarios), applying classical PLS (even taking into account additional interaction
and/or higher-degree terms) may not constitute an appropriate modelling strategy since
it assumes their underlying structure is linear [39]. A good alternative may be repre-
sented by the combination of K-PLS regression and pseudo-sample trajectories, but the
described way of defining the different pseudo-sample matrices (see Section 3.2.2) is
not suitable when mixture problems are concerned, because it violates the constraint in
Equation 5.1 (i.e. it is impossible to vary the composition of any one of the constituents
independently from the rest), and then needs to be slightly adapted.

The main aim of this section is to evaluate the potential of such a combination in this
particular field of interest, by comparing it with well-established methodologies, i.e.
Scheffé model fitting by means of OLS and Cox model fitting by means of PLS. Both
simulated and real case studies will be investigated.

6.2.1. Methods

PLS and K-PLS regression have been presented in Sections 3.2 and 3.3, and the basic
principles of the Scheffé and Cox models in Sections 5.3.1 and 5.3.2. The extension of
the pseudo-sample projection approach for mixture data handling is now illustrated.

6.2.1.1 Pseudo-sample trajectories for mixture data

In order to account for the perfect collinearity mixture constraint in Equation 5.1, the
pseudo-samples matrices V, (similar to V,, in Section 3.3.2) should be structured in
such a way that the V" values in their g-th column range from the minimum to the max-
imum proportion of the g-th ingredient and all the elements of each one of their rows
sum up to 1. E.g. if a ternary mixture problem is faced, a hypothetical V; may have
such an aspect:

0 05 05

02 04 0.4

104 03 03
Vi= 06 02 0.2 (6.2)

08 0.1 0.1

1 0 0

More generally:
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_1 - vl’q 1 - vl‘q min(Xq) 1 - Uqu 1 - Ul_q'
e-1 Q-1 : Q-1 Q-1
1- UZ,q 1- vl.q 1- Uqu 1-— Ul'q

v, o-1 ; S wl v 63)

1-vyg 1-wy, : 1-v4 1-vy,

Lo-1 Q-1 max(xy) Q-1 Q-1
where X, is the g-th column vector of X and v, 4 refers to the entry in the v-th row and
g-th column of V,. As shown in Figure 6.3, this would mean spanning the mixture
space (a simplex in this case) in the direction connecting the vertex associated to the
‘pure mixture’ composed by only the g-th constituent ([1, 0, 0], if ¢ = 1) and the mid-
point of its opposite side ([0, 0.5, 0.5], if ¢ = 1), which for the complete simplex is
also de so-called Cox’s direction given the reference mixture [1/3, 1/3, 1/3]. As will be
highlighted in Sections 6.2.3.3 and 6.2.3.4, the representation of the corresponding
pseudo-sample trajectories yields the so-called trace plot, traditionally used in mixture
design analysis to get an approximate idea of the linear and non-linear effects the
change in the proportion of every g-th ingredient may have on the quality attribute of
interest. However, because these effects are confounded with those due to the simulta-
neous variation of the proportion of the other blend constituents, a precise identifica-
tion of each of the Scheffé polynomial coefficients cannot be achieved this way.

A(1/0/0)

B(0/1/0) C(0/0/1)

Figure 6.3. Graphical representation of the direction spanned by the pseudo-sample trajectory associ-
ated to the constituent A in a generic ternary mixture design space, coincident with the Cox’s direc-
tion for the reference mixture [1/3, 1/3, 1/3]

i Equation 6.2 is not valid if the design space is not a simplex or if it is a simplex but the ingredient proportions do not vary from
0 to 1, but the extension of the described methodology to such situations is straightforward.
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6.2.1.2 Pseudo-sample-based response surface and Scheffé model coefficients

Alternatively, by using a combination of multiple pseudo-sample trajectories and gra-
phing them in a contour plot, the response surface for the full mixture space can be
retrieved. To do this, every pseudo-sample matrix has to be constructed by i) fixing the
proportions of all but two constituents, ii) increasing the proportion of one of these two
constituents, and iii) decreasing the proportion of the other accordingly (so that Equa-
tion 5.1 is met). This procedure is iteratively repeated for different values of the fixed
proportions of the rest of the ingredients, which graphically implies moving over the
design space in a particular direction, as displayed in Figure 6.4.

Notice that a measure of the Scheffé model coefficients for the first-order effects of the
ingredients B and C and for their interaction can be derived from the trajectory cover-
ing the BC side of the simplex, as seen in Figure 5.3 and will be illustrated in Section
6.2.3.1. This is also valid for the trajectories covering the AB and the AC side of the
triangle, not represented in Figure 6.4.

A(1/0/0)

\
\
A\

B(0/1/0) C(0/0/1)

Figure 6.4. Graphical representation of the direction spanned by the pseudo-sample trajectories used
to retrieve the response surface for a generic simplex for a ternary mixture. The resolution of the final
plot will logically increase with the number of such trajectories. In this specific case, in every single
pseudo-sample matrix, the proportion of A is fixed, while those for B and C vary

6.2.2. Datasets

Two simulated and real datasets from mixture designs of experiments will be object of
this study.
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6.2.2.1 Data simulated according to a second-order polynomial model

66 artificial samples (with no replicates) of a ternary mixture homogeneously distribut-
ed inside a simplex and a single response variable were simulated according to the
following second-order Scheffé model:

Y=P1- %1+ B2 X+ B3 X3+ P1p X1 Xy + Pr3z X1 X3+ oz Xy X3
:81,2 = _289; ﬂ1,3 = 054; ﬁz'g = _133
3

x;€{0,1}  s. t.z x;=1

i=1

(6.4)

whose reformulation as a Cox model for a reference mixture where s; = s, = 53 = %
can be written as (see Section 5.3.2):
y=aota;-x;+ay X, tag-xg+aip-x X+ a;3-x %3+
+ay3 Xy X3+ Qg Xf + Agp X5+ Agg - X3
agy=0; a,=2; a, =-2.67; azg =0.67; a,;, = —1.67
ay13=044; a,3=0; a;; = —0.11; a,, =1.33; az3 =0

3
x; =1
Zi:l L (6.5)
3
x;€{0,1}  s.t.3 Zizlai'si =0

3
Z. Cij-@ij-Sj=0
j=1

51=82=S3=1/3

According to Equation 6.5, a positive first-order and a small negative second-order
term characterize the apparent (note that the terms in this model are not independent
from one another) effect of the first constituent on the output. Conversely, the second
one features a negative first-order and a positive second-order term. The third ingredi-
ent exhibits a small positive first-order and no second-order term. Positive interaction
terms were generated for both x; - x, and x; - x5, while no interaction was assumed to
involve x, and x3. No noise was added after the data simulation.

6.2.2.2 Tablet data

This dataset was first described in [61], where 10 pharmaceutical tablets resulting from
distinct blends of cellulose, lactose and phosphate were prepared to assess the influence
of these substances on the release time of the active ingredient of the final manufac-
tured drug. No replicates were performed.
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6.2.2.3 Bubble data

The bubbles data relate to an experiment also reported in [61]. Here different propor-
tions of two dish-washing liquids (DWL1 and DWL2), water and glycerol were com-
bined to produce 24 soap mixtures (21 unique samples and 3 replicates) in order to
determine which composition would yield the most durable bubbles (i.e. longest bubble
lifetime) of a minimum acceptable size.

6.2.2.4 Colorant data

This dataset was described in [80]. In it, 49 blends (46 unique samples and 3 replicates)
of different proportions of white (C,,), black (Cp), violet (C,,) and magenta (C,,) paints
were manufactured to optimise the values of three specific colour responses: lightness
(L"), red-green tone (a*) and yellow-blue tone (b*).

6.2.2.5 Gasoline data

An augmented simplex-centroid DOE was resorted to in order to generate the dataset
used in this example, where different proportions of three gasoline constituents, cata-
lytically cracked, Cs-isomer and reformate, were mixed to produce 10 distinct blend
[81] to evaluate the effect of these constituents on the octane rating of the final product,
and possibly maximise it.

6.2.2.6  Data simulated according to a highly non-linear model

12 artificial samples of a ternary mixture simulated according to an augmented simplex
centroid design of experiments (with 2 replicates for the design centroid) were generat-
ed to obtain the dataset used in this example, based on the following model:

y=B1% + By %3+ B3-x3+ By loglx; +0.01) +
+Bs - x5 + Bg - sin[(1.01 — x,)7]
B, =487; B, =—-135; B3 =5.67
By =—152; Bs = —0.35; s = 8.00 (6.6)
3

x;€{0,1}  s. t.z x =1

i=1

Normally distributed random noise was added in this case to the response variable
estimated by Equation 6.6.
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6.2.3. Results

Both the simulated and real data were used for addressing an exploratory comparison
among Scheffé polynomial fitting by means of OLS, Cox polynomial fitting by means
of PLS, and K-PLS in terms of goodness-of-fit in calibration (Rz), goodness-of-fit in
leave-one-out cross validation (Qz), and Root Mean Square Error in leave-one-out
Cross-Validation (RMSECV)" [82], and for illustrating that under certain conditions
K-PLS can guarantee improved prediction and interpretation. Moreover, a way of re-
trieving the coefficients of a Scheffé polynomial (when they hold) from the pseudo-
sample trajectories yielded by a K-PLS model with the same complexity was derived.
The whole set of routines resorted to for data processing and analysis was self-coded in
MATLAB R2012b (Version 8.0.0.783) and is available on request.

6.2.3.1 Data simulated according to a second-order polynomial model

This section will be focused on demonstrating how the pseudo-sample trajectories can be
resorted to in order to recover the coefficients of the Scheffé model in Equation 6.4 given
dataset generated following the procedure outlined in Section 6.2.2.1. Figure 6.5 shows the
curves for the response variable y (predicted by means of a 3-latent variable second-
order K-PLS model) corresponding to the trajectories spanning the three sides of the ternary
mixture space of the simulated dataset, by moving from a vertex (pure blend) to another
vertex of the simplex which is like the one in Figure 6.4.

Note that, since every B; (Vi € {1,3}) measures the expected y for the pure mixture
composed by the only i-th constituent, each one of such parameters should match the
predicted response at one of the two extremes of the respective pseudo-sample trajecto-
ry. As indicated in Figure 6.4, since the data at hand are noiseless, an exact corre-
spondence was here observed for B;, , andf;. Analogously, the coefficients for the
interaction terms X, - X, X1 * X3 and x, - X3 can be computed as:

brz = 0.25 0.25 =28
= il = = . 67
buz 0.25 0.25 054 (6.7)
_ 5}0’0'5’0.5 - 0.5 ‘ ﬁz - 0.5 * ﬁ3 _ _0.44’ - 0.5 * (_1.33) - 0.5 * 0.67 _ 1 33
Faa = 0.25 B 0.25 -

where ¥50.5,0> Y0.5.0,0.5 and ¥,0.5 0.5 denote the estimated average y value for the bina-
ry blends with compositions x; = x, = 0.5, x; = x3 = 0.5 and x, = x; = 0.5, re-
spectively (i.e. the mid-points of the three trajectories in Figure 6.5.a, 6.5.b and 6.5.c).

" Notice that when extreme observations are left out of the original data, responses for mixtures that are outside of the calibration
experimental domain are predicted (extrapolation). However, as this is the case for all the approaches under study, a fair compari-
son of the RMSECYV values is still guaranteed. Furthermore, for K-PLS, the objects/samples to be iteratively left out are removed
from the datasets before the kernel transformation
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6.2.3.2 Tablet data

Second-order Scheffé, Cox and K-PLS models were fitted for the analysis of the tablet
dataset™. The number of extracted PLS and K-PLS latent variables was selected by
leave-one-out cross-validation. As Tables 6.15 and 6.16 point out, the three modelling
strategies returned comparable performance indices and regression coefficients, respective-
ly. Figure 6.6 displays their corresponding response surface plot, which are almost iden-
tical to one another (including the RBF K-PLS, not shown). They also enable a similar
interpretation of the effects of the single constituents on the active ingredient release
time, and allow assessing that high contents of phosphate, moderate contents of cellu-
lose and low contents of lactose clearly led to high values of such property of interest.

More concretely, binary mixtures composed by roughly % of phosphate and é of cellu-
lose are expected to exhibit the longest release time. Short release times are instead
yielded by blends consisting of e.g.% of lactose and § of cellulose. Thus, it is quite
reasonable to assume the presence of a positive contribution for the interaction phos-
phate/cellulose and a negative contribution for the interaction lactose/cellulose. As
illustrated in Section 6.2.3.1, one can look at the pseudo-sample trajectories spanning

the sides of the triangle in Figure 6.6.c for an accurate determination of the Scheffé
model first-order and interaction parameters.

Table 6.15. Tablet data: %, O and Root Mean Square Error in Cross-Validation (RMSECV) values
resulting from second-order Scheffé¢ model fitting by means of OLS, second- order Cox model fitting
by means of PLS, and second-order K-PLS

#LV R> O RMSECV

Scheffé second-order model (OLS) - 0.98 0.84 38.86
Cox second-order model (PLS) 5 0.99 0.83 39.69
K-PLS second-order model 5 0.98 0.83 38.86

6.2.3.3 Bubble data

As with the previous example, the second-order Scheffé, Cox and K-PLS models ad-
justed for the bubbles dataset rendered very close R, Q" and RMSECV values (see
Tables 6.17 and 6.18). Since this particular mixture problem embraces up to four con-
stituents, the proportion of one of them has to be fixed to allow the response surfaces to
be graphed as in Section 6.2.3.2. Given that glycerol presented a much more positive
effect on the bubble lifetime and a much higher cost than any other ingredient, as also
suggested in [61], its relative amount was set at 0.4. The results (virtually indistin-

x The use of second-order models was originally suggested in [61]
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guishable) are represented in Figure 6.7. Figure 6.8 shows instead the corresponding
trace plots. As one can easily see, although the effect of DWL2 on the response of inter-
est seems to be more positive than that of DWLI1 and water, the interaction of these
latter is crucial to guarantee high bubble lifetimes (i.e. more equilibrated blends of
DWLI1, DWL1 and water would feature more durable bubbles).

The pseudo-sample trajectories spanning the sides of the simplex in Figure 6.7.c cannot
be directly resorted to for the estimation of the related Scheffé model coefficients in this
situation owing to the fact that the experimental space of the bubbles data is just a por-
tion of a whole simplex, and then they do not reflect the evolution of the predicted re-
sponse while moving from a pure mixture to another. On the other hand, if these trajec-
tories are constructed so that they exactly overlap the entire edges of this hypothetical
tetrahedron, the methodology proposed in Section 6.2.3.1 for the retrieval of the first-
order and binary interaction parameters is still valid (assuming that any effect involv-
ing the two constituents of the concerned binary mixture do not vary outside the actual
data space) [57].

Table 6.16. Tablet data: Scheffé model coefficients estimated by Scheffé polynomial fitting by means
of OLS, Cox polynomial fitting by means of PLS and K-PLS

Scheffé model fitting by OLS Cox model fitting by PLS K-PLS

B 198.16 198.10 198.16
B, 114.06 111.94 114.06
Bs 328.97 326.21 328.97
Bi» -403.26 -404.98 -403.26
Bis 350.56 347.54 350.56
B2s 330.37 323.14 330.37
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Figure 6.5. Data simulated according to a second-order polynomial model (generation scheme in
Equations 6.5-6.6: pseudo-sample trajectories representing the evolution of the predicted response
while moving from a) the pure mixture composed solely by constituent B to the pure mixture com-
posed solely by constituent A; b) the pure mixture composed solely by constituent C to the pure mix-
ture composed solely by constituent A; and c¢) the pure mixture composed solely by constituent C to
the pure mixture composed solely by constituent B
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6.2.3.4 Colorant data

When the colorant dataset was dealt with, second-, third- and fourth-order Scheffé, Cox
and polynomial K-PLS models and RBF K-PLS models were fitted (separately for
every response variable) in order to additionally assess the effect of their complexity on
the final outcomes. Table 6.19 lists their main performance indices. It can be said that
different approaches usually required a different complexity to achieve the minimum
RMSECYV, but, overall, their performance was found to be rather similar also in this
case. For the sake of interpretation, as an illustration, the trace plots resulting from the
best Scheffé, Cox and polynomial K-PLS models built for the prediction of the yellow-
blue tone (b*) are displayed in Figure 6.9. They are almost in perfect agreement, and
only negligible variations with respect to the outcomes obtained by Alman and Pfeifer
in [80] were observed (the same goes for those derived for both L* and a* and for all
those returned by RBF K-PLS, which are not shown). Concretely, all the constituents
exhibited a positive effect on b*.

Table 6.17. Bubbles data: R*, Q7 and Root Mean Square Error in Cross-Validation (RMSECV) values
resulting from second-order Scheffé model fitting by means of OLS, second- order Cox model fitting
by means of PLS, and second-order K-PLS

#LV R° O RMSECV

Scheffé second-order model (OLS) - 0.94 0.81 0.042
Cox second-order model (PLS) 9 0.94 0.81 0.042
K-PLS second-order model 9 0.94 0.81 0.042

6.2.3.5 Gasoline data

Second-order cross-validated Scheffé¢ and Cox models were tentatively adjusted for the
gasoline dataset. Due to the low number of samples, however, not enough degrees of
freedom were available for the estimation of the coefficients of more complex polyno-
mials. As highlighted in Table 6.20, both approaches returned negative Q2 and poor
RMSECYV values. On the other hand, their performance was clearly outmatched by that
of RBF K-PLS. In addition, RBF K-PLS was found to yield figures of merit just slight-
ly worse than those obtained by coding the constituent proportions in terms of so-called
pseudo-components [81] and fitting a first-order Scheffé or Cox model including in-
verse terms, a more standard and common procedure for handling non-linear data com-
ing from a mixture design of experiments [57]. Still, the main advantage of K-PLS
over it is that there is no need of performing such a domain transformation and defining
these inverse terms prior to the analysis: the optimisation of the kernel transformation
function and, in this case, of the ¢ parameter guarantees a certain flexibility when mod-
elling different types of non-linearities without requiring any further operation to be
carried out. It is important to note that this domain transformation would cause all

81



Quality by Design Through Multivariate Latent Structures

pseudo-components proportions in the blend to potentially vary from zero to one.
Therefore, a small number must be artificially added up to each pseudo-component’s
proportion in the denominator of the inverse terms in order to avoid infinite values at
the edges (i.e. when at least one of the pseudo-component’s proportion in the blend is
zero). However, the magnitude of this number will affect the estimation of the model
coefficients to a greater or lesser extent depending on the severity of the non-linearities
of the real effects, thus increasing the relative effort required to properly fit a regres-
sion model via this approach when compared to K-PLS.

The first-order pseudo-component Scheffé and Cox models encompassing inverse
terms led to identical surface plots (see Figure 6.10.a and 6.10.b). Certain dissimilari-
ties from the one rendered by RBF K-PLS (see Figure 6.10.c) are instead observable,
which was expected considering the intrinsic differences among the compared algo-
rithmic methodologies and especially the fact that the first-order pseudo-component
Scheffé and Cox models encompassing inverse terms are able to explain strong nonlin-
earities mainly at the borders of the design space but not in its central area. Neverthe-
less, a common explanation of the effect of the distinct ingredients on the response
variable can be given: the maximum octane rating can be achieved by blending a high
quantity of catalytically cracked and low quantities of C5-isomer and reformate.

Table 6.18. Bubbles data: Scheffé model coefficients estimated by Scheffé polynomial fitting by
means of OLS, Cox polynomial fitting by means of PLS and K-PLS

Scheffé model fitting by OLS Cox model fitting by PLS  K-PLS

B -1.49 -1.49 -1.49
B, 2.35 2.35 2.35
Bs -1.35 -1.35 -1.35
Bs 2.11 2.11 2.11
B> 2.08 2.08 2.08
Bis 14.55 14.55 14.55
B1a 7.51 7.51 7.51
Bas 6.70 6.70 6.70
Bas 2.63 2.63 2.63
Bss 7.82 7.82 7.82
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Table 6.20. Gasoline data: R*, 0> and RMSECV values resulting from second-order Scheffé model
fitting by means of OLS, second-order Cox model fitting by means of PLS, first-order (plus inverse
terms) pseudo-component Scheffé model fitting by means of OLS, first-order (plus inverse terms)
pseudo-component Cox model fitting by means of PLS, and RBF K-PLS. If required and feasible (i.e.
a sufficient number of degrees of freedom was available), non-linearity degree (tuned through the
value of the ¢ parameter in RBF K-PLS) and complexity (number of latent variables) were optimised
within a leave-one-out cross-validation loop.

#LV R> O° RMSECV

Second-order Scheffé model (OLS) - 0.85 -1.42 12.40
Second-order Cox model (PLS) 2 0.99 -0.91 11.02
First-order (plus inverse terms) pseudo- - 0.98  0.88 2.73
component Scheffé model (OLS)

First-order (plus inverse terms) pseudo- 5 0.99 0.82 2.73
component Cox model (PLS)

RBF K-PLS second-order model (o = 2) 8 0.99 0.82 3.46

6.2.3.6  Data simulated according to a highly non-linear model

This section will be focused on further emphasizing the added value of K-PLS with
respect to the other methodologies concerned. The outcomes yielded by the application
of Scheffé model fitting by means of OLS, Cox model fitting by means of PLS, and K-
PLS to the second simulated dataset are reported in Table 6.21.
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Table 6.21. Data simulated according to a highly non-linear model (generation scheme in Equation
6.7): R*, 0* and RMSECYV values resulting from second-order Scheffé model fitting by means of
OLS, second-order Cox model fitting by means of PLS, first-order (plus inverse terms) pseudo-
component Scheffé model fitting by means of OLS, first-order (plus inverse terms) pseudo-
component Cox model fitting by means of PLS, and RBF K-PLS. If required and feasible (i.e. a suffi-
cient number of degrees of freedom was available), non-linearity degree (tuned through the value of
the o parameter in RBF K-PLS) and complexity (number of latent variables) were optimised within a
leave-one-out cross-validation loop

#LV R* O RMSECV

Second-order Scheffé model (OLS) - 0.95 0.56 2.14
Second-order Cox model (PLS) 5 0.99  0.56 2.14
First-order (plus inverse terms) pseudo- - 0.69 -1.11 4.71
component Scheffé model (OLS)

First-order (plus inverse terms) pseudo- 1 0.96 -0.06 3.35
component Cox model (PLS)

RBF K-PLS second-order model (o = 0.2) 7 0.98 0.61 1.83

The R?, Q2 and RMSECYV displayed values corroborate what was stated before about
K-PLS: when strong non-linear relationships (e.g. fourth order, logarithmic, etc.) char-
acterise the data under study, it may outperform in terms of fit and prediction quality
both Scheffé model fitting by means of OLS and Cox model fitting by means of PLS.
This applies even if first-order Scheffé or Cox models including inverse terms are fit-
ted. Notice that here a RBF kernel transformation and not a polynomial one was found
to guarantee the best Q2 and RMSECV. As already mentioned, RBF K-PLS requires
the optimisation of an additional parameter, . The variation of such a parameter allows
different types of complex trends to be modelled, thus its utilisation might be highly
recommended when combinations of unknown non-linearities influence the interde-
pendence between ingredient proportions and properties of interest.

6.2.4. Conclusions

In this section a novel approach for the analysis of data proceeding from mixture de-
signs of experiments and based on the combination of KPLS and pseudo-sample trajec-
tories was proposed. Two interesting points arose from the discussed examples:

e if the considered mixture data were not affected by severe nonlinearities
and/or featured a sufficiently high number of observations, K-PLS and pseu-
do-sample trajectories yielded very similar results to classical Scheffé model
fitting by means of OLS and Cox model fitting by means of PLS (see Sections
6.2.3.2, 6.2.3.3 and 6.2.3.4). A way of recovering the parameters of a Scheffé
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model (provided that it holds and has the same complexity as the K-PLS one)
from the trend of the pseudo-sample trajectories was also derived and validat-
ed via a simulated case-study (see Section 6.2.3.1);

on the contrary, when more non-linear and relatively small data structures had
to be analysed, K-PLS proved to be a valid alternative for overcoming the
main limitation of both Scheffé model fitting by means of OLS and Cox model
fitting by means of PLS (see Sections 6.2.3.5 and 6.2.3.6): it resulted, in fact,
in better fit and prediction quality when the nature of such non-linear data was
not strictly polynomial. In addition, although the performance of these more
classical methodologies can be improved by taking into account inverse terms,
often not enough degrees of freedom are available for a stable estimation of
the coefficients of these augmented models. K-PLS does not suffer from the
same drawback. On top of that, RBF K-PLS through the optimisation of its pa-
rameter, o, may allow different types of complex nonlinear relationships to be
modelled. Its use might then be highly recommended when combinations of
unknown non-linearities influence the nature of the interdependence between
constituent proportions and response variables.

Finally, it was also shown how graphs like the surface plots or the trace plots associat-
ed to the mixture design space can be retrieved by the pseudo-sample trajectories ena-
bling a reliable interpretation of the effect of changing the proportion of the different
ingredients of the blend on its properties of interest.
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Chapter 7

MiDAs: a software for
mixture DOE and data
analysis

7.1. Introduction

The name of this tool stands for Mixture Design and Analysis. MiDAs is a Matlab-
powered software with graphic interface that allows to easily approach mixture design
problems for the construction of model-based and space filling Designs of Experiments
(DOE), as well as to analyse mixture design data using traditional approaches such as
OLS (simply referred to as Multiple Linear Regression, or MLR, inside the software
itself) and by Partial Least Squares. Although performing these studies requires some
knowledge in statistics in general, and mixture design in particular, the aim of this
software is to provide its users with an easy way to apply the tools it offers without
requiring extensive knowledge of Matlab or other mathematical programming soft-
ware, and without requiring having Matlab itself to do so.

MiDAs is structured in two main modules, the first of which is dedicated to the con-
struction of mixture DOEs (including DOEs for mixture problems which also include
process or amount variables), and the second dedicated to mixture data analysis. The
main menu of the software, shown in Figure 7.1, clearly differentiates both modules.
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4| MiDAs: Mixture Design of Experiments - main menu lk - X
File N
MiDAs
Mixture Design of Experiments
DOE
Variable Input
MODEL
DOE ‘
Analysis
Analysis |

Exit

Figure 7.1. MiDAs main menu

The main menu provides 3 options for creating or modifying designs, as well as one
option for the analysis of mixture data:

92

Variable Input: this option permits introducing the mixture constituents as
well as process variables (no differentiation is made here between ‘process
variables’ and ‘amount variables’), and univariate and multivariate restrictions
on them, which will determine the shape and size of the experimental space.

MODEL: this option allows selecting a model given the previously defined
variables, and including or excluding terms of the model once selected. Alt-
hough a space filling design may be desired, choosing a model is still needed,
even if it will not affect the final DOE.

DOE: given the defined variables, constraints on them and the model in previ-
ous options, this option will suggest a Design of Experiments, although the us-
er may want to (and can) specify a different one selecting some optimality cri-
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terion, the number of experiments that will constitute the desired DOE, and
fixing some other parameters depending on the kind of DOE.

- Analysis: this option allows fitting different mixture models with MLR and
PLS if the appropriate data is provided.

The main menu also presents the possibility of saving the current project into a MAT
file or to load data from a MAT file from a previous project.

4 MiDAs: Mixture Design of E
File

Load MAT file

Save to MAT file

Mixt

Figure 7.2. Main menu - File menu

The following subsections detail the tools provided by each of these four options.

7.2. Variable input

As seen in Figure 7.3, The window “Variable Input” has three tabs: “Variables”, “Uni-
variate Restrictions” and “Relational Constraints”, which must be resorted to sequen-
tially. The selected tab will be highlighted in bright green colour.

4. MiDAs: Data_Input - O X
File ~
DATA INPUT
Univariate = Relational
Restricions Constraints
Variables
Add Delete Selected Save
Type Label Name LongName

Figure 7.3. Data Input window - Variables tab
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To introduce new variables or modify the information of existing ones, one must click
on the “Variables” tab, then “Add”. This will generate a new register with default val-
ues, as seen in Figure 7.4.

Variables
Add Delete Selected = Clear All Save
Type Label Name LongName

me Name_1 LongName 1

Figure 7.4. Data Input window - Variables tab. Add variable

The values for this register can be modified, and as many new registers as required can
also be added before or after modifying the existing ones. The ‘properties’ of each
register are:

Type: “Mixture” or “Process”. Select one from these in the dropdown menu
(see Figure 7.5).

Label: short identifier for the variable, to be used later on in other windows. If
changed, the new label must be as short as possible and not include blanks nor
special characters. Clicking on the cell permits changing it.

Name: short name, to be used later on in other windows. It should be short but
enough to identify the component or process, and it may be used in some re-
ports of interest for the user. Clicking on the cell permits changing it.

LongName: a more elaborate description of the corresponding variable, in
case the user requires adding some clarification. It will not be used on any re-
port nor window. Clicking on the cell permits changing it.

Type Label Name LongName
Mixture ~ mv1 DWLA1 Dishwashing Liquid 1
Mixture v mv2 DWL2 Dishwashing Liquid 2

Mixture i, mv3 w Water
w mv4 G Glycerol

Process

Figure 7.5. Data Input window - Variables tab table. Select variable type
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The button “Save” allows saving all changes. Trying to move to a different tab will
make a window pop up if changes have not been saved, as this is necessary to continue.
This does not, however, save the data to a project file. To do so the option “File” must
be used

The button “Clear All” clear all inputs the information introduced up until now. It will
not overwrite any existing data in the project file.

The button “Delete Selected” deletes from the list the last clicked on register, which
will have some cell highlighted in blue to indicate it has been selected. It will not
overwrite any existing data in the project file.

To introduce new univariate restrictions, the “Univariate Restrictions” tab must be
clicked if it is not active already. This tab, which can be seen in Figure 7.6, can be used
to modify lower and upper bounds imposed on all variables as required.

DATA INPUT

Univariate  Relational
Variables Restricions Constraints

Univariate Restrictions (original)
O Names @ Labels

1 v Set NewSet Reset Save
Type LBound UBound
mvl [Mixture 0.1 0.3
mv2 (Mixture 0.1 0.3
mv3 |Mixture 02
mvd [Mixture 0.2 04
4*'9

Figure 7.6. Data input window - Univariate Restrictions tab (original).

Row labels can show the short name or the label for the variables. Change this at any
time by clicking on radio buttons “Names” or “Labels”. Default values are set to 0 for
lower limit and 1 for upper limit.

More than one set of bounds can be defined (see Figure 7.7). Clicking on “NewSet”
allows creating a new set of bounds, while the dropdown menu “Set”, with the num-
bers associated to the different sets, permits selecting which list of bounds (from the
ones already defined) will be used later on.
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Univariate Restrictions (original)
O Names @ Labels

2 v@et Reset Save

Type LBound UBound

mv2 |Mixture
mv3 (Mixture
mvd (Mixture

o O O O
- eh b b

Figure 7.7. Univariate Restrictions. Change set
The button “Reset” sets the lower and upper bounds values to default.

The button “Check Restrictions” (see Figure 7.8) computes the consistent bounds.

