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Abstract

It is shown that B}D‘f’cl/’;(ﬁ) is isomorphic to (By ;.(2));, (2 open set in R", 1 < p < oo,
k Beurling-Bjorck weight) extending a Hormander’s result (the proof we give is valid
in the vector—valued case, too). As a consequence, and using Vogt’s representation
theorems and weighted L,-spaces of entire analytic functions, a number of results

on sequence space representations of Héormander—Beurling are given.
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1 Introduction and notation

In [13, Chapter XV]| Hormander studies the behaviour of the Fourier—Laplace
transform in the space Bj,(Q2) = indlK—@»Q [Bay N E'(K)] when Q is an open
convex set in R™ and k is a temperate weight function on R", and then proves
a theorem on the representation of solutions of the equation P(D)u = 0
by integrals of exponential solutions (P(D) is a constant coefficient partial
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differential operator). For this he obtains an appropiate collection of semi-
norms defining the inductive limit topology of B, (), proves the isomor-

phism (B3, ());, ~ B;O; /k(Q) and shows that every continuous seminorm in

51(Q) is bounded by a seminorm of the form u — (f |ﬂ(()]26_2¢(<)d)\(0)1/2
where @ is the Fourier—Laplace transform of u and ¢ is plurisubharmonic
(see [13, Section 15.2]). In this paper we extend the former isomorphism to
Beurling-Bjorck weights [1] and as a consequence (and using Vogt’s repre-
sentation theorems [33] and weighted L,-spaces of entire analytic functions
[25,30]) a number of results on sequence space representations of Hérmander
spaces in the sense of Beurling—Bjorck [1] (=Hérmander—Beurling spaces) are

given. This research pursues the study on Hormander—Beurling spaces carried
out in [1,6,12,13,29,33] and [24,25,27,28,32| (see also [14]).

The organization of the paper is as follows. Section 2 contains some basic facts
about scalar and vector—valued Beurling ultradistributions and the definitions

of the spaces which are considered in the paper. In Section 3 we show that

Bl?cl/k(Q, E') is isomorphic to (B, (€2, E)), when w € M, k € K, 1 <p < o0
and F is a Banach space whose dual E’ possesses the Radon—Nikodym prop-
erty (see Theorem 3.2), and we propose the following question: Are the spaces

BVI,O;/]C(Q, E') and (By (€2, E));, isomorphic (E is any Banach space)? (Prob-
lem 3.4). In Section 4, by using the previous isomorphism, some representation
theorems of Vogt [33, Theorems 5.2, 6.2] and the solution to Problem 4.11 in
[24] given by Cembranos and Mendoza in [3], we partially answer the Prob-
lem 4.10 in [24] (see Theorem 4.4). We also show that, in general, B (Q, E)
is not isomorphic to either B (Q)®.E or BYY, (Q)@,TE. Next it is shown
that BS,(Q,1,) (resp. Bi(Q,1 )) is isomorphic to @52, G; (resp. [152 H;)
where Gy (resp. Hp) is isomorphic to [,(l,) and G; (resp. H;) is isomorphic
to a complemented subspace of [,(l,) for j = 1,2,.... Then we describe the
structure of the complemented normed subspaces of BlOC(Q) BYE(Q,1,) and
T~ 1BloC (Qj,lp). We also give a new proof (based on our representation
theorem BIOC(Q) ~ ) of a well known result on linear partial differential
operators.

Notation. The linear spaces we use are defined over C. Let E and F' be locally
convex spaces. Then Ly(E, F) is the locally convex space of all continuous
linear operators equipped with the bounded convergence topology. The dual
of F is denoted by E’ and is given the strong topology so that £’ = L,(E, C).
E®.F (resp. E®,F) is the completion of the injective (resp. projective) tensor
product of £ and F. If £ and F are (topologically) isomorphic we put F ~ F.
If E' is isomorphic to a complemented subspace of F' we write F < F'. We put
FE — Fif F is a linear subspace of F’ and the canonical injection is continuous
(we replace — by <L if £ is also dense in F). If (E,)22, is a sequence of locally

convex spaces, [[°°, E, (EN 1f E, = E for all n) is the topological product of
the spaces E,; @n: (E if £, = F for all n) is the locally convex direct



sum of the spaces E,,.

