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ABSTRACT 12 

The new tendency to detect adulterated honey is the development of affordable 13 

analytical equipment that is in-line and manageable, enabling rapid on site screening. 14 

Therefore, the aim of this work was to apply an electronic tongue based on potential 15 

multistep pulse voltammetry, in combination with multivariate statistical techniques to 16 

detect and quantify syrup in honey. Pure monofloral honey (heather, orange blossom 17 

and sunflower), syrup (rice, barley and corn), and samples simulating adulterated honey 18 

with different percentages of syrup (2.5, 5, 10, 20 and 40) were evaluated. An 19 

automatic, electrochemical system for cleaning and polishing the electronic tongue 20 

sensors (Ir, Rh, Pt, Au) significantly improved the repeatability and accuracy of the 21 

measurements. PCA analysis showed that the proposed methodology is able to 22 

distinguish between types of pure honey and syrup, and their different levels of 23 

adulterants. A subsequent PLS analysis successfully predicted the level of the 24 
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adulterants in each honey, achieving good correlations considering the adjusting 25 

parameters. The best results being for sunflower honey adulterated with corn syrup and 26 

heather honey with barley syrup (r2=0.997), and heather with corn (r2=0.994) whereas 27 

the weakest was found for heather honey adulterated with brown rice syrup (r2=0.763) 28 

and orange blossom honey with corn syrup (r2=0.879). The measurement system here 29 

proposed could be a very quick and effective option for the honey packaging sector with 30 

the finality of providing information about a characteristic as important as the 31 

adulteration of honey. 32 

Keywords: honey adulteration, syrups, pulse voltammetry, electronic tongue 33 

1. Introduction 34 

Honey is a nutritional natural sweetener highly valued for its healing properties (Naila 35 

et al., 2018, Cabanero et al., 2006; Padovan et al., 2003; Ruiz-Matute et al., 2010; Bázár 36 

et al., 2016). The European Commission has stipulated that nothing should be added to 37 

honey (European Commission, 2002), but the limited availability and its price have 38 

provided major incentives for adulteration (Anklam, 1998). Honey is adulterated mainly 39 

with cheaper sweeteners such as sugar syrups that simulate its own sugar composition 40 

(Naila et al., 2018, Li et al., 2017; Sobrino-Gregorio et al., 2017, Cai et al., 2013). 41 

Adulterated honey affects the international honey market and the economy of the 42 

producers. In addition, it could have negative effects on consumer’s nutrition and health 43 

(Tosun, 2013). Therefore, guaranteeing the authenticity of honey has become a very 44 

important issue for everyone involved in the food chain (Sobrino-Gregorio, 2017). 45 

In recent years, a large number of analytical methods have been used to differentiate 46 

genuine honey from adulterated. Among them, the most recognized are NMR 47 

spectroscopy (Bertelli et al., 2010; Boffo et al., 2012; Davide and Massimo, 2010; 48 

Ohmenhaeuser et al., 2013; De Oliveira et al., 2014) and stable carbon isotopic ratio 49 
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mass spectrometry (SCIRA) (Elfleing & Raezke, 2008; Adnan et al., 2012; Simsek et 50 

al., 2012; Tosun, 2013). Another commonly used method is the reflectance-Fourier 51 

transforms infrared spectroscopy (Oroian & Ropciuc, 2017, Rios-Corripio et al., 2012;), 52 

high performance liquid chromatography (HPLC) to detect starch syrups (Wang et al., 53 

2015), enzymatic activity (diastase, invertase) (Serra et al., 2000), specific markers (Xue 54 

et al., 2013) and differential scanning calorimetry (DSC) (Cordella et al., 2002 y 2003; 55 

Sobrino-Gregorio et al., 2017).  56 

However, using these techniques individually the results obtained are not always 57 

conclusive, therefore, to guarantee the purity in honey the combination of several of 58 

them is required. Moreover, these techniques are very expensive, they require highly 59 

specialized equipment and are time-consuming (Sobrino-Gregorio et al., 2017).  60 

To identify the authenticity of honey the industry needs to have simple, fast and easy to 61 

handle techniques without the need for expensive equipment and highly skilled workers 62 