Univariate Restrictions (original) Univariate Restrictions
ONames @© Labels ONames @® Labels
1_viSet  NewSet @ Reset = Save
Type LBolind | UBound Type LBound | UBound
Name1 |Mixture 0.1 0.3 mvi_ Mixture 0.1 03
Name2 |Mixture 0.1 03 mv2 Mixture 0.1 03
Name3 |Mixture 0.2 0.4 m3 (Mixture 0.2 04
Name 4 |Mixture 0.2 04 mv4 |Mixture 0.2 04
(4 Warning Dialog = X
& The mixture space is not a simplex
Check Restrictions Original

e vAnADIeS eSO "

Figure 7.8. Univariate Restrictions. Check Restrictions

MiDAs notifies if any errors in the bounds make it impossible to continue with the
creation of the design, for example when the ways the restrictions are defined generate
an empty mixture space. It will also inform the user whether the mixture space is an L-
simplex, a U-simplex, not a simplex, if it is constituted by a single mixture of if it is
void, via a pop up window. It must be noted that this button evaluates the shape of the

mixture space by also accounting for any active “Relational Constraints”.
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Clicking on the button “Original” shows again the original restrictions.

In addition to univariate restrictions, defining multivariate ones (here called ‘relational
constraints’) is possible. To add or modify already existing relational constraints click
on “Relational Constraints” tab. By default, the values of the coefficients that accom-
pany each variable in the constraint are initially set to zero, the constraint is assumed to
be an equality one (‘=’), and the ‘objective’ value (i.e. the one the linear combination
of variables must be equal to or lower/higher than) is also set to zero. Additionally, the
new relational constraint is set to ‘inactive’ (see Figure 7.9).

DATA INPUT

Univariate
Variables Restricions

Relational Constraints @Names O Labels

1 v Restriction New Reset Save
[J Active Restriction
Restriction Relation
coefi REL 0BJ
DWL1 |1 >= v.3
DWL2 =
w 0 <=
5 0

Figure 7.9. Relational Constraints

By clicking on a cell, the value within it can be changed. To change the type of con-
straint, the dropdown menu below ‘REL’ must be clicked, and one of the options se-
lected (‘=’, ’<=’, >>=’). Clicking on ‘Save’ will save the relational constraint. It is also
possible to add more restrictions by clicking on “New” (see Figure 7.10).

DATA INPUT

Univariate
Variables Restricions

Relational Constraints @Names O Labels

2 Restriction New Reset Save
Active Restriction
ion Relation
coefi REL 0oBJ
owL1 <= v
pwL2 (1
w |0
G |0

Figure 7.10. Relational Constraints
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Multiple restrictions can be defined this way, but the model will consider only those
flagged as “Active Restriction”. If after defining the restrictions (univariate or relation-
al) new variables are added or existing ones are deleted, or a new data file is loaded, all
the defined restrictions will disappear and will have to be re-entered again if necessary.
The perfect collinearity restrictions in Equation 5.1 among mixture variables is defined
internally and therefore it is not necessarily for the user to include it among the rela-
tional constraints they may want to impose.

7.3. Model selection

Back at the main menu, and once information on variables (with at least 3 mixture
variables) and restrictions has been introduced, the option “Model selection” can be
accessed. MiDAs will propose the most simple model that can be defined while includ-
ing all variables introduced in the “Data Input” menu by default, but a different model
can be chosen nonetheless (see Figure 7.11).

MODEL SELECTION

Mixture Model
cubic (Scheffé canonical polynomial) v
Process \ linear (Scheffé canonical polynomial)

quadratic (Scheffé canonical polynomial)
special cubic (Scheffé canonical polynomial)

cubic (Scheffé canonical polynomial)
quartic (Scheffé canonical polynomial)

ONames @ Labels

Included Excluded
- | ~

mv2 ->
mv3

mvé4

myv1*mv2

mv1*mv3

mv1 * mvé

mv2 * mv3

mv2 * mvé

mv3 * mvéd

mv1 *mv2 * (mv1 - mv2)
mv1*mv3 * (mv1 - mv3)
mv1 *mv4 * (mv1 - mv4)

Figure 7.11. Model Selection.

In case there are process variables a list of proposed models for them is also shown in
the “Process Variable Model” popup (see Figure 7.12). MiDAs will propose the mix-
ture-process variables model that combines both models in a multiplicative way.
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MODEL SELECTION

Mixture Model

linear (Scheffé canonical polynomial) v
Process Variables Model
linear polynomial i

Include/Exclude
Terms {t’)

®@Names O Labels
Included Excluded

—=

Figure 7.12. Model Selection with process variables

MiDAs will fill the dropdown menu for Model Selection with the corresponding model
terms, based on the number and type of variables introduced before. Nonetheless, the
user may be interested in excluding some of the terms of the complete model (see Fig-
ure 7.13). To do so, the term to be excluded must be clicked on, and clicking on the
arrow pointing to the right will exclude such term and all other terms that depend on it
according to the principle of hierarchy. The list of included terms is stored in a work-
space variable to be used in the DOE.

MODEL SELECTION
Mixture Model

special cubic (Scheffé canonical polynom... v
Process Variables Model

Include/Exclude
Terms

ONames @ Labels
Included

my1
mv2
mv3
mvé

Figure 7.13. Model Selection. Include/exclude terms
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7.4. DOE construction

Once the model has been selected, the DOE option in the main menu can be accessed.
By clicking on it, MiDAs will make use of the data introduced via the Data Input and
Model Selection windows and suggest a DOE, referred to in the software as the “origi-
nal” one (see Figure 7.14), which can be modified by the user later on. Depending on
the mixture space being a simplex or not, the presence of process variables or not, and
the model selected, MiDAs may propose one of the simplex-based DOEs presented in
Section 5.4.1, or will propose a list of optimality criteria to choose from (D-optimal, I-
optimal or distance-based, for a space filling DOE) to construct a DOE via the “Opti-
mize” tab.

DOE
D-Optimal design v

Original Optimize
Original Design Export to EXCEL
mvl mv2 mv3 mv4

0.1000 0.2000 0.3000 0.4(A
0.1000 0.2000 0.4000 0.3(
0.1000 0.3000 0.2000 0.4(
0.1000 0.3000 0.4000 0.2(
0.2000 0.1000 0.3000 0.4(
0.2000 0.1000 0.4000 0.3(
0.2000 0.3000 0.2000 0.3(
0.2000 0.3000 0.3000 0.2(
0.3000 0.1000 0.2000 0.4(
0.3000 0.1000 0.4000 0.2(
0.3000 0.2000 0.2000 0.3(
0.3000 0.2000 0.3000 0.2(
0.1000 0.2000 0.3500 0 35 v

[o[= [ o[

]

|

|

[§]

|

b}

Proposed design q=4
Base design points: 54

Included model terms: 14 Plot Design

A design of experiments with at least 14 experiments is recommended
Figure 7.14. Design of Experiments. Original proposed design

In all cases, a table with the points of the proposed design will be made visible, and a
count of the number of points will appear next to the number of terms included in the
model. If there are less than two or more than four mixture variables, a warning is dis-
played informing that the graphical representation of the design is not possible. Other-
wise, the option “Plot Design” can be clicked on to visualize the DOE in the mixture
space (see Figure 7.15).
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4 Figure 1: Aristas - m} X

File Edit View Inset Tools Desktop Window Help N

S IR R AR ED

\_—

mv3

Figure 7.15. Original proposed design plot

By clicking in “Optimize” tab, a new proposed design will be obtained based on the
number of points of the desired design, and the number of iterations and max. length of
excursion when the point-exchange algorithm is used to construct it. After setting new
values for points, iterations and max.length of excursion, clicking on “Optimize” will
provide the optimized DOE as well as its D-efficiency and G-efficiency (see Figure
7.16). If the graphical representation is possible, the optimized DOE can be viewed by
clicking on “Plot Design” in this same tab (see Figure 7.17).

To save all the work done up until now, the option “Save to MAT file” in the menu bar
option “File” must be selected. The DOE can also be exported to an excel file by click-
ing on the button “Export to EXCEL”, and all the data related to this design may be
accessed later by loading a saved mat file from any other Matlab program or by import-
ing the data from the EXCEL file.
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cocooooooo0oo0 ok

Figure 7.16. Optimized design

Figure 1: Aristas - ] X
File Edit View |Insert Tools Desktop Window Help k]
NEEe | s RARUDEL- 3|08 a1

Figure 7.17. Plot optimized design
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7.5. Data analysis

The option “Analysis” allows fitting different models using MLR or PLS if the appro-
priate data is provided. The main menu is shown in Figure 7.18.

4] MiDAs: data analysis

Data Entry

Load / View variables info Load X/Y data

2 - Choose model 3 - Addiremove terms from chosen model
KIND OF ANALYSIS Included Terms Excluded Terms

Muliple Linear Regresion v PRIV -
N

MODEL

Mixture Model
lineal (Scheffé canonical polynomial) v

Process Variables Model
lineal (Scheffé canonical polynomial) v

List Model Ter%s

REFERENCE MIXTURE

Exit

Figure 7.18. Data Analysis

From the main menu experimental data from a previously constructed DOE of from an
Excel file can be retrieved. If such data is loaded from an Excel file then the upper and
lower bounds and multivariate/relational constraints must be defined. Two options
exist the load the data:

- Load/ View variables info

Pressing on “Load / View variables info” opens the screen “Regress Variable Info”,
which can be seen in Figure 7.19.
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4] MiDAs: Regress Variables Info - O X
File
REGRESS VARIABLES INFO
Univariate = Relational
Restricions Constraints {b
Variables
Save
Type | Label | Name | LongName
< >
Output
Type | Label | Name | LongName
< >

Figure 7.19. Regress Variable Info screen

By clicking “File” on the menu bar and then “Load mat file” (see Figure 7.20), data
from previous analysis can be retrieved. “Save as” can be used to save the data of the
current analysis in a .mat file. “Load DOE mat file” permits getting the data generated
in a previous DOE project in MiDAs.
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4 MiDAs: Regress Variables Info
File

Load mat file

Save as @

Load DOE matfile MABLES INFO

Univariate Relational
Restricions Constraints
Variahlace

Figure 7.20. “File” options

When loading data from a DOE previously generated using MiDAs it will be necessary
to add the output variables and check, modify or add univariate and multivariate re-
strictions additional to the ones in the corresponding DOE project file.

- Load X/Y data

If this option is selected, experimental data will be loaded from an EXCEL file (see
Figure 7.21)

Y| MD_Regress_Data_Input
File

Imort Data from EXCEL

Add Var Delete Var

Variable Type Included

Figure 7.21. Load X/Y data screen

Clicking on “Import Data From EXCEL” will show the menu in Figure 7.22, where it
is possible to select an Excel file through the option “Select EXCEL”, and then click
on the Excel sheet from which the data will be taken by pressing “Load Sheet”. If the
first line of the Excel sheet contains variable labels, ticking the “With headers” check-
box will allow saving these labels. The loaded experimental data can be modified by
clicking on the cells containing the values to edit them.
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4
File 4 MD_Regress_Data_Excel — X
=B
N
Add Var Delete Var Select EXCEL
~
Variable Type Included
v N
& v
o J With headers
Load sheet
Exit

Figure 7.22. Excel file selection

By default, all variables will be set as mixture type (see Figure 7.23), and therefore
variables of other types must be changed to “Process” or “Output” accordingly. The
variable labels can also be edited, and more variables added. Variables can also be
excluded from the following analysis.

4. MD_Regress_Data_Input

File
Imort Data from EXCEL
Add Var DV DWL1 DWL2 w G T 0o
1 0,300b 0.1000 0.4000 0.2000 150 1080
Variable Type Included 2 0.2000 0.2000 0.2000 0.4000 140 1150
DWL1 Mixture v Includec~ | 3 0.1000 0.3000 0.4000 0.2000 128 1070

DWL2 Mixture v Includec
Mixture v Includec -
Mixture v Includec - L\*
Mixture ~ Includec -
Mixture v Includec -

o o=

Figure 7.23. Analysis data input screen

To modify labels, clicking on the corresponding cell is enough to be able to change it.
To change type, the “Type” popup should be opened for the corresponding variable
and the correct one chosen from the list. To exclude a variable, the “Included” popup
can be pressed to select “Excluded”, and vice versa (see Figure 7.24).
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Variable
DWLA1
DwWL2

o - o=

Type Included
Mixture v Includec
Mixture v~ Includec ™
Mixture v Includec
Mixture v~ Includec

Mixture v Includec -

Mixture |Includec

Output

Figure 7.24. Change type and include

2
3

nv7

Output v Includec ~
Mixture v Includ... ¥

» Excluded

Data of variables marked as “Excluded” cannot be edited, and the corresponding col-
umns will be highlighted in red (see Figure 7.25).

Add Var Delste Var oW1
1 0.3000
Variable Type Included 2 0.2000
DWL1 Mixture v~ Includec 3 0.1000
DWL2 Mixture v Includec
W Mixture v Includec
G Mixture v Includ
T Proces:¢~ Includec
(0} QOutput ~ Includec
mv7 Mixture ~

Figure 7.25. Sample input data screen

DWL2

0.1000
0.2000
0.3000

w G T [0} mv7
0.2000  0.3000 150 1080 SN
0.3000  0.4000 140 1150 S
04000  0.2000 128 1070 G

Once finished, simply closing this screen will save the loaded data and make it availa-
ble for posterior analysis.

If any changes are required regarding the constraints that define the experimental
space, they can be done by clicking on “Load/View variable info” in the main analysis
screen. Doing this will open the window shown in Figure 7.26, which now contains the
information regarding the variables from the loaded experimental data (either from a
DOE MiDAs project or from an Excel file). If the data comes from an Excel file,
MiDAs will automatically set lower and upper bounds equal to the minimum and max-
imum values from the experimental data matrix, respectively.
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4| MiDAs: Regress Variables Info — [m} X 4| MiDAs: Regress Variables Info - [m}
File [ File
REGRESS VARIABLES INFO REGRESS VARIABLES INFO
Univariate = Relational ) Univariate = Relational
Variables Restricions Constraints Variables Restricions Constraints
Variables Univariate Restrictions (original)
Save
1 v Set  NewSet Reset Save
Type Label Name LongName Type LBound UBound
Process T i i T |Process 128 150
Mixture DWL1 DWL1 DWL1 pwL1 |Mixture 0.1 0.3
Mixture DWL2 DWL2 DWL2 pwi2 |Mixture 0.1 0.3
Mixture W w w W |Mixture 0.2 04
Mixture G G G G |Mixture 02 04
< >
Output
Type Label Name LongName |
Output O (0] (o} Check Restrictions
< )‘

Figure 7.26. Review and change univariate restrictions

It must be noted that the information in this screen regarding the type and label of each
variable cannot be modified here. If any of them needs changing, this will have to be
done in the screens seen in Figures 7.23 to 7.25.

Multivariate/relational constraints are never considered if the data comes from an Excel
file (except for the perfect collinearity restrictions in Equation 5.1 among mixture vari-
ables), and must therefore be added, if needed, or modified if required when the data
has been retrieved from a pre-existing analysis or DOE project in MiDAs. This is done
in the corresponding tab, which has the same aspect as the one in Figure 7.10.

Finally, the button “Check Restrictions” ought to be pressed so that the consistent lim-
its are calculated, the simplex condition is checked, and a reference mixture (coincident
by default with the centroid of the mixture space) and list of terms are proposed. By
default the simplest model structure that can be considered with all variables involved,
to be fit via MLR, is proposed. This will result in the main analysis window looking
similar to the one in Figure 7.27.
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4. MiDAs: data analysis - m] X |

Data Entry N

Load / View variables info Load X/Y data

2 - Choose model 3 - Add/remove terms from chosen model

KIND OF. ANALYSIS. - Included Terms Excluded Terms
Muliple Linear Regresion 2 M mt B izl ~
mv2 . mvi * mv3
mv3 mv1 * mvd
v mv2 * mv3
MODEL vt *pul mv2 * mvd
Mixture Model mv2 *pvt zﬁ . 2:; o
quadratic (Scheffé canonical polynomial) v m ,;q mvl * mv3 *51
Process Variables Model m; * zz‘; le
linear polynomial v mv2 * mvd *pvl
mv3 * mvd *pv1
v v
List Model Terms
REFERENCE MIXTURE Fit model

0.3333 0.3333 0.3333

Influded terms: 1
Residual degrees of freedom: 0

Exit

Figure 7.27. Start Data Analysis
- Choose the analysis method (MLR or PLS)

By default, MiDAs assumes that the model will be fitted via OLS, and the appropriate
model structure is proposed. However, the user can define a base model (for mixture
and process variable separately if the method “Multiple Linear Regression” is selected,
or for both types of variables without distinctions if PLS is chosen).

Once the base model to be adjusted has been chosen, clicking on "List Model Terms"
will generate the corresponding list of terms, some of which can be discarded if the
user desires to do so (always respecting the hierarchical principle among terms con-
cerning mixture variables). If MLR is resorted to and there are more terms in the model
than observations in the experimental dataset, a warning will appear informing the user
that the analysis cannot continue until enough terms have been eliminated from the
model or more observations are included into the data table. If there are enough data to
fit the model, the "Fit Model" button is displayed. Pressing it will open another screen,
which will be different depending on whether the model is fitted using MLR or PLS.
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7.5.1. Data analysis with MLR

The MLR Model window shows the results from fitting the selected model with the
available data via OLS and, as seen in Figure 7.28, is separated into 4 parts. In the up-
per left corner, the model summary is available with the model parameters estimates, as
well as the values for R* and Rz-adjusted. The results of the ANalysis Of VAriance
(ANOVA) appear in the lower left side of the screen. A table of residuals is shown on
the lower right side. In the upper right area, the traces plot can be seen. To the right of
this graph, when there are process variables, sliding cursors (one for each process vari-
able) are displayed to choose different values of the process variables, and a button to
repeat the trace graph once the values of the process variables have been changed to the
desired ones.

& MDAz MODEL FIT - UNIVARIATE ANALYSSS - D x
Madel Summary Plot Tazas
249
Estimate 15tat pValhoe S Process variable 1
- = 248 c| =1 ]
B v 1
c
VA 3 12018 E 247
VB T 4047 L rrad L] =
vC 85050 423650 3 2.46
-
g
245
244
243 . " " - "
RA2= 075254 Re2(adj)= 068351 0.3 - 0TS S o L1
Composition Refresh PLOT
Residuals
oF Faw Pearscr | Studentized Standarc
1 1 00127 02148 02856 0 A
1 2 20854 £.0840 ¢
. 3 53 2.6025 &
1 4 1
0 1 ] <
v o 1 L] 1
= ras N Residuals PLOT
0 2048 2 2
1 -£.05N L9072 -£.9879 £, Contour PLOT
< 5 ¢ >
sumsq OF  Meansq F pValue
0031874 91234 00001151
18 8 0034037 Comelation Matrix |
3

; 0041035 924199 00450087 Exit
0 00044401

Pure Erroe 0001

Figure 7.28. MLR

The “Contour” button to the right of the residuals table allows plotting the representa-
tion of the contours plot of the response surface for the model obtained (see Figure
7.29), after the proportions for all but 3 mixture components, and the values for all
process variables, are fixed.
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Figure 7.29. Contour plot

The "Residuals Plot" button, also to the right of the residuals table, displays when
pressed a normal probability plot of the studentized residuals (see Figure 7.30).

{4 Figure 1: Normal Probability Plot for Studentized Residuals - [m] X
File Edit View Insert Tools Desktop Window Help k]
NSHS (M ARANBDEL- (S| 0E ad
Normal Probability Plot
0.98 -
0.95
0.90
0.75
>
=
<]
_g 0.50
o
025
0.10
0.05}F + | :
7
0.02f+ ! 3
| L ) | L | | L |
25 -2 45 -1 05 0 0.5 1 15
Studentized Residuals

Figure 7.30. Normal probability chart of studentized residuals
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Below the residuals table appears the "correlation matrix" view button, which repre-
sents the matrix of correlations between the parameters of the adjusted model (in the
same order in which they are listed in the model summary table). If the adjusted model
is linear, without process variables, and no terms have been removed from the model,
the "summary RL (Scheffe-Cox)" view button also appears, which provides the table
shown in Figure 7.31, that contains the Scheffé coefficients and the orthogonal and
adjusted effects for the linear model, as well as the coefficients of the Cox model and
the corresponding total and adjusted effects, with respect to the reference mixture in-
troduced in the main analysis window.

DyAM: RESUMEN RL SCHEFFE COX (Daniel Palaci - Septiembre 2013) Lo

Resumen RL Scheffe Cox

Scheffe Coefficient Orthogonal Effect Adjusted Effect Cox Coefficient Cox Effect Cox Adjusted Effect
0 0 0 23709 0 0

31582 -1.97173 0.7909 0.7872 1.1808 04723

27188 21970 08788 03478 05218 0.2087

12359 29385 11754 1.1351 1.7026 06810

B wine-

Sar

Figure 7.31. Sample of Scheffé and Cox summary table of linear regression

7.5.2. Data analysis with PLS

If the model is fitted via PLS, a window similar to that of the MLR is shown instead,
where the model summary also includes the value of the QZ, and the possibility to as-
sess the adequacy of selecting more or less latent variables (considering, at most, as
many as indicated in the main analysis window when fitting the model) via cross-
validation.
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Preliminary considerations

Chapter 8

Preliminary
considerations

Part of the content of this chapter has been included in:

1. Palaci-Lopez, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental
approach to improve the design space estimation using latent-variable model in-
version. Part I. Defining the Experimental Region. Submitted.

8.1. Quality by Design and the Design Space

The term Quality-by-Design (QbD) [83] has its origin in the pharmaceutical industry,
and refers to an initiative that promotes the implementation of science-based method-
ologies to deliver products with the desired specifications by increasing the process
flexibility and robustness, understood as the capability to tolerate changes in the mate-
rials involved and processing conditions (i.e. the inputs) without negatively affecting
the quality of the outputs. In this context, the Design Space (DS) is a key concept de-
fined as “the multidimensional combination and interaction of input variables (e.g.,
material attributes) and process parameters that have been demonstrated to provide
assurance of quality” [84]. The philosophy of the QbD, however, is not limited to the
pharmaceutical field, but can be extended to any process where it may become relevant
to find the most convenient combinations of inputs that guarantee the desired outputs
(i.e. almost any manufacturing process).

An important point must be highlighted with respect to this, because applying the QbD
approach requires proper understanding of the process it will be applied to. This ap-
proach is meant to be used in an active environment, where a model is used for control,
optimization or the design of new products, when the desired properties are known, and
the way to obtain has to be defined, as opposed to passive environments in which the
model would be used for, e.g., calibration or monitoring purposes. Therefore, any al-
ready available model ought to be inverted, since at this point it will not be used to
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predict a process outputs from some specific inputs, but to define the necessary inputs
to achieve some specific outputs.

On the other hand, because of the way the DS is defined, this subspace is expected to
comprise a subregion of the domain defined by the set of historical products that have
already been developed [85,86], also referred to as knowledge space (KS)*. This, as
well as the fact that in most cases a product is required to meet several specifications
simultaneously, requires three scenarios to be considered, among which only one of
them will guarantee the existence of the DS:

1. If at least one of the specifications on the outputs for a given hypothetical
product cannot be met, independently of the inputs, the DS cannot be said to
exist. Only relaxing or modifying entirely the restrictions imposed by such
specifications may lead to the existence of a DS (although not for the product
as initially defined).

2. If the specifications on the outputs for a given hypothetical product can only
be met if operating outside of the KS, the DS cannot be said to exist, since it is
assumed to be a subregion within the KS, not outside of it. However, whenev-
er possible, expanding the KS by modifying the operating conditions such that
the subregion of operating conditions that guarantee the desired product falls
within it may, at least theoretically, enable the definition of the DS.

3. [If all of the specifications on the outputs can be simultaneously met within the
KS, the DS exists and may be comprised by a single combination of inputs
(i.e. the dimensionality of the DS is equal to zero, or a single point) or differ-
ent combinations of inputs (i.e. the dimensionality of the DS is equal or greater
than one, a line, and at most that of the KS)

The DS, when it exists and its dimension is higher than zero, may be understood as the
subspace of the KS within which any set of inputs leads to equally valid outputs in
terms of meeting the defined specifications, therefore providing flexibility until addi-
tional constraints or some optimization criteria are considered. Thus, in some way, the
DS may be interpreted as the set of all equally optimal solutions of an optimization
problem.

Consider, as an example, the following polynomial model defining a hypothetical in-
put-output causal relationship, used in one of the examples in [87]:

X This definition of the DS assumes that the desired quality attributes are defined such that they can be obtained from products
similar to the already produced ones in the past. In practice, the goal may be finding the most appropriate operating conditions to
achieve new, significantly different products from past ones. While this is not an scenario accounted for in the present thesis, this
must be considered outside of the context of this work.
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y=-21+43-x+0.022-x,—-0.0064-x3 +1.1-x,—0.12 - x5 o1

St X3 =X7 ; X4 =X5 5 Xs = X1 X, 6D
where y represents the ‘quality attribute of interest’ expressed as a function of the input
variables x;, x5, X3, X, and x5. Notice that, although non-linear terms (interaction and
quadratic terms) are included in Equation 8.1, this model is still linear in its parameters,
and that only two of the five inputs (x; and x,) are independent. Figure 8.1a illustrates
the results from plotting the response surface plot corresponding to the quadratic model
including the terms xy, x5, x7, x5 and x; - x,, by using noiseless data following Equa-
tion 8.1 without uncertainty in its parameters. Figure 8.1b shows the DS for a desired
output ypgs = 204.86, as well as the DS for the more realistic case 184.86 < ypgg <
224.86 (i.e. in practice, the DS usually encompasses ranges of acceptable values for
the different quality attributes of interest, instead of specific ones), obtained after in-
verting Equation 8.1.

a) b)

o 15 30 45 60 75 90
Xy

Figure 8.1 a) Response surface plot for the model in Equation 8.1 in the experimental domain corre-
sponding to x; ranging from 0 to 90 and x, from 0 to 20, and its intersection with the planes corre-
sponding to y=204.86 (green curve), and y=184.86 and y=224.86 (lower and upper red curves respec-
tively), and b) design space, which contains all combinations of {x;, x,} leading to y=204.86 (green
line), y=184.86 and y=224.86 (lower and upper red curves respectively) and any combinations of {x,
X, } leading to values for y between y=184.86 and y=224.86 (grey area)

As can be seen, if a range of values for the outputs within specified limits were is
deemed acceptable instead of a single value, the DS is constituted by the union of the
regions defined by the contour lines corresponding to the whole range of acceptable
values within the specified limits (e.g. in Figure 1b, the grey area delimited by the two
red curves).

Consider a more general example to illustrate the differences between the knowledge
space, the design space and the so-called Normal Operating Conditions (NOC), assum-
ing a process with only two input variables, x; and x,, and two output variables y; and
v, (see Figure 8.2).
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0
X1 Y1

O Knowledge Space (KS) O Normal Operating Conditions (NOC)

O Acceptable product Space D Univariate historical limits

Figure 8.2 Hypothetical Knowledge Space (KS), Normal Operating Conditions (NOC), ‘acceptable
product space’ (which is equivalent to the Design Space (DS) in the X space), and univariate histori-
cal limits in both the inputs (X) and outputs (Y) spaces for a generic production process with only two
input and two output variables involved.

In Figure 8.2, the NOC are differentiated from the KS in that the KS is constituted by
all possible combinations of operating conditions the process has ever been run under,
and the characteristics of the product (y; and y,) achieved, while the NOC represents
only the subset of different combinations of inputs under which the process “currently”
operates. Note that, as is usually the case in practice, a small portion of the production
in NOC is outside of specifications (i.e. outside of the ‘acceptable product space’),
which are usually univariate. Furthermore, there is a larger region in the inputs sub-
space that would also guarantee the desired quality of the product, but is outside of the
subspace of the NOC. This means that a proper definition of the DS would, in this
example, increase the flexibility in the way the process is operating, while guaranteeing
the desired outputs.

8.2. Limitations of the optimization and DOE in the original space

As commented in Section 2.1, independent variation in the input variables is required
to guarantee causality when using data-driven approaches [3] and, although large
amounts of ‘happenstance’ data are available in most production processes, the varia-
tion in the inputs is commonly not independent (i.e., data are not obtained from a DOE
that guarantees this independent variation in the inputs). In these contexts, classical
linear regression (LR) or even machine learning (ML) methods cannot be used for
process optimization because none of many good prediction models that can be fitted is
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unique or causal. This is because the process variables are usually highly correlated and
the number of independent variations in the process is much smaller than the number
of measured variables. Furthermore, when multiple quality attributes of interest (i.e.
output variables) are involved, methods such as OLS present the added disadvantage of
having to build one model for each of the outputs.

Therefore, since causal models are required for optimization, but building these models
by methods such as OLS requires resorting to DOEs in the original space (i.e. the space
of the original variables), the optimization problem in the original space will indirectly
suffer from the same drawbacks as the DOE in the original space (e.g. the selection of
a representative model structure for the data, the requirement of extensive experimenta-
tion to fit it, collinearity among factors, etc.). Furthermore, and even if first principle
models can be resorted to, most (if not all) optimization algorithms will suffer from
significant computational cost and convergence issues due to the high dimensionality
of the space within which the optimization takes place in most productions processes,
and the presumably also large number of restrictions imposed.

8.3. Optimization in the latent space

Methods based on projection onto latent structures, such as Partial Least Squares (PLS)
regression-based techniques, allow the analysis of large datasets with highly correlated
data by relating the inputs and outputs through few, uncorrelated Latent Variables (LV)
that identify the underlying causal relationship between process inputs and outputs, and
provide models for both the X (inputs) and Y (outputs) spaces. Since causal relation-
ships can be inferred in the latent space [27], this permits the use of historical datasets
for optimization purposes, which reduces the amount of experimentation required, or
even prevents it altogether [28].

Furthermore, since the initial number of variables involved has been reduced to a
smaller number of uncorrelated LV, the computational cost of any optimization prob-
lem in the latent space will be reduced when compared to the equivalent problem in the
original space, even more so as the number of variables in the original space increases
and the number of LV remain relatively few.

One of the main drawbacks of using PLS regression-based techniques is, as with any
data-driven approach, the uncertainty associated to the data and the model, which must
be accounted for in the definition of the DS in the latent space, the transferral of re-
strictions from the space of the original variables to the LV, and the definition of the
optimization problem.

Assuming that at least one feasible combination of inputs exists that leads to the de-
sired outputs, some approaches based on Latent Variable Regression Model Inversion
(LVRMI) have been proposed in the past to obtain a single combination of inputs via
the direct inversion, or to define the so-called Null Space (NS) which contains the pro-
jection onto the latent space of all the combinations of inputs theoretically guarantying
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the desired outputs. Jaeckle and MacGregor [88] proposed the guidelines to obtain
points on the NS when as many outputs as the rank of the matrix of outputs used to fit
the model are considered, through the definition of what they identify as the null com-
ponents. The subspace in which points obtained are located by using this approach is
the so-called “combined pseudo-NS” by Garcia-Mufioz et al [89]. These authors pre-
sented an alternative method to differentiate the NS associated to each output for which
a desired value is specified, and propose a different approach to obtain points on each
of these NS. Alternatively, an optimization problem may be solved to obtain such
combination of inputs, depending on the restrictions imposed and the weight given to
the different terms of the formulated objective function [90].

These data-driven methods, however, present several drawbacks:

1. They suffer from the uncertainty associated to such data, which is not explicit-
ly taken into account neither when defining the NS, nor when solving the op-
timization problem, although this is an issue that has been addressed in the lit-
erature [91],[92]. Regarding this, DS bracketing has been suggested [87],[93]
in order to define a restricted subspace within the KS, inside which the DS is
expected to lay. Although experiments inside this region do not guarantee to
provide the desired outputs, taking into account the uncertainty for this brack-
eting allows compensating for the lack of representativeness due to (relatively
small) nonlinearities.