Let 1 <p < o0, k:R"— (0,00) a Lebesgue measurable function, and E a
Fréchet space. Then L,(E) is the set of all (equivalence classes of) Bochner

measurable functions f : R" — E for which || f||, = (fRn Hf(x)de:c)l/p is finite
(with the usual modification when p = 00) for all || - || € cs(F) (see, e.g. [8]).
L, x(E) denotes the set of all Bochner measurable functions f : R* — E such
that kf € L,(FE). Putting || f|z,, ) = [[kf|l, for all f € L,x(E) and for all
|- || € es(E), L,x(E) becomes a Fréchet space isomorphic to L,(E). When E
is the field C, we simply write L, and L, . If f € L;(E) the Fourier transform
of f, f or Ff, is defined by f(€) = fon f(x)e " *dx. If f is a function on R™
then f(z) = f(—z) for € R™. The letter C' will always denote a positive
constant, not necessarily the same at each occurrence.

Finally we recall the definition of A7 functions. A positive, locally integrable
function w on R™ is in A7 provided, for 1 < p < oo,

1 1 ,/ p/p/
sup | — [ wdx —/w‘p Pdx < 00
Rp<|R|/R ><|R| R >

where R runs over all bounded n—dimensional intervals. The basic properties
of these functions can be found in [7, Chapter 1V]

2 Spaces of vector—valued (Beurling) ultradistributions

In this section we collect some basic facts about vector—valued (Beurling) ul-
tradistributions and we recall the definitions of the vector—valued Hérmander—
Beurling spaces. Comprehensive treatments of the theory of (scalar or vector—
valued) ultradistributions can be found in [1], [10] and [15], [16], [17]. Our
notations are based on [1] and [30, pp. 14-19].

Let M (or M,,) be the set of all functions w on R™ such that w(x) = o(|z|)
where o(t) is an increasing continuous concave function on [0, co[ with the
following properties:

(i) o(0) =0,
(ii) Jo© 1 +(tt)2 dt < oo (Beurling’s condition),

(iii) there exist a real number a and a positive number b such that
o(t) > a+ blog(l+1t) forallt >0 .

The assumption (ii) is essentially the Denjoy—Carleman non—quasianalyticity
condition (see [1, Sect. 1.5]). The two most prominent examples of functions



w € M are given by w(z) = log(1 + |z])¢, d > 0, and w(z) = |z|°, 0 < B < 1.

If w € M and FE is a Fréchet space, we denote by D, (E) the set of all functions
f € Ly(E) with compact support, such that ||f|x = fen | f(€)]| @ d¢ < oo
for all A > 0 and for all ||-|| € cs(E). For each compact subset K of R",
D,(K,E)={f € D,(F) :supp f C K}, equipped with the topology induced
by the family of seminorms {||-||x : ||:]| € cs(E),\ > 0}, is a Fréchet space
and D,(FE) = ind? D, (K, E) becomes a strict (LF)-space. If €2 is any open

set in R™, D, (€, E) is the subspace of D, (FE) consisting of all functions f

with supp f C Q. D, (9, E) is endowed with the corresponding inductive limit

topology: D, (2, F) =ind . D,(K, FE). Let S,(FE) be the set of all functions
KCQ

f € Ly(E) such that both f and f are infinitely differentiable functions on
R" with sup,g. €@ ||0° f(z)|| < co and sup,g. €@ ||0* f(z)|| < oo for all
multi-indices «, all positive numbers A and all ||-|| € cs(E). S,(F) with the
topology induced by the above family of seminorms is a Fréchet space and the
Fourier transformation F is an automorphism of S, (E). If E = C then D, (FE)
and S, (F) coincide with the spaces D,, and S,, (see [1]). Let us recall that, by
Beurling’s condition, the space D,, is non—trivial and the usual procedure of
the resolution of unity can be established with D,~functions (see [1, Theorem