(Bougrini et al., 2016; Juan-Borrás et al., 2017). Furthermore, the honey sector does not 63 

require data of exact levels of adulteration of honey, since any type of addition is 64 

prohibited. Only with a screening technique that able is to detect the slightest 65 

adulteration is enough.  66 

Among the most promising techniques that fulfill this requirement, in addition to being 67 

more environmentally friendly than the usual methods, the electronic tongue has the 68 

advantage, as it can be an alternative tool to the traditional analytic methods (Bougrini 69 

et al., 2016). Unlike the traditional methods, electronic tongues do not obtain 70 

information about the nature of the compounds under consideration, but only present a 71 

digital fingerprint of the food material (Ghasemi-Varnamkhasti et al., 2010). It is also a 72 

qualitative analytical technique that permits recognition, classification or identification 73 
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of samples, depending on the composition of the sensor array and the mathematical 74 

procedure adopted for data treatment. 75 

 Electronic tongue systems are based on an array of sensors with low selectivity while 76 

being sensitive to several components in the measured sample (cross-sensitivity). The 77 

signals collected by these sensors are processed by means of pattern recognition tools in 78 

order to generate prediction models that allow the classification of the samples and the 79 

quantification of some of their physicochemical properties (Gutés et al., 2007). 80 

There are several alternatives to electronic tongue systems, the voltammetric being one 81 

of the most used (Martínez-Mañez et al., 2005; Lvova et al., 2006; Winquist et al., 82 

2005), which has different advantages: high sensitivity, versatility, simplicity, 83 

robustness and good signal to noise ratio (Winquisk, 2008).  84 

These techniques, using arrays of electrodes, is at present the most popular for the 85 

design of electronic tongue systems, which include linear voltammetry, differential 86 

pulse voltammetry (Bataller et al., 2013), stripping voltammetry and over all cyclic 87 

voltammetry (Campos et al., 2010). Cyclic voltammetry is the most widely used 88 

technique (Bollo et al., 2004; De Beer et al., 2004; Dogan et al., 2005) and the obtained 89 

voltammogram permits the characterisation of electrochemical processes (oxidation–90 

reduction) over a wide potential range. On the other hand, pulse voltammetry is used 91 

when higher sensitivity and resolution are required, allowing the detection of lower 92 

concentrations of compounds (Escobar et al., 2013). In all cases the enormous amount 93 

of data generated by these systems must be processed using appropriate multivariate 94 

analysis techniques such as PCA (principal component analysis), LDA (linear 95 

discriminant analysis) or CA (cluster analysis) (Benedetti et al., 2004; Dias et al., 2008; 96 

Wei et al., 2009). 97 
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Electronic tongue systems are capable of identifying and classifying liquid samples such 98 

as wine, beer, coffee, milk, juices, teas and vegetable oils (Schreyer & Mikkelsen, 2000; 99 

Parra et al., 2004; Apetrei et al., 2005; Huang et al., 2007; Chen et al., 2008; Moreno-100 

Codinachs et al., 2008; Rodríguez-Méndez et al., 2008; He et al., 2009; Oliveri et al., 101 

2009; Gutiérrez et al., 2010; Gutierrez-Capitan et al., 2013; Apetrei & Apetrei, 2014; 102 

Veloso et al., 2016). Moreover, it is used in quality assessment of solid foods such as 103 

meat, fish, fruit and vegetables (Han et al., 2008; Rodríguez-Méndez et al., 2009; 104 

Campos et al., 2010; Labrador et al., 2010). In the context of discriminating different 105 

classes within the same food type, it has been successfully used in honey, specifically 106 

focused on its differentiation according to its botanical and geographical origin (Dias et 107 

al., 2008; Wei et al., 2009; Wei & Wang, 2011; Major et al., 2011; Escriche et al., 2012; 108 

Garcia-Breijo et al., 2013; Tiwari et al., 2013; Sousa et al., 2014; Bougrini et al., 2016; 109 