2. They do not provide an analytical expression for the NS, which is necessary to
obtain the analytical expression for the limits of the confidence region associ-
ated to it, therefore making it impossible to use them as constraints in e.g. the
optimization approach as formulated in [90].

3. They are limited to the case in which the quality attributes of interest coincide
with some of/all the output variables considered when fitting the PLS-
regression model. There are, however, some scenarios in which this may not
suffice:

a) If a quality attribute of interest (either an output or a linear combination of
outputs) cannot be accurately explained by the PLS-regression model
when included as an output variable, but its relationship with other output
variables that are well explained by the model allows a linear combination
of such outputs to be considered instead. As an example, let y; be the
mass flow of a mixture resulting from a process, y, the proportion of the
ingredient of interest in the mixture, and y; = y; - y, the absolute mass
flow of such ingredient. If the quality attribute of interest is y,, but only y;
and y; can be well predicted by the fitted PLS-regression model, then the
estimation of the DS for a desired purity y, pps will suffer from much
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b)

more uncertainty that would the definition of the NS for the linear combi-
nation y, pgs * y1 — ¥3 = 0.

If a quality attribute of interest can be expressed as a linear combination of
outputs, but the weightings of the outputs involved in this linear combina-
tion suffer short-term changes (e.g. within a few hours, or even minutes).
In this case, even if the quality attribute can be accurately explained by the
PLS-regression model if included as another output before fitting such
model, given a set of weightings, a different PLS-regression model would
have to be fitted each time the weightings change. An example of this is
the quality attribute being the expected monetary income from selling the
products resulting from a manufacturing process, and the outputs being the
generated mass or volume of each product. The monetary income can be
expressed as a linear combination of these outputs weighted by their cor-
responding price per mass/volume unit, but frequent fluctuations in these
prices would render a PLS-regression model including the incomes as an
output useless every time one of these changes happens.
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Chapter 9

Defining the design
space in the latent
space

Part of the content of this chapter has been included in:

1. Palaci-Lopez, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental
approach to improve the design space estimation using latent-variable model in-
version. Part I. Defining the Experimental Region. Submitted.

9.1. Partial Least Squares model fitting and prediction uncertainty

Partial Least Squares (PLS) regression [26] is a latent variable-based approach used to
model the inner relationships between a matrix of inputs X [NXM] and a matrix of
output variables Y [NXL] which was already presented in Section 3.2.2. In order to
evaluate the model performance when projecting the n-th observation onto it, the Ho-
telling T, and the squared prediction error SPEy, are used, where T? estimates the

squared Mahalanobis statistical distance in the latent subspace between the projected
observation and the average one for the historical dataset X, and SPEy measures the

squared Euclidean distance between the centred and scaled observation and its projec-
tion onto the latent subspace defined by the 4 LVs.
T2 can be calculated as:

T2=11-A"! 1, 9.1)

with A™1 defined as the [4xA] diagonal matrix containing the inverse of the 4 vari-
ances of the scores associated to the LVs, and t,, = wT. DS_X1 - (X, — my) the [AX1]
vector of scores corresponding to the projection of the n-th observation x,, onto the
latent subspace of the PLS model. my and Dy, are, as in Section 3.2.2, the [MX1] col-

umn vector of centring factors and the [MXM] diagonal matrix of scaling factors ap-
plied to the M input variables before fitting the PLS-regression model, respectively.
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On the other hand, given X, = Dy, - P - T+ my:
SPEy, = (%, —%,)T - D3%- (x, —R,) =€} -D3? - e, 9.2)

Assuming multinormally distributed scores and residuals for the projected observa-
tions, the T2 and SPEy, values for a given observation that conforms to those in the
calibration dataset are expected to be below their 100(1 — @)% upper limits [94], Tj7,,
and SPE};,, respectively:
(N-1)-A
Tl%m = T N—-4 Fun-ma

SSPE 5 (9.3)

SPElim = —2 - fspE Xz'ngE/SSPEra

where Fy y_pmq is the 100(1 — a) percentile of a Fisher distribution with M and
(N—M) degrees of freedom, xgpg and sgpg are the sample mean and standard deviation
of the SPE for the observations from the calibration data set, and X;féps — is the

100(1 — a) percentile of a x? distribution with 2 - X2pp/sspg degrees of freedom.
Once the PLS-regression model has been fitted, it can be used directly to obtain the
[Lx1] vector of average predictions of the output variables, V., given the [MX1]
vector corresponding to a particular observation, X}, fulfilling that szobs < Tlizm and
SPE < SPEjjn, as

Xobs
A~ *T —_—
Yobs = Ds‘('Q'Tobs‘l'lnY= DsY'Q'W 'szl '(Xobs_mx)+mY
Yobs = BT. Xobs T bo
B=D;'-W*-Q"-D,,

b, =my—D, -Q-W'"-D;! my

(9.4)

This prediction is not free from uncertainty. The estimation of prediction uncertainty is
done by using Ordinary Least Squares (OLS) type expressions, as suggested in the
approach proposed by Faber and Kowalski [95]. This approach assumes that the matrix
of scores T obtained from fitting the PLS model is independent from Y, which is clear-
ly not true [96]. However, this approximation was observed to lead to similarly good
results when compared with those achieved by means of other approaches such as line-
arization or re-sampling based methods, or the so-called U-deviation method used in
the software the Unscrambler, while being easier to implement [91].

The 100 - (1 — @)% confidence interval (CI) of the prediction of the /-th output varia-
ble Jobs,; given an observation X, is calculated as:

Clyobs,l = ?Obs'l i tN_df-a/z ’ Sj}obs,l (95)

where ty_gfq/2 is the 100(1 — a/2) percentile of a Student’s t-distribution with
(N — df) degrees of freedom, df being the degrees of freedom consumed by the PLS-
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regression model, which are suggested in [91] to be calculated as indicated in [97], and

S9.ps; the estimated standard deviation of the prediction of the /-th output variable for a

particular observation y,s:

1
SPobss = SFL ° 1+ hops + N 9.6)

where h,y is the observation leverage
hobs = ‘[st ’ (TT ’ T)_l " Tobs 9.7

and s¢, the standard error of calibration corresponding to the /-th output, obtained as
suggested in [91]

N O = )] 9.8
- j b= ©.8)

Yn, and J,,; being, respectively, the n-th measured and predicted value for the /-th
output of the model calibration dataset.

It must be noted that, because of the way sy, , is computed by following this proce-
dure, CI

Yobs,l
the confidence interval is expected to be lower for observations close to the centre of
projection (smaller leverage) than for those far away from it (higher leverage). Alterna-
tively, Romera [98] has more recently been proposed a local linearization-based ap-
proach to explicitly express the (asymptotic) variance for the estimators of the PLS-
regression model parameters relating X to Y, B, which can be used to obtain a less bi-
ased estimate of s, . than through the aforementioned approximation. In the follow-

depends on the leverage of the observation, and therefore the amplitude of

ing sections, however, the expression in Equations 9.5 to 9.8 will be resorted to due to
them being easily applied also to input variables, and not just to the outputs.

9.2. Transferring restrictions to the latent space

Since the DS has been defined as a subregion of the KS, the very first step to take is the
definition of such KS. Because a Latent Variable Regression Model (LVRM), and
more specifically a PLS-regression model, is used, once univariate or multivariate re-
strictions on the inputs and outputs have been defined, these constraints should be
transferred to the latent space (i.e. as restrictions on the scores). While the projection of
these restrictions onto the LV subspace has been a standard part of e.g. the ProMV
software, the analytical explicit formulation of such projections has not been provided
in past literature, and are presented in this section. Having these expressions makes it
possible to compare restrictions in the latent space among each other and with re-
strictions such as the ones imposed by the Hotelling T? hyper-ellipsoid.
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Consider a set of inequality constraints imposed on the input and output variables to be
expressed as:

Ay - Xngw = Ax - (sz P Tygw + my) < s P

N (9.9)
Ay Ynew = Ay (DSY Q- Typw + mY) < dyypy

Ay and Ay being [I;XM] and [J;XL] matrices whose i-th and j-th rows, respectively,
contain the coefficients of the i-th linear combination of inputs and j-th linear combina-
tion of outputs; dg .. and dg . being [I;X1] and [J; X1] column vectors whose i-th

and j-th elements are, respectively, the values that must not be surpassed by the corre-
sponding linear combination of inputs and outputs; and my, my, Dg,and Dy, being as

defined in Section 3.2.2. I; and J; are, respectively, the number of inequality con-
straints imposed on the inputs and on the outputs.

After reorganizing terms in Equation 9.9, it yields:

Ay Dy, - P typw < dgyp — Ax - Iy
Ay- DSY Q- Tnew = dYNEW Ay -my 610
Then, a set of inequality constraints in the latent space can be defined:
Ar - tnew < doygy
A=[a o o _ [deEw — Ay mx] ©.11)
f v Q ovew dyypw — Ay - My

Similarly, if a set of equality constraints on some of the inputs and outputs is defined:

Fy - Xngw = Fy - (sz ‘P typw + mx) = fenew 9.12)

Fy - Ynew = Fy (DsY - Q- Tygw + My) = fonEw ‘
Fy and Fy being [I,XM] and [J,XL] matrices whose i-th and j-th rows, respectively,
contain the coefficients of the i-th linear combination of inputs and j-th linear combina-
tion of outputs, defined in a similar way to A, and Ay in Equations 9.9 to 9.11; and
fenpw and fg . being [I;X1] and [J;X1] column vectors whose i-th and j-th elements
are, respectively, the values that the corresponding linear combination of inputs and
outputs are required to have.

Following the same procedure as with the inequality constraints:

F ' TNEW = fTNEW

fenew — Ax mx] (9.13)

Fy - D, ] [
Q TNEW nyEW AY'mY

FT—

It should be noted that each equality restriction imposed implies the definition of a
hyper-plane of dimensionality (4-1) inside the latent space of the model fitted with 4
latent variables, within which any tygyw must be located. Therefore imposing two
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equality constraints requires Tygw to fall within the intersection of two (A4-1)-
dimensional hyper-planes, that is, within an (4-1)-dimensional subspace, if both re-
strictions are equivalent, or an (4-2)-dimensional subspace otherwise, if such intersec-
tion exists. This means that, at most, 4 compatible (i.e. an intersection exists), non-
redundant equality constraints can be imposed, in which case a 0-dimensional (i.e. a
point) subspace would result. Even then, there is no guarantee that this subspace falls
within the subspace defined by any other inequality constraints that may have been
imposed beforehand.

Furthermore, it may be argued that hard equality constraints are too restrictive, consid-
ering that the uncertainty associated to the data may make it the case that no single
point within the latent space meets all of them, but a set of inputs slightly outside of it
and with SPEy .., < SPEj, may be found. Therefore, while imposing some hard
equality constraints such as the perfect linear correlation existing among the ingredi-
ents of a mixture (i.e. the proportions of all of the components of the mixture must sum
up to 1, or 100%) may make sense, relaxing other equality constraints proportionally to
the uncertainty in the prediction of the corresponding inputs, outputs or linear combina-
tions of them could be advisable as a first step in any optimization problem, whenever
not doing so makes finding any acceptable set of inputs impossible.

Consider, as an example, the dataset shown in Table 9.1, corresponding to five obser-
vations simulated following the input-output causal relationship in Equation 8.1, and
adding noise to it so that it does not follow exactly such relationship.

Table 9.1. Simulated dataset via Equation 8.1 with added random normal noise

Obse(rrzf)ation % X, x5 (x?) x4 (x2) x5 (xq - %) y
1 5.43 7.54 125.64 58.51 50.49 61.85
2 5.43 15.97 126.20 258.48 74.44 278.99
3 99.23 7.54 9893.38 59.29 737.15 307.89
4 99.23 1597  9765.16  254.11 1576.28 436.40
5 52.33 11.76  2787.64 139.21 583.76 266.08
6 52.33 11.76 ~ 2849.95 135.67 630.73 260.52

Consider also the following inequality restrictions imposed on the inputs:
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Table 9.2. Lower and upper limits imposed as restrictions on the inputs involved in the input-output
causal relationship in Equation 8.1

Variable Lower limit Upper limit
Xq 5.43 99.23
X3 7.54 15.97
x3(x?) 125.64 9893.38
x4 (x3) 58.51 258.48
x5 (xq + x3) 50.49 1576.28

It must be noted that the limits imposed as univariate restrictions on the inputs corre-
spond the lowest and highest observed values for the corresponding variables in the
dataset shown in Table 9.1. Therefore, all of such observations fall within these limits
when the restrictions are considered in the space of the original variables. Furthermore,
the univariate restrictions on x5, x4 and xg are imposed since, in practice, it is assumed
that the true relationship among the variables and x; and x, would not be known.

Consider now a PLS-regression model fitted with 2 LV, the univariate restrictions in
Table 9.2 to be transferred to the latent space, and the observations in Table 9.1 to be
projected onto the model subspace. Figure 9.1 illustrates the result from the projection
of these restrictions (blue dashed line), the six observations (black crosses accompa-
nied by the number indicating which observation they correspond to) and the Hotelling
T? 95% confidence ellipse (magenta dashed line).

As seen in Figure 9.1, only five of the ten imposed univariate inequality constraints
remain when projected onto the latent subspace of the PLS-regression model, with the
remaining five being redundant. This shows that the reduction in dimensionality also
affects which restrictions remain relevant. Furthermore, only the projection of half of
the six observations (3, 5 and 6) fall within the region delimited by the projection of the
univariate inequality constraints, which would represent an estimation the KS, with the
other three (1, 2 and 4) being outside of it.

It must be noted that all observations present SPE,  values below its 95% confidence

limit, SPE);; = 7.63, as calculated in Equation 9.3, except for the fourth observation
(SPE,, = 8.29).
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Figure 9.1 Representation of the restrictions in Table 9.2 transferred to the latent space (dashed blue
lines) corresponding to a PLS-regression model fitted with 2 LV and the data in Table 9.1, and pro-
jection of these data onto the same subspace (black ‘x’) with one/two numbers besides close to each
identifying the number of the observation in Table 9.1.

Therefore, the fact that the projection of these observations falls outside of the region
delimited by the projection of the restrictions that all observations actually meet in the
original space can only be explained by the propagation of the uncertainty in the pre-
diction of the inputs to the projection of the restrictions imposed on them. In fact, alt-
hough the PLS-regression model fitted with 2 LV explains more than 97% of the vari-
ability in the X space (R?(X) ~ 0.9714), the unexplained variability is enough for this
to happen.

If a PLS-regression model is fitted using the same data, but with 4 LV instead of 2 LV,
all of the projected observations will meet all of the projected restrictions. In practice,
when a larger number of variables are involved and equality restrictions may also be
imposed, increasing the number of LV would present several disadvantages, such as 1)
introducing additional, undesired noise into the model as ‘information’, and ii) increas-
ing the dimensionality of the model subspace, which will also increase the computa-
tional cost in any optimization problem and in the definition of the DS.

An alternative approach would include relaxing these constraints to account for the
uncertainty. To do so in a sensible way, however, a procedure would be required to
back-propagate this uncertainty such that analytical expressions for the new, relaxed
restrictions are obtained, but such procedure has not yet been made available in the
literature. An approach to do this is proposed in Section 9.3.
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9.3. Partial Least Squares model inversion

9.3.1. The direct inversion

The most common use of a PLS model is in its direct form, that is, as a predictive tool
for the output variables given some input data. However, the same model can be used
in its inverse form to suggest a combination of inputs Xygw [MX1], with projection
Tnew, needed to achieve a set of desired values ypgg for the outputs, yngw = Yprs. In
theory, this will be valid as long as ypgs conforms to the correlation structure from the
calibration dataset used to fit the PLS-regression model.

As pointed out in [86], however, since a reduction in the dimensionality of the space
has taken place (from operating in the space of the original variables to doing so in the
latent space), three possible scenarios must be taken into account:

I. L>A: in this case, since the number of outputs (L) for which desired values are
defined is greater than the dimensionality of the latent space (4), the most like-
ly case is that no solution exists that provides the desired values for all of the
outputs.

II. L=A: in this situation, a single solution exists that provides all ypgg

III. L<A: this is the most common scenario, and corresponds to a case in which
multiple sets of inputs Xygyw and their projections Tygw Will theoretically lead
to the same desired outputs ypgs-

For the first scenario, the least squares solution can be obtained as indicated by Equa-
tion 9.14:

ew = (QT- Q)7 QT- Dy, ™" - (ypes — my) 9.14)

When applied to the second and third scenarios, this solution is sometimes also referred
to as the direct inversion of the PLS model, and provides a single set of scores Tygw
corresponding to a set of inputs (i.e., the combination of initial settings, process condi-
tions, raw material properties, etc.) theoretically leading to ypgs, as well as the inputs
themselves, XNgw-

This solution is unique in the second scenario. In the third scenario, a subspace usually
referred to as Null Space (NS) can be found in which, according to the model, the same
set of desired values for the outputs, ypgg, will be theoretically obtained for different
inputs combinations. In such case, the solution in Equation 9.14 it corresponds, among
all of those input combinations, to the one whose projection onto the latent space is
closest to the centre of projection of the model subspace (not the one with lowest lever-
age), as demonstrated in Section 14.3.1.

In the second scenario a more correct expression for the solution of the direct inversion
is shown in Equation 9.15.
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Tew = Q7' - D5} - (Ypgs — my) (9.15)
Finally, for the third scenario:
wew = Q7 - (Q- QN7 - D5} - (ypes — my) (9.16)
And for all three different scenarios:
XNgw = Dgy - P - Tygw + my 9.17)
9.3.2. Direct inversion-dependant definitions of the Null Space

According to [88], the solution to the LVRMI is unique if the effective rank of Y, ry, is
the same as the number of LV used to fit the PLS regression model (i.e. ry = A). Oth-
erwise, as mentioned in [88] the (4 — ry)-dimensional NS can be found. To guarantee
this, and as mentioned in [88], first a selective PCA [99] is performed in order to select
the ry outputs most representative of Y. The resulting subspace is usually referred to as
Null Space (NS) because, according to the PLS model, no change in the outputs is
expected when moving from one point to another on it, and any set of inputs Xyg asso-
ciated to it can be obtained as:

xXns = Dg, P G- 1+ my (9.18)

where G is an [AX(A — ry)] matrix whose columns are the left singular vectors of Q
associated with its (A — ry) zero singular values, and r is an [(A — ry)x1] vector of
random real values used to obtain arbitrary points on the NS. Which of these combina-
tions of inputs are feasible or practical will ultimately depend on the constraints im-
posed on them [88].

It must be noted that this approach implicitly assumes that ry = L. Otherwise, a selec-
tion of the most representative output variables must be performed beforehand to re-
duce the dimensionality of the Y matrix until ry = L. Since the ‘discarded’ output vari-
ables will be highly correlated with some/all of the ones left when fitting the model, the
values they take them can be computed afterwards.

A slightly different approach has also been used in the literature [89], where the term
‘combined pseudo null-space’ is used to refer to the subspace in which points meeting
Equations 9.18 are obtained, and different NS are defined for each output variable.
This alternative definition is based on the fact that, if a displacement Atygy from the
direct inversion solution to any other point on the latent space is produced, such that
AYNEW = 0, then:

Q- Atygw = 0 (9.19)

Which can be reformulated as
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q11 ATnew, + Q12 - ATnewz T G4 - ATnewa = 0
421 ATnewa + G2 - ATnewz T+ 424 - ATngwa = 0 (9.20)

qr1 - Atnewa t qu2  ATnewz o+ qra  ATngwa = 0

where the ‘combined pseudo null-space’ corresponds to the hyper-plane that best ap-
proximates all of the L equalities in Equation 9.20 and contains the result of the direct
inversion obtained through Equations 9.16 and 9.17, while each equality provides the
directions that, together with the direct inversion, define the NS of one of the outputs.

It is important to note that these approaches are implicitly limited by the fact that they
require the solution of the direct inversion to provide the desired values for all of the
outputs. Otherwise neither the ‘combined pseudo null-space’ nor some/any of the NS
associated to each of the outputs, as defined in [89] will contain any point satisfying its
own definition.

9.3.3. Analytical definition of the Null Space

An alternative approach for the definition of the NS is presented in this section, which
does not suffer from the limitations, associated to the formulation of the NS as done in
Section 9.3.2. Namely, the presented method does not depend on the existence of at
least one combination of inputs/scores leading to the desired values for all of the out-
puts. Additionally, it provides a more informative, analytical definition of the NS asso-
ciated to each output variable, as will be later discussed.

To this end, consider the /-th NS to be defined as the subspace constituted by all com-
binations of inputs that theoretically guarantee the desired value for the /-th (with /=1,
2, ..., L) output variable, but not necessarily for the rest.

Then, given a desired value ypgg, for the /-th output variable, a [LX1] vector Jyg, cor-
responding to any set of values for the outputs associated to a set of scores Tys, on the
[-th NS can be found such that

o - ¥ns, = 0] - (DsY Q- Ty, my) = 0] - Ypgs = YpEs, 9.21)

with 0; being the [LX 1] vector whose /-th element is equal to one, and the rest are ze-
ros.

Equation 9.21 can be reorganized as:
o] - (my — ypgs) + 0/ - Dy, - Q- Ty, = 0 (9.22)

which is the equation of a hyper-plane in the latent space associated to the /-th NS of
the form:
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A

PN T
Vo t+ Z Vi Tnspa = 05V = [Vy1, V2, e V4l
a=1 ) (9.23)
vy 0 = 0; - (my — ypgs)
Vl:QT'D5y'ol

When applied to all L output variables:
Vo+V-tys =0

V1,0 V1T
V2,0 T (9.24)

- - . —|V2 | =
Vo = =my—ypgs ; V=|"72|=Ds-Q

VL0 VLT

Ypes being the [LX1] column vector with ypgg; as its /-th element, and tyg a set of
scores in the intersection of the L NS (if it exists).

It must be noted that the [LX(4+1)] matrix [v, V] contains in each row the (4+1) pa-
rameters of the equation of the NS associated to the desired valued for the /-th quality
attribute, with the /-th element in the first column being the expected difference be-
tween the centring factor for the /-th output and its desired value, and the 4 remaining
corresponding to v;, the vector signalling the direction of maximum variability in the
latent space for the expected value of the /-th output, such that a displacement of mod-
ule one in the same direction, in the latent space, will produce an increase in the ex-
pected value of the /-th output equal to the module of v;.

Furthermore, as long as the rank of X, 7y, is higher than one (the rank corresponding to
one output variable) it will be possible to define a NS corresponding to the desired
value of one of the outputs. The intersection of all these NS, if it exists, will be (4-L)-
dimensional subspace and that may be referred to as ‘combined NS’, and coincident
with the ‘combined pseudo-NS’ presented in [88] only if A>L. This subspace can be
expressed as function of the inputs instead of the scores by simply considering the
relationship among them expressed in the third equality in Equation 3.4.

It is also important to note that this definition of the NS only requires its position (v; o)
and a single vector orthogonal to the NS (v;), unlike the definition in [89], which re-
quires a point in the NS and (4-1) linearly independent vectors parallel to it.

An added benefit of this formulation is the possibility to extend the definition of the NS
not just to the desired values for the outputs, but also for a linear combination of them.

Consider R quality attributes to be defined as a linear combination of the L outputs, and
the 7-th quality attribute of interest to be expressed as d, = a; -y, with a, being the
[Lx1] vector that contains the coefficients that relate the L output variables with the »-
th quality attribute. Let the »-th NS be the subspace constituted by all combinations of
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inputs that theoretically guarantee the desired value for the r-th quality attribute of
interest, but not necessarily for the rest. Then, given a desired value dpgg - for the r-th
quality attribute, a [LX1] vector ¥ys, corresponding to any set of values for the outputs
associated to a set of scores Tyg, on the 7-th NS can be found such that

ay - Ps, = a; - (Ds, - Q- s, + My) = dpgs, (9.25)

Equation 9.25 is simply a more general expression of Equation 9.21, where 0; has been
substituted by a,, and therefore the same steps can be followed so that, in the end:

Vo+V-tys =0

V1,0 vlT
Va0 T (9.26)

Vo = = A;-my —dpgs ; V=v:2 =A;r-Dg,-Q

VR0 vg

A, being a [RXL] matrix with aF as its 7-th row, dpgg a [RX1] column vector with
dpgs, as its 7-th element, and tTyg a set of scores in the intersection of the R NS (if it
exists). Again, as long as the rank of X, rx, is higher than one (the rank corresponding
to one quality attribute) it will be possible to define a NS corresponding to the desired
value of one of the quality attributes of interest.

It should be noted that Equation 9.24 is a particular case of Equation 9.26 where
A, =1, I, being the [LXL] identity matrix.

9.3.4. Confidence region of the Null Space

As previously stated, neither prediction is free from uncertainty, and neither is any
result achieved by model inversion. Several studies have been carried out and different
proposals exist that aim at providing an estimation of the DS. In particular, Tomba et
al. [90] propose a jackknife approach to determine the confidence regions for both the
direct inversion and the NS estimation. On the other hand, a Bayesian-based procedure
is suggested by Bano et al. [100] for the probabilistic definition of the DS in the latent
space. Both of these approaches, however, present the drawback of being computation-
ally costly as dataset size and/or the dimensionality of the latent space increases. Alter-
natively, Facco et al. [87] propose a methodology to account for the back-propagation
of the uncertainty in model inversion to bracket the design space, which can be used
whenever a single output is considered. The steps to apply it can be summarized as
follows:

Fit a PLS-regression model relating the inputs with the output of interest
Define the desired value for the output, ypgs.

Obtain the direct inversion Xygw and Tygw as in Equations 9.16 and 9.17.
Determine the 100(1 — @)% CI of the prediction of the output variable given

b

TNEW
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5. Draw the two NS corresponding to the limits of the CI defined in step 4, by us-
ing Equation 9.18.
6. Define the “experimental space” as the subspace of the latent space inside the
Hotelling T? confidence hyper-ellipsoid and delimited by the two NS obtained
in step 5.
The DS estimate obtained this way can be understood as a subspace within which ex-
perimentation can be performed to more easily identify the true DS.

However, since an analytical expression for the NS can be obtained, as illustrated in
Section 9.3.3, defining analytically the limits of the confidence region associated to it
is also possible. Consider Equations 9.5 to 9.8 for the 100 - (1 — a)% CI of the predic-
tion of the /-th output variable §,,5; given an observation X,ps. Then, the confidence
region associated to the NS for the /-th output, whose equation can be obtained through
Equation 9.23, can be defined by back-propagating this uncertainty when inverting the
model. It can then be demonstrated (see Section 14.3.2) that any new sample Xygw
with projection Tygyw onto the latent space within the confidence limits for the estima-
tion of the /-th NS must meet the following condition:

T
< Tuo + Vv - TnEw <
—tn-sa/2 = o < tn-sa/2
yNEW,l

- (9.27)
Vio TV, TNEW

2
1
_ T _
Sf’NEW,l_SEf’l~ 1+hTNEw_< ) Y ~(TT-T) 1'Vl+ﬁ

v v
Synew, 0eing the estimated standard deviation of the /-th output for a hypothetical ob-
servation Xygw With projection onto the latent space Tygw such that Tygw is the set of
scores located in the /-th NS (corresponding to the desired value for the /-th output)
closest to Tygpw-

This suggested formulation of the confidence interval can be used to define an experi-
mental region as in [87] but slightly differs from it in that this one takes into account
the leverage of the new sample, leading to non-linear confidence limits that are tangent
in the narrowest point to the limits as calculated in [87] when only one output is con-
sidered and using standardized scores.

However, since in practice the DS will usually encompass a range of acceptable values
for the outputs/quality attributes of interest, and not a specific single value, a more
realistic definition of the experimental region will account for this. To do so, consider
the Lower Specification Limit (LSL), y1s1,;, and the Upper Specification Limit, yysy,;,
such that a new product will be considered to be within specifications regarding the /-th
output if yrs1.; < YNew, < YusLi- Two NS may be defined associated to the LSL and
USL, to which hyperplanes of the form shown in Equation 9.23 correspond with inter-
cepts Vigio = 0] - My — Yysy,; and vyspie = 0] - My — yygy,;, respectively. Then,
any new sample Xygw With projection Tygw onto the latent space within this experi-
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mental region must meet:

T T
Visnio Vit Tnew | Vusiio H Vi TNew
—in-aa2 = o ; o S th-aa/2
YNEW,LSL,l YNEW,USL,l

2

VisLio TV Tew _ 1

Synewusit = SE9 \/1 + heggw < vl v, v (TP v + N (9.28)
1

2
VysLio + V) Tnew _ 1
=5Ey.j1+hTNEW—< v, -vlT-(TT-T)l-v,+N

SynEw,USLI
The adaptation of the expression in Equations 9.27 and 9.28 for the NS corresponding
to the r-th output variable requires substituting the expression for the NS associated to
the desired value (in Equation 9.27) or the LSL and USL (in Equation 9.28) for the /-th
output with that for the corresponding values for the r-th quality attribute of interest.
Estimating the standard deviation of the r-th quality attribute of interest, expressed as a
linear combination of outputs, is also needed. To do this, consider R quality attributes
of interest to be defined, each being a linear combination of the L outputs, such that the
r-th quality attribute d,- for a given observation x,p,s With outputs y,ps is expressed as:

dobs,r = a;l: " Yobs (9.29)

a, being the [LX 1] vector that contains the coefficients relating the L output variables
with the r-th quality attribute of interest.

The 100 - (1 — a)% CI of the prediction of dgps, given an observation X, is calcu-
lated as:

Clagys, = ar * Yobs T tv-aa/z * Sdgpsr (9.30)

Sd,ps, DeIng the estimated standard deviation of the r-th linear combination of outputs
for an observation X, which can be obtained as:

1
al.S;-a, - (1 + hgps +N) (9.31)

Saobs,r =

where S¢ is the variance-covariance matrix of prediction errors:
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S}% cov(fi, f2) cov(fy, f1)

S; = cov(f2, f1) . szz . C/O\V(}.cz:fL)
cov(fy, fi) cov(fy,fa) - szL
N N2 (9.32)
s I (Fnt = Fnt)
ST T N —df
271\1[=1(Yn,l - ynl) ’ (yn,l' - ?n,l')

cov(fy, fir) = N—dr
as illustrated in Section 14.3.3, y,,; and ¥, being, respectively, the n-th measured and
predicted value for the /-th output of the model calibration dataset.

It can be easily seen that Equations 9.5 to 9.8 constitute a particular case of Equations
9.30 to 9.32, when a, is substituted by 0;, a vector of zeros except for a ‘one’ in the /-
th position (i.e. for the /-th output variable).

The analytical expressions for the confidence region of the NS and the experimental
region corresponding to the r-th linear combination of outputs are equivalent to Equa-
tions 9.27 and 9.28, substituting e.g. sy, ...,,> the estimated standard deviation of the /-th

output, by Sdgper’ the estimated standard deviation of the r-th quality attribute.

It must also be noted that these expressions can also be extended to confidence regions
for NS and experimental regions associated to inputs and linear combinations of inputs,
not just outputs. This may be of interest e.g. whenever the uncertainty is to be consid-
ered when restrictions are imposed on inputs whose values can be observed but not
freely manipulated, or even if this is possible. Consider the example illustrated in Fig-
ure 9.1. Figure 9.2 shows the same example, but now the 95% confidence limits asso-
ciated to the restrictions in Table 9.2 in the latent space, instead of the projection of
such restrictions, are represented. In this case all the projected observations fall inside
the region delimited by the projection of the 95% confidence limits associated to the
univariate inequality constraints. Note that the lower confidence limits for ‘greater than
or equal to’-type restrictions, and upper confidence limits for the ‘lower than or equal
to’-type restrictions are represented, but not their respective upper and lower limits.
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Figure 9.2 Representation of the 95% confidence limits associated to the restrictions in Table 9.2
transferred to the latent space corresponding to a PLS-regression model fitted with 2 LV and the data
in Table 9.1, and projection of these data onto the same subspace.