1.3.7]). Furthermore, D,, 4D (see [1, Theorem 1.3.18]) and D,, is nuclear

([33, Corollary 7.5]). On the other hand, D, = DN S, D, 45, Ls (see
[1, Proposition 1.8.6, Theorem 1.8.7]) and S,, is nuclear also (see [10, p. 320]).
If £, is the set of multipliers on D,, i.e., the set of all functions f : R" — C
such that pf € D, for all ¢ € D,, then &, with the topology generated
by the seminorms {f — [|of]|x = fanlof(E)][eEdE - X > 0, ¢ € D,} be-

comes a nuclear Fréchet space (see [33, Corollary 7.5]) and D, SRR Using
the above results and [17, Theorem 1.12] we can identify S,,(E) with S,&_.E.
However, though D, ® E is dense in D, (E), in general D, (F) is not isomor-
phic to D,®.F (cf., e.g. [9, Chapter II, p. 83]). A continuous linear operator
from D,, into E' is said to be a (Beurling) ultradistribution with values in E.
We write D/ (E) for the space of all E—valued (Beurling) ultradistributions
endowed with the bounded convergence topology, thus D! (E) = Ly(D,, E).
D (Q,E) = Ly(D,(), E) is the space of all (Beurling) ultradistributions on
) with values in E. A continuous linear operator from S, into F is said to be
an E-valued tempered ultradistribution. S (E) is the space of all E—valued
tempered ultradistributions equipped with the bounded convergence topology,
i.e., S, (E) = Ly(S,, E). The Fourier transformation F is an automorphism of

S (E).

If w € M, then IC,, is the set of all positive functions k on R" for which there
exists a positive constant N such that k(z +y) < eN@k(y) for all z and y
in R™ [1, Definition 2.1.1] (when w(z) = log(1 4 |z|) the functions k of the
corresponding class K, are called temperate weight functions, see [13, Defini-



tion 10.1.1]). If k, k1, k2 € K, and s is a real number then log k is uniformly
continuous, k° € KC,,, kiky € K, and My(x) = sup,cgn k(,f('x) € K, (see [1,
Theorem 2.1.3]). If w € LP° and [zn ¢(z)u(z)dz = 0 for all ¢ € D, then
u = 0 a.e. (see [1]). This result, the Hahn-Banach theorem and [5, Chap-
ter 11, Corollary 7] prove that if k € K, p € [1,00] and E is a Fréchet space,
we can identify f € L,;(E) with the E-valued tempered ultradistribution
o — (o, f) = Jgnp(@)f(x)dz, ¢ € S,, and L,x(E) — S (E). If w € M,
k € Ky, p € [1,00] and E is a Fréchet space, we denote by B,;(E) the
set of all E—valued tempered ultradistributions 7" for which there exists a
function f € L,x(E) such that (o, T) = fuu o(z)f(z)dz, ¢ € S,. Byi(E)

with the seminorms {|| T, = ((27)™" fRn||k(x)T($)||pda;)1/p |l € es(B)}
(usual modification if p = 00), becomes a Fréchet space isomorphic to L, x(E).
Spaces B, (E) are called Hérmander-Beurling spaces with values in E (see
[12], [13], [33] for the scalar case and [25], [27], [32] for the vector—valued
case). We denote by B)%(Q, E) (see [12], [13], [33] and [24], [25], [27]) the
space of all E-valued ultradistributions 7" € D! (€2, E) such that, for every
v € D,(Q), the map T : S, — E defined by (u,pT) = (up,T), u € S,,
belongs to B, x(E). The space B5(€, E) is a Fréchet space with the topol-
ogy generated by the seminorms {|||[px. : © € Du(Q), ||-|| € cs(E)}, where
1T lpe = 11T || for T € BYi(Q, E), and B5(, E) — D, (2, E). We shall
also use the spaces By (€2, E) which generalize the scalar spaces By, (§2) con-
sidered by Hérmander in [13], by Vogt in [33] and by Bjorck in [1]. If w, k, p, 2
and E are as above, then By, (2, E) = U532, [Byx(E)NEL (K, E)] (here (Kj) is
any fundamental sequence of compact subsets of Q2 and &/ (K;, £') denotes the
set of all T" € D! (F) such that supp T C Kj). Since for every compact K C €,
B, (E)NEL(K, E) is a Fréchet space with the topology induced by B, x(E),
it follows that Bf (€2, E) becomes a strict (LF)-space (strict (LB)-space if £
is a Banach space): By, (2, E) = ind_.[B, ,(E) N E, (K}, E)]. These spaces are

studied in [24], [25] and [27].