Juan-Borrás et al., 2017).  110 

One of the most promising applications of the electronic tongue systems is the detection 111 

of food adulterations. Good results have been reported in the identification of sunflower 112 

oil introduced in argan oil (Bougrini et al., 2014) or in the case of goat milk adulterated 113 

with bovine milk (Dias et al., 2009). However, little research about the use of electronic 114 

tongue systems to identify adulteration of honey has been reported using pulse 115 

voltammetry (Men et al., 2014) or cyclic voltammetry (Bougrini et al., 2016; Ropciuc et 116 

al., 2017). However, the application of pulse voltammetry, in the above context, could 117 

provide important advantages since it has higher sensitivity and resolution (Bataller et 118 

al., 2013). 119 

Nevertheless, an important problem that limits the use of electronic tongues as a 120 

technique for on-line quality controls is that of sensor system cleaning. In the aim to 121 

solve this, a mechanical system was developed  by Swedish Sensor Center for polishing 122 
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the electrodes of the electronic tongues (Olsson et al., 2006). However, it significantly 123 

limits the utility of the technique in controlling automated processes, as it requires high 124 

maintenance and costs. As a cheaper and easier alternative, the same group proposed the 125 

use of electropolishing to clean the electronic tongues (Holmin et al., 2004). The 126 

procedure consists of applying a high enough voltage to oxidize the surface of the 127 

electrodes, and to apply proper cathodic voltage to regenerate the different metal 128 

surfaces. Although studies using this technique were promising, the methodology was 129 

not optimized for systems that have high concentrations or high levels of contaminant 130 

load. Honey falls within the group of substances for which there is no well-defined 131 

electropolishing methodology. 132 

Taking this into consideration, the aim of this study was to optimize an adequate 133 

electropolishing system to investigate the capacity of a pulse voltammetric electronic 134 

tongue, which consisted of a set of metal electrodes, to differentiate the presence of 135 

syrups in honey samples simulating various levels of adulteration. 136 

2. Materials and methods 137 

2.1. Samples preparation 138 

Three types of raw honey harvested in 2016, provided by the company Melazahar 139 

(Montroy, Valencia), were used in this study: sunflower (Helianthus annuus); orange 140 

blossom (Citrus spp.) and heather (Erica spp.). They were selected based on their 141 

different physicochemical characteristics (Juan-Borrás et al., 2015). The botanical 142 

categorization of all the batches was carried out by means of pollinic analysis following 143 

the recommendations of the International Commission for Bee Botany (Von Der Ohe et 144 

al., 2004). Microscopic examination, identification and the interpretation of pollen types 145 

were carried out by an experienced pollen analyst, using pollen slides and references 146 

(Sáenz & Gómez, 2000; Persano-Oddo & Piro, 2004). Furthermore, three kinds of 147 
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syrups from different origins were used: barley (La Finestra sul Cielo, Italy); corn 148 

(Roquette Laissa, Spain) and brown rice (Mitoku Macrobiotic, Japan). 149 

The samples evaluated in the present work were: three pure syrups, three pure honeys 150 

and a mixture of both in different percentages (40, 20, 10, 5 and 2.5%, respectively) 151 

simulating the adulteration of honey. In each case, 8 g of sample (considered on a dry 152 

basis) were used. For this, the moisture content was obtained by using a refractometer 153 

(Abbe-type model T1; Atago, Bellevue, WA, USA) and the Chataway tables in 154 

accordance with the Harmonized Methods of the European Honey Commission 155 

(Bogdanov, 2009). All samples were analysed three times achieving four repetitions for 156 

each replication. 157 

2.2. Equipment 158 

The measuring equipment is based on a potentiostat designed in the Institute of 159 

Molecular Recognition and Technological Development (IDM) at the Universitat 160 

Politècnica de València (Campos et al., 2013). This device allows performing pulse 161 

voltammetry measurements where the potentials and lengths of the pulses can be 162 

configured for each specific application. In this particular work, 40 pulses of 50 ms are 163 

applied. The voltages distribution is similar to a stair case voltammetry in increasing (or 164 

decreasing) steps of 200 mV between +1 V and -1 V (to avoid water electrolysis), and 165 

the potential is set to zero after each increment (Figure 1). 166 

The voltammetry tests are measured with four working electrodes (Ir, Rh, Pt and Au) 167 

housed inside a stainless-steel cylinder used as the electronic tongue body. A stainless 168 

steel circular piece is used as counter electrode and a calomel electrode is used as 169 