94. Subspace most likely to contain the True Design Space

Once the restrictions on the original variables have been projected onto the latent
space, and considering the confidence limits of the definition of the NS associated to
the desired values for the quality attributes of interest, dpgg, the subspace most likely
to contain the True Design Space (TDS) will be the portion of the latent space within
these limits and inside the Hotelling T? confidence hyperellipsoid for a given confi-
dence level. The estimation of this subspace is important because, as the experimental
region defined in [87], it can be understood as a subspace within which experimenta-
tion can be performed to more easily identify the TDS.

In this section three examples will be illustrated in order to compare this proposed
experimental region with that defined in [87] as well as the subspace of acceptable
solutions for an optimization problem as defined in [90].

For the first one the hypothetical input-output causal relationship in Equation 8.1 is
used to allow a simple graphical visualization of the procedure. This case study will
serve as an example to illustrate the application of the proposed approach to define the
experimental region, and to compare the results obtained with those from the literature.

A second case study addresses another example with four moderately correlated inputs
and two moderately correlated outputs, in which specific values are desired for both
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outputs. This helps to illustrate a more complicated scenario in which more than one
quality attribute is considered, and that can not be addressed by means of the available
methodologies proposed in the literature.

Up until now, in all the case studies discussed, both in this Section and in the literature,
the quality attributes of interest coincide with one or more of the outputs used to fit the
PLS-regression model, and it is assumed that such model is able to predict them with
enough accuracy. As mentioned in Section 8.3, however, this may not be enough in
some situations. The third case study serves to illustrate this scenario, and corresponds
to the synthesis of 1,2-dichloroethane (EDC) in a vinyl-chloride monomer (VCM)
production process plant, simulated by using the software PRO/II and in accordance
with the guidelines provided in [101]. In this example, the quality attribute of interest
cannot be well explained or predicted by the PLS-regression model, but a linear com-
bination of other process outputs can be used to bypass such limitation. This is, howev-
er, a problem that could no be addressed with the methodologies proposed in the litera-
ture.

9.4.1. Datasets

9.4.1.1 Case study 1: mathematical model

For the first case study, data were simulated according to the model in Equation 8.1. In
this example, x; and x, are manipulated variables (i.e., those an operator would be able
to freely adjust), while x5, x, and x5 are three measured variables (i.e. those the opera-
tor would not be able to freely manipulate, but can measure), and y is the quality at-
tribute of interest. An initial dataset with 6 observations from a D-optimal DOE with
5% of the variability of each variable added as noise to the measured values of x3, x4,
x5 and y is used. Table 9.3 shows the mean and standard deviation for such dataset, for
all x; variables, as well as for y. The lower and upper limit imposed on the different x;
are also indicated, which are, in this case, both the levels of factors x; and x, used to
build the D-optimal DOE (for the limits corresponding to these two inputs), and the
hard constraints that would be imposed on all variables for optimization. The true rela-
tionship of x5, x4 and x5 with x; and x, is assumed not to be known, as would be the
case in most real situations. This is the reason why the lower and upper limits on x3, x4
and xg are imposed (if the relationship among them was known, these restrictions
would be known to be redundant).

This first case study corresponds to an example already addressed in [87], where an
estimation of the DS was considered for a given ypgg by accounting for the uncertainty
in definition of the NS and delimiting the corresponding subspace to the fraction of it
within the Hotelling T2 ellipsoid.

139



Quality by Design Through Multivariate Latent Structures

Table 9.3. Case Study 1: Characterization of the input and output calibration datasets

Variable Mean Std. dev. Lower limit ~ Upper limit
X1 52.33 41.95 5.43 99.23
X3 11.76 3.77 7.54 15.97
x3(x%) 4257.99 4480.60 125.64 9893.38
x,(x3) 150.88 88.91 58.51 258.48
x5 (x1 * x5) 608.81 556.93 50.49 1576.28
y 52.33 41.95 - -

9.4.1.2 Case study 2: simulated data with two correlated outputs

For the second case study, a multi-normally distributed dataset with 50 observations,
with 4 input variables and 2 output variables following a specific correlation structure,
was simulated following the procedure explained in [102] and [103] to generate multi-
variate normal data. The correlation matrix used to generate the dataset can be seen in
Table 9.4

Table 9.4. Case Study 2: Correlation matrix used so construct the dataset

X1 X2 X3 X4 Y1
Xy 0.45

x3 | 0.54 050

x4 | 030  0.55 0.70

y. | 050 -0.10 -0.15 0.20

y, | -0.30 034 050 -0.15 -0.70

Table 9.5 shows the mean and standard deviation for the generated dataset, for all x;
and y; variables.
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Table 9.5. Case Study 2: Characterization of the input and output calibration datasets

Variable Mean Std. dev. Lower limit ~ Upper limit
X4 0 1 -2.39 2.92
Xy 0 1 -1.91 1.79
X3 0 1 -1.87 1.87
X4 0 1 -2.22 1.87
V1 0 1 - -
Vs 0 1 - -

9.4.1.3 Case study 3: simulated Vinyl-Chloride Monomer manufacturing

Data corresponding to the production of ethylene dichloride (EDC) as an intermediate
product to VCM were simulated according to the information detailed in [101] in
Pro/Il. In order to introduce some variability in this process without loss of validity of
any assumption made during the simulation, manipulated variables were allowed to
vary a maximum of 5% around the assigned values in [101].

Figure 9.3 illustrates a simplified block diagram corresponding to such production
process. In this case study, focus is directed towards the purity of EDC obtained after
saturation during the EDC purification step (stream EDC4). The top section (blue
section in Figure 9.3) corresponds to the direct chlorination section of the plant, to
which two stream with pure chlorine and ethylene, respectively, are fed. The bottom
section (yellow section in Figure 9.3) corresponds to the oxy-chlorination section, to
which air and pure ethylene are fed together with a recycled stream constituted mostly
by hydrochloric acid. Both streams are mixed and subjected to saturation (green section
in Figure 9.3) as the first step during the EDC purification.
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Figure 9.3 Simulated EDC production process as an intermediate product to obtain VCM

Table 9.6 shows the name and the meaning of the variables involved in this case study.
Process variables x; to x5 are manipulated input variables, while variables x4 to xg are
measured ones; z;is a molar fraction of the predominant reagent in stream TOP3, and
y; and y, are the relevant outputs in this case study. A distinction has been explicitly
established between x; variables and z;, since the last one is a molar fraction of a
stream and must take values between 0 (or 0%) and 1 (or 100%), while no similar con-
straints tie x; variables.

Table 9.6. Case Study 3: Definition of the variables involved

Name Meaning
X1 Flow (Ib-mol/h) of CL2F (CI2)
Xy Flow (Ib-mol/h) of C2F1 (Ethylene)
X3 Flow (Ib-mol/h) of AIR (O2+N2)
Xg Flow (Ib-mol/h) of C2F2 (Ethylene)
Xs Flow (Ib-mol/h) of WTR1 (Water)
X Temperature (°C) of TOP3
X7 Pressure (Psig) of TOP3
Xg Molar flow (Ib-mol/h) of TOP3
Zq Molar fraction of Hydrochloric Acid (HCl) in TOP3
Vi Total molar flow (Ib-mol/h) of stream EDC4
Vo Molar rate of EDC in stream EDC4
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An initial dataset with 20 simulated samples uniformly spanning the hyperrectangle
defined by the upper and lower limits on variables x; to xg and z; is used for this ex-
ample. Table 9.7 shows the mean and standard deviation for each variable in this da-
taset. The lower and upper limit constraints imposed on the x; variables and z;, which
bound the experimental domain, are also indicated. These restrictions are defined in
order to simulate the univariate limits usually imposed on the input variables in prac-
tice to avoid extrapolation outside of the historical, normal operating conditions.

Table 9.7. Case Study 3: Characterization of the input and output calibration datasets

Variable Mean Std. dev. Lower limit ~ Upper limit
X1 142.19 13.36 121.22 161.47
X3 157.21 16.70 132.45 179.71
X3 312.24 32.17 278.21 344.08
X4 118.02 13.99 105.70 136.83
Xs 54.53 4.59 45.73 67.28
Xg -30.93 0.53 -31.87 -29.91
X7 135.23 2.55 130.51 141.02
Xg 241.76 24.98 228.50 252.56
Z; 0.99 4.443-107 0.99 0.99
Y1 240.52 19.43 - -
¥, 0.98 7.6:10™ - -

Additionally, the constraint x, = 0.995 - x; is imposed to guarantee that at least 99.5%
of chlorine can be converted during the direct chlorination step of the process, so that it
meets the requirements for its proper simulation.

9.4.2. Results

9.4.2.1 Case study 1: mathematical model

Figure 9.4 shows the procedure followed in order to define the experimental space
given ypgs = 204.86 in the first example, by considering all of the aforementioned
issues in Sections 9.2 and 9.3. Two LV were chosen to fit the PLS-regression model in
order to allow easier graphical representation of the results, although four LV would be
a much better option according to the leave-one-out cross validation method [104]
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(Q2(2LV)=0.336; Q2(4LV)=O.955). The proposed methodology, however, allows the
definition of the experimental region independently of the dimensionality of the latent
space.

a)8

-8 ‘ 0 ‘ 8 8 ‘ 0

LV1 LV1
= =95% Hotelling T2CL = —Restrictions on XuEw % Calibration data scores
—Null Space (NS) ——NS 95% CL

Figure 9.4 For the first case study and ypgs = 204.86: a) Representation of all restrictions in the
latent space; and delimitation of the experimental space (grey area) b) by bracketing the DS as in [87],
¢) as in the optimization approach in [90], and d) with the proposed approach.

In Figure 9.4a, the Hotelling T2 95% confidence ellipses when a PLS-regression model
with 2 LV was fitted, the initial dataset being as described in Section 9.4.1.1. To do
this, Equation 9.3 is used to calculate the Hotelling T2. The projections of the 6 sam-
ples (two of them superimposed close to the centre) and the NS (black line) for
Ypes = 204.86 on the model subspace and its confidence limits (red lines) defined as
in Equation 9.27 are also represented, as well as the restrictions imposed on the inputs
(lower and upper limits as defined in Table 1) when transferred onto the latent space
through Equation 9.11 (dashed blue lines). These restrictions are included in order to
avoid solutions outside of the subspace defined by the range of variability of the inputs
in the past, which if accepted as an estimation of the knowledge space does not coin-

144



Defining the design space in the latent space

cide, in this case, with the interior of the Hotelling T2 confidence ellipse, but only a
fraction of it. Note that, although ten restrictions are originally applied to the inputs
(five lower bounds and five upper bounds) only half of them remain in the latent space
(five dashed blue lines) because, due to the existing correlation among the inputs, the
other half are redundant in the 2-dimensional latent space.

It should also be noted that, because of the uncertainty associated to the PLS regression
model, the projection of some of the samples in the initial dataset fall outside of the
area within the constraints on the inputs (dashed blue lines), as opposed to what would
have been intuitively expected. More specifically, the two samples up and left fall out-
side of the boundaries defined by the restrictions on the inputs because of the lack of
representativeness of the PLS model fitted with 2 LV, which is unable to explain the
non-linear relationship among the two independent inputs (x; and x,) and the observa-
ble inputs (x3, x, and x5). If the restrictions x3, x4 and x5 are not applied, or are de-
fined by taking into account their relationship with x; and x,, the projection of both
observations would be within boundaries. The same would occur if 4 LV were used to
fit the model, but the graphical representation would become more complex and less
intuitive. On the other hand, the sample on the right side is outside of the boundaries as
a consequence of being the worst predicted sample because of the amount of noise
introduced.

The grey area in Figure 9.4b corresponds to the delimitation of the DS as proposed in
[87] (although no analytical expressions for the red lines were provided nor were they
used as hard constraints), while the shadowed area in Figure 9.4c is the experimental
space as would be defined in the optimization approach described in [90] (although in
this optimization approach no analytical expressions where provided for the restrictions
in the latent space, either, they would be implicitly used as hard constraints). Lastly,
Figure 9.4d shows the experimental space as would be obtained by applying the ap-
proach proposed in this section.

It can be concluded that, in this example, the delimitation proposed leads to a smaller
experimental space than with the approaches in [87] or [90]. Although a small subset of
input combinations not inside the bracketed DS according to [87] could be accepted
now, due to the curvature of the confidence limits as defined here, a larger subset of
input combinations inside the experimental space according to [87] are excluded for
not actually being a part of the KS (i.e. outside of the boundaries defined by the lower
and upper limits in Table 9.3). On the other hand, a subset of input combinations ac-
ceptable according to [90] are excluded because they fall outside of the 95% confi-
dence region of the NS for ypgg = 204.86.

9.4.2.2 Case study 2: simulated data with two correlated outputs

This second case study is peculiar in that two quality attributes are considered simulta-
neously, as opposed to the approach in [87]. Regarding the optimization, the only dif-
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ference with the approach in [90] is in the definition of the confidence regions for the
two NS and the use of their limits as hard constraints.

Figure 9.5 shows the same procedure followed in the previous case study, but now
applied to this example, with ypgs = [1.2375; —0.4024]. To differentiate the two
output variables considered, the NS and corresponding confidence limits for y; pgs are
represented with continuous lines, and dashed lines are used for ¥, pgs. Two LV were
chosen to fit the PLS-regression model in order to allow easier graphical representation
of the results, although four LV would have been better option to explain more of the
variability of X (RZ(X,ZLV)=0.642; RZ(X,4LV)=0.87), and to better predict Y according
to the leave-one-out cross validation method (Q2(2LV)=0.858; Q2(4LV)=0.997).
Again, the proposed methodology could be applied with a higher-dimensional latent
space, although visualizing the experimental space becomes more difficult in such
case.
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Figure 9.5 For the second case study and ypgs = [1.2375,—0.4024]: a) Representation of all re-
strictions in the latent space; and delimitation of the experimental space b) by bracketing the DS as in
[87], ¢) as in the optimization approach in [90], and d) with the proposed approach.
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Figure 9.5a is the equivalent to Figure 9.4a for this second case study. In this case, only
the projection of one of the observations falls outside of the area defined by the re-
strictions on the inputs. Furthermore, assuming the Hotelling T? ellipse to be a good
estimation of the knowledge space would have been a much better approximation than
in the first case study, although a small fraction of it would still be left out by the re-
strictions on the inputs. It must be noted that, again, only half of the eight restrictions
imposed on the inputs remain in the latent space, with the other four ones being redun-
dant in the latent space due to the existing correlation structure among them.

The shadowed area in Figure 9.5b corresponds to the intersection between the corre-
sponding delimitations of the DS for y; pgs and y, pgs that would have been obtained
by applying a slight variation of the methodology in [87], using as leverages for the
corresponding NS those of the scores with minimum leverage on each NS instead of
the leverage of the direct inversion (i.e. the intersection of both NS) to determine the
amplitude of the CI in the fourth step of that methodology (see Section 9.3.4). The
intersection of both subspaces is considered to define the experimental space, and not
the union, because only combinations of inputs leading to the desired values for both
outputs simultaneously would be accepted. It must be noted that in this case such inter-
section exists and at least some part of it is located within the subspace defined by the
Hotelling T2 ellipse and all the other restrictions on the inputs, but this may not be the
case in more complex examples or if different values for y; pgs and y, pgs are speci-
fied. Furthermore, by defining the intersection this way, the correlation between y; and
Y, is disregarded, which implicitly overestimates the size of the subspace most likely to
provide the desired values for both outputs simultaneously.

The shadowed area in Figure 9.5¢ is the experimental space as would be defined in the
optimization approach described in [90]. Lastly, Figure 9.5d shows the experimental
space as would be obtained by applying the approach proposed in this thesis, which
happens to be almost identical to what would have been obtained if the slight variation
of the methodology in [87] (only applied when a single output variable was considered)
shown in Figure 9.5b had been applied. This similarity decreases if fewer samples are
used to fit the PLS-regression model (resulting in a more pronounced curvature of the
limits of the NS confidence regions when using the proposed approach) and the lever-
age of the direct inversion solution is used for the estimation of the width of the NS
confidence region with the methodology in [87].

9.4.2.3 Case study 3: simulated Vinyl-Chloride Monomer manufacturing

This third case study is interesting because neither the methodology to bracket the DS
in [87] nor the optimization formulation in [90] allow approaching a problem like this.

In this example, previous to the application of the proposed methodology, the initial
fitting of the corresponding models relating input variables x; to xg and z; with the
output variables y; and y, via PLS led to models with relatively poor explanatory and
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predictive capability with regards to y, (R*(X)<0.95, R*(y,)<0.46 and Q*(y,)<<0.01
even with 5 LV), which is the most relevant quality attribute of interest in this example.

However, if z;, which represent the relative amount of a chemical compounds in a
stream, is transformed into a new variable xq = z; - xg, and if y, is substituted by
Y3 = Y; * V2, the PLS regression models fitted with these ‘new’ variables provide much
better explanatory and predictive capabilities (for example, RZ(Y)>0.953 and
RZ(X)>0.563 when using two LVs, and RZ(Y)>O.965 and RZ(X)>0.863 when using five
LVs).

It should be noted that, although the quality attribute of interest in this case is y,, the
model fitted does not include it. Instead, y; and y; are used. However, since
Y3 = Y1 * V2, then it can also be said that y, = y;/y;, and given that y; > 0, if a de-
sired value y, pgs for y, is specified, then any combination of values for the input vari-
ables in the DS shall satisfy the next equality:

Y2pEs * Y1 — Y3 =0 (9.33)

As in previous example, although five LV would provide a better fit, and the method-
ology proposed in this paper could be applied nonetheless, a PLS-regression model
with only two LV is fitted here in order to better illustrate the results achieved. Figure
9.6 shows the NS associated to Equation 9.33 for y,pgs = 0.9792, and the model
fitted with data as described in Section 9.4.1.3, together with the corresponding confi-
dence interval.

LV1 LV1
= =95% Hotelling T2CL = —Restrictions on x %X Calibration data scores

NEW
—Null Space (NS) ——NS 95% CL

Figure 9.6 For the third case study and y, pgs = 0.9792: a) Representation of all restrictions in the
latent space; and b) delimitation of the experimental space by bracketing the DS as in [87] (green +
grey areas), and as in the optimization approach in [90] and with the proposed approach (grey area).

In Figure 9.6a the Hotelling T2 confidence ellipse when a PLS-regression model with 2
LV was fitted, the initial dataset being as described in Section 9.4.1.3. The 95% confi-
dence limits for the NS and the restrictions on the inputs transferred onto the latent
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space are also represented. It can be seen that in this case, due to the uncertainty in the
DS estimate, the hard restrictions associated to the NS confidence limits are redundant,
as is the Hotelling T2 hard constraint.

Figure 9.6b represents a zoomed in version of Figure 9.6a to better visualize the exper-
imental space. In this case, the experimental space resulting from applying the method-
ology in [87] would include the whole interior of the Hotelling T2 (green and grey
area), while both the optimization approach in [90] and the proposed approach would
further restrict the experimental space (grey area). Therefore, the procedure presented
in this section again guarantees the more robust delimitation of the experimental space,
by simultaneously accounting for the restrictions on the inputs and a variation of the
bracketing of the DS as suggested in [87].

9.4.3. Conclusions

The proposed methodology for the definition of the subspace of the latent space most
likely to contain the TDS combines the already proposed constraints in the literature
for optimization [90] with the idea of bracketing the DS [87]. This procedure has been
shown to provide robust results in the delimitation of the experimental region, in the
sense that this subspace is shown to be at least as reduced as the one resulting from the
most restrictive approach between those in [90] and [87], as illustrated in the second
and third case studies, if not more restricted, as seen in the first case study. This is
achieved by having developed a new way to analytically define the NS, as well as the
limits of its confidence region. This new definition presents three main advantages:

1. It allows the use of the limits of the confidence region for each NS as hard
constraints in the definition of the experimental region, which was not possible
in the optimization problem defined in [90].

2. The non-linearity of the limits of the confidence region of each NS, due to the
effect of the leverage on the prediction uncertainty, can also be accounted for
in their analytical expression, which could not be explicitly considered in the
bracketing of the DS proposed in[87] .

3. An extension of the definition of the NS for quality attributes defined as linear
combinations of outputs is made possible. This is useful to approach problems
that could not be addressed otherwise, as illustrated in the third case study pre-
sented in this paper.

In a similar way, the procedure to transfer restrictions on the inputs and outputs to the
latent space has been proposed. This allows comparing restrictions that are not directly
comparable when defined as affecting the inputs or the outputs, both among themselves
as well as with constraints defined in the latent space, such as those regarding the Ho-
telling T2. As an example, the hard constraint on the Hotelling T2 in the first and third
case studies is seen to be redundant (i.e. less restrictive) with respect to the constraints
on the inputs. This assessment is not possible without transferring the restrictions on
the inputs to the latent space.
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It must be noted that, although not illustrated in this section, the extension of this
methodology for the DS associated to a range of desired values, instead of specific
ones, for one or more quality attributes of interest, is straightforward (as detailed in
Section 9.3.4).

9.5. Subspace least likely to fall outside of the True Design Space

In Section 9.4 the procedure to define the subspace most likely to contain the TDS is
outlined. Such strategy may be useful for experimental purposes, when the interest is
mainly not discarding any set of processing conditions that may be a part of the TDS.
A more common desire is to guarantee that the specifications demanded by the cus-
tomer are met, or at least that they are not met as few times as possible. This means, in
practice, that defining the subspace least likely to fall outside of the TDS is at least as
important, if not more, as defining the subspace most likely to contain it.

In order to define this subspace, and for the more general case of a quality attribute
being a linear combination of the output variables included in the fitted PLS-regression
model, consider again Equations 9.30 to 9.32 for the 100 - (1 — a)% CI of the predic-
tion of the r-th quality attribute d,ps, given an observation X,s. Consider also a range
of acceptable values for the 7-th quality attribute of interest, such that two specification
limits can be defined, the Lower Specification Limit (LSL), dyg,, and the Upper
Specification Limit, dygy,,, such that a product will be considered to be within specifi-
cations regarding this quality attribute if its observed value, dyps,, meets that

dLSL,r < dobs,r < dUSL,r'

Let T 51, be a vector of scores such that the lower limit for the 100 - (1 — @)% confi-
dence interval (CI) of the prediction of a linear combination &LSL,r for an observation
XLsLr» With projection Tgp,,, is coincident with the LSL for the r-th quality attribute;
and let Tygy,, be a vector of scores such that the upper limit for the 100 - (1 — a)%
confidence interval (CI) of the prediction of a linear combination CZUSL,T for an observa-
tion Xygy,», With projection ¥ygy,,, is coincident with the USL for the r-th quality at-
tribute.

To put it another way, consider Xy g, - to be an observation such that the prediction of
the linear combination of outputs d,., &r = dysLr, and Tygy, to be the projection of
XpsLr onto the latent subspace. Ty gy, is the set of scores closest to Ty gy, - such that the
lower limit for the 100 - (1 — @)% CI of the prediction of d, is equal to dyg, . Equiv-
alently, if Tygy,, is the projection of a vector Xygy,, such that ar = dysLr» then TygL»
is the set of scores closest to Tysy,, such that the upper limit for the 100 - (1 — a)% CI
of the prediction of d,. is equal to dysg, ;-

Using OLS type expressions:
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disur = disLr — tN-aa/2 * Sdg,, ©.34)
dysir = dysiyr + tn-aas2 * Says,,

By taking into account Equations 9.30 to 9.32, Equation 9.34 can also be expressed as:

1
. SEdr\/l + % (TTT) ' %ps,, + —— disLy = 0

a; (Ds, Q51 + my) — ty_a, N

NIR

(9.35)

1
a7 (Ds, Qtys,, + my) + by_al” SEdr\/l + s (TTT) 2y, + N dyspr =0

NIR

Which provides the expressions corresponding to the limits of the region within which
any set of scores is associated to a set of inputs theoretically guaranteeing that at least
100 - (1 — @)% of the time the value for the corresponding quality attribute of interest
will be within the specifications limits. Consequently, any set of scores T, for a
product within specifications with respect to the r-th quality attribute will meet that:

aI(DSYQTWS,T + mY) - tN—A,

NI

1
. SEdr\/l + Tg‘vsjr(TTT)_lTws‘r + N — dLSL,r >0
(9.36)

aI(DSYQTws,r + mY) + tN—A,

NI

1
. SEdr\/l + T&,S’r(TTT)_lTWS‘r + N - dUSL,r < 0

For, e.g., graphical representation purposes, ;s and Tysp, can be also obtained
given the closest points Tyg,, and Tygy,, located in the corresponding NS for the r-th
LSL and USL, respectively. Consider, for Ty, the equation for the NS associated to
the r-th LSL, NSy g, -which can be expressed as:
A
VisLro T Z Vra TusLra = 05 Ve = [Vr1, Vr2) oon) vr,A]T
a=1 (9.37)
VisLro = @ - My — digr
VerT'DSY'ar

The relationship between ¥ g1, - and Ty gy, can be expressed as:

iy = Tusyr + dd(Frsyr NSisyy) - uys,

N VLSLr,0 T o~ vy (9.38)
dd (TLSL,rr NSLSL,r) = —\/T— tuns, Tspr 5 Uns, = T
vl v, vl v,

where uys, is the unitary vector orthogonal to NSpgp, (or NSygp,) and
dd(’tLSL,r, NSLSL’T) is the directed distance, which has the same sign and magnitude as
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the Euclidean distance when the direction of the vector from NS; g, to Tgy, 1S the
same as that of uyg_, but is negative if they have opposing directions.

The first equality in Equation 9.35 can then be written:

1
v uys, tour Ty (9.39)

dd(%ys1, NSpsir) = ———— [1+h

— &= T T -1 =
heporr = TusLy - (T0 -7 Fugp,

This equation can be solved recursively, such that dd (’tLSL,r, NSLSL,T) is obtained given
TLsL, and from them both ;g is computed directly following Equation 9.38. The pro-
cedure to obtain Tygy, is almost identical.

It is important to note that the existence of the subspace defined this way (i.e. at least
one Ty, exists that meets both restrictions in Equation 9.36) will depend on the dif-
ference between the »-th USL and LSL, and the uncertainty of the model. To assess this,
consider the points with lowest leverages from the curves defined by Equation 9.35,
denoted as %, and gy, respectively. These sets of scores will be related to the
corresponding sets of scores in the NS for the -th LSL and USL with lowest leverages,
TisLr and Ty . To obtain i - and Tysy ., the equations for the corresponding NS
as a function of the standardized scores is required.

For 1j;,, Equation 9.37 can be reformulated as:

T 1/2 0 —
VisLro + Ve AV g =0
T
VisLro = @y - My — digpr (9.40)
AT
v, =Q" - DSY "y

where Ty, = AY? - 10g ., AY? being the [4XA] diagonal matrix containing the 4
standard deviations of the scores associated to the LVs in the calibration dataset. T/g .,

the set of standardized scores closest to the centre of projection (and with lowest lever-
ages), can be demonstrated to be:

e,y = —AY2 v - (v - A V)T vpg g (9.41)
Therefore:
TiSL,r =—=A-v,- (V;r A Vr)_l " VLsL,r0
TrJSL,r =—=A-v,- (VTT A Vr)_l * VusL,r,0
VisLro = @y - My — digpr (9.42)
VysLr,o = @y - My — dyspr
v, =Q" - Dg, - a,

Y
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T sLr and Tjgy, - can then be obtained through the aforementioned recursive approach,
via Equations 9.38 and 9.39. For the subspace to exist, the following equality must be
met:

a; - Dg, - Q- (Fysy, — Tsp) =0 (9.43)

If Equation 9.38 and 9.39 are taken into account, Equation 9.43 can be reformulated as:

dystr — dusir = @y - Ds, - Q- (dd(TESL,r' NSs.,,) — dd (s NSUSL,r)) " Uns,

dd (%t NSisir) oag "oy 1+h L_y
, =—2 . [14+he. +—=
TLsLr LSL,r v - Uys, TsLr N (9.44)
dd (s NSustr) i Vb +~=0
TysL Nousr) = vT. Uys, TWsLr T N

Therefore:

1 1
dUSL,T - dLSL,T 2 SEdr * tN—A,% * \/1 + hiiSL,r + N - \/1 + hi?JSL,T + N (945)

where hz and hy

TLsLr TusLr
proach, via Equation 9.38 and 9.39, given T} g, and 1, which depend exclusively on
dLSL and dUSL'

can be obtained through the aforementioned recursive ap-

The subspace least likely to fall outside of the TDS will exist only if Equation 9.45 can
be met. This means that, for example, this subspace does not exist if a single value is
specified for a given quality attribute, instead of a range of values, since in such a case
dysLr — disiyr = 0, while SE; > 0 already in most cases, due to the uncertainty as-

sociated to the model.

9.6. Assessing the adequacy of a PLS-regression model for inversion

While Sections 9.4 and 9.5 provide tools to define subspaces most appropriate for ex-
perimentation and for guaranteeing the quality of the products, respectively, no a priori
assessment of the PLS-regression model as more or less adequate for its inversion was
made. In e.g. [90] assessing the performance of the model for the prediction of the
input variables from the scores, and extracting the required number of LV to properly
predict both X and Y is suggested, but this still does not actually provide a measure of
the performance of the model used in its inverse form. In this section two different
approaches to perform this evaluation are discussed, and a modification of the second
proposed.
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9.6.1. Assessment via direct inversion

Similarly to R? and Q2%, commonly used as a measure to quantify the explanatory or
predictive capability of a model used in its direct form (either for X or Y), R and Q3
are defined here to refer to the explanatory or predictive capability of the PLS-
regression model used in its inverse form to obtain the sets of inputs theoretically lead-
ing to the outputs for observations already used to fit this model and for observations
not used to fit it, respectively.

Intuitively, it may seem that a way to estimate R§ and Q% could be via cross-validation,
as done for R? and Q2, by ‘predicting’ each of the observations in the input space
through direct inversion, given the corresponding values for the outputs for those ob-
servations, and comparing the ‘predicted’ values with the ‘real’ ones. However, this
procedure is only valid as long as each combination of values for the output variables
can only be achieved with a given combination of values for the inputs. This is because
otherwise, as explained in Section 9.3, the direct inversion provides a single set of in-
puts among all possible combinations of them theoretically providing certain outputs.

9.6.2. Assessment by comparison with the closest solution in the null-space

Considering the issue mentioned in the previous section, Jaeckle & MacGregor [88]
already proposed an approach to obtain R§ and Q%. This approach considered the exist-
ence of the NS by comparing the projection of each observation (in the calibration or
validation dataset) not with the result from the direct inversion, but with the set of
scores in the corresponding (combined pseudo) NS closest to this projection. However,
this approach presents some limitations or drawbacks, because:

i) it is based on a definition of the NS (the so-called combined pseudo NS in Sec-
tion 9.3.2) that makes it impossible to assess how appropriate a PLS-regression
model may be for inversion when information of only one, or some, but not all
of the outputs is available (i.e. there are missing data) or relevant (i.e. not all of
the outputs available in the dataset are of interest at a certain moment);

ii) since a priori a selective PCA on Y has been performed before obtaining the NS,
the information of the outputs discarded as a consequence of the selective PCA
is missing; and

iii) it cannot be applied to quality attributes defined as a linear combination of out-
puts. In this section, a new way to compute R? and Q? is provided which aims at
overcoming these limitations.