3 The dual of B} (2, F)

In [13, Chapter XV] Hérmander studies the behaviour of the Fourier-Laplace
transform in the space B3, (§2) = ind_. (B2, NE'(K)] when €2 is an open convex

set in R™ and k is a temperate weight function on R”. For this he discusses

the inductive limit topology in Bj ;(£2), proves the isomorphism (ng(Q)); ~

B¢ /k(Q) [13, Section 15.2] and shows that every continuous seminorm in

B5 () is bounded by a seminorm of the form

U — (/ !ﬁ(ﬁ)‘%—w(od)\(g))lm



where 4 is the Fourier-Laplace transform of u and ¢ is plurisubharmonic.
In this section we extend the former isomorphism to Hormander spaces in

the sense of Beurling-Bjorck [1] and prove that (Bj (€2, E));, =~ B};,’Cl/’;(Q, E')
when w € M, k € K,, 1 < p < oo and E is a Banach space. A number of

applications of this duality will be given in the next section.

Let us recall that a D, (€)—partition of unity in £ (=open set in R") is a
sequence (6;) in D, (€2) such that: i) 6; > 0 for j = 1,2,...,1ii) >;6; = 1 in
, iil) For every compact set K C €) there exist a positive integer m and a
bounded open set W such that K C W C W C Q and i 0 =1in W,

Lemma 3.1. Let Q) be an open set in R", w € M, k € K,, 1 < p < o0,
and E a Banach space. Let (6;) be a D, (Q)-partition of unity in Q. Then the
inductive limit topology on By, (2, E) is generated by the seminorms

Tl =2 CillOiTlpk » T € Byp(E)

J=1

varying (C;) in RY.
Proof. See Proposition 3.10 of [27]. O

In the next result we will need the spaces [;(C}, E) and [ (Cj, E): If (C)) is
a sequence in RY and E is a Banach space then [1(C}, E) (resp. ls(Cj, E))
denotes the set of all sequences (z;) € E" such that ||(z;)[, = 232, Cjllzllz <
oo (resp. [[(75)]lee = sup; Cjllz;|lr < o0). With the norm || - ||; (resp. || - [|o)
L(Cj, E) (resp. loo(C}, E)) becomes a Banach space.

Theorem 3.2. Let € be an open set in R™, w e M, ke K,, 1 <p < oo, and
let E be a Banach space whose dual E' possesses the Radon—Nikodym property.

Then Bgl;?i/l}(Q’ E'") is isomorphic to (Bg (2, E))y.

Proof. Choose a fixed D,,(Q2)-partition of unity (6;) in Q and let L be an
element in (BS,(Q, E))'. By Lemma 3.1 we can find a sequence (C;) in RY
such that -
LD <D CilloiTlpk . T € By (R E) .
j=1
Then the linear mapping
Z : By

.k

(Q,E) — 1(C}, Bpx(E))
T — (0,T)

is continuous. Furthermore, since each T' can be written in the form T =

0,7 (m varying with T'), we conclude that Z is injective. Now we consider



the linear form Lo Z~!. Since |Lo Z7*((6,T))] < ||(6;T)]1, the Hahn-Banach
theorem shows that there exists a linear form (Lo Z7')~ € (I;(C}, Byx(E)))
of norm at most 1 which extends Lo Z~!. Then, by the isometric isomorphism

A zm@j, By E')) — (1(Cy, Byp(E)))
defined by < (1) A((S)) >= ()" £, fo < Tie), §1e) > da. we can
find (S;) € loo( , By 1/k(E’)) such that A((S;)) = (Lo Z™1)~, and so

A

Lo Z*((6;T)) = L(T Z <9T ), Sj(z) > dx
for each T' € By (2, E). Next we shall prove that the linear mapping
(B (L E)), — Bloc _(Q, E')

V1/k
L - 2 95

(the series 332, 0; S converges in B¢ _(Q, E') since this space is a Fréchet

P 1/k
space and X2 65,150 = 5520 16:0) 1,5 < o0 for each o € D, (%)
in virtue of the properties of the sequence (6;)) is an isomorphism. Let us
see that ® is well defined. Let (L o Z~1= another extension of L o Z7! to
11(Cj, Bpr(E)) and let (S}) € (i By 1/k(E")) the sequence which repre-
sents this extension. Let us check that 3222, 0; S = 272,0; Sl By Fourier’s
inversion formula, the properties of the Bochner 1ntegral and the embedding

Bl‘fcl/k(Q, E'") — D! (Q, E') (see Section 2) we have for all ¢ € D, (§2) and all

ec F

< (,D,Zejgj >= Z < (,D,ngj >= Z < gDOj,S'j >= (271')7712 < 20,5
=1

7=1 7=1 7j=1

and

2m) ™ <e,Y <9, >>=02m)" <e < 9b;, 5 >>
=1 =
=(2m)~ Z <e / 6’]@ x)dr >

=<2w>—"zl/n < (0,( ® 0))\(2), S () > du
=L(pR®e) .