reference. 170 
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An integrated system of solenoid valves and a pump permit the automatic injection of 171 

liquid samples into a specifically designed measurement chamber. This complete 172 

system allows the implementation of an innovative electrochemical polishing of the 173 

working electrodes. For each metal, a configuration of basic or acidic solution is used 174 

when a sequence of cathodic and anodic pulse (or reversed) is applied to them. The aim 175 

is desorbing the organic material accumulated at the surface of the electrodes, and 176 

detaching any oxide layer that may have been formed (Table 1).  177 

An in-house design of a specific software manages both the measuring equipment and 178 

the pumping system. It performs a complete set of measurements with the same setup, 179 

and stors the results for a later statistical analysis. 180 

This system was patented in 2016, under the name “Sistema y método de control de la 181 

calidad del agua en plantas de tratamiento”, which translation would be “System and 182 

method to control water quality in treatment plants”, property of the company Fomento 183 

Agrícola Castellonense, S.A. and the by the Interuniversity Research Institute for 184 

Molecular Recognition and Technological Development (IDM) of the Universitat 185 

Politècnica de València, with reference number P201631405 (Bataller et al., 2016). 186 

2.3. Statistical analysis  187 

Multivariate statistical analysis techniques were used to analyse the data gathered for 188 

this study. Principal Components Analysis (PCA) was used to discriminate between 189 

samples and Partial Least Square (PLS) to quantify the content of honey adulterant in 190 

the analysed samples. The PLS model was calibrated with 66% of the data set and 191 

validated with the remaining 33%. Model’s assessment is done by comparing real 192 

versus predicted adulteration levels. The parameters used are the correlation coefficient 193 

(r2), a, b (from the simplest linear model: y = ax + b) and the root mean square error of 194 
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prediction (RMSEP) as the most common metric obtained to measure accuracy of this 195 

methodology (Bataller et al., 2012). 196 

All these statistical studies have been performed with Solo 8.6 software (Eigenvector 197 

Research, Inc., Wenatchee, Washington, DC, USA). 198 

3. Results and discussion 199 

3.1. Differentiation of pure honeys and syrups 200 

A PCA analysis was applied (from the data generated by the four electrodes of the 201 

electronic tongue) in order to show if there was a classification of the different types of 202 

pure samples (honeys and syrups). Figure 2 shows the score plot of this analysis, in 203 

which the first two principal components together explain 80.01% of the data 204 

variability, specifically 59.59% by PC1 and 20.42% by PC2. Discrimination between 205 

honeys and syrups is mainly determined by the X axis (PC1), where the honey samples 206 

are in the centre of the score graph and the syrups are placed on both sides (on the left 207 

the barley and brown rice syrups, on the right the corn). Since, proximity between 208 

samples indicates similar behaviour in terms of the electrochemical response of the 209 

sensors, small differences between barley and brown rice syrups with respect to corn 210 

syrups were found. On the contrary, the type of honey is differentiated by PC2, where 211 

heather honey is in the upper half and sunflower honey in the lower, whereas orange 212 

blossom honey is in the middle.  213 

Once proven that this methodology could differentiate between all types of pure 214 

samples analysed, the next phase was to verify if this type of electronic tongue was able 215 

to discriminate honeys in which syrups have been added. 216 

3.2. Differentiation by adulteration levels 217 
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Figure 3 shows, as an example, the behaviour of the signal obtained by applying the 218 

corresponding potential pulse pattern to sunflower honey adulterated with barley syrup. 219 

There is a clear differentiation between the signals obtained for syrup, pure honey and 220 

the different percentages of adulteration (40, 20, 10, 5 and 2.5%, respectively). It is 221 

evident that the signals are affected by the samples and the adulteration levels. The 222 

highest signal corresponds to pure syrup which progressively decreases to pure honey, 223 

going through its different and ordered stages of adulteration. This behaviour was in 224 

most cases constant, regardless of the type of syrup and honey. 225 

For the purpose of evaluating from a descriptive point of view, the global effect of the 226 

electronic tongue response in the pure honeys, syrups and their corresponding 227 

adulteration levels, different Principal Component Analysis (PCA) were carried out. 228 

Figure 4 shows, as an example, the PCA performed in the case of adding barley syrup 229 