The procedure proposed by Jaeckle & MacGregor [88], however, can be slightly modi-
fied by accounting for the analytitcal definition of the NS as presented in Section 9.3.3,
both for the outputs and for any quality attribute expressed as a linear combination of
them. To do this, consider the set of equations for the R NS associated to the values of
the R quality attributes of interest for the n-th observation in a dataset:
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Vot V:-tys, =0

Un,1,0 "1T
Un,2,0 T (9.46)
2, V. .
Vno = : =Ar-my—d, ; V= 2 =Ar'DSY'Q
VUn,R,0 vy

R

A, and V being defined as in Equation 9.26, and d,being the [RX1] column vector
with the observed (or calculated) value for the r-th quality attribute of interest, for the
n-th observation, as its r-th element. As long as the number of latent variables used to
fit the PLS model is greater than the number of quality attributes considered (i.e.
A > R) a subspace may exist corresponding to more than one set of inputs Xyg,, and

therefore a set of scores Tys,, that theoretically guarantee d,.

From all such scores, Jaeckle & MacGregor [88] wisely suggest computing the one
closest to t,, Tys,, and comparing them with each other. In their approach, the ‘com-
bined pseudo-NS’ is considered, and because of the way it is computed it is expected
that such subspace will not necessarily coincide with the intersection of the R hyper-
planes whose equations define the elements of v,, o and the rows of V in Equation 9.46.
In this thesis it can be demonstrated that:

s, ==V - (V- VD)1 V]. g, = VT - (V- V)T . v, (9.47)
And therefore:
T, — Ty, =V -(V-VD Ve, + VI (V- V) Loy, (9.48)

As in [88], R§ and QF are defined as:

le SS[Tn - iNSn]
Z;l SS[Tn - mT]
gll SS[Tn - fNSn]

g;l SS[Tn - mT*]

Rg=1-

>N
Il

(9.49)
1 —

2
X

=]

Where N* denotes the number of observations used for the comparison, which includes
only those whose prediction would not require extrapolation outside of the convex hull
defined by all other remaining observations in a cross-validations exercise; mr is the
average of the scores for those observations, while my+ is the average for the scores of
the observations used to fit the model at the corresponding iteration during the cross-
validation to obtain Q2.

The only differences between Ry and Q% as defined here with respect to [88] up until
now lies in the combination of Equations 9.48 and 9.49. Here all R quality attributes of
interest are accounted for, and these quality attributes could here be a linear combina-
tion of outputs, and not the outputs per se. Consider now, however, a subset of quality
attributes, such that the set of NS equations in matrix form would now be expressed as
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Vno + V" Tys: = 0%, where the asterisk is used to denote that v, , and V* result from
extracting some rows from v, o and V, respectively. This means that some of the in-
formation regarding some outputs may be missing, irrelevant or unreliable. Then %ys: ,
equivalent to Tyg, when some of the outputs are not taken into account, can be ob-
tained with Equation 9.47 by substituting v,, o and V with v;, ; and V*, and variations of
R and Q% can be defined as:

Yneq SS[t, — st;;]
2;1 SS[Tn - mT]
271\1]=1 SS [Tn - fNSil]

N . SS[t, — mg:]

R)z({dR*} =1-
(9.50)

Q)Z({dR*} =1-

Where {dg-} denotes that RZ and QF have been computed only with the information
provided by a subset (which must be defined previously) of the quality attributes, and
not all of them.

9.7. Additional considerations

This chapter focused on providing efficient tools for the estimation of the DS (as well
as the subspaces most likely to contain the TDS and least likely to fall outside of it)
when resorting to a PLS-regression model, and the assessment of its performance in its
inverse form. However, equipment wear, process modifications etc. will change the
TDS of a process and, similarly, the estimated DS will change when new raw materials
are tested and process operation is adapted to them (i.e., new conditions not in the his-
torical data used to build the PLS model). A more reasonable approach would seem to
be comprised, in this case, by a combination of the methodologies proposed here with
recursive PLS-based algorithms for model updating. Nevertheless, this is out of the
scope of this thesis and deserves future research.
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Chapter 10

Optimization problem
formulation in
Quality by Design

Part of the content of this chapter has been included in:

1. Palaci-Lopez, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental
approach to improve the design space estimation using latent-variable model in-
version. Part II. Optimization problem reformulation and sequential experi-
mental approach. Submitted.

10.1. Introduction

As mentioned in Section 8.2 and proposed in [90], PLS model inversion can be formu-
lated as an optimization problem in order to find new combinations of inputs leading to
a product with the desired quality attributes. In any process, some - but not necessarily
all - quality attributes are usually required to meet particular values or some (generally
univariate) specifications, while restrictions on the input variables may be imposed,
either for feasibility reasons or due to specific combinations of operating conditions
being favoured. Regarding the formulation of the optimization problem as presented in
[90], which is in the form of a quadratic optimization problem, two similar yet distinct
ways in which it can be approached will be presented in this section: the optimization
problem in the original space through the latent space, and the optimization problem
in the latent space.

10.1.1.  Optimization in the original space through the latent space

The optimization problem formulated this way is shown in Equation 10.1.
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where T is a [LXL] diagonal matrix where the /-th element in the diagonal represents
the weight given to achieving the desired value for /-th output variable; g,, g; and g,
are the weights given to each term in the objective function when solving the optimiza-
tion problem; g,;, is a coefficient between 0 and 1 to impose a hard constraint on
SPEy ew> Tlizm and SPE);,, are the Hotelling T2 and SPE, upper limits as calculated in
Eq. 8; Ib and ub are the lower and upper bounds for Xygw and ¥ngpw; and Fy and

fynpw are defined as Fy and fg . in Equation 9.16, but defining restriction on Xygw

instead of Xngw. It should be noted here that Xygw corresponds to the vector of inputs
obtained from T through model inversion (i.e. Xygw = P - T), while Xygw is the vector
of inputs the objective function is expressed as a function of, and whose projection

onto the latent space is T (i.e. T = wT. XNEw)- SPExyy 18, consequently, a measure

of the squared difference between Xygw Wwith projection T and the vector of inputs
Kngw Obtained from T by indirect inversion of the model when solving Equation 10.1.

A distinction must be made regarding the different restrictions imposed on the solution
of this optimization approach. On one hand, the different terms inside the objective
function are referred to as soft constraints, since they favour solutions close to the NS,
with low Hotelling TXZNEW and low SPE values, but do not define a threshold for

XNEW
such values, nor force the solution to meet any specific values. On the other hand, the

different restrictions defined outside the objective function in Equation 10.1 are re-
ferred to as hard constraints, since they define the subspace outside of which a solution
will not be accepted, but they do not favour any specific solution inside the subspace of
acceptable solutions. It is these hard constraints, then, that define the region of accepta-
ble solutions. It should also be noted that the way this optimization problem is formu-
lated does not make use of the concept of the NS presented in [88], or ‘combined pseu-
do-NS’ in [89]. Instead, the term (§ygw — ¥prs)® *T-D5? - (Fnew — Ypes) in the
objective function implicitly acknowledges the presence of L different NS as referred
to in [89], and whose analytical expression have been provided in Section 9.3.3, so that
the result from the optimization, T, has to be as close as possible to these NS. Each of
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them is therefore constituted by all combinations of inputs that theoretically guarantee
the desired value for a single output variable, but not the rest. If these NS intersect, at
least a solution meeting all the desired values for the L out variables, ypgg, exists. If
this intersection results in a subspace of dimension higher than O (i.e. a line, plane or
hyper-plane), then such intersection is coincident with, or very close to, the NS as de-
fined in [88], or combined pseudo-NS in [89].

This formulation of the optimization problem is said to take place in the original space
because the objective function whose value is to be minimized is ultimately being ex-
pressed as a function of a vector of input variables Xygyw that do not necessarily belong
to the subspace of the PLS-regression model that best adjusts the available data (i.e.
SPEyyw = 0); but it is also said to be carried out through the latent space because the
PLS-regression model is used to predict restrictions ¥ygw, and restrictions are imposed
on both the Hotelling T? and S PEypw to guarantee that any solution obtained will fall

within acceptable limits for both parameters (i.e. neither too far away from the centre
of projection of the latent subspace, nor from the model’s subspace itself). This way,
the optimization algorithm will provide a vector of inputs Xygyw that theoretically guar-
antees the desired outputs (or values as close to the desired ones as possible) while
respecting, to an extent, the correlation structure found in the dataset used to fit the
PLS-regression model, but without being forced to comply exactly with it.

For all of its advantages, however, this approach to solving the optimization problem
suffers from one severe drawback: as the objective function is expressed as a function
of XNgw, the dimensionality of the space within which it is to be minimized increases
linearly with the number of input variables, and the growth of its size is exponential.
Being a quadratic optimization problem, an algorithm to solve it may yield one of
many local minima as its solution, instead of the global minimum. To avoid this as
much as possible, a large number of seeds spanning the space of acceptable solutions
(i.e. meeting all restrictions) may be provided to the algorithm, but this may become
computationally very costly or even untenable as the number of input variables in-
volved increases.

10.1.2.  Optimization in the latent space

The optimization problem formulated this way is shown in Equation 10.2, where T, g,
and g, are defined as in Equations 10.1; Ib and ub are the lower and upper bounds for
Xngw and Yngw; and Fy and fg o are defined as Fy and fg . in Equation 9.16. It
should be noted here that Xygw corresponds to the vector of inputs obtained from T
through model inversion (i.e. Xygw = P - T), and therefore any solution achieved by
solving this optimization problem will be located on the PLS-regression model sub-

space. Although a restriction is imposed on the Hotelling T2, none affects the SPEy

XNEW
since, in this case, SPEg = 0 for any T achieved by approaching the optimization

XNEW
problem this way.

159



Quality by Design Through Multivariate Latent Structures

A
2
- S 2 ra T
min fgo - Inew — Ypes)” - T - D5? - (Fnew — YpEs) + 91 - Z S—‘;
a=1"¢
S.t.
Ynew = Ds, - Q- T+ my
Xnew = Dgy - P T+ my (10.2)
TE=1" AT < T,

lbﬁNEW < XNEW < ubﬁNEw

lbf’NEw S YNew S UbyNEW

FX : XNEW = fﬁNEW

This implies that the optimization algorithm will provide a vector of inputs Xygw that
theoretically guarantees the desired outputs (or values as close to them) and complies
exactly with the correlation structure found in the dataset used to fit the PLS-regression
model. As opposed to the approach in Section 10.1.1, this may make it impossible to
find a set of inputs Xygyw that meets all of the restrictions imposed on them, while an
hypothetical xygyw outside of the model subspace but close enough to it (i.e.
SPEyypw < SPEjim) could be found that meets all constraints on the inputs. Consider,
for example, the data in Table 9.1 and its projection onto the latent subspace of a PLS-
regression model fitted with 2 LV. Trying to solve the optimization problem as formu-
lated in Equation 10.2, and imposing as hard constraints on the solution that all of the
inputs must meet exactly the values corresponding to one of the six samples used to fit
the PLS-regression model, yields no feasible solution at all. However, a solution can be
found for all but one case (the one corresponding to the fourth observation) if the opti-
mization problem is formulated as in Section 10.1.1, since all but the fourth observa-
tion meet that SPEy < SPEjjp,. This limitation comes as a consequence of the optimi-
zation taking place in the A-dimensional latent subspace instead of the original M-
dimensional space (A < M), as constitutes an example of the issue explained in Section
9.2, where it is stated that at most 4 equality restrictions (including restrictions im-
posed on the outputs, and not just on the inputs) may be imposed on the optimization
solution as hard constraints without it being highly unlikely that a solution exists at all.

The optimization problem as formulated this way presents, however, a very relevant
advantage in practice with respect to the one illustrated in Section 10.1.1, derived pre-
cisely from the reduction in dimensionality of the subspace of acceptable solutions,
which can significantly reduce the computational cost of the algorithm used for the
optimization, as well as the risk of it getting ‘trapped’ in local minima. Furthermore,
given the uncertainty associated to the PLS-regression model’s predictions of both
inputs and outputs and the fact that, in a number of real scenarios, more hard equality
constraints may have to be imposed on some of the input variables than the number of
LV variables used to fit the PLS-regression model, a two-steps optimization ought to
be resorted to in order to bypass to an extent the limitation regarding how many hard
equality constraints can be simultaneously imposed, by i) relaxing some of the equality
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constraints into pairs of inequality restrictions when solving Equation 10.2; ii) modify-
ing the values for the restricted variables in Xygw accordingly to meet the equality
constraints while penalising as little as possible the objective function, to get Xygw;
and iii) evaluating if TXZNEW < Tﬁm and SPEy ... < SPEjiny,, in which case a valid solu-
tion would have been obtained.

In the following sections, the optimization in the latent space (and not the one in the
original space) will be addressed in more detail, and some modifications of it and/or
alternative approaches will be provided to address different problems of interest. Some
of these issues are:

1. The formulation of the objective function is useful when the quality attributes
of interest are coincident with the output variables used to fit the PLS-
regression model, but not when one or more of them are expressed as a linear
combination of such outputs (and they are not explicitly included in the Y ma-
trix when fitting the PLS regression model for any of the reasons mentioned in
the third point in Section 8.3, and as illustrated in the example addressed in
Section 9.4.2.3).

2. The presence of a soft constraint on the Hotelling T? will necessarily cause a
solution that would otherwise meet all desired values for all of the outputs to
not do so (e.g. in the example illustrated in Figure 9.5a, Section 9.4.2.2, a set
of scores exists that meets all hard constraints and provides the desired values
for the two outputs, but imposing a soft constraint on the Hotelling T2 would
cause the solution of the optimization to drift away from this set of scores). Its
absence in this same scenario, however, may lead the optimization algorithm
to provide a different solution each time it is executed, provided the combined
NS (i.e. a subspace within which all sets of inputs theoretically guarantee the
desired values for all of the outputs) exists. Part of this is because of the lack
of soft constraints on the inputs being included in the objective function and
hard equality constraints on the outputs, the inclusion of both of which may
sometimes be advisable. Take as examples the case studies illustrated in Sec-
tions 9.4.2.1 and 9.4.2.3, where the NS for the respective quality attributes of
interest is seen to exist within the experimental region/region of acceptable so-
lutions for the optimization problem, and be comprised of many different sets
values for the inputs/scores:

a. The optimization problem as formulated in Equation 10.2 with g, > 0
and g, > 0 will provide a solution as close as possible to the NS and,
at the same time, as close as possible to the centre of projection. How
close Tygw 1S to each will depend on the values given to g, and g,,
but it will surely not be a set of scores on the NS.
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b. The optimization problem as formulated in Equation 10.2 with g, > 0
and g; = 0 will provide any of the many possible solution on the NS,
since any of them is equally valid according to the objective function
(i.e. the distance to the NS is zero). Which of these is obtained will
define, in most cases, on the seed provided to the algorithm as an
starting point for the algorithm and from which the ‘search’ for an op-
timum begins.

c. Alternatively, the optimization problem as formulated in Equation
10.2 with g; > 0 and the soft constraint defined by its first term being
substituted by a hard constraint on the output variable will provide as
a solution the set of scores exactly on the NS with smallest leverage.

Even accounting for the issue mentioned in the second point of this list, if
more than one solution for the optimization problem is desired, solving it more
than once will provide the same or almost equal solutions, unless the
weighting of the soft constraints in the objective function or the hard con-
straints are modified from one iteration to the next one.

While the first term in objective function in Equation 10.2 is formulated as a
weighted sum of quadratic differences between ¥ypw and ypgs, which implies
Ypgs must be defined, there are a number of scenarios where the value for one
or more of the outputs/quality attributes of interest is to be minimized or max-
imized. In some of those cases, a minimum or maximum value can be intro-
duced as the ‘desired value’ for one or more of these quality attributes, when it
is already known that such quality attributes cannot achieve values below or
above those thresholds, respectively. However, this is not always the case (i.e.
because such limits do not exist or, more frequently, are not known) and, even
if it is, defining such values as the ‘desired ones’ may lead to an artificial in-
crease in the weight given to minimizing or maximizing the value of one of the
quality attributes with respect to others.

Section 10.2 aims at covering these issues and proposing different ways to deal with
each of them, as well as to reduce the uncertainty in the DS estimation, while Sections
10.3 and 10.4 provide alternative formulations to the quadratic one for the optimization
problem.
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10.2. Quadratic optimization formulation

10.2.1. Optimization of a linear combination of outputs

Consider Equation 9.25 to be the expression corresponding to any set of output varia-
bles Yy, for which the desired value for the r-th quality attribute of interest, d,, is met,

that is af - ¥ns, = dpgs,- The first term in the objective function in Equation 10.2 is
expressed as a function of §ygw and ypgs, and not a} - Yypw and dpgsy- To evaluate

the adequacy of this formulation when the r-th quality attribute is taken into account,
instead of one or more outputs, consider the following objective function:

A
72
mtin 90 (aI “YNEW — dDES,r)T “Yr - SErZ : (aE “YNEW — dDES,r) + 91 Z S—’; (10.3)
a=1"%
Where v, is a scalar that represents the weight given to achieving the desired value for
the r-th quality attribute of interest, such that the sum of the absolute values for the
weights given to achieving the desired values for each quality attribute is one (if only
one quality attribute is considered, as in this case, then y,, = 1); and s,;rz is the inverse

of the estimated variance for the r-th quality attribute from the observations in the cali-
bration dataset.

For the objective functions in Equations 10.2 and 10.3 to be equivalent, the first term in
each of them must be so. This first term in Equation 10.3 can be reformulated as:

(S;NEW - S;NSr)T “Yrocap- 55,2 -ay - (f’NEW - ?Nsr) (10.4)

where Yyg, is any set of outputs that meets that al - Yns, = dpgs,- When Pyg_ in
Equation 10.4 coincides with ypgg in Equation 10.2, then:

r-D;2=vy, -a,-s;*-al (10.5)

r

It must be noted, however, that the estimated variance for the quality attribute from the
observations in the calibration dataset, sér, is calculated as:
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¥, and y,,, being, respectively, the average and n-th measured value for the /-th output
of the model calibration dataset, and df the degrees of freedom consumed by the mod-
el. Therefore:

-1
r=vy, -a.-(al-S,-a,) -al-D2 (10.7)

Since I' in Equation 10.2 is defined as a diagonal matrix of weightings, the objective
function in Equation 10.2 and the one formulated in Equation 10.3 will only be equiva-
lent, with T remaining a diagonal matrix, if the outputs are uncorrelated™.

Therefore, a more general reformulation of Equation 10.2 to account for quality attrib-
utes of interest expressed as linear combinations of the outputs is:

mtin[OFl (Joar 91, 0]
A
T 2 Ta
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A.-t<d,
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(10.8)

where v, and V are as defined in Equation 9.26™, and correspond to the NS associated
to the desired values of the R quality attributes of interest, dpgs [RX1]; Tz is now a
[RXR] diagonal matrix where the r-th element in the diagonal represents the weight

xi . . . . . . . . .
The extension of this demonstration when all R quality attributes of interest are considered is straightforward

! Note that v, and V can be re-defined to also include the ‘null spaces’ of the different linear combinations of inputs if/whenever
necessary. Doing so is straightforward, and has not been done in the objective function presented here for the sake of simplicity
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given to the goal of achieving the desired value for r-th quality attribute; Dg dz is the
[RXR] diagonal matrix with S,;TZ (calculated as in Equation 10.6) as its r-th element;
Joa and g, are defined as g, and g; in Equations 10.2; A; and d. as A; and d
Equation 9.11; and F; and f; as F; and f; in Equation 9.13.

TNEW mn

NEW

10.2.2.  Optimization for exploration and DOE in the latent space

As mentioned in Section 10.1, one other drawback of the optimization formulation in
Equation 10.2 is the need to actively modify the soft and/or hard constraints (or the
weight given to the former in the objective function) in order to guarantee that different
iterations will provide solutions different to previous ones, or to already available ob-
servations in the calibration dataset used to fit the PLS-regression model. Furthermore,
when the optimization approach is resorted to in order to perform new experiments
(e.g. in unexplored areas of the knowledge space or the subspace thought to most likely
contain the TDS), and additional issue must be considered, and that is the fact that the
first term in the objective function favours/penalizes equally acceptable solutions at the
same distance (in the latent space) from the NS. However, if it is accepted that the
limits of the confidence region for the NS are non-linear (and, in particular and as an
approximation, of the form presented in Section 9.3.4) due to the prediction error vary-
ing with the leverage associated to each set of inputs/scores, then it makes sense for
exploratory purposes to penalize less solutions equally close to the NS but with higher
leverage, and vice versa.

When both of these concerns are accounted for, the following optimization problem
can be formulated:

mtin[OFz (goar Jobr 91, 92, V]
_ T
OF;(goa, Gobs 91, 92, T =0F1(goa, 91,V + gop - dys(T,NS) - Ty - dys (T, NS) +

+g,-d71(x,T)
s.t.
Y¥new = Ds, - Q- T+ my
Xnew = Dgy - P T+ my (10.9)
s, (L NS)| = [T <t o Ve (1,2,.,R)
dANEW,r 2
TE=1T At T <T§,
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where I’y holds the same meaning as in Equation 10.8; g, and g, are the weights
given to each of the new added terms in the objective function; dyg(t,NS) is a [R x 1]
vector with stT(‘t, NS,.) as its r-th element, which is a measure of the distance from

the projection T of the solution to the r-th NS pondered by the inverse of sg ,  (as
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calculated in Equation 9.31), instead of the r-th diagonal element in D;dz; and

d~1(x, T) is the inverse of the squared statistical distance from the projection T of the
solution to the closest already available sample in the calibration dataset X with projec-
tion T in the latent subspace, calculated as:

1

d'(x,T) = min[(t — .[n)T AL (- Tn)] + const

vne{l2,..n}  (10.10)

const being a small positive real number introduced in order to avoid d~1(t, T) going
to infinite, which may cause computational issues.

It must be noted that the terms of the objective function weighted by gy, and ggp in
Equation 10.9 both penalize solutions further away from the NS, but do so in different
ways, and may be resorted to for different purposes (e.g. the first one for optimization
purposes, as done in the literature, and the second one for DOE/exploratory purposes,
as will be illustrated in Chapter 12). Therefore using one or the other, but not both
simultaneously, is recommended. A hard constraint defined similarly to the soft one
weighted by gop may also be included in order to guarantee that any solution, if it sat-
isfies all hard constraints, falls within the subspace most likely to contain the TDS as
defined in Section 9.4 At the same time, d~1(t, T) guarantees that any solution ob-
tained from the optimization will not be coincident or too close to an already available
observation in the dataset used to fit the PLS regression model. One of the main disad-
vantages of this optimization approach is that the solution achieved may change sub-
stantially depending not only on the constraints imposed but also on the weight given
to each of the terms in the objective function OF,(goa, Job, 91, g2, T), €ven when there
is only one quality attribute of interest. To illustrate this, consider a PLS-regression
model is fitted with 2 LV, using data consisting of six observations following the hypo-
thetical input-output causal relationship presented in Equation 8.1, already used in one
of the examples in [87] and in Section 9.4. Then, consider the desired value for the
output to be ypgs = 204.86, and this problem to be addressed as an optimization prob-
lem. Figure 10.1 presents, for the same example shown in Figure 9.4 (Section 9.4.2.1),
and at each point in the latent space, the values that the objective function in Equation
10.9 takes when weight equal to 1 is given to one of the terms in it, and O to the rest.
This highlights the different contribution to each of the terms in the objective function,
and allows assessing the effect of different weights being given to each one (go4> Gobs
g1 and g,) prior to the optimization.

xiii . . o . . . . . . .

For the more likely scenario of a range of values within specifications limits being accepted for a given quality attribute,
instead of a single value, these hard constraints can be substituted by the ones defined in Equation 9.28, extended for a linear
combination of outputs as detailed in Section 9.3.4
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Figure 10.1. Graphical representation of the contribution of each term in the objective function of the
optimization framework of Equation 10.9 when using a PLS-regression model with 2 LV fitted with
six observations following the input-output causal relationship presented in Equation 8.1, and
Ypes = 204.86, as well as two combinations of these terms. The z-axis represents the value for the
Objective Function (O.F.) in Equation 10.9 referred to in these plots as 0. F. (goa Job» 91, 92)-

In Figure 10.1.a and Figure 10.1.c the contributions of each term in the O.F. of the
optimization framework as formulated by Equation 10.2 can be assessed. It can be seen
how these terms’ contributions to the O.F. are of similar order of magnitude if close to
the centre of projection. Since during the optimization the lowest value for the O.F. is
desired, the term corresponding to 0. F. (1,0,0,0) penalizes solutions further away from
the NS (for ypgs = 204.86), while the term associated to 0. F.(0,0,1,0) favours solu-
tions with lower Hotelling T;2.

On the other hand, the contribution of one of the new proposed terms can be evaluated
through Figure 10.1.b, with 0.F.(0,1,0,0) corresponding to dys, (T,NS,.). This term
favours solutions in a similar manner as 0. F. (1,0,0,0). However, it penalizes solutions
farther away from the NS much more. Furthermore, solutions with a higher leverage
(and therefore higher uncertainty in the prediction) are less penalized when compared
to those with a lower leverage, which implies that this term will allow a wider area for
the exploration of different solutions where the predictions are less reliable. Figure
10.1.d permits assessing the impact of the other new proposed term for the O.F. on its
value, through 0. F. (0,0,0,1). This term heavily penalizes solutions close to the projec-
tion onto the latent subspace of already available observations in the calibration da-
taset.

Finally, Figure 10.1.e corresponds to 0.F.(1,0,1,1), that is, the sum of the terms plot-
ted in Figure 10.1.a, Figure 10.1.c and Figure 10.1.d. It must be noted that, because the
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contributions of 0.F.(1,0,0,0) and 0.F.(0,0,1,0) are of a similar order of magnitude
close to the centre of projection, there are solution further away from the NS that are
equally optimal to solutions closer to it if g, and g, are given the same values, ac-
cording to the O.F. as formulated this way. On the other hand, Figure 10.1.f corre-
sponds to 0.F.(0,1,1,1), that is, the sum of the terms plotted in Figure 10.1.b, Figure
10.1.c and Figure 10.1.d. In this case any solution will fall, even without hard re-
strictions, closer to the NS than if the weights given to each term were those corre-
sponding to Figure 10.1.e, even if g, and g, are given the same values. This serves to
illustrate the importance of giving the appropriate weight to each term in the objective
function to guarantee that more desirable solutions are achieved.

This graphical representation also highlights the importance of addressing if a more
convenient formulation of the optimization problem would require dismissing the
terms associated to soft constraints on the quality attributes in the objective function
(i.e. goa = gop = 1) and imposing, instead, hard constraints on them, such that the
solution will be that exactly on the NS and with smallest leverage (and therefore a nar-
rower prediction confidence interval for the prediction of the quality attribute/s) or, ii)
if the prediction error is not of concern at this stage, considering all the combinations
of inputs/scores on the NS as ‘equally good’ solutions (which would, in fact, require
defining this subspace instead of solving the optimization problem).

Further application of this formulation of the optimization problem will be illustrated
in Chapter 11.

10.2.3. Tackling the maximization/minimization problem

As mentioned in Section 10.1.2, and illustrated in Figure 10.1, the first term in the
objective function of the optimization problem as formulated up until now penalizes
solutions far away from the hyperplanes defined by the NS corresponding to a vector
of ‘desired values’ for the considered outputs/quality attributes. This may present some
issues when such ‘desired value’ is not a specific one, but instead the value for the
corresponding quality attribute is to be minimized or maximized. Here three different
ways to address this scenario are presented, as well as the reason why they are or not
recommended if more than one output variable/quality attribute is present.

10.2.3.1 Defining feasible minimum/maximum values as the desired ones

Consider a scenario for which the information in Table 10.1 is available concerning
two hypothetical output variables y; and y,, for their average, minimum and maximum
values and their standard deviation in the calibration dataset used to fit the PLS-
regression model, as well as their minimum and maximum feasible values.
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Table 10.1. Characterization of a hypothetical Y dataset with two output variables

Dataset Feasible
Variable
Mean Std. dev  Minimum Maximum | Minimum Maximum
V1 50 1.7 45 55 30 1000
Vs 95 34 90 110 0 120

Consider now three different scenarios:

1.

Both y; and y, are to be maximized. If the vector of desired values for the
outputs is defined as yprg = [1000 120], the difference between ypgs and
the maximum observed value for y; is ~556 standard deviations, while the dif-
ference between ypgs, and the maximum observed value for y, is less than 3
standard deviations. Therefore, defining I’z = I,, I, being the [2X2] identity
matrix, makes it look like the same importance is being given to achieved the
‘desired’ (i.e. maximum) value for both outputs. However, accomplishing this
goal for the first output is being given ~189 times as much weight as achieving
it for the second one. This will only not be a problem when the combinations
of inputs (e.g. process conditions) that maximize both y; and y, are the same.
Both y; and y, are to be minimized. In this case, if the vector of desired values
for the outputs is defined as yJgs = [30 0], the difference between YDES 1
and the minimum observed value for y; is ~8.8 standard deviations, while the
difference between ypgs, and the minimum observed value for y, is ~26.5
standard deviations. In contrast to the previous scenario, when I'y; = I, the
goal of minimizing y, is being given roughly 3 times the weight given to min-
imizing y;. Again, this will only nof be a problem when the combinations of
inputs that minimize both y; and y, are the same.

Y, is to be minimized/maximized, and y, is to take a specific desired value, or
vice versa. A similar issue to that in the two previous cases occurs here, to
higher or lower extent depending on which variable is to be mini-
mized/minimized, and the desired value for the other one.

It can then be concluded that this way of defining ypgs (or dpgs) may be inadequate in
most cases, especially if a feasible minimum or maximum is not known or defining one
does not make sense from a practical point of view, and therefore an arbitrarily low or
high value would be set.

10.2.3.2

Changing the sign of the weight given in the objective function

This second approach relies in the way the first and second terms in the objective func-
tion as formulated in Equation 10.9 contribute to the value of the objective function
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(which is to be minimised). Note that these terms are quadratic distances (which are
always positive) weighted by the elements of the diagonal matrix I';. As a conse-
quence, when the r-th element in I is positive, these terms are minimised when the 7-
th quadratic distance (to dpgs,) gets smaller. On the other hand, if the 7-th element in
Iz is negative, then these terms are minimised when the r-th quadratic distance (to
dpgsy) gets larger. Therefore, making the r-th element in I'; negative will penalize
solutions that provide values close to the ‘desired’ one instead of values far away from
the ‘desired’ one for the r-th quality attribute of interest. One can take advantage of
this for minimization/maximization purposes, by:

i.  defining dpgs, as the average value for the r-th quality attribute in the calibration
dataset, and imposing the hard inequality constraint dygw, < dpgs, When the r-
th quality attribute is to be minimised;

ii.  defining dpgs, as the average value for the r-th quality attribute in the calibration
dataset, and imposing the hard inequality constraint dygw, = dpgs, When the 7-
th quality attribute is to be minimised.

Although apparently slightly better than the approach in Section 10.2.3.1, this one pre-
sents some issues derived from having to artificially impose additional constraints on
the outputs/quality attributes of interest, which may make finding a solution other than
the average in the dataset impossible, specially if maximizing/minimizing different
quality attributes are competing objectives, which would not be a particularly interest-
ing nor useful solution. To avoid this, the maximum/minimum feasible value for the r-
th quality attribute may be used to define dpgs, and to impose the corresponding ine-
quality restrictions on them, but the same issue as the one presented in Section 10.2.3.1
would then occur, although more weight would implicitly be given in this case to
achieving the minimum/maximum values for the variables with highest variance in the
calibration dataset. This approach is also slightly counter-intuitive, since dpgs, is not,
actually, the desired value for the r-th quality attribute.