Repeating the argument with 332, 0; S1 we conclude that 372, 0 S; = 52 ng}.
Now let (C}) € RY another sequence Such that |L(T)| < 332, Cil|0;T | i for



T € B;,(Q, E). Let Z' be the corresponding operator, let (L o Z'~')~ be an
extension of L o Z'~" to I;(C}, B,x(E)) and let (S}) € I (Clpr’,l/k(El)) the
sequence which represents this extension, then L(T) = (27)~ Z;’ol Jgn <
H/ﬁj(x),SAj’(x) > dr, T € B;i(Q,F), and also < e, < ¢,372; 95’ >>=
L(p ® e) for ¢ € D,(Q) and e € E. Then ® is well deﬁned If <I>(L) =0
then < e, < ¢, ®(L) >>=0= L(p®e) for all ¢ € D,(2) and all e € E, thus
L=0o0n D,(Q)® E. Since this space is dense in D ({2, E') (see Section 2) and

D, (), E) < B (2, E) (see Proposition 3.6 of [27]), it follows that L = 0.
Consequently, ® is one-to-one. Furthermore, @ is surjective: Let (x;) a se-

quence in D, (€2) such that x; = 1 in a compact neighborhood of supp ;. Let

S be an element of Bl?cl/k(Q, E’). Then we have (convergence in Bl?cl/k(Q, E"))

S =X2,6;5 = £2,(6;x,)S = T2, 6;(x;5) = 321 6;X; where X; = x;5.

Now we define the functional

L(T Z <9T ), X () > dz T € B, (QE).
Since

L@@ [ 1B k) 1K @) e s d

<Y 0T sl X5 25
j=1

for all T € By, (2, E), it follows that L € (B (€2, £))". Then ®(L) = S and
® is surjective.

Now we prove that ®' is continuous: Let A be a bounded set in B, (2, E).
Since this space is a strict (LB)-space, there is a compact set M in Q such
that A is contained and bounded in the step B,x(E) N E, (M, E) (see [18,
(4) p. 223]). Take a sequence (x;) in D, (f2) such that x; = 1 in a compact
neighborhood of supp6;, j = 1,2,..., and let m be such that §; = 0 in M for
all j > m. Then, taking into account Proposition 3.4 of [27] and that every
S e Bl?cl/k(Q E’) can be written in the form S =322, 6, X; with X; = X]S
we get

sup | @~ 1(S)(T)| = Z < 0.7 (x), X;(z) > du

TeA T

<§upz 10T\l p e | X5l 1/

631

<§upZ 10501220 1T Wl k1S 17
7j=1



m
<C Y 0llan ISy /k,

J=1

for all S € Bl?cl /k(Q E’) (C is a constant > 0). Hence it follows the continuity
of ®~1. Then ® becomes an isomorphism since Bl, 9 k(Q E') and (B;, (2, E)),
are Fréchet spaces (Bg (€2, E) is a (DF)-space by [18 (4) p. 402] and so its

strong dual is a Fréchet space (see [18, (1) p. 397])). The proof is complete. [

Remark 3.3. When k(z) is a temperate weight function, p = 2 and F = C,
our theorem yields the isomorphism which appears in [13, p. 279].

In [32] the spaces BV, ;(FE) are introduced (by using the natural embedding of
the space V,(kPdx, E) of the finitely additive £—valued measures of bounded p-
variation into the space S/,(E)) and the isometric isomorphism BV 1 (E') ~
(Bpi(E)) is shown (E is any Banach space and 1 < p < 00). In view of this
result and our Theorem 3.2 we can define the space

BV%(QL, E) ={T € D,(Q, E) : ¢T € BV, ,(E) for all ¢ € D,,(Q)}

(equlpped with the topology generated by the family of seminorms {T" —
127) 7Ty, e ) = ¢ € Do)} when p < 0 (vesp. {T = 19T |y, (Lo, :
v € D,(Q)} if p=00)) and propose the following question.