(40, 20, 10, 5 and 2.5%) to the three pure honeys. In this figure (4.A to 4.C), the two 230 

principal components represent 86.5% (PC1: 52.50%; PC2: 34.02%); 83.98% (PC1: 231 

67.41%; PC2: 16.57%) and 78.87% (PC1: 61.89%; PC2:19.98%) for sunflower; orange 232 

blossom and heather, respectively. Pure barley syrup and honey with 40% of barley 233 

syrup are in all cases on the left side of the plots (but in opposite quadrants), whereas 234 

the rest of the samples are placed on the right side. In all these PCA plots, a progressive, 235 

ordered and clear tendency is observed in relation to the adulteration level. The higher 236 

level (40%) is farther away from the pure honey, whereas the lower level (2.5%) is 237 

closer to it. 238 

Similar results were reported by Bougrini et al., (2016) using cyclic voltammetry for 239 

adulteration detection, from 2 to 20%, of pure honey although glucose and sacharose 240 

syrups were added. The values of adulteration detected by these authors in honey are 241 

even better than those described by them in the case of adulteration in argan oil 242 
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adulterated with different proportions of sunflower oil (10 to 70%) (Bougrini et al., 243 

2014). Ropciuc et al. (2017), using cyclic voltammetry (with Ag and Au as working 244 

electrodes) differentiated honeys adulterated with inverted sugar and malt wort only 245 

when they did not exceed 20%.  246 

The present work confirms that using pulse voltammetry allowed for further 247 

possibilities by designing a specific pulse pattern. In addition to the automation of the 248 

electrochemical cleaning process while providing good reproducibility of the sensors 249 

and good classification results, it also permitted the detection of a wider adulteration 250 

range (up to 40%).  Moreover, among other advantages it was observed that the time 251 

required to analyse one sample using the pulse voltammetry technique is considerably 252 

less: 8 seconds to scan with the 4 electrodes; 40 seconds for 5 iterations; 12 seconds for 253 

electropolishing per electrode; 4 minutes for the final cleaning of the sensor system if 5 254 

consecutive cleanings are performed. However, considering the protocol described by 255 

Bougrini et al. in 2016, the cleaning alone (disassembled, manual cleaning of 256 

electrodes, electrochemical cell re-assembled, etc.) takes at least 20 min. 257 

3.3. PLS analysis: correlation of pulse voltammetric data with the level of 258 

adulteration 259 

In order to verify whether the data provided by the electronic tongue could be useful in 260 

predicting the adulteration of pure honeys (sunflower, orange blossom, heather) with 261 

syrup (barley, corn, brown rice) at different percentages (40, 20, 10, 5 and 2.5%), a 262 

Partial Least Square (PLS) analysis was applied. Nine PLS models of prediction were 263 

created (3 honeys multiplied by 3 syrups) with the voltammetric experimental data 264 

obtained from the four metallic electrodes (Ir, Rh, Pt, Au). Figure 5 shows one of these 265 

PLS graphs (heather honey adulterated with barley syrup) in which measured vs. 266 

predicted values of the adulteration levels are plotted together in order to evaluate the 267 
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performance of the created prediction linear model. Table 2 shows the PLS prediction 268 

results (slope, intercept, the regression coefficient, number of latent variables and 269 

RMSEP) for the nine models obtained. In most cases, there is a good result, the best one 270 

being for sunflower-corn and heather-barley with correlation coefficients of 0.997 and 271 

heather-corn with 0.994. The weakest correlation was for heather-brown rice (0.763) 272 

and orange blossom-corn (0.879). In order to quantitatively describe the accuracy of 273 

model outputs obtained, the RMSEP were shown (Table 2). The best model in terms of 274 

capability of prediction corresponded to that obtained for heather-barley (0.834) 275 

followed by sunflower- barley (1.252). The worst model was for orange blossom-corn 276 

(5.261) and header brown-rice (5.159). 277 

Cai, et al., in 2013, applied cyclic voltammetry in Chinese Angelica honey adulterated 278 

with rice syrup (from 20% to 50%). They were able to prove that in quantitative 279 

analysis of honey adulteration, a multiple linear regression (MLR) model fitted and 280 

predicted well with the square of the correlation coefficients (Rc=0.921 and Rp=0.898). 281 

