Contents

I. Prefa	ce	1			
1. Justifi	cation, objectives and contributions	3			
1.1. Justification					
1.2. Ob	jectives	4			
1.2.1.	Traditional and latent variable-based approaches applied to mixture design problems	4			
1.2.2.	Latent variable-based approaches for efficient processes optimization	5			
1.2.3.	Latent variable-based approaches applied to the Quality by Design initiative, to increase processes flexibility and guarantee the desired quality	5			
1.3. Co	ntributions	6			
2. On op	timal design of experiments	9			
2.1. Intr	oduction	9			
2.2. Op	timality criteria for the design of experiments	10			
2.2.1.	D-optimal design of experiments	11			
2.2.2.	I-optimal and G-optimal design of experiments	13			
2.3. Ad	ditional considerations for the design of experiments	14			
2.3.1.	Variance inflation	14			
2.3.2.	Aliasing	15			
2.3.3.	Principles of effect-sparsity, hierarchy and heredity	15			
3. On lat	tent variable and kernel-based multivariate data analysis	17			
3.1. Intr	roduction	17			
3.2. Lat	ent variable-based multivariate data analysis techniques	18			
3.2.1.	Principal Component Analysis (PCA)	18			
3.2.2.	Partial Least Squares regression (PLS)	19			
3.3. Ke	rnel-based techniques	20			

3.3.1. Basic principles of kernel-based techniques	21
3.3.2. Pseudo-samples and pseudo-sample projection	22
3.4. Important additional notions: cross-validation and jackknifing	23
4. Materials and methods	25
4.1. Hardware	25
4.2. Software	25 25
4.3. Datasets and methods	25 25
4.5. Datasets and methods	25
II. Mixture design optimization	27
5. Traditional approaches to mixture design	29
5.1. Introduction	29
5.2. The mixture space	31
5.2.1. Assessing the shape of the mixture space	31
5.2.2. Identifying the envelope of the mixture space	34
5.3. Regression model structures in mixture design	37
5.3.1. The Scheffé models	37
5.3.2. The Cox models	44
5.3.3. Mixture-process variable models	46
5.4. Mixture design of experiments	48
5.4.1. Simplex-based DOE	48
5.4.2. DOE in irregular mixture spaces	53
6. Latent variable-based methods for mixture data analysis	57
6.1. Mixture design data analysis with Partial Least Squares	57
6.1.1. Methods and datasets	58
6.1.1.1. Example 1: seven-component octane blending experiment Cornell	nt of 58
6.1.1.2. Example 2: gasoline blending data of Snee	59
6.1.2. Results and discussion	59

Contents

6.1.2.1.	Example 1: seven-component octane blending experiment of Cornell	59
6.1.2.2.	Example 2: gasoline blending data of Snee	64
6.1.3. Co	onclusions and additional considerations	70
6.2. Kernel-l	PLS and pseudo-sample trajectories	70
6.2.1. M	ethods	71
6.2.1.1.	Pseudo-sample trajectories for mixture data	71
6.2.1.2.	Pseudo-sample-based response surface and Scheffé model coefficients	73
6.2.2. Da	atasets	73
6.2.2.1.	Data simulated according to a second-order polynomial model	74
6.2.2.2.	Tablet data	74
6.2.2.3.	Bubbles data	75
6.2.2.4.	Colorant data	75
6.2.2.5.	Gasoline data	75
6.2.2.6.	Data simulated according to a highly non-linear model	75
6.2.3. Re	esults	76
6.2.3.1.	Data simulated according to a second-order polynomial model	76
6.2.3.2.	Tablet data	77
6.2.3.3.	Bubbles data	77
6.2.3.4.	Colorant data	81
6.2.3.5.	Gasoline data	81
6.2.3.6.	Data simulated according to a highly non-linear model	87
6.2.4. Co	onclusions	89
7. MiDAs: a	software for mixture DOE and data analysis	91
7.1. Introduc	ction	91
7.2. Variable	e input	93
7.3. Model s	election	98

ix

7.4. DOE construction	100
7.5. Data analysis	103
7.5.1. Data analysis with MLR	110
7.5.2. Data analysis with PLS	112
III. Design Space and optimization through the laten	t space 113
8. Preliminary considerations	115
8.1. Quality by Design and the Design Space	115
8.2. Limitations of the optimization and DOE in the original space	ce 118
8.3. Optimization in the latent space	119
9. Defining the design space in the latent space	123
9.1. Partial Least Squares model fitting and prediction uncertaint	ty 123
9.2. Transferring restrictions to the latent space	125
9.3. Partial Least Squares model inversion	130
9.3.1. The direct inversion	130
9.3.2. Direct inversion-dependant definition of the Null Space	ce 131
9.3.3. Analytical definition of the Null Space	132
9.3.4. Confidence region of the Null Space	134
9.4. Subspace most likely to contain the True Design Space	138
9.4.1. Datasets	139
9.4.1.1. Case study 1: mathematical model	139
9.4.1.2. Case study 2: simulated data with two correlated out	puts 140
9.4.1.3. Case study 3: simulated Vinyl-Chloride manufacturing	Monomer 141
9.4.2. Results	143
9.4.2.1. Case study 1: mathematical model	143
9.4.2.2. Case study 2: simulated data with two correlated out	puts 145