Problem 3.4. Let Q2 be an open set in R", w € M, k € £,, 1 <p <
and let E be a Banach space. Are the spaces BVI,Oi/k(Q, E') and (B (€2, ))
isomorphic?

4 On sequence space representations of spaces of ultradistributions

In this section we give a number of results on sequence space representations
of spaces of distributions and ultradistributions. Based on these and using the
solution to Problem 4.11 in [24] given by Cembranos and Mendoza in [3], we
partially answer the Problem 4.10 in [24]. We also give a new proof of a well
known result: The short sequence

PD)

0 — N(P(D)) — Byi(Q) — Byp/p() — 0

does not split (P(D) is an elliptic operator with constant coefficients and

(Z |0*P( )1/2). (The proof we give is based on the isomorphism
BIOC(Q) )

We shall omit the proof of the following simple result.



Lemma 4.1. Let Q be an open set in R", w e M, ke K, 1 <p < o0, and
let (E;)52, be a sequence of Banach spaces. Then the space BY%(Q, 132, Ej)
is isomorphic to [152, B (Q, Ej).

Theorem 4.2. Let 2 be an open set in R", w € M, k € K, and let E be a
Banach space. Then: (1) B{ (2, E) is isomorphic to (1,(E))™, (2) Bl%(Q, E)
is isomorphic to (I,(E))N, (3) If E is a dual space and has the Radon—Nikodsjm
property then B4 (2, E) is isomorphic to (I (E))".

Proof. (1) and (2) The proof given in [33] is also valid in the vector—valued
case and for weights k € K. (3) Suppose E =~ F” and recall that if (£;)32, is a
sequence of Banach spaces then the space (@j2; Fj);, is isomorphic to [[32,
(see [18, p. 287]). Then, taking into account Theorem 3.2 and (1), we get

B (2, E) ~ (B, /,;(Q,F)); ~ ((ll(F))(N)); ~ (Il (E)N .

Theorem 4.3. [(l;) and l1(ls) are not isomorphic.
Proof. See [3, Theorem 1]. O

Next we answer the Problem 4.10 in [24] when ¢ = oo.

Theorem 4.4. If ) is an open set in R™, w; € M,,, and ky € Ky, (resp.
open set in R™, wy € My, ky € Ku,), then the spaces B (Q1, B2, (Q2))

00,k2
l l . .
and B, (Q2, Bi%, (1)) are not isomorphic.

Proof. By using the previous results we have the isomorphisms

N
BYk, (Qu, B, (92)) = BYY, (. 15) = (B, ()
N
~ (L)) 2 ()"

and

Bloc

00,k

(0, By, () ~ B

~ (o)) 2= (oo ()

Suppose now that our iterated spaces are isomorphic. Then (I;(l5))N and
(I (11))Y are also isomorphic. Hence it follows (by [4]) that there exist positive
integers «, (3 such that [1(ls) < (loo(l1))® ~ loo(ly) and Ioo(l1) < (I1(I0))P ~
l1(lso). Then, using Pelczynski’s decomposition method, we conclude that

(0, 1) = (B, (@)

00,k2

10



I1(lss) = lso(l1). This contradicts Theorem 4.3. In consequence, B’ (€1, B, (€))

Oo7k2

and BR, (Qy, B, (1)) are not isomorphic. O

00,k2

Remark 4.5. 1. We must point out that the space B4 (Qq2, Bi%, (Q1)) even
contains no complemented subspace isomorphic to B’ (€1, B, (€Q2)) (see

00,ka
the proof of Theorem 4.4 and use the final remarks of [3]).