Other authors proposed the combination of PLS with Fuzzy ARTMAP tools to improve 282 

the classification of honey adulterated in different proportions (from 0 to 70%) when a 283 

voltammetric electronic tongue system is applied (Men et al, 2014). 284 

4. Conclusions 285 

This paper has presented for the first time that an innovative automatic pulse 286 

voltammetry can be applied to quantify the presence of syrups in honey. The outcome is 287 

the possibility that this type of electronic tongue (with automatic, electrochemical 288 

system for cleaning and polishing the electronic tongue sensors) permits detecting this 289 

kind of fraud in a bee product to which no addition of substances is allowed. PCA 290 

analysis demonstrated that this automatic pulse voltammetry electronic tongue system, 291 

made of four metallic electrodes (Ir, Rh, Pt, Au) was capable of not only differentiating 292 
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between types of pure honey and pure syrups but also to discriminate honeys to which 293 

syrups have been added at different levels. The PLS models are capable of predicting 294 

the additions of adulterants in different types of honey, and therefore provides a 295 

powerful tool to quantify their level of incorporation.  296 

The present findings might help to solve the necessity to have a manageable and in-line 297 

analytical equipment that enables rapid on site screening and also more affordable for 298 

the apiculture sector. However, future studies on the current topic are recommended in 299 

order to create a wide and comprehensive data base of pure types of honey from 300 

different botanical and geographical origin. 301 
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Figure caption 553 

Figure 1. Voltammetric pulse pattern.  554 

 555 

Figure 2. Score plot of the PCA performed on pure honeys (sunflower, orange blossom, 556 

heather) and pure syrups (barley, corn, brown rice) samples. 557 

 558 

Figure 3. Electrochemical trace of the layered sequence of the potential for sunflower 559 

honey adulterated with barley syrup at different levels (40, 20, 10, 5 and 2.5%).  560 
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 561 

Figure 4. Scores plot of the PCA performed on barley syrup and pure honey (A: 562 

sunflower; B: orange blossom; C: heather hone), and mixtures of both in different 563 

percentages (40, 20, 10, 5 and 2.5 %) simulating the adulteration of honey. 564 
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Figure 5. Predicted versus measured values of heather honey adulterated with barley 566 

syrup given by PLS model. 567 

 568 

Highlights 569 

-Pulse voltammetry can be useful in detecting and quantifying syrups in honey 570 

-This methodology can distinguish between pure honeys and syrups 571 

-This methodology can distinguish among different levels of adulterants 572 

-PLS analysis can predict the level of adulteration with syrups in honeys 573 

Table 1. Electrochemical polishing of the working electrodes: configuration of basic or 574 

acidic solution in the sequence of cathodic and anodic pulse applied to the different 575 

metals. 576 

Electrodes Cathodic pulse 

(mV) 

Anodic pulse 

(mV) 

Rest pulse 

(mV) 

Polishing 

media 

Ir +900 -500 0 Acidic 
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Rh +1500 -1500 0 Basic 

Pt +1800 -500 0 Acidic 

Au +1500 -1500 0 Basic 

 577 

Table 2. PLS prediction results obtained from the validation data for the adulteration of 578 

pure honeys (sunflower, orange blossom, heather) with syrup (barley, corn, brown rice) 579 

at different percentages (40, 20, 10, 5 and 2.5%). 580 

 581 
Adulterations No. latent 

variables 
Correlation 
coefficient 

Slope Intercept RMSEP 

Sunflower-barley 4 0.991 0.999 0.206 1.252 
Sunflower-corn 5 0.997 0.937 1.858 2.622 
Sunflower-brown rice 2 0.949 0.909 1.073 3.489 
Orange blossom- barley 7 0.993 0.983 0.589 1.336 
Orange blossom-corn 6 0.879 0.847 1.234 5.261 
Orange blossom- brown 
rice 

6 0.988 1.029 0.203 1.681 

Heather- barley 5 0.997 0.966 0.457 0.834 
Heather- corn 5 0.994 1.012 0.997 1.479 
Heather- brown rice 4 0.763 0.823 3.936 5.159 

 582 