10.2.3.3 Finding extreme achievable values below the Hotelling T* limit

This approach is based on the fact that not just any solution of the optimization prob-
lem as formulated in Equation 10.9 is equally valid (optimality aside), and particularly
no solution outside of the Hotelling T2 confidence hyperellipsoid, for a given confi-
dence level, will be accepted, independently of any other restrictions imposed on the
inputs or outputs or the feasible minimum or maximum values for any variable. There-
fore, not accounting for additional constraints, the lowest and highest predicted values
for a quality attribute according to the PLS-regression model will be those for two sets
of scores located on opposite extremes of the Hotelling T2 confidence hyperellipsoid.
To identify them, consider that the vector v,. orthogonal to the NS associated to the »-th
quality attribute, and defined as the transpose of the r-th row of V in Equation 9.26,
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provides the direction of maximum variability for such variable. Consider also that the
equation of the Hotelling T2 confidence hyperellipsoid can be written as:
A—l

Tt=1 10.11
Tlizm ( ' )

And, A™1 being a diagonal matrix, the vector normal to such hyperellipsoid on a point
T on its surface, N, is:

2 -1/2 , o+

Nt =——-A CTy (10.12)

lim
If T} is the set of scores associated to the combination of inputs theoretically (i.e. ac-
cording to the PLS-regression model) guaranteeing the maximum achievable value for
the r-th quality attribute without reaching outside of the Hotelling T2 hyperellipsoid for
a given confidence level, then:

Nt Vr
\/nT;T . nt;_ \/VTT ' VT
(10.13)
T AT
vt =1
Tlim

On the other hand, if T, is the set of scores associated to the combination of inputs
theoretically guaranteeing the minimum achievable value for the r-th quality attribute
without reaching outside of the Hotelling T? hyperellipsoid for a given confidence
level, then:

N TV
T
\/nT;T . nt; \/Vr Vr B .
Sl =g 2T =T (10.14)
A—l
-T - _
T TT T = 1
lim

Equations 10.13 and 10.14 can then be solved to obtain T} and T, and from them the
maximum and minimum achievable values for the r-th quality attribute while inside the
Hotelling T2 confidence hyperellipsoid, respectively. These values can be used as the
r-th element of dpgg in the optimization problem formulated in Equation 10.9. While
using them does not necessarily guarantee that unbalanced weightings are implicitly
given to the goals of maximizing/minimizing each of the quality attributes, the proce-
dure to define them does not depend on any “feasibility constraints” or on the decision
of the person resorting to the optimization problem as formulated in Equation 10.9 to
give them arbitrarily large/small values. Incidentally, if a single quality attribute is
considered for the optimization, and if T} or T, meet all other hard constraints imposed
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on the solution of the optimization algorithm, these scores can be considered the solu-
tion of the algorithm itself when no soft constraint is imposed on its Hotelling T2 (i.e.

g1 =0).

10.3. Linear optimization formulation

Section 10.2 addresses some limitations of the optimization problem as formulated in
the literature, such as the optimization of quality attributes defined as linear combina-
tions of output variables, or the way to tackle the minimization/maximization prob-
lems. However, one yet unaddressed drawback is the fact that the quadratic optimiza-
tion formulation suffers from the possibility of the algorithm used to solve it getting
stuck in a local minimum. The quadratic formulation is useful in this context because it
can deal with non-linear constraints, such as the one imposed on the solution’s Ho-
telling T2, or the ones associated to the NS confidence regions’ limits. It must be noted,
however, that quadratic formulation of the optimization problem may not be necessary
if the soft constraint on the Hotelling T2 in the objective function is dismissed (while
keeping the hard constraint to avoid extrapolation) and any non-linear hard constraints
happen to be redundant, i.e. less restrictive than any other considered linear constraint.
The linear formulation of the optimization problem is, then, as shown in Equation
10.15.

mtin[y£ D3t (vo+ V-1

s.t.

y =Ds,-Q-T+m

Inew = Dsy - Q v (10.15)
XNEW_DSX.P'T+mX

A.-t<d,

F.-t=f1,

where yg is a [RX1] vector that contains as its 7-th element the weight given to mini-
mising r-th quality attribute (if it is to be maximised, the sign of the r-th element in yg
must be changed).

There are some distinctions that must be made between the linear and quadratic opti-
mization. First of all, the way the quadratic optimization is formulated guarantees the
existence of at least one minimum (independently of the algorithm being able to reach
it, or it being the global minimum), and required no hard constraints to achieve conver-
gence. When resorting to the linear optimization formulation, however, one does not
minimize a quadratic distance, but a directed distance (i.e. it may be positive or nega-
tive), and therefore hard constraints must be imposed to guarantee the convergence of
the algorithm. This means that, at the very least, a lower/upper limit must be defined
when minimising/maximising. It also means, however, that no issues will arise when
resorting to the linear optimization associated to ‘artificially’ giving too much/little
importance to achieving the minimum/maximum value for one or more of the quality
attributes of interest.
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On the other hand, the quadratic formulation is especially useful when specific values
are desired for the outputs (or even the inputs, or linear combinations of any of them),
precisely because of the fact that quadratic distances to those values are minimized.
The linear optimization formulation however requires, in this same scenario, artificially
imposing a hard lower limit equal to the desired value for the r-th quality attribute as
an inequality constraint on it.

The main advantage of this formulation of the optimization problem is that it will pro-
vide a solution that, if meeting all the inequality restrictions imposed in the quadratic
formulation, is also its optimum, while not presenting the same convergence issues as
the quadratic ones. One of the possible disadvantages of this formulation, other than
not being able to account for non-linear restrictions when optimizing the objective
function, is that in very heavily restricted convex spaces of acceptable solutions with
narrow ‘corners’, the algorithm used may not find the global optimum.

Alternatively, an approach to find an optimal solution is proposed which allows taking
into account both linear and non-linear hard constraints (except non-linear equality
constraints), while avoiding the convergence issues related to local minima for quadrat-
ic programming and those related to very narrow spaces of acceptable solutions for
linear programming. The steps to follow for this sequential approach are:

1. Define the space of acceptable solutions considering only linear hard con-
straints. This can be done by using either the variant of the COSIM algorithm
or the ‘Segmentation by defining and discarding vertices’ approach explained
in Section 5.2.2. By doing so, the [/XA4] matrix and [/X1] vector of active line-
ar inequality hard constraints A; and d., and the [/XA] matrix and [JX 1] vec-
tor of [ active linear equality hard constraints F; and f; can be obtained, as
well as a matrix of vertices of the resulting convex space. If they exist (i.e. a
subspace of acceptable solution exists given the linear hard constraints im-
posed), continue to the next step. Otherwise some restrictions may have to be
relaxed or eliminated, if possible (if not, there is no solution for the optimiza-
tion).

2. Check if at least one linear combination of the vertices of the envelope of the
subspace of acceptable solutions within this subspace meets all the non-linear
hard constraints imposed on the solution. If it does, define such linear combi-
nation as the ‘initial solution’ T, and continue to the next step (if not, there is
no solution for the optimization).

3. Define the ‘vector of maximum variability’ vy;y = VT - D3 dl * Yg, Where the r-
th element of yj is positive if the corresponding quality attribute will be ‘max-
imized’, and negative otherwise, as well as the ‘original displacement vector’
Vaisp,0» Which is the projection of vy onto the subspace defined by the active

linear equality hard constraints such that:

Vdisp,0 = [IA - F';r : (F‘[ : F‘;r)_l : F‘r] * Vdisp,0 + F‘;r ' (F‘[ ' F‘tT)_l ' f‘[ (10.16)
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4. Obtain the projection of vgjsp o on the vectors normal to the i-th hyperplane, al
(which is the transpose of the i-th row vector in A), Vgjsp,;, as in Equation
10.17, and the scalars §; such that (‘to +6; - vdisp,i) -al = di, where di is the
i-th element of d,.

A¢ " Vdisp,0 . al

v- . =
disp.d e (10.17)

5. Compute also &y, such that for the k-th non-linear hard constraint t, + §; -
Vdisp,0 Meets it.

6. Arrange all §; and §; from lowest to highest values, and discard all the nega-
tive ones.

If the space of acceptable solutions is a convex space, the solution (or solutions) of the
optimization problem will be located in the intersection of the linear equality re-
strictions with the first (A — J) inequality hard constraints (either linear or non-linear,
depending which ones are ‘reached’ first) associated to the ordered list in step 6. Oth-
erwise this solution (or solutions) is not guaranteed to be optimal, but can be used as a
good ‘seed’ for the quadratic optimization algorithm.

10.4. A sequential optimization approach

The linear optimization formulation presented in Section10.3 can be useful to tackle
some of the disadvantages associated to the quadratic one. However, it may still prove
to not be a powerful enough tool in presence of overly complex, not redundant, non-
linear, hard restrictions. At the same time, it may also be unnecessarily complex (from
a computational point of view) in the absence of non-redundant non-linear constraints.
Therefore, the following sequential procedure is proposed in order to minimize the
computational cost of solving an optimization problem. This method makes use of the
previous algorithms, from the simplest to the most complex ones, only when necessary:

1. Define the space of acceptable solutions considering only linear hard con-
straints, as in the first step of the proposed algorithm in Section 10.3, and
evaluate the objective function (as in Equation 10.9) for each vertex. If the
vertex or vertices that optimize the value of the objective function meet all
hard constraints imposed, then the solution/s of the optimization has been
achieved. Otherwise, continue to the next step.

2. Find the set of scores on the Hotelling T? confidence hyperellipsoid that opti-
mizes the objective function as defined in Equation 10.15 while meeting all
linear hard equality constraints. If it meets all other hard inequality constraints,
then the solution of the optimization has been achieved. Otherwise, continue to
the next step.

174



Optimization problem formulation in Quality by Design

3. Solve the optimization problem according to the proposed algorithm in Section
10.3, using as a ‘seed’ or ‘starting solution’ the average of the vertices defined
in step 1, or any linear combination of them (pondered by a vector of coeffi-
cients that sum up to one) that meets all constraints. If the achieved set or sets
of scores meet all restrictions, then the solution of the optimization has been
achieved. Otherwise, proceed to the next and last step.

4. Solve the quadratic optimization problem as formulates in Equation 10.9, us-
ing as ‘seeds’ or ‘starting solutions’ the same as in the previous step, and/or
the quasi-solution in the previous step.

It is important to note that this procedure is useful as long as no non-linear hard equali-
ty constraints are imposed on the solution, in which case caution is advised.
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Two real case studies of optimization in the latent space

Chapter 11

Two real case studies of
optimization in the
latent space

11.1. Introduction

In Chapter 9 the procedure to transfer the restriction on the original space (both inputs
and outputs) to the common subspace of the PLS-regression model was provided, as
well as the definition of the DS, the NS as an estimation of it, and how to estimate the
subspace most likely to contain (and least likely to fall out of) the projection of the
TDS when PLS-regression is resorted to. Secondly, Chapter 10 provided different tools
and methods to efficiently approach the optimization problem in the latent space de-
pending on the goal and constraints imposed on its solution. In this chapter, two real
case studies will be presented that make use of most of the concepts and methods illus-
trated in Chapters 9 and 10, and a comparison of the different applicable approaches to
the corresponding optimization problems will be carried out.

11.2. Methods

Linear PLS-regression, explained in Section 3.2.2, will be resorted to, as well as the
methods for the transferal of constraints imposed on the original variables onto the
latent space, and the definition of analytical expression of the NS both for an output
and for a lineal combination of outputs, explained in Chapter 9, and the different ap-
proaches to the optimization problem detailed in Chapter 10.

11.3. Datasets

Although for confidentiality reasons the origin and details on the two real datasets used
in this chapter cannot be disclosed, the most relevant information concerning them is
provided in this section.
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11.3.1.  Case study 1: minimizing two output variables simultaneously

The dataset used for this example consists of a matrix of inputs with 6609 hourly
measurements made of 63 input variables, and a matrix of outputs with the same num-
ber of measurements of 2 output variables. The output variables are strongly correlated
with each other.

11.3.2.  Case study 2: maximizing a linear combination of outputs

The dataset used for this example consists of a matrix of inputs with 2075 hourly
measurements made of 135 input variables, and a matrix of outputs with the same
number of measurements of 10 output variables. All output variables are strongly cor-
related among each other, some positively and some negatively, and must meet a hard
equality constraint that affects all of them.

11.4. Results and discussion

11.4.1. Case study 1: minimizing two output variables simultaneously

Given the available data, and after a cross validation exercise to select the optimum
number of latent variables, a PLS-regression model with A = 8 LV was fitted capable
of explaining ~ 61% of the variability of the inputs and ~78% of the variability of the
outputs. The feasible absolute minima for the two (pre-treated) output variables, y; and
y, are known to be -5.98 and -8.59. Therefore, if the vector of desired values for the
outputs is defined as yJrs = [-5.98 —8.59], the NS corresponding to these values
can be also defined, which when represented on the space of the latent variables can be
visualized as in Figure 11.1.

a).., b).

Lv2
Lv4

Lv1i Lv3

Figure 11.1. Case study 1: Graphical representation of the projection of the calibration dataset (with
the observations coloured according to the value of y;) and the intersection of the NS for yjes =
[-5.98 —8.59] associated to the first (blue dashed line) and second (orange dashed line) output
variables with a) the hyperplane defined by the two first LV and b) the hyperplane defined by the
third and fourth LV
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To illustrate the importance of properly formulating the optimization problem, the soft
constraints (in this case ypgg and the restriction on the Hotelling T?) and the hard con-
straints (in this case A; and d. as a consequence of restrictions on the inputs, and again
the restriction on the Hotelling T?), assume that the formulation in Equation 10.9 is
resorted to, and the following scenarios are considered:

I

ii.

iil.

goa=1and go, =91 =9, =0;T =1, and ypgs = [-5.98 —8.59]; and
no hard constraints imposed on any variable, nor on the Hotelling T? of the so-
lution.

Joa=1,9,=1and gop = g, = 0; T =1, and ypzs = [-5.98 —8.59]; and
hard constraints imposed on the inputs so that the solution will not be outside
of the historical operating conditions (defined as the univariate restrictions cor-
responding to the lowest and highest values for the inputs), but without any
hard restriction on the Hotelling T2 of the solution.

Joa=1,9,=1and gop = g, = 0;T =1, and ypzs = [-5.98 —8.59]; and
hard constraints imposed on the inputs so that the solution will not be outside
of the historical operating conditions, as well as on the Hotelling T? of the so-
lution (so that its Hotelling T2 is not above its corresponding 95% confidence
limit).

The projection of the solutions of these optimization problems are shown in Figure
11.2, where it can be seen that only the third scenario (iii) provides a set of inputs that
guarantee that no extrapolation outside of the Hotelling T2 hyperellipsoid takes place.

a)..

Lv2

Lva
f

Lv1 Lv3

® Historical minimum B Solution of i ® Solution of ii A Solution of iii

Figure 11.2. Case study 1: Graphical representation of the projection of solutions of the optimization
problems in scenarios ‘i’ (red square), ‘ii’ (green circle) and ‘iii’ (violet triangle), as well as the pro-
jection of the set of process conditions corresponding to the historical minima for both outputs on a)
the hyperplane defined by the two first LV and b) the hyperplane defined by the third and fourth LV
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For each of these solutions, the vector §y gy results:

i.  $8ew = Ybgs = [-5.98 —8.59]
ii.  Pmew =[-5.82 —7.02]
iii.  9igw =[-3.18 —3.09]

While the historical minimum is y;flin =[-2.04 -2.63]

It is important to note the presence of a gradient in the values of the outputs, clearly
visible in Figures 11.1a and 11.2b, with the lowest values apparently found for higher
values in the first LV and lower values in the second one, which is also the least ex-
plored region of the latent space. In fact, all of the solutions obtained fall exactly within
this area. Additionally, although the first and second solution seem to be significantly
better than the third one in terms of the predicted values for both outputs, the third one
is the only reliable one, since it is the only one that falls within the Hotelling T? confi-
dence hyperellipsoid and fulfils the restriction of being within the subspace of histori-
cal operating conditions. Furthermore, this solution also provides, in theory, better
results than the set of process conditions corresponding to the historical minimum.

With respect to the efficiency of the different optimization algorithms presented in
Chapter 10, the quadratic optimization algorithm using the formulation in Equation
10.9 provided these solutions consistently (i.e. always the same ones) and quickly (i.e.
less than one second of computational time). The linear optimization formulation in
Equation 10.15 could not provide, by itself, this same solutions, given that the re-
striction on the Hotelling T? is not redundant, but the slight variation proposed imme-
diately after did. On the other hand, the sequential optimization approach proposed in
Section 10.4 was able to provide exactly the same solutions as the quadratic optimiza-
tion formulation in ~1/10th of that time, by ending in the second of its four steps.

11.4.2.  Case study 2: maximizing a linear combination of outputs

After a cross validation exercise to select the optimum number of latent variables, a
PLS-regression model with A = 14 LV was fitted capable of explaining ~ 75.5% of the
variability of the inputs and ~77.7% of the variability of the outputs. The maximum
observable value for the quality attribute of interest, which is a linear combination of
all of the outputs, was dpay,, . = 171.58.

Figure 11.3 shows the projection of the calibration dataset onto the subspace of the
PLS-regression model for the eight first LV and the direction of maximum variability
for the quality attribute of interest.
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Figure 11.3. Case study 2: Graphical representation of the projection of the calibration dataset (with
the observations coloured according to the value of the quality attribute of interest) and the direction
of maximum variability for the quality attribute to maximize in a) the hyperplane defined by LV 1
and 2; b) the hyperplane defined by LV 3 and 4; c) the hyperplane defined by LV 5 and 6; and d) the
hyperplane defined by LV 7 and 8

In this example, 4 of the 135 inputs are required to meet specific values in the solution.
To illustrate the complexity and some of the issues with this optimization exercise,
three different scenarios will be considered in which successively more constraints are
imposed as in the first case study. Using the formulation in Equation 10.9:

I

Joa=1,9g1=1and gop, =g, =0; I' =1 and dpgg = 174.66 (i.e. the max-
imum achievable solution inside the Hotelling T2 confidence hyperellipsoid
without accounting for any other restrictions, determined as explained in Sec-
tion 10.2.3.3); and no hard constraints imposed on the inputs.
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ii. Joa=1,91=1and gop, = g, =0; T =1 and dpgs = 174.66; and hard ine-
quality constraints imposed on the inputs so that the solution will not be out-
side of the historical operating conditions.

1ii. Joa=1,91=1and gop, = g, =0; T =1 and dpgs = 174.66; and hard ine-
quality constraints imposed on the inputs so that the solution will not be out-
side of the historical operating conditions, in addition to the 4 hard equality
constraints imposed on the inputs that must meet certain values.

In all of these scenarios the hard constraint on the Hotelling T2 value for the solution is
imposed to guarantee that it is inside the corresponding confidence hyperellipsoid, as
well as the hard equality constraint on the outputs.

Figure 11.4 shows the solutions for all of these scenarios, as well as the observation of
the calibration dataset for which the historical maximum was observed. For each of
these solutions, dygw results:

ii.  dygw = 165.41

iii. dygw = 165.11
While the historical maximum was dpay,, . = 171.58, it must be noted that the histori-
cal maximum for the quality attribute of interest among all observations with the input
variables meeting the equality constraints imposed during the optimization was
dmaxgps = 159.34. Therefore, although this solution offers no improvement with re-
spect to the historical maximum, a significant improvement is theoretically achieved
with respect to the maximum observed given the restriction on the four inputs to meet
specific values.

Another important aspect of this optimization problem is the fact that the computation-
al cost of the quadratic optimization formulation increased dramatically with respect to
the previous example, specially if the ‘seeds’ provided to it were not defined carefully,
which also lead to inconsistent solutions (i.e. the algorithm would provide a different,
actually not globally optimal solution most times it was executed). In particular,
providing to the quadratic programing algorithm in Matlab ‘seeds’ that already met all
equality and inequality hard constraints significantly improved its performance, reduc-
ing the computational time from ~1.5-4 hours (depending on the computer) to ~5-15
minutes, although slight (and arguably not significant) differences in the solutions were
observed among solutions. By contrast, using the approach proposed in Section 10.4
reduced the computational time to less than ~30 seconds, while providing consistent
solutions every execution.
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Figure 11.4. Case study 2: Graphical representation of the projection of solutions of the optimization
problems in scenarios ‘i’ (red square), ‘ii” (green circle) and ‘iii’ (violet triangle), as well as the pro-
jection of the set of process conditions corresponding to the historical maximum for the quality attrib-
ute of interest on a) the hyperplane defined by LV 1 and 2; b) the hyperplane defined by LV 3 and 4;
¢) the hyperplane defined by LV 5 and 6; and d) the hyperplane defined by LV 7 and 8

11.5. Conclusions

By applying the different optimization approaches proposed in Chapter 10 to two real
case studies, it was possible to assess some of the issues they present, the importance of
properly defining and imposing restrictions, and the limitations of the quadratic opti-
mization formulation in terms of computational efficiency and convergence issues
when the dimension of the space of acceptable solutions increases and several hard
equality constraints are imposed, as well as how a proper definition of the ‘seeds’ pro-
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vided to this algorithm can help mitigate some of them. Lastly, the approach proposed
in Section 10.4 was observed to outperform the use of the quadratic optimization for-
mulation in Equation 10.9 in such scenario.

It is also worth noting that two of the terms in the objective function for the quadratic
optimization formulation were given, in both examples, null weight. These terms are
precisely the ones detailed in Section 10.2.2, and proposed in order to be used for ex-
ploratory purposes and for DOE in the latent space. Since this was not the goal of any
of the cases presented in this section, and a single solution was desired each time, these
terms were not necessary. They will, however, be resorted to in Chapter 12.
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Chapter 12

On experimentation to
improve the design
space estimation

Part of the content of this chapter has been included in:

1. Palaci-Lopez, D., Facco, P., Barolo, M. & Ferrer, A. Sequential experimental
approach to improve the design space estimation using latent-variable model
inversion. Part II. Optimization problem reformulation and sequential experi-
mental approach. Submitted.

12.1. Introduction

Chapter 9 focused on the definition of the DS, its relationship with the KS, and how to
estimate the subspace most likely to contain the projection of the TDS (as well as the
least likely to fall outside of it) in the latent space when PLS-regression is resorted to.
On the other hand, Chapter 10 focused on how to efficiently approach the optimization
problem in the latent space depending on the goal and the nature of the constraints
imposed on the solution of the optimization. Finally, Chapter 11 served to illustrate two
real case studies where some of the concepts addressed in Chapters 9 and 10 where
applied in order to optimize different quality attributes of interest. None of them, how-
ever, aims at solving/minimizing the impact of one of the main issues that is always
present when resorting to data-based approaches for the definition of the DS or for
optimization purposes: the uncertainty. In this chapter, a sequential experimental ap-
proach aimed at reducing the uncertainty in the estimation of the DS is proposed. Re-
ducing the error in the estimation of the DS should result in a smaller subspace of the
knowledge space being chosen to bracket the DS, and will improve the accuracy in the
definition of different combinations of inputs to obtain the desired outputs.
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12.2. Methods

OLS and PLS-regression techniques, explained in Section 3.2.2, will be resorted to, as
well as the general concepts of D-optimal DOE addressed in Section 2.2.1, the defini-
tion of the envelope of the experimental region discussed in Section 5.2.2, the estima-
tion of the subspace most likely to contain the DS as explained in Chapter 9, and the
optimization approach detailed in Chapter 10. This taken into account, three proposed
approaches will now be illustrated:

* Method 1: OLS and DOE in the space of the original variables; this method is
proposed here in order to establish a comparison between an approach based
on ‘traditional’ methods and PLS-based methods;

* Method 2: combines linear PLS regression model fitting with DOE in the la-
tent space and LVRMI;

*  Method 3: differs with the second one in the substitution of the ‘explicit” DOE
with an ‘implicit’ one via optimization in the latent space

These methods aim at improving the DS estimation when specific values of the outputs
(or quality attributes) are desired. When a range of values are considered acceptable,
the procedure can be used to achieve a better estimations of the DS corresponding to
the values for the LSL and USL defining such range. If the goal is to mini-
mize/maximize a quality attribute, but a feasible minimum/maximum cannot be clearly
defined, this method can also be used to estimate the DS corresponding to the maxi-
mum/minimum admissible value. The two PLS-based methods will also allow in some
cases, because of its sequential nature, the exploration of poorly known areas of the
process, where the DS is (according to the model) expected to lay, specially when a
quality attribute of interest is to be minimized/maximized.

12.2.1. Method 1: Classical DOE and OLS model inversion approach

The first method is based on traditional approaches for model fitting such as OLS, and
as such happenstance data cannot be used. Instead, data from DOE must be resorted to
for its application in order to infer causality and invert the model afterwards. These
data shall be pre-treated to get rid of severe outliers, as well as apply the necessary
transformations (logarithms, inverse terms, etc...) before fitting a model via OLS. Any
improvements in the DS estimate are expected to occur when a more appropriate model
structure is chosen and a better estimation of its corresponding parameters is achieved.
This method is formulated in such a way that these two points are taken into account,
while also proposing a way to evaluate the accuracy in the estimation of the DS and its
improvement after subsequent experimentation.

Figure 12.1 shows the different steps to follow for the application of this method.
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Figure 12.1. Method 1: Classical Design of Experiments and OLS model inversion-based sequential
approach to improve the estimation of the design space. Blocks identified with S0, S1, etc. correspond
to different ‘steps’ of the approach, while those identified as C1, C2 or C3 are ‘checkpoints’ where
the decision is made to continue one route or another or stop altogether

Three main groups of steps have been highlighted: model structure definition and mod-
el fitting (blue; steps S1, S2 and S3), DS estimate exploration (green; steps S5 and S6)
and experimentation to improve the DS estimation (red; step S7). A brief explanation
of each of these steps in one iteration (i.e. a cycle starting at step S1 and ending at S4,
or once it is decided that there is no need to continue at checkpoint 3), for a general
scenario with a single output/quality attribute involved™”, is as follows:

0.

Step SO: this method permits only the use of data from which causality can be
inferred between the inputs and outputs used to fit and invert the OLS regres-
sion model. Therefore happenstance/historical data cannot be resorted to.

Step S1: additional terms (i.e. exponential or logarithmic terms, interaction
terms among input variables, quadratic and higher order terms, etc.) are in-
cluded or discarded (e.g. due to not being considered relevant to the study) if
deemed convenient prior to the next step. Missing data and/or outliers are also
appropriately dealt with, if necessary.

Step S2: an OLS-regression model is fitted relating the pre-treated matrix of
inputs with the vector of observations for the pre-treated output varia-
ble/quality attribute of interest.

Checkpoint C1: the statistical significance of the different terms included in
the fitted model is analysed. The residuals from fitting the regression model
are also evaluated to detect outliers and assess if more complex or different
model structures should be considered.

Xiv . . . . . . .
If more than one output or quality attribute is considered, each iteration should be repeated for every output variable.
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10.

188

Step S3: if necessary, the model structure is redefined.

Checkpoint C2: if enough data is available to fit the newly defined model, step
S4 follows. Otherwise, step S7 goes next.

Step S4: the dataset is updated by removing, if necessary, observations consid-
ered to be outliers, or adding new observations (if the previous step was S7)
Step S5: the DS estimate is computed by simply inverting the OLS model, and
refers to the subspace constituted by all possible combinations of inputs that,
according to the fitted model, lead to the desired value for the quality attribute
(vpEs for an output, or dpgg for a quality attribute of interest)

Step S6: the experimental region is comprised by the section of this DS esti-
mate within the KS, i.e. within the limits imposed by any defined constraints
on the inputs. Such KS, also mentioned in step S7, can be defined by follow-
ing the procedure to obtain the envelope of the experimental region discussed
in Section 5.2.2. Experimentation is carried out for a total of npg samples dis-
tributed as uniformly as possible along this DS estimate, obtaining yngw (or
dynew), @ [npsX 1] vector of values of the output (or quality attribute of inter-
est) for npg observations.

Checkpoint C3: the values in yygpw (or dygw) are compared to ypgs (or dpgs)-
Then the ‘average distance to the DS’, or ADDS (defined as |ypgs — Ynew! in
the block diagrams in Figures 12.1, 12.2 and 12.3), is estimated as:

Nps

1
ADDS == ;Iym;s — ynEw,| (12.1)

This value is compared to a ‘threshold’ representing the maximum allowed
‘average deviation’ from the TDS when resorting to its estimation via model
inversion. A value of ADDS below this limit would indicate that no more itera-
tions are required, since a good enough estimation of the DS has been
achieved. Otherwise, step S7 follows. Note that the ADDS has the same units
as the quality attribute of interest, and provides a measure of the expected av-
erage deviation of the values of this quality attribute along the estimated DS
from the desired one. It must also be noted that an adaptation to OLS of the
methodology to assess the adequacy of a PLS-regression model for inversion
(see Section 9.6) is not suitable here, because that assessment concerns how
good a model is for inversion in general, while here the only interest is in the
determination of the DS for a specific ypgg.

Step S7: since, when using this method, any improvement in the DS estimate
is expected to occur as a consequence of a proper selection of the model struc-
ture and a better estimation of its parameters, the D-optimality criterion is sug-
gested for initial/subsequent experimentation, especially if a lot of restrictions
are imposed on the process variables in the definition of the experimental re-
gion. If only a few process variables are involved, and little restrictions are
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imposed, implementing a full factorial design may be feasible, but this is not
expected to be the case in most scenarios. A total o npgg new experiments are
carried out, resulting in Xpgg [MpogXM] and ypog [MpogX 1], which would be
added to previous data for the next iteration.

This method presents some drawbacks:

1) since data from DOE is required for its application, happenstance data
cannot be resorted to;

ii) using OLS requires resorting to either variable selection or more extensive
experimentation as the number of variables and the complexity of the fit-
ted model increases. Since a candidate set of potential experiments has to
be defined in the DOE step of the algorithm, computational cost increases
along with the dimensionality of the problem;

iii) regression methods such as OLS suffer from correlation among the regres-
sors, which is usually present in real, complex problems (and, unavoida-
bly, in data from mixture design problems). Furthermore, if multiple re-
sponse variables are involved their corresponding models must be fitted
one at a time, and the information regarding any existing correlation
among them is lost.

12.2.2. Method 2: DOE in the latent space and LVRMI approach

Although this method follows a similar path as Method 1, since now PLS-regression
based methods are used, happenstance data (e.g. historical data) can be exploited in
order to infer causality and later invert the model. Because in this study linear PLS is
resorted to, these data must still be pre-treated as done in Method 1 prior to fitting a
PLS-regression model.

In practice, it is not uncommon that a large number of inputs are involved, and when
making use of PLS-based methods the initial dataset is usually not expanded to account
for possible interaction or non-linear terms among inputs before proceeding to fit the
corresponding LVRM. Failing to account for these non-linearities in the formulation of
the model may cause the LVRM to not be appropriate for predictive nor optimization
purposes in presence of severe non-linearities, even if its overall performance along the
knowledge space seems reasonable. In such situation local modeling techniques [105]
may be more appropriate. A similar issue may arise when trying to obtain a good esti-
mation of the DS, since then the main goal is to accurately define a subspace of the KS,
and not as much the construction of a model with good performance along the whole
KS. This method, the steps of which are illustrated in Figure 12.2, is formulated so this
is taken into account.
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Figure 12.2. Method 2: latent variable regression model inversion plus Design of Experiments in the
latent space-based sequential approach to improve the estimation of the design space

A brief explanation of the different steps in one iteration is presented below:

0.
1.