х

	9.4.2.		study acturing	3:	simulated	Vinyl-Chloride	Monomer	147
9.	4.3.	Conclusion	15					149
9.5.	9.5. Subspace least likely to fall outside of the True Design Space						150	
9.6.	Asses	sing the ad	lequacy	of a	PLS-regress	ion model for inve	ersion	153
9.	6.1.	Assessmen	ıt via dir	ect in	nversion			154
9.6.2. Assessment by comparison with the closest solution in the null-space				154				
9.7.	Addit	ional consi	deration	S				156
10. C)ptimi	zation pr	oblem t	forn	nulation in	Quality by Desi	ign	157
10.1.	Introd	uction						157
10	0.1.1.	Optimizati	on in the	e orig	ginal space th	rough the latent s	pace	157
10	0.1.2.	Optimizati	on in the	e late	ent space			159
10.2.	Quad	atic optim	ization f	orm	ulation			163
10	0.2.1.	Optimizati	on of a l	inear	r combinatio	n of outputs		163
10	0.2.2.	Optimizati	on for ex	kplor	ation and D	DE in the latent sp	ace	165
10	0.2.3.	Fackling th	ne maxir	nizat	tion/minimiz	ation problem		168
	10.2.3	.1. Definir ones	ng feasib	ole n	ninimum/max	ximum values as	the desired	168
	10.2.3	.2. Changi	ng the si	gn of	f the weight g	iven in the objectiv	ve function	169
	10.2.3	.3. Finding	g extreme	e ach	ievable value	s below the Hotell	ing T^2 limit	170
10.3.	Linea	r optimizat	tion form	nulat	ion			172
10.4.	A seq	uential opt	imizatio	n apj	proach			174
11. T	`wo re	al case st	udies of	f opt	timization i	in the latent spa	ice	177
11.1.	Introd	uction						177
11.2.	Metho	ods						177
11.3. Datasets					177			
1	1.3.1.	Case study	1: mini	miziı	ng two outpu	t variables simult	aneously	178

11.3.2. Case study 2: maximizing a linear combination of outputs	178		
11.4. Results and discussion			
11.4.1. Case study 1: minimizing two output variables simultaneously	178		
11.4.2. Case study 2: maximizing a linear combination of outputs	180		
11.5. Conclusions	183		
12. On experimentation to improve the design space estimation	185		
12.1. Introduction	185		
12.2. Methods	186		
12.2.1. Method 1: classical DOE and OLS model inversion approach	186		
12.2.2. Method 2: DOE in the latent space and LVRMI approach	189		
12.2.3. Method 3: Optimization in the latent space and LVRMI approach	191		
12.3. Datasets	192		
12.3.1. Case study 1: mathematical mod	192		
12.3.2. Case study 2: simulated Vinyl-Chloride Monomer manufacturing	192		
12.4. Results and discussion	193		
12.4.1. Case study 1: mathematical mod	193		
12.4.1.1. Detailed procedure for the application of all three methods	193		
12.4.1.2. Assessing the performance of each of the three methods	195		
12.4.1.3. Additional considerations	200		
12.4.2. Case study 2: simulated Vinyl-Chloride Monomer manufacturing	201		
12.4.2.1. Detailed procedure for the application of all three methods	201		
12.4.2.2. Assessing the performance of each of the three methods			
12.5. Conclusions	205		

IV. Epilo	gue	207	
13. Concl	usions and perspectives	209	
13.1. Accomplishment of the objectives			
13.1.1.	Objective I - Traditional and latent variable-based approaches applied to mixture design problems	209	
13.1.2.	Objective II - Latent variable-based approaches for efficient processes optimization	210	
13.1.3.	Objective III - Latent variable-based approaches applied to the Quality by Design initiative, to increase processes flexibility and guarantee the desired quality	211	
13.2. Futu	re research lines	212	
14. Apper	ndices	213	
14.1. Anne	ex to Part I	213	
14.1.1.	Relationship between the Euclidean distance matrix, D , and the inner product matrix, $\mathbf{X} \cdot \mathbf{X}^{T}$	213	
14.1.2.	Practical meaning of the pseudo-samples in the feature space	214	
14.2. Anne	ex to Part II	215	
14.2.1.	Relationship between the Scheffé and Cox models coefficients	215	
14.2.2.	Projection of a point/vector onto the intersection of a group of hyperplanes	216	
14.3. Anne	ex to Part III	218	
14.3.1.	Relationship between the result of the PLS-regression direct inversion and the point in the combined null space closest to the centre of projection/with lowest leverage	218	
14.3.2.	Analytical expression for the confidence region of the null space for a linear combination of outputs using OLS-type expression for the prediction's confidence interval	219	
14.3.3.	Confidence interval for the prediction of a linear combination of outputs in PLS using OLS type expression	222	

Bibliography

227