2. Note also that, in general, B¢, (€2, E) is not isomorphic to either BY% (Q)®.E
or B4 &, E: In fact, let 1 < p < oo and assume that B2 (€, 1,) is isomorphic

to B9 (Q)®.l,. Then, by virtue of [19, (5) p. 282], [19, (2) p. 287], Theorem
4.2 and a result of Cembranos and Freniche [2, Theorem 3.2.1], we get

(lm(lp))N = li@elp = (loo@elp)N = (0(5N>®€ZP)N ~ (C(PN, lp))N >

Hence it follows, arguing as in Theorem 4.4, that [, (l,) contains a comple-
mented copy of ¢g. Then, by a result of Leung and Rébiger [2, Theorem 5.1.1],
l, also contains a complemented copy of c¢g. This contradiction shows that
BL%(Q,1,) and BY9.®.l, are not isomorphic. On the other hand, since by
Theorem 4.2 and [19, (5) p. 194] we have

BRG (2, 1) ~ (Lo (1))
B () ®nly = I @rly = (lee®rly)™ = (L (L)Y,

it follows that the spaces BY2%(Q, 1) and B (Q)®<l; are not isomorphic.

In the next theorem the following elementary fact will be used: “Let F' =
ind- F} be the strict inductive limit of a properly increasing sequence I} C
F, C --- of Banach spaces. Assume that every Fj is a complemented subspace
of Fji; and that Gj is a topological complement of F; in Fji;. Then, the
mapping F1 & G1 @ Go® -+ — F = (fi,01,02,...) = fit g1+ g2+ is
an isomorphism”. We will also need the weighted L,-spaces of vector-valued
entire analytic functions LY, (E) and the operators Sk (f) = F~'(xx f) (see

[25]).

Theorem 4.6. Let €2 be an open set in R". Assume 1 < p,q < oo and let k
be a temperate weight function on R™ with kP € A5. Then the space By (€, 1,)
(resp. Blp(Q,1,)) is isomorphic to @2 G (resp. 1152y H;) where Go (resp.
Hy) is isomorphic to l,(l,) and G; (resp. H;) is isomorphic to a complemented
subspace of l,(l,) for j=1,2,....

Proof. Let (K;) be a covering of € consisting of compact sets such that

K; C Kj;1, K; = K; and K has the segment property (we may also assume,
without loss of generality, that each K is a finite union of n-dimensional
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compact intervals). Then By, (Q,1,) = ind-[B,(l,) N E'(K},1,)]. In this in-
’ J

ductive limit, the step B,x(l,) N E'(Kj,1,) is isomorphic (via the Fourier

transform) to L, f"(lq) and this space is isomorphic, by Corollaries 4.2 and

5.1 of [25], to [y(l,). Furthermore, L, fj(lq) is a complemented subspace of
L_Kj“(lq): L;fj(lq) @ [ker S_g, N L_Kj“(lq)] = L;kKj“(lq). Thus, the space

.k pk
Gj=kerS g, NL, fj“(lq) is isomorphic to an infinite-dimensional comple-

mented subspace of [,,(I,). Then, by using the former result, we obtain
Bo (1) = Lt (l) @G1®Go® - =) @G @G @ -+ .

Next, since 1/k is a temperate weight function on R™ such that 1/k* € A%
we see that B;,J/,;(Q,lq/) ~ @j2, Bj where By ~ ly(ly) and B; < ly(ly) for
j=1,2,.... Therefore, by Theorem 3.2, we get

’ o0 ’ (o] oo
B(9, 1) ~ ( e (@ zq,))b ~ (6P Bj)b ~ 1B, =14
j=0 j=0 j=0

(here H; = Bj) where Hy >~ [,(l;) and H; < I,(l,) for j = 1,2,..., and the
proof is complete. O

Remark 4.7. 1. Let Q, p and k as in Theorem 4.6. In [25, Corollary 5.3]
the space By, (<2, E) is showed to be isomorphic to l;N) if dimFE < oo or
E =1,, and to (I,(Iy))™ if E = 5. By duality (Theorem 3.2) it follows that
BYE(Q) ~ I, Bi(Q,1,) ~ I and B(, 13) ~ (1,(I2))N.

2. Note that, in general, B¢(2, E) is not isomorphic to either BY%s(Q)®.E
or B;,?,‘;(Q)@WE: In fact, let Q, p, ¢ and k as in Theorem 4.6 and assume
that BI°5(€,1,) is isomorphic to Bif(Q)®:l, (resp. B5(2)®xl,). Then, by
Theorem 4.6, the previous note, [19, (5), p. 282] and [19, (5), p. 194], we get

[ H, =~ 6.1, ~ (,&.4,)"  (xesp. 15, ~ (4,841,) )

j=0 Jj=0

where Hy >~ [,(l,) and H; < [,(l,) for j =1,2,.... Hence it follows, reasoning
as in Theorem 4.4, that 1,(l,) ~ [,®.l, (resp. [,®,l,) but this is false when
P < q (resp. p < ¢') by a result of Holub [11, Proposition 3.7] (resp. [11,
Proposition 3.6]). In consequence, the spaces B (€2, I,) and B (Q)®.l, (resp.
B;?E(Q)@)qu) are not isomorphic when p’ < ¢ (resp. p < ¢).