190

Steps SO and S1 are equivalent to the same steps with Method 1.

Step S2: a PLS-regression model is fitted relating the pre-treated matrix of in-
puts with the matrix of observations for the pre-treated output variables/quality
attributes of interest. It is important to note here that a single PLS-regression
model may suffice in this case to account for all outputs/quality attributes of
interest simultaneously.

Checkpoint C1: the residuals from fitting the PLS-regression model are evalu-
ated to detect outliers and assess if more complex or different model structures
should be considered. The model performance for prediction (of both matrices
of inputs and outputs) and optimization purposes is also assessed.

Step S3 and S4 are equivalent to those in Method 1.

Step S5: the NS here refers to the projection in the latent space of the DS esti-
mate corresponding to the desired value for the quality attribute of interest
(YpEs or dpgs), whose general expression is provided by Equation 9.26. This
subspace is further delimited by the constraints imposed on the input and out-
put variables, whose projection onto the latent space is done via Equation 9.11
and 9.13, as well as the Hotelling T2 confidence hyperellipsoid.

Step S6: Tygw in this step is a [npgXA] matrix with the scores of npg samples
distributed as uniformly as possible along the NS as defined in step S5.

Step S7: Xngw 18 @ [npgXM] matrix obtained from Tygw through the inver-
sion of the PLS-regression model.

Step S8: experimentation is carried out for the npg samples defined in Xygw,
obtaining yngw (or dygw), @ [npsX1] vector of values of the output (or quali-
ty attribute of interest) for those npg observations.

Checkpoint C2: this checkpoint is equivalent to C3 in Method 1.

Step 9: a space filling DOE is constructed in the latent space via e.g. the Ken-
nard-Stone approach [106] as it allows uniformly spanning the area of feasible
experimentation, given the maximum number of experiments that can be per-
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formed (namely, the resources that the experimenter could invest in terms of
time and cost), without having to define any particular model structure (i.e. the
‘optimality criterion’ of this sort of design does not depend on the model to be
fit afterwards). With regards to the experimental region, the subspace more
likely to contain the TDS, as defined in Section 9.4, is chosen for this method.
This way, npgg different sets of scores are defined, and the matrix Tpgg
[npogxA4] is obtained.

10. Steps S10 and S11 are carried out as steps S7 and S8, but starting from the ma-
trix Tpog, and obtaining Xpog [MpogXM] and yygw (or dygw) [MpogX1].
These new data would be added to previous data for the next iteration.

The main drawback of this method is that it requires defining a candidate set for the
DOE in step S9 in order to apply the Kennard-Stone algorithm (or any point-exchange
algorithm), and therefore the computational cost increases according to the dimension-
ality of the latent space. However, since this dimensionality is not expected to be too
high in most cases, the computational cost will rarely be a real hindrance in practice.

12.2.3. Method 3: Optimization in the latent space and LVRMI approach

This third method is almost identical to Method 2, being based on the same concepts.
For the purpose of comparison, Figure 12.3 shows the different steps to follow for the
application of this method.

data . Appropriate model? ) alif s
Fit PLS N| Dl within the NS
Data from model | [Residuals, R(X,Y),Q%(X,Y)] ves  |_NSForyoes T
DOE NO (et Tyew
s3
Update Re—deﬁne model Invert model
dataset structure (get Xyew)

510 S9
Experiment Invert Optimization in Experiment
on Xop model latent space on Xyew
(get prt) (get xOpt) (get Tot) (get VNEw)

Figure 12.3. Method 3: latent variable regression model inversion plus optimization in the latent
space-based sequential approach to improve the estimation of the design space

As it can be seen in Figure 12.3, the only appreciable difference with respect to Method
2 lays in step S9, where the optimization problem as formulated in Equation 10.9 (Sec-
tion 10.2.2) is resorted to. To obtain ngp, different solutions, the set of scores obtained
as a solution of the optimization problem each time is added to the matrix of scores
corresponding to the observations used to fit the PLS-regression model, before solving
the optimization problem again, until it has been solved ngy; times (to obtain the last
set of scores, ngpe — 1 different sets of scores will have been concatenated to the PLS
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scores matrix before carrying out the optimization one last time). Note that, because of
the way this optimization problem is formulated, there are two elements that set this
method apart from Method 2:

1) although the experimental space is the same, ‘soft constraints’ are also in-
cluded in this method in the form of the various terms of the objective
function. This implies that the new experiments to perform in each itera-
tion, if any, will correspond to solutions of the optimization problem that
are not simply required to fall within the experimental space, but will also
be ‘pushed’ towards the NS and the centre of projection.

ii) there is no need to define a candidate set for experimentation, which
makes Method 3 less dependant on the proper definition of such candidate
set, and less computationally costly.

On the other hand, and as pointed out in Section 10.2.2 (see Figure 10.1), the contribu-
tion of each term to the objective function during the optimization step should be as-
sessed in order to properly select the weight give to each of these terms.

12.3. Datasets

12.3.1.  Case study 1: mathematical model

For the first case study, the same dataset as the one illustrated in Section 9.4.1.1 will be
resorted to. As a reminder, this dataset is constituted by 6 observations from a D-
optimal DOE where the data were simulated according to the model in Equation 8.1,
and x,; and x, are treated as manipulated variables, while x5, x, and x5 are three meas-
ured variables, with y being the quality attribute of interest. Furthermore, 5% of the
variability of each variable is added as noise to the values of x3, x4, x5 and y, both for
the generation of the initial dataset and for the simulation of future samples.

12.3.2.  Case study 2: simulated Vinyl-Chloride Monomer manufacturing

For the second case study, the same dataset as the one illustrated in Section 9.4.1.3 will
be resorted to. As a reminder, this dataset contains 20 simulated samples corresponding
to the simulated production of ethylene dichloride (EDC) as an intermediate product to
VCM according to the information detailed in [101] in Pro/Il. To allow some variabil-
ity in the process without loss of validity of any assumption required for the simulation,
manipulated variables were made to vary independently a maximum of 5% around the
assigned values in [101] for the generation of the dataset. Additionally, 5% of the vari-
ability of each variable is added as noise to the values of all non-manipulated variables,
both for the generation of the initial dataset and for the simulation of future samples. It
must be noted that, although the simulated dataset is not a result of a DOE, the data
used has been generated following first-principle models and by changing manipulated
variables independently from one another. Therefore causality can be inferred in the
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relationship among the controlled input variables and the outputs involved. As a conse-
quence, Method 1 can still be applied in this case, since only the controlled variables
are accounted for when fitting and inverting the OLS-regression model, and for the
construction of the DOE in the original space.

12.4. Results and discussion

The mathematical example will be used to illustrate the three methods in an easier,
more intuitive way, as well as to mention their main advantages and limitations. The
purpose of the second example is to show how these same methods can be used in
scenarios with a higher complexity and practical relevance.

12.4.1. Case study 1: mathematical model

As mentioned in Section 12.3.1, an initial dataset with 6 samples from a DOE is used
for the application of all three methods. This dataset includes four samples located in
the vertices defined by the univariate limits imposed on x; and x,, which are the two
only manipulable variables and therefore the factors used to construct the DOE (with
the lower and upper univariate limits corresponding to their respective low and high
factor levels). Two replicates of the overall centroid of the KS in the original variables
are also included in the DOE. This corresponds to a D-optimal DOE for a model with
linear and two-factor interaction terms, plus the two added centroid replicates.

For illustration purposes, Section 12.4.1.1 details the procedure used for the application
of each of the proposed methods to this case study, and in Section 12.4.1.2 the results
achieved through the use of each algorithm are compared. Some additional considera-
tions are discussed in Section 12.4.1.3.

12.4.1.1 Detailed procedure for the application of all three methods
For the application of Method 1, the detailed procedure is as follows:

1. Given the initial dataset (step SO), the most simple regression model, the linear
polynomial, is fitted using x; and x, (step S2). This reveals (checkpoint C1)
that non-linearities may be present, and since enough data is available to do so
the decision is made to re-define the model as the quadratic polynomial (S3).

2. The fit of the quadratic model indicates significantly better results, and is
therefore selected as the appropriate model. Coincidentally, this implies that,
from now on, variables x; and x,, their interaction and their corresponding
quadratic terms are used to fit a model (step S2) with the same structure as the
mathematical model used to simulate the data.

3. In step S3, the NS for ypgs = 204.86 is almost coincident with the TDS (the
only difference resulting from the presence of noise in the data). It is important
to note that in almost any other practical situation this will not happen, since
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the true relationship between manipulable and observed input variables is like-
ly to be more complex, and not included in the fitted regression model.

In step S5, the matrix Xygw 1s built by taking 100 samples uniformly spanning
the NS (as an estimate of the DS).

The DOE in step S7 is constructed on x; and x,, since variables x5 to x5 can-
not be freely manipulated when taking new samples. The DOE consists of a
follow-up D-optimal design for a model with all linear, first-order interaction
and quadratic terms, considering the already available samples. A sufficiently
large candidate set of uniformly distributed points inside the knowledge space
to span it ‘in its entirety’ (10000 in this case) is generated, and the point ex-
change algorithm [7,107,108] is used to select which experiments to perform.
Although a matrix (Xpgg) is presented in figure 12.1, indicating that usually
more than one experiment will be carried out, in this example a single new ex-
periment (Xpog) is considered.

To update the dataset prior to the next iteration of the method, the newly ac-
quired sample is added to the dataset used at the beginning of this iteration.

For the application of Method 2, the detailed procedure is:
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1.

An initial assessment of the relationship among the manipulated and measured
input variables reveals a very strong correlation between x5 and x7, x, and x5,
and xs and x; - x,. Because of this, the restrictions x; = x?, x, = x5 and
X5 = X1 - X, are applied later on for the estimation of the DS (this being an ap-
proximation, since differences exist as a consequence of the noise in the data)
Data is mean-centred and scaled to unit variance in step S1.

A PLS-regression model with 2 LV is fitted in order to allow easier graphical
representation of some of the results. Since 4 LV would be a much better op-
tion according to the leave-one-out cross validation method (QZ(ZLV)=O.336;
Q2(4LV)=O.955), a second PLS-regression model with 4 LV is also fitted to il-
lustrate additional results afterwards.

In step S6, 100 sets of scores meeting the condition that that x; = x7, x, = x2
and x5 = x4 * X, and spanning the NS as uniformly as possible are sampled
(Tnew), and through model inversion Xygyw 1s obtained in step S7.

The DOE in step S9 is a follow-up space filling design using the Kennard-
Stone algorithm after defining a sufficiently large candidate dataset (contain-
ing again 10000 potential samples in this case) of sets of scores distributed as
uniformly as possible inside the subspace most likely to contain the TDS (as
explained in Chapter 9) for ypgg = 204.86. As with Method 1, although the
matrix Tpgg in Figure 12.2 implies the definition of more than one set of
scores, in this example only one (Tpgg) is obtained each iteration.

Dataset updating in step S4 before the next iteration is done by simply adding
Xpog and ypoE to the dataset used at the beginning of the current iteration.
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For the application of Method 3, the detailed procedure is almost identical to the one
used for Method 2. The only notable difference lies in step 9, where the optimization
problem as formulated in Equation 10.9 is resorted to, in which all the lower and upper
limits in Table 9.3 are imposed as hard inequality restrictions on the solution, once
transferred to the latent space, and gy, = 0 and gg, = g1 = g, = 1. Note that here
Joa = 0 and gg, = 1 since the proposed sequential experimental approach aims at
exploring the subspace most likely to contain the TDS and as a consequence, given two
sets of scores at the same Euclidean distance from the NS, it is desired to penalize less
the one whose point in the NS closest to it has higher leverage (i.e. higher uncertainty
in the NS estimation around it).

12.4.1.2  Assessing the performance of each of the three methods

To assess the performance of each of the three methods, the evolution of the similari-
ties between the TDS and the DS estimate can be visualized for e.g. 30 subsequent
iterations. In Figure 12.4 such visualization can be done for the 10™ and 30" iteration,
where a clear improvement in the DS estimation is achieved by using Method 1 (i.e.
the amplitude of the corresponding confidence intervals is visibly reduced), which is to
be expected since the structure of the model being fitted matches perfectly the hypo-
thetical input-output causal relationship presented in Equation 8.1, and so the discrep-
ancies between the NS and the TDS will be due mostly to the noise in the data, whose
effect gets diminished as more observations are available to fit the regression model.
Method 2 and Method 3 also led to a better DS estimation, but their corresponding
representations cannot be directly compared to those for Method 1, and the accom-
plished improvement is not visually as clear. Another severe drawback of using Figure
12.4 to evaluate the performance of the algorithms presented in Section 12.2 is that,
although it can be used in this particular example to assess the performance of all three
methods, such thing will not be possible in most practical situations, since the DS is not
known a priori (which is precisely the reason why these methods are proposed: to re-
duce the uncertainty in the DS estimation).

A distinction is made in Figure 12.4 between the ‘theoretical new experiment’ and the
‘feasible new experiment’ at each iteration. The difference between one and the other is
that the former corresponds to Xpog (Tpog) as obtained in step S7 for Method 1 or S10
for Method 2, or to Xgpt (Topt) in step S10 for Method 3, which implicitly assumes
some values for variables x5, x, and x5, while the later corresponds to the vector in-
puts/scores with the same values for x; and x,, but the ‘real’ measured values for x5,
x4 and xs.
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Figure 12.4. Graphical representation of the calibration dataset, TDS and NS with its corresponding
95% confidence limits for Method 1 (Figures 12.4.a and 12.4.b), Method 2 (Figures 12.4.c and
12.4.d) and Method 3 (Figures 12.4.¢ and 12.4.f) after 9 (Figures 12.4.a, 12.4.c and 12.4.¢) and 29
(Figures 12.4.b, 12.4.d and 12.4.f) additional experiments have been performed. All of the methods
are applied starting from an initial calibration dataset with 6 samples affected by 5% noise on x3, x4,
x5 and y, and only one experiment is performed per iteration, with the experimentation carried out
within the KS for Method 1 and within the subspace most likely to contain the TDS as defined in
Chapter 9 for Method 2 and Method 3. Dataset updating consists in just adding each new observation.
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Alternatively, the value of the ADDS can also be observed for the same 30 subsequent
iterations. It should be noted that, in spite of the way the ADDS has been defined, such
concept may have at least, the following two interpretations:

a) Average absolute distance from each possible combination of process inputs
that actually provide the desired values for the quality attributes of interest
(process inputs from the DS) to the closest theoretical combination of process
inputs leading to the same values for these quality attributes (process inputs
from the NS).

b) Average absolute difference between the desired values for the quality attrib-
utes of interest and those achieved by operating the process under the different
combinations of process inputs from the DS estimate.

The first of these two interpretations, however, requires the DS to be known, and is
therefore not suitable for the purpose of this study. Because of this, the second meaning
is applied in this work when referring to the ADDS.

Figure 12.5 shows the average of these absolute differences per iteration for each algo-
rithm.

10 T T T T T

Method 1
L —Method 2|
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20 25 30
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Additional performed experiments

Figure 12.5. Case study 1: Average distance to the DS (4DDS), defined in Equation 12.1, for
nps = 100, plotted against the number of iterations (coincident, in this case, with the number of
additional performed experiments) using all three methods, with a PLS-regression model fitted with 4
LV for Method 2 and Method 3.
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It must be noted from Figure 12.5 that almost no significant improvement seems to be
achieved after 5 additional experiments are performed with Method 1, nor after 10
additional experiments for Method 2 or Method 3. Since random noise was added
when simulating the data, and to assess if observable differences in Figure 12.5 may be
statistically significant among different methods (specially Method 2 and Method 3),
Method 1, Method 2 and Method 3 were applied 100 times, with 4 L'V variables chosen
to fit the PLS-regression model in Method 2 and Method 3. 100 curves as the ones
shown in Figure 12.5 are obtained per algorithm, and a model with the following struc-
ture is fitted with this data:

ADD5=b0+b1'i+b2‘m1+b3‘m3+b4'i'm1+b5'i'm3+
+b6'i2+b7'i2‘m1+b8‘i2'm3 (122)

Where i is the number of the corresponding iteration (in Figure 12.5, additional per-
formed experiments), and m; and ms are dummy variables that take the value 1 when
Method 1 and Method 3 are used, respectively. To assess potential statistically signifi-
cant differences, the data corresponding to all iterations for each method are used to fit
the model in Equation 12.2. Values for b,, b,, and b, significantly different from 0
would signal statistically significant differences between Method 1 and Method 2,
while non-zero significant values for b3, bg, and bg would point out statistically signif-
icant differences between Method 3 and Method 2. Table 12.1 shows the results from
such model fitting, where only statistically significant effects remain in the model.

Table 12.1. Case Study 1: Study of potential significant differences among methods in terms of the
accuracy in the estimation of the DS

Parameter Estimation p-value
b 9.38 0.0000
b, -0.37 0.0000
b, -3.03 0.0000
b, 0.18 0.0001
be 7.81:107 0.0000
b, -3.75-107 0.0076

As shown in Table 12.1, no statistically significant differences were found between
Method 2 and Method 3. As expected, differences between Method 1 and Method 2 are
statistically significant, with Method 1 improving the estimation of the DS at a lower
rate (by > 0) compared to Method 2 and Method 3. It should also be noted that the
initial ADDS is very different when using Method 1, being statistically significantly
lower than when using Method 2 or Method 3 (b, < 0). Additionally, although 100
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samples were taken along the NS in this example (npg = 100), taking as little as 3 of
them (npg = 3), as uniformly distributed as possible along the DS estimate (which was
a line in this case) provided very similar numerical results and the same conclusions.

These results seem to show an overall better performance of Method 1 given the simu-
lated data for the input-output causal relationship in Equation 8.1. However, three
points should be made to this respect, which greatly bias the results shown here in fa-
vour of Method 1:

i since all variables affecting the quality attribute of interest (y) were used to fit
the regression model, the only expected discrepancies between the expected
and the real response would be those caused by the noise introduced into the
data. Furthermore, four LV were chosen to fit the PLS regression models with
Method 2 and Method 3, as suggested by the cross-validation. Had five LV
been selected, any statistically significant differences between Method 2 or 3
and Method 1 would have disappeared;

ii. a good estimation of the DS and experimentation in this DS estimate was pos-
sible when using Method 1 only because the quadratic model structure includ-
ing x4, X, their square terms and interaction was a good approximation of the
true model structure (it was, in fact the exact same model structure used to
simulate the data). However, expecting such favourable results would be un-
wise in most practical situations, where a large number of variables are in-
volved, and more complex relationships among them exist. This is because de-
tecting the existence of this sort of relationships among them would be
difficult and require extensive experimentation, and only manipulable factors
can be considered when Method 1 is resorted to;

iii. in most of the experiments performed during the application of Method 1, the
resulting values for the quality attribute of interest were not close to the de-
sired one, while the opposite was true with Method 2 and Method 3. See as an
example Figures 12.4.a and 12.4.b, for Method 1, where most of the samples
used to fit the regression model (which are selected during the DOE step) are
located at the extremes of the KS (hence far away from the TDS), while in fig-
ures 12.4.c to 12.4.f, for Method 2 and 3, most of these samples (also selected
during the DOE/Optimization step) are located close to the TDS. This means
that, in practice, Method 2 and Method 3 are more likely to provide products
satisfying the specifications on the quality attribute of interest for which a bet-
ter estimation of the corresponding TDS is desired.

Note that the first of these items also highlights the importance of properly selecting
the number of latent variables to extract when fitting a PLS-regression model when it is
to be used in its inverse form, when applying Method 2 and Method 3. Although the
cross-validation approach suggested 4 LV to be extracted, this resulted in results worse
than those for the OLS-based approach, when 5 LV would have resulted in identical
outcomes.
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12.4.1.3 Additional considerations

Several factors affect these algorithms, and their effect on the performance of each
method was also assessed to evaluate their robustness. Some of these factors and the
results from this study are listed below:

1. Noise in the data:

Regarding the effect of the amount of noise, the same procedure was carried out with
0%, 1% and 10% of the natural variability of the different variables added as random
noise to the data. All three methods were affected, increasing the amount of experimen-
tation required to achieve the same level of accuracy in the DS estimate as more noise
was present, which was to be expected, but a clear improvement still occurred with
relatively little experimentation.

. Size of the initial dataset and level of dispersion around the TDS:

With respect to the size of the initial dataset, the larger the amount of initial samples
was, the better the initial DS estimation, and the slowest was the improvement
achieved by using Method 2 and Method 3, although Method 1 was not affected by
this. Furthermore, for a given size of the initial dataset and a set amount of noise, the
DS estimate with Method 2 and Method 3 was always better whenever the samples
were located closer to the DS. However, if all initial samples were selected such that
they were located exactly on the DS corresponding to a specific value for the quality
attribute of interest, no regression model could be fitted (no matter the method), as
expected, since no variation in the output/quality attribute would exist in the dataset, in
spite of any variations in the inputs (i.e. it would look as if variations in the inputs
cause no variation in the output/quality attribute, and therefore no relationship exist
among them, despite this not being true).

1il. Number of experiments performed per iteration and dataset updating method:

Instead of performing one single additional experiment per iteration (step S7 for Meth-
od 1, or steps S9-S11 for Method 2 and Method 3), the same procedure was followed,
but 2, 3 or 5 new samples were taken per iteration. No significant differences were
found for Method 1, but the performance of Method 2 and Method 3 were deteriorating
as more new samples were taken per iteration due to the fact that more iterations were
needed to achieved the same performance in terms of ADDS. This deterioration was
more critical as the amount of noise present in the data was incremented.

For the dataset updating method with Method 2 and Method 3 (step S4), eliminating
samples that provided values for y (Ypog or Yopt) ‘too far from ypgs’, as an alternative
to simply adding the new experiments performed, was also tested. This significantly
improved the results achieved if done in the first iteration. However, being too strict
when using this criterion at the beginning or during subsequent iterations led to PLS
regression models with a high uncertainty in the prediction of y, which would back-
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propagate during the model inversion step. Ultimately, none of these two methods
provided desirable results in such scenario.

1v. Severity of the non-linearities in the process:

Finally, regarding the severity of the non-linearities in the process, the first quadratic
term (x3 = x7) in the mathematical model was substituted by an inverse exponential
term (x3 = e *1), an exponential term (x; = e*!) and a logarithmic term (x5 =
log(x,)) to account for three different cases to the original one. In all of them, Method
2 and Method 3 led to an improvement in the DS estimation only when a sufficiently
narrow range of variability was allowed for x;. Large ranges of variability for x;, on
the other hand, led to scenarios where the DS estimation would improve or worsen
apparently at random from one iteration to the next. On the other hand, Method 1 did
not provide any significant improvement, but no instability in the accuracy of the DS
estimate was observed either.

12.4.2.  Case study 2: simulated Vinyl-Chloride Monomer manufacturing

As done in Section 9.4.2.3, and previous to the application of the proposed methods,
the initial fitting of the corresponding models relating input variables x; to xg and z;
with the output variables y; and y, via PLS was observed to lead to models with rela-
tively poor explanatory and predictive capability with regards to y,, which is the most
relevant quality attribute of interest in this example. Because of this z; was trans-
formed into a new variable xq = z; - xg, and y, is substituted by y; = y; - y,. By do-
ing so, a PLS regression models fitted with these ‘new’ variables can be obtained that
provides much better explanatory and predictive capabilities (RQ(Y)>O.965 and
RZ(X)>O.863 when using five LVs).

Since now the quality attribute of interest, y,, is no longer included when fitting the
PLS-regression model, however, the NS for a linear combination of outputs (y; and y3)
must be defined following the procedure detailed in Section 9.3.3, such that for a given
desired value for y,, ¥, pgs, such linear combination must satisfy Equation 9.33. The
value ¥, pgs = 0.979 is used in this case as the minimum acceptable purity for EDC4
(i.e. the DS is defined in this case as the subspace comprised by all possible combina-
tions of inputs guaranteeing at least this purity, and therefore determining the subspace
of inputs guaranteeing exactly it is equivalent to defining the frontier of such DS).

12.4.2.1 Detailed procedure for the application of all three methods

For the application of Method 1, the detailed procedure is as follows:

1. Since only manipulated variables (x; to x5) can be used for the application of
Method 1, and in order to account for possible non-linearities (fitting a second
order polynomial model would be preferable to fitting a first order one), an ini-
tial evaluation of the variables most likely to influence the process outputs was
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carried out. This was done via stepwise OLS regression considering different
combinations of manipulated variables. As a result, only variables x;, x, and
x5 were chosen as factors with a significant impact on y; and y5;. The values
for x, and x5, which were not found to have a significant effect on the two
quality attribute of interests according to the respective OLS regression mod-
els, were fixed. Specifically, x, was set to x, = 0.996 - x;, and x3 was set to
its lower bound (see Table 9.7).

Given the initial dataset (step S0), only the aforementioned selected variables
X1, X4 and xg are used in step S1 to construct the matrix of inputs used to fit
the OLS-regression models, together with two-factor interaction and second
order terms, to fit the OLS-regression models for y; and y5. This model struc-
ture is selected for both models (step S2).

Equation 9.33 is used to combine both OLS-regression models fitted in step S2
so that the DS estimate can be obtained for y, pgs = 0.979 in step S3.

In step S5, the matrix Xygw is built taking 12 samples uniformly spanning the
DS estimate as obtained in step S3. Values for x,, x3 are computed from them
as mentioned in the previous item of this list.

The DOE in step S7 is constructed on x, x, and x5, since variables x,, x3 and
X to xg cannot be freely manipulated when taking new samples. The DOE
consists of a follow-up D-optimal design for a model with all linear, first-order
interaction and quadratic terms, considering the already available samples. A
sufficiently large candidate set of uniformly distributed points inside the
knowledge space to span it ‘in its entirety’ (10000 in this case) is generated,
and the point exchange algorithm is used to select a single new experiment
(XpoE) to carry out.

To update the dataset prior to the next iteration of the method, the newly ac-
quired sample is added to the dataset used at the beginning of this iteration.

For the application of Method 2, the detailed procedure is:
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1.

2.

Data, including all input variables (as opposed to Method 1) and y; and y;, is
mean-centred and scaled to unit variance by rows in step S1.

The linear PLS-regression technique is used to fit a PLS-regression model
with 5 LV.

In step S6, 12 sets of scores spanning the NS as uniformly as possible are
sampled (Tygw), and through model inversion Xygw is obtained in step S7.
The ‘experimentation’ in step S8 is done to obtain the feasible or ‘real’ Xygw
as well as yNgw-

The DOE in step S9 is a follow-up space filling design using the Kennard-
Stone algorithm after defining a sufficiently large candidate dataset (contain-
ing again 10000 potential samples in this case) of sets of scores distributed as
uniformly as possible inside the subspace most likely to contain the TDS (as
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explained in Chapter 9) for y, pgg = 0.979, from which a single new set of
scores Tpog 1S selected.

5. Xpog is obtained through model inversion in step S10, and the ‘real’ Xpgg and
YpoE are obtained in step S11.

6. Dataset updating in step S4 before the next iteration is done by simply adding
Xpog and YpoE to the dataset used at the beginning of the current iteration.

The same differentiation made for the first case study, with regards to the application
of Method 3 with respect to Method 2, can be done here.

12.4.2.2  Assessing the performance of each of the three methods

In this case the DS is not known, and the number of variables involved (either in the
original or the latent space) would not allow for an easily interpretable graphical repre-
sentation of the DS estimate, such as the one in Figure 12.4. In its place, and similarly
to Figure 12.5, Figure 12.6 shows the ADDS for y, pgs = 0.979 per iteration for each

algorithm.
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Figure 12.6. Case study 2: Average distance to the DS (4DDS), defined in Equation 12.1, for
nps = 12, plotted against the number of iterations (coincident, in this case, with the number of addi-
tional performed experiments) using all three methods.

The same procedure as with the first case study was carried out in order to identify
statistically significant differences among the methodologies, carrying out all three
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methods thrice with 4 different datasets (for a total of 12 times per method). A model
with the same structure as the one in Equation 12.2 was fitted, and the statistical signif-
icance of its terms assessed. Table 12.2 shows the results obtained from this evaluation.

Table 12.2. Case Study 2: Study of potential significant differences among methods in terms of the
accuracy in the estimation of the DS

Parameter Estimation p-value
by 1.96-104 0.0000
b, -2.95-107 0.0459
b, 3-104 0.0000
b, 9.37-107 0.0475

Again, values for by, b,, and b, different from 0 would signal statistically significant
differences between Method 1 and Method 2, while non-zero values for b;, bs, and bg
would point out statistically significant differences between Method 2 and Method 3.
Taking this into account, Table 12.2 seems to point at statistically significant differ-
ences between Method 1 and the other two algorithms, with statistically significant
differences in the rate of improvement in the accuracy in the definition of the DS, ac-
cording to which Method 1 is outperformed by the other two (although in practice this
difference may be negligible).

A more obvious statistically significant difference is observed between Method 1 and
Method 2 in terms of the ‘baseline’ ADDS. This is in part due to PLS-regression meth-
ods being able to capture a larger part of the variability in the process when compared
to OLS-regression methods. Note, with respect to this, that only manipulated variables
can be taken into account for the application of Method 1, which also contributes to
this difference.

On the other hand, the statistical significance of b; and its negative value signal a de-
crease of the ADDS when resorting to Method 2 and Method 3. However, this im-
provement in the accuracy in the estimation of the DS is probably not relevant in prac-
tice. This is related to the size of the initial dataset when applying these algorithms.
Note that, for the first case study, the initial dataset was comprised by six samples, and
no apparent significant decrease of the ADDS was observed after 10 or 15 additional
experiments were performed (i.e. when the PLS-regression model was fitted with 16 or
21 experiments). In this second case study, the three methods were applied with an
initial dataset with 20 observations. It may then be suspected that no improvement is
observed in the accuracy of the DS estimate because it is already as good as it can be.
In fact, Method 1 cannot be applied with an initial dataset with as few as 5 or 6 obser-
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vations, but Method 2 and Method 3 show, in this scenario, a fast initial decrease of the
ADDS similar to that seen in Figure 12.5 (not shown).

Finally, and similarly as in the first case study, values very different to y, pgs = 0.979
where obtained for the quality attribute of interest (molar rate of EDC in stream EDC4)
in most of the experiments having to be carried out with Method 1 (from 0.9778 to
0.9809), being the opposite true with Method 2 (from 0.9781 to 0.9793) and Method 3
(from 0.9789 to 0.9792).

12.5. Conclusions

Three different algorithms have been presented aiming at the improvement in the esti-
mation of the DS, one of which is based on traditional approaches such as OLS-
regression and classical DOE in the space of the original variables, and the other two in
the concepts of LVRMI and DOE and optimization in the latent space.

The performance of these three methods has been tested in two case studies, and the
following has been concluded:

a) The first method (OLS-based) may work well whenever the problem is simple,
well known and easy to model. However, it is outperformed by the other two
methods if this is not the case. Furthermore, happenstance (e.g. historical) data
cannot be exploited and further experimentation requires working under pro-
cessing conditions that will most probably not lead to the desired values for the
quality attribute of interest. On the other hand, the other two methods (PLS-
based) allow historical data to be used and obtaining new processing condi-
tions that provide values close to the desired ones for the quality attribute of
interest even while improving the accuracy of the DS estimate.

b) The sensitivity to noise, the size of the initial dataset and the level of disper-
sion of the samples in this dataset around the DS has been assessed. Regarding
this, the two PLS-based methods provided better initial results when the initial
samples were located close to the DS, and a better rate of improvement in the
estimation of the DS was observed when i) few observations close to the DS
were present in the initial dataset, and ii) a smaller initial dataset, as opposed
to a larger one, was available. This is most probably in line with the idea of lo-
cal modeling whenever more or less severe non-linearities are present in the
‘true’ model structure.

c) All of the algorithms were observed to be quite sensitive to the presence of se-
vere non-linearities in the process, and are negatively affected if this is the
case.