3. By using the previous results we can describe the structure of the comple-
mented (normed) subspaces of B’ (2), B)%(9,1,) and [T}%) BY% (. 1, ): (i)
Let X be an infinite-dimensional complemented (normed) subspace of BJ¢(€2)
(Q open set in R", w € M, k € K, and p € {1,000} or k temperate weight
function on R™ such that k7 € A% and p € (1,00)). Then B%() ~ [
and thus X becomes a complemented subspace of [,. This implies, since [,

12



is prime [20, Theorems 2.a.3, 2.a.7], that X ~ [,. (ii) Let X be an infinite-
dimensional complemented (normed) subspace of B):(€,1,) (Q open set in R,
p,q € (1,00) and k temperate weight function on R" with k7 € Ay). Then,
since By5(Q,1;) < (Ip(lg))" in virtue of Theorem 4.6, X becomes a comple-
mented subspace of [,,({,). This implies, in the case ¢ = 2, that X is isomorphic
to either ly, 1, la®l, or [,(l2) by a result of Odell [26]. (iii) Let X be an infinite—
dimensional complemented (normed) subspace of [[/2; By*%. (€, 1,,) (€ open
set in R", 1 <p; <--- < pp < 00, k; temperate weight function on R™ with
ke Ay i=1,... ,m). Then, since

HBIOC Qz’l Hllli = (lpl@”'@lpm)N )
i=1

we have that X < [, ©---®[,, and so there exist 1 <4 < --- < <m
such that X ~ 1, @ --- @1, in virtue of [20, Theorem 2.c.14].

4. We omit the proof of the following result:

B;laolCm(le lq1> B};‘ickz (927 lqg) < pr=prand q = ¢

(€; open set in R", p;,q; € (1,00), k; temperate weight function on R™ with
e Ar L i=1,2).

We conclude this section by showing a result on linear partial differential
operators (the result is well known, see e.g. [21], [22], [31] and [34]). The proof
we give is based on our representation theorem B\’ (€2) ~ .

Theorem 4.8. Let §) be an open set in R™ (n >2), 1 < p < oo, k a temperate
weight function on R"™ such that kP € Ay and P(D) an elliptic operator with
constant coefficients. Then the short sequence

P(D)

0 — N(P(D)) — B;fg(ﬂ) B;;’g () — 0

is exact and does not split, i.e., the operator P(D) has no continuous linear
right inverse (here N(P(D)) is the kernel of P(D)).

Proof. P(D) is well defined by [13, Theorem 10.1.11] and the short sequence
is exact in virtue of [13, Corollary 10.8.2] and [13, Theorem 10.6.7]. The closed
subspace N(P(D)) of Bi%:(£) coincides, algebraic and topologically, with the
subspace N(Q) = {f € E(Q) : P(D)f =0} of £(2) (by [12, Theorem 1.11.10],
[12, Theorem 1.11.11] and the closed graph theorem) and thus it is a nuclear
Fréchet space. Note also that, for every connected component O of €2, the
space N(O) equipped with the topology induced by £(0), is a nuclear Fréchet
space with continuous norms (since all f € N(O) is real analytic in O, see
e.g. [1, Corollary 4.1.4]) isomorphic to a complemented subspace of N(P(D))).
Now assume that the short sequence splits. Then N(P(D)) is a complemented

13



subspace of Bl%(€2). Since this space is isomorphic to I} by Remark 4.7/1, it
follows that, for any connected component O of €2, the space N(O) becomes
isomorphic to an infinite-dimensional (n > 2) complemented subspace of l§ :
This implies, taking into account a result of Metafune and Moscatelli [23,
Theorem 1.2], that N(O) is isomorphic to either I,, I, X w, w or [}. This

contradiction completes the proof. O
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