With respect to point b, it must be pointed out that the datasets used in the two exam-
ples illustrated in Sections 5 and 6 were comprised by observations located more or
less uniformly along the whole KS. In most practical scenarios, where happenstance
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data is resorted to, the TDS may be located in unexplored areas of the process, and the
proposed methods are expected to provide a way to iteratively explore them and im-
prove their estimation. This, however, is yet to be assessed in a real case study.

Finally, it is important to consider that only Method 2 and Method 3 can make com-
plete use of the available data through the latent space, since both manipulated and
non-manipulated variables can be accounted for when fitting a PLS-regression model
and inverting it. This is not possible with OLS-based approaches.
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Chapter 13

Conclusions and
perspectives

13.1. Accomplishment of the objectives

Given the results shown in previous chapters, the degree of accomplishment of the
different objectives formulated in Section 1.2 can be assessed from the following gen-
eral conclusions.

13.1.1.  Objective I - Traditional and latent variable-based approaches applied
to mixture design problems

Chapter 5 allowed assessing most of the complexities associated to the traditional ap-
proaches for mixture design of experiments and model definition and fitting strategies,
also presenting some proposals for the definition of the experimental region and the
construction of DOE:s in irregular mixture/experimental spaces (i.e. both applicable not
only to mixture problems, but also to mixture-process variable and/or mixture-amount
problems).

On the other hand, Chapter 6 illustrated some of the most relevant advantages in the
use of latent variable-based regression techniques in terms of interpretability and easi-
ness of usage, including a novel approach making use of K-PLS and pseudo-samples
trajectories for the retrieval, whenever applicable, of a mixture model’s Scheffé coeffi-
cients. Some of the advantages presented by these methods include:

* latent variable-based regression methods allow the study of the effect of mix-
ture and non-mixture variables simultaneously without having to treat them
differently;
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¢ latent variable-based methods such as PLS allow an easier/more efficiently de-
tection of equally contributing mixture constituents in terms of their effect in
the properties of a blend;

* while, given mixture data not affected by severe nonlinearities and/or with a
high number of observations, PLS and K-PLS with pseudo-sample trajectories
yielded very similar results to classical Scheffé model fitting by means of
OLS, when more severe non-linearities and/or a small data structures had to be
analysed, K-PLS proved to be a valid alternative for overcoming the main lim-
itation of both OLS and PLS in terms of model-fitting for prediction purposes;

¢ furthermore, a way to recover the parameters of a Scheffé model from the
trend of the pseudo-sample trajectories was also derived and validated via a
simulated case-study when using K-PLS, provided that fitting such model
makes sense;

¢ finally, although the performance of the OLS- and PLS-based methodologies
was shown to improve in some cases by taking into account inverse terms, K-
PLS did not suffer from some of the drawbacks they did, such the lack of
enough degrees of freedom for a stable estimation of the coefficients of these
augmented models, while (for RBF K-PLS) allowing different types of com-
plex nonlinear relationships to be modelled, making it specially suitable when
combinations of unknown non-linearities affect the sort of interdependence be-
tween constituent proportions and output variables.

Lastly, a user-friendly software tool was developed to allow easily assessing the differ-
ences in performance of several of the methodologies and algorithms illustrated in
Chapters 5 and 6.

13.1.2.  Objective II - Latent variable-based approaches for efficient processes
optimization

Chapter 10 in this Thesis presented one of the most commonly resorted to algorithms
for process optimization using latent variable-based approaches, the quadratic optimi-
zation formulation, as well as some of its limitations or shortcomings as carried out in
the literature. Then some extensions and proposed ways to standardize the way the
optimization can be made in different scenarios were provided, in order to tackle them,
such as:

* the optimization problem as proposed in the literature was extended to include
the possibility of quality attributes being expressed as linear combination of
outputs, after demonstrating the impossibility of formulating such optimization
problem for such quality attribute in terms of a multiple-objective problem
concerning the different outputs separately (without the matrix of weights for
them losing its original meaning);
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* a discussion was presented regarding the importance of providing proper
weights to each of the terms in the objective function in the quadratic formula-
tion of the optimization problem, as well as the kind of (both soft and hard)
constraints to be imposed on the solution depending on the goal. In addition,
two new soft constraints were proposed which can be useful for DOE and ex-
ploration purposes in the latent space, and one of which can also be resorted to
in order to guarantee that different yet acceptable solutions may be achieved
when the optimization it done sequentially/more than once without modifying
any other restrictions;

* when addressing a problem where one or more quality attributes are to be
maximized or minimized, a method to objectively determine the values one
should provide as the “desired ones” has been developed and illustrated, which
may also be used, in some cases, to determine the solution of the optimization
problem in a much more efficient way that resorting to the quadratic or linear
formulations themselves, and that helps in avoiding involuntarily assigning
excessive/insufficient importance (with respect to the intended one) to maxim-
izing or minimizing some quality attribute or output;

e lastly, a sequential approach to the optimization problem has been proposed
and demonstrated to be more efficient than directly resorting to the quadratic
or even the linear formulation, while avoiding (or at the very least mitigating)
the issues some of those present with regards to the convergence to the global
optimum in a given space of acceptable solutions.

The application of some of these contributions has been shown for two case studies in
Chapter 11 and, to a lesser extent, another two in Chapter 12.

13.1.3.  Objective III - Latent variable-based approaches applied to the Quality
by Design initiative, to increase processes flexibility and guarantee the
desired quality

Chapter 9 deals with some basic concepts regarding the transferal of restrictions on the
original space to the latent space and their connection to the Knowledge Space, as well
as the way in which the computation of the direct inversion, as a way to find a set of
inputs (if any) that theoretically guarantees the desired quality, and the so-called null
space, as a way to obtain several of them (if theoretically possible), have been present-
ed in past literature. In this context:

¢ the explicit formulation of the projection of the restrictions on the original var-
iables onto the latent space has been shown, and a new analytical formulation
of the null space has been provided and extended to any quality attributes of
interest that can be expressed as a linear combination of outputs;
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13.2.

a novel formulation of the confidence region for the NS, which coupled to the
transferral of constraints onto the latent space allows a more robust estimation
of the subspace most likely to contain the TDS with respect to past proposals,
as well as the estimation of the subspace less likely to fall outside of the TDS,
has been developed, with the application of the first having been illustrated
with three simulated case studies;

finally, a novel sequential experimental approach to increase the accuracy in
the estimation of the DS has been developed and applied to two simulated case
studies in Chapter 12, and its robustness tested against several factors, present-
ing this way an efficient way to perform experimentation that provides prod-
ucts with quality characteristics close to the desired ones while simultaneously
helping better define the DS.

Future research lines

The results achieved through the completion of this Ph.D. thesis open new and relevant
perspectives that may merit further consideration in the near future:
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Development and potential improvement of already existing algorithms for the
analysis of mixture data including raw material properties.

Extension and/or adaptation of the different presented and proposed algorithms
for the constructions of DOEs for mixture design problems (including mixture-
process variables and mixture-amount problems) to more rigorously define
DOE construction methods in the latent space and for mixture problems in-
cluding the properties of the raw materials in L/T-shaped datasets. This may be
achieved by e.g. considering the relationship between raw material properties
and scores in the latent subspace of models constructed as in [63—65].

Extension of the optimization and DS estimation methodologies coupled to
model-updating algorithms for process optimization outside of the KS, and for
situations with frequent changes in raw materials, process conditions, etc.

Application of the idea behind the definition of the subspace least likely to fall
outside of the DS to the definition of regions of acceptable raw material prop-
erties, and to the assessment of a production process capability.

For mixture design including raw materials’ properties, and batch processes:

o Extension of the proposed approach for the estimation of the subspace
most likely to contain (and least likely to fall outside of) the DS.

o Further development of the proposed optimization formulation.

o Improvement of methodologies to increase the accuracy in the estima-
tion of the DS, and in the assessment of such accuracy.
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Chapter 14
Appendices

14.1. Annex to Part1

14.1.1. Relationship between the Euclidean distance matrix, D, and the
inner product matrix, X - XT

The Euclidean distance between two observations, xz and xz*, of a generic dataset, X
[NX]], can be expressed as:
dn,n* = ”Xn - Xn*llz = (Xn - Xn")T ' (xn - Xn*) = XnT “Xp t+ xn*T Xy — 2 XnT * Xp* (141)

Let F [NXN] be the inner product matrix and D [N XN] the Euclidean distance matrix,
defined as:

F=X X"
14.2
D=f-1T+1-fT-2.F (142)

where f [Nx1] denotes the diagonal vector of F and 1 [N X 1] is a vector of ones.
Centring X such that:

_ 1

x=x—ﬁ~1~1T~x (14.3)

then:

(14.4)

1 1 1
=F-—F-1-1"T--.1-1T-F+—-1-1T-F-1-1T
N N N2
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If D is double-centred as:

1
B=—E~H~D'HT (14.5)

where H represents the operator

1
H=1-—-1-1"T 14.6
N (14.6)

and I is the [N X N] identity matrix, it follows:

1
B=—E‘H~(f‘1T+1-fT—2-F)'HT (14.7)

Since:
T T . 1

1 1
f'1T'HT=f~1T~(I—N-1-1T) =f-1T—f- 1T =0 (14.8)

it is verified:

H-f-1T-HT=0=H-1-fT.HT (14.9)
Therefore:
T 1 T 1 TT
B=H F‘H =(I_—.1.1).F.(I__.1.1) =
N N
(14.10)
1 T 1 T 1 T T_§
=F-—F1.17"-——-—1-1""F+—:-1-1"-F-1-1"=F
N N N2
that is:
1 _ _
B=—E'H'D-HT=X‘XT (14.11)

And so it has been demonstrated that the double-centred Euclidean distance matrix B is
equal to the inner product matrix, X - XT.

14.1.2.  Practical meaning of the pseudo-samples in the feature space

Consider that B = X - XT has been used for calibrating a 1-latent variable PLS model.
The scores of the N objects under study, t® [Nx1], can be written as:

8 —B.wE (14.12)

where w*B [Nx1] represents the PLS vector of weights, which, in this case, does not
contain any useful information about the J original variables in X . Substituting Equa-
tion 14.11 in Equation 14.12 it follows:

tB=X-XT-wP=X-w" (14.13)
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where w*’ [Jx1] is now relevant for interpretation purposes. Projecting the [1x]]
vector of pseudo-samples gT =[0, 0, .. 1 0, 0, 0] onto the PLS model
subspace:

x/

tyr = gT - XT - wh=gT.w'= w; (14.14)

which permits obtaining the j-th element of w*'.
14.2. Annex to Part II

14.2.1.  Relationship between the Scheffé and Cox models coefficients

Consider formulation of the second-order Scheffé polynomial:

Q Q-1 @
E(y) =Zﬁi'xi+z Z Bij - xi - %; (14.15)
i=1

i=1 j=i+1

And that of the second-order Cox polynomial:

Q Q-1 @ Q
E(y) =ﬁ'o+z,3'i'xi+z Z ﬁ,ij'xi'xj+z,8’ii'xi2
i=1 i=1

i=1 j=i+1

[ Q
Z Bli-si=0
i=1 (14.16)
s.t. 3 , ,
Zcij B oS = 0vie{1,2,..,0}
j=1
_ {1/2 ifi+j
\ T ifi=j
Consider also the perfect collinearity constraint in Equation 5.1:
Q
Z x =1 (14.17)
i=1
The second order terms x7? can then be reformulated as:
Q
x?=x;- 1—ij (14.18)
j=1
Jj#i
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Then, from Equation 14.16:

Q @ Q Q
E)=p8-" le+2ﬁl x; + Zzﬁr*ij.xi-xj+2ﬁ'ii-xi-(1—2%‘
Q Q Q ' Q Q

E(}’)=Z(ﬁ'0+ﬁ")‘x1’ ZZB,*ij'xi‘xj+ZB’ii'xi_zz

i=1 i=1
Qe Q
E(J/)—Z(Bo+ﬁ FBD) ZZ By = B) %%
e
JE

i=

where the notation [)"*i ; permits to explicitly differentiate the interaction terms
x; - xj and x; - x;. Note that, since [)"*ij = ﬁ'*ji, B'ij =2 -,B'*i]. =2 ‘B'*ﬁ whenever

i # j. Therefore, Equation 14.19 can also be formulated as:

E(y)—Z(BoH? +B)- xl+2 2 (= B)xex  (1420)

=1 j=i+1
Since Equation 14.15 and 14.20 must be equivalent, then:
Bi=BotBi+Bu
,Bl-j = ,3’1-]- —Bli—Bjj
If, instead of the second-order, the first-order polynomial is considered, then
B'ij =B’y = B'j; = 0, and therefore:

Bi=By+F, (14.22)

For higher-degree polynomials the reader is referred to [57], where the correspond-
ing relationship between the Scheffé and Cox models’ coefficients it is shown.

(14.21)

14.2.2.  Projection of a point/vector onto the intersection of a group of hy-
perplanes

Consider the existence of R hyperplanes of dimension A-1 in a space of dimension 4,
with R<4, and let the equation of the r-th hyperplane, NS,., to be expressed as:
A
vy + Z Vg TNs,g = 03V = [V1,Vz, 0, V4] (14.23)

a=1
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Consider the intersection of these hyperplanes to exist and to be of dimension 4-R. Let
T be a point outside of this intersection, and ¥ the point closest to T that belongs to the
intersection of all R hyperplanes. The directed distance between T and the r-th hyper-
plane NS, can be calculated as:

Ur,0 T . _ \L
T tuys, ©T § Uys, = T (14.24)
Ny oV, V; -V,
where uyg, is the unitary vector orthogonal to NS, and dd (t,NS,.) has the same sign

and magnitude as the Euclidean distance when the direction of the vector from the »-th
NS to T is the same as that of uyg , but is negative if the have opposing directions.

Since % is a point in the intersection of the R hyperplanes, then dd (%, NS,.) = 0.

dd(t,NS,) =

On the other hand, the vector that connects ¥ to T must be orthogonal to any vector that
is also orthogonal to every v, in order to guarantee that ¥ is the point closest to T that is
also in the intersection of the R hyperplanes. As a consequence, T can be expressed as a
function of t of the form

R vi

~ T v
‘t=‘t+2cr‘vr=‘t+v -c; V=|"2 (14.25)

r=1 k

Vi

where c is the vector that relates T and t. Taking into account Equations 14.24 and
14.25:

VUro

dd(% NS,) = +uys - (T+VT-c)=0 (14.26)

LI
This equality can be also expressed as
v VT c=—(v 0+ V] -T) (14.27)
Therefore, the following system of R linear equations with R unknowns can be defined:

V-VI.c=—=(vy+V- 1)

V1,0 vi

V2,0 T (14.28)
Vo =1 : ; V= V.Z

VR0 vy

Since the rank of V is R, V- VT is a [RXR] matrix with rank R and can therefore be
inverted. Then:

c=—(V-VD) 1. (vy+V-1) (14.29)
Substituting Equation 14.29 in Equation 14.25:
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t=1-Vl.(V.VD) 1. (yvg+V-1) =
=, -Vl (v.VD)1.v].x=VT.(V.V) 1.y,

Where 1, is the [4XA] identity matrix.

(14.30)

Therefore T is the projection of T onto the intersection of R (R < A) hyperplanes in an
A-dimensional space. The extension of Equation 14.30 for a vector, instead of a point,
is straightforward.

14.3. Annex to Part III

14.3.1.  Relationship between the result of the PLS-regression direct inver-
sion and the point in the combined null space closest to the centre of
projection/with lowest leverage

Consider that, for the hyperplanes corresponding to the NS for ypgs:
Vo = My — YpEs
V=D, -Q (14.31)

my and Dy, being the [LX1] column vector of centring factors and the [LXL] diagonal

matrix with the scaling factors applied to the L output variables before fitting the PLS-
regression model, respectively.

If T = 0 in Equation 14.30, then:
~ _ -1
T=-VT-(V-V)7 v = Q" Ds, - (D5, Q- Q" Dy,) + (ypgs —my) (1432)
where
(D,-Q-Q"-D,,) " =(Q-Q"-D,,) Dy, =Dy, (Q-QD-D,, 7 (1433)
And therefore:
T=Q7-(Q QN Dy, (Ypps — my) (14.34)

Which is, exactly, the expression of the scores Tygw for the direct inversion, as seen in
Equation 9.16. It must be noted that the point in the intersection of NS for a given ypgs
that is closest to the centre of projection is not necessarily the same as the point in that
intersection with the smallest leverage. To demonstrate this, consider that, for the hy-
perplanes corresponding to the NS for ypgsg, with standardized scores:

Vo = My — YpEs

V=Ds, -Q- AL/2 (14.35)

218



Appendices

with A2 defined as the [4xA] diagonal matrix containing the 4 standard deviations of
the scores associated to the LVs. If T = 0 in Equation 14.30, then:

~ -1

F=AY2.QT. Ds, - (Dsy ‘Q-A-QT- DSy) - (Ypgs — my) (14.36)
Simplifying, as in Equation 14.34:

T=AY2-Q"-(Q-A-Q")™* Ds, - (ypgs — my) (14.37)

Therefore, Equations 14.34 and 14.37 are only equivalent if A is the [4XA] identity
matrix.

14.3.2.  Analytical expression for the confidence region of the null space for
a linear combination of outputs using OLS-type expression for the
prediction’s confidence interval

Let X, be the vector of inputs for an observation, and ¥, the prediction of the out-
puts, given Xgps, by a PLS regression model fitted with 4 latent variables relating the
[NXM] matrix of inputs X and the [NXL] matrix of outputs Y. Let d,,s be the value for
the quality attribute of interest, which can be expressed as a linear combination of the
outputs Vs such that

dobs = al- Yobs = a’- (DsY ’ Q *Tops T my) (14.38)

where a is the the [Lx 1] vector with the coefficients that relate d,ps with ¥,ps; Q= is
the estimated [LXA4] matrix of loadings that relate t,,s With y,ps; and Ty 1S the [4X 1]
vector of scores corresponding to the projection of X,,s onto the latent space; my and
Dy, being the [LX1] column vector of centring factors and the [LXL] diagonal matrix
with the scaling factors applied to the L output variables when fitting the PLS model,
respectively.

Let NS represent the Null Space (NS), that is, a subspace such that any combination of
inputs inside it will theoretically guarantee the desired value for the quality attribute of
interest, dpgs. Any vector of outputs ¥ys with projection Tyg in this subspace will
satisfy the following:

a"-gys =a’ - (D, - Q- Tys + my) = dpgs (14.39)
Equation 14.39 can be reorganized as

T

a" - my—dpgs+a”-Dg,-Q-Tys =0 (14.40)

which is the equation of a hyper-plane in the latent space associated to NS of the form:

XV & . . . . . . . . P . .
Q is used here to differentiate it from the theoretical loadings matrix Q, as in the appendix in Section 14.3.3, to keep it con-
sistent with it since such distinction is required for the definition of the confidence region of the NS.
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A

vy + Z Vg Tnsa = 05V = [v1, 0, .., v,]"
P (14.41)
vo=a' - my — dpgg
v=Q" Dy, -a

Consider T, to be a vector of scores on the hyper-plane defining the NS. Then, the
100 - (1 — @)% confidence interval (CI) of the prediction of a linear combination
dops = dpgs, given an observation X,,s with projection %,,s, and using OLS type
expressions, is:

CIdDES = &obs i tN—A,G{/Z ' Sdobs (1442)
Now consider T, to be a vector of scores within the limits of the confidence region
for the NS, such that %, is the vector of scores closest to T, and exactly on the hy-
per-plane defining NS,.. Then:

T 0 . % T 0
a - DsY Q- Tops — IN-aa/2 Sdobs =a - DsY Q- Tops

. Dy . flobs (14.43)
a - DSY Q- Tps =a - DSY Q- Tops T+ tN-aa/2 " Sdobs

Or, equivalently:

|aT - Dy, - Q- (Tobs — Fobs)| < tv-nayz - Sayp, (14.44)

where ty_4 q/2 is the 100 - (1 — a/2) percentile of a Student’s t-distribution with (V-
A) degrees of freedom, and sz ,  the estimated standard deviation for the prediction
error of the linear combination of outputs:

1 (14.45)

Sd Tobs N

obS:SEd. 1+h

SE4 being the standard error of calibration and hg_, . the leverage of Tp,s

As illustrated in Section 14.3.3, SE; can be calculated as:

SE, =+/aT-S;-a (14.46)

where S¢ is the estimated [LXL] variance-covariance matrix of prediction errors:
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SE cov(fi, f2) cov(fi, )

S; = cov(fz, f1) . 5132 ' C/O\V(}.CzjfL)
cov(fy, f1) cov(fy, f2) - SfL
N ~ 2 (1447)
2 _ 2n=1(yn,l B yn,l)
SfL = rdf
Zg=l(yn,l - )’}nl) ’ (yn,l' - yn,l')

cov(fy, fr) =

rdf

Yn, and ¥, ; being the observed and average predicted values of the /-th output variable
for the n-th sample in the calibration dataset used to fit the regression model, and rdf
the residual degrees of freedom (frequently rdf=N-A).

On the other hand, h; . _is computed as:

Tobs

Rigns = Tops - (TT - T) ™! - Fopg (14.48)

Tobs

T being the [NXA] matrix of scores corresponding to the projection onto the latent
space of the observations in the calibration dataset used to fit the PLS-regression mod-
el. The relationship between T, and %}, considering T, to be the vector of scores
closest to T, and exactly on the hyper-plane defining the NS, can be expressed as:

Tobs — Tobs = dd('[obs’ iobs) * UNs

v v

dd (Tobs) Tobs) = ﬁ + “ﬁs "Tobs 5 UNS = T v (14.49)
where uyg is the unitary vector orthogonal to the NS and dd (T,ps, Tops) is the directed
distance between T, and T,p5, which has the same sign and magnitude as the Euclid-
ean distance when the direction of the vector T,,s — Tops 1S the same as that of uyg,
but is negative if the have opposing directions. From this, %, can be re-formulated as
a function of T, such that

Vo + VT - Tops

= — _ (14.50)
Tobs Tobs vl -v
Re-organizing Equation 14.44 and substituting Equation 14.50 in it:
vo+ VT Top
—tn-aa/2 = ~—OS < tn-4a/2
Sdobs
T 2 (14.51)
Vg + V' Tops B 1
S&obs =SEd .\/1+h‘[obs_<T> 'VT'(TT‘T) 1‘V-FN
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14.3.3. Confidence interval for the prediction of a linear combination of
outputs in PLS using OLS type expression

Let X5 be the vector of inputs for an observation, and ¥,1,s the vector of average pre-
dictions of the outputs y,ps, given Xqps, by a PLS regression model fitted with 4 latent
variables relating the [NXM] matrix of inputs X and the [NX L] matrix of outputs Y. Let

~

dops be a linear combination of ¥, such that:
L
&obs = Z ar Yobsy = a’ - Yobs = al- Q " Tobs (14.52)
1=1
where a is the the [LX 1] vector with the coefficients that relate aobs with $ops » Q is

the estimated [LXA4] matrix of loadings that relate T,,s With y,55, and Ty 1S the [4X 1]
vector of scores corresponding to the projection of X, onto the latent space.

And the variance of (iobs is:

O-I%Obs = aT ’ Vy’obs ‘a (1453)

where Vg is the [LXL] variance-covariance matrix corresponding to the average

predictions of the output variables. In order to obtain the estimate of this matrix, Sy _, ,

Ordinary Least Squares (OLS) type expressions will be used, as done by Faber and
Kowalski [95], also assuming normalized scores. To obtain the variances, consider

Vi=T-q+uw
yi=T-q+f (14.54)
y1=T-q

T being the [NXA] scores matrix with T], TJ.,..., Ty as its rows, q; and q, are the

[4x1] vectors corresponding to the /-th rows of the theoretical loadings matrix Q and
its estimation, Q, respectively, and w;and f; are the [NX1] vectors of disturbances and
prediction errors for the N observations™.

The variance of average prediction for the conditions (scores) corresponding to the n-th
observation and /-th output ¥, ; is, from the previous expression:

Xvi . . . . . . . . .
Note that, in this section only, and for simplification purposes, it has been assumed that both input and output variables are
already pre-treated (e.g. mean-centred and scaled to unit variance)
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T
0'5”'[ =E [(ynl - E(?nl)) ' (ynl - E(ynl)) ]
T
o5, =E [(TZ -4, -t} E@)) - (- q, — b E@)) ] (14.55)
O-Jgn_l = Tz E [(q\l - E(ql)) : (ﬁl - E(ql))T] ‘T, = T; . Val ST,

where E[-] is the expectation operator and Vg, is the [4XA] variance-covariance matrix
corresponding to loadings of the matrix Q associated with the /-th output variable.

Then, if the formulation for the OLS estimate is applied:
~ A~ ~ ~\\T ~ ~
Vo, =E[(@-F@) - (@ -E@) | =El@-a) @-a)™l  (14.56)
Since

G=0"MD* TN yy=T"D*TT-(T-q;+u) =

=q+ (™)1 T -y (14.57)
Then
Vg, = E[(T™D™ - T u) - (uf - T+ (TTT) )] (14.58)
Vo = (@™ TT - E(u; - uf) - T (TTT)? '
E(u; - u]) can be expressed as:
ui) Ugp " Uzp Uzt Uny
E(u,-uf) = E| Y21t Uz, Uz, Un
Uy Ugg UygUgp - uy,
(14.59)
oy, cov(uy 1, uzy) cov(uy;, uy ;)
E(u; -uf) = cov(uzy,uy,) Oy, cov(uy,, uy,)
cov(uy,uyy) cov(uyg,uy) - a,fN'l

Assuming uncertainty to be the same for all observations, a,fn ;= aﬁl vV n, and u,; and

U, to be uncorrelated (n # n') so that cov(un,l, unf,l) = 0, then:

E(u,-uf) =02 -1y (14.60)
where Iy is the [N XN] Identity matrix. Therefore:
Vg, =TT T -6 - Iyyy - T-(TT-T)7? (14.61)

Reorganizing terms and simplifying:
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Vg, = oy, - (TT-T)7! (14.62)
Substituting Equation 14.62 in Equation 14.55:
o = 0w T (T 1, = of - hy (14.63)

Where U,fl is the variance of the disturbances for the /-th output variable, while h,, is

the leverage for the n-th observation, which is a measure of the distance of the projec-
tion of the n-th observation to the centre of projection.

The variance of the disturbances for the /-th output can be estimated from the predic-

tion errors as:

2
Zn=1 (Vg = Fnt)
2 _ A2 _ 4&n=1\Un|l n,l
sf, =64, = N—df (14.64)

Being df the degrees of freedom consumed by the model (usually df=4).

2

Thus, the estimation 55

of the variance of the average prediction, o2 :
nl Yn,il

2 _ a2 _ o2,
Syni = O9n1 = Sf1 hn (14.65)
If, as it is usually the case when fitting a PLS regression model, the output variables
have been centred, the error associated with the estimation of the mean has to be con-
sidered, resulting in the following modification to the previous expression:

2 2 1
S5e, = Sf,* h, + N (14.66)
Where y;;, denotes that output variables are not centred, as opposed to 532,1.

And for an individual observation the error of prediction (i.e. the estimation of the
uncertainty) is included, which results in:

SZ

~0
Yin,l

1
= s} (1 +h, + N) (14.67)

Following the same procedure now for the covariance of average prediction for the
conditions (scores) corresponding to the n-th covariate observation for the /-th output
Vn, and ’-th output ¥, ;» (I # 1'), it follows:

cov (1,9 = E|(9ns = EGnd)) - (s = EGnn)) |

cov(@, 910 = T - El@ — q) - @ — q)7] - 1y,
cov(P, i )n = T;rl : Vﬁl,ﬁl, “Tn

(14.68)

In a similar way as for the variance:
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Vaua, = E[(T™D1-TT - w) - (uf - T (TTT) )] (14.69)
Vaa, = @™ TT-E(u; - uf) - T (TTT)? '
And, since E(u, - ulT/) can be expressed as:
Upp Uy Ugp Uy U Uny
E(ul ' “zT’) —F Uz Ugy! 3 Uz - Uy ‘ Uz, 'EuN,l'
Uy Ugr Uyt Upy! Uy Uy
COV(uLuuu’) Cov(ul,l:uz,l’) Cov(ul,l'uN,l’) (14.70)
E(u,-ul) = cov(uzp, uy ) ‘ cov(us, ty,r) ' cov(uZ:l:uN,l')
Cov(uN,l:ul,l’) COV(“N,l;uz,l’) COU(uN,l'uN,l')

Assuming  uncertainty  to be the same for all observations,
cov(tpy, Uy 1) = cov(uy,up) ¥V n, and up,; and u, r to be uncorrelated (n # n') so
that cov(un‘l,unr,l:) = 0, then:

E(u, - ulT/) = cov(u,uy) - Iy (14.71)
Therefore:

Vaar = (TTD™ T cov(uy,uy) - Iyey - T+ (TTD 7 (14.72)

Reorganizing terms and simplifying:

Vg, = cov(u,up) - (TTT)™? (14.73)

Substituting Equation 14.73 in Equation 14.68:
cov(P, 91 = cov(uy,up) -1 - (TTT) ™ - 1, = cov(uy,y)) - by (14.74)

Again, the estimation of the covariance of the disturbances for the /-th and /’-th output
variables can be obtained as:

2%1(%,1 - S}n,l) ’ (yn,l' - yn,l’)

N ar (14.75)

cov(f, fr) =

Finally, the estimated variance-covariance matrix of the average outputs prediction
vector for the n-th observation ¥, Vy, , can be expressed as:

Sfl cov(fy, f2) 3 cov(fy, f1)

—~ 2 ° —
Sy, =S¢ hn = Cov(fz:fl). Sf, . COV(fz,fL) ‘h, (14.76)

cov(fy, f1) . cov(fy, f2) SJgL
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In order to account for the centring of the output variables:

1
Sgo =S¢+ (hn + N) (14.77)
And for the prediction of an individual observation:
1
S?fn =S¢ - (1 + h, + N) (14.78)

Finally, since centring of the output variables is performed in almost all cases, the es-
timated variance of d,, will be obtained for an individual observation as:

2 T 1
3 =a ~sf-a.(1+hn+ﬁ) (14.79)

Therefore, the confidence interval for the prediction of a linear combination of output
variables, corresponding to a given observation X,,s With projection T,y and predicted
outputs Y,ps, can be calculated as:

Cldobs = dgps T tn-aa/2 " Sdobs

1 (14.80)
Sdobs = aT'Sf‘a'(l"'hobs +ﬁ)

As a particular case, the confidence interval for the prediction of the /-th of output vari-
able for the same observation results:

ClYobs,l = yObS'l i tN_A:a/Z ' Sj}obs,l

) 1 (14.81)
SVobsi — Sfl ’ (1 + hobs + N)

Note that, although here S¢ was computed assuming already pre-treated output varia-
bles (e.g. centred to zero mean and unitary variance), this matrix may also be obtained
similarly without considering such pre-treatment in order to obtain the confidence in-
tervals for the prediction in the same units as the original Y matrix (this must be ac-

counted for also for &obs/j}obs,l)-
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